1 /* DWARF 2 location expression support for GDB.
3 Copyright (C) 2003-2019 Free Software Foundation, Inc.
5 Contributed by Daniel Jacobowitz, MontaVista Software, Inc.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
35 #include "complaints.h"
37 #include "dwarf2expr.h"
38 #include "dwarf2loc.h"
39 #include "dwarf2read.h"
40 #include "dwarf2-frame.h"
41 #include "compile/compile.h"
42 #include "common/selftest.h"
45 #include <unordered_set>
46 #include "common/underlying.h"
47 #include "common/byte-vector.h"
49 extern int dwarf_always_disassemble;
51 static struct value *dwarf2_evaluate_loc_desc_full (struct type *type,
52 struct frame_info *frame,
55 struct dwarf2_per_cu_data *per_cu,
56 struct type *subobj_type,
57 LONGEST subobj_byte_offset);
59 static struct call_site_parameter *dwarf_expr_reg_to_entry_parameter
60 (struct frame_info *frame,
61 enum call_site_parameter_kind kind,
62 union call_site_parameter_u kind_u,
63 struct dwarf2_per_cu_data **per_cu_return);
65 static struct value *indirect_synthetic_pointer
66 (sect_offset die, LONGEST byte_offset,
67 struct dwarf2_per_cu_data *per_cu,
68 struct frame_info *frame,
69 struct type *type, bool resolve_abstract_p = false);
71 /* Until these have formal names, we define these here.
72 ref: http://gcc.gnu.org/wiki/DebugFission
73 Each entry in .debug_loc.dwo begins with a byte that describes the entry,
74 and is then followed by data specific to that entry. */
78 /* Indicates the end of the list of entries. */
79 DEBUG_LOC_END_OF_LIST = 0,
81 /* This is followed by an unsigned LEB128 number that is an index into
82 .debug_addr and specifies the base address for all following entries. */
83 DEBUG_LOC_BASE_ADDRESS = 1,
85 /* This is followed by two unsigned LEB128 numbers that are indices into
86 .debug_addr and specify the beginning and ending addresses, and then
87 a normal location expression as in .debug_loc. */
88 DEBUG_LOC_START_END = 2,
90 /* This is followed by an unsigned LEB128 number that is an index into
91 .debug_addr and specifies the beginning address, and a 4 byte unsigned
92 number that specifies the length, and then a normal location expression
94 DEBUG_LOC_START_LENGTH = 3,
96 /* An internal value indicating there is insufficient data. */
97 DEBUG_LOC_BUFFER_OVERFLOW = -1,
99 /* An internal value indicating an invalid kind of entry was found. */
100 DEBUG_LOC_INVALID_ENTRY = -2
103 /* Helper function which throws an error if a synthetic pointer is
107 invalid_synthetic_pointer (void)
109 error (_("access outside bounds of object "
110 "referenced via synthetic pointer"));
113 /* Decode the addresses in a non-dwo .debug_loc entry.
114 A pointer to the next byte to examine is returned in *NEW_PTR.
115 The encoded low,high addresses are return in *LOW,*HIGH.
116 The result indicates the kind of entry found. */
118 static enum debug_loc_kind
119 decode_debug_loc_addresses (const gdb_byte *loc_ptr, const gdb_byte *buf_end,
120 const gdb_byte **new_ptr,
121 CORE_ADDR *low, CORE_ADDR *high,
122 enum bfd_endian byte_order,
123 unsigned int addr_size,
126 CORE_ADDR base_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
128 if (buf_end - loc_ptr < 2 * addr_size)
129 return DEBUG_LOC_BUFFER_OVERFLOW;
132 *low = extract_signed_integer (loc_ptr, addr_size, byte_order);
134 *low = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
135 loc_ptr += addr_size;
138 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
140 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
141 loc_ptr += addr_size;
145 /* A base-address-selection entry. */
146 if ((*low & base_mask) == base_mask)
147 return DEBUG_LOC_BASE_ADDRESS;
149 /* An end-of-list entry. */
150 if (*low == 0 && *high == 0)
151 return DEBUG_LOC_END_OF_LIST;
153 return DEBUG_LOC_START_END;
156 /* Decode the addresses in .debug_loclists entry.
157 A pointer to the next byte to examine is returned in *NEW_PTR.
158 The encoded low,high addresses are return in *LOW,*HIGH.
159 The result indicates the kind of entry found. */
161 static enum debug_loc_kind
162 decode_debug_loclists_addresses (struct dwarf2_per_cu_data *per_cu,
163 const gdb_byte *loc_ptr,
164 const gdb_byte *buf_end,
165 const gdb_byte **new_ptr,
166 CORE_ADDR *low, CORE_ADDR *high,
167 enum bfd_endian byte_order,
168 unsigned int addr_size,
173 if (loc_ptr == buf_end)
174 return DEBUG_LOC_BUFFER_OVERFLOW;
178 case DW_LLE_end_of_list:
180 return DEBUG_LOC_END_OF_LIST;
181 case DW_LLE_base_address:
182 if (loc_ptr + addr_size > buf_end)
183 return DEBUG_LOC_BUFFER_OVERFLOW;
185 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
187 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
188 loc_ptr += addr_size;
190 return DEBUG_LOC_BASE_ADDRESS;
191 case DW_LLE_offset_pair:
192 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &u64);
194 return DEBUG_LOC_BUFFER_OVERFLOW;
196 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &u64);
198 return DEBUG_LOC_BUFFER_OVERFLOW;
201 return DEBUG_LOC_START_END;
203 return DEBUG_LOC_INVALID_ENTRY;
207 /* Decode the addresses in .debug_loc.dwo entry.
208 A pointer to the next byte to examine is returned in *NEW_PTR.
209 The encoded low,high addresses are return in *LOW,*HIGH.
210 The result indicates the kind of entry found. */
212 static enum debug_loc_kind
213 decode_debug_loc_dwo_addresses (struct dwarf2_per_cu_data *per_cu,
214 const gdb_byte *loc_ptr,
215 const gdb_byte *buf_end,
216 const gdb_byte **new_ptr,
217 CORE_ADDR *low, CORE_ADDR *high,
218 enum bfd_endian byte_order)
220 uint64_t low_index, high_index;
222 if (loc_ptr == buf_end)
223 return DEBUG_LOC_BUFFER_OVERFLOW;
227 case DW_LLE_GNU_end_of_list_entry:
229 return DEBUG_LOC_END_OF_LIST;
230 case DW_LLE_GNU_base_address_selection_entry:
232 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
234 return DEBUG_LOC_BUFFER_OVERFLOW;
235 *high = dwarf2_read_addr_index (per_cu, high_index);
237 return DEBUG_LOC_BASE_ADDRESS;
238 case DW_LLE_GNU_start_end_entry:
239 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
241 return DEBUG_LOC_BUFFER_OVERFLOW;
242 *low = dwarf2_read_addr_index (per_cu, low_index);
243 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
245 return DEBUG_LOC_BUFFER_OVERFLOW;
246 *high = dwarf2_read_addr_index (per_cu, high_index);
248 return DEBUG_LOC_START_END;
249 case DW_LLE_GNU_start_length_entry:
250 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
252 return DEBUG_LOC_BUFFER_OVERFLOW;
253 *low = dwarf2_read_addr_index (per_cu, low_index);
254 if (loc_ptr + 4 > buf_end)
255 return DEBUG_LOC_BUFFER_OVERFLOW;
257 *high += extract_unsigned_integer (loc_ptr, 4, byte_order);
258 *new_ptr = loc_ptr + 4;
259 return DEBUG_LOC_START_LENGTH;
261 return DEBUG_LOC_INVALID_ENTRY;
265 /* A function for dealing with location lists. Given a
266 symbol baton (BATON) and a pc value (PC), find the appropriate
267 location expression, set *LOCEXPR_LENGTH, and return a pointer
268 to the beginning of the expression. Returns NULL on failure.
270 For now, only return the first matching location expression; there
271 can be more than one in the list. */
274 dwarf2_find_location_expression (struct dwarf2_loclist_baton *baton,
275 size_t *locexpr_length, CORE_ADDR pc)
277 struct objfile *objfile = dwarf2_per_cu_objfile (baton->per_cu);
278 struct gdbarch *gdbarch = get_objfile_arch (objfile);
279 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
280 unsigned int addr_size = dwarf2_per_cu_addr_size (baton->per_cu);
281 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
282 /* Adjust base_address for relocatable objects. */
283 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (baton->per_cu);
284 CORE_ADDR base_address = baton->base_address + base_offset;
285 const gdb_byte *loc_ptr, *buf_end;
287 loc_ptr = baton->data;
288 buf_end = baton->data + baton->size;
292 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
294 enum debug_loc_kind kind;
295 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
298 kind = decode_debug_loc_dwo_addresses (baton->per_cu,
299 loc_ptr, buf_end, &new_ptr,
300 &low, &high, byte_order);
301 else if (dwarf2_version (baton->per_cu) < 5)
302 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
304 byte_order, addr_size,
307 kind = decode_debug_loclists_addresses (baton->per_cu,
308 loc_ptr, buf_end, &new_ptr,
309 &low, &high, byte_order,
310 addr_size, signed_addr_p);
315 case DEBUG_LOC_END_OF_LIST:
318 case DEBUG_LOC_BASE_ADDRESS:
319 base_address = high + base_offset;
321 case DEBUG_LOC_START_END:
322 case DEBUG_LOC_START_LENGTH:
324 case DEBUG_LOC_BUFFER_OVERFLOW:
325 case DEBUG_LOC_INVALID_ENTRY:
326 error (_("dwarf2_find_location_expression: "
327 "Corrupted DWARF expression."));
329 gdb_assert_not_reached ("bad debug_loc_kind");
332 /* Otherwise, a location expression entry.
333 If the entry is from a DWO, don't add base address: the entry is from
334 .debug_addr which already has the DWARF "base address". We still add
335 base_offset in case we're debugging a PIE executable. */
344 high += base_address;
347 if (dwarf2_version (baton->per_cu) < 5)
349 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
354 unsigned int bytes_read;
356 length = read_unsigned_leb128 (NULL, loc_ptr, &bytes_read);
357 loc_ptr += bytes_read;
360 if (low == high && pc == low)
362 /* This is entry PC record present only at entry point
363 of a function. Verify it is really the function entry point. */
365 const struct block *pc_block = block_for_pc (pc);
366 struct symbol *pc_func = NULL;
369 pc_func = block_linkage_function (pc_block);
371 if (pc_func && pc == BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (pc_func)))
373 *locexpr_length = length;
378 if (pc >= low && pc < high)
380 *locexpr_length = length;
388 /* This is the baton used when performing dwarf2 expression
390 struct dwarf_expr_baton
392 struct frame_info *frame;
393 struct dwarf2_per_cu_data *per_cu;
394 CORE_ADDR obj_address;
397 /* Implement find_frame_base_location method for LOC_BLOCK functions using
398 DWARF expression for its DW_AT_frame_base. */
401 locexpr_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
402 const gdb_byte **start, size_t *length)
404 struct dwarf2_locexpr_baton *symbaton
405 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (framefunc);
407 *length = symbaton->size;
408 *start = symbaton->data;
411 /* Implement the struct symbol_block_ops::get_frame_base method for
412 LOC_BLOCK functions using a DWARF expression as its DW_AT_frame_base. */
415 locexpr_get_frame_base (struct symbol *framefunc, struct frame_info *frame)
417 struct gdbarch *gdbarch;
419 struct dwarf2_locexpr_baton *dlbaton;
420 const gdb_byte *start;
422 struct value *result;
424 /* If this method is called, then FRAMEFUNC is supposed to be a DWARF block.
425 Thus, it's supposed to provide the find_frame_base_location method as
427 gdb_assert (SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location != NULL);
429 gdbarch = get_frame_arch (frame);
430 type = builtin_type (gdbarch)->builtin_data_ptr;
431 dlbaton = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (framefunc);
433 SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location
434 (framefunc, get_frame_pc (frame), &start, &length);
435 result = dwarf2_evaluate_loc_desc (type, frame, start, length,
438 /* The DW_AT_frame_base attribute contains a location description which
439 computes the base address itself. However, the call to
440 dwarf2_evaluate_loc_desc returns a value representing a variable at
441 that address. The frame base address is thus this variable's
443 return value_address (result);
446 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
447 function uses DWARF expression for its DW_AT_frame_base. */
449 const struct symbol_block_ops dwarf2_block_frame_base_locexpr_funcs =
451 locexpr_find_frame_base_location,
452 locexpr_get_frame_base
455 /* Implement find_frame_base_location method for LOC_BLOCK functions using
456 DWARF location list for its DW_AT_frame_base. */
459 loclist_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
460 const gdb_byte **start, size_t *length)
462 struct dwarf2_loclist_baton *symbaton
463 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (framefunc);
465 *start = dwarf2_find_location_expression (symbaton, length, pc);
468 /* Implement the struct symbol_block_ops::get_frame_base method for
469 LOC_BLOCK functions using a DWARF location list as its DW_AT_frame_base. */
472 loclist_get_frame_base (struct symbol *framefunc, struct frame_info *frame)
474 struct gdbarch *gdbarch;
476 struct dwarf2_loclist_baton *dlbaton;
477 const gdb_byte *start;
479 struct value *result;
481 /* If this method is called, then FRAMEFUNC is supposed to be a DWARF block.
482 Thus, it's supposed to provide the find_frame_base_location method as
484 gdb_assert (SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location != NULL);
486 gdbarch = get_frame_arch (frame);
487 type = builtin_type (gdbarch)->builtin_data_ptr;
488 dlbaton = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (framefunc);
490 SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location
491 (framefunc, get_frame_pc (frame), &start, &length);
492 result = dwarf2_evaluate_loc_desc (type, frame, start, length,
495 /* The DW_AT_frame_base attribute contains a location description which
496 computes the base address itself. However, the call to
497 dwarf2_evaluate_loc_desc returns a value representing a variable at
498 that address. The frame base address is thus this variable's
500 return value_address (result);
503 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
504 function uses DWARF location list for its DW_AT_frame_base. */
506 const struct symbol_block_ops dwarf2_block_frame_base_loclist_funcs =
508 loclist_find_frame_base_location,
509 loclist_get_frame_base
512 /* See dwarf2loc.h. */
515 func_get_frame_base_dwarf_block (struct symbol *framefunc, CORE_ADDR pc,
516 const gdb_byte **start, size_t *length)
518 if (SYMBOL_BLOCK_OPS (framefunc) != NULL)
520 const struct symbol_block_ops *ops_block = SYMBOL_BLOCK_OPS (framefunc);
522 ops_block->find_frame_base_location (framefunc, pc, start, length);
528 error (_("Could not find the frame base for \"%s\"."),
529 SYMBOL_NATURAL_NAME (framefunc));
533 get_frame_pc_for_per_cu_dwarf_call (void *baton)
535 dwarf_expr_context *ctx = (dwarf_expr_context *) baton;
537 return ctx->get_frame_pc ();
541 per_cu_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset,
542 struct dwarf2_per_cu_data *per_cu)
544 struct dwarf2_locexpr_baton block;
546 block = dwarf2_fetch_die_loc_cu_off (die_offset, per_cu,
547 get_frame_pc_for_per_cu_dwarf_call,
550 /* DW_OP_call_ref is currently not supported. */
551 gdb_assert (block.per_cu == per_cu);
553 ctx->eval (block.data, block.size);
556 /* Given context CTX, section offset SECT_OFF, and compilation unit
557 data PER_CU, execute the "variable value" operation on the DIE
558 found at SECT_OFF. */
560 static struct value *
561 sect_variable_value (struct dwarf_expr_context *ctx, sect_offset sect_off,
562 struct dwarf2_per_cu_data *per_cu)
564 struct type *die_type = dwarf2_fetch_die_type_sect_off (sect_off, per_cu);
566 if (die_type == NULL)
567 error (_("Bad DW_OP_GNU_variable_value DIE."));
569 /* Note: Things still work when the following test is removed. This
570 test and error is here to conform to the proposed specification. */
571 if (TYPE_CODE (die_type) != TYPE_CODE_INT
572 && TYPE_CODE (die_type) != TYPE_CODE_PTR)
573 error (_("Type of DW_OP_GNU_variable_value DIE must be an integer or pointer."));
575 struct type *type = lookup_pointer_type (die_type);
576 struct frame_info *frame = get_selected_frame (_("No frame selected."));
577 return indirect_synthetic_pointer (sect_off, 0, per_cu, frame, type, true);
580 class dwarf_evaluate_loc_desc : public dwarf_expr_context
584 struct frame_info *frame;
585 struct dwarf2_per_cu_data *per_cu;
586 CORE_ADDR obj_address;
588 /* Helper function for dwarf2_evaluate_loc_desc. Computes the CFA for
589 the frame in BATON. */
591 CORE_ADDR get_frame_cfa () override
593 return dwarf2_frame_cfa (frame);
596 /* Helper function for dwarf2_evaluate_loc_desc. Computes the PC for
597 the frame in BATON. */
599 CORE_ADDR get_frame_pc () override
601 return get_frame_address_in_block (frame);
604 /* Using the objfile specified in BATON, find the address for the
605 current thread's thread-local storage with offset OFFSET. */
606 CORE_ADDR get_tls_address (CORE_ADDR offset) override
608 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
610 return target_translate_tls_address (objfile, offset);
613 /* Helper interface of per_cu_dwarf_call for
614 dwarf2_evaluate_loc_desc. */
616 void dwarf_call (cu_offset die_offset) override
618 per_cu_dwarf_call (this, die_offset, per_cu);
621 /* Helper interface of sect_variable_value for
622 dwarf2_evaluate_loc_desc. */
624 struct value *dwarf_variable_value (sect_offset sect_off) override
626 return sect_variable_value (this, sect_off, per_cu);
629 struct type *get_base_type (cu_offset die_offset, int size) override
631 struct type *result = dwarf2_get_die_type (die_offset, per_cu);
633 error (_("Could not find type for DW_OP_const_type"));
634 if (size != 0 && TYPE_LENGTH (result) != size)
635 error (_("DW_OP_const_type has different sizes for type and data"));
639 /* Callback function for dwarf2_evaluate_loc_desc.
640 Fetch the address indexed by DW_OP_addrx or DW_OP_GNU_addr_index. */
642 CORE_ADDR get_addr_index (unsigned int index) override
644 return dwarf2_read_addr_index (per_cu, index);
647 /* Callback function for get_object_address. Return the address of the VLA
650 CORE_ADDR get_object_address () override
652 if (obj_address == 0)
653 error (_("Location address is not set."));
657 /* Execute DWARF block of call_site_parameter which matches KIND and
658 KIND_U. Choose DEREF_SIZE value of that parameter. Search
659 caller of this objects's frame.
661 The caller can be from a different CU - per_cu_dwarf_call
662 implementation can be more simple as it does not support cross-CU
665 void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
666 union call_site_parameter_u kind_u,
667 int deref_size) override
669 struct frame_info *caller_frame;
670 struct dwarf2_per_cu_data *caller_per_cu;
671 struct call_site_parameter *parameter;
672 const gdb_byte *data_src;
675 caller_frame = get_prev_frame (frame);
677 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
679 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
680 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
682 /* DEREF_SIZE size is not verified here. */
683 if (data_src == NULL)
684 throw_error (NO_ENTRY_VALUE_ERROR,
685 _("Cannot resolve DW_AT_call_data_value"));
687 scoped_restore save_frame = make_scoped_restore (&this->frame,
689 scoped_restore save_per_cu = make_scoped_restore (&this->per_cu,
691 scoped_restore save_obj_addr = make_scoped_restore (&this->obj_address,
694 scoped_restore save_arch = make_scoped_restore (&this->gdbarch);
696 = get_objfile_arch (dwarf2_per_cu_objfile (per_cu));
697 scoped_restore save_addr_size = make_scoped_restore (&this->addr_size);
698 this->addr_size = dwarf2_per_cu_addr_size (per_cu);
699 scoped_restore save_offset = make_scoped_restore (&this->offset);
700 this->offset = dwarf2_per_cu_text_offset (per_cu);
702 this->eval (data_src, size);
705 /* Using the frame specified in BATON, find the location expression
706 describing the frame base. Return a pointer to it in START and
707 its length in LENGTH. */
708 void get_frame_base (const gdb_byte **start, size_t * length) override
710 /* FIXME: cagney/2003-03-26: This code should be using
711 get_frame_base_address(), and then implement a dwarf2 specific
713 struct symbol *framefunc;
714 const struct block *bl = get_frame_block (frame, NULL);
717 error (_("frame address is not available."));
719 /* Use block_linkage_function, which returns a real (not inlined)
720 function, instead of get_frame_function, which may return an
722 framefunc = block_linkage_function (bl);
724 /* If we found a frame-relative symbol then it was certainly within
725 some function associated with a frame. If we can't find the frame,
726 something has gone wrong. */
727 gdb_assert (framefunc != NULL);
729 func_get_frame_base_dwarf_block (framefunc,
730 get_frame_address_in_block (frame),
734 /* Read memory at ADDR (length LEN) into BUF. */
736 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) override
738 read_memory (addr, buf, len);
741 /* Using the frame specified in BATON, return the value of register
742 REGNUM, treated as a pointer. */
743 CORE_ADDR read_addr_from_reg (int dwarf_regnum) override
745 struct gdbarch *gdbarch = get_frame_arch (frame);
746 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, dwarf_regnum);
748 return address_from_register (regnum, frame);
751 /* Implement "get_reg_value" callback. */
753 struct value *get_reg_value (struct type *type, int dwarf_regnum) override
755 struct gdbarch *gdbarch = get_frame_arch (frame);
756 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, dwarf_regnum);
758 return value_from_register (type, regnum, frame);
762 /* See dwarf2loc.h. */
764 unsigned int entry_values_debug = 0;
766 /* Helper to set entry_values_debug. */
769 show_entry_values_debug (struct ui_file *file, int from_tty,
770 struct cmd_list_element *c, const char *value)
772 fprintf_filtered (file,
773 _("Entry values and tail call frames debugging is %s.\n"),
777 /* Find DW_TAG_call_site's DW_AT_call_target address.
778 CALLER_FRAME (for registers) can be NULL if it is not known. This function
779 always returns valid address or it throws NO_ENTRY_VALUE_ERROR. */
782 call_site_to_target_addr (struct gdbarch *call_site_gdbarch,
783 struct call_site *call_site,
784 struct frame_info *caller_frame)
786 switch (FIELD_LOC_KIND (call_site->target))
788 case FIELD_LOC_KIND_DWARF_BLOCK:
790 struct dwarf2_locexpr_baton *dwarf_block;
792 struct type *caller_core_addr_type;
793 struct gdbarch *caller_arch;
795 dwarf_block = FIELD_DWARF_BLOCK (call_site->target);
796 if (dwarf_block == NULL)
798 struct bound_minimal_symbol msym;
800 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
801 throw_error (NO_ENTRY_VALUE_ERROR,
802 _("DW_AT_call_target is not specified at %s in %s"),
803 paddress (call_site_gdbarch, call_site->pc),
804 (msym.minsym == NULL ? "???"
805 : MSYMBOL_PRINT_NAME (msym.minsym)));
808 if (caller_frame == NULL)
810 struct bound_minimal_symbol msym;
812 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
813 throw_error (NO_ENTRY_VALUE_ERROR,
814 _("DW_AT_call_target DWARF block resolving "
815 "requires known frame which is currently not "
816 "available at %s in %s"),
817 paddress (call_site_gdbarch, call_site->pc),
818 (msym.minsym == NULL ? "???"
819 : MSYMBOL_PRINT_NAME (msym.minsym)));
822 caller_arch = get_frame_arch (caller_frame);
823 caller_core_addr_type = builtin_type (caller_arch)->builtin_func_ptr;
824 val = dwarf2_evaluate_loc_desc (caller_core_addr_type, caller_frame,
825 dwarf_block->data, dwarf_block->size,
826 dwarf_block->per_cu);
827 /* DW_AT_call_target is a DWARF expression, not a DWARF location. */
828 if (VALUE_LVAL (val) == lval_memory)
829 return value_address (val);
831 return value_as_address (val);
834 case FIELD_LOC_KIND_PHYSNAME:
836 const char *physname;
837 struct bound_minimal_symbol msym;
839 physname = FIELD_STATIC_PHYSNAME (call_site->target);
841 /* Handle both the mangled and demangled PHYSNAME. */
842 msym = lookup_minimal_symbol (physname, NULL, NULL);
843 if (msym.minsym == NULL)
845 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
846 throw_error (NO_ENTRY_VALUE_ERROR,
847 _("Cannot find function \"%s\" for a call site target "
849 physname, paddress (call_site_gdbarch, call_site->pc),
850 (msym.minsym == NULL ? "???"
851 : MSYMBOL_PRINT_NAME (msym.minsym)));
854 return BMSYMBOL_VALUE_ADDRESS (msym);
857 case FIELD_LOC_KIND_PHYSADDR:
858 return FIELD_STATIC_PHYSADDR (call_site->target);
861 internal_error (__FILE__, __LINE__, _("invalid call site target kind"));
865 /* Convert function entry point exact address ADDR to the function which is
866 compliant with TAIL_CALL_LIST_COMPLETE condition. Throw
867 NO_ENTRY_VALUE_ERROR otherwise. */
869 static struct symbol *
870 func_addr_to_tail_call_list (struct gdbarch *gdbarch, CORE_ADDR addr)
872 struct symbol *sym = find_pc_function (addr);
875 if (sym == NULL || BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) != addr)
876 throw_error (NO_ENTRY_VALUE_ERROR,
877 _("DW_TAG_call_site resolving failed to find function "
878 "name for address %s"),
879 paddress (gdbarch, addr));
881 type = SYMBOL_TYPE (sym);
882 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FUNC);
883 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
888 /* Verify function with entry point exact address ADDR can never call itself
889 via its tail calls (incl. transitively). Throw NO_ENTRY_VALUE_ERROR if it
890 can call itself via tail calls.
892 If a funtion can tail call itself its entry value based parameters are
893 unreliable. There is no verification whether the value of some/all
894 parameters is unchanged through the self tail call, we expect if there is
895 a self tail call all the parameters can be modified. */
898 func_verify_no_selftailcall (struct gdbarch *gdbarch, CORE_ADDR verify_addr)
902 /* The verification is completely unordered. Track here function addresses
903 which still need to be iterated. */
904 std::vector<CORE_ADDR> todo;
906 /* Track here CORE_ADDRs which were already visited. */
907 std::unordered_set<CORE_ADDR> addr_hash;
909 todo.push_back (verify_addr);
910 while (!todo.empty ())
912 struct symbol *func_sym;
913 struct call_site *call_site;
918 func_sym = func_addr_to_tail_call_list (gdbarch, addr);
920 for (call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (func_sym));
921 call_site; call_site = call_site->tail_call_next)
923 CORE_ADDR target_addr;
925 /* CALLER_FRAME with registers is not available for tail-call jumped
927 target_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
929 if (target_addr == verify_addr)
931 struct bound_minimal_symbol msym;
933 msym = lookup_minimal_symbol_by_pc (verify_addr);
934 throw_error (NO_ENTRY_VALUE_ERROR,
935 _("DW_OP_entry_value resolving has found "
936 "function \"%s\" at %s can call itself via tail "
938 (msym.minsym == NULL ? "???"
939 : MSYMBOL_PRINT_NAME (msym.minsym)),
940 paddress (gdbarch, verify_addr));
943 if (addr_hash.insert (target_addr).second)
944 todo.push_back (target_addr);
949 /* Print user readable form of CALL_SITE->PC to gdb_stdlog. Used only for
950 ENTRY_VALUES_DEBUG. */
953 tailcall_dump (struct gdbarch *gdbarch, const struct call_site *call_site)
955 CORE_ADDR addr = call_site->pc;
956 struct bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (addr - 1);
958 fprintf_unfiltered (gdb_stdlog, " %s(%s)", paddress (gdbarch, addr),
959 (msym.minsym == NULL ? "???"
960 : MSYMBOL_PRINT_NAME (msym.minsym)));
964 /* Intersect RESULTP with CHAIN to keep RESULTP unambiguous, keep in RESULTP
965 only top callers and bottom callees which are present in both. GDBARCH is
966 used only for ENTRY_VALUES_DEBUG. RESULTP is NULL after return if there are
967 no remaining possibilities to provide unambiguous non-trivial result.
968 RESULTP should point to NULL on the first (initialization) call. Caller is
969 responsible for xfree of any RESULTP data. */
972 chain_candidate (struct gdbarch *gdbarch,
973 gdb::unique_xmalloc_ptr<struct call_site_chain> *resultp,
974 std::vector<struct call_site *> *chain)
976 long length = chain->size ();
977 int callers, callees, idx;
979 if (*resultp == NULL)
981 /* Create the initial chain containing all the passed PCs. */
983 struct call_site_chain *result
984 = ((struct call_site_chain *)
985 xmalloc (sizeof (*result)
986 + sizeof (*result->call_site) * (length - 1)));
987 result->length = length;
988 result->callers = result->callees = length;
989 if (!chain->empty ())
990 memcpy (result->call_site, chain->data (),
991 sizeof (*result->call_site) * length);
992 resultp->reset (result);
994 if (entry_values_debug)
996 fprintf_unfiltered (gdb_stdlog, "tailcall: initial:");
997 for (idx = 0; idx < length; idx++)
998 tailcall_dump (gdbarch, result->call_site[idx]);
999 fputc_unfiltered ('\n', gdb_stdlog);
1005 if (entry_values_debug)
1007 fprintf_unfiltered (gdb_stdlog, "tailcall: compare:");
1008 for (idx = 0; idx < length; idx++)
1009 tailcall_dump (gdbarch, chain->at (idx));
1010 fputc_unfiltered ('\n', gdb_stdlog);
1013 /* Intersect callers. */
1015 callers = std::min ((long) (*resultp)->callers, length);
1016 for (idx = 0; idx < callers; idx++)
1017 if ((*resultp)->call_site[idx] != chain->at (idx))
1019 (*resultp)->callers = idx;
1023 /* Intersect callees. */
1025 callees = std::min ((long) (*resultp)->callees, length);
1026 for (idx = 0; idx < callees; idx++)
1027 if ((*resultp)->call_site[(*resultp)->length - 1 - idx]
1028 != chain->at (length - 1 - idx))
1030 (*resultp)->callees = idx;
1034 if (entry_values_debug)
1036 fprintf_unfiltered (gdb_stdlog, "tailcall: reduced:");
1037 for (idx = 0; idx < (*resultp)->callers; idx++)
1038 tailcall_dump (gdbarch, (*resultp)->call_site[idx]);
1039 fputs_unfiltered (" |", gdb_stdlog);
1040 for (idx = 0; idx < (*resultp)->callees; idx++)
1041 tailcall_dump (gdbarch,
1042 (*resultp)->call_site[(*resultp)->length
1043 - (*resultp)->callees + idx]);
1044 fputc_unfiltered ('\n', gdb_stdlog);
1047 if ((*resultp)->callers == 0 && (*resultp)->callees == 0)
1049 /* There are no common callers or callees. It could be also a direct
1050 call (which has length 0) with ambiguous possibility of an indirect
1051 call - CALLERS == CALLEES == 0 is valid during the first allocation
1052 but any subsequence processing of such entry means ambiguity. */
1053 resultp->reset (NULL);
1057 /* See call_site_find_chain_1 why there is no way to reach the bottom callee
1058 PC again. In such case there must be two different code paths to reach
1059 it. CALLERS + CALLEES equal to LENGTH in the case of self tail-call. */
1060 gdb_assert ((*resultp)->callers + (*resultp)->callees <= (*resultp)->length);
1063 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
1064 assumed frames between them use GDBARCH. Use depth first search so we can
1065 keep single CHAIN of call_site's back to CALLER_PC. Function recursion
1066 would have needless GDB stack overhead. Caller is responsible for xfree of
1067 the returned result. Any unreliability results in thrown
1068 NO_ENTRY_VALUE_ERROR. */
1070 static struct call_site_chain *
1071 call_site_find_chain_1 (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
1072 CORE_ADDR callee_pc)
1074 CORE_ADDR save_callee_pc = callee_pc;
1075 gdb::unique_xmalloc_ptr<struct call_site_chain> retval;
1076 struct call_site *call_site;
1078 /* CHAIN contains only the intermediate CALL_SITEs. Neither CALLER_PC's
1079 call_site nor any possible call_site at CALLEE_PC's function is there.
1080 Any CALL_SITE in CHAIN will be iterated to its siblings - via
1081 TAIL_CALL_NEXT. This is inappropriate for CALLER_PC's call_site. */
1082 std::vector<struct call_site *> chain;
1084 /* We are not interested in the specific PC inside the callee function. */
1085 callee_pc = get_pc_function_start (callee_pc);
1087 throw_error (NO_ENTRY_VALUE_ERROR, _("Unable to find function for PC %s"),
1088 paddress (gdbarch, save_callee_pc));
1090 /* Mark CALL_SITEs so we do not visit the same ones twice. */
1091 std::unordered_set<CORE_ADDR> addr_hash;
1093 /* Do not push CALL_SITE to CHAIN. Push there only the first tail call site
1094 at the target's function. All the possible tail call sites in the
1095 target's function will get iterated as already pushed into CHAIN via their
1097 call_site = call_site_for_pc (gdbarch, caller_pc);
1101 CORE_ADDR target_func_addr;
1102 struct call_site *target_call_site;
1104 /* CALLER_FRAME with registers is not available for tail-call jumped
1106 target_func_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
1108 if (target_func_addr == callee_pc)
1110 chain_candidate (gdbarch, &retval, &chain);
1114 /* There is no way to reach CALLEE_PC again as we would prevent
1115 entering it twice as being already marked in ADDR_HASH. */
1116 target_call_site = NULL;
1120 struct symbol *target_func;
1122 target_func = func_addr_to_tail_call_list (gdbarch, target_func_addr);
1123 target_call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (target_func));
1128 /* Attempt to visit TARGET_CALL_SITE. */
1130 if (target_call_site)
1132 if (addr_hash.insert (target_call_site->pc).second)
1134 /* Successfully entered TARGET_CALL_SITE. */
1136 chain.push_back (target_call_site);
1141 /* Backtrack (without revisiting the originating call_site). Try the
1142 callers's sibling; if there isn't any try the callers's callers's
1145 target_call_site = NULL;
1146 while (!chain.empty ())
1148 call_site = chain.back ();
1151 size_t removed = addr_hash.erase (call_site->pc);
1152 gdb_assert (removed == 1);
1154 target_call_site = call_site->tail_call_next;
1155 if (target_call_site)
1159 while (target_call_site);
1164 call_site = chain.back ();
1169 struct bound_minimal_symbol msym_caller, msym_callee;
1171 msym_caller = lookup_minimal_symbol_by_pc (caller_pc);
1172 msym_callee = lookup_minimal_symbol_by_pc (callee_pc);
1173 throw_error (NO_ENTRY_VALUE_ERROR,
1174 _("There are no unambiguously determinable intermediate "
1175 "callers or callees between caller function \"%s\" at %s "
1176 "and callee function \"%s\" at %s"),
1177 (msym_caller.minsym == NULL
1178 ? "???" : MSYMBOL_PRINT_NAME (msym_caller.minsym)),
1179 paddress (gdbarch, caller_pc),
1180 (msym_callee.minsym == NULL
1181 ? "???" : MSYMBOL_PRINT_NAME (msym_callee.minsym)),
1182 paddress (gdbarch, callee_pc));
1185 return retval.release ();
1188 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
1189 assumed frames between them use GDBARCH. If valid call_site_chain cannot be
1190 constructed return NULL. Caller is responsible for xfree of the returned
1193 struct call_site_chain *
1194 call_site_find_chain (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
1195 CORE_ADDR callee_pc)
1197 struct call_site_chain *retval = NULL;
1201 retval = call_site_find_chain_1 (gdbarch, caller_pc, callee_pc);
1203 catch (const gdb_exception_error &e)
1205 if (e.error == NO_ENTRY_VALUE_ERROR)
1207 if (entry_values_debug)
1208 exception_print (gdb_stdout, e);
1219 /* Return 1 if KIND and KIND_U match PARAMETER. Return 0 otherwise. */
1222 call_site_parameter_matches (struct call_site_parameter *parameter,
1223 enum call_site_parameter_kind kind,
1224 union call_site_parameter_u kind_u)
1226 if (kind == parameter->kind)
1229 case CALL_SITE_PARAMETER_DWARF_REG:
1230 return kind_u.dwarf_reg == parameter->u.dwarf_reg;
1231 case CALL_SITE_PARAMETER_FB_OFFSET:
1232 return kind_u.fb_offset == parameter->u.fb_offset;
1233 case CALL_SITE_PARAMETER_PARAM_OFFSET:
1234 return kind_u.param_cu_off == parameter->u.param_cu_off;
1239 /* Fetch call_site_parameter from caller matching KIND and KIND_U.
1240 FRAME is for callee.
1242 Function always returns non-NULL, it throws NO_ENTRY_VALUE_ERROR
1245 static struct call_site_parameter *
1246 dwarf_expr_reg_to_entry_parameter (struct frame_info *frame,
1247 enum call_site_parameter_kind kind,
1248 union call_site_parameter_u kind_u,
1249 struct dwarf2_per_cu_data **per_cu_return)
1251 CORE_ADDR func_addr, caller_pc;
1252 struct gdbarch *gdbarch;
1253 struct frame_info *caller_frame;
1254 struct call_site *call_site;
1256 /* Initialize it just to avoid a GCC false warning. */
1257 struct call_site_parameter *parameter = NULL;
1258 CORE_ADDR target_addr;
1260 while (get_frame_type (frame) == INLINE_FRAME)
1262 frame = get_prev_frame (frame);
1263 gdb_assert (frame != NULL);
1266 func_addr = get_frame_func (frame);
1267 gdbarch = get_frame_arch (frame);
1268 caller_frame = get_prev_frame (frame);
1269 if (gdbarch != frame_unwind_arch (frame))
1271 struct bound_minimal_symbol msym
1272 = lookup_minimal_symbol_by_pc (func_addr);
1273 struct gdbarch *caller_gdbarch = frame_unwind_arch (frame);
1275 throw_error (NO_ENTRY_VALUE_ERROR,
1276 _("DW_OP_entry_value resolving callee gdbarch %s "
1277 "(of %s (%s)) does not match caller gdbarch %s"),
1278 gdbarch_bfd_arch_info (gdbarch)->printable_name,
1279 paddress (gdbarch, func_addr),
1280 (msym.minsym == NULL ? "???"
1281 : MSYMBOL_PRINT_NAME (msym.minsym)),
1282 gdbarch_bfd_arch_info (caller_gdbarch)->printable_name);
1285 if (caller_frame == NULL)
1287 struct bound_minimal_symbol msym
1288 = lookup_minimal_symbol_by_pc (func_addr);
1290 throw_error (NO_ENTRY_VALUE_ERROR, _("DW_OP_entry_value resolving "
1291 "requires caller of %s (%s)"),
1292 paddress (gdbarch, func_addr),
1293 (msym.minsym == NULL ? "???"
1294 : MSYMBOL_PRINT_NAME (msym.minsym)));
1296 caller_pc = get_frame_pc (caller_frame);
1297 call_site = call_site_for_pc (gdbarch, caller_pc);
1299 target_addr = call_site_to_target_addr (gdbarch, call_site, caller_frame);
1300 if (target_addr != func_addr)
1302 struct minimal_symbol *target_msym, *func_msym;
1304 target_msym = lookup_minimal_symbol_by_pc (target_addr).minsym;
1305 func_msym = lookup_minimal_symbol_by_pc (func_addr).minsym;
1306 throw_error (NO_ENTRY_VALUE_ERROR,
1307 _("DW_OP_entry_value resolving expects callee %s at %s "
1308 "but the called frame is for %s at %s"),
1309 (target_msym == NULL ? "???"
1310 : MSYMBOL_PRINT_NAME (target_msym)),
1311 paddress (gdbarch, target_addr),
1312 func_msym == NULL ? "???" : MSYMBOL_PRINT_NAME (func_msym),
1313 paddress (gdbarch, func_addr));
1316 /* No entry value based parameters would be reliable if this function can
1317 call itself via tail calls. */
1318 func_verify_no_selftailcall (gdbarch, func_addr);
1320 for (iparams = 0; iparams < call_site->parameter_count; iparams++)
1322 parameter = &call_site->parameter[iparams];
1323 if (call_site_parameter_matches (parameter, kind, kind_u))
1326 if (iparams == call_site->parameter_count)
1328 struct minimal_symbol *msym
1329 = lookup_minimal_symbol_by_pc (caller_pc).minsym;
1331 /* DW_TAG_call_site_parameter will be missing just if GCC could not
1332 determine its value. */
1333 throw_error (NO_ENTRY_VALUE_ERROR, _("Cannot find matching parameter "
1334 "at DW_TAG_call_site %s at %s"),
1335 paddress (gdbarch, caller_pc),
1336 msym == NULL ? "???" : MSYMBOL_PRINT_NAME (msym));
1339 *per_cu_return = call_site->per_cu;
1343 /* Return value for PARAMETER matching DEREF_SIZE. If DEREF_SIZE is -1, return
1344 the normal DW_AT_call_value block. Otherwise return the
1345 DW_AT_call_data_value (dereferenced) block.
1347 TYPE and CALLER_FRAME specify how to evaluate the DWARF block into returned
1350 Function always returns non-NULL, non-optimized out value. It throws
1351 NO_ENTRY_VALUE_ERROR if it cannot resolve the value for any reason. */
1353 static struct value *
1354 dwarf_entry_parameter_to_value (struct call_site_parameter *parameter,
1355 CORE_ADDR deref_size, struct type *type,
1356 struct frame_info *caller_frame,
1357 struct dwarf2_per_cu_data *per_cu)
1359 const gdb_byte *data_src;
1363 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
1364 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
1366 /* DEREF_SIZE size is not verified here. */
1367 if (data_src == NULL)
1368 throw_error (NO_ENTRY_VALUE_ERROR,
1369 _("Cannot resolve DW_AT_call_data_value"));
1371 /* DW_AT_call_value is a DWARF expression, not a DWARF
1372 location. Postprocessing of DWARF_VALUE_MEMORY would lose the type from
1374 data = (gdb_byte *) alloca (size + 1);
1375 memcpy (data, data_src, size);
1376 data[size] = DW_OP_stack_value;
1378 return dwarf2_evaluate_loc_desc (type, caller_frame, data, size + 1, per_cu);
1381 /* VALUE must be of type lval_computed with entry_data_value_funcs. Perform
1382 the indirect method on it, that is use its stored target value, the sole
1383 purpose of entry_data_value_funcs.. */
1385 static struct value *
1386 entry_data_value_coerce_ref (const struct value *value)
1388 struct type *checked_type = check_typedef (value_type (value));
1389 struct value *target_val;
1391 if (!TYPE_IS_REFERENCE (checked_type))
1394 target_val = (struct value *) value_computed_closure (value);
1395 value_incref (target_val);
1399 /* Implement copy_closure. */
1402 entry_data_value_copy_closure (const struct value *v)
1404 struct value *target_val = (struct value *) value_computed_closure (v);
1406 value_incref (target_val);
1410 /* Implement free_closure. */
1413 entry_data_value_free_closure (struct value *v)
1415 struct value *target_val = (struct value *) value_computed_closure (v);
1417 value_decref (target_val);
1420 /* Vector for methods for an entry value reference where the referenced value
1421 is stored in the caller. On the first dereference use
1422 DW_AT_call_data_value in the caller. */
1424 static const struct lval_funcs entry_data_value_funcs =
1428 NULL, /* indirect */
1429 entry_data_value_coerce_ref,
1430 NULL, /* check_synthetic_pointer */
1431 entry_data_value_copy_closure,
1432 entry_data_value_free_closure
1435 /* Read parameter of TYPE at (callee) FRAME's function entry. KIND and KIND_U
1436 are used to match DW_AT_location at the caller's
1437 DW_TAG_call_site_parameter.
1439 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1440 cannot resolve the parameter for any reason. */
1442 static struct value *
1443 value_of_dwarf_reg_entry (struct type *type, struct frame_info *frame,
1444 enum call_site_parameter_kind kind,
1445 union call_site_parameter_u kind_u)
1447 struct type *checked_type = check_typedef (type);
1448 struct type *target_type = TYPE_TARGET_TYPE (checked_type);
1449 struct frame_info *caller_frame = get_prev_frame (frame);
1450 struct value *outer_val, *target_val, *val;
1451 struct call_site_parameter *parameter;
1452 struct dwarf2_per_cu_data *caller_per_cu;
1454 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
1457 outer_val = dwarf_entry_parameter_to_value (parameter, -1 /* deref_size */,
1461 /* Check if DW_AT_call_data_value cannot be used. If it should be
1462 used and it is not available do not fall back to OUTER_VAL - dereferencing
1463 TYPE_CODE_REF with non-entry data value would give current value - not the
1466 if (!TYPE_IS_REFERENCE (checked_type)
1467 || TYPE_TARGET_TYPE (checked_type) == NULL)
1470 target_val = dwarf_entry_parameter_to_value (parameter,
1471 TYPE_LENGTH (target_type),
1472 target_type, caller_frame,
1475 val = allocate_computed_value (type, &entry_data_value_funcs,
1476 release_value (target_val).release ());
1478 /* Copy the referencing pointer to the new computed value. */
1479 memcpy (value_contents_raw (val), value_contents_raw (outer_val),
1480 TYPE_LENGTH (checked_type));
1481 set_value_lazy (val, 0);
1486 /* Read parameter of TYPE at (callee) FRAME's function entry. DATA and
1487 SIZE are DWARF block used to match DW_AT_location at the caller's
1488 DW_TAG_call_site_parameter.
1490 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1491 cannot resolve the parameter for any reason. */
1493 static struct value *
1494 value_of_dwarf_block_entry (struct type *type, struct frame_info *frame,
1495 const gdb_byte *block, size_t block_len)
1497 union call_site_parameter_u kind_u;
1499 kind_u.dwarf_reg = dwarf_block_to_dwarf_reg (block, block + block_len);
1500 if (kind_u.dwarf_reg != -1)
1501 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_DWARF_REG,
1504 if (dwarf_block_to_fb_offset (block, block + block_len, &kind_u.fb_offset))
1505 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_FB_OFFSET,
1508 /* This can normally happen - throw NO_ENTRY_VALUE_ERROR to get the message
1509 suppressed during normal operation. The expression can be arbitrary if
1510 there is no caller-callee entry value binding expected. */
1511 throw_error (NO_ENTRY_VALUE_ERROR,
1512 _("DWARF-2 expression error: DW_OP_entry_value is supported "
1513 "only for single DW_OP_reg* or for DW_OP_fbreg(*)"));
1516 struct piece_closure
1518 /* Reference count. */
1521 /* The CU from which this closure's expression came. */
1522 struct dwarf2_per_cu_data *per_cu = NULL;
1524 /* The pieces describing this variable. */
1525 std::vector<dwarf_expr_piece> pieces;
1527 /* Frame ID of frame to which a register value is relative, used
1528 only by DWARF_VALUE_REGISTER. */
1529 struct frame_id frame_id;
1532 /* Allocate a closure for a value formed from separately-described
1535 static struct piece_closure *
1536 allocate_piece_closure (struct dwarf2_per_cu_data *per_cu,
1537 std::vector<dwarf_expr_piece> &&pieces,
1538 struct frame_info *frame)
1540 struct piece_closure *c = new piece_closure;
1544 c->pieces = std::move (pieces);
1546 c->frame_id = null_frame_id;
1548 c->frame_id = get_frame_id (frame);
1550 for (dwarf_expr_piece &piece : c->pieces)
1551 if (piece.location == DWARF_VALUE_STACK)
1552 value_incref (piece.v.value);
1557 /* Return the number of bytes overlapping a contiguous chunk of N_BITS
1558 bits whose first bit is located at bit offset START. */
1561 bits_to_bytes (ULONGEST start, ULONGEST n_bits)
1563 return (start % 8 + n_bits + 7) / 8;
1566 /* Read or write a pieced value V. If FROM != NULL, operate in "write
1567 mode": copy FROM into the pieces comprising V. If FROM == NULL,
1568 operate in "read mode": fetch the contents of the (lazy) value V by
1569 composing it from its pieces. */
1572 rw_pieced_value (struct value *v, struct value *from)
1575 LONGEST offset = 0, max_offset;
1576 ULONGEST bits_to_skip;
1577 gdb_byte *v_contents;
1578 const gdb_byte *from_contents;
1579 struct piece_closure *c
1580 = (struct piece_closure *) value_computed_closure (v);
1581 gdb::byte_vector buffer;
1583 = gdbarch_bits_big_endian (get_type_arch (value_type (v)));
1587 from_contents = value_contents (from);
1592 if (value_type (v) != value_enclosing_type (v))
1593 internal_error (__FILE__, __LINE__,
1594 _("Should not be able to create a lazy value with "
1595 "an enclosing type"));
1596 v_contents = value_contents_raw (v);
1597 from_contents = NULL;
1600 bits_to_skip = 8 * value_offset (v);
1601 if (value_bitsize (v))
1603 bits_to_skip += (8 * value_offset (value_parent (v))
1604 + value_bitpos (v));
1606 && (gdbarch_byte_order (get_type_arch (value_type (from)))
1609 /* Use the least significant bits of FROM. */
1610 max_offset = 8 * TYPE_LENGTH (value_type (from));
1611 offset = max_offset - value_bitsize (v);
1614 max_offset = value_bitsize (v);
1617 max_offset = 8 * TYPE_LENGTH (value_type (v));
1619 /* Advance to the first non-skipped piece. */
1620 for (i = 0; i < c->pieces.size () && bits_to_skip >= c->pieces[i].size; i++)
1621 bits_to_skip -= c->pieces[i].size;
1623 for (; i < c->pieces.size () && offset < max_offset; i++)
1625 struct dwarf_expr_piece *p = &c->pieces[i];
1626 size_t this_size_bits, this_size;
1628 this_size_bits = p->size - bits_to_skip;
1629 if (this_size_bits > max_offset - offset)
1630 this_size_bits = max_offset - offset;
1632 switch (p->location)
1634 case DWARF_VALUE_REGISTER:
1636 struct frame_info *frame = frame_find_by_id (c->frame_id);
1637 struct gdbarch *arch = get_frame_arch (frame);
1638 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, p->v.regno);
1639 ULONGEST reg_bits = 8 * register_size (arch, gdb_regnum);
1642 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
1643 && p->offset + p->size < reg_bits)
1645 /* Big-endian, and we want less than full size. */
1646 bits_to_skip += reg_bits - (p->offset + p->size);
1649 bits_to_skip += p->offset;
1651 this_size = bits_to_bytes (bits_to_skip, this_size_bits);
1652 buffer.resize (this_size);
1657 if (!get_frame_register_bytes (frame, gdb_regnum,
1659 this_size, buffer.data (),
1663 mark_value_bits_optimized_out (v, offset,
1666 mark_value_bits_unavailable (v, offset,
1671 copy_bitwise (v_contents, offset,
1672 buffer.data (), bits_to_skip % 8,
1673 this_size_bits, bits_big_endian);
1678 if (bits_to_skip % 8 != 0 || this_size_bits % 8 != 0)
1680 /* Data is copied non-byte-aligned into the register.
1681 Need some bits from original register value. */
1682 get_frame_register_bytes (frame, gdb_regnum,
1684 this_size, buffer.data (),
1687 throw_error (OPTIMIZED_OUT_ERROR,
1688 _("Can't do read-modify-write to "
1689 "update bitfield; containing word "
1690 "has been optimized out"));
1692 throw_error (NOT_AVAILABLE_ERROR,
1693 _("Can't do read-modify-write to "
1694 "update bitfield; containing word "
1698 copy_bitwise (buffer.data (), bits_to_skip % 8,
1699 from_contents, offset,
1700 this_size_bits, bits_big_endian);
1701 put_frame_register_bytes (frame, gdb_regnum,
1703 this_size, buffer.data ());
1708 case DWARF_VALUE_MEMORY:
1710 bits_to_skip += p->offset;
1712 CORE_ADDR start_addr = p->v.mem.addr + bits_to_skip / 8;
1714 if (bits_to_skip % 8 == 0 && this_size_bits % 8 == 0
1717 /* Everything is byte-aligned; no buffer needed. */
1719 write_memory_with_notification (start_addr,
1722 this_size_bits / 8);
1724 read_value_memory (v, offset,
1725 p->v.mem.in_stack_memory,
1726 p->v.mem.addr + bits_to_skip / 8,
1727 v_contents + offset / 8,
1728 this_size_bits / 8);
1732 this_size = bits_to_bytes (bits_to_skip, this_size_bits);
1733 buffer.resize (this_size);
1738 read_value_memory (v, offset,
1739 p->v.mem.in_stack_memory,
1740 p->v.mem.addr + bits_to_skip / 8,
1741 buffer.data (), this_size);
1742 copy_bitwise (v_contents, offset,
1743 buffer.data (), bits_to_skip % 8,
1744 this_size_bits, bits_big_endian);
1749 if (bits_to_skip % 8 != 0 || this_size_bits % 8 != 0)
1753 /* Perform a single read for small sizes. */
1754 read_memory (start_addr, buffer.data (),
1759 /* Only the first and last bytes can possibly have
1761 read_memory (start_addr, buffer.data (), 1);
1762 read_memory (start_addr + this_size - 1,
1763 &buffer[this_size - 1], 1);
1767 copy_bitwise (buffer.data (), bits_to_skip % 8,
1768 from_contents, offset,
1769 this_size_bits, bits_big_endian);
1770 write_memory_with_notification (start_addr,
1777 case DWARF_VALUE_STACK:
1781 mark_value_bits_optimized_out (v, offset, this_size_bits);
1785 struct objfile *objfile = dwarf2_per_cu_objfile (c->per_cu);
1786 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
1787 ULONGEST stack_value_size_bits
1788 = 8 * TYPE_LENGTH (value_type (p->v.value));
1790 /* Use zeroes if piece reaches beyond stack value. */
1791 if (p->offset + p->size > stack_value_size_bits)
1794 /* Piece is anchored at least significant bit end. */
1795 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
1796 bits_to_skip += stack_value_size_bits - p->offset - p->size;
1798 bits_to_skip += p->offset;
1800 copy_bitwise (v_contents, offset,
1801 value_contents_all (p->v.value),
1803 this_size_bits, bits_big_endian);
1807 case DWARF_VALUE_LITERAL:
1811 mark_value_bits_optimized_out (v, offset, this_size_bits);
1815 ULONGEST literal_size_bits = 8 * p->v.literal.length;
1816 size_t n = this_size_bits;
1818 /* Cut off at the end of the implicit value. */
1819 bits_to_skip += p->offset;
1820 if (bits_to_skip >= literal_size_bits)
1822 if (n > literal_size_bits - bits_to_skip)
1823 n = literal_size_bits - bits_to_skip;
1825 copy_bitwise (v_contents, offset,
1826 p->v.literal.data, bits_to_skip,
1827 n, bits_big_endian);
1831 case DWARF_VALUE_IMPLICIT_POINTER:
1834 mark_value_bits_optimized_out (v, offset, this_size_bits);
1838 /* These bits show up as zeros -- but do not cause the value to
1839 be considered optimized-out. */
1842 case DWARF_VALUE_OPTIMIZED_OUT:
1843 mark_value_bits_optimized_out (v, offset, this_size_bits);
1847 internal_error (__FILE__, __LINE__, _("invalid location type"));
1850 offset += this_size_bits;
1857 read_pieced_value (struct value *v)
1859 rw_pieced_value (v, NULL);
1863 write_pieced_value (struct value *to, struct value *from)
1865 rw_pieced_value (to, from);
1868 /* An implementation of an lval_funcs method to see whether a value is
1869 a synthetic pointer. */
1872 check_pieced_synthetic_pointer (const struct value *value, LONGEST bit_offset,
1875 struct piece_closure *c
1876 = (struct piece_closure *) value_computed_closure (value);
1879 bit_offset += 8 * value_offset (value);
1880 if (value_bitsize (value))
1881 bit_offset += value_bitpos (value);
1883 for (i = 0; i < c->pieces.size () && bit_length > 0; i++)
1885 struct dwarf_expr_piece *p = &c->pieces[i];
1886 size_t this_size_bits = p->size;
1890 if (bit_offset >= this_size_bits)
1892 bit_offset -= this_size_bits;
1896 bit_length -= this_size_bits - bit_offset;
1900 bit_length -= this_size_bits;
1902 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
1909 /* A wrapper function for get_frame_address_in_block. */
1912 get_frame_address_in_block_wrapper (void *baton)
1914 return get_frame_address_in_block ((struct frame_info *) baton);
1917 /* Fetch a DW_AT_const_value through a synthetic pointer. */
1919 static struct value *
1920 fetch_const_value_from_synthetic_pointer (sect_offset die, LONGEST byte_offset,
1921 struct dwarf2_per_cu_data *per_cu,
1924 struct value *result = NULL;
1925 const gdb_byte *bytes;
1928 auto_obstack temp_obstack;
1929 bytes = dwarf2_fetch_constant_bytes (die, per_cu, &temp_obstack, &len);
1933 if (byte_offset >= 0
1934 && byte_offset + TYPE_LENGTH (TYPE_TARGET_TYPE (type)) <= len)
1936 bytes += byte_offset;
1937 result = value_from_contents (TYPE_TARGET_TYPE (type), bytes);
1940 invalid_synthetic_pointer ();
1943 result = allocate_optimized_out_value (TYPE_TARGET_TYPE (type));
1948 /* Fetch the value pointed to by a synthetic pointer. */
1950 static struct value *
1951 indirect_synthetic_pointer (sect_offset die, LONGEST byte_offset,
1952 struct dwarf2_per_cu_data *per_cu,
1953 struct frame_info *frame, struct type *type,
1954 bool resolve_abstract_p)
1956 /* Fetch the location expression of the DIE we're pointing to. */
1957 struct dwarf2_locexpr_baton baton
1958 = dwarf2_fetch_die_loc_sect_off (die, per_cu,
1959 get_frame_address_in_block_wrapper, frame,
1960 resolve_abstract_p);
1962 /* Get type of pointed-to DIE. */
1963 struct type *orig_type = dwarf2_fetch_die_type_sect_off (die, per_cu);
1964 if (orig_type == NULL)
1965 invalid_synthetic_pointer ();
1967 /* If pointed-to DIE has a DW_AT_location, evaluate it and return the
1968 resulting value. Otherwise, it may have a DW_AT_const_value instead,
1969 or it may've been optimized out. */
1970 if (baton.data != NULL)
1971 return dwarf2_evaluate_loc_desc_full (orig_type, frame, baton.data,
1972 baton.size, baton.per_cu,
1973 TYPE_TARGET_TYPE (type),
1976 return fetch_const_value_from_synthetic_pointer (die, byte_offset, per_cu,
1980 /* An implementation of an lval_funcs method to indirect through a
1981 pointer. This handles the synthetic pointer case when needed. */
1983 static struct value *
1984 indirect_pieced_value (struct value *value)
1986 struct piece_closure *c
1987 = (struct piece_closure *) value_computed_closure (value);
1989 struct frame_info *frame;
1992 struct dwarf_expr_piece *piece = NULL;
1993 LONGEST byte_offset;
1994 enum bfd_endian byte_order;
1996 type = check_typedef (value_type (value));
1997 if (TYPE_CODE (type) != TYPE_CODE_PTR)
2000 bit_length = 8 * TYPE_LENGTH (type);
2001 bit_offset = 8 * value_offset (value);
2002 if (value_bitsize (value))
2003 bit_offset += value_bitpos (value);
2005 for (i = 0; i < c->pieces.size () && bit_length > 0; i++)
2007 struct dwarf_expr_piece *p = &c->pieces[i];
2008 size_t this_size_bits = p->size;
2012 if (bit_offset >= this_size_bits)
2014 bit_offset -= this_size_bits;
2018 bit_length -= this_size_bits - bit_offset;
2022 bit_length -= this_size_bits;
2024 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
2027 if (bit_length != 0)
2028 error (_("Invalid use of DW_OP_implicit_pointer"));
2034 gdb_assert (piece != NULL);
2035 frame = get_selected_frame (_("No frame selected."));
2037 /* This is an offset requested by GDB, such as value subscripts.
2038 However, due to how synthetic pointers are implemented, this is
2039 always presented to us as a pointer type. This means we have to
2040 sign-extend it manually as appropriate. Use raw
2041 extract_signed_integer directly rather than value_as_address and
2042 sign extend afterwards on architectures that would need it
2043 (mostly everywhere except MIPS, which has signed addresses) as
2044 the later would go through gdbarch_pointer_to_address and thus
2045 return a CORE_ADDR with high bits set on architectures that
2046 encode address spaces and other things in CORE_ADDR. */
2047 byte_order = gdbarch_byte_order (get_frame_arch (frame));
2048 byte_offset = extract_signed_integer (value_contents (value),
2049 TYPE_LENGTH (type), byte_order);
2050 byte_offset += piece->v.ptr.offset;
2052 return indirect_synthetic_pointer (piece->v.ptr.die_sect_off,
2053 byte_offset, c->per_cu,
2057 /* Implementation of the coerce_ref method of lval_funcs for synthetic C++
2060 static struct value *
2061 coerce_pieced_ref (const struct value *value)
2063 struct type *type = check_typedef (value_type (value));
2065 if (value_bits_synthetic_pointer (value, value_embedded_offset (value),
2066 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
2068 const struct piece_closure *closure
2069 = (struct piece_closure *) value_computed_closure (value);
2070 struct frame_info *frame
2071 = get_selected_frame (_("No frame selected."));
2073 /* gdb represents synthetic pointers as pieced values with a single
2075 gdb_assert (closure != NULL);
2076 gdb_assert (closure->pieces.size () == 1);
2078 return indirect_synthetic_pointer
2079 (closure->pieces[0].v.ptr.die_sect_off,
2080 closure->pieces[0].v.ptr.offset,
2081 closure->per_cu, frame, type);
2085 /* Else: not a synthetic reference; do nothing. */
2091 copy_pieced_value_closure (const struct value *v)
2093 struct piece_closure *c
2094 = (struct piece_closure *) value_computed_closure (v);
2101 free_pieced_value_closure (struct value *v)
2103 struct piece_closure *c
2104 = (struct piece_closure *) value_computed_closure (v);
2109 for (dwarf_expr_piece &p : c->pieces)
2110 if (p.location == DWARF_VALUE_STACK)
2111 value_decref (p.v.value);
2117 /* Functions for accessing a variable described by DW_OP_piece. */
2118 static const struct lval_funcs pieced_value_funcs = {
2121 indirect_pieced_value,
2123 check_pieced_synthetic_pointer,
2124 copy_pieced_value_closure,
2125 free_pieced_value_closure
2128 /* Evaluate a location description, starting at DATA and with length
2129 SIZE, to find the current location of variable of TYPE in the
2130 context of FRAME. If SUBOBJ_TYPE is non-NULL, return instead the
2131 location of the subobject of type SUBOBJ_TYPE at byte offset
2132 SUBOBJ_BYTE_OFFSET within the variable of type TYPE. */
2134 static struct value *
2135 dwarf2_evaluate_loc_desc_full (struct type *type, struct frame_info *frame,
2136 const gdb_byte *data, size_t size,
2137 struct dwarf2_per_cu_data *per_cu,
2138 struct type *subobj_type,
2139 LONGEST subobj_byte_offset)
2141 struct value *retval;
2142 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2144 if (subobj_type == NULL)
2147 subobj_byte_offset = 0;
2149 else if (subobj_byte_offset < 0)
2150 invalid_synthetic_pointer ();
2153 return allocate_optimized_out_value (subobj_type);
2155 dwarf_evaluate_loc_desc ctx;
2157 ctx.per_cu = per_cu;
2158 ctx.obj_address = 0;
2160 scoped_value_mark free_values;
2162 ctx.gdbarch = get_objfile_arch (objfile);
2163 ctx.addr_size = dwarf2_per_cu_addr_size (per_cu);
2164 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2165 ctx.offset = dwarf2_per_cu_text_offset (per_cu);
2169 ctx.eval (data, size);
2171 catch (const gdb_exception_error &ex)
2173 if (ex.error == NOT_AVAILABLE_ERROR)
2175 free_values.free_to_mark ();
2176 retval = allocate_value (subobj_type);
2177 mark_value_bytes_unavailable (retval, 0,
2178 TYPE_LENGTH (subobj_type));
2181 else if (ex.error == NO_ENTRY_VALUE_ERROR)
2183 if (entry_values_debug)
2184 exception_print (gdb_stdout, ex);
2185 free_values.free_to_mark ();
2186 return allocate_optimized_out_value (subobj_type);
2192 if (ctx.pieces.size () > 0)
2194 struct piece_closure *c;
2195 ULONGEST bit_size = 0;
2197 for (dwarf_expr_piece &piece : ctx.pieces)
2198 bit_size += piece.size;
2199 /* Complain if the expression is larger than the size of the
2201 if (bit_size > 8 * TYPE_LENGTH (type))
2202 invalid_synthetic_pointer ();
2204 c = allocate_piece_closure (per_cu, std::move (ctx.pieces), frame);
2205 /* We must clean up the value chain after creating the piece
2206 closure but before allocating the result. */
2207 free_values.free_to_mark ();
2208 retval = allocate_computed_value (subobj_type,
2209 &pieced_value_funcs, c);
2210 set_value_offset (retval, subobj_byte_offset);
2214 switch (ctx.location)
2216 case DWARF_VALUE_REGISTER:
2218 struct gdbarch *arch = get_frame_arch (frame);
2220 = longest_to_int (value_as_long (ctx.fetch (0)));
2221 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, dwarf_regnum);
2223 if (subobj_byte_offset != 0)
2224 error (_("cannot use offset on synthetic pointer to register"));
2225 free_values.free_to_mark ();
2226 retval = value_from_register (subobj_type, gdb_regnum, frame);
2227 if (value_optimized_out (retval))
2231 /* This means the register has undefined value / was
2232 not saved. As we're computing the location of some
2233 variable etc. in the program, not a value for
2234 inspecting a register ($pc, $sp, etc.), return a
2235 generic optimized out value instead, so that we show
2236 <optimized out> instead of <not saved>. */
2237 tmp = allocate_value (subobj_type);
2238 value_contents_copy (tmp, 0, retval, 0,
2239 TYPE_LENGTH (subobj_type));
2245 case DWARF_VALUE_MEMORY:
2247 struct type *ptr_type;
2248 CORE_ADDR address = ctx.fetch_address (0);
2249 bool in_stack_memory = ctx.fetch_in_stack_memory (0);
2251 /* DW_OP_deref_size (and possibly other operations too) may
2252 create a pointer instead of an address. Ideally, the
2253 pointer to address conversion would be performed as part
2254 of those operations, but the type of the object to
2255 which the address refers is not known at the time of
2256 the operation. Therefore, we do the conversion here
2257 since the type is readily available. */
2259 switch (TYPE_CODE (subobj_type))
2261 case TYPE_CODE_FUNC:
2262 case TYPE_CODE_METHOD:
2263 ptr_type = builtin_type (ctx.gdbarch)->builtin_func_ptr;
2266 ptr_type = builtin_type (ctx.gdbarch)->builtin_data_ptr;
2269 address = value_as_address (value_from_pointer (ptr_type, address));
2271 free_values.free_to_mark ();
2272 retval = value_at_lazy (subobj_type,
2273 address + subobj_byte_offset);
2274 if (in_stack_memory)
2275 set_value_stack (retval, 1);
2279 case DWARF_VALUE_STACK:
2281 struct value *value = ctx.fetch (0);
2282 size_t n = TYPE_LENGTH (value_type (value));
2283 size_t len = TYPE_LENGTH (subobj_type);
2284 size_t max = TYPE_LENGTH (type);
2285 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
2287 if (subobj_byte_offset + len > max)
2288 invalid_synthetic_pointer ();
2290 /* Preserve VALUE because we are going to free values back
2291 to the mark, but we still need the value contents
2293 value_ref_ptr value_holder = value_ref_ptr::new_reference (value);
2294 free_values.free_to_mark ();
2296 retval = allocate_value (subobj_type);
2298 /* The given offset is relative to the actual object. */
2299 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2300 subobj_byte_offset += n - max;
2302 memcpy (value_contents_raw (retval),
2303 value_contents_all (value) + subobj_byte_offset, len);
2307 case DWARF_VALUE_LITERAL:
2310 size_t n = TYPE_LENGTH (subobj_type);
2312 if (subobj_byte_offset + n > ctx.len)
2313 invalid_synthetic_pointer ();
2315 free_values.free_to_mark ();
2316 retval = allocate_value (subobj_type);
2317 contents = value_contents_raw (retval);
2318 memcpy (contents, ctx.data + subobj_byte_offset, n);
2322 case DWARF_VALUE_OPTIMIZED_OUT:
2323 free_values.free_to_mark ();
2324 retval = allocate_optimized_out_value (subobj_type);
2327 /* DWARF_VALUE_IMPLICIT_POINTER was converted to a pieced
2328 operation by execute_stack_op. */
2329 case DWARF_VALUE_IMPLICIT_POINTER:
2330 /* DWARF_VALUE_OPTIMIZED_OUT can't occur in this context --
2331 it can only be encountered when making a piece. */
2333 internal_error (__FILE__, __LINE__, _("invalid location type"));
2337 set_value_initialized (retval, ctx.initialized);
2342 /* The exported interface to dwarf2_evaluate_loc_desc_full; it always
2343 passes 0 as the byte_offset. */
2346 dwarf2_evaluate_loc_desc (struct type *type, struct frame_info *frame,
2347 const gdb_byte *data, size_t size,
2348 struct dwarf2_per_cu_data *per_cu)
2350 return dwarf2_evaluate_loc_desc_full (type, frame, data, size, per_cu,
2354 /* Evaluates a dwarf expression and stores the result in VAL, expecting
2355 that the dwarf expression only produces a single CORE_ADDR. FRAME is the
2356 frame in which the expression is evaluated. ADDR is a context (location of
2357 a variable) and might be needed to evaluate the location expression.
2358 Returns 1 on success, 0 otherwise. */
2361 dwarf2_locexpr_baton_eval (const struct dwarf2_locexpr_baton *dlbaton,
2362 struct frame_info *frame,
2366 struct objfile *objfile;
2368 if (dlbaton == NULL || dlbaton->size == 0)
2371 dwarf_evaluate_loc_desc ctx;
2374 ctx.per_cu = dlbaton->per_cu;
2375 ctx.obj_address = addr;
2377 objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
2379 ctx.gdbarch = get_objfile_arch (objfile);
2380 ctx.addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
2381 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (dlbaton->per_cu);
2382 ctx.offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
2386 ctx.eval (dlbaton->data, dlbaton->size);
2388 catch (const gdb_exception_error &ex)
2390 if (ex.error == NOT_AVAILABLE_ERROR)
2394 else if (ex.error == NO_ENTRY_VALUE_ERROR)
2396 if (entry_values_debug)
2397 exception_print (gdb_stdout, ex);
2404 switch (ctx.location)
2406 case DWARF_VALUE_REGISTER:
2407 case DWARF_VALUE_MEMORY:
2408 case DWARF_VALUE_STACK:
2409 *valp = ctx.fetch_address (0);
2410 if (ctx.location == DWARF_VALUE_REGISTER)
2411 *valp = ctx.read_addr_from_reg (*valp);
2413 case DWARF_VALUE_LITERAL:
2414 *valp = extract_signed_integer (ctx.data, ctx.len,
2415 gdbarch_byte_order (ctx.gdbarch));
2417 /* Unsupported dwarf values. */
2418 case DWARF_VALUE_OPTIMIZED_OUT:
2419 case DWARF_VALUE_IMPLICIT_POINTER:
2426 /* See dwarf2loc.h. */
2429 dwarf2_evaluate_property (const struct dynamic_prop *prop,
2430 struct frame_info *frame,
2431 struct property_addr_info *addr_stack,
2437 if (frame == NULL && has_stack_frames ())
2438 frame = get_selected_frame (NULL);
2444 const struct dwarf2_property_baton *baton
2445 = (const struct dwarf2_property_baton *) prop->data.baton;
2447 if (dwarf2_locexpr_baton_eval (&baton->locexpr, frame,
2448 addr_stack ? addr_stack->addr : 0,
2451 if (baton->referenced_type)
2453 struct value *val = value_at (baton->referenced_type, *value);
2455 *value = value_as_address (val);
2464 struct dwarf2_property_baton *baton
2465 = (struct dwarf2_property_baton *) prop->data.baton;
2466 CORE_ADDR pc = get_frame_address_in_block (frame);
2467 const gdb_byte *data;
2471 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2474 val = dwarf2_evaluate_loc_desc (baton->referenced_type, frame, data,
2475 size, baton->loclist.per_cu);
2476 if (!value_optimized_out (val))
2478 *value = value_as_address (val);
2486 *value = prop->data.const_val;
2489 case PROP_ADDR_OFFSET:
2491 struct dwarf2_property_baton *baton
2492 = (struct dwarf2_property_baton *) prop->data.baton;
2493 struct property_addr_info *pinfo;
2496 for (pinfo = addr_stack; pinfo != NULL; pinfo = pinfo->next)
2498 /* This approach lets us avoid checking the qualifiers. */
2499 if (TYPE_MAIN_TYPE (pinfo->type)
2500 == TYPE_MAIN_TYPE (baton->referenced_type))
2504 error (_("cannot find reference address for offset property"));
2505 if (pinfo->valaddr != NULL)
2506 val = value_from_contents
2507 (baton->offset_info.type,
2508 pinfo->valaddr + baton->offset_info.offset);
2510 val = value_at (baton->offset_info.type,
2511 pinfo->addr + baton->offset_info.offset);
2512 *value = value_as_address (val);
2520 /* See dwarf2loc.h. */
2523 dwarf2_compile_property_to_c (string_file *stream,
2524 const char *result_name,
2525 struct gdbarch *gdbarch,
2526 unsigned char *registers_used,
2527 const struct dynamic_prop *prop,
2531 struct dwarf2_property_baton *baton
2532 = (struct dwarf2_property_baton *) prop->data.baton;
2533 const gdb_byte *data;
2535 struct dwarf2_per_cu_data *per_cu;
2537 if (prop->kind == PROP_LOCEXPR)
2539 data = baton->locexpr.data;
2540 size = baton->locexpr.size;
2541 per_cu = baton->locexpr.per_cu;
2545 gdb_assert (prop->kind == PROP_LOCLIST);
2547 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2548 per_cu = baton->loclist.per_cu;
2551 compile_dwarf_bounds_to_c (stream, result_name, prop, sym, pc,
2552 gdbarch, registers_used,
2553 dwarf2_per_cu_addr_size (per_cu),
2554 data, data + size, per_cu);
2558 /* Helper functions and baton for dwarf2_loc_desc_get_symbol_read_needs. */
2560 class symbol_needs_eval_context : public dwarf_expr_context
2564 enum symbol_needs_kind needs;
2565 struct dwarf2_per_cu_data *per_cu;
2567 /* Reads from registers do require a frame. */
2568 CORE_ADDR read_addr_from_reg (int regnum) override
2570 needs = SYMBOL_NEEDS_FRAME;
2574 /* "get_reg_value" callback: Reads from registers do require a
2577 struct value *get_reg_value (struct type *type, int regnum) override
2579 needs = SYMBOL_NEEDS_FRAME;
2580 return value_zero (type, not_lval);
2583 /* Reads from memory do not require a frame. */
2584 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) override
2586 memset (buf, 0, len);
2589 /* Frame-relative accesses do require a frame. */
2590 void get_frame_base (const gdb_byte **start, size_t *length) override
2592 static gdb_byte lit0 = DW_OP_lit0;
2597 needs = SYMBOL_NEEDS_FRAME;
2600 /* CFA accesses require a frame. */
2601 CORE_ADDR get_frame_cfa () override
2603 needs = SYMBOL_NEEDS_FRAME;
2607 CORE_ADDR get_frame_pc () override
2609 needs = SYMBOL_NEEDS_FRAME;
2613 /* Thread-local accesses require registers, but not a frame. */
2614 CORE_ADDR get_tls_address (CORE_ADDR offset) override
2616 if (needs <= SYMBOL_NEEDS_REGISTERS)
2617 needs = SYMBOL_NEEDS_REGISTERS;
2621 /* Helper interface of per_cu_dwarf_call for
2622 dwarf2_loc_desc_get_symbol_read_needs. */
2624 void dwarf_call (cu_offset die_offset) override
2626 per_cu_dwarf_call (this, die_offset, per_cu);
2629 /* Helper interface of sect_variable_value for
2630 dwarf2_loc_desc_get_symbol_read_needs. */
2632 struct value *dwarf_variable_value (sect_offset sect_off) override
2634 return sect_variable_value (this, sect_off, per_cu);
2637 /* DW_OP_entry_value accesses require a caller, therefore a
2640 void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
2641 union call_site_parameter_u kind_u,
2642 int deref_size) override
2644 needs = SYMBOL_NEEDS_FRAME;
2646 /* The expression may require some stub values on DWARF stack. */
2647 push_address (0, 0);
2650 /* DW_OP_addrx and DW_OP_GNU_addr_index doesn't require a frame. */
2652 CORE_ADDR get_addr_index (unsigned int index) override
2654 /* Nothing to do. */
2658 /* DW_OP_push_object_address has a frame already passed through. */
2660 CORE_ADDR get_object_address () override
2662 /* Nothing to do. */
2667 /* Compute the correct symbol_needs_kind value for the location
2668 expression at DATA (length SIZE). */
2670 static enum symbol_needs_kind
2671 dwarf2_loc_desc_get_symbol_read_needs (const gdb_byte *data, size_t size,
2672 struct dwarf2_per_cu_data *per_cu)
2675 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2677 scoped_value_mark free_values;
2679 symbol_needs_eval_context ctx;
2681 ctx.needs = SYMBOL_NEEDS_NONE;
2682 ctx.per_cu = per_cu;
2683 ctx.gdbarch = get_objfile_arch (objfile);
2684 ctx.addr_size = dwarf2_per_cu_addr_size (per_cu);
2685 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2686 ctx.offset = dwarf2_per_cu_text_offset (per_cu);
2688 ctx.eval (data, size);
2690 in_reg = ctx.location == DWARF_VALUE_REGISTER;
2692 /* If the location has several pieces, and any of them are in
2693 registers, then we will need a frame to fetch them from. */
2694 for (dwarf_expr_piece &p : ctx.pieces)
2695 if (p.location == DWARF_VALUE_REGISTER)
2699 ctx.needs = SYMBOL_NEEDS_FRAME;
2703 /* A helper function that throws an unimplemented error mentioning a
2704 given DWARF operator. */
2706 static void ATTRIBUTE_NORETURN
2707 unimplemented (unsigned int op)
2709 const char *name = get_DW_OP_name (op);
2712 error (_("DWARF operator %s cannot be translated to an agent expression"),
2715 error (_("Unknown DWARF operator 0x%02x cannot be translated "
2716 "to an agent expression"),
2722 This is basically a wrapper on gdbarch_dwarf2_reg_to_regnum so that we
2723 can issue a complaint, which is better than having every target's
2724 implementation of dwarf2_reg_to_regnum do it. */
2727 dwarf_reg_to_regnum (struct gdbarch *arch, int dwarf_reg)
2729 int reg = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_reg);
2733 complaint (_("bad DWARF register number %d"), dwarf_reg);
2738 /* Subroutine of dwarf_reg_to_regnum_or_error to simplify it.
2739 Throw an error because DWARF_REG is bad. */
2742 throw_bad_regnum_error (ULONGEST dwarf_reg)
2744 /* Still want to print -1 as "-1".
2745 We *could* have int and ULONGEST versions of dwarf2_reg_to_regnum_or_error
2746 but that's overkill for now. */
2747 if ((int) dwarf_reg == dwarf_reg)
2748 error (_("Unable to access DWARF register number %d"), (int) dwarf_reg);
2749 error (_("Unable to access DWARF register number %s"),
2750 pulongest (dwarf_reg));
2753 /* See dwarf2loc.h. */
2756 dwarf_reg_to_regnum_or_error (struct gdbarch *arch, ULONGEST dwarf_reg)
2760 if (dwarf_reg > INT_MAX)
2761 throw_bad_regnum_error (dwarf_reg);
2762 /* Yes, we will end up issuing a complaint and an error if DWARF_REG is
2763 bad, but that's ok. */
2764 reg = dwarf_reg_to_regnum (arch, (int) dwarf_reg);
2766 throw_bad_regnum_error (dwarf_reg);
2770 /* A helper function that emits an access to memory. ARCH is the
2771 target architecture. EXPR is the expression which we are building.
2772 NBITS is the number of bits we want to read. This emits the
2773 opcodes needed to read the memory and then extract the desired
2777 access_memory (struct gdbarch *arch, struct agent_expr *expr, ULONGEST nbits)
2779 ULONGEST nbytes = (nbits + 7) / 8;
2781 gdb_assert (nbytes > 0 && nbytes <= sizeof (LONGEST));
2784 ax_trace_quick (expr, nbytes);
2787 ax_simple (expr, aop_ref8);
2788 else if (nbits <= 16)
2789 ax_simple (expr, aop_ref16);
2790 else if (nbits <= 32)
2791 ax_simple (expr, aop_ref32);
2793 ax_simple (expr, aop_ref64);
2795 /* If we read exactly the number of bytes we wanted, we're done. */
2796 if (8 * nbytes == nbits)
2799 if (gdbarch_bits_big_endian (arch))
2801 /* On a bits-big-endian machine, we want the high-order
2803 ax_const_l (expr, 8 * nbytes - nbits);
2804 ax_simple (expr, aop_rsh_unsigned);
2808 /* On a bits-little-endian box, we want the low-order NBITS. */
2809 ax_zero_ext (expr, nbits);
2813 /* A helper function to return the frame's PC. */
2816 get_ax_pc (void *baton)
2818 struct agent_expr *expr = (struct agent_expr *) baton;
2823 /* Compile a DWARF location expression to an agent expression.
2825 EXPR is the agent expression we are building.
2826 LOC is the agent value we modify.
2827 ARCH is the architecture.
2828 ADDR_SIZE is the size of addresses, in bytes.
2829 OP_PTR is the start of the location expression.
2830 OP_END is one past the last byte of the location expression.
2832 This will throw an exception for various kinds of errors -- for
2833 example, if the expression cannot be compiled, or if the expression
2837 dwarf2_compile_expr_to_ax (struct agent_expr *expr, struct axs_value *loc,
2838 unsigned int addr_size, const gdb_byte *op_ptr,
2839 const gdb_byte *op_end,
2840 struct dwarf2_per_cu_data *per_cu)
2842 gdbarch *arch = expr->gdbarch;
2843 std::vector<int> dw_labels, patches;
2844 const gdb_byte * const base = op_ptr;
2845 const gdb_byte *previous_piece = op_ptr;
2846 enum bfd_endian byte_order = gdbarch_byte_order (arch);
2847 ULONGEST bits_collected = 0;
2848 unsigned int addr_size_bits = 8 * addr_size;
2849 int bits_big_endian = gdbarch_bits_big_endian (arch);
2851 std::vector<int> offsets (op_end - op_ptr, -1);
2853 /* By default we are making an address. */
2854 loc->kind = axs_lvalue_memory;
2856 while (op_ptr < op_end)
2858 enum dwarf_location_atom op = (enum dwarf_location_atom) *op_ptr;
2859 uint64_t uoffset, reg;
2863 offsets[op_ptr - base] = expr->len;
2866 /* Our basic approach to code generation is to map DWARF
2867 operations directly to AX operations. However, there are
2870 First, DWARF works on address-sized units, but AX always uses
2871 LONGEST. For most operations we simply ignore this
2872 difference; instead we generate sign extensions as needed
2873 before division and comparison operations. It would be nice
2874 to omit the sign extensions, but there is no way to determine
2875 the size of the target's LONGEST. (This code uses the size
2876 of the host LONGEST in some cases -- that is a bug but it is
2879 Second, some DWARF operations cannot be translated to AX.
2880 For these we simply fail. See
2881 http://sourceware.org/bugzilla/show_bug.cgi?id=11662. */
2916 ax_const_l (expr, op - DW_OP_lit0);
2920 uoffset = extract_unsigned_integer (op_ptr, addr_size, byte_order);
2921 op_ptr += addr_size;
2922 /* Some versions of GCC emit DW_OP_addr before
2923 DW_OP_GNU_push_tls_address. In this case the value is an
2924 index, not an address. We don't support things like
2925 branching between the address and the TLS op. */
2926 if (op_ptr >= op_end || *op_ptr != DW_OP_GNU_push_tls_address)
2927 uoffset += dwarf2_per_cu_text_offset (per_cu);
2928 ax_const_l (expr, uoffset);
2932 ax_const_l (expr, extract_unsigned_integer (op_ptr, 1, byte_order));
2936 ax_const_l (expr, extract_signed_integer (op_ptr, 1, byte_order));
2940 ax_const_l (expr, extract_unsigned_integer (op_ptr, 2, byte_order));
2944 ax_const_l (expr, extract_signed_integer (op_ptr, 2, byte_order));
2948 ax_const_l (expr, extract_unsigned_integer (op_ptr, 4, byte_order));
2952 ax_const_l (expr, extract_signed_integer (op_ptr, 4, byte_order));
2956 ax_const_l (expr, extract_unsigned_integer (op_ptr, 8, byte_order));
2960 ax_const_l (expr, extract_signed_integer (op_ptr, 8, byte_order));
2964 op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
2965 ax_const_l (expr, uoffset);
2968 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
2969 ax_const_l (expr, offset);
3004 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
3005 loc->u.reg = dwarf_reg_to_regnum_or_error (arch, op - DW_OP_reg0);
3006 loc->kind = axs_lvalue_register;
3010 op_ptr = safe_read_uleb128 (op_ptr, op_end, ®);
3011 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
3012 loc->u.reg = dwarf_reg_to_regnum_or_error (arch, reg);
3013 loc->kind = axs_lvalue_register;
3016 case DW_OP_implicit_value:
3020 op_ptr = safe_read_uleb128 (op_ptr, op_end, &len);
3021 if (op_ptr + len > op_end)
3022 error (_("DW_OP_implicit_value: too few bytes available."));
3023 if (len > sizeof (ULONGEST))
3024 error (_("Cannot translate DW_OP_implicit_value of %d bytes"),
3027 ax_const_l (expr, extract_unsigned_integer (op_ptr, len,
3030 dwarf_expr_require_composition (op_ptr, op_end,
3031 "DW_OP_implicit_value");
3033 loc->kind = axs_rvalue;
3037 case DW_OP_stack_value:
3038 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_stack_value");
3039 loc->kind = axs_rvalue;
3074 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3075 i = dwarf_reg_to_regnum_or_error (arch, op - DW_OP_breg0);
3079 ax_const_l (expr, offset);
3080 ax_simple (expr, aop_add);
3085 op_ptr = safe_read_uleb128 (op_ptr, op_end, ®);
3086 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3087 i = dwarf_reg_to_regnum_or_error (arch, reg);
3091 ax_const_l (expr, offset);
3092 ax_simple (expr, aop_add);
3098 const gdb_byte *datastart;
3100 const struct block *b;
3101 struct symbol *framefunc;
3103 b = block_for_pc (expr->scope);
3106 error (_("No block found for address"));
3108 framefunc = block_linkage_function (b);
3111 error (_("No function found for block"));
3113 func_get_frame_base_dwarf_block (framefunc, expr->scope,
3114 &datastart, &datalen);
3116 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3117 dwarf2_compile_expr_to_ax (expr, loc, addr_size, datastart,
3118 datastart + datalen, per_cu);
3119 if (loc->kind == axs_lvalue_register)
3120 require_rvalue (expr, loc);
3124 ax_const_l (expr, offset);
3125 ax_simple (expr, aop_add);
3128 loc->kind = axs_lvalue_memory;
3133 ax_simple (expr, aop_dup);
3137 ax_simple (expr, aop_pop);
3142 ax_pick (expr, offset);
3146 ax_simple (expr, aop_swap);
3154 ax_simple (expr, aop_rot);
3158 case DW_OP_deref_size:
3162 if (op == DW_OP_deref_size)
3167 if (size != 1 && size != 2 && size != 4 && size != 8)
3168 error (_("Unsupported size %d in %s"),
3169 size, get_DW_OP_name (op));
3170 access_memory (arch, expr, size * TARGET_CHAR_BIT);
3175 /* Sign extend the operand. */
3176 ax_ext (expr, addr_size_bits);
3177 ax_simple (expr, aop_dup);
3178 ax_const_l (expr, 0);
3179 ax_simple (expr, aop_less_signed);
3180 ax_simple (expr, aop_log_not);
3181 i = ax_goto (expr, aop_if_goto);
3182 /* We have to emit 0 - X. */
3183 ax_const_l (expr, 0);
3184 ax_simple (expr, aop_swap);
3185 ax_simple (expr, aop_sub);
3186 ax_label (expr, i, expr->len);
3190 /* No need to sign extend here. */
3191 ax_const_l (expr, 0);
3192 ax_simple (expr, aop_swap);
3193 ax_simple (expr, aop_sub);
3197 /* Sign extend the operand. */
3198 ax_ext (expr, addr_size_bits);
3199 ax_simple (expr, aop_bit_not);
3202 case DW_OP_plus_uconst:
3203 op_ptr = safe_read_uleb128 (op_ptr, op_end, ®);
3204 /* It would be really weird to emit `DW_OP_plus_uconst 0',
3205 but we micro-optimize anyhow. */
3208 ax_const_l (expr, reg);
3209 ax_simple (expr, aop_add);
3214 ax_simple (expr, aop_bit_and);
3218 /* Sign extend the operands. */
3219 ax_ext (expr, addr_size_bits);
3220 ax_simple (expr, aop_swap);
3221 ax_ext (expr, addr_size_bits);
3222 ax_simple (expr, aop_swap);
3223 ax_simple (expr, aop_div_signed);
3227 ax_simple (expr, aop_sub);
3231 ax_simple (expr, aop_rem_unsigned);
3235 ax_simple (expr, aop_mul);
3239 ax_simple (expr, aop_bit_or);
3243 ax_simple (expr, aop_add);
3247 ax_simple (expr, aop_lsh);
3251 ax_simple (expr, aop_rsh_unsigned);
3255 ax_simple (expr, aop_rsh_signed);
3259 ax_simple (expr, aop_bit_xor);
3263 /* Sign extend the operands. */
3264 ax_ext (expr, addr_size_bits);
3265 ax_simple (expr, aop_swap);
3266 ax_ext (expr, addr_size_bits);
3267 /* Note no swap here: A <= B is !(B < A). */
3268 ax_simple (expr, aop_less_signed);
3269 ax_simple (expr, aop_log_not);
3273 /* Sign extend the operands. */
3274 ax_ext (expr, addr_size_bits);
3275 ax_simple (expr, aop_swap);
3276 ax_ext (expr, addr_size_bits);
3277 ax_simple (expr, aop_swap);
3278 /* A >= B is !(A < B). */
3279 ax_simple (expr, aop_less_signed);
3280 ax_simple (expr, aop_log_not);
3284 /* Sign extend the operands. */
3285 ax_ext (expr, addr_size_bits);
3286 ax_simple (expr, aop_swap);
3287 ax_ext (expr, addr_size_bits);
3288 /* No need for a second swap here. */
3289 ax_simple (expr, aop_equal);
3293 /* Sign extend the operands. */
3294 ax_ext (expr, addr_size_bits);
3295 ax_simple (expr, aop_swap);
3296 ax_ext (expr, addr_size_bits);
3297 ax_simple (expr, aop_swap);
3298 ax_simple (expr, aop_less_signed);
3302 /* Sign extend the operands. */
3303 ax_ext (expr, addr_size_bits);
3304 ax_simple (expr, aop_swap);
3305 ax_ext (expr, addr_size_bits);
3306 /* Note no swap here: A > B is B < A. */
3307 ax_simple (expr, aop_less_signed);
3311 /* Sign extend the operands. */
3312 ax_ext (expr, addr_size_bits);
3313 ax_simple (expr, aop_swap);
3314 ax_ext (expr, addr_size_bits);
3315 /* No need for a swap here. */
3316 ax_simple (expr, aop_equal);
3317 ax_simple (expr, aop_log_not);
3320 case DW_OP_call_frame_cfa:
3323 CORE_ADDR text_offset;
3325 const gdb_byte *cfa_start, *cfa_end;
3327 if (dwarf2_fetch_cfa_info (arch, expr->scope, per_cu,
3329 &text_offset, &cfa_start, &cfa_end))
3332 ax_reg (expr, regnum);
3335 ax_const_l (expr, off);
3336 ax_simple (expr, aop_add);
3341 /* Another expression. */
3342 ax_const_l (expr, text_offset);
3343 dwarf2_compile_expr_to_ax (expr, loc, addr_size, cfa_start,
3347 loc->kind = axs_lvalue_memory;
3351 case DW_OP_GNU_push_tls_address:
3352 case DW_OP_form_tls_address:
3356 case DW_OP_push_object_address:
3361 offset = extract_signed_integer (op_ptr, 2, byte_order);
3363 i = ax_goto (expr, aop_goto);
3364 dw_labels.push_back (op_ptr + offset - base);
3365 patches.push_back (i);
3369 offset = extract_signed_integer (op_ptr, 2, byte_order);
3371 /* Zero extend the operand. */
3372 ax_zero_ext (expr, addr_size_bits);
3373 i = ax_goto (expr, aop_if_goto);
3374 dw_labels.push_back (op_ptr + offset - base);
3375 patches.push_back (i);
3382 case DW_OP_bit_piece:
3386 if (op_ptr - 1 == previous_piece)
3387 error (_("Cannot translate empty pieces to agent expressions"));
3388 previous_piece = op_ptr - 1;
3390 op_ptr = safe_read_uleb128 (op_ptr, op_end, &size);
3391 if (op == DW_OP_piece)
3397 op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
3399 if (bits_collected + size > 8 * sizeof (LONGEST))
3400 error (_("Expression pieces exceed word size"));
3402 /* Access the bits. */
3405 case axs_lvalue_register:
3406 ax_reg (expr, loc->u.reg);
3409 case axs_lvalue_memory:
3410 /* Offset the pointer, if needed. */
3413 ax_const_l (expr, uoffset / 8);
3414 ax_simple (expr, aop_add);
3417 access_memory (arch, expr, size);
3421 /* For a bits-big-endian target, shift up what we already
3422 have. For a bits-little-endian target, shift up the
3423 new data. Note that there is a potential bug here if
3424 the DWARF expression leaves multiple values on the
3426 if (bits_collected > 0)
3428 if (bits_big_endian)
3430 ax_simple (expr, aop_swap);
3431 ax_const_l (expr, size);
3432 ax_simple (expr, aop_lsh);
3433 /* We don't need a second swap here, because
3434 aop_bit_or is symmetric. */
3438 ax_const_l (expr, size);
3439 ax_simple (expr, aop_lsh);
3441 ax_simple (expr, aop_bit_or);
3444 bits_collected += size;
3445 loc->kind = axs_rvalue;
3449 case DW_OP_GNU_uninit:
3455 struct dwarf2_locexpr_baton block;
3456 int size = (op == DW_OP_call2 ? 2 : 4);
3458 uoffset = extract_unsigned_integer (op_ptr, size, byte_order);
3461 cu_offset cuoffset = (cu_offset) uoffset;
3462 block = dwarf2_fetch_die_loc_cu_off (cuoffset, per_cu,
3465 /* DW_OP_call_ref is currently not supported. */
3466 gdb_assert (block.per_cu == per_cu);
3468 dwarf2_compile_expr_to_ax (expr, loc, addr_size, block.data,
3469 block.data + block.size, per_cu);
3473 case DW_OP_call_ref:
3476 case DW_OP_GNU_variable_value:
3484 /* Patch all the branches we emitted. */
3485 for (int i = 0; i < patches.size (); ++i)
3487 int targ = offsets[dw_labels[i]];
3489 internal_error (__FILE__, __LINE__, _("invalid label"));
3490 ax_label (expr, patches[i], targ);
3495 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
3496 evaluator to calculate the location. */
3497 static struct value *
3498 locexpr_read_variable (struct symbol *symbol, struct frame_info *frame)
3500 struct dwarf2_locexpr_baton *dlbaton
3501 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3504 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3505 dlbaton->size, dlbaton->per_cu);
3510 /* Return the value of SYMBOL in FRAME at (callee) FRAME's function
3511 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
3514 static struct value *
3515 locexpr_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
3517 struct dwarf2_locexpr_baton *dlbaton
3518 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3520 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3524 /* Implementation of get_symbol_read_needs from
3525 symbol_computed_ops. */
3527 static enum symbol_needs_kind
3528 locexpr_get_symbol_read_needs (struct symbol *symbol)
3530 struct dwarf2_locexpr_baton *dlbaton
3531 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3533 return dwarf2_loc_desc_get_symbol_read_needs (dlbaton->data, dlbaton->size,
3537 /* Return true if DATA points to the end of a piece. END is one past
3538 the last byte in the expression. */
3541 piece_end_p (const gdb_byte *data, const gdb_byte *end)
3543 return data == end || data[0] == DW_OP_piece || data[0] == DW_OP_bit_piece;
3546 /* Helper for locexpr_describe_location_piece that finds the name of a
3550 locexpr_regname (struct gdbarch *gdbarch, int dwarf_regnum)
3554 /* This doesn't use dwarf_reg_to_regnum_or_error on purpose.
3555 We'd rather print *something* here than throw an error. */
3556 regnum = dwarf_reg_to_regnum (gdbarch, dwarf_regnum);
3557 /* gdbarch_register_name may just return "", return something more
3558 descriptive for bad register numbers. */
3561 /* The text is output as "$bad_register_number".
3562 That is why we use the underscores. */
3563 return _("bad_register_number");
3565 return gdbarch_register_name (gdbarch, regnum);
3568 /* Nicely describe a single piece of a location, returning an updated
3569 position in the bytecode sequence. This function cannot recognize
3570 all locations; if a location is not recognized, it simply returns
3571 DATA. If there is an error during reading, e.g. we run off the end
3572 of the buffer, an error is thrown. */
3574 static const gdb_byte *
3575 locexpr_describe_location_piece (struct symbol *symbol, struct ui_file *stream,
3576 CORE_ADDR addr, struct objfile *objfile,
3577 struct dwarf2_per_cu_data *per_cu,
3578 const gdb_byte *data, const gdb_byte *end,
3579 unsigned int addr_size)
3581 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3584 if (data[0] >= DW_OP_reg0 && data[0] <= DW_OP_reg31)
3586 fprintf_filtered (stream, _("a variable in $%s"),
3587 locexpr_regname (gdbarch, data[0] - DW_OP_reg0));
3590 else if (data[0] == DW_OP_regx)
3594 data = safe_read_uleb128 (data + 1, end, ®);
3595 fprintf_filtered (stream, _("a variable in $%s"),
3596 locexpr_regname (gdbarch, reg));
3598 else if (data[0] == DW_OP_fbreg)
3600 const struct block *b;
3601 struct symbol *framefunc;
3603 int64_t frame_offset;
3604 const gdb_byte *base_data, *new_data, *save_data = data;
3606 int64_t base_offset = 0;
3608 new_data = safe_read_sleb128 (data + 1, end, &frame_offset);
3609 if (!piece_end_p (new_data, end))
3613 b = block_for_pc (addr);
3616 error (_("No block found for address for symbol \"%s\"."),
3617 SYMBOL_PRINT_NAME (symbol));
3619 framefunc = block_linkage_function (b);
3622 error (_("No function found for block for symbol \"%s\"."),
3623 SYMBOL_PRINT_NAME (symbol));
3625 func_get_frame_base_dwarf_block (framefunc, addr, &base_data, &base_size);
3627 if (base_data[0] >= DW_OP_breg0 && base_data[0] <= DW_OP_breg31)
3629 const gdb_byte *buf_end;
3631 frame_reg = base_data[0] - DW_OP_breg0;
3632 buf_end = safe_read_sleb128 (base_data + 1, base_data + base_size,
3634 if (buf_end != base_data + base_size)
3635 error (_("Unexpected opcode after "
3636 "DW_OP_breg%u for symbol \"%s\"."),
3637 frame_reg, SYMBOL_PRINT_NAME (symbol));
3639 else if (base_data[0] >= DW_OP_reg0 && base_data[0] <= DW_OP_reg31)
3641 /* The frame base is just the register, with no offset. */
3642 frame_reg = base_data[0] - DW_OP_reg0;
3647 /* We don't know what to do with the frame base expression,
3648 so we can't trace this variable; give up. */
3652 fprintf_filtered (stream,
3653 _("a variable at frame base reg $%s offset %s+%s"),
3654 locexpr_regname (gdbarch, frame_reg),
3655 plongest (base_offset), plongest (frame_offset));
3657 else if (data[0] >= DW_OP_breg0 && data[0] <= DW_OP_breg31
3658 && piece_end_p (data, end))
3662 data = safe_read_sleb128 (data + 1, end, &offset);
3664 fprintf_filtered (stream,
3665 _("a variable at offset %s from base reg $%s"),
3667 locexpr_regname (gdbarch, data[0] - DW_OP_breg0));
3670 /* The location expression for a TLS variable looks like this (on a
3673 DW_AT_location : 10 byte block: 3 4 0 0 0 0 0 0 0 e0
3674 (DW_OP_addr: 4; DW_OP_GNU_push_tls_address)
3676 0x3 is the encoding for DW_OP_addr, which has an operand as long
3677 as the size of an address on the target machine (here is 8
3678 bytes). Note that more recent version of GCC emit DW_OP_const4u
3679 or DW_OP_const8u, depending on address size, rather than
3680 DW_OP_addr. 0xe0 is the encoding for DW_OP_GNU_push_tls_address.
3681 The operand represents the offset at which the variable is within
3682 the thread local storage. */
3684 else if (data + 1 + addr_size < end
3685 && (data[0] == DW_OP_addr
3686 || (addr_size == 4 && data[0] == DW_OP_const4u)
3687 || (addr_size == 8 && data[0] == DW_OP_const8u))
3688 && (data[1 + addr_size] == DW_OP_GNU_push_tls_address
3689 || data[1 + addr_size] == DW_OP_form_tls_address)
3690 && piece_end_p (data + 2 + addr_size, end))
3693 offset = extract_unsigned_integer (data + 1, addr_size,
3694 gdbarch_byte_order (gdbarch));
3696 fprintf_filtered (stream,
3697 _("a thread-local variable at offset 0x%s "
3698 "in the thread-local storage for `%s'"),
3699 phex_nz (offset, addr_size), objfile_name (objfile));
3701 data += 1 + addr_size + 1;
3704 /* With -gsplit-dwarf a TLS variable can also look like this:
3705 DW_AT_location : 3 byte block: fc 4 e0
3706 (DW_OP_GNU_const_index: 4;
3707 DW_OP_GNU_push_tls_address) */
3708 else if (data + 3 <= end
3709 && data + 1 + (leb128_size = skip_leb128 (data + 1, end)) < end
3710 && data[0] == DW_OP_GNU_const_index
3712 && (data[1 + leb128_size] == DW_OP_GNU_push_tls_address
3713 || data[1 + leb128_size] == DW_OP_form_tls_address)
3714 && piece_end_p (data + 2 + leb128_size, end))
3718 data = safe_read_uleb128 (data + 1, end, &offset);
3719 offset = dwarf2_read_addr_index (per_cu, offset);
3720 fprintf_filtered (stream,
3721 _("a thread-local variable at offset 0x%s "
3722 "in the thread-local storage for `%s'"),
3723 phex_nz (offset, addr_size), objfile_name (objfile));
3727 else if (data[0] >= DW_OP_lit0
3728 && data[0] <= DW_OP_lit31
3730 && data[1] == DW_OP_stack_value)
3732 fprintf_filtered (stream, _("the constant %d"), data[0] - DW_OP_lit0);
3739 /* Disassemble an expression, stopping at the end of a piece or at the
3740 end of the expression. Returns a pointer to the next unread byte
3741 in the input expression. If ALL is nonzero, then this function
3742 will keep going until it reaches the end of the expression.
3743 If there is an error during reading, e.g. we run off the end
3744 of the buffer, an error is thrown. */
3746 static const gdb_byte *
3747 disassemble_dwarf_expression (struct ui_file *stream,
3748 struct gdbarch *arch, unsigned int addr_size,
3749 int offset_size, const gdb_byte *start,
3750 const gdb_byte *data, const gdb_byte *end,
3751 int indent, int all,
3752 struct dwarf2_per_cu_data *per_cu)
3756 || (data[0] != DW_OP_piece && data[0] != DW_OP_bit_piece)))
3758 enum dwarf_location_atom op = (enum dwarf_location_atom) *data++;
3763 name = get_DW_OP_name (op);
3766 error (_("Unrecognized DWARF opcode 0x%02x at %ld"),
3767 op, (long) (data - 1 - start));
3768 fprintf_filtered (stream, " %*ld: %s", indent + 4,
3769 (long) (data - 1 - start), name);
3774 ul = extract_unsigned_integer (data, addr_size,
3775 gdbarch_byte_order (arch));
3777 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
3781 ul = extract_unsigned_integer (data, 1, gdbarch_byte_order (arch));
3783 fprintf_filtered (stream, " %s", pulongest (ul));
3786 l = extract_signed_integer (data, 1, gdbarch_byte_order (arch));
3788 fprintf_filtered (stream, " %s", plongest (l));
3791 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
3793 fprintf_filtered (stream, " %s", pulongest (ul));
3796 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3798 fprintf_filtered (stream, " %s", plongest (l));
3801 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3803 fprintf_filtered (stream, " %s", pulongest (ul));
3806 l = extract_signed_integer (data, 4, gdbarch_byte_order (arch));
3808 fprintf_filtered (stream, " %s", plongest (l));
3811 ul = extract_unsigned_integer (data, 8, gdbarch_byte_order (arch));
3813 fprintf_filtered (stream, " %s", pulongest (ul));
3816 l = extract_signed_integer (data, 8, gdbarch_byte_order (arch));
3818 fprintf_filtered (stream, " %s", plongest (l));
3821 data = safe_read_uleb128 (data, end, &ul);
3822 fprintf_filtered (stream, " %s", pulongest (ul));
3825 data = safe_read_sleb128 (data, end, &l);
3826 fprintf_filtered (stream, " %s", plongest (l));
3861 fprintf_filtered (stream, " [$%s]",
3862 locexpr_regname (arch, op - DW_OP_reg0));
3866 data = safe_read_uleb128 (data, end, &ul);
3867 fprintf_filtered (stream, " %s [$%s]", pulongest (ul),
3868 locexpr_regname (arch, (int) ul));
3871 case DW_OP_implicit_value:
3872 data = safe_read_uleb128 (data, end, &ul);
3874 fprintf_filtered (stream, " %s", pulongest (ul));
3909 data = safe_read_sleb128 (data, end, &l);
3910 fprintf_filtered (stream, " %s [$%s]", plongest (l),
3911 locexpr_regname (arch, op - DW_OP_breg0));
3915 data = safe_read_uleb128 (data, end, &ul);
3916 data = safe_read_sleb128 (data, end, &l);
3917 fprintf_filtered (stream, " register %s [$%s] offset %s",
3919 locexpr_regname (arch, (int) ul),
3924 data = safe_read_sleb128 (data, end, &l);
3925 fprintf_filtered (stream, " %s", plongest (l));
3928 case DW_OP_xderef_size:
3929 case DW_OP_deref_size:
3931 fprintf_filtered (stream, " %d", *data);
3935 case DW_OP_plus_uconst:
3936 data = safe_read_uleb128 (data, end, &ul);
3937 fprintf_filtered (stream, " %s", pulongest (ul));
3941 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3943 fprintf_filtered (stream, " to %ld",
3944 (long) (data + l - start));
3948 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3950 fprintf_filtered (stream, " %ld",
3951 (long) (data + l - start));
3955 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
3957 fprintf_filtered (stream, " offset %s", phex_nz (ul, 2));
3961 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3963 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
3966 case DW_OP_call_ref:
3967 ul = extract_unsigned_integer (data, offset_size,
3968 gdbarch_byte_order (arch));
3969 data += offset_size;
3970 fprintf_filtered (stream, " offset %s", phex_nz (ul, offset_size));
3974 data = safe_read_uleb128 (data, end, &ul);
3975 fprintf_filtered (stream, " %s (bytes)", pulongest (ul));
3978 case DW_OP_bit_piece:
3982 data = safe_read_uleb128 (data, end, &ul);
3983 data = safe_read_uleb128 (data, end, &offset);
3984 fprintf_filtered (stream, " size %s offset %s (bits)",
3985 pulongest (ul), pulongest (offset));
3989 case DW_OP_implicit_pointer:
3990 case DW_OP_GNU_implicit_pointer:
3992 ul = extract_unsigned_integer (data, offset_size,
3993 gdbarch_byte_order (arch));
3994 data += offset_size;
3996 data = safe_read_sleb128 (data, end, &l);
3998 fprintf_filtered (stream, " DIE %s offset %s",
3999 phex_nz (ul, offset_size),
4004 case DW_OP_deref_type:
4005 case DW_OP_GNU_deref_type:
4007 int deref_addr_size = *data++;
4010 data = safe_read_uleb128 (data, end, &ul);
4011 cu_offset offset = (cu_offset) ul;
4012 type = dwarf2_get_die_type (offset, per_cu);
4013 fprintf_filtered (stream, "<");
4014 type_print (type, "", stream, -1);
4015 fprintf_filtered (stream, " [0x%s]> %d",
4016 phex_nz (to_underlying (offset), 0),
4021 case DW_OP_const_type:
4022 case DW_OP_GNU_const_type:
4026 data = safe_read_uleb128 (data, end, &ul);
4027 cu_offset type_die = (cu_offset) ul;
4028 type = dwarf2_get_die_type (type_die, per_cu);
4029 fprintf_filtered (stream, "<");
4030 type_print (type, "", stream, -1);
4031 fprintf_filtered (stream, " [0x%s]>",
4032 phex_nz (to_underlying (type_die), 0));
4036 case DW_OP_regval_type:
4037 case DW_OP_GNU_regval_type:
4042 data = safe_read_uleb128 (data, end, ®);
4043 data = safe_read_uleb128 (data, end, &ul);
4044 cu_offset type_die = (cu_offset) ul;
4046 type = dwarf2_get_die_type (type_die, per_cu);
4047 fprintf_filtered (stream, "<");
4048 type_print (type, "", stream, -1);
4049 fprintf_filtered (stream, " [0x%s]> [$%s]",
4050 phex_nz (to_underlying (type_die), 0),
4051 locexpr_regname (arch, reg));
4056 case DW_OP_GNU_convert:
4057 case DW_OP_reinterpret:
4058 case DW_OP_GNU_reinterpret:
4060 data = safe_read_uleb128 (data, end, &ul);
4061 cu_offset type_die = (cu_offset) ul;
4063 if (to_underlying (type_die) == 0)
4064 fprintf_filtered (stream, "<0>");
4069 type = dwarf2_get_die_type (type_die, per_cu);
4070 fprintf_filtered (stream, "<");
4071 type_print (type, "", stream, -1);
4072 fprintf_filtered (stream, " [0x%s]>",
4073 phex_nz (to_underlying (type_die), 0));
4078 case DW_OP_entry_value:
4079 case DW_OP_GNU_entry_value:
4080 data = safe_read_uleb128 (data, end, &ul);
4081 fputc_filtered ('\n', stream);
4082 disassemble_dwarf_expression (stream, arch, addr_size, offset_size,
4083 start, data, data + ul, indent + 2,
4088 case DW_OP_GNU_parameter_ref:
4089 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4091 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
4095 case DW_OP_GNU_addr_index:
4096 data = safe_read_uleb128 (data, end, &ul);
4097 ul = dwarf2_read_addr_index (per_cu, ul);
4098 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
4100 case DW_OP_GNU_const_index:
4101 data = safe_read_uleb128 (data, end, &ul);
4102 ul = dwarf2_read_addr_index (per_cu, ul);
4103 fprintf_filtered (stream, " %s", pulongest (ul));
4106 case DW_OP_GNU_variable_value:
4107 ul = extract_unsigned_integer (data, offset_size,
4108 gdbarch_byte_order (arch));
4109 data += offset_size;
4110 fprintf_filtered (stream, " offset %s", phex_nz (ul, offset_size));
4114 fprintf_filtered (stream, "\n");
4120 /* Describe a single location, which may in turn consist of multiple
4124 locexpr_describe_location_1 (struct symbol *symbol, CORE_ADDR addr,
4125 struct ui_file *stream,
4126 const gdb_byte *data, size_t size,
4127 struct objfile *objfile, unsigned int addr_size,
4128 int offset_size, struct dwarf2_per_cu_data *per_cu)
4130 const gdb_byte *end = data + size;
4131 int first_piece = 1, bad = 0;
4135 const gdb_byte *here = data;
4136 int disassemble = 1;
4141 fprintf_filtered (stream, _(", and "));
4143 if (!dwarf_always_disassemble)
4145 data = locexpr_describe_location_piece (symbol, stream,
4146 addr, objfile, per_cu,
4147 data, end, addr_size);
4148 /* If we printed anything, or if we have an empty piece,
4149 then don't disassemble. */
4151 || data[0] == DW_OP_piece
4152 || data[0] == DW_OP_bit_piece)
4157 fprintf_filtered (stream, _("a complex DWARF expression:\n"));
4158 data = disassemble_dwarf_expression (stream,
4159 get_objfile_arch (objfile),
4160 addr_size, offset_size, data,
4162 dwarf_always_disassemble,
4168 int empty = data == here;
4171 fprintf_filtered (stream, " ");
4172 if (data[0] == DW_OP_piece)
4176 data = safe_read_uleb128 (data + 1, end, &bytes);
4179 fprintf_filtered (stream, _("an empty %s-byte piece"),
4182 fprintf_filtered (stream, _(" [%s-byte piece]"),
4185 else if (data[0] == DW_OP_bit_piece)
4187 uint64_t bits, offset;
4189 data = safe_read_uleb128 (data + 1, end, &bits);
4190 data = safe_read_uleb128 (data, end, &offset);
4193 fprintf_filtered (stream,
4194 _("an empty %s-bit piece"),
4197 fprintf_filtered (stream,
4198 _(" [%s-bit piece, offset %s bits]"),
4199 pulongest (bits), pulongest (offset));
4209 if (bad || data > end)
4210 error (_("Corrupted DWARF2 expression for \"%s\"."),
4211 SYMBOL_PRINT_NAME (symbol));
4214 /* Print a natural-language description of SYMBOL to STREAM. This
4215 version is for a symbol with a single location. */
4218 locexpr_describe_location (struct symbol *symbol, CORE_ADDR addr,
4219 struct ui_file *stream)
4221 struct dwarf2_locexpr_baton *dlbaton
4222 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
4223 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4224 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4225 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4227 locexpr_describe_location_1 (symbol, addr, stream,
4228 dlbaton->data, dlbaton->size,
4229 objfile, addr_size, offset_size,
4233 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4234 any necessary bytecode in AX. */
4237 locexpr_tracepoint_var_ref (struct symbol *symbol, struct agent_expr *ax,
4238 struct axs_value *value)
4240 struct dwarf2_locexpr_baton *dlbaton
4241 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
4242 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4244 if (dlbaton->size == 0)
4245 value->optimized_out = 1;
4247 dwarf2_compile_expr_to_ax (ax, value, addr_size, dlbaton->data,
4248 dlbaton->data + dlbaton->size, dlbaton->per_cu);
4251 /* symbol_computed_ops 'generate_c_location' method. */
4254 locexpr_generate_c_location (struct symbol *sym, string_file *stream,
4255 struct gdbarch *gdbarch,
4256 unsigned char *registers_used,
4257 CORE_ADDR pc, const char *result_name)
4259 struct dwarf2_locexpr_baton *dlbaton
4260 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (sym);
4261 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4263 if (dlbaton->size == 0)
4264 error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));
4266 compile_dwarf_expr_to_c (stream, result_name,
4267 sym, pc, gdbarch, registers_used, addr_size,
4268 dlbaton->data, dlbaton->data + dlbaton->size,
4272 /* The set of location functions used with the DWARF-2 expression
4274 const struct symbol_computed_ops dwarf2_locexpr_funcs = {
4275 locexpr_read_variable,
4276 locexpr_read_variable_at_entry,
4277 locexpr_get_symbol_read_needs,
4278 locexpr_describe_location,
4279 0, /* location_has_loclist */
4280 locexpr_tracepoint_var_ref,
4281 locexpr_generate_c_location
4285 /* Wrapper functions for location lists. These generally find
4286 the appropriate location expression and call something above. */
4288 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
4289 evaluator to calculate the location. */
4290 static struct value *
4291 loclist_read_variable (struct symbol *symbol, struct frame_info *frame)
4293 struct dwarf2_loclist_baton *dlbaton
4294 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4296 const gdb_byte *data;
4298 CORE_ADDR pc = frame ? get_frame_address_in_block (frame) : 0;
4300 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4301 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, data, size,
4307 /* Read variable SYMBOL like loclist_read_variable at (callee) FRAME's function
4308 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
4311 Function always returns non-NULL value, it may be marked optimized out if
4312 inferior frame information is not available. It throws NO_ENTRY_VALUE_ERROR
4313 if it cannot resolve the parameter for any reason. */
4315 static struct value *
4316 loclist_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
4318 struct dwarf2_loclist_baton *dlbaton
4319 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4320 const gdb_byte *data;
4324 if (frame == NULL || !get_frame_func_if_available (frame, &pc))
4325 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4327 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4329 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4331 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, data, size);
4334 /* Implementation of get_symbol_read_needs from
4335 symbol_computed_ops. */
4337 static enum symbol_needs_kind
4338 loclist_symbol_needs (struct symbol *symbol)
4340 /* If there's a location list, then assume we need to have a frame
4341 to choose the appropriate location expression. With tracking of
4342 global variables this is not necessarily true, but such tracking
4343 is disabled in GCC at the moment until we figure out how to
4346 return SYMBOL_NEEDS_FRAME;
4349 /* Print a natural-language description of SYMBOL to STREAM. This
4350 version applies when there is a list of different locations, each
4351 with a specified address range. */
4354 loclist_describe_location (struct symbol *symbol, CORE_ADDR addr,
4355 struct ui_file *stream)
4357 struct dwarf2_loclist_baton *dlbaton
4358 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4359 const gdb_byte *loc_ptr, *buf_end;
4360 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4361 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4362 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4363 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4364 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4365 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
4366 /* Adjust base_address for relocatable objects. */
4367 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
4368 CORE_ADDR base_address = dlbaton->base_address + base_offset;
4371 loc_ptr = dlbaton->data;
4372 buf_end = dlbaton->data + dlbaton->size;
4374 fprintf_filtered (stream, _("multi-location:\n"));
4376 /* Iterate through locations until we run out. */
4379 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
4381 enum debug_loc_kind kind;
4382 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
4384 if (dlbaton->from_dwo)
4385 kind = decode_debug_loc_dwo_addresses (dlbaton->per_cu,
4386 loc_ptr, buf_end, &new_ptr,
4387 &low, &high, byte_order);
4389 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
4391 byte_order, addr_size,
4396 case DEBUG_LOC_END_OF_LIST:
4399 case DEBUG_LOC_BASE_ADDRESS:
4400 base_address = high + base_offset;
4401 fprintf_filtered (stream, _(" Base address %s"),
4402 paddress (gdbarch, base_address));
4404 case DEBUG_LOC_START_END:
4405 case DEBUG_LOC_START_LENGTH:
4407 case DEBUG_LOC_BUFFER_OVERFLOW:
4408 case DEBUG_LOC_INVALID_ENTRY:
4409 error (_("Corrupted DWARF expression for symbol \"%s\"."),
4410 SYMBOL_PRINT_NAME (symbol));
4412 gdb_assert_not_reached ("bad debug_loc_kind");
4415 /* Otherwise, a location expression entry. */
4416 low += base_address;
4417 high += base_address;
4419 low = gdbarch_adjust_dwarf2_addr (gdbarch, low);
4420 high = gdbarch_adjust_dwarf2_addr (gdbarch, high);
4422 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
4425 /* (It would improve readability to print only the minimum
4426 necessary digits of the second number of the range.) */
4427 fprintf_filtered (stream, _(" Range %s-%s: "),
4428 paddress (gdbarch, low), paddress (gdbarch, high));
4430 /* Now describe this particular location. */
4431 locexpr_describe_location_1 (symbol, low, stream, loc_ptr, length,
4432 objfile, addr_size, offset_size,
4435 fprintf_filtered (stream, "\n");
4441 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4442 any necessary bytecode in AX. */
4444 loclist_tracepoint_var_ref (struct symbol *symbol, struct agent_expr *ax,
4445 struct axs_value *value)
4447 struct dwarf2_loclist_baton *dlbaton
4448 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4449 const gdb_byte *data;
4451 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4453 data = dwarf2_find_location_expression (dlbaton, &size, ax->scope);
4455 value->optimized_out = 1;
4457 dwarf2_compile_expr_to_ax (ax, value, addr_size, data, data + size,
4461 /* symbol_computed_ops 'generate_c_location' method. */
4464 loclist_generate_c_location (struct symbol *sym, string_file *stream,
4465 struct gdbarch *gdbarch,
4466 unsigned char *registers_used,
4467 CORE_ADDR pc, const char *result_name)
4469 struct dwarf2_loclist_baton *dlbaton
4470 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (sym);
4471 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4472 const gdb_byte *data;
4475 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4477 error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));
4479 compile_dwarf_expr_to_c (stream, result_name,
4480 sym, pc, gdbarch, registers_used, addr_size,
4485 /* The set of location functions used with the DWARF-2 expression
4486 evaluator and location lists. */
4487 const struct symbol_computed_ops dwarf2_loclist_funcs = {
4488 loclist_read_variable,
4489 loclist_read_variable_at_entry,
4490 loclist_symbol_needs,
4491 loclist_describe_location,
4492 1, /* location_has_loclist */
4493 loclist_tracepoint_var_ref,
4494 loclist_generate_c_location
4498 _initialize_dwarf2loc (void)
4500 add_setshow_zuinteger_cmd ("entry-values", class_maintenance,
4501 &entry_values_debug,
4502 _("Set entry values and tail call frames "
4504 _("Show entry values and tail call frames "
4506 _("When non-zero, the process of determining "
4507 "parameter values from function entry point "
4508 "and tail call frames will be printed."),
4510 show_entry_values_debug,
4511 &setdebuglist, &showdebuglist);