1 /* DWARF 2 location expression support for GDB.
3 Copyright (C) 2003-2014 Free Software Foundation, Inc.
5 Contributed by Daniel Jacobowitz, MontaVista Software, Inc.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
33 #include "exceptions.h"
38 #include "dwarf2expr.h"
39 #include "dwarf2loc.h"
40 #include "dwarf2-frame.h"
43 #include "gdb_assert.h"
45 extern int dwarf2_always_disassemble;
47 static void dwarf_expr_frame_base_1 (struct symbol *framefunc, CORE_ADDR pc,
48 const gdb_byte **start, size_t *length);
50 static const struct dwarf_expr_context_funcs dwarf_expr_ctx_funcs;
52 static struct value *dwarf2_evaluate_loc_desc_full (struct type *type,
53 struct frame_info *frame,
56 struct dwarf2_per_cu_data *per_cu,
59 /* Until these have formal names, we define these here.
60 ref: http://gcc.gnu.org/wiki/DebugFission
61 Each entry in .debug_loc.dwo begins with a byte that describes the entry,
62 and is then followed by data specific to that entry. */
66 /* Indicates the end of the list of entries. */
67 DEBUG_LOC_END_OF_LIST = 0,
69 /* This is followed by an unsigned LEB128 number that is an index into
70 .debug_addr and specifies the base address for all following entries. */
71 DEBUG_LOC_BASE_ADDRESS = 1,
73 /* This is followed by two unsigned LEB128 numbers that are indices into
74 .debug_addr and specify the beginning and ending addresses, and then
75 a normal location expression as in .debug_loc. */
76 DEBUG_LOC_START_END = 2,
78 /* This is followed by an unsigned LEB128 number that is an index into
79 .debug_addr and specifies the beginning address, and a 4 byte unsigned
80 number that specifies the length, and then a normal location expression
82 DEBUG_LOC_START_LENGTH = 3,
84 /* An internal value indicating there is insufficient data. */
85 DEBUG_LOC_BUFFER_OVERFLOW = -1,
87 /* An internal value indicating an invalid kind of entry was found. */
88 DEBUG_LOC_INVALID_ENTRY = -2
91 /* Helper function which throws an error if a synthetic pointer is
95 invalid_synthetic_pointer (void)
97 error (_("access outside bounds of object "
98 "referenced via synthetic pointer"));
101 /* Decode the addresses in a non-dwo .debug_loc entry.
102 A pointer to the next byte to examine is returned in *NEW_PTR.
103 The encoded low,high addresses are return in *LOW,*HIGH.
104 The result indicates the kind of entry found. */
106 static enum debug_loc_kind
107 decode_debug_loc_addresses (const gdb_byte *loc_ptr, const gdb_byte *buf_end,
108 const gdb_byte **new_ptr,
109 CORE_ADDR *low, CORE_ADDR *high,
110 enum bfd_endian byte_order,
111 unsigned int addr_size,
114 CORE_ADDR base_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
116 if (buf_end - loc_ptr < 2 * addr_size)
117 return DEBUG_LOC_BUFFER_OVERFLOW;
120 *low = extract_signed_integer (loc_ptr, addr_size, byte_order);
122 *low = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
123 loc_ptr += addr_size;
126 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
128 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
129 loc_ptr += addr_size;
133 /* A base-address-selection entry. */
134 if ((*low & base_mask) == base_mask)
135 return DEBUG_LOC_BASE_ADDRESS;
137 /* An end-of-list entry. */
138 if (*low == 0 && *high == 0)
139 return DEBUG_LOC_END_OF_LIST;
141 return DEBUG_LOC_START_END;
144 /* Decode the addresses in .debug_loc.dwo entry.
145 A pointer to the next byte to examine is returned in *NEW_PTR.
146 The encoded low,high addresses are return in *LOW,*HIGH.
147 The result indicates the kind of entry found. */
149 static enum debug_loc_kind
150 decode_debug_loc_dwo_addresses (struct dwarf2_per_cu_data *per_cu,
151 const gdb_byte *loc_ptr,
152 const gdb_byte *buf_end,
153 const gdb_byte **new_ptr,
154 CORE_ADDR *low, CORE_ADDR *high,
155 enum bfd_endian byte_order)
157 uint64_t low_index, high_index;
159 if (loc_ptr == buf_end)
160 return DEBUG_LOC_BUFFER_OVERFLOW;
164 case DEBUG_LOC_END_OF_LIST:
166 return DEBUG_LOC_END_OF_LIST;
167 case DEBUG_LOC_BASE_ADDRESS:
169 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
171 return DEBUG_LOC_BUFFER_OVERFLOW;
172 *high = dwarf2_read_addr_index (per_cu, high_index);
174 return DEBUG_LOC_BASE_ADDRESS;
175 case DEBUG_LOC_START_END:
176 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
178 return DEBUG_LOC_BUFFER_OVERFLOW;
179 *low = dwarf2_read_addr_index (per_cu, low_index);
180 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
182 return DEBUG_LOC_BUFFER_OVERFLOW;
183 *high = dwarf2_read_addr_index (per_cu, high_index);
185 return DEBUG_LOC_START_END;
186 case DEBUG_LOC_START_LENGTH:
187 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
189 return DEBUG_LOC_BUFFER_OVERFLOW;
190 *low = dwarf2_read_addr_index (per_cu, low_index);
191 if (loc_ptr + 4 > buf_end)
192 return DEBUG_LOC_BUFFER_OVERFLOW;
194 *high += extract_unsigned_integer (loc_ptr, 4, byte_order);
195 *new_ptr = loc_ptr + 4;
196 return DEBUG_LOC_START_LENGTH;
198 return DEBUG_LOC_INVALID_ENTRY;
202 /* A function for dealing with location lists. Given a
203 symbol baton (BATON) and a pc value (PC), find the appropriate
204 location expression, set *LOCEXPR_LENGTH, and return a pointer
205 to the beginning of the expression. Returns NULL on failure.
207 For now, only return the first matching location expression; there
208 can be more than one in the list. */
211 dwarf2_find_location_expression (struct dwarf2_loclist_baton *baton,
212 size_t *locexpr_length, CORE_ADDR pc)
214 struct objfile *objfile = dwarf2_per_cu_objfile (baton->per_cu);
215 struct gdbarch *gdbarch = get_objfile_arch (objfile);
216 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
217 unsigned int addr_size = dwarf2_per_cu_addr_size (baton->per_cu);
218 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
219 /* Adjust base_address for relocatable objects. */
220 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (baton->per_cu);
221 CORE_ADDR base_address = baton->base_address + base_offset;
222 const gdb_byte *loc_ptr, *buf_end;
224 loc_ptr = baton->data;
225 buf_end = baton->data + baton->size;
229 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
231 enum debug_loc_kind kind;
232 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
235 kind = decode_debug_loc_dwo_addresses (baton->per_cu,
236 loc_ptr, buf_end, &new_ptr,
237 &low, &high, byte_order);
239 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
241 byte_order, addr_size,
246 case DEBUG_LOC_END_OF_LIST:
249 case DEBUG_LOC_BASE_ADDRESS:
250 base_address = high + base_offset;
252 case DEBUG_LOC_START_END:
253 case DEBUG_LOC_START_LENGTH:
255 case DEBUG_LOC_BUFFER_OVERFLOW:
256 case DEBUG_LOC_INVALID_ENTRY:
257 error (_("dwarf2_find_location_expression: "
258 "Corrupted DWARF expression."));
260 gdb_assert_not_reached ("bad debug_loc_kind");
263 /* Otherwise, a location expression entry.
264 If the entry is from a DWO, don't add base address: the entry is
265 from .debug_addr which has absolute addresses. */
266 if (! baton->from_dwo)
269 high += base_address;
272 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
275 if (low == high && pc == low)
277 /* This is entry PC record present only at entry point
278 of a function. Verify it is really the function entry point. */
280 const struct block *pc_block = block_for_pc (pc);
281 struct symbol *pc_func = NULL;
284 pc_func = block_linkage_function (pc_block);
286 if (pc_func && pc == BLOCK_START (SYMBOL_BLOCK_VALUE (pc_func)))
288 *locexpr_length = length;
293 if (pc >= low && pc < high)
295 *locexpr_length = length;
303 /* This is the baton used when performing dwarf2 expression
305 struct dwarf_expr_baton
307 struct frame_info *frame;
308 struct dwarf2_per_cu_data *per_cu;
311 /* Helper functions for dwarf2_evaluate_loc_desc. */
313 /* Using the frame specified in BATON, return the value of register
314 REGNUM, treated as a pointer. */
316 dwarf_expr_read_addr_from_reg (void *baton, int dwarf_regnum)
318 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
319 struct gdbarch *gdbarch = get_frame_arch (debaton->frame);
320 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, dwarf_regnum);
322 return address_from_register (regnum, debaton->frame);
325 /* Implement struct dwarf_expr_context_funcs' "get_reg_value" callback. */
327 static struct value *
328 dwarf_expr_get_reg_value (void *baton, struct type *type, int dwarf_regnum)
330 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
331 struct gdbarch *gdbarch = get_frame_arch (debaton->frame);
332 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, dwarf_regnum);
334 return value_from_register (type, regnum, debaton->frame);
337 /* Read memory at ADDR (length LEN) into BUF. */
340 dwarf_expr_read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
342 read_memory (addr, buf, len);
345 /* Using the frame specified in BATON, find the location expression
346 describing the frame base. Return a pointer to it in START and
347 its length in LENGTH. */
349 dwarf_expr_frame_base (void *baton, const gdb_byte **start, size_t * length)
351 /* FIXME: cagney/2003-03-26: This code should be using
352 get_frame_base_address(), and then implement a dwarf2 specific
354 struct symbol *framefunc;
355 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
356 const struct block *bl = get_frame_block (debaton->frame, NULL);
359 error (_("frame address is not available."));
361 /* Use block_linkage_function, which returns a real (not inlined)
362 function, instead of get_frame_function, which may return an
364 framefunc = block_linkage_function (bl);
366 /* If we found a frame-relative symbol then it was certainly within
367 some function associated with a frame. If we can't find the frame,
368 something has gone wrong. */
369 gdb_assert (framefunc != NULL);
371 dwarf_expr_frame_base_1 (framefunc,
372 get_frame_address_in_block (debaton->frame),
376 /* Implement find_frame_base_location method for LOC_BLOCK functions using
377 DWARF expression for its DW_AT_frame_base. */
380 locexpr_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
381 const gdb_byte **start, size_t *length)
383 struct dwarf2_locexpr_baton *symbaton = SYMBOL_LOCATION_BATON (framefunc);
385 *length = symbaton->size;
386 *start = symbaton->data;
389 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
390 function uses DWARF expression for its DW_AT_frame_base. */
392 const struct symbol_block_ops dwarf2_block_frame_base_locexpr_funcs =
394 locexpr_find_frame_base_location
397 /* Implement find_frame_base_location method for LOC_BLOCK functions using
398 DWARF location list for its DW_AT_frame_base. */
401 loclist_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
402 const gdb_byte **start, size_t *length)
404 struct dwarf2_loclist_baton *symbaton = SYMBOL_LOCATION_BATON (framefunc);
406 *start = dwarf2_find_location_expression (symbaton, length, pc);
409 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
410 function uses DWARF location list for its DW_AT_frame_base. */
412 const struct symbol_block_ops dwarf2_block_frame_base_loclist_funcs =
414 loclist_find_frame_base_location
418 dwarf_expr_frame_base_1 (struct symbol *framefunc, CORE_ADDR pc,
419 const gdb_byte **start, size_t *length)
421 if (SYMBOL_BLOCK_OPS (framefunc) != NULL)
423 const struct symbol_block_ops *ops_block = SYMBOL_BLOCK_OPS (framefunc);
425 ops_block->find_frame_base_location (framefunc, pc, start, length);
431 error (_("Could not find the frame base for \"%s\"."),
432 SYMBOL_NATURAL_NAME (framefunc));
435 /* Helper function for dwarf2_evaluate_loc_desc. Computes the CFA for
436 the frame in BATON. */
439 dwarf_expr_frame_cfa (void *baton)
441 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
443 return dwarf2_frame_cfa (debaton->frame);
446 /* Helper function for dwarf2_evaluate_loc_desc. Computes the PC for
447 the frame in BATON. */
450 dwarf_expr_frame_pc (void *baton)
452 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
454 return get_frame_address_in_block (debaton->frame);
457 /* Using the objfile specified in BATON, find the address for the
458 current thread's thread-local storage with offset OFFSET. */
460 dwarf_expr_tls_address (void *baton, CORE_ADDR offset)
462 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
463 struct objfile *objfile = dwarf2_per_cu_objfile (debaton->per_cu);
465 return target_translate_tls_address (objfile, offset);
468 /* Call DWARF subroutine from DW_AT_location of DIE at DIE_OFFSET in
469 current CU (as is PER_CU). State of the CTX is not affected by the
473 per_cu_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset,
474 struct dwarf2_per_cu_data *per_cu,
475 CORE_ADDR (*get_frame_pc) (void *baton),
478 struct dwarf2_locexpr_baton block;
480 block = dwarf2_fetch_die_loc_cu_off (die_offset, per_cu, get_frame_pc, baton);
482 /* DW_OP_call_ref is currently not supported. */
483 gdb_assert (block.per_cu == per_cu);
485 dwarf_expr_eval (ctx, block.data, block.size);
488 /* Helper interface of per_cu_dwarf_call for dwarf2_evaluate_loc_desc. */
491 dwarf_expr_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset)
493 struct dwarf_expr_baton *debaton = ctx->baton;
495 per_cu_dwarf_call (ctx, die_offset, debaton->per_cu,
496 ctx->funcs->get_frame_pc, ctx->baton);
499 /* Callback function for dwarf2_evaluate_loc_desc. */
502 dwarf_expr_get_base_type (struct dwarf_expr_context *ctx,
503 cu_offset die_offset)
505 struct dwarf_expr_baton *debaton = ctx->baton;
507 return dwarf2_get_die_type (die_offset, debaton->per_cu);
510 /* See dwarf2loc.h. */
512 unsigned int entry_values_debug = 0;
514 /* Helper to set entry_values_debug. */
517 show_entry_values_debug (struct ui_file *file, int from_tty,
518 struct cmd_list_element *c, const char *value)
520 fprintf_filtered (file,
521 _("Entry values and tail call frames debugging is %s.\n"),
525 /* Find DW_TAG_GNU_call_site's DW_AT_GNU_call_site_target address.
526 CALLER_FRAME (for registers) can be NULL if it is not known. This function
527 always returns valid address or it throws NO_ENTRY_VALUE_ERROR. */
530 call_site_to_target_addr (struct gdbarch *call_site_gdbarch,
531 struct call_site *call_site,
532 struct frame_info *caller_frame)
534 switch (FIELD_LOC_KIND (call_site->target))
536 case FIELD_LOC_KIND_DWARF_BLOCK:
538 struct dwarf2_locexpr_baton *dwarf_block;
540 struct type *caller_core_addr_type;
541 struct gdbarch *caller_arch;
543 dwarf_block = FIELD_DWARF_BLOCK (call_site->target);
544 if (dwarf_block == NULL)
546 struct bound_minimal_symbol msym;
548 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
549 throw_error (NO_ENTRY_VALUE_ERROR,
550 _("DW_AT_GNU_call_site_target is not specified "
552 paddress (call_site_gdbarch, call_site->pc),
553 (msym.minsym == NULL ? "???"
554 : MSYMBOL_PRINT_NAME (msym.minsym)));
557 if (caller_frame == NULL)
559 struct bound_minimal_symbol msym;
561 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
562 throw_error (NO_ENTRY_VALUE_ERROR,
563 _("DW_AT_GNU_call_site_target DWARF block resolving "
564 "requires known frame which is currently not "
565 "available at %s in %s"),
566 paddress (call_site_gdbarch, call_site->pc),
567 (msym.minsym == NULL ? "???"
568 : MSYMBOL_PRINT_NAME (msym.minsym)));
571 caller_arch = get_frame_arch (caller_frame);
572 caller_core_addr_type = builtin_type (caller_arch)->builtin_func_ptr;
573 val = dwarf2_evaluate_loc_desc (caller_core_addr_type, caller_frame,
574 dwarf_block->data, dwarf_block->size,
575 dwarf_block->per_cu);
576 /* DW_AT_GNU_call_site_target is a DWARF expression, not a DWARF
578 if (VALUE_LVAL (val) == lval_memory)
579 return value_address (val);
581 return value_as_address (val);
584 case FIELD_LOC_KIND_PHYSNAME:
586 const char *physname;
587 struct bound_minimal_symbol msym;
589 physname = FIELD_STATIC_PHYSNAME (call_site->target);
591 /* Handle both the mangled and demangled PHYSNAME. */
592 msym = lookup_minimal_symbol (physname, NULL, NULL);
593 if (msym.minsym == NULL)
595 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
596 throw_error (NO_ENTRY_VALUE_ERROR,
597 _("Cannot find function \"%s\" for a call site target "
599 physname, paddress (call_site_gdbarch, call_site->pc),
600 (msym.minsym == NULL ? "???"
601 : MSYMBOL_PRINT_NAME (msym.minsym)));
604 return BMSYMBOL_VALUE_ADDRESS (msym);
607 case FIELD_LOC_KIND_PHYSADDR:
608 return FIELD_STATIC_PHYSADDR (call_site->target);
611 internal_error (__FILE__, __LINE__, _("invalid call site target kind"));
615 /* Convert function entry point exact address ADDR to the function which is
616 compliant with TAIL_CALL_LIST_COMPLETE condition. Throw
617 NO_ENTRY_VALUE_ERROR otherwise. */
619 static struct symbol *
620 func_addr_to_tail_call_list (struct gdbarch *gdbarch, CORE_ADDR addr)
622 struct symbol *sym = find_pc_function (addr);
625 if (sym == NULL || BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) != addr)
626 throw_error (NO_ENTRY_VALUE_ERROR,
627 _("DW_TAG_GNU_call_site resolving failed to find function "
628 "name for address %s"),
629 paddress (gdbarch, addr));
631 type = SYMBOL_TYPE (sym);
632 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FUNC);
633 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
638 /* Verify function with entry point exact address ADDR can never call itself
639 via its tail calls (incl. transitively). Throw NO_ENTRY_VALUE_ERROR if it
640 can call itself via tail calls.
642 If a funtion can tail call itself its entry value based parameters are
643 unreliable. There is no verification whether the value of some/all
644 parameters is unchanged through the self tail call, we expect if there is
645 a self tail call all the parameters can be modified. */
648 func_verify_no_selftailcall (struct gdbarch *gdbarch, CORE_ADDR verify_addr)
650 struct obstack addr_obstack;
651 struct cleanup *old_chain;
654 /* Track here CORE_ADDRs which were already visited. */
657 /* The verification is completely unordered. Track here function addresses
658 which still need to be iterated. */
659 VEC (CORE_ADDR) *todo = NULL;
661 obstack_init (&addr_obstack);
662 old_chain = make_cleanup_obstack_free (&addr_obstack);
663 addr_hash = htab_create_alloc_ex (64, core_addr_hash, core_addr_eq, NULL,
664 &addr_obstack, hashtab_obstack_allocate,
666 make_cleanup_htab_delete (addr_hash);
668 make_cleanup (VEC_cleanup (CORE_ADDR), &todo);
670 VEC_safe_push (CORE_ADDR, todo, verify_addr);
671 while (!VEC_empty (CORE_ADDR, todo))
673 struct symbol *func_sym;
674 struct call_site *call_site;
676 addr = VEC_pop (CORE_ADDR, todo);
678 func_sym = func_addr_to_tail_call_list (gdbarch, addr);
680 for (call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (func_sym));
681 call_site; call_site = call_site->tail_call_next)
683 CORE_ADDR target_addr;
686 /* CALLER_FRAME with registers is not available for tail-call jumped
688 target_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
690 if (target_addr == verify_addr)
692 struct bound_minimal_symbol msym;
694 msym = lookup_minimal_symbol_by_pc (verify_addr);
695 throw_error (NO_ENTRY_VALUE_ERROR,
696 _("DW_OP_GNU_entry_value resolving has found "
697 "function \"%s\" at %s can call itself via tail "
699 (msym.minsym == NULL ? "???"
700 : MSYMBOL_PRINT_NAME (msym.minsym)),
701 paddress (gdbarch, verify_addr));
704 slot = htab_find_slot (addr_hash, &target_addr, INSERT);
707 *slot = obstack_copy (&addr_obstack, &target_addr,
708 sizeof (target_addr));
709 VEC_safe_push (CORE_ADDR, todo, target_addr);
714 do_cleanups (old_chain);
717 /* Print user readable form of CALL_SITE->PC to gdb_stdlog. Used only for
718 ENTRY_VALUES_DEBUG. */
721 tailcall_dump (struct gdbarch *gdbarch, const struct call_site *call_site)
723 CORE_ADDR addr = call_site->pc;
724 struct bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (addr - 1);
726 fprintf_unfiltered (gdb_stdlog, " %s(%s)", paddress (gdbarch, addr),
727 (msym.minsym == NULL ? "???"
728 : MSYMBOL_PRINT_NAME (msym.minsym)));
732 /* vec.h needs single word type name, typedef it. */
733 typedef struct call_site *call_sitep;
735 /* Define VEC (call_sitep) functions. */
736 DEF_VEC_P (call_sitep);
738 /* Intersect RESULTP with CHAIN to keep RESULTP unambiguous, keep in RESULTP
739 only top callers and bottom callees which are present in both. GDBARCH is
740 used only for ENTRY_VALUES_DEBUG. RESULTP is NULL after return if there are
741 no remaining possibilities to provide unambiguous non-trivial result.
742 RESULTP should point to NULL on the first (initialization) call. Caller is
743 responsible for xfree of any RESULTP data. */
746 chain_candidate (struct gdbarch *gdbarch, struct call_site_chain **resultp,
747 VEC (call_sitep) *chain)
749 struct call_site_chain *result = *resultp;
750 long length = VEC_length (call_sitep, chain);
751 int callers, callees, idx;
755 /* Create the initial chain containing all the passed PCs. */
757 result = xmalloc (sizeof (*result) + sizeof (*result->call_site)
759 result->length = length;
760 result->callers = result->callees = length;
761 if (!VEC_empty (call_sitep, chain))
762 memcpy (result->call_site, VEC_address (call_sitep, chain),
763 sizeof (*result->call_site) * length);
766 if (entry_values_debug)
768 fprintf_unfiltered (gdb_stdlog, "tailcall: initial:");
769 for (idx = 0; idx < length; idx++)
770 tailcall_dump (gdbarch, result->call_site[idx]);
771 fputc_unfiltered ('\n', gdb_stdlog);
777 if (entry_values_debug)
779 fprintf_unfiltered (gdb_stdlog, "tailcall: compare:");
780 for (idx = 0; idx < length; idx++)
781 tailcall_dump (gdbarch, VEC_index (call_sitep, chain, idx));
782 fputc_unfiltered ('\n', gdb_stdlog);
785 /* Intersect callers. */
787 callers = min (result->callers, length);
788 for (idx = 0; idx < callers; idx++)
789 if (result->call_site[idx] != VEC_index (call_sitep, chain, idx))
791 result->callers = idx;
795 /* Intersect callees. */
797 callees = min (result->callees, length);
798 for (idx = 0; idx < callees; idx++)
799 if (result->call_site[result->length - 1 - idx]
800 != VEC_index (call_sitep, chain, length - 1 - idx))
802 result->callees = idx;
806 if (entry_values_debug)
808 fprintf_unfiltered (gdb_stdlog, "tailcall: reduced:");
809 for (idx = 0; idx < result->callers; idx++)
810 tailcall_dump (gdbarch, result->call_site[idx]);
811 fputs_unfiltered (" |", gdb_stdlog);
812 for (idx = 0; idx < result->callees; idx++)
813 tailcall_dump (gdbarch, result->call_site[result->length
814 - result->callees + idx]);
815 fputc_unfiltered ('\n', gdb_stdlog);
818 if (result->callers == 0 && result->callees == 0)
820 /* There are no common callers or callees. It could be also a direct
821 call (which has length 0) with ambiguous possibility of an indirect
822 call - CALLERS == CALLEES == 0 is valid during the first allocation
823 but any subsequence processing of such entry means ambiguity. */
829 /* See call_site_find_chain_1 why there is no way to reach the bottom callee
830 PC again. In such case there must be two different code paths to reach
831 it, therefore some of the former determined intermediate PCs must differ
832 and the unambiguous chain gets shortened. */
833 gdb_assert (result->callers + result->callees < result->length);
836 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
837 assumed frames between them use GDBARCH. Use depth first search so we can
838 keep single CHAIN of call_site's back to CALLER_PC. Function recursion
839 would have needless GDB stack overhead. Caller is responsible for xfree of
840 the returned result. Any unreliability results in thrown
841 NO_ENTRY_VALUE_ERROR. */
843 static struct call_site_chain *
844 call_site_find_chain_1 (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
847 CORE_ADDR save_callee_pc = callee_pc;
848 struct obstack addr_obstack;
849 struct cleanup *back_to_retval, *back_to_workdata;
850 struct call_site_chain *retval = NULL;
851 struct call_site *call_site;
853 /* Mark CALL_SITEs so we do not visit the same ones twice. */
856 /* CHAIN contains only the intermediate CALL_SITEs. Neither CALLER_PC's
857 call_site nor any possible call_site at CALLEE_PC's function is there.
858 Any CALL_SITE in CHAIN will be iterated to its siblings - via
859 TAIL_CALL_NEXT. This is inappropriate for CALLER_PC's call_site. */
860 VEC (call_sitep) *chain = NULL;
862 /* We are not interested in the specific PC inside the callee function. */
863 callee_pc = get_pc_function_start (callee_pc);
865 throw_error (NO_ENTRY_VALUE_ERROR, _("Unable to find function for PC %s"),
866 paddress (gdbarch, save_callee_pc));
868 back_to_retval = make_cleanup (free_current_contents, &retval);
870 obstack_init (&addr_obstack);
871 back_to_workdata = make_cleanup_obstack_free (&addr_obstack);
872 addr_hash = htab_create_alloc_ex (64, core_addr_hash, core_addr_eq, NULL,
873 &addr_obstack, hashtab_obstack_allocate,
875 make_cleanup_htab_delete (addr_hash);
877 make_cleanup (VEC_cleanup (call_sitep), &chain);
879 /* Do not push CALL_SITE to CHAIN. Push there only the first tail call site
880 at the target's function. All the possible tail call sites in the
881 target's function will get iterated as already pushed into CHAIN via their
883 call_site = call_site_for_pc (gdbarch, caller_pc);
887 CORE_ADDR target_func_addr;
888 struct call_site *target_call_site;
890 /* CALLER_FRAME with registers is not available for tail-call jumped
892 target_func_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
894 if (target_func_addr == callee_pc)
896 chain_candidate (gdbarch, &retval, chain);
900 /* There is no way to reach CALLEE_PC again as we would prevent
901 entering it twice as being already marked in ADDR_HASH. */
902 target_call_site = NULL;
906 struct symbol *target_func;
908 target_func = func_addr_to_tail_call_list (gdbarch, target_func_addr);
909 target_call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (target_func));
914 /* Attempt to visit TARGET_CALL_SITE. */
916 if (target_call_site)
920 slot = htab_find_slot (addr_hash, &target_call_site->pc, INSERT);
923 /* Successfully entered TARGET_CALL_SITE. */
925 *slot = &target_call_site->pc;
926 VEC_safe_push (call_sitep, chain, target_call_site);
931 /* Backtrack (without revisiting the originating call_site). Try the
932 callers's sibling; if there isn't any try the callers's callers's
935 target_call_site = NULL;
936 while (!VEC_empty (call_sitep, chain))
938 call_site = VEC_pop (call_sitep, chain);
940 gdb_assert (htab_find_slot (addr_hash, &call_site->pc,
942 htab_remove_elt (addr_hash, &call_site->pc);
944 target_call_site = call_site->tail_call_next;
945 if (target_call_site)
949 while (target_call_site);
951 if (VEC_empty (call_sitep, chain))
954 call_site = VEC_last (call_sitep, chain);
959 struct bound_minimal_symbol msym_caller, msym_callee;
961 msym_caller = lookup_minimal_symbol_by_pc (caller_pc);
962 msym_callee = lookup_minimal_symbol_by_pc (callee_pc);
963 throw_error (NO_ENTRY_VALUE_ERROR,
964 _("There are no unambiguously determinable intermediate "
965 "callers or callees between caller function \"%s\" at %s "
966 "and callee function \"%s\" at %s"),
967 (msym_caller.minsym == NULL
968 ? "???" : MSYMBOL_PRINT_NAME (msym_caller.minsym)),
969 paddress (gdbarch, caller_pc),
970 (msym_callee.minsym == NULL
971 ? "???" : MSYMBOL_PRINT_NAME (msym_callee.minsym)),
972 paddress (gdbarch, callee_pc));
975 do_cleanups (back_to_workdata);
976 discard_cleanups (back_to_retval);
980 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
981 assumed frames between them use GDBARCH. If valid call_site_chain cannot be
982 constructed return NULL. Caller is responsible for xfree of the returned
985 struct call_site_chain *
986 call_site_find_chain (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
989 volatile struct gdb_exception e;
990 struct call_site_chain *retval = NULL;
992 TRY_CATCH (e, RETURN_MASK_ERROR)
994 retval = call_site_find_chain_1 (gdbarch, caller_pc, callee_pc);
998 if (e.error == NO_ENTRY_VALUE_ERROR)
1000 if (entry_values_debug)
1001 exception_print (gdb_stdout, e);
1006 throw_exception (e);
1011 /* Return 1 if KIND and KIND_U match PARAMETER. Return 0 otherwise. */
1014 call_site_parameter_matches (struct call_site_parameter *parameter,
1015 enum call_site_parameter_kind kind,
1016 union call_site_parameter_u kind_u)
1018 if (kind == parameter->kind)
1021 case CALL_SITE_PARAMETER_DWARF_REG:
1022 return kind_u.dwarf_reg == parameter->u.dwarf_reg;
1023 case CALL_SITE_PARAMETER_FB_OFFSET:
1024 return kind_u.fb_offset == parameter->u.fb_offset;
1025 case CALL_SITE_PARAMETER_PARAM_OFFSET:
1026 return kind_u.param_offset.cu_off == parameter->u.param_offset.cu_off;
1031 /* Fetch call_site_parameter from caller matching KIND and KIND_U.
1032 FRAME is for callee.
1034 Function always returns non-NULL, it throws NO_ENTRY_VALUE_ERROR
1037 static struct call_site_parameter *
1038 dwarf_expr_reg_to_entry_parameter (struct frame_info *frame,
1039 enum call_site_parameter_kind kind,
1040 union call_site_parameter_u kind_u,
1041 struct dwarf2_per_cu_data **per_cu_return)
1043 CORE_ADDR func_addr, caller_pc;
1044 struct gdbarch *gdbarch;
1045 struct frame_info *caller_frame;
1046 struct call_site *call_site;
1048 /* Initialize it just to avoid a GCC false warning. */
1049 struct call_site_parameter *parameter = NULL;
1050 CORE_ADDR target_addr;
1052 while (get_frame_type (frame) == INLINE_FRAME)
1054 frame = get_prev_frame (frame);
1055 gdb_assert (frame != NULL);
1058 func_addr = get_frame_func (frame);
1059 gdbarch = get_frame_arch (frame);
1060 caller_frame = get_prev_frame (frame);
1061 if (gdbarch != frame_unwind_arch (frame))
1063 struct bound_minimal_symbol msym
1064 = lookup_minimal_symbol_by_pc (func_addr);
1065 struct gdbarch *caller_gdbarch = frame_unwind_arch (frame);
1067 throw_error (NO_ENTRY_VALUE_ERROR,
1068 _("DW_OP_GNU_entry_value resolving callee gdbarch %s "
1069 "(of %s (%s)) does not match caller gdbarch %s"),
1070 gdbarch_bfd_arch_info (gdbarch)->printable_name,
1071 paddress (gdbarch, func_addr),
1072 (msym.minsym == NULL ? "???"
1073 : MSYMBOL_PRINT_NAME (msym.minsym)),
1074 gdbarch_bfd_arch_info (caller_gdbarch)->printable_name);
1077 if (caller_frame == NULL)
1079 struct bound_minimal_symbol msym
1080 = lookup_minimal_symbol_by_pc (func_addr);
1082 throw_error (NO_ENTRY_VALUE_ERROR, _("DW_OP_GNU_entry_value resolving "
1083 "requires caller of %s (%s)"),
1084 paddress (gdbarch, func_addr),
1085 (msym.minsym == NULL ? "???"
1086 : MSYMBOL_PRINT_NAME (msym.minsym)));
1088 caller_pc = get_frame_pc (caller_frame);
1089 call_site = call_site_for_pc (gdbarch, caller_pc);
1091 target_addr = call_site_to_target_addr (gdbarch, call_site, caller_frame);
1092 if (target_addr != func_addr)
1094 struct minimal_symbol *target_msym, *func_msym;
1096 target_msym = lookup_minimal_symbol_by_pc (target_addr).minsym;
1097 func_msym = lookup_minimal_symbol_by_pc (func_addr).minsym;
1098 throw_error (NO_ENTRY_VALUE_ERROR,
1099 _("DW_OP_GNU_entry_value resolving expects callee %s at %s "
1100 "but the called frame is for %s at %s"),
1101 (target_msym == NULL ? "???"
1102 : MSYMBOL_PRINT_NAME (target_msym)),
1103 paddress (gdbarch, target_addr),
1104 func_msym == NULL ? "???" : MSYMBOL_PRINT_NAME (func_msym),
1105 paddress (gdbarch, func_addr));
1108 /* No entry value based parameters would be reliable if this function can
1109 call itself via tail calls. */
1110 func_verify_no_selftailcall (gdbarch, func_addr);
1112 for (iparams = 0; iparams < call_site->parameter_count; iparams++)
1114 parameter = &call_site->parameter[iparams];
1115 if (call_site_parameter_matches (parameter, kind, kind_u))
1118 if (iparams == call_site->parameter_count)
1120 struct minimal_symbol *msym
1121 = lookup_minimal_symbol_by_pc (caller_pc).minsym;
1123 /* DW_TAG_GNU_call_site_parameter will be missing just if GCC could not
1124 determine its value. */
1125 throw_error (NO_ENTRY_VALUE_ERROR, _("Cannot find matching parameter "
1126 "at DW_TAG_GNU_call_site %s at %s"),
1127 paddress (gdbarch, caller_pc),
1128 msym == NULL ? "???" : MSYMBOL_PRINT_NAME (msym));
1131 *per_cu_return = call_site->per_cu;
1135 /* Return value for PARAMETER matching DEREF_SIZE. If DEREF_SIZE is -1, return
1136 the normal DW_AT_GNU_call_site_value block. Otherwise return the
1137 DW_AT_GNU_call_site_data_value (dereferenced) block.
1139 TYPE and CALLER_FRAME specify how to evaluate the DWARF block into returned
1142 Function always returns non-NULL, non-optimized out value. It throws
1143 NO_ENTRY_VALUE_ERROR if it cannot resolve the value for any reason. */
1145 static struct value *
1146 dwarf_entry_parameter_to_value (struct call_site_parameter *parameter,
1147 CORE_ADDR deref_size, struct type *type,
1148 struct frame_info *caller_frame,
1149 struct dwarf2_per_cu_data *per_cu)
1151 const gdb_byte *data_src;
1155 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
1156 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
1158 /* DEREF_SIZE size is not verified here. */
1159 if (data_src == NULL)
1160 throw_error (NO_ENTRY_VALUE_ERROR,
1161 _("Cannot resolve DW_AT_GNU_call_site_data_value"));
1163 /* DW_AT_GNU_call_site_value is a DWARF expression, not a DWARF
1164 location. Postprocessing of DWARF_VALUE_MEMORY would lose the type from
1166 data = alloca (size + 1);
1167 memcpy (data, data_src, size);
1168 data[size] = DW_OP_stack_value;
1170 return dwarf2_evaluate_loc_desc (type, caller_frame, data, size + 1, per_cu);
1173 /* Execute DWARF block of call_site_parameter which matches KIND and KIND_U.
1174 Choose DEREF_SIZE value of that parameter. Search caller of the CTX's
1175 frame. CTX must be of dwarf_expr_ctx_funcs kind.
1177 The CTX caller can be from a different CU - per_cu_dwarf_call implementation
1178 can be more simple as it does not support cross-CU DWARF executions. */
1181 dwarf_expr_push_dwarf_reg_entry_value (struct dwarf_expr_context *ctx,
1182 enum call_site_parameter_kind kind,
1183 union call_site_parameter_u kind_u,
1186 struct dwarf_expr_baton *debaton;
1187 struct frame_info *frame, *caller_frame;
1188 struct dwarf2_per_cu_data *caller_per_cu;
1189 struct dwarf_expr_baton baton_local;
1190 struct dwarf_expr_context saved_ctx;
1191 struct call_site_parameter *parameter;
1192 const gdb_byte *data_src;
1195 gdb_assert (ctx->funcs == &dwarf_expr_ctx_funcs);
1196 debaton = ctx->baton;
1197 frame = debaton->frame;
1198 caller_frame = get_prev_frame (frame);
1200 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
1202 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
1203 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
1205 /* DEREF_SIZE size is not verified here. */
1206 if (data_src == NULL)
1207 throw_error (NO_ENTRY_VALUE_ERROR,
1208 _("Cannot resolve DW_AT_GNU_call_site_data_value"));
1210 baton_local.frame = caller_frame;
1211 baton_local.per_cu = caller_per_cu;
1213 saved_ctx.gdbarch = ctx->gdbarch;
1214 saved_ctx.addr_size = ctx->addr_size;
1215 saved_ctx.offset = ctx->offset;
1216 saved_ctx.baton = ctx->baton;
1217 ctx->gdbarch = get_objfile_arch (dwarf2_per_cu_objfile (baton_local.per_cu));
1218 ctx->addr_size = dwarf2_per_cu_addr_size (baton_local.per_cu);
1219 ctx->offset = dwarf2_per_cu_text_offset (baton_local.per_cu);
1220 ctx->baton = &baton_local;
1222 dwarf_expr_eval (ctx, data_src, size);
1224 ctx->gdbarch = saved_ctx.gdbarch;
1225 ctx->addr_size = saved_ctx.addr_size;
1226 ctx->offset = saved_ctx.offset;
1227 ctx->baton = saved_ctx.baton;
1230 /* Callback function for dwarf2_evaluate_loc_desc.
1231 Fetch the address indexed by DW_OP_GNU_addr_index. */
1234 dwarf_expr_get_addr_index (void *baton, unsigned int index)
1236 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
1238 return dwarf2_read_addr_index (debaton->per_cu, index);
1241 /* VALUE must be of type lval_computed with entry_data_value_funcs. Perform
1242 the indirect method on it, that is use its stored target value, the sole
1243 purpose of entry_data_value_funcs.. */
1245 static struct value *
1246 entry_data_value_coerce_ref (const struct value *value)
1248 struct type *checked_type = check_typedef (value_type (value));
1249 struct value *target_val;
1251 if (TYPE_CODE (checked_type) != TYPE_CODE_REF)
1254 target_val = value_computed_closure (value);
1255 value_incref (target_val);
1259 /* Implement copy_closure. */
1262 entry_data_value_copy_closure (const struct value *v)
1264 struct value *target_val = value_computed_closure (v);
1266 value_incref (target_val);
1270 /* Implement free_closure. */
1273 entry_data_value_free_closure (struct value *v)
1275 struct value *target_val = value_computed_closure (v);
1277 value_free (target_val);
1280 /* Vector for methods for an entry value reference where the referenced value
1281 is stored in the caller. On the first dereference use
1282 DW_AT_GNU_call_site_data_value in the caller. */
1284 static const struct lval_funcs entry_data_value_funcs =
1288 NULL, /* check_validity */
1289 NULL, /* check_any_valid */
1290 NULL, /* indirect */
1291 entry_data_value_coerce_ref,
1292 NULL, /* check_synthetic_pointer */
1293 entry_data_value_copy_closure,
1294 entry_data_value_free_closure
1297 /* Read parameter of TYPE at (callee) FRAME's function entry. KIND and KIND_U
1298 are used to match DW_AT_location at the caller's
1299 DW_TAG_GNU_call_site_parameter.
1301 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1302 cannot resolve the parameter for any reason. */
1304 static struct value *
1305 value_of_dwarf_reg_entry (struct type *type, struct frame_info *frame,
1306 enum call_site_parameter_kind kind,
1307 union call_site_parameter_u kind_u)
1309 struct type *checked_type = check_typedef (type);
1310 struct type *target_type = TYPE_TARGET_TYPE (checked_type);
1311 struct frame_info *caller_frame = get_prev_frame (frame);
1312 struct value *outer_val, *target_val, *val;
1313 struct call_site_parameter *parameter;
1314 struct dwarf2_per_cu_data *caller_per_cu;
1317 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
1320 outer_val = dwarf_entry_parameter_to_value (parameter, -1 /* deref_size */,
1324 /* Check if DW_AT_GNU_call_site_data_value cannot be used. If it should be
1325 used and it is not available do not fall back to OUTER_VAL - dereferencing
1326 TYPE_CODE_REF with non-entry data value would give current value - not the
1329 if (TYPE_CODE (checked_type) != TYPE_CODE_REF
1330 || TYPE_TARGET_TYPE (checked_type) == NULL)
1333 target_val = dwarf_entry_parameter_to_value (parameter,
1334 TYPE_LENGTH (target_type),
1335 target_type, caller_frame,
1338 /* value_as_address dereferences TYPE_CODE_REF. */
1339 addr = extract_typed_address (value_contents (outer_val), checked_type);
1341 /* The target entry value has artificial address of the entry value
1343 VALUE_LVAL (target_val) = lval_memory;
1344 set_value_address (target_val, addr);
1346 release_value (target_val);
1347 val = allocate_computed_value (type, &entry_data_value_funcs,
1348 target_val /* closure */);
1350 /* Copy the referencing pointer to the new computed value. */
1351 memcpy (value_contents_raw (val), value_contents_raw (outer_val),
1352 TYPE_LENGTH (checked_type));
1353 set_value_lazy (val, 0);
1358 /* Read parameter of TYPE at (callee) FRAME's function entry. DATA and
1359 SIZE are DWARF block used to match DW_AT_location at the caller's
1360 DW_TAG_GNU_call_site_parameter.
1362 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1363 cannot resolve the parameter for any reason. */
1365 static struct value *
1366 value_of_dwarf_block_entry (struct type *type, struct frame_info *frame,
1367 const gdb_byte *block, size_t block_len)
1369 union call_site_parameter_u kind_u;
1371 kind_u.dwarf_reg = dwarf_block_to_dwarf_reg (block, block + block_len);
1372 if (kind_u.dwarf_reg != -1)
1373 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_DWARF_REG,
1376 if (dwarf_block_to_fb_offset (block, block + block_len, &kind_u.fb_offset))
1377 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_FB_OFFSET,
1380 /* This can normally happen - throw NO_ENTRY_VALUE_ERROR to get the message
1381 suppressed during normal operation. The expression can be arbitrary if
1382 there is no caller-callee entry value binding expected. */
1383 throw_error (NO_ENTRY_VALUE_ERROR,
1384 _("DWARF-2 expression error: DW_OP_GNU_entry_value is supported "
1385 "only for single DW_OP_reg* or for DW_OP_fbreg(*)"));
1388 struct piece_closure
1390 /* Reference count. */
1393 /* The CU from which this closure's expression came. */
1394 struct dwarf2_per_cu_data *per_cu;
1396 /* The number of pieces used to describe this variable. */
1399 /* The target address size, used only for DWARF_VALUE_STACK. */
1402 /* The pieces themselves. */
1403 struct dwarf_expr_piece *pieces;
1406 /* Allocate a closure for a value formed from separately-described
1409 static struct piece_closure *
1410 allocate_piece_closure (struct dwarf2_per_cu_data *per_cu,
1411 int n_pieces, struct dwarf_expr_piece *pieces,
1414 struct piece_closure *c = XCNEW (struct piece_closure);
1419 c->n_pieces = n_pieces;
1420 c->addr_size = addr_size;
1421 c->pieces = XCNEWVEC (struct dwarf_expr_piece, n_pieces);
1423 memcpy (c->pieces, pieces, n_pieces * sizeof (struct dwarf_expr_piece));
1424 for (i = 0; i < n_pieces; ++i)
1425 if (c->pieces[i].location == DWARF_VALUE_STACK)
1426 value_incref (c->pieces[i].v.value);
1431 /* The lowest-level function to extract bits from a byte buffer.
1432 SOURCE is the buffer. It is updated if we read to the end of a
1434 SOURCE_OFFSET_BITS is the offset of the first bit to read. It is
1435 updated to reflect the number of bits actually read.
1436 NBITS is the number of bits we want to read. It is updated to
1437 reflect the number of bits actually read. This function may read
1439 BITS_BIG_ENDIAN is taken directly from gdbarch.
1440 This function returns the extracted bits. */
1443 extract_bits_primitive (const gdb_byte **source,
1444 unsigned int *source_offset_bits,
1445 int *nbits, int bits_big_endian)
1447 unsigned int avail, mask, datum;
1449 gdb_assert (*source_offset_bits < 8);
1451 avail = 8 - *source_offset_bits;
1455 mask = (1 << avail) - 1;
1457 if (bits_big_endian)
1458 datum >>= 8 - (*source_offset_bits + *nbits);
1460 datum >>= *source_offset_bits;
1464 *source_offset_bits += avail;
1465 if (*source_offset_bits >= 8)
1467 *source_offset_bits -= 8;
1474 /* Extract some bits from a source buffer and move forward in the
1477 SOURCE is the source buffer. It is updated as bytes are read.
1478 SOURCE_OFFSET_BITS is the offset into SOURCE. It is updated as
1480 NBITS is the number of bits to read.
1481 BITS_BIG_ENDIAN is taken directly from gdbarch.
1483 This function returns the bits that were read. */
1486 extract_bits (const gdb_byte **source, unsigned int *source_offset_bits,
1487 int nbits, int bits_big_endian)
1491 gdb_assert (nbits > 0 && nbits <= 8);
1493 datum = extract_bits_primitive (source, source_offset_bits, &nbits,
1499 more = extract_bits_primitive (source, source_offset_bits, &nbits,
1501 if (bits_big_endian)
1511 /* Write some bits into a buffer and move forward in the buffer.
1513 DATUM is the bits to write. The low-order bits of DATUM are used.
1514 DEST is the destination buffer. It is updated as bytes are
1516 DEST_OFFSET_BITS is the bit offset in DEST at which writing is
1518 NBITS is the number of valid bits in DATUM.
1519 BITS_BIG_ENDIAN is taken directly from gdbarch. */
1522 insert_bits (unsigned int datum,
1523 gdb_byte *dest, unsigned int dest_offset_bits,
1524 int nbits, int bits_big_endian)
1528 gdb_assert (dest_offset_bits + nbits <= 8);
1530 mask = (1 << nbits) - 1;
1531 if (bits_big_endian)
1533 datum <<= 8 - (dest_offset_bits + nbits);
1534 mask <<= 8 - (dest_offset_bits + nbits);
1538 datum <<= dest_offset_bits;
1539 mask <<= dest_offset_bits;
1542 gdb_assert ((datum & ~mask) == 0);
1544 *dest = (*dest & ~mask) | datum;
1547 /* Copy bits from a source to a destination.
1549 DEST is where the bits should be written.
1550 DEST_OFFSET_BITS is the bit offset into DEST.
1551 SOURCE is the source of bits.
1552 SOURCE_OFFSET_BITS is the bit offset into SOURCE.
1553 BIT_COUNT is the number of bits to copy.
1554 BITS_BIG_ENDIAN is taken directly from gdbarch. */
1557 copy_bitwise (gdb_byte *dest, unsigned int dest_offset_bits,
1558 const gdb_byte *source, unsigned int source_offset_bits,
1559 unsigned int bit_count,
1560 int bits_big_endian)
1562 unsigned int dest_avail;
1565 /* Reduce everything to byte-size pieces. */
1566 dest += dest_offset_bits / 8;
1567 dest_offset_bits %= 8;
1568 source += source_offset_bits / 8;
1569 source_offset_bits %= 8;
1571 dest_avail = 8 - dest_offset_bits % 8;
1573 /* See if we can fill the first destination byte. */
1574 if (dest_avail < bit_count)
1576 datum = extract_bits (&source, &source_offset_bits, dest_avail,
1578 insert_bits (datum, dest, dest_offset_bits, dest_avail, bits_big_endian);
1580 dest_offset_bits = 0;
1581 bit_count -= dest_avail;
1584 /* Now, either DEST_OFFSET_BITS is byte-aligned, or we have fewer
1585 than 8 bits remaining. */
1586 gdb_assert (dest_offset_bits % 8 == 0 || bit_count < 8);
1587 for (; bit_count >= 8; bit_count -= 8)
1589 datum = extract_bits (&source, &source_offset_bits, 8, bits_big_endian);
1590 *dest++ = (gdb_byte) datum;
1593 /* Finally, we may have a few leftover bits. */
1594 gdb_assert (bit_count <= 8 - dest_offset_bits % 8);
1597 datum = extract_bits (&source, &source_offset_bits, bit_count,
1599 insert_bits (datum, dest, dest_offset_bits, bit_count, bits_big_endian);
1604 read_pieced_value (struct value *v)
1608 ULONGEST bits_to_skip;
1610 struct piece_closure *c
1611 = (struct piece_closure *) value_computed_closure (v);
1612 struct frame_info *frame = frame_find_by_id (VALUE_FRAME_ID (v));
1614 size_t buffer_size = 0;
1615 gdb_byte *buffer = NULL;
1616 struct cleanup *cleanup;
1618 = gdbarch_bits_big_endian (get_type_arch (value_type (v)));
1620 if (value_type (v) != value_enclosing_type (v))
1621 internal_error (__FILE__, __LINE__,
1622 _("Should not be able to create a lazy value with "
1623 "an enclosing type"));
1625 cleanup = make_cleanup (free_current_contents, &buffer);
1627 contents = value_contents_raw (v);
1628 bits_to_skip = 8 * value_offset (v);
1629 if (value_bitsize (v))
1631 bits_to_skip += value_bitpos (v);
1632 type_len = value_bitsize (v);
1635 type_len = 8 * TYPE_LENGTH (value_type (v));
1637 for (i = 0; i < c->n_pieces && offset < type_len; i++)
1639 struct dwarf_expr_piece *p = &c->pieces[i];
1640 size_t this_size, this_size_bits;
1641 long dest_offset_bits, source_offset_bits, source_offset;
1642 const gdb_byte *intermediate_buffer;
1644 /* Compute size, source, and destination offsets for copying, in
1646 this_size_bits = p->size;
1647 if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
1649 bits_to_skip -= this_size_bits;
1652 if (bits_to_skip > 0)
1654 dest_offset_bits = 0;
1655 source_offset_bits = bits_to_skip;
1656 this_size_bits -= bits_to_skip;
1661 dest_offset_bits = offset;
1662 source_offset_bits = 0;
1664 if (this_size_bits > type_len - offset)
1665 this_size_bits = type_len - offset;
1667 this_size = (this_size_bits + source_offset_bits % 8 + 7) / 8;
1668 source_offset = source_offset_bits / 8;
1669 if (buffer_size < this_size)
1671 buffer_size = this_size;
1672 buffer = xrealloc (buffer, buffer_size);
1674 intermediate_buffer = buffer;
1676 /* Copy from the source to DEST_BUFFER. */
1677 switch (p->location)
1679 case DWARF_VALUE_REGISTER:
1681 struct gdbarch *arch = get_frame_arch (frame);
1682 int gdb_regnum = gdbarch_dwarf2_reg_to_regnum (arch, p->v.regno);
1683 int reg_offset = source_offset;
1685 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
1686 && this_size < register_size (arch, gdb_regnum))
1688 /* Big-endian, and we want less than full size. */
1689 reg_offset = register_size (arch, gdb_regnum) - this_size;
1690 /* We want the lower-order THIS_SIZE_BITS of the bytes
1691 we extract from the register. */
1692 source_offset_bits += 8 * this_size - this_size_bits;
1695 if (gdb_regnum != -1)
1699 if (!get_frame_register_bytes (frame, gdb_regnum, reg_offset,
1703 /* Just so garbage doesn't ever shine through. */
1704 memset (buffer, 0, this_size);
1707 set_value_optimized_out (v, 1);
1709 mark_value_bits_unavailable (v, offset, this_size_bits);
1714 error (_("Unable to access DWARF register number %s"),
1715 paddress (arch, p->v.regno));
1720 case DWARF_VALUE_MEMORY:
1721 read_value_memory (v, offset,
1722 p->v.mem.in_stack_memory,
1723 p->v.mem.addr + source_offset,
1727 case DWARF_VALUE_STACK:
1729 size_t n = this_size;
1731 if (n > c->addr_size - source_offset)
1732 n = (c->addr_size >= source_offset
1733 ? c->addr_size - source_offset
1741 const gdb_byte *val_bytes = value_contents_all (p->v.value);
1743 intermediate_buffer = val_bytes + source_offset;
1748 case DWARF_VALUE_LITERAL:
1750 size_t n = this_size;
1752 if (n > p->v.literal.length - source_offset)
1753 n = (p->v.literal.length >= source_offset
1754 ? p->v.literal.length - source_offset
1757 intermediate_buffer = p->v.literal.data + source_offset;
1761 /* These bits show up as zeros -- but do not cause the value
1762 to be considered optimized-out. */
1763 case DWARF_VALUE_IMPLICIT_POINTER:
1766 case DWARF_VALUE_OPTIMIZED_OUT:
1767 set_value_optimized_out (v, 1);
1771 internal_error (__FILE__, __LINE__, _("invalid location type"));
1774 if (p->location != DWARF_VALUE_OPTIMIZED_OUT
1775 && p->location != DWARF_VALUE_IMPLICIT_POINTER)
1776 copy_bitwise (contents, dest_offset_bits,
1777 intermediate_buffer, source_offset_bits % 8,
1778 this_size_bits, bits_big_endian);
1780 offset += this_size_bits;
1783 do_cleanups (cleanup);
1787 write_pieced_value (struct value *to, struct value *from)
1791 ULONGEST bits_to_skip;
1792 const gdb_byte *contents;
1793 struct piece_closure *c
1794 = (struct piece_closure *) value_computed_closure (to);
1795 struct frame_info *frame = frame_find_by_id (VALUE_FRAME_ID (to));
1797 size_t buffer_size = 0;
1798 gdb_byte *buffer = NULL;
1799 struct cleanup *cleanup;
1801 = gdbarch_bits_big_endian (get_type_arch (value_type (to)));
1805 set_value_optimized_out (to, 1);
1809 cleanup = make_cleanup (free_current_contents, &buffer);
1811 contents = value_contents (from);
1812 bits_to_skip = 8 * value_offset (to);
1813 if (value_bitsize (to))
1815 bits_to_skip += value_bitpos (to);
1816 type_len = value_bitsize (to);
1819 type_len = 8 * TYPE_LENGTH (value_type (to));
1821 for (i = 0; i < c->n_pieces && offset < type_len; i++)
1823 struct dwarf_expr_piece *p = &c->pieces[i];
1824 size_t this_size_bits, this_size;
1825 long dest_offset_bits, source_offset_bits, dest_offset, source_offset;
1827 const gdb_byte *source_buffer;
1829 this_size_bits = p->size;
1830 if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
1832 bits_to_skip -= this_size_bits;
1835 if (this_size_bits > type_len - offset)
1836 this_size_bits = type_len - offset;
1837 if (bits_to_skip > 0)
1839 dest_offset_bits = bits_to_skip;
1840 source_offset_bits = 0;
1841 this_size_bits -= bits_to_skip;
1846 dest_offset_bits = 0;
1847 source_offset_bits = offset;
1850 this_size = (this_size_bits + source_offset_bits % 8 + 7) / 8;
1851 source_offset = source_offset_bits / 8;
1852 dest_offset = dest_offset_bits / 8;
1853 if (dest_offset_bits % 8 == 0 && source_offset_bits % 8 == 0)
1855 source_buffer = contents + source_offset;
1860 if (buffer_size < this_size)
1862 buffer_size = this_size;
1863 buffer = xrealloc (buffer, buffer_size);
1865 source_buffer = buffer;
1869 switch (p->location)
1871 case DWARF_VALUE_REGISTER:
1873 struct gdbarch *arch = get_frame_arch (frame);
1874 int gdb_regnum = gdbarch_dwarf2_reg_to_regnum (arch, p->v.regno);
1875 int reg_offset = dest_offset;
1877 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
1878 && this_size <= register_size (arch, gdb_regnum))
1879 /* Big-endian, and we want less than full size. */
1880 reg_offset = register_size (arch, gdb_regnum) - this_size;
1882 if (gdb_regnum != -1)
1888 if (!get_frame_register_bytes (frame, gdb_regnum, reg_offset,
1893 throw_error (OPTIMIZED_OUT_ERROR,
1894 _("Can't do read-modify-write to "
1895 "update bitfield; containing word "
1896 "has been optimized out"));
1898 throw_error (NOT_AVAILABLE_ERROR,
1899 _("Can't do read-modify-write to update "
1900 "bitfield; containing word "
1903 copy_bitwise (buffer, dest_offset_bits,
1904 contents, source_offset_bits,
1909 put_frame_register_bytes (frame, gdb_regnum, reg_offset,
1910 this_size, source_buffer);
1914 error (_("Unable to write to DWARF register number %s"),
1915 paddress (arch, p->v.regno));
1919 case DWARF_VALUE_MEMORY:
1922 /* Only the first and last bytes can possibly have any
1924 read_memory (p->v.mem.addr + dest_offset, buffer, 1);
1925 read_memory (p->v.mem.addr + dest_offset + this_size - 1,
1926 buffer + this_size - 1, 1);
1927 copy_bitwise (buffer, dest_offset_bits,
1928 contents, source_offset_bits,
1933 write_memory (p->v.mem.addr + dest_offset,
1934 source_buffer, this_size);
1937 set_value_optimized_out (to, 1);
1940 offset += this_size_bits;
1943 do_cleanups (cleanup);
1946 /* A helper function that checks bit validity in a pieced value.
1947 CHECK_FOR indicates the kind of validity checking.
1948 DWARF_VALUE_MEMORY means to check whether any bit is valid.
1949 DWARF_VALUE_OPTIMIZED_OUT means to check whether any bit is
1951 DWARF_VALUE_IMPLICIT_POINTER means to check whether the bits are an
1952 implicit pointer. */
1955 check_pieced_value_bits (const struct value *value, int bit_offset,
1957 enum dwarf_value_location check_for)
1959 struct piece_closure *c
1960 = (struct piece_closure *) value_computed_closure (value);
1962 int validity = (check_for == DWARF_VALUE_MEMORY
1963 || check_for == DWARF_VALUE_IMPLICIT_POINTER);
1965 bit_offset += 8 * value_offset (value);
1966 if (value_bitsize (value))
1967 bit_offset += value_bitpos (value);
1969 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
1971 struct dwarf_expr_piece *p = &c->pieces[i];
1972 size_t this_size_bits = p->size;
1976 if (bit_offset >= this_size_bits)
1978 bit_offset -= this_size_bits;
1982 bit_length -= this_size_bits - bit_offset;
1986 bit_length -= this_size_bits;
1988 if (check_for == DWARF_VALUE_IMPLICIT_POINTER)
1990 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
1993 else if (p->location == DWARF_VALUE_OPTIMIZED_OUT
1994 || p->location == DWARF_VALUE_IMPLICIT_POINTER)
2010 check_pieced_value_validity (const struct value *value, int bit_offset,
2013 return check_pieced_value_bits (value, bit_offset, bit_length,
2014 DWARF_VALUE_MEMORY);
2018 check_pieced_value_invalid (const struct value *value)
2020 return check_pieced_value_bits (value, 0,
2021 8 * TYPE_LENGTH (value_type (value)),
2022 DWARF_VALUE_OPTIMIZED_OUT);
2025 /* An implementation of an lval_funcs method to see whether a value is
2026 a synthetic pointer. */
2029 check_pieced_synthetic_pointer (const struct value *value, int bit_offset,
2032 return check_pieced_value_bits (value, bit_offset, bit_length,
2033 DWARF_VALUE_IMPLICIT_POINTER);
2036 /* A wrapper function for get_frame_address_in_block. */
2039 get_frame_address_in_block_wrapper (void *baton)
2041 return get_frame_address_in_block (baton);
2044 /* An implementation of an lval_funcs method to indirect through a
2045 pointer. This handles the synthetic pointer case when needed. */
2047 static struct value *
2048 indirect_pieced_value (struct value *value)
2050 struct piece_closure *c
2051 = (struct piece_closure *) value_computed_closure (value);
2053 struct frame_info *frame;
2054 struct dwarf2_locexpr_baton baton;
2055 int i, bit_offset, bit_length;
2056 struct dwarf_expr_piece *piece = NULL;
2057 LONGEST byte_offset;
2059 type = check_typedef (value_type (value));
2060 if (TYPE_CODE (type) != TYPE_CODE_PTR)
2063 bit_length = 8 * TYPE_LENGTH (type);
2064 bit_offset = 8 * value_offset (value);
2065 if (value_bitsize (value))
2066 bit_offset += value_bitpos (value);
2068 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
2070 struct dwarf_expr_piece *p = &c->pieces[i];
2071 size_t this_size_bits = p->size;
2075 if (bit_offset >= this_size_bits)
2077 bit_offset -= this_size_bits;
2081 bit_length -= this_size_bits - bit_offset;
2085 bit_length -= this_size_bits;
2087 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
2090 if (bit_length != 0)
2091 error (_("Invalid use of DW_OP_GNU_implicit_pointer"));
2097 frame = get_selected_frame (_("No frame selected."));
2099 /* This is an offset requested by GDB, such as value subscripts.
2100 However, due to how synthetic pointers are implemented, this is
2101 always presented to us as a pointer type. This means we have to
2102 sign-extend it manually as appropriate. */
2103 byte_offset = value_as_address (value);
2104 if (TYPE_LENGTH (value_type (value)) < sizeof (LONGEST))
2105 byte_offset = gdb_sign_extend (byte_offset,
2106 8 * TYPE_LENGTH (value_type (value)));
2107 byte_offset += piece->v.ptr.offset;
2111 = dwarf2_fetch_die_loc_sect_off (piece->v.ptr.die, c->per_cu,
2112 get_frame_address_in_block_wrapper,
2115 if (baton.data != NULL)
2116 return dwarf2_evaluate_loc_desc_full (TYPE_TARGET_TYPE (type), frame,
2117 baton.data, baton.size, baton.per_cu,
2121 struct obstack temp_obstack;
2122 struct cleanup *cleanup;
2123 const gdb_byte *bytes;
2125 struct value *result;
2127 obstack_init (&temp_obstack);
2128 cleanup = make_cleanup_obstack_free (&temp_obstack);
2130 bytes = dwarf2_fetch_constant_bytes (piece->v.ptr.die, c->per_cu,
2131 &temp_obstack, &len);
2133 result = allocate_optimized_out_value (TYPE_TARGET_TYPE (type));
2137 || byte_offset + TYPE_LENGTH (TYPE_TARGET_TYPE (type)) > len)
2138 invalid_synthetic_pointer ();
2139 bytes += byte_offset;
2140 result = value_from_contents (TYPE_TARGET_TYPE (type), bytes);
2143 do_cleanups (cleanup);
2149 copy_pieced_value_closure (const struct value *v)
2151 struct piece_closure *c
2152 = (struct piece_closure *) value_computed_closure (v);
2159 free_pieced_value_closure (struct value *v)
2161 struct piece_closure *c
2162 = (struct piece_closure *) value_computed_closure (v);
2169 for (i = 0; i < c->n_pieces; ++i)
2170 if (c->pieces[i].location == DWARF_VALUE_STACK)
2171 value_free (c->pieces[i].v.value);
2178 /* Functions for accessing a variable described by DW_OP_piece. */
2179 static const struct lval_funcs pieced_value_funcs = {
2182 check_pieced_value_validity,
2183 check_pieced_value_invalid,
2184 indirect_pieced_value,
2185 NULL, /* coerce_ref */
2186 check_pieced_synthetic_pointer,
2187 copy_pieced_value_closure,
2188 free_pieced_value_closure
2191 /* Virtual method table for dwarf2_evaluate_loc_desc_full below. */
2193 static const struct dwarf_expr_context_funcs dwarf_expr_ctx_funcs =
2195 dwarf_expr_read_addr_from_reg,
2196 dwarf_expr_get_reg_value,
2197 dwarf_expr_read_mem,
2198 dwarf_expr_frame_base,
2199 dwarf_expr_frame_cfa,
2200 dwarf_expr_frame_pc,
2201 dwarf_expr_tls_address,
2202 dwarf_expr_dwarf_call,
2203 dwarf_expr_get_base_type,
2204 dwarf_expr_push_dwarf_reg_entry_value,
2205 dwarf_expr_get_addr_index
2208 /* Evaluate a location description, starting at DATA and with length
2209 SIZE, to find the current location of variable of TYPE in the
2210 context of FRAME. BYTE_OFFSET is applied after the contents are
2213 static struct value *
2214 dwarf2_evaluate_loc_desc_full (struct type *type, struct frame_info *frame,
2215 const gdb_byte *data, size_t size,
2216 struct dwarf2_per_cu_data *per_cu,
2217 LONGEST byte_offset)
2219 struct value *retval;
2220 struct dwarf_expr_baton baton;
2221 struct dwarf_expr_context *ctx;
2222 struct cleanup *old_chain, *value_chain;
2223 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2224 volatile struct gdb_exception ex;
2226 if (byte_offset < 0)
2227 invalid_synthetic_pointer ();
2230 return allocate_optimized_out_value (type);
2232 baton.frame = frame;
2233 baton.per_cu = per_cu;
2235 ctx = new_dwarf_expr_context ();
2236 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
2237 value_chain = make_cleanup_value_free_to_mark (value_mark ());
2239 ctx->gdbarch = get_objfile_arch (objfile);
2240 ctx->addr_size = dwarf2_per_cu_addr_size (per_cu);
2241 ctx->ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2242 ctx->offset = dwarf2_per_cu_text_offset (per_cu);
2243 ctx->baton = &baton;
2244 ctx->funcs = &dwarf_expr_ctx_funcs;
2246 TRY_CATCH (ex, RETURN_MASK_ERROR)
2248 dwarf_expr_eval (ctx, data, size);
2252 if (ex.error == NOT_AVAILABLE_ERROR)
2254 do_cleanups (old_chain);
2255 retval = allocate_value (type);
2256 mark_value_bytes_unavailable (retval, 0, TYPE_LENGTH (type));
2259 else if (ex.error == NO_ENTRY_VALUE_ERROR)
2261 if (entry_values_debug)
2262 exception_print (gdb_stdout, ex);
2263 do_cleanups (old_chain);
2264 return allocate_optimized_out_value (type);
2267 throw_exception (ex);
2270 if (ctx->num_pieces > 0)
2272 struct piece_closure *c;
2273 struct frame_id frame_id = get_frame_id (frame);
2274 ULONGEST bit_size = 0;
2277 for (i = 0; i < ctx->num_pieces; ++i)
2278 bit_size += ctx->pieces[i].size;
2279 if (8 * (byte_offset + TYPE_LENGTH (type)) > bit_size)
2280 invalid_synthetic_pointer ();
2282 c = allocate_piece_closure (per_cu, ctx->num_pieces, ctx->pieces,
2284 /* We must clean up the value chain after creating the piece
2285 closure but before allocating the result. */
2286 do_cleanups (value_chain);
2287 retval = allocate_computed_value (type, &pieced_value_funcs, c);
2288 VALUE_FRAME_ID (retval) = frame_id;
2289 set_value_offset (retval, byte_offset);
2293 switch (ctx->location)
2295 case DWARF_VALUE_REGISTER:
2297 struct gdbarch *arch = get_frame_arch (frame);
2299 = longest_to_int (value_as_long (dwarf_expr_fetch (ctx, 0)));
2300 int gdb_regnum = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_regnum);
2302 if (byte_offset != 0)
2303 error (_("cannot use offset on synthetic pointer to register"));
2304 do_cleanups (value_chain);
2305 if (gdb_regnum == -1)
2306 error (_("Unable to access DWARF register number %d"),
2308 retval = value_from_register (type, gdb_regnum, frame);
2309 if (value_optimized_out (retval))
2311 /* This means the register has undefined value / was
2312 not saved. As we're computing the location of some
2313 variable etc. in the program, not a value for
2314 inspecting a register ($pc, $sp, etc.), return a
2315 generic optimized out value instead, so that we show
2316 <optimized out> instead of <not saved>. */
2317 do_cleanups (value_chain);
2318 retval = allocate_optimized_out_value (type);
2323 case DWARF_VALUE_MEMORY:
2325 CORE_ADDR address = dwarf_expr_fetch_address (ctx, 0);
2326 int in_stack_memory = dwarf_expr_fetch_in_stack_memory (ctx, 0);
2328 do_cleanups (value_chain);
2329 retval = value_at_lazy (type, address + byte_offset);
2330 if (in_stack_memory)
2331 set_value_stack (retval, 1);
2335 case DWARF_VALUE_STACK:
2337 struct value *value = dwarf_expr_fetch (ctx, 0);
2339 const gdb_byte *val_bytes;
2340 size_t n = TYPE_LENGTH (value_type (value));
2342 if (byte_offset + TYPE_LENGTH (type) > n)
2343 invalid_synthetic_pointer ();
2345 val_bytes = value_contents_all (value);
2346 val_bytes += byte_offset;
2349 /* Preserve VALUE because we are going to free values back
2350 to the mark, but we still need the value contents
2352 value_incref (value);
2353 do_cleanups (value_chain);
2354 make_cleanup_value_free (value);
2356 retval = allocate_value (type);
2357 contents = value_contents_raw (retval);
2358 if (n > TYPE_LENGTH (type))
2360 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
2362 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2363 val_bytes += n - TYPE_LENGTH (type);
2364 n = TYPE_LENGTH (type);
2366 memcpy (contents, val_bytes, n);
2370 case DWARF_VALUE_LITERAL:
2373 const bfd_byte *ldata;
2374 size_t n = ctx->len;
2376 if (byte_offset + TYPE_LENGTH (type) > n)
2377 invalid_synthetic_pointer ();
2379 do_cleanups (value_chain);
2380 retval = allocate_value (type);
2381 contents = value_contents_raw (retval);
2383 ldata = ctx->data + byte_offset;
2386 if (n > TYPE_LENGTH (type))
2388 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
2390 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2391 ldata += n - TYPE_LENGTH (type);
2392 n = TYPE_LENGTH (type);
2394 memcpy (contents, ldata, n);
2398 case DWARF_VALUE_OPTIMIZED_OUT:
2399 do_cleanups (value_chain);
2400 retval = allocate_optimized_out_value (type);
2403 /* DWARF_VALUE_IMPLICIT_POINTER was converted to a pieced
2404 operation by execute_stack_op. */
2405 case DWARF_VALUE_IMPLICIT_POINTER:
2406 /* DWARF_VALUE_OPTIMIZED_OUT can't occur in this context --
2407 it can only be encountered when making a piece. */
2409 internal_error (__FILE__, __LINE__, _("invalid location type"));
2413 set_value_initialized (retval, ctx->initialized);
2415 do_cleanups (old_chain);
2420 /* The exported interface to dwarf2_evaluate_loc_desc_full; it always
2421 passes 0 as the byte_offset. */
2424 dwarf2_evaluate_loc_desc (struct type *type, struct frame_info *frame,
2425 const gdb_byte *data, size_t size,
2426 struct dwarf2_per_cu_data *per_cu)
2428 return dwarf2_evaluate_loc_desc_full (type, frame, data, size, per_cu, 0);
2431 /* Evaluates a dwarf expression and stores the result in VAL, expecting
2432 that the dwarf expression only produces a single CORE_ADDR. ADDR is a
2433 context (location of a variable) and might be needed to evaluate the
2434 location expression.
2435 Returns 1 on success, 0 otherwise. */
2438 dwarf2_locexpr_baton_eval (const struct dwarf2_locexpr_baton *dlbaton,
2441 struct dwarf_expr_context *ctx;
2442 struct dwarf_expr_baton baton;
2443 struct objfile *objfile;
2444 struct cleanup *cleanup;
2446 if (dlbaton == NULL || dlbaton->size == 0)
2449 ctx = new_dwarf_expr_context ();
2450 cleanup = make_cleanup_free_dwarf_expr_context (ctx);
2452 baton.frame = get_selected_frame (NULL);
2453 baton.per_cu = dlbaton->per_cu;
2455 objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
2457 ctx->gdbarch = get_objfile_arch (objfile);
2458 ctx->addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
2459 ctx->ref_addr_size = dwarf2_per_cu_ref_addr_size (dlbaton->per_cu);
2460 ctx->offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
2461 ctx->funcs = &dwarf_expr_ctx_funcs;
2462 ctx->baton = &baton;
2464 dwarf_expr_eval (ctx, dlbaton->data, dlbaton->size);
2466 switch (ctx->location)
2468 case DWARF_VALUE_REGISTER:
2469 case DWARF_VALUE_MEMORY:
2470 case DWARF_VALUE_STACK:
2471 *valp = dwarf_expr_fetch_address (ctx, 0);
2472 if (ctx->location == DWARF_VALUE_REGISTER)
2473 *valp = dwarf_expr_read_addr_from_reg (&baton, *valp);
2474 do_cleanups (cleanup);
2476 case DWARF_VALUE_LITERAL:
2477 *valp = extract_signed_integer (ctx->data, ctx->len,
2478 gdbarch_byte_order (ctx->gdbarch));
2479 do_cleanups (cleanup);
2481 /* Unsupported dwarf values. */
2482 case DWARF_VALUE_OPTIMIZED_OUT:
2483 case DWARF_VALUE_IMPLICIT_POINTER:
2487 do_cleanups (cleanup);
2491 /* See dwarf2loc.h. */
2494 dwarf2_evaluate_property (const struct dynamic_prop *prop, CORE_ADDR *value)
2503 const struct dwarf2_property_baton *baton = prop->data.baton;
2505 if (dwarf2_locexpr_baton_eval (&baton->locexpr, value))
2507 if (baton->referenced_type)
2509 struct value *val = value_at (baton->referenced_type, *value);
2511 *value = value_as_address (val);
2520 struct dwarf2_property_baton *baton = prop->data.baton;
2521 struct frame_info *frame = get_selected_frame (NULL);
2522 CORE_ADDR pc = get_frame_address_in_block (frame);
2523 const gdb_byte *data;
2527 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2530 val = dwarf2_evaluate_loc_desc (baton->referenced_type, frame, data,
2531 size, baton->loclist.per_cu);
2532 if (!value_optimized_out (val))
2534 *value = value_as_address (val);
2542 *value = prop->data.const_val;
2550 /* Helper functions and baton for dwarf2_loc_desc_needs_frame. */
2552 struct needs_frame_baton
2555 struct dwarf2_per_cu_data *per_cu;
2558 /* Reads from registers do require a frame. */
2560 needs_frame_read_addr_from_reg (void *baton, int regnum)
2562 struct needs_frame_baton *nf_baton = baton;
2564 nf_baton->needs_frame = 1;
2568 /* struct dwarf_expr_context_funcs' "get_reg_value" callback:
2569 Reads from registers do require a frame. */
2571 static struct value *
2572 needs_frame_get_reg_value (void *baton, struct type *type, int regnum)
2574 struct needs_frame_baton *nf_baton = baton;
2576 nf_baton->needs_frame = 1;
2577 return value_zero (type, not_lval);
2580 /* Reads from memory do not require a frame. */
2582 needs_frame_read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
2584 memset (buf, 0, len);
2587 /* Frame-relative accesses do require a frame. */
2589 needs_frame_frame_base (void *baton, const gdb_byte **start, size_t * length)
2591 static gdb_byte lit0 = DW_OP_lit0;
2592 struct needs_frame_baton *nf_baton = baton;
2597 nf_baton->needs_frame = 1;
2600 /* CFA accesses require a frame. */
2603 needs_frame_frame_cfa (void *baton)
2605 struct needs_frame_baton *nf_baton = baton;
2607 nf_baton->needs_frame = 1;
2611 /* Thread-local accesses do require a frame. */
2613 needs_frame_tls_address (void *baton, CORE_ADDR offset)
2615 struct needs_frame_baton *nf_baton = baton;
2617 nf_baton->needs_frame = 1;
2621 /* Helper interface of per_cu_dwarf_call for dwarf2_loc_desc_needs_frame. */
2624 needs_frame_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset)
2626 struct needs_frame_baton *nf_baton = ctx->baton;
2628 per_cu_dwarf_call (ctx, die_offset, nf_baton->per_cu,
2629 ctx->funcs->get_frame_pc, ctx->baton);
2632 /* DW_OP_GNU_entry_value accesses require a caller, therefore a frame. */
2635 needs_dwarf_reg_entry_value (struct dwarf_expr_context *ctx,
2636 enum call_site_parameter_kind kind,
2637 union call_site_parameter_u kind_u, int deref_size)
2639 struct needs_frame_baton *nf_baton = ctx->baton;
2641 nf_baton->needs_frame = 1;
2643 /* The expression may require some stub values on DWARF stack. */
2644 dwarf_expr_push_address (ctx, 0, 0);
2647 /* DW_OP_GNU_addr_index doesn't require a frame. */
2650 needs_get_addr_index (void *baton, unsigned int index)
2652 /* Nothing to do. */
2656 /* Virtual method table for dwarf2_loc_desc_needs_frame below. */
2658 static const struct dwarf_expr_context_funcs needs_frame_ctx_funcs =
2660 needs_frame_read_addr_from_reg,
2661 needs_frame_get_reg_value,
2662 needs_frame_read_mem,
2663 needs_frame_frame_base,
2664 needs_frame_frame_cfa,
2665 needs_frame_frame_cfa, /* get_frame_pc */
2666 needs_frame_tls_address,
2667 needs_frame_dwarf_call,
2668 NULL, /* get_base_type */
2669 needs_dwarf_reg_entry_value,
2670 needs_get_addr_index
2673 /* Return non-zero iff the location expression at DATA (length SIZE)
2674 requires a frame to evaluate. */
2677 dwarf2_loc_desc_needs_frame (const gdb_byte *data, size_t size,
2678 struct dwarf2_per_cu_data *per_cu)
2680 struct needs_frame_baton baton;
2681 struct dwarf_expr_context *ctx;
2683 struct cleanup *old_chain;
2684 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2686 baton.needs_frame = 0;
2687 baton.per_cu = per_cu;
2689 ctx = new_dwarf_expr_context ();
2690 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
2691 make_cleanup_value_free_to_mark (value_mark ());
2693 ctx->gdbarch = get_objfile_arch (objfile);
2694 ctx->addr_size = dwarf2_per_cu_addr_size (per_cu);
2695 ctx->ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2696 ctx->offset = dwarf2_per_cu_text_offset (per_cu);
2697 ctx->baton = &baton;
2698 ctx->funcs = &needs_frame_ctx_funcs;
2700 dwarf_expr_eval (ctx, data, size);
2702 in_reg = ctx->location == DWARF_VALUE_REGISTER;
2704 if (ctx->num_pieces > 0)
2708 /* If the location has several pieces, and any of them are in
2709 registers, then we will need a frame to fetch them from. */
2710 for (i = 0; i < ctx->num_pieces; i++)
2711 if (ctx->pieces[i].location == DWARF_VALUE_REGISTER)
2715 do_cleanups (old_chain);
2717 return baton.needs_frame || in_reg;
2720 /* A helper function that throws an unimplemented error mentioning a
2721 given DWARF operator. */
2724 unimplemented (unsigned int op)
2726 const char *name = get_DW_OP_name (op);
2729 error (_("DWARF operator %s cannot be translated to an agent expression"),
2732 error (_("Unknown DWARF operator 0x%02x cannot be translated "
2733 "to an agent expression"),
2737 /* A helper function to convert a DWARF register to an arch register.
2738 ARCH is the architecture.
2739 DWARF_REG is the register.
2740 This will throw an exception if the DWARF register cannot be
2741 translated to an architecture register. */
2744 translate_register (struct gdbarch *arch, int dwarf_reg)
2746 int reg = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_reg);
2748 error (_("Unable to access DWARF register number %d"), dwarf_reg);
2752 /* A helper function that emits an access to memory. ARCH is the
2753 target architecture. EXPR is the expression which we are building.
2754 NBITS is the number of bits we want to read. This emits the
2755 opcodes needed to read the memory and then extract the desired
2759 access_memory (struct gdbarch *arch, struct agent_expr *expr, ULONGEST nbits)
2761 ULONGEST nbytes = (nbits + 7) / 8;
2763 gdb_assert (nbytes > 0 && nbytes <= sizeof (LONGEST));
2766 ax_trace_quick (expr, nbytes);
2769 ax_simple (expr, aop_ref8);
2770 else if (nbits <= 16)
2771 ax_simple (expr, aop_ref16);
2772 else if (nbits <= 32)
2773 ax_simple (expr, aop_ref32);
2775 ax_simple (expr, aop_ref64);
2777 /* If we read exactly the number of bytes we wanted, we're done. */
2778 if (8 * nbytes == nbits)
2781 if (gdbarch_bits_big_endian (arch))
2783 /* On a bits-big-endian machine, we want the high-order
2785 ax_const_l (expr, 8 * nbytes - nbits);
2786 ax_simple (expr, aop_rsh_unsigned);
2790 /* On a bits-little-endian box, we want the low-order NBITS. */
2791 ax_zero_ext (expr, nbits);
2795 /* A helper function to return the frame's PC. */
2798 get_ax_pc (void *baton)
2800 struct agent_expr *expr = baton;
2805 /* Compile a DWARF location expression to an agent expression.
2807 EXPR is the agent expression we are building.
2808 LOC is the agent value we modify.
2809 ARCH is the architecture.
2810 ADDR_SIZE is the size of addresses, in bytes.
2811 OP_PTR is the start of the location expression.
2812 OP_END is one past the last byte of the location expression.
2814 This will throw an exception for various kinds of errors -- for
2815 example, if the expression cannot be compiled, or if the expression
2819 dwarf2_compile_expr_to_ax (struct agent_expr *expr, struct axs_value *loc,
2820 struct gdbarch *arch, unsigned int addr_size,
2821 const gdb_byte *op_ptr, const gdb_byte *op_end,
2822 struct dwarf2_per_cu_data *per_cu)
2824 struct cleanup *cleanups;
2826 VEC(int) *dw_labels = NULL, *patches = NULL;
2827 const gdb_byte * const base = op_ptr;
2828 const gdb_byte *previous_piece = op_ptr;
2829 enum bfd_endian byte_order = gdbarch_byte_order (arch);
2830 ULONGEST bits_collected = 0;
2831 unsigned int addr_size_bits = 8 * addr_size;
2832 int bits_big_endian = gdbarch_bits_big_endian (arch);
2834 offsets = xmalloc ((op_end - op_ptr) * sizeof (int));
2835 cleanups = make_cleanup (xfree, offsets);
2837 for (i = 0; i < op_end - op_ptr; ++i)
2840 make_cleanup (VEC_cleanup (int), &dw_labels);
2841 make_cleanup (VEC_cleanup (int), &patches);
2843 /* By default we are making an address. */
2844 loc->kind = axs_lvalue_memory;
2846 while (op_ptr < op_end)
2848 enum dwarf_location_atom op = *op_ptr;
2849 uint64_t uoffset, reg;
2853 offsets[op_ptr - base] = expr->len;
2856 /* Our basic approach to code generation is to map DWARF
2857 operations directly to AX operations. However, there are
2860 First, DWARF works on address-sized units, but AX always uses
2861 LONGEST. For most operations we simply ignore this
2862 difference; instead we generate sign extensions as needed
2863 before division and comparison operations. It would be nice
2864 to omit the sign extensions, but there is no way to determine
2865 the size of the target's LONGEST. (This code uses the size
2866 of the host LONGEST in some cases -- that is a bug but it is
2869 Second, some DWARF operations cannot be translated to AX.
2870 For these we simply fail. See
2871 http://sourceware.org/bugzilla/show_bug.cgi?id=11662. */
2906 ax_const_l (expr, op - DW_OP_lit0);
2910 uoffset = extract_unsigned_integer (op_ptr, addr_size, byte_order);
2911 op_ptr += addr_size;
2912 /* Some versions of GCC emit DW_OP_addr before
2913 DW_OP_GNU_push_tls_address. In this case the value is an
2914 index, not an address. We don't support things like
2915 branching between the address and the TLS op. */
2916 if (op_ptr >= op_end || *op_ptr != DW_OP_GNU_push_tls_address)
2917 uoffset += dwarf2_per_cu_text_offset (per_cu);
2918 ax_const_l (expr, uoffset);
2922 ax_const_l (expr, extract_unsigned_integer (op_ptr, 1, byte_order));
2926 ax_const_l (expr, extract_signed_integer (op_ptr, 1, byte_order));
2930 ax_const_l (expr, extract_unsigned_integer (op_ptr, 2, byte_order));
2934 ax_const_l (expr, extract_signed_integer (op_ptr, 2, byte_order));
2938 ax_const_l (expr, extract_unsigned_integer (op_ptr, 4, byte_order));
2942 ax_const_l (expr, extract_signed_integer (op_ptr, 4, byte_order));
2946 ax_const_l (expr, extract_unsigned_integer (op_ptr, 8, byte_order));
2950 ax_const_l (expr, extract_signed_integer (op_ptr, 8, byte_order));
2954 op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
2955 ax_const_l (expr, uoffset);
2958 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
2959 ax_const_l (expr, offset);
2994 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
2995 loc->u.reg = translate_register (arch, op - DW_OP_reg0);
2996 loc->kind = axs_lvalue_register;
3000 op_ptr = safe_read_uleb128 (op_ptr, op_end, ®);
3001 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
3002 loc->u.reg = translate_register (arch, reg);
3003 loc->kind = axs_lvalue_register;
3006 case DW_OP_implicit_value:
3010 op_ptr = safe_read_uleb128 (op_ptr, op_end, &len);
3011 if (op_ptr + len > op_end)
3012 error (_("DW_OP_implicit_value: too few bytes available."));
3013 if (len > sizeof (ULONGEST))
3014 error (_("Cannot translate DW_OP_implicit_value of %d bytes"),
3017 ax_const_l (expr, extract_unsigned_integer (op_ptr, len,
3020 dwarf_expr_require_composition (op_ptr, op_end,
3021 "DW_OP_implicit_value");
3023 loc->kind = axs_rvalue;
3027 case DW_OP_stack_value:
3028 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_stack_value");
3029 loc->kind = axs_rvalue;
3064 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3065 i = translate_register (arch, op - DW_OP_breg0);
3069 ax_const_l (expr, offset);
3070 ax_simple (expr, aop_add);
3075 op_ptr = safe_read_uleb128 (op_ptr, op_end, ®);
3076 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3077 i = translate_register (arch, reg);
3081 ax_const_l (expr, offset);
3082 ax_simple (expr, aop_add);
3088 const gdb_byte *datastart;
3090 const struct block *b;
3091 struct symbol *framefunc;
3093 b = block_for_pc (expr->scope);
3096 error (_("No block found for address"));
3098 framefunc = block_linkage_function (b);
3101 error (_("No function found for block"));
3103 dwarf_expr_frame_base_1 (framefunc, expr->scope,
3104 &datastart, &datalen);
3106 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3107 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size, datastart,
3108 datastart + datalen, per_cu);
3109 if (loc->kind == axs_lvalue_register)
3110 require_rvalue (expr, loc);
3114 ax_const_l (expr, offset);
3115 ax_simple (expr, aop_add);
3118 loc->kind = axs_lvalue_memory;
3123 ax_simple (expr, aop_dup);
3127 ax_simple (expr, aop_pop);
3132 ax_pick (expr, offset);
3136 ax_simple (expr, aop_swap);
3144 ax_simple (expr, aop_rot);
3148 case DW_OP_deref_size:
3152 if (op == DW_OP_deref_size)
3157 if (size != 1 && size != 2 && size != 4 && size != 8)
3158 error (_("Unsupported size %d in %s"),
3159 size, get_DW_OP_name (op));
3160 access_memory (arch, expr, size * TARGET_CHAR_BIT);
3165 /* Sign extend the operand. */
3166 ax_ext (expr, addr_size_bits);
3167 ax_simple (expr, aop_dup);
3168 ax_const_l (expr, 0);
3169 ax_simple (expr, aop_less_signed);
3170 ax_simple (expr, aop_log_not);
3171 i = ax_goto (expr, aop_if_goto);
3172 /* We have to emit 0 - X. */
3173 ax_const_l (expr, 0);
3174 ax_simple (expr, aop_swap);
3175 ax_simple (expr, aop_sub);
3176 ax_label (expr, i, expr->len);
3180 /* No need to sign extend here. */
3181 ax_const_l (expr, 0);
3182 ax_simple (expr, aop_swap);
3183 ax_simple (expr, aop_sub);
3187 /* Sign extend the operand. */
3188 ax_ext (expr, addr_size_bits);
3189 ax_simple (expr, aop_bit_not);
3192 case DW_OP_plus_uconst:
3193 op_ptr = safe_read_uleb128 (op_ptr, op_end, ®);
3194 /* It would be really weird to emit `DW_OP_plus_uconst 0',
3195 but we micro-optimize anyhow. */
3198 ax_const_l (expr, reg);
3199 ax_simple (expr, aop_add);
3204 ax_simple (expr, aop_bit_and);
3208 /* Sign extend the operands. */
3209 ax_ext (expr, addr_size_bits);
3210 ax_simple (expr, aop_swap);
3211 ax_ext (expr, addr_size_bits);
3212 ax_simple (expr, aop_swap);
3213 ax_simple (expr, aop_div_signed);
3217 ax_simple (expr, aop_sub);
3221 ax_simple (expr, aop_rem_unsigned);
3225 ax_simple (expr, aop_mul);
3229 ax_simple (expr, aop_bit_or);
3233 ax_simple (expr, aop_add);
3237 ax_simple (expr, aop_lsh);
3241 ax_simple (expr, aop_rsh_unsigned);
3245 ax_simple (expr, aop_rsh_signed);
3249 ax_simple (expr, aop_bit_xor);
3253 /* Sign extend the operands. */
3254 ax_ext (expr, addr_size_bits);
3255 ax_simple (expr, aop_swap);
3256 ax_ext (expr, addr_size_bits);
3257 /* Note no swap here: A <= B is !(B < A). */
3258 ax_simple (expr, aop_less_signed);
3259 ax_simple (expr, aop_log_not);
3263 /* Sign extend the operands. */
3264 ax_ext (expr, addr_size_bits);
3265 ax_simple (expr, aop_swap);
3266 ax_ext (expr, addr_size_bits);
3267 ax_simple (expr, aop_swap);
3268 /* A >= B is !(A < B). */
3269 ax_simple (expr, aop_less_signed);
3270 ax_simple (expr, aop_log_not);
3274 /* Sign extend the operands. */
3275 ax_ext (expr, addr_size_bits);
3276 ax_simple (expr, aop_swap);
3277 ax_ext (expr, addr_size_bits);
3278 /* No need for a second swap here. */
3279 ax_simple (expr, aop_equal);
3283 /* Sign extend the operands. */
3284 ax_ext (expr, addr_size_bits);
3285 ax_simple (expr, aop_swap);
3286 ax_ext (expr, addr_size_bits);
3287 ax_simple (expr, aop_swap);
3288 ax_simple (expr, aop_less_signed);
3292 /* Sign extend the operands. */
3293 ax_ext (expr, addr_size_bits);
3294 ax_simple (expr, aop_swap);
3295 ax_ext (expr, addr_size_bits);
3296 /* Note no swap here: A > B is B < A. */
3297 ax_simple (expr, aop_less_signed);
3301 /* Sign extend the operands. */
3302 ax_ext (expr, addr_size_bits);
3303 ax_simple (expr, aop_swap);
3304 ax_ext (expr, addr_size_bits);
3305 /* No need for a swap here. */
3306 ax_simple (expr, aop_equal);
3307 ax_simple (expr, aop_log_not);
3310 case DW_OP_call_frame_cfa:
3311 dwarf2_compile_cfa_to_ax (expr, loc, arch, expr->scope, per_cu);
3312 loc->kind = axs_lvalue_memory;
3315 case DW_OP_GNU_push_tls_address:
3320 offset = extract_signed_integer (op_ptr, 2, byte_order);
3322 i = ax_goto (expr, aop_goto);
3323 VEC_safe_push (int, dw_labels, op_ptr + offset - base);
3324 VEC_safe_push (int, patches, i);
3328 offset = extract_signed_integer (op_ptr, 2, byte_order);
3330 /* Zero extend the operand. */
3331 ax_zero_ext (expr, addr_size_bits);
3332 i = ax_goto (expr, aop_if_goto);
3333 VEC_safe_push (int, dw_labels, op_ptr + offset - base);
3334 VEC_safe_push (int, patches, i);
3341 case DW_OP_bit_piece:
3343 uint64_t size, offset;
3345 if (op_ptr - 1 == previous_piece)
3346 error (_("Cannot translate empty pieces to agent expressions"));
3347 previous_piece = op_ptr - 1;
3349 op_ptr = safe_read_uleb128 (op_ptr, op_end, &size);
3350 if (op == DW_OP_piece)
3356 op_ptr = safe_read_uleb128 (op_ptr, op_end, &offset);
3358 if (bits_collected + size > 8 * sizeof (LONGEST))
3359 error (_("Expression pieces exceed word size"));
3361 /* Access the bits. */
3364 case axs_lvalue_register:
3365 ax_reg (expr, loc->u.reg);
3368 case axs_lvalue_memory:
3369 /* Offset the pointer, if needed. */
3372 ax_const_l (expr, offset / 8);
3373 ax_simple (expr, aop_add);
3376 access_memory (arch, expr, size);
3380 /* For a bits-big-endian target, shift up what we already
3381 have. For a bits-little-endian target, shift up the
3382 new data. Note that there is a potential bug here if
3383 the DWARF expression leaves multiple values on the
3385 if (bits_collected > 0)
3387 if (bits_big_endian)
3389 ax_simple (expr, aop_swap);
3390 ax_const_l (expr, size);
3391 ax_simple (expr, aop_lsh);
3392 /* We don't need a second swap here, because
3393 aop_bit_or is symmetric. */
3397 ax_const_l (expr, size);
3398 ax_simple (expr, aop_lsh);
3400 ax_simple (expr, aop_bit_or);
3403 bits_collected += size;
3404 loc->kind = axs_rvalue;
3408 case DW_OP_GNU_uninit:
3414 struct dwarf2_locexpr_baton block;
3415 int size = (op == DW_OP_call2 ? 2 : 4);
3418 uoffset = extract_unsigned_integer (op_ptr, size, byte_order);
3421 offset.cu_off = uoffset;
3422 block = dwarf2_fetch_die_loc_cu_off (offset, per_cu,
3425 /* DW_OP_call_ref is currently not supported. */
3426 gdb_assert (block.per_cu == per_cu);
3428 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size,
3429 block.data, block.data + block.size,
3434 case DW_OP_call_ref:
3442 /* Patch all the branches we emitted. */
3443 for (i = 0; i < VEC_length (int, patches); ++i)
3445 int targ = offsets[VEC_index (int, dw_labels, i)];
3447 internal_error (__FILE__, __LINE__, _("invalid label"));
3448 ax_label (expr, VEC_index (int, patches, i), targ);
3451 do_cleanups (cleanups);
3455 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
3456 evaluator to calculate the location. */
3457 static struct value *
3458 locexpr_read_variable (struct symbol *symbol, struct frame_info *frame)
3460 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
3463 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3464 dlbaton->size, dlbaton->per_cu);
3469 /* Return the value of SYMBOL in FRAME at (callee) FRAME's function
3470 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
3473 static struct value *
3474 locexpr_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
3476 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
3478 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3482 /* Return non-zero iff we need a frame to evaluate SYMBOL. */
3484 locexpr_read_needs_frame (struct symbol *symbol)
3486 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
3488 return dwarf2_loc_desc_needs_frame (dlbaton->data, dlbaton->size,
3492 /* Return true if DATA points to the end of a piece. END is one past
3493 the last byte in the expression. */
3496 piece_end_p (const gdb_byte *data, const gdb_byte *end)
3498 return data == end || data[0] == DW_OP_piece || data[0] == DW_OP_bit_piece;
3501 /* Helper for locexpr_describe_location_piece that finds the name of a
3505 locexpr_regname (struct gdbarch *gdbarch, int dwarf_regnum)
3509 regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, dwarf_regnum);
3510 return gdbarch_register_name (gdbarch, regnum);
3513 /* Nicely describe a single piece of a location, returning an updated
3514 position in the bytecode sequence. This function cannot recognize
3515 all locations; if a location is not recognized, it simply returns
3516 DATA. If there is an error during reading, e.g. we run off the end
3517 of the buffer, an error is thrown. */
3519 static const gdb_byte *
3520 locexpr_describe_location_piece (struct symbol *symbol, struct ui_file *stream,
3521 CORE_ADDR addr, struct objfile *objfile,
3522 struct dwarf2_per_cu_data *per_cu,
3523 const gdb_byte *data, const gdb_byte *end,
3524 unsigned int addr_size)
3526 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3529 if (data[0] >= DW_OP_reg0 && data[0] <= DW_OP_reg31)
3531 fprintf_filtered (stream, _("a variable in $%s"),
3532 locexpr_regname (gdbarch, data[0] - DW_OP_reg0));
3535 else if (data[0] == DW_OP_regx)
3539 data = safe_read_uleb128 (data + 1, end, ®);
3540 fprintf_filtered (stream, _("a variable in $%s"),
3541 locexpr_regname (gdbarch, reg));
3543 else if (data[0] == DW_OP_fbreg)
3545 const struct block *b;
3546 struct symbol *framefunc;
3548 int64_t frame_offset;
3549 const gdb_byte *base_data, *new_data, *save_data = data;
3551 int64_t base_offset = 0;
3553 new_data = safe_read_sleb128 (data + 1, end, &frame_offset);
3554 if (!piece_end_p (new_data, end))
3558 b = block_for_pc (addr);
3561 error (_("No block found for address for symbol \"%s\"."),
3562 SYMBOL_PRINT_NAME (symbol));
3564 framefunc = block_linkage_function (b);
3567 error (_("No function found for block for symbol \"%s\"."),
3568 SYMBOL_PRINT_NAME (symbol));
3570 dwarf_expr_frame_base_1 (framefunc, addr, &base_data, &base_size);
3572 if (base_data[0] >= DW_OP_breg0 && base_data[0] <= DW_OP_breg31)
3574 const gdb_byte *buf_end;
3576 frame_reg = base_data[0] - DW_OP_breg0;
3577 buf_end = safe_read_sleb128 (base_data + 1, base_data + base_size,
3579 if (buf_end != base_data + base_size)
3580 error (_("Unexpected opcode after "
3581 "DW_OP_breg%u for symbol \"%s\"."),
3582 frame_reg, SYMBOL_PRINT_NAME (symbol));
3584 else if (base_data[0] >= DW_OP_reg0 && base_data[0] <= DW_OP_reg31)
3586 /* The frame base is just the register, with no offset. */
3587 frame_reg = base_data[0] - DW_OP_reg0;
3592 /* We don't know what to do with the frame base expression,
3593 so we can't trace this variable; give up. */
3597 fprintf_filtered (stream,
3598 _("a variable at frame base reg $%s offset %s+%s"),
3599 locexpr_regname (gdbarch, frame_reg),
3600 plongest (base_offset), plongest (frame_offset));
3602 else if (data[0] >= DW_OP_breg0 && data[0] <= DW_OP_breg31
3603 && piece_end_p (data, end))
3607 data = safe_read_sleb128 (data + 1, end, &offset);
3609 fprintf_filtered (stream,
3610 _("a variable at offset %s from base reg $%s"),
3612 locexpr_regname (gdbarch, data[0] - DW_OP_breg0));
3615 /* The location expression for a TLS variable looks like this (on a
3618 DW_AT_location : 10 byte block: 3 4 0 0 0 0 0 0 0 e0
3619 (DW_OP_addr: 4; DW_OP_GNU_push_tls_address)
3621 0x3 is the encoding for DW_OP_addr, which has an operand as long
3622 as the size of an address on the target machine (here is 8
3623 bytes). Note that more recent version of GCC emit DW_OP_const4u
3624 or DW_OP_const8u, depending on address size, rather than
3625 DW_OP_addr. 0xe0 is the encoding for DW_OP_GNU_push_tls_address.
3626 The operand represents the offset at which the variable is within
3627 the thread local storage. */
3629 else if (data + 1 + addr_size < end
3630 && (data[0] == DW_OP_addr
3631 || (addr_size == 4 && data[0] == DW_OP_const4u)
3632 || (addr_size == 8 && data[0] == DW_OP_const8u))
3633 && data[1 + addr_size] == DW_OP_GNU_push_tls_address
3634 && piece_end_p (data + 2 + addr_size, end))
3637 offset = extract_unsigned_integer (data + 1, addr_size,
3638 gdbarch_byte_order (gdbarch));
3640 fprintf_filtered (stream,
3641 _("a thread-local variable at offset 0x%s "
3642 "in the thread-local storage for `%s'"),
3643 phex_nz (offset, addr_size), objfile_name (objfile));
3645 data += 1 + addr_size + 1;
3648 /* With -gsplit-dwarf a TLS variable can also look like this:
3649 DW_AT_location : 3 byte block: fc 4 e0
3650 (DW_OP_GNU_const_index: 4;
3651 DW_OP_GNU_push_tls_address) */
3652 else if (data + 3 <= end
3653 && data + 1 + (leb128_size = skip_leb128 (data + 1, end)) < end
3654 && data[0] == DW_OP_GNU_const_index
3656 && data[1 + leb128_size] == DW_OP_GNU_push_tls_address
3657 && piece_end_p (data + 2 + leb128_size, end))
3661 data = safe_read_uleb128 (data + 1, end, &offset);
3662 offset = dwarf2_read_addr_index (per_cu, offset);
3663 fprintf_filtered (stream,
3664 _("a thread-local variable at offset 0x%s "
3665 "in the thread-local storage for `%s'"),
3666 phex_nz (offset, addr_size), objfile_name (objfile));
3670 else if (data[0] >= DW_OP_lit0
3671 && data[0] <= DW_OP_lit31
3673 && data[1] == DW_OP_stack_value)
3675 fprintf_filtered (stream, _("the constant %d"), data[0] - DW_OP_lit0);
3682 /* Disassemble an expression, stopping at the end of a piece or at the
3683 end of the expression. Returns a pointer to the next unread byte
3684 in the input expression. If ALL is nonzero, then this function
3685 will keep going until it reaches the end of the expression.
3686 If there is an error during reading, e.g. we run off the end
3687 of the buffer, an error is thrown. */
3689 static const gdb_byte *
3690 disassemble_dwarf_expression (struct ui_file *stream,
3691 struct gdbarch *arch, unsigned int addr_size,
3692 int offset_size, const gdb_byte *start,
3693 const gdb_byte *data, const gdb_byte *end,
3694 int indent, int all,
3695 struct dwarf2_per_cu_data *per_cu)
3699 || (data[0] != DW_OP_piece && data[0] != DW_OP_bit_piece)))
3701 enum dwarf_location_atom op = *data++;
3706 name = get_DW_OP_name (op);
3709 error (_("Unrecognized DWARF opcode 0x%02x at %ld"),
3710 op, (long) (data - 1 - start));
3711 fprintf_filtered (stream, " %*ld: %s", indent + 4,
3712 (long) (data - 1 - start), name);
3717 ul = extract_unsigned_integer (data, addr_size,
3718 gdbarch_byte_order (arch));
3720 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
3724 ul = extract_unsigned_integer (data, 1, gdbarch_byte_order (arch));
3726 fprintf_filtered (stream, " %s", pulongest (ul));
3729 l = extract_signed_integer (data, 1, gdbarch_byte_order (arch));
3731 fprintf_filtered (stream, " %s", plongest (l));
3734 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
3736 fprintf_filtered (stream, " %s", pulongest (ul));
3739 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3741 fprintf_filtered (stream, " %s", plongest (l));
3744 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3746 fprintf_filtered (stream, " %s", pulongest (ul));
3749 l = extract_signed_integer (data, 4, gdbarch_byte_order (arch));
3751 fprintf_filtered (stream, " %s", plongest (l));
3754 ul = extract_unsigned_integer (data, 8, gdbarch_byte_order (arch));
3756 fprintf_filtered (stream, " %s", pulongest (ul));
3759 l = extract_signed_integer (data, 8, gdbarch_byte_order (arch));
3761 fprintf_filtered (stream, " %s", plongest (l));
3764 data = safe_read_uleb128 (data, end, &ul);
3765 fprintf_filtered (stream, " %s", pulongest (ul));
3768 data = safe_read_sleb128 (data, end, &l);
3769 fprintf_filtered (stream, " %s", plongest (l));
3804 fprintf_filtered (stream, " [$%s]",
3805 locexpr_regname (arch, op - DW_OP_reg0));
3809 data = safe_read_uleb128 (data, end, &ul);
3810 fprintf_filtered (stream, " %s [$%s]", pulongest (ul),
3811 locexpr_regname (arch, (int) ul));
3814 case DW_OP_implicit_value:
3815 data = safe_read_uleb128 (data, end, &ul);
3817 fprintf_filtered (stream, " %s", pulongest (ul));
3852 data = safe_read_sleb128 (data, end, &l);
3853 fprintf_filtered (stream, " %s [$%s]", plongest (l),
3854 locexpr_regname (arch, op - DW_OP_breg0));
3858 data = safe_read_uleb128 (data, end, &ul);
3859 data = safe_read_sleb128 (data, end, &l);
3860 fprintf_filtered (stream, " register %s [$%s] offset %s",
3862 locexpr_regname (arch, (int) ul),
3867 data = safe_read_sleb128 (data, end, &l);
3868 fprintf_filtered (stream, " %s", plongest (l));
3871 case DW_OP_xderef_size:
3872 case DW_OP_deref_size:
3874 fprintf_filtered (stream, " %d", *data);
3878 case DW_OP_plus_uconst:
3879 data = safe_read_uleb128 (data, end, &ul);
3880 fprintf_filtered (stream, " %s", pulongest (ul));
3884 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3886 fprintf_filtered (stream, " to %ld",
3887 (long) (data + l - start));
3891 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3893 fprintf_filtered (stream, " %ld",
3894 (long) (data + l - start));
3898 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
3900 fprintf_filtered (stream, " offset %s", phex_nz (ul, 2));
3904 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3906 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
3909 case DW_OP_call_ref:
3910 ul = extract_unsigned_integer (data, offset_size,
3911 gdbarch_byte_order (arch));
3912 data += offset_size;
3913 fprintf_filtered (stream, " offset %s", phex_nz (ul, offset_size));
3917 data = safe_read_uleb128 (data, end, &ul);
3918 fprintf_filtered (stream, " %s (bytes)", pulongest (ul));
3921 case DW_OP_bit_piece:
3925 data = safe_read_uleb128 (data, end, &ul);
3926 data = safe_read_uleb128 (data, end, &offset);
3927 fprintf_filtered (stream, " size %s offset %s (bits)",
3928 pulongest (ul), pulongest (offset));
3932 case DW_OP_GNU_implicit_pointer:
3934 ul = extract_unsigned_integer (data, offset_size,
3935 gdbarch_byte_order (arch));
3936 data += offset_size;
3938 data = safe_read_sleb128 (data, end, &l);
3940 fprintf_filtered (stream, " DIE %s offset %s",
3941 phex_nz (ul, offset_size),
3946 case DW_OP_GNU_deref_type:
3948 int addr_size = *data++;
3952 data = safe_read_uleb128 (data, end, &ul);
3954 type = dwarf2_get_die_type (offset, per_cu);
3955 fprintf_filtered (stream, "<");
3956 type_print (type, "", stream, -1);
3957 fprintf_filtered (stream, " [0x%s]> %d", phex_nz (offset.cu_off, 0),
3962 case DW_OP_GNU_const_type:
3967 data = safe_read_uleb128 (data, end, &ul);
3968 type_die.cu_off = ul;
3969 type = dwarf2_get_die_type (type_die, per_cu);
3970 fprintf_filtered (stream, "<");
3971 type_print (type, "", stream, -1);
3972 fprintf_filtered (stream, " [0x%s]>", phex_nz (type_die.cu_off, 0));
3976 case DW_OP_GNU_regval_type:
3982 data = safe_read_uleb128 (data, end, ®);
3983 data = safe_read_uleb128 (data, end, &ul);
3984 type_die.cu_off = ul;
3986 type = dwarf2_get_die_type (type_die, per_cu);
3987 fprintf_filtered (stream, "<");
3988 type_print (type, "", stream, -1);
3989 fprintf_filtered (stream, " [0x%s]> [$%s]",
3990 phex_nz (type_die.cu_off, 0),
3991 locexpr_regname (arch, reg));
3995 case DW_OP_GNU_convert:
3996 case DW_OP_GNU_reinterpret:
4000 data = safe_read_uleb128 (data, end, &ul);
4001 type_die.cu_off = ul;
4003 if (type_die.cu_off == 0)
4004 fprintf_filtered (stream, "<0>");
4009 type = dwarf2_get_die_type (type_die, per_cu);
4010 fprintf_filtered (stream, "<");
4011 type_print (type, "", stream, -1);
4012 fprintf_filtered (stream, " [0x%s]>", phex_nz (type_die.cu_off, 0));
4017 case DW_OP_GNU_entry_value:
4018 data = safe_read_uleb128 (data, end, &ul);
4019 fputc_filtered ('\n', stream);
4020 disassemble_dwarf_expression (stream, arch, addr_size, offset_size,
4021 start, data, data + ul, indent + 2,
4026 case DW_OP_GNU_parameter_ref:
4027 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4029 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
4032 case DW_OP_GNU_addr_index:
4033 data = safe_read_uleb128 (data, end, &ul);
4034 ul = dwarf2_read_addr_index (per_cu, ul);
4035 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
4037 case DW_OP_GNU_const_index:
4038 data = safe_read_uleb128 (data, end, &ul);
4039 ul = dwarf2_read_addr_index (per_cu, ul);
4040 fprintf_filtered (stream, " %s", pulongest (ul));
4044 fprintf_filtered (stream, "\n");
4050 /* Describe a single location, which may in turn consist of multiple
4054 locexpr_describe_location_1 (struct symbol *symbol, CORE_ADDR addr,
4055 struct ui_file *stream,
4056 const gdb_byte *data, size_t size,
4057 struct objfile *objfile, unsigned int addr_size,
4058 int offset_size, struct dwarf2_per_cu_data *per_cu)
4060 const gdb_byte *end = data + size;
4061 int first_piece = 1, bad = 0;
4065 const gdb_byte *here = data;
4066 int disassemble = 1;
4071 fprintf_filtered (stream, _(", and "));
4073 if (!dwarf2_always_disassemble)
4075 data = locexpr_describe_location_piece (symbol, stream,
4076 addr, objfile, per_cu,
4077 data, end, addr_size);
4078 /* If we printed anything, or if we have an empty piece,
4079 then don't disassemble. */
4081 || data[0] == DW_OP_piece
4082 || data[0] == DW_OP_bit_piece)
4087 fprintf_filtered (stream, _("a complex DWARF expression:\n"));
4088 data = disassemble_dwarf_expression (stream,
4089 get_objfile_arch (objfile),
4090 addr_size, offset_size, data,
4092 dwarf2_always_disassemble,
4098 int empty = data == here;
4101 fprintf_filtered (stream, " ");
4102 if (data[0] == DW_OP_piece)
4106 data = safe_read_uleb128 (data + 1, end, &bytes);
4109 fprintf_filtered (stream, _("an empty %s-byte piece"),
4112 fprintf_filtered (stream, _(" [%s-byte piece]"),
4115 else if (data[0] == DW_OP_bit_piece)
4117 uint64_t bits, offset;
4119 data = safe_read_uleb128 (data + 1, end, &bits);
4120 data = safe_read_uleb128 (data, end, &offset);
4123 fprintf_filtered (stream,
4124 _("an empty %s-bit piece"),
4127 fprintf_filtered (stream,
4128 _(" [%s-bit piece, offset %s bits]"),
4129 pulongest (bits), pulongest (offset));
4139 if (bad || data > end)
4140 error (_("Corrupted DWARF2 expression for \"%s\"."),
4141 SYMBOL_PRINT_NAME (symbol));
4144 /* Print a natural-language description of SYMBOL to STREAM. This
4145 version is for a symbol with a single location. */
4148 locexpr_describe_location (struct symbol *symbol, CORE_ADDR addr,
4149 struct ui_file *stream)
4151 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4152 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4153 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4154 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4156 locexpr_describe_location_1 (symbol, addr, stream,
4157 dlbaton->data, dlbaton->size,
4158 objfile, addr_size, offset_size,
4162 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4163 any necessary bytecode in AX. */
4166 locexpr_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
4167 struct agent_expr *ax, struct axs_value *value)
4169 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4170 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4172 if (dlbaton->size == 0)
4173 value->optimized_out = 1;
4175 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size,
4176 dlbaton->data, dlbaton->data + dlbaton->size,
4180 /* The set of location functions used with the DWARF-2 expression
4182 const struct symbol_computed_ops dwarf2_locexpr_funcs = {
4183 locexpr_read_variable,
4184 locexpr_read_variable_at_entry,
4185 locexpr_read_needs_frame,
4186 locexpr_describe_location,
4187 0, /* location_has_loclist */
4188 locexpr_tracepoint_var_ref
4192 /* Wrapper functions for location lists. These generally find
4193 the appropriate location expression and call something above. */
4195 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
4196 evaluator to calculate the location. */
4197 static struct value *
4198 loclist_read_variable (struct symbol *symbol, struct frame_info *frame)
4200 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4202 const gdb_byte *data;
4204 CORE_ADDR pc = frame ? get_frame_address_in_block (frame) : 0;
4206 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4207 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, data, size,
4213 /* Read variable SYMBOL like loclist_read_variable at (callee) FRAME's function
4214 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
4217 Function always returns non-NULL value, it may be marked optimized out if
4218 inferior frame information is not available. It throws NO_ENTRY_VALUE_ERROR
4219 if it cannot resolve the parameter for any reason. */
4221 static struct value *
4222 loclist_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
4224 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4225 const gdb_byte *data;
4229 if (frame == NULL || !get_frame_func_if_available (frame, &pc))
4230 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4232 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4234 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4236 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, data, size);
4239 /* Return non-zero iff we need a frame to evaluate SYMBOL. */
4241 loclist_read_needs_frame (struct symbol *symbol)
4243 /* If there's a location list, then assume we need to have a frame
4244 to choose the appropriate location expression. With tracking of
4245 global variables this is not necessarily true, but such tracking
4246 is disabled in GCC at the moment until we figure out how to
4252 /* Print a natural-language description of SYMBOL to STREAM. This
4253 version applies when there is a list of different locations, each
4254 with a specified address range. */
4257 loclist_describe_location (struct symbol *symbol, CORE_ADDR addr,
4258 struct ui_file *stream)
4260 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4261 const gdb_byte *loc_ptr, *buf_end;
4262 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4263 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4264 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4265 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4266 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4267 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
4268 /* Adjust base_address for relocatable objects. */
4269 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
4270 CORE_ADDR base_address = dlbaton->base_address + base_offset;
4273 loc_ptr = dlbaton->data;
4274 buf_end = dlbaton->data + dlbaton->size;
4276 fprintf_filtered (stream, _("multi-location:\n"));
4278 /* Iterate through locations until we run out. */
4281 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
4283 enum debug_loc_kind kind;
4284 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
4286 if (dlbaton->from_dwo)
4287 kind = decode_debug_loc_dwo_addresses (dlbaton->per_cu,
4288 loc_ptr, buf_end, &new_ptr,
4289 &low, &high, byte_order);
4291 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
4293 byte_order, addr_size,
4298 case DEBUG_LOC_END_OF_LIST:
4301 case DEBUG_LOC_BASE_ADDRESS:
4302 base_address = high + base_offset;
4303 fprintf_filtered (stream, _(" Base address %s"),
4304 paddress (gdbarch, base_address));
4306 case DEBUG_LOC_START_END:
4307 case DEBUG_LOC_START_LENGTH:
4309 case DEBUG_LOC_BUFFER_OVERFLOW:
4310 case DEBUG_LOC_INVALID_ENTRY:
4311 error (_("Corrupted DWARF expression for symbol \"%s\"."),
4312 SYMBOL_PRINT_NAME (symbol));
4314 gdb_assert_not_reached ("bad debug_loc_kind");
4317 /* Otherwise, a location expression entry. */
4318 low += base_address;
4319 high += base_address;
4321 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
4324 /* (It would improve readability to print only the minimum
4325 necessary digits of the second number of the range.) */
4326 fprintf_filtered (stream, _(" Range %s-%s: "),
4327 paddress (gdbarch, low), paddress (gdbarch, high));
4329 /* Now describe this particular location. */
4330 locexpr_describe_location_1 (symbol, low, stream, loc_ptr, length,
4331 objfile, addr_size, offset_size,
4334 fprintf_filtered (stream, "\n");
4340 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4341 any necessary bytecode in AX. */
4343 loclist_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
4344 struct agent_expr *ax, struct axs_value *value)
4346 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4347 const gdb_byte *data;
4349 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4351 data = dwarf2_find_location_expression (dlbaton, &size, ax->scope);
4353 value->optimized_out = 1;
4355 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size, data, data + size,
4359 /* The set of location functions used with the DWARF-2 expression
4360 evaluator and location lists. */
4361 const struct symbol_computed_ops dwarf2_loclist_funcs = {
4362 loclist_read_variable,
4363 loclist_read_variable_at_entry,
4364 loclist_read_needs_frame,
4365 loclist_describe_location,
4366 1, /* location_has_loclist */
4367 loclist_tracepoint_var_ref
4370 /* Provide a prototype to silence -Wmissing-prototypes. */
4371 extern initialize_file_ftype _initialize_dwarf2loc;
4374 _initialize_dwarf2loc (void)
4376 add_setshow_zuinteger_cmd ("entry-values", class_maintenance,
4377 &entry_values_debug,
4378 _("Set entry values and tail call frames "
4380 _("Show entry values and tail call frames "
4382 _("When non-zero, the process of determining "
4383 "parameter values from function entry point "
4384 "and tail call frames will be printed."),
4386 show_entry_values_debug,
4387 &setdebuglist, &showdebuglist);