1 /* DWARF 2 location expression support for GDB.
3 Copyright (C) 2003-2014 Free Software Foundation, Inc.
5 Contributed by Daniel Jacobowitz, MontaVista Software, Inc.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
33 #include "exceptions.h"
38 #include "dwarf2expr.h"
39 #include "dwarf2loc.h"
40 #include "dwarf2-frame.h"
43 #include "gdb_assert.h"
45 extern int dwarf2_always_disassemble;
47 static void dwarf_expr_frame_base_1 (struct symbol *framefunc, CORE_ADDR pc,
48 const gdb_byte **start, size_t *length);
50 static const struct dwarf_expr_context_funcs dwarf_expr_ctx_funcs;
52 static struct value *dwarf2_evaluate_loc_desc_full (struct type *type,
53 struct frame_info *frame,
56 struct dwarf2_per_cu_data *per_cu,
59 /* Until these have formal names, we define these here.
60 ref: http://gcc.gnu.org/wiki/DebugFission
61 Each entry in .debug_loc.dwo begins with a byte that describes the entry,
62 and is then followed by data specific to that entry. */
66 /* Indicates the end of the list of entries. */
67 DEBUG_LOC_END_OF_LIST = 0,
69 /* This is followed by an unsigned LEB128 number that is an index into
70 .debug_addr and specifies the base address for all following entries. */
71 DEBUG_LOC_BASE_ADDRESS = 1,
73 /* This is followed by two unsigned LEB128 numbers that are indices into
74 .debug_addr and specify the beginning and ending addresses, and then
75 a normal location expression as in .debug_loc. */
76 DEBUG_LOC_START_END = 2,
78 /* This is followed by an unsigned LEB128 number that is an index into
79 .debug_addr and specifies the beginning address, and a 4 byte unsigned
80 number that specifies the length, and then a normal location expression
82 DEBUG_LOC_START_LENGTH = 3,
84 /* An internal value indicating there is insufficient data. */
85 DEBUG_LOC_BUFFER_OVERFLOW = -1,
87 /* An internal value indicating an invalid kind of entry was found. */
88 DEBUG_LOC_INVALID_ENTRY = -2
91 /* Helper function which throws an error if a synthetic pointer is
95 invalid_synthetic_pointer (void)
97 error (_("access outside bounds of object "
98 "referenced via synthetic pointer"));
101 /* Decode the addresses in a non-dwo .debug_loc entry.
102 A pointer to the next byte to examine is returned in *NEW_PTR.
103 The encoded low,high addresses are return in *LOW,*HIGH.
104 The result indicates the kind of entry found. */
106 static enum debug_loc_kind
107 decode_debug_loc_addresses (const gdb_byte *loc_ptr, const gdb_byte *buf_end,
108 const gdb_byte **new_ptr,
109 CORE_ADDR *low, CORE_ADDR *high,
110 enum bfd_endian byte_order,
111 unsigned int addr_size,
114 CORE_ADDR base_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
116 if (buf_end - loc_ptr < 2 * addr_size)
117 return DEBUG_LOC_BUFFER_OVERFLOW;
120 *low = extract_signed_integer (loc_ptr, addr_size, byte_order);
122 *low = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
123 loc_ptr += addr_size;
126 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
128 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
129 loc_ptr += addr_size;
133 /* A base-address-selection entry. */
134 if ((*low & base_mask) == base_mask)
135 return DEBUG_LOC_BASE_ADDRESS;
137 /* An end-of-list entry. */
138 if (*low == 0 && *high == 0)
139 return DEBUG_LOC_END_OF_LIST;
141 return DEBUG_LOC_START_END;
144 /* Decode the addresses in .debug_loc.dwo entry.
145 A pointer to the next byte to examine is returned in *NEW_PTR.
146 The encoded low,high addresses are return in *LOW,*HIGH.
147 The result indicates the kind of entry found. */
149 static enum debug_loc_kind
150 decode_debug_loc_dwo_addresses (struct dwarf2_per_cu_data *per_cu,
151 const gdb_byte *loc_ptr,
152 const gdb_byte *buf_end,
153 const gdb_byte **new_ptr,
154 CORE_ADDR *low, CORE_ADDR *high,
155 enum bfd_endian byte_order)
157 uint64_t low_index, high_index;
159 if (loc_ptr == buf_end)
160 return DEBUG_LOC_BUFFER_OVERFLOW;
164 case DEBUG_LOC_END_OF_LIST:
166 return DEBUG_LOC_END_OF_LIST;
167 case DEBUG_LOC_BASE_ADDRESS:
169 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
171 return DEBUG_LOC_BUFFER_OVERFLOW;
172 *high = dwarf2_read_addr_index (per_cu, high_index);
174 return DEBUG_LOC_BASE_ADDRESS;
175 case DEBUG_LOC_START_END:
176 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
178 return DEBUG_LOC_BUFFER_OVERFLOW;
179 *low = dwarf2_read_addr_index (per_cu, low_index);
180 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
182 return DEBUG_LOC_BUFFER_OVERFLOW;
183 *high = dwarf2_read_addr_index (per_cu, high_index);
185 return DEBUG_LOC_START_END;
186 case DEBUG_LOC_START_LENGTH:
187 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
189 return DEBUG_LOC_BUFFER_OVERFLOW;
190 *low = dwarf2_read_addr_index (per_cu, low_index);
191 if (loc_ptr + 4 > buf_end)
192 return DEBUG_LOC_BUFFER_OVERFLOW;
194 *high += extract_unsigned_integer (loc_ptr, 4, byte_order);
195 *new_ptr = loc_ptr + 4;
196 return DEBUG_LOC_START_LENGTH;
198 return DEBUG_LOC_INVALID_ENTRY;
202 /* A function for dealing with location lists. Given a
203 symbol baton (BATON) and a pc value (PC), find the appropriate
204 location expression, set *LOCEXPR_LENGTH, and return a pointer
205 to the beginning of the expression. Returns NULL on failure.
207 For now, only return the first matching location expression; there
208 can be more than one in the list. */
211 dwarf2_find_location_expression (struct dwarf2_loclist_baton *baton,
212 size_t *locexpr_length, CORE_ADDR pc)
214 struct objfile *objfile = dwarf2_per_cu_objfile (baton->per_cu);
215 struct gdbarch *gdbarch = get_objfile_arch (objfile);
216 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
217 unsigned int addr_size = dwarf2_per_cu_addr_size (baton->per_cu);
218 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
219 /* Adjust base_address for relocatable objects. */
220 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (baton->per_cu);
221 CORE_ADDR base_address = baton->base_address + base_offset;
222 const gdb_byte *loc_ptr, *buf_end;
224 loc_ptr = baton->data;
225 buf_end = baton->data + baton->size;
229 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
231 enum debug_loc_kind kind;
232 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
235 kind = decode_debug_loc_dwo_addresses (baton->per_cu,
236 loc_ptr, buf_end, &new_ptr,
237 &low, &high, byte_order);
239 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
241 byte_order, addr_size,
246 case DEBUG_LOC_END_OF_LIST:
249 case DEBUG_LOC_BASE_ADDRESS:
250 base_address = high + base_offset;
252 case DEBUG_LOC_START_END:
253 case DEBUG_LOC_START_LENGTH:
255 case DEBUG_LOC_BUFFER_OVERFLOW:
256 case DEBUG_LOC_INVALID_ENTRY:
257 error (_("dwarf2_find_location_expression: "
258 "Corrupted DWARF expression."));
260 gdb_assert_not_reached ("bad debug_loc_kind");
263 /* Otherwise, a location expression entry.
264 If the entry is from a DWO, don't add base address: the entry is
265 from .debug_addr which has absolute addresses. */
266 if (! baton->from_dwo)
269 high += base_address;
272 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
275 if (low == high && pc == low)
277 /* This is entry PC record present only at entry point
278 of a function. Verify it is really the function entry point. */
280 const struct block *pc_block = block_for_pc (pc);
281 struct symbol *pc_func = NULL;
284 pc_func = block_linkage_function (pc_block);
286 if (pc_func && pc == BLOCK_START (SYMBOL_BLOCK_VALUE (pc_func)))
288 *locexpr_length = length;
293 if (pc >= low && pc < high)
295 *locexpr_length = length;
303 /* This is the baton used when performing dwarf2 expression
305 struct dwarf_expr_baton
307 struct frame_info *frame;
308 struct dwarf2_per_cu_data *per_cu;
311 /* Helper functions for dwarf2_evaluate_loc_desc. */
313 /* Using the frame specified in BATON, return the value of register
314 REGNUM, treated as a pointer. */
316 dwarf_expr_read_addr_from_reg (void *baton, int dwarf_regnum)
318 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
319 struct gdbarch *gdbarch = get_frame_arch (debaton->frame);
320 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, dwarf_regnum);
322 return address_from_register (regnum, debaton->frame);
325 /* Implement struct dwarf_expr_context_funcs' "get_reg_value" callback. */
327 static struct value *
328 dwarf_expr_get_reg_value (void *baton, struct type *type, int dwarf_regnum)
330 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
331 struct gdbarch *gdbarch = get_frame_arch (debaton->frame);
332 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, dwarf_regnum);
334 return value_from_register (type, regnum, debaton->frame);
337 /* Read memory at ADDR (length LEN) into BUF. */
340 dwarf_expr_read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
342 read_memory (addr, buf, len);
345 /* Using the frame specified in BATON, find the location expression
346 describing the frame base. Return a pointer to it in START and
347 its length in LENGTH. */
349 dwarf_expr_frame_base (void *baton, const gdb_byte **start, size_t * length)
351 /* FIXME: cagney/2003-03-26: This code should be using
352 get_frame_base_address(), and then implement a dwarf2 specific
354 struct symbol *framefunc;
355 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
356 const struct block *bl = get_frame_block (debaton->frame, NULL);
359 error (_("frame address is not available."));
361 /* Use block_linkage_function, which returns a real (not inlined)
362 function, instead of get_frame_function, which may return an
364 framefunc = block_linkage_function (bl);
366 /* If we found a frame-relative symbol then it was certainly within
367 some function associated with a frame. If we can't find the frame,
368 something has gone wrong. */
369 gdb_assert (framefunc != NULL);
371 dwarf_expr_frame_base_1 (framefunc,
372 get_frame_address_in_block (debaton->frame),
376 /* Implement find_frame_base_location method for LOC_BLOCK functions using
377 DWARF expression for its DW_AT_frame_base. */
380 locexpr_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
381 const gdb_byte **start, size_t *length)
383 struct dwarf2_locexpr_baton *symbaton = SYMBOL_LOCATION_BATON (framefunc);
385 *length = symbaton->size;
386 *start = symbaton->data;
389 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
390 function uses DWARF expression for its DW_AT_frame_base. */
392 const struct symbol_block_ops dwarf2_block_frame_base_locexpr_funcs =
394 locexpr_find_frame_base_location
397 /* Implement find_frame_base_location method for LOC_BLOCK functions using
398 DWARF location list for its DW_AT_frame_base. */
401 loclist_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
402 const gdb_byte **start, size_t *length)
404 struct dwarf2_loclist_baton *symbaton = SYMBOL_LOCATION_BATON (framefunc);
406 *start = dwarf2_find_location_expression (symbaton, length, pc);
409 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
410 function uses DWARF location list for its DW_AT_frame_base. */
412 const struct symbol_block_ops dwarf2_block_frame_base_loclist_funcs =
414 loclist_find_frame_base_location
418 dwarf_expr_frame_base_1 (struct symbol *framefunc, CORE_ADDR pc,
419 const gdb_byte **start, size_t *length)
421 if (SYMBOL_BLOCK_OPS (framefunc) != NULL)
423 const struct symbol_block_ops *ops_block = SYMBOL_BLOCK_OPS (framefunc);
425 ops_block->find_frame_base_location (framefunc, pc, start, length);
431 error (_("Could not find the frame base for \"%s\"."),
432 SYMBOL_NATURAL_NAME (framefunc));
435 /* Helper function for dwarf2_evaluate_loc_desc. Computes the CFA for
436 the frame in BATON. */
439 dwarf_expr_frame_cfa (void *baton)
441 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
443 return dwarf2_frame_cfa (debaton->frame);
446 /* Helper function for dwarf2_evaluate_loc_desc. Computes the PC for
447 the frame in BATON. */
450 dwarf_expr_frame_pc (void *baton)
452 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
454 return get_frame_address_in_block (debaton->frame);
457 /* Using the objfile specified in BATON, find the address for the
458 current thread's thread-local storage with offset OFFSET. */
460 dwarf_expr_tls_address (void *baton, CORE_ADDR offset)
462 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
463 struct objfile *objfile = dwarf2_per_cu_objfile (debaton->per_cu);
465 return target_translate_tls_address (objfile, offset);
468 /* Call DWARF subroutine from DW_AT_location of DIE at DIE_OFFSET in
469 current CU (as is PER_CU). State of the CTX is not affected by the
473 per_cu_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset,
474 struct dwarf2_per_cu_data *per_cu,
475 CORE_ADDR (*get_frame_pc) (void *baton),
478 struct dwarf2_locexpr_baton block;
480 block = dwarf2_fetch_die_loc_cu_off (die_offset, per_cu, get_frame_pc, baton);
482 /* DW_OP_call_ref is currently not supported. */
483 gdb_assert (block.per_cu == per_cu);
485 dwarf_expr_eval (ctx, block.data, block.size);
488 /* Helper interface of per_cu_dwarf_call for dwarf2_evaluate_loc_desc. */
491 dwarf_expr_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset)
493 struct dwarf_expr_baton *debaton = ctx->baton;
495 per_cu_dwarf_call (ctx, die_offset, debaton->per_cu,
496 ctx->funcs->get_frame_pc, ctx->baton);
499 /* Callback function for dwarf2_evaluate_loc_desc. */
502 dwarf_expr_get_base_type (struct dwarf_expr_context *ctx,
503 cu_offset die_offset)
505 struct dwarf_expr_baton *debaton = ctx->baton;
507 return dwarf2_get_die_type (die_offset, debaton->per_cu);
510 /* See dwarf2loc.h. */
512 unsigned int entry_values_debug = 0;
514 /* Helper to set entry_values_debug. */
517 show_entry_values_debug (struct ui_file *file, int from_tty,
518 struct cmd_list_element *c, const char *value)
520 fprintf_filtered (file,
521 _("Entry values and tail call frames debugging is %s.\n"),
525 /* Find DW_TAG_GNU_call_site's DW_AT_GNU_call_site_target address.
526 CALLER_FRAME (for registers) can be NULL if it is not known. This function
527 always returns valid address or it throws NO_ENTRY_VALUE_ERROR. */
530 call_site_to_target_addr (struct gdbarch *call_site_gdbarch,
531 struct call_site *call_site,
532 struct frame_info *caller_frame)
534 switch (FIELD_LOC_KIND (call_site->target))
536 case FIELD_LOC_KIND_DWARF_BLOCK:
538 struct dwarf2_locexpr_baton *dwarf_block;
540 struct type *caller_core_addr_type;
541 struct gdbarch *caller_arch;
543 dwarf_block = FIELD_DWARF_BLOCK (call_site->target);
544 if (dwarf_block == NULL)
546 struct bound_minimal_symbol msym;
548 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
549 throw_error (NO_ENTRY_VALUE_ERROR,
550 _("DW_AT_GNU_call_site_target is not specified "
552 paddress (call_site_gdbarch, call_site->pc),
553 (msym.minsym == NULL ? "???"
554 : MSYMBOL_PRINT_NAME (msym.minsym)));
557 if (caller_frame == NULL)
559 struct bound_minimal_symbol msym;
561 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
562 throw_error (NO_ENTRY_VALUE_ERROR,
563 _("DW_AT_GNU_call_site_target DWARF block resolving "
564 "requires known frame which is currently not "
565 "available at %s in %s"),
566 paddress (call_site_gdbarch, call_site->pc),
567 (msym.minsym == NULL ? "???"
568 : MSYMBOL_PRINT_NAME (msym.minsym)));
571 caller_arch = get_frame_arch (caller_frame);
572 caller_core_addr_type = builtin_type (caller_arch)->builtin_func_ptr;
573 val = dwarf2_evaluate_loc_desc (caller_core_addr_type, caller_frame,
574 dwarf_block->data, dwarf_block->size,
575 dwarf_block->per_cu);
576 /* DW_AT_GNU_call_site_target is a DWARF expression, not a DWARF
578 if (VALUE_LVAL (val) == lval_memory)
579 return value_address (val);
581 return value_as_address (val);
584 case FIELD_LOC_KIND_PHYSNAME:
586 const char *physname;
587 struct bound_minimal_symbol msym;
589 physname = FIELD_STATIC_PHYSNAME (call_site->target);
591 /* Handle both the mangled and demangled PHYSNAME. */
592 msym = lookup_minimal_symbol (physname, NULL, NULL);
593 if (msym.minsym == NULL)
595 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
596 throw_error (NO_ENTRY_VALUE_ERROR,
597 _("Cannot find function \"%s\" for a call site target "
599 physname, paddress (call_site_gdbarch, call_site->pc),
600 (msym.minsym == NULL ? "???"
601 : MSYMBOL_PRINT_NAME (msym.minsym)));
604 return BMSYMBOL_VALUE_ADDRESS (msym);
607 case FIELD_LOC_KIND_PHYSADDR:
608 return FIELD_STATIC_PHYSADDR (call_site->target);
611 internal_error (__FILE__, __LINE__, _("invalid call site target kind"));
615 /* Convert function entry point exact address ADDR to the function which is
616 compliant with TAIL_CALL_LIST_COMPLETE condition. Throw
617 NO_ENTRY_VALUE_ERROR otherwise. */
619 static struct symbol *
620 func_addr_to_tail_call_list (struct gdbarch *gdbarch, CORE_ADDR addr)
622 struct symbol *sym = find_pc_function (addr);
625 if (sym == NULL || BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) != addr)
626 throw_error (NO_ENTRY_VALUE_ERROR,
627 _("DW_TAG_GNU_call_site resolving failed to find function "
628 "name for address %s"),
629 paddress (gdbarch, addr));
631 type = SYMBOL_TYPE (sym);
632 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FUNC);
633 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
638 /* Verify function with entry point exact address ADDR can never call itself
639 via its tail calls (incl. transitively). Throw NO_ENTRY_VALUE_ERROR if it
640 can call itself via tail calls.
642 If a funtion can tail call itself its entry value based parameters are
643 unreliable. There is no verification whether the value of some/all
644 parameters is unchanged through the self tail call, we expect if there is
645 a self tail call all the parameters can be modified. */
648 func_verify_no_selftailcall (struct gdbarch *gdbarch, CORE_ADDR verify_addr)
650 struct obstack addr_obstack;
651 struct cleanup *old_chain;
654 /* Track here CORE_ADDRs which were already visited. */
657 /* The verification is completely unordered. Track here function addresses
658 which still need to be iterated. */
659 VEC (CORE_ADDR) *todo = NULL;
661 obstack_init (&addr_obstack);
662 old_chain = make_cleanup_obstack_free (&addr_obstack);
663 addr_hash = htab_create_alloc_ex (64, core_addr_hash, core_addr_eq, NULL,
664 &addr_obstack, hashtab_obstack_allocate,
666 make_cleanup_htab_delete (addr_hash);
668 make_cleanup (VEC_cleanup (CORE_ADDR), &todo);
670 VEC_safe_push (CORE_ADDR, todo, verify_addr);
671 while (!VEC_empty (CORE_ADDR, todo))
673 struct symbol *func_sym;
674 struct call_site *call_site;
676 addr = VEC_pop (CORE_ADDR, todo);
678 func_sym = func_addr_to_tail_call_list (gdbarch, addr);
680 for (call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (func_sym));
681 call_site; call_site = call_site->tail_call_next)
683 CORE_ADDR target_addr;
686 /* CALLER_FRAME with registers is not available for tail-call jumped
688 target_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
690 if (target_addr == verify_addr)
692 struct bound_minimal_symbol msym;
694 msym = lookup_minimal_symbol_by_pc (verify_addr);
695 throw_error (NO_ENTRY_VALUE_ERROR,
696 _("DW_OP_GNU_entry_value resolving has found "
697 "function \"%s\" at %s can call itself via tail "
699 (msym.minsym == NULL ? "???"
700 : MSYMBOL_PRINT_NAME (msym.minsym)),
701 paddress (gdbarch, verify_addr));
704 slot = htab_find_slot (addr_hash, &target_addr, INSERT);
707 *slot = obstack_copy (&addr_obstack, &target_addr,
708 sizeof (target_addr));
709 VEC_safe_push (CORE_ADDR, todo, target_addr);
714 do_cleanups (old_chain);
717 /* Print user readable form of CALL_SITE->PC to gdb_stdlog. Used only for
718 ENTRY_VALUES_DEBUG. */
721 tailcall_dump (struct gdbarch *gdbarch, const struct call_site *call_site)
723 CORE_ADDR addr = call_site->pc;
724 struct bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (addr - 1);
726 fprintf_unfiltered (gdb_stdlog, " %s(%s)", paddress (gdbarch, addr),
727 (msym.minsym == NULL ? "???"
728 : MSYMBOL_PRINT_NAME (msym.minsym)));
732 /* vec.h needs single word type name, typedef it. */
733 typedef struct call_site *call_sitep;
735 /* Define VEC (call_sitep) functions. */
736 DEF_VEC_P (call_sitep);
738 /* Intersect RESULTP with CHAIN to keep RESULTP unambiguous, keep in RESULTP
739 only top callers and bottom callees which are present in both. GDBARCH is
740 used only for ENTRY_VALUES_DEBUG. RESULTP is NULL after return if there are
741 no remaining possibilities to provide unambiguous non-trivial result.
742 RESULTP should point to NULL on the first (initialization) call. Caller is
743 responsible for xfree of any RESULTP data. */
746 chain_candidate (struct gdbarch *gdbarch, struct call_site_chain **resultp,
747 VEC (call_sitep) *chain)
749 struct call_site_chain *result = *resultp;
750 long length = VEC_length (call_sitep, chain);
751 int callers, callees, idx;
755 /* Create the initial chain containing all the passed PCs. */
757 result = xmalloc (sizeof (*result) + sizeof (*result->call_site)
759 result->length = length;
760 result->callers = result->callees = length;
761 if (!VEC_empty (call_sitep, chain))
762 memcpy (result->call_site, VEC_address (call_sitep, chain),
763 sizeof (*result->call_site) * length);
766 if (entry_values_debug)
768 fprintf_unfiltered (gdb_stdlog, "tailcall: initial:");
769 for (idx = 0; idx < length; idx++)
770 tailcall_dump (gdbarch, result->call_site[idx]);
771 fputc_unfiltered ('\n', gdb_stdlog);
777 if (entry_values_debug)
779 fprintf_unfiltered (gdb_stdlog, "tailcall: compare:");
780 for (idx = 0; idx < length; idx++)
781 tailcall_dump (gdbarch, VEC_index (call_sitep, chain, idx));
782 fputc_unfiltered ('\n', gdb_stdlog);
785 /* Intersect callers. */
787 callers = min (result->callers, length);
788 for (idx = 0; idx < callers; idx++)
789 if (result->call_site[idx] != VEC_index (call_sitep, chain, idx))
791 result->callers = idx;
795 /* Intersect callees. */
797 callees = min (result->callees, length);
798 for (idx = 0; idx < callees; idx++)
799 if (result->call_site[result->length - 1 - idx]
800 != VEC_index (call_sitep, chain, length - 1 - idx))
802 result->callees = idx;
806 if (entry_values_debug)
808 fprintf_unfiltered (gdb_stdlog, "tailcall: reduced:");
809 for (idx = 0; idx < result->callers; idx++)
810 tailcall_dump (gdbarch, result->call_site[idx]);
811 fputs_unfiltered (" |", gdb_stdlog);
812 for (idx = 0; idx < result->callees; idx++)
813 tailcall_dump (gdbarch, result->call_site[result->length
814 - result->callees + idx]);
815 fputc_unfiltered ('\n', gdb_stdlog);
818 if (result->callers == 0 && result->callees == 0)
820 /* There are no common callers or callees. It could be also a direct
821 call (which has length 0) with ambiguous possibility of an indirect
822 call - CALLERS == CALLEES == 0 is valid during the first allocation
823 but any subsequence processing of such entry means ambiguity. */
829 /* See call_site_find_chain_1 why there is no way to reach the bottom callee
830 PC again. In such case there must be two different code paths to reach
831 it, therefore some of the former determined intermediate PCs must differ
832 and the unambiguous chain gets shortened. */
833 gdb_assert (result->callers + result->callees < result->length);
836 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
837 assumed frames between them use GDBARCH. Use depth first search so we can
838 keep single CHAIN of call_site's back to CALLER_PC. Function recursion
839 would have needless GDB stack overhead. Caller is responsible for xfree of
840 the returned result. Any unreliability results in thrown
841 NO_ENTRY_VALUE_ERROR. */
843 static struct call_site_chain *
844 call_site_find_chain_1 (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
847 CORE_ADDR save_callee_pc = callee_pc;
848 struct obstack addr_obstack;
849 struct cleanup *back_to_retval, *back_to_workdata;
850 struct call_site_chain *retval = NULL;
851 struct call_site *call_site;
853 /* Mark CALL_SITEs so we do not visit the same ones twice. */
856 /* CHAIN contains only the intermediate CALL_SITEs. Neither CALLER_PC's
857 call_site nor any possible call_site at CALLEE_PC's function is there.
858 Any CALL_SITE in CHAIN will be iterated to its siblings - via
859 TAIL_CALL_NEXT. This is inappropriate for CALLER_PC's call_site. */
860 VEC (call_sitep) *chain = NULL;
862 /* We are not interested in the specific PC inside the callee function. */
863 callee_pc = get_pc_function_start (callee_pc);
865 throw_error (NO_ENTRY_VALUE_ERROR, _("Unable to find function for PC %s"),
866 paddress (gdbarch, save_callee_pc));
868 back_to_retval = make_cleanup (free_current_contents, &retval);
870 obstack_init (&addr_obstack);
871 back_to_workdata = make_cleanup_obstack_free (&addr_obstack);
872 addr_hash = htab_create_alloc_ex (64, core_addr_hash, core_addr_eq, NULL,
873 &addr_obstack, hashtab_obstack_allocate,
875 make_cleanup_htab_delete (addr_hash);
877 make_cleanup (VEC_cleanup (call_sitep), &chain);
879 /* Do not push CALL_SITE to CHAIN. Push there only the first tail call site
880 at the target's function. All the possible tail call sites in the
881 target's function will get iterated as already pushed into CHAIN via their
883 call_site = call_site_for_pc (gdbarch, caller_pc);
887 CORE_ADDR target_func_addr;
888 struct call_site *target_call_site;
890 /* CALLER_FRAME with registers is not available for tail-call jumped
892 target_func_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
894 if (target_func_addr == callee_pc)
896 chain_candidate (gdbarch, &retval, chain);
900 /* There is no way to reach CALLEE_PC again as we would prevent
901 entering it twice as being already marked in ADDR_HASH. */
902 target_call_site = NULL;
906 struct symbol *target_func;
908 target_func = func_addr_to_tail_call_list (gdbarch, target_func_addr);
909 target_call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (target_func));
914 /* Attempt to visit TARGET_CALL_SITE. */
916 if (target_call_site)
920 slot = htab_find_slot (addr_hash, &target_call_site->pc, INSERT);
923 /* Successfully entered TARGET_CALL_SITE. */
925 *slot = &target_call_site->pc;
926 VEC_safe_push (call_sitep, chain, target_call_site);
931 /* Backtrack (without revisiting the originating call_site). Try the
932 callers's sibling; if there isn't any try the callers's callers's
935 target_call_site = NULL;
936 while (!VEC_empty (call_sitep, chain))
938 call_site = VEC_pop (call_sitep, chain);
940 gdb_assert (htab_find_slot (addr_hash, &call_site->pc,
942 htab_remove_elt (addr_hash, &call_site->pc);
944 target_call_site = call_site->tail_call_next;
945 if (target_call_site)
949 while (target_call_site);
951 if (VEC_empty (call_sitep, chain))
954 call_site = VEC_last (call_sitep, chain);
959 struct bound_minimal_symbol msym_caller, msym_callee;
961 msym_caller = lookup_minimal_symbol_by_pc (caller_pc);
962 msym_callee = lookup_minimal_symbol_by_pc (callee_pc);
963 throw_error (NO_ENTRY_VALUE_ERROR,
964 _("There are no unambiguously determinable intermediate "
965 "callers or callees between caller function \"%s\" at %s "
966 "and callee function \"%s\" at %s"),
967 (msym_caller.minsym == NULL
968 ? "???" : MSYMBOL_PRINT_NAME (msym_caller.minsym)),
969 paddress (gdbarch, caller_pc),
970 (msym_callee.minsym == NULL
971 ? "???" : MSYMBOL_PRINT_NAME (msym_callee.minsym)),
972 paddress (gdbarch, callee_pc));
975 do_cleanups (back_to_workdata);
976 discard_cleanups (back_to_retval);
980 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
981 assumed frames between them use GDBARCH. If valid call_site_chain cannot be
982 constructed return NULL. Caller is responsible for xfree of the returned
985 struct call_site_chain *
986 call_site_find_chain (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
989 volatile struct gdb_exception e;
990 struct call_site_chain *retval = NULL;
992 TRY_CATCH (e, RETURN_MASK_ERROR)
994 retval = call_site_find_chain_1 (gdbarch, caller_pc, callee_pc);
998 if (e.error == NO_ENTRY_VALUE_ERROR)
1000 if (entry_values_debug)
1001 exception_print (gdb_stdout, e);
1006 throw_exception (e);
1011 /* Return 1 if KIND and KIND_U match PARAMETER. Return 0 otherwise. */
1014 call_site_parameter_matches (struct call_site_parameter *parameter,
1015 enum call_site_parameter_kind kind,
1016 union call_site_parameter_u kind_u)
1018 if (kind == parameter->kind)
1021 case CALL_SITE_PARAMETER_DWARF_REG:
1022 return kind_u.dwarf_reg == parameter->u.dwarf_reg;
1023 case CALL_SITE_PARAMETER_FB_OFFSET:
1024 return kind_u.fb_offset == parameter->u.fb_offset;
1025 case CALL_SITE_PARAMETER_PARAM_OFFSET:
1026 return kind_u.param_offset.cu_off == parameter->u.param_offset.cu_off;
1031 /* Fetch call_site_parameter from caller matching KIND and KIND_U.
1032 FRAME is for callee.
1034 Function always returns non-NULL, it throws NO_ENTRY_VALUE_ERROR
1037 static struct call_site_parameter *
1038 dwarf_expr_reg_to_entry_parameter (struct frame_info *frame,
1039 enum call_site_parameter_kind kind,
1040 union call_site_parameter_u kind_u,
1041 struct dwarf2_per_cu_data **per_cu_return)
1043 CORE_ADDR func_addr, caller_pc;
1044 struct gdbarch *gdbarch;
1045 struct frame_info *caller_frame;
1046 struct call_site *call_site;
1048 /* Initialize it just to avoid a GCC false warning. */
1049 struct call_site_parameter *parameter = NULL;
1050 CORE_ADDR target_addr;
1052 while (get_frame_type (frame) == INLINE_FRAME)
1054 frame = get_prev_frame (frame);
1055 gdb_assert (frame != NULL);
1058 func_addr = get_frame_func (frame);
1059 gdbarch = get_frame_arch (frame);
1060 caller_frame = get_prev_frame (frame);
1061 if (gdbarch != frame_unwind_arch (frame))
1063 struct bound_minimal_symbol msym
1064 = lookup_minimal_symbol_by_pc (func_addr);
1065 struct gdbarch *caller_gdbarch = frame_unwind_arch (frame);
1067 throw_error (NO_ENTRY_VALUE_ERROR,
1068 _("DW_OP_GNU_entry_value resolving callee gdbarch %s "
1069 "(of %s (%s)) does not match caller gdbarch %s"),
1070 gdbarch_bfd_arch_info (gdbarch)->printable_name,
1071 paddress (gdbarch, func_addr),
1072 (msym.minsym == NULL ? "???"
1073 : MSYMBOL_PRINT_NAME (msym.minsym)),
1074 gdbarch_bfd_arch_info (caller_gdbarch)->printable_name);
1077 if (caller_frame == NULL)
1079 struct bound_minimal_symbol msym
1080 = lookup_minimal_symbol_by_pc (func_addr);
1082 throw_error (NO_ENTRY_VALUE_ERROR, _("DW_OP_GNU_entry_value resolving "
1083 "requires caller of %s (%s)"),
1084 paddress (gdbarch, func_addr),
1085 (msym.minsym == NULL ? "???"
1086 : MSYMBOL_PRINT_NAME (msym.minsym)));
1088 caller_pc = get_frame_pc (caller_frame);
1089 call_site = call_site_for_pc (gdbarch, caller_pc);
1091 target_addr = call_site_to_target_addr (gdbarch, call_site, caller_frame);
1092 if (target_addr != func_addr)
1094 struct minimal_symbol *target_msym, *func_msym;
1096 target_msym = lookup_minimal_symbol_by_pc (target_addr).minsym;
1097 func_msym = lookup_minimal_symbol_by_pc (func_addr).minsym;
1098 throw_error (NO_ENTRY_VALUE_ERROR,
1099 _("DW_OP_GNU_entry_value resolving expects callee %s at %s "
1100 "but the called frame is for %s at %s"),
1101 (target_msym == NULL ? "???"
1102 : MSYMBOL_PRINT_NAME (target_msym)),
1103 paddress (gdbarch, target_addr),
1104 func_msym == NULL ? "???" : MSYMBOL_PRINT_NAME (func_msym),
1105 paddress (gdbarch, func_addr));
1108 /* No entry value based parameters would be reliable if this function can
1109 call itself via tail calls. */
1110 func_verify_no_selftailcall (gdbarch, func_addr);
1112 for (iparams = 0; iparams < call_site->parameter_count; iparams++)
1114 parameter = &call_site->parameter[iparams];
1115 if (call_site_parameter_matches (parameter, kind, kind_u))
1118 if (iparams == call_site->parameter_count)
1120 struct minimal_symbol *msym
1121 = lookup_minimal_symbol_by_pc (caller_pc).minsym;
1123 /* DW_TAG_GNU_call_site_parameter will be missing just if GCC could not
1124 determine its value. */
1125 throw_error (NO_ENTRY_VALUE_ERROR, _("Cannot find matching parameter "
1126 "at DW_TAG_GNU_call_site %s at %s"),
1127 paddress (gdbarch, caller_pc),
1128 msym == NULL ? "???" : MSYMBOL_PRINT_NAME (msym));
1131 *per_cu_return = call_site->per_cu;
1135 /* Return value for PARAMETER matching DEREF_SIZE. If DEREF_SIZE is -1, return
1136 the normal DW_AT_GNU_call_site_value block. Otherwise return the
1137 DW_AT_GNU_call_site_data_value (dereferenced) block.
1139 TYPE and CALLER_FRAME specify how to evaluate the DWARF block into returned
1142 Function always returns non-NULL, non-optimized out value. It throws
1143 NO_ENTRY_VALUE_ERROR if it cannot resolve the value for any reason. */
1145 static struct value *
1146 dwarf_entry_parameter_to_value (struct call_site_parameter *parameter,
1147 CORE_ADDR deref_size, struct type *type,
1148 struct frame_info *caller_frame,
1149 struct dwarf2_per_cu_data *per_cu)
1151 const gdb_byte *data_src;
1155 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
1156 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
1158 /* DEREF_SIZE size is not verified here. */
1159 if (data_src == NULL)
1160 throw_error (NO_ENTRY_VALUE_ERROR,
1161 _("Cannot resolve DW_AT_GNU_call_site_data_value"));
1163 /* DW_AT_GNU_call_site_value is a DWARF expression, not a DWARF
1164 location. Postprocessing of DWARF_VALUE_MEMORY would lose the type from
1166 data = alloca (size + 1);
1167 memcpy (data, data_src, size);
1168 data[size] = DW_OP_stack_value;
1170 return dwarf2_evaluate_loc_desc (type, caller_frame, data, size + 1, per_cu);
1173 /* Execute DWARF block of call_site_parameter which matches KIND and KIND_U.
1174 Choose DEREF_SIZE value of that parameter. Search caller of the CTX's
1175 frame. CTX must be of dwarf_expr_ctx_funcs kind.
1177 The CTX caller can be from a different CU - per_cu_dwarf_call implementation
1178 can be more simple as it does not support cross-CU DWARF executions. */
1181 dwarf_expr_push_dwarf_reg_entry_value (struct dwarf_expr_context *ctx,
1182 enum call_site_parameter_kind kind,
1183 union call_site_parameter_u kind_u,
1186 struct dwarf_expr_baton *debaton;
1187 struct frame_info *frame, *caller_frame;
1188 struct dwarf2_per_cu_data *caller_per_cu;
1189 struct dwarf_expr_baton baton_local;
1190 struct dwarf_expr_context saved_ctx;
1191 struct call_site_parameter *parameter;
1192 const gdb_byte *data_src;
1195 gdb_assert (ctx->funcs == &dwarf_expr_ctx_funcs);
1196 debaton = ctx->baton;
1197 frame = debaton->frame;
1198 caller_frame = get_prev_frame (frame);
1200 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
1202 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
1203 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
1205 /* DEREF_SIZE size is not verified here. */
1206 if (data_src == NULL)
1207 throw_error (NO_ENTRY_VALUE_ERROR,
1208 _("Cannot resolve DW_AT_GNU_call_site_data_value"));
1210 baton_local.frame = caller_frame;
1211 baton_local.per_cu = caller_per_cu;
1213 saved_ctx.gdbarch = ctx->gdbarch;
1214 saved_ctx.addr_size = ctx->addr_size;
1215 saved_ctx.offset = ctx->offset;
1216 saved_ctx.baton = ctx->baton;
1217 ctx->gdbarch = get_objfile_arch (dwarf2_per_cu_objfile (baton_local.per_cu));
1218 ctx->addr_size = dwarf2_per_cu_addr_size (baton_local.per_cu);
1219 ctx->offset = dwarf2_per_cu_text_offset (baton_local.per_cu);
1220 ctx->baton = &baton_local;
1222 dwarf_expr_eval (ctx, data_src, size);
1224 ctx->gdbarch = saved_ctx.gdbarch;
1225 ctx->addr_size = saved_ctx.addr_size;
1226 ctx->offset = saved_ctx.offset;
1227 ctx->baton = saved_ctx.baton;
1230 /* Callback function for dwarf2_evaluate_loc_desc.
1231 Fetch the address indexed by DW_OP_GNU_addr_index. */
1234 dwarf_expr_get_addr_index (void *baton, unsigned int index)
1236 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
1238 return dwarf2_read_addr_index (debaton->per_cu, index);
1241 /* VALUE must be of type lval_computed with entry_data_value_funcs. Perform
1242 the indirect method on it, that is use its stored target value, the sole
1243 purpose of entry_data_value_funcs.. */
1245 static struct value *
1246 entry_data_value_coerce_ref (const struct value *value)
1248 struct type *checked_type = check_typedef (value_type (value));
1249 struct value *target_val;
1251 if (TYPE_CODE (checked_type) != TYPE_CODE_REF)
1254 target_val = value_computed_closure (value);
1255 value_incref (target_val);
1259 /* Implement copy_closure. */
1262 entry_data_value_copy_closure (const struct value *v)
1264 struct value *target_val = value_computed_closure (v);
1266 value_incref (target_val);
1270 /* Implement free_closure. */
1273 entry_data_value_free_closure (struct value *v)
1275 struct value *target_val = value_computed_closure (v);
1277 value_free (target_val);
1280 /* Vector for methods for an entry value reference where the referenced value
1281 is stored in the caller. On the first dereference use
1282 DW_AT_GNU_call_site_data_value in the caller. */
1284 static const struct lval_funcs entry_data_value_funcs =
1288 NULL, /* check_validity */
1289 NULL, /* check_any_valid */
1290 NULL, /* indirect */
1291 entry_data_value_coerce_ref,
1292 NULL, /* check_synthetic_pointer */
1293 entry_data_value_copy_closure,
1294 entry_data_value_free_closure
1297 /* Read parameter of TYPE at (callee) FRAME's function entry. KIND and KIND_U
1298 are used to match DW_AT_location at the caller's
1299 DW_TAG_GNU_call_site_parameter.
1301 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1302 cannot resolve the parameter for any reason. */
1304 static struct value *
1305 value_of_dwarf_reg_entry (struct type *type, struct frame_info *frame,
1306 enum call_site_parameter_kind kind,
1307 union call_site_parameter_u kind_u)
1309 struct type *checked_type = check_typedef (type);
1310 struct type *target_type = TYPE_TARGET_TYPE (checked_type);
1311 struct frame_info *caller_frame = get_prev_frame (frame);
1312 struct value *outer_val, *target_val, *val;
1313 struct call_site_parameter *parameter;
1314 struct dwarf2_per_cu_data *caller_per_cu;
1316 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
1319 outer_val = dwarf_entry_parameter_to_value (parameter, -1 /* deref_size */,
1323 /* Check if DW_AT_GNU_call_site_data_value cannot be used. If it should be
1324 used and it is not available do not fall back to OUTER_VAL - dereferencing
1325 TYPE_CODE_REF with non-entry data value would give current value - not the
1328 if (TYPE_CODE (checked_type) != TYPE_CODE_REF
1329 || TYPE_TARGET_TYPE (checked_type) == NULL)
1332 target_val = dwarf_entry_parameter_to_value (parameter,
1333 TYPE_LENGTH (target_type),
1334 target_type, caller_frame,
1337 release_value (target_val);
1338 val = allocate_computed_value (type, &entry_data_value_funcs,
1339 target_val /* closure */);
1341 /* Copy the referencing pointer to the new computed value. */
1342 memcpy (value_contents_raw (val), value_contents_raw (outer_val),
1343 TYPE_LENGTH (checked_type));
1344 set_value_lazy (val, 0);
1349 /* Read parameter of TYPE at (callee) FRAME's function entry. DATA and
1350 SIZE are DWARF block used to match DW_AT_location at the caller's
1351 DW_TAG_GNU_call_site_parameter.
1353 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1354 cannot resolve the parameter for any reason. */
1356 static struct value *
1357 value_of_dwarf_block_entry (struct type *type, struct frame_info *frame,
1358 const gdb_byte *block, size_t block_len)
1360 union call_site_parameter_u kind_u;
1362 kind_u.dwarf_reg = dwarf_block_to_dwarf_reg (block, block + block_len);
1363 if (kind_u.dwarf_reg != -1)
1364 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_DWARF_REG,
1367 if (dwarf_block_to_fb_offset (block, block + block_len, &kind_u.fb_offset))
1368 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_FB_OFFSET,
1371 /* This can normally happen - throw NO_ENTRY_VALUE_ERROR to get the message
1372 suppressed during normal operation. The expression can be arbitrary if
1373 there is no caller-callee entry value binding expected. */
1374 throw_error (NO_ENTRY_VALUE_ERROR,
1375 _("DWARF-2 expression error: DW_OP_GNU_entry_value is supported "
1376 "only for single DW_OP_reg* or for DW_OP_fbreg(*)"));
1379 struct piece_closure
1381 /* Reference count. */
1384 /* The CU from which this closure's expression came. */
1385 struct dwarf2_per_cu_data *per_cu;
1387 /* The number of pieces used to describe this variable. */
1390 /* The target address size, used only for DWARF_VALUE_STACK. */
1393 /* The pieces themselves. */
1394 struct dwarf_expr_piece *pieces;
1397 /* Allocate a closure for a value formed from separately-described
1400 static struct piece_closure *
1401 allocate_piece_closure (struct dwarf2_per_cu_data *per_cu,
1402 int n_pieces, struct dwarf_expr_piece *pieces,
1405 struct piece_closure *c = XCNEW (struct piece_closure);
1410 c->n_pieces = n_pieces;
1411 c->addr_size = addr_size;
1412 c->pieces = XCNEWVEC (struct dwarf_expr_piece, n_pieces);
1414 memcpy (c->pieces, pieces, n_pieces * sizeof (struct dwarf_expr_piece));
1415 for (i = 0; i < n_pieces; ++i)
1416 if (c->pieces[i].location == DWARF_VALUE_STACK)
1417 value_incref (c->pieces[i].v.value);
1422 /* The lowest-level function to extract bits from a byte buffer.
1423 SOURCE is the buffer. It is updated if we read to the end of a
1425 SOURCE_OFFSET_BITS is the offset of the first bit to read. It is
1426 updated to reflect the number of bits actually read.
1427 NBITS is the number of bits we want to read. It is updated to
1428 reflect the number of bits actually read. This function may read
1430 BITS_BIG_ENDIAN is taken directly from gdbarch.
1431 This function returns the extracted bits. */
1434 extract_bits_primitive (const gdb_byte **source,
1435 unsigned int *source_offset_bits,
1436 int *nbits, int bits_big_endian)
1438 unsigned int avail, mask, datum;
1440 gdb_assert (*source_offset_bits < 8);
1442 avail = 8 - *source_offset_bits;
1446 mask = (1 << avail) - 1;
1448 if (bits_big_endian)
1449 datum >>= 8 - (*source_offset_bits + *nbits);
1451 datum >>= *source_offset_bits;
1455 *source_offset_bits += avail;
1456 if (*source_offset_bits >= 8)
1458 *source_offset_bits -= 8;
1465 /* Extract some bits from a source buffer and move forward in the
1468 SOURCE is the source buffer. It is updated as bytes are read.
1469 SOURCE_OFFSET_BITS is the offset into SOURCE. It is updated as
1471 NBITS is the number of bits to read.
1472 BITS_BIG_ENDIAN is taken directly from gdbarch.
1474 This function returns the bits that were read. */
1477 extract_bits (const gdb_byte **source, unsigned int *source_offset_bits,
1478 int nbits, int bits_big_endian)
1482 gdb_assert (nbits > 0 && nbits <= 8);
1484 datum = extract_bits_primitive (source, source_offset_bits, &nbits,
1490 more = extract_bits_primitive (source, source_offset_bits, &nbits,
1492 if (bits_big_endian)
1502 /* Write some bits into a buffer and move forward in the buffer.
1504 DATUM is the bits to write. The low-order bits of DATUM are used.
1505 DEST is the destination buffer. It is updated as bytes are
1507 DEST_OFFSET_BITS is the bit offset in DEST at which writing is
1509 NBITS is the number of valid bits in DATUM.
1510 BITS_BIG_ENDIAN is taken directly from gdbarch. */
1513 insert_bits (unsigned int datum,
1514 gdb_byte *dest, unsigned int dest_offset_bits,
1515 int nbits, int bits_big_endian)
1519 gdb_assert (dest_offset_bits + nbits <= 8);
1521 mask = (1 << nbits) - 1;
1522 if (bits_big_endian)
1524 datum <<= 8 - (dest_offset_bits + nbits);
1525 mask <<= 8 - (dest_offset_bits + nbits);
1529 datum <<= dest_offset_bits;
1530 mask <<= dest_offset_bits;
1533 gdb_assert ((datum & ~mask) == 0);
1535 *dest = (*dest & ~mask) | datum;
1538 /* Copy bits from a source to a destination.
1540 DEST is where the bits should be written.
1541 DEST_OFFSET_BITS is the bit offset into DEST.
1542 SOURCE is the source of bits.
1543 SOURCE_OFFSET_BITS is the bit offset into SOURCE.
1544 BIT_COUNT is the number of bits to copy.
1545 BITS_BIG_ENDIAN is taken directly from gdbarch. */
1548 copy_bitwise (gdb_byte *dest, unsigned int dest_offset_bits,
1549 const gdb_byte *source, unsigned int source_offset_bits,
1550 unsigned int bit_count,
1551 int bits_big_endian)
1553 unsigned int dest_avail;
1556 /* Reduce everything to byte-size pieces. */
1557 dest += dest_offset_bits / 8;
1558 dest_offset_bits %= 8;
1559 source += source_offset_bits / 8;
1560 source_offset_bits %= 8;
1562 dest_avail = 8 - dest_offset_bits % 8;
1564 /* See if we can fill the first destination byte. */
1565 if (dest_avail < bit_count)
1567 datum = extract_bits (&source, &source_offset_bits, dest_avail,
1569 insert_bits (datum, dest, dest_offset_bits, dest_avail, bits_big_endian);
1571 dest_offset_bits = 0;
1572 bit_count -= dest_avail;
1575 /* Now, either DEST_OFFSET_BITS is byte-aligned, or we have fewer
1576 than 8 bits remaining. */
1577 gdb_assert (dest_offset_bits % 8 == 0 || bit_count < 8);
1578 for (; bit_count >= 8; bit_count -= 8)
1580 datum = extract_bits (&source, &source_offset_bits, 8, bits_big_endian);
1581 *dest++ = (gdb_byte) datum;
1584 /* Finally, we may have a few leftover bits. */
1585 gdb_assert (bit_count <= 8 - dest_offset_bits % 8);
1588 datum = extract_bits (&source, &source_offset_bits, bit_count,
1590 insert_bits (datum, dest, dest_offset_bits, bit_count, bits_big_endian);
1595 read_pieced_value (struct value *v)
1599 ULONGEST bits_to_skip;
1601 struct piece_closure *c
1602 = (struct piece_closure *) value_computed_closure (v);
1603 struct frame_info *frame = frame_find_by_id (VALUE_FRAME_ID (v));
1605 size_t buffer_size = 0;
1606 gdb_byte *buffer = NULL;
1607 struct cleanup *cleanup;
1609 = gdbarch_bits_big_endian (get_type_arch (value_type (v)));
1611 if (value_type (v) != value_enclosing_type (v))
1612 internal_error (__FILE__, __LINE__,
1613 _("Should not be able to create a lazy value with "
1614 "an enclosing type"));
1616 cleanup = make_cleanup (free_current_contents, &buffer);
1618 contents = value_contents_raw (v);
1619 bits_to_skip = 8 * value_offset (v);
1620 if (value_bitsize (v))
1622 bits_to_skip += value_bitpos (v);
1623 type_len = value_bitsize (v);
1626 type_len = 8 * TYPE_LENGTH (value_type (v));
1628 for (i = 0; i < c->n_pieces && offset < type_len; i++)
1630 struct dwarf_expr_piece *p = &c->pieces[i];
1631 size_t this_size, this_size_bits;
1632 long dest_offset_bits, source_offset_bits, source_offset;
1633 const gdb_byte *intermediate_buffer;
1635 /* Compute size, source, and destination offsets for copying, in
1637 this_size_bits = p->size;
1638 if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
1640 bits_to_skip -= this_size_bits;
1643 if (bits_to_skip > 0)
1645 dest_offset_bits = 0;
1646 source_offset_bits = bits_to_skip;
1647 this_size_bits -= bits_to_skip;
1652 dest_offset_bits = offset;
1653 source_offset_bits = 0;
1655 if (this_size_bits > type_len - offset)
1656 this_size_bits = type_len - offset;
1658 this_size = (this_size_bits + source_offset_bits % 8 + 7) / 8;
1659 source_offset = source_offset_bits / 8;
1660 if (buffer_size < this_size)
1662 buffer_size = this_size;
1663 buffer = xrealloc (buffer, buffer_size);
1665 intermediate_buffer = buffer;
1667 /* Copy from the source to DEST_BUFFER. */
1668 switch (p->location)
1670 case DWARF_VALUE_REGISTER:
1672 struct gdbarch *arch = get_frame_arch (frame);
1673 int gdb_regnum = gdbarch_dwarf2_reg_to_regnum (arch, p->v.regno);
1674 int reg_offset = source_offset;
1676 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
1677 && this_size < register_size (arch, gdb_regnum))
1679 /* Big-endian, and we want less than full size. */
1680 reg_offset = register_size (arch, gdb_regnum) - this_size;
1681 /* We want the lower-order THIS_SIZE_BITS of the bytes
1682 we extract from the register. */
1683 source_offset_bits += 8 * this_size - this_size_bits;
1686 if (gdb_regnum != -1)
1690 if (!get_frame_register_bytes (frame, gdb_regnum, reg_offset,
1694 /* Just so garbage doesn't ever shine through. */
1695 memset (buffer, 0, this_size);
1698 set_value_optimized_out (v, 1);
1700 mark_value_bits_unavailable (v, offset, this_size_bits);
1705 error (_("Unable to access DWARF register number %s"),
1706 paddress (arch, p->v.regno));
1711 case DWARF_VALUE_MEMORY:
1712 read_value_memory (v, offset,
1713 p->v.mem.in_stack_memory,
1714 p->v.mem.addr + source_offset,
1718 case DWARF_VALUE_STACK:
1720 size_t n = this_size;
1722 if (n > c->addr_size - source_offset)
1723 n = (c->addr_size >= source_offset
1724 ? c->addr_size - source_offset
1732 const gdb_byte *val_bytes = value_contents_all (p->v.value);
1734 intermediate_buffer = val_bytes + source_offset;
1739 case DWARF_VALUE_LITERAL:
1741 size_t n = this_size;
1743 if (n > p->v.literal.length - source_offset)
1744 n = (p->v.literal.length >= source_offset
1745 ? p->v.literal.length - source_offset
1748 intermediate_buffer = p->v.literal.data + source_offset;
1752 /* These bits show up as zeros -- but do not cause the value
1753 to be considered optimized-out. */
1754 case DWARF_VALUE_IMPLICIT_POINTER:
1757 case DWARF_VALUE_OPTIMIZED_OUT:
1758 set_value_optimized_out (v, 1);
1762 internal_error (__FILE__, __LINE__, _("invalid location type"));
1765 if (p->location != DWARF_VALUE_OPTIMIZED_OUT
1766 && p->location != DWARF_VALUE_IMPLICIT_POINTER)
1767 copy_bitwise (contents, dest_offset_bits,
1768 intermediate_buffer, source_offset_bits % 8,
1769 this_size_bits, bits_big_endian);
1771 offset += this_size_bits;
1774 do_cleanups (cleanup);
1778 write_pieced_value (struct value *to, struct value *from)
1782 ULONGEST bits_to_skip;
1783 const gdb_byte *contents;
1784 struct piece_closure *c
1785 = (struct piece_closure *) value_computed_closure (to);
1786 struct frame_info *frame = frame_find_by_id (VALUE_FRAME_ID (to));
1788 size_t buffer_size = 0;
1789 gdb_byte *buffer = NULL;
1790 struct cleanup *cleanup;
1792 = gdbarch_bits_big_endian (get_type_arch (value_type (to)));
1796 set_value_optimized_out (to, 1);
1800 cleanup = make_cleanup (free_current_contents, &buffer);
1802 contents = value_contents (from);
1803 bits_to_skip = 8 * value_offset (to);
1804 if (value_bitsize (to))
1806 bits_to_skip += value_bitpos (to);
1807 type_len = value_bitsize (to);
1810 type_len = 8 * TYPE_LENGTH (value_type (to));
1812 for (i = 0; i < c->n_pieces && offset < type_len; i++)
1814 struct dwarf_expr_piece *p = &c->pieces[i];
1815 size_t this_size_bits, this_size;
1816 long dest_offset_bits, source_offset_bits, dest_offset, source_offset;
1818 const gdb_byte *source_buffer;
1820 this_size_bits = p->size;
1821 if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
1823 bits_to_skip -= this_size_bits;
1826 if (this_size_bits > type_len - offset)
1827 this_size_bits = type_len - offset;
1828 if (bits_to_skip > 0)
1830 dest_offset_bits = bits_to_skip;
1831 source_offset_bits = 0;
1832 this_size_bits -= bits_to_skip;
1837 dest_offset_bits = 0;
1838 source_offset_bits = offset;
1841 this_size = (this_size_bits + source_offset_bits % 8 + 7) / 8;
1842 source_offset = source_offset_bits / 8;
1843 dest_offset = dest_offset_bits / 8;
1844 if (dest_offset_bits % 8 == 0 && source_offset_bits % 8 == 0)
1846 source_buffer = contents + source_offset;
1851 if (buffer_size < this_size)
1853 buffer_size = this_size;
1854 buffer = xrealloc (buffer, buffer_size);
1856 source_buffer = buffer;
1860 switch (p->location)
1862 case DWARF_VALUE_REGISTER:
1864 struct gdbarch *arch = get_frame_arch (frame);
1865 int gdb_regnum = gdbarch_dwarf2_reg_to_regnum (arch, p->v.regno);
1866 int reg_offset = dest_offset;
1868 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
1869 && this_size <= register_size (arch, gdb_regnum))
1870 /* Big-endian, and we want less than full size. */
1871 reg_offset = register_size (arch, gdb_regnum) - this_size;
1873 if (gdb_regnum != -1)
1879 if (!get_frame_register_bytes (frame, gdb_regnum, reg_offset,
1884 throw_error (OPTIMIZED_OUT_ERROR,
1885 _("Can't do read-modify-write to "
1886 "update bitfield; containing word "
1887 "has been optimized out"));
1889 throw_error (NOT_AVAILABLE_ERROR,
1890 _("Can't do read-modify-write to update "
1891 "bitfield; containing word "
1894 copy_bitwise (buffer, dest_offset_bits,
1895 contents, source_offset_bits,
1900 put_frame_register_bytes (frame, gdb_regnum, reg_offset,
1901 this_size, source_buffer);
1905 error (_("Unable to write to DWARF register number %s"),
1906 paddress (arch, p->v.regno));
1910 case DWARF_VALUE_MEMORY:
1913 /* Only the first and last bytes can possibly have any
1915 read_memory (p->v.mem.addr + dest_offset, buffer, 1);
1916 read_memory (p->v.mem.addr + dest_offset + this_size - 1,
1917 buffer + this_size - 1, 1);
1918 copy_bitwise (buffer, dest_offset_bits,
1919 contents, source_offset_bits,
1924 write_memory (p->v.mem.addr + dest_offset,
1925 source_buffer, this_size);
1928 set_value_optimized_out (to, 1);
1931 offset += this_size_bits;
1934 do_cleanups (cleanup);
1937 /* A helper function that checks bit validity in a pieced value.
1938 CHECK_FOR indicates the kind of validity checking.
1939 DWARF_VALUE_MEMORY means to check whether any bit is valid.
1940 DWARF_VALUE_OPTIMIZED_OUT means to check whether any bit is
1942 DWARF_VALUE_IMPLICIT_POINTER means to check whether the bits are an
1943 implicit pointer. */
1946 check_pieced_value_bits (const struct value *value, int bit_offset,
1948 enum dwarf_value_location check_for)
1950 struct piece_closure *c
1951 = (struct piece_closure *) value_computed_closure (value);
1953 int validity = (check_for == DWARF_VALUE_MEMORY
1954 || check_for == DWARF_VALUE_IMPLICIT_POINTER);
1956 bit_offset += 8 * value_offset (value);
1957 if (value_bitsize (value))
1958 bit_offset += value_bitpos (value);
1960 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
1962 struct dwarf_expr_piece *p = &c->pieces[i];
1963 size_t this_size_bits = p->size;
1967 if (bit_offset >= this_size_bits)
1969 bit_offset -= this_size_bits;
1973 bit_length -= this_size_bits - bit_offset;
1977 bit_length -= this_size_bits;
1979 if (check_for == DWARF_VALUE_IMPLICIT_POINTER)
1981 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
1984 else if (p->location == DWARF_VALUE_OPTIMIZED_OUT
1985 || p->location == DWARF_VALUE_IMPLICIT_POINTER)
2001 check_pieced_value_validity (const struct value *value, int bit_offset,
2004 return check_pieced_value_bits (value, bit_offset, bit_length,
2005 DWARF_VALUE_MEMORY);
2009 check_pieced_value_invalid (const struct value *value)
2011 return check_pieced_value_bits (value, 0,
2012 8 * TYPE_LENGTH (value_type (value)),
2013 DWARF_VALUE_OPTIMIZED_OUT);
2016 /* An implementation of an lval_funcs method to see whether a value is
2017 a synthetic pointer. */
2020 check_pieced_synthetic_pointer (const struct value *value, int bit_offset,
2023 return check_pieced_value_bits (value, bit_offset, bit_length,
2024 DWARF_VALUE_IMPLICIT_POINTER);
2027 /* A wrapper function for get_frame_address_in_block. */
2030 get_frame_address_in_block_wrapper (void *baton)
2032 return get_frame_address_in_block (baton);
2035 /* An implementation of an lval_funcs method to indirect through a
2036 pointer. This handles the synthetic pointer case when needed. */
2038 static struct value *
2039 indirect_pieced_value (struct value *value)
2041 struct piece_closure *c
2042 = (struct piece_closure *) value_computed_closure (value);
2044 struct frame_info *frame;
2045 struct dwarf2_locexpr_baton baton;
2046 int i, bit_offset, bit_length;
2047 struct dwarf_expr_piece *piece = NULL;
2048 LONGEST byte_offset;
2050 type = check_typedef (value_type (value));
2051 if (TYPE_CODE (type) != TYPE_CODE_PTR)
2054 bit_length = 8 * TYPE_LENGTH (type);
2055 bit_offset = 8 * value_offset (value);
2056 if (value_bitsize (value))
2057 bit_offset += value_bitpos (value);
2059 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
2061 struct dwarf_expr_piece *p = &c->pieces[i];
2062 size_t this_size_bits = p->size;
2066 if (bit_offset >= this_size_bits)
2068 bit_offset -= this_size_bits;
2072 bit_length -= this_size_bits - bit_offset;
2076 bit_length -= this_size_bits;
2078 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
2081 if (bit_length != 0)
2082 error (_("Invalid use of DW_OP_GNU_implicit_pointer"));
2088 frame = get_selected_frame (_("No frame selected."));
2090 /* This is an offset requested by GDB, such as value subscripts.
2091 However, due to how synthetic pointers are implemented, this is
2092 always presented to us as a pointer type. This means we have to
2093 sign-extend it manually as appropriate. */
2094 byte_offset = value_as_address (value);
2095 if (TYPE_LENGTH (value_type (value)) < sizeof (LONGEST))
2096 byte_offset = gdb_sign_extend (byte_offset,
2097 8 * TYPE_LENGTH (value_type (value)));
2098 byte_offset += piece->v.ptr.offset;
2102 = dwarf2_fetch_die_loc_sect_off (piece->v.ptr.die, c->per_cu,
2103 get_frame_address_in_block_wrapper,
2106 if (baton.data != NULL)
2107 return dwarf2_evaluate_loc_desc_full (TYPE_TARGET_TYPE (type), frame,
2108 baton.data, baton.size, baton.per_cu,
2112 struct obstack temp_obstack;
2113 struct cleanup *cleanup;
2114 const gdb_byte *bytes;
2116 struct value *result;
2118 obstack_init (&temp_obstack);
2119 cleanup = make_cleanup_obstack_free (&temp_obstack);
2121 bytes = dwarf2_fetch_constant_bytes (piece->v.ptr.die, c->per_cu,
2122 &temp_obstack, &len);
2124 result = allocate_optimized_out_value (TYPE_TARGET_TYPE (type));
2128 || byte_offset + TYPE_LENGTH (TYPE_TARGET_TYPE (type)) > len)
2129 invalid_synthetic_pointer ();
2130 bytes += byte_offset;
2131 result = value_from_contents (TYPE_TARGET_TYPE (type), bytes);
2134 do_cleanups (cleanup);
2140 copy_pieced_value_closure (const struct value *v)
2142 struct piece_closure *c
2143 = (struct piece_closure *) value_computed_closure (v);
2150 free_pieced_value_closure (struct value *v)
2152 struct piece_closure *c
2153 = (struct piece_closure *) value_computed_closure (v);
2160 for (i = 0; i < c->n_pieces; ++i)
2161 if (c->pieces[i].location == DWARF_VALUE_STACK)
2162 value_free (c->pieces[i].v.value);
2169 /* Functions for accessing a variable described by DW_OP_piece. */
2170 static const struct lval_funcs pieced_value_funcs = {
2173 check_pieced_value_validity,
2174 check_pieced_value_invalid,
2175 indirect_pieced_value,
2176 NULL, /* coerce_ref */
2177 check_pieced_synthetic_pointer,
2178 copy_pieced_value_closure,
2179 free_pieced_value_closure
2182 /* Virtual method table for dwarf2_evaluate_loc_desc_full below. */
2184 static const struct dwarf_expr_context_funcs dwarf_expr_ctx_funcs =
2186 dwarf_expr_read_addr_from_reg,
2187 dwarf_expr_get_reg_value,
2188 dwarf_expr_read_mem,
2189 dwarf_expr_frame_base,
2190 dwarf_expr_frame_cfa,
2191 dwarf_expr_frame_pc,
2192 dwarf_expr_tls_address,
2193 dwarf_expr_dwarf_call,
2194 dwarf_expr_get_base_type,
2195 dwarf_expr_push_dwarf_reg_entry_value,
2196 dwarf_expr_get_addr_index
2199 /* Evaluate a location description, starting at DATA and with length
2200 SIZE, to find the current location of variable of TYPE in the
2201 context of FRAME. BYTE_OFFSET is applied after the contents are
2204 static struct value *
2205 dwarf2_evaluate_loc_desc_full (struct type *type, struct frame_info *frame,
2206 const gdb_byte *data, size_t size,
2207 struct dwarf2_per_cu_data *per_cu,
2208 LONGEST byte_offset)
2210 struct value *retval;
2211 struct dwarf_expr_baton baton;
2212 struct dwarf_expr_context *ctx;
2213 struct cleanup *old_chain, *value_chain;
2214 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2215 volatile struct gdb_exception ex;
2217 if (byte_offset < 0)
2218 invalid_synthetic_pointer ();
2221 return allocate_optimized_out_value (type);
2223 baton.frame = frame;
2224 baton.per_cu = per_cu;
2226 ctx = new_dwarf_expr_context ();
2227 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
2228 value_chain = make_cleanup_value_free_to_mark (value_mark ());
2230 ctx->gdbarch = get_objfile_arch (objfile);
2231 ctx->addr_size = dwarf2_per_cu_addr_size (per_cu);
2232 ctx->ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2233 ctx->offset = dwarf2_per_cu_text_offset (per_cu);
2234 ctx->baton = &baton;
2235 ctx->funcs = &dwarf_expr_ctx_funcs;
2237 TRY_CATCH (ex, RETURN_MASK_ERROR)
2239 dwarf_expr_eval (ctx, data, size);
2243 if (ex.error == NOT_AVAILABLE_ERROR)
2245 do_cleanups (old_chain);
2246 retval = allocate_value (type);
2247 mark_value_bytes_unavailable (retval, 0, TYPE_LENGTH (type));
2250 else if (ex.error == NO_ENTRY_VALUE_ERROR)
2252 if (entry_values_debug)
2253 exception_print (gdb_stdout, ex);
2254 do_cleanups (old_chain);
2255 return allocate_optimized_out_value (type);
2258 throw_exception (ex);
2261 if (ctx->num_pieces > 0)
2263 struct piece_closure *c;
2264 struct frame_id frame_id = get_frame_id (frame);
2265 ULONGEST bit_size = 0;
2268 for (i = 0; i < ctx->num_pieces; ++i)
2269 bit_size += ctx->pieces[i].size;
2270 if (8 * (byte_offset + TYPE_LENGTH (type)) > bit_size)
2271 invalid_synthetic_pointer ();
2273 c = allocate_piece_closure (per_cu, ctx->num_pieces, ctx->pieces,
2275 /* We must clean up the value chain after creating the piece
2276 closure but before allocating the result. */
2277 do_cleanups (value_chain);
2278 retval = allocate_computed_value (type, &pieced_value_funcs, c);
2279 VALUE_FRAME_ID (retval) = frame_id;
2280 set_value_offset (retval, byte_offset);
2284 switch (ctx->location)
2286 case DWARF_VALUE_REGISTER:
2288 struct gdbarch *arch = get_frame_arch (frame);
2290 = longest_to_int (value_as_long (dwarf_expr_fetch (ctx, 0)));
2291 int gdb_regnum = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_regnum);
2293 if (byte_offset != 0)
2294 error (_("cannot use offset on synthetic pointer to register"));
2295 do_cleanups (value_chain);
2296 if (gdb_regnum == -1)
2297 error (_("Unable to access DWARF register number %d"),
2299 retval = value_from_register (type, gdb_regnum, frame);
2300 if (value_optimized_out (retval))
2302 /* This means the register has undefined value / was
2303 not saved. As we're computing the location of some
2304 variable etc. in the program, not a value for
2305 inspecting a register ($pc, $sp, etc.), return a
2306 generic optimized out value instead, so that we show
2307 <optimized out> instead of <not saved>. */
2308 do_cleanups (value_chain);
2309 retval = allocate_optimized_out_value (type);
2314 case DWARF_VALUE_MEMORY:
2316 CORE_ADDR address = dwarf_expr_fetch_address (ctx, 0);
2317 int in_stack_memory = dwarf_expr_fetch_in_stack_memory (ctx, 0);
2319 do_cleanups (value_chain);
2320 retval = value_at_lazy (type, address + byte_offset);
2321 if (in_stack_memory)
2322 set_value_stack (retval, 1);
2326 case DWARF_VALUE_STACK:
2328 struct value *value = dwarf_expr_fetch (ctx, 0);
2330 const gdb_byte *val_bytes;
2331 size_t n = TYPE_LENGTH (value_type (value));
2333 if (byte_offset + TYPE_LENGTH (type) > n)
2334 invalid_synthetic_pointer ();
2336 val_bytes = value_contents_all (value);
2337 val_bytes += byte_offset;
2340 /* Preserve VALUE because we are going to free values back
2341 to the mark, but we still need the value contents
2343 value_incref (value);
2344 do_cleanups (value_chain);
2345 make_cleanup_value_free (value);
2347 retval = allocate_value (type);
2348 contents = value_contents_raw (retval);
2349 if (n > TYPE_LENGTH (type))
2351 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
2353 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2354 val_bytes += n - TYPE_LENGTH (type);
2355 n = TYPE_LENGTH (type);
2357 memcpy (contents, val_bytes, n);
2361 case DWARF_VALUE_LITERAL:
2364 const bfd_byte *ldata;
2365 size_t n = ctx->len;
2367 if (byte_offset + TYPE_LENGTH (type) > n)
2368 invalid_synthetic_pointer ();
2370 do_cleanups (value_chain);
2371 retval = allocate_value (type);
2372 contents = value_contents_raw (retval);
2374 ldata = ctx->data + byte_offset;
2377 if (n > TYPE_LENGTH (type))
2379 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
2381 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2382 ldata += n - TYPE_LENGTH (type);
2383 n = TYPE_LENGTH (type);
2385 memcpy (contents, ldata, n);
2389 case DWARF_VALUE_OPTIMIZED_OUT:
2390 do_cleanups (value_chain);
2391 retval = allocate_optimized_out_value (type);
2394 /* DWARF_VALUE_IMPLICIT_POINTER was converted to a pieced
2395 operation by execute_stack_op. */
2396 case DWARF_VALUE_IMPLICIT_POINTER:
2397 /* DWARF_VALUE_OPTIMIZED_OUT can't occur in this context --
2398 it can only be encountered when making a piece. */
2400 internal_error (__FILE__, __LINE__, _("invalid location type"));
2404 set_value_initialized (retval, ctx->initialized);
2406 do_cleanups (old_chain);
2411 /* The exported interface to dwarf2_evaluate_loc_desc_full; it always
2412 passes 0 as the byte_offset. */
2415 dwarf2_evaluate_loc_desc (struct type *type, struct frame_info *frame,
2416 const gdb_byte *data, size_t size,
2417 struct dwarf2_per_cu_data *per_cu)
2419 return dwarf2_evaluate_loc_desc_full (type, frame, data, size, per_cu, 0);
2422 /* Evaluates a dwarf expression and stores the result in VAL, expecting
2423 that the dwarf expression only produces a single CORE_ADDR. ADDR is a
2424 context (location of a variable) and might be needed to evaluate the
2425 location expression.
2426 Returns 1 on success, 0 otherwise. */
2429 dwarf2_locexpr_baton_eval (const struct dwarf2_locexpr_baton *dlbaton,
2432 struct dwarf_expr_context *ctx;
2433 struct dwarf_expr_baton baton;
2434 struct objfile *objfile;
2435 struct cleanup *cleanup;
2437 if (dlbaton == NULL || dlbaton->size == 0)
2440 ctx = new_dwarf_expr_context ();
2441 cleanup = make_cleanup_free_dwarf_expr_context (ctx);
2443 baton.frame = get_selected_frame (NULL);
2444 baton.per_cu = dlbaton->per_cu;
2446 objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
2448 ctx->gdbarch = get_objfile_arch (objfile);
2449 ctx->addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
2450 ctx->ref_addr_size = dwarf2_per_cu_ref_addr_size (dlbaton->per_cu);
2451 ctx->offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
2452 ctx->funcs = &dwarf_expr_ctx_funcs;
2453 ctx->baton = &baton;
2455 dwarf_expr_eval (ctx, dlbaton->data, dlbaton->size);
2457 switch (ctx->location)
2459 case DWARF_VALUE_REGISTER:
2460 case DWARF_VALUE_MEMORY:
2461 case DWARF_VALUE_STACK:
2462 *valp = dwarf_expr_fetch_address (ctx, 0);
2463 if (ctx->location == DWARF_VALUE_REGISTER)
2464 *valp = dwarf_expr_read_addr_from_reg (&baton, *valp);
2465 do_cleanups (cleanup);
2467 case DWARF_VALUE_LITERAL:
2468 *valp = extract_signed_integer (ctx->data, ctx->len,
2469 gdbarch_byte_order (ctx->gdbarch));
2470 do_cleanups (cleanup);
2472 /* Unsupported dwarf values. */
2473 case DWARF_VALUE_OPTIMIZED_OUT:
2474 case DWARF_VALUE_IMPLICIT_POINTER:
2478 do_cleanups (cleanup);
2482 /* See dwarf2loc.h. */
2485 dwarf2_evaluate_property (const struct dynamic_prop *prop, CORE_ADDR *value)
2494 const struct dwarf2_property_baton *baton = prop->data.baton;
2496 if (dwarf2_locexpr_baton_eval (&baton->locexpr, value))
2498 if (baton->referenced_type)
2500 struct value *val = value_at (baton->referenced_type, *value);
2502 *value = value_as_address (val);
2511 struct dwarf2_property_baton *baton = prop->data.baton;
2512 struct frame_info *frame = get_selected_frame (NULL);
2513 CORE_ADDR pc = get_frame_address_in_block (frame);
2514 const gdb_byte *data;
2518 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2521 val = dwarf2_evaluate_loc_desc (baton->referenced_type, frame, data,
2522 size, baton->loclist.per_cu);
2523 if (!value_optimized_out (val))
2525 *value = value_as_address (val);
2533 *value = prop->data.const_val;
2541 /* Helper functions and baton for dwarf2_loc_desc_needs_frame. */
2543 struct needs_frame_baton
2546 struct dwarf2_per_cu_data *per_cu;
2549 /* Reads from registers do require a frame. */
2551 needs_frame_read_addr_from_reg (void *baton, int regnum)
2553 struct needs_frame_baton *nf_baton = baton;
2555 nf_baton->needs_frame = 1;
2559 /* struct dwarf_expr_context_funcs' "get_reg_value" callback:
2560 Reads from registers do require a frame. */
2562 static struct value *
2563 needs_frame_get_reg_value (void *baton, struct type *type, int regnum)
2565 struct needs_frame_baton *nf_baton = baton;
2567 nf_baton->needs_frame = 1;
2568 return value_zero (type, not_lval);
2571 /* Reads from memory do not require a frame. */
2573 needs_frame_read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
2575 memset (buf, 0, len);
2578 /* Frame-relative accesses do require a frame. */
2580 needs_frame_frame_base (void *baton, const gdb_byte **start, size_t * length)
2582 static gdb_byte lit0 = DW_OP_lit0;
2583 struct needs_frame_baton *nf_baton = baton;
2588 nf_baton->needs_frame = 1;
2591 /* CFA accesses require a frame. */
2594 needs_frame_frame_cfa (void *baton)
2596 struct needs_frame_baton *nf_baton = baton;
2598 nf_baton->needs_frame = 1;
2602 /* Thread-local accesses do require a frame. */
2604 needs_frame_tls_address (void *baton, CORE_ADDR offset)
2606 struct needs_frame_baton *nf_baton = baton;
2608 nf_baton->needs_frame = 1;
2612 /* Helper interface of per_cu_dwarf_call for dwarf2_loc_desc_needs_frame. */
2615 needs_frame_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset)
2617 struct needs_frame_baton *nf_baton = ctx->baton;
2619 per_cu_dwarf_call (ctx, die_offset, nf_baton->per_cu,
2620 ctx->funcs->get_frame_pc, ctx->baton);
2623 /* DW_OP_GNU_entry_value accesses require a caller, therefore a frame. */
2626 needs_dwarf_reg_entry_value (struct dwarf_expr_context *ctx,
2627 enum call_site_parameter_kind kind,
2628 union call_site_parameter_u kind_u, int deref_size)
2630 struct needs_frame_baton *nf_baton = ctx->baton;
2632 nf_baton->needs_frame = 1;
2634 /* The expression may require some stub values on DWARF stack. */
2635 dwarf_expr_push_address (ctx, 0, 0);
2638 /* DW_OP_GNU_addr_index doesn't require a frame. */
2641 needs_get_addr_index (void *baton, unsigned int index)
2643 /* Nothing to do. */
2647 /* Virtual method table for dwarf2_loc_desc_needs_frame below. */
2649 static const struct dwarf_expr_context_funcs needs_frame_ctx_funcs =
2651 needs_frame_read_addr_from_reg,
2652 needs_frame_get_reg_value,
2653 needs_frame_read_mem,
2654 needs_frame_frame_base,
2655 needs_frame_frame_cfa,
2656 needs_frame_frame_cfa, /* get_frame_pc */
2657 needs_frame_tls_address,
2658 needs_frame_dwarf_call,
2659 NULL, /* get_base_type */
2660 needs_dwarf_reg_entry_value,
2661 needs_get_addr_index
2664 /* Return non-zero iff the location expression at DATA (length SIZE)
2665 requires a frame to evaluate. */
2668 dwarf2_loc_desc_needs_frame (const gdb_byte *data, size_t size,
2669 struct dwarf2_per_cu_data *per_cu)
2671 struct needs_frame_baton baton;
2672 struct dwarf_expr_context *ctx;
2674 struct cleanup *old_chain;
2675 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2677 baton.needs_frame = 0;
2678 baton.per_cu = per_cu;
2680 ctx = new_dwarf_expr_context ();
2681 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
2682 make_cleanup_value_free_to_mark (value_mark ());
2684 ctx->gdbarch = get_objfile_arch (objfile);
2685 ctx->addr_size = dwarf2_per_cu_addr_size (per_cu);
2686 ctx->ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2687 ctx->offset = dwarf2_per_cu_text_offset (per_cu);
2688 ctx->baton = &baton;
2689 ctx->funcs = &needs_frame_ctx_funcs;
2691 dwarf_expr_eval (ctx, data, size);
2693 in_reg = ctx->location == DWARF_VALUE_REGISTER;
2695 if (ctx->num_pieces > 0)
2699 /* If the location has several pieces, and any of them are in
2700 registers, then we will need a frame to fetch them from. */
2701 for (i = 0; i < ctx->num_pieces; i++)
2702 if (ctx->pieces[i].location == DWARF_VALUE_REGISTER)
2706 do_cleanups (old_chain);
2708 return baton.needs_frame || in_reg;
2711 /* A helper function that throws an unimplemented error mentioning a
2712 given DWARF operator. */
2715 unimplemented (unsigned int op)
2717 const char *name = get_DW_OP_name (op);
2720 error (_("DWARF operator %s cannot be translated to an agent expression"),
2723 error (_("Unknown DWARF operator 0x%02x cannot be translated "
2724 "to an agent expression"),
2728 /* A helper function to convert a DWARF register to an arch register.
2729 ARCH is the architecture.
2730 DWARF_REG is the register.
2731 This will throw an exception if the DWARF register cannot be
2732 translated to an architecture register. */
2735 translate_register (struct gdbarch *arch, int dwarf_reg)
2737 int reg = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_reg);
2739 error (_("Unable to access DWARF register number %d"), dwarf_reg);
2743 /* A helper function that emits an access to memory. ARCH is the
2744 target architecture. EXPR is the expression which we are building.
2745 NBITS is the number of bits we want to read. This emits the
2746 opcodes needed to read the memory and then extract the desired
2750 access_memory (struct gdbarch *arch, struct agent_expr *expr, ULONGEST nbits)
2752 ULONGEST nbytes = (nbits + 7) / 8;
2754 gdb_assert (nbytes > 0 && nbytes <= sizeof (LONGEST));
2757 ax_trace_quick (expr, nbytes);
2760 ax_simple (expr, aop_ref8);
2761 else if (nbits <= 16)
2762 ax_simple (expr, aop_ref16);
2763 else if (nbits <= 32)
2764 ax_simple (expr, aop_ref32);
2766 ax_simple (expr, aop_ref64);
2768 /* If we read exactly the number of bytes we wanted, we're done. */
2769 if (8 * nbytes == nbits)
2772 if (gdbarch_bits_big_endian (arch))
2774 /* On a bits-big-endian machine, we want the high-order
2776 ax_const_l (expr, 8 * nbytes - nbits);
2777 ax_simple (expr, aop_rsh_unsigned);
2781 /* On a bits-little-endian box, we want the low-order NBITS. */
2782 ax_zero_ext (expr, nbits);
2786 /* A helper function to return the frame's PC. */
2789 get_ax_pc (void *baton)
2791 struct agent_expr *expr = baton;
2796 /* Compile a DWARF location expression to an agent expression.
2798 EXPR is the agent expression we are building.
2799 LOC is the agent value we modify.
2800 ARCH is the architecture.
2801 ADDR_SIZE is the size of addresses, in bytes.
2802 OP_PTR is the start of the location expression.
2803 OP_END is one past the last byte of the location expression.
2805 This will throw an exception for various kinds of errors -- for
2806 example, if the expression cannot be compiled, or if the expression
2810 dwarf2_compile_expr_to_ax (struct agent_expr *expr, struct axs_value *loc,
2811 struct gdbarch *arch, unsigned int addr_size,
2812 const gdb_byte *op_ptr, const gdb_byte *op_end,
2813 struct dwarf2_per_cu_data *per_cu)
2815 struct cleanup *cleanups;
2817 VEC(int) *dw_labels = NULL, *patches = NULL;
2818 const gdb_byte * const base = op_ptr;
2819 const gdb_byte *previous_piece = op_ptr;
2820 enum bfd_endian byte_order = gdbarch_byte_order (arch);
2821 ULONGEST bits_collected = 0;
2822 unsigned int addr_size_bits = 8 * addr_size;
2823 int bits_big_endian = gdbarch_bits_big_endian (arch);
2825 offsets = xmalloc ((op_end - op_ptr) * sizeof (int));
2826 cleanups = make_cleanup (xfree, offsets);
2828 for (i = 0; i < op_end - op_ptr; ++i)
2831 make_cleanup (VEC_cleanup (int), &dw_labels);
2832 make_cleanup (VEC_cleanup (int), &patches);
2834 /* By default we are making an address. */
2835 loc->kind = axs_lvalue_memory;
2837 while (op_ptr < op_end)
2839 enum dwarf_location_atom op = *op_ptr;
2840 uint64_t uoffset, reg;
2844 offsets[op_ptr - base] = expr->len;
2847 /* Our basic approach to code generation is to map DWARF
2848 operations directly to AX operations. However, there are
2851 First, DWARF works on address-sized units, but AX always uses
2852 LONGEST. For most operations we simply ignore this
2853 difference; instead we generate sign extensions as needed
2854 before division and comparison operations. It would be nice
2855 to omit the sign extensions, but there is no way to determine
2856 the size of the target's LONGEST. (This code uses the size
2857 of the host LONGEST in some cases -- that is a bug but it is
2860 Second, some DWARF operations cannot be translated to AX.
2861 For these we simply fail. See
2862 http://sourceware.org/bugzilla/show_bug.cgi?id=11662. */
2897 ax_const_l (expr, op - DW_OP_lit0);
2901 uoffset = extract_unsigned_integer (op_ptr, addr_size, byte_order);
2902 op_ptr += addr_size;
2903 /* Some versions of GCC emit DW_OP_addr before
2904 DW_OP_GNU_push_tls_address. In this case the value is an
2905 index, not an address. We don't support things like
2906 branching between the address and the TLS op. */
2907 if (op_ptr >= op_end || *op_ptr != DW_OP_GNU_push_tls_address)
2908 uoffset += dwarf2_per_cu_text_offset (per_cu);
2909 ax_const_l (expr, uoffset);
2913 ax_const_l (expr, extract_unsigned_integer (op_ptr, 1, byte_order));
2917 ax_const_l (expr, extract_signed_integer (op_ptr, 1, byte_order));
2921 ax_const_l (expr, extract_unsigned_integer (op_ptr, 2, byte_order));
2925 ax_const_l (expr, extract_signed_integer (op_ptr, 2, byte_order));
2929 ax_const_l (expr, extract_unsigned_integer (op_ptr, 4, byte_order));
2933 ax_const_l (expr, extract_signed_integer (op_ptr, 4, byte_order));
2937 ax_const_l (expr, extract_unsigned_integer (op_ptr, 8, byte_order));
2941 ax_const_l (expr, extract_signed_integer (op_ptr, 8, byte_order));
2945 op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
2946 ax_const_l (expr, uoffset);
2949 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
2950 ax_const_l (expr, offset);
2985 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
2986 loc->u.reg = translate_register (arch, op - DW_OP_reg0);
2987 loc->kind = axs_lvalue_register;
2991 op_ptr = safe_read_uleb128 (op_ptr, op_end, ®);
2992 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
2993 loc->u.reg = translate_register (arch, reg);
2994 loc->kind = axs_lvalue_register;
2997 case DW_OP_implicit_value:
3001 op_ptr = safe_read_uleb128 (op_ptr, op_end, &len);
3002 if (op_ptr + len > op_end)
3003 error (_("DW_OP_implicit_value: too few bytes available."));
3004 if (len > sizeof (ULONGEST))
3005 error (_("Cannot translate DW_OP_implicit_value of %d bytes"),
3008 ax_const_l (expr, extract_unsigned_integer (op_ptr, len,
3011 dwarf_expr_require_composition (op_ptr, op_end,
3012 "DW_OP_implicit_value");
3014 loc->kind = axs_rvalue;
3018 case DW_OP_stack_value:
3019 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_stack_value");
3020 loc->kind = axs_rvalue;
3055 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3056 i = translate_register (arch, op - DW_OP_breg0);
3060 ax_const_l (expr, offset);
3061 ax_simple (expr, aop_add);
3066 op_ptr = safe_read_uleb128 (op_ptr, op_end, ®);
3067 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3068 i = translate_register (arch, reg);
3072 ax_const_l (expr, offset);
3073 ax_simple (expr, aop_add);
3079 const gdb_byte *datastart;
3081 const struct block *b;
3082 struct symbol *framefunc;
3084 b = block_for_pc (expr->scope);
3087 error (_("No block found for address"));
3089 framefunc = block_linkage_function (b);
3092 error (_("No function found for block"));
3094 dwarf_expr_frame_base_1 (framefunc, expr->scope,
3095 &datastart, &datalen);
3097 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3098 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size, datastart,
3099 datastart + datalen, per_cu);
3100 if (loc->kind == axs_lvalue_register)
3101 require_rvalue (expr, loc);
3105 ax_const_l (expr, offset);
3106 ax_simple (expr, aop_add);
3109 loc->kind = axs_lvalue_memory;
3114 ax_simple (expr, aop_dup);
3118 ax_simple (expr, aop_pop);
3123 ax_pick (expr, offset);
3127 ax_simple (expr, aop_swap);
3135 ax_simple (expr, aop_rot);
3139 case DW_OP_deref_size:
3143 if (op == DW_OP_deref_size)
3148 if (size != 1 && size != 2 && size != 4 && size != 8)
3149 error (_("Unsupported size %d in %s"),
3150 size, get_DW_OP_name (op));
3151 access_memory (arch, expr, size * TARGET_CHAR_BIT);
3156 /* Sign extend the operand. */
3157 ax_ext (expr, addr_size_bits);
3158 ax_simple (expr, aop_dup);
3159 ax_const_l (expr, 0);
3160 ax_simple (expr, aop_less_signed);
3161 ax_simple (expr, aop_log_not);
3162 i = ax_goto (expr, aop_if_goto);
3163 /* We have to emit 0 - X. */
3164 ax_const_l (expr, 0);
3165 ax_simple (expr, aop_swap);
3166 ax_simple (expr, aop_sub);
3167 ax_label (expr, i, expr->len);
3171 /* No need to sign extend here. */
3172 ax_const_l (expr, 0);
3173 ax_simple (expr, aop_swap);
3174 ax_simple (expr, aop_sub);
3178 /* Sign extend the operand. */
3179 ax_ext (expr, addr_size_bits);
3180 ax_simple (expr, aop_bit_not);
3183 case DW_OP_plus_uconst:
3184 op_ptr = safe_read_uleb128 (op_ptr, op_end, ®);
3185 /* It would be really weird to emit `DW_OP_plus_uconst 0',
3186 but we micro-optimize anyhow. */
3189 ax_const_l (expr, reg);
3190 ax_simple (expr, aop_add);
3195 ax_simple (expr, aop_bit_and);
3199 /* Sign extend the operands. */
3200 ax_ext (expr, addr_size_bits);
3201 ax_simple (expr, aop_swap);
3202 ax_ext (expr, addr_size_bits);
3203 ax_simple (expr, aop_swap);
3204 ax_simple (expr, aop_div_signed);
3208 ax_simple (expr, aop_sub);
3212 ax_simple (expr, aop_rem_unsigned);
3216 ax_simple (expr, aop_mul);
3220 ax_simple (expr, aop_bit_or);
3224 ax_simple (expr, aop_add);
3228 ax_simple (expr, aop_lsh);
3232 ax_simple (expr, aop_rsh_unsigned);
3236 ax_simple (expr, aop_rsh_signed);
3240 ax_simple (expr, aop_bit_xor);
3244 /* Sign extend the operands. */
3245 ax_ext (expr, addr_size_bits);
3246 ax_simple (expr, aop_swap);
3247 ax_ext (expr, addr_size_bits);
3248 /* Note no swap here: A <= B is !(B < A). */
3249 ax_simple (expr, aop_less_signed);
3250 ax_simple (expr, aop_log_not);
3254 /* Sign extend the operands. */
3255 ax_ext (expr, addr_size_bits);
3256 ax_simple (expr, aop_swap);
3257 ax_ext (expr, addr_size_bits);
3258 ax_simple (expr, aop_swap);
3259 /* A >= B is !(A < B). */
3260 ax_simple (expr, aop_less_signed);
3261 ax_simple (expr, aop_log_not);
3265 /* Sign extend the operands. */
3266 ax_ext (expr, addr_size_bits);
3267 ax_simple (expr, aop_swap);
3268 ax_ext (expr, addr_size_bits);
3269 /* No need for a second swap here. */
3270 ax_simple (expr, aop_equal);
3274 /* Sign extend the operands. */
3275 ax_ext (expr, addr_size_bits);
3276 ax_simple (expr, aop_swap);
3277 ax_ext (expr, addr_size_bits);
3278 ax_simple (expr, aop_swap);
3279 ax_simple (expr, aop_less_signed);
3283 /* Sign extend the operands. */
3284 ax_ext (expr, addr_size_bits);
3285 ax_simple (expr, aop_swap);
3286 ax_ext (expr, addr_size_bits);
3287 /* Note no swap here: A > B is B < A. */
3288 ax_simple (expr, aop_less_signed);
3292 /* Sign extend the operands. */
3293 ax_ext (expr, addr_size_bits);
3294 ax_simple (expr, aop_swap);
3295 ax_ext (expr, addr_size_bits);
3296 /* No need for a swap here. */
3297 ax_simple (expr, aop_equal);
3298 ax_simple (expr, aop_log_not);
3301 case DW_OP_call_frame_cfa:
3302 dwarf2_compile_cfa_to_ax (expr, loc, arch, expr->scope, per_cu);
3303 loc->kind = axs_lvalue_memory;
3306 case DW_OP_GNU_push_tls_address:
3311 offset = extract_signed_integer (op_ptr, 2, byte_order);
3313 i = ax_goto (expr, aop_goto);
3314 VEC_safe_push (int, dw_labels, op_ptr + offset - base);
3315 VEC_safe_push (int, patches, i);
3319 offset = extract_signed_integer (op_ptr, 2, byte_order);
3321 /* Zero extend the operand. */
3322 ax_zero_ext (expr, addr_size_bits);
3323 i = ax_goto (expr, aop_if_goto);
3324 VEC_safe_push (int, dw_labels, op_ptr + offset - base);
3325 VEC_safe_push (int, patches, i);
3332 case DW_OP_bit_piece:
3334 uint64_t size, offset;
3336 if (op_ptr - 1 == previous_piece)
3337 error (_("Cannot translate empty pieces to agent expressions"));
3338 previous_piece = op_ptr - 1;
3340 op_ptr = safe_read_uleb128 (op_ptr, op_end, &size);
3341 if (op == DW_OP_piece)
3347 op_ptr = safe_read_uleb128 (op_ptr, op_end, &offset);
3349 if (bits_collected + size > 8 * sizeof (LONGEST))
3350 error (_("Expression pieces exceed word size"));
3352 /* Access the bits. */
3355 case axs_lvalue_register:
3356 ax_reg (expr, loc->u.reg);
3359 case axs_lvalue_memory:
3360 /* Offset the pointer, if needed. */
3363 ax_const_l (expr, offset / 8);
3364 ax_simple (expr, aop_add);
3367 access_memory (arch, expr, size);
3371 /* For a bits-big-endian target, shift up what we already
3372 have. For a bits-little-endian target, shift up the
3373 new data. Note that there is a potential bug here if
3374 the DWARF expression leaves multiple values on the
3376 if (bits_collected > 0)
3378 if (bits_big_endian)
3380 ax_simple (expr, aop_swap);
3381 ax_const_l (expr, size);
3382 ax_simple (expr, aop_lsh);
3383 /* We don't need a second swap here, because
3384 aop_bit_or is symmetric. */
3388 ax_const_l (expr, size);
3389 ax_simple (expr, aop_lsh);
3391 ax_simple (expr, aop_bit_or);
3394 bits_collected += size;
3395 loc->kind = axs_rvalue;
3399 case DW_OP_GNU_uninit:
3405 struct dwarf2_locexpr_baton block;
3406 int size = (op == DW_OP_call2 ? 2 : 4);
3409 uoffset = extract_unsigned_integer (op_ptr, size, byte_order);
3412 offset.cu_off = uoffset;
3413 block = dwarf2_fetch_die_loc_cu_off (offset, per_cu,
3416 /* DW_OP_call_ref is currently not supported. */
3417 gdb_assert (block.per_cu == per_cu);
3419 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size,
3420 block.data, block.data + block.size,
3425 case DW_OP_call_ref:
3433 /* Patch all the branches we emitted. */
3434 for (i = 0; i < VEC_length (int, patches); ++i)
3436 int targ = offsets[VEC_index (int, dw_labels, i)];
3438 internal_error (__FILE__, __LINE__, _("invalid label"));
3439 ax_label (expr, VEC_index (int, patches, i), targ);
3442 do_cleanups (cleanups);
3446 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
3447 evaluator to calculate the location. */
3448 static struct value *
3449 locexpr_read_variable (struct symbol *symbol, struct frame_info *frame)
3451 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
3454 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3455 dlbaton->size, dlbaton->per_cu);
3460 /* Return the value of SYMBOL in FRAME at (callee) FRAME's function
3461 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
3464 static struct value *
3465 locexpr_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
3467 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
3469 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3473 /* Return non-zero iff we need a frame to evaluate SYMBOL. */
3475 locexpr_read_needs_frame (struct symbol *symbol)
3477 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
3479 return dwarf2_loc_desc_needs_frame (dlbaton->data, dlbaton->size,
3483 /* Return true if DATA points to the end of a piece. END is one past
3484 the last byte in the expression. */
3487 piece_end_p (const gdb_byte *data, const gdb_byte *end)
3489 return data == end || data[0] == DW_OP_piece || data[0] == DW_OP_bit_piece;
3492 /* Helper for locexpr_describe_location_piece that finds the name of a
3496 locexpr_regname (struct gdbarch *gdbarch, int dwarf_regnum)
3500 regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, dwarf_regnum);
3501 return gdbarch_register_name (gdbarch, regnum);
3504 /* Nicely describe a single piece of a location, returning an updated
3505 position in the bytecode sequence. This function cannot recognize
3506 all locations; if a location is not recognized, it simply returns
3507 DATA. If there is an error during reading, e.g. we run off the end
3508 of the buffer, an error is thrown. */
3510 static const gdb_byte *
3511 locexpr_describe_location_piece (struct symbol *symbol, struct ui_file *stream,
3512 CORE_ADDR addr, struct objfile *objfile,
3513 struct dwarf2_per_cu_data *per_cu,
3514 const gdb_byte *data, const gdb_byte *end,
3515 unsigned int addr_size)
3517 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3520 if (data[0] >= DW_OP_reg0 && data[0] <= DW_OP_reg31)
3522 fprintf_filtered (stream, _("a variable in $%s"),
3523 locexpr_regname (gdbarch, data[0] - DW_OP_reg0));
3526 else if (data[0] == DW_OP_regx)
3530 data = safe_read_uleb128 (data + 1, end, ®);
3531 fprintf_filtered (stream, _("a variable in $%s"),
3532 locexpr_regname (gdbarch, reg));
3534 else if (data[0] == DW_OP_fbreg)
3536 const struct block *b;
3537 struct symbol *framefunc;
3539 int64_t frame_offset;
3540 const gdb_byte *base_data, *new_data, *save_data = data;
3542 int64_t base_offset = 0;
3544 new_data = safe_read_sleb128 (data + 1, end, &frame_offset);
3545 if (!piece_end_p (new_data, end))
3549 b = block_for_pc (addr);
3552 error (_("No block found for address for symbol \"%s\"."),
3553 SYMBOL_PRINT_NAME (symbol));
3555 framefunc = block_linkage_function (b);
3558 error (_("No function found for block for symbol \"%s\"."),
3559 SYMBOL_PRINT_NAME (symbol));
3561 dwarf_expr_frame_base_1 (framefunc, addr, &base_data, &base_size);
3563 if (base_data[0] >= DW_OP_breg0 && base_data[0] <= DW_OP_breg31)
3565 const gdb_byte *buf_end;
3567 frame_reg = base_data[0] - DW_OP_breg0;
3568 buf_end = safe_read_sleb128 (base_data + 1, base_data + base_size,
3570 if (buf_end != base_data + base_size)
3571 error (_("Unexpected opcode after "
3572 "DW_OP_breg%u for symbol \"%s\"."),
3573 frame_reg, SYMBOL_PRINT_NAME (symbol));
3575 else if (base_data[0] >= DW_OP_reg0 && base_data[0] <= DW_OP_reg31)
3577 /* The frame base is just the register, with no offset. */
3578 frame_reg = base_data[0] - DW_OP_reg0;
3583 /* We don't know what to do with the frame base expression,
3584 so we can't trace this variable; give up. */
3588 fprintf_filtered (stream,
3589 _("a variable at frame base reg $%s offset %s+%s"),
3590 locexpr_regname (gdbarch, frame_reg),
3591 plongest (base_offset), plongest (frame_offset));
3593 else if (data[0] >= DW_OP_breg0 && data[0] <= DW_OP_breg31
3594 && piece_end_p (data, end))
3598 data = safe_read_sleb128 (data + 1, end, &offset);
3600 fprintf_filtered (stream,
3601 _("a variable at offset %s from base reg $%s"),
3603 locexpr_regname (gdbarch, data[0] - DW_OP_breg0));
3606 /* The location expression for a TLS variable looks like this (on a
3609 DW_AT_location : 10 byte block: 3 4 0 0 0 0 0 0 0 e0
3610 (DW_OP_addr: 4; DW_OP_GNU_push_tls_address)
3612 0x3 is the encoding for DW_OP_addr, which has an operand as long
3613 as the size of an address on the target machine (here is 8
3614 bytes). Note that more recent version of GCC emit DW_OP_const4u
3615 or DW_OP_const8u, depending on address size, rather than
3616 DW_OP_addr. 0xe0 is the encoding for DW_OP_GNU_push_tls_address.
3617 The operand represents the offset at which the variable is within
3618 the thread local storage. */
3620 else if (data + 1 + addr_size < end
3621 && (data[0] == DW_OP_addr
3622 || (addr_size == 4 && data[0] == DW_OP_const4u)
3623 || (addr_size == 8 && data[0] == DW_OP_const8u))
3624 && data[1 + addr_size] == DW_OP_GNU_push_tls_address
3625 && piece_end_p (data + 2 + addr_size, end))
3628 offset = extract_unsigned_integer (data + 1, addr_size,
3629 gdbarch_byte_order (gdbarch));
3631 fprintf_filtered (stream,
3632 _("a thread-local variable at offset 0x%s "
3633 "in the thread-local storage for `%s'"),
3634 phex_nz (offset, addr_size), objfile_name (objfile));
3636 data += 1 + addr_size + 1;
3639 /* With -gsplit-dwarf a TLS variable can also look like this:
3640 DW_AT_location : 3 byte block: fc 4 e0
3641 (DW_OP_GNU_const_index: 4;
3642 DW_OP_GNU_push_tls_address) */
3643 else if (data + 3 <= end
3644 && data + 1 + (leb128_size = skip_leb128 (data + 1, end)) < end
3645 && data[0] == DW_OP_GNU_const_index
3647 && data[1 + leb128_size] == DW_OP_GNU_push_tls_address
3648 && piece_end_p (data + 2 + leb128_size, end))
3652 data = safe_read_uleb128 (data + 1, end, &offset);
3653 offset = dwarf2_read_addr_index (per_cu, offset);
3654 fprintf_filtered (stream,
3655 _("a thread-local variable at offset 0x%s "
3656 "in the thread-local storage for `%s'"),
3657 phex_nz (offset, addr_size), objfile_name (objfile));
3661 else if (data[0] >= DW_OP_lit0
3662 && data[0] <= DW_OP_lit31
3664 && data[1] == DW_OP_stack_value)
3666 fprintf_filtered (stream, _("the constant %d"), data[0] - DW_OP_lit0);
3673 /* Disassemble an expression, stopping at the end of a piece or at the
3674 end of the expression. Returns a pointer to the next unread byte
3675 in the input expression. If ALL is nonzero, then this function
3676 will keep going until it reaches the end of the expression.
3677 If there is an error during reading, e.g. we run off the end
3678 of the buffer, an error is thrown. */
3680 static const gdb_byte *
3681 disassemble_dwarf_expression (struct ui_file *stream,
3682 struct gdbarch *arch, unsigned int addr_size,
3683 int offset_size, const gdb_byte *start,
3684 const gdb_byte *data, const gdb_byte *end,
3685 int indent, int all,
3686 struct dwarf2_per_cu_data *per_cu)
3690 || (data[0] != DW_OP_piece && data[0] != DW_OP_bit_piece)))
3692 enum dwarf_location_atom op = *data++;
3697 name = get_DW_OP_name (op);
3700 error (_("Unrecognized DWARF opcode 0x%02x at %ld"),
3701 op, (long) (data - 1 - start));
3702 fprintf_filtered (stream, " %*ld: %s", indent + 4,
3703 (long) (data - 1 - start), name);
3708 ul = extract_unsigned_integer (data, addr_size,
3709 gdbarch_byte_order (arch));
3711 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
3715 ul = extract_unsigned_integer (data, 1, gdbarch_byte_order (arch));
3717 fprintf_filtered (stream, " %s", pulongest (ul));
3720 l = extract_signed_integer (data, 1, gdbarch_byte_order (arch));
3722 fprintf_filtered (stream, " %s", plongest (l));
3725 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
3727 fprintf_filtered (stream, " %s", pulongest (ul));
3730 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3732 fprintf_filtered (stream, " %s", plongest (l));
3735 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3737 fprintf_filtered (stream, " %s", pulongest (ul));
3740 l = extract_signed_integer (data, 4, gdbarch_byte_order (arch));
3742 fprintf_filtered (stream, " %s", plongest (l));
3745 ul = extract_unsigned_integer (data, 8, gdbarch_byte_order (arch));
3747 fprintf_filtered (stream, " %s", pulongest (ul));
3750 l = extract_signed_integer (data, 8, gdbarch_byte_order (arch));
3752 fprintf_filtered (stream, " %s", plongest (l));
3755 data = safe_read_uleb128 (data, end, &ul);
3756 fprintf_filtered (stream, " %s", pulongest (ul));
3759 data = safe_read_sleb128 (data, end, &l);
3760 fprintf_filtered (stream, " %s", plongest (l));
3795 fprintf_filtered (stream, " [$%s]",
3796 locexpr_regname (arch, op - DW_OP_reg0));
3800 data = safe_read_uleb128 (data, end, &ul);
3801 fprintf_filtered (stream, " %s [$%s]", pulongest (ul),
3802 locexpr_regname (arch, (int) ul));
3805 case DW_OP_implicit_value:
3806 data = safe_read_uleb128 (data, end, &ul);
3808 fprintf_filtered (stream, " %s", pulongest (ul));
3843 data = safe_read_sleb128 (data, end, &l);
3844 fprintf_filtered (stream, " %s [$%s]", plongest (l),
3845 locexpr_regname (arch, op - DW_OP_breg0));
3849 data = safe_read_uleb128 (data, end, &ul);
3850 data = safe_read_sleb128 (data, end, &l);
3851 fprintf_filtered (stream, " register %s [$%s] offset %s",
3853 locexpr_regname (arch, (int) ul),
3858 data = safe_read_sleb128 (data, end, &l);
3859 fprintf_filtered (stream, " %s", plongest (l));
3862 case DW_OP_xderef_size:
3863 case DW_OP_deref_size:
3865 fprintf_filtered (stream, " %d", *data);
3869 case DW_OP_plus_uconst:
3870 data = safe_read_uleb128 (data, end, &ul);
3871 fprintf_filtered (stream, " %s", pulongest (ul));
3875 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3877 fprintf_filtered (stream, " to %ld",
3878 (long) (data + l - start));
3882 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3884 fprintf_filtered (stream, " %ld",
3885 (long) (data + l - start));
3889 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
3891 fprintf_filtered (stream, " offset %s", phex_nz (ul, 2));
3895 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3897 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
3900 case DW_OP_call_ref:
3901 ul = extract_unsigned_integer (data, offset_size,
3902 gdbarch_byte_order (arch));
3903 data += offset_size;
3904 fprintf_filtered (stream, " offset %s", phex_nz (ul, offset_size));
3908 data = safe_read_uleb128 (data, end, &ul);
3909 fprintf_filtered (stream, " %s (bytes)", pulongest (ul));
3912 case DW_OP_bit_piece:
3916 data = safe_read_uleb128 (data, end, &ul);
3917 data = safe_read_uleb128 (data, end, &offset);
3918 fprintf_filtered (stream, " size %s offset %s (bits)",
3919 pulongest (ul), pulongest (offset));
3923 case DW_OP_GNU_implicit_pointer:
3925 ul = extract_unsigned_integer (data, offset_size,
3926 gdbarch_byte_order (arch));
3927 data += offset_size;
3929 data = safe_read_sleb128 (data, end, &l);
3931 fprintf_filtered (stream, " DIE %s offset %s",
3932 phex_nz (ul, offset_size),
3937 case DW_OP_GNU_deref_type:
3939 int addr_size = *data++;
3943 data = safe_read_uleb128 (data, end, &ul);
3945 type = dwarf2_get_die_type (offset, per_cu);
3946 fprintf_filtered (stream, "<");
3947 type_print (type, "", stream, -1);
3948 fprintf_filtered (stream, " [0x%s]> %d", phex_nz (offset.cu_off, 0),
3953 case DW_OP_GNU_const_type:
3958 data = safe_read_uleb128 (data, end, &ul);
3959 type_die.cu_off = ul;
3960 type = dwarf2_get_die_type (type_die, per_cu);
3961 fprintf_filtered (stream, "<");
3962 type_print (type, "", stream, -1);
3963 fprintf_filtered (stream, " [0x%s]>", phex_nz (type_die.cu_off, 0));
3967 case DW_OP_GNU_regval_type:
3973 data = safe_read_uleb128 (data, end, ®);
3974 data = safe_read_uleb128 (data, end, &ul);
3975 type_die.cu_off = ul;
3977 type = dwarf2_get_die_type (type_die, per_cu);
3978 fprintf_filtered (stream, "<");
3979 type_print (type, "", stream, -1);
3980 fprintf_filtered (stream, " [0x%s]> [$%s]",
3981 phex_nz (type_die.cu_off, 0),
3982 locexpr_regname (arch, reg));
3986 case DW_OP_GNU_convert:
3987 case DW_OP_GNU_reinterpret:
3991 data = safe_read_uleb128 (data, end, &ul);
3992 type_die.cu_off = ul;
3994 if (type_die.cu_off == 0)
3995 fprintf_filtered (stream, "<0>");
4000 type = dwarf2_get_die_type (type_die, per_cu);
4001 fprintf_filtered (stream, "<");
4002 type_print (type, "", stream, -1);
4003 fprintf_filtered (stream, " [0x%s]>", phex_nz (type_die.cu_off, 0));
4008 case DW_OP_GNU_entry_value:
4009 data = safe_read_uleb128 (data, end, &ul);
4010 fputc_filtered ('\n', stream);
4011 disassemble_dwarf_expression (stream, arch, addr_size, offset_size,
4012 start, data, data + ul, indent + 2,
4017 case DW_OP_GNU_parameter_ref:
4018 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4020 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
4023 case DW_OP_GNU_addr_index:
4024 data = safe_read_uleb128 (data, end, &ul);
4025 ul = dwarf2_read_addr_index (per_cu, ul);
4026 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
4028 case DW_OP_GNU_const_index:
4029 data = safe_read_uleb128 (data, end, &ul);
4030 ul = dwarf2_read_addr_index (per_cu, ul);
4031 fprintf_filtered (stream, " %s", pulongest (ul));
4035 fprintf_filtered (stream, "\n");
4041 /* Describe a single location, which may in turn consist of multiple
4045 locexpr_describe_location_1 (struct symbol *symbol, CORE_ADDR addr,
4046 struct ui_file *stream,
4047 const gdb_byte *data, size_t size,
4048 struct objfile *objfile, unsigned int addr_size,
4049 int offset_size, struct dwarf2_per_cu_data *per_cu)
4051 const gdb_byte *end = data + size;
4052 int first_piece = 1, bad = 0;
4056 const gdb_byte *here = data;
4057 int disassemble = 1;
4062 fprintf_filtered (stream, _(", and "));
4064 if (!dwarf2_always_disassemble)
4066 data = locexpr_describe_location_piece (symbol, stream,
4067 addr, objfile, per_cu,
4068 data, end, addr_size);
4069 /* If we printed anything, or if we have an empty piece,
4070 then don't disassemble. */
4072 || data[0] == DW_OP_piece
4073 || data[0] == DW_OP_bit_piece)
4078 fprintf_filtered (stream, _("a complex DWARF expression:\n"));
4079 data = disassemble_dwarf_expression (stream,
4080 get_objfile_arch (objfile),
4081 addr_size, offset_size, data,
4083 dwarf2_always_disassemble,
4089 int empty = data == here;
4092 fprintf_filtered (stream, " ");
4093 if (data[0] == DW_OP_piece)
4097 data = safe_read_uleb128 (data + 1, end, &bytes);
4100 fprintf_filtered (stream, _("an empty %s-byte piece"),
4103 fprintf_filtered (stream, _(" [%s-byte piece]"),
4106 else if (data[0] == DW_OP_bit_piece)
4108 uint64_t bits, offset;
4110 data = safe_read_uleb128 (data + 1, end, &bits);
4111 data = safe_read_uleb128 (data, end, &offset);
4114 fprintf_filtered (stream,
4115 _("an empty %s-bit piece"),
4118 fprintf_filtered (stream,
4119 _(" [%s-bit piece, offset %s bits]"),
4120 pulongest (bits), pulongest (offset));
4130 if (bad || data > end)
4131 error (_("Corrupted DWARF2 expression for \"%s\"."),
4132 SYMBOL_PRINT_NAME (symbol));
4135 /* Print a natural-language description of SYMBOL to STREAM. This
4136 version is for a symbol with a single location. */
4139 locexpr_describe_location (struct symbol *symbol, CORE_ADDR addr,
4140 struct ui_file *stream)
4142 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4143 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4144 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4145 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4147 locexpr_describe_location_1 (symbol, addr, stream,
4148 dlbaton->data, dlbaton->size,
4149 objfile, addr_size, offset_size,
4153 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4154 any necessary bytecode in AX. */
4157 locexpr_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
4158 struct agent_expr *ax, struct axs_value *value)
4160 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4161 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4163 if (dlbaton->size == 0)
4164 value->optimized_out = 1;
4166 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size,
4167 dlbaton->data, dlbaton->data + dlbaton->size,
4171 /* The set of location functions used with the DWARF-2 expression
4173 const struct symbol_computed_ops dwarf2_locexpr_funcs = {
4174 locexpr_read_variable,
4175 locexpr_read_variable_at_entry,
4176 locexpr_read_needs_frame,
4177 locexpr_describe_location,
4178 0, /* location_has_loclist */
4179 locexpr_tracepoint_var_ref
4183 /* Wrapper functions for location lists. These generally find
4184 the appropriate location expression and call something above. */
4186 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
4187 evaluator to calculate the location. */
4188 static struct value *
4189 loclist_read_variable (struct symbol *symbol, struct frame_info *frame)
4191 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4193 const gdb_byte *data;
4195 CORE_ADDR pc = frame ? get_frame_address_in_block (frame) : 0;
4197 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4198 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, data, size,
4204 /* Read variable SYMBOL like loclist_read_variable at (callee) FRAME's function
4205 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
4208 Function always returns non-NULL value, it may be marked optimized out if
4209 inferior frame information is not available. It throws NO_ENTRY_VALUE_ERROR
4210 if it cannot resolve the parameter for any reason. */
4212 static struct value *
4213 loclist_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
4215 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4216 const gdb_byte *data;
4220 if (frame == NULL || !get_frame_func_if_available (frame, &pc))
4221 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4223 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4225 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4227 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, data, size);
4230 /* Return non-zero iff we need a frame to evaluate SYMBOL. */
4232 loclist_read_needs_frame (struct symbol *symbol)
4234 /* If there's a location list, then assume we need to have a frame
4235 to choose the appropriate location expression. With tracking of
4236 global variables this is not necessarily true, but such tracking
4237 is disabled in GCC at the moment until we figure out how to
4243 /* Print a natural-language description of SYMBOL to STREAM. This
4244 version applies when there is a list of different locations, each
4245 with a specified address range. */
4248 loclist_describe_location (struct symbol *symbol, CORE_ADDR addr,
4249 struct ui_file *stream)
4251 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4252 const gdb_byte *loc_ptr, *buf_end;
4253 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4254 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4255 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4256 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4257 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4258 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
4259 /* Adjust base_address for relocatable objects. */
4260 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
4261 CORE_ADDR base_address = dlbaton->base_address + base_offset;
4264 loc_ptr = dlbaton->data;
4265 buf_end = dlbaton->data + dlbaton->size;
4267 fprintf_filtered (stream, _("multi-location:\n"));
4269 /* Iterate through locations until we run out. */
4272 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
4274 enum debug_loc_kind kind;
4275 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
4277 if (dlbaton->from_dwo)
4278 kind = decode_debug_loc_dwo_addresses (dlbaton->per_cu,
4279 loc_ptr, buf_end, &new_ptr,
4280 &low, &high, byte_order);
4282 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
4284 byte_order, addr_size,
4289 case DEBUG_LOC_END_OF_LIST:
4292 case DEBUG_LOC_BASE_ADDRESS:
4293 base_address = high + base_offset;
4294 fprintf_filtered (stream, _(" Base address %s"),
4295 paddress (gdbarch, base_address));
4297 case DEBUG_LOC_START_END:
4298 case DEBUG_LOC_START_LENGTH:
4300 case DEBUG_LOC_BUFFER_OVERFLOW:
4301 case DEBUG_LOC_INVALID_ENTRY:
4302 error (_("Corrupted DWARF expression for symbol \"%s\"."),
4303 SYMBOL_PRINT_NAME (symbol));
4305 gdb_assert_not_reached ("bad debug_loc_kind");
4308 /* Otherwise, a location expression entry. */
4309 low += base_address;
4310 high += base_address;
4312 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
4315 /* (It would improve readability to print only the minimum
4316 necessary digits of the second number of the range.) */
4317 fprintf_filtered (stream, _(" Range %s-%s: "),
4318 paddress (gdbarch, low), paddress (gdbarch, high));
4320 /* Now describe this particular location. */
4321 locexpr_describe_location_1 (symbol, low, stream, loc_ptr, length,
4322 objfile, addr_size, offset_size,
4325 fprintf_filtered (stream, "\n");
4331 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4332 any necessary bytecode in AX. */
4334 loclist_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
4335 struct agent_expr *ax, struct axs_value *value)
4337 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4338 const gdb_byte *data;
4340 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4342 data = dwarf2_find_location_expression (dlbaton, &size, ax->scope);
4344 value->optimized_out = 1;
4346 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size, data, data + size,
4350 /* The set of location functions used with the DWARF-2 expression
4351 evaluator and location lists. */
4352 const struct symbol_computed_ops dwarf2_loclist_funcs = {
4353 loclist_read_variable,
4354 loclist_read_variable_at_entry,
4355 loclist_read_needs_frame,
4356 loclist_describe_location,
4357 1, /* location_has_loclist */
4358 loclist_tracepoint_var_ref
4361 /* Provide a prototype to silence -Wmissing-prototypes. */
4362 extern initialize_file_ftype _initialize_dwarf2loc;
4365 _initialize_dwarf2loc (void)
4367 add_setshow_zuinteger_cmd ("entry-values", class_maintenance,
4368 &entry_values_debug,
4369 _("Set entry values and tail call frames "
4371 _("Show entry values and tail call frames "
4373 _("When non-zero, the process of determining "
4374 "parameter values from function entry point "
4375 "and tail call frames will be printed."),
4377 show_entry_values_debug,
4378 &setdebuglist, &showdebuglist);