1 /* Floating point routines for GDB, the GNU debugger.
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 /* Support for converting target fp numbers into host DOUBLEST format. */
22 /* XXX - This code should really be in libiberty/floatformat.c,
23 however configuration issues with libiberty made this very
24 difficult to do in the available time. */
28 #include "floatformat.h"
30 #include <math.h> /* ldexp */
33 /* The odds that CHAR_BIT will be anything but 8 are low enough that I'm not
34 going to bother with trying to muck around with whether it is defined in
35 a system header, what we do if not, etc. */
36 #define FLOATFORMAT_CHAR_BIT 8
38 /* The number of bytes that the largest floating-point type that we
39 can convert to doublest will need. */
40 #define FLOATFORMAT_LARGEST_BYTES 16
42 /* Extract a field which starts at START and is LEN bytes long. DATA and
43 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
45 get_field (const bfd_byte *data, enum floatformat_byteorders order,
46 unsigned int total_len, unsigned int start, unsigned int len)
49 unsigned int cur_byte;
52 /* Caller must byte-swap words before calling this routine. */
53 gdb_assert (order == floatformat_little || order == floatformat_big);
55 /* Start at the least significant part of the field. */
56 if (order == floatformat_little)
58 /* We start counting from the other end (i.e, from the high bytes
59 rather than the low bytes). As such, we need to be concerned
60 with what happens if bit 0 doesn't start on a byte boundary.
61 I.e, we need to properly handle the case where total_len is
62 not evenly divisible by 8. So we compute ``excess'' which
63 represents the number of bits from the end of our starting
64 byte needed to get to bit 0. */
65 int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
67 cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
68 - ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
69 cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
70 - FLOATFORMAT_CHAR_BIT;
74 cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
76 ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
78 if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
79 result = *(data + cur_byte) >> (-cur_bitshift);
82 cur_bitshift += FLOATFORMAT_CHAR_BIT;
83 if (order == floatformat_little)
88 /* Move towards the most significant part of the field. */
89 while (cur_bitshift < len)
91 result |= (unsigned long)*(data + cur_byte) << cur_bitshift;
92 cur_bitshift += FLOATFORMAT_CHAR_BIT;
95 case floatformat_little:
103 if (len < sizeof(result) * FLOATFORMAT_CHAR_BIT)
104 /* Mask out bits which are not part of the field. */
105 result &= ((1UL << len) - 1);
109 /* Normalize the byte order of FROM into TO. If no normalization is
110 needed then FMT->byteorder is returned and TO is not changed;
111 otherwise the format of the normalized form in TO is returned. */
113 static enum floatformat_byteorders
114 floatformat_normalize_byteorder (const struct floatformat *fmt,
115 const void *from, void *to)
117 const unsigned char *swapin;
118 unsigned char *swapout;
121 if (fmt->byteorder == floatformat_little
122 || fmt->byteorder == floatformat_big)
123 return fmt->byteorder;
125 words = fmt->totalsize / FLOATFORMAT_CHAR_BIT;
128 swapout = (unsigned char *)to;
129 swapin = (const unsigned char *)from;
131 if (fmt->byteorder == floatformat_vax)
135 *swapout++ = swapin[1];
136 *swapout++ = swapin[0];
137 *swapout++ = swapin[3];
138 *swapout++ = swapin[2];
141 /* This may look weird, since VAX is little-endian, but it is
142 easier to translate to big-endian than to little-endian. */
143 return floatformat_big;
147 gdb_assert (fmt->byteorder == floatformat_littlebyte_bigword);
151 *swapout++ = swapin[3];
152 *swapout++ = swapin[2];
153 *swapout++ = swapin[1];
154 *swapout++ = swapin[0];
157 return floatformat_big;
161 /* Convert from FMT to a DOUBLEST.
162 FROM is the address of the extended float.
163 Store the DOUBLEST in *TO. */
166 convert_floatformat_to_doublest (const struct floatformat *fmt,
170 unsigned char *ufrom = (unsigned char *) from;
174 unsigned int mant_bits, mant_off;
176 int special_exponent; /* It's a NaN, denorm or zero. */
177 enum floatformat_byteorders order;
178 unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
179 enum float_kind kind;
181 gdb_assert (fmt->totalsize
182 <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
184 /* For non-numbers, reuse libiberty's logic to find the correct
185 format. We do not lose any precision in this case by passing
187 kind = floatformat_classify (fmt, (const bfd_byte *) from);
188 if (kind == float_infinite || kind == float_nan)
192 floatformat_to_double (fmt->split_half ? fmt->split_half : fmt,
194 *to = (DOUBLEST) dto;
198 order = floatformat_normalize_byteorder (fmt, ufrom, newfrom);
200 if (order != fmt->byteorder)
207 floatformat_to_doublest (fmt->split_half, ufrom, &dtop);
208 /* Preserve the sign of 0, which is the sign of the top
215 floatformat_to_doublest (fmt->split_half,
216 ufrom + fmt->totalsize / FLOATFORMAT_CHAR_BIT / 2,
222 exponent = get_field (ufrom, order, fmt->totalsize, fmt->exp_start,
224 /* Note that if exponent indicates a NaN, we can't really do anything useful
225 (not knowing if the host has NaN's, or how to build one). So it will
226 end up as an infinity or something close; that is OK. */
228 mant_bits_left = fmt->man_len;
229 mant_off = fmt->man_start;
232 special_exponent = exponent == 0 || exponent == fmt->exp_nan;
234 /* Don't bias NaNs. Use minimum exponent for denorms. For
235 simplicity, we don't check for zero as the exponent doesn't matter.
236 Note the cast to int; exp_bias is unsigned, so it's important to
237 make sure the operation is done in signed arithmetic. */
238 if (!special_exponent)
239 exponent -= fmt->exp_bias;
240 else if (exponent == 0)
241 exponent = 1 - fmt->exp_bias;
243 /* Build the result algebraically. Might go infinite, underflow, etc;
246 /* If this format uses a hidden bit, explicitly add it in now. Otherwise,
247 increment the exponent by one to account for the integer bit. */
249 if (!special_exponent)
251 if (fmt->intbit == floatformat_intbit_no)
252 dto = ldexp (1.0, exponent);
257 while (mant_bits_left > 0)
259 mant_bits = std::min (mant_bits_left, 32);
261 mant = get_field (ufrom, order, fmt->totalsize, mant_off, mant_bits);
263 dto += ldexp ((double) mant, exponent - mant_bits);
264 exponent -= mant_bits;
265 mant_off += mant_bits;
266 mant_bits_left -= mant_bits;
269 /* Negate it if negative. */
270 if (get_field (ufrom, order, fmt->totalsize, fmt->sign_start, 1))
275 /* Set a field which starts at START and is LEN bytes long. DATA and
276 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
278 put_field (unsigned char *data, enum floatformat_byteorders order,
279 unsigned int total_len, unsigned int start, unsigned int len,
280 unsigned long stuff_to_put)
282 unsigned int cur_byte;
285 /* Caller must byte-swap words before calling this routine. */
286 gdb_assert (order == floatformat_little || order == floatformat_big);
288 /* Start at the least significant part of the field. */
289 if (order == floatformat_little)
291 int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
293 cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
294 - ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
295 cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
296 - FLOATFORMAT_CHAR_BIT;
300 cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
302 ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
304 if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
306 *(data + cur_byte) &=
307 ~(((1 << ((start + len) % FLOATFORMAT_CHAR_BIT)) - 1)
309 *(data + cur_byte) |=
310 (stuff_to_put & ((1 << FLOATFORMAT_CHAR_BIT) - 1)) << (-cur_bitshift);
312 cur_bitshift += FLOATFORMAT_CHAR_BIT;
313 if (order == floatformat_little)
318 /* Move towards the most significant part of the field. */
319 while (cur_bitshift < len)
321 if (len - cur_bitshift < FLOATFORMAT_CHAR_BIT)
323 /* This is the last byte. */
324 *(data + cur_byte) &=
325 ~((1 << (len - cur_bitshift)) - 1);
326 *(data + cur_byte) |= (stuff_to_put >> cur_bitshift);
329 *(data + cur_byte) = ((stuff_to_put >> cur_bitshift)
330 & ((1 << FLOATFORMAT_CHAR_BIT) - 1));
331 cur_bitshift += FLOATFORMAT_CHAR_BIT;
332 if (order == floatformat_little)
339 /* The converse: convert the DOUBLEST *FROM to an extended float and
340 store where TO points. Neither FROM nor TO have any alignment
344 convert_doublest_to_floatformat (const struct floatformat *fmt,
345 const DOUBLEST *from, void *to)
350 unsigned int mant_bits, mant_off;
352 unsigned char *uto = (unsigned char *) to;
353 enum floatformat_byteorders order = fmt->byteorder;
354 unsigned char newto[FLOATFORMAT_LARGEST_BYTES];
356 if (order != floatformat_little)
357 order = floatformat_big;
359 if (order != fmt->byteorder)
362 memcpy (&dfrom, from, sizeof (dfrom));
363 memset (uto, 0, floatformat_totalsize_bytes (fmt));
367 /* Use static volatile to ensure that any excess precision is
368 removed via storing in memory, and so the top half really is
369 the result of converting to double. */
370 static volatile double dtop, dbot;
371 DOUBLEST dtopnv, dbotnv;
373 dtop = (double) dfrom;
374 /* If the rounded top half is Inf, the bottom must be 0 not NaN
376 if (dtop + dtop == dtop && dtop != 0.0)
379 dbot = (double) (dfrom - (DOUBLEST) dtop);
382 floatformat_from_doublest (fmt->split_half, &dtopnv, uto);
383 floatformat_from_doublest (fmt->split_half, &dbotnv,
385 + fmt->totalsize / FLOATFORMAT_CHAR_BIT / 2));
390 return; /* Result is zero */
391 if (dfrom != dfrom) /* Result is NaN */
394 put_field (uto, order, fmt->totalsize, fmt->exp_start,
395 fmt->exp_len, fmt->exp_nan);
396 /* Be sure it's not infinity, but NaN value is irrel. */
397 put_field (uto, order, fmt->totalsize, fmt->man_start,
399 goto finalize_byteorder;
402 /* If negative, set the sign bit. */
405 put_field (uto, order, fmt->totalsize, fmt->sign_start, 1, 1);
409 if (dfrom + dfrom == dfrom && dfrom != 0.0) /* Result is Infinity. */
411 /* Infinity exponent is same as NaN's. */
412 put_field (uto, order, fmt->totalsize, fmt->exp_start,
413 fmt->exp_len, fmt->exp_nan);
414 /* Infinity mantissa is all zeroes. */
415 put_field (uto, order, fmt->totalsize, fmt->man_start,
417 goto finalize_byteorder;
420 #ifdef HAVE_LONG_DOUBLE
421 mant = frexpl (dfrom, &exponent);
423 mant = frexp (dfrom, &exponent);
426 if (exponent + fmt->exp_bias <= 0)
428 /* The value is too small to be expressed in the destination
429 type (not enough bits in the exponent. Treat as 0. */
430 put_field (uto, order, fmt->totalsize, fmt->exp_start,
432 put_field (uto, order, fmt->totalsize, fmt->man_start,
434 goto finalize_byteorder;
437 if (exponent + fmt->exp_bias >= (1 << fmt->exp_len))
439 /* The value is too large to fit into the destination.
440 Treat as infinity. */
441 put_field (uto, order, fmt->totalsize, fmt->exp_start,
442 fmt->exp_len, fmt->exp_nan);
443 put_field (uto, order, fmt->totalsize, fmt->man_start,
445 goto finalize_byteorder;
448 put_field (uto, order, fmt->totalsize, fmt->exp_start, fmt->exp_len,
449 exponent + fmt->exp_bias - 1);
451 mant_bits_left = fmt->man_len;
452 mant_off = fmt->man_start;
453 while (mant_bits_left > 0)
455 unsigned long mant_long;
457 mant_bits = mant_bits_left < 32 ? mant_bits_left : 32;
459 mant *= 4294967296.0;
460 mant_long = ((unsigned long) mant) & 0xffffffffL;
463 /* If the integer bit is implicit, then we need to discard it.
464 If we are discarding a zero, we should be (but are not) creating
465 a denormalized number which means adjusting the exponent
467 if (mant_bits_left == fmt->man_len
468 && fmt->intbit == floatformat_intbit_no)
471 mant_long &= 0xffffffffL;
472 /* If we are processing the top 32 mantissa bits of a doublest
473 so as to convert to a float value with implied integer bit,
474 we will only be putting 31 of those 32 bits into the
475 final value due to the discarding of the top bit. In the
476 case of a small float value where the number of mantissa
477 bits is less than 32, discarding the top bit does not alter
478 the number of bits we will be adding to the result. */
485 /* The bits we want are in the most significant MANT_BITS bits of
486 mant_long. Move them to the least significant. */
487 mant_long >>= 32 - mant_bits;
490 put_field (uto, order, fmt->totalsize,
491 mant_off, mant_bits, mant_long);
492 mant_off += mant_bits;
493 mant_bits_left -= mant_bits;
497 /* Do we need to byte-swap the words in the result? */
498 if (order != fmt->byteorder)
499 floatformat_normalize_byteorder (fmt, newto, to);
502 /* Check if VAL (which is assumed to be a floating point number whose
503 format is described by FMT) is negative. */
506 floatformat_is_negative (const struct floatformat *fmt,
507 const bfd_byte *uval)
509 enum floatformat_byteorders order;
510 unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
512 gdb_assert (fmt != NULL);
513 gdb_assert (fmt->totalsize
514 <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
516 /* An IBM long double (a two element array of double) always takes the
517 sign of the first double. */
519 fmt = fmt->split_half;
521 order = floatformat_normalize_byteorder (fmt, uval, newfrom);
523 if (order != fmt->byteorder)
526 return get_field (uval, order, fmt->totalsize, fmt->sign_start, 1);
529 /* Check if VAL is "not a number" (NaN) for FMT. */
532 floatformat_classify (const struct floatformat *fmt,
533 const bfd_byte *uval)
537 unsigned int mant_bits, mant_off;
539 enum floatformat_byteorders order;
540 unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
543 gdb_assert (fmt != NULL);
544 gdb_assert (fmt->totalsize
545 <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
547 /* An IBM long double (a two element array of double) can be classified
548 by looking at the first double. inf and nan are specified as
549 ignoring the second double. zero and subnormal will always have
550 the second double 0.0 if the long double is correctly rounded. */
552 fmt = fmt->split_half;
554 order = floatformat_normalize_byteorder (fmt, uval, newfrom);
556 if (order != fmt->byteorder)
559 exponent = get_field (uval, order, fmt->totalsize, fmt->exp_start,
562 mant_bits_left = fmt->man_len;
563 mant_off = fmt->man_start;
566 while (mant_bits_left > 0)
568 mant_bits = std::min (mant_bits_left, 32);
570 mant = get_field (uval, order, fmt->totalsize, mant_off, mant_bits);
572 /* If there is an explicit integer bit, mask it off. */
573 if (mant_off == fmt->man_start
574 && fmt->intbit == floatformat_intbit_yes)
575 mant &= ~(1 << (mant_bits - 1));
583 mant_off += mant_bits;
584 mant_bits_left -= mant_bits;
587 /* If exp_nan is not set, assume that inf, NaN, and subnormals are not
597 if (exponent == 0 && !mant_zero)
598 return float_subnormal;
600 if (exponent == fmt->exp_nan)
603 return float_infinite;
614 /* Convert the mantissa of VAL (which is assumed to be a floating
615 point number whose format is described by FMT) into a hexadecimal
616 and store it in a static string. Return a pointer to that string. */
619 floatformat_mantissa (const struct floatformat *fmt,
622 unsigned char *uval = (unsigned char *) val;
624 unsigned int mant_bits, mant_off;
629 enum floatformat_byteorders order;
630 unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
632 gdb_assert (fmt != NULL);
633 gdb_assert (fmt->totalsize
634 <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
636 /* For IBM long double (a two element array of double), return the
637 mantissa of the first double. The problem with returning the
638 actual mantissa from both doubles is that there can be an
639 arbitrary number of implied 0's or 1's between the mantissas
640 of the first and second double. In any case, this function
641 is only used for dumping out nans, and a nan is specified to
642 ignore the value in the second double. */
644 fmt = fmt->split_half;
646 order = floatformat_normalize_byteorder (fmt, uval, newfrom);
648 if (order != fmt->byteorder)
654 /* Make sure we have enough room to store the mantissa. */
655 gdb_assert (sizeof res > ((fmt->man_len + 7) / 8) * 2);
657 mant_off = fmt->man_start;
658 mant_bits_left = fmt->man_len;
659 mant_bits = (mant_bits_left % 32) > 0 ? mant_bits_left % 32 : 32;
661 mant = get_field (uval, order, fmt->totalsize, mant_off, mant_bits);
663 len = xsnprintf (res, sizeof res, "%lx", mant);
665 mant_off += mant_bits;
666 mant_bits_left -= mant_bits;
668 while (mant_bits_left > 0)
670 mant = get_field (uval, order, fmt->totalsize, mant_off, 32);
672 xsnprintf (buf, sizeof buf, "%08lx", mant);
673 gdb_assert (len + strlen (buf) <= sizeof res);
677 mant_bits_left -= 32;
684 /* Convert TO/FROM target to the hosts DOUBLEST floating-point format.
686 If the host and target formats agree, we just copy the raw data
687 into the appropriate type of variable and return, letting the host
688 increase precision as necessary. Otherwise, we call the conversion
689 routine and let it do the dirty work. Note that even if the target
690 and host floating-point formats match, the length of the types
691 might still be different, so the conversion routines must make sure
692 to not overrun any buffers. For example, on x86, long double is
693 the 80-bit extended precision type on both 32-bit and 64-bit ABIs,
694 but by default it is stored as 12 bytes on 32-bit, and 16 bytes on
695 64-bit, for alignment reasons. See comment in store_typed_floating
696 for a discussion about zeroing out remaining bytes in the target
699 static const struct floatformat *host_float_format = GDB_HOST_FLOAT_FORMAT;
700 static const struct floatformat *host_double_format = GDB_HOST_DOUBLE_FORMAT;
701 static const struct floatformat *host_long_double_format
702 = GDB_HOST_LONG_DOUBLE_FORMAT;
704 /* See doublest.h. */
707 floatformat_totalsize_bytes (const struct floatformat *fmt)
709 return ((fmt->totalsize + FLOATFORMAT_CHAR_BIT - 1)
710 / FLOATFORMAT_CHAR_BIT);
714 floatformat_to_doublest (const struct floatformat *fmt,
715 const void *in, DOUBLEST *out)
717 gdb_assert (fmt != NULL);
719 if (fmt == host_float_format)
723 memcpy (&val, in, floatformat_totalsize_bytes (fmt));
726 else if (fmt == host_double_format)
730 memcpy (&val, in, floatformat_totalsize_bytes (fmt));
733 else if (fmt == host_long_double_format)
737 memcpy (&val, in, floatformat_totalsize_bytes (fmt));
741 convert_floatformat_to_doublest (fmt, in, out);
745 floatformat_from_doublest (const struct floatformat *fmt,
746 const DOUBLEST *in, void *out)
748 gdb_assert (fmt != NULL);
750 if (fmt == host_float_format)
754 memcpy (out, &val, floatformat_totalsize_bytes (fmt));
756 else if (fmt == host_double_format)
760 memcpy (out, &val, floatformat_totalsize_bytes (fmt));
762 else if (fmt == host_long_double_format)
764 long double val = *in;
766 memcpy (out, &val, floatformat_totalsize_bytes (fmt));
769 convert_doublest_to_floatformat (fmt, in, out);
773 /* Extract a floating-point number of type TYPE from a target-order
774 byte-stream at ADDR. Returns the value as type DOUBLEST. */
777 extract_typed_floating (const void *addr, const struct type *type)
779 const struct floatformat *fmt = floatformat_from_type (type);
782 floatformat_to_doublest (fmt, addr, &retval);
786 /* Store VAL as a floating-point number of type TYPE to a target-order
787 byte-stream at ADDR. */
790 store_typed_floating (void *addr, const struct type *type, DOUBLEST val)
792 const struct floatformat *fmt = floatformat_from_type (type);
794 /* FIXME: kettenis/2001-10-28: It is debatable whether we should
795 zero out any remaining bytes in the target buffer when TYPE is
796 longer than the actual underlying floating-point format. Perhaps
797 we should store a fixed bitpattern in those remaining bytes,
798 instead of zero, or perhaps we shouldn't touch those remaining
801 NOTE: cagney/2001-10-28: With the way things currently work, it
802 isn't a good idea to leave the end bits undefined. This is
803 because GDB writes out the entire sizeof(<floating>) bits of the
804 floating-point type even though the value might only be stored
805 in, and the target processor may only refer to, the first N <
806 TYPE_LENGTH (type) bits. If the end of the buffer wasn't
807 initialized, GDB would write undefined data to the target. An
808 errant program, refering to that undefined data, would then
809 become non-deterministic.
811 See also the function convert_typed_floating below. */
812 memset (addr, 0, TYPE_LENGTH (type));
814 floatformat_from_doublest (fmt, &val, addr);
817 /* Convert a floating-point number of type FROM_TYPE from a
818 target-order byte-stream at FROM to a floating-point number of type
819 TO_TYPE, and store it to a target-order byte-stream at TO. */
822 convert_typed_floating (const void *from, const struct type *from_type,
823 void *to, const struct type *to_type)
825 const struct floatformat *from_fmt = floatformat_from_type (from_type);
826 const struct floatformat *to_fmt = floatformat_from_type (to_type);
828 if (from_fmt == NULL || to_fmt == NULL)
830 /* If we don't know the floating-point format of FROM_TYPE or
831 TO_TYPE, there's not much we can do. We might make the
832 assumption that if the length of FROM_TYPE and TO_TYPE match,
833 their floating-point format would match too, but that
834 assumption might be wrong on targets that support
835 floating-point types that only differ in endianness for
836 example. So we warn instead, and zero out the target buffer. */
837 warning (_("Can't convert floating-point number to desired type."));
838 memset (to, 0, TYPE_LENGTH (to_type));
840 else if (from_fmt == to_fmt)
842 /* We're in business. The floating-point format of FROM_TYPE
843 and TO_TYPE match. However, even though the floating-point
844 format matches, the length of the type might still be
845 different. Make sure we don't overrun any buffers. See
846 comment in store_typed_floating for a discussion about
847 zeroing out remaining bytes in the target buffer. */
848 memset (to, 0, TYPE_LENGTH (to_type));
849 memcpy (to, from, std::min (TYPE_LENGTH (from_type),
850 TYPE_LENGTH (to_type)));
854 /* The floating-point types don't match. The best we can do
855 (apart from simulating the target FPU) is converting to the
856 widest floating-point type supported by the host, and then
857 again to the desired type. */
860 floatformat_to_doublest (from_fmt, from, &d);
861 floatformat_from_doublest (to_fmt, &d, to);