1 /* Floating point routines for GDB, the GNU debugger.
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 /* Support for converting target fp numbers into host DOUBLEST format. */
22 /* XXX - This code should really be in libiberty/floatformat.c,
23 however configuration issues with libiberty made this very
24 difficult to do in the available time. */
28 #include "floatformat.h"
29 #include "gdb_assert.h"
32 #include <math.h> /* ldexp */
34 /* The odds that CHAR_BIT will be anything but 8 are low enough that I'm not
35 going to bother with trying to muck around with whether it is defined in
36 a system header, what we do if not, etc. */
37 #define FLOATFORMAT_CHAR_BIT 8
39 /* The number of bytes that the largest floating-point type that we
40 can convert to doublest will need. */
41 #define FLOATFORMAT_LARGEST_BYTES 16
43 /* Extract a field which starts at START and is LEN bytes long. DATA and
44 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
46 get_field (const bfd_byte *data, enum floatformat_byteorders order,
47 unsigned int total_len, unsigned int start, unsigned int len)
50 unsigned int cur_byte;
53 /* Caller must byte-swap words before calling this routine. */
54 gdb_assert (order == floatformat_little || order == floatformat_big);
56 /* Start at the least significant part of the field. */
57 if (order == floatformat_little)
59 /* We start counting from the other end (i.e, from the high bytes
60 rather than the low bytes). As such, we need to be concerned
61 with what happens if bit 0 doesn't start on a byte boundary.
62 I.e, we need to properly handle the case where total_len is
63 not evenly divisible by 8. So we compute ``excess'' which
64 represents the number of bits from the end of our starting
65 byte needed to get to bit 0. */
66 int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
68 cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
69 - ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
70 cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
71 - FLOATFORMAT_CHAR_BIT;
75 cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
77 ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
79 if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
80 result = *(data + cur_byte) >> (-cur_bitshift);
83 cur_bitshift += FLOATFORMAT_CHAR_BIT;
84 if (order == floatformat_little)
89 /* Move towards the most significant part of the field. */
90 while (cur_bitshift < len)
92 result |= (unsigned long)*(data + cur_byte) << cur_bitshift;
93 cur_bitshift += FLOATFORMAT_CHAR_BIT;
96 case floatformat_little:
104 if (len < sizeof(result) * FLOATFORMAT_CHAR_BIT)
105 /* Mask out bits which are not part of the field. */
106 result &= ((1UL << len) - 1);
110 /* Normalize the byte order of FROM into TO. If no normalization is
111 needed then FMT->byteorder is returned and TO is not changed;
112 otherwise the format of the normalized form in TO is returned. */
114 static enum floatformat_byteorders
115 floatformat_normalize_byteorder (const struct floatformat *fmt,
116 const void *from, void *to)
118 const unsigned char *swapin;
119 unsigned char *swapout;
122 if (fmt->byteorder == floatformat_little
123 || fmt->byteorder == floatformat_big)
124 return fmt->byteorder;
126 words = fmt->totalsize / FLOATFORMAT_CHAR_BIT;
129 swapout = (unsigned char *)to;
130 swapin = (const unsigned char *)from;
132 if (fmt->byteorder == floatformat_vax)
136 *swapout++ = swapin[1];
137 *swapout++ = swapin[0];
138 *swapout++ = swapin[3];
139 *swapout++ = swapin[2];
142 /* This may look weird, since VAX is little-endian, but it is
143 easier to translate to big-endian than to little-endian. */
144 return floatformat_big;
148 gdb_assert (fmt->byteorder == floatformat_littlebyte_bigword);
152 *swapout++ = swapin[3];
153 *swapout++ = swapin[2];
154 *swapout++ = swapin[1];
155 *swapout++ = swapin[0];
158 return floatformat_big;
162 /* Convert from FMT to a DOUBLEST.
163 FROM is the address of the extended float.
164 Store the DOUBLEST in *TO. */
167 convert_floatformat_to_doublest (const struct floatformat *fmt,
171 unsigned char *ufrom = (unsigned char *) from;
175 unsigned int mant_bits, mant_off;
177 int special_exponent; /* It's a NaN, denorm or zero. */
178 enum floatformat_byteorders order;
179 unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
180 enum float_kind kind;
182 gdb_assert (fmt->totalsize
183 <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
185 /* For non-numbers, reuse libiberty's logic to find the correct
186 format. We do not lose any precision in this case by passing
188 kind = floatformat_classify (fmt, from);
189 if (kind == float_infinite || kind == float_nan)
193 floatformat_to_double (fmt->split_half ? fmt->split_half : fmt,
195 *to = (DOUBLEST) dto;
199 order = floatformat_normalize_byteorder (fmt, ufrom, newfrom);
201 if (order != fmt->byteorder)
208 floatformat_to_doublest (fmt->split_half, ufrom, &dtop);
209 /* Preserve the sign of 0, which is the sign of the top
216 floatformat_to_doublest (fmt->split_half,
217 ufrom + fmt->totalsize / FLOATFORMAT_CHAR_BIT / 2,
223 exponent = get_field (ufrom, order, fmt->totalsize, fmt->exp_start,
225 /* Note that if exponent indicates a NaN, we can't really do anything useful
226 (not knowing if the host has NaN's, or how to build one). So it will
227 end up as an infinity or something close; that is OK. */
229 mant_bits_left = fmt->man_len;
230 mant_off = fmt->man_start;
233 special_exponent = exponent == 0 || exponent == fmt->exp_nan;
235 /* Don't bias NaNs. Use minimum exponent for denorms. For
236 simplicity, we don't check for zero as the exponent doesn't matter.
237 Note the cast to int; exp_bias is unsigned, so it's important to
238 make sure the operation is done in signed arithmetic. */
239 if (!special_exponent)
240 exponent -= fmt->exp_bias;
241 else if (exponent == 0)
242 exponent = 1 - fmt->exp_bias;
244 /* Build the result algebraically. Might go infinite, underflow, etc;
247 /* If this format uses a hidden bit, explicitly add it in now. Otherwise,
248 increment the exponent by one to account for the integer bit. */
250 if (!special_exponent)
252 if (fmt->intbit == floatformat_intbit_no)
253 dto = ldexp (1.0, exponent);
258 while (mant_bits_left > 0)
260 mant_bits = min (mant_bits_left, 32);
262 mant = get_field (ufrom, order, fmt->totalsize, mant_off, mant_bits);
264 dto += ldexp ((double) mant, exponent - mant_bits);
265 exponent -= mant_bits;
266 mant_off += mant_bits;
267 mant_bits_left -= mant_bits;
270 /* Negate it if negative. */
271 if (get_field (ufrom, order, fmt->totalsize, fmt->sign_start, 1))
276 /* Set a field which starts at START and is LEN bytes long. DATA and
277 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
279 put_field (unsigned char *data, enum floatformat_byteorders order,
280 unsigned int total_len, unsigned int start, unsigned int len,
281 unsigned long stuff_to_put)
283 unsigned int cur_byte;
286 /* Caller must byte-swap words before calling this routine. */
287 gdb_assert (order == floatformat_little || order == floatformat_big);
289 /* Start at the least significant part of the field. */
290 if (order == floatformat_little)
292 int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
294 cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
295 - ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
296 cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
297 - FLOATFORMAT_CHAR_BIT;
301 cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
303 ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
305 if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
307 *(data + cur_byte) &=
308 ~(((1 << ((start + len) % FLOATFORMAT_CHAR_BIT)) - 1)
310 *(data + cur_byte) |=
311 (stuff_to_put & ((1 << FLOATFORMAT_CHAR_BIT) - 1)) << (-cur_bitshift);
313 cur_bitshift += FLOATFORMAT_CHAR_BIT;
314 if (order == floatformat_little)
319 /* Move towards the most significant part of the field. */
320 while (cur_bitshift < len)
322 if (len - cur_bitshift < FLOATFORMAT_CHAR_BIT)
324 /* This is the last byte. */
325 *(data + cur_byte) &=
326 ~((1 << (len - cur_bitshift)) - 1);
327 *(data + cur_byte) |= (stuff_to_put >> cur_bitshift);
330 *(data + cur_byte) = ((stuff_to_put >> cur_bitshift)
331 & ((1 << FLOATFORMAT_CHAR_BIT) - 1));
332 cur_bitshift += FLOATFORMAT_CHAR_BIT;
333 if (order == floatformat_little)
340 /* The converse: convert the DOUBLEST *FROM to an extended float and
341 store where TO points. Neither FROM nor TO have any alignment
345 convert_doublest_to_floatformat (const struct floatformat *fmt,
346 const DOUBLEST *from, void *to)
351 unsigned int mant_bits, mant_off;
353 unsigned char *uto = (unsigned char *) to;
354 enum floatformat_byteorders order = fmt->byteorder;
355 unsigned char newto[FLOATFORMAT_LARGEST_BYTES];
357 if (order != floatformat_little)
358 order = floatformat_big;
360 if (order != fmt->byteorder)
363 memcpy (&dfrom, from, sizeof (dfrom));
364 memset (uto, 0, (fmt->totalsize + FLOATFORMAT_CHAR_BIT - 1)
365 / FLOATFORMAT_CHAR_BIT);
369 /* Use static volatile to ensure that any excess precision is
370 removed via storing in memory, and so the top half really is
371 the result of converting to double. */
372 static volatile double dtop, dbot;
373 DOUBLEST dtopnv, dbotnv;
375 dtop = (double) dfrom;
376 /* If the rounded top half is Inf, the bottom must be 0 not NaN
378 if (dtop + dtop == dtop && dtop != 0.0)
381 dbot = (double) (dfrom - (DOUBLEST) dtop);
384 floatformat_from_doublest (fmt->split_half, &dtopnv, uto);
385 floatformat_from_doublest (fmt->split_half, &dbotnv,
387 + fmt->totalsize / FLOATFORMAT_CHAR_BIT / 2));
392 return; /* Result is zero */
393 if (dfrom != dfrom) /* Result is NaN */
396 put_field (uto, order, fmt->totalsize, fmt->exp_start,
397 fmt->exp_len, fmt->exp_nan);
398 /* Be sure it's not infinity, but NaN value is irrel. */
399 put_field (uto, order, fmt->totalsize, fmt->man_start,
401 goto finalize_byteorder;
404 /* If negative, set the sign bit. */
407 put_field (uto, order, fmt->totalsize, fmt->sign_start, 1, 1);
411 if (dfrom + dfrom == dfrom && dfrom != 0.0) /* Result is Infinity. */
413 /* Infinity exponent is same as NaN's. */
414 put_field (uto, order, fmt->totalsize, fmt->exp_start,
415 fmt->exp_len, fmt->exp_nan);
416 /* Infinity mantissa is all zeroes. */
417 put_field (uto, order, fmt->totalsize, fmt->man_start,
419 goto finalize_byteorder;
422 #ifdef HAVE_LONG_DOUBLE
423 mant = frexpl (dfrom, &exponent);
425 mant = frexp (dfrom, &exponent);
428 if (exponent + fmt->exp_bias <= 0)
430 /* The value is too small to be expressed in the destination
431 type (not enough bits in the exponent. Treat as 0. */
432 put_field (uto, order, fmt->totalsize, fmt->exp_start,
434 put_field (uto, order, fmt->totalsize, fmt->man_start,
436 goto finalize_byteorder;
439 if (exponent + fmt->exp_bias >= (1 << fmt->exp_len))
441 /* The value is too large to fit into the destination.
442 Treat as infinity. */
443 put_field (uto, order, fmt->totalsize, fmt->exp_start,
444 fmt->exp_len, fmt->exp_nan);
445 put_field (uto, order, fmt->totalsize, fmt->man_start,
447 goto finalize_byteorder;
450 put_field (uto, order, fmt->totalsize, fmt->exp_start, fmt->exp_len,
451 exponent + fmt->exp_bias - 1);
453 mant_bits_left = fmt->man_len;
454 mant_off = fmt->man_start;
455 while (mant_bits_left > 0)
457 unsigned long mant_long;
459 mant_bits = mant_bits_left < 32 ? mant_bits_left : 32;
461 mant *= 4294967296.0;
462 mant_long = ((unsigned long) mant) & 0xffffffffL;
465 /* If the integer bit is implicit, then we need to discard it.
466 If we are discarding a zero, we should be (but are not) creating
467 a denormalized number which means adjusting the exponent
469 if (mant_bits_left == fmt->man_len
470 && fmt->intbit == floatformat_intbit_no)
473 mant_long &= 0xffffffffL;
474 /* If we are processing the top 32 mantissa bits of a doublest
475 so as to convert to a float value with implied integer bit,
476 we will only be putting 31 of those 32 bits into the
477 final value due to the discarding of the top bit. In the
478 case of a small float value where the number of mantissa
479 bits is less than 32, discarding the top bit does not alter
480 the number of bits we will be adding to the result. */
487 /* The bits we want are in the most significant MANT_BITS bits of
488 mant_long. Move them to the least significant. */
489 mant_long >>= 32 - mant_bits;
492 put_field (uto, order, fmt->totalsize,
493 mant_off, mant_bits, mant_long);
494 mant_off += mant_bits;
495 mant_bits_left -= mant_bits;
499 /* Do we need to byte-swap the words in the result? */
500 if (order != fmt->byteorder)
501 floatformat_normalize_byteorder (fmt, newto, to);
504 /* Check if VAL (which is assumed to be a floating point number whose
505 format is described by FMT) is negative. */
508 floatformat_is_negative (const struct floatformat *fmt,
509 const bfd_byte *uval)
511 enum floatformat_byteorders order;
512 unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
514 gdb_assert (fmt != NULL);
515 gdb_assert (fmt->totalsize
516 <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
518 /* An IBM long double (a two element array of double) always takes the
519 sign of the first double. */
521 fmt = fmt->split_half;
523 order = floatformat_normalize_byteorder (fmt, uval, newfrom);
525 if (order != fmt->byteorder)
528 return get_field (uval, order, fmt->totalsize, fmt->sign_start, 1);
531 /* Check if VAL is "not a number" (NaN) for FMT. */
534 floatformat_classify (const struct floatformat *fmt,
535 const bfd_byte *uval)
539 unsigned int mant_bits, mant_off;
541 enum floatformat_byteorders order;
542 unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
545 gdb_assert (fmt != NULL);
546 gdb_assert (fmt->totalsize
547 <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
549 /* An IBM long double (a two element array of double) can be classified
550 by looking at the first double. inf and nan are specified as
551 ignoring the second double. zero and subnormal will always have
552 the second double 0.0 if the long double is correctly rounded. */
554 fmt = fmt->split_half;
556 order = floatformat_normalize_byteorder (fmt, uval, newfrom);
558 if (order != fmt->byteorder)
561 exponent = get_field (uval, order, fmt->totalsize, fmt->exp_start,
564 mant_bits_left = fmt->man_len;
565 mant_off = fmt->man_start;
568 while (mant_bits_left > 0)
570 mant_bits = min (mant_bits_left, 32);
572 mant = get_field (uval, order, fmt->totalsize, mant_off, mant_bits);
574 /* If there is an explicit integer bit, mask it off. */
575 if (mant_off == fmt->man_start
576 && fmt->intbit == floatformat_intbit_yes)
577 mant &= ~(1 << (mant_bits - 1));
585 mant_off += mant_bits;
586 mant_bits_left -= mant_bits;
589 /* If exp_nan is not set, assume that inf, NaN, and subnormals are not
599 if (exponent == 0 && !mant_zero)
600 return float_subnormal;
602 if (exponent == fmt->exp_nan)
605 return float_infinite;
616 /* Convert the mantissa of VAL (which is assumed to be a floating
617 point number whose format is described by FMT) into a hexadecimal
618 and store it in a static string. Return a pointer to that string. */
621 floatformat_mantissa (const struct floatformat *fmt,
624 unsigned char *uval = (unsigned char *) val;
626 unsigned int mant_bits, mant_off;
631 enum floatformat_byteorders order;
632 unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
634 gdb_assert (fmt != NULL);
635 gdb_assert (fmt->totalsize
636 <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
638 /* For IBM long double (a two element array of double), return the
639 mantissa of the first double. The problem with returning the
640 actual mantissa from both doubles is that there can be an
641 arbitrary number of implied 0's or 1's between the mantissas
642 of the first and second double. In any case, this function
643 is only used for dumping out nans, and a nan is specified to
644 ignore the value in the second double. */
646 fmt = fmt->split_half;
648 order = floatformat_normalize_byteorder (fmt, uval, newfrom);
650 if (order != fmt->byteorder)
656 /* Make sure we have enough room to store the mantissa. */
657 gdb_assert (sizeof res > ((fmt->man_len + 7) / 8) * 2);
659 mant_off = fmt->man_start;
660 mant_bits_left = fmt->man_len;
661 mant_bits = (mant_bits_left % 32) > 0 ? mant_bits_left % 32 : 32;
663 mant = get_field (uval, order, fmt->totalsize, mant_off, mant_bits);
665 len = xsnprintf (res, sizeof res, "%lx", mant);
667 mant_off += mant_bits;
668 mant_bits_left -= mant_bits;
670 while (mant_bits_left > 0)
672 mant = get_field (uval, order, fmt->totalsize, mant_off, 32);
674 xsnprintf (buf, sizeof buf, "%08lx", mant);
675 gdb_assert (len + strlen (buf) <= sizeof res);
679 mant_bits_left -= 32;
686 /* Convert TO/FROM target to the hosts DOUBLEST floating-point format.
688 If the host and target formats agree, we just copy the raw data
689 into the appropriate type of variable and return, letting the host
690 increase precision as necessary. Otherwise, we call the conversion
691 routine and let it do the dirty work. */
693 static const struct floatformat *host_float_format = GDB_HOST_FLOAT_FORMAT;
694 static const struct floatformat *host_double_format = GDB_HOST_DOUBLE_FORMAT;
695 static const struct floatformat *host_long_double_format
696 = GDB_HOST_LONG_DOUBLE_FORMAT;
699 floatformat_to_doublest (const struct floatformat *fmt,
700 const void *in, DOUBLEST *out)
702 gdb_assert (fmt != NULL);
703 if (fmt == host_float_format)
707 memcpy (&val, in, sizeof (val));
710 else if (fmt == host_double_format)
714 memcpy (&val, in, sizeof (val));
717 else if (fmt == host_long_double_format)
721 memcpy (&val, in, sizeof (val));
725 convert_floatformat_to_doublest (fmt, in, out);
729 floatformat_from_doublest (const struct floatformat *fmt,
730 const DOUBLEST *in, void *out)
732 gdb_assert (fmt != NULL);
733 if (fmt == host_float_format)
737 memcpy (out, &val, sizeof (val));
739 else if (fmt == host_double_format)
743 memcpy (out, &val, sizeof (val));
745 else if (fmt == host_long_double_format)
747 long double val = *in;
749 memcpy (out, &val, sizeof (val));
752 convert_doublest_to_floatformat (fmt, in, out);
756 /* Return a floating-point format for a floating-point variable of
757 length LEN. If no suitable floating-point format is found, an
760 We need this functionality since information about the
761 floating-point format of a type is not always available to GDB; the
762 debug information typically only tells us the size of a
765 FIXME: kettenis/2001-10-28: In many places, particularly in
766 target-dependent code, the format of floating-point types is known,
767 but not passed on by GDB. This should be fixed. */
769 static const struct floatformat *
770 floatformat_from_length (struct gdbarch *gdbarch, int len)
772 const struct floatformat *format;
774 if (len * TARGET_CHAR_BIT == gdbarch_half_bit (gdbarch))
775 format = gdbarch_half_format (gdbarch)
776 [gdbarch_byte_order (gdbarch)];
777 else if (len * TARGET_CHAR_BIT == gdbarch_float_bit (gdbarch))
778 format = gdbarch_float_format (gdbarch)
779 [gdbarch_byte_order (gdbarch)];
780 else if (len * TARGET_CHAR_BIT == gdbarch_double_bit (gdbarch))
781 format = gdbarch_double_format (gdbarch)
782 [gdbarch_byte_order (gdbarch)];
783 else if (len * TARGET_CHAR_BIT == gdbarch_long_double_bit (gdbarch))
784 format = gdbarch_long_double_format (gdbarch)
785 [gdbarch_byte_order (gdbarch)];
786 /* On i386 the 'long double' type takes 96 bits,
787 while the real number of used bits is only 80,
788 both in processor and in memory.
789 The code below accepts the real bit size. */
790 else if ((gdbarch_long_double_format (gdbarch) != NULL)
791 && (len * TARGET_CHAR_BIT
792 == gdbarch_long_double_format (gdbarch)[0]->totalsize))
793 format = gdbarch_long_double_format (gdbarch)
794 [gdbarch_byte_order (gdbarch)];
798 error (_("Unrecognized %d-bit floating-point type."),
799 len * TARGET_CHAR_BIT);
803 const struct floatformat *
804 floatformat_from_type (const struct type *type)
806 struct gdbarch *gdbarch = get_type_arch (type);
808 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
809 if (TYPE_FLOATFORMAT (type) != NULL)
810 return TYPE_FLOATFORMAT (type)[gdbarch_byte_order (gdbarch)];
812 return floatformat_from_length (gdbarch, TYPE_LENGTH (type));
815 /* Extract a floating-point number of type TYPE from a target-order
816 byte-stream at ADDR. Returns the value as type DOUBLEST. */
819 extract_typed_floating (const void *addr, const struct type *type)
821 const struct floatformat *fmt = floatformat_from_type (type);
824 floatformat_to_doublest (fmt, addr, &retval);
828 /* Store VAL as a floating-point number of type TYPE to a target-order
829 byte-stream at ADDR. */
832 store_typed_floating (void *addr, const struct type *type, DOUBLEST val)
834 const struct floatformat *fmt = floatformat_from_type (type);
836 /* FIXME: kettenis/2001-10-28: It is debatable whether we should
837 zero out any remaining bytes in the target buffer when TYPE is
838 longer than the actual underlying floating-point format. Perhaps
839 we should store a fixed bitpattern in those remaining bytes,
840 instead of zero, or perhaps we shouldn't touch those remaining
843 NOTE: cagney/2001-10-28: With the way things currently work, it
844 isn't a good idea to leave the end bits undefined. This is
845 because GDB writes out the entire sizeof(<floating>) bits of the
846 floating-point type even though the value might only be stored
847 in, and the target processor may only refer to, the first N <
848 TYPE_LENGTH (type) bits. If the end of the buffer wasn't
849 initialized, GDB would write undefined data to the target. An
850 errant program, refering to that undefined data, would then
851 become non-deterministic.
853 See also the function convert_typed_floating below. */
854 memset (addr, 0, TYPE_LENGTH (type));
856 floatformat_from_doublest (fmt, &val, addr);
859 /* Convert a floating-point number of type FROM_TYPE from a
860 target-order byte-stream at FROM to a floating-point number of type
861 TO_TYPE, and store it to a target-order byte-stream at TO. */
864 convert_typed_floating (const void *from, const struct type *from_type,
865 void *to, const struct type *to_type)
867 const struct floatformat *from_fmt = floatformat_from_type (from_type);
868 const struct floatformat *to_fmt = floatformat_from_type (to_type);
870 if (from_fmt == NULL || to_fmt == NULL)
872 /* If we don't know the floating-point format of FROM_TYPE or
873 TO_TYPE, there's not much we can do. We might make the
874 assumption that if the length of FROM_TYPE and TO_TYPE match,
875 their floating-point format would match too, but that
876 assumption might be wrong on targets that support
877 floating-point types that only differ in endianness for
878 example. So we warn instead, and zero out the target buffer. */
879 warning (_("Can't convert floating-point number to desired type."));
880 memset (to, 0, TYPE_LENGTH (to_type));
882 else if (from_fmt == to_fmt)
884 /* We're in business. The floating-point format of FROM_TYPE
885 and TO_TYPE match. However, even though the floating-point
886 format matches, the length of the type might still be
887 different. Make sure we don't overrun any buffers. See
888 comment in store_typed_floating for a discussion about
889 zeroing out remaining bytes in the target buffer. */
890 memset (to, 0, TYPE_LENGTH (to_type));
891 memcpy (to, from, min (TYPE_LENGTH (from_type), TYPE_LENGTH (to_type)));
895 /* The floating-point types don't match. The best we can do
896 (apart from simulating the target FPU) is converting to the
897 widest floating-point type supported by the host, and then
898 again to the desired type. */
901 floatformat_to_doublest (from_fmt, from, &d);
902 floatformat_from_doublest (to_fmt, &d, to);