1 /* Frame unwinder for frames with DWARF Call Frame Information.
3 Copyright (C) 2003-2005, 2007-2012 Free Software Foundation, Inc.
5 Contributed by Mark Kettenis.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23 #include "dwarf2expr.h"
26 #include "frame-base.h"
27 #include "frame-unwind.h"
35 #include "gdb_assert.h"
36 #include "gdb_string.h"
38 #include "complaints.h"
39 #include "dwarf2-frame.h"
41 #include "dwarf2loc.h"
42 #include "exceptions.h"
43 #include "dwarf2-frame-tailcall.h"
47 /* Call Frame Information (CFI). */
49 /* Common Information Entry (CIE). */
53 /* Computation Unit for this CIE. */
54 struct comp_unit *unit;
56 /* Offset into the .debug_frame section where this CIE was found.
57 Used to identify this CIE. */
60 /* Constant that is factored out of all advance location
62 ULONGEST code_alignment_factor;
64 /* Constants that is factored out of all offset instructions. */
65 LONGEST data_alignment_factor;
67 /* Return address column. */
68 ULONGEST return_address_register;
70 /* Instruction sequence to initialize a register set. */
71 const gdb_byte *initial_instructions;
74 /* Saved augmentation, in case it's needed later. */
77 /* Encoding of addresses. */
80 /* Target address size in bytes. */
83 /* Target pointer size in bytes. */
86 /* True if a 'z' augmentation existed. */
87 unsigned char saw_z_augmentation;
89 /* True if an 'S' augmentation existed. */
90 unsigned char signal_frame;
92 /* The version recorded in the CIE. */
93 unsigned char version;
95 /* The segment size. */
96 unsigned char segment_size;
99 struct dwarf2_cie_table
102 struct dwarf2_cie **entries;
105 /* Frame Description Entry (FDE). */
109 /* CIE for this FDE. */
110 struct dwarf2_cie *cie;
112 /* First location associated with this FDE. */
113 CORE_ADDR initial_location;
115 /* Number of bytes of program instructions described by this FDE. */
116 CORE_ADDR address_range;
118 /* Instruction sequence. */
119 const gdb_byte *instructions;
122 /* True if this FDE is read from a .eh_frame instead of a .debug_frame
124 unsigned char eh_frame_p;
127 struct dwarf2_fde_table
130 struct dwarf2_fde **entries;
133 /* A minimal decoding of DWARF2 compilation units. We only decode
134 what's needed to get to the call frame information. */
138 /* Keep the bfd convenient. */
141 struct objfile *objfile;
143 /* Pointer to the .debug_frame section loaded into memory. */
144 gdb_byte *dwarf_frame_buffer;
146 /* Length of the loaded .debug_frame section. */
147 bfd_size_type dwarf_frame_size;
149 /* Pointer to the .debug_frame section. */
150 asection *dwarf_frame_section;
152 /* Base for DW_EH_PE_datarel encodings. */
155 /* Base for DW_EH_PE_textrel encodings. */
159 static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc,
160 CORE_ADDR *out_offset);
162 static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum,
165 static CORE_ADDR read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
166 int ptr_len, const gdb_byte *buf,
167 unsigned int *bytes_read_ptr,
168 CORE_ADDR func_base);
171 /* Structure describing a frame state. */
173 struct dwarf2_frame_state
175 /* Each register save state can be described in terms of a CFA slot,
176 another register, or a location expression. */
177 struct dwarf2_frame_state_reg_info
179 struct dwarf2_frame_state_reg *reg;
189 const gdb_byte *cfa_exp;
191 /* Used to implement DW_CFA_remember_state. */
192 struct dwarf2_frame_state_reg_info *prev;
195 /* The PC described by the current frame state. */
198 /* Initial register set from the CIE.
199 Used to implement DW_CFA_restore. */
200 struct dwarf2_frame_state_reg_info initial;
202 /* The information we care about from the CIE. */
205 ULONGEST retaddr_column;
207 /* Flags for known producer quirks. */
209 /* The ARM compilers, in DWARF2 mode, assume that DW_CFA_def_cfa
210 and DW_CFA_def_cfa_offset takes a factored offset. */
211 int armcc_cfa_offsets_sf;
213 /* The ARM compilers, in DWARF2 or DWARF3 mode, may assume that
214 the CFA is defined as REG - OFFSET rather than REG + OFFSET. */
215 int armcc_cfa_offsets_reversed;
218 /* Store the length the expression for the CFA in the `cfa_reg' field,
219 which is unused in that case. */
220 #define cfa_exp_len cfa_reg
222 /* Assert that the register set RS is large enough to store gdbarch_num_regs
223 columns. If necessary, enlarge the register set. */
226 dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs,
229 size_t size = sizeof (struct dwarf2_frame_state_reg);
231 if (num_regs <= rs->num_regs)
234 rs->reg = (struct dwarf2_frame_state_reg *)
235 xrealloc (rs->reg, num_regs * size);
237 /* Initialize newly allocated registers. */
238 memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size);
239 rs->num_regs = num_regs;
242 /* Copy the register columns in register set RS into newly allocated
243 memory and return a pointer to this newly created copy. */
245 static struct dwarf2_frame_state_reg *
246 dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs)
248 size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg);
249 struct dwarf2_frame_state_reg *reg;
251 reg = (struct dwarf2_frame_state_reg *) xmalloc (size);
252 memcpy (reg, rs->reg, size);
257 /* Release the memory allocated to register set RS. */
260 dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs)
264 dwarf2_frame_state_free_regs (rs->prev);
271 /* Release the memory allocated to the frame state FS. */
274 dwarf2_frame_state_free (void *p)
276 struct dwarf2_frame_state *fs = p;
278 dwarf2_frame_state_free_regs (fs->initial.prev);
279 dwarf2_frame_state_free_regs (fs->regs.prev);
280 xfree (fs->initial.reg);
281 xfree (fs->regs.reg);
286 /* Helper functions for execute_stack_op. */
289 read_reg (void *baton, int reg)
291 struct frame_info *this_frame = (struct frame_info *) baton;
292 struct gdbarch *gdbarch = get_frame_arch (this_frame);
296 regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg);
298 buf = alloca (register_size (gdbarch, regnum));
299 get_frame_register (this_frame, regnum, buf);
301 /* Convert the register to an integer. This returns a LONGEST
302 rather than a CORE_ADDR, but unpack_pointer does the same thing
303 under the covers, and this makes more sense for non-pointer
304 registers. Maybe read_reg and the associated interfaces should
305 deal with "struct value" instead of CORE_ADDR. */
306 return unpack_long (register_type (gdbarch, regnum), buf);
310 read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
312 read_memory (addr, buf, len);
315 /* Execute the required actions for both the DW_CFA_restore and
316 DW_CFA_restore_extended instructions. */
318 dwarf2_restore_rule (struct gdbarch *gdbarch, ULONGEST reg_num,
319 struct dwarf2_frame_state *fs, int eh_frame_p)
323 gdb_assert (fs->initial.reg);
324 reg = dwarf2_frame_adjust_regnum (gdbarch, reg_num, eh_frame_p);
325 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
327 /* Check if this register was explicitly initialized in the
328 CIE initial instructions. If not, default the rule to
330 if (reg < fs->initial.num_regs)
331 fs->regs.reg[reg] = fs->initial.reg[reg];
333 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED;
335 if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED)
336 complaint (&symfile_complaints, _("\
337 incomplete CFI data; DW_CFA_restore unspecified\n\
338 register %s (#%d) at %s"),
339 gdbarch_register_name
340 (gdbarch, gdbarch_dwarf2_reg_to_regnum (gdbarch, reg)),
341 gdbarch_dwarf2_reg_to_regnum (gdbarch, reg),
342 paddress (gdbarch, fs->pc));
345 /* Virtual method table for execute_stack_op below. */
347 static const struct dwarf_expr_context_funcs dwarf2_frame_ctx_funcs =
351 ctx_no_get_frame_base,
352 ctx_no_get_frame_cfa,
354 ctx_no_get_tls_address,
356 ctx_no_get_base_type,
357 ctx_no_push_dwarf_reg_entry_value,
358 ctx_no_get_addr_index
362 execute_stack_op (const gdb_byte *exp, ULONGEST len, int addr_size,
363 CORE_ADDR offset, struct frame_info *this_frame,
364 CORE_ADDR initial, int initial_in_stack_memory)
366 struct dwarf_expr_context *ctx;
368 struct cleanup *old_chain;
370 ctx = new_dwarf_expr_context ();
371 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
372 make_cleanup_value_free_to_mark (value_mark ());
374 ctx->gdbarch = get_frame_arch (this_frame);
375 ctx->addr_size = addr_size;
376 ctx->ref_addr_size = -1;
377 ctx->offset = offset;
378 ctx->baton = this_frame;
379 ctx->funcs = &dwarf2_frame_ctx_funcs;
381 dwarf_expr_push_address (ctx, initial, initial_in_stack_memory);
382 dwarf_expr_eval (ctx, exp, len);
384 if (ctx->location == DWARF_VALUE_MEMORY)
385 result = dwarf_expr_fetch_address (ctx, 0);
386 else if (ctx->location == DWARF_VALUE_REGISTER)
387 result = read_reg (this_frame, value_as_long (dwarf_expr_fetch (ctx, 0)));
390 /* This is actually invalid DWARF, but if we ever do run across
391 it somehow, we might as well support it. So, instead, report
392 it as unimplemented. */
394 Not implemented: computing unwound register using explicit value operator"));
397 do_cleanups (old_chain);
403 /* Execute FDE program from INSN_PTR possibly up to INSN_END or up to inferior
404 PC. Modify FS state accordingly. Return current INSN_PTR where the
405 execution has stopped, one can resume it on the next call. */
407 static const gdb_byte *
408 execute_cfa_program (struct dwarf2_fde *fde, const gdb_byte *insn_ptr,
409 const gdb_byte *insn_end, struct gdbarch *gdbarch,
410 CORE_ADDR pc, struct dwarf2_frame_state *fs)
412 int eh_frame_p = fde->eh_frame_p;
414 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
416 while (insn_ptr < insn_end && fs->pc <= pc)
418 gdb_byte insn = *insn_ptr++;
422 if ((insn & 0xc0) == DW_CFA_advance_loc)
423 fs->pc += (insn & 0x3f) * fs->code_align;
424 else if ((insn & 0xc0) == DW_CFA_offset)
427 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
428 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
429 offset = utmp * fs->data_align;
430 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
431 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
432 fs->regs.reg[reg].loc.offset = offset;
434 else if ((insn & 0xc0) == DW_CFA_restore)
437 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
444 fs->pc = read_encoded_value (fde->cie->unit, fde->cie->encoding,
445 fde->cie->ptr_size, insn_ptr,
446 &bytes_read, fde->initial_location);
447 /* Apply the objfile offset for relocatable objects. */
448 fs->pc += ANOFFSET (fde->cie->unit->objfile->section_offsets,
449 SECT_OFF_TEXT (fde->cie->unit->objfile));
450 insn_ptr += bytes_read;
453 case DW_CFA_advance_loc1:
454 utmp = extract_unsigned_integer (insn_ptr, 1, byte_order);
455 fs->pc += utmp * fs->code_align;
458 case DW_CFA_advance_loc2:
459 utmp = extract_unsigned_integer (insn_ptr, 2, byte_order);
460 fs->pc += utmp * fs->code_align;
463 case DW_CFA_advance_loc4:
464 utmp = extract_unsigned_integer (insn_ptr, 4, byte_order);
465 fs->pc += utmp * fs->code_align;
469 case DW_CFA_offset_extended:
470 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, ®);
471 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
472 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
473 offset = utmp * fs->data_align;
474 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
475 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
476 fs->regs.reg[reg].loc.offset = offset;
479 case DW_CFA_restore_extended:
480 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, ®);
481 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
484 case DW_CFA_undefined:
485 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, ®);
486 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
487 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
488 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
491 case DW_CFA_same_value:
492 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, ®);
493 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
494 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
495 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
498 case DW_CFA_register:
499 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, ®);
500 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
501 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
502 utmp = dwarf2_frame_adjust_regnum (gdbarch, utmp, eh_frame_p);
503 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
504 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
505 fs->regs.reg[reg].loc.reg = utmp;
508 case DW_CFA_remember_state:
510 struct dwarf2_frame_state_reg_info *new_rs;
512 new_rs = XMALLOC (struct dwarf2_frame_state_reg_info);
514 fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs);
515 fs->regs.prev = new_rs;
519 case DW_CFA_restore_state:
521 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
525 complaint (&symfile_complaints, _("\
526 bad CFI data; mismatched DW_CFA_restore_state at %s"),
527 paddress (gdbarch, fs->pc));
531 xfree (fs->regs.reg);
539 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, ®);
540 fs->regs.cfa_reg = reg;
541 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
543 if (fs->armcc_cfa_offsets_sf)
544 utmp *= fs->data_align;
546 fs->regs.cfa_offset = utmp;
547 fs->regs.cfa_how = CFA_REG_OFFSET;
550 case DW_CFA_def_cfa_register:
551 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, ®);
552 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
554 fs->regs.cfa_how = CFA_REG_OFFSET;
557 case DW_CFA_def_cfa_offset:
558 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
560 if (fs->armcc_cfa_offsets_sf)
561 utmp *= fs->data_align;
563 fs->regs.cfa_offset = utmp;
564 /* cfa_how deliberately not set. */
570 case DW_CFA_def_cfa_expression:
571 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
572 fs->regs.cfa_exp_len = utmp;
573 fs->regs.cfa_exp = insn_ptr;
574 fs->regs.cfa_how = CFA_EXP;
575 insn_ptr += fs->regs.cfa_exp_len;
578 case DW_CFA_expression:
579 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, ®);
580 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
581 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
582 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
583 fs->regs.reg[reg].loc.exp = insn_ptr;
584 fs->regs.reg[reg].exp_len = utmp;
585 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
589 case DW_CFA_offset_extended_sf:
590 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, ®);
591 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
592 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
593 offset *= fs->data_align;
594 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
595 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
596 fs->regs.reg[reg].loc.offset = offset;
599 case DW_CFA_val_offset:
600 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, ®);
601 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
602 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
603 offset = utmp * fs->data_align;
604 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
605 fs->regs.reg[reg].loc.offset = offset;
608 case DW_CFA_val_offset_sf:
609 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, ®);
610 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
611 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
612 offset *= fs->data_align;
613 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
614 fs->regs.reg[reg].loc.offset = offset;
617 case DW_CFA_val_expression:
618 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, ®);
619 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
620 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
621 fs->regs.reg[reg].loc.exp = insn_ptr;
622 fs->regs.reg[reg].exp_len = utmp;
623 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
627 case DW_CFA_def_cfa_sf:
628 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, ®);
629 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
631 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
632 fs->regs.cfa_offset = offset * fs->data_align;
633 fs->regs.cfa_how = CFA_REG_OFFSET;
636 case DW_CFA_def_cfa_offset_sf:
637 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
638 fs->regs.cfa_offset = offset * fs->data_align;
639 /* cfa_how deliberately not set. */
642 case DW_CFA_GNU_window_save:
643 /* This is SPARC-specific code, and contains hard-coded
644 constants for the register numbering scheme used by
645 GCC. Rather than having a architecture-specific
646 operation that's only ever used by a single
647 architecture, we provide the implementation here.
648 Incidentally that's what GCC does too in its
651 int size = register_size (gdbarch, 0);
653 dwarf2_frame_state_alloc_regs (&fs->regs, 32);
654 for (reg = 8; reg < 16; reg++)
656 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
657 fs->regs.reg[reg].loc.reg = reg + 16;
659 for (reg = 16; reg < 32; reg++)
661 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
662 fs->regs.reg[reg].loc.offset = (reg - 16) * size;
667 case DW_CFA_GNU_args_size:
669 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
672 case DW_CFA_GNU_negative_offset_extended:
673 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, ®);
674 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
675 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &offset);
676 offset *= fs->data_align;
677 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
678 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
679 fs->regs.reg[reg].loc.offset = -offset;
683 internal_error (__FILE__, __LINE__,
684 _("Unknown CFI encountered."));
689 if (fs->initial.reg == NULL)
691 /* Don't allow remember/restore between CIE and FDE programs. */
692 dwarf2_frame_state_free_regs (fs->regs.prev);
693 fs->regs.prev = NULL;
700 /* Architecture-specific operations. */
702 /* Per-architecture data key. */
703 static struct gdbarch_data *dwarf2_frame_data;
705 struct dwarf2_frame_ops
707 /* Pre-initialize the register state REG for register REGNUM. */
708 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *,
709 struct frame_info *);
711 /* Check whether the THIS_FRAME is a signal trampoline. */
712 int (*signal_frame_p) (struct gdbarch *, struct frame_info *);
714 /* Convert .eh_frame register number to DWARF register number, or
715 adjust .debug_frame register number. */
716 int (*adjust_regnum) (struct gdbarch *, int, int);
719 /* Default architecture-specific register state initialization
723 dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
724 struct dwarf2_frame_state_reg *reg,
725 struct frame_info *this_frame)
727 /* If we have a register that acts as a program counter, mark it as
728 a destination for the return address. If we have a register that
729 serves as the stack pointer, arrange for it to be filled with the
730 call frame address (CFA). The other registers are marked as
733 We copy the return address to the program counter, since many
734 parts in GDB assume that it is possible to get the return address
735 by unwinding the program counter register. However, on ISA's
736 with a dedicated return address register, the CFI usually only
737 contains information to unwind that return address register.
739 The reason we're treating the stack pointer special here is
740 because in many cases GCC doesn't emit CFI for the stack pointer
741 and implicitly assumes that it is equal to the CFA. This makes
742 some sense since the DWARF specification (version 3, draft 8,
745 "Typically, the CFA is defined to be the value of the stack
746 pointer at the call site in the previous frame (which may be
747 different from its value on entry to the current frame)."
749 However, this isn't true for all platforms supported by GCC
750 (e.g. IBM S/390 and zSeries). Those architectures should provide
751 their own architecture-specific initialization function. */
753 if (regnum == gdbarch_pc_regnum (gdbarch))
754 reg->how = DWARF2_FRAME_REG_RA;
755 else if (regnum == gdbarch_sp_regnum (gdbarch))
756 reg->how = DWARF2_FRAME_REG_CFA;
759 /* Return a default for the architecture-specific operations. */
762 dwarf2_frame_init (struct obstack *obstack)
764 struct dwarf2_frame_ops *ops;
766 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
767 ops->init_reg = dwarf2_frame_default_init_reg;
771 /* Set the architecture-specific register state initialization
772 function for GDBARCH to INIT_REG. */
775 dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
776 void (*init_reg) (struct gdbarch *, int,
777 struct dwarf2_frame_state_reg *,
778 struct frame_info *))
780 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
782 ops->init_reg = init_reg;
785 /* Pre-initialize the register state REG for register REGNUM. */
788 dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
789 struct dwarf2_frame_state_reg *reg,
790 struct frame_info *this_frame)
792 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
794 ops->init_reg (gdbarch, regnum, reg, this_frame);
797 /* Set the architecture-specific signal trampoline recognition
798 function for GDBARCH to SIGNAL_FRAME_P. */
801 dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch,
802 int (*signal_frame_p) (struct gdbarch *,
803 struct frame_info *))
805 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
807 ops->signal_frame_p = signal_frame_p;
810 /* Query the architecture-specific signal frame recognizer for
814 dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch,
815 struct frame_info *this_frame)
817 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
819 if (ops->signal_frame_p == NULL)
821 return ops->signal_frame_p (gdbarch, this_frame);
824 /* Set the architecture-specific adjustment of .eh_frame and .debug_frame
828 dwarf2_frame_set_adjust_regnum (struct gdbarch *gdbarch,
829 int (*adjust_regnum) (struct gdbarch *,
832 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
834 ops->adjust_regnum = adjust_regnum;
837 /* Translate a .eh_frame register to DWARF register, or adjust a .debug_frame
841 dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch,
842 int regnum, int eh_frame_p)
844 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
846 if (ops->adjust_regnum == NULL)
848 return ops->adjust_regnum (gdbarch, regnum, eh_frame_p);
852 dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs,
853 struct dwarf2_fde *fde)
857 s = find_pc_symtab (fs->pc);
861 if (producer_is_realview (s->producer))
863 if (fde->cie->version == 1)
864 fs->armcc_cfa_offsets_sf = 1;
866 if (fde->cie->version == 1)
867 fs->armcc_cfa_offsets_reversed = 1;
869 /* The reversed offset problem is present in some compilers
870 using DWARF3, but it was eventually fixed. Check the ARM
871 defined augmentations, which are in the format "armcc" followed
872 by a list of one-character options. The "+" option means
873 this problem is fixed (no quirk needed). If the armcc
874 augmentation is missing, the quirk is needed. */
875 if (fde->cie->version == 3
876 && (strncmp (fde->cie->augmentation, "armcc", 5) != 0
877 || strchr (fde->cie->augmentation + 5, '+') == NULL))
878 fs->armcc_cfa_offsets_reversed = 1;
886 dwarf2_compile_cfa_to_ax (struct agent_expr *expr, struct axs_value *loc,
887 struct gdbarch *gdbarch,
889 struct dwarf2_per_cu_data *data)
891 const int num_regs = gdbarch_num_regs (gdbarch)
892 + gdbarch_num_pseudo_regs (gdbarch);
893 struct dwarf2_fde *fde;
894 CORE_ADDR text_offset;
895 struct dwarf2_frame_state fs;
898 memset (&fs, 0, sizeof (struct dwarf2_frame_state));
902 /* Find the correct FDE. */
903 fde = dwarf2_frame_find_fde (&fs.pc, &text_offset);
905 error (_("Could not compute CFA; needed to translate this expression"));
907 /* Extract any interesting information from the CIE. */
908 fs.data_align = fde->cie->data_alignment_factor;
909 fs.code_align = fde->cie->code_alignment_factor;
910 fs.retaddr_column = fde->cie->return_address_register;
911 addr_size = fde->cie->addr_size;
913 /* Check for "quirks" - known bugs in producers. */
914 dwarf2_frame_find_quirks (&fs, fde);
916 /* First decode all the insns in the CIE. */
917 execute_cfa_program (fde, fde->cie->initial_instructions,
918 fde->cie->end, gdbarch, pc, &fs);
920 /* Save the initialized register set. */
921 fs.initial = fs.regs;
922 fs.initial.reg = dwarf2_frame_state_copy_regs (&fs.regs);
924 /* Then decode the insns in the FDE up to our target PC. */
925 execute_cfa_program (fde, fde->instructions, fde->end, gdbarch, pc, &fs);
927 /* Calculate the CFA. */
928 switch (fs.regs.cfa_how)
932 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, fs.regs.cfa_reg);
935 error (_("Unable to access DWARF register number %d"),
936 (int) fs.regs.cfa_reg); /* FIXME */
937 ax_reg (expr, regnum);
939 if (fs.regs.cfa_offset != 0)
941 if (fs.armcc_cfa_offsets_reversed)
942 ax_const_l (expr, -fs.regs.cfa_offset);
944 ax_const_l (expr, fs.regs.cfa_offset);
945 ax_simple (expr, aop_add);
951 ax_const_l (expr, text_offset);
952 dwarf2_compile_expr_to_ax (expr, loc, gdbarch, addr_size,
954 fs.regs.cfa_exp + fs.regs.cfa_exp_len,
959 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
964 struct dwarf2_frame_cache
966 /* DWARF Call Frame Address. */
969 /* Set if the return address column was marked as unavailable
970 (required non-collected memory or registers to compute). */
971 int unavailable_retaddr;
973 /* Set if the return address column was marked as undefined. */
974 int undefined_retaddr;
976 /* Saved registers, indexed by GDB register number, not by DWARF
978 struct dwarf2_frame_state_reg *reg;
980 /* Return address register. */
981 struct dwarf2_frame_state_reg retaddr_reg;
983 /* Target address size in bytes. */
986 /* The .text offset. */
987 CORE_ADDR text_offset;
989 /* If not NULL then this frame is the bottom frame of a TAILCALL_FRAME
990 sequence. If NULL then it is a normal case with no TAILCALL_FRAME
991 involved. Non-bottom frames of a virtual tail call frames chain use
992 dwarf2_tailcall_frame_unwind unwinder so this field does not apply for
994 void *tailcall_cache;
997 /* A cleanup that sets a pointer to NULL. */
1000 clear_pointer_cleanup (void *arg)
1007 static struct dwarf2_frame_cache *
1008 dwarf2_frame_cache (struct frame_info *this_frame, void **this_cache)
1010 struct cleanup *reset_cache_cleanup, *old_chain;
1011 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1012 const int num_regs = gdbarch_num_regs (gdbarch)
1013 + gdbarch_num_pseudo_regs (gdbarch);
1014 struct dwarf2_frame_cache *cache;
1015 struct dwarf2_frame_state *fs;
1016 struct dwarf2_fde *fde;
1017 volatile struct gdb_exception ex;
1019 LONGEST entry_cfa_sp_offset;
1020 int entry_cfa_sp_offset_p = 0;
1021 const gdb_byte *instr;
1026 /* Allocate a new cache. */
1027 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
1028 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
1029 *this_cache = cache;
1030 reset_cache_cleanup = make_cleanup (clear_pointer_cleanup, this_cache);
1032 /* Allocate and initialize the frame state. */
1033 fs = XZALLOC (struct dwarf2_frame_state);
1034 old_chain = make_cleanup (dwarf2_frame_state_free, fs);
1038 Note that if the next frame is never supposed to return (i.e. a call
1039 to abort), the compiler might optimize away the instruction at
1040 its return address. As a result the return address will
1041 point at some random instruction, and the CFI for that
1042 instruction is probably worthless to us. GCC's unwinder solves
1043 this problem by substracting 1 from the return address to get an
1044 address in the middle of a presumed call instruction (or the
1045 instruction in the associated delay slot). This should only be
1046 done for "normal" frames and not for resume-type frames (signal
1047 handlers, sentinel frames, dummy frames). The function
1048 get_frame_address_in_block does just this. It's not clear how
1049 reliable the method is though; there is the potential for the
1050 register state pre-call being different to that on return. */
1051 fs->pc = get_frame_address_in_block (this_frame);
1053 /* Find the correct FDE. */
1054 fde = dwarf2_frame_find_fde (&fs->pc, &cache->text_offset);
1055 gdb_assert (fde != NULL);
1057 /* Extract any interesting information from the CIE. */
1058 fs->data_align = fde->cie->data_alignment_factor;
1059 fs->code_align = fde->cie->code_alignment_factor;
1060 fs->retaddr_column = fde->cie->return_address_register;
1061 cache->addr_size = fde->cie->addr_size;
1063 /* Check for "quirks" - known bugs in producers. */
1064 dwarf2_frame_find_quirks (fs, fde);
1066 /* First decode all the insns in the CIE. */
1067 execute_cfa_program (fde, fde->cie->initial_instructions,
1068 fde->cie->end, gdbarch,
1069 get_frame_address_in_block (this_frame), fs);
1071 /* Save the initialized register set. */
1072 fs->initial = fs->regs;
1073 fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs);
1075 if (get_frame_func_if_available (this_frame, &entry_pc))
1077 /* Decode the insns in the FDE up to the entry PC. */
1078 instr = execute_cfa_program (fde, fde->instructions, fde->end, gdbarch,
1081 if (fs->regs.cfa_how == CFA_REG_OFFSET
1082 && (gdbarch_dwarf2_reg_to_regnum (gdbarch, fs->regs.cfa_reg)
1083 == gdbarch_sp_regnum (gdbarch)))
1085 entry_cfa_sp_offset = fs->regs.cfa_offset;
1086 entry_cfa_sp_offset_p = 1;
1090 instr = fde->instructions;
1092 /* Then decode the insns in the FDE up to our target PC. */
1093 execute_cfa_program (fde, instr, fde->end, gdbarch,
1094 get_frame_address_in_block (this_frame), fs);
1096 TRY_CATCH (ex, RETURN_MASK_ERROR)
1098 /* Calculate the CFA. */
1099 switch (fs->regs.cfa_how)
1101 case CFA_REG_OFFSET:
1102 cache->cfa = read_reg (this_frame, fs->regs.cfa_reg);
1103 if (fs->armcc_cfa_offsets_reversed)
1104 cache->cfa -= fs->regs.cfa_offset;
1106 cache->cfa += fs->regs.cfa_offset;
1111 execute_stack_op (fs->regs.cfa_exp, fs->regs.cfa_exp_len,
1112 cache->addr_size, cache->text_offset,
1117 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
1122 if (ex.error == NOT_AVAILABLE_ERROR)
1124 cache->unavailable_retaddr = 1;
1125 do_cleanups (old_chain);
1126 discard_cleanups (reset_cache_cleanup);
1130 throw_exception (ex);
1133 /* Initialize the register state. */
1137 for (regnum = 0; regnum < num_regs; regnum++)
1138 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], this_frame);
1141 /* Go through the DWARF2 CFI generated table and save its register
1142 location information in the cache. Note that we don't skip the
1143 return address column; it's perfectly all right for it to
1144 correspond to a real register. If it doesn't correspond to a
1145 real register, or if we shouldn't treat it as such,
1146 gdbarch_dwarf2_reg_to_regnum should be defined to return a number outside
1147 the range [0, gdbarch_num_regs). */
1149 int column; /* CFI speak for "register number". */
1151 for (column = 0; column < fs->regs.num_regs; column++)
1153 /* Use the GDB register number as the destination index. */
1154 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, column);
1156 /* If there's no corresponding GDB register, ignore it. */
1157 if (regnum < 0 || regnum >= num_regs)
1160 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
1161 of all debug info registers. If it doesn't, complain (but
1162 not too loudly). It turns out that GCC assumes that an
1163 unspecified register implies "same value" when CFI (draft
1164 7) specifies nothing at all. Such a register could equally
1165 be interpreted as "undefined". Also note that this check
1166 isn't sufficient; it only checks that all registers in the
1167 range [0 .. max column] are specified, and won't detect
1168 problems when a debug info register falls outside of the
1169 table. We need a way of iterating through all the valid
1170 DWARF2 register numbers. */
1171 if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
1173 if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED)
1174 complaint (&symfile_complaints, _("\
1175 incomplete CFI data; unspecified registers (e.g., %s) at %s"),
1176 gdbarch_register_name (gdbarch, regnum),
1177 paddress (gdbarch, fs->pc));
1180 cache->reg[regnum] = fs->regs.reg[column];
1184 /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information
1185 we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */
1189 for (regnum = 0; regnum < num_regs; regnum++)
1191 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA
1192 || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET)
1194 struct dwarf2_frame_state_reg *retaddr_reg =
1195 &fs->regs.reg[fs->retaddr_column];
1197 /* It seems rather bizarre to specify an "empty" column as
1198 the return adress column. However, this is exactly
1199 what GCC does on some targets. It turns out that GCC
1200 assumes that the return address can be found in the
1201 register corresponding to the return address column.
1202 Incidentally, that's how we should treat a return
1203 address column specifying "same value" too. */
1204 if (fs->retaddr_column < fs->regs.num_regs
1205 && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED
1206 && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE)
1208 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1209 cache->reg[regnum] = *retaddr_reg;
1211 cache->retaddr_reg = *retaddr_reg;
1215 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1217 cache->reg[regnum].loc.reg = fs->retaddr_column;
1218 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
1222 cache->retaddr_reg.loc.reg = fs->retaddr_column;
1223 cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG;
1230 if (fs->retaddr_column < fs->regs.num_regs
1231 && fs->regs.reg[fs->retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED)
1232 cache->undefined_retaddr = 1;
1234 do_cleanups (old_chain);
1236 /* Try to find a virtual tail call frames chain with bottom (callee) frame
1237 starting at THIS_FRAME. */
1238 dwarf2_tailcall_sniffer_first (this_frame, &cache->tailcall_cache,
1239 (entry_cfa_sp_offset_p
1240 ? &entry_cfa_sp_offset : NULL));
1242 discard_cleanups (reset_cache_cleanup);
1246 static enum unwind_stop_reason
1247 dwarf2_frame_unwind_stop_reason (struct frame_info *this_frame,
1250 struct dwarf2_frame_cache *cache
1251 = dwarf2_frame_cache (this_frame, this_cache);
1253 if (cache->unavailable_retaddr)
1254 return UNWIND_UNAVAILABLE;
1256 if (cache->undefined_retaddr)
1257 return UNWIND_OUTERMOST;
1259 return UNWIND_NO_REASON;
1263 dwarf2_frame_this_id (struct frame_info *this_frame, void **this_cache,
1264 struct frame_id *this_id)
1266 struct dwarf2_frame_cache *cache =
1267 dwarf2_frame_cache (this_frame, this_cache);
1269 if (cache->unavailable_retaddr)
1272 if (cache->undefined_retaddr)
1275 (*this_id) = frame_id_build (cache->cfa, get_frame_func (this_frame));
1278 static struct value *
1279 dwarf2_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1282 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1283 struct dwarf2_frame_cache *cache =
1284 dwarf2_frame_cache (this_frame, this_cache);
1288 /* Non-bottom frames of a virtual tail call frames chain use
1289 dwarf2_tailcall_frame_unwind unwinder so this code does not apply for
1290 them. If dwarf2_tailcall_prev_register_first does not have specific value
1291 unwind the register, tail call frames are assumed to have the register set
1292 of the top caller. */
1293 if (cache->tailcall_cache)
1297 val = dwarf2_tailcall_prev_register_first (this_frame,
1298 &cache->tailcall_cache,
1304 switch (cache->reg[regnum].how)
1306 case DWARF2_FRAME_REG_UNDEFINED:
1307 /* If CFI explicitly specified that the value isn't defined,
1308 mark it as optimized away; the value isn't available. */
1309 return frame_unwind_got_optimized (this_frame, regnum);
1311 case DWARF2_FRAME_REG_SAVED_OFFSET:
1312 addr = cache->cfa + cache->reg[regnum].loc.offset;
1313 return frame_unwind_got_memory (this_frame, regnum, addr);
1315 case DWARF2_FRAME_REG_SAVED_REG:
1317 = gdbarch_dwarf2_reg_to_regnum (gdbarch, cache->reg[regnum].loc.reg);
1318 return frame_unwind_got_register (this_frame, regnum, realnum);
1320 case DWARF2_FRAME_REG_SAVED_EXP:
1321 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1322 cache->reg[regnum].exp_len,
1323 cache->addr_size, cache->text_offset,
1324 this_frame, cache->cfa, 1);
1325 return frame_unwind_got_memory (this_frame, regnum, addr);
1327 case DWARF2_FRAME_REG_SAVED_VAL_OFFSET:
1328 addr = cache->cfa + cache->reg[regnum].loc.offset;
1329 return frame_unwind_got_constant (this_frame, regnum, addr);
1331 case DWARF2_FRAME_REG_SAVED_VAL_EXP:
1332 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1333 cache->reg[regnum].exp_len,
1334 cache->addr_size, cache->text_offset,
1335 this_frame, cache->cfa, 1);
1336 return frame_unwind_got_constant (this_frame, regnum, addr);
1338 case DWARF2_FRAME_REG_UNSPECIFIED:
1339 /* GCC, in its infinite wisdom decided to not provide unwind
1340 information for registers that are "same value". Since
1341 DWARF2 (3 draft 7) doesn't define such behavior, said
1342 registers are actually undefined (which is different to CFI
1343 "undefined"). Code above issues a complaint about this.
1344 Here just fudge the books, assume GCC, and that the value is
1345 more inner on the stack. */
1346 return frame_unwind_got_register (this_frame, regnum, regnum);
1348 case DWARF2_FRAME_REG_SAME_VALUE:
1349 return frame_unwind_got_register (this_frame, regnum, regnum);
1351 case DWARF2_FRAME_REG_CFA:
1352 return frame_unwind_got_address (this_frame, regnum, cache->cfa);
1354 case DWARF2_FRAME_REG_CFA_OFFSET:
1355 addr = cache->cfa + cache->reg[regnum].loc.offset;
1356 return frame_unwind_got_address (this_frame, regnum, addr);
1358 case DWARF2_FRAME_REG_RA_OFFSET:
1359 addr = cache->reg[regnum].loc.offset;
1360 regnum = gdbarch_dwarf2_reg_to_regnum
1361 (gdbarch, cache->retaddr_reg.loc.reg);
1362 addr += get_frame_register_unsigned (this_frame, regnum);
1363 return frame_unwind_got_address (this_frame, regnum, addr);
1365 case DWARF2_FRAME_REG_FN:
1366 return cache->reg[regnum].loc.fn (this_frame, this_cache, regnum);
1369 internal_error (__FILE__, __LINE__, _("Unknown register rule."));
1373 /* Proxy for tailcall_frame_dealloc_cache for bottom frame of a virtual tail
1374 call frames chain. */
1377 dwarf2_frame_dealloc_cache (struct frame_info *self, void *this_cache)
1379 struct dwarf2_frame_cache *cache = dwarf2_frame_cache (self, &this_cache);
1381 if (cache->tailcall_cache)
1382 dwarf2_tailcall_frame_unwind.dealloc_cache (self, cache->tailcall_cache);
1386 dwarf2_frame_sniffer (const struct frame_unwind *self,
1387 struct frame_info *this_frame, void **this_cache)
1389 /* Grab an address that is guarenteed to reside somewhere within the
1390 function. get_frame_pc(), with a no-return next function, can
1391 end up returning something past the end of this function's body.
1392 If the frame we're sniffing for is a signal frame whose start
1393 address is placed on the stack by the OS, its FDE must
1394 extend one byte before its start address or we could potentially
1395 select the FDE of the previous function. */
1396 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1397 struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr, NULL);
1402 /* On some targets, signal trampolines may have unwind information.
1403 We need to recognize them so that we set the frame type
1406 if (fde->cie->signal_frame
1407 || dwarf2_frame_signal_frame_p (get_frame_arch (this_frame),
1409 return self->type == SIGTRAMP_FRAME;
1411 if (self->type != NORMAL_FRAME)
1414 /* Preinitializa the cache so that TAILCALL_FRAME can find the record by
1415 dwarf2_tailcall_sniffer_first. */
1416 dwarf2_frame_cache (this_frame, this_cache);
1421 static const struct frame_unwind dwarf2_frame_unwind =
1424 dwarf2_frame_unwind_stop_reason,
1425 dwarf2_frame_this_id,
1426 dwarf2_frame_prev_register,
1428 dwarf2_frame_sniffer,
1429 dwarf2_frame_dealloc_cache
1432 static const struct frame_unwind dwarf2_signal_frame_unwind =
1435 dwarf2_frame_unwind_stop_reason,
1436 dwarf2_frame_this_id,
1437 dwarf2_frame_prev_register,
1439 dwarf2_frame_sniffer,
1441 /* TAILCALL_CACHE can never be in such frame to need dealloc_cache. */
1445 /* Append the DWARF-2 frame unwinders to GDBARCH's list. */
1448 dwarf2_append_unwinders (struct gdbarch *gdbarch)
1450 /* TAILCALL_FRAME must be first to find the record by
1451 dwarf2_tailcall_sniffer_first. */
1452 frame_unwind_append_unwinder (gdbarch, &dwarf2_tailcall_frame_unwind);
1454 frame_unwind_append_unwinder (gdbarch, &dwarf2_frame_unwind);
1455 frame_unwind_append_unwinder (gdbarch, &dwarf2_signal_frame_unwind);
1459 /* There is no explicitly defined relationship between the CFA and the
1460 location of frame's local variables and arguments/parameters.
1461 Therefore, frame base methods on this page should probably only be
1462 used as a last resort, just to avoid printing total garbage as a
1463 response to the "info frame" command. */
1466 dwarf2_frame_base_address (struct frame_info *this_frame, void **this_cache)
1468 struct dwarf2_frame_cache *cache =
1469 dwarf2_frame_cache (this_frame, this_cache);
1474 static const struct frame_base dwarf2_frame_base =
1476 &dwarf2_frame_unwind,
1477 dwarf2_frame_base_address,
1478 dwarf2_frame_base_address,
1479 dwarf2_frame_base_address
1482 const struct frame_base *
1483 dwarf2_frame_base_sniffer (struct frame_info *this_frame)
1485 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1487 if (dwarf2_frame_find_fde (&block_addr, NULL))
1488 return &dwarf2_frame_base;
1493 /* Compute the CFA for THIS_FRAME, but only if THIS_FRAME came from
1494 the DWARF unwinder. This is used to implement
1495 DW_OP_call_frame_cfa. */
1498 dwarf2_frame_cfa (struct frame_info *this_frame)
1500 while (get_frame_type (this_frame) == INLINE_FRAME)
1501 this_frame = get_prev_frame (this_frame);
1502 /* This restriction could be lifted if other unwinders are known to
1503 compute the frame base in a way compatible with the DWARF
1505 if (!frame_unwinder_is (this_frame, &dwarf2_frame_unwind)
1506 && !frame_unwinder_is (this_frame, &dwarf2_tailcall_frame_unwind))
1507 error (_("can't compute CFA for this frame"));
1508 if (get_frame_unwind_stop_reason (this_frame) == UNWIND_UNAVAILABLE)
1509 throw_error (NOT_AVAILABLE_ERROR,
1510 _("can't compute CFA for this frame: "
1511 "required registers or memory are unavailable"));
1512 return get_frame_base (this_frame);
1515 const struct objfile_data *dwarf2_frame_objfile_data;
1518 read_1_byte (bfd *abfd, const gdb_byte *buf)
1520 return bfd_get_8 (abfd, buf);
1524 read_4_bytes (bfd *abfd, const gdb_byte *buf)
1526 return bfd_get_32 (abfd, buf);
1530 read_8_bytes (bfd *abfd, const gdb_byte *buf)
1532 return bfd_get_64 (abfd, buf);
1536 read_initial_length (bfd *abfd, const gdb_byte *buf,
1537 unsigned int *bytes_read_ptr)
1541 result = bfd_get_32 (abfd, buf);
1542 if (result == 0xffffffff)
1544 result = bfd_get_64 (abfd, buf + 4);
1545 *bytes_read_ptr = 12;
1548 *bytes_read_ptr = 4;
1554 /* Pointer encoding helper functions. */
1556 /* GCC supports exception handling based on DWARF2 CFI. However, for
1557 technical reasons, it encodes addresses in its FDE's in a different
1558 way. Several "pointer encodings" are supported. The encoding
1559 that's used for a particular FDE is determined by the 'R'
1560 augmentation in the associated CIE. The argument of this
1561 augmentation is a single byte.
1563 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1564 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1565 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1566 address should be interpreted (absolute, relative to the current
1567 position in the FDE, ...). Bit 7, indicates that the address
1568 should be dereferenced. */
1571 encoding_for_size (unsigned int size)
1576 return DW_EH_PE_udata2;
1578 return DW_EH_PE_udata4;
1580 return DW_EH_PE_udata8;
1582 internal_error (__FILE__, __LINE__, _("Unsupported address size"));
1587 read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
1588 int ptr_len, const gdb_byte *buf,
1589 unsigned int *bytes_read_ptr,
1590 CORE_ADDR func_base)
1595 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1597 if (encoding & DW_EH_PE_indirect)
1598 internal_error (__FILE__, __LINE__,
1599 _("Unsupported encoding: DW_EH_PE_indirect"));
1601 *bytes_read_ptr = 0;
1603 switch (encoding & 0x70)
1605 case DW_EH_PE_absptr:
1608 case DW_EH_PE_pcrel:
1609 base = bfd_get_section_vma (unit->abfd, unit->dwarf_frame_section);
1610 base += (buf - unit->dwarf_frame_buffer);
1612 case DW_EH_PE_datarel:
1615 case DW_EH_PE_textrel:
1618 case DW_EH_PE_funcrel:
1621 case DW_EH_PE_aligned:
1623 offset = buf - unit->dwarf_frame_buffer;
1624 if ((offset % ptr_len) != 0)
1626 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1627 buf += *bytes_read_ptr;
1631 internal_error (__FILE__, __LINE__,
1632 _("Invalid or unsupported encoding"));
1635 if ((encoding & 0x07) == 0x00)
1637 encoding |= encoding_for_size (ptr_len);
1638 if (bfd_get_sign_extend_vma (unit->abfd))
1639 encoding |= DW_EH_PE_signed;
1642 switch (encoding & 0x0f)
1644 case DW_EH_PE_uleb128:
1647 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1649 *bytes_read_ptr += safe_read_uleb128 (buf, end_buf, &value) - buf;
1650 return base + value;
1652 case DW_EH_PE_udata2:
1653 *bytes_read_ptr += 2;
1654 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1655 case DW_EH_PE_udata4:
1656 *bytes_read_ptr += 4;
1657 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1658 case DW_EH_PE_udata8:
1659 *bytes_read_ptr += 8;
1660 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
1661 case DW_EH_PE_sleb128:
1664 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1666 *bytes_read_ptr += safe_read_sleb128 (buf, end_buf, &value) - buf;
1667 return base + value;
1669 case DW_EH_PE_sdata2:
1670 *bytes_read_ptr += 2;
1671 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1672 case DW_EH_PE_sdata4:
1673 *bytes_read_ptr += 4;
1674 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1675 case DW_EH_PE_sdata8:
1676 *bytes_read_ptr += 8;
1677 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1679 internal_error (__FILE__, __LINE__,
1680 _("Invalid or unsupported encoding"));
1686 bsearch_cie_cmp (const void *key, const void *element)
1688 ULONGEST cie_pointer = *(ULONGEST *) key;
1689 struct dwarf2_cie *cie = *(struct dwarf2_cie **) element;
1691 if (cie_pointer == cie->cie_pointer)
1694 return (cie_pointer < cie->cie_pointer) ? -1 : 1;
1697 /* Find CIE with the given CIE_POINTER in CIE_TABLE. */
1698 static struct dwarf2_cie *
1699 find_cie (struct dwarf2_cie_table *cie_table, ULONGEST cie_pointer)
1701 struct dwarf2_cie **p_cie;
1703 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1704 bsearch be non-NULL. */
1705 if (cie_table->entries == NULL)
1707 gdb_assert (cie_table->num_entries == 0);
1711 p_cie = bsearch (&cie_pointer, cie_table->entries, cie_table->num_entries,
1712 sizeof (cie_table->entries[0]), bsearch_cie_cmp);
1718 /* Add a pointer to new CIE to the CIE_TABLE, allocating space for it. */
1720 add_cie (struct dwarf2_cie_table *cie_table, struct dwarf2_cie *cie)
1722 const int n = cie_table->num_entries;
1725 || cie_table->entries[n - 1]->cie_pointer < cie->cie_pointer);
1727 cie_table->entries =
1728 xrealloc (cie_table->entries, (n + 1) * sizeof (cie_table->entries[0]));
1729 cie_table->entries[n] = cie;
1730 cie_table->num_entries = n + 1;
1734 bsearch_fde_cmp (const void *key, const void *element)
1736 CORE_ADDR seek_pc = *(CORE_ADDR *) key;
1737 struct dwarf2_fde *fde = *(struct dwarf2_fde **) element;
1739 if (seek_pc < fde->initial_location)
1741 if (seek_pc < fde->initial_location + fde->address_range)
1746 /* Find the FDE for *PC. Return a pointer to the FDE, and store the
1747 inital location associated with it into *PC. */
1749 static struct dwarf2_fde *
1750 dwarf2_frame_find_fde (CORE_ADDR *pc, CORE_ADDR *out_offset)
1752 struct objfile *objfile;
1754 ALL_OBJFILES (objfile)
1756 struct dwarf2_fde_table *fde_table;
1757 struct dwarf2_fde **p_fde;
1761 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1762 if (fde_table == NULL)
1764 dwarf2_build_frame_info (objfile);
1765 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1767 gdb_assert (fde_table != NULL);
1769 if (fde_table->num_entries == 0)
1772 gdb_assert (objfile->section_offsets);
1773 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1775 gdb_assert (fde_table->num_entries > 0);
1776 if (*pc < offset + fde_table->entries[0]->initial_location)
1779 seek_pc = *pc - offset;
1780 p_fde = bsearch (&seek_pc, fde_table->entries, fde_table->num_entries,
1781 sizeof (fde_table->entries[0]), bsearch_fde_cmp);
1784 *pc = (*p_fde)->initial_location + offset;
1786 *out_offset = offset;
1793 /* Add a pointer to new FDE to the FDE_TABLE, allocating space for it. */
1795 add_fde (struct dwarf2_fde_table *fde_table, struct dwarf2_fde *fde)
1797 if (fde->address_range == 0)
1798 /* Discard useless FDEs. */
1801 fde_table->num_entries += 1;
1802 fde_table->entries =
1803 xrealloc (fde_table->entries,
1804 fde_table->num_entries * sizeof (fde_table->entries[0]));
1805 fde_table->entries[fde_table->num_entries - 1] = fde;
1808 #ifdef CC_HAS_LONG_LONG
1809 #define DW64_CIE_ID 0xffffffffffffffffULL
1811 #define DW64_CIE_ID ~0
1814 /* Defines the type of eh_frames that are expected to be decoded: CIE, FDE
1819 EH_CIE_TYPE_ID = 1 << 0,
1820 EH_FDE_TYPE_ID = 1 << 1,
1821 EH_CIE_OR_FDE_TYPE_ID = EH_CIE_TYPE_ID | EH_FDE_TYPE_ID
1824 static const gdb_byte *decode_frame_entry (struct comp_unit *unit,
1825 const gdb_byte *start,
1827 struct dwarf2_cie_table *cie_table,
1828 struct dwarf2_fde_table *fde_table,
1829 enum eh_frame_type entry_type);
1831 /* Decode the next CIE or FDE, entry_type specifies the expected type.
1832 Return NULL if invalid input, otherwise the next byte to be processed. */
1834 static const gdb_byte *
1835 decode_frame_entry_1 (struct comp_unit *unit, const gdb_byte *start,
1837 struct dwarf2_cie_table *cie_table,
1838 struct dwarf2_fde_table *fde_table,
1839 enum eh_frame_type entry_type)
1841 struct gdbarch *gdbarch = get_objfile_arch (unit->objfile);
1842 const gdb_byte *buf, *end;
1844 unsigned int bytes_read;
1847 ULONGEST cie_pointer;
1852 length = read_initial_length (unit->abfd, buf, &bytes_read);
1856 /* Are we still within the section? */
1857 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1863 /* Distinguish between 32 and 64-bit encoded frame info. */
1864 dwarf64_p = (bytes_read == 12);
1866 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
1870 cie_id = DW64_CIE_ID;
1876 cie_pointer = read_8_bytes (unit->abfd, buf);
1881 cie_pointer = read_4_bytes (unit->abfd, buf);
1885 if (cie_pointer == cie_id)
1887 /* This is a CIE. */
1888 struct dwarf2_cie *cie;
1890 unsigned int cie_version;
1892 /* Check that a CIE was expected. */
1893 if ((entry_type & EH_CIE_TYPE_ID) == 0)
1894 error (_("Found a CIE when not expecting it."));
1896 /* Record the offset into the .debug_frame section of this CIE. */
1897 cie_pointer = start - unit->dwarf_frame_buffer;
1899 /* Check whether we've already read it. */
1900 if (find_cie (cie_table, cie_pointer))
1903 cie = (struct dwarf2_cie *)
1904 obstack_alloc (&unit->objfile->objfile_obstack,
1905 sizeof (struct dwarf2_cie));
1906 cie->initial_instructions = NULL;
1907 cie->cie_pointer = cie_pointer;
1909 /* The encoding for FDE's in a normal .debug_frame section
1910 depends on the target address size. */
1911 cie->encoding = DW_EH_PE_absptr;
1913 /* We'll determine the final value later, but we need to
1914 initialize it conservatively. */
1915 cie->signal_frame = 0;
1917 /* Check version number. */
1918 cie_version = read_1_byte (unit->abfd, buf);
1919 if (cie_version != 1 && cie_version != 3 && cie_version != 4)
1921 cie->version = cie_version;
1924 /* Interpret the interesting bits of the augmentation. */
1925 cie->augmentation = augmentation = (char *) buf;
1926 buf += (strlen (augmentation) + 1);
1928 /* Ignore armcc augmentations. We only use them for quirks,
1929 and that doesn't happen until later. */
1930 if (strncmp (augmentation, "armcc", 5) == 0)
1931 augmentation += strlen (augmentation);
1933 /* The GCC 2.x "eh" augmentation has a pointer immediately
1934 following the augmentation string, so it must be handled
1936 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1939 buf += gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1943 if (cie->version >= 4)
1945 /* FIXME: check that this is the same as from the CU header. */
1946 cie->addr_size = read_1_byte (unit->abfd, buf);
1948 cie->segment_size = read_1_byte (unit->abfd, buf);
1953 cie->addr_size = gdbarch_dwarf2_addr_size (gdbarch);
1954 cie->segment_size = 0;
1956 /* Address values in .eh_frame sections are defined to have the
1957 target's pointer size. Watchout: This breaks frame info for
1958 targets with pointer size < address size, unless a .debug_frame
1959 section exists as well. */
1961 cie->ptr_size = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1963 cie->ptr_size = cie->addr_size;
1965 buf = gdb_read_uleb128 (buf, end, &uleb128);
1968 cie->code_alignment_factor = uleb128;
1970 buf = gdb_read_sleb128 (buf, end, &sleb128);
1973 cie->data_alignment_factor = sleb128;
1975 if (cie_version == 1)
1977 cie->return_address_register = read_1_byte (unit->abfd, buf);
1982 buf = gdb_read_uleb128 (buf, end, &uleb128);
1985 cie->return_address_register = uleb128;
1988 cie->return_address_register
1989 = dwarf2_frame_adjust_regnum (gdbarch,
1990 cie->return_address_register,
1993 cie->saw_z_augmentation = (*augmentation == 'z');
1994 if (cie->saw_z_augmentation)
1998 buf = gdb_read_uleb128 (buf, end, &length);
2001 cie->initial_instructions = buf + length;
2005 while (*augmentation)
2007 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
2008 if (*augmentation == 'L')
2015 /* "R" indicates a byte indicating how FDE addresses are encoded. */
2016 else if (*augmentation == 'R')
2018 cie->encoding = *buf++;
2022 /* "P" indicates a personality routine in the CIE augmentation. */
2023 else if (*augmentation == 'P')
2025 /* Skip. Avoid indirection since we throw away the result. */
2026 gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect;
2027 read_encoded_value (unit, encoding, cie->ptr_size,
2028 buf, &bytes_read, 0);
2033 /* "S" indicates a signal frame, such that the return
2034 address must not be decremented to locate the call frame
2035 info for the previous frame; it might even be the first
2036 instruction of a function, so decrementing it would take
2037 us to a different function. */
2038 else if (*augmentation == 'S')
2040 cie->signal_frame = 1;
2044 /* Otherwise we have an unknown augmentation. Assume that either
2045 there is no augmentation data, or we saw a 'z' prefix. */
2048 if (cie->initial_instructions)
2049 buf = cie->initial_instructions;
2054 cie->initial_instructions = buf;
2058 add_cie (cie_table, cie);
2062 /* This is a FDE. */
2063 struct dwarf2_fde *fde;
2065 /* Check that an FDE was expected. */
2066 if ((entry_type & EH_FDE_TYPE_ID) == 0)
2067 error (_("Found an FDE when not expecting it."));
2069 /* In an .eh_frame section, the CIE pointer is the delta between the
2070 address within the FDE where the CIE pointer is stored and the
2071 address of the CIE. Convert it to an offset into the .eh_frame
2075 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
2076 cie_pointer -= (dwarf64_p ? 8 : 4);
2079 /* In either case, validate the result is still within the section. */
2080 if (cie_pointer >= unit->dwarf_frame_size)
2083 fde = (struct dwarf2_fde *)
2084 obstack_alloc (&unit->objfile->objfile_obstack,
2085 sizeof (struct dwarf2_fde));
2086 fde->cie = find_cie (cie_table, cie_pointer);
2087 if (fde->cie == NULL)
2089 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
2090 eh_frame_p, cie_table, fde_table,
2092 fde->cie = find_cie (cie_table, cie_pointer);
2095 gdb_assert (fde->cie != NULL);
2097 fde->initial_location =
2098 read_encoded_value (unit, fde->cie->encoding, fde->cie->ptr_size,
2099 buf, &bytes_read, 0);
2102 fde->address_range =
2103 read_encoded_value (unit, fde->cie->encoding & 0x0f,
2104 fde->cie->ptr_size, buf, &bytes_read, 0);
2107 /* A 'z' augmentation in the CIE implies the presence of an
2108 augmentation field in the FDE as well. The only thing known
2109 to be in here at present is the LSDA entry for EH. So we
2110 can skip the whole thing. */
2111 if (fde->cie->saw_z_augmentation)
2115 buf = gdb_read_uleb128 (buf, end, &length);
2123 fde->instructions = buf;
2126 fde->eh_frame_p = eh_frame_p;
2128 add_fde (fde_table, fde);
2134 /* Read a CIE or FDE in BUF and decode it. Entry_type specifies whether we
2135 expect an FDE or a CIE. */
2137 static const gdb_byte *
2138 decode_frame_entry (struct comp_unit *unit, const gdb_byte *start,
2140 struct dwarf2_cie_table *cie_table,
2141 struct dwarf2_fde_table *fde_table,
2142 enum eh_frame_type entry_type)
2144 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
2145 const gdb_byte *ret;
2146 ptrdiff_t start_offset;
2150 ret = decode_frame_entry_1 (unit, start, eh_frame_p,
2151 cie_table, fde_table, entry_type);
2155 /* We have corrupt input data of some form. */
2157 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
2158 and mismatches wrt padding and alignment of debug sections. */
2159 /* Note that there is no requirement in the standard for any
2160 alignment at all in the frame unwind sections. Testing for
2161 alignment before trying to interpret data would be incorrect.
2163 However, GCC traditionally arranged for frame sections to be
2164 sized such that the FDE length and CIE fields happen to be
2165 aligned (in theory, for performance). This, unfortunately,
2166 was done with .align directives, which had the side effect of
2167 forcing the section to be aligned by the linker.
2169 This becomes a problem when you have some other producer that
2170 creates frame sections that are not as strictly aligned. That
2171 produces a hole in the frame info that gets filled by the
2174 The GCC behaviour is arguably a bug, but it's effectively now
2175 part of the ABI, so we're now stuck with it, at least at the
2176 object file level. A smart linker may decide, in the process
2177 of compressing duplicate CIE information, that it can rewrite
2178 the entire output section without this extra padding. */
2180 start_offset = start - unit->dwarf_frame_buffer;
2181 if (workaround < ALIGN4 && (start_offset & 3) != 0)
2183 start += 4 - (start_offset & 3);
2184 workaround = ALIGN4;
2187 if (workaround < ALIGN8 && (start_offset & 7) != 0)
2189 start += 8 - (start_offset & 7);
2190 workaround = ALIGN8;
2194 /* Nothing left to try. Arrange to return as if we've consumed
2195 the entire input section. Hopefully we'll get valid info from
2196 the other of .debug_frame/.eh_frame. */
2198 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
2208 complaint (&symfile_complaints, _("\
2209 Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
2210 unit->dwarf_frame_section->owner->filename,
2211 unit->dwarf_frame_section->name);
2215 complaint (&symfile_complaints, _("\
2216 Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
2217 unit->dwarf_frame_section->owner->filename,
2218 unit->dwarf_frame_section->name);
2222 complaint (&symfile_complaints,
2223 _("Corrupt data in %s:%s"),
2224 unit->dwarf_frame_section->owner->filename,
2225 unit->dwarf_frame_section->name);
2233 qsort_fde_cmp (const void *a, const void *b)
2235 struct dwarf2_fde *aa = *(struct dwarf2_fde **)a;
2236 struct dwarf2_fde *bb = *(struct dwarf2_fde **)b;
2238 if (aa->initial_location == bb->initial_location)
2240 if (aa->address_range != bb->address_range
2241 && aa->eh_frame_p == 0 && bb->eh_frame_p == 0)
2242 /* Linker bug, e.g. gold/10400.
2243 Work around it by keeping stable sort order. */
2244 return (a < b) ? -1 : 1;
2246 /* Put eh_frame entries after debug_frame ones. */
2247 return aa->eh_frame_p - bb->eh_frame_p;
2250 return (aa->initial_location < bb->initial_location) ? -1 : 1;
2254 dwarf2_build_frame_info (struct objfile *objfile)
2256 struct comp_unit *unit;
2257 const gdb_byte *frame_ptr;
2258 struct dwarf2_cie_table cie_table;
2259 struct dwarf2_fde_table fde_table;
2260 struct dwarf2_fde_table *fde_table2;
2261 volatile struct gdb_exception e;
2263 cie_table.num_entries = 0;
2264 cie_table.entries = NULL;
2266 fde_table.num_entries = 0;
2267 fde_table.entries = NULL;
2269 /* Build a minimal decoding of the DWARF2 compilation unit. */
2270 unit = (struct comp_unit *) obstack_alloc (&objfile->objfile_obstack,
2271 sizeof (struct comp_unit));
2272 unit->abfd = objfile->obfd;
2273 unit->objfile = objfile;
2277 if (objfile->separate_debug_objfile_backlink == NULL)
2279 /* Do not read .eh_frame from separate file as they must be also
2280 present in the main file. */
2281 dwarf2_get_section_info (objfile, DWARF2_EH_FRAME,
2282 &unit->dwarf_frame_section,
2283 &unit->dwarf_frame_buffer,
2284 &unit->dwarf_frame_size);
2285 if (unit->dwarf_frame_size)
2287 asection *got, *txt;
2289 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
2290 that is used for the i386/amd64 target, which currently is
2291 the only target in GCC that supports/uses the
2292 DW_EH_PE_datarel encoding. */
2293 got = bfd_get_section_by_name (unit->abfd, ".got");
2295 unit->dbase = got->vma;
2297 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
2299 txt = bfd_get_section_by_name (unit->abfd, ".text");
2301 unit->tbase = txt->vma;
2303 TRY_CATCH (e, RETURN_MASK_ERROR)
2305 frame_ptr = unit->dwarf_frame_buffer;
2306 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2307 frame_ptr = decode_frame_entry (unit, frame_ptr, 1,
2308 &cie_table, &fde_table,
2309 EH_CIE_OR_FDE_TYPE_ID);
2314 warning (_("skipping .eh_frame info of %s: %s"),
2315 objfile->name, e.message);
2317 if (fde_table.num_entries != 0)
2319 xfree (fde_table.entries);
2320 fde_table.entries = NULL;
2321 fde_table.num_entries = 0;
2323 /* The cie_table is discarded by the next if. */
2326 if (cie_table.num_entries != 0)
2328 /* Reinit cie_table: debug_frame has different CIEs. */
2329 xfree (cie_table.entries);
2330 cie_table.num_entries = 0;
2331 cie_table.entries = NULL;
2336 dwarf2_get_section_info (objfile, DWARF2_DEBUG_FRAME,
2337 &unit->dwarf_frame_section,
2338 &unit->dwarf_frame_buffer,
2339 &unit->dwarf_frame_size);
2340 if (unit->dwarf_frame_size)
2342 int num_old_fde_entries = fde_table.num_entries;
2344 TRY_CATCH (e, RETURN_MASK_ERROR)
2346 frame_ptr = unit->dwarf_frame_buffer;
2347 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2348 frame_ptr = decode_frame_entry (unit, frame_ptr, 0,
2349 &cie_table, &fde_table,
2350 EH_CIE_OR_FDE_TYPE_ID);
2354 warning (_("skipping .debug_frame info of %s: %s"),
2355 objfile->name, e.message);
2357 if (fde_table.num_entries != 0)
2359 fde_table.num_entries = num_old_fde_entries;
2360 if (num_old_fde_entries == 0)
2362 xfree (fde_table.entries);
2363 fde_table.entries = NULL;
2367 fde_table.entries = xrealloc (fde_table.entries,
2368 fde_table.num_entries *
2369 sizeof (fde_table.entries[0]));
2372 fde_table.num_entries = num_old_fde_entries;
2373 /* The cie_table is discarded by the next if. */
2377 /* Discard the cie_table, it is no longer needed. */
2378 if (cie_table.num_entries != 0)
2380 xfree (cie_table.entries);
2381 cie_table.entries = NULL; /* Paranoia. */
2382 cie_table.num_entries = 0; /* Paranoia. */
2385 /* Copy fde_table to obstack: it is needed at runtime. */
2386 fde_table2 = (struct dwarf2_fde_table *)
2387 obstack_alloc (&objfile->objfile_obstack, sizeof (*fde_table2));
2389 if (fde_table.num_entries == 0)
2391 fde_table2->entries = NULL;
2392 fde_table2->num_entries = 0;
2396 struct dwarf2_fde *fde_prev = NULL;
2397 struct dwarf2_fde *first_non_zero_fde = NULL;
2400 /* Prepare FDE table for lookups. */
2401 qsort (fde_table.entries, fde_table.num_entries,
2402 sizeof (fde_table.entries[0]), qsort_fde_cmp);
2404 /* Check for leftovers from --gc-sections. The GNU linker sets
2405 the relevant symbols to zero, but doesn't zero the FDE *end*
2406 ranges because there's no relocation there. It's (offset,
2407 length), not (start, end). On targets where address zero is
2408 just another valid address this can be a problem, since the
2409 FDEs appear to be non-empty in the output --- we could pick
2410 out the wrong FDE. To work around this, when overlaps are
2411 detected, we prefer FDEs that do not start at zero.
2413 Start by finding the first FDE with non-zero start. Below
2414 we'll discard all FDEs that start at zero and overlap this
2416 for (i = 0; i < fde_table.num_entries; i++)
2418 struct dwarf2_fde *fde = fde_table.entries[i];
2420 if (fde->initial_location != 0)
2422 first_non_zero_fde = fde;
2427 /* Since we'll be doing bsearch, squeeze out identical (except
2428 for eh_frame_p) fde entries so bsearch result is predictable.
2429 Also discard leftovers from --gc-sections. */
2430 fde_table2->num_entries = 0;
2431 for (i = 0; i < fde_table.num_entries; i++)
2433 struct dwarf2_fde *fde = fde_table.entries[i];
2435 if (fde->initial_location == 0
2436 && first_non_zero_fde != NULL
2437 && (first_non_zero_fde->initial_location
2438 < fde->initial_location + fde->address_range))
2441 if (fde_prev != NULL
2442 && fde_prev->initial_location == fde->initial_location)
2445 obstack_grow (&objfile->objfile_obstack, &fde_table.entries[i],
2446 sizeof (fde_table.entries[0]));
2447 ++fde_table2->num_entries;
2450 fde_table2->entries = obstack_finish (&objfile->objfile_obstack);
2452 /* Discard the original fde_table. */
2453 xfree (fde_table.entries);
2456 set_objfile_data (objfile, dwarf2_frame_objfile_data, fde_table2);
2459 /* Provide a prototype to silence -Wmissing-prototypes. */
2460 void _initialize_dwarf2_frame (void);
2463 _initialize_dwarf2_frame (void)
2465 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
2466 dwarf2_frame_objfile_data = register_objfile_data ();