1 /* DWARF 2 Expression Evaluator.
3 Copyright (C) 2001-2014 Free Software Foundation, Inc.
5 Contributed by Daniel Berlin (dan@dberlin.org)
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
28 #include "dwarf2expr.h"
30 /* Local prototypes. */
32 static void execute_stack_op (struct dwarf_expr_context *,
33 const gdb_byte *, const gdb_byte *);
35 /* Cookie for gdbarch data. */
37 static struct gdbarch_data *dwarf_arch_cookie;
39 /* This holds gdbarch-specific types used by the DWARF expression
40 evaluator. See comments in execute_stack_op. */
42 struct dwarf_gdbarch_types
44 struct type *dw_types[3];
47 /* Allocate and fill in dwarf_gdbarch_types for an arch. */
50 dwarf_gdbarch_types_init (struct gdbarch *gdbarch)
52 struct dwarf_gdbarch_types *types
53 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct dwarf_gdbarch_types);
55 /* The types themselves are lazily initialized. */
60 /* Return the type used for DWARF operations where the type is
61 unspecified in the DWARF spec. Only certain sizes are
65 dwarf_expr_address_type (struct dwarf_expr_context *ctx)
67 struct dwarf_gdbarch_types *types = gdbarch_data (ctx->gdbarch,
71 if (ctx->addr_size == 2)
73 else if (ctx->addr_size == 4)
75 else if (ctx->addr_size == 8)
78 error (_("Unsupported address size in DWARF expressions: %d bits"),
81 if (types->dw_types[ndx] == NULL)
83 = arch_integer_type (ctx->gdbarch,
85 0, "<signed DWARF address type>");
87 return types->dw_types[ndx];
90 /* Create a new context for the expression evaluator. */
92 struct dwarf_expr_context *
93 new_dwarf_expr_context (void)
95 struct dwarf_expr_context *retval;
97 retval = xcalloc (1, sizeof (struct dwarf_expr_context));
98 retval->stack_len = 0;
99 retval->stack_allocated = 10;
100 retval->stack = xmalloc (retval->stack_allocated
101 * sizeof (struct dwarf_stack_value));
102 retval->num_pieces = 0;
104 retval->max_recursion_depth = 0x100;
108 /* Release the memory allocated to CTX. */
111 free_dwarf_expr_context (struct dwarf_expr_context *ctx)
118 /* Helper for make_cleanup_free_dwarf_expr_context. */
121 free_dwarf_expr_context_cleanup (void *arg)
123 free_dwarf_expr_context (arg);
126 /* Return a cleanup that calls free_dwarf_expr_context. */
129 make_cleanup_free_dwarf_expr_context (struct dwarf_expr_context *ctx)
131 return make_cleanup (free_dwarf_expr_context_cleanup, ctx);
134 /* Expand the memory allocated to CTX's stack to contain at least
135 NEED more elements than are currently used. */
138 dwarf_expr_grow_stack (struct dwarf_expr_context *ctx, size_t need)
140 if (ctx->stack_len + need > ctx->stack_allocated)
142 size_t newlen = ctx->stack_len + need + 10;
144 ctx->stack = xrealloc (ctx->stack,
145 newlen * sizeof (struct dwarf_stack_value));
146 ctx->stack_allocated = newlen;
150 /* Push VALUE onto CTX's stack. */
153 dwarf_expr_push (struct dwarf_expr_context *ctx, struct value *value,
156 struct dwarf_stack_value *v;
158 dwarf_expr_grow_stack (ctx, 1);
159 v = &ctx->stack[ctx->stack_len++];
161 v->in_stack_memory = in_stack_memory;
164 /* Push VALUE onto CTX's stack. */
167 dwarf_expr_push_address (struct dwarf_expr_context *ctx, CORE_ADDR value,
170 dwarf_expr_push (ctx,
171 value_from_ulongest (dwarf_expr_address_type (ctx), value),
175 /* Pop the top item off of CTX's stack. */
178 dwarf_expr_pop (struct dwarf_expr_context *ctx)
180 if (ctx->stack_len <= 0)
181 error (_("dwarf expression stack underflow"));
185 /* Retrieve the N'th item on CTX's stack. */
188 dwarf_expr_fetch (struct dwarf_expr_context *ctx, int n)
190 if (ctx->stack_len <= n)
191 error (_("Asked for position %d of stack, "
192 "stack only has %d elements on it."),
194 return ctx->stack[ctx->stack_len - (1 + n)].value;
197 /* Require that TYPE be an integral type; throw an exception if not. */
200 dwarf_require_integral (struct type *type)
202 if (TYPE_CODE (type) != TYPE_CODE_INT
203 && TYPE_CODE (type) != TYPE_CODE_CHAR
204 && TYPE_CODE (type) != TYPE_CODE_BOOL)
205 error (_("integral type expected in DWARF expression"));
208 /* Return the unsigned form of TYPE. TYPE is necessarily an integral
212 get_unsigned_type (struct gdbarch *gdbarch, struct type *type)
214 switch (TYPE_LENGTH (type))
217 return builtin_type (gdbarch)->builtin_uint8;
219 return builtin_type (gdbarch)->builtin_uint16;
221 return builtin_type (gdbarch)->builtin_uint32;
223 return builtin_type (gdbarch)->builtin_uint64;
225 error (_("no unsigned variant found for type, while evaluating "
226 "DWARF expression"));
230 /* Return the signed form of TYPE. TYPE is necessarily an integral
234 get_signed_type (struct gdbarch *gdbarch, struct type *type)
236 switch (TYPE_LENGTH (type))
239 return builtin_type (gdbarch)->builtin_int8;
241 return builtin_type (gdbarch)->builtin_int16;
243 return builtin_type (gdbarch)->builtin_int32;
245 return builtin_type (gdbarch)->builtin_int64;
247 error (_("no signed variant found for type, while evaluating "
248 "DWARF expression"));
252 /* Retrieve the N'th item on CTX's stack, converted to an address. */
255 dwarf_expr_fetch_address (struct dwarf_expr_context *ctx, int n)
257 struct value *result_val = dwarf_expr_fetch (ctx, n);
258 enum bfd_endian byte_order = gdbarch_byte_order (ctx->gdbarch);
261 dwarf_require_integral (value_type (result_val));
262 result = extract_unsigned_integer (value_contents (result_val),
263 TYPE_LENGTH (value_type (result_val)),
266 /* For most architectures, calling extract_unsigned_integer() alone
267 is sufficient for extracting an address. However, some
268 architectures (e.g. MIPS) use signed addresses and using
269 extract_unsigned_integer() will not produce a correct
270 result. Make sure we invoke gdbarch_integer_to_address()
271 for those architectures which require it. */
272 if (gdbarch_integer_to_address_p (ctx->gdbarch))
274 gdb_byte *buf = alloca (ctx->addr_size);
275 struct type *int_type = get_unsigned_type (ctx->gdbarch,
276 value_type (result_val));
278 store_unsigned_integer (buf, ctx->addr_size, byte_order, result);
279 return gdbarch_integer_to_address (ctx->gdbarch, int_type, buf);
282 return (CORE_ADDR) result;
285 /* Retrieve the in_stack_memory flag of the N'th item on CTX's stack. */
288 dwarf_expr_fetch_in_stack_memory (struct dwarf_expr_context *ctx, int n)
290 if (ctx->stack_len <= n)
291 error (_("Asked for position %d of stack, "
292 "stack only has %d elements on it."),
294 return ctx->stack[ctx->stack_len - (1 + n)].in_stack_memory;
297 /* Return true if the expression stack is empty. */
300 dwarf_expr_stack_empty_p (struct dwarf_expr_context *ctx)
302 return ctx->stack_len == 0;
305 /* Add a new piece to CTX's piece list. */
307 add_piece (struct dwarf_expr_context *ctx, ULONGEST size, ULONGEST offset)
309 struct dwarf_expr_piece *p;
313 ctx->pieces = xrealloc (ctx->pieces,
315 * sizeof (struct dwarf_expr_piece)));
317 p = &ctx->pieces[ctx->num_pieces - 1];
318 p->location = ctx->location;
322 if (p->location == DWARF_VALUE_LITERAL)
324 p->v.literal.data = ctx->data;
325 p->v.literal.length = ctx->len;
327 else if (dwarf_expr_stack_empty_p (ctx))
329 p->location = DWARF_VALUE_OPTIMIZED_OUT;
330 /* Also reset the context's location, for our callers. This is
331 a somewhat strange approach, but this lets us avoid setting
332 the location to DWARF_VALUE_MEMORY in all the individual
333 cases in the evaluator. */
334 ctx->location = DWARF_VALUE_OPTIMIZED_OUT;
336 else if (p->location == DWARF_VALUE_MEMORY)
338 p->v.mem.addr = dwarf_expr_fetch_address (ctx, 0);
339 p->v.mem.in_stack_memory = dwarf_expr_fetch_in_stack_memory (ctx, 0);
341 else if (p->location == DWARF_VALUE_IMPLICIT_POINTER)
343 p->v.ptr.die.sect_off = ctx->len;
344 p->v.ptr.offset = value_as_long (dwarf_expr_fetch (ctx, 0));
346 else if (p->location == DWARF_VALUE_REGISTER)
347 p->v.regno = value_as_long (dwarf_expr_fetch (ctx, 0));
350 p->v.value = dwarf_expr_fetch (ctx, 0);
354 /* Evaluate the expression at ADDR (LEN bytes long) using the context
358 dwarf_expr_eval (struct dwarf_expr_context *ctx, const gdb_byte *addr,
361 int old_recursion_depth = ctx->recursion_depth;
363 execute_stack_op (ctx, addr, addr + len);
365 /* CTX RECURSION_DEPTH becomes invalid if an exception was thrown here. */
367 gdb_assert (ctx->recursion_depth == old_recursion_depth);
370 /* Helper to read a uleb128 value or throw an error. */
373 safe_read_uleb128 (const gdb_byte *buf, const gdb_byte *buf_end,
376 buf = gdb_read_uleb128 (buf, buf_end, r);
378 error (_("DWARF expression error: ran off end of buffer reading uleb128 value"));
382 /* Helper to read a sleb128 value or throw an error. */
385 safe_read_sleb128 (const gdb_byte *buf, const gdb_byte *buf_end,
388 buf = gdb_read_sleb128 (buf, buf_end, r);
390 error (_("DWARF expression error: ran off end of buffer reading sleb128 value"));
395 safe_skip_leb128 (const gdb_byte *buf, const gdb_byte *buf_end)
397 buf = gdb_skip_leb128 (buf, buf_end);
399 error (_("DWARF expression error: ran off end of buffer reading leb128 value"));
404 /* Check that the current operator is either at the end of an
405 expression, or that it is followed by a composition operator. */
408 dwarf_expr_require_composition (const gdb_byte *op_ptr, const gdb_byte *op_end,
411 /* It seems like DW_OP_GNU_uninit should be handled here. However,
412 it doesn't seem to make sense for DW_OP_*_value, and it was not
413 checked at the other place that this function is called. */
414 if (op_ptr != op_end && *op_ptr != DW_OP_piece && *op_ptr != DW_OP_bit_piece)
415 error (_("DWARF-2 expression error: `%s' operations must be "
416 "used either alone or in conjunction with DW_OP_piece "
417 "or DW_OP_bit_piece."),
421 /* Return true iff the types T1 and T2 are "the same". This only does
422 checks that might reasonably be needed to compare DWARF base
426 base_types_equal_p (struct type *t1, struct type *t2)
428 if (TYPE_CODE (t1) != TYPE_CODE (t2))
430 if (TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2))
432 return TYPE_LENGTH (t1) == TYPE_LENGTH (t2);
435 /* A convenience function to call get_base_type on CTX and return the
436 result. DIE is the DIE whose type we need. SIZE is non-zero if
437 this function should verify that the resulting type has the correct
441 dwarf_get_base_type (struct dwarf_expr_context *ctx, cu_offset die, int size)
445 if (ctx->funcs->get_base_type)
447 result = ctx->funcs->get_base_type (ctx, die);
449 error (_("Could not find type for DW_OP_GNU_const_type"));
450 if (size != 0 && TYPE_LENGTH (result) != size)
451 error (_("DW_OP_GNU_const_type has different sizes for type and data"));
454 /* Anything will do. */
455 result = builtin_type (ctx->gdbarch)->builtin_int;
460 /* If <BUF..BUF_END] contains DW_FORM_block* with single DW_OP_reg* return the
461 DWARF register number. Otherwise return -1. */
464 dwarf_block_to_dwarf_reg (const gdb_byte *buf, const gdb_byte *buf_end)
470 if (*buf >= DW_OP_reg0 && *buf <= DW_OP_reg31)
472 if (buf_end - buf != 1)
474 return *buf - DW_OP_reg0;
477 if (*buf == DW_OP_GNU_regval_type)
480 buf = gdb_read_uleb128 (buf, buf_end, &dwarf_reg);
483 buf = gdb_skip_leb128 (buf, buf_end);
487 else if (*buf == DW_OP_regx)
490 buf = gdb_read_uleb128 (buf, buf_end, &dwarf_reg);
496 if (buf != buf_end || (int) dwarf_reg != dwarf_reg)
501 /* If <BUF..BUF_END] contains DW_FORM_block* with just DW_OP_breg*(0) and
502 DW_OP_deref* return the DWARF register number. Otherwise return -1.
503 DEREF_SIZE_RETURN contains -1 for DW_OP_deref; otherwise it contains the
504 size from DW_OP_deref_size. */
507 dwarf_block_to_dwarf_reg_deref (const gdb_byte *buf, const gdb_byte *buf_end,
508 CORE_ADDR *deref_size_return)
516 if (*buf >= DW_OP_breg0 && *buf <= DW_OP_breg31)
518 dwarf_reg = *buf - DW_OP_breg0;
523 else if (*buf == DW_OP_bregx)
526 buf = gdb_read_uleb128 (buf, buf_end, &dwarf_reg);
529 if ((int) dwarf_reg != dwarf_reg)
535 buf = gdb_read_sleb128 (buf, buf_end, &offset);
541 if (*buf == DW_OP_deref)
544 *deref_size_return = -1;
546 else if (*buf == DW_OP_deref_size)
551 *deref_size_return = *buf++;
562 /* If <BUF..BUF_END] contains DW_FORM_block* with single DW_OP_fbreg(X) fill
563 in FB_OFFSET_RETURN with the X offset and return 1. Otherwise return 0. */
566 dwarf_block_to_fb_offset (const gdb_byte *buf, const gdb_byte *buf_end,
567 CORE_ADDR *fb_offset_return)
574 if (*buf != DW_OP_fbreg)
578 buf = gdb_read_sleb128 (buf, buf_end, &fb_offset);
581 *fb_offset_return = fb_offset;
582 if (buf != buf_end || fb_offset != (LONGEST) *fb_offset_return)
588 /* If <BUF..BUF_END] contains DW_FORM_block* with single DW_OP_bregSP(X) fill
589 in SP_OFFSET_RETURN with the X offset and return 1. Otherwise return 0.
590 The matched SP register number depends on GDBARCH. */
593 dwarf_block_to_sp_offset (struct gdbarch *gdbarch, const gdb_byte *buf,
594 const gdb_byte *buf_end, CORE_ADDR *sp_offset_return)
601 if (*buf >= DW_OP_breg0 && *buf <= DW_OP_breg31)
603 dwarf_reg = *buf - DW_OP_breg0;
608 if (*buf != DW_OP_bregx)
611 buf = gdb_read_uleb128 (buf, buf_end, &dwarf_reg);
616 if (gdbarch_dwarf2_reg_to_regnum (gdbarch, dwarf_reg)
617 != gdbarch_sp_regnum (gdbarch))
620 buf = gdb_read_sleb128 (buf, buf_end, &sp_offset);
623 *sp_offset_return = sp_offset;
624 if (buf != buf_end || sp_offset != (LONGEST) *sp_offset_return)
630 /* The engine for the expression evaluator. Using the context in CTX,
631 evaluate the expression between OP_PTR and OP_END. */
634 execute_stack_op (struct dwarf_expr_context *ctx,
635 const gdb_byte *op_ptr, const gdb_byte *op_end)
637 enum bfd_endian byte_order = gdbarch_byte_order (ctx->gdbarch);
638 /* Old-style "untyped" DWARF values need special treatment in a
639 couple of places, specifically DW_OP_mod and DW_OP_shr. We need
640 a special type for these values so we can distinguish them from
641 values that have an explicit type, because explicitly-typed
642 values do not need special treatment. This special type must be
643 different (in the `==' sense) from any base type coming from the
645 struct type *address_type = dwarf_expr_address_type (ctx);
647 ctx->location = DWARF_VALUE_MEMORY;
648 ctx->initialized = 1; /* Default is initialized. */
650 if (ctx->recursion_depth > ctx->max_recursion_depth)
651 error (_("DWARF-2 expression error: Loop detected (%d)."),
652 ctx->recursion_depth);
653 ctx->recursion_depth++;
655 while (op_ptr < op_end)
657 enum dwarf_location_atom op = *op_ptr++;
659 /* Assume the value is not in stack memory.
660 Code that knows otherwise sets this to 1.
661 Some arithmetic on stack addresses can probably be assumed to still
662 be a stack address, but we skip this complication for now.
663 This is just an optimization, so it's always ok to punt
664 and leave this as 0. */
665 int in_stack_memory = 0;
666 uint64_t uoffset, reg;
668 struct value *result_val = NULL;
670 /* The DWARF expression might have a bug causing an infinite
671 loop. In that case, quitting is the only way out. */
708 result = op - DW_OP_lit0;
709 result_val = value_from_ulongest (address_type, result);
713 result = extract_unsigned_integer (op_ptr,
714 ctx->addr_size, byte_order);
715 op_ptr += ctx->addr_size;
716 /* Some versions of GCC emit DW_OP_addr before
717 DW_OP_GNU_push_tls_address. In this case the value is an
718 index, not an address. We don't support things like
719 branching between the address and the TLS op. */
720 if (op_ptr >= op_end || *op_ptr != DW_OP_GNU_push_tls_address)
721 result += ctx->offset;
722 result_val = value_from_ulongest (address_type, result);
725 case DW_OP_GNU_addr_index:
726 op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
727 result = (ctx->funcs->get_addr_index) (ctx->baton, uoffset);
728 result += ctx->offset;
729 result_val = value_from_ulongest (address_type, result);
731 case DW_OP_GNU_const_index:
732 op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
733 result = (ctx->funcs->get_addr_index) (ctx->baton, uoffset);
734 result_val = value_from_ulongest (address_type, result);
738 result = extract_unsigned_integer (op_ptr, 1, byte_order);
739 result_val = value_from_ulongest (address_type, result);
743 result = extract_signed_integer (op_ptr, 1, byte_order);
744 result_val = value_from_ulongest (address_type, result);
748 result = extract_unsigned_integer (op_ptr, 2, byte_order);
749 result_val = value_from_ulongest (address_type, result);
753 result = extract_signed_integer (op_ptr, 2, byte_order);
754 result_val = value_from_ulongest (address_type, result);
758 result = extract_unsigned_integer (op_ptr, 4, byte_order);
759 result_val = value_from_ulongest (address_type, result);
763 result = extract_signed_integer (op_ptr, 4, byte_order);
764 result_val = value_from_ulongest (address_type, result);
768 result = extract_unsigned_integer (op_ptr, 8, byte_order);
769 result_val = value_from_ulongest (address_type, result);
773 result = extract_signed_integer (op_ptr, 8, byte_order);
774 result_val = value_from_ulongest (address_type, result);
778 op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
780 result_val = value_from_ulongest (address_type, result);
783 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
785 result_val = value_from_ulongest (address_type, result);
788 /* The DW_OP_reg operations are required to occur alone in
789 location expressions. */
823 && *op_ptr != DW_OP_piece
824 && *op_ptr != DW_OP_bit_piece
825 && *op_ptr != DW_OP_GNU_uninit)
826 error (_("DWARF-2 expression error: DW_OP_reg operations must be "
827 "used either alone or in conjunction with DW_OP_piece "
828 "or DW_OP_bit_piece."));
830 result = op - DW_OP_reg0;
831 result_val = value_from_ulongest (address_type, result);
832 ctx->location = DWARF_VALUE_REGISTER;
836 op_ptr = safe_read_uleb128 (op_ptr, op_end, ®);
837 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
840 result_val = value_from_ulongest (address_type, result);
841 ctx->location = DWARF_VALUE_REGISTER;
844 case DW_OP_implicit_value:
848 op_ptr = safe_read_uleb128 (op_ptr, op_end, &len);
849 if (op_ptr + len > op_end)
850 error (_("DW_OP_implicit_value: too few bytes available."));
853 ctx->location = DWARF_VALUE_LITERAL;
855 dwarf_expr_require_composition (op_ptr, op_end,
856 "DW_OP_implicit_value");
860 case DW_OP_stack_value:
861 ctx->location = DWARF_VALUE_STACK;
862 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_stack_value");
865 case DW_OP_GNU_implicit_pointer:
869 if (ctx->ref_addr_size == -1)
870 error (_("DWARF-2 expression error: DW_OP_GNU_implicit_pointer "
871 "is not allowed in frame context"));
873 /* The referred-to DIE of sect_offset kind. */
874 ctx->len = extract_unsigned_integer (op_ptr, ctx->ref_addr_size,
876 op_ptr += ctx->ref_addr_size;
878 /* The byte offset into the data. */
879 op_ptr = safe_read_sleb128 (op_ptr, op_end, &len);
880 result = (ULONGEST) len;
881 result_val = value_from_ulongest (address_type, result);
883 ctx->location = DWARF_VALUE_IMPLICIT_POINTER;
884 dwarf_expr_require_composition (op_ptr, op_end,
885 "DW_OP_GNU_implicit_pointer");
922 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
923 result = (ctx->funcs->read_addr_from_reg) (ctx->baton,
926 result_val = value_from_ulongest (address_type, result);
931 op_ptr = safe_read_uleb128 (op_ptr, op_end, ®);
932 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
933 result = (ctx->funcs->read_addr_from_reg) (ctx->baton, reg);
935 result_val = value_from_ulongest (address_type, result);
940 const gdb_byte *datastart;
942 unsigned int before_stack_len;
944 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
945 /* Rather than create a whole new context, we simply
946 record the stack length before execution, then reset it
947 afterwards, effectively erasing whatever the recursive
949 before_stack_len = ctx->stack_len;
950 /* FIXME: cagney/2003-03-26: This code should be using
951 get_frame_base_address(), and then implement a dwarf2
952 specific this_base method. */
953 (ctx->funcs->get_frame_base) (ctx->baton, &datastart, &datalen);
954 dwarf_expr_eval (ctx, datastart, datalen);
955 if (ctx->location == DWARF_VALUE_MEMORY)
956 result = dwarf_expr_fetch_address (ctx, 0);
957 else if (ctx->location == DWARF_VALUE_REGISTER)
958 result = (ctx->funcs->read_addr_from_reg)
960 value_as_long (dwarf_expr_fetch (ctx, 0)));
962 error (_("Not implemented: computing frame "
963 "base using explicit value operator"));
964 result = result + offset;
965 result_val = value_from_ulongest (address_type, result);
967 ctx->stack_len = before_stack_len;
968 ctx->location = DWARF_VALUE_MEMORY;
973 result_val = dwarf_expr_fetch (ctx, 0);
974 in_stack_memory = dwarf_expr_fetch_in_stack_memory (ctx, 0);
978 dwarf_expr_pop (ctx);
983 result_val = dwarf_expr_fetch (ctx, offset);
984 in_stack_memory = dwarf_expr_fetch_in_stack_memory (ctx, offset);
989 struct dwarf_stack_value t1, t2;
991 if (ctx->stack_len < 2)
992 error (_("Not enough elements for "
993 "DW_OP_swap. Need 2, have %d."),
995 t1 = ctx->stack[ctx->stack_len - 1];
996 t2 = ctx->stack[ctx->stack_len - 2];
997 ctx->stack[ctx->stack_len - 1] = t2;
998 ctx->stack[ctx->stack_len - 2] = t1;
1003 result_val = dwarf_expr_fetch (ctx, 1);
1004 in_stack_memory = dwarf_expr_fetch_in_stack_memory (ctx, 1);
1009 struct dwarf_stack_value t1, t2, t3;
1011 if (ctx->stack_len < 3)
1012 error (_("Not enough elements for "
1013 "DW_OP_rot. Need 3, have %d."),
1015 t1 = ctx->stack[ctx->stack_len - 1];
1016 t2 = ctx->stack[ctx->stack_len - 2];
1017 t3 = ctx->stack[ctx->stack_len - 3];
1018 ctx->stack[ctx->stack_len - 1] = t2;
1019 ctx->stack[ctx->stack_len - 2] = t3;
1020 ctx->stack[ctx->stack_len - 3] = t1;
1025 case DW_OP_deref_size:
1026 case DW_OP_GNU_deref_type:
1028 int addr_size = (op == DW_OP_deref ? ctx->addr_size : *op_ptr++);
1029 gdb_byte *buf = alloca (addr_size);
1030 CORE_ADDR addr = dwarf_expr_fetch_address (ctx, 0);
1033 dwarf_expr_pop (ctx);
1035 if (op == DW_OP_GNU_deref_type)
1039 op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
1040 type_die.cu_off = uoffset;
1041 type = dwarf_get_base_type (ctx, type_die, 0);
1044 type = address_type;
1046 (ctx->funcs->read_mem) (ctx->baton, buf, addr, addr_size);
1048 /* If the size of the object read from memory is different
1049 from the type length, we need to zero-extend it. */
1050 if (TYPE_LENGTH (type) != addr_size)
1053 extract_unsigned_integer (buf, addr_size, byte_order);
1055 buf = alloca (TYPE_LENGTH (type));
1056 store_unsigned_integer (buf, TYPE_LENGTH (type),
1057 byte_order, result);
1060 result_val = value_from_contents_and_address (type, buf, addr);
1067 case DW_OP_plus_uconst:
1069 /* Unary operations. */
1070 result_val = dwarf_expr_fetch (ctx, 0);
1071 dwarf_expr_pop (ctx);
1076 if (value_less (result_val,
1077 value_zero (value_type (result_val), not_lval)))
1078 result_val = value_neg (result_val);
1081 result_val = value_neg (result_val);
1084 dwarf_require_integral (value_type (result_val));
1085 result_val = value_complement (result_val);
1087 case DW_OP_plus_uconst:
1088 dwarf_require_integral (value_type (result_val));
1089 result = value_as_long (result_val);
1090 op_ptr = safe_read_uleb128 (op_ptr, op_end, ®);
1092 result_val = value_from_ulongest (address_type, result);
1116 /* Binary operations. */
1117 struct value *first, *second;
1119 second = dwarf_expr_fetch (ctx, 0);
1120 dwarf_expr_pop (ctx);
1122 first = dwarf_expr_fetch (ctx, 0);
1123 dwarf_expr_pop (ctx);
1125 if (! base_types_equal_p (value_type (first), value_type (second)))
1126 error (_("Incompatible types on DWARF stack"));
1131 dwarf_require_integral (value_type (first));
1132 dwarf_require_integral (value_type (second));
1133 result_val = value_binop (first, second, BINOP_BITWISE_AND);
1136 result_val = value_binop (first, second, BINOP_DIV);
1139 result_val = value_binop (first, second, BINOP_SUB);
1144 struct type *orig_type = value_type (first);
1146 /* We have to special-case "old-style" untyped values
1147 -- these must have mod computed using unsigned
1149 if (orig_type == address_type)
1152 = get_unsigned_type (ctx->gdbarch, orig_type);
1155 first = value_cast (utype, first);
1156 second = value_cast (utype, second);
1158 /* Note that value_binop doesn't handle float or
1159 decimal float here. This seems unimportant. */
1160 result_val = value_binop (first, second, BINOP_MOD);
1162 result_val = value_cast (orig_type, result_val);
1166 result_val = value_binop (first, second, BINOP_MUL);
1169 dwarf_require_integral (value_type (first));
1170 dwarf_require_integral (value_type (second));
1171 result_val = value_binop (first, second, BINOP_BITWISE_IOR);
1174 result_val = value_binop (first, second, BINOP_ADD);
1177 dwarf_require_integral (value_type (first));
1178 dwarf_require_integral (value_type (second));
1179 result_val = value_binop (first, second, BINOP_LSH);
1182 dwarf_require_integral (value_type (first));
1183 dwarf_require_integral (value_type (second));
1184 if (!TYPE_UNSIGNED (value_type (first)))
1187 = get_unsigned_type (ctx->gdbarch, value_type (first));
1189 first = value_cast (utype, first);
1192 result_val = value_binop (first, second, BINOP_RSH);
1193 /* Make sure we wind up with the same type we started
1195 if (value_type (result_val) != value_type (second))
1196 result_val = value_cast (value_type (second), result_val);
1199 dwarf_require_integral (value_type (first));
1200 dwarf_require_integral (value_type (second));
1201 if (TYPE_UNSIGNED (value_type (first)))
1204 = get_signed_type (ctx->gdbarch, value_type (first));
1206 first = value_cast (stype, first);
1209 result_val = value_binop (first, second, BINOP_RSH);
1210 /* Make sure we wind up with the same type we started
1212 if (value_type (result_val) != value_type (second))
1213 result_val = value_cast (value_type (second), result_val);
1216 dwarf_require_integral (value_type (first));
1217 dwarf_require_integral (value_type (second));
1218 result_val = value_binop (first, second, BINOP_BITWISE_XOR);
1221 /* A <= B is !(B < A). */
1222 result = ! value_less (second, first);
1223 result_val = value_from_ulongest (address_type, result);
1226 /* A >= B is !(A < B). */
1227 result = ! value_less (first, second);
1228 result_val = value_from_ulongest (address_type, result);
1231 result = value_equal (first, second);
1232 result_val = value_from_ulongest (address_type, result);
1235 result = value_less (first, second);
1236 result_val = value_from_ulongest (address_type, result);
1239 /* A > B is B < A. */
1240 result = value_less (second, first);
1241 result_val = value_from_ulongest (address_type, result);
1244 result = ! value_equal (first, second);
1245 result_val = value_from_ulongest (address_type, result);
1248 internal_error (__FILE__, __LINE__,
1249 _("Can't be reached."));
1254 case DW_OP_call_frame_cfa:
1255 result = (ctx->funcs->get_frame_cfa) (ctx->baton);
1256 result_val = value_from_ulongest (address_type, result);
1257 in_stack_memory = 1;
1260 case DW_OP_GNU_push_tls_address:
1261 /* Variable is at a constant offset in the thread-local
1262 storage block into the objfile for the current thread and
1263 the dynamic linker module containing this expression. Here
1264 we return returns the offset from that base. The top of the
1265 stack has the offset from the beginning of the thread
1266 control block at which the variable is located. Nothing
1267 should follow this operator, so the top of stack would be
1269 result = value_as_long (dwarf_expr_fetch (ctx, 0));
1270 dwarf_expr_pop (ctx);
1271 result = (ctx->funcs->get_tls_address) (ctx->baton, result);
1272 result_val = value_from_ulongest (address_type, result);
1276 offset = extract_signed_integer (op_ptr, 2, byte_order);
1285 offset = extract_signed_integer (op_ptr, 2, byte_order);
1287 val = dwarf_expr_fetch (ctx, 0);
1288 dwarf_require_integral (value_type (val));
1289 if (value_as_long (val) != 0)
1291 dwarf_expr_pop (ctx);
1302 /* Record the piece. */
1303 op_ptr = safe_read_uleb128 (op_ptr, op_end, &size);
1304 add_piece (ctx, 8 * size, 0);
1306 /* Pop off the address/regnum, and reset the location
1308 if (ctx->location != DWARF_VALUE_LITERAL
1309 && ctx->location != DWARF_VALUE_OPTIMIZED_OUT)
1310 dwarf_expr_pop (ctx);
1311 ctx->location = DWARF_VALUE_MEMORY;
1315 case DW_OP_bit_piece:
1317 uint64_t size, offset;
1319 /* Record the piece. */
1320 op_ptr = safe_read_uleb128 (op_ptr, op_end, &size);
1321 op_ptr = safe_read_uleb128 (op_ptr, op_end, &offset);
1322 add_piece (ctx, size, offset);
1324 /* Pop off the address/regnum, and reset the location
1326 if (ctx->location != DWARF_VALUE_LITERAL
1327 && ctx->location != DWARF_VALUE_OPTIMIZED_OUT)
1328 dwarf_expr_pop (ctx);
1329 ctx->location = DWARF_VALUE_MEMORY;
1333 case DW_OP_GNU_uninit:
1334 if (op_ptr != op_end)
1335 error (_("DWARF-2 expression error: DW_OP_GNU_uninit must always "
1336 "be the very last op."));
1338 ctx->initialized = 0;
1345 offset.cu_off = extract_unsigned_integer (op_ptr, 2, byte_order);
1347 ctx->funcs->dwarf_call (ctx, offset);
1355 offset.cu_off = extract_unsigned_integer (op_ptr, 4, byte_order);
1357 ctx->funcs->dwarf_call (ctx, offset);
1361 case DW_OP_GNU_entry_value:
1364 CORE_ADDR deref_size;
1365 union call_site_parameter_u kind_u;
1367 op_ptr = safe_read_uleb128 (op_ptr, op_end, &len);
1368 if (op_ptr + len > op_end)
1369 error (_("DW_OP_GNU_entry_value: too few bytes available."));
1371 kind_u.dwarf_reg = dwarf_block_to_dwarf_reg (op_ptr, op_ptr + len);
1372 if (kind_u.dwarf_reg != -1)
1375 ctx->funcs->push_dwarf_reg_entry_value (ctx,
1376 CALL_SITE_PARAMETER_DWARF_REG,
1378 -1 /* deref_size */);
1382 kind_u.dwarf_reg = dwarf_block_to_dwarf_reg_deref (op_ptr,
1385 if (kind_u.dwarf_reg != -1)
1387 if (deref_size == -1)
1388 deref_size = ctx->addr_size;
1390 ctx->funcs->push_dwarf_reg_entry_value (ctx,
1391 CALL_SITE_PARAMETER_DWARF_REG,
1392 kind_u, deref_size);
1396 error (_("DWARF-2 expression error: DW_OP_GNU_entry_value is "
1397 "supported only for single DW_OP_reg* "
1398 "or for DW_OP_breg*(0)+DW_OP_deref*"));
1401 case DW_OP_GNU_parameter_ref:
1403 union call_site_parameter_u kind_u;
1405 kind_u.param_offset.cu_off = extract_unsigned_integer (op_ptr, 4,
1408 ctx->funcs->push_dwarf_reg_entry_value (ctx,
1409 CALL_SITE_PARAMETER_PARAM_OFFSET,
1411 -1 /* deref_size */);
1415 case DW_OP_GNU_const_type:
1419 const gdb_byte *data;
1422 op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
1423 type_die.cu_off = uoffset;
1428 type = dwarf_get_base_type (ctx, type_die, n);
1429 result_val = value_from_contents (type, data);
1433 case DW_OP_GNU_regval_type:
1438 op_ptr = safe_read_uleb128 (op_ptr, op_end, ®);
1439 op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
1440 type_die.cu_off = uoffset;
1442 type = dwarf_get_base_type (ctx, type_die, 0);
1443 result_val = ctx->funcs->get_reg_value (ctx->baton, type, reg);
1447 case DW_OP_GNU_convert:
1448 case DW_OP_GNU_reinterpret:
1453 op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
1454 type_die.cu_off = uoffset;
1456 if (type_die.cu_off == 0)
1457 type = address_type;
1459 type = dwarf_get_base_type (ctx, type_die, 0);
1461 result_val = dwarf_expr_fetch (ctx, 0);
1462 dwarf_expr_pop (ctx);
1464 if (op == DW_OP_GNU_convert)
1465 result_val = value_cast (type, result_val);
1466 else if (type == value_type (result_val))
1470 else if (TYPE_LENGTH (type)
1471 != TYPE_LENGTH (value_type (result_val)))
1472 error (_("DW_OP_GNU_reinterpret has wrong size"));
1475 = value_from_contents (type,
1476 value_contents_all (result_val));
1480 case DW_OP_push_object_address:
1481 /* Return the address of the object we are currently observing. */
1482 result = (ctx->funcs->get_object_address) (ctx->baton);
1483 result_val = value_from_ulongest (address_type, result);
1487 error (_("Unhandled dwarf expression opcode 0x%x"), op);
1490 /* Most things push a result value. */
1491 gdb_assert (result_val != NULL);
1492 dwarf_expr_push (ctx, result_val, in_stack_memory);
1497 /* To simplify our main caller, if the result is an implicit
1498 pointer, then make a pieced value. This is ok because we can't
1499 have implicit pointers in contexts where pieces are invalid. */
1500 if (ctx->location == DWARF_VALUE_IMPLICIT_POINTER)
1501 add_piece (ctx, 8 * ctx->addr_size, 0);
1504 ctx->recursion_depth--;
1505 gdb_assert (ctx->recursion_depth >= 0);
1508 /* Stub dwarf_expr_context_funcs.get_frame_base implementation. */
1511 ctx_no_get_frame_base (void *baton, const gdb_byte **start, size_t *length)
1513 error (_("%s is invalid in this context"), "DW_OP_fbreg");
1516 /* Stub dwarf_expr_context_funcs.get_frame_cfa implementation. */
1519 ctx_no_get_frame_cfa (void *baton)
1521 error (_("%s is invalid in this context"), "DW_OP_call_frame_cfa");
1524 /* Stub dwarf_expr_context_funcs.get_frame_pc implementation. */
1527 ctx_no_get_frame_pc (void *baton)
1529 error (_("%s is invalid in this context"), "DW_OP_GNU_implicit_pointer");
1532 /* Stub dwarf_expr_context_funcs.get_tls_address implementation. */
1535 ctx_no_get_tls_address (void *baton, CORE_ADDR offset)
1537 error (_("%s is invalid in this context"), "DW_OP_GNU_push_tls_address");
1540 /* Stub dwarf_expr_context_funcs.dwarf_call implementation. */
1543 ctx_no_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset)
1545 error (_("%s is invalid in this context"), "DW_OP_call*");
1548 /* Stub dwarf_expr_context_funcs.get_base_type implementation. */
1551 ctx_no_get_base_type (struct dwarf_expr_context *ctx, cu_offset die)
1553 error (_("Support for typed DWARF is not supported in this context"));
1556 /* Stub dwarf_expr_context_funcs.push_dwarf_block_entry_value
1560 ctx_no_push_dwarf_reg_entry_value (struct dwarf_expr_context *ctx,
1561 enum call_site_parameter_kind kind,
1562 union call_site_parameter_u kind_u,
1565 internal_error (__FILE__, __LINE__,
1566 _("Support for DW_OP_GNU_entry_value is unimplemented"));
1569 /* Stub dwarf_expr_context_funcs.get_addr_index implementation. */
1572 ctx_no_get_addr_index (void *baton, unsigned int index)
1574 error (_("%s is invalid in this context"), "DW_OP_GNU_addr_index");
1577 /* Provide a prototype to silence -Wmissing-prototypes. */
1578 extern initialize_file_ftype _initialize_dwarf2expr;
1581 _initialize_dwarf2expr (void)
1584 = gdbarch_data_register_post_init (dwarf_gdbarch_types_init);