1 /* Frame unwinder for frames with DWARF Call Frame Information.
3 Copyright (C) 2003-2014 Free Software Foundation, Inc.
5 Contributed by Mark Kettenis.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23 #include "dwarf2expr.h"
26 #include "frame-base.h"
27 #include "frame-unwind.h"
36 #include "gdb_assert.h"
39 #include "complaints.h"
40 #include "dwarf2-frame.h"
42 #include "dwarf2loc.h"
43 #include "exceptions.h"
44 #include "dwarf2-frame-tailcall.h"
48 /* Call Frame Information (CFI). */
50 /* Common Information Entry (CIE). */
54 /* Computation Unit for this CIE. */
55 struct comp_unit *unit;
57 /* Offset into the .debug_frame section where this CIE was found.
58 Used to identify this CIE. */
61 /* Constant that is factored out of all advance location
63 ULONGEST code_alignment_factor;
65 /* Constants that is factored out of all offset instructions. */
66 LONGEST data_alignment_factor;
68 /* Return address column. */
69 ULONGEST return_address_register;
71 /* Instruction sequence to initialize a register set. */
72 const gdb_byte *initial_instructions;
75 /* Saved augmentation, in case it's needed later. */
78 /* Encoding of addresses. */
81 /* Target address size in bytes. */
84 /* Target pointer size in bytes. */
87 /* True if a 'z' augmentation existed. */
88 unsigned char saw_z_augmentation;
90 /* True if an 'S' augmentation existed. */
91 unsigned char signal_frame;
93 /* The version recorded in the CIE. */
94 unsigned char version;
96 /* The segment size. */
97 unsigned char segment_size;
100 struct dwarf2_cie_table
103 struct dwarf2_cie **entries;
106 /* Frame Description Entry (FDE). */
110 /* CIE for this FDE. */
111 struct dwarf2_cie *cie;
113 /* First location associated with this FDE. */
114 CORE_ADDR initial_location;
116 /* Number of bytes of program instructions described by this FDE. */
117 CORE_ADDR address_range;
119 /* Instruction sequence. */
120 const gdb_byte *instructions;
123 /* True if this FDE is read from a .eh_frame instead of a .debug_frame
125 unsigned char eh_frame_p;
128 struct dwarf2_fde_table
131 struct dwarf2_fde **entries;
134 /* A minimal decoding of DWARF2 compilation units. We only decode
135 what's needed to get to the call frame information. */
139 /* Keep the bfd convenient. */
142 struct objfile *objfile;
144 /* Pointer to the .debug_frame section loaded into memory. */
145 const gdb_byte *dwarf_frame_buffer;
147 /* Length of the loaded .debug_frame section. */
148 bfd_size_type dwarf_frame_size;
150 /* Pointer to the .debug_frame section. */
151 asection *dwarf_frame_section;
153 /* Base for DW_EH_PE_datarel encodings. */
156 /* Base for DW_EH_PE_textrel encodings. */
160 static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc,
161 CORE_ADDR *out_offset);
163 static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum,
166 static CORE_ADDR read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
167 int ptr_len, const gdb_byte *buf,
168 unsigned int *bytes_read_ptr,
169 CORE_ADDR func_base);
172 /* Structure describing a frame state. */
174 struct dwarf2_frame_state
176 /* Each register save state can be described in terms of a CFA slot,
177 another register, or a location expression. */
178 struct dwarf2_frame_state_reg_info
180 struct dwarf2_frame_state_reg *reg;
190 const gdb_byte *cfa_exp;
192 /* Used to implement DW_CFA_remember_state. */
193 struct dwarf2_frame_state_reg_info *prev;
196 /* The PC described by the current frame state. */
199 /* Initial register set from the CIE.
200 Used to implement DW_CFA_restore. */
201 struct dwarf2_frame_state_reg_info initial;
203 /* The information we care about from the CIE. */
206 ULONGEST retaddr_column;
208 /* Flags for known producer quirks. */
210 /* The ARM compilers, in DWARF2 mode, assume that DW_CFA_def_cfa
211 and DW_CFA_def_cfa_offset takes a factored offset. */
212 int armcc_cfa_offsets_sf;
214 /* The ARM compilers, in DWARF2 or DWARF3 mode, may assume that
215 the CFA is defined as REG - OFFSET rather than REG + OFFSET. */
216 int armcc_cfa_offsets_reversed;
219 /* Store the length the expression for the CFA in the `cfa_reg' field,
220 which is unused in that case. */
221 #define cfa_exp_len cfa_reg
223 /* Assert that the register set RS is large enough to store gdbarch_num_regs
224 columns. If necessary, enlarge the register set. */
227 dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs,
230 size_t size = sizeof (struct dwarf2_frame_state_reg);
232 if (num_regs <= rs->num_regs)
235 rs->reg = (struct dwarf2_frame_state_reg *)
236 xrealloc (rs->reg, num_regs * size);
238 /* Initialize newly allocated registers. */
239 memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size);
240 rs->num_regs = num_regs;
243 /* Copy the register columns in register set RS into newly allocated
244 memory and return a pointer to this newly created copy. */
246 static struct dwarf2_frame_state_reg *
247 dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs)
249 size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg);
250 struct dwarf2_frame_state_reg *reg;
252 reg = (struct dwarf2_frame_state_reg *) xmalloc (size);
253 memcpy (reg, rs->reg, size);
258 /* Release the memory allocated to register set RS. */
261 dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs)
265 dwarf2_frame_state_free_regs (rs->prev);
272 /* Release the memory allocated to the frame state FS. */
275 dwarf2_frame_state_free (void *p)
277 struct dwarf2_frame_state *fs = p;
279 dwarf2_frame_state_free_regs (fs->initial.prev);
280 dwarf2_frame_state_free_regs (fs->regs.prev);
281 xfree (fs->initial.reg);
282 xfree (fs->regs.reg);
287 /* Helper functions for execute_stack_op. */
290 read_addr_from_reg (void *baton, int reg)
292 struct frame_info *this_frame = (struct frame_info *) baton;
293 struct gdbarch *gdbarch = get_frame_arch (this_frame);
294 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg);
296 return address_from_register (regnum, this_frame);
299 /* Implement struct dwarf_expr_context_funcs' "get_reg_value" callback. */
301 static struct value *
302 get_reg_value (void *baton, struct type *type, int reg)
304 struct frame_info *this_frame = (struct frame_info *) baton;
305 struct gdbarch *gdbarch = get_frame_arch (this_frame);
306 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg);
308 return value_from_register (type, regnum, this_frame);
312 read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
314 read_memory (addr, buf, len);
317 /* Execute the required actions for both the DW_CFA_restore and
318 DW_CFA_restore_extended instructions. */
320 dwarf2_restore_rule (struct gdbarch *gdbarch, ULONGEST reg_num,
321 struct dwarf2_frame_state *fs, int eh_frame_p)
325 gdb_assert (fs->initial.reg);
326 reg = dwarf2_frame_adjust_regnum (gdbarch, reg_num, eh_frame_p);
327 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
329 /* Check if this register was explicitly initialized in the
330 CIE initial instructions. If not, default the rule to
332 if (reg < fs->initial.num_regs)
333 fs->regs.reg[reg] = fs->initial.reg[reg];
335 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED;
337 if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED)
338 complaint (&symfile_complaints, _("\
339 incomplete CFI data; DW_CFA_restore unspecified\n\
340 register %s (#%d) at %s"),
341 gdbarch_register_name
342 (gdbarch, gdbarch_dwarf2_reg_to_regnum (gdbarch, reg)),
343 gdbarch_dwarf2_reg_to_regnum (gdbarch, reg),
344 paddress (gdbarch, fs->pc));
347 /* Virtual method table for execute_stack_op below. */
349 static const struct dwarf_expr_context_funcs dwarf2_frame_ctx_funcs =
354 ctx_no_get_frame_base,
355 ctx_no_get_frame_cfa,
357 ctx_no_get_tls_address,
359 ctx_no_get_base_type,
360 ctx_no_push_dwarf_reg_entry_value,
361 ctx_no_get_addr_index
365 execute_stack_op (const gdb_byte *exp, ULONGEST len, int addr_size,
366 CORE_ADDR offset, struct frame_info *this_frame,
367 CORE_ADDR initial, int initial_in_stack_memory)
369 struct dwarf_expr_context *ctx;
371 struct cleanup *old_chain;
373 ctx = new_dwarf_expr_context ();
374 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
375 make_cleanup_value_free_to_mark (value_mark ());
377 ctx->gdbarch = get_frame_arch (this_frame);
378 ctx->addr_size = addr_size;
379 ctx->ref_addr_size = -1;
380 ctx->offset = offset;
381 ctx->baton = this_frame;
382 ctx->funcs = &dwarf2_frame_ctx_funcs;
384 dwarf_expr_push_address (ctx, initial, initial_in_stack_memory);
385 dwarf_expr_eval (ctx, exp, len);
387 if (ctx->location == DWARF_VALUE_MEMORY)
388 result = dwarf_expr_fetch_address (ctx, 0);
389 else if (ctx->location == DWARF_VALUE_REGISTER)
390 result = read_addr_from_reg (this_frame,
391 value_as_long (dwarf_expr_fetch (ctx, 0)));
394 /* This is actually invalid DWARF, but if we ever do run across
395 it somehow, we might as well support it. So, instead, report
396 it as unimplemented. */
398 Not implemented: computing unwound register using explicit value operator"));
401 do_cleanups (old_chain);
407 /* Execute FDE program from INSN_PTR possibly up to INSN_END or up to inferior
408 PC. Modify FS state accordingly. Return current INSN_PTR where the
409 execution has stopped, one can resume it on the next call. */
411 static const gdb_byte *
412 execute_cfa_program (struct dwarf2_fde *fde, const gdb_byte *insn_ptr,
413 const gdb_byte *insn_end, struct gdbarch *gdbarch,
414 CORE_ADDR pc, struct dwarf2_frame_state *fs)
416 int eh_frame_p = fde->eh_frame_p;
417 unsigned int bytes_read;
418 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
420 while (insn_ptr < insn_end && fs->pc <= pc)
422 gdb_byte insn = *insn_ptr++;
426 if ((insn & 0xc0) == DW_CFA_advance_loc)
427 fs->pc += (insn & 0x3f) * fs->code_align;
428 else if ((insn & 0xc0) == DW_CFA_offset)
431 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
432 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
433 offset = utmp * fs->data_align;
434 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
435 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
436 fs->regs.reg[reg].loc.offset = offset;
438 else if ((insn & 0xc0) == DW_CFA_restore)
441 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
448 fs->pc = read_encoded_value (fde->cie->unit, fde->cie->encoding,
449 fde->cie->ptr_size, insn_ptr,
450 &bytes_read, fde->initial_location);
451 /* Apply the objfile offset for relocatable objects. */
452 fs->pc += ANOFFSET (fde->cie->unit->objfile->section_offsets,
453 SECT_OFF_TEXT (fde->cie->unit->objfile));
454 insn_ptr += bytes_read;
457 case DW_CFA_advance_loc1:
458 utmp = extract_unsigned_integer (insn_ptr, 1, byte_order);
459 fs->pc += utmp * fs->code_align;
462 case DW_CFA_advance_loc2:
463 utmp = extract_unsigned_integer (insn_ptr, 2, byte_order);
464 fs->pc += utmp * fs->code_align;
467 case DW_CFA_advance_loc4:
468 utmp = extract_unsigned_integer (insn_ptr, 4, byte_order);
469 fs->pc += utmp * fs->code_align;
473 case DW_CFA_offset_extended:
474 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, ®);
475 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
476 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
477 offset = utmp * fs->data_align;
478 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
479 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
480 fs->regs.reg[reg].loc.offset = offset;
483 case DW_CFA_restore_extended:
484 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, ®);
485 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
488 case DW_CFA_undefined:
489 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, ®);
490 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
491 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
492 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
495 case DW_CFA_same_value:
496 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, ®);
497 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
498 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
499 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
502 case DW_CFA_register:
503 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, ®);
504 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
505 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
506 utmp = dwarf2_frame_adjust_regnum (gdbarch, utmp, eh_frame_p);
507 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
508 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
509 fs->regs.reg[reg].loc.reg = utmp;
512 case DW_CFA_remember_state:
514 struct dwarf2_frame_state_reg_info *new_rs;
516 new_rs = XNEW (struct dwarf2_frame_state_reg_info);
518 fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs);
519 fs->regs.prev = new_rs;
523 case DW_CFA_restore_state:
525 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
529 complaint (&symfile_complaints, _("\
530 bad CFI data; mismatched DW_CFA_restore_state at %s"),
531 paddress (gdbarch, fs->pc));
535 xfree (fs->regs.reg);
543 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, ®);
544 fs->regs.cfa_reg = reg;
545 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
547 if (fs->armcc_cfa_offsets_sf)
548 utmp *= fs->data_align;
550 fs->regs.cfa_offset = utmp;
551 fs->regs.cfa_how = CFA_REG_OFFSET;
554 case DW_CFA_def_cfa_register:
555 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, ®);
556 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
558 fs->regs.cfa_how = CFA_REG_OFFSET;
561 case DW_CFA_def_cfa_offset:
562 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
564 if (fs->armcc_cfa_offsets_sf)
565 utmp *= fs->data_align;
567 fs->regs.cfa_offset = utmp;
568 /* cfa_how deliberately not set. */
574 case DW_CFA_def_cfa_expression:
575 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
576 fs->regs.cfa_exp_len = utmp;
577 fs->regs.cfa_exp = insn_ptr;
578 fs->regs.cfa_how = CFA_EXP;
579 insn_ptr += fs->regs.cfa_exp_len;
582 case DW_CFA_expression:
583 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, ®);
584 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
585 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
586 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
587 fs->regs.reg[reg].loc.exp = insn_ptr;
588 fs->regs.reg[reg].exp_len = utmp;
589 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
593 case DW_CFA_offset_extended_sf:
594 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, ®);
595 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
596 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
597 offset *= fs->data_align;
598 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
599 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
600 fs->regs.reg[reg].loc.offset = offset;
603 case DW_CFA_val_offset:
604 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, ®);
605 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
606 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
607 offset = utmp * fs->data_align;
608 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
609 fs->regs.reg[reg].loc.offset = offset;
612 case DW_CFA_val_offset_sf:
613 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, ®);
614 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
615 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
616 offset *= fs->data_align;
617 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
618 fs->regs.reg[reg].loc.offset = offset;
621 case DW_CFA_val_expression:
622 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, ®);
623 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
624 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
625 fs->regs.reg[reg].loc.exp = insn_ptr;
626 fs->regs.reg[reg].exp_len = utmp;
627 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
631 case DW_CFA_def_cfa_sf:
632 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, ®);
633 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
635 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
636 fs->regs.cfa_offset = offset * fs->data_align;
637 fs->regs.cfa_how = CFA_REG_OFFSET;
640 case DW_CFA_def_cfa_offset_sf:
641 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
642 fs->regs.cfa_offset = offset * fs->data_align;
643 /* cfa_how deliberately not set. */
646 case DW_CFA_GNU_window_save:
647 /* This is SPARC-specific code, and contains hard-coded
648 constants for the register numbering scheme used by
649 GCC. Rather than having a architecture-specific
650 operation that's only ever used by a single
651 architecture, we provide the implementation here.
652 Incidentally that's what GCC does too in its
655 int size = register_size (gdbarch, 0);
657 dwarf2_frame_state_alloc_regs (&fs->regs, 32);
658 for (reg = 8; reg < 16; reg++)
660 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
661 fs->regs.reg[reg].loc.reg = reg + 16;
663 for (reg = 16; reg < 32; reg++)
665 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
666 fs->regs.reg[reg].loc.offset = (reg - 16) * size;
671 case DW_CFA_GNU_args_size:
673 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
676 case DW_CFA_GNU_negative_offset_extended:
677 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, ®);
678 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
679 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
680 offset = utmp * fs->data_align;
681 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
682 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
683 fs->regs.reg[reg].loc.offset = -offset;
687 internal_error (__FILE__, __LINE__,
688 _("Unknown CFI encountered."));
693 if (fs->initial.reg == NULL)
695 /* Don't allow remember/restore between CIE and FDE programs. */
696 dwarf2_frame_state_free_regs (fs->regs.prev);
697 fs->regs.prev = NULL;
704 /* Architecture-specific operations. */
706 /* Per-architecture data key. */
707 static struct gdbarch_data *dwarf2_frame_data;
709 struct dwarf2_frame_ops
711 /* Pre-initialize the register state REG for register REGNUM. */
712 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *,
713 struct frame_info *);
715 /* Check whether the THIS_FRAME is a signal trampoline. */
716 int (*signal_frame_p) (struct gdbarch *, struct frame_info *);
718 /* Convert .eh_frame register number to DWARF register number, or
719 adjust .debug_frame register number. */
720 int (*adjust_regnum) (struct gdbarch *, int, int);
723 /* Default architecture-specific register state initialization
727 dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
728 struct dwarf2_frame_state_reg *reg,
729 struct frame_info *this_frame)
731 /* If we have a register that acts as a program counter, mark it as
732 a destination for the return address. If we have a register that
733 serves as the stack pointer, arrange for it to be filled with the
734 call frame address (CFA). The other registers are marked as
737 We copy the return address to the program counter, since many
738 parts in GDB assume that it is possible to get the return address
739 by unwinding the program counter register. However, on ISA's
740 with a dedicated return address register, the CFI usually only
741 contains information to unwind that return address register.
743 The reason we're treating the stack pointer special here is
744 because in many cases GCC doesn't emit CFI for the stack pointer
745 and implicitly assumes that it is equal to the CFA. This makes
746 some sense since the DWARF specification (version 3, draft 8,
749 "Typically, the CFA is defined to be the value of the stack
750 pointer at the call site in the previous frame (which may be
751 different from its value on entry to the current frame)."
753 However, this isn't true for all platforms supported by GCC
754 (e.g. IBM S/390 and zSeries). Those architectures should provide
755 their own architecture-specific initialization function. */
757 if (regnum == gdbarch_pc_regnum (gdbarch))
758 reg->how = DWARF2_FRAME_REG_RA;
759 else if (regnum == gdbarch_sp_regnum (gdbarch))
760 reg->how = DWARF2_FRAME_REG_CFA;
763 /* Return a default for the architecture-specific operations. */
766 dwarf2_frame_init (struct obstack *obstack)
768 struct dwarf2_frame_ops *ops;
770 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
771 ops->init_reg = dwarf2_frame_default_init_reg;
775 /* Set the architecture-specific register state initialization
776 function for GDBARCH to INIT_REG. */
779 dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
780 void (*init_reg) (struct gdbarch *, int,
781 struct dwarf2_frame_state_reg *,
782 struct frame_info *))
784 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
786 ops->init_reg = init_reg;
789 /* Pre-initialize the register state REG for register REGNUM. */
792 dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
793 struct dwarf2_frame_state_reg *reg,
794 struct frame_info *this_frame)
796 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
798 ops->init_reg (gdbarch, regnum, reg, this_frame);
801 /* Set the architecture-specific signal trampoline recognition
802 function for GDBARCH to SIGNAL_FRAME_P. */
805 dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch,
806 int (*signal_frame_p) (struct gdbarch *,
807 struct frame_info *))
809 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
811 ops->signal_frame_p = signal_frame_p;
814 /* Query the architecture-specific signal frame recognizer for
818 dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch,
819 struct frame_info *this_frame)
821 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
823 if (ops->signal_frame_p == NULL)
825 return ops->signal_frame_p (gdbarch, this_frame);
828 /* Set the architecture-specific adjustment of .eh_frame and .debug_frame
832 dwarf2_frame_set_adjust_regnum (struct gdbarch *gdbarch,
833 int (*adjust_regnum) (struct gdbarch *,
836 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
838 ops->adjust_regnum = adjust_regnum;
841 /* Translate a .eh_frame register to DWARF register, or adjust a .debug_frame
845 dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch,
846 int regnum, int eh_frame_p)
848 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
850 if (ops->adjust_regnum == NULL)
852 return ops->adjust_regnum (gdbarch, regnum, eh_frame_p);
856 dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs,
857 struct dwarf2_fde *fde)
861 s = find_pc_symtab (fs->pc);
865 if (producer_is_realview (s->producer))
867 if (fde->cie->version == 1)
868 fs->armcc_cfa_offsets_sf = 1;
870 if (fde->cie->version == 1)
871 fs->armcc_cfa_offsets_reversed = 1;
873 /* The reversed offset problem is present in some compilers
874 using DWARF3, but it was eventually fixed. Check the ARM
875 defined augmentations, which are in the format "armcc" followed
876 by a list of one-character options. The "+" option means
877 this problem is fixed (no quirk needed). If the armcc
878 augmentation is missing, the quirk is needed. */
879 if (fde->cie->version == 3
880 && (strncmp (fde->cie->augmentation, "armcc", 5) != 0
881 || strchr (fde->cie->augmentation + 5, '+') == NULL))
882 fs->armcc_cfa_offsets_reversed = 1;
890 dwarf2_compile_cfa_to_ax (struct agent_expr *expr, struct axs_value *loc,
891 struct gdbarch *gdbarch,
893 struct dwarf2_per_cu_data *data)
895 struct dwarf2_fde *fde;
896 CORE_ADDR text_offset;
897 struct dwarf2_frame_state fs;
900 memset (&fs, 0, sizeof (struct dwarf2_frame_state));
904 /* Find the correct FDE. */
905 fde = dwarf2_frame_find_fde (&fs.pc, &text_offset);
907 error (_("Could not compute CFA; needed to translate this expression"));
909 /* Extract any interesting information from the CIE. */
910 fs.data_align = fde->cie->data_alignment_factor;
911 fs.code_align = fde->cie->code_alignment_factor;
912 fs.retaddr_column = fde->cie->return_address_register;
913 addr_size = fde->cie->addr_size;
915 /* Check for "quirks" - known bugs in producers. */
916 dwarf2_frame_find_quirks (&fs, fde);
918 /* First decode all the insns in the CIE. */
919 execute_cfa_program (fde, fde->cie->initial_instructions,
920 fde->cie->end, gdbarch, pc, &fs);
922 /* Save the initialized register set. */
923 fs.initial = fs.regs;
924 fs.initial.reg = dwarf2_frame_state_copy_regs (&fs.regs);
926 /* Then decode the insns in the FDE up to our target PC. */
927 execute_cfa_program (fde, fde->instructions, fde->end, gdbarch, pc, &fs);
929 /* Calculate the CFA. */
930 switch (fs.regs.cfa_how)
934 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, fs.regs.cfa_reg);
937 error (_("Unable to access DWARF register number %d"),
938 (int) fs.regs.cfa_reg); /* FIXME */
939 ax_reg (expr, regnum);
941 if (fs.regs.cfa_offset != 0)
943 if (fs.armcc_cfa_offsets_reversed)
944 ax_const_l (expr, -fs.regs.cfa_offset);
946 ax_const_l (expr, fs.regs.cfa_offset);
947 ax_simple (expr, aop_add);
953 ax_const_l (expr, text_offset);
954 dwarf2_compile_expr_to_ax (expr, loc, gdbarch, addr_size,
956 fs.regs.cfa_exp + fs.regs.cfa_exp_len,
961 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
966 struct dwarf2_frame_cache
968 /* DWARF Call Frame Address. */
971 /* Set if the return address column was marked as unavailable
972 (required non-collected memory or registers to compute). */
973 int unavailable_retaddr;
975 /* Set if the return address column was marked as undefined. */
976 int undefined_retaddr;
978 /* Saved registers, indexed by GDB register number, not by DWARF
980 struct dwarf2_frame_state_reg *reg;
982 /* Return address register. */
983 struct dwarf2_frame_state_reg retaddr_reg;
985 /* Target address size in bytes. */
988 /* The .text offset. */
989 CORE_ADDR text_offset;
991 /* True if we already checked whether this frame is the bottom frame
992 of a virtual tail call frame chain. */
993 int checked_tailcall_bottom;
995 /* If not NULL then this frame is the bottom frame of a TAILCALL_FRAME
996 sequence. If NULL then it is a normal case with no TAILCALL_FRAME
997 involved. Non-bottom frames of a virtual tail call frames chain use
998 dwarf2_tailcall_frame_unwind unwinder so this field does not apply for
1000 void *tailcall_cache;
1002 /* The number of bytes to subtract from TAILCALL_FRAME frames frame
1003 base to get the SP, to simulate the return address pushed on the
1005 LONGEST entry_cfa_sp_offset;
1006 int entry_cfa_sp_offset_p;
1009 /* A cleanup that sets a pointer to NULL. */
1012 clear_pointer_cleanup (void *arg)
1019 static struct dwarf2_frame_cache *
1020 dwarf2_frame_cache (struct frame_info *this_frame, void **this_cache)
1022 struct cleanup *reset_cache_cleanup, *old_chain;
1023 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1024 const int num_regs = gdbarch_num_regs (gdbarch)
1025 + gdbarch_num_pseudo_regs (gdbarch);
1026 struct dwarf2_frame_cache *cache;
1027 struct dwarf2_frame_state *fs;
1028 struct dwarf2_fde *fde;
1029 volatile struct gdb_exception ex;
1031 const gdb_byte *instr;
1036 /* Allocate a new cache. */
1037 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
1038 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
1039 *this_cache = cache;
1040 reset_cache_cleanup = make_cleanup (clear_pointer_cleanup, this_cache);
1042 /* Allocate and initialize the frame state. */
1043 fs = XCNEW (struct dwarf2_frame_state);
1044 old_chain = make_cleanup (dwarf2_frame_state_free, fs);
1048 Note that if the next frame is never supposed to return (i.e. a call
1049 to abort), the compiler might optimize away the instruction at
1050 its return address. As a result the return address will
1051 point at some random instruction, and the CFI for that
1052 instruction is probably worthless to us. GCC's unwinder solves
1053 this problem by substracting 1 from the return address to get an
1054 address in the middle of a presumed call instruction (or the
1055 instruction in the associated delay slot). This should only be
1056 done for "normal" frames and not for resume-type frames (signal
1057 handlers, sentinel frames, dummy frames). The function
1058 get_frame_address_in_block does just this. It's not clear how
1059 reliable the method is though; there is the potential for the
1060 register state pre-call being different to that on return. */
1061 fs->pc = get_frame_address_in_block (this_frame);
1063 /* Find the correct FDE. */
1064 fde = dwarf2_frame_find_fde (&fs->pc, &cache->text_offset);
1065 gdb_assert (fde != NULL);
1067 /* Extract any interesting information from the CIE. */
1068 fs->data_align = fde->cie->data_alignment_factor;
1069 fs->code_align = fde->cie->code_alignment_factor;
1070 fs->retaddr_column = fde->cie->return_address_register;
1071 cache->addr_size = fde->cie->addr_size;
1073 /* Check for "quirks" - known bugs in producers. */
1074 dwarf2_frame_find_quirks (fs, fde);
1076 /* First decode all the insns in the CIE. */
1077 execute_cfa_program (fde, fde->cie->initial_instructions,
1078 fde->cie->end, gdbarch,
1079 get_frame_address_in_block (this_frame), fs);
1081 /* Save the initialized register set. */
1082 fs->initial = fs->regs;
1083 fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs);
1085 if (get_frame_func_if_available (this_frame, &entry_pc))
1087 /* Decode the insns in the FDE up to the entry PC. */
1088 instr = execute_cfa_program (fde, fde->instructions, fde->end, gdbarch,
1091 if (fs->regs.cfa_how == CFA_REG_OFFSET
1092 && (gdbarch_dwarf2_reg_to_regnum (gdbarch, fs->regs.cfa_reg)
1093 == gdbarch_sp_regnum (gdbarch)))
1095 cache->entry_cfa_sp_offset = fs->regs.cfa_offset;
1096 cache->entry_cfa_sp_offset_p = 1;
1100 instr = fde->instructions;
1102 /* Then decode the insns in the FDE up to our target PC. */
1103 execute_cfa_program (fde, instr, fde->end, gdbarch,
1104 get_frame_address_in_block (this_frame), fs);
1106 TRY_CATCH (ex, RETURN_MASK_ERROR)
1108 /* Calculate the CFA. */
1109 switch (fs->regs.cfa_how)
1111 case CFA_REG_OFFSET:
1112 cache->cfa = read_addr_from_reg (this_frame, fs->regs.cfa_reg);
1113 if (fs->armcc_cfa_offsets_reversed)
1114 cache->cfa -= fs->regs.cfa_offset;
1116 cache->cfa += fs->regs.cfa_offset;
1121 execute_stack_op (fs->regs.cfa_exp, fs->regs.cfa_exp_len,
1122 cache->addr_size, cache->text_offset,
1127 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
1132 if (ex.error == NOT_AVAILABLE_ERROR)
1134 cache->unavailable_retaddr = 1;
1135 do_cleanups (old_chain);
1136 discard_cleanups (reset_cache_cleanup);
1140 throw_exception (ex);
1143 /* Initialize the register state. */
1147 for (regnum = 0; regnum < num_regs; regnum++)
1148 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], this_frame);
1151 /* Go through the DWARF2 CFI generated table and save its register
1152 location information in the cache. Note that we don't skip the
1153 return address column; it's perfectly all right for it to
1154 correspond to a real register. If it doesn't correspond to a
1155 real register, or if we shouldn't treat it as such,
1156 gdbarch_dwarf2_reg_to_regnum should be defined to return a number outside
1157 the range [0, gdbarch_num_regs). */
1159 int column; /* CFI speak for "register number". */
1161 for (column = 0; column < fs->regs.num_regs; column++)
1163 /* Use the GDB register number as the destination index. */
1164 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, column);
1166 /* If there's no corresponding GDB register, ignore it. */
1167 if (regnum < 0 || regnum >= num_regs)
1170 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
1171 of all debug info registers. If it doesn't, complain (but
1172 not too loudly). It turns out that GCC assumes that an
1173 unspecified register implies "same value" when CFI (draft
1174 7) specifies nothing at all. Such a register could equally
1175 be interpreted as "undefined". Also note that this check
1176 isn't sufficient; it only checks that all registers in the
1177 range [0 .. max column] are specified, and won't detect
1178 problems when a debug info register falls outside of the
1179 table. We need a way of iterating through all the valid
1180 DWARF2 register numbers. */
1181 if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
1183 if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED)
1184 complaint (&symfile_complaints, _("\
1185 incomplete CFI data; unspecified registers (e.g., %s) at %s"),
1186 gdbarch_register_name (gdbarch, regnum),
1187 paddress (gdbarch, fs->pc));
1190 cache->reg[regnum] = fs->regs.reg[column];
1194 /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information
1195 we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */
1199 for (regnum = 0; regnum < num_regs; regnum++)
1201 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA
1202 || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET)
1204 struct dwarf2_frame_state_reg *retaddr_reg =
1205 &fs->regs.reg[fs->retaddr_column];
1207 /* It seems rather bizarre to specify an "empty" column as
1208 the return adress column. However, this is exactly
1209 what GCC does on some targets. It turns out that GCC
1210 assumes that the return address can be found in the
1211 register corresponding to the return address column.
1212 Incidentally, that's how we should treat a return
1213 address column specifying "same value" too. */
1214 if (fs->retaddr_column < fs->regs.num_regs
1215 && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED
1216 && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE)
1218 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1219 cache->reg[regnum] = *retaddr_reg;
1221 cache->retaddr_reg = *retaddr_reg;
1225 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1227 cache->reg[regnum].loc.reg = fs->retaddr_column;
1228 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
1232 cache->retaddr_reg.loc.reg = fs->retaddr_column;
1233 cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG;
1240 if (fs->retaddr_column < fs->regs.num_regs
1241 && fs->regs.reg[fs->retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED)
1242 cache->undefined_retaddr = 1;
1244 do_cleanups (old_chain);
1245 discard_cleanups (reset_cache_cleanup);
1249 static enum unwind_stop_reason
1250 dwarf2_frame_unwind_stop_reason (struct frame_info *this_frame,
1253 struct dwarf2_frame_cache *cache
1254 = dwarf2_frame_cache (this_frame, this_cache);
1256 if (cache->unavailable_retaddr)
1257 return UNWIND_UNAVAILABLE;
1259 if (cache->undefined_retaddr)
1260 return UNWIND_OUTERMOST;
1262 return UNWIND_NO_REASON;
1266 dwarf2_frame_this_id (struct frame_info *this_frame, void **this_cache,
1267 struct frame_id *this_id)
1269 struct dwarf2_frame_cache *cache =
1270 dwarf2_frame_cache (this_frame, this_cache);
1272 if (cache->unavailable_retaddr)
1273 (*this_id) = frame_id_build_unavailable_stack (get_frame_func (this_frame));
1274 else if (cache->undefined_retaddr)
1277 (*this_id) = frame_id_build (cache->cfa, get_frame_func (this_frame));
1280 static struct value *
1281 dwarf2_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1284 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1285 struct dwarf2_frame_cache *cache =
1286 dwarf2_frame_cache (this_frame, this_cache);
1290 /* Check whether THIS_FRAME is the bottom frame of a virtual tail
1291 call frame chain. */
1292 if (!cache->checked_tailcall_bottom)
1294 cache->checked_tailcall_bottom = 1;
1295 dwarf2_tailcall_sniffer_first (this_frame, &cache->tailcall_cache,
1296 (cache->entry_cfa_sp_offset_p
1297 ? &cache->entry_cfa_sp_offset : NULL));
1300 /* Non-bottom frames of a virtual tail call frames chain use
1301 dwarf2_tailcall_frame_unwind unwinder so this code does not apply for
1302 them. If dwarf2_tailcall_prev_register_first does not have specific value
1303 unwind the register, tail call frames are assumed to have the register set
1304 of the top caller. */
1305 if (cache->tailcall_cache)
1309 val = dwarf2_tailcall_prev_register_first (this_frame,
1310 &cache->tailcall_cache,
1316 switch (cache->reg[regnum].how)
1318 case DWARF2_FRAME_REG_UNDEFINED:
1319 /* If CFI explicitly specified that the value isn't defined,
1320 mark it as optimized away; the value isn't available. */
1321 return frame_unwind_got_optimized (this_frame, regnum);
1323 case DWARF2_FRAME_REG_SAVED_OFFSET:
1324 addr = cache->cfa + cache->reg[regnum].loc.offset;
1325 return frame_unwind_got_memory (this_frame, regnum, addr);
1327 case DWARF2_FRAME_REG_SAVED_REG:
1329 = gdbarch_dwarf2_reg_to_regnum (gdbarch, cache->reg[regnum].loc.reg);
1330 return frame_unwind_got_register (this_frame, regnum, realnum);
1332 case DWARF2_FRAME_REG_SAVED_EXP:
1333 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1334 cache->reg[regnum].exp_len,
1335 cache->addr_size, cache->text_offset,
1336 this_frame, cache->cfa, 1);
1337 return frame_unwind_got_memory (this_frame, regnum, addr);
1339 case DWARF2_FRAME_REG_SAVED_VAL_OFFSET:
1340 addr = cache->cfa + cache->reg[regnum].loc.offset;
1341 return frame_unwind_got_constant (this_frame, regnum, addr);
1343 case DWARF2_FRAME_REG_SAVED_VAL_EXP:
1344 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1345 cache->reg[regnum].exp_len,
1346 cache->addr_size, cache->text_offset,
1347 this_frame, cache->cfa, 1);
1348 return frame_unwind_got_constant (this_frame, regnum, addr);
1350 case DWARF2_FRAME_REG_UNSPECIFIED:
1351 /* GCC, in its infinite wisdom decided to not provide unwind
1352 information for registers that are "same value". Since
1353 DWARF2 (3 draft 7) doesn't define such behavior, said
1354 registers are actually undefined (which is different to CFI
1355 "undefined"). Code above issues a complaint about this.
1356 Here just fudge the books, assume GCC, and that the value is
1357 more inner on the stack. */
1358 return frame_unwind_got_register (this_frame, regnum, regnum);
1360 case DWARF2_FRAME_REG_SAME_VALUE:
1361 return frame_unwind_got_register (this_frame, regnum, regnum);
1363 case DWARF2_FRAME_REG_CFA:
1364 return frame_unwind_got_address (this_frame, regnum, cache->cfa);
1366 case DWARF2_FRAME_REG_CFA_OFFSET:
1367 addr = cache->cfa + cache->reg[regnum].loc.offset;
1368 return frame_unwind_got_address (this_frame, regnum, addr);
1370 case DWARF2_FRAME_REG_RA_OFFSET:
1371 addr = cache->reg[regnum].loc.offset;
1372 regnum = gdbarch_dwarf2_reg_to_regnum
1373 (gdbarch, cache->retaddr_reg.loc.reg);
1374 addr += get_frame_register_unsigned (this_frame, regnum);
1375 return frame_unwind_got_address (this_frame, regnum, addr);
1377 case DWARF2_FRAME_REG_FN:
1378 return cache->reg[regnum].loc.fn (this_frame, this_cache, regnum);
1381 internal_error (__FILE__, __LINE__, _("Unknown register rule."));
1385 /* Proxy for tailcall_frame_dealloc_cache for bottom frame of a virtual tail
1386 call frames chain. */
1389 dwarf2_frame_dealloc_cache (struct frame_info *self, void *this_cache)
1391 struct dwarf2_frame_cache *cache = dwarf2_frame_cache (self, &this_cache);
1393 if (cache->tailcall_cache)
1394 dwarf2_tailcall_frame_unwind.dealloc_cache (self, cache->tailcall_cache);
1398 dwarf2_frame_sniffer (const struct frame_unwind *self,
1399 struct frame_info *this_frame, void **this_cache)
1401 /* Grab an address that is guarenteed to reside somewhere within the
1402 function. get_frame_pc(), with a no-return next function, can
1403 end up returning something past the end of this function's body.
1404 If the frame we're sniffing for is a signal frame whose start
1405 address is placed on the stack by the OS, its FDE must
1406 extend one byte before its start address or we could potentially
1407 select the FDE of the previous function. */
1408 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1409 struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr, NULL);
1414 /* On some targets, signal trampolines may have unwind information.
1415 We need to recognize them so that we set the frame type
1418 if (fde->cie->signal_frame
1419 || dwarf2_frame_signal_frame_p (get_frame_arch (this_frame),
1421 return self->type == SIGTRAMP_FRAME;
1423 if (self->type != NORMAL_FRAME)
1429 static const struct frame_unwind dwarf2_frame_unwind =
1432 dwarf2_frame_unwind_stop_reason,
1433 dwarf2_frame_this_id,
1434 dwarf2_frame_prev_register,
1436 dwarf2_frame_sniffer,
1437 dwarf2_frame_dealloc_cache
1440 static const struct frame_unwind dwarf2_signal_frame_unwind =
1443 dwarf2_frame_unwind_stop_reason,
1444 dwarf2_frame_this_id,
1445 dwarf2_frame_prev_register,
1447 dwarf2_frame_sniffer,
1449 /* TAILCALL_CACHE can never be in such frame to need dealloc_cache. */
1453 /* Append the DWARF-2 frame unwinders to GDBARCH's list. */
1456 dwarf2_append_unwinders (struct gdbarch *gdbarch)
1458 /* TAILCALL_FRAME must be first to find the record by
1459 dwarf2_tailcall_sniffer_first. */
1460 frame_unwind_append_unwinder (gdbarch, &dwarf2_tailcall_frame_unwind);
1462 frame_unwind_append_unwinder (gdbarch, &dwarf2_frame_unwind);
1463 frame_unwind_append_unwinder (gdbarch, &dwarf2_signal_frame_unwind);
1467 /* There is no explicitly defined relationship between the CFA and the
1468 location of frame's local variables and arguments/parameters.
1469 Therefore, frame base methods on this page should probably only be
1470 used as a last resort, just to avoid printing total garbage as a
1471 response to the "info frame" command. */
1474 dwarf2_frame_base_address (struct frame_info *this_frame, void **this_cache)
1476 struct dwarf2_frame_cache *cache =
1477 dwarf2_frame_cache (this_frame, this_cache);
1482 static const struct frame_base dwarf2_frame_base =
1484 &dwarf2_frame_unwind,
1485 dwarf2_frame_base_address,
1486 dwarf2_frame_base_address,
1487 dwarf2_frame_base_address
1490 const struct frame_base *
1491 dwarf2_frame_base_sniffer (struct frame_info *this_frame)
1493 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1495 if (dwarf2_frame_find_fde (&block_addr, NULL))
1496 return &dwarf2_frame_base;
1501 /* Compute the CFA for THIS_FRAME, but only if THIS_FRAME came from
1502 the DWARF unwinder. This is used to implement
1503 DW_OP_call_frame_cfa. */
1506 dwarf2_frame_cfa (struct frame_info *this_frame)
1508 if (frame_unwinder_is (this_frame, &record_btrace_tailcall_frame_unwind)
1509 || frame_unwinder_is (this_frame, &record_btrace_frame_unwind))
1510 throw_error (NOT_AVAILABLE_ERROR,
1511 _("cfa not available for record btrace target"));
1513 while (get_frame_type (this_frame) == INLINE_FRAME)
1514 this_frame = get_prev_frame (this_frame);
1515 if (get_frame_unwind_stop_reason (this_frame) == UNWIND_UNAVAILABLE)
1516 throw_error (NOT_AVAILABLE_ERROR,
1517 _("can't compute CFA for this frame: "
1518 "required registers or memory are unavailable"));
1519 /* This restriction could be lifted if other unwinders are known to
1520 compute the frame base in a way compatible with the DWARF
1522 if (!frame_unwinder_is (this_frame, &dwarf2_frame_unwind)
1523 && !frame_unwinder_is (this_frame, &dwarf2_tailcall_frame_unwind))
1524 error (_("can't compute CFA for this frame"));
1525 return get_frame_base (this_frame);
1528 const struct objfile_data *dwarf2_frame_objfile_data;
1531 read_1_byte (bfd *abfd, const gdb_byte *buf)
1533 return bfd_get_8 (abfd, buf);
1537 read_4_bytes (bfd *abfd, const gdb_byte *buf)
1539 return bfd_get_32 (abfd, buf);
1543 read_8_bytes (bfd *abfd, const gdb_byte *buf)
1545 return bfd_get_64 (abfd, buf);
1549 read_initial_length (bfd *abfd, const gdb_byte *buf,
1550 unsigned int *bytes_read_ptr)
1554 result = bfd_get_32 (abfd, buf);
1555 if (result == 0xffffffff)
1557 result = bfd_get_64 (abfd, buf + 4);
1558 *bytes_read_ptr = 12;
1561 *bytes_read_ptr = 4;
1567 /* Pointer encoding helper functions. */
1569 /* GCC supports exception handling based on DWARF2 CFI. However, for
1570 technical reasons, it encodes addresses in its FDE's in a different
1571 way. Several "pointer encodings" are supported. The encoding
1572 that's used for a particular FDE is determined by the 'R'
1573 augmentation in the associated CIE. The argument of this
1574 augmentation is a single byte.
1576 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1577 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1578 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1579 address should be interpreted (absolute, relative to the current
1580 position in the FDE, ...). Bit 7, indicates that the address
1581 should be dereferenced. */
1584 encoding_for_size (unsigned int size)
1589 return DW_EH_PE_udata2;
1591 return DW_EH_PE_udata4;
1593 return DW_EH_PE_udata8;
1595 internal_error (__FILE__, __LINE__, _("Unsupported address size"));
1600 read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
1601 int ptr_len, const gdb_byte *buf,
1602 unsigned int *bytes_read_ptr,
1603 CORE_ADDR func_base)
1608 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1610 if (encoding & DW_EH_PE_indirect)
1611 internal_error (__FILE__, __LINE__,
1612 _("Unsupported encoding: DW_EH_PE_indirect"));
1614 *bytes_read_ptr = 0;
1616 switch (encoding & 0x70)
1618 case DW_EH_PE_absptr:
1621 case DW_EH_PE_pcrel:
1622 base = bfd_get_section_vma (unit->abfd, unit->dwarf_frame_section);
1623 base += (buf - unit->dwarf_frame_buffer);
1625 case DW_EH_PE_datarel:
1628 case DW_EH_PE_textrel:
1631 case DW_EH_PE_funcrel:
1634 case DW_EH_PE_aligned:
1636 offset = buf - unit->dwarf_frame_buffer;
1637 if ((offset % ptr_len) != 0)
1639 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1640 buf += *bytes_read_ptr;
1644 internal_error (__FILE__, __LINE__,
1645 _("Invalid or unsupported encoding"));
1648 if ((encoding & 0x07) == 0x00)
1650 encoding |= encoding_for_size (ptr_len);
1651 if (bfd_get_sign_extend_vma (unit->abfd))
1652 encoding |= DW_EH_PE_signed;
1655 switch (encoding & 0x0f)
1657 case DW_EH_PE_uleb128:
1660 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1662 *bytes_read_ptr += safe_read_uleb128 (buf, end_buf, &value) - buf;
1663 return base + value;
1665 case DW_EH_PE_udata2:
1666 *bytes_read_ptr += 2;
1667 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1668 case DW_EH_PE_udata4:
1669 *bytes_read_ptr += 4;
1670 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1671 case DW_EH_PE_udata8:
1672 *bytes_read_ptr += 8;
1673 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
1674 case DW_EH_PE_sleb128:
1677 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1679 *bytes_read_ptr += safe_read_sleb128 (buf, end_buf, &value) - buf;
1680 return base + value;
1682 case DW_EH_PE_sdata2:
1683 *bytes_read_ptr += 2;
1684 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1685 case DW_EH_PE_sdata4:
1686 *bytes_read_ptr += 4;
1687 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1688 case DW_EH_PE_sdata8:
1689 *bytes_read_ptr += 8;
1690 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1692 internal_error (__FILE__, __LINE__,
1693 _("Invalid or unsupported encoding"));
1699 bsearch_cie_cmp (const void *key, const void *element)
1701 ULONGEST cie_pointer = *(ULONGEST *) key;
1702 struct dwarf2_cie *cie = *(struct dwarf2_cie **) element;
1704 if (cie_pointer == cie->cie_pointer)
1707 return (cie_pointer < cie->cie_pointer) ? -1 : 1;
1710 /* Find CIE with the given CIE_POINTER in CIE_TABLE. */
1711 static struct dwarf2_cie *
1712 find_cie (struct dwarf2_cie_table *cie_table, ULONGEST cie_pointer)
1714 struct dwarf2_cie **p_cie;
1716 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1717 bsearch be non-NULL. */
1718 if (cie_table->entries == NULL)
1720 gdb_assert (cie_table->num_entries == 0);
1724 p_cie = bsearch (&cie_pointer, cie_table->entries, cie_table->num_entries,
1725 sizeof (cie_table->entries[0]), bsearch_cie_cmp);
1731 /* Add a pointer to new CIE to the CIE_TABLE, allocating space for it. */
1733 add_cie (struct dwarf2_cie_table *cie_table, struct dwarf2_cie *cie)
1735 const int n = cie_table->num_entries;
1738 || cie_table->entries[n - 1]->cie_pointer < cie->cie_pointer);
1740 cie_table->entries =
1741 xrealloc (cie_table->entries, (n + 1) * sizeof (cie_table->entries[0]));
1742 cie_table->entries[n] = cie;
1743 cie_table->num_entries = n + 1;
1747 bsearch_fde_cmp (const void *key, const void *element)
1749 CORE_ADDR seek_pc = *(CORE_ADDR *) key;
1750 struct dwarf2_fde *fde = *(struct dwarf2_fde **) element;
1752 if (seek_pc < fde->initial_location)
1754 if (seek_pc < fde->initial_location + fde->address_range)
1759 /* Find the FDE for *PC. Return a pointer to the FDE, and store the
1760 inital location associated with it into *PC. */
1762 static struct dwarf2_fde *
1763 dwarf2_frame_find_fde (CORE_ADDR *pc, CORE_ADDR *out_offset)
1765 struct objfile *objfile;
1767 ALL_OBJFILES (objfile)
1769 struct dwarf2_fde_table *fde_table;
1770 struct dwarf2_fde **p_fde;
1774 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1775 if (fde_table == NULL)
1777 dwarf2_build_frame_info (objfile);
1778 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1780 gdb_assert (fde_table != NULL);
1782 if (fde_table->num_entries == 0)
1785 gdb_assert (objfile->section_offsets);
1786 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1788 gdb_assert (fde_table->num_entries > 0);
1789 if (*pc < offset + fde_table->entries[0]->initial_location)
1792 seek_pc = *pc - offset;
1793 p_fde = bsearch (&seek_pc, fde_table->entries, fde_table->num_entries,
1794 sizeof (fde_table->entries[0]), bsearch_fde_cmp);
1797 *pc = (*p_fde)->initial_location + offset;
1799 *out_offset = offset;
1806 /* Add a pointer to new FDE to the FDE_TABLE, allocating space for it. */
1808 add_fde (struct dwarf2_fde_table *fde_table, struct dwarf2_fde *fde)
1810 if (fde->address_range == 0)
1811 /* Discard useless FDEs. */
1814 fde_table->num_entries += 1;
1815 fde_table->entries =
1816 xrealloc (fde_table->entries,
1817 fde_table->num_entries * sizeof (fde_table->entries[0]));
1818 fde_table->entries[fde_table->num_entries - 1] = fde;
1821 #define DW64_CIE_ID 0xffffffffffffffffULL
1823 /* Defines the type of eh_frames that are expected to be decoded: CIE, FDE
1828 EH_CIE_TYPE_ID = 1 << 0,
1829 EH_FDE_TYPE_ID = 1 << 1,
1830 EH_CIE_OR_FDE_TYPE_ID = EH_CIE_TYPE_ID | EH_FDE_TYPE_ID
1833 static const gdb_byte *decode_frame_entry (struct comp_unit *unit,
1834 const gdb_byte *start,
1836 struct dwarf2_cie_table *cie_table,
1837 struct dwarf2_fde_table *fde_table,
1838 enum eh_frame_type entry_type);
1840 /* Decode the next CIE or FDE, entry_type specifies the expected type.
1841 Return NULL if invalid input, otherwise the next byte to be processed. */
1843 static const gdb_byte *
1844 decode_frame_entry_1 (struct comp_unit *unit, const gdb_byte *start,
1846 struct dwarf2_cie_table *cie_table,
1847 struct dwarf2_fde_table *fde_table,
1848 enum eh_frame_type entry_type)
1850 struct gdbarch *gdbarch = get_objfile_arch (unit->objfile);
1851 const gdb_byte *buf, *end;
1853 unsigned int bytes_read;
1856 ULONGEST cie_pointer;
1861 length = read_initial_length (unit->abfd, buf, &bytes_read);
1865 /* Are we still within the section? */
1866 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1872 /* Distinguish between 32 and 64-bit encoded frame info. */
1873 dwarf64_p = (bytes_read == 12);
1875 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
1879 cie_id = DW64_CIE_ID;
1885 cie_pointer = read_8_bytes (unit->abfd, buf);
1890 cie_pointer = read_4_bytes (unit->abfd, buf);
1894 if (cie_pointer == cie_id)
1896 /* This is a CIE. */
1897 struct dwarf2_cie *cie;
1899 unsigned int cie_version;
1901 /* Check that a CIE was expected. */
1902 if ((entry_type & EH_CIE_TYPE_ID) == 0)
1903 error (_("Found a CIE when not expecting it."));
1905 /* Record the offset into the .debug_frame section of this CIE. */
1906 cie_pointer = start - unit->dwarf_frame_buffer;
1908 /* Check whether we've already read it. */
1909 if (find_cie (cie_table, cie_pointer))
1912 cie = (struct dwarf2_cie *)
1913 obstack_alloc (&unit->objfile->objfile_obstack,
1914 sizeof (struct dwarf2_cie));
1915 cie->initial_instructions = NULL;
1916 cie->cie_pointer = cie_pointer;
1918 /* The encoding for FDE's in a normal .debug_frame section
1919 depends on the target address size. */
1920 cie->encoding = DW_EH_PE_absptr;
1922 /* We'll determine the final value later, but we need to
1923 initialize it conservatively. */
1924 cie->signal_frame = 0;
1926 /* Check version number. */
1927 cie_version = read_1_byte (unit->abfd, buf);
1928 if (cie_version != 1 && cie_version != 3 && cie_version != 4)
1930 cie->version = cie_version;
1933 /* Interpret the interesting bits of the augmentation. */
1934 cie->augmentation = augmentation = (char *) buf;
1935 buf += (strlen (augmentation) + 1);
1937 /* Ignore armcc augmentations. We only use them for quirks,
1938 and that doesn't happen until later. */
1939 if (strncmp (augmentation, "armcc", 5) == 0)
1940 augmentation += strlen (augmentation);
1942 /* The GCC 2.x "eh" augmentation has a pointer immediately
1943 following the augmentation string, so it must be handled
1945 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1948 buf += gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1952 if (cie->version >= 4)
1954 /* FIXME: check that this is the same as from the CU header. */
1955 cie->addr_size = read_1_byte (unit->abfd, buf);
1957 cie->segment_size = read_1_byte (unit->abfd, buf);
1962 cie->addr_size = gdbarch_dwarf2_addr_size (gdbarch);
1963 cie->segment_size = 0;
1965 /* Address values in .eh_frame sections are defined to have the
1966 target's pointer size. Watchout: This breaks frame info for
1967 targets with pointer size < address size, unless a .debug_frame
1968 section exists as well. */
1970 cie->ptr_size = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1972 cie->ptr_size = cie->addr_size;
1974 buf = gdb_read_uleb128 (buf, end, &uleb128);
1977 cie->code_alignment_factor = uleb128;
1979 buf = gdb_read_sleb128 (buf, end, &sleb128);
1982 cie->data_alignment_factor = sleb128;
1984 if (cie_version == 1)
1986 cie->return_address_register = read_1_byte (unit->abfd, buf);
1991 buf = gdb_read_uleb128 (buf, end, &uleb128);
1994 cie->return_address_register = uleb128;
1997 cie->return_address_register
1998 = dwarf2_frame_adjust_regnum (gdbarch,
1999 cie->return_address_register,
2002 cie->saw_z_augmentation = (*augmentation == 'z');
2003 if (cie->saw_z_augmentation)
2007 buf = gdb_read_uleb128 (buf, end, &length);
2010 cie->initial_instructions = buf + length;
2014 while (*augmentation)
2016 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
2017 if (*augmentation == 'L')
2024 /* "R" indicates a byte indicating how FDE addresses are encoded. */
2025 else if (*augmentation == 'R')
2027 cie->encoding = *buf++;
2031 /* "P" indicates a personality routine in the CIE augmentation. */
2032 else if (*augmentation == 'P')
2034 /* Skip. Avoid indirection since we throw away the result. */
2035 gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect;
2036 read_encoded_value (unit, encoding, cie->ptr_size,
2037 buf, &bytes_read, 0);
2042 /* "S" indicates a signal frame, such that the return
2043 address must not be decremented to locate the call frame
2044 info for the previous frame; it might even be the first
2045 instruction of a function, so decrementing it would take
2046 us to a different function. */
2047 else if (*augmentation == 'S')
2049 cie->signal_frame = 1;
2053 /* Otherwise we have an unknown augmentation. Assume that either
2054 there is no augmentation data, or we saw a 'z' prefix. */
2057 if (cie->initial_instructions)
2058 buf = cie->initial_instructions;
2063 cie->initial_instructions = buf;
2067 add_cie (cie_table, cie);
2071 /* This is a FDE. */
2072 struct dwarf2_fde *fde;
2074 /* Check that an FDE was expected. */
2075 if ((entry_type & EH_FDE_TYPE_ID) == 0)
2076 error (_("Found an FDE when not expecting it."));
2078 /* In an .eh_frame section, the CIE pointer is the delta between the
2079 address within the FDE where the CIE pointer is stored and the
2080 address of the CIE. Convert it to an offset into the .eh_frame
2084 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
2085 cie_pointer -= (dwarf64_p ? 8 : 4);
2088 /* In either case, validate the result is still within the section. */
2089 if (cie_pointer >= unit->dwarf_frame_size)
2092 fde = (struct dwarf2_fde *)
2093 obstack_alloc (&unit->objfile->objfile_obstack,
2094 sizeof (struct dwarf2_fde));
2095 fde->cie = find_cie (cie_table, cie_pointer);
2096 if (fde->cie == NULL)
2098 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
2099 eh_frame_p, cie_table, fde_table,
2101 fde->cie = find_cie (cie_table, cie_pointer);
2104 gdb_assert (fde->cie != NULL);
2106 fde->initial_location =
2107 read_encoded_value (unit, fde->cie->encoding, fde->cie->ptr_size,
2108 buf, &bytes_read, 0);
2111 fde->address_range =
2112 read_encoded_value (unit, fde->cie->encoding & 0x0f,
2113 fde->cie->ptr_size, buf, &bytes_read, 0);
2116 /* A 'z' augmentation in the CIE implies the presence of an
2117 augmentation field in the FDE as well. The only thing known
2118 to be in here at present is the LSDA entry for EH. So we
2119 can skip the whole thing. */
2120 if (fde->cie->saw_z_augmentation)
2124 buf = gdb_read_uleb128 (buf, end, &length);
2132 fde->instructions = buf;
2135 fde->eh_frame_p = eh_frame_p;
2137 add_fde (fde_table, fde);
2143 /* Read a CIE or FDE in BUF and decode it. Entry_type specifies whether we
2144 expect an FDE or a CIE. */
2146 static const gdb_byte *
2147 decode_frame_entry (struct comp_unit *unit, const gdb_byte *start,
2149 struct dwarf2_cie_table *cie_table,
2150 struct dwarf2_fde_table *fde_table,
2151 enum eh_frame_type entry_type)
2153 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
2154 const gdb_byte *ret;
2155 ptrdiff_t start_offset;
2159 ret = decode_frame_entry_1 (unit, start, eh_frame_p,
2160 cie_table, fde_table, entry_type);
2164 /* We have corrupt input data of some form. */
2166 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
2167 and mismatches wrt padding and alignment of debug sections. */
2168 /* Note that there is no requirement in the standard for any
2169 alignment at all in the frame unwind sections. Testing for
2170 alignment before trying to interpret data would be incorrect.
2172 However, GCC traditionally arranged for frame sections to be
2173 sized such that the FDE length and CIE fields happen to be
2174 aligned (in theory, for performance). This, unfortunately,
2175 was done with .align directives, which had the side effect of
2176 forcing the section to be aligned by the linker.
2178 This becomes a problem when you have some other producer that
2179 creates frame sections that are not as strictly aligned. That
2180 produces a hole in the frame info that gets filled by the
2183 The GCC behaviour is arguably a bug, but it's effectively now
2184 part of the ABI, so we're now stuck with it, at least at the
2185 object file level. A smart linker may decide, in the process
2186 of compressing duplicate CIE information, that it can rewrite
2187 the entire output section without this extra padding. */
2189 start_offset = start - unit->dwarf_frame_buffer;
2190 if (workaround < ALIGN4 && (start_offset & 3) != 0)
2192 start += 4 - (start_offset & 3);
2193 workaround = ALIGN4;
2196 if (workaround < ALIGN8 && (start_offset & 7) != 0)
2198 start += 8 - (start_offset & 7);
2199 workaround = ALIGN8;
2203 /* Nothing left to try. Arrange to return as if we've consumed
2204 the entire input section. Hopefully we'll get valid info from
2205 the other of .debug_frame/.eh_frame. */
2207 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
2217 complaint (&symfile_complaints, _("\
2218 Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
2219 unit->dwarf_frame_section->owner->filename,
2220 unit->dwarf_frame_section->name);
2224 complaint (&symfile_complaints, _("\
2225 Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
2226 unit->dwarf_frame_section->owner->filename,
2227 unit->dwarf_frame_section->name);
2231 complaint (&symfile_complaints,
2232 _("Corrupt data in %s:%s"),
2233 unit->dwarf_frame_section->owner->filename,
2234 unit->dwarf_frame_section->name);
2242 qsort_fde_cmp (const void *a, const void *b)
2244 struct dwarf2_fde *aa = *(struct dwarf2_fde **)a;
2245 struct dwarf2_fde *bb = *(struct dwarf2_fde **)b;
2247 if (aa->initial_location == bb->initial_location)
2249 if (aa->address_range != bb->address_range
2250 && aa->eh_frame_p == 0 && bb->eh_frame_p == 0)
2251 /* Linker bug, e.g. gold/10400.
2252 Work around it by keeping stable sort order. */
2253 return (a < b) ? -1 : 1;
2255 /* Put eh_frame entries after debug_frame ones. */
2256 return aa->eh_frame_p - bb->eh_frame_p;
2259 return (aa->initial_location < bb->initial_location) ? -1 : 1;
2263 dwarf2_build_frame_info (struct objfile *objfile)
2265 struct comp_unit *unit;
2266 const gdb_byte *frame_ptr;
2267 struct dwarf2_cie_table cie_table;
2268 struct dwarf2_fde_table fde_table;
2269 struct dwarf2_fde_table *fde_table2;
2270 volatile struct gdb_exception e;
2272 cie_table.num_entries = 0;
2273 cie_table.entries = NULL;
2275 fde_table.num_entries = 0;
2276 fde_table.entries = NULL;
2278 /* Build a minimal decoding of the DWARF2 compilation unit. */
2279 unit = (struct comp_unit *) obstack_alloc (&objfile->objfile_obstack,
2280 sizeof (struct comp_unit));
2281 unit->abfd = objfile->obfd;
2282 unit->objfile = objfile;
2286 if (objfile->separate_debug_objfile_backlink == NULL)
2288 /* Do not read .eh_frame from separate file as they must be also
2289 present in the main file. */
2290 dwarf2_get_section_info (objfile, DWARF2_EH_FRAME,
2291 &unit->dwarf_frame_section,
2292 &unit->dwarf_frame_buffer,
2293 &unit->dwarf_frame_size);
2294 if (unit->dwarf_frame_size)
2296 asection *got, *txt;
2298 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
2299 that is used for the i386/amd64 target, which currently is
2300 the only target in GCC that supports/uses the
2301 DW_EH_PE_datarel encoding. */
2302 got = bfd_get_section_by_name (unit->abfd, ".got");
2304 unit->dbase = got->vma;
2306 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
2308 txt = bfd_get_section_by_name (unit->abfd, ".text");
2310 unit->tbase = txt->vma;
2312 TRY_CATCH (e, RETURN_MASK_ERROR)
2314 frame_ptr = unit->dwarf_frame_buffer;
2315 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2316 frame_ptr = decode_frame_entry (unit, frame_ptr, 1,
2317 &cie_table, &fde_table,
2318 EH_CIE_OR_FDE_TYPE_ID);
2323 warning (_("skipping .eh_frame info of %s: %s"),
2324 objfile_name (objfile), e.message);
2326 if (fde_table.num_entries != 0)
2328 xfree (fde_table.entries);
2329 fde_table.entries = NULL;
2330 fde_table.num_entries = 0;
2332 /* The cie_table is discarded by the next if. */
2335 if (cie_table.num_entries != 0)
2337 /* Reinit cie_table: debug_frame has different CIEs. */
2338 xfree (cie_table.entries);
2339 cie_table.num_entries = 0;
2340 cie_table.entries = NULL;
2345 dwarf2_get_section_info (objfile, DWARF2_DEBUG_FRAME,
2346 &unit->dwarf_frame_section,
2347 &unit->dwarf_frame_buffer,
2348 &unit->dwarf_frame_size);
2349 if (unit->dwarf_frame_size)
2351 int num_old_fde_entries = fde_table.num_entries;
2353 TRY_CATCH (e, RETURN_MASK_ERROR)
2355 frame_ptr = unit->dwarf_frame_buffer;
2356 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2357 frame_ptr = decode_frame_entry (unit, frame_ptr, 0,
2358 &cie_table, &fde_table,
2359 EH_CIE_OR_FDE_TYPE_ID);
2363 warning (_("skipping .debug_frame info of %s: %s"),
2364 objfile_name (objfile), e.message);
2366 if (fde_table.num_entries != 0)
2368 fde_table.num_entries = num_old_fde_entries;
2369 if (num_old_fde_entries == 0)
2371 xfree (fde_table.entries);
2372 fde_table.entries = NULL;
2376 fde_table.entries = xrealloc (fde_table.entries,
2377 fde_table.num_entries *
2378 sizeof (fde_table.entries[0]));
2381 fde_table.num_entries = num_old_fde_entries;
2382 /* The cie_table is discarded by the next if. */
2386 /* Discard the cie_table, it is no longer needed. */
2387 if (cie_table.num_entries != 0)
2389 xfree (cie_table.entries);
2390 cie_table.entries = NULL; /* Paranoia. */
2391 cie_table.num_entries = 0; /* Paranoia. */
2394 /* Copy fde_table to obstack: it is needed at runtime. */
2395 fde_table2 = (struct dwarf2_fde_table *)
2396 obstack_alloc (&objfile->objfile_obstack, sizeof (*fde_table2));
2398 if (fde_table.num_entries == 0)
2400 fde_table2->entries = NULL;
2401 fde_table2->num_entries = 0;
2405 struct dwarf2_fde *fde_prev = NULL;
2406 struct dwarf2_fde *first_non_zero_fde = NULL;
2409 /* Prepare FDE table for lookups. */
2410 qsort (fde_table.entries, fde_table.num_entries,
2411 sizeof (fde_table.entries[0]), qsort_fde_cmp);
2413 /* Check for leftovers from --gc-sections. The GNU linker sets
2414 the relevant symbols to zero, but doesn't zero the FDE *end*
2415 ranges because there's no relocation there. It's (offset,
2416 length), not (start, end). On targets where address zero is
2417 just another valid address this can be a problem, since the
2418 FDEs appear to be non-empty in the output --- we could pick
2419 out the wrong FDE. To work around this, when overlaps are
2420 detected, we prefer FDEs that do not start at zero.
2422 Start by finding the first FDE with non-zero start. Below
2423 we'll discard all FDEs that start at zero and overlap this
2425 for (i = 0; i < fde_table.num_entries; i++)
2427 struct dwarf2_fde *fde = fde_table.entries[i];
2429 if (fde->initial_location != 0)
2431 first_non_zero_fde = fde;
2436 /* Since we'll be doing bsearch, squeeze out identical (except
2437 for eh_frame_p) fde entries so bsearch result is predictable.
2438 Also discard leftovers from --gc-sections. */
2439 fde_table2->num_entries = 0;
2440 for (i = 0; i < fde_table.num_entries; i++)
2442 struct dwarf2_fde *fde = fde_table.entries[i];
2444 if (fde->initial_location == 0
2445 && first_non_zero_fde != NULL
2446 && (first_non_zero_fde->initial_location
2447 < fde->initial_location + fde->address_range))
2450 if (fde_prev != NULL
2451 && fde_prev->initial_location == fde->initial_location)
2454 obstack_grow (&objfile->objfile_obstack, &fde_table.entries[i],
2455 sizeof (fde_table.entries[0]));
2456 ++fde_table2->num_entries;
2459 fde_table2->entries = obstack_finish (&objfile->objfile_obstack);
2461 /* Discard the original fde_table. */
2462 xfree (fde_table.entries);
2465 set_objfile_data (objfile, dwarf2_frame_objfile_data, fde_table2);
2468 /* Provide a prototype to silence -Wmissing-prototypes. */
2469 void _initialize_dwarf2_frame (void);
2472 _initialize_dwarf2_frame (void)
2474 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
2475 dwarf2_frame_objfile_data = register_objfile_data ();