1 /* Floating point routines for GDB, the GNU debugger.
3 Copyright (C) 1986, 1988-2001, 2003-2005, 2007-2012 Free Software
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21 /* Support for converting target fp numbers into host DOUBLEST format. */
23 /* XXX - This code should really be in libiberty/floatformat.c,
24 however configuration issues with libiberty made this very
25 difficult to do in the available time. */
29 #include "floatformat.h"
30 #include "gdb_assert.h"
31 #include "gdb_string.h"
33 #include <math.h> /* ldexp */
35 /* The odds that CHAR_BIT will be anything but 8 are low enough that I'm not
36 going to bother with trying to muck around with whether it is defined in
37 a system header, what we do if not, etc. */
38 #define FLOATFORMAT_CHAR_BIT 8
40 /* The number of bytes that the largest floating-point type that we
41 can convert to doublest will need. */
42 #define FLOATFORMAT_LARGEST_BYTES 16
44 /* Extract a field which starts at START and is LEN bytes long. DATA and
45 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
47 get_field (const bfd_byte *data, enum floatformat_byteorders order,
48 unsigned int total_len, unsigned int start, unsigned int len)
51 unsigned int cur_byte;
54 /* Caller must byte-swap words before calling this routine. */
55 gdb_assert (order == floatformat_little || order == floatformat_big);
57 /* Start at the least significant part of the field. */
58 if (order == floatformat_little)
60 /* We start counting from the other end (i.e, from the high bytes
61 rather than the low bytes). As such, we need to be concerned
62 with what happens if bit 0 doesn't start on a byte boundary.
63 I.e, we need to properly handle the case where total_len is
64 not evenly divisible by 8. So we compute ``excess'' which
65 represents the number of bits from the end of our starting
66 byte needed to get to bit 0. */
67 int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
69 cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
70 - ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
71 cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
72 - FLOATFORMAT_CHAR_BIT;
76 cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
78 ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
80 if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
81 result = *(data + cur_byte) >> (-cur_bitshift);
84 cur_bitshift += FLOATFORMAT_CHAR_BIT;
85 if (order == floatformat_little)
90 /* Move towards the most significant part of the field. */
91 while (cur_bitshift < len)
93 result |= (unsigned long)*(data + cur_byte) << cur_bitshift;
94 cur_bitshift += FLOATFORMAT_CHAR_BIT;
97 case floatformat_little:
100 case floatformat_big:
105 if (len < sizeof(result) * FLOATFORMAT_CHAR_BIT)
106 /* Mask out bits which are not part of the field. */
107 result &= ((1UL << len) - 1);
111 /* Normalize the byte order of FROM into TO. If no normalization is
112 needed then FMT->byteorder is returned and TO is not changed;
113 otherwise the format of the normalized form in TO is returned. */
115 static enum floatformat_byteorders
116 floatformat_normalize_byteorder (const struct floatformat *fmt,
117 const void *from, void *to)
119 const unsigned char *swapin;
120 unsigned char *swapout;
123 if (fmt->byteorder == floatformat_little
124 || fmt->byteorder == floatformat_big)
125 return fmt->byteorder;
127 words = fmt->totalsize / FLOATFORMAT_CHAR_BIT;
130 swapout = (unsigned char *)to;
131 swapin = (const unsigned char *)from;
133 if (fmt->byteorder == floatformat_vax)
137 *swapout++ = swapin[1];
138 *swapout++ = swapin[0];
139 *swapout++ = swapin[3];
140 *swapout++ = swapin[2];
143 /* This may look weird, since VAX is little-endian, but it is
144 easier to translate to big-endian than to little-endian. */
145 return floatformat_big;
149 gdb_assert (fmt->byteorder == floatformat_littlebyte_bigword);
153 *swapout++ = swapin[3];
154 *swapout++ = swapin[2];
155 *swapout++ = swapin[1];
156 *swapout++ = swapin[0];
159 return floatformat_big;
163 /* Convert from FMT to a DOUBLEST.
164 FROM is the address of the extended float.
165 Store the DOUBLEST in *TO. */
168 convert_floatformat_to_doublest (const struct floatformat *fmt,
172 unsigned char *ufrom = (unsigned char *) from;
176 unsigned int mant_bits, mant_off;
178 int special_exponent; /* It's a NaN, denorm or zero. */
179 enum floatformat_byteorders order;
180 unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
181 enum float_kind kind;
183 gdb_assert (fmt->totalsize
184 <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
186 /* For non-numbers, reuse libiberty's logic to find the correct
187 format. We do not lose any precision in this case by passing
189 kind = floatformat_classify (fmt, from);
190 if (kind == float_infinite || kind == float_nan)
194 floatformat_to_double (fmt, from, &dto);
195 *to = (DOUBLEST) dto;
199 order = floatformat_normalize_byteorder (fmt, ufrom, newfrom);
201 if (order != fmt->byteorder)
208 floatformat_to_doublest (fmt->split_half, ufrom, &dtop);
209 /* Preserve the sign of 0, which is the sign of the top
216 floatformat_to_doublest (fmt->split_half,
217 ufrom + fmt->totalsize / FLOATFORMAT_CHAR_BIT / 2,
223 exponent = get_field (ufrom, order, fmt->totalsize, fmt->exp_start,
225 /* Note that if exponent indicates a NaN, we can't really do anything useful
226 (not knowing if the host has NaN's, or how to build one). So it will
227 end up as an infinity or something close; that is OK. */
229 mant_bits_left = fmt->man_len;
230 mant_off = fmt->man_start;
233 special_exponent = exponent == 0 || exponent == fmt->exp_nan;
235 /* Don't bias NaNs. Use minimum exponent for denorms. For
236 simplicity, we don't check for zero as the exponent doesn't matter.
237 Note the cast to int; exp_bias is unsigned, so it's important to
238 make sure the operation is done in signed arithmetic. */
239 if (!special_exponent)
240 exponent -= fmt->exp_bias;
241 else if (exponent == 0)
242 exponent = 1 - fmt->exp_bias;
244 /* Build the result algebraically. Might go infinite, underflow, etc;
247 /* If this format uses a hidden bit, explicitly add it in now. Otherwise,
248 increment the exponent by one to account for the integer bit. */
250 if (!special_exponent)
252 if (fmt->intbit == floatformat_intbit_no)
253 dto = ldexp (1.0, exponent);
258 while (mant_bits_left > 0)
260 mant_bits = min (mant_bits_left, 32);
262 mant = get_field (ufrom, order, fmt->totalsize, mant_off, mant_bits);
264 dto += ldexp ((double) mant, exponent - mant_bits);
265 exponent -= mant_bits;
266 mant_off += mant_bits;
267 mant_bits_left -= mant_bits;
270 /* Negate it if negative. */
271 if (get_field (ufrom, order, fmt->totalsize, fmt->sign_start, 1))
276 /* Set a field which starts at START and is LEN bytes long. DATA and
277 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
279 put_field (unsigned char *data, enum floatformat_byteorders order,
280 unsigned int total_len, unsigned int start, unsigned int len,
281 unsigned long stuff_to_put)
283 unsigned int cur_byte;
286 /* Caller must byte-swap words before calling this routine. */
287 gdb_assert (order == floatformat_little || order == floatformat_big);
289 /* Start at the least significant part of the field. */
290 if (order == floatformat_little)
292 int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
294 cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
295 - ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
296 cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
297 - FLOATFORMAT_CHAR_BIT;
301 cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
303 ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
305 if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
307 *(data + cur_byte) &=
308 ~(((1 << ((start + len) % FLOATFORMAT_CHAR_BIT)) - 1)
310 *(data + cur_byte) |=
311 (stuff_to_put & ((1 << FLOATFORMAT_CHAR_BIT) - 1)) << (-cur_bitshift);
313 cur_bitshift += FLOATFORMAT_CHAR_BIT;
314 if (order == floatformat_little)
319 /* Move towards the most significant part of the field. */
320 while (cur_bitshift < len)
322 if (len - cur_bitshift < FLOATFORMAT_CHAR_BIT)
324 /* This is the last byte. */
325 *(data + cur_byte) &=
326 ~((1 << (len - cur_bitshift)) - 1);
327 *(data + cur_byte) |= (stuff_to_put >> cur_bitshift);
330 *(data + cur_byte) = ((stuff_to_put >> cur_bitshift)
331 & ((1 << FLOATFORMAT_CHAR_BIT) - 1));
332 cur_bitshift += FLOATFORMAT_CHAR_BIT;
333 if (order == floatformat_little)
340 #ifdef HAVE_LONG_DOUBLE
341 /* Return the fractional part of VALUE, and put the exponent of VALUE in *EPTR.
342 The range of the returned value is >= 0.5 and < 1.0. This is equivalent to
343 frexp, but operates on the long double data type. */
345 static long double ldfrexp (long double value, int *eptr);
348 ldfrexp (long double value, int *eptr)
353 /* Unfortunately, there are no portable functions for extracting the
354 exponent of a long double, so we have to do it iteratively by
355 multiplying or dividing by two until the fraction is between 0.5
364 if (value >= tmp) /* Value >= 1.0 */
370 else if (value != 0.0l) /* Value < 1.0 and > 0.0 */
384 #endif /* HAVE_LONG_DOUBLE */
387 /* The converse: convert the DOUBLEST *FROM to an extended float and
388 store where TO points. Neither FROM nor TO have any alignment
392 convert_doublest_to_floatformat (CONST struct floatformat *fmt,
393 const DOUBLEST *from, void *to)
398 unsigned int mant_bits, mant_off;
400 unsigned char *uto = (unsigned char *) to;
401 enum floatformat_byteorders order = fmt->byteorder;
402 unsigned char newto[FLOATFORMAT_LARGEST_BYTES];
404 if (order != floatformat_little)
405 order = floatformat_big;
407 if (order != fmt->byteorder)
410 memcpy (&dfrom, from, sizeof (dfrom));
411 memset (uto, 0, (fmt->totalsize + FLOATFORMAT_CHAR_BIT - 1)
412 / FLOATFORMAT_CHAR_BIT);
416 /* Use static volatile to ensure that any excess precision is
417 removed via storing in memory, and so the top half really is
418 the result of converting to double. */
419 static volatile double dtop, dbot;
420 DOUBLEST dtopnv, dbotnv;
422 dtop = (double) dfrom;
423 /* If the rounded top half is Inf, the bottom must be 0 not NaN
425 if (dtop + dtop == dtop && dtop != 0.0)
428 dbot = (double) (dfrom - (DOUBLEST) dtop);
431 floatformat_from_doublest (fmt->split_half, &dtopnv, uto);
432 floatformat_from_doublest (fmt->split_half, &dbotnv,
434 + fmt->totalsize / FLOATFORMAT_CHAR_BIT / 2));
439 return; /* Result is zero */
440 if (dfrom != dfrom) /* Result is NaN */
443 put_field (uto, order, fmt->totalsize, fmt->exp_start,
444 fmt->exp_len, fmt->exp_nan);
445 /* Be sure it's not infinity, but NaN value is irrel. */
446 put_field (uto, order, fmt->totalsize, fmt->man_start,
448 goto finalize_byteorder;
451 /* If negative, set the sign bit. */
454 put_field (uto, order, fmt->totalsize, fmt->sign_start, 1, 1);
458 if (dfrom + dfrom == dfrom && dfrom != 0.0) /* Result is Infinity. */
460 /* Infinity exponent is same as NaN's. */
461 put_field (uto, order, fmt->totalsize, fmt->exp_start,
462 fmt->exp_len, fmt->exp_nan);
463 /* Infinity mantissa is all zeroes. */
464 put_field (uto, order, fmt->totalsize, fmt->man_start,
466 goto finalize_byteorder;
469 #ifdef HAVE_LONG_DOUBLE
470 mant = ldfrexp (dfrom, &exponent);
472 mant = frexp (dfrom, &exponent);
475 put_field (uto, order, fmt->totalsize, fmt->exp_start, fmt->exp_len,
476 exponent + fmt->exp_bias - 1);
478 mant_bits_left = fmt->man_len;
479 mant_off = fmt->man_start;
480 while (mant_bits_left > 0)
482 unsigned long mant_long;
484 mant_bits = mant_bits_left < 32 ? mant_bits_left : 32;
486 mant *= 4294967296.0;
487 mant_long = ((unsigned long) mant) & 0xffffffffL;
490 /* If the integer bit is implicit, then we need to discard it.
491 If we are discarding a zero, we should be (but are not) creating
492 a denormalized number which means adjusting the exponent
494 if (mant_bits_left == fmt->man_len
495 && fmt->intbit == floatformat_intbit_no)
498 mant_long &= 0xffffffffL;
499 /* If we are processing the top 32 mantissa bits of a doublest
500 so as to convert to a float value with implied integer bit,
501 we will only be putting 31 of those 32 bits into the
502 final value due to the discarding of the top bit. In the
503 case of a small float value where the number of mantissa
504 bits is less than 32, discarding the top bit does not alter
505 the number of bits we will be adding to the result. */
512 /* The bits we want are in the most significant MANT_BITS bits of
513 mant_long. Move them to the least significant. */
514 mant_long >>= 32 - mant_bits;
517 put_field (uto, order, fmt->totalsize,
518 mant_off, mant_bits, mant_long);
519 mant_off += mant_bits;
520 mant_bits_left -= mant_bits;
524 /* Do we need to byte-swap the words in the result? */
525 if (order != fmt->byteorder)
526 floatformat_normalize_byteorder (fmt, newto, to);
529 /* Check if VAL (which is assumed to be a floating point number whose
530 format is described by FMT) is negative. */
533 floatformat_is_negative (const struct floatformat *fmt,
534 const bfd_byte *uval)
536 enum floatformat_byteorders order;
537 unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
539 gdb_assert (fmt != NULL);
540 gdb_assert (fmt->totalsize
541 <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
543 order = floatformat_normalize_byteorder (fmt, uval, newfrom);
545 if (order != fmt->byteorder)
548 return get_field (uval, order, fmt->totalsize, fmt->sign_start, 1);
551 /* Check if VAL is "not a number" (NaN) for FMT. */
554 floatformat_classify (const struct floatformat *fmt,
555 const bfd_byte *uval)
559 unsigned int mant_bits, mant_off;
561 enum floatformat_byteorders order;
562 unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
565 gdb_assert (fmt != NULL);
566 gdb_assert (fmt->totalsize
567 <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
569 order = floatformat_normalize_byteorder (fmt, uval, newfrom);
571 if (order != fmt->byteorder)
574 exponent = get_field (uval, order, fmt->totalsize, fmt->exp_start,
577 mant_bits_left = fmt->man_len;
578 mant_off = fmt->man_start;
581 while (mant_bits_left > 0)
583 mant_bits = min (mant_bits_left, 32);
585 mant = get_field (uval, order, fmt->totalsize, mant_off, mant_bits);
587 /* If there is an explicit integer bit, mask it off. */
588 if (mant_off == fmt->man_start
589 && fmt->intbit == floatformat_intbit_yes)
590 mant &= ~(1 << (mant_bits - 1));
598 mant_off += mant_bits;
599 mant_bits_left -= mant_bits;
602 /* If exp_nan is not set, assume that inf, NaN, and subnormals are not
612 if (exponent == 0 && !mant_zero)
613 return float_subnormal;
615 if (exponent == fmt->exp_nan)
618 return float_infinite;
629 /* Convert the mantissa of VAL (which is assumed to be a floating
630 point number whose format is described by FMT) into a hexadecimal
631 and store it in a static string. Return a pointer to that string. */
634 floatformat_mantissa (const struct floatformat *fmt,
637 unsigned char *uval = (unsigned char *) val;
639 unsigned int mant_bits, mant_off;
644 enum floatformat_byteorders order;
645 unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
647 gdb_assert (fmt != NULL);
648 gdb_assert (fmt->totalsize
649 <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
651 order = floatformat_normalize_byteorder (fmt, uval, newfrom);
653 if (order != fmt->byteorder)
659 /* Make sure we have enough room to store the mantissa. */
660 gdb_assert (sizeof res > ((fmt->man_len + 7) / 8) * 2);
662 mant_off = fmt->man_start;
663 mant_bits_left = fmt->man_len;
664 mant_bits = (mant_bits_left % 32) > 0 ? mant_bits_left % 32 : 32;
666 mant = get_field (uval, order, fmt->totalsize, mant_off, mant_bits);
668 len = xsnprintf (res, sizeof res, "%lx", mant);
670 mant_off += mant_bits;
671 mant_bits_left -= mant_bits;
673 while (mant_bits_left > 0)
675 mant = get_field (uval, order, fmt->totalsize, mant_off, 32);
677 xsnprintf (buf, sizeof buf, "%08lx", mant);
678 gdb_assert (len + strlen (buf) <= sizeof res);
682 mant_bits_left -= 32;
689 /* Convert TO/FROM target to the hosts DOUBLEST floating-point format.
691 If the host and target formats agree, we just copy the raw data
692 into the appropriate type of variable and return, letting the host
693 increase precision as necessary. Otherwise, we call the conversion
694 routine and let it do the dirty work. */
696 static const struct floatformat *host_float_format = GDB_HOST_FLOAT_FORMAT;
697 static const struct floatformat *host_double_format = GDB_HOST_DOUBLE_FORMAT;
698 static const struct floatformat *host_long_double_format
699 = GDB_HOST_LONG_DOUBLE_FORMAT;
702 floatformat_to_doublest (const struct floatformat *fmt,
703 const void *in, DOUBLEST *out)
705 gdb_assert (fmt != NULL);
706 if (fmt == host_float_format)
710 memcpy (&val, in, sizeof (val));
713 else if (fmt == host_double_format)
717 memcpy (&val, in, sizeof (val));
720 else if (fmt == host_long_double_format)
724 memcpy (&val, in, sizeof (val));
728 convert_floatformat_to_doublest (fmt, in, out);
732 floatformat_from_doublest (const struct floatformat *fmt,
733 const DOUBLEST *in, void *out)
735 gdb_assert (fmt != NULL);
736 if (fmt == host_float_format)
740 memcpy (out, &val, sizeof (val));
742 else if (fmt == host_double_format)
746 memcpy (out, &val, sizeof (val));
748 else if (fmt == host_long_double_format)
750 long double val = *in;
752 memcpy (out, &val, sizeof (val));
755 convert_doublest_to_floatformat (fmt, in, out);
759 /* Return a floating-point format for a floating-point variable of
760 length LEN. If no suitable floating-point format is found, an
763 We need this functionality since information about the
764 floating-point format of a type is not always available to GDB; the
765 debug information typically only tells us the size of a
768 FIXME: kettenis/2001-10-28: In many places, particularly in
769 target-dependent code, the format of floating-point types is known,
770 but not passed on by GDB. This should be fixed. */
772 static const struct floatformat *
773 floatformat_from_length (struct gdbarch *gdbarch, int len)
775 const struct floatformat *format;
777 if (len * TARGET_CHAR_BIT == gdbarch_half_bit (gdbarch))
778 format = gdbarch_half_format (gdbarch)
779 [gdbarch_byte_order (gdbarch)];
780 else if (len * TARGET_CHAR_BIT == gdbarch_float_bit (gdbarch))
781 format = gdbarch_float_format (gdbarch)
782 [gdbarch_byte_order (gdbarch)];
783 else if (len * TARGET_CHAR_BIT == gdbarch_double_bit (gdbarch))
784 format = gdbarch_double_format (gdbarch)
785 [gdbarch_byte_order (gdbarch)];
786 else if (len * TARGET_CHAR_BIT == gdbarch_long_double_bit (gdbarch))
787 format = gdbarch_long_double_format (gdbarch)
788 [gdbarch_byte_order (gdbarch)];
789 /* On i386 the 'long double' type takes 96 bits,
790 while the real number of used bits is only 80,
791 both in processor and in memory.
792 The code below accepts the real bit size. */
793 else if ((gdbarch_long_double_format (gdbarch) != NULL)
794 && (len * TARGET_CHAR_BIT
795 == gdbarch_long_double_format (gdbarch)[0]->totalsize))
796 format = gdbarch_long_double_format (gdbarch)
797 [gdbarch_byte_order (gdbarch)];
801 error (_("Unrecognized %d-bit floating-point type."),
802 len * TARGET_CHAR_BIT);
806 const struct floatformat *
807 floatformat_from_type (const struct type *type)
809 struct gdbarch *gdbarch = get_type_arch (type);
811 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
812 if (TYPE_FLOATFORMAT (type) != NULL)
813 return TYPE_FLOATFORMAT (type)[gdbarch_byte_order (gdbarch)];
815 return floatformat_from_length (gdbarch, TYPE_LENGTH (type));
818 /* Extract a floating-point number of type TYPE from a target-order
819 byte-stream at ADDR. Returns the value as type DOUBLEST. */
822 extract_typed_floating (const void *addr, const struct type *type)
824 const struct floatformat *fmt = floatformat_from_type (type);
827 floatformat_to_doublest (fmt, addr, &retval);
831 /* Store VAL as a floating-point number of type TYPE to a target-order
832 byte-stream at ADDR. */
835 store_typed_floating (void *addr, const struct type *type, DOUBLEST val)
837 const struct floatformat *fmt = floatformat_from_type (type);
839 /* FIXME: kettenis/2001-10-28: It is debatable whether we should
840 zero out any remaining bytes in the target buffer when TYPE is
841 longer than the actual underlying floating-point format. Perhaps
842 we should store a fixed bitpattern in those remaining bytes,
843 instead of zero, or perhaps we shouldn't touch those remaining
846 NOTE: cagney/2001-10-28: With the way things currently work, it
847 isn't a good idea to leave the end bits undefined. This is
848 because GDB writes out the entire sizeof(<floating>) bits of the
849 floating-point type even though the value might only be stored
850 in, and the target processor may only refer to, the first N <
851 TYPE_LENGTH (type) bits. If the end of the buffer wasn't
852 initialized, GDB would write undefined data to the target. An
853 errant program, refering to that undefined data, would then
854 become non-deterministic.
856 See also the function convert_typed_floating below. */
857 memset (addr, 0, TYPE_LENGTH (type));
859 floatformat_from_doublest (fmt, &val, addr);
862 /* Convert a floating-point number of type FROM_TYPE from a
863 target-order byte-stream at FROM to a floating-point number of type
864 TO_TYPE, and store it to a target-order byte-stream at TO. */
867 convert_typed_floating (const void *from, const struct type *from_type,
868 void *to, const struct type *to_type)
870 const struct floatformat *from_fmt = floatformat_from_type (from_type);
871 const struct floatformat *to_fmt = floatformat_from_type (to_type);
873 if (from_fmt == NULL || to_fmt == NULL)
875 /* If we don't know the floating-point format of FROM_TYPE or
876 TO_TYPE, there's not much we can do. We might make the
877 assumption that if the length of FROM_TYPE and TO_TYPE match,
878 their floating-point format would match too, but that
879 assumption might be wrong on targets that support
880 floating-point types that only differ in endianness for
881 example. So we warn instead, and zero out the target buffer. */
882 warning (_("Can't convert floating-point number to desired type."));
883 memset (to, 0, TYPE_LENGTH (to_type));
885 else if (from_fmt == to_fmt)
887 /* We're in business. The floating-point format of FROM_TYPE
888 and TO_TYPE match. However, even though the floating-point
889 format matches, the length of the type might still be
890 different. Make sure we don't overrun any buffers. See
891 comment in store_typed_floating for a discussion about
892 zeroing out remaining bytes in the target buffer. */
893 memset (to, 0, TYPE_LENGTH (to_type));
894 memcpy (to, from, min (TYPE_LENGTH (from_type), TYPE_LENGTH (to_type)));
898 /* The floating-point types don't match. The best we can do
899 (apart from simulating the target FPU) is converting to the
900 widest floating-point type supported by the host, and then
901 again to the desired type. */
904 floatformat_to_doublest (from_fmt, from, &d);
905 floatformat_from_doublest (to_fmt, &d, to);
909 const struct floatformat *floatformat_ieee_single[BFD_ENDIAN_UNKNOWN];
910 const struct floatformat *floatformat_ieee_double[BFD_ENDIAN_UNKNOWN];
911 const struct floatformat *floatformat_ieee_quad[BFD_ENDIAN_UNKNOWN];
912 const struct floatformat *floatformat_arm_ext[BFD_ENDIAN_UNKNOWN];
913 const struct floatformat *floatformat_ia64_spill[BFD_ENDIAN_UNKNOWN];
915 extern void _initialize_doublest (void);
918 _initialize_doublest (void)
920 floatformat_ieee_single[BFD_ENDIAN_LITTLE] = &floatformat_ieee_single_little;
921 floatformat_ieee_single[BFD_ENDIAN_BIG] = &floatformat_ieee_single_big;
922 floatformat_ieee_double[BFD_ENDIAN_LITTLE] = &floatformat_ieee_double_little;
923 floatformat_ieee_double[BFD_ENDIAN_BIG] = &floatformat_ieee_double_big;
924 floatformat_arm_ext[BFD_ENDIAN_LITTLE]
925 = &floatformat_arm_ext_littlebyte_bigword;
926 floatformat_arm_ext[BFD_ENDIAN_BIG] = &floatformat_arm_ext_big;
927 floatformat_ia64_spill[BFD_ENDIAN_LITTLE] = &floatformat_ia64_spill_little;
928 floatformat_ia64_spill[BFD_ENDIAN_BIG] = &floatformat_ia64_spill_big;
929 floatformat_ieee_quad[BFD_ENDIAN_LITTLE] = &floatformat_ia64_quad_little;
930 floatformat_ieee_quad[BFD_ENDIAN_BIG] = &floatformat_ia64_quad_big;