1 /* Floating point routines for GDB, the GNU debugger.
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 /* Support for converting target fp numbers into host DOUBLEST format. */
22 /* XXX - This code should really be in libiberty/floatformat.c,
23 however configuration issues with libiberty made this very
24 difficult to do in the available time. */
28 #include "floatformat.h"
29 #include "gdb_assert.h"
30 #include "gdb_string.h"
32 #include <math.h> /* ldexp */
34 /* The odds that CHAR_BIT will be anything but 8 are low enough that I'm not
35 going to bother with trying to muck around with whether it is defined in
36 a system header, what we do if not, etc. */
37 #define FLOATFORMAT_CHAR_BIT 8
39 /* The number of bytes that the largest floating-point type that we
40 can convert to doublest will need. */
41 #define FLOATFORMAT_LARGEST_BYTES 16
43 /* Extract a field which starts at START and is LEN bytes long. DATA and
44 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
46 get_field (const bfd_byte *data, enum floatformat_byteorders order,
47 unsigned int total_len, unsigned int start, unsigned int len)
50 unsigned int cur_byte;
53 /* Caller must byte-swap words before calling this routine. */
54 gdb_assert (order == floatformat_little || order == floatformat_big);
56 /* Start at the least significant part of the field. */
57 if (order == floatformat_little)
59 /* We start counting from the other end (i.e, from the high bytes
60 rather than the low bytes). As such, we need to be concerned
61 with what happens if bit 0 doesn't start on a byte boundary.
62 I.e, we need to properly handle the case where total_len is
63 not evenly divisible by 8. So we compute ``excess'' which
64 represents the number of bits from the end of our starting
65 byte needed to get to bit 0. */
66 int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
68 cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
69 - ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
70 cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
71 - FLOATFORMAT_CHAR_BIT;
75 cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
77 ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
79 if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
80 result = *(data + cur_byte) >> (-cur_bitshift);
83 cur_bitshift += FLOATFORMAT_CHAR_BIT;
84 if (order == floatformat_little)
89 /* Move towards the most significant part of the field. */
90 while (cur_bitshift < len)
92 result |= (unsigned long)*(data + cur_byte) << cur_bitshift;
93 cur_bitshift += FLOATFORMAT_CHAR_BIT;
96 case floatformat_little:
104 if (len < sizeof(result) * FLOATFORMAT_CHAR_BIT)
105 /* Mask out bits which are not part of the field. */
106 result &= ((1UL << len) - 1);
110 /* Normalize the byte order of FROM into TO. If no normalization is
111 needed then FMT->byteorder is returned and TO is not changed;
112 otherwise the format of the normalized form in TO is returned. */
114 static enum floatformat_byteorders
115 floatformat_normalize_byteorder (const struct floatformat *fmt,
116 const void *from, void *to)
118 const unsigned char *swapin;
119 unsigned char *swapout;
122 if (fmt->byteorder == floatformat_little
123 || fmt->byteorder == floatformat_big)
124 return fmt->byteorder;
126 words = fmt->totalsize / FLOATFORMAT_CHAR_BIT;
129 swapout = (unsigned char *)to;
130 swapin = (const unsigned char *)from;
132 if (fmt->byteorder == floatformat_vax)
136 *swapout++ = swapin[1];
137 *swapout++ = swapin[0];
138 *swapout++ = swapin[3];
139 *swapout++ = swapin[2];
142 /* This may look weird, since VAX is little-endian, but it is
143 easier to translate to big-endian than to little-endian. */
144 return floatformat_big;
148 gdb_assert (fmt->byteorder == floatformat_littlebyte_bigword);
152 *swapout++ = swapin[3];
153 *swapout++ = swapin[2];
154 *swapout++ = swapin[1];
155 *swapout++ = swapin[0];
158 return floatformat_big;
162 /* Convert from FMT to a DOUBLEST.
163 FROM is the address of the extended float.
164 Store the DOUBLEST in *TO. */
167 convert_floatformat_to_doublest (const struct floatformat *fmt,
171 unsigned char *ufrom = (unsigned char *) from;
175 unsigned int mant_bits, mant_off;
177 int special_exponent; /* It's a NaN, denorm or zero. */
178 enum floatformat_byteorders order;
179 unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
180 enum float_kind kind;
182 gdb_assert (fmt->totalsize
183 <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
185 /* For non-numbers, reuse libiberty's logic to find the correct
186 format. We do not lose any precision in this case by passing
188 kind = floatformat_classify (fmt, from);
189 if (kind == float_infinite || kind == float_nan)
193 floatformat_to_double (fmt, from, &dto);
194 *to = (DOUBLEST) dto;
198 order = floatformat_normalize_byteorder (fmt, ufrom, newfrom);
200 if (order != fmt->byteorder)
207 floatformat_to_doublest (fmt->split_half, ufrom, &dtop);
208 /* Preserve the sign of 0, which is the sign of the top
215 floatformat_to_doublest (fmt->split_half,
216 ufrom + fmt->totalsize / FLOATFORMAT_CHAR_BIT / 2,
222 exponent = get_field (ufrom, order, fmt->totalsize, fmt->exp_start,
224 /* Note that if exponent indicates a NaN, we can't really do anything useful
225 (not knowing if the host has NaN's, or how to build one). So it will
226 end up as an infinity or something close; that is OK. */
228 mant_bits_left = fmt->man_len;
229 mant_off = fmt->man_start;
232 special_exponent = exponent == 0 || exponent == fmt->exp_nan;
234 /* Don't bias NaNs. Use minimum exponent for denorms. For
235 simplicity, we don't check for zero as the exponent doesn't matter.
236 Note the cast to int; exp_bias is unsigned, so it's important to
237 make sure the operation is done in signed arithmetic. */
238 if (!special_exponent)
239 exponent -= fmt->exp_bias;
240 else if (exponent == 0)
241 exponent = 1 - fmt->exp_bias;
243 /* Build the result algebraically. Might go infinite, underflow, etc;
246 /* If this format uses a hidden bit, explicitly add it in now. Otherwise,
247 increment the exponent by one to account for the integer bit. */
249 if (!special_exponent)
251 if (fmt->intbit == floatformat_intbit_no)
252 dto = ldexp (1.0, exponent);
257 while (mant_bits_left > 0)
259 mant_bits = min (mant_bits_left, 32);
261 mant = get_field (ufrom, order, fmt->totalsize, mant_off, mant_bits);
263 dto += ldexp ((double) mant, exponent - mant_bits);
264 exponent -= mant_bits;
265 mant_off += mant_bits;
266 mant_bits_left -= mant_bits;
269 /* Negate it if negative. */
270 if (get_field (ufrom, order, fmt->totalsize, fmt->sign_start, 1))
275 /* Set a field which starts at START and is LEN bytes long. DATA and
276 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
278 put_field (unsigned char *data, enum floatformat_byteorders order,
279 unsigned int total_len, unsigned int start, unsigned int len,
280 unsigned long stuff_to_put)
282 unsigned int cur_byte;
285 /* Caller must byte-swap words before calling this routine. */
286 gdb_assert (order == floatformat_little || order == floatformat_big);
288 /* Start at the least significant part of the field. */
289 if (order == floatformat_little)
291 int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
293 cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
294 - ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
295 cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
296 - FLOATFORMAT_CHAR_BIT;
300 cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
302 ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
304 if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
306 *(data + cur_byte) &=
307 ~(((1 << ((start + len) % FLOATFORMAT_CHAR_BIT)) - 1)
309 *(data + cur_byte) |=
310 (stuff_to_put & ((1 << FLOATFORMAT_CHAR_BIT) - 1)) << (-cur_bitshift);
312 cur_bitshift += FLOATFORMAT_CHAR_BIT;
313 if (order == floatformat_little)
318 /* Move towards the most significant part of the field. */
319 while (cur_bitshift < len)
321 if (len - cur_bitshift < FLOATFORMAT_CHAR_BIT)
323 /* This is the last byte. */
324 *(data + cur_byte) &=
325 ~((1 << (len - cur_bitshift)) - 1);
326 *(data + cur_byte) |= (stuff_to_put >> cur_bitshift);
329 *(data + cur_byte) = ((stuff_to_put >> cur_bitshift)
330 & ((1 << FLOATFORMAT_CHAR_BIT) - 1));
331 cur_bitshift += FLOATFORMAT_CHAR_BIT;
332 if (order == floatformat_little)
339 /* The converse: convert the DOUBLEST *FROM to an extended float and
340 store where TO points. Neither FROM nor TO have any alignment
344 convert_doublest_to_floatformat (CONST struct floatformat *fmt,
345 const DOUBLEST *from, void *to)
350 unsigned int mant_bits, mant_off;
352 unsigned char *uto = (unsigned char *) to;
353 enum floatformat_byteorders order = fmt->byteorder;
354 unsigned char newto[FLOATFORMAT_LARGEST_BYTES];
356 if (order != floatformat_little)
357 order = floatformat_big;
359 if (order != fmt->byteorder)
362 memcpy (&dfrom, from, sizeof (dfrom));
363 memset (uto, 0, (fmt->totalsize + FLOATFORMAT_CHAR_BIT - 1)
364 / FLOATFORMAT_CHAR_BIT);
368 /* Use static volatile to ensure that any excess precision is
369 removed via storing in memory, and so the top half really is
370 the result of converting to double. */
371 static volatile double dtop, dbot;
372 DOUBLEST dtopnv, dbotnv;
374 dtop = (double) dfrom;
375 /* If the rounded top half is Inf, the bottom must be 0 not NaN
377 if (dtop + dtop == dtop && dtop != 0.0)
380 dbot = (double) (dfrom - (DOUBLEST) dtop);
383 floatformat_from_doublest (fmt->split_half, &dtopnv, uto);
384 floatformat_from_doublest (fmt->split_half, &dbotnv,
386 + fmt->totalsize / FLOATFORMAT_CHAR_BIT / 2));
391 return; /* Result is zero */
392 if (dfrom != dfrom) /* Result is NaN */
395 put_field (uto, order, fmt->totalsize, fmt->exp_start,
396 fmt->exp_len, fmt->exp_nan);
397 /* Be sure it's not infinity, but NaN value is irrel. */
398 put_field (uto, order, fmt->totalsize, fmt->man_start,
400 goto finalize_byteorder;
403 /* If negative, set the sign bit. */
406 put_field (uto, order, fmt->totalsize, fmt->sign_start, 1, 1);
410 if (dfrom + dfrom == dfrom && dfrom != 0.0) /* Result is Infinity. */
412 /* Infinity exponent is same as NaN's. */
413 put_field (uto, order, fmt->totalsize, fmt->exp_start,
414 fmt->exp_len, fmt->exp_nan);
415 /* Infinity mantissa is all zeroes. */
416 put_field (uto, order, fmt->totalsize, fmt->man_start,
418 goto finalize_byteorder;
421 #ifdef HAVE_LONG_DOUBLE
422 mant = frexpl (dfrom, &exponent);
424 mant = frexp (dfrom, &exponent);
427 if (exponent + fmt->exp_bias <= 0)
429 /* The value is too small to be expressed in the destination
430 type (not enough bits in the exponent. Treat as 0. */
431 put_field (uto, order, fmt->totalsize, fmt->exp_start,
433 put_field (uto, order, fmt->totalsize, fmt->man_start,
435 goto finalize_byteorder;
438 if (exponent + fmt->exp_bias >= (1 << fmt->exp_len))
440 /* The value is too large to fit into the destination.
441 Treat as infinity. */
442 put_field (uto, order, fmt->totalsize, fmt->exp_start,
443 fmt->exp_len, fmt->exp_nan);
444 put_field (uto, order, fmt->totalsize, fmt->man_start,
446 goto finalize_byteorder;
449 put_field (uto, order, fmt->totalsize, fmt->exp_start, fmt->exp_len,
450 exponent + fmt->exp_bias - 1);
452 mant_bits_left = fmt->man_len;
453 mant_off = fmt->man_start;
454 while (mant_bits_left > 0)
456 unsigned long mant_long;
458 mant_bits = mant_bits_left < 32 ? mant_bits_left : 32;
460 mant *= 4294967296.0;
461 mant_long = ((unsigned long) mant) & 0xffffffffL;
464 /* If the integer bit is implicit, then we need to discard it.
465 If we are discarding a zero, we should be (but are not) creating
466 a denormalized number which means adjusting the exponent
468 if (mant_bits_left == fmt->man_len
469 && fmt->intbit == floatformat_intbit_no)
472 mant_long &= 0xffffffffL;
473 /* If we are processing the top 32 mantissa bits of a doublest
474 so as to convert to a float value with implied integer bit,
475 we will only be putting 31 of those 32 bits into the
476 final value due to the discarding of the top bit. In the
477 case of a small float value where the number of mantissa
478 bits is less than 32, discarding the top bit does not alter
479 the number of bits we will be adding to the result. */
486 /* The bits we want are in the most significant MANT_BITS bits of
487 mant_long. Move them to the least significant. */
488 mant_long >>= 32 - mant_bits;
491 put_field (uto, order, fmt->totalsize,
492 mant_off, mant_bits, mant_long);
493 mant_off += mant_bits;
494 mant_bits_left -= mant_bits;
498 /* Do we need to byte-swap the words in the result? */
499 if (order != fmt->byteorder)
500 floatformat_normalize_byteorder (fmt, newto, to);
503 /* Check if VAL (which is assumed to be a floating point number whose
504 format is described by FMT) is negative. */
507 floatformat_is_negative (const struct floatformat *fmt,
508 const bfd_byte *uval)
510 enum floatformat_byteorders order;
511 unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
513 gdb_assert (fmt != NULL);
514 gdb_assert (fmt->totalsize
515 <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
517 order = floatformat_normalize_byteorder (fmt, uval, newfrom);
519 if (order != fmt->byteorder)
522 return get_field (uval, order, fmt->totalsize, fmt->sign_start, 1);
525 /* Check if VAL is "not a number" (NaN) for FMT. */
528 floatformat_classify (const struct floatformat *fmt,
529 const bfd_byte *uval)
533 unsigned int mant_bits, mant_off;
535 enum floatformat_byteorders order;
536 unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
539 gdb_assert (fmt != NULL);
540 gdb_assert (fmt->totalsize
541 <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
543 order = floatformat_normalize_byteorder (fmt, uval, newfrom);
545 if (order != fmt->byteorder)
548 exponent = get_field (uval, order, fmt->totalsize, fmt->exp_start,
551 mant_bits_left = fmt->man_len;
552 mant_off = fmt->man_start;
555 while (mant_bits_left > 0)
557 mant_bits = min (mant_bits_left, 32);
559 mant = get_field (uval, order, fmt->totalsize, mant_off, mant_bits);
561 /* If there is an explicit integer bit, mask it off. */
562 if (mant_off == fmt->man_start
563 && fmt->intbit == floatformat_intbit_yes)
564 mant &= ~(1 << (mant_bits - 1));
572 mant_off += mant_bits;
573 mant_bits_left -= mant_bits;
576 /* If exp_nan is not set, assume that inf, NaN, and subnormals are not
586 if (exponent == 0 && !mant_zero)
587 return float_subnormal;
589 if (exponent == fmt->exp_nan)
592 return float_infinite;
603 /* Convert the mantissa of VAL (which is assumed to be a floating
604 point number whose format is described by FMT) into a hexadecimal
605 and store it in a static string. Return a pointer to that string. */
608 floatformat_mantissa (const struct floatformat *fmt,
611 unsigned char *uval = (unsigned char *) val;
613 unsigned int mant_bits, mant_off;
618 enum floatformat_byteorders order;
619 unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
621 gdb_assert (fmt != NULL);
622 gdb_assert (fmt->totalsize
623 <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
625 order = floatformat_normalize_byteorder (fmt, uval, newfrom);
627 if (order != fmt->byteorder)
633 /* Make sure we have enough room to store the mantissa. */
634 gdb_assert (sizeof res > ((fmt->man_len + 7) / 8) * 2);
636 mant_off = fmt->man_start;
637 mant_bits_left = fmt->man_len;
638 mant_bits = (mant_bits_left % 32) > 0 ? mant_bits_left % 32 : 32;
640 mant = get_field (uval, order, fmt->totalsize, mant_off, mant_bits);
642 len = xsnprintf (res, sizeof res, "%lx", mant);
644 mant_off += mant_bits;
645 mant_bits_left -= mant_bits;
647 while (mant_bits_left > 0)
649 mant = get_field (uval, order, fmt->totalsize, mant_off, 32);
651 xsnprintf (buf, sizeof buf, "%08lx", mant);
652 gdb_assert (len + strlen (buf) <= sizeof res);
656 mant_bits_left -= 32;
663 /* Convert TO/FROM target to the hosts DOUBLEST floating-point format.
665 If the host and target formats agree, we just copy the raw data
666 into the appropriate type of variable and return, letting the host
667 increase precision as necessary. Otherwise, we call the conversion
668 routine and let it do the dirty work. */
670 static const struct floatformat *host_float_format = GDB_HOST_FLOAT_FORMAT;
671 static const struct floatformat *host_double_format = GDB_HOST_DOUBLE_FORMAT;
672 static const struct floatformat *host_long_double_format
673 = GDB_HOST_LONG_DOUBLE_FORMAT;
676 floatformat_to_doublest (const struct floatformat *fmt,
677 const void *in, DOUBLEST *out)
679 gdb_assert (fmt != NULL);
680 if (fmt == host_float_format)
684 memcpy (&val, in, sizeof (val));
687 else if (fmt == host_double_format)
691 memcpy (&val, in, sizeof (val));
694 else if (fmt == host_long_double_format)
698 memcpy (&val, in, sizeof (val));
702 convert_floatformat_to_doublest (fmt, in, out);
706 floatformat_from_doublest (const struct floatformat *fmt,
707 const DOUBLEST *in, void *out)
709 gdb_assert (fmt != NULL);
710 if (fmt == host_float_format)
714 memcpy (out, &val, sizeof (val));
716 else if (fmt == host_double_format)
720 memcpy (out, &val, sizeof (val));
722 else if (fmt == host_long_double_format)
724 long double val = *in;
726 memcpy (out, &val, sizeof (val));
729 convert_doublest_to_floatformat (fmt, in, out);
733 /* Return a floating-point format for a floating-point variable of
734 length LEN. If no suitable floating-point format is found, an
737 We need this functionality since information about the
738 floating-point format of a type is not always available to GDB; the
739 debug information typically only tells us the size of a
742 FIXME: kettenis/2001-10-28: In many places, particularly in
743 target-dependent code, the format of floating-point types is known,
744 but not passed on by GDB. This should be fixed. */
746 static const struct floatformat *
747 floatformat_from_length (struct gdbarch *gdbarch, int len)
749 const struct floatformat *format;
751 if (len * TARGET_CHAR_BIT == gdbarch_half_bit (gdbarch))
752 format = gdbarch_half_format (gdbarch)
753 [gdbarch_byte_order (gdbarch)];
754 else if (len * TARGET_CHAR_BIT == gdbarch_float_bit (gdbarch))
755 format = gdbarch_float_format (gdbarch)
756 [gdbarch_byte_order (gdbarch)];
757 else if (len * TARGET_CHAR_BIT == gdbarch_double_bit (gdbarch))
758 format = gdbarch_double_format (gdbarch)
759 [gdbarch_byte_order (gdbarch)];
760 else if (len * TARGET_CHAR_BIT == gdbarch_long_double_bit (gdbarch))
761 format = gdbarch_long_double_format (gdbarch)
762 [gdbarch_byte_order (gdbarch)];
763 /* On i386 the 'long double' type takes 96 bits,
764 while the real number of used bits is only 80,
765 both in processor and in memory.
766 The code below accepts the real bit size. */
767 else if ((gdbarch_long_double_format (gdbarch) != NULL)
768 && (len * TARGET_CHAR_BIT
769 == gdbarch_long_double_format (gdbarch)[0]->totalsize))
770 format = gdbarch_long_double_format (gdbarch)
771 [gdbarch_byte_order (gdbarch)];
775 error (_("Unrecognized %d-bit floating-point type."),
776 len * TARGET_CHAR_BIT);
780 const struct floatformat *
781 floatformat_from_type (const struct type *type)
783 struct gdbarch *gdbarch = get_type_arch (type);
785 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
786 if (TYPE_FLOATFORMAT (type) != NULL)
787 return TYPE_FLOATFORMAT (type)[gdbarch_byte_order (gdbarch)];
789 return floatformat_from_length (gdbarch, TYPE_LENGTH (type));
792 /* Extract a floating-point number of type TYPE from a target-order
793 byte-stream at ADDR. Returns the value as type DOUBLEST. */
796 extract_typed_floating (const void *addr, const struct type *type)
798 const struct floatformat *fmt = floatformat_from_type (type);
801 floatformat_to_doublest (fmt, addr, &retval);
805 /* Store VAL as a floating-point number of type TYPE to a target-order
806 byte-stream at ADDR. */
809 store_typed_floating (void *addr, const struct type *type, DOUBLEST val)
811 const struct floatformat *fmt = floatformat_from_type (type);
813 /* FIXME: kettenis/2001-10-28: It is debatable whether we should
814 zero out any remaining bytes in the target buffer when TYPE is
815 longer than the actual underlying floating-point format. Perhaps
816 we should store a fixed bitpattern in those remaining bytes,
817 instead of zero, or perhaps we shouldn't touch those remaining
820 NOTE: cagney/2001-10-28: With the way things currently work, it
821 isn't a good idea to leave the end bits undefined. This is
822 because GDB writes out the entire sizeof(<floating>) bits of the
823 floating-point type even though the value might only be stored
824 in, and the target processor may only refer to, the first N <
825 TYPE_LENGTH (type) bits. If the end of the buffer wasn't
826 initialized, GDB would write undefined data to the target. An
827 errant program, refering to that undefined data, would then
828 become non-deterministic.
830 See also the function convert_typed_floating below. */
831 memset (addr, 0, TYPE_LENGTH (type));
833 floatformat_from_doublest (fmt, &val, addr);
836 /* Convert a floating-point number of type FROM_TYPE from a
837 target-order byte-stream at FROM to a floating-point number of type
838 TO_TYPE, and store it to a target-order byte-stream at TO. */
841 convert_typed_floating (const void *from, const struct type *from_type,
842 void *to, const struct type *to_type)
844 const struct floatformat *from_fmt = floatformat_from_type (from_type);
845 const struct floatformat *to_fmt = floatformat_from_type (to_type);
847 if (from_fmt == NULL || to_fmt == NULL)
849 /* If we don't know the floating-point format of FROM_TYPE or
850 TO_TYPE, there's not much we can do. We might make the
851 assumption that if the length of FROM_TYPE and TO_TYPE match,
852 their floating-point format would match too, but that
853 assumption might be wrong on targets that support
854 floating-point types that only differ in endianness for
855 example. So we warn instead, and zero out the target buffer. */
856 warning (_("Can't convert floating-point number to desired type."));
857 memset (to, 0, TYPE_LENGTH (to_type));
859 else if (from_fmt == to_fmt)
861 /* We're in business. The floating-point format of FROM_TYPE
862 and TO_TYPE match. However, even though the floating-point
863 format matches, the length of the type might still be
864 different. Make sure we don't overrun any buffers. See
865 comment in store_typed_floating for a discussion about
866 zeroing out remaining bytes in the target buffer. */
867 memset (to, 0, TYPE_LENGTH (to_type));
868 memcpy (to, from, min (TYPE_LENGTH (from_type), TYPE_LENGTH (to_type)));
872 /* The floating-point types don't match. The best we can do
873 (apart from simulating the target FPU) is converting to the
874 widest floating-point type supported by the host, and then
875 again to the desired type. */
878 floatformat_to_doublest (from_fmt, from, &d);
879 floatformat_from_doublest (to_fmt, &d, to);
883 const struct floatformat *floatformat_ieee_single[BFD_ENDIAN_UNKNOWN];
884 const struct floatformat *floatformat_ieee_double[BFD_ENDIAN_UNKNOWN];
885 const struct floatformat *floatformat_ieee_quad[BFD_ENDIAN_UNKNOWN];
886 const struct floatformat *floatformat_arm_ext[BFD_ENDIAN_UNKNOWN];
887 const struct floatformat *floatformat_ia64_spill[BFD_ENDIAN_UNKNOWN];
889 extern void _initialize_doublest (void);
892 _initialize_doublest (void)
894 floatformat_ieee_single[BFD_ENDIAN_LITTLE] = &floatformat_ieee_single_little;
895 floatformat_ieee_single[BFD_ENDIAN_BIG] = &floatformat_ieee_single_big;
896 floatformat_ieee_double[BFD_ENDIAN_LITTLE] = &floatformat_ieee_double_little;
897 floatformat_ieee_double[BFD_ENDIAN_BIG] = &floatformat_ieee_double_big;
898 floatformat_arm_ext[BFD_ENDIAN_LITTLE]
899 = &floatformat_arm_ext_littlebyte_bigword;
900 floatformat_arm_ext[BFD_ENDIAN_BIG] = &floatformat_arm_ext_big;
901 floatformat_ia64_spill[BFD_ENDIAN_LITTLE] = &floatformat_ia64_spill_little;
902 floatformat_ia64_spill[BFD_ENDIAN_BIG] = &floatformat_ia64_spill_big;
903 floatformat_ieee_quad[BFD_ENDIAN_LITTLE] = &floatformat_ia64_quad_little;
904 floatformat_ieee_quad[BFD_ENDIAN_BIG] = &floatformat_ia64_quad_big;