* gdb.texinfo (C Preprocessor Macros): New chapter.
[external/binutils.git] / gdb / doc / gdb.texinfo
1 \input texinfo      @c -*-texinfo-*-
2 @c Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998,
3 @c 1999, 2000, 2001, 2002
4 @c Free Software Foundation, Inc.
5 @c
6 @c %**start of header
7 @c makeinfo ignores cmds prev to setfilename, so its arg cannot make use
8 @c of @set vars.  However, you can override filename with makeinfo -o.
9 @setfilename gdb.info
10 @c
11 @include gdb-cfg.texi
12 @c
13 @settitle Debugging with @value{GDBN}
14 @setchapternewpage odd
15 @c %**end of header
16
17 @iftex
18 @c @smallbook
19 @c @cropmarks
20 @end iftex
21
22 @finalout
23 @syncodeindex ky cp
24
25 @c readline appendices use @vindex, @findex and @ftable,
26 @c annotate.texi and gdbmi use @findex.
27 @syncodeindex vr cp
28 @syncodeindex fn cp
29
30 @c !!set GDB manual's edition---not the same as GDB version!
31 @set EDITION Ninth
32
33 @c !!set GDB manual's revision date
34 @set DATE December 2001
35
36 @c THIS MANUAL REQUIRES TEXINFO 4.0 OR LATER.
37
38 @c This is a dir.info fragment to support semi-automated addition of
39 @c manuals to an info tree.
40 @dircategory Programming & development tools.
41 @direntry
42 * Gdb: (gdb).                     The @sc{gnu} debugger.
43 @end direntry
44
45 @ifinfo
46 This file documents the @sc{gnu} debugger @value{GDBN}.
47
48
49 This is the @value{EDITION} Edition, @value{DATE},
50 of @cite{Debugging with @value{GDBN}: the @sc{gnu} Source-Level Debugger}
51 for @value{GDBN} Version @value{GDBVN}.
52
53 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998,@*
54               1999, 2000, 2001, 2002 Free Software Foundation, Inc.
55
56 Permission is granted to copy, distribute and/or modify this document
57 under the terms of the GNU Free Documentation License, Version 1.1 or
58 any later version published by the Free Software Foundation; with the
59 Invariant Sections being ``Free Software'' and ``Free Software Needs
60 Free Documentation'', with the Front-Cover Texts being ``A GNU Manual,''
61 and with the Back-Cover Texts as in (a) below.
62
63 (a) The Free Software Foundation's Back-Cover Text is: ``You have
64 freedom to copy and modify this GNU Manual, like GNU software.  Copies
65 published by the Free Software Foundation raise funds for GNU
66 development.''
67 @end ifinfo
68
69 @titlepage
70 @title Debugging with @value{GDBN}
71 @subtitle The @sc{gnu} Source-Level Debugger
72 @sp 1
73 @subtitle @value{EDITION} Edition, for @value{GDBN} version @value{GDBVN}
74 @subtitle @value{DATE}
75 @author Richard Stallman, Roland Pesch, Stan Shebs, et al.
76 @page
77 @tex
78 {\parskip=0pt
79 \hfill (Send bugs and comments on @value{GDBN} to bug-gdb\@gnu.org.)\par
80 \hfill {\it Debugging with @value{GDBN}}\par
81 \hfill \TeX{}info \texinfoversion\par
82 }
83 @end tex
84
85 @vskip 0pt plus 1filll
86 Copyright @copyright{} 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
87 1996, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
88 @sp 2
89 Published by the Free Software Foundation @*
90 59 Temple Place - Suite 330, @*
91 Boston, MA 02111-1307 USA @*
92 ISBN 1-882114-77-9 @*
93
94 Permission is granted to copy, distribute and/or modify this document
95 under the terms of the GNU Free Documentation License, Version 1.1 or
96 any later version published by the Free Software Foundation; with the
97 Invariant Sections being ``Free Software'' and ``Free Software Needs
98 Free Documentation'', with the Front-Cover Texts being ``A GNU Manual,''
99 and with the Back-Cover Texts as in (a) below.
100
101 (a) The Free Software Foundation's Back-Cover Text is: ``You have
102 freedom to copy and modify this GNU Manual, like GNU software.  Copies
103 published by the Free Software Foundation raise funds for GNU
104 development.''
105 @end titlepage
106 @page
107
108 @ifnottex
109 @node Top, Summary, (dir), (dir)
110
111 @top Debugging with @value{GDBN}
112
113 This file describes @value{GDBN}, the @sc{gnu} symbolic debugger.
114
115 This is the @value{EDITION} Edition, @value{DATE}, for @value{GDBN} Version
116 @value{GDBVN}.
117
118 Copyright (C) 1988-2002 Free Software Foundation, Inc.
119
120 @menu
121 * Summary::                     Summary of @value{GDBN}
122 * Sample Session::              A sample @value{GDBN} session
123
124 * Invocation::                  Getting in and out of @value{GDBN}
125 * Commands::                    @value{GDBN} commands
126 * Running::                     Running programs under @value{GDBN}
127 * Stopping::                    Stopping and continuing
128 * Stack::                       Examining the stack
129 * Source::                      Examining source files
130 * Data::                        Examining data
131 * Macros::                      Preprocessor Macros
132 * Tracepoints::                 Debugging remote targets non-intrusively
133 * Overlays::                    Debugging programs that use overlays
134
135 * Languages::                   Using @value{GDBN} with different languages
136
137 * Symbols::                     Examining the symbol table
138 * Altering::                    Altering execution
139 * GDB Files::                   @value{GDBN} files
140 * Targets::                     Specifying a debugging target
141 * Remote Debugging::            Debugging remote programs
142 * Configurations::              Configuration-specific information
143 * Controlling GDB::             Controlling @value{GDBN}
144 * Sequences::                   Canned sequences of commands
145 * TUI::                         @value{GDBN} Text User Interface
146 * Emacs::                       Using @value{GDBN} under @sc{gnu} Emacs
147 * Annotations::                 @value{GDBN}'s annotation interface.
148 * GDB/MI::                      @value{GDBN}'s Machine Interface.
149
150 * GDB Bugs::                    Reporting bugs in @value{GDBN}
151 * Formatting Documentation::    How to format and print @value{GDBN} documentation
152
153 * Command Line Editing::        Command Line Editing
154 * Using History Interactively:: Using History Interactively
155 * Installing GDB::              Installing GDB
156 * Maintenance Commands::        Maintenance Commands
157 * Remote Protocol::             GDB Remote Serial Protocol
158 * Copying::                     GNU General Public License says
159                                 how you can copy and share GDB
160 * GNU Free Documentation License::  The license for this documentation
161 * Index::                       Index
162 @end menu
163
164 @end ifnottex
165
166 @contents
167
168 @node Summary
169 @unnumbered Summary of @value{GDBN}
170
171 The purpose of a debugger such as @value{GDBN} is to allow you to see what is
172 going on ``inside'' another program while it executes---or what another
173 program was doing at the moment it crashed.
174
175 @value{GDBN} can do four main kinds of things (plus other things in support of
176 these) to help you catch bugs in the act:
177
178 @itemize @bullet
179 @item
180 Start your program, specifying anything that might affect its behavior.
181
182 @item
183 Make your program stop on specified conditions.
184
185 @item
186 Examine what has happened, when your program has stopped.
187
188 @item
189 Change things in your program, so you can experiment with correcting the
190 effects of one bug and go on to learn about another.
191 @end itemize
192
193 You can use @value{GDBN} to debug programs written in C and C++.
194 For more information, see @ref{Support,,Supported languages}.
195 For more information, see @ref{C,,C and C++}.
196
197 @cindex Chill
198 @cindex Modula-2
199 Support for Modula-2 and Chill is partial.  For information on Modula-2,
200 see @ref{Modula-2,,Modula-2}.  For information on Chill, see @ref{Chill}.
201
202 @cindex Pascal
203 Debugging Pascal programs which use sets, subranges, file variables, or
204 nested functions does not currently work.  @value{GDBN} does not support
205 entering expressions, printing values, or similar features using Pascal
206 syntax.
207
208 @cindex Fortran
209 @value{GDBN} can be used to debug programs written in Fortran, although
210 it may be necessary to refer to some variables with a trailing
211 underscore.
212
213 @menu
214 * Free Software::               Freely redistributable software
215 * Contributors::                Contributors to GDB
216 @end menu
217
218 @node Free Software
219 @unnumberedsec Free software
220
221 @value{GDBN} is @dfn{free software}, protected by the @sc{gnu}
222 General Public License
223 (GPL).  The GPL gives you the freedom to copy or adapt a licensed
224 program---but every person getting a copy also gets with it the
225 freedom to modify that copy (which means that they must get access to
226 the source code), and the freedom to distribute further copies.
227 Typical software companies use copyrights to limit your freedoms; the
228 Free Software Foundation uses the GPL to preserve these freedoms.
229
230 Fundamentally, the General Public License is a license which says that
231 you have these freedoms and that you cannot take these freedoms away
232 from anyone else.
233
234 @unnumberedsec Free Software Needs Free Documentation
235
236 The biggest deficiency in the free software community today is not in
237 the software---it is the lack of good free documentation that we can
238 include with the free software.  Many of our most important
239 programs do not come with free reference manuals and free introductory
240 texts.  Documentation is an essential part of any software package;
241 when an important free software package does not come with a free
242 manual and a free tutorial, that is a major gap.  We have many such
243 gaps today.
244
245 Consider Perl, for instance.  The tutorial manuals that people
246 normally use are non-free.  How did this come about?  Because the
247 authors of those manuals published them with restrictive terms---no
248 copying, no modification, source files not available---which exclude
249 them from the free software world.
250
251 That wasn't the first time this sort of thing happened, and it was far
252 from the last.  Many times we have heard a GNU user eagerly describe a
253 manual that he is writing, his intended contribution to the community,
254 only to learn that he had ruined everything by signing a publication
255 contract to make it non-free.
256
257 Free documentation, like free software, is a matter of freedom, not
258 price.  The problem with the non-free manual is not that publishers
259 charge a price for printed copies---that in itself is fine.  (The Free
260 Software Foundation sells printed copies of manuals, too.)  The
261 problem is the restrictions on the use of the manual.  Free manuals
262 are available in source code form, and give you permission to copy and
263 modify.  Non-free manuals do not allow this.
264
265 The criteria of freedom for a free manual are roughly the same as for
266 free software.  Redistribution (including the normal kinds of
267 commercial redistribution) must be permitted, so that the manual can
268 accompany every copy of the program, both on-line and on paper.
269
270 Permission for modification of the technical content is crucial too.
271 When people modify the software, adding or changing features, if they
272 are conscientious they will change the manual too---so they can
273 provide accurate and clear documentation for the modified program.  A
274 manual that leaves you no choice but to write a new manual to document
275 a changed version of the program is not really available to our
276 community.
277
278 Some kinds of limits on the way modification is handled are
279 acceptable.  For example, requirements to preserve the original
280 author's copyright notice, the distribution terms, or the list of
281 authors, are ok.  It is also no problem to require modified versions
282 to include notice that they were modified.  Even entire sections that
283 may not be deleted or changed are acceptable, as long as they deal
284 with nontechnical topics (like this one).  These kinds of restrictions
285 are acceptable because they don't obstruct the community's normal use
286 of the manual.
287
288 However, it must be possible to modify all the @emph{technical}
289 content of the manual, and then distribute the result in all the usual
290 media, through all the usual channels.  Otherwise, the restrictions
291 obstruct the use of the manual, it is not free, and we need another
292 manual to replace it.
293
294 Please spread the word about this issue.  Our community continues to
295 lose manuals to proprietary publishing.  If we spread the word that
296 free software needs free reference manuals and free tutorials, perhaps
297 the next person who wants to contribute by writing documentation will
298 realize, before it is too late, that only free manuals contribute to
299 the free software community.
300
301 If you are writing documentation, please insist on publishing it under
302 the GNU Free Documentation License or another free documentation
303 license.  Remember that this decision requires your approval---you
304 don't have to let the publisher decide.  Some commercial publishers
305 will use a free license if you insist, but they will not propose the
306 option; it is up to you to raise the issue and say firmly that this is
307 what you want.  If the publisher you are dealing with refuses, please
308 try other publishers.  If you're not sure whether a proposed license
309 is free, write to @email{licensing@@gnu.org}.
310
311 You can encourage commercial publishers to sell more free, copylefted
312 manuals and tutorials by buying them, and particularly by buying
313 copies from the publishers that paid for their writing or for major
314 improvements.  Meanwhile, try to avoid buying non-free documentation
315 at all.  Check the distribution terms of a manual before you buy it,
316 and insist that whoever seeks your business must respect your freedom.
317 Check the history of the book, and try to reward the publishers that
318 have paid or pay the authors to work on it.
319
320 The Free Software Foundation maintains a list of free documentation
321 published by other publishers, at
322 @url{http://www.fsf.org/doc/other-free-books.html}.
323
324 @node Contributors
325 @unnumberedsec Contributors to @value{GDBN}
326
327 Richard Stallman was the original author of @value{GDBN}, and of many
328 other @sc{gnu} programs.  Many others have contributed to its
329 development.  This section attempts to credit major contributors.  One
330 of the virtues of free software is that everyone is free to contribute
331 to it; with regret, we cannot actually acknowledge everyone here.  The
332 file @file{ChangeLog} in the @value{GDBN} distribution approximates a
333 blow-by-blow account.
334
335 Changes much prior to version 2.0 are lost in the mists of time.
336
337 @quotation
338 @emph{Plea:} Additions to this section are particularly welcome.  If you
339 or your friends (or enemies, to be evenhanded) have been unfairly
340 omitted from this list, we would like to add your names!
341 @end quotation
342
343 So that they may not regard their many labors as thankless, we
344 particularly thank those who shepherded @value{GDBN} through major
345 releases:
346 Andrew Cagney (releases 5.0 and 5.1);
347 Jim Blandy (release 4.18);
348 Jason Molenda (release 4.17);
349 Stan Shebs (release 4.14);
350 Fred Fish (releases 4.16, 4.15, 4.13, 4.12, 4.11, 4.10, and 4.9);
351 Stu Grossman and John Gilmore (releases 4.8, 4.7, 4.6, 4.5, and 4.4);
352 John Gilmore (releases 4.3, 4.2, 4.1, 4.0, and 3.9);
353 Jim Kingdon (releases 3.5, 3.4, and 3.3);
354 and Randy Smith (releases 3.2, 3.1, and 3.0).
355
356 Richard Stallman, assisted at various times by Peter TerMaat, Chris
357 Hanson, and Richard Mlynarik, handled releases through 2.8.
358
359 Michael Tiemann is the author of most of the @sc{gnu} C@t{++} support
360 in @value{GDBN}, with significant additional contributions from Per
361 Bothner and Daniel Berlin.  James Clark wrote the @sc{gnu} C@t{++}
362 demangler.  Early work on C@t{++} was by Peter TerMaat (who also did
363 much general update work leading to release 3.0).
364
365 @value{GDBN} uses the BFD subroutine library to examine multiple
366 object-file formats; BFD was a joint project of David V.
367 Henkel-Wallace, Rich Pixley, Steve Chamberlain, and John Gilmore.
368
369 David Johnson wrote the original COFF support; Pace Willison did
370 the original support for encapsulated COFF.
371
372 Brent Benson of Harris Computer Systems contributed DWARF2 support.
373
374 Adam de Boor and Bradley Davis contributed the ISI Optimum V support.
375 Per Bothner, Noboyuki Hikichi, and Alessandro Forin contributed MIPS
376 support.
377 Jean-Daniel Fekete contributed Sun 386i support.
378 Chris Hanson improved the HP9000 support.
379 Noboyuki Hikichi and Tomoyuki Hasei contributed Sony/News OS 3 support.
380 David Johnson contributed Encore Umax support.
381 Jyrki Kuoppala contributed Altos 3068 support.
382 Jeff Law contributed HP PA and SOM support.
383 Keith Packard contributed NS32K support.
384 Doug Rabson contributed Acorn Risc Machine support.
385 Bob Rusk contributed Harris Nighthawk CX-UX support.
386 Chris Smith contributed Convex support (and Fortran debugging).
387 Jonathan Stone contributed Pyramid support.
388 Michael Tiemann contributed SPARC support.
389 Tim Tucker contributed support for the Gould NP1 and Gould Powernode.
390 Pace Willison contributed Intel 386 support.
391 Jay Vosburgh contributed Symmetry support.
392
393 Andreas Schwab contributed M68K Linux support.
394
395 Rich Schaefer and Peter Schauer helped with support of SunOS shared
396 libraries.
397
398 Jay Fenlason and Roland McGrath ensured that @value{GDBN} and GAS agree
399 about several machine instruction sets.
400
401 Patrick Duval, Ted Goldstein, Vikram Koka and Glenn Engel helped develop
402 remote debugging.  Intel Corporation, Wind River Systems, AMD, and ARM
403 contributed remote debugging modules for the i960, VxWorks, A29K UDI,
404 and RDI targets, respectively.
405
406 Brian Fox is the author of the readline libraries providing
407 command-line editing and command history.
408
409 Andrew Beers of SUNY Buffalo wrote the language-switching code, the
410 Modula-2 support, and contributed the Languages chapter of this manual.
411
412 Fred Fish wrote most of the support for Unix System Vr4.
413 He also enhanced the command-completion support to cover C@t{++} overloaded
414 symbols.
415
416 Hitachi America, Ltd. sponsored the support for H8/300, H8/500, and
417 Super-H processors.
418
419 NEC sponsored the support for the v850, Vr4xxx, and Vr5xxx processors.
420
421 Mitsubishi sponsored the support for D10V, D30V, and M32R/D processors.
422
423 Toshiba sponsored the support for the TX39 Mips processor.
424
425 Matsushita sponsored the support for the MN10200 and MN10300 processors.
426
427 Fujitsu sponsored the support for SPARClite and FR30 processors.
428
429 Kung Hsu, Jeff Law, and Rick Sladkey added support for hardware
430 watchpoints.
431
432 Michael Snyder added support for tracepoints.
433
434 Stu Grossman wrote gdbserver.
435
436 Jim Kingdon, Peter Schauer, Ian Taylor, and Stu Grossman made
437 nearly innumerable bug fixes and cleanups throughout @value{GDBN}.
438
439 The following people at the Hewlett-Packard Company contributed
440 support for the PA-RISC 2.0 architecture, HP-UX 10.20, 10.30, and 11.0
441 (narrow mode), HP's implementation of kernel threads, HP's aC@t{++}
442 compiler, and the terminal user interface: Ben Krepp, Richard Title,
443 John Bishop, Susan Macchia, Kathy Mann, Satish Pai, India Paul, Steve
444 Rehrauer, and Elena Zannoni.  Kim Haase provided HP-specific
445 information in this manual.
446
447 DJ Delorie ported @value{GDBN} to MS-DOS, for the DJGPP project.
448 Robert Hoehne made significant contributions to the DJGPP port.
449
450 Cygnus Solutions has sponsored @value{GDBN} maintenance and much of its
451 development since 1991.  Cygnus engineers who have worked on @value{GDBN}
452 fulltime include Mark Alexander, Jim Blandy, Per Bothner, Kevin
453 Buettner, Edith Epstein, Chris Faylor, Fred Fish, Martin Hunt, Jim
454 Ingham, John Gilmore, Stu Grossman, Kung Hsu, Jim Kingdon, John Metzler,
455 Fernando Nasser, Geoffrey Noer, Dawn Perchik, Rich Pixley, Zdenek
456 Radouch, Keith Seitz, Stan Shebs, David Taylor, and Elena Zannoni.  In
457 addition, Dave Brolley, Ian Carmichael, Steve Chamberlain, Nick Clifton,
458 JT Conklin, Stan Cox, DJ Delorie, Ulrich Drepper, Frank Eigler, Doug
459 Evans, Sean Fagan, David Henkel-Wallace, Richard Henderson, Jeff
460 Holcomb, Jeff Law, Jim Lemke, Tom Lord, Bob Manson, Michael Meissner,
461 Jason Merrill, Catherine Moore, Drew Moseley, Ken Raeburn, Gavin
462 Romig-Koch, Rob Savoye, Jamie Smith, Mike Stump, Ian Taylor, Angela
463 Thomas, Michael Tiemann, Tom Tromey, Ron Unrau, Jim Wilson, and David
464 Zuhn have made contributions both large and small.
465
466 Jim Blandy added support for preprocessor macros, while working for Red
467 Hat.
468
469 @node Sample Session
470 @chapter A Sample @value{GDBN} Session
471
472 You can use this manual at your leisure to read all about @value{GDBN}.
473 However, a handful of commands are enough to get started using the
474 debugger.  This chapter illustrates those commands.
475
476 @iftex
477 In this sample session, we emphasize user input like this: @b{input},
478 to make it easier to pick out from the surrounding output.
479 @end iftex
480
481 @c FIXME: this example may not be appropriate for some configs, where
482 @c FIXME...primary interest is in remote use.
483
484 One of the preliminary versions of @sc{gnu} @code{m4} (a generic macro
485 processor) exhibits the following bug: sometimes, when we change its
486 quote strings from the default, the commands used to capture one macro
487 definition within another stop working.  In the following short @code{m4}
488 session, we define a macro @code{foo} which expands to @code{0000}; we
489 then use the @code{m4} built-in @code{defn} to define @code{bar} as the
490 same thing.  However, when we change the open quote string to
491 @code{<QUOTE>} and the close quote string to @code{<UNQUOTE>}, the same
492 procedure fails to define a new synonym @code{baz}:
493
494 @smallexample
495 $ @b{cd gnu/m4}
496 $ @b{./m4}
497 @b{define(foo,0000)}
498
499 @b{foo}
500 0000
501 @b{define(bar,defn(`foo'))}
502
503 @b{bar}
504 0000
505 @b{changequote(<QUOTE>,<UNQUOTE>)}
506
507 @b{define(baz,defn(<QUOTE>foo<UNQUOTE>))}
508 @b{baz}
509 @b{C-d}
510 m4: End of input: 0: fatal error: EOF in string
511 @end smallexample
512
513 @noindent
514 Let us use @value{GDBN} to try to see what is going on.
515
516 @smallexample
517 $ @b{@value{GDBP} m4}
518 @c FIXME: this falsifies the exact text played out, to permit smallbook
519 @c FIXME... format to come out better.
520 @value{GDBN} is free software and you are welcome to distribute copies
521  of it under certain conditions; type "show copying" to see
522  the conditions.
523 There is absolutely no warranty for @value{GDBN}; type "show warranty"
524  for details.
525
526 @value{GDBN} @value{GDBVN}, Copyright 1999 Free Software Foundation, Inc...
527 (@value{GDBP})
528 @end smallexample
529
530 @noindent
531 @value{GDBN} reads only enough symbol data to know where to find the
532 rest when needed; as a result, the first prompt comes up very quickly.
533 We now tell @value{GDBN} to use a narrower display width than usual, so
534 that examples fit in this manual.
535
536 @smallexample
537 (@value{GDBP}) @b{set width 70}
538 @end smallexample
539
540 @noindent
541 We need to see how the @code{m4} built-in @code{changequote} works.
542 Having looked at the source, we know the relevant subroutine is
543 @code{m4_changequote}, so we set a breakpoint there with the @value{GDBN}
544 @code{break} command.
545
546 @smallexample
547 (@value{GDBP}) @b{break m4_changequote}
548 Breakpoint 1 at 0x62f4: file builtin.c, line 879.
549 @end smallexample
550
551 @noindent
552 Using the @code{run} command, we start @code{m4} running under @value{GDBN}
553 control; as long as control does not reach the @code{m4_changequote}
554 subroutine, the program runs as usual:
555
556 @smallexample
557 (@value{GDBP}) @b{run}
558 Starting program: /work/Editorial/gdb/gnu/m4/m4
559 @b{define(foo,0000)}
560
561 @b{foo}
562 0000
563 @end smallexample
564
565 @noindent
566 To trigger the breakpoint, we call @code{changequote}.  @value{GDBN}
567 suspends execution of @code{m4}, displaying information about the
568 context where it stops.
569
570 @smallexample
571 @b{changequote(<QUOTE>,<UNQUOTE>)}
572
573 Breakpoint 1, m4_changequote (argc=3, argv=0x33c70)
574     at builtin.c:879
575 879         if (bad_argc(TOKEN_DATA_TEXT(argv[0]),argc,1,3))
576 @end smallexample
577
578 @noindent
579 Now we use the command @code{n} (@code{next}) to advance execution to
580 the next line of the current function.
581
582 @smallexample
583 (@value{GDBP}) @b{n}
584 882         set_quotes((argc >= 2) ? TOKEN_DATA_TEXT(argv[1])\
585  : nil,
586 @end smallexample
587
588 @noindent
589 @code{set_quotes} looks like a promising subroutine.  We can go into it
590 by using the command @code{s} (@code{step}) instead of @code{next}.
591 @code{step} goes to the next line to be executed in @emph{any}
592 subroutine, so it steps into @code{set_quotes}.
593
594 @smallexample
595 (@value{GDBP}) @b{s}
596 set_quotes (lq=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")
597     at input.c:530
598 530         if (lquote != def_lquote)
599 @end smallexample
600
601 @noindent
602 The display that shows the subroutine where @code{m4} is now
603 suspended (and its arguments) is called a stack frame display.  It
604 shows a summary of the stack.  We can use the @code{backtrace}
605 command (which can also be spelled @code{bt}), to see where we are
606 in the stack as a whole: the @code{backtrace} command displays a
607 stack frame for each active subroutine.
608
609 @smallexample
610 (@value{GDBP}) @b{bt}
611 #0  set_quotes (lq=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")
612     at input.c:530
613 #1  0x6344 in m4_changequote (argc=3, argv=0x33c70)
614     at builtin.c:882
615 #2  0x8174 in expand_macro (sym=0x33320) at macro.c:242
616 #3  0x7a88 in expand_token (obs=0x0, t=209696, td=0xf7fffa30)
617     at macro.c:71
618 #4  0x79dc in expand_input () at macro.c:40
619 #5  0x2930 in main (argc=0, argv=0xf7fffb20) at m4.c:195
620 @end smallexample
621
622 @noindent
623 We step through a few more lines to see what happens.  The first two
624 times, we can use @samp{s}; the next two times we use @code{n} to avoid
625 falling into the @code{xstrdup} subroutine.
626
627 @smallexample
628 (@value{GDBP}) @b{s}
629 0x3b5c  532         if (rquote != def_rquote)
630 (@value{GDBP}) @b{s}
631 0x3b80  535         lquote = (lq == nil || *lq == '\0') ?  \
632 def_lquote : xstrdup(lq);
633 (@value{GDBP}) @b{n}
634 536         rquote = (rq == nil || *rq == '\0') ? def_rquote\
635  : xstrdup(rq);
636 (@value{GDBP}) @b{n}
637 538         len_lquote = strlen(rquote);
638 @end smallexample
639
640 @noindent
641 The last line displayed looks a little odd; we can examine the variables
642 @code{lquote} and @code{rquote} to see if they are in fact the new left
643 and right quotes we specified.  We use the command @code{p}
644 (@code{print}) to see their values.
645
646 @smallexample
647 (@value{GDBP}) @b{p lquote}
648 $1 = 0x35d40 "<QUOTE>"
649 (@value{GDBP}) @b{p rquote}
650 $2 = 0x35d50 "<UNQUOTE>"
651 @end smallexample
652
653 @noindent
654 @code{lquote} and @code{rquote} are indeed the new left and right quotes.
655 To look at some context, we can display ten lines of source
656 surrounding the current line with the @code{l} (@code{list}) command.
657
658 @smallexample
659 (@value{GDBP}) @b{l}
660 533             xfree(rquote);
661 534
662 535         lquote = (lq == nil || *lq == '\0') ? def_lquote\
663  : xstrdup (lq);
664 536         rquote = (rq == nil || *rq == '\0') ? def_rquote\
665  : xstrdup (rq);
666 537
667 538         len_lquote = strlen(rquote);
668 539         len_rquote = strlen(lquote);
669 540     @}
670 541
671 542     void
672 @end smallexample
673
674 @noindent
675 Let us step past the two lines that set @code{len_lquote} and
676 @code{len_rquote}, and then examine the values of those variables.
677
678 @smallexample
679 (@value{GDBP}) @b{n}
680 539         len_rquote = strlen(lquote);
681 (@value{GDBP}) @b{n}
682 540     @}
683 (@value{GDBP}) @b{p len_lquote}
684 $3 = 9
685 (@value{GDBP}) @b{p len_rquote}
686 $4 = 7
687 @end smallexample
688
689 @noindent
690 That certainly looks wrong, assuming @code{len_lquote} and
691 @code{len_rquote} are meant to be the lengths of @code{lquote} and
692 @code{rquote} respectively.  We can set them to better values using
693 the @code{p} command, since it can print the value of
694 any expression---and that expression can include subroutine calls and
695 assignments.
696
697 @smallexample
698 (@value{GDBP}) @b{p len_lquote=strlen(lquote)}
699 $5 = 7
700 (@value{GDBP}) @b{p len_rquote=strlen(rquote)}
701 $6 = 9
702 @end smallexample
703
704 @noindent
705 Is that enough to fix the problem of using the new quotes with the
706 @code{m4} built-in @code{defn}?  We can allow @code{m4} to continue
707 executing with the @code{c} (@code{continue}) command, and then try the
708 example that caused trouble initially:
709
710 @smallexample
711 (@value{GDBP}) @b{c}
712 Continuing.
713
714 @b{define(baz,defn(<QUOTE>foo<UNQUOTE>))}
715
716 baz
717 0000
718 @end smallexample
719
720 @noindent
721 Success!  The new quotes now work just as well as the default ones.  The
722 problem seems to have been just the two typos defining the wrong
723 lengths.  We allow @code{m4} exit by giving it an EOF as input:
724
725 @smallexample
726 @b{C-d}
727 Program exited normally.
728 @end smallexample
729
730 @noindent
731 The message @samp{Program exited normally.} is from @value{GDBN}; it
732 indicates @code{m4} has finished executing.  We can end our @value{GDBN}
733 session with the @value{GDBN} @code{quit} command.
734
735 @smallexample
736 (@value{GDBP}) @b{quit}
737 @end smallexample
738
739 @node Invocation
740 @chapter Getting In and Out of @value{GDBN}
741
742 This chapter discusses how to start @value{GDBN}, and how to get out of it.
743 The essentials are:
744 @itemize @bullet
745 @item
746 type @samp{@value{GDBP}} to start @value{GDBN}.
747 @item
748 type @kbd{quit} or @kbd{C-d} to exit.
749 @end itemize
750
751 @menu
752 * Invoking GDB::                How to start @value{GDBN}
753 * Quitting GDB::                How to quit @value{GDBN}
754 * Shell Commands::              How to use shell commands inside @value{GDBN}
755 @end menu
756
757 @node Invoking GDB
758 @section Invoking @value{GDBN}
759
760 Invoke @value{GDBN} by running the program @code{@value{GDBP}}.  Once started,
761 @value{GDBN} reads commands from the terminal until you tell it to exit.
762
763 You can also run @code{@value{GDBP}} with a variety of arguments and options,
764 to specify more of your debugging environment at the outset.
765
766 The command-line options described here are designed
767 to cover a variety of situations; in some environments, some of these
768 options may effectively be unavailable.
769
770 The most usual way to start @value{GDBN} is with one argument,
771 specifying an executable program:
772
773 @smallexample
774 @value{GDBP} @var{program}
775 @end smallexample
776
777 @noindent
778 You can also start with both an executable program and a core file
779 specified:
780
781 @smallexample
782 @value{GDBP} @var{program} @var{core}
783 @end smallexample
784
785 You can, instead, specify a process ID as a second argument, if you want
786 to debug a running process:
787
788 @smallexample
789 @value{GDBP} @var{program} 1234
790 @end smallexample
791
792 @noindent
793 would attach @value{GDBN} to process @code{1234} (unless you also have a file
794 named @file{1234}; @value{GDBN} does check for a core file first).
795
796 Taking advantage of the second command-line argument requires a fairly
797 complete operating system; when you use @value{GDBN} as a remote
798 debugger attached to a bare board, there may not be any notion of
799 ``process'', and there is often no way to get a core dump.  @value{GDBN}
800 will warn you if it is unable to attach or to read core dumps.
801
802 You can optionally have @code{@value{GDBP}} pass any arguments after the
803 executable file to the inferior using @code{--args}.  This option stops
804 option processing.
805 @smallexample
806 gdb --args gcc -O2 -c foo.c
807 @end smallexample
808 This will cause @code{@value{GDBP}} to debug @code{gcc}, and to set
809 @code{gcc}'s command-line arguments (@pxref{Arguments}) to @samp{-O2 -c foo.c}.
810
811 You can run @code{@value{GDBP}} without printing the front material, which describes
812 @value{GDBN}'s non-warranty, by specifying @code{-silent}:
813
814 @smallexample
815 @value{GDBP} -silent
816 @end smallexample
817
818 @noindent
819 You can further control how @value{GDBN} starts up by using command-line
820 options.  @value{GDBN} itself can remind you of the options available.
821
822 @noindent
823 Type
824
825 @smallexample
826 @value{GDBP} -help
827 @end smallexample
828
829 @noindent
830 to display all available options and briefly describe their use
831 (@samp{@value{GDBP} -h} is a shorter equivalent).
832
833 All options and command line arguments you give are processed
834 in sequential order.  The order makes a difference when the
835 @samp{-x} option is used.
836
837
838 @menu
839 * File Options::                Choosing files
840 * Mode Options::                Choosing modes
841 @end menu
842
843 @node File Options
844 @subsection Choosing files
845
846 When @value{GDBN} starts, it reads any arguments other than options as
847 specifying an executable file and core file (or process ID).  This is
848 the same as if the arguments were specified by the @samp{-se} and
849 @samp{-c} (or @samp{-p} options respectively.  (@value{GDBN} reads the
850 first argument that does not have an associated option flag as
851 equivalent to the @samp{-se} option followed by that argument; and the
852 second argument that does not have an associated option flag, if any, as
853 equivalent to the @samp{-c}/@samp{-p} option followed by that argument.)
854 If the second argument begins with a decimal digit, @value{GDBN} will
855 first attempt to attach to it as a process, and if that fails, attempt
856 to open it as a corefile.  If you have a corefile whose name begins with
857 a digit, you can prevent @value{GDBN} from treating it as a pid by 
858 prefixing it with @file{./}, eg. @file{./12345}.
859
860 If @value{GDBN} has not been configured to included core file support,
861 such as for most embedded targets, then it will complain about a second
862 argument and ignore it.
863
864 Many options have both long and short forms; both are shown in the
865 following list.  @value{GDBN} also recognizes the long forms if you truncate
866 them, so long as enough of the option is present to be unambiguous.
867 (If you prefer, you can flag option arguments with @samp{--} rather
868 than @samp{-}, though we illustrate the more usual convention.)
869
870 @c NOTE: the @cindex entries here use double dashes ON PURPOSE.  This
871 @c way, both those who look for -foo and --foo in the index, will find
872 @c it.
873
874 @table @code
875 @item -symbols @var{file}
876 @itemx -s @var{file}
877 @cindex @code{--symbols}
878 @cindex @code{-s}
879 Read symbol table from file @var{file}.
880
881 @item -exec @var{file}
882 @itemx -e @var{file}
883 @cindex @code{--exec}
884 @cindex @code{-e}
885 Use file @var{file} as the executable file to execute when appropriate,
886 and for examining pure data in conjunction with a core dump.
887
888 @item -se @var{file}
889 @cindex @code{--se}
890 Read symbol table from file @var{file} and use it as the executable
891 file.
892
893 @item -core @var{file}
894 @itemx -c @var{file}
895 @cindex @code{--core}
896 @cindex @code{-c}
897 Use file @var{file} as a core dump to examine.  
898
899 @item -c @var{number}
900 @item -pid @var{number}
901 @itemx -p @var{number}
902 @cindex @code{--pid}
903 @cindex @code{-p}
904 Connect to process ID @var{number}, as with the @code{attach} command.
905 If there is no such process, @value{GDBN} will attempt to open a core
906 file named @var{number}.
907
908 @item -command @var{file}
909 @itemx -x @var{file}
910 @cindex @code{--command}
911 @cindex @code{-x}
912 Execute @value{GDBN} commands from file @var{file}.  @xref{Command
913 Files,, Command files}.
914
915 @item -directory @var{directory}
916 @itemx -d @var{directory}
917 @cindex @code{--directory}
918 @cindex @code{-d}
919 Add @var{directory} to the path to search for source files.
920
921 @item -m
922 @itemx -mapped
923 @cindex @code{--mapped}
924 @cindex @code{-m}
925 @emph{Warning: this option depends on operating system facilities that are not
926 supported on all systems.}@*
927 If memory-mapped files are available on your system through the @code{mmap}
928 system call, you can use this option
929 to have @value{GDBN} write the symbols from your
930 program into a reusable file in the current directory.  If the program you are debugging is
931 called @file{/tmp/fred}, the mapped symbol file is @file{/tmp/fred.syms}.
932 Future @value{GDBN} debugging sessions notice the presence of this file,
933 and can quickly map in symbol information from it, rather than reading
934 the symbol table from the executable program.
935
936 The @file{.syms} file is specific to the host machine where @value{GDBN}
937 is run.  It holds an exact image of the internal @value{GDBN} symbol
938 table.  It cannot be shared across multiple host platforms.
939
940 @item -r
941 @itemx -readnow
942 @cindex @code{--readnow}
943 @cindex @code{-r}
944 Read each symbol file's entire symbol table immediately, rather than
945 the default, which is to read it incrementally as it is needed.
946 This makes startup slower, but makes future operations faster.
947
948 @end table
949
950 You typically combine the @code{-mapped} and @code{-readnow} options in
951 order to build a @file{.syms} file that contains complete symbol
952 information.  (@xref{Files,,Commands to specify files}, for information
953 on @file{.syms} files.)  A simple @value{GDBN} invocation to do nothing
954 but build a @file{.syms} file for future use is:
955
956 @smallexample
957 gdb -batch -nx -mapped -readnow programname
958 @end smallexample
959
960 @node Mode Options
961 @subsection Choosing modes
962
963 You can run @value{GDBN} in various alternative modes---for example, in
964 batch mode or quiet mode.
965
966 @table @code
967 @item -nx
968 @itemx -n
969 @cindex @code{--nx}
970 @cindex @code{-n}
971 Do not execute commands found in any initialization files.  Normally,
972 @value{GDBN} executes the commands in these files after all the command
973 options and arguments have been processed.  @xref{Command Files,,Command
974 files}.
975
976 @item -quiet
977 @itemx -silent
978 @itemx -q
979 @cindex @code{--quiet}
980 @cindex @code{--silent}
981 @cindex @code{-q}
982 ``Quiet''.  Do not print the introductory and copyright messages.  These
983 messages are also suppressed in batch mode.
984
985 @item -batch
986 @cindex @code{--batch}
987 Run in batch mode.  Exit with status @code{0} after processing all the
988 command files specified with @samp{-x} (and all commands from
989 initialization files, if not inhibited with @samp{-n}).  Exit with
990 nonzero status if an error occurs in executing the @value{GDBN} commands
991 in the command files.
992
993 Batch mode may be useful for running @value{GDBN} as a filter, for
994 example to download and run a program on another computer; in order to
995 make this more useful, the message
996
997 @smallexample
998 Program exited normally.
999 @end smallexample
1000
1001 @noindent
1002 (which is ordinarily issued whenever a program running under
1003 @value{GDBN} control terminates) is not issued when running in batch
1004 mode.
1005
1006 @item -nowindows
1007 @itemx -nw
1008 @cindex @code{--nowindows}
1009 @cindex @code{-nw}
1010 ``No windows''.  If @value{GDBN} comes with a graphical user interface
1011 (GUI) built in, then this option tells @value{GDBN} to only use the command-line
1012 interface.  If no GUI is available, this option has no effect.
1013
1014 @item -windows
1015 @itemx -w
1016 @cindex @code{--windows}
1017 @cindex @code{-w}
1018 If @value{GDBN} includes a GUI, then this option requires it to be
1019 used if possible.
1020
1021 @item -cd @var{directory}
1022 @cindex @code{--cd}
1023 Run @value{GDBN} using @var{directory} as its working directory,
1024 instead of the current directory.
1025
1026 @item -fullname
1027 @itemx -f
1028 @cindex @code{--fullname}
1029 @cindex @code{-f}
1030 @sc{gnu} Emacs sets this option when it runs @value{GDBN} as a
1031 subprocess.  It tells @value{GDBN} to output the full file name and line
1032 number in a standard, recognizable fashion each time a stack frame is
1033 displayed (which includes each time your program stops).  This
1034 recognizable format looks like two @samp{\032} characters, followed by
1035 the file name, line number and character position separated by colons,
1036 and a newline.  The Emacs-to-@value{GDBN} interface program uses the two
1037 @samp{\032} characters as a signal to display the source code for the
1038 frame.
1039
1040 @item -epoch
1041 @cindex @code{--epoch}
1042 The Epoch Emacs-@value{GDBN} interface sets this option when it runs
1043 @value{GDBN} as a subprocess.  It tells @value{GDBN} to modify its print
1044 routines so as to allow Epoch to display values of expressions in a
1045 separate window.
1046
1047 @item -annotate @var{level}
1048 @cindex @code{--annotate}
1049 This option sets the @dfn{annotation level} inside @value{GDBN}.  Its
1050 effect is identical to using @samp{set annotate @var{level}}
1051 (@pxref{Annotations}).
1052 Annotation level controls how much information does @value{GDBN} print
1053 together with its prompt, values of expressions, source lines, and other
1054 types of output.  Level 0 is the normal, level 1 is for use when
1055 @value{GDBN} is run as a subprocess of @sc{gnu} Emacs, level 2 is the
1056 maximum annotation suitable for programs that control @value{GDBN}.
1057
1058 @item -async
1059 @cindex @code{--async}
1060 Use the asynchronous event loop for the command-line interface.
1061 @value{GDBN} processes all events, such as user keyboard input, via a
1062 special event loop.  This allows @value{GDBN} to accept and process user
1063 commands in parallel with the debugged process being
1064 run@footnote{@value{GDBN} built with @sc{djgpp} tools for
1065 MS-DOS/MS-Windows supports this mode of operation, but the event loop is
1066 suspended when the debuggee runs.}, so you don't need to wait for
1067 control to return to @value{GDBN} before you type the next command.
1068 (@emph{Note:} as of version 5.1, the target side of the asynchronous
1069 operation is not yet in place, so @samp{-async} does not work fully
1070 yet.)
1071 @c FIXME: when the target side of the event loop is done, the above NOTE
1072 @c should be removed.
1073
1074 When the standard input is connected to a terminal device, @value{GDBN}
1075 uses the asynchronous event loop by default, unless disabled by the
1076 @samp{-noasync} option.
1077
1078 @item -noasync
1079 @cindex @code{--noasync}
1080 Disable the asynchronous event loop for the command-line interface.
1081
1082 @item --args
1083 @cindex @code{--args}
1084 Change interpretation of command line so that arguments following the
1085 executable file are passed as command line arguments to the inferior.
1086 This option stops option processing.
1087
1088 @item -baud @var{bps}
1089 @itemx -b @var{bps}
1090 @cindex @code{--baud}
1091 @cindex @code{-b}
1092 Set the line speed (baud rate or bits per second) of any serial
1093 interface used by @value{GDBN} for remote debugging.
1094
1095 @item -tty @var{device}
1096 @itemx -t @var{device}
1097 @cindex @code{--tty}
1098 @cindex @code{-t}
1099 Run using @var{device} for your program's standard input and output.
1100 @c FIXME: kingdon thinks there is more to -tty.  Investigate.
1101
1102 @c resolve the situation of these eventually
1103 @item -tui
1104 @cindex @code{--tui}
1105 Activate the Terminal User Interface when starting. 
1106 The Terminal User Interface manages several text windows on the terminal,
1107 showing source, assembly, registers and @value{GDBN} command outputs
1108 (@pxref{TUI, ,@value{GDBN} Text User Interface}).
1109 Do not use this option if you run @value{GDBN} from Emacs
1110 (@pxref{Emacs, ,Using @value{GDBN} under @sc{gnu} Emacs}).
1111
1112 @c @item -xdb
1113 @c @cindex @code{--xdb}
1114 @c Run in XDB compatibility mode, allowing the use of certain XDB commands.
1115 @c For information, see the file @file{xdb_trans.html}, which is usually
1116 @c installed in the directory @code{/opt/langtools/wdb/doc} on HP-UX
1117 @c systems.
1118
1119 @item -interpreter @var{interp}
1120 @cindex @code{--interpreter}
1121 Use the interpreter @var{interp} for interface with the controlling
1122 program or device.  This option is meant to be set by programs which
1123 communicate with @value{GDBN} using it as a back end.
1124
1125 @samp{--interpreter=mi} (or @samp{--interpreter=mi1}) causes
1126 @value{GDBN} to use the @dfn{gdb/mi interface} (@pxref{GDB/MI, , The
1127 @sc{gdb/mi} Interface}). The older @sc{gdb/mi} interface, included in
1128 @value{GDBN} version 5.0 can be selected with @samp{--interpreter=mi0}.
1129
1130 @item -write
1131 @cindex @code{--write}
1132 Open the executable and core files for both reading and writing.  This
1133 is equivalent to the @samp{set write on} command inside @value{GDBN}
1134 (@pxref{Patching}).
1135
1136 @item -statistics
1137 @cindex @code{--statistics}
1138 This option causes @value{GDBN} to print statistics about time and
1139 memory usage after it completes each command and returns to the prompt.
1140
1141 @item -version
1142 @cindex @code{--version}
1143 This option causes @value{GDBN} to print its version number and
1144 no-warranty blurb, and exit.
1145
1146 @end table
1147
1148 @node Quitting GDB
1149 @section Quitting @value{GDBN}
1150 @cindex exiting @value{GDBN}
1151 @cindex leaving @value{GDBN}
1152
1153 @table @code
1154 @kindex quit @r{[}@var{expression}@r{]}
1155 @kindex q @r{(@code{quit})}
1156 @item quit @r{[}@var{expression}@r{]}
1157 @itemx q
1158 To exit @value{GDBN}, use the @code{quit} command (abbreviated
1159 @code{q}), or type an end-of-file character (usually @kbd{C-d}).  If you
1160 do not supply @var{expression}, @value{GDBN} will terminate normally;
1161 otherwise it will terminate using the result of @var{expression} as the
1162 error code.
1163 @end table
1164
1165 @cindex interrupt
1166 An interrupt (often @kbd{C-c}) does not exit from @value{GDBN}, but rather
1167 terminates the action of any @value{GDBN} command that is in progress and
1168 returns to @value{GDBN} command level.  It is safe to type the interrupt
1169 character at any time because @value{GDBN} does not allow it to take effect
1170 until a time when it is safe.
1171
1172 If you have been using @value{GDBN} to control an attached process or
1173 device, you can release it with the @code{detach} command
1174 (@pxref{Attach, ,Debugging an already-running process}).
1175
1176 @node Shell Commands
1177 @section Shell commands
1178
1179 If you need to execute occasional shell commands during your
1180 debugging session, there is no need to leave or suspend @value{GDBN}; you can
1181 just use the @code{shell} command.
1182
1183 @table @code
1184 @kindex shell
1185 @cindex shell escape
1186 @item shell @var{command string}
1187 Invoke a standard shell to execute @var{command string}.
1188 If it exists, the environment variable @code{SHELL} determines which
1189 shell to run.  Otherwise @value{GDBN} uses the default shell
1190 (@file{/bin/sh} on Unix systems, @file{COMMAND.COM} on MS-DOS, etc.).
1191 @end table
1192
1193 The utility @code{make} is often needed in development environments.
1194 You do not have to use the @code{shell} command for this purpose in
1195 @value{GDBN}:
1196
1197 @table @code
1198 @kindex make
1199 @cindex calling make
1200 @item make @var{make-args}
1201 Execute the @code{make} program with the specified
1202 arguments.  This is equivalent to @samp{shell make @var{make-args}}.
1203 @end table
1204
1205 @node Commands
1206 @chapter @value{GDBN} Commands
1207
1208 You can abbreviate a @value{GDBN} command to the first few letters of the command
1209 name, if that abbreviation is unambiguous; and you can repeat certain
1210 @value{GDBN} commands by typing just @key{RET}.  You can also use the @key{TAB}
1211 key to get @value{GDBN} to fill out the rest of a word in a command (or to
1212 show you the alternatives available, if there is more than one possibility).
1213
1214 @menu
1215 * Command Syntax::              How to give commands to @value{GDBN}
1216 * Completion::                  Command completion
1217 * Help::                        How to ask @value{GDBN} for help
1218 @end menu
1219
1220 @node Command Syntax
1221 @section Command syntax
1222
1223 A @value{GDBN} command is a single line of input.  There is no limit on
1224 how long it can be.  It starts with a command name, which is followed by
1225 arguments whose meaning depends on the command name.  For example, the
1226 command @code{step} accepts an argument which is the number of times to
1227 step, as in @samp{step 5}.  You can also use the @code{step} command
1228 with no arguments.  Some commands do not allow any arguments.
1229
1230 @cindex abbreviation
1231 @value{GDBN} command names may always be truncated if that abbreviation is
1232 unambiguous.  Other possible command abbreviations are listed in the
1233 documentation for individual commands.  In some cases, even ambiguous
1234 abbreviations are allowed; for example, @code{s} is specially defined as
1235 equivalent to @code{step} even though there are other commands whose
1236 names start with @code{s}.  You can test abbreviations by using them as
1237 arguments to the @code{help} command.
1238
1239 @cindex repeating commands
1240 @kindex RET @r{(repeat last command)}
1241 A blank line as input to @value{GDBN} (typing just @key{RET}) means to
1242 repeat the previous command.  Certain commands (for example, @code{run})
1243 will not repeat this way; these are commands whose unintentional
1244 repetition might cause trouble and which you are unlikely to want to
1245 repeat.
1246
1247 The @code{list} and @code{x} commands, when you repeat them with
1248 @key{RET}, construct new arguments rather than repeating
1249 exactly as typed.  This permits easy scanning of source or memory.
1250
1251 @value{GDBN} can also use @key{RET} in another way: to partition lengthy
1252 output, in a way similar to the common utility @code{more}
1253 (@pxref{Screen Size,,Screen size}).  Since it is easy to press one
1254 @key{RET} too many in this situation, @value{GDBN} disables command
1255 repetition after any command that generates this sort of display.
1256
1257 @kindex # @r{(a comment)}
1258 @cindex comment
1259 Any text from a @kbd{#} to the end of the line is a comment; it does
1260 nothing.  This is useful mainly in command files (@pxref{Command
1261 Files,,Command files}).
1262
1263 @cindex repeating command sequences
1264 @kindex C-o @r{(operate-and-get-next)}
1265 The @kbd{C-o} binding is useful for repeating a complex sequence of
1266 commands.  This command accepts the current line, like @kbd{RET}, and
1267 then fetches the next line relative to the current line from the history
1268 for editing.
1269
1270 @node Completion
1271 @section Command completion
1272
1273 @cindex completion
1274 @cindex word completion
1275 @value{GDBN} can fill in the rest of a word in a command for you, if there is
1276 only one possibility; it can also show you what the valid possibilities
1277 are for the next word in a command, at any time.  This works for @value{GDBN}
1278 commands, @value{GDBN} subcommands, and the names of symbols in your program.
1279
1280 Press the @key{TAB} key whenever you want @value{GDBN} to fill out the rest
1281 of a word.  If there is only one possibility, @value{GDBN} fills in the
1282 word, and waits for you to finish the command (or press @key{RET} to
1283 enter it).  For example, if you type
1284
1285 @c FIXME "@key" does not distinguish its argument sufficiently to permit
1286 @c complete accuracy in these examples; space introduced for clarity.
1287 @c If texinfo enhancements make it unnecessary, it would be nice to
1288 @c replace " @key" by "@key" in the following...
1289 @smallexample
1290 (@value{GDBP}) info bre @key{TAB}
1291 @end smallexample
1292
1293 @noindent
1294 @value{GDBN} fills in the rest of the word @samp{breakpoints}, since that is
1295 the only @code{info} subcommand beginning with @samp{bre}:
1296
1297 @smallexample
1298 (@value{GDBP}) info breakpoints
1299 @end smallexample
1300
1301 @noindent
1302 You can either press @key{RET} at this point, to run the @code{info
1303 breakpoints} command, or backspace and enter something else, if
1304 @samp{breakpoints} does not look like the command you expected.  (If you
1305 were sure you wanted @code{info breakpoints} in the first place, you
1306 might as well just type @key{RET} immediately after @samp{info bre},
1307 to exploit command abbreviations rather than command completion).
1308
1309 If there is more than one possibility for the next word when you press
1310 @key{TAB}, @value{GDBN} sounds a bell.  You can either supply more
1311 characters and try again, or just press @key{TAB} a second time;
1312 @value{GDBN} displays all the possible completions for that word.  For
1313 example, you might want to set a breakpoint on a subroutine whose name
1314 begins with @samp{make_}, but when you type @kbd{b make_@key{TAB}} @value{GDBN}
1315 just sounds the bell.  Typing @key{TAB} again displays all the
1316 function names in your program that begin with those characters, for
1317 example:
1318
1319 @smallexample
1320 (@value{GDBP}) b make_ @key{TAB}
1321 @exdent @value{GDBN} sounds bell; press @key{TAB} again, to see:
1322 make_a_section_from_file     make_environ
1323 make_abs_section             make_function_type
1324 make_blockvector             make_pointer_type
1325 make_cleanup                 make_reference_type
1326 make_command                 make_symbol_completion_list
1327 (@value{GDBP}) b make_
1328 @end smallexample
1329
1330 @noindent
1331 After displaying the available possibilities, @value{GDBN} copies your
1332 partial input (@samp{b make_} in the example) so you can finish the
1333 command.
1334
1335 If you just want to see the list of alternatives in the first place, you
1336 can press @kbd{M-?} rather than pressing @key{TAB} twice.  @kbd{M-?}
1337 means @kbd{@key{META} ?}.  You can type this either by holding down a
1338 key designated as the @key{META} shift on your keyboard (if there is
1339 one) while typing @kbd{?}, or as @key{ESC} followed by @kbd{?}.
1340
1341 @cindex quotes in commands
1342 @cindex completion of quoted strings
1343 Sometimes the string you need, while logically a ``word'', may contain
1344 parentheses or other characters that @value{GDBN} normally excludes from
1345 its notion of a word.  To permit word completion to work in this
1346 situation, you may enclose words in @code{'} (single quote marks) in
1347 @value{GDBN} commands.
1348
1349 The most likely situation where you might need this is in typing the
1350 name of a C@t{++} function.  This is because C@t{++} allows function
1351 overloading (multiple definitions of the same function, distinguished
1352 by argument type).  For example, when you want to set a breakpoint you
1353 may need to distinguish whether you mean the version of @code{name}
1354 that takes an @code{int} parameter, @code{name(int)}, or the version
1355 that takes a @code{float} parameter, @code{name(float)}.  To use the
1356 word-completion facilities in this situation, type a single quote
1357 @code{'} at the beginning of the function name.  This alerts
1358 @value{GDBN} that it may need to consider more information than usual
1359 when you press @key{TAB} or @kbd{M-?} to request word completion:
1360
1361 @smallexample
1362 (@value{GDBP}) b 'bubble( @kbd{M-?}
1363 bubble(double,double)    bubble(int,int)
1364 (@value{GDBP}) b 'bubble(
1365 @end smallexample
1366
1367 In some cases, @value{GDBN} can tell that completing a name requires using
1368 quotes.  When this happens, @value{GDBN} inserts the quote for you (while
1369 completing as much as it can) if you do not type the quote in the first
1370 place:
1371
1372 @smallexample
1373 (@value{GDBP}) b bub @key{TAB}
1374 @exdent @value{GDBN} alters your input line to the following, and rings a bell:
1375 (@value{GDBP}) b 'bubble(
1376 @end smallexample
1377
1378 @noindent
1379 In general, @value{GDBN} can tell that a quote is needed (and inserts it) if
1380 you have not yet started typing the argument list when you ask for
1381 completion on an overloaded symbol.
1382
1383 For more information about overloaded functions, see @ref{C plus plus
1384 expressions, ,C@t{++} expressions}.  You can use the command @code{set
1385 overload-resolution off} to disable overload resolution;
1386 see @ref{Debugging C plus plus, ,@value{GDBN} features for C@t{++}}.
1387
1388
1389 @node Help
1390 @section Getting help
1391 @cindex online documentation
1392 @kindex help
1393
1394 You can always ask @value{GDBN} itself for information on its commands,
1395 using the command @code{help}.
1396
1397 @table @code
1398 @kindex h @r{(@code{help})}
1399 @item help
1400 @itemx h
1401 You can use @code{help} (abbreviated @code{h}) with no arguments to
1402 display a short list of named classes of commands:
1403
1404 @smallexample
1405 (@value{GDBP}) help
1406 List of classes of commands:
1407
1408 aliases -- Aliases of other commands
1409 breakpoints -- Making program stop at certain points
1410 data -- Examining data
1411 files -- Specifying and examining files
1412 internals -- Maintenance commands
1413 obscure -- Obscure features
1414 running -- Running the program
1415 stack -- Examining the stack
1416 status -- Status inquiries
1417 support -- Support facilities
1418 tracepoints -- Tracing of program execution without@*
1419                stopping the program
1420 user-defined -- User-defined commands
1421
1422 Type "help" followed by a class name for a list of
1423 commands in that class.
1424 Type "help" followed by command name for full
1425 documentation.
1426 Command name abbreviations are allowed if unambiguous.
1427 (@value{GDBP})
1428 @end smallexample
1429 @c the above line break eliminates huge line overfull...
1430
1431 @item help @var{class}
1432 Using one of the general help classes as an argument, you can get a
1433 list of the individual commands in that class.  For example, here is the
1434 help display for the class @code{status}:
1435
1436 @smallexample
1437 (@value{GDBP}) help status
1438 Status inquiries.
1439
1440 List of commands:
1441
1442 @c Line break in "show" line falsifies real output, but needed
1443 @c to fit in smallbook page size.
1444 info -- Generic command for showing things
1445  about the program being debugged
1446 show -- Generic command for showing things
1447  about the debugger
1448
1449 Type "help" followed by command name for full
1450 documentation.
1451 Command name abbreviations are allowed if unambiguous.
1452 (@value{GDBP})
1453 @end smallexample
1454
1455 @item help @var{command}
1456 With a command name as @code{help} argument, @value{GDBN} displays a
1457 short paragraph on how to use that command.
1458
1459 @kindex apropos
1460 @item apropos @var{args}
1461 The @code{apropos @var{args}} command searches through all of the @value{GDBN}
1462 commands, and their documentation, for the regular expression specified in
1463 @var{args}. It prints out all matches found. For example:
1464
1465 @smallexample
1466 apropos reload
1467 @end smallexample
1468
1469 @noindent
1470 results in:
1471
1472 @smallexample
1473 @c @group
1474 set symbol-reloading -- Set dynamic symbol table reloading
1475                                  multiple times in one run
1476 show symbol-reloading -- Show dynamic symbol table reloading
1477                                  multiple times in one run
1478 @c @end group
1479 @end smallexample
1480
1481 @kindex complete
1482 @item complete @var{args}
1483 The @code{complete @var{args}} command lists all the possible completions
1484 for the beginning of a command.  Use @var{args} to specify the beginning of the
1485 command you want completed.  For example:
1486
1487 @smallexample
1488 complete i
1489 @end smallexample
1490
1491 @noindent results in:
1492
1493 @smallexample
1494 @group
1495 if
1496 ignore
1497 info
1498 inspect
1499 @end group
1500 @end smallexample
1501
1502 @noindent This is intended for use by @sc{gnu} Emacs.
1503 @end table
1504
1505 In addition to @code{help}, you can use the @value{GDBN} commands @code{info}
1506 and @code{show} to inquire about the state of your program, or the state
1507 of @value{GDBN} itself.  Each command supports many topics of inquiry; this
1508 manual introduces each of them in the appropriate context.  The listings
1509 under @code{info} and under @code{show} in the Index point to
1510 all the sub-commands.  @xref{Index}.
1511
1512 @c @group
1513 @table @code
1514 @kindex info
1515 @kindex i @r{(@code{info})}
1516 @item info
1517 This command (abbreviated @code{i}) is for describing the state of your
1518 program.  For example, you can list the arguments given to your program
1519 with @code{info args}, list the registers currently in use with @code{info
1520 registers}, or list the breakpoints you have set with @code{info breakpoints}.
1521 You can get a complete list of the @code{info} sub-commands with
1522 @w{@code{help info}}.
1523
1524 @kindex set
1525 @item set
1526 You can assign the result of an expression to an environment variable with
1527 @code{set}.  For example, you can set the @value{GDBN} prompt to a $-sign with
1528 @code{set prompt $}.
1529
1530 @kindex show
1531 @item show
1532 In contrast to @code{info}, @code{show} is for describing the state of
1533 @value{GDBN} itself.
1534 You can change most of the things you can @code{show}, by using the
1535 related command @code{set}; for example, you can control what number
1536 system is used for displays with @code{set radix}, or simply inquire
1537 which is currently in use with @code{show radix}.
1538
1539 @kindex info set
1540 To display all the settable parameters and their current
1541 values, you can use @code{show} with no arguments; you may also use
1542 @code{info set}.  Both commands produce the same display.
1543 @c FIXME: "info set" violates the rule that "info" is for state of
1544 @c FIXME...program.  Ck w/ GNU: "info set" to be called something else,
1545 @c FIXME...or change desc of rule---eg "state of prog and debugging session"?
1546 @end table
1547 @c @end group
1548
1549 Here are three miscellaneous @code{show} subcommands, all of which are
1550 exceptional in lacking corresponding @code{set} commands:
1551
1552 @table @code
1553 @kindex show version
1554 @cindex version number
1555 @item show version
1556 Show what version of @value{GDBN} is running.  You should include this
1557 information in @value{GDBN} bug-reports.  If multiple versions of
1558 @value{GDBN} are in use at your site, you may need to determine which
1559 version of @value{GDBN} you are running; as @value{GDBN} evolves, new
1560 commands are introduced, and old ones may wither away.  Also, many
1561 system vendors ship variant versions of @value{GDBN}, and there are
1562 variant versions of @value{GDBN} in @sc{gnu}/Linux distributions as well.
1563 The version number is the same as the one announced when you start
1564 @value{GDBN}.
1565
1566 @kindex show copying
1567 @item show copying
1568 Display information about permission for copying @value{GDBN}.
1569
1570 @kindex show warranty
1571 @item show warranty
1572 Display the @sc{gnu} ``NO WARRANTY'' statement, or a warranty,
1573 if your version of @value{GDBN} comes with one.
1574
1575 @end table
1576
1577 @node Running
1578 @chapter Running Programs Under @value{GDBN}
1579
1580 When you run a program under @value{GDBN}, you must first generate
1581 debugging information when you compile it.
1582
1583 You may start @value{GDBN} with its arguments, if any, in an environment
1584 of your choice.  If you are doing native debugging, you may redirect
1585 your program's input and output, debug an already running process, or
1586 kill a child process.
1587
1588 @menu
1589 * Compilation::                 Compiling for debugging
1590 * Starting::                    Starting your program
1591 * Arguments::                   Your program's arguments
1592 * Environment::                 Your program's environment
1593
1594 * Working Directory::           Your program's working directory
1595 * Input/Output::                Your program's input and output
1596 * Attach::                      Debugging an already-running process
1597 * Kill Process::                Killing the child process
1598
1599 * Threads::                     Debugging programs with multiple threads
1600 * Processes::                   Debugging programs with multiple processes
1601 @end menu
1602
1603 @node Compilation
1604 @section Compiling for debugging
1605
1606 In order to debug a program effectively, you need to generate
1607 debugging information when you compile it.  This debugging information
1608 is stored in the object file; it describes the data type of each
1609 variable or function and the correspondence between source line numbers
1610 and addresses in the executable code.
1611
1612 To request debugging information, specify the @samp{-g} option when you run
1613 the compiler.
1614
1615 Most compilers do not include information about preprocessor macros in
1616 the debugging information if you specify the @option{-g} flag alone,
1617 because this information is rather large.  Version 3.1 of @value{NGCC},
1618 the @sc{gnu} C compiler, provides macro information if you specify the
1619 options @option{-gdwarf-2} and @option{-g3}; the former option requests
1620 debugging information in the Dwarf 2 format, and the latter requests
1621 ``extra information''.  In the future, we hope to find more compact ways
1622 to represent macro information, so that it can be included with
1623 @option{-g} alone.
1624
1625 Many C compilers are unable to handle the @samp{-g} and @samp{-O}
1626 options together.  Using those compilers, you cannot generate optimized
1627 executables containing debugging information.
1628
1629 @value{NGCC}, the @sc{gnu} C compiler, supports @samp{-g} with or
1630 without @samp{-O}, making it possible to debug optimized code.  We
1631 recommend that you @emph{always} use @samp{-g} whenever you compile a
1632 program.  You may think your program is correct, but there is no sense
1633 in pushing your luck.
1634
1635 @cindex optimized code, debugging
1636 @cindex debugging optimized code
1637 When you debug a program compiled with @samp{-g -O}, remember that the
1638 optimizer is rearranging your code; the debugger shows you what is
1639 really there.  Do not be too surprised when the execution path does not
1640 exactly match your source file!  An extreme example: if you define a
1641 variable, but never use it, @value{GDBN} never sees that
1642 variable---because the compiler optimizes it out of existence.
1643
1644 Some things do not work as well with @samp{-g -O} as with just
1645 @samp{-g}, particularly on machines with instruction scheduling.  If in
1646 doubt, recompile with @samp{-g} alone, and if this fixes the problem,
1647 please report it to us as a bug (including a test case!).
1648
1649 Older versions of the @sc{gnu} C compiler permitted a variant option
1650 @w{@samp{-gg}} for debugging information.  @value{GDBN} no longer supports this
1651 format; if your @sc{gnu} C compiler has this option, do not use it.
1652
1653 @need 2000
1654 @node Starting
1655 @section Starting your program
1656 @cindex starting
1657 @cindex running
1658
1659 @table @code
1660 @kindex run
1661 @kindex r @r{(@code{run})}
1662 @item run
1663 @itemx r
1664 Use the @code{run} command to start your program under @value{GDBN}.
1665 You must first specify the program name (except on VxWorks) with an
1666 argument to @value{GDBN} (@pxref{Invocation, ,Getting In and Out of
1667 @value{GDBN}}), or by using the @code{file} or @code{exec-file} command
1668 (@pxref{Files, ,Commands to specify files}).
1669
1670 @end table
1671
1672 If you are running your program in an execution environment that
1673 supports processes, @code{run} creates an inferior process and makes
1674 that process run your program.  (In environments without processes,
1675 @code{run} jumps to the start of your program.)
1676
1677 The execution of a program is affected by certain information it
1678 receives from its superior.  @value{GDBN} provides ways to specify this
1679 information, which you must do @emph{before} starting your program.  (You
1680 can change it after starting your program, but such changes only affect
1681 your program the next time you start it.)  This information may be
1682 divided into four categories:
1683
1684 @table @asis
1685 @item The @emph{arguments.}
1686 Specify the arguments to give your program as the arguments of the
1687 @code{run} command.  If a shell is available on your target, the shell
1688 is used to pass the arguments, so that you may use normal conventions
1689 (such as wildcard expansion or variable substitution) in describing
1690 the arguments.
1691 In Unix systems, you can control which shell is used with the
1692 @code{SHELL} environment variable.
1693 @xref{Arguments, ,Your program's arguments}.
1694
1695 @item The @emph{environment.}
1696 Your program normally inherits its environment from @value{GDBN}, but you can
1697 use the @value{GDBN} commands @code{set environment} and @code{unset
1698 environment} to change parts of the environment that affect
1699 your program.  @xref{Environment, ,Your program's environment}.
1700
1701 @item The @emph{working directory.}
1702 Your program inherits its working directory from @value{GDBN}.  You can set
1703 the @value{GDBN} working directory with the @code{cd} command in @value{GDBN}.
1704 @xref{Working Directory, ,Your program's working directory}.
1705
1706 @item The @emph{standard input and output.}
1707 Your program normally uses the same device for standard input and
1708 standard output as @value{GDBN} is using.  You can redirect input and output
1709 in the @code{run} command line, or you can use the @code{tty} command to
1710 set a different device for your program.
1711 @xref{Input/Output, ,Your program's input and output}.
1712
1713 @cindex pipes
1714 @emph{Warning:} While input and output redirection work, you cannot use
1715 pipes to pass the output of the program you are debugging to another
1716 program; if you attempt this, @value{GDBN} is likely to wind up debugging the
1717 wrong program.
1718 @end table
1719
1720 When you issue the @code{run} command, your program begins to execute
1721 immediately.  @xref{Stopping, ,Stopping and continuing}, for discussion
1722 of how to arrange for your program to stop.  Once your program has
1723 stopped, you may call functions in your program, using the @code{print}
1724 or @code{call} commands.  @xref{Data, ,Examining Data}.
1725
1726 If the modification time of your symbol file has changed since the last
1727 time @value{GDBN} read its symbols, @value{GDBN} discards its symbol
1728 table, and reads it again.  When it does this, @value{GDBN} tries to retain
1729 your current breakpoints.
1730
1731 @node Arguments
1732 @section Your program's arguments
1733
1734 @cindex arguments (to your program)
1735 The arguments to your program can be specified by the arguments of the
1736 @code{run} command.
1737 They are passed to a shell, which expands wildcard characters and
1738 performs redirection of I/O, and thence to your program.  Your
1739 @code{SHELL} environment variable (if it exists) specifies what shell
1740 @value{GDBN} uses.  If you do not define @code{SHELL}, @value{GDBN} uses
1741 the default shell (@file{/bin/sh} on Unix).
1742
1743 On non-Unix systems, the program is usually invoked directly by
1744 @value{GDBN}, which emulates I/O redirection via the appropriate system
1745 calls, and the wildcard characters are expanded by the startup code of
1746 the program, not by the shell.
1747
1748 @code{run} with no arguments uses the same arguments used by the previous
1749 @code{run}, or those set by the @code{set args} command.
1750
1751 @table @code
1752 @kindex set args
1753 @item set args
1754 Specify the arguments to be used the next time your program is run.  If
1755 @code{set args} has no arguments, @code{run} executes your program
1756 with no arguments.  Once you have run your program with arguments,
1757 using @code{set args} before the next @code{run} is the only way to run
1758 it again without arguments.
1759
1760 @kindex show args
1761 @item show args
1762 Show the arguments to give your program when it is started.
1763 @end table
1764
1765 @node Environment
1766 @section Your program's environment
1767
1768 @cindex environment (of your program)
1769 The @dfn{environment} consists of a set of environment variables and
1770 their values.  Environment variables conventionally record such things as
1771 your user name, your home directory, your terminal type, and your search
1772 path for programs to run.  Usually you set up environment variables with
1773 the shell and they are inherited by all the other programs you run.  When
1774 debugging, it can be useful to try running your program with a modified
1775 environment without having to start @value{GDBN} over again.
1776
1777 @table @code
1778 @kindex path
1779 @item path @var{directory}
1780 Add @var{directory} to the front of the @code{PATH} environment variable
1781 (the search path for executables) that will be passed to your program.
1782 The value of @code{PATH} used by @value{GDBN} does not change.
1783 You may specify several directory names, separated by whitespace or by a
1784 system-dependent separator character (@samp{:} on Unix, @samp{;} on
1785 MS-DOS and MS-Windows).  If @var{directory} is already in the path, it
1786 is moved to the front, so it is searched sooner.
1787
1788 You can use the string @samp{$cwd} to refer to whatever is the current
1789 working directory at the time @value{GDBN} searches the path.  If you
1790 use @samp{.} instead, it refers to the directory where you executed the
1791 @code{path} command.  @value{GDBN} replaces @samp{.} in the
1792 @var{directory} argument (with the current path) before adding
1793 @var{directory} to the search path.
1794 @c 'path' is explicitly nonrepeatable, but RMS points out it is silly to
1795 @c document that, since repeating it would be a no-op.
1796
1797 @kindex show paths
1798 @item show paths
1799 Display the list of search paths for executables (the @code{PATH}
1800 environment variable).
1801
1802 @kindex show environment
1803 @item show environment @r{[}@var{varname}@r{]}
1804 Print the value of environment variable @var{varname} to be given to
1805 your program when it starts.  If you do not supply @var{varname},
1806 print the names and values of all environment variables to be given to
1807 your program.  You can abbreviate @code{environment} as @code{env}.
1808
1809 @kindex set environment
1810 @item set environment @var{varname} @r{[}=@var{value}@r{]}
1811 Set environment variable @var{varname} to @var{value}.  The value
1812 changes for your program only, not for @value{GDBN} itself.  @var{value} may
1813 be any string; the values of environment variables are just strings, and
1814 any interpretation is supplied by your program itself.  The @var{value}
1815 parameter is optional; if it is eliminated, the variable is set to a
1816 null value.
1817 @c "any string" here does not include leading, trailing
1818 @c blanks. Gnu asks: does anyone care?
1819
1820 For example, this command:
1821
1822 @smallexample
1823 set env USER = foo
1824 @end smallexample
1825
1826 @noindent
1827 tells the debugged program, when subsequently run, that its user is named
1828 @samp{foo}.  (The spaces around @samp{=} are used for clarity here; they
1829 are not actually required.)
1830
1831 @kindex unset environment
1832 @item unset environment @var{varname}
1833 Remove variable @var{varname} from the environment to be passed to your
1834 program.  This is different from @samp{set env @var{varname} =};
1835 @code{unset environment} removes the variable from the environment,
1836 rather than assigning it an empty value.
1837 @end table
1838
1839 @emph{Warning:} On Unix systems, @value{GDBN} runs your program using
1840 the shell indicated
1841 by your @code{SHELL} environment variable if it exists (or
1842 @code{/bin/sh} if not).  If your @code{SHELL} variable names a shell
1843 that runs an initialization file---such as @file{.cshrc} for C-shell, or
1844 @file{.bashrc} for BASH---any variables you set in that file affect
1845 your program.  You may wish to move setting of environment variables to
1846 files that are only run when you sign on, such as @file{.login} or
1847 @file{.profile}.
1848
1849 @node Working Directory
1850 @section Your program's working directory
1851
1852 @cindex working directory (of your program)
1853 Each time you start your program with @code{run}, it inherits its
1854 working directory from the current working directory of @value{GDBN}.
1855 The @value{GDBN} working directory is initially whatever it inherited
1856 from its parent process (typically the shell), but you can specify a new
1857 working directory in @value{GDBN} with the @code{cd} command.
1858
1859 The @value{GDBN} working directory also serves as a default for the commands
1860 that specify files for @value{GDBN} to operate on.  @xref{Files, ,Commands to
1861 specify files}.
1862
1863 @table @code
1864 @kindex cd
1865 @item cd @var{directory}
1866 Set the @value{GDBN} working directory to @var{directory}.
1867
1868 @kindex pwd
1869 @item pwd
1870 Print the @value{GDBN} working directory.
1871 @end table
1872
1873 @node Input/Output
1874 @section Your program's input and output
1875
1876 @cindex redirection
1877 @cindex i/o
1878 @cindex terminal
1879 By default, the program you run under @value{GDBN} does input and output to
1880 the same terminal that @value{GDBN} uses.  @value{GDBN} switches the terminal
1881 to its own terminal modes to interact with you, but it records the terminal
1882 modes your program was using and switches back to them when you continue
1883 running your program.
1884
1885 @table @code
1886 @kindex info terminal
1887 @item info terminal
1888 Displays information recorded by @value{GDBN} about the terminal modes your
1889 program is using.
1890 @end table
1891
1892 You can redirect your program's input and/or output using shell
1893 redirection with the @code{run} command.  For example,
1894
1895 @smallexample
1896 run > outfile
1897 @end smallexample
1898
1899 @noindent
1900 starts your program, diverting its output to the file @file{outfile}.
1901
1902 @kindex tty
1903 @cindex controlling terminal
1904 Another way to specify where your program should do input and output is
1905 with the @code{tty} command.  This command accepts a file name as
1906 argument, and causes this file to be the default for future @code{run}
1907 commands.  It also resets the controlling terminal for the child
1908 process, for future @code{run} commands.  For example,
1909
1910 @smallexample
1911 tty /dev/ttyb
1912 @end smallexample
1913
1914 @noindent
1915 directs that processes started with subsequent @code{run} commands
1916 default to do input and output on the terminal @file{/dev/ttyb} and have
1917 that as their controlling terminal.
1918
1919 An explicit redirection in @code{run} overrides the @code{tty} command's
1920 effect on the input/output device, but not its effect on the controlling
1921 terminal.
1922
1923 When you use the @code{tty} command or redirect input in the @code{run}
1924 command, only the input @emph{for your program} is affected.  The input
1925 for @value{GDBN} still comes from your terminal.
1926
1927 @node Attach
1928 @section Debugging an already-running process
1929 @kindex attach
1930 @cindex attach
1931
1932 @table @code
1933 @item attach @var{process-id}
1934 This command attaches to a running process---one that was started
1935 outside @value{GDBN}.  (@code{info files} shows your active
1936 targets.)  The command takes as argument a process ID.  The usual way to
1937 find out the process-id of a Unix process is with the @code{ps} utility,
1938 or with the @samp{jobs -l} shell command.
1939
1940 @code{attach} does not repeat if you press @key{RET} a second time after
1941 executing the command.
1942 @end table
1943
1944 To use @code{attach}, your program must be running in an environment
1945 which supports processes; for example, @code{attach} does not work for
1946 programs on bare-board targets that lack an operating system.  You must
1947 also have permission to send the process a signal.
1948
1949 When you use @code{attach}, the debugger finds the program running in
1950 the process first by looking in the current working directory, then (if
1951 the program is not found) by using the source file search path
1952 (@pxref{Source Path, ,Specifying source directories}).  You can also use
1953 the @code{file} command to load the program.  @xref{Files, ,Commands to
1954 Specify Files}.
1955
1956 The first thing @value{GDBN} does after arranging to debug the specified
1957 process is to stop it.  You can examine and modify an attached process
1958 with all the @value{GDBN} commands that are ordinarily available when
1959 you start processes with @code{run}.  You can insert breakpoints; you
1960 can step and continue; you can modify storage.  If you would rather the
1961 process continue running, you may use the @code{continue} command after
1962 attaching @value{GDBN} to the process.
1963
1964 @table @code
1965 @kindex detach
1966 @item detach
1967 When you have finished debugging the attached process, you can use the
1968 @code{detach} command to release it from @value{GDBN} control.  Detaching
1969 the process continues its execution.  After the @code{detach} command,
1970 that process and @value{GDBN} become completely independent once more, and you
1971 are ready to @code{attach} another process or start one with @code{run}.
1972 @code{detach} does not repeat if you press @key{RET} again after
1973 executing the command.
1974 @end table
1975
1976 If you exit @value{GDBN} or use the @code{run} command while you have an
1977 attached process, you kill that process.  By default, @value{GDBN} asks
1978 for confirmation if you try to do either of these things; you can
1979 control whether or not you need to confirm by using the @code{set
1980 confirm} command (@pxref{Messages/Warnings, ,Optional warnings and
1981 messages}).
1982
1983 @node Kill Process
1984 @section Killing the child process
1985
1986 @table @code
1987 @kindex kill
1988 @item kill
1989 Kill the child process in which your program is running under @value{GDBN}.
1990 @end table
1991
1992 This command is useful if you wish to debug a core dump instead of a
1993 running process.  @value{GDBN} ignores any core dump file while your program
1994 is running.
1995
1996 On some operating systems, a program cannot be executed outside @value{GDBN}
1997 while you have breakpoints set on it inside @value{GDBN}.  You can use the
1998 @code{kill} command in this situation to permit running your program
1999 outside the debugger.
2000
2001 The @code{kill} command is also useful if you wish to recompile and
2002 relink your program, since on many systems it is impossible to modify an
2003 executable file while it is running in a process.  In this case, when you
2004 next type @code{run}, @value{GDBN} notices that the file has changed, and
2005 reads the symbol table again (while trying to preserve your current
2006 breakpoint settings).
2007
2008 @node Threads
2009 @section Debugging programs with multiple threads
2010
2011 @cindex threads of execution
2012 @cindex multiple threads
2013 @cindex switching threads
2014 In some operating systems, such as HP-UX and Solaris, a single program
2015 may have more than one @dfn{thread} of execution.  The precise semantics
2016 of threads differ from one operating system to another, but in general
2017 the threads of a single program are akin to multiple processes---except
2018 that they share one address space (that is, they can all examine and
2019 modify the same variables).  On the other hand, each thread has its own
2020 registers and execution stack, and perhaps private memory.
2021
2022 @value{GDBN} provides these facilities for debugging multi-thread
2023 programs:
2024
2025 @itemize @bullet
2026 @item automatic notification of new threads
2027 @item @samp{thread @var{threadno}}, a command to switch among threads
2028 @item @samp{info threads}, a command to inquire about existing threads
2029 @item @samp{thread apply [@var{threadno}] [@var{all}] @var{args}},
2030 a command to apply a command to a list of threads
2031 @item thread-specific breakpoints
2032 @end itemize
2033
2034 @quotation
2035 @emph{Warning:} These facilities are not yet available on every
2036 @value{GDBN} configuration where the operating system supports threads.
2037 If your @value{GDBN} does not support threads, these commands have no
2038 effect.  For example, a system without thread support shows no output
2039 from @samp{info threads}, and always rejects the @code{thread} command,
2040 like this:
2041
2042 @smallexample
2043 (@value{GDBP}) info threads
2044 (@value{GDBP}) thread 1
2045 Thread ID 1 not known.  Use the "info threads" command to
2046 see the IDs of currently known threads.
2047 @end smallexample
2048 @c FIXME to implementors: how hard would it be to say "sorry, this GDB
2049 @c                        doesn't support threads"?
2050 @end quotation
2051
2052 @cindex focus of debugging
2053 @cindex current thread
2054 The @value{GDBN} thread debugging facility allows you to observe all
2055 threads while your program runs---but whenever @value{GDBN} takes
2056 control, one thread in particular is always the focus of debugging.
2057 This thread is called the @dfn{current thread}.  Debugging commands show
2058 program information from the perspective of the current thread.
2059
2060 @cindex @code{New} @var{systag} message
2061 @cindex thread identifier (system)
2062 @c FIXME-implementors!! It would be more helpful if the [New...] message
2063 @c included GDB's numeric thread handle, so you could just go to that
2064 @c thread without first checking `info threads'.
2065 Whenever @value{GDBN} detects a new thread in your program, it displays
2066 the target system's identification for the thread with a message in the
2067 form @samp{[New @var{systag}]}.  @var{systag} is a thread identifier
2068 whose form varies depending on the particular system.  For example, on
2069 LynxOS, you might see
2070
2071 @smallexample
2072 [New process 35 thread 27]
2073 @end smallexample
2074
2075 @noindent
2076 when @value{GDBN} notices a new thread.  In contrast, on an SGI system,
2077 the @var{systag} is simply something like @samp{process 368}, with no
2078 further qualifier.
2079
2080 @c FIXME!! (1) Does the [New...] message appear even for the very first
2081 @c         thread of a program, or does it only appear for the
2082 @c         second---i.e.@: when it becomes obvious we have a multithread
2083 @c         program?
2084 @c         (2) *Is* there necessarily a first thread always?  Or do some
2085 @c         multithread systems permit starting a program with multiple
2086 @c         threads ab initio?
2087
2088 @cindex thread number
2089 @cindex thread identifier (GDB)
2090 For debugging purposes, @value{GDBN} associates its own thread
2091 number---always a single integer---with each thread in your program.
2092
2093 @table @code
2094 @kindex info threads
2095 @item info threads
2096 Display a summary of all threads currently in your
2097 program.  @value{GDBN} displays for each thread (in this order):
2098
2099 @enumerate
2100 @item the thread number assigned by @value{GDBN}
2101
2102 @item the target system's thread identifier (@var{systag})
2103
2104 @item the current stack frame summary for that thread
2105 @end enumerate
2106
2107 @noindent
2108 An asterisk @samp{*} to the left of the @value{GDBN} thread number
2109 indicates the current thread.
2110
2111 For example,
2112 @end table
2113 @c end table here to get a little more width for example
2114
2115 @smallexample
2116 (@value{GDBP}) info threads
2117   3 process 35 thread 27  0x34e5 in sigpause ()
2118   2 process 35 thread 23  0x34e5 in sigpause ()
2119 * 1 process 35 thread 13  main (argc=1, argv=0x7ffffff8)
2120     at threadtest.c:68
2121 @end smallexample
2122
2123 On HP-UX systems:
2124
2125 @cindex thread number
2126 @cindex thread identifier (GDB)
2127 For debugging purposes, @value{GDBN} associates its own thread
2128 number---a small integer assigned in thread-creation order---with each
2129 thread in your program.
2130
2131 @cindex @code{New} @var{systag} message, on HP-UX
2132 @cindex thread identifier (system), on HP-UX
2133 @c FIXME-implementors!! It would be more helpful if the [New...] message
2134 @c included GDB's numeric thread handle, so you could just go to that
2135 @c thread without first checking `info threads'.
2136 Whenever @value{GDBN} detects a new thread in your program, it displays
2137 both @value{GDBN}'s thread number and the target system's identification for the thread with a message in the
2138 form @samp{[New @var{systag}]}.  @var{systag} is a thread identifier
2139 whose form varies depending on the particular system.  For example, on
2140 HP-UX, you see
2141
2142 @smallexample
2143 [New thread 2 (system thread 26594)]
2144 @end smallexample
2145
2146 @noindent
2147 when @value{GDBN} notices a new thread.
2148
2149 @table @code
2150 @kindex info threads
2151 @item info threads
2152 Display a summary of all threads currently in your
2153 program.  @value{GDBN} displays for each thread (in this order):
2154
2155 @enumerate
2156 @item the thread number assigned by @value{GDBN}
2157
2158 @item the target system's thread identifier (@var{systag})
2159
2160 @item the current stack frame summary for that thread
2161 @end enumerate
2162
2163 @noindent
2164 An asterisk @samp{*} to the left of the @value{GDBN} thread number
2165 indicates the current thread.
2166
2167 For example,
2168 @end table
2169 @c end table here to get a little more width for example
2170
2171 @smallexample
2172 (@value{GDBP}) info threads
2173     * 3 system thread 26607  worker (wptr=0x7b09c318 "@@") \@*
2174                                at quicksort.c:137
2175       2 system thread 26606  0x7b0030d8 in __ksleep () \@*
2176                                from /usr/lib/libc.2
2177       1 system thread 27905  0x7b003498 in _brk () \@*
2178                                from /usr/lib/libc.2
2179 @end smallexample
2180
2181 @table @code
2182 @kindex thread @var{threadno}
2183 @item thread @var{threadno}
2184 Make thread number @var{threadno} the current thread.  The command
2185 argument @var{threadno} is the internal @value{GDBN} thread number, as
2186 shown in the first field of the @samp{info threads} display.
2187 @value{GDBN} responds by displaying the system identifier of the thread
2188 you selected, and its current stack frame summary:
2189
2190 @smallexample
2191 @c FIXME!! This example made up; find a @value{GDBN} w/threads and get real one
2192 (@value{GDBP}) thread 2
2193 [Switching to process 35 thread 23]
2194 0x34e5 in sigpause ()
2195 @end smallexample
2196
2197 @noindent
2198 As with the @samp{[New @dots{}]} message, the form of the text after
2199 @samp{Switching to} depends on your system's conventions for identifying
2200 threads.
2201
2202 @kindex thread apply
2203 @item thread apply [@var{threadno}] [@var{all}]  @var{args}
2204 The @code{thread apply} command allows you to apply a command to one or
2205 more threads.  Specify the numbers of the threads that you want affected
2206 with the command argument @var{threadno}.  @var{threadno} is the internal
2207 @value{GDBN} thread number, as shown in the first field of the @samp{info
2208 threads} display.  To apply a command to all threads, use
2209 @code{thread apply all} @var{args}.
2210 @end table
2211
2212 @cindex automatic thread selection
2213 @cindex switching threads automatically
2214 @cindex threads, automatic switching
2215 Whenever @value{GDBN} stops your program, due to a breakpoint or a
2216 signal, it automatically selects the thread where that breakpoint or
2217 signal happened.  @value{GDBN} alerts you to the context switch with a
2218 message of the form @samp{[Switching to @var{systag}]} to identify the
2219 thread.
2220
2221 @xref{Thread Stops,,Stopping and starting multi-thread programs}, for
2222 more information about how @value{GDBN} behaves when you stop and start
2223 programs with multiple threads.
2224
2225 @xref{Set Watchpoints,,Setting watchpoints}, for information about
2226 watchpoints in programs with multiple threads.
2227
2228 @node Processes
2229 @section Debugging programs with multiple processes
2230
2231 @cindex fork, debugging programs which call
2232 @cindex multiple processes
2233 @cindex processes, multiple
2234 On most systems, @value{GDBN} has no special support for debugging
2235 programs which create additional processes using the @code{fork}
2236 function.  When a program forks, @value{GDBN} will continue to debug the
2237 parent process and the child process will run unimpeded.  If you have
2238 set a breakpoint in any code which the child then executes, the child
2239 will get a @code{SIGTRAP} signal which (unless it catches the signal)
2240 will cause it to terminate.
2241
2242 However, if you want to debug the child process there is a workaround
2243 which isn't too painful.  Put a call to @code{sleep} in the code which
2244 the child process executes after the fork.  It may be useful to sleep
2245 only if a certain environment variable is set, or a certain file exists,
2246 so that the delay need not occur when you don't want to run @value{GDBN}
2247 on the child.  While the child is sleeping, use the @code{ps} program to
2248 get its process ID.  Then tell @value{GDBN} (a new invocation of
2249 @value{GDBN} if you are also debugging the parent process) to attach to
2250 the child process (@pxref{Attach}).  From that point on you can debug
2251 the child process just like any other process which you attached to.
2252
2253 On HP-UX (11.x and later only?), @value{GDBN} provides support for
2254 debugging programs that create additional processes using the
2255 @code{fork} or @code{vfork} function.
2256
2257 By default, when a program forks, @value{GDBN} will continue to debug
2258 the parent process and the child process will run unimpeded.
2259
2260 If you want to follow the child process instead of the parent process,
2261 use the command @w{@code{set follow-fork-mode}}.
2262
2263 @table @code
2264 @kindex set follow-fork-mode
2265 @item set follow-fork-mode @var{mode}
2266 Set the debugger response to a program call of @code{fork} or
2267 @code{vfork}.  A call to @code{fork} or @code{vfork} creates a new
2268 process.  The @var{mode} can be:
2269
2270 @table @code
2271 @item parent
2272 The original process is debugged after a fork.  The child process runs
2273 unimpeded.  This is the default.
2274
2275 @item child
2276 The new process is debugged after a fork.  The parent process runs
2277 unimpeded.
2278
2279 @item ask
2280 The debugger will ask for one of the above choices.
2281 @end table
2282
2283 @item show follow-fork-mode
2284 Display the current debugger response to a @code{fork} or @code{vfork} call.
2285 @end table
2286
2287 If you ask to debug a child process and a @code{vfork} is followed by an
2288 @code{exec}, @value{GDBN} executes the new target up to the first
2289 breakpoint in the new target.  If you have a breakpoint set on
2290 @code{main} in your original program, the breakpoint will also be set on
2291 the child process's @code{main}.
2292
2293 When a child process is spawned by @code{vfork}, you cannot debug the
2294 child or parent until an @code{exec} call completes.
2295
2296 If you issue a @code{run} command to @value{GDBN} after an @code{exec}
2297 call executes, the new target restarts.  To restart the parent process,
2298 use the @code{file} command with the parent executable name as its
2299 argument.
2300
2301 You can use the @code{catch} command to make @value{GDBN} stop whenever
2302 a @code{fork}, @code{vfork}, or @code{exec} call is made.  @xref{Set
2303 Catchpoints, ,Setting catchpoints}.
2304
2305 @node Stopping
2306 @chapter Stopping and Continuing
2307
2308 The principal purposes of using a debugger are so that you can stop your
2309 program before it terminates; or so that, if your program runs into
2310 trouble, you can investigate and find out why.
2311
2312 Inside @value{GDBN}, your program may stop for any of several reasons,
2313 such as a signal, a breakpoint, or reaching a new line after a
2314 @value{GDBN} command such as @code{step}.  You may then examine and
2315 change variables, set new breakpoints or remove old ones, and then
2316 continue execution.  Usually, the messages shown by @value{GDBN} provide
2317 ample explanation of the status of your program---but you can also
2318 explicitly request this information at any time.
2319
2320 @table @code
2321 @kindex info program
2322 @item info program
2323 Display information about the status of your program: whether it is
2324 running or not, what process it is, and why it stopped.
2325 @end table
2326
2327 @menu
2328 * Breakpoints::                 Breakpoints, watchpoints, and catchpoints
2329 * Continuing and Stepping::     Resuming execution
2330 * Signals::                     Signals
2331 * Thread Stops::                Stopping and starting multi-thread programs
2332 @end menu
2333
2334 @node Breakpoints
2335 @section Breakpoints, watchpoints, and catchpoints
2336
2337 @cindex breakpoints
2338 A @dfn{breakpoint} makes your program stop whenever a certain point in
2339 the program is reached.  For each breakpoint, you can add conditions to
2340 control in finer detail whether your program stops.  You can set
2341 breakpoints with the @code{break} command and its variants (@pxref{Set
2342 Breaks, ,Setting breakpoints}), to specify the place where your program
2343 should stop by line number, function name or exact address in the
2344 program.
2345
2346 In HP-UX, SunOS 4.x, SVR4, and Alpha OSF/1 configurations, you can set
2347 breakpoints in shared libraries before the executable is run.  There is
2348 a minor limitation on HP-UX systems: you must wait until the executable
2349 is run in order to set breakpoints in shared library routines that are
2350 not called directly by the program (for example, routines that are
2351 arguments in a @code{pthread_create} call).
2352
2353 @cindex watchpoints
2354 @cindex memory tracing
2355 @cindex breakpoint on memory address
2356 @cindex breakpoint on variable modification
2357 A @dfn{watchpoint} is a special breakpoint that stops your program
2358 when the value of an expression changes.  You must use a different
2359 command to set watchpoints (@pxref{Set Watchpoints, ,Setting
2360 watchpoints}), but aside from that, you can manage a watchpoint like
2361 any other breakpoint: you enable, disable, and delete both breakpoints
2362 and watchpoints using the same commands.
2363
2364 You can arrange to have values from your program displayed automatically
2365 whenever @value{GDBN} stops at a breakpoint.  @xref{Auto Display,,
2366 Automatic display}.
2367
2368 @cindex catchpoints
2369 @cindex breakpoint on events
2370 A @dfn{catchpoint} is another special breakpoint that stops your program
2371 when a certain kind of event occurs, such as the throwing of a C@t{++}
2372 exception or the loading of a library.  As with watchpoints, you use a
2373 different command to set a catchpoint (@pxref{Set Catchpoints, ,Setting
2374 catchpoints}), but aside from that, you can manage a catchpoint like any
2375 other breakpoint.  (To stop when your program receives a signal, use the
2376 @code{handle} command; see @ref{Signals, ,Signals}.)
2377
2378 @cindex breakpoint numbers
2379 @cindex numbers for breakpoints
2380 @value{GDBN} assigns a number to each breakpoint, watchpoint, or
2381 catchpoint when you create it; these numbers are successive integers
2382 starting with one.  In many of the commands for controlling various
2383 features of breakpoints you use the breakpoint number to say which
2384 breakpoint you want to change.  Each breakpoint may be @dfn{enabled} or
2385 @dfn{disabled}; if disabled, it has no effect on your program until you
2386 enable it again.
2387
2388 @cindex breakpoint ranges
2389 @cindex ranges of breakpoints
2390 Some @value{GDBN} commands accept a range of breakpoints on which to
2391 operate.  A breakpoint range is either a single breakpoint number, like
2392 @samp{5}, or two such numbers, in increasing order, separated by a
2393 hyphen, like @samp{5-7}.  When a breakpoint range is given to a command,
2394 all breakpoint in that range are operated on.
2395
2396 @menu
2397 * Set Breaks::                  Setting breakpoints
2398 * Set Watchpoints::             Setting watchpoints
2399 * Set Catchpoints::             Setting catchpoints
2400 * Delete Breaks::               Deleting breakpoints
2401 * Disabling::                   Disabling breakpoints
2402 * Conditions::                  Break conditions
2403 * Break Commands::              Breakpoint command lists
2404 * Breakpoint Menus::            Breakpoint menus
2405 * Error in Breakpoints::        ``Cannot insert breakpoints''
2406 @end menu
2407
2408 @node Set Breaks
2409 @subsection Setting breakpoints
2410
2411 @c FIXME LMB what does GDB do if no code on line of breakpt?
2412 @c       consider in particular declaration with/without initialization.
2413 @c
2414 @c FIXME 2 is there stuff on this already? break at fun start, already init?
2415
2416 @kindex break
2417 @kindex b @r{(@code{break})}
2418 @vindex $bpnum@r{, convenience variable}
2419 @cindex latest breakpoint
2420 Breakpoints are set with the @code{break} command (abbreviated
2421 @code{b}).  The debugger convenience variable @samp{$bpnum} records the
2422 number of the breakpoint you've set most recently; see @ref{Convenience
2423 Vars,, Convenience variables}, for a discussion of what you can do with
2424 convenience variables.
2425
2426 You have several ways to say where the breakpoint should go.
2427
2428 @table @code
2429 @item break @var{function}
2430 Set a breakpoint at entry to function @var{function}.
2431 When using source languages that permit overloading of symbols, such as
2432 C@t{++}, @var{function} may refer to more than one possible place to break.
2433 @xref{Breakpoint Menus,,Breakpoint menus}, for a discussion of that situation.
2434
2435 @item break +@var{offset}
2436 @itemx break -@var{offset}
2437 Set a breakpoint some number of lines forward or back from the position
2438 at which execution stopped in the currently selected @dfn{stack frame}.
2439 (@xref{Frames, ,Frames}, for a description of stack frames.)
2440
2441 @item break @var{linenum}
2442 Set a breakpoint at line @var{linenum} in the current source file.
2443 The current source file is the last file whose source text was printed.
2444 The breakpoint will stop your program just before it executes any of the
2445 code on that line.
2446
2447 @item break @var{filename}:@var{linenum}
2448 Set a breakpoint at line @var{linenum} in source file @var{filename}.
2449
2450 @item break @var{filename}:@var{function}
2451 Set a breakpoint at entry to function @var{function} found in file
2452 @var{filename}.  Specifying a file name as well as a function name is
2453 superfluous except when multiple files contain similarly named
2454 functions.
2455
2456 @item break *@var{address}
2457 Set a breakpoint at address @var{address}.  You can use this to set
2458 breakpoints in parts of your program which do not have debugging
2459 information or source files.
2460
2461 @item break
2462 When called without any arguments, @code{break} sets a breakpoint at
2463 the next instruction to be executed in the selected stack frame
2464 (@pxref{Stack, ,Examining the Stack}).  In any selected frame but the
2465 innermost, this makes your program stop as soon as control
2466 returns to that frame.  This is similar to the effect of a
2467 @code{finish} command in the frame inside the selected frame---except
2468 that @code{finish} does not leave an active breakpoint.  If you use
2469 @code{break} without an argument in the innermost frame, @value{GDBN} stops
2470 the next time it reaches the current location; this may be useful
2471 inside loops.
2472
2473 @value{GDBN} normally ignores breakpoints when it resumes execution, until at
2474 least one instruction has been executed.  If it did not do this, you
2475 would be unable to proceed past a breakpoint without first disabling the
2476 breakpoint.  This rule applies whether or not the breakpoint already
2477 existed when your program stopped.
2478
2479 @item break @dots{} if @var{cond}
2480 Set a breakpoint with condition @var{cond}; evaluate the expression
2481 @var{cond} each time the breakpoint is reached, and stop only if the
2482 value is nonzero---that is, if @var{cond} evaluates as true.
2483 @samp{@dots{}} stands for one of the possible arguments described
2484 above (or no argument) specifying where to break.  @xref{Conditions,
2485 ,Break conditions}, for more information on breakpoint conditions.
2486
2487 @kindex tbreak
2488 @item tbreak @var{args}
2489 Set a breakpoint enabled only for one stop.  @var{args} are the
2490 same as for the @code{break} command, and the breakpoint is set in the same
2491 way, but the breakpoint is automatically deleted after the first time your
2492 program stops there.  @xref{Disabling, ,Disabling breakpoints}.
2493
2494 @kindex hbreak
2495 @item hbreak @var{args}
2496 Set a hardware-assisted breakpoint.  @var{args} are the same as for the
2497 @code{break} command and the breakpoint is set in the same way, but the
2498 breakpoint requires hardware support and some target hardware may not
2499 have this support.  The main purpose of this is EPROM/ROM code
2500 debugging, so you can set a breakpoint at an instruction without
2501 changing the instruction.  This can be used with the new trap-generation
2502 provided by SPARClite DSU and some x86-based targets.  These targets
2503 will generate traps when a program accesses some data or instruction
2504 address that is assigned to the debug registers.  However the hardware
2505 breakpoint registers can take a limited number of breakpoints.  For
2506 example, on the DSU, only two data breakpoints can be set at a time, and
2507 @value{GDBN} will reject this command if more than two are used.  Delete
2508 or disable unused hardware breakpoints before setting new ones
2509 (@pxref{Disabling, ,Disabling}).  @xref{Conditions, ,Break conditions}.
2510
2511 @kindex thbreak
2512 @item thbreak @var{args}
2513 Set a hardware-assisted breakpoint enabled only for one stop.  @var{args}
2514 are the same as for the @code{hbreak} command and the breakpoint is set in
2515 the same way.  However, like the @code{tbreak} command,
2516 the breakpoint is automatically deleted after the
2517 first time your program stops there.  Also, like the @code{hbreak}
2518 command, the breakpoint requires hardware support and some target hardware
2519 may not have this support.  @xref{Disabling, ,Disabling breakpoints}.
2520 See also @ref{Conditions, ,Break conditions}.
2521
2522 @kindex rbreak
2523 @cindex regular expression
2524 @item rbreak @var{regex}
2525 Set breakpoints on all functions matching the regular expression
2526 @var{regex}.  This command sets an unconditional breakpoint on all
2527 matches, printing a list of all breakpoints it set.  Once these
2528 breakpoints are set, they are treated just like the breakpoints set with
2529 the @code{break} command.  You can delete them, disable them, or make
2530 them conditional the same way as any other breakpoint.
2531
2532 The syntax of the regular expression is the standard one used with tools
2533 like @file{grep}.  Note that this is different from the syntax used by
2534 shells, so for instance @code{foo*} matches all functions that include
2535 an @code{fo} followed by zero or more @code{o}s.  There is an implicit
2536 @code{.*} leading and trailing the regular expression you supply, so to
2537 match only functions that begin with @code{foo}, use @code{^foo}.
2538
2539 When debugging C@t{++} programs, @code{rbreak} is useful for setting
2540 breakpoints on overloaded functions that are not members of any special
2541 classes.
2542
2543 @kindex info breakpoints
2544 @cindex @code{$_} and @code{info breakpoints}
2545 @item info breakpoints @r{[}@var{n}@r{]}
2546 @itemx info break @r{[}@var{n}@r{]}
2547 @itemx info watchpoints @r{[}@var{n}@r{]}
2548 Print a table of all breakpoints, watchpoints, and catchpoints set and
2549 not deleted, with the following columns for each breakpoint:
2550
2551 @table @emph
2552 @item Breakpoint Numbers
2553 @item Type
2554 Breakpoint, watchpoint, or catchpoint.
2555 @item Disposition
2556 Whether the breakpoint is marked to be disabled or deleted when hit.
2557 @item Enabled or Disabled
2558 Enabled breakpoints are marked with @samp{y}.  @samp{n} marks breakpoints
2559 that are not enabled.
2560 @item Address
2561 Where the breakpoint is in your program, as a memory address.
2562 @item What
2563 Where the breakpoint is in the source for your program, as a file and
2564 line number.
2565 @end table
2566
2567 @noindent
2568 If a breakpoint is conditional, @code{info break} shows the condition on
2569 the line following the affected breakpoint; breakpoint commands, if any,
2570 are listed after that.
2571
2572 @noindent
2573 @code{info break} with a breakpoint
2574 number @var{n} as argument lists only that breakpoint.  The
2575 convenience variable @code{$_} and the default examining-address for
2576 the @code{x} command are set to the address of the last breakpoint
2577 listed (@pxref{Memory, ,Examining memory}).
2578
2579 @noindent
2580 @code{info break} displays a count of the number of times the breakpoint
2581 has been hit.  This is especially useful in conjunction with the
2582 @code{ignore} command.  You can ignore a large number of breakpoint
2583 hits, look at the breakpoint info to see how many times the breakpoint
2584 was hit, and then run again, ignoring one less than that number.  This
2585 will get you quickly to the last hit of that breakpoint.
2586 @end table
2587
2588 @value{GDBN} allows you to set any number of breakpoints at the same place in
2589 your program.  There is nothing silly or meaningless about this.  When
2590 the breakpoints are conditional, this is even useful
2591 (@pxref{Conditions, ,Break conditions}).
2592
2593 @cindex negative breakpoint numbers
2594 @cindex internal @value{GDBN} breakpoints
2595 @value{GDBN} itself sometimes sets breakpoints in your program for
2596 special purposes, such as proper handling of @code{longjmp} (in C
2597 programs).  These internal breakpoints are assigned negative numbers,
2598 starting with @code{-1}; @samp{info breakpoints} does not display them.
2599 You can see these breakpoints with the @value{GDBN} maintenance command
2600 @samp{maint info breakpoints} (@pxref{maint info breakpoints}).
2601
2602
2603 @node Set Watchpoints
2604 @subsection Setting watchpoints
2605
2606 @cindex setting watchpoints
2607 @cindex software watchpoints
2608 @cindex hardware watchpoints
2609 You can use a watchpoint to stop execution whenever the value of an
2610 expression changes, without having to predict a particular place where
2611 this may happen.
2612
2613 Depending on your system, watchpoints may be implemented in software or
2614 hardware.  @value{GDBN} does software watchpointing by single-stepping your
2615 program and testing the variable's value each time, which is hundreds of
2616 times slower than normal execution.  (But this may still be worth it, to
2617 catch errors where you have no clue what part of your program is the
2618 culprit.)
2619
2620 On some systems, such as HP-UX, Linux and some other x86-based targets,
2621 @value{GDBN} includes support for
2622 hardware watchpoints, which do not slow down the running of your
2623 program.
2624
2625 @table @code
2626 @kindex watch
2627 @item watch @var{expr}
2628 Set a watchpoint for an expression.  @value{GDBN} will break when @var{expr}
2629 is written into by the program and its value changes.
2630
2631 @kindex rwatch
2632 @item rwatch @var{expr}
2633 Set a watchpoint that will break when watch @var{expr} is read by the program.
2634
2635 @kindex awatch
2636 @item awatch @var{expr}
2637 Set a watchpoint that will break when @var{expr} is either read or written into
2638 by the program.
2639
2640 @kindex info watchpoints
2641 @item info watchpoints
2642 This command prints a list of watchpoints, breakpoints, and catchpoints;
2643 it is the same as @code{info break}.
2644 @end table
2645
2646 @value{GDBN} sets a @dfn{hardware watchpoint} if possible.  Hardware
2647 watchpoints execute very quickly, and the debugger reports a change in
2648 value at the exact instruction where the change occurs.  If @value{GDBN}
2649 cannot set a hardware watchpoint, it sets a software watchpoint, which
2650 executes more slowly and reports the change in value at the next
2651 statement, not the instruction, after the change occurs.
2652
2653 When you issue the @code{watch} command, @value{GDBN} reports
2654
2655 @smallexample
2656 Hardware watchpoint @var{num}: @var{expr}
2657 @end smallexample
2658
2659 @noindent
2660 if it was able to set a hardware watchpoint.
2661
2662 Currently, the @code{awatch} and @code{rwatch} commands can only set
2663 hardware watchpoints, because accesses to data that don't change the
2664 value of the watched expression cannot be detected without examining
2665 every instruction as it is being executed, and @value{GDBN} does not do
2666 that currently.  If @value{GDBN} finds that it is unable to set a
2667 hardware breakpoint with the @code{awatch} or @code{rwatch} command, it
2668 will print a message like this:
2669
2670 @smallexample
2671 Expression cannot be implemented with read/access watchpoint.
2672 @end smallexample
2673
2674 Sometimes, @value{GDBN} cannot set a hardware watchpoint because the
2675 data type of the watched expression is wider than what a hardware
2676 watchpoint on the target machine can handle.  For example, some systems
2677 can only watch regions that are up to 4 bytes wide; on such systems you
2678 cannot set hardware watchpoints for an expression that yields a
2679 double-precision floating-point number (which is typically 8 bytes
2680 wide).  As a work-around, it might be possible to break the large region
2681 into a series of smaller ones and watch them with separate watchpoints.
2682
2683 If you set too many hardware watchpoints, @value{GDBN} might be unable
2684 to insert all of them when you resume the execution of your program.
2685 Since the precise number of active watchpoints is unknown until such
2686 time as the program is about to be resumed, @value{GDBN} might not be
2687 able to warn you about this when you set the watchpoints, and the
2688 warning will be printed only when the program is resumed:
2689
2690 @smallexample
2691 Hardware watchpoint @var{num}: Could not insert watchpoint
2692 @end smallexample
2693
2694 @noindent
2695 If this happens, delete or disable some of the watchpoints.
2696
2697 The SPARClite DSU will generate traps when a program accesses some data
2698 or instruction address that is assigned to the debug registers.  For the
2699 data addresses, DSU facilitates the @code{watch} command.  However the
2700 hardware breakpoint registers can only take two data watchpoints, and
2701 both watchpoints must be the same kind.  For example, you can set two
2702 watchpoints with @code{watch} commands, two with @code{rwatch} commands,
2703 @strong{or} two with @code{awatch} commands, but you cannot set one
2704 watchpoint with one command and the other with a different command.
2705 @value{GDBN} will reject the command if you try to mix watchpoints.
2706 Delete or disable unused watchpoint commands before setting new ones.
2707
2708 If you call a function interactively using @code{print} or @code{call},
2709 any watchpoints you have set will be inactive until @value{GDBN} reaches another
2710 kind of breakpoint or the call completes.
2711
2712 @value{GDBN} automatically deletes watchpoints that watch local
2713 (automatic) variables, or expressions that involve such variables, when
2714 they go out of scope, that is, when the execution leaves the block in
2715 which these variables were defined.  In particular, when the program
2716 being debugged terminates, @emph{all} local variables go out of scope,
2717 and so only watchpoints that watch global variables remain set.  If you
2718 rerun the program, you will need to set all such watchpoints again.  One
2719 way of doing that would be to set a code breakpoint at the entry to the
2720 @code{main} function and when it breaks, set all the watchpoints.
2721
2722 @quotation
2723 @cindex watchpoints and threads
2724 @cindex threads and watchpoints
2725 @emph{Warning:} In multi-thread programs, watchpoints have only limited
2726 usefulness.  With the current watchpoint implementation, @value{GDBN}
2727 can only watch the value of an expression @emph{in a single thread}.  If
2728 you are confident that the expression can only change due to the current
2729 thread's activity (and if you are also confident that no other thread
2730 can become current), then you can use watchpoints as usual.  However,
2731 @value{GDBN} may not notice when a non-current thread's activity changes
2732 the expression.
2733
2734 @c FIXME: this is almost identical to the previous paragraph.
2735 @emph{HP-UX Warning:} In multi-thread programs, software watchpoints
2736 have only limited usefulness.  If @value{GDBN} creates a software
2737 watchpoint, it can only watch the value of an expression @emph{in a
2738 single thread}.  If you are confident that the expression can only
2739 change due to the current thread's activity (and if you are also
2740 confident that no other thread can become current), then you can use
2741 software watchpoints as usual.  However, @value{GDBN} may not notice
2742 when a non-current thread's activity changes the expression.  (Hardware
2743 watchpoints, in contrast, watch an expression in all threads.)
2744 @end quotation
2745
2746 @node Set Catchpoints
2747 @subsection Setting catchpoints
2748 @cindex catchpoints, setting
2749 @cindex exception handlers
2750 @cindex event handling
2751
2752 You can use @dfn{catchpoints} to cause the debugger to stop for certain
2753 kinds of program events, such as C@t{++} exceptions or the loading of a
2754 shared library.  Use the @code{catch} command to set a catchpoint.
2755
2756 @table @code
2757 @kindex catch
2758 @item catch @var{event}
2759 Stop when @var{event} occurs.  @var{event} can be any of the following:
2760 @table @code
2761 @item throw
2762 @kindex catch throw
2763 The throwing of a C@t{++} exception.
2764
2765 @item catch
2766 @kindex catch catch
2767 The catching of a C@t{++} exception.
2768
2769 @item exec
2770 @kindex catch exec
2771 A call to @code{exec}.  This is currently only available for HP-UX.
2772
2773 @item fork
2774 @kindex catch fork
2775 A call to @code{fork}.  This is currently only available for HP-UX.
2776
2777 @item vfork
2778 @kindex catch vfork
2779 A call to @code{vfork}.  This is currently only available for HP-UX.
2780
2781 @item load
2782 @itemx load @var{libname}
2783 @kindex catch load
2784 The dynamic loading of any shared library, or the loading of the library
2785 @var{libname}.  This is currently only available for HP-UX.
2786
2787 @item unload
2788 @itemx unload @var{libname}
2789 @kindex catch unload
2790 The unloading of any dynamically loaded shared library, or the unloading
2791 of the library @var{libname}.  This is currently only available for HP-UX.
2792 @end table
2793
2794 @item tcatch @var{event}
2795 Set a catchpoint that is enabled only for one stop.  The catchpoint is
2796 automatically deleted after the first time the event is caught.
2797
2798 @end table
2799
2800 Use the @code{info break} command to list the current catchpoints.
2801
2802 There are currently some limitations to C@t{++} exception handling
2803 (@code{catch throw} and @code{catch catch}) in @value{GDBN}:
2804
2805 @itemize @bullet
2806 @item
2807 If you call a function interactively, @value{GDBN} normally returns
2808 control to you when the function has finished executing.  If the call
2809 raises an exception, however, the call may bypass the mechanism that
2810 returns control to you and cause your program either to abort or to
2811 simply continue running until it hits a breakpoint, catches a signal
2812 that @value{GDBN} is listening for, or exits.  This is the case even if
2813 you set a catchpoint for the exception; catchpoints on exceptions are
2814 disabled within interactive calls.
2815
2816 @item
2817 You cannot raise an exception interactively.
2818
2819 @item
2820 You cannot install an exception handler interactively.
2821 @end itemize
2822
2823 @cindex raise exceptions
2824 Sometimes @code{catch} is not the best way to debug exception handling:
2825 if you need to know exactly where an exception is raised, it is better to
2826 stop @emph{before} the exception handler is called, since that way you
2827 can see the stack before any unwinding takes place.  If you set a
2828 breakpoint in an exception handler instead, it may not be easy to find
2829 out where the exception was raised.
2830
2831 To stop just before an exception handler is called, you need some
2832 knowledge of the implementation.  In the case of @sc{gnu} C@t{++}, exceptions are
2833 raised by calling a library function named @code{__raise_exception}
2834 which has the following ANSI C interface:
2835
2836 @smallexample
2837     /* @var{addr} is where the exception identifier is stored.
2838        @var{id} is the exception identifier.  */
2839     void __raise_exception (void **addr, void *id);
2840 @end smallexample
2841
2842 @noindent
2843 To make the debugger catch all exceptions before any stack
2844 unwinding takes place, set a breakpoint on @code{__raise_exception}
2845 (@pxref{Breakpoints, ,Breakpoints; watchpoints; and exceptions}).
2846
2847 With a conditional breakpoint (@pxref{Conditions, ,Break conditions})
2848 that depends on the value of @var{id}, you can stop your program when
2849 a specific exception is raised.  You can use multiple conditional
2850 breakpoints to stop your program when any of a number of exceptions are
2851 raised.
2852
2853
2854 @node Delete Breaks
2855 @subsection Deleting breakpoints
2856
2857 @cindex clearing breakpoints, watchpoints, catchpoints
2858 @cindex deleting breakpoints, watchpoints, catchpoints
2859 It is often necessary to eliminate a breakpoint, watchpoint, or
2860 catchpoint once it has done its job and you no longer want your program
2861 to stop there.  This is called @dfn{deleting} the breakpoint.  A
2862 breakpoint that has been deleted no longer exists; it is forgotten.
2863
2864 With the @code{clear} command you can delete breakpoints according to
2865 where they are in your program.  With the @code{delete} command you can
2866 delete individual breakpoints, watchpoints, or catchpoints by specifying
2867 their breakpoint numbers.
2868
2869 It is not necessary to delete a breakpoint to proceed past it.  @value{GDBN}
2870 automatically ignores breakpoints on the first instruction to be executed
2871 when you continue execution without changing the execution address.
2872
2873 @table @code
2874 @kindex clear
2875 @item clear
2876 Delete any breakpoints at the next instruction to be executed in the
2877 selected stack frame (@pxref{Selection, ,Selecting a frame}).  When
2878 the innermost frame is selected, this is a good way to delete a
2879 breakpoint where your program just stopped.
2880
2881 @item clear @var{function}
2882 @itemx clear @var{filename}:@var{function}
2883 Delete any breakpoints set at entry to the function @var{function}.
2884
2885 @item clear @var{linenum}
2886 @itemx clear @var{filename}:@var{linenum}
2887 Delete any breakpoints set at or within the code of the specified line.
2888
2889 @cindex delete breakpoints
2890 @kindex delete
2891 @kindex d @r{(@code{delete})}
2892 @item delete @r{[}breakpoints@r{]} @r{[}@var{range}@dots{}@r{]}
2893 Delete the breakpoints, watchpoints, or catchpoints of the breakpoint
2894 ranges specified as arguments.  If no argument is specified, delete all
2895 breakpoints (@value{GDBN} asks confirmation, unless you have @code{set
2896 confirm off}).  You can abbreviate this command as @code{d}.
2897 @end table
2898
2899 @node Disabling
2900 @subsection Disabling breakpoints
2901
2902 @kindex disable breakpoints
2903 @kindex enable breakpoints
2904 Rather than deleting a breakpoint, watchpoint, or catchpoint, you might
2905 prefer to @dfn{disable} it.  This makes the breakpoint inoperative as if
2906 it had been deleted, but remembers the information on the breakpoint so
2907 that you can @dfn{enable} it again later.
2908
2909 You disable and enable breakpoints, watchpoints, and catchpoints with
2910 the @code{enable} and @code{disable} commands, optionally specifying one
2911 or more breakpoint numbers as arguments.  Use @code{info break} or
2912 @code{info watch} to print a list of breakpoints, watchpoints, and
2913 catchpoints if you do not know which numbers to use.
2914
2915 A breakpoint, watchpoint, or catchpoint can have any of four different
2916 states of enablement:
2917
2918 @itemize @bullet
2919 @item
2920 Enabled.  The breakpoint stops your program.  A breakpoint set
2921 with the @code{break} command starts out in this state.
2922 @item
2923 Disabled.  The breakpoint has no effect on your program.
2924 @item
2925 Enabled once.  The breakpoint stops your program, but then becomes
2926 disabled.
2927 @item
2928 Enabled for deletion.  The breakpoint stops your program, but
2929 immediately after it does so it is deleted permanently.  A breakpoint
2930 set with the @code{tbreak} command starts out in this state.
2931 @end itemize
2932
2933 You can use the following commands to enable or disable breakpoints,
2934 watchpoints, and catchpoints:
2935
2936 @table @code
2937 @kindex disable breakpoints
2938 @kindex disable
2939 @kindex dis @r{(@code{disable})}
2940 @item disable @r{[}breakpoints@r{]} @r{[}@var{range}@dots{}@r{]}
2941 Disable the specified breakpoints---or all breakpoints, if none are
2942 listed.  A disabled breakpoint has no effect but is not forgotten.  All
2943 options such as ignore-counts, conditions and commands are remembered in
2944 case the breakpoint is enabled again later.  You may abbreviate
2945 @code{disable} as @code{dis}.
2946
2947 @kindex enable breakpoints
2948 @kindex enable
2949 @item enable @r{[}breakpoints@r{]} @r{[}@var{range}@dots{}@r{]}
2950 Enable the specified breakpoints (or all defined breakpoints).  They
2951 become effective once again in stopping your program.
2952
2953 @item enable @r{[}breakpoints@r{]} once @var{range}@dots{}
2954 Enable the specified breakpoints temporarily.  @value{GDBN} disables any
2955 of these breakpoints immediately after stopping your program.
2956
2957 @item enable @r{[}breakpoints@r{]} delete @var{range}@dots{}
2958 Enable the specified breakpoints to work once, then die.  @value{GDBN}
2959 deletes any of these breakpoints as soon as your program stops there.
2960 @end table
2961
2962 @c FIXME: I think the following ``Except for [...] @code{tbreak}'' is
2963 @c confusing: tbreak is also initially enabled.
2964 Except for a breakpoint set with @code{tbreak} (@pxref{Set Breaks,
2965 ,Setting breakpoints}), breakpoints that you set are initially enabled;
2966 subsequently, they become disabled or enabled only when you use one of
2967 the commands above.  (The command @code{until} can set and delete a
2968 breakpoint of its own, but it does not change the state of your other
2969 breakpoints; see @ref{Continuing and Stepping, ,Continuing and
2970 stepping}.)
2971
2972 @node Conditions
2973 @subsection Break conditions
2974 @cindex conditional breakpoints
2975 @cindex breakpoint conditions
2976
2977 @c FIXME what is scope of break condition expr?  Context where wanted?
2978 @c      in particular for a watchpoint?
2979 The simplest sort of breakpoint breaks every time your program reaches a
2980 specified place.  You can also specify a @dfn{condition} for a
2981 breakpoint.  A condition is just a Boolean expression in your
2982 programming language (@pxref{Expressions, ,Expressions}).  A breakpoint with
2983 a condition evaluates the expression each time your program reaches it,
2984 and your program stops only if the condition is @emph{true}.
2985
2986 This is the converse of using assertions for program validation; in that
2987 situation, you want to stop when the assertion is violated---that is,
2988 when the condition is false.  In C, if you want to test an assertion expressed
2989 by the condition @var{assert}, you should set the condition
2990 @samp{! @var{assert}} on the appropriate breakpoint.
2991
2992 Conditions are also accepted for watchpoints; you may not need them,
2993 since a watchpoint is inspecting the value of an expression anyhow---but
2994 it might be simpler, say, to just set a watchpoint on a variable name,
2995 and specify a condition that tests whether the new value is an interesting
2996 one.
2997
2998 Break conditions can have side effects, and may even call functions in
2999 your program.  This can be useful, for example, to activate functions
3000 that log program progress, or to use your own print functions to
3001 format special data structures. The effects are completely predictable
3002 unless there is another enabled breakpoint at the same address.  (In
3003 that case, @value{GDBN} might see the other breakpoint first and stop your
3004 program without checking the condition of this one.)  Note that
3005 breakpoint commands are usually more convenient and flexible than break
3006 conditions for the
3007 purpose of performing side effects when a breakpoint is reached
3008 (@pxref{Break Commands, ,Breakpoint command lists}).
3009
3010 Break conditions can be specified when a breakpoint is set, by using
3011 @samp{if} in the arguments to the @code{break} command.  @xref{Set
3012 Breaks, ,Setting breakpoints}.  They can also be changed at any time
3013 with the @code{condition} command.
3014
3015 You can also use the @code{if} keyword with the @code{watch} command.
3016 The @code{catch} command does not recognize the @code{if} keyword;
3017 @code{condition} is the only way to impose a further condition on a
3018 catchpoint.
3019
3020 @table @code
3021 @kindex condition
3022 @item condition @var{bnum} @var{expression}
3023 Specify @var{expression} as the break condition for breakpoint,
3024 watchpoint, or catchpoint number @var{bnum}.  After you set a condition,
3025 breakpoint @var{bnum} stops your program only if the value of
3026 @var{expression} is true (nonzero, in C).  When you use
3027 @code{condition}, @value{GDBN} checks @var{expression} immediately for
3028 syntactic correctness, and to determine whether symbols in it have
3029 referents in the context of your breakpoint.  If @var{expression} uses
3030 symbols not referenced in the context of the breakpoint, @value{GDBN}
3031 prints an error message:
3032
3033 @smallexample
3034 No symbol "foo" in current context.
3035 @end smallexample
3036
3037 @noindent
3038 @value{GDBN} does
3039 not actually evaluate @var{expression} at the time the @code{condition}
3040 command (or a command that sets a breakpoint with a condition, like
3041 @code{break if @dots{}}) is given, however.  @xref{Expressions, ,Expressions}.
3042
3043 @item condition @var{bnum}
3044 Remove the condition from breakpoint number @var{bnum}.  It becomes
3045 an ordinary unconditional breakpoint.
3046 @end table
3047
3048 @cindex ignore count (of breakpoint)
3049 A special case of a breakpoint condition is to stop only when the
3050 breakpoint has been reached a certain number of times.  This is so
3051 useful that there is a special way to do it, using the @dfn{ignore
3052 count} of the breakpoint.  Every breakpoint has an ignore count, which
3053 is an integer.  Most of the time, the ignore count is zero, and
3054 therefore has no effect.  But if your program reaches a breakpoint whose
3055 ignore count is positive, then instead of stopping, it just decrements
3056 the ignore count by one and continues.  As a result, if the ignore count
3057 value is @var{n}, the breakpoint does not stop the next @var{n} times
3058 your program reaches it.
3059
3060 @table @code
3061 @kindex ignore
3062 @item ignore @var{bnum} @var{count}
3063 Set the ignore count of breakpoint number @var{bnum} to @var{count}.
3064 The next @var{count} times the breakpoint is reached, your program's
3065 execution does not stop; other than to decrement the ignore count, @value{GDBN}
3066 takes no action.
3067
3068 To make the breakpoint stop the next time it is reached, specify
3069 a count of zero.
3070
3071 When you use @code{continue} to resume execution of your program from a
3072 breakpoint, you can specify an ignore count directly as an argument to
3073 @code{continue}, rather than using @code{ignore}.  @xref{Continuing and
3074 Stepping,,Continuing and stepping}.
3075
3076 If a breakpoint has a positive ignore count and a condition, the
3077 condition is not checked.  Once the ignore count reaches zero,
3078 @value{GDBN} resumes checking the condition.
3079
3080 You could achieve the effect of the ignore count with a condition such
3081 as @w{@samp{$foo-- <= 0}} using a debugger convenience variable that
3082 is decremented each time.  @xref{Convenience Vars, ,Convenience
3083 variables}.
3084 @end table
3085
3086 Ignore counts apply to breakpoints, watchpoints, and catchpoints.
3087
3088
3089 @node Break Commands
3090 @subsection Breakpoint command lists
3091
3092 @cindex breakpoint commands
3093 You can give any breakpoint (or watchpoint or catchpoint) a series of
3094 commands to execute when your program stops due to that breakpoint.  For
3095 example, you might want to print the values of certain expressions, or
3096 enable other breakpoints.
3097
3098 @table @code
3099 @kindex commands
3100 @kindex end
3101 @item commands @r{[}@var{bnum}@r{]}
3102 @itemx @dots{} @var{command-list} @dots{}
3103 @itemx end
3104 Specify a list of commands for breakpoint number @var{bnum}.  The commands
3105 themselves appear on the following lines.  Type a line containing just
3106 @code{end} to terminate the commands.
3107
3108 To remove all commands from a breakpoint, type @code{commands} and
3109 follow it immediately with @code{end}; that is, give no commands.
3110
3111 With no @var{bnum} argument, @code{commands} refers to the last
3112 breakpoint, watchpoint, or catchpoint set (not to the breakpoint most
3113 recently encountered).
3114 @end table
3115
3116 Pressing @key{RET} as a means of repeating the last @value{GDBN} command is
3117 disabled within a @var{command-list}.
3118
3119 You can use breakpoint commands to start your program up again.  Simply
3120 use the @code{continue} command, or @code{step}, or any other command
3121 that resumes execution.
3122
3123 Any other commands in the command list, after a command that resumes
3124 execution, are ignored.  This is because any time you resume execution
3125 (even with a simple @code{next} or @code{step}), you may encounter
3126 another breakpoint---which could have its own command list, leading to
3127 ambiguities about which list to execute.
3128
3129 @kindex silent
3130 If the first command you specify in a command list is @code{silent}, the
3131 usual message about stopping at a breakpoint is not printed.  This may
3132 be desirable for breakpoints that are to print a specific message and
3133 then continue.  If none of the remaining commands print anything, you
3134 see no sign that the breakpoint was reached.  @code{silent} is
3135 meaningful only at the beginning of a breakpoint command list.
3136
3137 The commands @code{echo}, @code{output}, and @code{printf} allow you to
3138 print precisely controlled output, and are often useful in silent
3139 breakpoints.  @xref{Output, ,Commands for controlled output}.
3140
3141 For example, here is how you could use breakpoint commands to print the
3142 value of @code{x} at entry to @code{foo} whenever @code{x} is positive.
3143
3144 @smallexample
3145 break foo if x>0
3146 commands
3147 silent
3148 printf "x is %d\n",x
3149 cont
3150 end
3151 @end smallexample
3152
3153 One application for breakpoint commands is to compensate for one bug so
3154 you can test for another.  Put a breakpoint just after the erroneous line
3155 of code, give it a condition to detect the case in which something
3156 erroneous has been done, and give it commands to assign correct values
3157 to any variables that need them.  End with the @code{continue} command
3158 so that your program does not stop, and start with the @code{silent}
3159 command so that no output is produced.  Here is an example:
3160
3161 @smallexample
3162 break 403
3163 commands
3164 silent
3165 set x = y + 4
3166 cont
3167 end
3168 @end smallexample
3169
3170 @node Breakpoint Menus
3171 @subsection Breakpoint menus
3172 @cindex overloading
3173 @cindex symbol overloading
3174
3175 Some programming languages (notably C@t{++}) permit a single function name
3176 to be defined several times, for application in different contexts.
3177 This is called @dfn{overloading}.  When a function name is overloaded,
3178 @samp{break @var{function}} is not enough to tell @value{GDBN} where you want
3179 a breakpoint.  If you realize this is a problem, you can use
3180 something like @samp{break @var{function}(@var{types})} to specify which
3181 particular version of the function you want.  Otherwise, @value{GDBN} offers
3182 you a menu of numbered choices for different possible breakpoints, and
3183 waits for your selection with the prompt @samp{>}.  The first two
3184 options are always @samp{[0] cancel} and @samp{[1] all}.  Typing @kbd{1}
3185 sets a breakpoint at each definition of @var{function}, and typing
3186 @kbd{0} aborts the @code{break} command without setting any new
3187 breakpoints.
3188
3189 For example, the following session excerpt shows an attempt to set a
3190 breakpoint at the overloaded symbol @code{String::after}.
3191 We choose three particular definitions of that function name:
3192
3193 @c FIXME! This is likely to change to show arg type lists, at least
3194 @smallexample
3195 @group
3196 (@value{GDBP}) b String::after
3197 [0] cancel
3198 [1] all
3199 [2] file:String.cc; line number:867
3200 [3] file:String.cc; line number:860
3201 [4] file:String.cc; line number:875
3202 [5] file:String.cc; line number:853
3203 [6] file:String.cc; line number:846
3204 [7] file:String.cc; line number:735
3205 > 2 4 6
3206 Breakpoint 1 at 0xb26c: file String.cc, line 867.
3207 Breakpoint 2 at 0xb344: file String.cc, line 875.
3208 Breakpoint 3 at 0xafcc: file String.cc, line 846.
3209 Multiple breakpoints were set.
3210 Use the "delete" command to delete unwanted
3211  breakpoints.
3212 (@value{GDBP})
3213 @end group
3214 @end smallexample
3215
3216 @c  @ifclear BARETARGET
3217 @node Error in Breakpoints
3218 @subsection ``Cannot insert breakpoints''
3219 @c
3220 @c  FIXME!! 14/6/95  Is there a real example of this?  Let's use it.
3221 @c
3222 Under some operating systems, breakpoints cannot be used in a program if
3223 any other process is running that program.  In this situation,
3224 attempting to run or continue a program with a breakpoint causes
3225 @value{GDBN} to print an error message:
3226
3227 @smallexample
3228 Cannot insert breakpoints.
3229 The same program may be running in another process.
3230 @end smallexample
3231
3232 When this happens, you have three ways to proceed:
3233
3234 @enumerate
3235 @item
3236 Remove or disable the breakpoints, then continue.
3237
3238 @item
3239 Suspend @value{GDBN}, and copy the file containing your program to a new
3240 name.  Resume @value{GDBN} and use the @code{exec-file} command to specify
3241 that @value{GDBN} should run your program under that name.
3242 Then start your program again.
3243
3244 @item
3245 Relink your program so that the text segment is nonsharable, using the
3246 linker option @samp{-N}.  The operating system limitation may not apply
3247 to nonsharable executables.
3248 @end enumerate
3249 @c  @end ifclear
3250
3251 A similar message can be printed if you request too many active
3252 hardware-assisted breakpoints and watchpoints:
3253
3254 @c FIXME: the precise wording of this message may change; the relevant
3255 @c source change is not committed yet (Sep 3, 1999).
3256 @smallexample
3257 Stopped; cannot insert breakpoints.
3258 You may have requested too many hardware breakpoints and watchpoints.
3259 @end smallexample
3260
3261 @noindent
3262 This message is printed when you attempt to resume the program, since
3263 only then @value{GDBN} knows exactly how many hardware breakpoints and
3264 watchpoints it needs to insert.
3265
3266 When this message is printed, you need to disable or remove some of the
3267 hardware-assisted breakpoints and watchpoints, and then continue.
3268
3269
3270 @node Continuing and Stepping
3271 @section Continuing and stepping
3272
3273 @cindex stepping
3274 @cindex continuing
3275 @cindex resuming execution
3276 @dfn{Continuing} means resuming program execution until your program
3277 completes normally.  In contrast, @dfn{stepping} means executing just
3278 one more ``step'' of your program, where ``step'' may mean either one
3279 line of source code, or one machine instruction (depending on what
3280 particular command you use).  Either when continuing or when stepping,
3281 your program may stop even sooner, due to a breakpoint or a signal.  (If
3282 it stops due to a signal, you may want to use @code{handle}, or use
3283 @samp{signal 0} to resume execution.  @xref{Signals, ,Signals}.)
3284
3285 @table @code
3286 @kindex continue
3287 @kindex c @r{(@code{continue})}
3288 @kindex fg @r{(resume foreground execution)}
3289 @item continue @r{[}@var{ignore-count}@r{]}
3290 @itemx c @r{[}@var{ignore-count}@r{]}
3291 @itemx fg @r{[}@var{ignore-count}@r{]}
3292 Resume program execution, at the address where your program last stopped;
3293 any breakpoints set at that address are bypassed.  The optional argument
3294 @var{ignore-count} allows you to specify a further number of times to
3295 ignore a breakpoint at this location; its effect is like that of
3296 @code{ignore} (@pxref{Conditions, ,Break conditions}).
3297
3298 The argument @var{ignore-count} is meaningful only when your program
3299 stopped due to a breakpoint.  At other times, the argument to
3300 @code{continue} is ignored.
3301
3302 The synonyms @code{c} and @code{fg} (for @dfn{foreground}, as the
3303 debugged program is deemed to be the foreground program) are provided
3304 purely for convenience, and have exactly the same behavior as
3305 @code{continue}.
3306 @end table
3307
3308 To resume execution at a different place, you can use @code{return}
3309 (@pxref{Returning, ,Returning from a function}) to go back to the
3310 calling function; or @code{jump} (@pxref{Jumping, ,Continuing at a
3311 different address}) to go to an arbitrary location in your program.
3312
3313 A typical technique for using stepping is to set a breakpoint
3314 (@pxref{Breakpoints, ,Breakpoints; watchpoints; and catchpoints}) at the
3315 beginning of the function or the section of your program where a problem
3316 is believed to lie, run your program until it stops at that breakpoint,
3317 and then step through the suspect area, examining the variables that are
3318 interesting, until you see the problem happen.
3319
3320 @table @code
3321 @kindex step
3322 @kindex s @r{(@code{step})}
3323 @item step
3324 Continue running your program until control reaches a different source
3325 line, then stop it and return control to @value{GDBN}.  This command is
3326 abbreviated @code{s}.
3327
3328 @quotation
3329 @c "without debugging information" is imprecise; actually "without line
3330 @c numbers in the debugging information".  (gcc -g1 has debugging info but
3331 @c not line numbers).  But it seems complex to try to make that
3332 @c distinction here.
3333 @emph{Warning:} If you use the @code{step} command while control is
3334 within a function that was compiled without debugging information,
3335 execution proceeds until control reaches a function that does have
3336 debugging information.  Likewise, it will not step into a function which
3337 is compiled without debugging information.  To step through functions
3338 without debugging information, use the @code{stepi} command, described
3339 below.
3340 @end quotation
3341
3342 The @code{step} command only stops at the first instruction of a source
3343 line.  This prevents the multiple stops that could otherwise occur in
3344 @code{switch} statements, @code{for} loops, etc.  @code{step} continues
3345 to stop if a function that has debugging information is called within
3346 the line.  In other words, @code{step} @emph{steps inside} any functions
3347 called within the line.
3348
3349 Also, the @code{step} command only enters a function if there is line
3350 number information for the function.  Otherwise it acts like the
3351 @code{next} command.  This avoids problems when using @code{cc -gl}
3352 on MIPS machines.  Previously, @code{step} entered subroutines if there
3353 was any debugging information about the routine.
3354
3355 @item step @var{count}
3356 Continue running as in @code{step}, but do so @var{count} times.  If a
3357 breakpoint is reached, or a signal not related to stepping occurs before
3358 @var{count} steps, stepping stops right away.
3359
3360 @kindex next
3361 @kindex n @r{(@code{next})}
3362 @item next @r{[}@var{count}@r{]}
3363 Continue to the next source line in the current (innermost) stack frame.
3364 This is similar to @code{step}, but function calls that appear within
3365 the line of code are executed without stopping.  Execution stops when
3366 control reaches a different line of code at the original stack level
3367 that was executing when you gave the @code{next} command.  This command
3368 is abbreviated @code{n}.
3369
3370 An argument @var{count} is a repeat count, as for @code{step}.
3371
3372
3373 @c  FIX ME!!  Do we delete this, or is there a way it fits in with
3374 @c  the following paragraph?   ---  Vctoria
3375 @c
3376 @c  @code{next} within a function that lacks debugging information acts like
3377 @c  @code{step}, but any function calls appearing within the code of the
3378 @c  function are executed without stopping.
3379
3380 The @code{next} command only stops at the first instruction of a
3381 source line.  This prevents multiple stops that could otherwise occur in
3382 @code{switch} statements, @code{for} loops, etc.
3383
3384 @kindex set step-mode
3385 @item set step-mode
3386 @cindex functions without line info, and stepping
3387 @cindex stepping into functions with no line info
3388 @itemx set step-mode on
3389 The @code{set step-mode on} command causes the @code{step} command to
3390 stop at the first instruction of a function which contains no debug line
3391 information rather than stepping over it.
3392
3393 This is useful in cases where you may be interested in inspecting the
3394 machine instructions of a function which has no symbolic info and do not
3395 want @value{GDBN} to automatically skip over this function.
3396
3397 @item set step-mode off
3398 Causes the @code{step} command to step over any functions which contains no
3399 debug information.  This is the default.
3400
3401 @kindex finish
3402 @item finish
3403 Continue running until just after function in the selected stack frame
3404 returns.  Print the returned value (if any).
3405
3406 Contrast this with the @code{return} command (@pxref{Returning,
3407 ,Returning from a function}).
3408
3409 @kindex until
3410 @kindex u @r{(@code{until})}
3411 @item until
3412 @itemx u
3413 Continue running until a source line past the current line, in the
3414 current stack frame, is reached.  This command is used to avoid single
3415 stepping through a loop more than once.  It is like the @code{next}
3416 command, except that when @code{until} encounters a jump, it
3417 automatically continues execution until the program counter is greater
3418 than the address of the jump.
3419
3420 This means that when you reach the end of a loop after single stepping
3421 though it, @code{until} makes your program continue execution until it
3422 exits the loop.  In contrast, a @code{next} command at the end of a loop
3423 simply steps back to the beginning of the loop, which forces you to step
3424 through the next iteration.
3425
3426 @code{until} always stops your program if it attempts to exit the current
3427 stack frame.
3428
3429 @code{until} may produce somewhat counterintuitive results if the order
3430 of machine code does not match the order of the source lines.  For
3431 example, in the following excerpt from a debugging session, the @code{f}
3432 (@code{frame}) command shows that execution is stopped at line
3433 @code{206}; yet when we use @code{until}, we get to line @code{195}:
3434
3435 @smallexample
3436 (@value{GDBP}) f
3437 #0  main (argc=4, argv=0xf7fffae8) at m4.c:206
3438 206                 expand_input();
3439 (@value{GDBP}) until
3440 195             for ( ; argc > 0; NEXTARG) @{
3441 @end smallexample
3442
3443 This happened because, for execution efficiency, the compiler had
3444 generated code for the loop closure test at the end, rather than the
3445 start, of the loop---even though the test in a C @code{for}-loop is
3446 written before the body of the loop.  The @code{until} command appeared
3447 to step back to the beginning of the loop when it advanced to this
3448 expression; however, it has not really gone to an earlier
3449 statement---not in terms of the actual machine code.
3450
3451 @code{until} with no argument works by means of single
3452 instruction stepping, and hence is slower than @code{until} with an
3453 argument.
3454
3455 @item until @var{location}
3456 @itemx u @var{location}
3457 Continue running your program until either the specified location is
3458 reached, or the current stack frame returns.  @var{location} is any of
3459 the forms of argument acceptable to @code{break} (@pxref{Set Breaks,
3460 ,Setting breakpoints}).  This form of the command uses breakpoints,
3461 and hence is quicker than @code{until} without an argument.
3462
3463 @kindex stepi
3464 @kindex si @r{(@code{stepi})}
3465 @item stepi
3466 @itemx stepi @var{arg}
3467 @itemx si
3468 Execute one machine instruction, then stop and return to the debugger.
3469
3470 It is often useful to do @samp{display/i $pc} when stepping by machine
3471 instructions.  This makes @value{GDBN} automatically display the next
3472 instruction to be executed, each time your program stops.  @xref{Auto
3473 Display,, Automatic display}.
3474
3475 An argument is a repeat count, as in @code{step}.
3476
3477 @need 750
3478 @kindex nexti
3479 @kindex ni @r{(@code{nexti})}
3480 @item nexti
3481 @itemx nexti @var{arg}
3482 @itemx ni
3483 Execute one machine instruction, but if it is a function call,
3484 proceed until the function returns.
3485
3486 An argument is a repeat count, as in @code{next}.
3487 @end table
3488
3489 @node Signals
3490 @section Signals
3491 @cindex signals
3492
3493 A signal is an asynchronous event that can happen in a program.  The
3494 operating system defines the possible kinds of signals, and gives each
3495 kind a name and a number.  For example, in Unix @code{SIGINT} is the
3496 signal a program gets when you type an interrupt character (often @kbd{C-c});
3497 @code{SIGSEGV} is the signal a program gets from referencing a place in
3498 memory far away from all the areas in use; @code{SIGALRM} occurs when
3499 the alarm clock timer goes off (which happens only if your program has
3500 requested an alarm).
3501
3502 @cindex fatal signals
3503 Some signals, including @code{SIGALRM}, are a normal part of the
3504 functioning of your program.  Others, such as @code{SIGSEGV}, indicate
3505 errors; these signals are @dfn{fatal} (they kill your program immediately) if the
3506 program has not specified in advance some other way to handle the signal.
3507 @code{SIGINT} does not indicate an error in your program, but it is normally
3508 fatal so it can carry out the purpose of the interrupt: to kill the program.
3509
3510 @value{GDBN} has the ability to detect any occurrence of a signal in your
3511 program.  You can tell @value{GDBN} in advance what to do for each kind of
3512 signal.
3513
3514 @cindex handling signals
3515 Normally, @value{GDBN} is set up to let the non-erroneous signals like
3516 @code{SIGALRM} be silently passed to your program
3517 (so as not to interfere with their role in the program's functioning)
3518 but to stop your program immediately whenever an error signal happens.
3519 You can change these settings with the @code{handle} command.
3520
3521 @table @code
3522 @kindex info signals
3523 @item info signals
3524 @itemx info handle
3525 Print a table of all the kinds of signals and how @value{GDBN} has been told to
3526 handle each one.  You can use this to see the signal numbers of all
3527 the defined types of signals.
3528
3529 @code{info handle} is an alias for @code{info signals}.
3530
3531 @kindex handle
3532 @item handle @var{signal} @var{keywords}@dots{}
3533 Change the way @value{GDBN} handles signal @var{signal}.  @var{signal}
3534 can be the number of a signal or its name (with or without the
3535 @samp{SIG} at the beginning); a list of signal numbers of the form
3536 @samp{@var{low}-@var{high}}; or the word @samp{all}, meaning all the
3537 known signals.  The @var{keywords} say what change to make.
3538 @end table
3539
3540 @c @group
3541 The keywords allowed by the @code{handle} command can be abbreviated.
3542 Their full names are:
3543
3544 @table @code
3545 @item nostop
3546 @value{GDBN} should not stop your program when this signal happens.  It may
3547 still print a message telling you that the signal has come in.
3548
3549 @item stop
3550 @value{GDBN} should stop your program when this signal happens.  This implies
3551 the @code{print} keyword as well.
3552
3553 @item print
3554 @value{GDBN} should print a message when this signal happens.
3555
3556 @item noprint
3557 @value{GDBN} should not mention the occurrence of the signal at all.  This
3558 implies the @code{nostop} keyword as well.
3559
3560 @item pass
3561 @itemx noignore
3562 @value{GDBN} should allow your program to see this signal; your program
3563 can handle the signal, or else it may terminate if the signal is fatal
3564 and not handled.  @code{pass} and @code{noignore} are synonyms.
3565
3566 @item nopass
3567 @itemx ignore
3568 @value{GDBN} should not allow your program to see this signal.
3569 @code{nopass} and @code{ignore} are synonyms.
3570 @end table
3571 @c @end group
3572
3573 When a signal stops your program, the signal is not visible to the
3574 program until you
3575 continue.  Your program sees the signal then, if @code{pass} is in
3576 effect for the signal in question @emph{at that time}.  In other words,
3577 after @value{GDBN} reports a signal, you can use the @code{handle}
3578 command with @code{pass} or @code{nopass} to control whether your
3579 program sees that signal when you continue.
3580
3581 The default is set to @code{nostop}, @code{noprint}, @code{pass} for
3582 non-erroneous signals such as @code{SIGALRM}, @code{SIGWINCH} and
3583 @code{SIGCHLD}, and to @code{stop}, @code{print}, @code{pass} for the
3584 erroneous signals.
3585
3586 You can also use the @code{signal} command to prevent your program from
3587 seeing a signal, or cause it to see a signal it normally would not see,
3588 or to give it any signal at any time.  For example, if your program stopped
3589 due to some sort of memory reference error, you might store correct
3590 values into the erroneous variables and continue, hoping to see more
3591 execution; but your program would probably terminate immediately as
3592 a result of the fatal signal once it saw the signal.  To prevent this,
3593 you can continue with @samp{signal 0}.  @xref{Signaling, ,Giving your
3594 program a signal}.
3595
3596 @node Thread Stops
3597 @section Stopping and starting multi-thread programs
3598
3599 When your program has multiple threads (@pxref{Threads,, Debugging
3600 programs with multiple threads}), you can choose whether to set
3601 breakpoints on all threads, or on a particular thread.
3602
3603 @table @code
3604 @cindex breakpoints and threads
3605 @cindex thread breakpoints
3606 @kindex break @dots{} thread @var{threadno}
3607 @item break @var{linespec} thread @var{threadno}
3608 @itemx break @var{linespec} thread @var{threadno} if @dots{}
3609 @var{linespec} specifies source lines; there are several ways of
3610 writing them, but the effect is always to specify some source line.
3611
3612 Use the qualifier @samp{thread @var{threadno}} with a breakpoint command
3613 to specify that you only want @value{GDBN} to stop the program when a
3614 particular thread reaches this breakpoint.  @var{threadno} is one of the
3615 numeric thread identifiers assigned by @value{GDBN}, shown in the first
3616 column of the @samp{info threads} display.
3617
3618 If you do not specify @samp{thread @var{threadno}} when you set a
3619 breakpoint, the breakpoint applies to @emph{all} threads of your
3620 program.
3621
3622 You can use the @code{thread} qualifier on conditional breakpoints as
3623 well; in this case, place @samp{thread @var{threadno}} before the
3624 breakpoint condition, like this:
3625
3626 @smallexample
3627 (@value{GDBP}) break frik.c:13 thread 28 if bartab > lim
3628 @end smallexample
3629
3630 @end table
3631
3632 @cindex stopped threads
3633 @cindex threads, stopped
3634 Whenever your program stops under @value{GDBN} for any reason,
3635 @emph{all} threads of execution stop, not just the current thread.  This
3636 allows you to examine the overall state of the program, including
3637 switching between threads, without worrying that things may change
3638 underfoot.
3639
3640 @cindex continuing threads
3641 @cindex threads, continuing
3642 Conversely, whenever you restart the program, @emph{all} threads start
3643 executing.  @emph{This is true even when single-stepping} with commands
3644 like @code{step} or @code{next}.
3645
3646 In particular, @value{GDBN} cannot single-step all threads in lockstep.
3647 Since thread scheduling is up to your debugging target's operating
3648 system (not controlled by @value{GDBN}), other threads may
3649 execute more than one statement while the current thread completes a
3650 single step.  Moreover, in general other threads stop in the middle of a
3651 statement, rather than at a clean statement boundary, when the program
3652 stops.
3653
3654 You might even find your program stopped in another thread after
3655 continuing or even single-stepping.  This happens whenever some other
3656 thread runs into a breakpoint, a signal, or an exception before the
3657 first thread completes whatever you requested.
3658
3659 On some OSes, you can lock the OS scheduler and thus allow only a single
3660 thread to run.
3661
3662 @table @code
3663 @item set scheduler-locking @var{mode}
3664 Set the scheduler locking mode.  If it is @code{off}, then there is no
3665 locking and any thread may run at any time.  If @code{on}, then only the
3666 current thread may run when the inferior is resumed.  The @code{step}
3667 mode optimizes for single-stepping.  It stops other threads from
3668 ``seizing the prompt'' by preempting the current thread while you are
3669 stepping.  Other threads will only rarely (or never) get a chance to run
3670 when you step.  They are more likely to run when you @samp{next} over a
3671 function call, and they are completely free to run when you use commands
3672 like @samp{continue}, @samp{until}, or @samp{finish}.  However, unless another
3673 thread hits a breakpoint during its timeslice, they will never steal the
3674 @value{GDBN} prompt away from the thread that you are debugging.
3675
3676 @item show scheduler-locking
3677 Display the current scheduler locking mode.
3678 @end table
3679
3680
3681 @node Stack
3682 @chapter Examining the Stack
3683
3684 When your program has stopped, the first thing you need to know is where it
3685 stopped and how it got there.
3686
3687 @cindex call stack
3688 Each time your program performs a function call, information about the call
3689 is generated.
3690 That information includes the location of the call in your program,
3691 the arguments of the call,
3692 and the local variables of the function being called.
3693 The information is saved in a block of data called a @dfn{stack frame}.
3694 The stack frames are allocated in a region of memory called the @dfn{call
3695 stack}.
3696
3697 When your program stops, the @value{GDBN} commands for examining the
3698 stack allow you to see all of this information.
3699
3700 @cindex selected frame
3701 One of the stack frames is @dfn{selected} by @value{GDBN} and many
3702 @value{GDBN} commands refer implicitly to the selected frame.  In
3703 particular, whenever you ask @value{GDBN} for the value of a variable in
3704 your program, the value is found in the selected frame.  There are
3705 special @value{GDBN} commands to select whichever frame you are
3706 interested in. @xref{Selection, ,Selecting a frame}.
3707
3708 When your program stops, @value{GDBN} automatically selects the
3709 currently executing frame and describes it briefly, similar to the
3710 @code{frame} command (@pxref{Frame Info, ,Information about a frame}).
3711
3712 @menu
3713 * Frames::                      Stack frames
3714 * Backtrace::                   Backtraces
3715 * Selection::                   Selecting a frame
3716 * Frame Info::                  Information on a frame
3717
3718 @end menu
3719
3720 @node Frames
3721 @section Stack frames
3722
3723 @cindex frame, definition
3724 @cindex stack frame
3725 The call stack is divided up into contiguous pieces called @dfn{stack
3726 frames}, or @dfn{frames} for short; each frame is the data associated
3727 with one call to one function.  The frame contains the arguments given
3728 to the function, the function's local variables, and the address at
3729 which the function is executing.
3730
3731 @cindex initial frame
3732 @cindex outermost frame
3733 @cindex innermost frame
3734 When your program is started, the stack has only one frame, that of the
3735 function @code{main}.  This is called the @dfn{initial} frame or the
3736 @dfn{outermost} frame.  Each time a function is called, a new frame is
3737 made.  Each time a function returns, the frame for that function invocation
3738 is eliminated.  If a function is recursive, there can be many frames for
3739 the same function.  The frame for the function in which execution is
3740 actually occurring is called the @dfn{innermost} frame.  This is the most
3741 recently created of all the stack frames that still exist.
3742
3743 @cindex frame pointer
3744 Inside your program, stack frames are identified by their addresses.  A
3745 stack frame consists of many bytes, each of which has its own address; each
3746 kind of computer has a convention for choosing one byte whose
3747 address serves as the address of the frame.  Usually this address is kept
3748 in a register called the @dfn{frame pointer register} while execution is
3749 going on in that frame.
3750
3751 @cindex frame number
3752 @value{GDBN} assigns numbers to all existing stack frames, starting with
3753 zero for the innermost frame, one for the frame that called it,
3754 and so on upward.  These numbers do not really exist in your program;
3755 they are assigned by @value{GDBN} to give you a way of designating stack
3756 frames in @value{GDBN} commands.
3757
3758 @c The -fomit-frame-pointer below perennially causes hbox overflow
3759 @c underflow problems.
3760 @cindex frameless execution
3761 Some compilers provide a way to compile functions so that they operate
3762 without stack frames.  (For example, the @value{GCC} option
3763 @smallexample
3764 @samp{-fomit-frame-pointer}
3765 @end smallexample
3766 generates functions without a frame.)
3767 This is occasionally done with heavily used library functions to save
3768 the frame setup time.  @value{GDBN} has limited facilities for dealing
3769 with these function invocations.  If the innermost function invocation
3770 has no stack frame, @value{GDBN} nevertheless regards it as though
3771 it had a separate frame, which is numbered zero as usual, allowing
3772 correct tracing of the function call chain.  However, @value{GDBN} has
3773 no provision for frameless functions elsewhere in the stack.
3774
3775 @table @code
3776 @kindex frame@r{, command}
3777 @cindex current stack frame
3778 @item frame @var{args}
3779 The @code{frame} command allows you to move from one stack frame to another,
3780 and to print the stack frame you select.  @var{args} may be either the
3781 address of the frame or the stack frame number.  Without an argument,
3782 @code{frame} prints the current stack frame.
3783
3784 @kindex select-frame
3785 @cindex selecting frame silently
3786 @item select-frame
3787 The @code{select-frame} command allows you to move from one stack frame
3788 to another without printing the frame.  This is the silent version of
3789 @code{frame}.
3790 @end table
3791
3792 @node Backtrace
3793 @section Backtraces
3794
3795 @cindex backtraces
3796 @cindex tracebacks
3797 @cindex stack traces
3798 A backtrace is a summary of how your program got where it is.  It shows one
3799 line per frame, for many frames, starting with the currently executing
3800 frame (frame zero), followed by its caller (frame one), and on up the
3801 stack.
3802
3803 @table @code
3804 @kindex backtrace
3805 @kindex bt @r{(@code{backtrace})}
3806 @item backtrace
3807 @itemx bt
3808 Print a backtrace of the entire stack: one line per frame for all
3809 frames in the stack.
3810
3811 You can stop the backtrace at any time by typing the system interrupt
3812 character, normally @kbd{C-c}.
3813
3814 @item backtrace @var{n}
3815 @itemx bt @var{n}
3816 Similar, but print only the innermost @var{n} frames.
3817
3818 @item backtrace -@var{n}
3819 @itemx bt -@var{n}
3820 Similar, but print only the outermost @var{n} frames.
3821 @end table
3822
3823 @kindex where
3824 @kindex info stack
3825 @kindex info s @r{(@code{info stack})}
3826 The names @code{where} and @code{info stack} (abbreviated @code{info s})
3827 are additional aliases for @code{backtrace}.
3828
3829 Each line in the backtrace shows the frame number and the function name.
3830 The program counter value is also shown---unless you use @code{set
3831 print address off}.  The backtrace also shows the source file name and
3832 line number, as well as the arguments to the function.  The program
3833 counter value is omitted if it is at the beginning of the code for that
3834 line number.
3835
3836 Here is an example of a backtrace.  It was made with the command
3837 @samp{bt 3}, so it shows the innermost three frames.
3838
3839 @smallexample
3840 @group
3841 #0  m4_traceon (obs=0x24eb0, argc=1, argv=0x2b8c8)
3842     at builtin.c:993
3843 #1  0x6e38 in expand_macro (sym=0x2b600) at macro.c:242
3844 #2  0x6840 in expand_token (obs=0x0, t=177664, td=0xf7fffb08)
3845     at macro.c:71
3846 (More stack frames follow...)
3847 @end group
3848 @end smallexample
3849
3850 @noindent
3851 The display for frame zero does not begin with a program counter
3852 value, indicating that your program has stopped at the beginning of the
3853 code for line @code{993} of @code{builtin.c}.
3854
3855 @node Selection
3856 @section Selecting a frame
3857
3858 Most commands for examining the stack and other data in your program work on
3859 whichever stack frame is selected at the moment.  Here are the commands for
3860 selecting a stack frame; all of them finish by printing a brief description
3861 of the stack frame just selected.
3862
3863 @table @code
3864 @kindex frame@r{, selecting}
3865 @kindex f @r{(@code{frame})}
3866 @item frame @var{n}
3867 @itemx f @var{n}
3868 Select frame number @var{n}.  Recall that frame zero is the innermost
3869 (currently executing) frame, frame one is the frame that called the
3870 innermost one, and so on.  The highest-numbered frame is the one for
3871 @code{main}.
3872
3873 @item frame @var{addr}
3874 @itemx f @var{addr}
3875 Select the frame at address @var{addr}.  This is useful mainly if the
3876 chaining of stack frames has been damaged by a bug, making it
3877 impossible for @value{GDBN} to assign numbers properly to all frames.  In
3878 addition, this can be useful when your program has multiple stacks and
3879 switches between them.
3880
3881 On the SPARC architecture, @code{frame} needs two addresses to
3882 select an arbitrary frame: a frame pointer and a stack pointer.
3883
3884 On the MIPS and Alpha architecture, it needs two addresses: a stack
3885 pointer and a program counter.
3886
3887 On the 29k architecture, it needs three addresses: a register stack
3888 pointer, a program counter, and a memory stack pointer.
3889 @c note to future updaters: this is conditioned on a flag
3890 @c SETUP_ARBITRARY_FRAME in the tm-*.h files.  The above is up to date
3891 @c as of 27 Jan 1994.
3892
3893 @kindex up
3894 @item up @var{n}
3895 Move @var{n} frames up the stack.  For positive numbers @var{n}, this
3896 advances toward the outermost frame, to higher frame numbers, to frames
3897 that have existed longer.  @var{n} defaults to one.
3898
3899 @kindex down
3900 @kindex do @r{(@code{down})}
3901 @item down @var{n}
3902 Move @var{n} frames down the stack.  For positive numbers @var{n}, this
3903 advances toward the innermost frame, to lower frame numbers, to frames
3904 that were created more recently.  @var{n} defaults to one.  You may
3905 abbreviate @code{down} as @code{do}.
3906 @end table
3907
3908 All of these commands end by printing two lines of output describing the
3909 frame.  The first line shows the frame number, the function name, the
3910 arguments, and the source file and line number of execution in that
3911 frame.  The second line shows the text of that source line.
3912
3913 @need 1000
3914 For example:
3915
3916 @smallexample
3917 @group
3918 (@value{GDBP}) up
3919 #1  0x22f0 in main (argc=1, argv=0xf7fffbf4, env=0xf7fffbfc)
3920     at env.c:10
3921 10              read_input_file (argv[i]);
3922 @end group
3923 @end smallexample
3924
3925 After such a printout, the @code{list} command with no arguments
3926 prints ten lines centered on the point of execution in the frame.
3927 @xref{List, ,Printing source lines}.
3928
3929 @table @code
3930 @kindex down-silently
3931 @kindex up-silently
3932 @item up-silently @var{n}
3933 @itemx down-silently @var{n}
3934 These two commands are variants of @code{up} and @code{down},
3935 respectively; they differ in that they do their work silently, without
3936 causing display of the new frame.  They are intended primarily for use
3937 in @value{GDBN} command scripts, where the output might be unnecessary and
3938 distracting.
3939 @end table
3940
3941 @node Frame Info
3942 @section Information about a frame
3943
3944 There are several other commands to print information about the selected
3945 stack frame.
3946
3947 @table @code
3948 @item frame
3949 @itemx f
3950 When used without any argument, this command does not change which
3951 frame is selected, but prints a brief description of the currently
3952 selected stack frame.  It can be abbreviated @code{f}.  With an
3953 argument, this command is used to select a stack frame.
3954 @xref{Selection, ,Selecting a frame}.
3955
3956 @kindex info frame
3957 @kindex info f @r{(@code{info frame})}
3958 @item info frame
3959 @itemx info f
3960 This command prints a verbose description of the selected stack frame,
3961 including:
3962
3963 @itemize @bullet
3964 @item
3965 the address of the frame
3966 @item
3967 the address of the next frame down (called by this frame)
3968 @item
3969 the address of the next frame up (caller of this frame)
3970 @item
3971 the language in which the source code corresponding to this frame is written
3972 @item
3973 the address of the frame's arguments
3974 @item
3975 the address of the frame's local variables
3976 @item
3977 the program counter saved in it (the address of execution in the caller frame)
3978 @item
3979 which registers were saved in the frame
3980 @end itemize
3981
3982 @noindent The verbose description is useful when
3983 something has gone wrong that has made the stack format fail to fit
3984 the usual conventions.
3985
3986 @item info frame @var{addr}
3987 @itemx info f @var{addr}
3988 Print a verbose description of the frame at address @var{addr}, without
3989 selecting that frame.  The selected frame remains unchanged by this
3990 command.  This requires the same kind of address (more than one for some
3991 architectures) that you specify in the @code{frame} command.
3992 @xref{Selection, ,Selecting a frame}.
3993
3994 @kindex info args
3995 @item info args
3996 Print the arguments of the selected frame, each on a separate line.
3997
3998 @item info locals
3999 @kindex info locals
4000 Print the local variables of the selected frame, each on a separate
4001 line.  These are all variables (declared either static or automatic)
4002 accessible at the point of execution of the selected frame.
4003
4004 @kindex info catch
4005 @cindex catch exceptions, list active handlers
4006 @cindex exception handlers, how to list
4007 @item info catch
4008 Print a list of all the exception handlers that are active in the
4009 current stack frame at the current point of execution.  To see other
4010 exception handlers, visit the associated frame (using the @code{up},
4011 @code{down}, or @code{frame} commands); then type @code{info catch}.
4012 @xref{Set Catchpoints, , Setting catchpoints}.
4013
4014 @end table
4015
4016
4017 @node Source
4018 @chapter Examining Source Files
4019
4020 @value{GDBN} can print parts of your program's source, since the debugging
4021 information recorded in the program tells @value{GDBN} what source files were
4022 used to build it.  When your program stops, @value{GDBN} spontaneously prints
4023 the line where it stopped.  Likewise, when you select a stack frame
4024 (@pxref{Selection, ,Selecting a frame}), @value{GDBN} prints the line where
4025 execution in that frame has stopped.  You can print other portions of
4026 source files by explicit command.
4027
4028 If you use @value{GDBN} through its @sc{gnu} Emacs interface, you may
4029 prefer to use Emacs facilities to view source; see @ref{Emacs, ,Using
4030 @value{GDBN} under @sc{gnu} Emacs}.
4031
4032 @menu
4033 * List::                        Printing source lines
4034 * Search::                      Searching source files
4035 * Source Path::                 Specifying source directories
4036 * Machine Code::                Source and machine code
4037 @end menu
4038
4039 @node List
4040 @section Printing source lines
4041
4042 @kindex list
4043 @kindex l @r{(@code{list})}
4044 To print lines from a source file, use the @code{list} command
4045 (abbreviated @code{l}).  By default, ten lines are printed.
4046 There are several ways to specify what part of the file you want to print.
4047
4048 Here are the forms of the @code{list} command most commonly used:
4049
4050 @table @code
4051 @item list @var{linenum}
4052 Print lines centered around line number @var{linenum} in the
4053 current source file.
4054
4055 @item list @var{function}
4056 Print lines centered around the beginning of function
4057 @var{function}.
4058
4059 @item list
4060 Print more lines.  If the last lines printed were printed with a
4061 @code{list} command, this prints lines following the last lines
4062 printed; however, if the last line printed was a solitary line printed
4063 as part of displaying a stack frame (@pxref{Stack, ,Examining the
4064 Stack}), this prints lines centered around that line.
4065
4066 @item list -
4067 Print lines just before the lines last printed.
4068 @end table
4069
4070 By default, @value{GDBN} prints ten source lines with any of these forms of
4071 the @code{list} command.  You can change this using @code{set listsize}:
4072
4073 @table @code
4074 @kindex set listsize
4075 @item set listsize @var{count}
4076 Make the @code{list} command display @var{count} source lines (unless
4077 the @code{list} argument explicitly specifies some other number).
4078
4079 @kindex show listsize
4080 @item show listsize
4081 Display the number of lines that @code{list} prints.
4082 @end table
4083
4084 Repeating a @code{list} command with @key{RET} discards the argument,
4085 so it is equivalent to typing just @code{list}.  This is more useful
4086 than listing the same lines again.  An exception is made for an
4087 argument of @samp{-}; that argument is preserved in repetition so that
4088 each repetition moves up in the source file.
4089
4090 @cindex linespec
4091 In general, the @code{list} command expects you to supply zero, one or two
4092 @dfn{linespecs}.  Linespecs specify source lines; there are several ways
4093 of writing them, but the effect is always to specify some source line.
4094 Here is a complete description of the possible arguments for @code{list}:
4095
4096 @table @code
4097 @item list @var{linespec}
4098 Print lines centered around the line specified by @var{linespec}.
4099
4100 @item list @var{first},@var{last}
4101 Print lines from @var{first} to @var{last}.  Both arguments are
4102 linespecs.
4103
4104 @item list ,@var{last}
4105 Print lines ending with @var{last}.
4106
4107 @item list @var{first},
4108 Print lines starting with @var{first}.
4109
4110 @item list +
4111 Print lines just after the lines last printed.
4112
4113 @item list -
4114 Print lines just before the lines last printed.
4115
4116 @item list
4117 As described in the preceding table.
4118 @end table
4119
4120 Here are the ways of specifying a single source line---all the
4121 kinds of linespec.
4122
4123 @table @code
4124 @item @var{number}
4125 Specifies line @var{number} of the current source file.
4126 When a @code{list} command has two linespecs, this refers to
4127 the same source file as the first linespec.
4128
4129 @item +@var{offset}
4130 Specifies the line @var{offset} lines after the last line printed.
4131 When used as the second linespec in a @code{list} command that has
4132 two, this specifies the line @var{offset} lines down from the
4133 first linespec.
4134
4135 @item -@var{offset}
4136 Specifies the line @var{offset} lines before the last line printed.
4137
4138 @item @var{filename}:@var{number}
4139 Specifies line @var{number} in the source file @var{filename}.
4140
4141 @item @var{function}
4142 Specifies the line that begins the body of the function @var{function}.
4143 For example: in C, this is the line with the open brace.
4144
4145 @item @var{filename}:@var{function}
4146 Specifies the line of the open-brace that begins the body of the
4147 function @var{function} in the file @var{filename}.  You only need the
4148 file name with a function name to avoid ambiguity when there are
4149 identically named functions in different source files.
4150
4151 @item *@var{address}
4152 Specifies the line containing the program address @var{address}.
4153 @var{address} may be any expression.
4154 @end table
4155
4156 @node Search
4157 @section Searching source files
4158 @cindex searching
4159 @kindex reverse-search
4160
4161 There are two commands for searching through the current source file for a
4162 regular expression.
4163
4164 @table @code
4165 @kindex search
4166 @kindex forward-search
4167 @item forward-search @var{regexp}
4168 @itemx search @var{regexp}
4169 The command @samp{forward-search @var{regexp}} checks each line,
4170 starting with the one following the last line listed, for a match for
4171 @var{regexp}.  It lists the line that is found.  You can use the
4172 synonym @samp{search @var{regexp}} or abbreviate the command name as
4173 @code{fo}.
4174
4175 @item reverse-search @var{regexp}
4176 The command @samp{reverse-search @var{regexp}} checks each line, starting
4177 with the one before the last line listed and going backward, for a match
4178 for @var{regexp}.  It lists the line that is found.  You can abbreviate
4179 this command as @code{rev}.
4180 @end table
4181
4182 @node Source Path
4183 @section Specifying source directories
4184
4185 @cindex source path
4186 @cindex directories for source files
4187 Executable programs sometimes do not record the directories of the source
4188 files from which they were compiled, just the names.  Even when they do,
4189 the directories could be moved between the compilation and your debugging
4190 session.  @value{GDBN} has a list of directories to search for source files;
4191 this is called the @dfn{source path}.  Each time @value{GDBN} wants a source file,
4192 it tries all the directories in the list, in the order they are present
4193 in the list, until it finds a file with the desired name.  Note that
4194 the executable search path is @emph{not} used for this purpose.  Neither is
4195 the current working directory, unless it happens to be in the source
4196 path.
4197
4198 If @value{GDBN} cannot find a source file in the source path, and the
4199 object program records a directory, @value{GDBN} tries that directory
4200 too.  If the source path is empty, and there is no record of the
4201 compilation directory, @value{GDBN} looks in the current directory as a
4202 last resort.
4203
4204 Whenever you reset or rearrange the source path, @value{GDBN} clears out
4205 any information it has cached about where source files are found and where
4206 each line is in the file.
4207
4208 @kindex directory
4209 @kindex dir
4210 When you start @value{GDBN}, its source path includes only @samp{cdir}
4211 and @samp{cwd}, in that order.
4212 To add other directories, use the @code{directory} command.
4213
4214 @table @code
4215 @item directory @var{dirname} @dots{}
4216 @item dir @var{dirname} @dots{}
4217 Add directory @var{dirname} to the front of the source path.  Several
4218 directory names may be given to this command, separated by @samp{:}
4219 (@samp{;} on MS-DOS and MS-Windows, where @samp{:} usually appears as
4220 part of absolute file names) or
4221 whitespace.  You may specify a directory that is already in the source
4222 path; this moves it forward, so @value{GDBN} searches it sooner.
4223
4224 @kindex cdir
4225 @kindex cwd
4226 @vindex $cdir@r{, convenience variable}
4227 @vindex $cwdr@r{, convenience variable}
4228 @cindex compilation directory
4229 @cindex current directory
4230 @cindex working directory
4231 @cindex directory, current
4232 @cindex directory, compilation
4233 You can use the string @samp{$cdir} to refer to the compilation
4234 directory (if one is recorded), and @samp{$cwd} to refer to the current
4235 working directory.  @samp{$cwd} is not the same as @samp{.}---the former
4236 tracks the current working directory as it changes during your @value{GDBN}
4237 session, while the latter is immediately expanded to the current
4238 directory at the time you add an entry to the source path.
4239
4240 @item directory
4241 Reset the source path to empty again.  This requires confirmation.
4242
4243 @c RET-repeat for @code{directory} is explicitly disabled, but since
4244 @c repeating it would be a no-op we do not say that.  (thanks to RMS)
4245
4246 @item show directories
4247 @kindex show directories
4248 Print the source path: show which directories it contains.
4249 @end table
4250
4251 If your source path is cluttered with directories that are no longer of
4252 interest, @value{GDBN} may sometimes cause confusion by finding the wrong
4253 versions of source.  You can correct the situation as follows:
4254
4255 @enumerate
4256 @item
4257 Use @code{directory} with no argument to reset the source path to empty.
4258
4259 @item
4260 Use @code{directory} with suitable arguments to reinstall the
4261 directories you want in the source path.  You can add all the
4262 directories in one command.
4263 @end enumerate
4264
4265 @node Machine Code
4266 @section Source and machine code
4267
4268 You can use the command @code{info line} to map source lines to program
4269 addresses (and vice versa), and the command @code{disassemble} to display
4270 a range of addresses as machine instructions.  When run under @sc{gnu} Emacs
4271 mode, the @code{info line} command causes the arrow to point to the
4272 line specified.  Also, @code{info line} prints addresses in symbolic form as
4273 well as hex.
4274
4275 @table @code
4276 @kindex info line
4277 @item info line @var{linespec}
4278 Print the starting and ending addresses of the compiled code for
4279 source line @var{linespec}.  You can specify source lines in any of
4280 the ways understood by the @code{list} command (@pxref{List, ,Printing
4281 source lines}).
4282 @end table
4283
4284 For example, we can use @code{info line} to discover the location of
4285 the object code for the first line of function
4286 @code{m4_changequote}:
4287
4288 @c FIXME: I think this example should also show the addresses in
4289 @c symbolic form, as they usually would be displayed.
4290 @smallexample
4291 (@value{GDBP}) info line m4_changequote
4292 Line 895 of "builtin.c" starts at pc 0x634c and ends at 0x6350.
4293 @end smallexample
4294
4295 @noindent
4296 We can also inquire (using @code{*@var{addr}} as the form for
4297 @var{linespec}) what source line covers a particular address:
4298 @smallexample
4299 (@value{GDBP}) info line *0x63ff
4300 Line 926 of "builtin.c" starts at pc 0x63e4 and ends at 0x6404.
4301 @end smallexample
4302
4303 @cindex @code{$_} and @code{info line}
4304 @kindex x@r{(examine), and} info line
4305 After @code{info line}, the default address for the @code{x} command
4306 is changed to the starting address of the line, so that @samp{x/i} is
4307 sufficient to begin examining the machine code (@pxref{Memory,
4308 ,Examining memory}).  Also, this address is saved as the value of the
4309 convenience variable @code{$_} (@pxref{Convenience Vars, ,Convenience
4310 variables}).
4311
4312 @table @code
4313 @kindex disassemble
4314 @cindex assembly instructions
4315 @cindex instructions, assembly
4316 @cindex machine instructions
4317 @cindex listing machine instructions
4318 @item disassemble
4319 This specialized command dumps a range of memory as machine
4320 instructions.  The default memory range is the function surrounding the
4321 program counter of the selected frame.  A single argument to this
4322 command is a program counter value; @value{GDBN} dumps the function
4323 surrounding this value.  Two arguments specify a range of addresses
4324 (first inclusive, second exclusive) to dump.
4325 @end table
4326
4327 The following example shows the disassembly of a range of addresses of
4328 HP PA-RISC 2.0 code:
4329
4330 @smallexample
4331 (@value{GDBP}) disas 0x32c4 0x32e4
4332 Dump of assembler code from 0x32c4 to 0x32e4:
4333 0x32c4 <main+204>:      addil 0,dp
4334 0x32c8 <main+208>:      ldw 0x22c(sr0,r1),r26
4335 0x32cc <main+212>:      ldil 0x3000,r31
4336 0x32d0 <main+216>:      ble 0x3f8(sr4,r31)
4337 0x32d4 <main+220>:      ldo 0(r31),rp
4338 0x32d8 <main+224>:      addil -0x800,dp
4339 0x32dc <main+228>:      ldo 0x588(r1),r26
4340 0x32e0 <main+232>:      ldil 0x3000,r31
4341 End of assembler dump.
4342 @end smallexample
4343
4344 Some architectures have more than one commonly-used set of instruction
4345 mnemonics or other syntax.
4346
4347 @table @code
4348 @kindex set disassembly-flavor
4349 @cindex assembly instructions
4350 @cindex instructions, assembly
4351 @cindex machine instructions
4352 @cindex listing machine instructions
4353 @cindex Intel disassembly flavor
4354 @cindex AT&T disassembly flavor
4355 @item set disassembly-flavor @var{instruction-set}
4356 Select the instruction set to use when disassembling the
4357 program via the @code{disassemble} or @code{x/i} commands.
4358
4359 Currently this command is only defined for the Intel x86 family.  You
4360 can set @var{instruction-set} to either @code{intel} or @code{att}.
4361 The default is @code{att}, the AT&T flavor used by default by Unix
4362 assemblers for x86-based targets.
4363 @end table
4364
4365
4366 @node Data
4367 @chapter Examining Data
4368
4369 @cindex printing data
4370 @cindex examining data
4371 @kindex print
4372 @kindex inspect
4373 @c "inspect" is not quite a synonym if you are using Epoch, which we do not
4374 @c document because it is nonstandard...  Under Epoch it displays in a
4375 @c different window or something like that.
4376 The usual way to examine data in your program is with the @code{print}
4377 command (abbreviated @code{p}), or its synonym @code{inspect}.  It
4378 evaluates and prints the value of an expression of the language your
4379 program is written in (@pxref{Languages, ,Using @value{GDBN} with
4380 Different Languages}).
4381
4382 @table @code
4383 @item print @var{expr}
4384 @itemx print /@var{f} @var{expr}
4385 @var{expr} is an expression (in the source language).  By default the
4386 value of @var{expr} is printed in a format appropriate to its data type;
4387 you can choose a different format by specifying @samp{/@var{f}}, where
4388 @var{f} is a letter specifying the format; see @ref{Output Formats,,Output
4389 formats}.
4390
4391 @item print
4392 @itemx print /@var{f}
4393 If you omit @var{expr}, @value{GDBN} displays the last value again (from the
4394 @dfn{value history}; @pxref{Value History, ,Value history}).  This allows you to
4395 conveniently inspect the same value in an alternative format.
4396 @end table
4397
4398 A more low-level way of examining data is with the @code{x} command.
4399 It examines data in memory at a specified address and prints it in a
4400 specified format.  @xref{Memory, ,Examining memory}.
4401
4402 If you are interested in information about types, or about how the
4403 fields of a struct or a class are declared, use the @code{ptype @var{exp}}
4404 command rather than @code{print}.  @xref{Symbols, ,Examining the Symbol
4405 Table}.
4406
4407 @menu
4408 * Expressions::                 Expressions
4409 * Variables::                   Program variables
4410 * Arrays::                      Artificial arrays
4411 * Output Formats::              Output formats
4412 * Memory::                      Examining memory
4413 * Auto Display::                Automatic display
4414 * Print Settings::              Print settings
4415 * Value History::               Value history
4416 * Convenience Vars::            Convenience variables
4417 * Registers::                   Registers
4418 * Floating Point Hardware::     Floating point hardware
4419 * Memory Region Attributes::    Memory region attributes
4420 * Dump/Restore Files::          Copy between memory and a file
4421 @end menu
4422
4423 @node Expressions
4424 @section Expressions
4425
4426 @cindex expressions
4427 @code{print} and many other @value{GDBN} commands accept an expression and
4428 compute its value.  Any kind of constant, variable or operator defined
4429 by the programming language you are using is valid in an expression in
4430 @value{GDBN}.  This includes conditional expressions, function calls,
4431 casts, and string constants.  It also includes preprocessor macros, if
4432 you compiled your program to include this information; see
4433 @ref{Compilation}.
4434
4435 @value{GDBN} supports array constants in expressions input by
4436 the user.  The syntax is @{@var{element}, @var{element}@dots{}@}.  For example,
4437 you can use the command @code{print @{1, 2, 3@}} to build up an array in
4438 memory that is @code{malloc}ed in the target program.
4439
4440 Because C is so widespread, most of the expressions shown in examples in
4441 this manual are in C.  @xref{Languages, , Using @value{GDBN} with Different
4442 Languages}, for information on how to use expressions in other
4443 languages.
4444
4445 In this section, we discuss operators that you can use in @value{GDBN}
4446 expressions regardless of your programming language.
4447
4448 Casts are supported in all languages, not just in C, because it is so
4449 useful to cast a number into a pointer in order to examine a structure
4450 at that address in memory.
4451 @c FIXME: casts supported---Mod2 true?
4452
4453 @value{GDBN} supports these operators, in addition to those common
4454 to programming languages:
4455
4456 @table @code
4457 @item @@
4458 @samp{@@} is a binary operator for treating parts of memory as arrays.
4459 @xref{Arrays, ,Artificial arrays}, for more information.
4460
4461 @item ::
4462 @samp{::} allows you to specify a variable in terms of the file or
4463 function where it is defined.  @xref{Variables, ,Program variables}.
4464
4465 @cindex @{@var{type}@}
4466 @cindex type casting memory
4467 @cindex memory, viewing as typed object
4468 @cindex casts, to view memory
4469 @item @{@var{type}@} @var{addr}
4470 Refers to an object of type @var{type} stored at address @var{addr} in
4471 memory.  @var{addr} may be any expression whose value is an integer or
4472 pointer (but parentheses are required around binary operators, just as in
4473 a cast).  This construct is allowed regardless of what kind of data is
4474 normally supposed to reside at @var{addr}.
4475 @end table
4476
4477 @node Variables
4478 @section Program variables
4479
4480 The most common kind of expression to use is the name of a variable
4481 in your program.
4482
4483 Variables in expressions are understood in the selected stack frame
4484 (@pxref{Selection, ,Selecting a frame}); they must be either:
4485
4486 @itemize @bullet
4487 @item
4488 global (or file-static)
4489 @end itemize
4490
4491 @noindent or
4492
4493 @itemize @bullet
4494 @item
4495 visible according to the scope rules of the
4496 programming language from the point of execution in that frame
4497 @end itemize
4498
4499 @noindent This means that in the function
4500
4501 @smallexample
4502 foo (a)
4503      int a;
4504 @{
4505   bar (a);
4506   @{
4507     int b = test ();
4508     bar (b);
4509   @}
4510 @}
4511 @end smallexample
4512
4513 @noindent
4514 you can examine and use the variable @code{a} whenever your program is
4515 executing within the function @code{foo}, but you can only use or
4516 examine the variable @code{b} while your program is executing inside
4517 the block where @code{b} is declared.
4518
4519 @cindex variable name conflict
4520 There is an exception: you can refer to a variable or function whose
4521 scope is a single source file even if the current execution point is not
4522 in this file.  But it is possible to have more than one such variable or
4523 function with the same name (in different source files).  If that
4524 happens, referring to that name has unpredictable effects.  If you wish,
4525 you can specify a static variable in a particular function or file,
4526 using the colon-colon notation:
4527
4528 @cindex colon-colon, context for variables/functions
4529 @iftex
4530 @c info cannot cope with a :: index entry, but why deprive hard copy readers?
4531 @cindex @code{::}, context for variables/functions
4532 @end iftex
4533 @smallexample
4534 @var{file}::@var{variable}
4535 @var{function}::@var{variable}
4536 @end smallexample
4537
4538 @noindent
4539 Here @var{file} or @var{function} is the name of the context for the
4540 static @var{variable}.  In the case of file names, you can use quotes to
4541 make sure @value{GDBN} parses the file name as a single word---for example,
4542 to print a global value of @code{x} defined in @file{f2.c}:
4543
4544 @smallexample
4545 (@value{GDBP}) p 'f2.c'::x
4546 @end smallexample
4547
4548 @cindex C@t{++} scope resolution
4549 This use of @samp{::} is very rarely in conflict with the very similar
4550 use of the same notation in C@t{++}.  @value{GDBN} also supports use of the C@t{++}
4551 scope resolution operator in @value{GDBN} expressions.
4552 @c FIXME: Um, so what happens in one of those rare cases where it's in
4553 @c conflict??  --mew
4554
4555 @cindex wrong values
4556 @cindex variable values, wrong
4557 @quotation
4558 @emph{Warning:} Occasionally, a local variable may appear to have the
4559 wrong value at certain points in a function---just after entry to a new
4560 scope, and just before exit.
4561 @end quotation
4562 You may see this problem when you are stepping by machine instructions.
4563 This is because, on most machines, it takes more than one instruction to
4564 set up a stack frame (including local variable definitions); if you are
4565 stepping by machine instructions, variables may appear to have the wrong
4566 values until the stack frame is completely built.  On exit, it usually
4567 also takes more than one machine instruction to destroy a stack frame;
4568 after you begin stepping through that group of instructions, local
4569 variable definitions may be gone.
4570
4571 This may also happen when the compiler does significant optimizations.
4572 To be sure of always seeing accurate values, turn off all optimization
4573 when compiling.
4574
4575 @cindex ``No symbol "foo" in current context''
4576 Another possible effect of compiler optimizations is to optimize
4577 unused variables out of existence, or assign variables to registers (as
4578 opposed to memory addresses).  Depending on the support for such cases
4579 offered by the debug info format used by the compiler, @value{GDBN}
4580 might not be able to display values for such local variables.  If that
4581 happens, @value{GDBN} will print a message like this:
4582
4583 @smallexample
4584 No symbol "foo" in current context.
4585 @end smallexample
4586
4587 To solve such problems, either recompile without optimizations, or use a
4588 different debug info format, if the compiler supports several such
4589 formats.  For example, @value{NGCC}, the @sc{gnu} C/C@t{++} compiler usually
4590 supports the @samp{-gstabs} option.  @samp{-gstabs} produces debug info
4591 in a format that is superior to formats such as COFF.  You may be able
4592 to use DWARF2 (@samp{-gdwarf-2}), which is also an effective form for
4593 debug info.  See @ref{Debugging Options,,Options for Debugging Your
4594 Program or @sc{gnu} CC, gcc.info, Using @sc{gnu} CC}, for more
4595 information.
4596
4597
4598 @node Arrays
4599 @section Artificial arrays
4600
4601 @cindex artificial array
4602 @kindex @@@r{, referencing memory as an array}
4603 It is often useful to print out several successive objects of the
4604 same type in memory; a section of an array, or an array of
4605 dynamically determined size for which only a pointer exists in the
4606 program.
4607
4608 You can do this by referring to a contiguous span of memory as an
4609 @dfn{artificial array}, using the binary operator @samp{@@}.  The left
4610 operand of @samp{@@} should be the first element of the desired array
4611 and be an individual object.  The right operand should be the desired length
4612 of the array.  The result is an array value whose elements are all of
4613 the type of the left argument.  The first element is actually the left
4614 argument; the second element comes from bytes of memory immediately
4615 following those that hold the first element, and so on.  Here is an
4616 example.  If a program says
4617
4618 @smallexample
4619 int *array = (int *) malloc (len * sizeof (int));
4620 @end smallexample
4621
4622 @noindent
4623 you can print the contents of @code{array} with
4624
4625 @smallexample
4626 p *array@@len
4627 @end smallexample
4628
4629 The left operand of @samp{@@} must reside in memory.  Array values made
4630 with @samp{@@} in this way behave just like other arrays in terms of
4631 subscripting, and are coerced to pointers when used in expressions.
4632 Artificial arrays most often appear in expressions via the value history
4633 (@pxref{Value History, ,Value history}), after printing one out.
4634
4635 Another way to create an artificial array is to use a cast.
4636 This re-interprets a value as if it were an array.
4637 The value need not be in memory:
4638 @smallexample
4639 (@value{GDBP}) p/x (short[2])0x12345678
4640 $1 = @{0x1234, 0x5678@}
4641 @end smallexample
4642
4643 As a convenience, if you leave the array length out (as in
4644 @samp{(@var{type}[])@var{value}}) @value{GDBN} calculates the size to fill
4645 the value (as @samp{sizeof(@var{value})/sizeof(@var{type})}:
4646 @smallexample
4647 (@value{GDBP}) p/x (short[])0x12345678
4648 $2 = @{0x1234, 0x5678@}
4649 @end smallexample
4650
4651 Sometimes the artificial array mechanism is not quite enough; in
4652 moderately complex data structures, the elements of interest may not
4653 actually be adjacent---for example, if you are interested in the values
4654 of pointers in an array.  One useful work-around in this situation is
4655 to use a convenience variable (@pxref{Convenience Vars, ,Convenience
4656 variables}) as a counter in an expression that prints the first
4657 interesting value, and then repeat that expression via @key{RET}.  For
4658 instance, suppose you have an array @code{dtab} of pointers to
4659 structures, and you are interested in the values of a field @code{fv}
4660 in each structure.  Here is an example of what you might type:
4661
4662 @smallexample
4663 set $i = 0
4664 p dtab[$i++]->fv
4665 @key{RET}
4666 @key{RET}
4667 @dots{}
4668 @end smallexample
4669
4670 @node Output Formats
4671 @section Output formats
4672
4673 @cindex formatted output
4674 @cindex output formats
4675 By default, @value{GDBN} prints a value according to its data type.  Sometimes
4676 this is not what you want.  For example, you might want to print a number
4677 in hex, or a pointer in decimal.  Or you might want to view data in memory
4678 at a certain address as a character string or as an instruction.  To do
4679 these things, specify an @dfn{output format} when you print a value.
4680
4681 The simplest use of output formats is to say how to print a value
4682 already computed.  This is done by starting the arguments of the
4683 @code{print} command with a slash and a format letter.  The format
4684 letters supported are:
4685
4686 @table @code
4687 @item x
4688 Regard the bits of the value as an integer, and print the integer in
4689 hexadecimal.
4690
4691 @item d
4692 Print as integer in signed decimal.
4693
4694 @item u
4695 Print as integer in unsigned decimal.
4696
4697 @item o
4698 Print as integer in octal.
4699
4700 @item t
4701 Print as integer in binary.  The letter @samp{t} stands for ``two''.
4702 @footnote{@samp{b} cannot be used because these format letters are also
4703 used with the @code{x} command, where @samp{b} stands for ``byte'';
4704 see @ref{Memory,,Examining memory}.}
4705
4706 @item a
4707 @cindex unknown address, locating
4708 @cindex locate address
4709 Print as an address, both absolute in hexadecimal and as an offset from
4710 the nearest preceding symbol.  You can use this format used to discover
4711 where (in what function) an unknown address is located:
4712
4713 @smallexample
4714 (@value{GDBP}) p/a 0x54320
4715 $3 = 0x54320 <_initialize_vx+396>
4716 @end smallexample
4717
4718 @noindent
4719 The command @code{info symbol 0x54320} yields similar results.
4720 @xref{Symbols, info symbol}.
4721
4722 @item c
4723 Regard as an integer and print it as a character constant.
4724
4725 @item f
4726 Regard the bits of the value as a floating point number and print
4727 using typical floating point syntax.
4728 @end table
4729
4730 For example, to print the program counter in hex (@pxref{Registers}), type
4731
4732 @smallexample
4733 p/x $pc
4734 @end smallexample
4735
4736 @noindent
4737 Note that no space is required before the slash; this is because command
4738 names in @value{GDBN} cannot contain a slash.
4739
4740 To reprint the last value in the value history with a different format,
4741 you can use the @code{print} command with just a format and no
4742 expression.  For example, @samp{p/x} reprints the last value in hex.
4743
4744 @node Memory
4745 @section Examining memory
4746
4747 You can use the command @code{x} (for ``examine'') to examine memory in
4748 any of several formats, independently of your program's data types.
4749
4750 @cindex examining memory
4751 @table @code
4752 @kindex x @r{(examine memory)}
4753 @item x/@var{nfu} @var{addr}
4754 @itemx x @var{addr}
4755 @itemx x
4756 Use the @code{x} command to examine memory.
4757 @end table
4758
4759 @var{n}, @var{f}, and @var{u} are all optional parameters that specify how
4760 much memory to display and how to format it; @var{addr} is an
4761 expression giving the address where you want to start displaying memory.
4762 If you use defaults for @var{nfu}, you need not type the slash @samp{/}.
4763 Several commands set convenient defaults for @var{addr}.
4764
4765 @table @r
4766 @item @var{n}, the repeat count
4767 The repeat count is a decimal integer; the default is 1.  It specifies
4768 how much memory (counting by units @var{u}) to display.
4769 @c This really is **decimal**; unaffected by 'set radix' as of GDB
4770 @c 4.1.2.
4771
4772 @item @var{f}, the display format
4773 The display format is one of the formats used by @code{print},
4774 @samp{s} (null-terminated string), or @samp{i} (machine instruction).
4775 The default is @samp{x} (hexadecimal) initially.
4776 The default changes each time you use either @code{x} or @code{print}.
4777
4778 @item @var{u}, the unit size
4779 The unit size is any of
4780
4781 @table @code
4782 @item b
4783 Bytes.
4784 @item h
4785 Halfwords (two bytes).
4786 @item w
4787 Words (four bytes).  This is the initial default.
4788 @item g
4789 Giant words (eight bytes).
4790 @end table
4791
4792 Each time you specify a unit size with @code{x}, that size becomes the
4793 default unit the next time you use @code{x}.  (For the @samp{s} and
4794 @samp{i} formats, the unit size is ignored and is normally not written.)
4795
4796 @item @var{addr}, starting display address
4797 @var{addr} is the address where you want @value{GDBN} to begin displaying
4798 memory.  The expression need not have a pointer value (though it may);
4799 it is always interpreted as an integer address of a byte of memory.
4800 @xref{Expressions, ,Expressions}, for more information on expressions.  The default for
4801 @var{addr} is usually just after the last address examined---but several
4802 other commands also set the default address: @code{info breakpoints} (to
4803 the address of the last breakpoint listed), @code{info line} (to the
4804 starting address of a line), and @code{print} (if you use it to display
4805 a value from memory).
4806 @end table
4807
4808 For example, @samp{x/3uh 0x54320} is a request to display three halfwords
4809 (@code{h}) of memory, formatted as unsigned decimal integers (@samp{u}),
4810 starting at address @code{0x54320}.  @samp{x/4xw $sp} prints the four
4811 words (@samp{w}) of memory above the stack pointer (here, @samp{$sp};
4812 @pxref{Registers, ,Registers}) in hexadecimal (@samp{x}).
4813
4814 Since the letters indicating unit sizes are all distinct from the
4815 letters specifying output formats, you do not have to remember whether
4816 unit size or format comes first; either order works.  The output
4817 specifications @samp{4xw} and @samp{4wx} mean exactly the same thing.
4818 (However, the count @var{n} must come first; @samp{wx4} does not work.)
4819
4820 Even though the unit size @var{u} is ignored for the formats @samp{s}
4821 and @samp{i}, you might still want to use a count @var{n}; for example,
4822 @samp{3i} specifies that you want to see three machine instructions,
4823 including any operands.  The command @code{disassemble} gives an
4824 alternative way of inspecting machine instructions; see @ref{Machine
4825 Code,,Source and machine code}.
4826
4827 All the defaults for the arguments to @code{x} are designed to make it
4828 easy to continue scanning memory with minimal specifications each time
4829 you use @code{x}.  For example, after you have inspected three machine
4830 instructions with @samp{x/3i @var{addr}}, you can inspect the next seven
4831 with just @samp{x/7}.  If you use @key{RET} to repeat the @code{x} command,
4832 the repeat count @var{n} is used again; the other arguments default as
4833 for successive uses of @code{x}.
4834
4835 @cindex @code{$_}, @code{$__}, and value history
4836 The addresses and contents printed by the @code{x} command are not saved
4837 in the value history because there is often too much of them and they
4838 would get in the way.  Instead, @value{GDBN} makes these values available for
4839 subsequent use in expressions as values of the convenience variables
4840 @code{$_} and @code{$__}.  After an @code{x} command, the last address
4841 examined is available for use in expressions in the convenience variable
4842 @code{$_}.  The contents of that address, as examined, are available in
4843 the convenience variable @code{$__}.
4844
4845 If the @code{x} command has a repeat count, the address and contents saved
4846 are from the last memory unit printed; this is not the same as the last
4847 address printed if several units were printed on the last line of output.
4848
4849 @node Auto Display
4850 @section Automatic display
4851 @cindex automatic display
4852 @cindex display of expressions
4853
4854 If you find that you want to print the value of an expression frequently
4855 (to see how it changes), you might want to add it to the @dfn{automatic
4856 display list} so that @value{GDBN} prints its value each time your program stops.
4857 Each expression added to the list is given a number to identify it;
4858 to remove an expression from the list, you specify that number.
4859 The automatic display looks like this:
4860
4861 @smallexample
4862 2: foo = 38
4863 3: bar[5] = (struct hack *) 0x3804
4864 @end smallexample
4865
4866 @noindent
4867 This display shows item numbers, expressions and their current values.  As with
4868 displays you request manually using @code{x} or @code{print}, you can
4869 specify the output format you prefer; in fact, @code{display} decides
4870 whether to use @code{print} or @code{x} depending on how elaborate your
4871 format specification is---it uses @code{x} if you specify a unit size,
4872 or one of the two formats (@samp{i} and @samp{s}) that are only
4873 supported by @code{x}; otherwise it uses @code{print}.
4874
4875 @table @code
4876 @kindex display
4877 @item display @var{expr}
4878 Add the expression @var{expr} to the list of expressions to display
4879 each time your program stops.  @xref{Expressions, ,Expressions}.
4880
4881 @code{display} does not repeat if you press @key{RET} again after using it.
4882
4883 @item display/@var{fmt} @var{expr}
4884 For @var{fmt} specifying only a display format and not a size or
4885 count, add the expression @var{expr} to the auto-display list but
4886 arrange to display it each time in the specified format @var{fmt}.
4887 @xref{Output Formats,,Output formats}.
4888
4889 @item display/@var{fmt} @var{addr}
4890 For @var{fmt} @samp{i} or @samp{s}, or including a unit-size or a
4891 number of units, add the expression @var{addr} as a memory address to
4892 be examined each time your program stops.  Examining means in effect
4893 doing @samp{x/@var{fmt} @var{addr}}.  @xref{Memory, ,Examining memory}.
4894 @end table
4895
4896 For example, @samp{display/i $pc} can be helpful, to see the machine
4897 instruction about to be executed each time execution stops (@samp{$pc}
4898 is a common name for the program counter; @pxref{Registers, ,Registers}).
4899
4900 @table @code
4901 @kindex delete display
4902 @kindex undisplay
4903 @item undisplay @var{dnums}@dots{}
4904 @itemx delete display @var{dnums}@dots{}
4905 Remove item numbers @var{dnums} from the list of expressions to display.
4906
4907 @code{undisplay} does not repeat if you press @key{RET} after using it.
4908 (Otherwise you would just get the error @samp{No display number @dots{}}.)
4909
4910 @kindex disable display
4911 @item disable display @var{dnums}@dots{}
4912 Disable the display of item numbers @var{dnums}.  A disabled display
4913 item is not printed automatically, but is not forgotten.  It may be
4914 enabled again later.
4915
4916 @kindex enable display
4917 @item enable display @var{dnums}@dots{}
4918 Enable display of item numbers @var{dnums}.  It becomes effective once
4919 again in auto display of its expression, until you specify otherwise.
4920
4921 @item display
4922 Display the current values of the expressions on the list, just as is
4923 done when your program stops.
4924
4925 @kindex info display
4926 @item info display
4927 Print the list of expressions previously set up to display
4928 automatically, each one with its item number, but without showing the
4929 values.  This includes disabled expressions, which are marked as such.
4930 It also includes expressions which would not be displayed right now
4931 because they refer to automatic variables not currently available.
4932 @end table
4933
4934 If a display expression refers to local variables, then it does not make
4935 sense outside the lexical context for which it was set up.  Such an
4936 expression is disabled when execution enters a context where one of its
4937 variables is not defined.  For example, if you give the command
4938 @code{display last_char} while inside a function with an argument
4939 @code{last_char}, @value{GDBN} displays this argument while your program
4940 continues to stop inside that function.  When it stops elsewhere---where
4941 there is no variable @code{last_char}---the display is disabled
4942 automatically.  The next time your program stops where @code{last_char}
4943 is meaningful, you can enable the display expression once again.
4944
4945 @node Print Settings
4946 @section Print settings
4947
4948 @cindex format options
4949 @cindex print settings
4950 @value{GDBN} provides the following ways to control how arrays, structures,
4951 and symbols are printed.
4952
4953 @noindent
4954 These settings are useful for debugging programs in any language:
4955
4956 @table @code
4957 @kindex set print address
4958 @item set print address
4959 @itemx set print address on
4960 @value{GDBN} prints memory addresses showing the location of stack
4961 traces, structure values, pointer values, breakpoints, and so forth,
4962 even when it also displays the contents of those addresses.  The default
4963 is @code{on}.  For example, this is what a stack frame display looks like with
4964 @code{set print address on}:
4965
4966 @smallexample
4967 @group
4968 (@value{GDBP}) f
4969 #0  set_quotes (lq=0x34c78 "<<", rq=0x34c88 ">>")
4970     at input.c:530
4971 530         if (lquote != def_lquote)
4972 @end group
4973 @end smallexample
4974
4975 @item set print address off
4976 Do not print addresses when displaying their contents.  For example,
4977 this is the same stack frame displayed with @code{set print address off}:
4978
4979 @smallexample
4980 @group
4981 (@value{GDBP}) set print addr off
4982 (@value{GDBP}) f
4983 #0  set_quotes (lq="<<", rq=">>") at input.c:530
4984 530         if (lquote != def_lquote)
4985 @end group
4986 @end smallexample
4987
4988 You can use @samp{set print address off} to eliminate all machine
4989 dependent displays from the @value{GDBN} interface.  For example, with
4990 @code{print address off}, you should get the same text for backtraces on
4991 all machines---whether or not they involve pointer arguments.
4992
4993 @kindex show print address
4994 @item show print address
4995 Show whether or not addresses are to be printed.
4996 @end table
4997
4998 When @value{GDBN} prints a symbolic address, it normally prints the
4999 closest earlier symbol plus an offset.  If that symbol does not uniquely
5000 identify the address (for example, it is a name whose scope is a single
5001 source file), you may need to clarify.  One way to do this is with
5002 @code{info line}, for example @samp{info line *0x4537}.  Alternately,
5003 you can set @value{GDBN} to print the source file and line number when
5004 it prints a symbolic address:
5005
5006 @table @code
5007 @kindex set print symbol-filename
5008 @item set print symbol-filename on
5009 Tell @value{GDBN} to print the source file name and line number of a
5010 symbol in the symbolic form of an address.
5011
5012 @item set print symbol-filename off
5013 Do not print source file name and line number of a symbol.  This is the
5014 default.
5015
5016 @kindex show print symbol-filename
5017 @item show print symbol-filename
5018 Show whether or not @value{GDBN} will print the source file name and
5019 line number of a symbol in the symbolic form of an address.
5020 @end table
5021
5022 Another situation where it is helpful to show symbol filenames and line
5023 numbers is when disassembling code; @value{GDBN} shows you the line
5024 number and source file that corresponds to each instruction.
5025
5026 Also, you may wish to see the symbolic form only if the address being
5027 printed is reasonably close to the closest earlier symbol:
5028
5029 @table @code
5030 @kindex set print max-symbolic-offset
5031 @item set print max-symbolic-offset @var{max-offset}
5032 Tell @value{GDBN} to only display the symbolic form of an address if the
5033 offset between the closest earlier symbol and the address is less than
5034 @var{max-offset}.  The default is 0, which tells @value{GDBN}
5035 to always print the symbolic form of an address if any symbol precedes it.
5036
5037 @kindex show print max-symbolic-offset
5038 @item show print max-symbolic-offset
5039 Ask how large the maximum offset is that @value{GDBN} prints in a
5040 symbolic address.
5041 @end table
5042
5043 @cindex wild pointer, interpreting
5044 @cindex pointer, finding referent
5045 If you have a pointer and you are not sure where it points, try
5046 @samp{set print symbol-filename on}.  Then you can determine the name
5047 and source file location of the variable where it points, using
5048 @samp{p/a @var{pointer}}.  This interprets the address in symbolic form.
5049 For example, here @value{GDBN} shows that a variable @code{ptt} points
5050 at another variable @code{t}, defined in @file{hi2.c}:
5051
5052 @smallexample
5053 (@value{GDBP}) set print symbol-filename on
5054 (@value{GDBP}) p/a ptt
5055 $4 = 0xe008 <t in hi2.c>
5056 @end smallexample
5057
5058 @quotation
5059 @emph{Warning:} For pointers that point to a local variable, @samp{p/a}
5060 does not show the symbol name and filename of the referent, even with
5061 the appropriate @code{set print} options turned on.
5062 @end quotation
5063
5064 Other settings control how different kinds of objects are printed:
5065
5066 @table @code
5067 @kindex set print array
5068 @item set print array
5069 @itemx set print array on
5070 Pretty print arrays.  This format is more convenient to read,
5071 but uses more space.  The default is off.
5072
5073 @item set print array off
5074 Return to compressed format for arrays.
5075
5076 @kindex show print array
5077 @item show print array
5078 Show whether compressed or pretty format is selected for displaying
5079 arrays.
5080
5081 @kindex set print elements
5082 @item set print elements @var{number-of-elements}
5083 Set a limit on how many elements of an array @value{GDBN} will print.
5084 If @value{GDBN} is printing a large array, it stops printing after it has
5085 printed the number of elements set by the @code{set print elements} command.
5086 This limit also applies to the display of strings.
5087 When @value{GDBN} starts, this limit is set to 200.
5088 Setting  @var{number-of-elements} to zero means that the printing is unlimited.
5089
5090 @kindex show print elements
5091 @item show print elements
5092 Display the number of elements of a large array that @value{GDBN} will print.
5093 If the number is 0, then the printing is unlimited.
5094
5095 @kindex set print null-stop
5096 @item set print null-stop
5097 Cause @value{GDBN} to stop printing the characters of an array when the first
5098 @sc{null} is encountered.  This is useful when large arrays actually
5099 contain only short strings.
5100 The default is off.
5101
5102 @kindex set print pretty
5103 @item set print pretty on
5104 Cause @value{GDBN} to print structures in an indented format with one member
5105 per line, like this:
5106
5107 @smallexample
5108 @group
5109 $1 = @{
5110   next = 0x0,
5111   flags = @{
5112     sweet = 1,
5113     sour = 1
5114   @},
5115   meat = 0x54 "Pork"
5116 @}
5117 @end group
5118 @end smallexample
5119
5120 @item set print pretty off
5121 Cause @value{GDBN} to print structures in a compact format, like this:
5122
5123 @smallexample
5124 @group
5125 $1 = @{next = 0x0, flags = @{sweet = 1, sour = 1@}, \
5126 meat = 0x54 "Pork"@}
5127 @end group
5128 @end smallexample
5129
5130 @noindent
5131 This is the default format.
5132
5133 @kindex show print pretty
5134 @item show print pretty
5135 Show which format @value{GDBN} is using to print structures.
5136
5137 @kindex set print sevenbit-strings
5138 @item set print sevenbit-strings on
5139 Print using only seven-bit characters; if this option is set,
5140 @value{GDBN} displays any eight-bit characters (in strings or
5141 character values) using the notation @code{\}@var{nnn}.  This setting is
5142 best if you are working in English (@sc{ascii}) and you use the
5143 high-order bit of characters as a marker or ``meta'' bit.
5144
5145 @item set print sevenbit-strings off
5146 Print full eight-bit characters.  This allows the use of more
5147 international character sets, and is the default.
5148
5149 @kindex show print sevenbit-strings
5150 @item show print sevenbit-strings
5151 Show whether or not @value{GDBN} is printing only seven-bit characters.
5152
5153 @kindex set print union
5154 @item set print union on
5155 Tell @value{GDBN} to print unions which are contained in structures.  This
5156 is the default setting.
5157
5158 @item set print union off
5159 Tell @value{GDBN} not to print unions which are contained in structures.
5160
5161 @kindex show print union
5162 @item show print union
5163 Ask @value{GDBN} whether or not it will print unions which are contained in
5164 structures.
5165
5166 For example, given the declarations
5167
5168 @smallexample
5169 typedef enum @{Tree, Bug@} Species;
5170 typedef enum @{Big_tree, Acorn, Seedling@} Tree_forms;
5171 typedef enum @{Caterpillar, Cocoon, Butterfly@}
5172               Bug_forms;
5173
5174 struct thing @{
5175   Species it;
5176   union @{
5177     Tree_forms tree;
5178     Bug_forms bug;
5179   @} form;
5180 @};
5181
5182 struct thing foo = @{Tree, @{Acorn@}@};
5183 @end smallexample
5184
5185 @noindent
5186 with @code{set print union on} in effect @samp{p foo} would print
5187
5188 @smallexample
5189 $1 = @{it = Tree, form = @{tree = Acorn, bug = Cocoon@}@}
5190 @end smallexample
5191
5192 @noindent
5193 and with @code{set print union off} in effect it would print
5194
5195 @smallexample
5196 $1 = @{it = Tree, form = @{...@}@}
5197 @end smallexample
5198 @end table
5199
5200 @need 1000
5201 @noindent
5202 These settings are of interest when debugging C@t{++} programs:
5203
5204 @table @code
5205 @cindex demangling
5206 @kindex set print demangle
5207 @item set print demangle
5208 @itemx set print demangle on
5209 Print C@t{++} names in their source form rather than in the encoded
5210 (``mangled'') form passed to the assembler and linker for type-safe
5211 linkage.  The default is on.
5212
5213 @kindex show print demangle
5214 @item show print demangle
5215 Show whether C@t{++} names are printed in mangled or demangled form.
5216
5217 @kindex set print asm-demangle
5218 @item set print asm-demangle
5219 @itemx set print asm-demangle on
5220 Print C@t{++} names in their source form rather than their mangled form, even
5221 in assembler code printouts such as instruction disassemblies.
5222 The default is off.
5223
5224 @kindex show print asm-demangle
5225 @item show print asm-demangle
5226 Show whether C@t{++} names in assembly listings are printed in mangled
5227 or demangled form.
5228
5229 @kindex set demangle-style
5230 @cindex C@t{++} symbol decoding style
5231 @cindex symbol decoding style, C@t{++}
5232 @item set demangle-style @var{style}
5233 Choose among several encoding schemes used by different compilers to
5234 represent C@t{++} names.  The choices for @var{style} are currently:
5235
5236 @table @code
5237 @item auto
5238 Allow @value{GDBN} to choose a decoding style by inspecting your program.
5239
5240 @item gnu
5241 Decode based on the @sc{gnu} C@t{++} compiler (@code{g++}) encoding algorithm.
5242 This is the default.
5243
5244 @item hp
5245 Decode based on the HP ANSI C@t{++} (@code{aCC}) encoding algorithm.
5246
5247 @item lucid
5248 Decode based on the Lucid C@t{++} compiler (@code{lcc}) encoding algorithm.
5249
5250 @item arm
5251 Decode using the algorithm in the @cite{C@t{++} Annotated Reference Manual}.
5252 @strong{Warning:} this setting alone is not sufficient to allow
5253 debugging @code{cfront}-generated executables.  @value{GDBN} would
5254 require further enhancement to permit that.
5255
5256 @end table
5257 If you omit @var{style}, you will see a list of possible formats.
5258
5259 @kindex show demangle-style
5260 @item show demangle-style
5261 Display the encoding style currently in use for decoding C@t{++} symbols.
5262
5263 @kindex set print object
5264 @item set print object
5265 @itemx set print object on
5266 When displaying a pointer to an object, identify the @emph{actual}
5267 (derived) type of the object rather than the @emph{declared} type, using
5268 the virtual function table.
5269
5270 @item set print object off
5271 Display only the declared type of objects, without reference to the
5272 virtual function table.  This is the default setting.
5273
5274 @kindex show print object
5275 @item show print object
5276 Show whether actual, or declared, object types are displayed.
5277
5278 @kindex set print static-members
5279 @item set print static-members
5280 @itemx set print static-members on
5281 Print static members when displaying a C@t{++} object.  The default is on.
5282
5283 @item set print static-members off
5284 Do not print static members when displaying a C@t{++} object.
5285
5286 @kindex show print static-members
5287 @item show print static-members
5288 Show whether C@t{++} static members are printed, or not.
5289
5290 @c These don't work with HP ANSI C++ yet.
5291 @kindex set print vtbl
5292 @item set print vtbl
5293 @itemx set print vtbl on
5294 Pretty print C@t{++} virtual function tables.  The default is off.
5295 (The @code{vtbl} commands do not work on programs compiled with the HP
5296 ANSI C@t{++} compiler (@code{aCC}).)
5297
5298 @item set print vtbl off
5299 Do not pretty print C@t{++} virtual function tables.
5300
5301 @kindex show print vtbl
5302 @item show print vtbl
5303 Show whether C@t{++} virtual function tables are pretty printed, or not.
5304 @end table
5305
5306 @node Value History
5307 @section Value history
5308
5309 @cindex value history
5310 Values printed by the @code{print} command are saved in the @value{GDBN}
5311 @dfn{value history}.  This allows you to refer to them in other expressions.
5312 Values are kept until the symbol table is re-read or discarded
5313 (for example with the @code{file} or @code{symbol-file} commands).
5314 When the symbol table changes, the value history is discarded,
5315 since the values may contain pointers back to the types defined in the
5316 symbol table.
5317
5318 @cindex @code{$}
5319 @cindex @code{$$}
5320 @cindex history number
5321 The values printed are given @dfn{history numbers} by which you can
5322 refer to them.  These are successive integers starting with one.
5323 @code{print} shows you the history number assigned to a value by
5324 printing @samp{$@var{num} = } before the value; here @var{num} is the
5325 history number.
5326
5327 To refer to any previous value, use @samp{$} followed by the value's
5328 history number.  The way @code{print} labels its output is designed to
5329 remind you of this.  Just @code{$} refers to the most recent value in
5330 the history, and @code{$$} refers to the value before that.
5331 @code{$$@var{n}} refers to the @var{n}th value from the end; @code{$$2}
5332 is the value just prior to @code{$$}, @code{$$1} is equivalent to
5333 @code{$$}, and @code{$$0} is equivalent to @code{$}.
5334
5335 For example, suppose you have just printed a pointer to a structure and
5336 want to see the contents of the structure.  It suffices to type
5337
5338 @smallexample
5339 p *$
5340 @end smallexample
5341
5342 If you have a chain of structures where the component @code{next} points
5343 to the next one, you can print the contents of the next one with this:
5344
5345 @smallexample
5346 p *$.next
5347 @end smallexample
5348
5349 @noindent
5350 You can print successive links in the chain by repeating this
5351 command---which you can do by just typing @key{RET}.
5352
5353 Note that the history records values, not expressions.  If the value of
5354 @code{x} is 4 and you type these commands:
5355
5356 @smallexample
5357 print x
5358 set x=5
5359 @end smallexample
5360
5361 @noindent
5362 then the value recorded in the value history by the @code{print} command
5363 remains 4 even though the value of @code{x} has changed.
5364
5365 @table @code
5366 @kindex show values
5367 @item show values
5368 Print the last ten values in the value history, with their item numbers.
5369 This is like @samp{p@ $$9} repeated ten times, except that @code{show
5370 values} does not change the history.
5371
5372 @item show values @var{n}
5373 Print ten history values centered on history item number @var{n}.
5374
5375 @item show values +
5376 Print ten history values just after the values last printed.  If no more
5377 values are available, @code{show values +} produces no display.
5378 @end table
5379
5380 Pressing @key{RET} to repeat @code{show values @var{n}} has exactly the
5381 same effect as @samp{show values +}.
5382
5383 @node Convenience Vars
5384 @section Convenience variables
5385
5386 @cindex convenience variables
5387 @value{GDBN} provides @dfn{convenience variables} that you can use within
5388 @value{GDBN} to hold on to a value and refer to it later.  These variables
5389 exist entirely within @value{GDBN}; they are not part of your program, and
5390 setting a convenience variable has no direct effect on further execution
5391 of your program.  That is why you can use them freely.
5392
5393 Convenience variables are prefixed with @samp{$}.  Any name preceded by
5394 @samp{$} can be used for a convenience variable, unless it is one of
5395 the predefined machine-specific register names (@pxref{Registers, ,Registers}).
5396 (Value history references, in contrast, are @emph{numbers} preceded
5397 by @samp{$}.  @xref{Value History, ,Value history}.)
5398
5399 You can save a value in a convenience variable with an assignment
5400 expression, just as you would set a variable in your program.
5401 For example:
5402
5403 @smallexample
5404 set $foo = *object_ptr
5405 @end smallexample
5406
5407 @noindent
5408 would save in @code{$foo} the value contained in the object pointed to by
5409 @code{object_ptr}.
5410
5411 Using a convenience variable for the first time creates it, but its
5412 value is @code{void} until you assign a new value.  You can alter the
5413 value with another assignment at any time.
5414
5415 Convenience variables have no fixed types.  You can assign a convenience
5416 variable any type of value, including structures and arrays, even if
5417 that variable already has a value of a different type.  The convenience
5418 variable, when used as an expression, has the type of its current value.
5419
5420 @table @code
5421 @kindex show convenience
5422 @item show convenience
5423 Print a list of convenience variables used so far, and their values.
5424 Abbreviated @code{show conv}.
5425 @end table
5426
5427 One of the ways to use a convenience variable is as a counter to be
5428 incremented or a pointer to be advanced.  For example, to print
5429 a field from successive elements of an array of structures:
5430
5431 @smallexample
5432 set $i = 0
5433 print bar[$i++]->contents
5434 @end smallexample
5435
5436 @noindent
5437 Repeat that command by typing @key{RET}.
5438
5439 Some convenience variables are created automatically by @value{GDBN} and given
5440 values likely to be useful.
5441
5442 @table @code
5443 @vindex $_@r{, convenience variable}
5444 @item $_
5445 The variable @code{$_} is automatically set by the @code{x} command to
5446 the last address examined (@pxref{Memory, ,Examining memory}).  Other
5447 commands which provide a default address for @code{x} to examine also
5448 set @code{$_} to that address; these commands include @code{info line}
5449 and @code{info breakpoint}.  The type of @code{$_} is @code{void *}
5450 except when set by the @code{x} command, in which case it is a pointer
5451 to the type of @code{$__}.
5452
5453 @vindex $__@r{, convenience variable}
5454 @item $__
5455 The variable @code{$__} is automatically set by the @code{x} command
5456 to the value found in the last address examined.  Its type is chosen
5457 to match the format in which the data was printed.
5458
5459 @item $_exitcode
5460 @vindex $_exitcode@r{, convenience variable}
5461 The variable @code{$_exitcode} is automatically set to the exit code when
5462 the program being debugged terminates.
5463 @end table
5464
5465 On HP-UX systems, if you refer to a function or variable name that
5466 begins with a dollar sign, @value{GDBN} searches for a user or system
5467 name first, before it searches for a convenience variable.
5468
5469 @node Registers
5470 @section Registers
5471
5472 @cindex registers
5473 You can refer to machine register contents, in expressions, as variables
5474 with names starting with @samp{$}.  The names of registers are different
5475 for each machine; use @code{info registers} to see the names used on
5476 your machine.
5477
5478 @table @code
5479 @kindex info registers
5480 @item info registers
5481 Print the names and values of all registers except floating-point
5482 registers (in the selected stack frame).
5483
5484 @kindex info all-registers
5485 @cindex floating point registers
5486 @item info all-registers
5487 Print the names and values of all registers, including floating-point
5488 registers.
5489
5490 @item info registers @var{regname} @dots{}
5491 Print the @dfn{relativized} value of each specified register @var{regname}.
5492 As discussed in detail below, register values are normally relative to
5493 the selected stack frame.  @var{regname} may be any register name valid on
5494 the machine you are using, with or without the initial @samp{$}.
5495 @end table
5496
5497 @value{GDBN} has four ``standard'' register names that are available (in
5498 expressions) on most machines---whenever they do not conflict with an
5499 architecture's canonical mnemonics for registers.  The register names
5500 @code{$pc} and @code{$sp} are used for the program counter register and
5501 the stack pointer.  @code{$fp} is used for a register that contains a
5502 pointer to the current stack frame, and @code{$ps} is used for a
5503 register that contains the processor status.  For example,
5504 you could print the program counter in hex with
5505
5506 @smallexample
5507 p/x $pc
5508 @end smallexample
5509
5510 @noindent
5511 or print the instruction to be executed next with
5512
5513 @smallexample
5514 x/i $pc
5515 @end smallexample
5516
5517 @noindent
5518 or add four to the stack pointer@footnote{This is a way of removing
5519 one word from the stack, on machines where stacks grow downward in
5520 memory (most machines, nowadays).  This assumes that the innermost
5521 stack frame is selected; setting @code{$sp} is not allowed when other
5522 stack frames are selected.  To pop entire frames off the stack,
5523 regardless of machine architecture, use @code{return};
5524 see @ref{Returning, ,Returning from a function}.} with
5525
5526 @smallexample
5527 set $sp += 4
5528 @end smallexample
5529
5530 Whenever possible, these four standard register names are available on
5531 your machine even though the machine has different canonical mnemonics,
5532 so long as there is no conflict.  The @code{info registers} command
5533 shows the canonical names.  For example, on the SPARC, @code{info
5534 registers} displays the processor status register as @code{$psr} but you
5535 can also refer to it as @code{$ps}; and on x86-based machines @code{$ps}
5536 is an alias for the @sc{eflags} register.
5537
5538 @value{GDBN} always considers the contents of an ordinary register as an
5539 integer when the register is examined in this way.  Some machines have
5540 special registers which can hold nothing but floating point; these
5541 registers are considered to have floating point values.  There is no way
5542 to refer to the contents of an ordinary register as floating point value
5543 (although you can @emph{print} it as a floating point value with
5544 @samp{print/f $@var{regname}}).
5545
5546 Some registers have distinct ``raw'' and ``virtual'' data formats.  This
5547 means that the data format in which the register contents are saved by
5548 the operating system is not the same one that your program normally
5549 sees.  For example, the registers of the 68881 floating point
5550 coprocessor are always saved in ``extended'' (raw) format, but all C
5551 programs expect to work with ``double'' (virtual) format.  In such
5552 cases, @value{GDBN} normally works with the virtual format only (the format
5553 that makes sense for your program), but the @code{info registers} command
5554 prints the data in both formats.
5555
5556 Normally, register values are relative to the selected stack frame
5557 (@pxref{Selection, ,Selecting a frame}).  This means that you get the
5558 value that the register would contain if all stack frames farther in
5559 were exited and their saved registers restored.  In order to see the
5560 true contents of hardware registers, you must select the innermost
5561 frame (with @samp{frame 0}).
5562
5563 However, @value{GDBN} must deduce where registers are saved, from the machine
5564 code generated by your compiler.  If some registers are not saved, or if
5565 @value{GDBN} is unable to locate the saved registers, the selected stack
5566 frame makes no difference.
5567
5568 @node Floating Point Hardware
5569 @section Floating point hardware
5570 @cindex floating point
5571
5572 Depending on the configuration, @value{GDBN} may be able to give
5573 you more information about the status of the floating point hardware.
5574
5575 @table @code
5576 @kindex info float
5577 @item info float
5578 Display hardware-dependent information about the floating
5579 point unit.  The exact contents and layout vary depending on the
5580 floating point chip.  Currently, @samp{info float} is supported on
5581 the ARM and x86 machines.
5582 @end table
5583
5584 @node Memory Region Attributes
5585 @section Memory region attributes 
5586 @cindex memory region attributes
5587
5588 @dfn{Memory region attributes} allow you to describe special handling 
5589 required by regions of your target's memory.  @value{GDBN} uses attributes 
5590 to determine whether to allow certain types of memory accesses; whether to
5591 use specific width accesses; and whether to cache target memory.
5592
5593 Defined memory regions can be individually enabled and disabled.  When a
5594 memory region is disabled, @value{GDBN} uses the default attributes when
5595 accessing memory in that region.  Similarly, if no memory regions have
5596 been defined, @value{GDBN} uses the default attributes when accessing
5597 all memory.
5598
5599 When a memory region is defined, it is given a number to identify it; 
5600 to enable, disable, or remove a memory region, you specify that number.
5601
5602 @table @code
5603 @kindex mem
5604 @item mem @var{address1} @var{address2} @var{attributes}@dots{}
5605 Define memory region bounded by @var{address1} and @var{address2}
5606 with attributes @var{attributes}@dots{}.
5607
5608 @kindex delete mem
5609 @item delete mem @var{nums}@dots{}
5610 Remove memory regions @var{nums}@dots{}.
5611
5612 @kindex disable mem
5613 @item disable mem @var{nums}@dots{}
5614 Disable memory regions @var{nums}@dots{}.
5615 A disabled memory region is not forgotten.  
5616 It may be enabled again later.
5617
5618 @kindex enable mem
5619 @item enable mem @var{nums}@dots{}
5620 Enable memory regions @var{nums}@dots{}.
5621
5622 @kindex info mem
5623 @item info mem
5624 Print a table of all defined memory regions, with the following columns
5625 for each region.
5626
5627 @table @emph
5628 @item Memory Region Number
5629 @item Enabled or Disabled.
5630 Enabled memory regions are marked with @samp{y}.  
5631 Disabled memory regions are marked with @samp{n}.
5632
5633 @item Lo Address
5634 The address defining the inclusive lower bound of the memory region.
5635
5636 @item Hi Address
5637 The address defining the exclusive upper bound of the memory region.
5638
5639 @item Attributes
5640 The list of attributes set for this memory region.
5641 @end table
5642 @end table
5643
5644
5645 @subsection Attributes
5646
5647 @subsubsection Memory Access Mode 
5648 The access mode attributes set whether @value{GDBN} may make read or
5649 write accesses to a memory region.
5650
5651 While these attributes prevent @value{GDBN} from performing invalid
5652 memory accesses, they do nothing to prevent the target system, I/O DMA,
5653 etc. from accessing memory.
5654
5655 @table @code
5656 @item ro
5657 Memory is read only.
5658 @item wo
5659 Memory is write only.
5660 @item rw
5661 Memory is read/write.  This is the default.
5662 @end table
5663
5664 @subsubsection Memory Access Size
5665 The acccess size attributes tells @value{GDBN} to use specific sized
5666 accesses in the memory region.  Often memory mapped device registers
5667 require specific sized accesses.  If no access size attribute is
5668 specified, @value{GDBN} may use accesses of any size.
5669
5670 @table @code
5671 @item 8
5672 Use 8 bit memory accesses.
5673 @item 16
5674 Use 16 bit memory accesses.
5675 @item 32
5676 Use 32 bit memory accesses.
5677 @item 64
5678 Use 64 bit memory accesses.
5679 @end table
5680
5681 @c @subsubsection Hardware/Software Breakpoints
5682 @c The hardware/software breakpoint attributes set whether @value{GDBN}
5683 @c will use hardware or software breakpoints for the internal breakpoints
5684 @c used by the step, next, finish, until, etc. commands.
5685 @c
5686 @c @table @code
5687 @c @item hwbreak
5688 @c Always use hardware breakpoints 
5689 @c @item swbreak (default)
5690 @c @end table
5691
5692 @subsubsection Data Cache
5693 The data cache attributes set whether @value{GDBN} will cache target
5694 memory.  While this generally improves performance by reducing debug
5695 protocol overhead, it can lead to incorrect results because @value{GDBN}
5696 does not know about volatile variables or memory mapped device
5697 registers.
5698
5699 @table @code
5700 @item cache
5701 Enable @value{GDBN} to cache target memory. 
5702 @item nocache
5703 Disable @value{GDBN} from caching target memory.  This is the default.
5704 @end table
5705
5706 @c @subsubsection Memory Write Verification
5707 @c The memory write verification attributes set whether @value{GDBN} 
5708 @c will re-reads data after each write to verify the write was successful.
5709 @c
5710 @c @table @code
5711 @c @item verify
5712 @c @item noverify (default)
5713 @c @end table
5714
5715 @node Dump/Restore Files
5716 @section Copy between memory and a file
5717 @cindex dump/restore files
5718 @cindex append data to a file
5719 @cindex dump data to a file
5720 @cindex restore data from a file
5721 @kindex dump
5722 @kindex append
5723 @kindex restore
5724
5725 The commands @code{dump}, @code{append}, and @code{restore} are used
5726 for copying data between target memory and a file.  Data is written
5727 into a file using @code{dump} or @code{append}, and restored from a 
5728 file into memory by using @code{restore}.  Files may be binary, srec,
5729 intel hex, or tekhex (but only binary files can be appended).
5730
5731 @table @code
5732 @kindex dump binary 
5733 @kindex append binary 
5734 @item dump binary memory @var{filename} @var{start_addr} @var{end_addr}
5735 Dump contents of memory from @var{start_addr} to @var{end_addr} into 
5736 raw binary format file @var{filename}.
5737
5738 @item append binary memory @var{filename} @var{start_addr} @var{end_addr}
5739 Append contents of memory from @var{start_addr} to @var{end_addr} to
5740 raw binary format file @var{filename}.
5741
5742 @item dump binary value @var{filename} @var{expression}
5743 Dump value of @var{expression} into raw binary format file @var{filename}.
5744
5745 @item append binary memory @var{filename} @var{expression}
5746 Append value of @var{expression} to raw binary format file @var{filename}.
5747
5748 @kindex dump ihex 
5749 @item dump ihex memory @var{filename} @var{start_addr} @var{end_addr}
5750 Dump contents of memory from @var{start_addr} to @var{end_addr} into 
5751 intel hex format file @var{filename}.
5752
5753 @item dump ihex value @var{filename} @var{expression}
5754 Dump value of @var{expression} into intel hex format file @var{filename}.
5755
5756 @kindex dump srec 
5757 @item dump srec memory @var{filename} @var{start_addr} @var{end_addr}
5758 Dump contents of memory from @var{start_addr} to @var{end_addr} into 
5759 srec format file @var{filename}.
5760
5761 @item dump srec value @var{filename} @var{expression}
5762 Dump value of @var{expression} into srec format file @var{filename}.
5763
5764 @kindex dump tekhex 
5765 @item dump tekhex memory @var{filename} @var{start_addr} @var{end_addr}
5766 Dump contents of memory from @var{start_addr} to @var{end_addr} into 
5767 tekhex format file @var{filename}.
5768
5769 @item dump tekhex value @var{filename} @var{expression}
5770 Dump value of @var{expression} into tekhex format file @var{filename}.
5771
5772 @item restore @var{filename} @var{[binary]} @var{bias} @var{start} @var{end}
5773 Restore the contents of file @var{filename} into memory.  The @code{restore}
5774 command can automatically recognize any known bfd file format, except for
5775 raw binary.  To restore a raw binary file you must use the optional argument
5776 @var{binary} after the filename.
5777
5778 If @var{bias} is non-zero, its value will be added to the addresses 
5779 contained in the file.  Binary files always start at address zero, so
5780 they will be restored at address @var{bias}.  Other bfd files have
5781 a built-in location; they will be restored at offset @var{bias}
5782 from that location.
5783
5784 If @var{start} and/or @var{end} are non-zero, then only data between
5785 file offset @var{start} and file offset @var{end} will be restored.
5786 These offsets are relative to the addresses in the file, before 
5787 the @var{bias} argument is applied.
5788
5789 @end table
5790
5791 @node Macros
5792 @chapter C Preprocessor Macros
5793
5794 Some languages, such as C and C++, provide a way to define and invoke
5795 ``preprocessor macros'' which expand into strings of tokens.
5796 @value{GDBN} can evaluate expressions containing macro invocations, show
5797 the result of macro expansion, and show a macro's definition, including
5798 where it was defined.
5799
5800 You may need to compile your program specially to provide @value{GDBN}
5801 with information about preprocessor macros.  Most compilers do not
5802 include macros in their debugging information, even when you compile
5803 with the @option{-g} flag.  @xref{Compilation}.
5804
5805 A program may define a macro at one point, remove that definition later,
5806 and then provide a different definition after that.  Thus, at different
5807 points in the program, a macro may have different definitions, or have
5808 no definition at all.  If there is a current stack frame, @value{GDBN}
5809 uses the macros in scope at that frame's source code line.  Otherwise,
5810 @value{GDBN} uses the macros in scope at the current listing location;
5811 see @ref{List}.
5812
5813 At the moment, @value{GDBN} does not support the @code{##}
5814 token-splicing operator, the @code{#} stringification operator, or
5815 variable-arity macros.
5816
5817 Whenever @value{GDBN} evaluates an expression, it always expands any
5818 macro invocations present in the expression.  @value{GDBN} also provides
5819 the following commands for working with macros explicitly.
5820
5821 @table @code
5822
5823 @kindex macro expand
5824 @cindex macro expansion, showing the results of preprocessor
5825 @cindex preprocessor macro expansion, showing the results of
5826 @cindex expanding preprocessor macros
5827 @item macro expand @var{expression}
5828 @itemx macro exp @var{expression}
5829 Show the results of expanding all preprocessor macro invocations in
5830 @var{expression}.  Since @value{GDBN} simply expands macros, but does
5831 not parse the result, @var{expression} need not be a valid expression;
5832 it can be any string of tokens.
5833
5834 @kindex macro expand-once
5835 @item macro expand-once @var{expression}
5836 @itemx macro exp1 @var{expression}
5837 @i{(This command is not yet implemented.)}  Show the results of
5838 expanding those preprocessor macro invocations that appear explicitly in
5839 @var{expression}.  Macro invocations appearing in that expansion are
5840 left unchanged.  This command allows you to see the effect of a
5841 particular macro more clearly, without being confused by further
5842 expansions.  Since @value{GDBN} simply expands macros, but does not
5843 parse the result, @var{expression} need not be a valid expression; it
5844 can be any string of tokens.
5845
5846 @kindex show macro
5847 @cindex macro definition, showing
5848 @cindex definition, showing a macro's
5849 @item show macro @var{macro}
5850 Show the definition of the macro named @var{macro}, and describe the
5851 source location where that definition was established.
5852
5853 @kindex macro define
5854 @cindex user-defined macros
5855 @cindex defining macros interactively
5856 @cindex macros, user-defined
5857 @item macro define @var{macro} @var{replacement-list}
5858 @itemx macro define @var{macro}(@var{arglist}) @var{replacement-list}
5859 @i{(This command is not yet implemented.)}  Introduce a definition for a
5860 preprocessor macro named @var{macro}, invocations of which are replaced
5861 by the tokens given in @var{replacement-list}.  The first form of this
5862 command defines an ``object-like'' macro, which takes no arguments; the
5863 second form defines a ``function-like'' macro, which takes the arguments
5864 given in @var{arglist}.
5865
5866 A definition introduced by this command is in scope in every expression
5867 evaluated in @value{GDBN}, until it is removed with the @command{macro
5868 undef} command, described below.  The definition overrides all
5869 definitions for @var{macro} present in the program being debugged, as
5870 well as any previous user-supplied definition.
5871
5872 @kindex macro undef
5873 @item macro undef @var{macro}
5874 @i{(This command is not yet implemented.)}  Remove any user-supplied
5875 definition for the macro named @var{macro}.  This command only affects
5876 definitions provided with the @command{macro define} command, described
5877 above; it cannot remove definitions present in the program being
5878 debugged.
5879
5880 @end table
5881
5882 @cindex macros, example of debugging with
5883 Here is a transcript showing the above commands in action.  First, we
5884 show our source files:
5885
5886 @smallexample
5887 $ cat sample.c
5888 #include <stdio.h>
5889 #include "sample.h"
5890
5891 #define M 42
5892 #define ADD(x) (M + x)
5893
5894 main ()
5895 @{
5896 #define N 28
5897   printf ("Hello, world!\n");
5898 #undef N
5899   printf ("We're so creative.\n");
5900 #define N 1729
5901   printf ("Goodbye, world!\n");
5902 @}
5903 $ cat sample.h
5904 #define Q <
5905 $
5906 @end smallexample
5907
5908 Now, we compile the program using the @sc{gnu} C compiler, @value{NGCC}.
5909 We pass the @option{-gdwarf-2} and @option{-g3} flags to ensure the
5910 compiler includes information about preprocessor macros in the debugging
5911 information.
5912
5913 @smallexample
5914 $ gcc -gdwarf-2 -g3 sample.c -o sample
5915 $
5916 @end smallexample
5917
5918 Now, we start @value{GDBN} on our sample program:
5919
5920 @smallexample
5921 $ gdb -nw sample
5922 GNU gdb 2002-05-06-cvs
5923 Copyright 2002 Free Software Foundation, Inc.
5924 GDB is free software, @dots{}
5925 (gdb)
5926 @end smallexample
5927
5928 We can expand macros and examine their definitions, even when the
5929 program is not running.  @value{GDBN} uses the current listing position
5930 to decide which macro definitions are in scope:
5931
5932 @smallexample
5933 (gdb) list main
5934 3
5935 4       #define M 42
5936 5       #define ADD(x) (M + x)
5937 6
5938 7       main ()
5939 8       @{
5940 9       #define N 28
5941 10        printf ("Hello, world!\n");
5942 11      #undef N
5943 12        printf ("We're so creative.\n");
5944 (gdb) show macro ADD
5945 Defined at /home/jimb/gdb/macros/play/sample.c:5
5946 #define ADD(x) (M + x)
5947 (gdb) show macro Q
5948 Defined at /home/jimb/gdb/macros/play/sample.h:1
5949   included at /home/jimb/gdb/macros/play/sample.c:2
5950 #define Q <
5951 (gdb) macro expand ADD(1)
5952 expands to: (42 + 1)
5953 (gdb) macro expand-once ADD(1)
5954 expands to: once (M + 1)
5955 (gdb) 
5956 @end smallexample
5957
5958 In the example above, note that @command{macro expand-once} expands only
5959 the macro invocation explicit in the original text --- the invocation of
5960 @code{ADD} --- but does not expand the invocation of the macro @code{M},
5961 which was introduced by @code{ADD}.
5962
5963 Once the program is running, GDB uses the macro definitions in force at
5964 the source line of the current stack frame:
5965
5966 @smallexample
5967 (gdb) break main
5968 Breakpoint 1 at 0x8048370: file sample.c, line 10.
5969 (gdb) run
5970 Starting program: /home/jimb/gdb/macros/play/sample 
5971
5972 Breakpoint 1, main () at sample.c:10
5973 10        printf ("Hello, world!\n");
5974 (gdb) 
5975 @end smallexample
5976
5977 At line 10, the definition of the macro @code{N} at line 9 is in force:
5978
5979 @smallexample
5980 (gdb) show macro N
5981 Defined at /home/jimb/gdb/macros/play/sample.c:9
5982 #define N 28
5983 (gdb) macro expand N Q M
5984 expands to: 28 < 42
5985 (gdb) print N Q M
5986 $1 = 1
5987 (gdb) 
5988 @end smallexample
5989
5990 As we step over directives that remove @code{N}'s definition, and then
5991 give it a new definition, @value{GDBN} finds the definition (or lack
5992 thereof) in force at each point:
5993
5994 @smallexample
5995 (gdb) next
5996 Hello, world!
5997 12        printf ("We're so creative.\n");
5998 (gdb) show macro N
5999 The symbol `N' has no definition as a C/C++ preprocessor macro
6000 at /home/jimb/gdb/macros/play/sample.c:12
6001 (gdb) next
6002 We're so creative.
6003 14        printf ("Goodbye, world!\n");
6004 (gdb) show macro N
6005 Defined at /home/jimb/gdb/macros/play/sample.c:13
6006 #define N 1729
6007 (gdb) macro expand N Q M
6008 expands to: 1729 < 42
6009 (gdb) print N Q M
6010 $2 = 0
6011 (gdb) 
6012 @end smallexample
6013
6014
6015 @node Tracepoints
6016 @chapter Tracepoints
6017 @c This chapter is based on the documentation written by Michael
6018 @c Snyder, David Taylor, Jim Blandy, and Elena Zannoni.
6019
6020 @cindex tracepoints
6021 In some applications, it is not feasible for the debugger to interrupt
6022 the program's execution long enough for the developer to learn
6023 anything helpful about its behavior.  If the program's correctness
6024 depends on its real-time behavior, delays introduced by a debugger
6025 might cause the program to change its behavior drastically, or perhaps
6026 fail, even when the code itself is correct.  It is useful to be able
6027 to observe the program's behavior without interrupting it.
6028
6029 Using @value{GDBN}'s @code{trace} and @code{collect} commands, you can
6030 specify locations in the program, called @dfn{tracepoints}, and
6031 arbitrary expressions to evaluate when those tracepoints are reached.
6032 Later, using the @code{tfind} command, you can examine the values
6033 those expressions had when the program hit the tracepoints.  The
6034 expressions may also denote objects in memory---structures or arrays,
6035 for example---whose values @value{GDBN} should record; while visiting
6036 a particular tracepoint, you may inspect those objects as if they were
6037 in memory at that moment.  However, because @value{GDBN} records these
6038 values without interacting with you, it can do so quickly and
6039 unobtrusively, hopefully not disturbing the program's behavior.
6040
6041 The tracepoint facility is currently available only for remote
6042 targets.  @xref{Targets}.  In addition, your remote target must know how
6043 to collect trace data.  This functionality is implemented in the remote
6044 stub; however, none of the stubs distributed with @value{GDBN} support
6045 tracepoints as of this writing.
6046
6047 This chapter describes the tracepoint commands and features.
6048
6049 @menu
6050 * Set Tracepoints::         
6051 * Analyze Collected Data::      
6052 * Tracepoint Variables::        
6053 @end menu
6054
6055 @node Set Tracepoints
6056 @section Commands to Set Tracepoints
6057
6058 Before running such a @dfn{trace experiment}, an arbitrary number of
6059 tracepoints can be set.  Like a breakpoint (@pxref{Set Breaks}), a
6060 tracepoint has a number assigned to it by @value{GDBN}.  Like with
6061 breakpoints, tracepoint numbers are successive integers starting from
6062 one.  Many of the commands associated with tracepoints take the
6063 tracepoint number as their argument, to identify which tracepoint to
6064 work on.
6065
6066 For each tracepoint, you can specify, in advance, some arbitrary set
6067 of data that you want the target to collect in the trace buffer when
6068 it hits that tracepoint.  The collected data can include registers,
6069 local variables, or global data.  Later, you can use @value{GDBN}
6070 commands to examine the values these data had at the time the
6071 tracepoint was hit.
6072
6073 This section describes commands to set tracepoints and associated
6074 conditions and actions.
6075
6076 @menu
6077 * Create and Delete Tracepoints::  
6078 * Enable and Disable Tracepoints::  
6079 * Tracepoint Passcounts::       
6080 * Tracepoint Actions::          
6081 * Listing Tracepoints::         
6082 * Starting and Stopping Trace Experiment::  
6083 @end menu
6084
6085 @node Create and Delete Tracepoints
6086 @subsection Create and Delete Tracepoints
6087
6088 @table @code
6089 @cindex set tracepoint
6090 @kindex trace
6091 @item trace
6092 The @code{trace} command is very similar to the @code{break} command.
6093 Its argument can be a source line, a function name, or an address in
6094 the target program.  @xref{Set Breaks}.  The @code{trace} command
6095 defines a tracepoint, which is a point in the target program where the
6096 debugger will briefly stop, collect some data, and then allow the
6097 program to continue.  Setting a tracepoint or changing its commands
6098 doesn't take effect until the next @code{tstart} command; thus, you
6099 cannot change the tracepoint attributes once a trace experiment is
6100 running.
6101
6102 Here are some examples of using the @code{trace} command:
6103
6104 @smallexample
6105 (@value{GDBP}) @b{trace foo.c:121}    // a source file and line number
6106
6107 (@value{GDBP}) @b{trace +2}           // 2 lines forward
6108
6109 (@value{GDBP}) @b{trace my_function}  // first source line of function
6110
6111 (@value{GDBP}) @b{trace *my_function} // EXACT start address of function
6112
6113 (@value{GDBP}) @b{trace *0x2117c4}    // an address
6114 @end smallexample
6115
6116 @noindent
6117 You can abbreviate @code{trace} as @code{tr}.
6118
6119 @vindex $tpnum
6120 @cindex last tracepoint number
6121 @cindex recent tracepoint number
6122 @cindex tracepoint number
6123 The convenience variable @code{$tpnum} records the tracepoint number
6124 of the most recently set tracepoint.
6125
6126 @kindex delete tracepoint
6127 @cindex tracepoint deletion
6128 @item delete tracepoint @r{[}@var{num}@r{]}
6129 Permanently delete one or more tracepoints.  With no argument, the
6130 default is to delete all tracepoints.
6131
6132 Examples:
6133
6134 @smallexample
6135 (@value{GDBP}) @b{delete trace 1 2 3} // remove three tracepoints
6136
6137 (@value{GDBP}) @b{delete trace}       // remove all tracepoints
6138 @end smallexample
6139
6140 @noindent
6141 You can abbreviate this command as @code{del tr}.
6142 @end table
6143
6144 @node Enable and Disable Tracepoints
6145 @subsection Enable and Disable Tracepoints
6146
6147 @table @code
6148 @kindex disable tracepoint
6149 @item disable tracepoint @r{[}@var{num}@r{]}
6150 Disable tracepoint @var{num}, or all tracepoints if no argument
6151 @var{num} is given.  A disabled tracepoint will have no effect during
6152 the next trace experiment, but it is not forgotten.  You can re-enable
6153 a disabled tracepoint using the @code{enable tracepoint} command.
6154
6155 @kindex enable tracepoint
6156 @item enable tracepoint @r{[}@var{num}@r{]}
6157 Enable tracepoint @var{num}, or all tracepoints.  The enabled
6158 tracepoints will become effective the next time a trace experiment is
6159 run.
6160 @end table
6161
6162 @node Tracepoint Passcounts
6163 @subsection Tracepoint Passcounts
6164
6165 @table @code
6166 @kindex passcount
6167 @cindex tracepoint pass count
6168 @item passcount @r{[}@var{n} @r{[}@var{num}@r{]]}
6169 Set the @dfn{passcount} of a tracepoint.  The passcount is a way to
6170 automatically stop a trace experiment.  If a tracepoint's passcount is
6171 @var{n}, then the trace experiment will be automatically stopped on
6172 the @var{n}'th time that tracepoint is hit.  If the tracepoint number
6173 @var{num} is not specified, the @code{passcount} command sets the
6174 passcount of the most recently defined tracepoint.  If no passcount is
6175 given, the trace experiment will run until stopped explicitly by the
6176 user.
6177
6178 Examples:
6179
6180 @smallexample
6181 (@value{GDBP}) @b{passcount 5 2} // Stop on the 5th execution of 
6182 @exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// tracepoint 2}
6183
6184 (@value{GDBP}) @b{passcount 12}  // Stop on the 12th execution of the
6185 @exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// most recently defined tracepoint.}
6186 (@value{GDBP}) @b{trace foo}
6187 (@value{GDBP}) @b{pass 3}
6188 (@value{GDBP}) @b{trace bar}
6189 (@value{GDBP}) @b{pass 2}
6190 (@value{GDBP}) @b{trace baz}
6191 (@value{GDBP}) @b{pass 1}        // Stop tracing when foo has been
6192 @exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// executed 3 times OR when bar has}
6193 @exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// been executed 2 times}
6194 @exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// OR when baz has been executed 1 time.}
6195 @end smallexample
6196 @end table
6197
6198 @node Tracepoint Actions
6199 @subsection Tracepoint Action Lists
6200
6201 @table @code
6202 @kindex actions
6203 @cindex tracepoint actions
6204 @item actions @r{[}@var{num}@r{]}
6205 This command will prompt for a list of actions to be taken when the
6206 tracepoint is hit.  If the tracepoint number @var{num} is not
6207 specified, this command sets the actions for the one that was most
6208 recently defined (so that you can define a tracepoint and then say
6209 @code{actions} without bothering about its number).  You specify the
6210 actions themselves on the following lines, one action at a time, and
6211 terminate the actions list with a line containing just @code{end}.  So
6212 far, the only defined actions are @code{collect} and
6213 @code{while-stepping}.
6214
6215 @cindex remove actions from a tracepoint
6216 To remove all actions from a tracepoint, type @samp{actions @var{num}}
6217 and follow it immediately with @samp{end}.
6218
6219 @smallexample
6220 (@value{GDBP}) @b{collect @var{data}} // collect some data
6221
6222 (@value{GDBP}) @b{while-stepping 5} // single-step 5 times, collect data
6223
6224 (@value{GDBP}) @b{end}              // signals the end of actions.
6225 @end smallexample
6226
6227 In the following example, the action list begins with @code{collect}
6228 commands indicating the things to be collected when the tracepoint is
6229 hit.  Then, in order to single-step and collect additional data
6230 following the tracepoint, a @code{while-stepping} command is used,
6231 followed by the list of things to be collected while stepping.  The
6232 @code{while-stepping} command is terminated by its own separate
6233 @code{end} command.  Lastly, the action list is terminated by an
6234 @code{end} command.
6235
6236 @smallexample
6237 (@value{GDBP}) @b{trace foo}
6238 (@value{GDBP}) @b{actions}
6239 Enter actions for tracepoint 1, one per line:
6240 > collect bar,baz
6241 > collect $regs
6242 > while-stepping 12
6243   > collect $fp, $sp
6244   > end
6245 end
6246 @end smallexample
6247
6248 @kindex collect @r{(tracepoints)}
6249 @item collect @var{expr1}, @var{expr2}, @dots{}
6250 Collect values of the given expressions when the tracepoint is hit.
6251 This command accepts a comma-separated list of any valid expressions.
6252 In addition to global, static, or local variables, the following
6253 special arguments are supported:
6254
6255 @table @code
6256 @item $regs
6257 collect all registers
6258
6259 @item $args
6260 collect all function arguments
6261
6262 @item $locals
6263 collect all local variables.
6264 @end table
6265
6266 You can give several consecutive @code{collect} commands, each one
6267 with a single argument, or one @code{collect} command with several
6268 arguments separated by commas: the effect is the same.
6269
6270 The command @code{info scope} (@pxref{Symbols, info scope}) is
6271 particularly useful for figuring out what data to collect.
6272
6273 @kindex while-stepping @r{(tracepoints)}
6274 @item while-stepping @var{n}
6275 Perform @var{n} single-step traces after the tracepoint, collecting
6276 new data at each step.  The @code{while-stepping} command is
6277 followed by the list of what to collect while stepping (followed by
6278 its own @code{end} command):
6279
6280 @smallexample
6281 > while-stepping 12
6282   > collect $regs, myglobal
6283   > end
6284 >
6285 @end smallexample
6286
6287 @noindent
6288 You may abbreviate @code{while-stepping} as @code{ws} or
6289 @code{stepping}.
6290 @end table
6291
6292 @node Listing Tracepoints
6293 @subsection Listing Tracepoints
6294
6295 @table @code
6296 @kindex info tracepoints
6297 @cindex information about tracepoints
6298 @item info tracepoints @r{[}@var{num}@r{]}
6299 Display information about the tracepoint @var{num}.  If you don't specify
6300 a tracepoint number, displays information about all the tracepoints
6301 defined so far.  For each tracepoint, the following information is
6302 shown:
6303
6304 @itemize @bullet
6305 @item
6306 its number
6307 @item
6308 whether it is enabled or disabled
6309 @item
6310 its address
6311 @item
6312 its passcount as given by the @code{passcount @var{n}} command
6313 @item
6314 its step count as given by the @code{while-stepping @var{n}} command
6315 @item
6316 where in the source files is the tracepoint set
6317 @item
6318 its action list as given by the @code{actions} command
6319 @end itemize
6320
6321 @smallexample
6322 (@value{GDBP}) @b{info trace}
6323 Num Enb Address    PassC StepC What
6324 1   y   0x002117c4 0     0     <gdb_asm>
6325 2   y   0x0020dc64 0     0     in g_test at g_test.c:1375
6326 3   y   0x0020b1f4 0     0     in get_data at ../foo.c:41
6327 (@value{GDBP})
6328 @end smallexample
6329
6330 @noindent
6331 This command can be abbreviated @code{info tp}.
6332 @end table
6333
6334 @node Starting and Stopping Trace Experiment
6335 @subsection Starting and Stopping Trace Experiment
6336
6337 @table @code
6338 @kindex tstart
6339 @cindex start a new trace experiment
6340 @cindex collected data discarded
6341 @item tstart
6342 This command takes no arguments.  It starts the trace experiment, and
6343 begins collecting data.  This has the side effect of discarding all
6344 the data collected in the trace buffer during the previous trace
6345 experiment.
6346
6347 @kindex tstop
6348 @cindex stop a running trace experiment
6349 @item tstop
6350 This command takes no arguments.  It ends the trace experiment, and
6351 stops collecting data.
6352
6353 @strong{Note:} a trace experiment and data collection may stop
6354 automatically if any tracepoint's passcount is reached
6355 (@pxref{Tracepoint Passcounts}), or if the trace buffer becomes full.
6356
6357 @kindex tstatus
6358 @cindex status of trace data collection
6359 @cindex trace experiment, status of
6360 @item tstatus
6361 This command displays the status of the current trace data
6362 collection.
6363 @end table
6364
6365 Here is an example of the commands we described so far:
6366
6367 @smallexample
6368 (@value{GDBP}) @b{trace gdb_c_test}
6369 (@value{GDBP}) @b{actions}
6370 Enter actions for tracepoint #1, one per line.
6371 > collect $regs,$locals,$args
6372 > while-stepping 11
6373   > collect $regs
6374   > end
6375 > end
6376 (@value{GDBP}) @b{tstart}
6377         [time passes @dots{}]
6378 (@value{GDBP}) @b{tstop}
6379 @end smallexample
6380
6381
6382 @node Analyze Collected Data
6383 @section Using the collected data
6384
6385 After the tracepoint experiment ends, you use @value{GDBN} commands
6386 for examining the trace data.  The basic idea is that each tracepoint
6387 collects a trace @dfn{snapshot} every time it is hit and another
6388 snapshot every time it single-steps.  All these snapshots are
6389 consecutively numbered from zero and go into a buffer, and you can
6390 examine them later.  The way you examine them is to @dfn{focus} on a
6391 specific trace snapshot.  When the remote stub is focused on a trace
6392 snapshot, it will respond to all @value{GDBN} requests for memory and
6393 registers by reading from the buffer which belongs to that snapshot,
6394 rather than from @emph{real} memory or registers of the program being
6395 debugged.  This means that @strong{all} @value{GDBN} commands
6396 (@code{print}, @code{info registers}, @code{backtrace}, etc.) will
6397 behave as if we were currently debugging the program state as it was
6398 when the tracepoint occurred.  Any requests for data that are not in
6399 the buffer will fail.
6400
6401 @menu
6402 * tfind::                       How to select a trace snapshot
6403 * tdump::                       How to display all data for a snapshot
6404 * save-tracepoints::            How to save tracepoints for a future run
6405 @end menu
6406
6407 @node tfind
6408 @subsection @code{tfind @var{n}}
6409
6410 @kindex tfind
6411 @cindex select trace snapshot
6412 @cindex find trace snapshot
6413 The basic command for selecting a trace snapshot from the buffer is
6414 @code{tfind @var{n}}, which finds trace snapshot number @var{n},
6415 counting from zero.  If no argument @var{n} is given, the next
6416 snapshot is selected.
6417
6418 Here are the various forms of using the @code{tfind} command.
6419
6420 @table @code
6421 @item tfind start
6422 Find the first snapshot in the buffer.  This is a synonym for
6423 @code{tfind 0} (since 0 is the number of the first snapshot).
6424
6425 @item tfind none
6426 Stop debugging trace snapshots, resume @emph{live} debugging.
6427
6428 @item tfind end
6429 Same as @samp{tfind none}.
6430
6431 @item tfind
6432 No argument means find the next trace snapshot.
6433
6434 @item tfind -
6435 Find the previous trace snapshot before the current one.  This permits
6436 retracing earlier steps.
6437
6438 @item tfind tracepoint @var{num}
6439 Find the next snapshot associated with tracepoint @var{num}.  Search
6440 proceeds forward from the last examined trace snapshot.  If no
6441 argument @var{num} is given, it means find the next snapshot collected
6442 for the same tracepoint as the current snapshot.
6443
6444 @item tfind pc @var{addr}
6445 Find the next snapshot associated with the value @var{addr} of the
6446 program counter.  Search proceeds forward from the last examined trace
6447 snapshot.  If no argument @var{addr} is given, it means find the next
6448 snapshot with the same value of PC as the current snapshot.
6449
6450 @item tfind outside @var{addr1}, @var{addr2}
6451 Find the next snapshot whose PC is outside the given range of
6452 addresses.
6453
6454 @item tfind range @var{addr1}, @var{addr2}
6455 Find the next snapshot whose PC is between @var{addr1} and
6456 @var{addr2}.  @c FIXME: Is the range inclusive or exclusive?
6457
6458 @item tfind line @r{[}@var{file}:@r{]}@var{n}
6459 Find the next snapshot associated with the source line @var{n}.  If
6460 the optional argument @var{file} is given, refer to line @var{n} in
6461 that source file.  Search proceeds forward from the last examined
6462 trace snapshot.  If no argument @var{n} is given, it means find the
6463 next line other than the one currently being examined; thus saying
6464 @code{tfind line} repeatedly can appear to have the same effect as
6465 stepping from line to line in a @emph{live} debugging session.
6466 @end table
6467
6468 The default arguments for the @code{tfind} commands are specifically
6469 designed to make it easy to scan through the trace buffer.  For
6470 instance, @code{tfind} with no argument selects the next trace
6471 snapshot, and @code{tfind -} with no argument selects the previous
6472 trace snapshot.  So, by giving one @code{tfind} command, and then
6473 simply hitting @key{RET} repeatedly you can examine all the trace
6474 snapshots in order.  Or, by saying @code{tfind -} and then hitting
6475 @key{RET} repeatedly you can examine the snapshots in reverse order.
6476 The @code{tfind line} command with no argument selects the snapshot
6477 for the next source line executed.  The @code{tfind pc} command with
6478 no argument selects the next snapshot with the same program counter
6479 (PC) as the current frame.  The @code{tfind tracepoint} command with
6480 no argument selects the next trace snapshot collected by the same
6481 tracepoint as the current one.
6482
6483 In addition to letting you scan through the trace buffer manually,
6484 these commands make it easy to construct @value{GDBN} scripts that
6485 scan through the trace buffer and print out whatever collected data
6486 you are interested in.  Thus, if we want to examine the PC, FP, and SP
6487 registers from each trace frame in the buffer, we can say this:
6488
6489 @smallexample
6490 (@value{GDBP}) @b{tfind start}
6491 (@value{GDBP}) @b{while ($trace_frame != -1)}
6492 > printf "Frame %d, PC = %08X, SP = %08X, FP = %08X\n", \
6493           $trace_frame, $pc, $sp, $fp
6494 > tfind
6495 > end
6496
6497 Frame 0, PC = 0020DC64, SP = 0030BF3C, FP = 0030BF44
6498 Frame 1, PC = 0020DC6C, SP = 0030BF38, FP = 0030BF44
6499 Frame 2, PC = 0020DC70, SP = 0030BF34, FP = 0030BF44
6500 Frame 3, PC = 0020DC74, SP = 0030BF30, FP = 0030BF44
6501 Frame 4, PC = 0020DC78, SP = 0030BF2C, FP = 0030BF44
6502 Frame 5, PC = 0020DC7C, SP = 0030BF28, FP = 0030BF44
6503 Frame 6, PC = 0020DC80, SP = 0030BF24, FP = 0030BF44
6504 Frame 7, PC = 0020DC84, SP = 0030BF20, FP = 0030BF44
6505 Frame 8, PC = 0020DC88, SP = 0030BF1C, FP = 0030BF44
6506 Frame 9, PC = 0020DC8E, SP = 0030BF18, FP = 0030BF44
6507 Frame 10, PC = 00203F6C, SP = 0030BE3C, FP = 0030BF14
6508 @end smallexample
6509
6510 Or, if we want to examine the variable @code{X} at each source line in
6511 the buffer:
6512
6513 @smallexample
6514 (@value{GDBP}) @b{tfind start}
6515 (@value{GDBP}) @b{while ($trace_frame != -1)}
6516 > printf "Frame %d, X == %d\n", $trace_frame, X
6517 > tfind line
6518 > end
6519
6520 Frame 0, X = 1
6521 Frame 7, X = 2
6522 Frame 13, X = 255
6523 @end smallexample
6524
6525 @node tdump
6526 @subsection @code{tdump}
6527 @kindex tdump
6528 @cindex dump all data collected at tracepoint
6529 @cindex tracepoint data, display
6530
6531 This command takes no arguments.  It prints all the data collected at
6532 the current trace snapshot.
6533
6534 @smallexample
6535 (@value{GDBP}) @b{trace 444}
6536 (@value{GDBP}) @b{actions}
6537 Enter actions for tracepoint #2, one per line:
6538 > collect $regs, $locals, $args, gdb_long_test
6539 > end
6540
6541 (@value{GDBP}) @b{tstart}
6542
6543 (@value{GDBP}) @b{tfind line 444}
6544 #0  gdb_test (p1=0x11, p2=0x22, p3=0x33, p4=0x44, p5=0x55, p6=0x66)
6545 at gdb_test.c:444
6546 444        printp( "%s: arguments = 0x%X 0x%X 0x%X 0x%X 0x%X 0x%X\n", )
6547
6548 (@value{GDBP}) @b{tdump}
6549 Data collected at tracepoint 2, trace frame 1:
6550 d0             0xc4aa0085       -995491707
6551 d1             0x18     24
6552 d2             0x80     128
6553 d3             0x33     51
6554 d4             0x71aea3d        119204413
6555 d5             0x22     34
6556 d6             0xe0     224
6557 d7             0x380035 3670069
6558 a0             0x19e24a 1696330
6559 a1             0x3000668        50333288
6560 a2             0x100    256
6561 a3             0x322000 3284992
6562 a4             0x3000698        50333336
6563 a5             0x1ad3cc 1758156
6564 fp             0x30bf3c 0x30bf3c
6565 sp             0x30bf34 0x30bf34
6566 ps             0x0      0
6567 pc             0x20b2c8 0x20b2c8
6568 fpcontrol      0x0      0
6569 fpstatus       0x0      0
6570 fpiaddr        0x0      0
6571 p = 0x20e5b4 "gdb-test"
6572 p1 = (void *) 0x11
6573 p2 = (void *) 0x22
6574 p3 = (void *) 0x33
6575 p4 = (void *) 0x44
6576 p5 = (void *) 0x55
6577 p6 = (void *) 0x66
6578 gdb_long_test = 17 '\021'
6579
6580 (@value{GDBP})
6581 @end smallexample
6582
6583 @node save-tracepoints
6584 @subsection @code{save-tracepoints @var{filename}}
6585 @kindex save-tracepoints
6586 @cindex save tracepoints for future sessions
6587
6588 This command saves all current tracepoint definitions together with
6589 their actions and passcounts, into a file @file{@var{filename}}
6590 suitable for use in a later debugging session.  To read the saved
6591 tracepoint definitions, use the @code{source} command (@pxref{Command
6592 Files}).
6593
6594 @node Tracepoint Variables
6595 @section Convenience Variables for Tracepoints
6596 @cindex tracepoint variables
6597 @cindex convenience variables for tracepoints
6598
6599 @table @code
6600 @vindex $trace_frame
6601 @item (int) $trace_frame
6602 The current trace snapshot (a.k.a.@: @dfn{frame}) number, or -1 if no
6603 snapshot is selected.
6604
6605 @vindex $tracepoint
6606 @item (int) $tracepoint
6607 The tracepoint for the current trace snapshot.
6608
6609 @vindex $trace_line
6610 @item (int) $trace_line
6611 The line number for the current trace snapshot.
6612
6613 @vindex $trace_file
6614 @item (char []) $trace_file
6615 The source file for the current trace snapshot.
6616
6617 @vindex $trace_func
6618 @item (char []) $trace_func
6619 The name of the function containing @code{$tracepoint}.
6620 @end table
6621
6622 Note: @code{$trace_file} is not suitable for use in @code{printf},
6623 use @code{output} instead.
6624
6625 Here's a simple example of using these convenience variables for
6626 stepping through all the trace snapshots and printing some of their
6627 data.
6628
6629 @smallexample
6630 (@value{GDBP}) @b{tfind start}
6631
6632 (@value{GDBP}) @b{while $trace_frame != -1}
6633 > output $trace_file
6634 > printf ", line %d (tracepoint #%d)\n", $trace_line, $tracepoint
6635 > tfind
6636 > end
6637 @end smallexample
6638
6639 @node Overlays
6640 @chapter Debugging Programs That Use Overlays
6641 @cindex overlays
6642
6643 If your program is too large to fit completely in your target system's
6644 memory, you can sometimes use @dfn{overlays} to work around this
6645 problem.  @value{GDBN} provides some support for debugging programs that
6646 use overlays.
6647
6648 @menu
6649 * How Overlays Work::              A general explanation of overlays.
6650 * Overlay Commands::               Managing overlays in @value{GDBN}.
6651 * Automatic Overlay Debugging::    @value{GDBN} can find out which overlays are
6652                                    mapped by asking the inferior.
6653 * Overlay Sample Program::         A sample program using overlays.
6654 @end menu
6655
6656 @node How Overlays Work
6657 @section How Overlays Work
6658 @cindex mapped overlays
6659 @cindex unmapped overlays
6660 @cindex load address, overlay's
6661 @cindex mapped address
6662 @cindex overlay area
6663
6664 Suppose you have a computer whose instruction address space is only 64
6665 kilobytes long, but which has much more memory which can be accessed by
6666 other means: special instructions, segment registers, or memory
6667 management hardware, for example.  Suppose further that you want to
6668 adapt a program which is larger than 64 kilobytes to run on this system.
6669
6670 One solution is to identify modules of your program which are relatively
6671 independent, and need not call each other directly; call these modules
6672 @dfn{overlays}.  Separate the overlays from the main program, and place
6673 their machine code in the larger memory.  Place your main program in
6674 instruction memory, but leave at least enough space there to hold the
6675 largest overlay as well.
6676
6677 Now, to call a function located in an overlay, you must first copy that
6678 overlay's machine code from the large memory into the space set aside
6679 for it in the instruction memory, and then jump to its entry point
6680 there.
6681
6682 @c NB:  In the below the mapped area's size is greater or equal to the
6683 @c size of all overlays.  This is intentional to remind the developer
6684 @c that overlays don't necessarily need to be the same size.
6685
6686 @smallexample
6687 @group
6688     Data             Instruction            Larger
6689 Address Space       Address Space        Address Space
6690 +-----------+       +-----------+        +-----------+
6691 |           |       |           |        |           |
6692 +-----------+       +-----------+        +-----------+<-- overlay 1
6693 | program   |       |   main    |   .----| overlay 1 | load address
6694 | variables |       |  program  |   |    +-----------+
6695 | and heap  |       |           |   |    |           |
6696 +-----------+       |           |   |    +-----------+<-- overlay 2
6697 |           |       +-----------+   |    |           | load address
6698 +-----------+       |           |   |  .-| overlay 2 |
6699                     |           |   |  | |           |
6700          mapped --->+-----------+   |  | +-----------+
6701          address    |           |   |  | |           |
6702                     |  overlay  | <-'  | |           |
6703                     |   area    |  <---' +-----------+<-- overlay 3
6704                     |           | <---.  |           | load address
6705                     +-----------+     `--| overlay 3 |
6706                     |           |        |           |
6707                     +-----------+        |           |
6708                                          +-----------+
6709                                          |           |
6710                                          +-----------+
6711
6712                     @anchor{A code overlay}A code overlay
6713 @end group
6714 @end smallexample
6715
6716 The diagram (@pxref{A code overlay}) shows a system with separate data
6717 and instruction address spaces.  To map an overlay, the program copies
6718 its code from the larger address space to the instruction address space.
6719 Since the overlays shown here all use the same mapped address, only one
6720 may be mapped at a time.  For a system with a single address space for
6721 data and instructions, the diagram would be similar, except that the
6722 program variables and heap would share an address space with the main
6723 program and the overlay area.
6724
6725 An overlay loaded into instruction memory and ready for use is called a
6726 @dfn{mapped} overlay; its @dfn{mapped address} is its address in the
6727 instruction memory.  An overlay not present (or only partially present)
6728 in instruction memory is called @dfn{unmapped}; its @dfn{load address}
6729 is its address in the larger memory.  The mapped address is also called
6730 the @dfn{virtual memory address}, or @dfn{VMA}; the load address is also
6731 called the @dfn{load memory address}, or @dfn{LMA}.
6732
6733 Unfortunately, overlays are not a completely transparent way to adapt a
6734 program to limited instruction memory.  They introduce a new set of
6735 global constraints you must keep in mind as you design your program:
6736
6737 @itemize @bullet
6738
6739 @item
6740 Before calling or returning to a function in an overlay, your program
6741 must make sure that overlay is actually mapped.  Otherwise, the call or
6742 return will transfer control to the right address, but in the wrong
6743 overlay, and your program will probably crash.
6744
6745 @item
6746 If the process of mapping an overlay is expensive on your system, you
6747 will need to choose your overlays carefully to minimize their effect on
6748 your program's performance.
6749
6750 @item
6751 The executable file you load onto your system must contain each
6752 overlay's instructions, appearing at the overlay's load address, not its
6753 mapped address.  However, each overlay's instructions must be relocated
6754 and its symbols defined as if the overlay were at its mapped address.
6755 You can use GNU linker scripts to specify different load and relocation
6756 addresses for pieces of your program; see @ref{Overlay Description,,,
6757 ld.info, Using ld: the GNU linker}.
6758
6759 @item
6760 The procedure for loading executable files onto your system must be able
6761 to load their contents into the larger address space as well as the
6762 instruction and data spaces.
6763
6764 @end itemize
6765
6766 The overlay system described above is rather simple, and could be
6767 improved in many ways:
6768
6769 @itemize @bullet
6770
6771 @item
6772 If your system has suitable bank switch registers or memory management
6773 hardware, you could use those facilities to make an overlay's load area
6774 contents simply appear at their mapped address in instruction space.
6775 This would probably be faster than copying the overlay to its mapped
6776 area in the usual way.
6777
6778 @item
6779 If your overlays are small enough, you could set aside more than one
6780 overlay area, and have more than one overlay mapped at a time.
6781
6782 @item
6783 You can use overlays to manage data, as well as instructions.  In
6784 general, data overlays are even less transparent to your design than
6785 code overlays: whereas code overlays only require care when you call or
6786 return to functions, data overlays require care every time you access
6787 the data.  Also, if you change the contents of a data overlay, you
6788 must copy its contents back out to its load address before you can copy a
6789 different data overlay into the same mapped area.
6790
6791 @end itemize
6792
6793
6794 @node Overlay Commands
6795 @section Overlay Commands
6796
6797 To use @value{GDBN}'s overlay support, each overlay in your program must
6798 correspond to a separate section of the executable file.  The section's
6799 virtual memory address and load memory address must be the overlay's
6800 mapped and load addresses.  Identifying overlays with sections allows
6801 @value{GDBN} to determine the appropriate address of a function or
6802 variable, depending on whether the overlay is mapped or not.
6803
6804 @value{GDBN}'s overlay commands all start with the word @code{overlay};
6805 you can abbreviate this as @code{ov} or @code{ovly}.  The commands are:
6806
6807 @table @code
6808 @item overlay off
6809 @kindex overlay off
6810 Disable @value{GDBN}'s overlay support.  When overlay support is
6811 disabled, @value{GDBN} assumes that all functions and variables are
6812 always present at their mapped addresses.  By default, @value{GDBN}'s
6813 overlay support is disabled.
6814
6815 @item overlay manual
6816 @kindex overlay manual
6817 @cindex manual overlay debugging
6818 Enable @dfn{manual} overlay debugging.  In this mode, @value{GDBN}
6819 relies on you to tell it which overlays are mapped, and which are not,
6820 using the @code{overlay map-overlay} and @code{overlay unmap-overlay}
6821 commands described below.
6822
6823 @item overlay map-overlay @var{overlay}
6824 @itemx overlay map @var{overlay}
6825 @kindex overlay map-overlay
6826 @cindex map an overlay
6827 Tell @value{GDBN} that @var{overlay} is now mapped; @var{overlay} must
6828 be the name of the object file section containing the overlay.  When an
6829 overlay is mapped, @value{GDBN} assumes it can find the overlay's
6830 functions and variables at their mapped addresses.  @value{GDBN} assumes
6831 that any other overlays whose mapped ranges overlap that of
6832 @var{overlay} are now unmapped.
6833
6834 @item overlay unmap-overlay @var{overlay}
6835 @itemx overlay unmap @var{overlay}
6836 @kindex overlay unmap-overlay
6837 @cindex unmap an overlay
6838 Tell @value{GDBN} that @var{overlay} is no longer mapped; @var{overlay}
6839 must be the name of the object file section containing the overlay.
6840 When an overlay is unmapped, @value{GDBN} assumes it can find the
6841 overlay's functions and variables at their load addresses.
6842
6843 @item overlay auto
6844 @kindex overlay auto
6845 Enable @dfn{automatic} overlay debugging.  In this mode, @value{GDBN}
6846 consults a data structure the overlay manager maintains in the inferior
6847 to see which overlays are mapped.  For details, see @ref{Automatic
6848 Overlay Debugging}.
6849
6850 @item overlay load-target
6851 @itemx overlay load
6852 @kindex overlay load-target
6853 @cindex reloading the overlay table
6854 Re-read the overlay table from the inferior.  Normally, @value{GDBN}
6855 re-reads the table @value{GDBN} automatically each time the inferior
6856 stops, so this command should only be necessary if you have changed the
6857 overlay mapping yourself using @value{GDBN}.  This command is only
6858 useful when using automatic overlay debugging.
6859
6860 @item overlay list-overlays
6861 @itemx overlay list
6862 @cindex listing mapped overlays
6863 Display a list of the overlays currently mapped, along with their mapped
6864 addresses, load addresses, and sizes.
6865
6866 @end table
6867
6868 Normally, when @value{GDBN} prints a code address, it includes the name
6869 of the function the address falls in:
6870
6871 @smallexample
6872 (gdb) print main
6873 $3 = @{int ()@} 0x11a0 <main>
6874 @end smallexample
6875 @noindent
6876 When overlay debugging is enabled, @value{GDBN} recognizes code in
6877 unmapped overlays, and prints the names of unmapped functions with
6878 asterisks around them.  For example, if @code{foo} is a function in an
6879 unmapped overlay, @value{GDBN} prints it this way:
6880
6881 @smallexample
6882 (gdb) overlay list
6883 No sections are mapped.
6884 (gdb) print foo
6885 $5 = @{int (int)@} 0x100000 <*foo*>
6886 @end smallexample
6887 @noindent
6888 When @code{foo}'s overlay is mapped, @value{GDBN} prints the function's
6889 name normally:
6890
6891 @smallexample
6892 (gdb) overlay list
6893 Section .ov.foo.text, loaded at 0x100000 - 0x100034, 
6894         mapped at 0x1016 - 0x104a
6895 (gdb) print foo
6896 $6 = @{int (int)@} 0x1016 <foo>
6897 @end smallexample
6898
6899 When overlay debugging is enabled, @value{GDBN} can find the correct
6900 address for functions and variables in an overlay, whether or not the
6901 overlay is mapped.  This allows most @value{GDBN} commands, like
6902 @code{break} and @code{disassemble}, to work normally, even on unmapped
6903 code.  However, @value{GDBN}'s breakpoint support has some limitations:
6904
6905 @itemize @bullet
6906 @item
6907 @cindex breakpoints in overlays
6908 @cindex overlays, setting breakpoints in
6909 You can set breakpoints in functions in unmapped overlays, as long as
6910 @value{GDBN} can write to the overlay at its load address.
6911 @item
6912 @value{GDBN} can not set hardware or simulator-based breakpoints in
6913 unmapped overlays.  However, if you set a breakpoint at the end of your
6914 overlay manager (and tell @value{GDBN} which overlays are now mapped, if
6915 you are using manual overlay management), @value{GDBN} will re-set its
6916 breakpoints properly.
6917 @end itemize
6918
6919
6920 @node Automatic Overlay Debugging
6921 @section Automatic Overlay Debugging
6922 @cindex automatic overlay debugging
6923
6924 @value{GDBN} can automatically track which overlays are mapped and which
6925 are not, given some simple co-operation from the overlay manager in the
6926 inferior.  If you enable automatic overlay debugging with the
6927 @code{overlay auto} command (@pxref{Overlay Commands}), @value{GDBN}
6928 looks in the inferior's memory for certain variables describing the
6929 current state of the overlays.
6930
6931 Here are the variables your overlay manager must define to support
6932 @value{GDBN}'s automatic overlay debugging:
6933
6934 @table @asis
6935
6936 @item @code{_ovly_table}:
6937 This variable must be an array of the following structures:
6938
6939 @smallexample
6940 struct
6941 @{
6942   /* The overlay's mapped address.  */
6943   unsigned long vma;
6944
6945   /* The size of the overlay, in bytes.  */
6946   unsigned long size;
6947
6948   /* The overlay's load address.  */
6949   unsigned long lma;
6950
6951   /* Non-zero if the overlay is currently mapped;
6952      zero otherwise.  */
6953   unsigned long mapped;
6954 @}
6955 @end smallexample
6956
6957 @item @code{_novlys}:
6958 This variable must be a four-byte signed integer, holding the total
6959 number of elements in @code{_ovly_table}.
6960
6961 @end table
6962
6963 To decide whether a particular overlay is mapped or not, @value{GDBN}
6964 looks for an entry in @w{@code{_ovly_table}} whose @code{vma} and
6965 @code{lma} members equal the VMA and LMA of the overlay's section in the
6966 executable file.  When @value{GDBN} finds a matching entry, it consults
6967 the entry's @code{mapped} member to determine whether the overlay is
6968 currently mapped.
6969
6970 In addition, your overlay manager may define a function called
6971 @code{_ovly_debug_event}.  If this function is defined, @value{GDBN}
6972 will silently set a breakpoint there.  If the overlay manager then
6973 calls this function whenever it has changed the overlay table, this
6974 will enable @value{GDBN} to accurately keep track of which overlays
6975 are in program memory, and update any breakpoints that may be set
6976 in overlays.  This will allow breakpoints to work even if the 
6977 overlays are kept in ROM or other non-writable memory while they
6978 are not being executed.
6979
6980 @node Overlay Sample Program
6981 @section Overlay Sample Program
6982 @cindex overlay example program
6983
6984 When linking a program which uses overlays, you must place the overlays
6985 at their load addresses, while relocating them to run at their mapped
6986 addresses.  To do this, you must write a linker script (@pxref{Overlay
6987 Description,,, ld.info, Using ld: the GNU linker}).  Unfortunately,
6988 since linker scripts are specific to a particular host system, target
6989 architecture, and target memory layout, this manual cannot provide
6990 portable sample code demonstrating @value{GDBN}'s overlay support.
6991
6992 However, the @value{GDBN} source distribution does contain an overlaid
6993 program, with linker scripts for a few systems, as part of its test
6994 suite.  The program consists of the following files from
6995 @file{gdb/testsuite/gdb.base}:
6996
6997 @table @file
6998 @item overlays.c
6999 The main program file.
7000 @item ovlymgr.c
7001 A simple overlay manager, used by @file{overlays.c}.
7002 @item foo.c
7003 @itemx bar.c
7004 @itemx baz.c
7005 @itemx grbx.c
7006 Overlay modules, loaded and used by @file{overlays.c}.
7007 @item d10v.ld
7008 @itemx m32r.ld
7009 Linker scripts for linking the test program on the @code{d10v-elf}
7010 and @code{m32r-elf} targets.
7011 @end table
7012
7013 You can build the test program using the @code{d10v-elf} GCC
7014 cross-compiler like this:
7015
7016 @smallexample
7017 $ d10v-elf-gcc -g -c overlays.c
7018 $ d10v-elf-gcc -g -c ovlymgr.c
7019 $ d10v-elf-gcc -g -c foo.c
7020 $ d10v-elf-gcc -g -c bar.c
7021 $ d10v-elf-gcc -g -c baz.c
7022 $ d10v-elf-gcc -g -c grbx.c
7023 $ d10v-elf-gcc -g overlays.o ovlymgr.o foo.o bar.o \
7024                   baz.o grbx.o -Wl,-Td10v.ld -o overlays
7025 @end smallexample
7026
7027 The build process is identical for any other architecture, except that
7028 you must substitute the appropriate compiler and linker script for the
7029 target system for @code{d10v-elf-gcc} and @code{d10v.ld}.
7030
7031
7032 @node Languages
7033 @chapter Using @value{GDBN} with Different Languages
7034 @cindex languages
7035
7036 Although programming languages generally have common aspects, they are
7037 rarely expressed in the same manner.  For instance, in ANSI C,
7038 dereferencing a pointer @code{p} is accomplished by @code{*p}, but in
7039 Modula-2, it is accomplished by @code{p^}.  Values can also be
7040 represented (and displayed) differently.  Hex numbers in C appear as
7041 @samp{0x1ae}, while in Modula-2 they appear as @samp{1AEH}.
7042
7043 @cindex working language
7044 Language-specific information is built into @value{GDBN} for some languages,
7045 allowing you to express operations like the above in your program's
7046 native language, and allowing @value{GDBN} to output values in a manner
7047 consistent with the syntax of your program's native language.  The
7048 language you use to build expressions is called the @dfn{working
7049 language}.
7050
7051 @menu
7052 * Setting::                     Switching between source languages
7053 * Show::                        Displaying the language
7054 * Checks::                      Type and range checks
7055 * Support::                     Supported languages
7056 @end menu
7057
7058 @node Setting
7059 @section Switching between source languages
7060
7061 There are two ways to control the working language---either have @value{GDBN}
7062 set it automatically, or select it manually yourself.  You can use the
7063 @code{set language} command for either purpose.  On startup, @value{GDBN}
7064 defaults to setting the language automatically.  The working language is
7065 used to determine how expressions you type are interpreted, how values
7066 are printed, etc.
7067
7068 In addition to the working language, every source file that
7069 @value{GDBN} knows about has its own working language.  For some object
7070 file formats, the compiler might indicate which language a particular
7071 source file is in.  However, most of the time @value{GDBN} infers the
7072 language from the name of the file.  The language of a source file
7073 controls whether C@t{++} names are demangled---this way @code{backtrace} can
7074 show each frame appropriately for its own language.  There is no way to
7075 set the language of a source file from within @value{GDBN}, but you can
7076 set the language associated with a filename extension.  @xref{Show, ,
7077 Displaying the language}.
7078
7079 This is most commonly a problem when you use a program, such
7080 as @code{cfront} or @code{f2c}, that generates C but is written in
7081 another language.  In that case, make the
7082 program use @code{#line} directives in its C output; that way
7083 @value{GDBN} will know the correct language of the source code of the original
7084 program, and will display that source code, not the generated C code.
7085
7086 @menu
7087 * Filenames::                   Filename extensions and languages.
7088 * Manually::                    Setting the working language manually
7089 * Automatically::               Having @value{GDBN} infer the source language
7090 @end menu
7091
7092 @node Filenames
7093 @subsection List of filename extensions and languages
7094
7095 If a source file name ends in one of the following extensions, then
7096 @value{GDBN} infers that its language is the one indicated.
7097
7098 @table @file
7099
7100 @item .c
7101 C source file
7102
7103 @item .C
7104 @itemx .cc
7105 @itemx .cp
7106 @itemx .cpp
7107 @itemx .cxx
7108 @itemx .c++
7109 C@t{++} source file
7110
7111 @item .f
7112 @itemx .F
7113 Fortran source file
7114
7115 @item .ch
7116 @itemx .c186
7117 @itemx .c286
7118 CHILL source file
7119
7120 @item .mod
7121 Modula-2 source file
7122
7123 @item .s
7124 @itemx .S
7125 Assembler source file.  This actually behaves almost like C, but
7126 @value{GDBN} does not skip over function prologues when stepping.
7127 @end table
7128
7129 In addition, you may set the language associated with a filename
7130 extension.  @xref{Show, , Displaying the language}.
7131
7132 @node Manually
7133 @subsection Setting the working language
7134
7135 If you allow @value{GDBN} to set the language automatically,
7136 expressions are interpreted the same way in your debugging session and
7137 your program.
7138
7139 @kindex set language
7140 If you wish, you may set the language manually.  To do this, issue the
7141 command @samp{set language @var{lang}}, where @var{lang} is the name of
7142 a language, such as
7143 @code{c} or @code{modula-2}.
7144 For a list of the supported languages, type @samp{set language}.
7145
7146 Setting the language manually prevents @value{GDBN} from updating the working
7147 language automatically.  This can lead to confusion if you try
7148 to debug a program when the working language is not the same as the
7149 source language, when an expression is acceptable to both
7150 languages---but means different things.  For instance, if the current
7151 source file were written in C, and @value{GDBN} was parsing Modula-2, a
7152 command such as:
7153
7154 @smallexample
7155 print a = b + c
7156 @end smallexample
7157
7158 @noindent
7159 might not have the effect you intended.  In C, this means to add
7160 @code{b} and @code{c} and place the result in @code{a}.  The result
7161 printed would be the value of @code{a}.  In Modula-2, this means to compare
7162 @code{a} to the result of @code{b+c}, yielding a @code{BOOLEAN} value.
7163
7164 @node Automatically
7165 @subsection Having @value{GDBN} infer the source language
7166
7167 To have @value{GDBN} set the working language automatically, use
7168 @samp{set language local} or @samp{set language auto}.  @value{GDBN}
7169 then infers the working language.  That is, when your program stops in a
7170 frame (usually by encountering a breakpoint), @value{GDBN} sets the
7171 working language to the language recorded for the function in that
7172 frame.  If the language for a frame is unknown (that is, if the function
7173 or block corresponding to the frame was defined in a source file that
7174 does not have a recognized extension), the current working language is
7175 not changed, and @value{GDBN} issues a warning.
7176
7177 This may not seem necessary for most programs, which are written
7178 entirely in one source language.  However, program modules and libraries
7179 written in one source language can be used by a main program written in
7180 a different source language.  Using @samp{set language auto} in this
7181 case frees you from having to set the working language manually.
7182
7183 @node Show
7184 @section Displaying the language
7185
7186 The following commands help you find out which language is the
7187 working language, and also what language source files were written in.
7188
7189 @kindex show language
7190 @kindex info frame@r{, show the source language}
7191 @kindex info source@r{, show the source language}
7192 @table @code
7193 @item show language
7194 Display the current working language.  This is the
7195 language you can use with commands such as @code{print} to
7196 build and compute expressions that may involve variables in your program.
7197
7198 @item info frame
7199 Display the source language for this frame.  This language becomes the
7200 working language if you use an identifier from this frame.
7201 @xref{Frame Info, ,Information about a frame}, to identify the other
7202 information listed here.
7203
7204 @item info source
7205 Display the source language of this source file.
7206 @xref{Symbols, ,Examining the Symbol Table}, to identify the other
7207 information listed here.
7208 @end table
7209
7210 In unusual circumstances, you may have source files with extensions
7211 not in the standard list.  You can then set the extension associated
7212 with a language explicitly:
7213
7214 @kindex set extension-language
7215 @kindex info extensions
7216 @table @code
7217 @item set extension-language @var{.ext} @var{language}
7218 Set source files with extension @var{.ext} to be assumed to be in
7219 the source language @var{language}.
7220
7221 @item info extensions
7222 List all the filename extensions and the associated languages.
7223 @end table
7224
7225 @node Checks
7226 @section Type and range checking
7227
7228 @quotation
7229 @emph{Warning:} In this release, the @value{GDBN} commands for type and range
7230 checking are included, but they do not yet have any effect.  This
7231 section documents the intended facilities.
7232 @end quotation
7233 @c FIXME remove warning when type/range code added
7234
7235 Some languages are designed to guard you against making seemingly common
7236 errors through a series of compile- and run-time checks.  These include
7237 checking the type of arguments to functions and operators, and making
7238 sure mathematical overflows are caught at run time.  Checks such as
7239 these help to ensure a program's correctness once it has been compiled
7240 by eliminating type mismatches, and providing active checks for range
7241 errors when your program is running.
7242
7243 @value{GDBN} can check for conditions like the above if you wish.
7244 Although @value{GDBN} does not check the statements in your program, it
7245 can check expressions entered directly into @value{GDBN} for evaluation via
7246 the @code{print} command, for example.  As with the working language,
7247 @value{GDBN} can also decide whether or not to check automatically based on
7248 your program's source language.  @xref{Support, ,Supported languages},
7249 for the default settings of supported languages.
7250
7251 @menu
7252 * Type Checking::               An overview of type checking
7253 * Range Checking::              An overview of range checking
7254 @end menu
7255
7256 @cindex type checking
7257 @cindex checks, type
7258 @node Type Checking
7259 @subsection An overview of type checking
7260
7261 Some languages, such as Modula-2, are strongly typed, meaning that the
7262 arguments to operators and functions have to be of the correct type,
7263 otherwise an error occurs.  These checks prevent type mismatch
7264 errors from ever causing any run-time problems.  For example,
7265
7266 @smallexample
7267 1 + 2 @result{} 3
7268 @exdent but
7269 @error{} 1 + 2.3
7270 @end smallexample
7271
7272 The second example fails because the @code{CARDINAL} 1 is not
7273 type-compatible with the @code{REAL} 2.3.
7274
7275 For the expressions you use in @value{GDBN} commands, you can tell the
7276 @value{GDBN} type checker to skip checking;
7277 to treat any mismatches as errors and abandon the expression;
7278 or to only issue warnings when type mismatches occur,
7279 but evaluate the expression anyway.  When you choose the last of
7280 these, @value{GDBN} evaluates expressions like the second example above, but
7281 also issues a warning.
7282
7283 Even if you turn type checking off, there may be other reasons
7284 related to type that prevent @value{GDBN} from evaluating an expression.
7285 For instance, @value{GDBN} does not know how to add an @code{int} and
7286 a @code{struct foo}.  These particular type errors have nothing to do
7287 with the language in use, and usually arise from expressions, such as
7288 the one described above, which make little sense to evaluate anyway.
7289
7290 Each language defines to what degree it is strict about type.  For
7291 instance, both Modula-2 and C require the arguments to arithmetical
7292 operators to be numbers.  In C, enumerated types and pointers can be
7293 represented as numbers, so that they are valid arguments to mathematical
7294 operators.  @xref{Support, ,Supported languages}, for further
7295 details on specific languages.
7296
7297 @value{GDBN} provides some additional commands for controlling the type checker:
7298
7299 @kindex set check@r{, type}
7300 @kindex set check type
7301 @kindex show check type
7302 @table @code
7303 @item set check type auto
7304 Set type checking on or off based on the current working language.
7305 @xref{Support, ,Supported languages}, for the default settings for
7306 each language.
7307
7308 @item set check type on
7309 @itemx set check type off
7310 Set type checking on or off, overriding the default setting for the
7311 current working language.  Issue a warning if the setting does not
7312 match the language default.  If any type mismatches occur in
7313 evaluating an expression while type checking is on, @value{GDBN} prints a
7314 message and aborts evaluation of the expression.
7315
7316 @item set check type warn
7317 Cause the type checker to issue warnings, but to always attempt to
7318 evaluate the expression.  Evaluating the expression may still
7319 be impossible for other reasons.  For example, @value{GDBN} cannot add
7320 numbers and structures.
7321
7322 @item show type
7323 Show the current setting of the type checker, and whether or not @value{GDBN}
7324 is setting it automatically.
7325 @end table
7326
7327 @cindex range checking
7328 @cindex checks, range
7329 @node Range Checking
7330 @subsection An overview of range checking
7331
7332 In some languages (such as Modula-2), it is an error to exceed the
7333 bounds of a type; this is enforced with run-time checks.  Such range
7334 checking is meant to ensure program correctness by making sure
7335 computations do not overflow, or indices on an array element access do
7336 not exceed the bounds of the array.
7337
7338 For expressions you use in @value{GDBN} commands, you can tell
7339 @value{GDBN} to treat range errors in one of three ways: ignore them,
7340 always treat them as errors and abandon the expression, or issue
7341 warnings but evaluate the expression anyway.
7342
7343 A range error can result from numerical overflow, from exceeding an
7344 array index bound, or when you type a constant that is not a member
7345 of any type.  Some languages, however, do not treat overflows as an
7346 error.  In many implementations of C, mathematical overflow causes the
7347 result to ``wrap around'' to lower values---for example, if @var{m} is
7348 the largest integer value, and @var{s} is the smallest, then
7349
7350 @smallexample
7351 @var{m} + 1 @result{} @var{s}
7352 @end smallexample
7353
7354 This, too, is specific to individual languages, and in some cases
7355 specific to individual compilers or machines.  @xref{Support, ,
7356 Supported languages}, for further details on specific languages.
7357
7358 @value{GDBN} provides some additional commands for controlling the range checker:
7359
7360 @kindex set check@r{, range}
7361 @kindex set check range
7362 @kindex show check range
7363 @table @code
7364 @item set check range auto
7365 Set range checking on or off based on the current working language.
7366 @xref{Support, ,Supported languages}, for the default settings for
7367 each language.
7368
7369 @item set check range on
7370 @itemx set check range off
7371 Set range checking on or off, overriding the default setting for the
7372 current working language.  A warning is issued if the setting does not
7373 match the language default.  If a range error occurs and range checking is on,
7374 then a message is printed and evaluation of the expression is aborted.
7375
7376 @item set check range warn
7377 Output messages when the @value{GDBN} range checker detects a range error,
7378 but attempt to evaluate the expression anyway.  Evaluating the
7379 expression may still be impossible for other reasons, such as accessing
7380 memory that the process does not own (a typical example from many Unix
7381 systems).
7382
7383 @item show range
7384 Show the current setting of the range checker, and whether or not it is
7385 being set automatically by @value{GDBN}.
7386 @end table
7387
7388 @node Support
7389 @section Supported languages
7390
7391 @value{GDBN} supports C, C@t{++}, Fortran, Java, Chill, assembly, and Modula-2.
7392 @c This is false ...
7393 Some @value{GDBN} features may be used in expressions regardless of the
7394 language you use: the @value{GDBN} @code{@@} and @code{::} operators,
7395 and the @samp{@{type@}addr} construct (@pxref{Expressions,
7396 ,Expressions}) can be used with the constructs of any supported
7397 language.
7398
7399 The following sections detail to what degree each source language is
7400 supported by @value{GDBN}.  These sections are not meant to be language
7401 tutorials or references, but serve only as a reference guide to what the
7402 @value{GDBN} expression parser accepts, and what input and output
7403 formats should look like for different languages.  There are many good
7404 books written on each of these languages; please look to these for a
7405 language reference or tutorial.
7406
7407 @menu
7408 * C::           C and C@t{++}
7409 * Modula-2::    Modula-2
7410 * Chill::        Chill
7411 @end menu
7412
7413 @node C
7414 @subsection C and C@t{++}
7415
7416 @cindex C and C@t{++}
7417 @cindex expressions in C or C@t{++}
7418
7419 Since C and C@t{++} are so closely related, many features of @value{GDBN} apply
7420 to both languages.  Whenever this is the case, we discuss those languages
7421 together.
7422
7423 @cindex C@t{++}
7424 @cindex @code{g++}, @sc{gnu} C@t{++} compiler
7425 @cindex @sc{gnu} C@t{++}
7426 The C@t{++} debugging facilities are jointly implemented by the C@t{++}
7427 compiler and @value{GDBN}.  Therefore, to debug your C@t{++} code
7428 effectively, you must compile your C@t{++} programs with a supported
7429 C@t{++} compiler, such as @sc{gnu} @code{g++}, or the HP ANSI C@t{++}
7430 compiler (@code{aCC}).
7431
7432 For best results when using @sc{gnu} C@t{++}, use the stabs debugging
7433 format.  You can select that format explicitly with the @code{g++}
7434 command-line options @samp{-gstabs} or @samp{-gstabs+}.  See
7435 @ref{Debugging Options,,Options for Debugging Your Program or @sc{gnu}
7436 CC, gcc.info, Using @sc{gnu} CC}, for more information.
7437
7438 @menu
7439 * C Operators::                 C and C@t{++} operators
7440 * C Constants::                 C and C@t{++} constants
7441 * C plus plus expressions::     C@t{++} expressions
7442 * C Defaults::                  Default settings for C and C@t{++}
7443 * C Checks::                    C and C@t{++} type and range checks
7444 * Debugging C::                 @value{GDBN} and C
7445 * Debugging C plus plus::       @value{GDBN} features for C@t{++}
7446 @end menu
7447
7448 @node C Operators
7449 @subsubsection C and C@t{++} operators
7450
7451 @cindex C and C@t{++} operators
7452
7453 Operators must be defined on values of specific types.  For instance,
7454 @code{+} is defined on numbers, but not on structures.  Operators are
7455 often defined on groups of types.
7456
7457 For the purposes of C and C@t{++}, the following definitions hold:
7458
7459 @itemize @bullet
7460
7461 @item
7462 @emph{Integral types} include @code{int} with any of its storage-class
7463 specifiers; @code{char}; @code{enum}; and, for C@t{++}, @code{bool}.
7464
7465 @item
7466 @emph{Floating-point types} include @code{float}, @code{double}, and
7467 @code{long double} (if supported by the target platform).
7468
7469 @item
7470 @emph{Pointer types} include all types defined as @code{(@var{type} *)}.
7471
7472 @item
7473 @emph{Scalar types} include all of the above.
7474
7475 @end itemize
7476
7477 @noindent
7478 The following operators are supported.  They are listed here
7479 in order of increasing precedence:
7480
7481 @table @code
7482 @item ,
7483 The comma or sequencing operator.  Expressions in a comma-separated list
7484 are evaluated from left to right, with the result of the entire
7485 expression being the last expression evaluated.
7486
7487 @item =
7488 Assignment.  The value of an assignment expression is the value
7489 assigned.  Defined on scalar types.
7490
7491 @item @var{op}=
7492 Used in an expression of the form @w{@code{@var{a} @var{op}= @var{b}}},
7493 and translated to @w{@code{@var{a} = @var{a op b}}}.
7494 @w{@code{@var{op}=}} and @code{=} have the same precedence.
7495 @var{op} is any one of the operators @code{|}, @code{^}, @code{&},
7496 @code{<<}, @code{>>}, @code{+}, @code{-}, @code{*}, @code{/}, @code{%}.
7497
7498 @item ?:
7499 The ternary operator.  @code{@var{a} ? @var{b} : @var{c}} can be thought
7500 of as:  if @var{a} then @var{b} else @var{c}.  @var{a} should be of an
7501 integral type.
7502
7503 @item ||
7504 Logical @sc{or}.  Defined on integral types.
7505
7506 @item &&
7507 Logical @sc{and}.  Defined on integral types.
7508
7509 @item |
7510 Bitwise @sc{or}.  Defined on integral types.
7511
7512 @item ^
7513 Bitwise exclusive-@sc{or}.  Defined on integral types.
7514
7515 @item &
7516 Bitwise @sc{and}.  Defined on integral types.
7517
7518 @item ==@r{, }!=
7519 Equality and inequality.  Defined on scalar types.  The value of these
7520 expressions is 0 for false and non-zero for true.
7521
7522 @item <@r{, }>@r{, }<=@r{, }>=
7523 Less than, greater than, less than or equal, greater than or equal.
7524 Defined on scalar types.  The value of these expressions is 0 for false
7525 and non-zero for true.
7526
7527 @item <<@r{, }>>
7528 left shift, and right shift.  Defined on integral types.
7529
7530 @item @@
7531 The @value{GDBN} ``artificial array'' operator (@pxref{Expressions, ,Expressions}).
7532
7533 @item +@r{, }-
7534 Addition and subtraction.  Defined on integral types, floating-point types and
7535 pointer types.
7536
7537 @item *@r{, }/@r{, }%
7538 Multiplication, division, and modulus.  Multiplication and division are
7539 defined on integral and floating-point types.  Modulus is defined on
7540 integral types.
7541
7542 @item ++@r{, }--
7543 Increment and decrement.  When appearing before a variable, the
7544 operation is performed before the variable is used in an expression;
7545 when appearing after it, the variable's value is used before the
7546 operation takes place.
7547
7548 @item *
7549 Pointer dereferencing.  Defined on pointer types.  Same precedence as
7550 @code{++}.
7551
7552 @item &
7553 Address operator.  Defined on variables.  Same precedence as @code{++}.
7554
7555 For debugging C@t{++}, @value{GDBN} implements a use of @samp{&} beyond what is
7556 allowed in the C@t{++} language itself: you can use @samp{&(&@var{ref})}
7557 (or, if you prefer, simply @samp{&&@var{ref}}) to examine the address
7558 where a C@t{++} reference variable (declared with @samp{&@var{ref}}) is
7559 stored.
7560
7561 @item -
7562 Negative.  Defined on integral and floating-point types.  Same
7563 precedence as @code{++}.
7564
7565 @item !
7566 Logical negation.  Defined on integral types.  Same precedence as
7567 @code{++}.
7568
7569 @item ~
7570 Bitwise complement operator.  Defined on integral types.  Same precedence as
7571 @code{++}.
7572
7573
7574 @item .@r{, }->
7575 Structure member, and pointer-to-structure member.  For convenience,
7576 @value{GDBN} regards the two as equivalent, choosing whether to dereference a
7577 pointer based on the stored type information.
7578 Defined on @code{struct} and @code{union} data.
7579
7580 @item .*@r{, }->*
7581 Dereferences of pointers to members.
7582
7583 @item []
7584 Array indexing.  @code{@var{a}[@var{i}]} is defined as
7585 @code{*(@var{a}+@var{i})}.  Same precedence as @code{->}.
7586
7587 @item ()
7588 Function parameter list.  Same precedence as @code{->}.
7589
7590 @item ::
7591 C@t{++} scope resolution operator.  Defined on @code{struct}, @code{union},
7592 and @code{class} types.
7593
7594 @item ::
7595 Doubled colons also represent the @value{GDBN} scope operator
7596 (@pxref{Expressions, ,Expressions}).  Same precedence as @code{::},
7597 above.
7598 @end table
7599
7600 If an operator is redefined in the user code, @value{GDBN} usually
7601 attempts to invoke the redefined version instead of using the operator's
7602 predefined meaning.
7603
7604 @menu
7605 * C Constants::
7606 @end menu
7607
7608 @node C Constants
7609 @subsubsection C and C@t{++} constants
7610
7611 @cindex C and C@t{++} constants
7612
7613 @value{GDBN} allows you to express the constants of C and C@t{++} in the
7614 following ways:
7615
7616 @itemize @bullet
7617 @item
7618 Integer constants are a sequence of digits.  Octal constants are
7619 specified by a leading @samp{0} (i.e.@: zero), and hexadecimal constants
7620 by a leading @samp{0x} or @samp{0X}.  Constants may also end with a letter
7621 @samp{l}, specifying that the constant should be treated as a
7622 @code{long} value.
7623
7624 @item
7625 Floating point constants are a sequence of digits, followed by a decimal
7626 point, followed by a sequence of digits, and optionally followed by an
7627 exponent.  An exponent is of the form:
7628 @samp{@w{e@r{[[}+@r{]|}-@r{]}@var{nnn}}}, where @var{nnn} is another
7629 sequence of digits.  The @samp{+} is optional for positive exponents.
7630 A floating-point constant may also end with a letter @samp{f} or
7631 @samp{F}, specifying that the constant should be treated as being of
7632 the @code{float} (as opposed to the default @code{double}) type; or with
7633 a letter @samp{l} or @samp{L}, which specifies a @code{long double}
7634 constant.
7635
7636 @item
7637 Enumerated constants consist of enumerated identifiers, or their
7638 integral equivalents.
7639
7640 @item
7641 Character constants are a single character surrounded by single quotes
7642 (@code{'}), or a number---the ordinal value of the corresponding character
7643 (usually its @sc{ascii} value).  Within quotes, the single character may
7644 be represented by a letter or by @dfn{escape sequences}, which are of
7645 the form @samp{\@var{nnn}}, where @var{nnn} is the octal representation
7646 of the character's ordinal value; or of the form @samp{\@var{x}}, where
7647 @samp{@var{x}} is a predefined special character---for example,
7648 @samp{\n} for newline.
7649
7650 @item
7651 String constants are a sequence of character constants surrounded by
7652 double quotes (@code{"}).  Any valid character constant (as described
7653 above) may appear.  Double quotes within the string must be preceded by
7654 a backslash, so for instance @samp{"a\"b'c"} is a string of five
7655 characters.
7656
7657 @item
7658 Pointer constants are an integral value.  You can also write pointers
7659 to constants using the C operator @samp{&}.
7660
7661 @item
7662 Array constants are comma-separated lists surrounded by braces @samp{@{}
7663 and @samp{@}}; for example, @samp{@{1,2,3@}} is a three-element array of
7664 integers, @samp{@{@{1,2@}, @{3,4@}, @{5,6@}@}} is a three-by-two array,
7665 and @samp{@{&"hi", &"there", &"fred"@}} is a three-element array of pointers.
7666 @end itemize
7667
7668 @menu
7669 * C plus plus expressions::
7670 * C Defaults::
7671 * C Checks::
7672
7673 * Debugging C::
7674 @end menu
7675
7676 @node C plus plus expressions
7677 @subsubsection C@t{++} expressions
7678
7679 @cindex expressions in C@t{++}
7680 @value{GDBN} expression handling can interpret most C@t{++} expressions.
7681
7682 @cindex C@t{++} support, not in @sc{coff}
7683 @cindex @sc{coff} versus C@t{++}
7684 @cindex C@t{++} and object formats
7685 @cindex object formats and C@t{++}
7686 @cindex a.out and C@t{++}
7687 @cindex @sc{ecoff} and C@t{++}
7688 @cindex @sc{xcoff} and C@t{++}
7689 @cindex @sc{elf}/stabs and C@t{++}
7690 @cindex @sc{elf}/@sc{dwarf} and C@t{++}
7691 @c FIXME!! GDB may eventually be able to debug C++ using DWARF; check
7692 @c periodically whether this has happened...
7693 @quotation
7694 @emph{Warning:} @value{GDBN} can only debug C@t{++} code if you use the
7695 proper compiler.  Typically, C@t{++} debugging depends on the use of
7696 additional debugging information in the symbol table, and thus requires
7697 special support.  In particular, if your compiler generates a.out, MIPS
7698 @sc{ecoff}, RS/6000 @sc{xcoff}, or @sc{elf} with stabs extensions to the
7699 symbol table, these facilities are all available.  (With @sc{gnu} CC,
7700 you can use the @samp{-gstabs} option to request stabs debugging
7701 extensions explicitly.)  Where the object code format is standard
7702 @sc{coff} or @sc{dwarf} in @sc{elf}, on the other hand, most of the C@t{++}
7703 support in @value{GDBN} does @emph{not} work.
7704 @end quotation
7705
7706 @enumerate
7707
7708 @cindex member functions
7709 @item
7710 Member function calls are allowed; you can use expressions like
7711
7712 @smallexample
7713 count = aml->GetOriginal(x, y)
7714 @end smallexample
7715
7716 @vindex this@r{, inside C@t{++} member functions}
7717 @cindex namespace in C@t{++}
7718 @item
7719 While a member function is active (in the selected stack frame), your
7720 expressions have the same namespace available as the member function;
7721 that is, @value{GDBN} allows implicit references to the class instance
7722 pointer @code{this} following the same rules as C@t{++}.
7723
7724 @cindex call overloaded functions
7725 @cindex overloaded functions, calling
7726 @cindex type conversions in C@t{++}
7727 @item
7728 You can call overloaded functions; @value{GDBN} resolves the function
7729 call to the right definition, with some restrictions.  @value{GDBN} does not
7730 perform overload resolution involving user-defined type conversions,
7731 calls to constructors, or instantiations of templates that do not exist
7732 in the program.  It also cannot handle ellipsis argument lists or
7733 default arguments.
7734
7735 It does perform integral conversions and promotions, floating-point
7736 promotions, arithmetic conversions, pointer conversions, conversions of
7737 class objects to base classes, and standard conversions such as those of
7738 functions or arrays to pointers; it requires an exact match on the
7739 number of function arguments.
7740
7741 Overload resolution is always performed, unless you have specified
7742 @code{set overload-resolution off}.  @xref{Debugging C plus plus,
7743 ,@value{GDBN} features for C@t{++}}.
7744
7745 You must specify @code{set overload-resolution off} in order to use an
7746 explicit function signature to call an overloaded function, as in
7747 @smallexample
7748 p 'foo(char,int)'('x', 13)
7749 @end smallexample
7750
7751 The @value{GDBN} command-completion facility can simplify this;
7752 see @ref{Completion, ,Command completion}.
7753
7754 @cindex reference declarations
7755 @item
7756 @value{GDBN} understands variables declared as C@t{++} references; you can use
7757 them in expressions just as you do in C@t{++} source---they are automatically
7758 dereferenced.
7759
7760 In the parameter list shown when @value{GDBN} displays a frame, the values of
7761 reference variables are not displayed (unlike other variables); this
7762 avoids clutter, since references are often used for large structures.
7763 The @emph{address} of a reference variable is always shown, unless
7764 you have specified @samp{set print address off}.
7765
7766 @item
7767 @value{GDBN} supports the C@t{++} name resolution operator @code{::}---your
7768 expressions can use it just as expressions in your program do.  Since
7769 one scope may be defined in another, you can use @code{::} repeatedly if
7770 necessary, for example in an expression like
7771 @samp{@var{scope1}::@var{scope2}::@var{name}}.  @value{GDBN} also allows
7772 resolving name scope by reference to source files, in both C and C@t{++}
7773 debugging (@pxref{Variables, ,Program variables}).
7774 @end enumerate
7775
7776 In addition, when used with HP's C@t{++} compiler, @value{GDBN} supports
7777 calling virtual functions correctly, printing out virtual bases of
7778 objects, calling functions in a base subobject, casting objects, and
7779 invoking user-defined operators.
7780
7781 @node C Defaults
7782 @subsubsection C and C@t{++} defaults
7783
7784 @cindex C and C@t{++} defaults
7785
7786 If you allow @value{GDBN} to set type and range checking automatically, they
7787 both default to @code{off} whenever the working language changes to
7788 C or C@t{++}.  This happens regardless of whether you or @value{GDBN}
7789 selects the working language.
7790
7791 If you allow @value{GDBN} to set the language automatically, it
7792 recognizes source files whose names end with @file{.c}, @file{.C}, or
7793 @file{.cc}, etc, and when @value{GDBN} enters code compiled from one of
7794 these files, it sets the working language to C or C@t{++}.
7795 @xref{Automatically, ,Having @value{GDBN} infer the source language},
7796 for further details.
7797
7798 @c Type checking is (a) primarily motivated by Modula-2, and (b)
7799 @c unimplemented.  If (b) changes, it might make sense to let this node
7800 @c appear even if Mod-2 does not, but meanwhile ignore it. roland 16jul93.
7801
7802 @node C Checks
7803 @subsubsection C and C@t{++} type and range checks
7804
7805 @cindex C and C@t{++} checks
7806
7807 By default, when @value{GDBN} parses C or C@t{++} expressions, type checking
7808 is not used.  However, if you turn type checking on, @value{GDBN}
7809 considers two variables type equivalent if:
7810
7811 @itemize @bullet
7812 @item
7813 The two variables are structured and have the same structure, union, or
7814 enumerated tag.
7815
7816 @item
7817 The two variables have the same type name, or types that have been
7818 declared equivalent through @code{typedef}.
7819
7820 @ignore
7821 @c leaving this out because neither J Gilmore nor R Pesch understand it.
7822 @c FIXME--beers?
7823 @item
7824 The two @code{struct}, @code{union}, or @code{enum} variables are
7825 declared in the same declaration.  (Note: this may not be true for all C
7826 compilers.)
7827 @end ignore
7828 @end itemize
7829
7830 Range checking, if turned on, is done on mathematical operations.  Array
7831 indices are not checked, since they are often used to index a pointer
7832 that is not itself an array.
7833
7834 @node Debugging C
7835 @subsubsection @value{GDBN} and C
7836
7837 The @code{set print union} and @code{show print union} commands apply to
7838 the @code{union} type.  When set to @samp{on}, any @code{union} that is
7839 inside a @code{struct} or @code{class} is also printed.  Otherwise, it
7840 appears as @samp{@{...@}}.
7841
7842 The @code{@@} operator aids in the debugging of dynamic arrays, formed
7843 with pointers and a memory allocation function.  @xref{Expressions,
7844 ,Expressions}.
7845
7846 @menu
7847 * Debugging C plus plus::
7848 @end menu
7849
7850 @node Debugging C plus plus
7851 @subsubsection @value{GDBN} features for C@t{++}
7852
7853 @cindex commands for C@t{++}
7854
7855 Some @value{GDBN} commands are particularly useful with C@t{++}, and some are
7856 designed specifically for use with C@t{++}.  Here is a summary:
7857
7858 @table @code
7859 @cindex break in overloaded functions
7860 @item @r{breakpoint menus}
7861 When you want a breakpoint in a function whose name is overloaded,
7862 @value{GDBN} breakpoint menus help you specify which function definition
7863 you want.  @xref{Breakpoint Menus,,Breakpoint menus}.
7864
7865 @cindex overloading in C@t{++}
7866 @item rbreak @var{regex}
7867 Setting breakpoints using regular expressions is helpful for setting
7868 breakpoints on overloaded functions that are not members of any special
7869 classes.
7870 @xref{Set Breaks, ,Setting breakpoints}.
7871
7872 @cindex C@t{++} exception handling
7873 @item catch throw
7874 @itemx catch catch
7875 Debug C@t{++} exception handling using these commands.  @xref{Set
7876 Catchpoints, , Setting catchpoints}.
7877
7878 @cindex inheritance
7879 @item ptype @var{typename}
7880 Print inheritance relationships as well as other information for type
7881 @var{typename}.
7882 @xref{Symbols, ,Examining the Symbol Table}.
7883
7884 @cindex C@t{++} symbol display
7885 @item set print demangle
7886 @itemx show print demangle
7887 @itemx set print asm-demangle
7888 @itemx show print asm-demangle
7889 Control whether C@t{++} symbols display in their source form, both when
7890 displaying code as C@t{++} source and when displaying disassemblies.
7891 @xref{Print Settings, ,Print settings}.
7892
7893 @item set print object
7894 @itemx show print object
7895 Choose whether to print derived (actual) or declared types of objects.
7896 @xref{Print Settings, ,Print settings}.
7897
7898 @item set print vtbl
7899 @itemx show print vtbl
7900 Control the format for printing virtual function tables.
7901 @xref{Print Settings, ,Print settings}.
7902 (The @code{vtbl} commands do not work on programs compiled with the HP
7903 ANSI C@t{++} compiler (@code{aCC}).)
7904
7905 @kindex set overload-resolution
7906 @cindex overloaded functions, overload resolution
7907 @item set overload-resolution on
7908 Enable overload resolution for C@t{++} expression evaluation.  The default
7909 is on.  For overloaded functions, @value{GDBN} evaluates the arguments
7910 and searches for a function whose signature matches the argument types,
7911 using the standard C@t{++} conversion rules (see @ref{C plus plus expressions, ,C@t{++}
7912 expressions}, for details).  If it cannot find a match, it emits a
7913 message.
7914
7915 @item set overload-resolution off
7916 Disable overload resolution for C@t{++} expression evaluation.  For
7917 overloaded functions that are not class member functions, @value{GDBN}
7918 chooses the first function of the specified name that it finds in the
7919 symbol table, whether or not its arguments are of the correct type.  For
7920 overloaded functions that are class member functions, @value{GDBN}
7921 searches for a function whose signature @emph{exactly} matches the
7922 argument types.
7923
7924 @item @r{Overloaded symbol names}
7925 You can specify a particular definition of an overloaded symbol, using
7926 the same notation that is used to declare such symbols in C@t{++}: type
7927 @code{@var{symbol}(@var{types})} rather than just @var{symbol}.  You can
7928 also use the @value{GDBN} command-line word completion facilities to list the
7929 available choices, or to finish the type list for you.
7930 @xref{Completion,, Command completion}, for details on how to do this.
7931 @end table
7932
7933 @node Modula-2
7934 @subsection Modula-2
7935
7936 @cindex Modula-2, @value{GDBN} support
7937
7938 The extensions made to @value{GDBN} to support Modula-2 only support
7939 output from the @sc{gnu} Modula-2 compiler (which is currently being
7940 developed).  Other Modula-2 compilers are not currently supported, and
7941 attempting to debug executables produced by them is most likely
7942 to give an error as @value{GDBN} reads in the executable's symbol
7943 table.
7944
7945 @cindex expressions in Modula-2
7946 @menu
7947 * M2 Operators::                Built-in operators
7948 * Built-In Func/Proc::          Built-in functions and procedures
7949 * M2 Constants::                Modula-2 constants
7950 * M2 Defaults::                 Default settings for Modula-2
7951 * Deviations::                  Deviations from standard Modula-2
7952 * M2 Checks::                   Modula-2 type and range checks
7953 * M2 Scope::                    The scope operators @code{::} and @code{.}
7954 * GDB/M2::                      @value{GDBN} and Modula-2
7955 @end menu
7956
7957 @node M2 Operators
7958 @subsubsection Operators
7959 @cindex Modula-2 operators
7960
7961 Operators must be defined on values of specific types.  For instance,
7962 @code{+} is defined on numbers, but not on structures.  Operators are
7963 often defined on groups of types.  For the purposes of Modula-2, the
7964 following definitions hold:
7965
7966 @itemize @bullet
7967
7968 @item
7969 @emph{Integral types} consist of @code{INTEGER}, @code{CARDINAL}, and
7970 their subranges.
7971
7972 @item
7973 @emph{Character types} consist of @code{CHAR} and its subranges.
7974
7975 @item
7976 @emph{Floating-point types} consist of @code{REAL}.
7977
7978 @item
7979 @emph{Pointer types} consist of anything declared as @code{POINTER TO
7980 @var{type}}.
7981
7982 @item
7983 @emph{Scalar types} consist of all of the above.
7984
7985 @item
7986 @emph{Set types} consist of @code{SET} and @code{BITSET} types.
7987
7988 @item
7989 @emph{Boolean types} consist of @code{BOOLEAN}.
7990 @end itemize
7991
7992 @noindent
7993 The following operators are supported, and appear in order of
7994 increasing precedence:
7995
7996 @table @code
7997 @item ,
7998 Function argument or array index separator.
7999
8000 @item :=
8001 Assignment.  The value of @var{var} @code{:=} @var{value} is
8002 @var{value}.
8003
8004 @item <@r{, }>
8005 Less than, greater than on integral, floating-point, or enumerated
8006 types.
8007
8008 @item <=@r{, }>=
8009 Less than or equal to, greater than or equal to
8010 on integral, floating-point and enumerated types, or set inclusion on
8011 set types.  Same precedence as @code{<}.
8012
8013 @item =@r{, }<>@r{, }#
8014 Equality and two ways of expressing inequality, valid on scalar types.
8015 Same precedence as @code{<}.  In @value{GDBN} scripts, only @code{<>} is
8016 available for inequality, since @code{#} conflicts with the script
8017 comment character.
8018
8019 @item IN
8020 Set membership.  Defined on set types and the types of their members.
8021 Same precedence as @code{<}.
8022
8023 @item OR
8024 Boolean disjunction.  Defined on boolean types.
8025
8026 @item AND@r{, }&
8027 Boolean conjunction.  Defined on boolean types.
8028
8029 @item @@
8030 The @value{GDBN} ``artificial array'' operator (@pxref{Expressions, ,Expressions}).
8031
8032 @item +@r{, }-
8033 Addition and subtraction on integral and floating-point types, or union
8034 and difference on set types.
8035
8036 @item *
8037 Multiplication on integral and floating-point types, or set intersection
8038 on set types.
8039
8040 @item /
8041 Division on floating-point types, or symmetric set difference on set
8042 types.  Same precedence as @code{*}.
8043
8044 @item DIV@r{, }MOD
8045 Integer division and remainder.  Defined on integral types.  Same
8046 precedence as @code{*}.
8047
8048 @item -
8049 Negative. Defined on @code{INTEGER} and @code{REAL} data.
8050
8051 @item ^
8052 Pointer dereferencing.  Defined on pointer types.
8053
8054 @item NOT
8055 Boolean negation.  Defined on boolean types.  Same precedence as
8056 @code{^}.
8057
8058 @item .
8059 @code{RECORD} field selector.  Defined on @code{RECORD} data.  Same
8060 precedence as @code{^}.
8061
8062 @item []
8063 Array indexing.  Defined on @code{ARRAY} data.  Same precedence as @code{^}.
8064
8065 @item ()
8066 Procedure argument list.  Defined on @code{PROCEDURE} objects.  Same precedence
8067 as @code{^}.
8068
8069 @item ::@r{, }.
8070 @value{GDBN} and Modula-2 scope operators.
8071 @end table
8072
8073 @quotation
8074 @emph{Warning:} Sets and their operations are not yet supported, so @value{GDBN}
8075 treats the use of the operator @code{IN}, or the use of operators
8076 @code{+}, @code{-}, @code{*}, @code{/}, @code{=}, , @code{<>}, @code{#},
8077 @code{<=}, and @code{>=} on sets as an error.
8078 @end quotation
8079
8080
8081 @node Built-In Func/Proc
8082 @subsubsection Built-in functions and procedures
8083 @cindex Modula-2 built-ins
8084
8085 Modula-2 also makes available several built-in procedures and functions.
8086 In describing these, the following metavariables are used:
8087
8088 @table @var
8089
8090 @item a
8091 represents an @code{ARRAY} variable.
8092
8093 @item c
8094 represents a @code{CHAR} constant or variable.
8095
8096 @item i
8097 represents a variable or constant of integral type.
8098
8099 @item m
8100 represents an identifier that belongs to a set.  Generally used in the
8101 same function with the metavariable @var{s}.  The type of @var{s} should
8102 be @code{SET OF @var{mtype}} (where @var{mtype} is the type of @var{m}).
8103
8104 @item n
8105 represents a variable or constant of integral or floating-point type.
8106
8107 @item r
8108 represents a variable or constant of floating-point type.
8109
8110 @item t
8111 represents a type.
8112
8113 @item v
8114 represents a variable.
8115
8116 @item x
8117 represents a variable or constant of one of many types.  See the
8118 explanation of the function for details.
8119 @end table
8120
8121 All Modula-2 built-in procedures also return a result, described below.
8122
8123 @table @code
8124 @item ABS(@var{n})
8125 Returns the absolute value of @var{n}.
8126
8127 @item CAP(@var{c})
8128 If @var{c} is a lower case letter, it returns its upper case
8129 equivalent, otherwise it returns its argument.
8130
8131 @item CHR(@var{i})
8132 Returns the character whose ordinal value is @var{i}.
8133
8134 @item DEC(@var{v})
8135 Decrements the value in the variable @var{v} by one.  Returns the new value.
8136
8137 @item DEC(@var{v},@var{i})
8138 Decrements the value in the variable @var{v} by @var{i}.  Returns the
8139 new value.
8140
8141 @item EXCL(@var{m},@var{s})
8142 Removes the element @var{m} from the set @var{s}.  Returns the new
8143 set.
8144
8145 @item FLOAT(@var{i})
8146 Returns the floating point equivalent of the integer @var{i}.
8147
8148 @item HIGH(@var{a})
8149 Returns the index of the last member of @var{a}.
8150
8151 @item INC(@var{v})
8152 Increments the value in the variable @var{v} by one.  Returns the new value.
8153
8154 @item INC(@var{v},@var{i})
8155 Increments the value in the variable @var{v} by @var{i}.  Returns the
8156 new value.
8157
8158 @item INCL(@var{m},@var{s})
8159 Adds the element @var{m} to the set @var{s} if it is not already
8160 there.  Returns the new set.
8161
8162 @item MAX(@var{t})
8163 Returns the maximum value of the type @var{t}.
8164
8165 @item MIN(@var{t})
8166 Returns the minimum value of the type @var{t}.
8167
8168 @item ODD(@var{i})
8169 Returns boolean TRUE if @var{i} is an odd number.
8170
8171 @item ORD(@var{x})
8172 Returns the ordinal value of its argument.  For example, the ordinal
8173 value of a character is its @sc{ascii} value (on machines supporting the
8174 @sc{ascii} character set).  @var{x} must be of an ordered type, which include
8175 integral, character and enumerated types.
8176
8177 @item SIZE(@var{x})
8178 Returns the size of its argument.  @var{x} can be a variable or a type.
8179
8180 @item TRUNC(@var{r})
8181 Returns the integral part of @var{r}.
8182
8183 @item VAL(@var{t},@var{i})
8184 Returns the member of the type @var{t} whose ordinal value is @var{i}.
8185 @end table
8186
8187 @quotation
8188 @emph{Warning:}  Sets and their operations are not yet supported, so
8189 @value{GDBN} treats the use of procedures @code{INCL} and @code{EXCL} as
8190 an error.
8191 @end quotation
8192
8193 @cindex Modula-2 constants
8194 @node M2 Constants
8195 @subsubsection Constants
8196
8197 @value{GDBN} allows you to express the constants of Modula-2 in the following
8198 ways:
8199
8200 @itemize @bullet
8201
8202 @item
8203 Integer constants are simply a sequence of digits.  When used in an
8204 expression, a constant is interpreted to be type-compatible with the
8205 rest of the expression.  Hexadecimal integers are specified by a
8206 trailing @samp{H}, and octal integers by a trailing @samp{B}.
8207
8208 @item
8209 Floating point constants appear as a sequence of digits, followed by a
8210 decimal point and another sequence of digits.  An optional exponent can
8211 then be specified, in the form @samp{E@r{[}+@r{|}-@r{]}@var{nnn}}, where
8212 @samp{@r{[}+@r{|}-@r{]}@var{nnn}} is the desired exponent.  All of the
8213 digits of the floating point constant must be valid decimal (base 10)
8214 digits.
8215
8216 @item
8217 Character constants consist of a single character enclosed by a pair of
8218 like quotes, either single (@code{'}) or double (@code{"}).  They may
8219 also be expressed by their ordinal value (their @sc{ascii} value, usually)
8220 followed by a @samp{C}.
8221
8222 @item
8223 String constants consist of a sequence of characters enclosed by a
8224 pair of like quotes, either single (@code{'}) or double (@code{"}).
8225 Escape sequences in the style of C are also allowed.  @xref{C
8226 Constants, ,C and C@t{++} constants}, for a brief explanation of escape
8227 sequences.
8228
8229 @item
8230 Enumerated constants consist of an enumerated identifier.
8231
8232 @item
8233 Boolean constants consist of the identifiers @code{TRUE} and
8234 @code{FALSE}.
8235
8236 @item
8237 Pointer constants consist of integral values only.
8238
8239 @item
8240 Set constants are not yet supported.
8241 @end itemize
8242
8243 @node M2 Defaults
8244 @subsubsection Modula-2 defaults
8245 @cindex Modula-2 defaults
8246
8247 If type and range checking are set automatically by @value{GDBN}, they
8248 both default to @code{on} whenever the working language changes to
8249 Modula-2.  This happens regardless of whether you or @value{GDBN}
8250 selected the working language.
8251
8252 If you allow @value{GDBN} to set the language automatically, then entering
8253 code compiled from a file whose name ends with @file{.mod} sets the
8254 working language to Modula-2.  @xref{Automatically, ,Having @value{GDBN} set
8255 the language automatically}, for further details.
8256
8257 @node Deviations
8258 @subsubsection Deviations from standard Modula-2
8259 @cindex Modula-2, deviations from
8260
8261 A few changes have been made to make Modula-2 programs easier to debug.
8262 This is done primarily via loosening its type strictness:
8263
8264 @itemize @bullet
8265 @item
8266 Unlike in standard Modula-2, pointer constants can be formed by
8267 integers.  This allows you to modify pointer variables during
8268 debugging.  (In standard Modula-2, the actual address contained in a
8269 pointer variable is hidden from you; it can only be modified
8270 through direct assignment to another pointer variable or expression that
8271 returned a pointer.)
8272
8273 @item
8274 C escape sequences can be used in strings and characters to represent
8275 non-printable characters.  @value{GDBN} prints out strings with these
8276 escape sequences embedded.  Single non-printable characters are
8277 printed using the @samp{CHR(@var{nnn})} format.
8278
8279 @item
8280 The assignment operator (@code{:=}) returns the value of its right-hand
8281 argument.
8282
8283 @item
8284 All built-in procedures both modify @emph{and} return their argument.
8285 @end itemize
8286
8287 @node M2 Checks
8288 @subsubsection Modula-2 type and range checks
8289 @cindex Modula-2 checks
8290
8291 @quotation
8292 @emph{Warning:} in this release, @value{GDBN} does not yet perform type or
8293 range checking.
8294 @end quotation
8295 @c FIXME remove warning when type/range checks added
8296
8297 @value{GDBN} considers two Modula-2 variables type equivalent if:
8298
8299 @itemize @bullet
8300 @item
8301 They are of types that have been declared equivalent via a @code{TYPE
8302 @var{t1} = @var{t2}} statement
8303
8304 @item
8305 They have been declared on the same line.  (Note:  This is true of the
8306 @sc{gnu} Modula-2 compiler, but it may not be true of other compilers.)
8307 @end itemize
8308
8309 As long as type checking is enabled, any attempt to combine variables
8310 whose types are not equivalent is an error.
8311
8312 Range checking is done on all mathematical operations, assignment, array
8313 index bounds, and all built-in functions and procedures.
8314
8315 @node M2 Scope
8316 @subsubsection The scope operators @code{::} and @code{.}
8317 @cindex scope
8318 @cindex @code{.}, Modula-2 scope operator
8319 @cindex colon, doubled as scope operator
8320 @ifinfo
8321 @vindex colon-colon@r{, in Modula-2}
8322 @c Info cannot handle :: but TeX can.
8323 @end ifinfo
8324 @iftex
8325 @vindex ::@r{, in Modula-2}
8326 @end iftex
8327
8328 There are a few subtle differences between the Modula-2 scope operator
8329 (@code{.}) and the @value{GDBN} scope operator (@code{::}).  The two have
8330 similar syntax:
8331
8332 @smallexample
8333
8334 @var{module} . @var{id}
8335 @var{scope} :: @var{id}
8336 @end smallexample
8337
8338 @noindent
8339 where @var{scope} is the name of a module or a procedure,
8340 @var{module} the name of a module, and @var{id} is any declared
8341 identifier within your program, except another module.
8342
8343 Using the @code{::} operator makes @value{GDBN} search the scope
8344 specified by @var{scope} for the identifier @var{id}.  If it is not
8345 found in the specified scope, then @value{GDBN} searches all scopes
8346 enclosing the one specified by @var{scope}.
8347
8348 Using the @code{.} operator makes @value{GDBN} search the current scope for
8349 the identifier specified by @var{id} that was imported from the
8350 definition module specified by @var{module}.  With this operator, it is
8351 an error if the identifier @var{id} was not imported from definition
8352 module @var{module}, or if @var{id} is not an identifier in
8353 @var{module}.
8354
8355 @node GDB/M2
8356 @subsubsection @value{GDBN} and Modula-2
8357
8358 Some @value{GDBN} commands have little use when debugging Modula-2 programs.
8359 Five subcommands of @code{set print} and @code{show print} apply
8360 specifically to C and C@t{++}: @samp{vtbl}, @samp{demangle},
8361 @samp{asm-demangle}, @samp{object}, and @samp{union}.  The first four
8362 apply to C@t{++}, and the last to the C @code{union} type, which has no direct
8363 analogue in Modula-2.
8364
8365 The @code{@@} operator (@pxref{Expressions, ,Expressions}), while available
8366 with any language, is not useful with Modula-2.  Its
8367 intent is to aid the debugging of @dfn{dynamic arrays}, which cannot be
8368 created in Modula-2 as they can in C or C@t{++}.  However, because an
8369 address can be specified by an integral constant, the construct
8370 @samp{@{@var{type}@}@var{adrexp}} is still useful.
8371
8372 @cindex @code{#} in Modula-2
8373 In @value{GDBN} scripts, the Modula-2 inequality operator @code{#} is
8374 interpreted as the beginning of a comment.  Use @code{<>} instead.
8375
8376 @node Chill
8377 @subsection Chill
8378
8379 The extensions made to @value{GDBN} to support Chill only support output
8380 from the @sc{gnu} Chill compiler.  Other Chill compilers are not currently
8381 supported, and attempting to debug executables produced by them is most
8382 likely to give an error as @value{GDBN} reads in the executable's symbol
8383 table.
8384
8385 @c This used to say "... following Chill related topics ...", but since
8386 @c menus are not shown in the printed manual, it would look awkward.
8387 This section covers the Chill related topics and the features
8388 of @value{GDBN} which support these topics.
8389
8390 @menu
8391 * How modes are displayed::        How modes are displayed
8392 * Locations::                        Locations and their accesses
8393 * Values and their Operations:: Values and their Operations
8394 * Chill type and range checks::
8395 * Chill defaults::
8396 @end menu
8397
8398 @node How modes are displayed
8399 @subsubsection How modes are displayed
8400
8401 The Chill Datatype- (Mode) support of @value{GDBN} is directly related
8402 with the functionality of the @sc{gnu} Chill compiler, and therefore deviates
8403 slightly from the standard specification of the Chill language. The
8404 provided modes are:
8405
8406 @c FIXME: this @table's contents effectively disable @code by using @r
8407 @c on every @item.  So why does it need @code?
8408 @table @code
8409 @item @r{@emph{Discrete modes:}}
8410 @itemize @bullet
8411 @item
8412 @emph{Integer Modes} which are predefined by @code{BYTE, UBYTE, INT,
8413 UINT, LONG, ULONG},
8414 @item
8415 @emph{Boolean Mode} which is predefined by @code{BOOL},
8416 @item
8417 @emph{Character Mode} which is predefined by @code{CHAR},
8418 @item
8419 @emph{Set Mode} which is displayed by the keyword @code{SET}.
8420 @smallexample
8421 (@value{GDBP}) ptype x
8422 type = SET (karli = 10, susi = 20, fritzi = 100)
8423 @end smallexample
8424 If the type is an unnumbered set the set element values are omitted.
8425 @item
8426 @emph{Range Mode} which is displayed by
8427 @smallexample
8428 @code{type = <basemode>(<lower bound> : <upper bound>)}
8429 @end smallexample
8430 where @code{<lower bound>, <upper bound>} can be of any discrete literal
8431 expression (e.g. set element names).
8432 @end itemize
8433
8434 @item @r{@emph{Powerset Mode:}}
8435 A Powerset Mode is displayed by the keyword @code{POWERSET} followed by
8436 the member mode of the powerset.  The member mode can be any discrete mode.
8437 @smallexample
8438 (@value{GDBP}) ptype x
8439 type = POWERSET SET (egon, hugo, otto)
8440 @end smallexample
8441
8442 @item @r{@emph{Reference Modes:}}
8443 @itemize @bullet
8444 @item
8445 @emph{Bound Reference Mode} which is displayed by the keyword @code{REF}
8446 followed by the mode name to which the reference is bound.
8447 @item
8448 @emph{Free Reference Mode} which is displayed by the keyword @code{PTR}.
8449 @end itemize
8450
8451 @item @r{@emph{Procedure mode}}
8452 The procedure mode is displayed by @code{type = PROC(<parameter list>)
8453 <return mode> EXCEPTIONS (<exception list>)}. The @code{<parameter
8454 list>} is a list of the parameter modes.  @code{<return mode>} indicates
8455 the mode of the result of the procedure if any.  The exceptionlist lists
8456 all possible exceptions which can be raised by the procedure.
8457
8458 @ignore
8459 @item @r{@emph{Instance mode}}
8460 The instance mode is represented by a structure, which has a static
8461 type, and is therefore not really of interest.
8462 @end ignore
8463
8464 @item @r{@emph{Synchronization Modes:}}
8465 @itemize @bullet
8466 @item
8467 @emph{Event Mode} which is displayed by
8468 @smallexample
8469 @code{EVENT (<event length>)}
8470 @end smallexample
8471 where @code{(<event length>)} is optional.
8472 @item
8473 @emph{Buffer Mode} which is displayed by
8474 @smallexample
8475 @code{BUFFER (<buffer length>)<buffer element mode>}
8476 @end smallexample
8477 where @code{(<buffer length>)} is optional.
8478 @end itemize
8479
8480 @item @r{@emph{Timing Modes:}}
8481 @itemize @bullet
8482 @item
8483 @emph{Duration Mode} which is predefined by @code{DURATION}
8484 @item
8485 @emph{Absolute Time Mode} which is predefined by @code{TIME}
8486 @end itemize
8487
8488 @item @r{@emph{Real Modes:}}
8489 Real Modes are predefined with @code{REAL} and @code{LONG_REAL}.
8490
8491 @item @r{@emph{String Modes:}}
8492 @itemize @bullet
8493 @item
8494 @emph{Character String Mode} which is displayed by
8495 @smallexample
8496 @code{CHARS(<string length>)}
8497 @end smallexample
8498 followed by the keyword @code{VARYING} if the String Mode is a varying
8499 mode
8500 @item
8501 @emph{Bit String Mode} which is displayed by
8502 @smallexample
8503 @code{BOOLS(<string
8504 length>)}
8505 @end smallexample
8506 @end itemize
8507
8508 @item @r{@emph{Array Mode:}}
8509 The Array Mode is displayed by the keyword @code{ARRAY(<range>)}
8510 followed by the element mode (which may in turn be an array mode).
8511 @smallexample
8512 (@value{GDBP}) ptype x
8513 type = ARRAY (1:42)
8514           ARRAY (1:20)
8515              SET (karli = 10, susi = 20, fritzi = 100)
8516 @end smallexample
8517
8518 @item @r{@emph{Structure Mode}}
8519 The Structure mode is displayed by the keyword @code{STRUCT(<field
8520 list>)}.  The @code{<field list>} consists of names and modes of fields
8521 of the structure.  Variant structures have the keyword @code{CASE <field>
8522 OF <variant fields> ESAC} in their field list.  Since the current version
8523 of the GNU Chill compiler doesn't implement tag processing (no runtime
8524 checks of variant fields, and therefore no debugging info), the output
8525 always displays all variant fields.
8526 @smallexample
8527 (@value{GDBP}) ptype str
8528 type = STRUCT (
8529     as x,
8530     bs x,
8531     CASE bs OF
8532     (karli):
8533         cs a
8534     (ott):
8535         ds x
8536     ESAC
8537 )
8538 @end smallexample
8539 @end table
8540
8541 @node Locations
8542 @subsubsection Locations and their accesses
8543
8544 A location in Chill is an object which can contain values.
8545
8546 A value of a location is generally accessed by the (declared) name of
8547 the location.  The output conforms to the specification of values in
8548 Chill programs.  How values are specified
8549 is the topic of the next section, @ref{Values and their Operations}.
8550
8551 The pseudo-location @code{RESULT} (or @code{result}) can be used to
8552 display or change the result of a currently-active procedure:
8553
8554 @smallexample
8555 set result := EXPR
8556 @end smallexample
8557
8558 @noindent
8559 This does the same as the Chill action @code{RESULT EXPR} (which
8560 is not available in @value{GDBN}).
8561
8562 Values of reference mode locations are printed by @code{PTR(<hex
8563 value>)} in case of a free reference mode, and by @code{(REF <reference
8564 mode>) (<hex-value>)} in case of a bound reference.  @code{<hex value>}
8565 represents the address where the reference points to.  To access the
8566 value of the location referenced by the pointer, use the dereference
8567 operator @samp{->}.
8568
8569 Values of procedure mode locations are displayed by
8570 @smallexample
8571 @code{@{ PROC
8572 (<argument modes> ) <return mode> @} <address> <name of procedure
8573 location>}
8574 @end smallexample
8575 @code{<argument modes>} is a list of modes according to the parameter
8576 specification of the procedure and @code{<address>} shows the address of
8577 the entry point.
8578
8579 @ignore
8580 Locations of instance modes are displayed just like a structure with two
8581 fields specifying the @emph{process type} and the @emph{copy number} of
8582 the investigated instance location@footnote{This comes from the current
8583 implementation of instances.  They are implemented as a structure (no
8584 na).  The output should be something like @code{[<name of the process>;
8585 <instance number>]}.}.  The field names are @code{__proc_type} and
8586 @code{__proc_copy}.
8587
8588 Locations of synchronization modes are displayed like a structure with
8589 the field name @code{__event_data} in case of a event mode location, and
8590 like a structure with the field @code{__buffer_data} in case of a buffer
8591 mode location (refer to previous paragraph).
8592
8593 Structure Mode locations are printed by @code{[.<field name>: <value>,
8594 ...]}.  The @code{<field name>} corresponds to the structure mode
8595 definition and the layout of @code{<value>} varies depending of the mode
8596 of the field.  If the investigated structure mode location is of variant
8597 structure mode, the variant parts of the structure are enclosed in curled
8598 braces (@samp{@{@}}).  Fields enclosed by @samp{@{,@}} are residing
8599 on the same memory location and represent the current values of the
8600 memory location in their specific modes.  Since no tag processing is done
8601 all variants are displayed. A variant field is printed by
8602 @code{(<variant name>) = .<field name>: <value>}.  (who implements the
8603 stuff ???)
8604 @smallexample
8605 (@value{GDBP}) print str1 $4 = [.as: 0, .bs: karli, .<TAG>: { (karli) =
8606 [.cs: []], (susi) = [.ds: susi]}]
8607 @end smallexample
8608 @end ignore
8609
8610 Substructures of string mode-, array mode- or structure mode-values
8611 (e.g. array slices, fields of structure locations) are accessed using
8612 certain operations which are described in the next section, @ref{Values
8613 and their Operations}.
8614
8615 A location value may be interpreted as having a different mode using the
8616 location conversion.  This mode conversion is written as @code{<mode
8617 name>(<location>)}.  The user has to consider that the sizes of the modes
8618 have to be equal otherwise an error occurs.  Furthermore, no range
8619 checking of the location against the destination mode is performed, and
8620 therefore the result can be quite confusing.
8621
8622 @smallexample
8623 (@value{GDBP}) print int (s(3 up 4)) XXX TO be filled in !! XXX
8624 @end smallexample
8625
8626 @node Values and their Operations
8627 @subsubsection Values and their Operations
8628
8629 Values are used to alter locations, to investigate complex structures in
8630 more detail or to filter relevant information out of a large amount of
8631 data.  There are several (mode dependent) operations defined which enable
8632 such investigations.  These operations are not only applicable to
8633 constant values but also to locations, which can become quite useful
8634 when debugging complex structures.  During parsing the command line
8635 (e.g. evaluating an expression) @value{GDBN} treats location names as
8636 the values behind these locations.
8637
8638 This section describes how values have to be specified and which
8639 operations are legal to be used with such values.
8640
8641 @table @code
8642 @item Literal Values
8643 Literal values are specified in the same manner as in @sc{gnu} Chill programs.
8644 For detailed specification refer to the @sc{gnu} Chill implementation Manual
8645 chapter 1.5.
8646 @c FIXME: if the Chill Manual is a Texinfo documents, the above should
8647 @c be converted to a @ref.
8648
8649 @ignore
8650 @itemize @bullet
8651 @item
8652 @emph{Integer Literals} are specified in the same manner as in Chill
8653 programs (refer to the Chill Standard z200/88 chpt 5.2.4.2)
8654 @item
8655 @emph{Boolean Literals} are defined by @code{TRUE} and @code{FALSE}.
8656 @item
8657 @emph{Character Literals} are defined by @code{'<character>'}. (e.g.
8658 @code{'M'})
8659 @item
8660 @emph{Set Literals} are defined by a name which was specified in a set
8661 mode.  The value delivered by a Set Literal is the set value.  This is
8662 comparable to an enumeration in C/C@t{++} language.
8663 @item
8664 @emph{Emptiness Literal} is predefined by @code{NULL}.  The value of the
8665 emptiness literal delivers either the empty reference value, the empty
8666 procedure value or the empty instance value.
8667
8668 @item
8669 @emph{Character String Literals} are defined by a sequence of characters
8670 enclosed in single- or double quotes.  If a single- or double quote has
8671 to be part of the string literal it has to be stuffed (specified twice).
8672 @item
8673 @emph{Bitstring Literals} are specified in the same manner as in Chill
8674 programs (refer z200/88 chpt 5.2.4.8).
8675 @item
8676 @emph{Floating point literals} are specified in the same manner as in
8677 (gnu-)Chill programs (refer @sc{gnu} Chill implementation Manual chapter 1.5).
8678 @end itemize
8679 @end ignore
8680
8681 @item Tuple Values
8682 A tuple is specified by @code{<mode name>[<tuple>]}, where @code{<mode
8683 name>} can be omitted if the mode of the tuple is unambiguous.  This
8684 unambiguity is derived from the context of a evaluated expression.
8685 @code{<tuple>} can be one of the following:
8686
8687 @itemize @bullet
8688 @item @emph{Powerset Tuple}
8689 @item @emph{Array Tuple}
8690 @item @emph{Structure Tuple}
8691 Powerset tuples, array tuples and structure tuples are specified in the
8692 same manner as in Chill programs refer to z200/88 chpt 5.2.5.
8693 @end itemize
8694
8695 @item String Element Value
8696 A string element value is specified by
8697 @smallexample
8698 @code{<string value>(<index>)}
8699 @end smallexample
8700 where @code{<index>} is a integer expression.  It delivers a character
8701 value which is equivalent to the character indexed by @code{<index>} in
8702 the string.
8703
8704 @item String Slice Value
8705 A string slice value is specified by @code{<string value>(<slice
8706 spec>)}, where @code{<slice spec>} can be either a range of integer
8707 expressions or specified by @code{<start expr> up <size>}.
8708 @code{<size>} denotes the number of elements which the slice contains.
8709 The delivered value is a string value, which is part of the specified
8710 string.
8711
8712 @item Array Element Values
8713 An array element value is specified by @code{<array value>(<expr>)} and
8714 delivers a array element value of the mode of the specified array.
8715
8716 @item Array Slice Values
8717 An array slice is specified by @code{<array value>(<slice spec>)}, where
8718 @code{<slice spec>} can be either a range specified by expressions or by
8719 @code{<start expr> up <size>}.  @code{<size>} denotes the number of
8720 arrayelements the slice contains.  The delivered value is an array value
8721 which is part of the specified array.
8722
8723 @item Structure Field Values
8724 A structure field value is derived by @code{<structure value>.<field
8725 name>}, where @code{<field name>} indicates the name of a field specified
8726 in the mode definition of the structure.  The mode of the delivered value
8727 corresponds to this mode definition in the structure definition.
8728
8729 @item Procedure Call Value
8730 The procedure call value is derived from the return value of the
8731 procedure@footnote{If a procedure call is used for instance in an
8732 expression, then this procedure is called with all its side
8733 effects.  This can lead to confusing results if used carelessly.}.
8734
8735 Values of duration mode locations are represented by @code{ULONG} literals.
8736
8737 Values of time mode locations appear as
8738 @smallexample
8739 @code{TIME(<secs>:<nsecs>)}
8740 @end smallexample
8741
8742
8743 @ignore
8744 This is not implemented yet:
8745 @item Built-in Value
8746 @noindent
8747 The following built in functions are provided:
8748
8749 @table @code
8750 @item @code{ADDR()}
8751 @item @code{NUM()}
8752 @item @code{PRED()}
8753 @item @code{SUCC()}
8754 @item @code{ABS()}
8755 @item @code{CARD()}
8756 @item @code{MAX()}
8757 @item @code{MIN()}
8758 @item @code{SIZE()}
8759 @item @code{UPPER()}
8760 @item @code{LOWER()}
8761 @item @code{LENGTH()}
8762 @item @code{SIN()}
8763 @item @code{COS()}
8764 @item @code{TAN()}
8765 @item @code{ARCSIN()}
8766 @item @code{ARCCOS()}
8767 @item @code{ARCTAN()}
8768 @item @code{EXP()}
8769 @item @code{LN()}
8770 @item @code{LOG()}
8771 @item @code{SQRT()}
8772 @end table
8773
8774 For a detailed description refer to the GNU Chill implementation manual
8775 chapter 1.6.
8776 @end ignore
8777
8778 @item Zero-adic Operator Value
8779 The zero-adic operator value is derived from the instance value for the
8780 current active process.
8781
8782 @item Expression Values
8783 The value delivered by an expression is the result of the evaluation of
8784 the specified expression.  If there are error conditions (mode
8785 incompatibility, etc.) the evaluation of expressions is aborted with a
8786 corresponding error message.  Expressions may be parenthesised which
8787 causes the evaluation of this expression before any other expression
8788 which uses the result of the parenthesised expression.  The following
8789 operators are supported by @value{GDBN}:
8790
8791 @table @code
8792 @item @code{OR, ORIF, XOR}
8793 @itemx @code{AND, ANDIF}
8794 @itemx @code{NOT}
8795 Logical operators defined over operands of boolean mode.
8796
8797 @item @code{=, /=}
8798 Equality and inequality operators defined over all modes.
8799
8800 @item @code{>, >=}
8801 @itemx @code{<, <=}
8802 Relational operators defined over predefined modes.
8803
8804 @item @code{+, -}
8805 @itemx @code{*, /, MOD, REM}
8806 Arithmetic operators defined over predefined modes.
8807
8808 @item @code{-}
8809 Change sign operator.
8810
8811 @item @code{//}
8812 String concatenation operator.
8813
8814 @item @code{()}
8815 String repetition operator.
8816
8817 @item @code{->}
8818 Referenced location operator which can be used either to take the
8819 address of a location (@code{->loc}), or to dereference a reference
8820 location (@code{loc->}).
8821
8822 @item @code{OR, XOR}
8823 @itemx @code{AND}
8824 @itemx @code{NOT}
8825 Powerset and bitstring operators.
8826
8827 @item @code{>, >=}
8828 @itemx @code{<, <=}
8829 Powerset inclusion operators.
8830
8831 @item @code{IN}
8832 Membership operator.
8833 @end table
8834 @end table
8835
8836 @node Chill type and range checks
8837 @subsubsection Chill type and range checks
8838
8839 @value{GDBN} considers two Chill variables mode equivalent if the sizes
8840 of the two modes are equal.  This rule applies recursively to more
8841 complex datatypes which means that complex modes are treated
8842 equivalent if all element modes (which also can be complex modes like
8843 structures, arrays, etc.) have the same size.
8844
8845 Range checking is done on all mathematical operations, assignment, array
8846 index bounds and all built in procedures.
8847
8848 Strong type checks are forced using the @value{GDBN} command @code{set
8849 check strong}.  This enforces strong type and range checks on all
8850 operations where Chill constructs are used (expressions, built in
8851 functions, etc.) in respect to the semantics as defined in the z.200
8852 language specification.
8853
8854 All checks can be disabled by the @value{GDBN} command @code{set check
8855 off}.
8856
8857 @ignore
8858 @c Deviations from the Chill Standard Z200/88
8859 see last paragraph ?
8860 @end ignore
8861
8862 @node Chill defaults
8863 @subsubsection Chill defaults
8864
8865 If type and range checking are set automatically by @value{GDBN}, they
8866 both default to @code{on} whenever the working language changes to
8867 Chill.  This happens regardless of whether you or @value{GDBN}
8868 selected the working language.
8869
8870 If you allow @value{GDBN} to set the language automatically, then entering
8871 code compiled from a file whose name ends with @file{.ch} sets the
8872 working language to Chill.  @xref{Automatically, ,Having @value{GDBN} set
8873 the language automatically}, for further details.
8874
8875 @node Symbols
8876 @chapter Examining the Symbol Table
8877
8878 The commands described in this chapter allow you to inquire about the
8879 symbols (names of variables, functions and types) defined in your
8880 program.  This information is inherent in the text of your program and
8881 does not change as your program executes.  @value{GDBN} finds it in your
8882 program's symbol table, in the file indicated when you started @value{GDBN}
8883 (@pxref{File Options, ,Choosing files}), or by one of the
8884 file-management commands (@pxref{Files, ,Commands to specify files}).
8885
8886 @cindex symbol names
8887 @cindex names of symbols
8888 @cindex quoting names
8889 Occasionally, you may need to refer to symbols that contain unusual
8890 characters, which @value{GDBN} ordinarily treats as word delimiters.  The
8891 most frequent case is in referring to static variables in other
8892 source files (@pxref{Variables,,Program variables}).  File names
8893 are recorded in object files as debugging symbols, but @value{GDBN} would
8894 ordinarily parse a typical file name, like @file{foo.c}, as the three words
8895 @samp{foo} @samp{.} @samp{c}.  To allow @value{GDBN} to recognize
8896 @samp{foo.c} as a single symbol, enclose it in single quotes; for example,
8897
8898 @smallexample
8899 p 'foo.c'::x
8900 @end smallexample
8901
8902 @noindent
8903 looks up the value of @code{x} in the scope of the file @file{foo.c}.
8904
8905 @table @code
8906 @kindex info address
8907 @cindex address of a symbol
8908 @item info address @var{symbol}
8909 Describe where the data for @var{symbol} is stored.  For a register
8910 variable, this says which register it is kept in.  For a non-register
8911 local variable, this prints the stack-frame offset at which the variable
8912 is always stored.
8913
8914 Note the contrast with @samp{print &@var{symbol}}, which does not work
8915 at all for a register variable, and for a stack local variable prints
8916 the exact address of the current instantiation of the variable.
8917
8918 @kindex info symbol
8919 @cindex symbol from address
8920 @item info symbol @var{addr}
8921 Print the name of a symbol which is stored at the address @var{addr}.
8922 If no symbol is stored exactly at @var{addr}, @value{GDBN} prints the
8923 nearest symbol and an offset from it:
8924
8925 @smallexample
8926 (@value{GDBP}) info symbol 0x54320
8927 _initialize_vx + 396 in section .text
8928 @end smallexample
8929
8930 @noindent
8931 This is the opposite of the @code{info address} command.  You can use
8932 it to find out the name of a variable or a function given its address.
8933
8934 @kindex whatis
8935 @item whatis @var{expr}
8936 Print the data type of expression @var{expr}.  @var{expr} is not
8937 actually evaluated, and any side-effecting operations (such as
8938 assignments or function calls) inside it do not take place.
8939 @xref{Expressions, ,Expressions}.
8940
8941 @item whatis
8942 Print the data type of @code{$}, the last value in the value history.
8943
8944 @kindex ptype
8945 @item ptype @var{typename}
8946 Print a description of data type @var{typename}.  @var{typename} may be
8947 the name of a type, or for C code it may have the form @samp{class
8948 @var{class-name}}, @samp{struct @var{struct-tag}}, @samp{union
8949 @var{union-tag}} or @samp{enum @var{enum-tag}}.
8950
8951 @item ptype @var{expr}
8952 @itemx ptype
8953 Print a description of the type of expression @var{expr}.  @code{ptype}
8954 differs from @code{whatis} by printing a detailed description, instead
8955 of just the name of the type.
8956
8957 For example, for this variable declaration:
8958
8959 @smallexample
8960 struct complex @{double real; double imag;@} v;
8961 @end smallexample
8962
8963 @noindent
8964 the two commands give this output:
8965
8966 @smallexample
8967 @group
8968 (@value{GDBP}) whatis v
8969 type = struct complex
8970 (@value{GDBP}) ptype v
8971 type = struct complex @{
8972     double real;
8973     double imag;
8974 @}
8975 @end group
8976 @end smallexample
8977
8978 @noindent
8979 As with @code{whatis}, using @code{ptype} without an argument refers to
8980 the type of @code{$}, the last value in the value history.
8981
8982 @kindex info types
8983 @item info types @var{regexp}
8984 @itemx info types
8985 Print a brief description of all types whose names match @var{regexp}
8986 (or all types in your program, if you supply no argument).  Each
8987 complete typename is matched as though it were a complete line; thus,
8988 @samp{i type value} gives information on all types in your program whose
8989 names include the string @code{value}, but @samp{i type ^value$} gives
8990 information only on types whose complete name is @code{value}.
8991
8992 This command differs from @code{ptype} in two ways: first, like
8993 @code{whatis}, it does not print a detailed description; second, it
8994 lists all source files where a type is defined.
8995
8996 @kindex info scope
8997 @cindex local variables
8998 @item info scope @var{addr}
8999 List all the variables local to a particular scope.  This command
9000 accepts a location---a function name, a source line, or an address
9001 preceded by a @samp{*}, and prints all the variables local to the
9002 scope defined by that location.  For example:
9003
9004 @smallexample
9005 (@value{GDBP}) @b{info scope command_line_handler}
9006 Scope for command_line_handler:
9007 Symbol rl is an argument at stack/frame offset 8, length 4.
9008 Symbol linebuffer is in static storage at address 0x150a18, length 4.
9009 Symbol linelength is in static storage at address 0x150a1c, length 4.
9010 Symbol p is a local variable in register $esi, length 4.
9011 Symbol p1 is a local variable in register $ebx, length 4.
9012 Symbol nline is a local variable in register $edx, length 4.
9013 Symbol repeat is a local variable at frame offset -8, length 4.
9014 @end smallexample
9015
9016 @noindent
9017 This command is especially useful for determining what data to collect
9018 during a @dfn{trace experiment}, see @ref{Tracepoint Actions,
9019 collect}.
9020
9021 @kindex info source
9022 @item info source
9023 Show the name of the current source file---that is, the source file for
9024 the function containing the current point of execution---and the language
9025 it was written in.
9026
9027 @kindex info sources
9028 @item info sources
9029 Print the names of all source files in your program for which there is
9030 debugging information, organized into two lists: files whose symbols
9031 have already been read, and files whose symbols will be read when needed.
9032
9033 @kindex info functions
9034 @item info functions
9035 Print the names and data types of all defined functions.
9036
9037 @item info functions @var{regexp}
9038 Print the names and data types of all defined functions
9039 whose names contain a match for regular expression @var{regexp}.
9040 Thus, @samp{info fun step} finds all functions whose names
9041 include @code{step}; @samp{info fun ^step} finds those whose names
9042 start with @code{step}.  If a function name contains characters 
9043 that conflict with the regular expression language (eg. 
9044 @samp{operator*()}), they may be quoted with a backslash.
9045
9046 @kindex info variables
9047 @item info variables
9048 Print the names and data types of all variables that are declared
9049 outside of functions (i.e.@: excluding local variables).
9050
9051 @item info variables @var{regexp}
9052 Print the names and data types of all variables (except for local
9053 variables) whose names contain a match for regular expression
9054 @var{regexp}.
9055
9056 @ignore
9057 This was never implemented.
9058 @kindex info methods
9059 @item info methods
9060 @itemx info methods @var{regexp}
9061 The @code{info methods} command permits the user to examine all defined
9062 methods within C@t{++} program, or (with the @var{regexp} argument) a
9063 specific set of methods found in the various C@t{++} classes.  Many
9064 C@t{++} classes provide a large number of methods.  Thus, the output
9065 from the @code{ptype} command can be overwhelming and hard to use.  The
9066 @code{info-methods} command filters the methods, printing only those
9067 which match the regular-expression @var{regexp}.
9068 @end ignore
9069
9070 @cindex reloading symbols
9071 Some systems allow individual object files that make up your program to
9072 be replaced without stopping and restarting your program.  For example,
9073 in VxWorks you can simply recompile a defective object file and keep on
9074 running.  If you are running on one of these systems, you can allow
9075 @value{GDBN} to reload the symbols for automatically relinked modules:
9076
9077 @table @code
9078 @kindex set symbol-reloading
9079 @item set symbol-reloading on
9080 Replace symbol definitions for the corresponding source file when an
9081 object file with a particular name is seen again.
9082
9083 @item set symbol-reloading off
9084 Do not replace symbol definitions when encountering object files of the
9085 same name more than once.  This is the default state; if you are not
9086 running on a system that permits automatic relinking of modules, you
9087 should leave @code{symbol-reloading} off, since otherwise @value{GDBN}
9088 may discard symbols when linking large programs, that may contain
9089 several modules (from different directories or libraries) with the same
9090 name.
9091
9092 @kindex show symbol-reloading
9093 @item show symbol-reloading
9094 Show the current @code{on} or @code{off} setting.
9095 @end table
9096
9097 @kindex set opaque-type-resolution
9098 @item set opaque-type-resolution on
9099 Tell @value{GDBN} to resolve opaque types.  An opaque type is a type
9100 declared as a pointer to a @code{struct}, @code{class}, or
9101 @code{union}---for example, @code{struct MyType *}---that is used in one
9102 source file although the full declaration of @code{struct MyType} is in
9103 another source file.  The default is on.
9104
9105 A change in the setting of this subcommand will not take effect until
9106 the next time symbols for a file are loaded.
9107
9108 @item set opaque-type-resolution off
9109 Tell @value{GDBN} not to resolve opaque types.  In this case, the type
9110 is printed as follows:
9111 @smallexample
9112 @{<no data fields>@}
9113 @end smallexample
9114
9115 @kindex show opaque-type-resolution
9116 @item show opaque-type-resolution
9117 Show whether opaque types are resolved or not.
9118
9119 @kindex maint print symbols
9120 @cindex symbol dump
9121 @kindex maint print psymbols
9122 @cindex partial symbol dump
9123 @item maint print symbols @var{filename}
9124 @itemx maint print psymbols @var{filename}
9125 @itemx maint print msymbols @var{filename}
9126 Write a dump of debugging symbol data into the file @var{filename}.
9127 These commands are used to debug the @value{GDBN} symbol-reading code.  Only
9128 symbols with debugging data are included.  If you use @samp{maint print
9129 symbols}, @value{GDBN} includes all the symbols for which it has already
9130 collected full details: that is, @var{filename} reflects symbols for
9131 only those files whose symbols @value{GDBN} has read.  You can use the
9132 command @code{info sources} to find out which files these are.  If you
9133 use @samp{maint print psymbols} instead, the dump shows information about
9134 symbols that @value{GDBN} only knows partially---that is, symbols defined in
9135 files that @value{GDBN} has skimmed, but not yet read completely.  Finally,
9136 @samp{maint print msymbols} dumps just the minimal symbol information
9137 required for each object file from which @value{GDBN} has read some symbols.
9138 @xref{Files, ,Commands to specify files}, for a discussion of how
9139 @value{GDBN} reads symbols (in the description of @code{symbol-file}).
9140 @end table
9141
9142 @node Altering
9143 @chapter Altering Execution
9144
9145 Once you think you have found an error in your program, you might want to
9146 find out for certain whether correcting the apparent error would lead to
9147 correct results in the rest of the run.  You can find the answer by
9148 experiment, using the @value{GDBN} features for altering execution of the
9149 program.
9150
9151 For example, you can store new values into variables or memory
9152 locations, give your program a signal, restart it at a different
9153 address, or even return prematurely from a function.
9154
9155 @menu
9156 * Assignment::                  Assignment to variables
9157 * Jumping::                     Continuing at a different address
9158 * Signaling::                   Giving your program a signal
9159 * Returning::                   Returning from a function
9160 * Calling::                     Calling your program's functions
9161 * Patching::                    Patching your program
9162 @end menu
9163
9164 @node Assignment
9165 @section Assignment to variables
9166
9167 @cindex assignment
9168 @cindex setting variables
9169 To alter the value of a variable, evaluate an assignment expression.
9170 @xref{Expressions, ,Expressions}.  For example,
9171
9172 @smallexample
9173 print x=4
9174 @end smallexample
9175
9176 @noindent
9177 stores the value 4 into the variable @code{x}, and then prints the
9178 value of the assignment expression (which is 4).
9179 @xref{Languages, ,Using @value{GDBN} with Different Languages}, for more
9180 information on operators in supported languages.
9181
9182 @kindex set variable
9183 @cindex variables, setting
9184 If you are not interested in seeing the value of the assignment, use the
9185 @code{set} command instead of the @code{print} command.  @code{set} is
9186 really the same as @code{print} except that the expression's value is
9187 not printed and is not put in the value history (@pxref{Value History,
9188 ,Value history}).  The expression is evaluated only for its effects.
9189
9190 If the beginning of the argument string of the @code{set} command
9191 appears identical to a @code{set} subcommand, use the @code{set
9192 variable} command instead of just @code{set}.  This command is identical
9193 to @code{set} except for its lack of subcommands.  For example, if your
9194 program has a variable @code{width}, you get an error if you try to set
9195 a new value with just @samp{set width=13}, because @value{GDBN} has the
9196 command @code{set width}:
9197
9198 @smallexample
9199 (@value{GDBP}) whatis width
9200 type = double
9201 (@value{GDBP}) p width
9202 $4 = 13
9203 (@value{GDBP}) set width=47
9204 Invalid syntax in expression.
9205 @end smallexample
9206
9207 @noindent
9208 The invalid expression, of course, is @samp{=47}.  In
9209 order to actually set the program's variable @code{width}, use
9210
9211 @smallexample
9212 (@value{GDBP}) set var width=47
9213 @end smallexample
9214
9215 Because the @code{set} command has many subcommands that can conflict
9216 with the names of program variables, it is a good idea to use the
9217 @code{set variable} command instead of just @code{set}.  For example, if
9218 your program has a variable @code{g}, you run into problems if you try
9219 to set a new value with just @samp{set g=4}, because @value{GDBN} has
9220 the command @code{set gnutarget}, abbreviated @code{set g}:
9221
9222 @smallexample
9223 @group
9224 (@value{GDBP}) whatis g
9225 type = double
9226 (@value{GDBP}) p g
9227 $1 = 1
9228 (@value{GDBP}) set g=4
9229 (@value{GDBP}) p g
9230 $2 = 1
9231 (@value{GDBP}) r
9232 The program being debugged has been started already.
9233 Start it from the beginning? (y or n) y
9234 Starting program: /home/smith/cc_progs/a.out
9235 "/home/smith/cc_progs/a.out": can't open to read symbols:
9236                                  Invalid bfd target.
9237 (@value{GDBP}) show g
9238 The current BFD target is "=4".
9239 @end group
9240 @end smallexample
9241
9242 @noindent
9243 The program variable @code{g} did not change, and you silently set the
9244 @code{gnutarget} to an invalid value.  In order to set the variable
9245 @code{g}, use
9246
9247 @smallexample
9248 (@value{GDBP}) set var g=4
9249 @end smallexample
9250
9251 @value{GDBN} allows more implicit conversions in assignments than C; you can
9252 freely store an integer value into a pointer variable or vice versa,
9253 and you can convert any structure to any other structure that is the
9254 same length or shorter.
9255 @comment FIXME: how do structs align/pad in these conversions?
9256 @comment        /doc@cygnus.com 18dec1990
9257
9258 To store values into arbitrary places in memory, use the @samp{@{@dots{}@}}
9259 construct to generate a value of specified type at a specified address
9260 (@pxref{Expressions, ,Expressions}).  For example, @code{@{int@}0x83040} refers
9261 to memory location @code{0x83040} as an integer (which implies a certain size
9262 and representation in memory), and
9263
9264 @smallexample
9265 set @{int@}0x83040 = 4
9266 @end smallexample
9267
9268 @noindent
9269 stores the value 4 into that memory location.
9270
9271 @node Jumping
9272 @section Continuing at a different address
9273
9274 Ordinarily, when you continue your program, you do so at the place where
9275 it stopped, with the @code{continue} command.  You can instead continue at
9276 an address of your own choosing, with the following commands:
9277
9278 @table @code
9279 @kindex jump
9280 @item jump @var{linespec}
9281 Resume execution at line @var{linespec}.  Execution stops again
9282 immediately if there is a breakpoint there.  @xref{List, ,Printing
9283 source lines}, for a description of the different forms of
9284 @var{linespec}.  It is common practice to use the @code{tbreak} command
9285 in conjunction with @code{jump}.  @xref{Set Breaks, ,Setting
9286 breakpoints}.
9287
9288 The @code{jump} command does not change the current stack frame, or
9289 the stack pointer, or the contents of any memory location or any
9290 register other than the program counter.  If line @var{linespec} is in
9291 a different function from the one currently executing, the results may
9292 be bizarre if the two functions expect different patterns of arguments or
9293 of local variables.  For this reason, the @code{jump} command requests
9294 confirmation if the specified line is not in the function currently
9295 executing.  However, even bizarre results are predictable if you are
9296 well acquainted with the machine-language code of your program.
9297
9298 @item jump *@var{address}
9299 Resume execution at the instruction at address @var{address}.
9300 @end table
9301
9302 @c Doesn't work on HP-UX; have to set $pcoqh and $pcoqt.
9303 On many systems, you can get much the same effect as the @code{jump}
9304 command by storing a new value into the register @code{$pc}.  The
9305 difference is that this does not start your program running; it only
9306 changes the address of where it @emph{will} run when you continue.  For
9307 example,
9308
9309 @smallexample
9310 set $pc = 0x485
9311 @end smallexample
9312
9313 @noindent
9314 makes the next @code{continue} command or stepping command execute at
9315 address @code{0x485}, rather than at the address where your program stopped.
9316 @xref{Continuing and Stepping, ,Continuing and stepping}.
9317
9318 The most common occasion to use the @code{jump} command is to back
9319 up---perhaps with more breakpoints set---over a portion of a program
9320 that has already executed, in order to examine its execution in more
9321 detail.
9322
9323 @c @group
9324 @node Signaling
9325 @section Giving your program a signal
9326
9327 @table @code
9328 @kindex signal
9329 @item signal @var{signal}
9330 Resume execution where your program stopped, but immediately give it the
9331 signal @var{signal}.  @var{signal} can be the name or the number of a
9332 signal.  For example, on many systems @code{signal 2} and @code{signal
9333 SIGINT} are both ways of sending an interrupt signal.
9334
9335 Alternatively, if @var{signal} is zero, continue execution without
9336 giving a signal.  This is useful when your program stopped on account of
9337 a signal and would ordinary see the signal when resumed with the
9338 @code{continue} command; @samp{signal 0} causes it to resume without a
9339 signal.
9340
9341 @code{signal} does not repeat when you press @key{RET} a second time
9342 after executing the command.
9343 @end table
9344 @c @end group
9345
9346 Invoking the @code{signal} command is not the same as invoking the
9347 @code{kill} utility from the shell.  Sending a signal with @code{kill}
9348 causes @value{GDBN} to decide what to do with the signal depending on
9349 the signal handling tables (@pxref{Signals}).  The @code{signal} command
9350 passes the signal directly to your program.
9351
9352
9353 @node Returning
9354 @section Returning from a function
9355
9356 @table @code
9357 @cindex returning from a function
9358 @kindex return
9359 @item return
9360 @itemx return @var{expression}
9361 You can cancel execution of a function call with the @code{return}
9362 command.  If you give an
9363 @var{expression} argument, its value is used as the function's return
9364 value.
9365 @end table
9366
9367 When you use @code{return}, @value{GDBN} discards the selected stack frame
9368 (and all frames within it).  You can think of this as making the
9369 discarded frame return prematurely.  If you wish to specify a value to
9370 be returned, give that value as the argument to @code{return}.
9371
9372 This pops the selected stack frame (@pxref{Selection, ,Selecting a
9373 frame}), and any other frames inside of it, leaving its caller as the
9374 innermost remaining frame.  That frame becomes selected.  The
9375 specified value is stored in the registers used for returning values
9376 of functions.
9377
9378 The @code{return} command does not resume execution; it leaves the
9379 program stopped in the state that would exist if the function had just
9380 returned.  In contrast, the @code{finish} command (@pxref{Continuing
9381 and Stepping, ,Continuing and stepping}) resumes execution until the
9382 selected stack frame returns naturally.
9383
9384 @node Calling
9385 @section Calling program functions
9386
9387 @cindex calling functions
9388 @kindex call
9389 @table @code
9390 @item call @var{expr}
9391 Evaluate the expression @var{expr} without displaying @code{void}
9392 returned values.
9393 @end table
9394
9395 You can use this variant of the @code{print} command if you want to
9396 execute a function from your program, but without cluttering the output
9397 with @code{void} returned values.  If the result is not void, it
9398 is printed and saved in the value history.
9399
9400 @node Patching
9401 @section Patching programs
9402
9403 @cindex patching binaries
9404 @cindex writing into executables
9405 @cindex writing into corefiles
9406
9407 By default, @value{GDBN} opens the file containing your program's
9408 executable code (or the corefile) read-only.  This prevents accidental
9409 alterations to machine code; but it also prevents you from intentionally
9410 patching your program's binary.
9411
9412 If you'd like to be able to patch the binary, you can specify that
9413 explicitly with the @code{set write} command.  For example, you might
9414 want to turn on internal debugging flags, or even to make emergency
9415 repairs.
9416
9417 @table @code
9418 @kindex set write
9419 @item set write on
9420 @itemx set write off
9421 If you specify @samp{set write on}, @value{GDBN} opens executable and
9422 core files for both reading and writing; if you specify @samp{set write
9423 off} (the default), @value{GDBN} opens them read-only.
9424
9425 If you have already loaded a file, you must load it again (using the
9426 @code{exec-file} or @code{core-file} command) after changing @code{set
9427 write}, for your new setting to take effect.
9428
9429 @item show write
9430 @kindex show write
9431 Display whether executable files and core files are opened for writing
9432 as well as reading.
9433 @end table
9434
9435 @node GDB Files
9436 @chapter @value{GDBN} Files
9437
9438 @value{GDBN} needs to know the file name of the program to be debugged,
9439 both in order to read its symbol table and in order to start your
9440 program.  To debug a core dump of a previous run, you must also tell
9441 @value{GDBN} the name of the core dump file.
9442
9443 @menu
9444 * Files::                       Commands to specify files
9445 * Symbol Errors::               Errors reading symbol files
9446 @end menu
9447
9448 @node Files
9449 @section Commands to specify files
9450
9451 @cindex symbol table
9452 @cindex core dump file
9453
9454 You may want to specify executable and core dump file names.  The usual
9455 way to do this is at start-up time, using the arguments to
9456 @value{GDBN}'s start-up commands (@pxref{Invocation, , Getting In and
9457 Out of @value{GDBN}}).
9458
9459 Occasionally it is necessary to change to a different file during a
9460 @value{GDBN} session.  Or you may run @value{GDBN} and forget to specify
9461 a file you want to use.  In these situations the @value{GDBN} commands
9462 to specify new files are useful.
9463
9464 @table @code
9465 @cindex executable file
9466 @kindex file
9467 @item file @var{filename}
9468 Use @var{filename} as the program to be debugged.  It is read for its
9469 symbols and for the contents of pure memory.  It is also the program
9470 executed when you use the @code{run} command.  If you do not specify a
9471 directory and the file is not found in the @value{GDBN} working directory,
9472 @value{GDBN} uses the environment variable @code{PATH} as a list of
9473 directories to search, just as the shell does when looking for a program
9474 to run.  You can change the value of this variable, for both @value{GDBN}
9475 and your program, using the @code{path} command.
9476
9477 On systems with memory-mapped files, an auxiliary file named
9478 @file{@var{filename}.syms} may hold symbol table information for
9479 @var{filename}.  If so, @value{GDBN} maps in the symbol table from
9480 @file{@var{filename}.syms}, starting up more quickly.  See the
9481 descriptions of the file options @samp{-mapped} and @samp{-readnow}
9482 (available on the command line, and with the commands @code{file},
9483 @code{symbol-file}, or @code{add-symbol-file}, described below),
9484 for more information.
9485
9486 @item file
9487 @code{file} with no argument makes @value{GDBN} discard any information it
9488 has on both executable file and the symbol table.
9489
9490 @kindex exec-file
9491 @item exec-file @r{[} @var{filename} @r{]}
9492 Specify that the program to be run (but not the symbol table) is found
9493 in @var{filename}.  @value{GDBN} searches the environment variable @code{PATH}
9494 if necessary to locate your program.  Omitting @var{filename} means to
9495 discard information on the executable file.
9496
9497 @kindex symbol-file
9498 @item symbol-file @r{[} @var{filename} @r{]}
9499 Read symbol table information from file @var{filename}.  @code{PATH} is
9500 searched when necessary.  Use the @code{file} command to get both symbol
9501 table and program to run from the same file.
9502
9503 @code{symbol-file} with no argument clears out @value{GDBN} information on your
9504 program's symbol table.
9505
9506 The @code{symbol-file} command causes @value{GDBN} to forget the contents
9507 of its convenience variables, the value history, and all breakpoints and
9508 auto-display expressions.  This is because they may contain pointers to
9509 the internal data recording symbols and data types, which are part of
9510 the old symbol table data being discarded inside @value{GDBN}.
9511
9512 @code{symbol-file} does not repeat if you press @key{RET} again after
9513 executing it once.
9514
9515 When @value{GDBN} is configured for a particular environment, it
9516 understands debugging information in whatever format is the standard
9517 generated for that environment; you may use either a @sc{gnu} compiler, or
9518 other compilers that adhere to the local conventions.
9519 Best results are usually obtained from @sc{gnu} compilers; for example,
9520 using @code{@value{GCC}} you can generate debugging information for
9521 optimized code.
9522
9523 For most kinds of object files, with the exception of old SVR3 systems
9524 using COFF, the @code{symbol-file} command does not normally read the
9525 symbol table in full right away.  Instead, it scans the symbol table
9526 quickly to find which source files and which symbols are present.  The
9527 details are read later, one source file at a time, as they are needed.
9528
9529 The purpose of this two-stage reading strategy is to make @value{GDBN}
9530 start up faster.  For the most part, it is invisible except for
9531 occasional pauses while the symbol table details for a particular source
9532 file are being read.  (The @code{set verbose} command can turn these
9533 pauses into messages if desired.  @xref{Messages/Warnings, ,Optional
9534 warnings and messages}.)
9535
9536 We have not implemented the two-stage strategy for COFF yet.  When the
9537 symbol table is stored in COFF format, @code{symbol-file} reads the
9538 symbol table data in full right away.  Note that ``stabs-in-COFF''
9539 still does the two-stage strategy, since the debug info is actually
9540 in stabs format.
9541
9542 @kindex readnow
9543 @cindex reading symbols immediately
9544 @cindex symbols, reading immediately
9545 @kindex mapped
9546 @cindex memory-mapped symbol file
9547 @cindex saving symbol table
9548 @item symbol-file @var{filename} @r{[} -readnow @r{]} @r{[} -mapped @r{]}
9549 @itemx file @var{filename} @r{[} -readnow @r{]} @r{[} -mapped @r{]}
9550 You can override the @value{GDBN} two-stage strategy for reading symbol
9551 tables by using the @samp{-readnow} option with any of the commands that
9552 load symbol table information, if you want to be sure @value{GDBN} has the
9553 entire symbol table available.
9554
9555 If memory-mapped files are available on your system through the
9556 @code{mmap} system call, you can use another option, @samp{-mapped}, to
9557 cause @value{GDBN} to write the symbols for your program into a reusable
9558 file.  Future @value{GDBN} debugging sessions map in symbol information
9559 from this auxiliary symbol file (if the program has not changed), rather
9560 than spending time reading the symbol table from the executable
9561 program.  Using the @samp{-mapped} option has the same effect as
9562 starting @value{GDBN} with the @samp{-mapped} command-line option.
9563
9564 You can use both options together, to make sure the auxiliary symbol
9565 file has all the symbol information for your program.
9566
9567 The auxiliary symbol file for a program called @var{myprog} is called
9568 @samp{@var{myprog}.syms}.  Once this file exists (so long as it is newer
9569 than the corresponding executable), @value{GDBN} always attempts to use
9570 it when you debug @var{myprog}; no special options or commands are
9571 needed.
9572
9573 The @file{.syms} file is specific to the host machine where you run
9574 @value{GDBN}.  It holds an exact image of the internal @value{GDBN}
9575 symbol table.  It cannot be shared across multiple host platforms.
9576
9577 @c FIXME: for now no mention of directories, since this seems to be in
9578 @c flux.  13mar1992 status is that in theory GDB would look either in
9579 @c current dir or in same dir as myprog; but issues like competing
9580 @c GDB's, or clutter in system dirs, mean that in practice right now
9581 @c only current dir is used.  FFish says maybe a special GDB hierarchy
9582 @c (eg rooted in val of env var GDBSYMS) could exist for mappable symbol
9583 @c files.
9584
9585 @kindex core
9586 @kindex core-file
9587 @item core-file @r{[} @var{filename} @r{]}
9588 Specify the whereabouts of a core dump file to be used as the ``contents
9589 of memory''.  Traditionally, core files contain only some parts of the
9590 address space of the process that generated them; @value{GDBN} can access the
9591 executable file itself for other parts.
9592
9593 @code{core-file} with no argument specifies that no core file is
9594 to be used.
9595
9596 Note that the core file is ignored when your program is actually running
9597 under @value{GDBN}.  So, if you have been running your program and you
9598 wish to debug a core file instead, you must kill the subprocess in which
9599 the program is running.  To do this, use the @code{kill} command
9600 (@pxref{Kill Process, ,Killing the child process}).
9601
9602 @kindex add-symbol-file
9603 @cindex dynamic linking
9604 @item add-symbol-file @var{filename} @var{address}
9605 @itemx add-symbol-file @var{filename} @var{address} @r{[} -readnow @r{]} @r{[} -mapped @r{]}
9606 @itemx add-symbol-file @var{filename} @r{-s}@var{section} @var{address} @dots{}
9607 The @code{add-symbol-file} command reads additional symbol table
9608 information from the file @var{filename}.  You would use this command
9609 when @var{filename} has been dynamically loaded (by some other means)
9610 into the program that is running.  @var{address} should be the memory
9611 address at which the file has been loaded; @value{GDBN} cannot figure
9612 this out for itself.  You can additionally specify an arbitrary number
9613 of @samp{@r{-s}@var{section} @var{address}} pairs, to give an explicit
9614 section name and base address for that section.  You can specify any
9615 @var{address} as an expression.
9616
9617 The symbol table of the file @var{filename} is added to the symbol table
9618 originally read with the @code{symbol-file} command.  You can use the
9619 @code{add-symbol-file} command any number of times; the new symbol data
9620 thus read keeps adding to the old.  To discard all old symbol data
9621 instead, use the @code{symbol-file} command without any arguments.
9622
9623 @cindex relocatable object files, reading symbols from
9624 @cindex object files, relocatable, reading symbols from
9625 @cindex reading symbols from relocatable object files
9626 @cindex symbols, reading from relocatable object files
9627 @cindex @file{.o} files, reading symbols from
9628 Although @var{filename} is typically a shared library file, an
9629 executable file, or some other object file which has been fully
9630 relocated for loading into a process, you can also load symbolic
9631 information from relocatable @file{.o} files, as long as:
9632
9633 @itemize @bullet
9634 @item
9635 the file's symbolic information refers only to linker symbols defined in
9636 that file, not to symbols defined by other object files,
9637 @item
9638 every section the file's symbolic information refers to has actually
9639 been loaded into the inferior, as it appears in the file, and
9640 @item
9641 you can determine the address at which every section was loaded, and
9642 provide these to the @code{add-symbol-file} command.
9643 @end itemize
9644
9645 @noindent
9646 Some embedded operating systems, like Sun Chorus and VxWorks, can load
9647 relocatable files into an already running program; such systems
9648 typically make the requirements above easy to meet.  However, it's
9649 important to recognize that many native systems use complex link
9650 procedures (@code{.linkonce} section factoring and C++ constructor table
9651 assembly, for example) that make the requirements difficult to meet.  In
9652 general, one cannot assume that using @code{add-symbol-file} to read a
9653 relocatable object file's symbolic information will have the same effect
9654 as linking the relocatable object file into the program in the normal
9655 way.
9656
9657 @code{add-symbol-file} does not repeat if you press @key{RET} after using it.
9658
9659 You can use the @samp{-mapped} and @samp{-readnow} options just as with
9660 the @code{symbol-file} command, to change how @value{GDBN} manages the symbol
9661 table information for @var{filename}.
9662
9663 @kindex add-shared-symbol-file
9664 @item add-shared-symbol-file
9665 The @code{add-shared-symbol-file} command can be used only under Harris' CXUX
9666 operating system for the Motorola 88k.  @value{GDBN} automatically looks for
9667 shared libraries, however if @value{GDBN} does not find yours, you can run
9668 @code{add-shared-symbol-file}.  It takes no arguments.
9669
9670 @kindex section
9671 @item section
9672 The @code{section} command changes the base address of section SECTION of
9673 the exec file to ADDR.  This can be used if the exec file does not contain
9674 section addresses, (such as in the a.out format), or when the addresses
9675 specified in the file itself are wrong.  Each section must be changed
9676 separately.  The @code{info files} command, described below, lists all
9677 the sections and their addresses.
9678
9679 @kindex info files
9680 @kindex info target
9681 @item info files
9682 @itemx info target
9683 @code{info files} and @code{info target} are synonymous; both print the
9684 current target (@pxref{Targets, ,Specifying a Debugging Target}),
9685 including the names of the executable and core dump files currently in
9686 use by @value{GDBN}, and the files from which symbols were loaded.  The
9687 command @code{help target} lists all possible targets rather than
9688 current ones.
9689
9690 @kindex maint info sections
9691 @item maint info sections
9692 Another command that can give you extra information about program sections
9693 is @code{maint info sections}.  In addition to the section information
9694 displayed by @code{info files}, this command displays the flags and file
9695 offset of each section in the executable and core dump files.  In addition,
9696 @code{maint info sections} provides the following command options (which
9697 may be arbitrarily combined):
9698
9699 @table @code
9700 @item ALLOBJ
9701 Display sections for all loaded object files, including shared libraries.
9702 @item @var{sections}
9703 Display info only for named @var{sections}.
9704 @item @var{section-flags}
9705 Display info only for sections for which @var{section-flags} are true.
9706 The section flags that @value{GDBN} currently knows about are:
9707 @table @code
9708 @item ALLOC
9709 Section will have space allocated in the process when loaded.
9710 Set for all sections except those containing debug information.
9711 @item LOAD
9712 Section will be loaded from the file into the child process memory.
9713 Set for pre-initialized code and data, clear for @code{.bss} sections.
9714 @item RELOC
9715 Section needs to be relocated before loading.
9716 @item READONLY
9717 Section cannot be modified by the child process.
9718 @item CODE
9719 Section contains executable code only.
9720 @item DATA
9721 Section contains data only (no executable code).
9722 @item ROM
9723 Section will reside in ROM.
9724 @item CONSTRUCTOR
9725 Section contains data for constructor/destructor lists.
9726 @item HAS_CONTENTS
9727 Section is not empty.
9728 @item NEVER_LOAD
9729 An instruction to the linker to not output the section.
9730 @item COFF_SHARED_LIBRARY
9731 A notification to the linker that the section contains
9732 COFF shared library information.
9733 @item IS_COMMON
9734 Section contains common symbols.
9735 @end table
9736 @end table
9737 @kindex set trust-readonly-sections
9738 @item set trust-readonly-sections on
9739 Tell @value{GDBN} that readonly sections in your object file
9740 really are read-only (i.e.@: that their contents will not change).
9741 In that case, @value{GDBN} can fetch values from these sections
9742 out of the object file, rather than from the target program.
9743 For some targets (notably embedded ones), this can be a significant
9744 enhancement to debugging performance.
9745
9746 The default is off.
9747
9748 @item set trust-readonly-sections off
9749 Tell @value{GDBN} not to trust readonly sections.  This means that
9750 the contents of the section might change while the program is running,
9751 and must therefore be fetched from the target when needed.
9752 @end table
9753
9754 All file-specifying commands allow both absolute and relative file names
9755 as arguments.  @value{GDBN} always converts the file name to an absolute file
9756 name and remembers it that way.
9757
9758 @cindex shared libraries
9759 @value{GDBN} supports HP-UX, SunOS, SVr4, Irix 5, and IBM RS/6000 shared
9760 libraries.
9761
9762 @value{GDBN} automatically loads symbol definitions from shared libraries
9763 when you use the @code{run} command, or when you examine a core file.
9764 (Before you issue the @code{run} command, @value{GDBN} does not understand
9765 references to a function in a shared library, however---unless you are
9766 debugging a core file).
9767
9768 On HP-UX, if the program loads a library explicitly, @value{GDBN}
9769 automatically loads the symbols at the time of the @code{shl_load} call.
9770
9771 @c FIXME: some @value{GDBN} release may permit some refs to undef
9772 @c FIXME...symbols---eg in a break cmd---assuming they are from a shared
9773 @c FIXME...lib; check this from time to time when updating manual
9774
9775 There are times, however, when you may wish to not automatically load
9776 symbol definitions from shared libraries, such as when they are
9777 particularly large or there are many of them.
9778
9779 To control the automatic loading of shared library symbols, use the
9780 commands:
9781
9782 @table @code
9783 @kindex set auto-solib-add
9784 @item set auto-solib-add @var{mode}
9785 If @var{mode} is @code{on}, symbols from all shared object libraries
9786 will be loaded automatically when the inferior begins execution, you
9787 attach to an independently started inferior, or when the dynamic linker
9788 informs @value{GDBN} that a new library has been loaded.  If @var{mode}
9789 is @code{off}, symbols must be loaded manually, using the
9790 @code{sharedlibrary} command.  The default value is @code{on}.
9791
9792 @kindex show auto-solib-add
9793 @item show auto-solib-add
9794 Display the current autoloading mode.
9795 @end table
9796
9797 To explicitly load shared library symbols, use the @code{sharedlibrary}
9798 command:
9799
9800 @table @code
9801 @kindex info sharedlibrary
9802 @kindex info share
9803 @item info share
9804 @itemx info sharedlibrary
9805 Print the names of the shared libraries which are currently loaded.
9806
9807 @kindex sharedlibrary
9808 @kindex share
9809 @item sharedlibrary @var{regex}
9810 @itemx share @var{regex}
9811 Load shared object library symbols for files matching a
9812 Unix regular expression.
9813 As with files loaded automatically, it only loads shared libraries
9814 required by your program for a core file or after typing @code{run}.  If
9815 @var{regex} is omitted all shared libraries required by your program are
9816 loaded.
9817 @end table
9818
9819 On some systems, such as HP-UX systems, @value{GDBN} supports
9820 autoloading shared library symbols until a limiting threshold size is
9821 reached.  This provides the benefit of allowing autoloading to remain on
9822 by default, but avoids autoloading excessively large shared libraries,
9823 up to a threshold that is initially set, but which you can modify if you
9824 wish.
9825
9826 Beyond that threshold, symbols from shared libraries must be explicitly
9827 loaded.  To load these symbols, use the command @code{sharedlibrary
9828 @var{filename}}.  The base address of the shared library is determined
9829 automatically by @value{GDBN} and need not be specified.
9830
9831 To display or set the threshold, use the commands:
9832
9833 @table @code
9834 @kindex set auto-solib-limit
9835 @item set auto-solib-limit @var{threshold}
9836 Set the autoloading size threshold, in an integral number of megabytes.
9837 If @var{threshold} is nonzero and shared library autoloading is enabled,
9838 symbols from all shared object libraries will be loaded until the total
9839 size of the loaded shared library symbols exceeds this threshold.
9840 Otherwise, symbols must be loaded manually, using the
9841 @code{sharedlibrary} command.  The default threshold is 100 (i.e.@: 100
9842 Mb).
9843
9844 @kindex show auto-solib-limit
9845 @item show auto-solib-limit
9846 Display the current autoloading size threshold, in megabytes.
9847 @end table
9848
9849 @node Symbol Errors
9850 @section Errors reading symbol files
9851
9852 While reading a symbol file, @value{GDBN} occasionally encounters problems,
9853 such as symbol types it does not recognize, or known bugs in compiler
9854 output.  By default, @value{GDBN} does not notify you of such problems, since
9855 they are relatively common and primarily of interest to people
9856 debugging compilers.  If you are interested in seeing information
9857 about ill-constructed symbol tables, you can either ask @value{GDBN} to print
9858 only one message about each such type of problem, no matter how many
9859 times the problem occurs; or you can ask @value{GDBN} to print more messages,
9860 to see how many times the problems occur, with the @code{set
9861 complaints} command (@pxref{Messages/Warnings, ,Optional warnings and
9862 messages}).
9863
9864 The messages currently printed, and their meanings, include:
9865
9866 @table @code
9867 @item inner block not inside outer block in @var{symbol}
9868
9869 The symbol information shows where symbol scopes begin and end
9870 (such as at the start of a function or a block of statements).  This
9871 error indicates that an inner scope block is not fully contained
9872 in its outer scope blocks.
9873
9874 @value{GDBN} circumvents the problem by treating the inner block as if it had
9875 the same scope as the outer block.  In the error message, @var{symbol}
9876 may be shown as ``@code{(don't know)}'' if the outer block is not a
9877 function.
9878
9879 @item block at @var{address} out of order
9880
9881 The symbol information for symbol scope blocks should occur in
9882 order of increasing addresses.  This error indicates that it does not
9883 do so.
9884
9885 @value{GDBN} does not circumvent this problem, and has trouble
9886 locating symbols in the source file whose symbols it is reading.  (You
9887 can often determine what source file is affected by specifying
9888 @code{set verbose on}.  @xref{Messages/Warnings, ,Optional warnings and
9889 messages}.)
9890
9891 @item bad block start address patched
9892
9893 The symbol information for a symbol scope block has a start address
9894 smaller than the address of the preceding source line.  This is known
9895 to occur in the SunOS 4.1.1 (and earlier) C compiler.
9896
9897 @value{GDBN} circumvents the problem by treating the symbol scope block as
9898 starting on the previous source line.
9899
9900 @item bad string table offset in symbol @var{n}
9901
9902 @cindex foo
9903 Symbol number @var{n} contains a pointer into the string table which is
9904 larger than the size of the string table.
9905
9906 @value{GDBN} circumvents the problem by considering the symbol to have the
9907 name @code{foo}, which may cause other problems if many symbols end up
9908 with this name.
9909
9910 @item unknown symbol type @code{0x@var{nn}}
9911
9912 The symbol information contains new data types that @value{GDBN} does
9913 not yet know how to read.  @code{0x@var{nn}} is the symbol type of the
9914 uncomprehended information, in hexadecimal.
9915
9916 @value{GDBN} circumvents the error by ignoring this symbol information.
9917 This usually allows you to debug your program, though certain symbols
9918 are not accessible.  If you encounter such a problem and feel like
9919 debugging it, you can debug @code{@value{GDBP}} with itself, breakpoint
9920 on @code{complain}, then go up to the function @code{read_dbx_symtab}
9921 and examine @code{*bufp} to see the symbol.
9922
9923 @item stub type has NULL name
9924
9925 @value{GDBN} could not find the full definition for a struct or class.
9926
9927 @item const/volatile indicator missing (ok if using g++ v1.x), got@dots{}
9928 The symbol information for a C@t{++} member function is missing some
9929 information that recent versions of the compiler should have output for
9930 it.
9931
9932 @item info mismatch between compiler and debugger
9933
9934 @value{GDBN} could not parse a type specification output by the compiler.
9935
9936 @end table
9937
9938 @node Targets
9939 @chapter Specifying a Debugging Target
9940
9941 @cindex debugging target
9942 @kindex target
9943
9944 A @dfn{target} is the execution environment occupied by your program.
9945
9946 Often, @value{GDBN} runs in the same host environment as your program;
9947 in that case, the debugging target is specified as a side effect when
9948 you use the @code{file} or @code{core} commands.  When you need more
9949 flexibility---for example, running @value{GDBN} on a physically separate
9950 host, or controlling a standalone system over a serial port or a
9951 realtime system over a TCP/IP connection---you can use the @code{target}
9952 command to specify one of the target types configured for @value{GDBN}
9953 (@pxref{Target Commands, ,Commands for managing targets}).
9954
9955 @menu
9956 * Active Targets::              Active targets
9957 * Target Commands::             Commands for managing targets
9958 * Byte Order::                  Choosing target byte order
9959 * Remote::                      Remote debugging
9960 * KOD::                         Kernel Object Display
9961
9962 @end menu
9963
9964 @node Active Targets
9965 @section Active targets
9966
9967 @cindex stacking targets
9968 @cindex active targets
9969 @cindex multiple targets
9970
9971 There are three classes of targets: processes, core files, and
9972 executable files.  @value{GDBN} can work concurrently on up to three
9973 active targets, one in each class.  This allows you to (for example)
9974 start a process and inspect its activity without abandoning your work on
9975 a core file.
9976
9977 For example, if you execute @samp{gdb a.out}, then the executable file
9978 @code{a.out} is the only active target.  If you designate a core file as
9979 well---presumably from a prior run that crashed and coredumped---then
9980 @value{GDBN} has two active targets and uses them in tandem, looking
9981 first in the corefile target, then in the executable file, to satisfy
9982 requests for memory addresses.  (Typically, these two classes of target
9983 are complementary, since core files contain only a program's
9984 read-write memory---variables and so on---plus machine status, while
9985 executable files contain only the program text and initialized data.)
9986
9987 When you type @code{run}, your executable file becomes an active process
9988 target as well.  When a process target is active, all @value{GDBN}
9989 commands requesting memory addresses refer to that target; addresses in
9990 an active core file or executable file target are obscured while the
9991 process target is active.
9992
9993 Use the @code{core-file} and @code{exec-file} commands to select a new
9994 core file or executable target (@pxref{Files, ,Commands to specify
9995 files}).  To specify as a target a process that is already running, use
9996 the @code{attach} command (@pxref{Attach, ,Debugging an already-running
9997 process}).
9998
9999 @node Target Commands
10000 @section Commands for managing targets
10001
10002 @table @code
10003 @item target @var{type} @var{parameters}
10004 Connects the @value{GDBN} host environment to a target machine or
10005 process.  A target is typically a protocol for talking to debugging
10006 facilities.  You use the argument @var{type} to specify the type or
10007 protocol of the target machine.
10008
10009 Further @var{parameters} are interpreted by the target protocol, but
10010 typically include things like device names or host names to connect
10011 with, process numbers, and baud rates.
10012
10013 The @code{target} command does not repeat if you press @key{RET} again
10014 after executing the command.
10015
10016 @kindex help target
10017 @item help target
10018 Displays the names of all targets available.  To display targets
10019 currently selected, use either @code{info target} or @code{info files}
10020 (@pxref{Files, ,Commands to specify files}).
10021
10022 @item help target @var{name}
10023 Describe a particular target, including any parameters necessary to
10024 select it.
10025
10026 @kindex set gnutarget
10027 @item set gnutarget @var{args}
10028 @value{GDBN} uses its own library BFD to read your files.  @value{GDBN}
10029 knows whether it is reading an @dfn{executable},
10030 a @dfn{core}, or a @dfn{.o} file; however, you can specify the file format
10031 with the @code{set gnutarget} command.  Unlike most @code{target} commands,
10032 with @code{gnutarget} the @code{target} refers to a program, not a machine.
10033
10034 @quotation
10035 @emph{Warning:} To specify a file format with @code{set gnutarget},
10036 you must know the actual BFD name.
10037 @end quotation
10038
10039 @noindent
10040 @xref{Files, , Commands to specify files}.
10041
10042 @kindex show gnutarget
10043 @item show gnutarget
10044 Use the @code{show gnutarget} command to display what file format
10045 @code{gnutarget} is set to read.  If you have not set @code{gnutarget},
10046 @value{GDBN} will determine the file format for each file automatically,
10047 and @code{show gnutarget} displays @samp{The current BDF target is "auto"}.
10048 @end table
10049
10050 Here are some common targets (available, or not, depending on the GDB
10051 configuration):
10052
10053 @table @code
10054 @kindex target exec
10055 @item target exec @var{program}
10056 An executable file.  @samp{target exec @var{program}} is the same as
10057 @samp{exec-file @var{program}}.
10058
10059 @kindex target core
10060 @item target core @var{filename}
10061 A core dump file.  @samp{target core @var{filename}} is the same as
10062 @samp{core-file @var{filename}}.
10063
10064 @kindex target remote
10065 @item target remote @var{dev}
10066 Remote serial target in GDB-specific protocol.  The argument @var{dev}
10067 specifies what serial device to use for the connection (e.g.
10068 @file{/dev/ttya}). @xref{Remote, ,Remote debugging}.  @code{target remote}
10069 supports the @code{load} command.  This is only useful if you have
10070 some other way of getting the stub to the target system, and you can put
10071 it somewhere in memory where it won't get clobbered by the download.
10072
10073 @kindex target sim
10074 @item target sim
10075 Builtin CPU simulator.  @value{GDBN} includes simulators for most architectures.
10076 In general,
10077 @smallexample
10078         target sim
10079         load
10080         run
10081 @end smallexample
10082 @noindent
10083 works; however, you cannot assume that a specific memory map, device
10084 drivers, or even basic I/O is available, although some simulators do
10085 provide these.  For info about any processor-specific simulator details,
10086 see the appropriate section in @ref{Embedded Processors, ,Embedded
10087 Processors}.
10088
10089 @end table
10090
10091 Some configurations may include these targets as well:
10092
10093 @table @code
10094
10095 @kindex target nrom
10096 @item target nrom @var{dev}
10097 NetROM ROM emulator.  This target only supports downloading.
10098
10099 @end table
10100
10101 Different targets are available on different configurations of @value{GDBN};
10102 your configuration may have more or fewer targets.
10103
10104 Many remote targets require you to download the executable's code
10105 once you've successfully established a connection.
10106
10107 @table @code
10108
10109 @kindex load @var{filename}
10110 @item load @var{filename}
10111 Depending on what remote debugging facilities are configured into
10112 @value{GDBN}, the @code{load} command may be available.  Where it exists, it
10113 is meant to make @var{filename} (an executable) available for debugging
10114 on the remote system---by downloading, or dynamic linking, for example.
10115 @code{load} also records the @var{filename} symbol table in @value{GDBN}, like
10116 the @code{add-symbol-file} command.
10117
10118 If your @value{GDBN} does not have a @code{load} command, attempting to
10119 execute it gets the error message ``@code{You can't do that when your
10120 target is @dots{}}''
10121
10122 The file is loaded at whatever address is specified in the executable.
10123 For some object file formats, you can specify the load address when you
10124 link the program; for other formats, like a.out, the object file format
10125 specifies a fixed address.
10126 @c FIXME! This would be a good place for an xref to the GNU linker doc.
10127
10128 @code{load} does not repeat if you press @key{RET} again after using it.
10129 @end table
10130
10131 @node Byte Order
10132 @section Choosing target byte order
10133
10134 @cindex choosing target byte order
10135 @cindex target byte order
10136
10137 Some types of processors, such as the MIPS, PowerPC, and Hitachi SH,
10138 offer the ability to run either big-endian or little-endian byte
10139 orders.  Usually the executable or symbol will include a bit to
10140 designate the endian-ness, and you will not need to worry about
10141 which to use.  However, you may still find it useful to adjust
10142 @value{GDBN}'s idea of processor endian-ness manually.
10143
10144 @table @code
10145 @kindex set endian big
10146 @item set endian big
10147 Instruct @value{GDBN} to assume the target is big-endian.
10148
10149 @kindex set endian little
10150 @item set endian little
10151 Instruct @value{GDBN} to assume the target is little-endian.
10152
10153 @kindex set endian auto
10154 @item set endian auto
10155 Instruct @value{GDBN} to use the byte order associated with the
10156 executable.
10157
10158 @item show endian
10159 Display @value{GDBN}'s current idea of the target byte order.
10160
10161 @end table
10162
10163 Note that these commands merely adjust interpretation of symbolic
10164 data on the host, and that they have absolutely no effect on the
10165 target system.
10166
10167 @node Remote
10168 @section Remote debugging
10169 @cindex remote debugging
10170
10171 If you are trying to debug a program running on a machine that cannot run
10172 @value{GDBN} in the usual way, it is often useful to use remote debugging.
10173 For example, you might use remote debugging on an operating system kernel,
10174 or on a small system which does not have a general purpose operating system
10175 powerful enough to run a full-featured debugger.
10176
10177 Some configurations of @value{GDBN} have special serial or TCP/IP interfaces
10178 to make this work with particular debugging targets.  In addition,
10179 @value{GDBN} comes with a generic serial protocol (specific to @value{GDBN},
10180 but not specific to any particular target system) which you can use if you
10181 write the remote stubs---the code that runs on the remote system to
10182 communicate with @value{GDBN}.
10183
10184 Other remote targets may be available in your
10185 configuration of @value{GDBN}; use @code{help target} to list them.
10186
10187 @node KOD
10188 @section Kernel Object Display
10189
10190 @cindex kernel object display
10191 @cindex kernel object
10192 @cindex KOD
10193
10194 Some targets support kernel object display.  Using this facility,
10195 @value{GDBN} communicates specially with the underlying operating system
10196 and can display information about operating system-level objects such as
10197 mutexes and other synchronization objects.  Exactly which objects can be
10198 displayed is determined on a per-OS basis.
10199
10200 Use the @code{set os} command to set the operating system.  This tells
10201 @value{GDBN} which kernel object display module to initialize:
10202
10203 @smallexample
10204 (@value{GDBP}) set os cisco
10205 @end smallexample
10206
10207 If @code{set os} succeeds, @value{GDBN} will display some information
10208 about the operating system, and will create a new @code{info} command
10209 which can be used to query the target.  The @code{info} command is named
10210 after the operating system:
10211
10212 @smallexample
10213 (@value{GDBP}) info cisco
10214 List of Cisco Kernel Objects
10215 Object     Description
10216 any        Any and all objects
10217 @end smallexample
10218
10219 Further subcommands can be used to query about particular objects known
10220 by the kernel.
10221
10222 There is currently no way to determine whether a given operating system
10223 is supported other than to try it.
10224
10225
10226 @node Remote Debugging
10227 @chapter Debugging remote programs
10228
10229 @menu
10230 * Server::                      Using the gdbserver program
10231 * NetWare::                     Using the gdbserve.nlm program
10232 * remote stub::                 Implementing a remote stub
10233 @end menu
10234
10235 @node Server
10236 @section Using the @code{gdbserver} program
10237
10238 @kindex gdbserver
10239 @cindex remote connection without stubs
10240 @code{gdbserver} is a control program for Unix-like systems, which
10241 allows you to connect your program with a remote @value{GDBN} via
10242 @code{target remote}---but without linking in the usual debugging stub.
10243
10244 @code{gdbserver} is not a complete replacement for the debugging stubs,
10245 because it requires essentially the same operating-system facilities
10246 that @value{GDBN} itself does.  In fact, a system that can run
10247 @code{gdbserver} to connect to a remote @value{GDBN} could also run
10248 @value{GDBN} locally!  @code{gdbserver} is sometimes useful nevertheless,
10249 because it is a much smaller program than @value{GDBN} itself.  It is
10250 also easier to port than all of @value{GDBN}, so you may be able to get
10251 started more quickly on a new system by using @code{gdbserver}.
10252 Finally, if you develop code for real-time systems, you may find that
10253 the tradeoffs involved in real-time operation make it more convenient to
10254 do as much development work as possible on another system, for example
10255 by cross-compiling.  You can use @code{gdbserver} to make a similar
10256 choice for debugging.
10257
10258 @value{GDBN} and @code{gdbserver} communicate via either a serial line
10259 or a TCP connection, using the standard @value{GDBN} remote serial
10260 protocol.
10261
10262 @table @emph
10263 @item On the target machine,
10264 you need to have a copy of the program you want to debug.
10265 @code{gdbserver} does not need your program's symbol table, so you can
10266 strip the program if necessary to save space.  @value{GDBN} on the host
10267 system does all the symbol handling.
10268
10269 To use the server, you must tell it how to communicate with @value{GDBN};
10270 the name of your program; and the arguments for your program.  The usual
10271 syntax is:
10272
10273 @smallexample
10274 target> gdbserver @var{comm} @var{program} [ @var{args} @dots{} ]
10275 @end smallexample
10276
10277 @var{comm} is either a device name (to use a serial line) or a TCP
10278 hostname and portnumber.  For example, to debug Emacs with the argument
10279 @samp{foo.txt} and communicate with @value{GDBN} over the serial port
10280 @file{/dev/com1}:
10281
10282 @smallexample
10283 target> gdbserver /dev/com1 emacs foo.txt
10284 @end smallexample
10285
10286 @code{gdbserver} waits passively for the host @value{GDBN} to communicate
10287 with it.
10288
10289 To use a TCP connection instead of a serial line:
10290
10291 @smallexample
10292 target> gdbserver host:2345 emacs foo.txt
10293 @end smallexample
10294
10295 The only difference from the previous example is the first argument,
10296 specifying that you are communicating with the host @value{GDBN} via
10297 TCP.  The @samp{host:2345} argument means that @code{gdbserver} is to
10298 expect a TCP connection from machine @samp{host} to local TCP port 2345.
10299 (Currently, the @samp{host} part is ignored.)  You can choose any number
10300 you want for the port number as long as it does not conflict with any
10301 TCP ports already in use on the target system (for example, @code{23} is
10302 reserved for @code{telnet}).@footnote{If you choose a port number that
10303 conflicts with another service, @code{gdbserver} prints an error message
10304 and exits.}  You must use the same port number with the host @value{GDBN}
10305 @code{target remote} command.
10306
10307 On some targets, @code{gdbserver} can also attach to running programs.
10308 This is accomplished via the @code{--attach} argument.  The syntax is:
10309
10310 @smallexample
10311 target> gdbserver @var{comm} --attach @var{pid}
10312 @end smallexample
10313
10314 @var{pid} is the process ID of a currently running process.  It isn't necessary
10315 to point @code{gdbserver} at a binary for the running process.
10316
10317 @item On the @value{GDBN} host machine,
10318 you need an unstripped copy of your program, since @value{GDBN} needs
10319 symbols and debugging information.  Start up @value{GDBN} as usual,
10320 using the name of the local copy of your program as the first argument.
10321 (You may also need the @w{@samp{--baud}} option if the serial line is
10322 running at anything other than 9600@dmn{bps}.)  After that, use @code{target
10323 remote} to establish communications with @code{gdbserver}.  Its argument
10324 is either a device name (usually a serial device, like
10325 @file{/dev/ttyb}), or a TCP port descriptor in the form
10326 @code{@var{host}:@var{PORT}}.  For example:
10327
10328 @smallexample
10329 (@value{GDBP}) target remote /dev/ttyb
10330 @end smallexample
10331
10332 @noindent
10333 communicates with the server via serial line @file{/dev/ttyb}, and
10334
10335 @smallexample
10336 (@value{GDBP}) target remote the-target:2345
10337 @end smallexample
10338
10339 @noindent
10340 communicates via a TCP connection to port 2345 on host @w{@file{the-target}}.
10341 For TCP connections, you must start up @code{gdbserver} prior to using
10342 the @code{target remote} command.  Otherwise you may get an error whose
10343 text depends on the host system, but which usually looks something like
10344 @samp{Connection refused}.
10345 @end table
10346
10347 @node NetWare
10348 @section Using the @code{gdbserve.nlm} program
10349
10350 @kindex gdbserve.nlm
10351 @code{gdbserve.nlm} is a control program for NetWare systems, which
10352 allows you to connect your program with a remote @value{GDBN} via
10353 @code{target remote}.
10354
10355 @value{GDBN} and @code{gdbserve.nlm} communicate via a serial line,
10356 using the standard @value{GDBN} remote serial protocol.
10357
10358 @table @emph
10359 @item On the target machine,
10360 you need to have a copy of the program you want to debug.
10361 @code{gdbserve.nlm} does not need your program's symbol table, so you
10362 can strip the program if necessary to save space.  @value{GDBN} on the
10363 host system does all the symbol handling.
10364
10365 To use the server, you must tell it how to communicate with
10366 @value{GDBN}; the name of your program; and the arguments for your
10367 program.  The syntax is:
10368
10369 @smallexample
10370 load gdbserve [ BOARD=@var{board} ] [ PORT=@var{port} ]
10371               [ BAUD=@var{baud} ] @var{program} [ @var{args} @dots{} ]
10372 @end smallexample
10373
10374 @var{board} and @var{port} specify the serial line; @var{baud} specifies
10375 the baud rate used by the connection.  @var{port} and @var{node} default
10376 to 0, @var{baud} defaults to 9600@dmn{bps}.
10377
10378 For example, to debug Emacs with the argument @samp{foo.txt}and
10379 communicate with @value{GDBN} over serial port number 2 or board 1
10380 using a 19200@dmn{bps} connection:
10381
10382 @smallexample
10383 load gdbserve BOARD=1 PORT=2 BAUD=19200 emacs foo.txt
10384 @end smallexample
10385
10386 @item On the @value{GDBN} host machine,
10387 you need an unstripped copy of your program, since @value{GDBN} needs
10388 symbols and debugging information.  Start up @value{GDBN} as usual,
10389 using the name of the local copy of your program as the first argument.
10390 (You may also need the @w{@samp{--baud}} option if the serial line is
10391 running at anything other than 9600@dmn{bps}.  After that, use @code{target
10392 remote} to establish communications with @code{gdbserve.nlm}.  Its
10393 argument is a device name (usually a serial device, like
10394 @file{/dev/ttyb}).  For example:
10395
10396 @smallexample
10397 (@value{GDBP}) target remote /dev/ttyb
10398 @end smallexample
10399
10400 @noindent
10401 communications with the server via serial line @file{/dev/ttyb}.
10402 @end table
10403
10404 @node remote stub
10405 @section Implementing a remote stub
10406
10407 @cindex debugging stub, example
10408 @cindex remote stub, example
10409 @cindex stub example, remote debugging
10410 The stub files provided with @value{GDBN} implement the target side of the
10411 communication protocol, and the @value{GDBN} side is implemented in the
10412 @value{GDBN} source file @file{remote.c}.  Normally, you can simply allow
10413 these subroutines to communicate, and ignore the details.  (If you're
10414 implementing your own stub file, you can still ignore the details: start
10415 with one of the existing stub files.  @file{sparc-stub.c} is the best
10416 organized, and therefore the easiest to read.)
10417
10418 @cindex remote serial debugging, overview
10419 To debug a program running on another machine (the debugging
10420 @dfn{target} machine), you must first arrange for all the usual
10421 prerequisites for the program to run by itself.  For example, for a C
10422 program, you need:
10423
10424 @enumerate
10425 @item
10426 A startup routine to set up the C runtime environment; these usually
10427 have a name like @file{crt0}.  The startup routine may be supplied by
10428 your hardware supplier, or you may have to write your own.
10429
10430 @item
10431 A C subroutine library to support your program's
10432 subroutine calls, notably managing input and output.
10433
10434 @item
10435 A way of getting your program to the other machine---for example, a
10436 download program.  These are often supplied by the hardware
10437 manufacturer, but you may have to write your own from hardware
10438 documentation.
10439 @end enumerate
10440
10441 The next step is to arrange for your program to use a serial port to
10442 communicate with the machine where @value{GDBN} is running (the @dfn{host}
10443 machine).  In general terms, the scheme looks like this:
10444
10445 @table @emph
10446 @item On the host,
10447 @value{GDBN} already understands how to use this protocol; when everything
10448 else is set up, you can simply use the @samp{target remote} command
10449 (@pxref{Targets,,Specifying a Debugging Target}).
10450
10451 @item On the target,
10452 you must link with your program a few special-purpose subroutines that
10453 implement the @value{GDBN} remote serial protocol.  The file containing these
10454 subroutines is called  a @dfn{debugging stub}.
10455
10456 On certain remote targets, you can use an auxiliary program
10457 @code{gdbserver} instead of linking a stub into your program.
10458 @xref{Server,,Using the @code{gdbserver} program}, for details.
10459 @end table
10460
10461 The debugging stub is specific to the architecture of the remote
10462 machine; for example, use @file{sparc-stub.c} to debug programs on
10463 @sc{sparc} boards.
10464
10465 @cindex remote serial stub list
10466 These working remote stubs are distributed with @value{GDBN}:
10467
10468 @table @code
10469
10470 @item i386-stub.c
10471 @cindex @file{i386-stub.c}
10472 @cindex Intel
10473 @cindex i386
10474 For Intel 386 and compatible architectures.
10475
10476 @item m68k-stub.c
10477 @cindex @file{m68k-stub.c}
10478 @cindex Motorola 680x0
10479 @cindex m680x0
10480 For Motorola 680x0 architectures.
10481
10482 @item sh-stub.c
10483 @cindex @file{sh-stub.c}
10484 @cindex Hitachi
10485 @cindex SH
10486 For Hitachi SH architectures.
10487
10488 @item sparc-stub.c
10489 @cindex @file{sparc-stub.c}
10490 @cindex Sparc
10491 For @sc{sparc} architectures.
10492
10493 @item sparcl-stub.c
10494 @cindex @file{sparcl-stub.c}
10495 @cindex Fujitsu
10496 @cindex SparcLite
10497 For Fujitsu @sc{sparclite} architectures.
10498
10499 @end table
10500
10501 The @file{README} file in the @value{GDBN} distribution may list other
10502 recently added stubs.
10503
10504 @menu
10505 * Stub Contents::       What the stub can do for you
10506 * Bootstrapping::       What you must do for the stub
10507 * Debug Session::       Putting it all together
10508 @end menu
10509
10510 @node Stub Contents
10511 @subsection What the stub can do for you
10512
10513 @cindex remote serial stub
10514 The debugging stub for your architecture supplies these three
10515 subroutines:
10516
10517 @table @code
10518 @item set_debug_traps
10519 @kindex set_debug_traps
10520 @cindex remote serial stub, initialization
10521 This routine arranges for @code{handle_exception} to run when your
10522 program stops.  You must call this subroutine explicitly near the
10523 beginning of your program.
10524
10525 @item handle_exception
10526 @kindex handle_exception
10527 @cindex remote serial stub, main routine
10528 This is the central workhorse, but your program never calls it
10529 explicitly---the setup code arranges for @code{handle_exception} to
10530 run when a trap is triggered.
10531
10532 @code{handle_exception} takes control when your program stops during
10533 execution (for example, on a breakpoint), and mediates communications
10534 with @value{GDBN} on the host machine.  This is where the communications
10535 protocol is implemented; @code{handle_exception} acts as the @value{GDBN}
10536 representative on the target machine.  It begins by sending summary
10537 information on the state of your program, then continues to execute,
10538 retrieving and transmitting any information @value{GDBN} needs, until you
10539 execute a @value{GDBN} command that makes your program resume; at that point,
10540 @code{handle_exception} returns control to your own code on the target
10541 machine.
10542
10543 @item breakpoint
10544 @cindex @code{breakpoint} subroutine, remote
10545 Use this auxiliary subroutine to make your program contain a
10546 breakpoint.  Depending on the particular situation, this may be the only
10547 way for @value{GDBN} to get control.  For instance, if your target
10548 machine has some sort of interrupt button, you won't need to call this;
10549 pressing the interrupt button transfers control to
10550 @code{handle_exception}---in effect, to @value{GDBN}.  On some machines,
10551 simply receiving characters on the serial port may also trigger a trap;
10552 again, in that situation, you don't need to call @code{breakpoint} from
10553 your own program---simply running @samp{target remote} from the host
10554 @value{GDBN} session gets control.
10555
10556 Call @code{breakpoint} if none of these is true, or if you simply want
10557 to make certain your program stops at a predetermined point for the
10558 start of your debugging session.
10559 @end table
10560
10561 @node Bootstrapping
10562 @subsection What you must do for the stub
10563
10564 @cindex remote stub, support routines
10565 The debugging stubs that come with @value{GDBN} are set up for a particular
10566 chip architecture, but they have no information about the rest of your
10567 debugging target machine.
10568
10569 First of all you need to tell the stub how to communicate with the
10570 serial port.
10571
10572 @table @code
10573 @item int getDebugChar()
10574 @kindex getDebugChar
10575 Write this subroutine to read a single character from the serial port.
10576 It may be identical to @code{getchar} for your target system; a
10577 different name is used to allow you to distinguish the two if you wish.
10578
10579 @item void putDebugChar(int)
10580 @kindex putDebugChar
10581 Write this subroutine to write a single character to the serial port.
10582 It may be identical to @code{putchar} for your target system; a
10583 different name is used to allow you to distinguish the two if you wish.
10584 @end table
10585
10586 @cindex control C, and remote debugging
10587 @cindex interrupting remote targets
10588 If you want @value{GDBN} to be able to stop your program while it is
10589 running, you need to use an interrupt-driven serial driver, and arrange
10590 for it to stop when it receives a @code{^C} (@samp{\003}, the control-C
10591 character).  That is the character which @value{GDBN} uses to tell the
10592 remote system to stop.
10593
10594 Getting the debugging target to return the proper status to @value{GDBN}
10595 probably requires changes to the standard stub; one quick and dirty way
10596 is to just execute a breakpoint instruction (the ``dirty'' part is that
10597 @value{GDBN} reports a @code{SIGTRAP} instead of a @code{SIGINT}).
10598
10599 Other routines you need to supply are:
10600
10601 @table @code
10602 @item void exceptionHandler (int @var{exception_number}, void *@var{exception_address})
10603 @kindex exceptionHandler
10604 Write this function to install @var{exception_address} in the exception
10605 handling tables.  You need to do this because the stub does not have any
10606 way of knowing what the exception handling tables on your target system
10607 are like (for example, the processor's table might be in @sc{rom},
10608 containing entries which point to a table in @sc{ram}).
10609 @var{exception_number} is the exception number which should be changed;
10610 its meaning is architecture-dependent (for example, different numbers
10611 might represent divide by zero, misaligned access, etc).  When this
10612 exception occurs, control should be transferred directly to
10613 @var{exception_address}, and the processor state (stack, registers,
10614 and so on) should be just as it is when a processor exception occurs.  So if
10615 you want to use a jump instruction to reach @var{exception_address}, it
10616 should be a simple jump, not a jump to subroutine.
10617
10618 For the 386, @var{exception_address} should be installed as an interrupt
10619 gate so that interrupts are masked while the handler runs.  The gate
10620 should be at privilege level 0 (the most privileged level).  The
10621 @sc{sparc} and 68k stubs are able to mask interrupts themselves without
10622 help from @code{exceptionHandler}.
10623
10624 @item void flush_i_cache()
10625 @kindex flush_i_cache
10626 On @sc{sparc} and @sc{sparclite} only, write this subroutine to flush the
10627 instruction cache, if any, on your target machine.  If there is no
10628 instruction cache, this subroutine may be a no-op.
10629
10630 On target machines that have instruction caches, @value{GDBN} requires this
10631 function to make certain that the state of your program is stable.
10632 @end table
10633
10634 @noindent
10635 You must also make sure this library routine is available:
10636
10637 @table @code
10638 @item void *memset(void *, int, int)
10639 @kindex memset
10640 This is the standard library function @code{memset} that sets an area of
10641 memory to a known value.  If you have one of the free versions of
10642 @code{libc.a}, @code{memset} can be found there; otherwise, you must
10643 either obtain it from your hardware manufacturer, or write your own.
10644 @end table
10645
10646 If you do not use the GNU C compiler, you may need other standard
10647 library subroutines as well; this varies from one stub to another,
10648 but in general the stubs are likely to use any of the common library
10649 subroutines which @code{@value{GCC}} generates as inline code.
10650
10651
10652 @node Debug Session
10653 @subsection Putting it all together
10654
10655 @cindex remote serial debugging summary
10656 In summary, when your program is ready to debug, you must follow these
10657 steps.
10658
10659 @enumerate
10660 @item
10661 Make sure you have defined the supporting low-level routines
10662 (@pxref{Bootstrapping,,What you must do for the stub}):
10663 @display
10664 @code{getDebugChar}, @code{putDebugChar},
10665 @code{flush_i_cache}, @code{memset}, @code{exceptionHandler}.
10666 @end display
10667
10668 @item
10669 Insert these lines near the top of your program:
10670
10671 @smallexample
10672 set_debug_traps();
10673 breakpoint();
10674 @end smallexample
10675
10676 @item
10677 For the 680x0 stub only, you need to provide a variable called
10678 @code{exceptionHook}.  Normally you just use:
10679
10680 @smallexample
10681 void (*exceptionHook)() = 0;
10682 @end smallexample
10683
10684 @noindent
10685 but if before calling @code{set_debug_traps}, you set it to point to a
10686 function in your program, that function is called when
10687 @code{@value{GDBN}} continues after stopping on a trap (for example, bus
10688 error).  The function indicated by @code{exceptionHook} is called with
10689 one parameter: an @code{int} which is the exception number.
10690
10691 @item
10692 Compile and link together: your program, the @value{GDBN} debugging stub for
10693 your target architecture, and the supporting subroutines.
10694
10695 @item
10696 Make sure you have a serial connection between your target machine and
10697 the @value{GDBN} host, and identify the serial port on the host.
10698
10699 @item
10700 @c The "remote" target now provides a `load' command, so we should
10701 @c document that.  FIXME.
10702 Download your program to your target machine (or get it there by
10703 whatever means the manufacturer provides), and start it.
10704
10705 @item
10706 To start remote debugging, run @value{GDBN} on the host machine, and specify
10707 as an executable file the program that is running in the remote machine.
10708 This tells @value{GDBN} how to find your program's symbols and the contents
10709 of its pure text.
10710
10711 @item
10712 @cindex serial line, @code{target remote}
10713 Establish communication using the @code{target remote} command.
10714 Its argument specifies how to communicate with the target
10715 machine---either via a devicename attached to a direct serial line, or a
10716 TCP or UDP port (usually to a terminal server which in turn has a serial line
10717 to the target).  For example, to use a serial line connected to the
10718 device named @file{/dev/ttyb}:
10719
10720 @smallexample
10721 target remote /dev/ttyb
10722 @end smallexample
10723
10724 @cindex TCP port, @code{target remote}
10725 To use a TCP connection, use an argument of the form
10726 @code{@var{host}:@var{port}} or @code{tcp:@var{host}:@var{port}}.
10727 For example, to connect to port 2828 on a
10728 terminal server named @code{manyfarms}:
10729
10730 @smallexample
10731 target remote manyfarms:2828
10732 @end smallexample
10733
10734 If your remote target is actually running on the same machine as
10735 your debugger session (e.g.@: a simulator of your target running on
10736 the same host), you can omit the hostname.  For example, to connect
10737 to port 1234 on your local machine:
10738
10739 @smallexample
10740 target remote :1234
10741 @end smallexample
10742 @noindent
10743
10744 Note that the colon is still required here.
10745
10746 @cindex UDP port, @code{target remote}
10747 To use a UDP connection, use an argument of the form
10748 @code{udp:@var{host}:@var{port}}.  For example, to connect to UDP port 2828
10749 on a terminal server named @code{manyfarms}:
10750
10751 @smallexample
10752 target remote udp:manyfarms:2828
10753 @end smallexample
10754
10755 When using a UDP connection for remote debugging, you should keep in mind
10756 that the `U' stands for ``Unreliable''.  UDP can silently drop packets on
10757 busy or unreliable networks, which will cause havoc with your debugging
10758 session.
10759
10760 @end enumerate
10761
10762 Now you can use all the usual commands to examine and change data and to
10763 step and continue the remote program.
10764
10765 To resume the remote program and stop debugging it, use the @code{detach}
10766 command.
10767
10768 @cindex interrupting remote programs
10769 @cindex remote programs, interrupting
10770 Whenever @value{GDBN} is waiting for the remote program, if you type the
10771 interrupt character (often @key{C-C}), @value{GDBN} attempts to stop the
10772 program.  This may or may not succeed, depending in part on the hardware
10773 and the serial drivers the remote system uses.  If you type the
10774 interrupt character once again, @value{GDBN} displays this prompt:
10775
10776 @smallexample
10777 Interrupted while waiting for the program.
10778 Give up (and stop debugging it)?  (y or n)
10779 @end smallexample
10780
10781 If you type @kbd{y}, @value{GDBN} abandons the remote debugging session.
10782 (If you decide you want to try again later, you can use @samp{target
10783 remote} again to connect once more.)  If you type @kbd{n}, @value{GDBN}
10784 goes back to waiting.
10785
10786
10787 @node Configurations
10788 @chapter Configuration-Specific Information
10789
10790 While nearly all @value{GDBN} commands are available for all native and
10791 cross versions of the debugger, there are some exceptions.  This chapter
10792 describes things that are only available in certain configurations.
10793
10794 There are three major categories of configurations: native
10795 configurations, where the host and target are the same, embedded
10796 operating system configurations, which are usually the same for several
10797 different processor architectures, and bare embedded processors, which
10798 are quite different from each other.
10799
10800 @menu
10801 * Native::
10802 * Embedded OS::
10803 * Embedded Processors::
10804 * Architectures::
10805 @end menu
10806
10807 @node Native
10808 @section Native
10809
10810 This section describes details specific to particular native
10811 configurations.
10812
10813 @menu
10814 * HP-UX::                       HP-UX
10815 * SVR4 Process Information::    SVR4 process information
10816 * DJGPP Native::                Features specific to the DJGPP port
10817 * Cygwin Native::               Features specific to the Cygwin port
10818 @end menu
10819
10820 @node HP-UX
10821 @subsection HP-UX
10822
10823 On HP-UX systems, if you refer to a function or variable name that
10824 begins with a dollar sign, @value{GDBN} searches for a user or system
10825 name first, before it searches for a convenience variable.
10826
10827 @node SVR4 Process Information
10828 @subsection SVR4 process information
10829
10830 @kindex /proc
10831 @cindex process image
10832
10833 Many versions of SVR4 provide a facility called @samp{/proc} that can be
10834 used to examine the image of a running process using file-system
10835 subroutines.  If @value{GDBN} is configured for an operating system with
10836 this facility, the command @code{info proc} is available to report on
10837 several kinds of information about the process running your program.
10838 @code{info proc} works only on SVR4 systems that include the
10839 @code{procfs} code.  This includes OSF/1 (Digital Unix), Solaris, Irix,
10840 and Unixware, but not HP-UX or Linux, for example.
10841
10842 @table @code
10843 @kindex info proc
10844 @item info proc
10845 Summarize available information about the process.
10846
10847 @kindex info proc mappings
10848 @item info proc mappings
10849 Report on the address ranges accessible in the program, with information
10850 on whether your program may read, write, or execute each range.
10851 @ignore
10852 @comment These sub-options of 'info proc' were not included when
10853 @comment procfs.c was re-written.  Keep their descriptions around
10854 @comment against the day when someone finds the time to put them back in.
10855 @kindex info proc times
10856 @item info proc times
10857 Starting time, user CPU time, and system CPU time for your program and
10858 its children.
10859
10860 @kindex info proc id
10861 @item info proc id
10862 Report on the process IDs related to your program: its own process ID,
10863 the ID of its parent, the process group ID, and the session ID.
10864
10865 @kindex info proc status
10866 @item info proc status
10867 General information on the state of the process.  If the process is
10868 stopped, this report includes the reason for stopping, and any signal
10869 received.
10870
10871 @item info proc all
10872 Show all the above information about the process.
10873 @end ignore
10874 @end table
10875
10876 @node DJGPP Native
10877 @subsection Features for Debugging @sc{djgpp} Programs
10878 @cindex @sc{djgpp} debugging
10879 @cindex native @sc{djgpp} debugging
10880 @cindex MS-DOS-specific commands
10881
10882 @sc{djgpp} is the port of @sc{gnu} development tools to MS-DOS and
10883 MS-Windows.  @sc{djgpp} programs are 32-bit protected-mode programs
10884 that use the @dfn{DPMI} (DOS Protected-Mode Interface) API to run on
10885 top of real-mode DOS systems and their emulations.
10886
10887 @value{GDBN} supports native debugging of @sc{djgpp} programs, and
10888 defines a few commands specific to the @sc{djgpp} port.  This
10889 subsection describes those commands.
10890
10891 @table @code
10892 @kindex info dos
10893 @item info dos
10894 This is a prefix of @sc{djgpp}-specific commands which print
10895 information about the target system and important OS structures.
10896
10897 @kindex sysinfo
10898 @cindex MS-DOS system info
10899 @cindex free memory information (MS-DOS)
10900 @item info dos sysinfo
10901 This command displays assorted information about the underlying
10902 platform: the CPU type and features, the OS version and flavor, the
10903 DPMI version, and the available conventional and DPMI memory.
10904
10905 @cindex GDT
10906 @cindex LDT
10907 @cindex IDT
10908 @cindex segment descriptor tables
10909 @cindex descriptor tables display
10910 @item info dos gdt
10911 @itemx info dos ldt
10912 @itemx info dos idt
10913 These 3 commands display entries from, respectively, Global, Local,
10914 and Interrupt Descriptor Tables (GDT, LDT, and IDT).  The descriptor
10915 tables are data structures which store a descriptor for each segment
10916 that is currently in use.  The segment's selector is an index into a
10917 descriptor table; the table entry for that index holds the
10918 descriptor's base address and limit, and its attributes and access
10919 rights.
10920
10921 A typical @sc{djgpp} program uses 3 segments: a code segment, a data
10922 segment (used for both data and the stack), and a DOS segment (which
10923 allows access to DOS/BIOS data structures and absolute addresses in
10924 conventional memory).  However, the DPMI host will usually define
10925 additional segments in order to support the DPMI environment.
10926
10927 @cindex garbled pointers
10928 These commands allow to display entries from the descriptor tables.
10929 Without an argument, all entries from the specified table are
10930 displayed.  An argument, which should be an integer expression, means
10931 display a single entry whose index is given by the argument.  For
10932 example, here's a convenient way to display information about the
10933 debugged program's data segment:
10934
10935 @smallexample
10936 @exdent @code{(@value{GDBP}) info dos ldt $ds}
10937 @exdent @code{0x13f: base=0x11970000 limit=0x0009ffff 32-Bit Data (Read/Write, Exp-up)}
10938 @end smallexample
10939
10940 @noindent
10941 This comes in handy when you want to see whether a pointer is outside
10942 the data segment's limit (i.e.@: @dfn{garbled}).
10943
10944 @cindex page tables display (MS-DOS)
10945 @item info dos pde
10946 @itemx info dos pte
10947 These two commands display entries from, respectively, the Page
10948 Directory and the Page Tables.  Page Directories and Page Tables are
10949 data structures which control how virtual memory addresses are mapped
10950 into physical addresses.  A Page Table includes an entry for every
10951 page of memory that is mapped into the program's address space; there
10952 may be several Page Tables, each one holding up to 4096 entries.  A
10953 Page Directory has up to 4096 entries, one each for every Page Table
10954 that is currently in use.
10955
10956 Without an argument, @kbd{info dos pde} displays the entire Page
10957 Directory, and @kbd{info dos pte} displays all the entries in all of
10958 the Page Tables.  An argument, an integer expression, given to the
10959 @kbd{info dos pde} command means display only that entry from the Page
10960 Directory table.  An argument given to the @kbd{info dos pte} command
10961 means display entries from a single Page Table, the one pointed to by
10962 the specified entry in the Page Directory.
10963
10964 @cindex direct memory access (DMA) on MS-DOS
10965 These commands are useful when your program uses @dfn{DMA} (Direct
10966 Memory Access), which needs physical addresses to program the DMA
10967 controller.
10968
10969 These commands are supported only with some DPMI servers.
10970
10971 @cindex physical address from linear address
10972 @item info dos address-pte @var{addr}
10973 This command displays the Page Table entry for a specified linear
10974 address.  The argument linear address @var{addr} should already have the
10975 appropriate segment's base address added to it, because this command
10976 accepts addresses which may belong to @emph{any} segment.  For
10977 example, here's how to display the Page Table entry for the page where
10978 the variable @code{i} is stored:
10979
10980 @smallexample 
10981 @exdent @code{(@value{GDBP}) info dos address-pte __djgpp_base_address + (char *)&i}
10982 @exdent @code{Page Table entry for address 0x11a00d30:}
10983 @exdent @code{Base=0x02698000 Dirty Acc. Not-Cached Write-Back Usr Read-Write +0xd30} 
10984 @end smallexample
10985
10986 @noindent
10987 This says that @code{i} is stored at offset @code{0xd30} from the page
10988 whose physical base address is @code{0x02698000}, and prints all the
10989 attributes of that page.
10990
10991 Note that you must cast the addresses of variables to a @code{char *},
10992 since otherwise the value of @code{__djgpp_base_address}, the base
10993 address of all variables and functions in a @sc{djgpp} program, will
10994 be added using the rules of C pointer arithmetics: if @code{i} is
10995 declared an @code{int}, @value{GDBN} will add 4 times the value of
10996 @code{__djgpp_base_address} to the address of @code{i}.
10997
10998 Here's another example, it displays the Page Table entry for the
10999 transfer buffer:
11000
11001 @smallexample
11002 @exdent @code{(@value{GDBP}) info dos address-pte *((unsigned *)&_go32_info_block + 3)}
11003 @exdent @code{Page Table entry for address 0x29110:}
11004 @exdent @code{Base=0x00029000 Dirty Acc. Not-Cached Write-Back Usr Read-Write +0x110}
11005 @end smallexample
11006
11007 @noindent
11008 (The @code{+ 3} offset is because the transfer buffer's address is the
11009 3rd member of the @code{_go32_info_block} structure.)  The output of
11010 this command clearly shows that addresses in conventional memory are
11011 mapped 1:1, i.e.@: the physical and linear addresses are identical.
11012
11013 This command is supported only with some DPMI servers.
11014 @end table
11015
11016 @node Cygwin Native
11017 @subsection Features for Debugging MS Windows PE executables
11018 @cindex MS Windows debugging
11019 @cindex native Cygwin debugging
11020 @cindex Cygwin-specific commands
11021
11022 @value{GDBN} supports native debugging of MS Windows programs, and
11023 defines a few commands specific to the Cygwin port.  This
11024 subsection describes those commands.
11025
11026 @table @code
11027 @kindex info w32
11028 @item info w32
11029 This is a prefix of MS Windows specific commands which print
11030 information about the target system and important OS structures.
11031
11032 @item info w32 selector
11033 This command displays information returned by
11034 the Win32 API @code{GetThreadSelectorEntry} function.
11035 It takes an optional argument that is evaluated to
11036 a long value to give the information about this given selector.
11037 Without argument, this command displays information
11038 about the the six segment registers.
11039
11040 @kindex info dll
11041 @item info dll
11042 This is a Cygwin specific alias of info shared.
11043
11044 @kindex dll-symbols
11045 @item dll-symbols
11046 This command loads symbols from a dll similarly to
11047 add-sym command but without the need to specify a base address.
11048
11049 @kindex set new-console 
11050 @item set new-console @var{mode}
11051 If @var{mode} is @code{on} the debuggee will 
11052 be started in a new console on next start.
11053 If @var{mode} is @code{off}i, the debuggee will
11054 be started in the same console as the debugger.
11055
11056 @kindex show new-console
11057 @item show new-console
11058 Displays whether a new console is used
11059 when the debuggee is started.
11060
11061 @kindex set new-group
11062 @item set new-group @var{mode}
11063 This boolean value controls whether the debuggee should
11064 start a new group or stay in the same group as the debugger.
11065 This affects the way the Windows OS handles
11066 Ctrl-C.
11067
11068 @kindex show new-group
11069 @item show new-group
11070 Displays current value of new-group boolean.
11071
11072 @kindex set debugevents
11073 @item set debugevents
11074 This boolean value adds debug output concerning events seen by the debugger.
11075
11076 @kindex set debugexec
11077 @item set debugexec
11078 This boolean value adds debug output concerning execute events 
11079 seen by the debugger.
11080
11081 @kindex set debugexceptions
11082 @item set debugexceptions
11083 This boolean value adds debug ouptut concerning exception events 
11084 seen by the debugger.
11085
11086 @kindex set debugmemory
11087 @item set debugmemory
11088 This boolean value adds debug ouptut concerning memory events 
11089 seen by the debugger.
11090
11091 @kindex set shell
11092 @item set shell
11093 This boolean values specifies whether the debuggee is called
11094 via a shell or directly (default value is on).
11095
11096 @kindex show shell
11097 @item show shell
11098 Displays if the debuggee will be started with a shell.
11099
11100 @end table
11101
11102 @node Embedded OS
11103 @section Embedded Operating Systems
11104
11105 This section describes configurations involving the debugging of
11106 embedded operating systems that are available for several different
11107 architectures.
11108
11109 @menu
11110 * VxWorks::                     Using @value{GDBN} with VxWorks
11111 @end menu
11112
11113 @value{GDBN} includes the ability to debug programs running on
11114 various real-time operating systems.
11115
11116 @node VxWorks
11117 @subsection Using @value{GDBN} with VxWorks
11118
11119 @cindex VxWorks
11120
11121 @table @code
11122
11123 @kindex target vxworks
11124 @item target vxworks @var{machinename}
11125 A VxWorks system, attached via TCP/IP.  The argument @var{machinename}
11126 is the target system's machine name or IP address.
11127
11128 @end table
11129
11130 On VxWorks, @code{load} links @var{filename} dynamically on the
11131 current target system as well as adding its symbols in @value{GDBN}.
11132
11133 @value{GDBN} enables developers to spawn and debug tasks running on networked
11134 VxWorks targets from a Unix host.  Already-running tasks spawned from
11135 the VxWorks shell can also be debugged.  @value{GDBN} uses code that runs on
11136 both the Unix host and on the VxWorks target.  The program
11137 @code{@value{GDBP}} is installed and executed on the Unix host.  (It may be
11138 installed with the name @code{vxgdb}, to distinguish it from a
11139 @value{GDBN} for debugging programs on the host itself.)
11140
11141 @table @code
11142 @item VxWorks-timeout @var{args}
11143 @kindex vxworks-timeout
11144 All VxWorks-based targets now support the option @code{vxworks-timeout}.
11145 This option is set by the user, and  @var{args} represents the number of
11146 seconds @value{GDBN} waits for responses to rpc's.  You might use this if
11147 your VxWorks target is a slow software simulator or is on the far side
11148 of a thin network line.
11149 @end table
11150
11151 The following information on connecting to VxWorks was current when
11152 this manual was produced; newer releases of VxWorks may use revised
11153 procedures.
11154
11155 @kindex INCLUDE_RDB
11156 To use @value{GDBN} with VxWorks, you must rebuild your VxWorks kernel
11157 to include the remote debugging interface routines in the VxWorks
11158 library @file{rdb.a}.  To do this, define @code{INCLUDE_RDB} in the
11159 VxWorks configuration file @file{configAll.h} and rebuild your VxWorks
11160 kernel.  The resulting kernel contains @file{rdb.a}, and spawns the
11161 source debugging task @code{tRdbTask} when VxWorks is booted.  For more
11162 information on configuring and remaking VxWorks, see the manufacturer's
11163 manual.
11164 @c VxWorks, see the @cite{VxWorks Programmer's Guide}.
11165
11166 Once you have included @file{rdb.a} in your VxWorks system image and set
11167 your Unix execution search path to find @value{GDBN}, you are ready to
11168 run @value{GDBN}.  From your Unix host, run @code{@value{GDBP}} (or
11169 @code{vxgdb}, depending on your installation).
11170
11171 @value{GDBN} comes up showing the prompt:
11172
11173 @smallexample
11174 (vxgdb)
11175 @end smallexample
11176
11177 @menu
11178 * VxWorks Connection::          Connecting to VxWorks
11179 * VxWorks Download::            VxWorks download
11180 * VxWorks Attach::              Running tasks
11181 @end menu
11182
11183 @node VxWorks Connection
11184 @subsubsection Connecting to VxWorks
11185
11186 The @value{GDBN} command @code{target} lets you connect to a VxWorks target on the
11187 network.  To connect to a target whose host name is ``@code{tt}'', type:
11188
11189 @smallexample
11190 (vxgdb) target vxworks tt
11191 @end smallexample
11192
11193 @need 750
11194 @value{GDBN} displays messages like these:
11195
11196 @smallexample
11197 Attaching remote machine across net...
11198 Connected to tt.
11199 @end smallexample
11200
11201 @need 1000
11202 @value{GDBN} then attempts to read the symbol tables of any object modules
11203 loaded into the VxWorks target since it was last booted.  @value{GDBN} locates
11204 these files by searching the directories listed in the command search
11205 path (@pxref{Environment, ,Your program's environment}); if it fails
11206 to find an object file, it displays a message such as:
11207
11208 @smallexample
11209 prog.o: No such file or directory.
11210 @end smallexample
11211
11212 When this happens, add the appropriate directory to the search path with
11213 the @value{GDBN} command @code{path}, and execute the @code{target}
11214 command again.
11215
11216 @node VxWorks Download
11217 @subsubsection VxWorks download
11218
11219 @cindex download to VxWorks
11220 If you have connected to the VxWorks target and you want to debug an
11221 object that has not yet been loaded, you can use the @value{GDBN}
11222 @code{load} command to download a file from Unix to VxWorks
11223 incrementally.  The object file given as an argument to the @code{load}
11224 command is actually opened twice: first by the VxWorks target in order
11225 to download the code, then by @value{GDBN} in order to read the symbol
11226 table.  This can lead to problems if the current working directories on
11227 the two systems differ.  If both systems have NFS mounted the same
11228 filesystems, you can avoid these problems by using absolute paths.
11229 Otherwise, it is simplest to set the working directory on both systems
11230 to the directory in which the object file resides, and then to reference
11231 the file by its name, without any path.  For instance, a program
11232 @file{prog.o} may reside in @file{@var{vxpath}/vw/demo/rdb} in VxWorks
11233 and in @file{@var{hostpath}/vw/demo/rdb} on the host.  To load this
11234 program, type this on VxWorks:
11235
11236 @smallexample
11237 -> cd "@var{vxpath}/vw/demo/rdb"
11238 @end smallexample
11239
11240 @noindent
11241 Then, in @value{GDBN}, type:
11242
11243 @smallexample
11244 (vxgdb) cd @var{hostpath}/vw/demo/rdb
11245 (vxgdb) load prog.o
11246 @end smallexample
11247
11248 @value{GDBN} displays a response similar to this:
11249
11250 @smallexample
11251 Reading symbol data from wherever/vw/demo/rdb/prog.o... done.
11252 @end smallexample
11253
11254 You can also use the @code{load} command to reload an object module
11255 after editing and recompiling the corresponding source file.  Note that
11256 this makes @value{GDBN} delete all currently-defined breakpoints,
11257 auto-displays, and convenience variables, and to clear the value
11258 history.  (This is necessary in order to preserve the integrity of
11259 debugger's data structures that reference the target system's symbol
11260 table.)
11261
11262 @node VxWorks Attach
11263 @subsubsection Running tasks
11264
11265 @cindex running VxWorks tasks
11266 You can also attach to an existing task using the @code{attach} command as
11267 follows:
11268
11269 @smallexample
11270 (vxgdb) attach @var{task}
11271 @end smallexample
11272
11273 @noindent
11274 where @var{task} is the VxWorks hexadecimal task ID.  The task can be running
11275 or suspended when you attach to it.  Running tasks are suspended at
11276 the time of attachment.
11277
11278 @node Embedded Processors
11279 @section Embedded Processors
11280
11281 This section goes into details specific to particular embedded
11282 configurations.
11283
11284
11285 @menu
11286 * ARM::                         ARM
11287 * H8/300::                      Hitachi H8/300
11288 * H8/500::                      Hitachi H8/500
11289 * i960::                        Intel i960
11290 * M32R/D::                      Mitsubishi M32R/D
11291 * M68K::                        Motorola M68K
11292 * M88K::                        Motorola M88K
11293 * MIPS Embedded::               MIPS Embedded
11294 * PA::                          HP PA Embedded
11295 * PowerPC:                      PowerPC
11296 * SH::                          Hitachi SH
11297 * Sparclet::                    Tsqware Sparclet
11298 * Sparclite::                   Fujitsu Sparclite
11299 * ST2000::                      Tandem ST2000
11300 * Z8000::                       Zilog Z8000
11301 @end menu
11302
11303 @node ARM
11304 @subsection ARM
11305
11306 @table @code
11307
11308 @kindex target rdi
11309 @item target rdi @var{dev}
11310 ARM Angel monitor, via RDI library interface to ADP protocol.  You may
11311 use this target to communicate with both boards running the Angel
11312 monitor, or with the EmbeddedICE JTAG debug device.
11313
11314 @kindex target rdp
11315 @item target rdp @var{dev}
11316 ARM Demon monitor.
11317
11318 @end table
11319
11320 @node H8/300
11321 @subsection Hitachi H8/300
11322
11323 @table @code
11324
11325 @kindex target hms@r{, with H8/300}
11326 @item target hms @var{dev}
11327 A Hitachi SH, H8/300, or H8/500 board, attached via serial line to your host.
11328 Use special commands @code{device} and @code{speed} to control the serial
11329 line and the communications speed used.
11330
11331 @kindex target e7000@r{, with H8/300}
11332 @item target e7000 @var{dev}
11333 E7000 emulator for Hitachi H8 and SH.
11334
11335 @kindex target sh3@r{, with H8/300}
11336 @kindex target sh3e@r{, with H8/300}
11337 @item target sh3 @var{dev}
11338 @itemx target sh3e @var{dev}
11339 Hitachi SH-3 and SH-3E target systems.
11340
11341 @end table
11342
11343 @cindex download to H8/300 or H8/500
11344 @cindex H8/300 or H8/500 download
11345 @cindex download to Hitachi SH
11346 @cindex Hitachi SH download
11347 When you select remote debugging to a Hitachi SH, H8/300, or H8/500
11348 board, the @code{load} command downloads your program to the Hitachi
11349 board and also opens it as the current executable target for
11350 @value{GDBN} on your host (like the @code{file} command).
11351
11352 @value{GDBN} needs to know these things to talk to your
11353 Hitachi SH, H8/300, or H8/500:
11354
11355 @enumerate
11356 @item
11357 that you want to use @samp{target hms}, the remote debugging interface
11358 for Hitachi microprocessors, or @samp{target e7000}, the in-circuit
11359 emulator for the Hitachi SH and the Hitachi 300H.  (@samp{target hms} is
11360 the default when @value{GDBN} is configured specifically for the Hitachi SH,
11361 H8/300, or H8/500.)
11362
11363 @item
11364 what serial device connects your host to your Hitachi board (the first
11365 serial device available on your host is the default).
11366
11367 @item
11368 what speed to use over the serial device.
11369 @end enumerate
11370
11371 @menu
11372 * Hitachi Boards::      Connecting to Hitachi boards.
11373 * Hitachi ICE::         Using the E7000 In-Circuit Emulator.
11374 * Hitachi Special::     Special @value{GDBN} commands for Hitachi micros.
11375 @end menu
11376
11377 @node Hitachi Boards
11378 @subsubsection Connecting to Hitachi boards
11379
11380 @c only for Unix hosts
11381 @kindex device
11382 @cindex serial device, Hitachi micros
11383 Use the special @code{@value{GDBN}} command @samp{device @var{port}} if you
11384 need to explicitly set the serial device.  The default @var{port} is the
11385 first available port on your host.  This is only necessary on Unix
11386 hosts, where it is typically something like @file{/dev/ttya}.
11387
11388 @kindex speed
11389 @cindex serial line speed, Hitachi micros
11390 @code{@value{GDBN}} has another special command to set the communications
11391 speed: @samp{speed @var{bps}}.  This command also is only used from Unix
11392 hosts; on DOS hosts, set the line speed as usual from outside @value{GDBN} with
11393 the DOS @code{mode} command (for instance,
11394 @w{@kbd{mode com2:9600,n,8,1,p}} for a 9600@dmn{bps} connection).
11395
11396 The @samp{device} and @samp{speed} commands are available only when you
11397 use a Unix host to debug your Hitachi microprocessor programs.  If you
11398 use a DOS host,
11399 @value{GDBN} depends on an auxiliary terminate-and-stay-resident program
11400 called @code{asynctsr} to communicate with the development board
11401 through a PC serial port.  You must also use the DOS @code{mode} command
11402 to set up the serial port on the DOS side.
11403
11404 The following sample session illustrates the steps needed to start a
11405 program under @value{GDBN} control on an H8/300.  The example uses a
11406 sample H8/300 program called @file{t.x}.  The procedure is the same for
11407 the Hitachi SH and the H8/500.
11408
11409 First hook up your development board.  In this example, we use a
11410 board attached to serial port @code{COM2}; if you use a different serial
11411 port, substitute its name in the argument of the @code{mode} command.
11412 When you call @code{asynctsr}, the auxiliary comms program used by the
11413 debugger, you give it just the numeric part of the serial port's name;
11414 for example, @samp{asyncstr 2} below runs @code{asyncstr} on
11415 @code{COM2}.
11416
11417 @smallexample
11418 C:\H8300\TEST> asynctsr 2
11419 C:\H8300\TEST> mode com2:9600,n,8,1,p
11420
11421 Resident portion of MODE loaded
11422
11423 COM2: 9600, n, 8, 1, p
11424
11425 @end smallexample
11426
11427 @quotation
11428 @emph{Warning:} We have noticed a bug in PC-NFS that conflicts with
11429 @code{asynctsr}.  If you also run PC-NFS on your DOS host, you may need to
11430 disable it, or even boot without it, to use @code{asynctsr} to control
11431 your development board.
11432 @end quotation
11433
11434 @kindex target hms@r{, and serial protocol}
11435 Now that serial communications are set up, and the development board is
11436 connected, you can start up @value{GDBN}.  Call @code{@value{GDBP}} with
11437 the name of your program as the argument.  @code{@value{GDBN}} prompts
11438 you, as usual, with the prompt @samp{(@value{GDBP})}.  Use two special
11439 commands to begin your debugging session: @samp{target hms} to specify
11440 cross-debugging to the Hitachi board, and the @code{load} command to
11441 download your program to the board.  @code{load} displays the names of
11442 the program's sections, and a @samp{*} for each 2K of data downloaded.
11443 (If you want to refresh @value{GDBN} data on symbols or on the
11444 executable file without downloading, use the @value{GDBN} commands
11445 @code{file} or @code{symbol-file}.  These commands, and @code{load}
11446 itself, are described in @ref{Files,,Commands to specify files}.)
11447
11448 @smallexample
11449 (eg-C:\H8300\TEST) @value{GDBP} t.x
11450 @value{GDBN} is free software and you are welcome to distribute copies
11451  of it under certain conditions; type "show copying" to see
11452  the conditions.
11453 There is absolutely no warranty for @value{GDBN}; type "show warranty"
11454 for details.
11455 @value{GDBN} @value{GDBVN}, Copyright 1992 Free Software Foundation, Inc...
11456 (@value{GDBP}) target hms
11457 Connected to remote H8/300 HMS system.
11458 (@value{GDBP}) load t.x
11459 .text   : 0x8000 .. 0xabde ***********
11460 .data   : 0xabde .. 0xad30 *
11461 .stack  : 0xf000 .. 0xf014 *
11462 @end smallexample
11463
11464 At this point, you're ready to run or debug your program.  From here on,
11465 you can use all the usual @value{GDBN} commands.  The @code{break} command
11466 sets breakpoints; the @code{run} command starts your program;
11467 @code{print} or @code{x} display data; the @code{continue} command
11468 resumes execution after stopping at a breakpoint.  You can use the
11469 @code{help} command at any time to find out more about @value{GDBN} commands.
11470
11471 Remember, however, that @emph{operating system} facilities aren't
11472 available on your development board; for example, if your program hangs,
11473 you can't send an interrupt---but you can press the @sc{reset} switch!
11474
11475 Use the @sc{reset} button on the development board
11476 @itemize @bullet
11477 @item
11478 to interrupt your program (don't use @kbd{ctl-C} on the DOS host---it has
11479 no way to pass an interrupt signal to the development board); and
11480
11481 @item
11482 to return to the @value{GDBN} command prompt after your program finishes
11483 normally.  The communications protocol provides no other way for @value{GDBN}
11484 to detect program completion.
11485 @end itemize
11486
11487 In either case, @value{GDBN} sees the effect of a @sc{reset} on the
11488 development board as a ``normal exit'' of your program.
11489
11490 @node Hitachi ICE
11491 @subsubsection Using the E7000 in-circuit emulator
11492
11493 @kindex target e7000@r{, with Hitachi ICE}
11494 You can use the E7000 in-circuit emulator to develop code for either the
11495 Hitachi SH or the H8/300H.  Use one of these forms of the @samp{target
11496 e7000} command to connect @value{GDBN} to your E7000:
11497
11498 @table @code
11499 @item target e7000 @var{port} @var{speed}
11500 Use this form if your E7000 is connected to a serial port.  The
11501 @var{port} argument identifies what serial port to use (for example,
11502 @samp{com2}).  The third argument is the line speed in bits per second
11503 (for example, @samp{9600}).
11504
11505 @item target e7000 @var{hostname}
11506 If your E7000 is installed as a host on a TCP/IP network, you can just
11507 specify its hostname; @value{GDBN} uses @code{telnet} to connect.
11508 @end table
11509
11510 @node Hitachi Special
11511 @subsubsection Special @value{GDBN} commands for Hitachi micros
11512
11513 Some @value{GDBN} commands are available only for the H8/300:
11514
11515 @table @code
11516
11517 @kindex set machine
11518 @kindex show machine
11519 @item set machine h8300
11520 @itemx set machine h8300h
11521 Condition @value{GDBN} for one of the two variants of the H8/300
11522 architecture with @samp{set machine}.  You can use @samp{show machine}
11523 to check which variant is currently in effect.
11524
11525 @end table
11526
11527 @node H8/500
11528 @subsection H8/500
11529
11530 @table @code
11531
11532 @kindex set memory @var{mod}
11533 @cindex memory models, H8/500
11534 @item set memory @var{mod}
11535 @itemx show memory
11536 Specify which H8/500 memory model (@var{mod}) you are using with
11537 @samp{set memory}; check which memory model is in effect with @samp{show
11538 memory}.  The accepted values for @var{mod} are @code{small},
11539 @code{big}, @code{medium}, and @code{compact}.
11540
11541 @end table
11542
11543 @node i960
11544 @subsection Intel i960
11545
11546 @table @code
11547
11548 @kindex target mon960
11549 @item target mon960 @var{dev}
11550 MON960 monitor for Intel i960.
11551
11552 @kindex target nindy
11553 @item target nindy @var{devicename}
11554 An Intel 960 board controlled by a Nindy Monitor.  @var{devicename} is
11555 the name of the serial device to use for the connection, e.g.
11556 @file{/dev/ttya}.
11557
11558 @end table
11559
11560 @cindex Nindy
11561 @cindex i960
11562 @dfn{Nindy} is a ROM Monitor program for Intel 960 target systems.  When
11563 @value{GDBN} is configured to control a remote Intel 960 using Nindy, you can
11564 tell @value{GDBN} how to connect to the 960 in several ways:
11565
11566 @itemize @bullet
11567 @item
11568 Through command line options specifying serial port, version of the
11569 Nindy protocol, and communications speed;
11570
11571 @item
11572 By responding to a prompt on startup;
11573
11574 @item
11575 By using the @code{target} command at any point during your @value{GDBN}
11576 session.  @xref{Target Commands, ,Commands for managing targets}.
11577
11578 @end itemize
11579
11580 @cindex download to Nindy-960
11581 With the Nindy interface to an Intel 960 board, @code{load}
11582 downloads @var{filename} to the 960 as well as adding its symbols in
11583 @value{GDBN}.
11584
11585 @menu
11586 * Nindy Startup::               Startup with Nindy
11587 * Nindy Options::               Options for Nindy
11588 * Nindy Reset::                 Nindy reset command
11589 @end menu
11590
11591 @node Nindy Startup
11592 @subsubsection Startup with Nindy
11593
11594 If you simply start @code{@value{GDBP}} without using any command-line
11595 options, you are prompted for what serial port to use, @emph{before} you
11596 reach the ordinary @value{GDBN} prompt:
11597
11598 @smallexample
11599 Attach /dev/ttyNN -- specify NN, or "quit" to quit:
11600 @end smallexample
11601
11602 @noindent
11603 Respond to the prompt with whatever suffix (after @samp{/dev/tty})
11604 identifies the serial port you want to use.  You can, if you choose,
11605 simply start up with no Nindy connection by responding to the prompt
11606 with an empty line.  If you do this and later wish to attach to Nindy,
11607 use @code{target} (@pxref{Target Commands, ,Commands for managing targets}).
11608
11609 @node Nindy Options
11610 @subsubsection Options for Nindy
11611
11612 These are the startup options for beginning your @value{GDBN} session with a
11613 Nindy-960 board attached:
11614
11615 @table @code
11616 @item -r @var{port}
11617 Specify the serial port name of a serial interface to be used to connect
11618 to the target system.  This option is only available when @value{GDBN} is
11619 configured for the Intel 960 target architecture.  You may specify
11620 @var{port} as any of: a full pathname (e.g. @samp{-r /dev/ttya}), a
11621 device name in @file{/dev} (e.g. @samp{-r ttya}), or simply the unique
11622 suffix for a specific @code{tty} (e.g. @samp{-r a}).
11623
11624 @item -O
11625 (An uppercase letter ``O'', not a zero.)  Specify that @value{GDBN} should use
11626 the ``old'' Nindy monitor protocol to connect to the target system.
11627 This option is only available when @value{GDBN} is configured for the Intel 960
11628 target architecture.
11629
11630 @quotation
11631 @emph{Warning:} if you specify @samp{-O}, but are actually trying to
11632 connect to a target system that expects the newer protocol, the connection
11633 fails, appearing to be a speed mismatch.  @value{GDBN} repeatedly
11634 attempts to reconnect at several different line speeds.  You can abort
11635 this process with an interrupt.
11636 @end quotation
11637
11638 @item -brk
11639 Specify that @value{GDBN} should first send a @code{BREAK} signal to the target
11640 system, in an attempt to reset it, before connecting to a Nindy target.
11641
11642 @quotation
11643 @emph{Warning:} Many target systems do not have the hardware that this
11644 requires; it only works with a few boards.
11645 @end quotation
11646 @end table
11647
11648 The standard @samp{-b} option controls the line speed used on the serial
11649 port.
11650
11651 @c @group
11652 @node Nindy Reset
11653 @subsubsection Nindy reset command
11654
11655 @table @code
11656 @item reset
11657 @kindex reset
11658 For a Nindy target, this command sends a ``break'' to the remote target
11659 system; this is only useful if the target has been equipped with a
11660 circuit to perform a hard reset (or some other interesting action) when
11661 a break is detected.
11662 @end table
11663 @c @end group
11664
11665 @node M32R/D
11666 @subsection Mitsubishi M32R/D
11667
11668 @table @code
11669
11670 @kindex target m32r
11671 @item target m32r @var{dev}
11672 Mitsubishi M32R/D ROM monitor.
11673
11674 @end table
11675
11676 @node M68K
11677 @subsection M68k
11678
11679 The Motorola m68k configuration includes ColdFire support, and
11680 target command for the following ROM monitors.
11681
11682 @table @code
11683
11684 @kindex target abug
11685 @item target abug @var{dev}
11686 ABug ROM monitor for M68K.
11687
11688 @kindex target cpu32bug
11689 @item target cpu32bug @var{dev}
11690 CPU32BUG monitor, running on a CPU32 (M68K) board.
11691
11692 @kindex target dbug
11693 @item target dbug @var{dev}
11694 dBUG ROM monitor for Motorola ColdFire.
11695
11696 @kindex target est
11697 @item target est @var{dev}
11698 EST-300 ICE monitor, running on a CPU32 (M68K) board.
11699
11700 @kindex target rom68k
11701 @item target rom68k @var{dev}
11702 ROM 68K monitor, running on an M68K IDP board.
11703
11704 @end table
11705
11706 If @value{GDBN} is configured with @code{m68*-ericsson-*}, it will
11707 instead have only a single special target command:
11708
11709 @table @code
11710
11711 @kindex target es1800
11712 @item target es1800 @var{dev}
11713 ES-1800 emulator for M68K.
11714
11715 @end table
11716
11717 [context?]
11718
11719 @table @code
11720
11721 @kindex target rombug
11722 @item target rombug @var{dev}
11723 ROMBUG ROM monitor for OS/9000.
11724
11725 @end table
11726
11727 @node M88K
11728 @subsection M88K
11729
11730 @table @code
11731
11732 @kindex target bug
11733 @item target bug @var{dev}
11734 BUG monitor, running on a MVME187 (m88k) board.
11735
11736 @end table
11737
11738 @node MIPS Embedded
11739 @subsection MIPS Embedded
11740
11741 @cindex MIPS boards
11742 @value{GDBN} can use the MIPS remote debugging protocol to talk to a
11743 MIPS board attached to a serial line.  This is available when
11744 you configure @value{GDBN} with @samp{--target=mips-idt-ecoff}.
11745
11746 @need 1000
11747 Use these @value{GDBN} commands to specify the connection to your target board:
11748
11749 @table @code
11750 @item target mips @var{port}
11751 @kindex target mips @var{port}
11752 To run a program on the board, start up @code{@value{GDBP}} with the
11753 name of your program as the argument.  To connect to the board, use the
11754 command @samp{target mips @var{port}}, where @var{port} is the name of
11755 the serial port connected to the board.  If the program has not already
11756 been downloaded to the board, you may use the @code{load} command to
11757 download it.  You can then use all the usual @value{GDBN} commands.
11758
11759 For example, this sequence connects to the target board through a serial
11760 port, and loads and runs a program called @var{prog} through the
11761 debugger:
11762
11763 @smallexample
11764 host$ @value{GDBP} @var{prog}
11765 @value{GDBN} is free software and @dots{}
11766 (@value{GDBP}) target mips /dev/ttyb
11767 (@value{GDBP}) load @var{prog}
11768 (@value{GDBP}) run
11769 @end smallexample
11770
11771 @item target mips @var{hostname}:@var{portnumber}
11772 On some @value{GDBN} host configurations, you can specify a TCP
11773 connection (for instance, to a serial line managed by a terminal
11774 concentrator) instead of a serial port, using the syntax
11775 @samp{@var{hostname}:@var{portnumber}}.
11776
11777 @item target pmon @var{port}
11778 @kindex target pmon @var{port}
11779 PMON ROM monitor.
11780
11781 @item target ddb @var{port}
11782 @kindex target ddb @var{port}
11783 NEC's DDB variant of PMON for Vr4300.
11784
11785 @item target lsi @var{port}
11786 @kindex target lsi @var{port}
11787 LSI variant of PMON.
11788
11789 @kindex target r3900
11790 @item target r3900 @var{dev}
11791 Densan DVE-R3900 ROM monitor for Toshiba R3900 Mips.
11792
11793 @kindex target array
11794 @item target array @var{dev}
11795 Array Tech LSI33K RAID controller board.
11796
11797 @end table
11798
11799
11800 @noindent
11801 @value{GDBN} also supports these special commands for MIPS targets:
11802
11803 @table @code
11804 @item set processor @var{args}
11805 @itemx show processor
11806 @kindex set processor @var{args}
11807 @kindex show processor
11808 Use the @code{set processor} command to set the type of MIPS
11809 processor when you want to access processor-type-specific registers.
11810 For example, @code{set processor @var{r3041}} tells @value{GDBN}
11811 to use the CPU registers appropriate for the 3041 chip.
11812 Use the @code{show processor} command to see what MIPS processor @value{GDBN}
11813 is using.  Use the @code{info reg} command to see what registers
11814 @value{GDBN} is using.
11815
11816 @item set mipsfpu double
11817 @itemx set mipsfpu single
11818 @itemx set mipsfpu none
11819 @itemx show mipsfpu
11820 @kindex set mipsfpu
11821 @kindex show mipsfpu
11822 @cindex MIPS remote floating point
11823 @cindex floating point, MIPS remote
11824 If your target board does not support the MIPS floating point
11825 coprocessor, you should use the command @samp{set mipsfpu none} (if you
11826 need this, you may wish to put the command in your @value{GDBN} init
11827 file).  This tells @value{GDBN} how to find the return value of
11828 functions which return floating point values.  It also allows
11829 @value{GDBN} to avoid saving the floating point registers when calling
11830 functions on the board.  If you are using a floating point coprocessor
11831 with only single precision floating point support, as on the @sc{r4650}
11832 processor, use the command @samp{set mipsfpu single}.  The default
11833 double precision floating point coprocessor may be selected using
11834 @samp{set mipsfpu double}.
11835
11836 In previous versions the only choices were double precision or no
11837 floating point, so @samp{set mipsfpu on} will select double precision
11838 and @samp{set mipsfpu off} will select no floating point.
11839
11840 As usual, you can inquire about the @code{mipsfpu} variable with
11841 @samp{show mipsfpu}.
11842
11843 @item set remotedebug @var{n}
11844 @itemx show remotedebug
11845 @kindex set remotedebug@r{, MIPS protocol}
11846 @kindex show remotedebug@r{, MIPS protocol}
11847 @cindex @code{remotedebug}, MIPS protocol
11848 @cindex MIPS @code{remotedebug} protocol
11849 @c FIXME! For this to be useful, you must know something about the MIPS
11850 @c FIXME...protocol.  Where is it described?
11851 You can see some debugging information about communications with the board
11852 by setting the @code{remotedebug} variable.  If you set it to @code{1} using
11853 @samp{set remotedebug 1}, every packet is displayed.  If you set it
11854 to @code{2}, every character is displayed.  You can check the current value
11855 at any time with the command @samp{show remotedebug}.
11856
11857 @item set timeout @var{seconds}
11858 @itemx set retransmit-timeout @var{seconds}
11859 @itemx show timeout
11860 @itemx show retransmit-timeout
11861 @cindex @code{timeout}, MIPS protocol
11862 @cindex @code{retransmit-timeout}, MIPS protocol
11863 @kindex set timeout
11864 @kindex show timeout
11865 @kindex set retransmit-timeout
11866 @kindex show retransmit-timeout
11867 You can control the timeout used while waiting for a packet, in the MIPS
11868 remote protocol, with the @code{set timeout @var{seconds}} command.  The
11869 default is 5 seconds.  Similarly, you can control the timeout used while
11870 waiting for an acknowledgement of a packet with the @code{set
11871 retransmit-timeout @var{seconds}} command.  The default is 3 seconds.
11872 You can inspect both values with @code{show timeout} and @code{show
11873 retransmit-timeout}.  (These commands are @emph{only} available when
11874 @value{GDBN} is configured for @samp{--target=mips-idt-ecoff}.)
11875
11876 The timeout set by @code{set timeout} does not apply when @value{GDBN}
11877 is waiting for your program to stop.  In that case, @value{GDBN} waits
11878 forever because it has no way of knowing how long the program is going
11879 to run before stopping.
11880 @end table
11881
11882 @node PowerPC
11883 @subsection PowerPC
11884
11885 @table @code
11886
11887 @kindex target dink32
11888 @item target dink32 @var{dev}
11889 DINK32 ROM monitor.
11890
11891 @kindex target ppcbug
11892 @item target ppcbug @var{dev}
11893 @kindex target ppcbug1
11894 @item target ppcbug1 @var{dev}
11895 PPCBUG ROM monitor for PowerPC.
11896
11897 @kindex target sds
11898 @item target sds @var{dev}
11899 SDS monitor, running on a PowerPC board (such as Motorola's ADS).
11900
11901 @end table
11902
11903 @node PA
11904 @subsection HP PA Embedded
11905
11906 @table @code
11907
11908 @kindex target op50n
11909 @item target op50n @var{dev}
11910 OP50N monitor, running on an OKI HPPA board.
11911
11912 @kindex target w89k
11913 @item target w89k @var{dev}
11914 W89K monitor, running on a Winbond HPPA board.
11915
11916 @end table
11917
11918 @node SH
11919 @subsection Hitachi SH
11920
11921 @table @code
11922
11923 @kindex target hms@r{, with Hitachi SH}
11924 @item target hms @var{dev}
11925 A Hitachi SH board attached via serial line to your host.  Use special
11926 commands @code{device} and @code{speed} to control the serial line and
11927 the communications speed used.
11928
11929 @kindex target e7000@r{, with Hitachi SH}
11930 @item target e7000 @var{dev}
11931 E7000 emulator for Hitachi SH.
11932
11933 @kindex target sh3@r{, with SH}
11934 @kindex target sh3e@r{, with SH}
11935 @item target sh3 @var{dev}
11936 @item target sh3e @var{dev}
11937 Hitachi SH-3 and SH-3E target systems.
11938
11939 @end table
11940
11941 @node Sparclet
11942 @subsection Tsqware Sparclet
11943
11944 @cindex Sparclet
11945
11946 @value{GDBN} enables developers to debug tasks running on
11947 Sparclet targets from a Unix host.
11948 @value{GDBN} uses code that runs on
11949 both the Unix host and on the Sparclet target.  The program
11950 @code{@value{GDBP}} is installed and executed on the Unix host.
11951
11952 @table @code
11953 @item remotetimeout @var{args}
11954 @kindex remotetimeout
11955 @value{GDBN} supports the option @code{remotetimeout}.
11956 This option is set by the user, and  @var{args} represents the number of
11957 seconds @value{GDBN} waits for responses.
11958 @end table
11959
11960 @cindex compiling, on Sparclet
11961 When compiling for debugging, include the options @samp{-g} to get debug
11962 information and @samp{-Ttext} to relocate the program to where you wish to
11963 load it on the target.  You may also want to add the options @samp{-n} or
11964 @samp{-N} in order to reduce the size of the sections.  Example:
11965
11966 @smallexample
11967 sparclet-aout-gcc prog.c -Ttext 0x12010000 -g -o prog -N
11968 @end smallexample
11969
11970 You can use @code{objdump} to verify that the addresses are what you intended:
11971
11972 @smallexample
11973 sparclet-aout-objdump --headers --syms prog
11974 @end smallexample
11975
11976 @cindex running, on Sparclet
11977 Once you have set
11978 your Unix execution search path to find @value{GDBN}, you are ready to
11979 run @value{GDBN}.  From your Unix host, run @code{@value{GDBP}}
11980 (or @code{sparclet-aout-gdb}, depending on your installation).
11981
11982 @value{GDBN} comes up showing the prompt:
11983
11984 @smallexample
11985 (gdbslet)
11986 @end smallexample
11987
11988 @menu
11989 * Sparclet File::                Setting the file to debug
11990 * Sparclet Connection::          Connecting to Sparclet
11991 * Sparclet Download::            Sparclet download
11992 * Sparclet Execution::           Running and debugging
11993 @end menu
11994
11995 @node Sparclet File
11996 @subsubsection Setting file to debug
11997
11998 The @value{GDBN} command @code{file} lets you choose with program to debug.
11999
12000 @smallexample
12001 (gdbslet) file prog
12002 @end smallexample
12003
12004 @need 1000
12005 @value{GDBN} then attempts to read the symbol table of @file{prog}.
12006 @value{GDBN} locates
12007 the file by searching the directories listed in the command search
12008 path.
12009 If the file was compiled with debug information (option "-g"), source
12010 files will be searched as well.
12011 @value{GDBN} locates
12012 the source files by searching the directories listed in the directory search
12013 path (@pxref{Environment, ,Your program's environment}).
12014 If it fails
12015 to find a file, it displays a message such as:
12016
12017 @smallexample
12018 prog: No such file or directory.
12019 @end smallexample
12020
12021 When this happens, add the appropriate directories to the search paths with
12022 the @value{GDBN} commands @code{path} and @code{dir}, and execute the
12023 @code{target} command again.
12024
12025 @node Sparclet Connection
12026 @subsubsection Connecting to Sparclet
12027
12028 The @value{GDBN} command @code{target} lets you connect to a Sparclet target.
12029 To connect to a target on serial port ``@code{ttya}'', type:
12030
12031 @smallexample
12032 (gdbslet) target sparclet /dev/ttya
12033 Remote target sparclet connected to /dev/ttya
12034 main () at ../prog.c:3
12035 @end smallexample
12036
12037 @need 750
12038 @value{GDBN} displays messages like these:
12039
12040 @smallexample
12041 Connected to ttya.
12042 @end smallexample
12043
12044 @node Sparclet Download
12045 @subsubsection Sparclet download
12046
12047 @cindex download to Sparclet
12048 Once connected to the Sparclet target,
12049 you can use the @value{GDBN}
12050 @code{load} command to download the file from the host to the target.
12051 The file name and load offset should be given as arguments to the @code{load}
12052 command.
12053 Since the file format is aout, the program must be loaded to the starting
12054 address.  You can use @code{objdump} to find out what this value is.  The load
12055 offset is an offset which is added to the VMA (virtual memory address)
12056 of each of the file's sections.
12057 For instance, if the program
12058 @file{prog} was linked to text address 0x1201000, with data at 0x12010160
12059 and bss at 0x12010170, in @value{GDBN}, type:
12060
12061 @smallexample
12062 (gdbslet) load prog 0x12010000
12063 Loading section .text, size 0xdb0 vma 0x12010000
12064 @end smallexample
12065
12066 If the code is loaded at a different address then what the program was linked
12067 to, you may need to use the @code{section} and @code{add-symbol-file} commands
12068 to tell @value{GDBN} where to map the symbol table.
12069
12070 @node Sparclet Execution
12071 @subsubsection Running and debugging
12072
12073 @cindex running and debugging Sparclet programs
12074 You can now begin debugging the task using @value{GDBN}'s execution control
12075 commands, @code{b}, @code{step}, @code{run}, etc.  See the @value{GDBN}
12076 manual for the list of commands.
12077
12078 @smallexample
12079 (gdbslet) b main
12080 Breakpoint 1 at 0x12010000: file prog.c, line 3.
12081 (gdbslet) run
12082 Starting program: prog
12083 Breakpoint 1, main (argc=1, argv=0xeffff21c) at prog.c:3
12084 3        char *symarg = 0;
12085 (gdbslet) step
12086 4        char *execarg = "hello!";
12087 (gdbslet)
12088 @end smallexample
12089
12090 @node Sparclite
12091 @subsection Fujitsu Sparclite
12092
12093 @table @code
12094
12095 @kindex target sparclite
12096 @item target sparclite @var{dev}
12097 Fujitsu sparclite boards, used only for the purpose of loading.
12098 You must use an additional command to debug the program.
12099 For example: target remote @var{dev} using @value{GDBN} standard
12100 remote protocol.
12101
12102 @end table
12103
12104 @node ST2000
12105 @subsection Tandem ST2000
12106
12107 @value{GDBN} may be used with a Tandem ST2000 phone switch, running Tandem's
12108 STDBUG protocol.
12109
12110 To connect your ST2000 to the host system, see the manufacturer's
12111 manual.  Once the ST2000 is physically attached, you can run:
12112
12113 @smallexample
12114 target st2000 @var{dev} @var{speed}
12115 @end smallexample
12116
12117 @noindent
12118 to establish it as your debugging environment.  @var{dev} is normally
12119 the name of a serial device, such as @file{/dev/ttya}, connected to the
12120 ST2000 via a serial line.  You can instead specify @var{dev} as a TCP
12121 connection (for example, to a serial line attached via a terminal
12122 concentrator) using the syntax @code{@var{hostname}:@var{portnumber}}.
12123
12124 The @code{load} and @code{attach} commands are @emph{not} defined for
12125 this target; you must load your program into the ST2000 as you normally
12126 would for standalone operation.  @value{GDBN} reads debugging information
12127 (such as symbols) from a separate, debugging version of the program
12128 available on your host computer.
12129 @c FIXME!! This is terribly vague; what little content is here is
12130 @c basically hearsay.
12131
12132 @cindex ST2000 auxiliary commands
12133 These auxiliary @value{GDBN} commands are available to help you with the ST2000
12134 environment:
12135
12136 @table @code
12137 @item st2000 @var{command}
12138 @kindex st2000 @var{cmd}
12139 @cindex STDBUG commands (ST2000)
12140 @cindex commands to STDBUG (ST2000)
12141 Send a @var{command} to the STDBUG monitor.  See the manufacturer's
12142 manual for available commands.
12143
12144 @item connect
12145 @cindex connect (to STDBUG)
12146 Connect the controlling terminal to the STDBUG command monitor.  When
12147 you are done interacting with STDBUG, typing either of two character
12148 sequences gets you back to the @value{GDBN} command prompt:
12149 @kbd{@key{RET}~.} (Return, followed by tilde and period) or
12150 @kbd{@key{RET}~@key{C-d}} (Return, followed by tilde and control-D).
12151 @end table
12152
12153 @node Z8000
12154 @subsection Zilog Z8000
12155
12156 @cindex Z8000
12157 @cindex simulator, Z8000
12158 @cindex Zilog Z8000 simulator
12159
12160 When configured for debugging Zilog Z8000 targets, @value{GDBN} includes
12161 a Z8000 simulator.
12162
12163 For the Z8000 family, @samp{target sim} simulates either the Z8002 (the
12164 unsegmented variant of the Z8000 architecture) or the Z8001 (the
12165 segmented variant).  The simulator recognizes which architecture is
12166 appropriate by inspecting the object code.
12167
12168 @table @code
12169 @item target sim @var{args}
12170 @kindex sim
12171 @kindex target sim@r{, with Z8000}
12172 Debug programs on a simulated CPU.  If the simulator supports setup
12173 options, specify them via @var{args}.
12174 @end table
12175
12176 @noindent
12177 After specifying this target, you can debug programs for the simulated
12178 CPU in the same style as programs for your host computer; use the
12179 @code{file} command to load a new program image, the @code{run} command
12180 to run your program, and so on.
12181
12182 As well as making available all the usual machine registers
12183 (@pxref{Registers, ,Registers}), the Z8000 simulator provides three
12184 additional items of information as specially named registers:
12185
12186 @table @code
12187
12188 @item cycles
12189 Counts clock-ticks in the simulator.
12190
12191 @item insts
12192 Counts instructions run in the simulator.
12193
12194 @item time
12195 Execution time in 60ths of a second.
12196
12197 @end table
12198
12199 You can refer to these values in @value{GDBN} expressions with the usual
12200 conventions; for example, @w{@samp{b fputc if $cycles>5000}} sets a
12201 conditional breakpoint that suspends only after at least 5000
12202 simulated clock ticks.
12203
12204 @node Architectures
12205 @section Architectures
12206
12207 This section describes characteristics of architectures that affect
12208 all uses of @value{GDBN} with the architecture, both native and cross.
12209
12210 @menu
12211 * A29K::
12212 * Alpha::
12213 * MIPS::
12214 @end menu
12215
12216 @node A29K
12217 @subsection A29K
12218
12219 @table @code
12220
12221 @kindex set rstack_high_address
12222 @cindex AMD 29K register stack
12223 @cindex register stack, AMD29K
12224 @item set rstack_high_address @var{address}
12225 On AMD 29000 family processors, registers are saved in a separate
12226 @dfn{register stack}.  There is no way for @value{GDBN} to determine the
12227 extent of this stack.  Normally, @value{GDBN} just assumes that the
12228 stack is ``large enough''.  This may result in @value{GDBN} referencing
12229 memory locations that do not exist.  If necessary, you can get around
12230 this problem by specifying the ending address of the register stack with
12231 the @code{set rstack_high_address} command.  The argument should be an
12232 address, which you probably want to precede with @samp{0x} to specify in
12233 hexadecimal.
12234
12235 @kindex show rstack_high_address
12236 @item show rstack_high_address
12237 Display the current limit of the register stack, on AMD 29000 family
12238 processors.
12239
12240 @end table
12241
12242 @node Alpha
12243 @subsection Alpha
12244
12245 See the following section.
12246
12247 @node MIPS
12248 @subsection MIPS
12249
12250 @cindex stack on Alpha
12251 @cindex stack on MIPS
12252 @cindex Alpha stack
12253 @cindex MIPS stack
12254 Alpha- and MIPS-based computers use an unusual stack frame, which
12255 sometimes requires @value{GDBN} to search backward in the object code to
12256 find the beginning of a function.
12257
12258 @cindex response time, MIPS debugging
12259 To improve response time (especially for embedded applications, where
12260 @value{GDBN} may be restricted to a slow serial line for this search)
12261 you may want to limit the size of this search, using one of these
12262 commands:
12263
12264 @table @code
12265 @cindex @code{heuristic-fence-post} (Alpha, MIPS)
12266 @item set heuristic-fence-post @var{limit}
12267 Restrict @value{GDBN} to examining at most @var{limit} bytes in its
12268 search for the beginning of a function.  A value of @var{0} (the
12269 default) means there is no limit.  However, except for @var{0}, the
12270 larger the limit the more bytes @code{heuristic-fence-post} must search
12271 and therefore the longer it takes to run.
12272
12273 @item show heuristic-fence-post
12274 Display the current limit.
12275 @end table
12276
12277 @noindent
12278 These commands are available @emph{only} when @value{GDBN} is configured
12279 for debugging programs on Alpha or MIPS processors.
12280
12281
12282 @node Controlling GDB
12283 @chapter Controlling @value{GDBN}
12284
12285 You can alter the way @value{GDBN} interacts with you by using the
12286 @code{set} command.  For commands controlling how @value{GDBN} displays
12287 data, see @ref{Print Settings, ,Print settings}.  Other settings are
12288 described here.
12289
12290 @menu
12291 * Prompt::                      Prompt
12292 * Editing::                     Command editing
12293 * History::                     Command history
12294 * Screen Size::                 Screen size
12295 * Numbers::                     Numbers
12296 * Messages/Warnings::           Optional warnings and messages
12297 * Debugging Output::            Optional messages about internal happenings
12298 @end menu
12299
12300 @node Prompt
12301 @section Prompt
12302
12303 @cindex prompt
12304
12305 @value{GDBN} indicates its readiness to read a command by printing a string
12306 called the @dfn{prompt}.  This string is normally @samp{(@value{GDBP})}.  You
12307 can change the prompt string with the @code{set prompt} command.  For
12308 instance, when debugging @value{GDBN} with @value{GDBN}, it is useful to change
12309 the prompt in one of the @value{GDBN} sessions so that you can always tell
12310 which one you are talking to.
12311
12312 @emph{Note:}  @code{set prompt} does not add a space for you after the
12313 prompt you set.  This allows you to set a prompt which ends in a space
12314 or a prompt that does not.
12315
12316 @table @code
12317 @kindex set prompt
12318 @item set prompt @var{newprompt}
12319 Directs @value{GDBN} to use @var{newprompt} as its prompt string henceforth.
12320
12321 @kindex show prompt
12322 @item show prompt
12323 Prints a line of the form: @samp{Gdb's prompt is: @var{your-prompt}}
12324 @end table
12325
12326 @node Editing
12327 @section Command editing
12328 @cindex readline
12329 @cindex command line editing
12330
12331 @value{GDBN} reads its input commands via the @dfn{readline} interface.  This
12332 @sc{gnu} library provides consistent behavior for programs which provide a
12333 command line interface to the user.  Advantages are @sc{gnu} Emacs-style
12334 or @dfn{vi}-style inline editing of commands, @code{csh}-like history
12335 substitution, and a storage and recall of command history across
12336 debugging sessions.
12337
12338 You may control the behavior of command line editing in @value{GDBN} with the
12339 command @code{set}.
12340
12341 @table @code
12342 @kindex set editing
12343 @cindex editing
12344 @item set editing
12345 @itemx set editing on
12346 Enable command line editing (enabled by default).
12347
12348 @item set editing off
12349 Disable command line editing.
12350
12351 @kindex show editing
12352 @item show editing
12353 Show whether command line editing is enabled.
12354 @end table
12355
12356 @node History
12357 @section Command history
12358
12359 @value{GDBN} can keep track of the commands you type during your
12360 debugging sessions, so that you can be certain of precisely what
12361 happened.  Use these commands to manage the @value{GDBN} command
12362 history facility.
12363
12364 @table @code
12365 @cindex history substitution
12366 @cindex history file
12367 @kindex set history filename
12368 @kindex GDBHISTFILE
12369 @item set history filename @var{fname}
12370 Set the name of the @value{GDBN} command history file to @var{fname}.
12371 This is the file where @value{GDBN} reads an initial command history
12372 list, and where it writes the command history from this session when it
12373 exits.  You can access this list through history expansion or through
12374 the history command editing characters listed below.  This file defaults
12375 to the value of the environment variable @code{GDBHISTFILE}, or to
12376 @file{./.gdb_history} (@file{./_gdb_history} on MS-DOS) if this variable
12377 is not set.
12378
12379 @cindex history save
12380 @kindex set history save
12381 @item set history save
12382 @itemx set history save on
12383 Record command history in a file, whose name may be specified with the
12384 @code{set history filename} command.  By default, this option is disabled.
12385
12386 @item set history save off
12387 Stop recording command history in a file.
12388
12389 @cindex history size
12390 @kindex set history size
12391 @item set history size @var{size}
12392 Set the number of commands which @value{GDBN} keeps in its history list.
12393 This defaults to the value of the environment variable
12394 @code{HISTSIZE}, or to 256 if this variable is not set.
12395 @end table
12396
12397 @cindex history expansion
12398 History expansion assigns special meaning to the character @kbd{!}.
12399 @ifset have-readline-appendices
12400 @xref{Event Designators}.
12401 @end ifset
12402
12403 Since @kbd{!} is also the logical not operator in C, history expansion
12404 is off by default. If you decide to enable history expansion with the
12405 @code{set history expansion on} command, you may sometimes need to
12406 follow @kbd{!} (when it is used as logical not, in an expression) with
12407 a space or a tab to prevent it from being expanded.  The readline
12408 history facilities do not attempt substitution on the strings
12409 @kbd{!=} and @kbd{!(}, even when history expansion is enabled.
12410
12411 The commands to control history expansion are:
12412
12413 @table @code
12414 @kindex set history expansion
12415 @item set history expansion on
12416 @itemx set history expansion
12417 Enable history expansion.  History expansion is off by default.
12418
12419 @item set history expansion off
12420 Disable history expansion.
12421
12422 The readline code comes with more complete documentation of
12423 editing and history expansion features.  Users unfamiliar with @sc{gnu} Emacs
12424 or @code{vi} may wish to read it.
12425 @ifset have-readline-appendices
12426 @xref{Command Line Editing}.
12427 @end ifset
12428
12429 @c @group
12430 @kindex show history
12431 @item show history
12432 @itemx show history filename
12433 @itemx show history save
12434 @itemx show history size
12435 @itemx show history expansion
12436 These commands display the state of the @value{GDBN} history parameters.
12437 @code{show history} by itself displays all four states.
12438 @c @end group
12439 @end table
12440
12441 @table @code
12442 @kindex shows
12443 @item show commands
12444 Display the last ten commands in the command history.
12445
12446 @item show commands @var{n}
12447 Print ten commands centered on command number @var{n}.
12448
12449 @item show commands +
12450 Print ten commands just after the commands last printed.
12451 @end table
12452
12453 @node Screen Size
12454 @section Screen size
12455 @cindex size of screen
12456 @cindex pauses in output
12457
12458 Certain commands to @value{GDBN} may produce large amounts of
12459 information output to the screen.  To help you read all of it,
12460 @value{GDBN} pauses and asks you for input at the end of each page of
12461 output.  Type @key{RET} when you want to continue the output, or @kbd{q}
12462 to discard the remaining output.  Also, the screen width setting
12463 determines when to wrap lines of output.  Depending on what is being
12464 printed, @value{GDBN} tries to break the line at a readable place,
12465 rather than simply letting it overflow onto the following line.
12466
12467 Normally @value{GDBN} knows the size of the screen from the terminal
12468 driver software.  For example, on Unix @value{GDBN} uses the termcap data base
12469 together with the value of the @code{TERM} environment variable and the
12470 @code{stty rows} and @code{stty cols} settings.  If this is not correct,
12471 you can override it with the @code{set height} and @code{set
12472 width} commands:
12473
12474 @table @code
12475 @kindex set height
12476 @kindex set width
12477 @kindex show width
12478 @kindex show height
12479 @item set height @var{lpp}
12480 @itemx show height
12481 @itemx set width @var{cpl}
12482 @itemx show width
12483 These @code{set} commands specify a screen height of @var{lpp} lines and
12484 a screen width of @var{cpl} characters.  The associated @code{show}
12485 commands display the current settings.
12486
12487 If you specify a height of zero lines, @value{GDBN} does not pause during
12488 output no matter how long the output is.  This is useful if output is to a
12489 file or to an editor buffer.
12490
12491 Likewise, you can specify @samp{set width 0} to prevent @value{GDBN}
12492 from wrapping its output.
12493 @end table
12494
12495 @node Numbers
12496 @section Numbers
12497 @cindex number representation
12498 @cindex entering numbers
12499
12500 You can always enter numbers in octal, decimal, or hexadecimal in
12501 @value{GDBN} by the usual conventions: octal numbers begin with
12502 @samp{0}, decimal numbers end with @samp{.}, and hexadecimal numbers
12503 begin with @samp{0x}.  Numbers that begin with none of these are, by
12504 default, entered in base 10; likewise, the default display for
12505 numbers---when no particular format is specified---is base 10.  You can
12506 change the default base for both input and output with the @code{set
12507 radix} command.
12508
12509 @table @code
12510 @kindex set input-radix
12511 @item set input-radix @var{base}
12512 Set the default base for numeric input.  Supported choices
12513 for @var{base} are decimal 8, 10, or 16.  @var{base} must itself be
12514 specified either unambiguously or using the current default radix; for
12515 example, any of
12516
12517 @smallexample
12518 set radix 012
12519 set radix 10.
12520 set radix 0xa
12521 @end smallexample
12522
12523 @noindent
12524 sets the base to decimal.  On the other hand, @samp{set radix 10}
12525 leaves the radix unchanged no matter what it was.
12526
12527 @kindex set output-radix
12528 @item set output-radix @var{base}
12529 Set the default base for numeric display.  Supported choices
12530 for @var{base} are decimal 8, 10, or 16.  @var{base} must itself be
12531 specified either unambiguously or using the current default radix.
12532
12533 @kindex show input-radix
12534 @item show input-radix
12535 Display the current default base for numeric input.
12536
12537 @kindex show output-radix
12538 @item show output-radix
12539 Display the current default base for numeric display.
12540 @end table
12541
12542 @node Messages/Warnings
12543 @section Optional warnings and messages
12544
12545 By default, @value{GDBN} is silent about its inner workings.  If you are
12546 running on a slow machine, you may want to use the @code{set verbose}
12547 command.  This makes @value{GDBN} tell you when it does a lengthy
12548 internal operation, so you will not think it has crashed.
12549
12550 Currently, the messages controlled by @code{set verbose} are those
12551 which announce that the symbol table for a source file is being read;
12552 see @code{symbol-file} in @ref{Files, ,Commands to specify files}.
12553
12554 @table @code
12555 @kindex set verbose
12556 @item set verbose on
12557 Enables @value{GDBN} output of certain informational messages.
12558
12559 @item set verbose off
12560 Disables @value{GDBN} output of certain informational messages.
12561
12562 @kindex show verbose
12563 @item show verbose
12564 Displays whether @code{set verbose} is on or off.
12565 @end table
12566
12567 By default, if @value{GDBN} encounters bugs in the symbol table of an
12568 object file, it is silent; but if you are debugging a compiler, you may
12569 find this information useful (@pxref{Symbol Errors, ,Errors reading
12570 symbol files}).
12571
12572 @table @code
12573
12574 @kindex set complaints
12575 @item set complaints @var{limit}
12576 Permits @value{GDBN} to output @var{limit} complaints about each type of
12577 unusual symbols before becoming silent about the problem.  Set
12578 @var{limit} to zero to suppress all complaints; set it to a large number
12579 to prevent complaints from being suppressed.
12580
12581 @kindex show complaints
12582 @item show complaints
12583 Displays how many symbol complaints @value{GDBN} is permitted to produce.
12584
12585 @end table
12586
12587 By default, @value{GDBN} is cautious, and asks what sometimes seems to be a
12588 lot of stupid questions to confirm certain commands.  For example, if
12589 you try to run a program which is already running:
12590
12591 @smallexample
12592 (@value{GDBP}) run
12593 The program being debugged has been started already.
12594 Start it from the beginning? (y or n)
12595 @end smallexample
12596
12597 If you are willing to unflinchingly face the consequences of your own
12598 commands, you can disable this ``feature'':
12599
12600 @table @code
12601
12602 @kindex set confirm
12603 @cindex flinching
12604 @cindex confirmation
12605 @cindex stupid questions
12606 @item set confirm off
12607 Disables confirmation requests.
12608
12609 @item set confirm on
12610 Enables confirmation requests (the default).
12611
12612 @kindex show confirm
12613 @item show confirm
12614 Displays state of confirmation requests.
12615
12616 @end table
12617
12618 @node Debugging Output
12619 @section Optional messages about internal happenings
12620 @table @code
12621 @kindex set debug arch
12622 @item set debug arch
12623 Turns on or off display of gdbarch debugging info. The default is off
12624 @kindex show debug arch
12625 @item show debug arch
12626 Displays the current state of displaying gdbarch debugging info.
12627 @kindex set debug event
12628 @item set debug event
12629 Turns on or off display of @value{GDBN} event debugging info. The
12630 default is off.
12631 @kindex show debug event
12632 @item show debug event
12633 Displays the current state of displaying @value{GDBN} event debugging
12634 info.
12635 @kindex set debug expression
12636 @item set debug expression
12637 Turns on or off display of @value{GDBN} expression debugging info. The
12638 default is off.
12639 @kindex show debug expression
12640 @item show debug expression
12641 Displays the current state of displaying @value{GDBN} expression
12642 debugging info.
12643 @kindex set debug overload
12644 @item set debug overload
12645 Turns on or off display of @value{GDBN} C@t{++} overload debugging
12646 info. This includes info such as ranking of functions, etc. The default
12647 is off.
12648 @kindex show debug overload
12649 @item show debug overload
12650 Displays the current state of displaying @value{GDBN} C@t{++} overload
12651 debugging info.
12652 @kindex set debug remote
12653 @cindex packets, reporting on stdout
12654 @cindex serial connections, debugging
12655 @item set debug remote
12656 Turns on or off display of reports on all packets sent back and forth across
12657 the serial line to the remote machine.  The info is printed on the
12658 @value{GDBN} standard output stream. The default is off.
12659 @kindex show debug remote
12660 @item show debug remote
12661 Displays the state of display of remote packets.
12662 @kindex set debug serial
12663 @item set debug serial
12664 Turns on or off display of @value{GDBN} serial debugging info. The
12665 default is off.
12666 @kindex show debug serial
12667 @item show debug serial
12668 Displays the current state of displaying @value{GDBN} serial debugging
12669 info.
12670 @kindex set debug target
12671 @item set debug target
12672 Turns on or off display of @value{GDBN} target debugging info. This info
12673 includes what is going on at the target level of GDB, as it happens. The
12674 default is off.
12675 @kindex show debug target
12676 @item show debug target
12677 Displays the current state of displaying @value{GDBN} target debugging
12678 info.
12679 @kindex set debug varobj
12680 @item set debug varobj
12681 Turns on or off display of @value{GDBN} variable object debugging
12682 info. The default is off.
12683 @kindex show debug varobj
12684 @item show debug varobj
12685 Displays the current state of displaying @value{GDBN} variable object
12686 debugging info.
12687 @end table
12688
12689 @node Sequences
12690 @chapter Canned Sequences of Commands
12691
12692 Aside from breakpoint commands (@pxref{Break Commands, ,Breakpoint
12693 command lists}), @value{GDBN} provides two ways to store sequences of
12694 commands for execution as a unit: user-defined commands and command
12695 files.
12696
12697 @menu
12698 * Define::                      User-defined commands
12699 * Hooks::                       User-defined command hooks
12700 * Command Files::               Command files
12701 * Output::                      Commands for controlled output
12702 @end menu
12703
12704 @node Define
12705 @section User-defined commands
12706
12707 @cindex user-defined command
12708 A @dfn{user-defined command} is a sequence of @value{GDBN} commands to
12709 which you assign a new name as a command.  This is done with the
12710 @code{define} command.  User commands may accept up to 10 arguments
12711 separated by whitespace.  Arguments are accessed within the user command
12712 via @var{$arg0@dots{}$arg9}.  A trivial example:
12713
12714 @smallexample
12715 define adder
12716   print $arg0 + $arg1 + $arg2
12717 @end smallexample
12718
12719 @noindent
12720 To execute the command use:
12721
12722 @smallexample
12723 adder 1 2 3
12724 @end smallexample
12725
12726 @noindent
12727 This defines the command @code{adder}, which prints the sum of
12728 its three arguments.  Note the arguments are text substitutions, so they may
12729 reference variables, use complex expressions, or even perform inferior
12730 functions calls.
12731
12732 @table @code
12733
12734 @kindex define
12735 @item define @var{commandname}
12736 Define a command named @var{commandname}.  If there is already a command
12737 by that name, you are asked to confirm that you want to redefine it.
12738
12739 The definition of the command is made up of other @value{GDBN} command lines,
12740 which are given following the @code{define} command.  The end of these
12741 commands is marked by a line containing @code{end}.
12742
12743 @kindex if
12744 @kindex else
12745 @item if
12746 Takes a single argument, which is an expression to evaluate.
12747 It is followed by a series of commands that are executed
12748 only if the expression is true (nonzero).
12749 There can then optionally be a line @code{else}, followed
12750 by a series of commands that are only executed if the expression
12751 was false.  The end of the list is marked by a line containing @code{end}.
12752
12753 @kindex while
12754 @item while
12755 The syntax is similar to @code{if}: the command takes a single argument,
12756 which is an expression to evaluate, and must be followed by the commands to
12757 execute, one per line, terminated by an @code{end}.
12758 The commands are executed repeatedly as long as the expression
12759 evaluates to true.
12760
12761 @kindex document
12762 @item document @var{commandname}
12763 Document the user-defined command @var{commandname}, so that it can be
12764 accessed by @code{help}.  The command @var{commandname} must already be
12765 defined.  This command reads lines of documentation just as @code{define}
12766 reads the lines of the command definition, ending with @code{end}.
12767 After the @code{document} command is finished, @code{help} on command
12768 @var{commandname} displays the documentation you have written.
12769
12770 You may use the @code{document} command again to change the
12771 documentation of a command.  Redefining the command with @code{define}
12772 does not change the documentation.
12773
12774 @kindex help user-defined
12775 @item help user-defined
12776 List all user-defined commands, with the first line of the documentation
12777 (if any) for each.
12778
12779 @kindex show user
12780 @item show user
12781 @itemx show user @var{commandname}
12782 Display the @value{GDBN} commands used to define @var{commandname} (but
12783 not its documentation).  If no @var{commandname} is given, display the
12784 definitions for all user-defined commands.
12785
12786 @kindex show max-user-call-depth
12787 @kindex set max-user-call-depth
12788 @item show max-user-call-depth
12789 @itemx set max-user-call-depth
12790 The value of @code{max-user-call-depth} controls how many recursion
12791 levels are allowed in user-defined commands before GDB suspects an
12792 infinite recursion and aborts the command.
12793
12794 @end table
12795
12796 When user-defined commands are executed, the
12797 commands of the definition are not printed.  An error in any command
12798 stops execution of the user-defined command.
12799
12800 If used interactively, commands that would ask for confirmation proceed
12801 without asking when used inside a user-defined command.  Many @value{GDBN}
12802 commands that normally print messages to say what they are doing omit the
12803 messages when used in a user-defined command.
12804
12805 @node Hooks
12806 @section User-defined command hooks
12807 @cindex command hooks
12808 @cindex hooks, for commands
12809 @cindex hooks, pre-command
12810
12811 @kindex hook
12812 @kindex hook-
12813 You may define @dfn{hooks}, which are a special kind of user-defined
12814 command.  Whenever you run the command @samp{foo}, if the user-defined
12815 command @samp{hook-foo} exists, it is executed (with no arguments)
12816 before that command.
12817
12818 @cindex hooks, post-command
12819 @kindex hookpost
12820 @kindex hookpost-
12821 A hook may also be defined which is run after the command you executed.
12822 Whenever you run the command @samp{foo}, if the user-defined command
12823 @samp{hookpost-foo} exists, it is executed (with no arguments) after
12824 that command.  Post-execution hooks may exist simultaneously with
12825 pre-execution hooks, for the same command.
12826
12827 It is valid for a hook to call the command which it hooks.  If this
12828 occurs, the hook is not re-executed, thereby avoiding infinte recursion.
12829
12830 @c It would be nice if hookpost could be passed a parameter indicating
12831 @c if the command it hooks executed properly or not.  FIXME!
12832
12833 @kindex stop@r{, a pseudo-command}
12834 In addition, a pseudo-command, @samp{stop} exists.  Defining
12835 (@samp{hook-stop}) makes the associated commands execute every time
12836 execution stops in your program: before breakpoint commands are run,
12837 displays are printed, or the stack frame is printed.
12838
12839 For example, to ignore @code{SIGALRM} signals while
12840 single-stepping, but treat them normally during normal execution,
12841 you could define:
12842
12843 @smallexample
12844 define hook-stop
12845 handle SIGALRM nopass
12846 end
12847
12848 define hook-run
12849 handle SIGALRM pass
12850 end
12851
12852 define hook-continue
12853 handle SIGLARM pass
12854 end
12855 @end smallexample
12856
12857 As a further example, to hook at the begining and end of the @code{echo}
12858 command, and to add extra text to the beginning and end of the message, 
12859 you could define:
12860
12861 @smallexample
12862 define hook-echo
12863 echo <<<---
12864 end
12865
12866 define hookpost-echo
12867 echo --->>>\n
12868 end
12869
12870 (@value{GDBP}) echo Hello World
12871 <<<---Hello World--->>>
12872 (@value{GDBP})
12873
12874 @end smallexample
12875
12876 You can define a hook for any single-word command in @value{GDBN}, but
12877 not for command aliases; you should define a hook for the basic command
12878 name, e.g.  @code{backtrace} rather than @code{bt}.
12879 @c FIXME!  So how does Joe User discover whether a command is an alias
12880 @c or not?
12881 If an error occurs during the execution of your hook, execution of
12882 @value{GDBN} commands stops and @value{GDBN} issues a prompt
12883 (before the command that you actually typed had a chance to run).
12884
12885 If you try to define a hook which does not match any known command, you
12886 get a warning from the @code{define} command.
12887
12888 @node Command Files
12889 @section Command files
12890
12891 @cindex command files
12892 A command file for @value{GDBN} is a file of lines that are @value{GDBN}
12893 commands.  Comments (lines starting with @kbd{#}) may also be included.
12894 An empty line in a command file does nothing; it does not mean to repeat
12895 the last command, as it would from the terminal.
12896
12897 @cindex init file
12898 @cindex @file{.gdbinit}
12899 @cindex @file{gdb.ini}
12900 When you start @value{GDBN}, it automatically executes commands from its
12901 @dfn{init files}, normally called @file{.gdbinit}@footnote{The DJGPP
12902 port of @value{GDBN} uses the name @file{gdb.ini} instead, due to the
12903 limitations of file names imposed by DOS filesystems.}.
12904 During startup, @value{GDBN} does the following:
12905
12906 @enumerate
12907 @item
12908 Reads the init file (if any) in your home directory@footnote{On
12909 DOS/Windows systems, the home directory is the one pointed to by the
12910 @code{HOME} environment variable.}.
12911
12912 @item
12913 Processes command line options and operands.
12914
12915 @item
12916 Reads the init file (if any) in the current working directory.
12917
12918 @item
12919 Reads command files specified by the @samp{-x} option.
12920 @end enumerate
12921
12922 The init file in your home directory can set options (such as @samp{set
12923 complaints}) that affect subsequent processing of command line options
12924 and operands.  Init files are not executed if you use the @samp{-nx}
12925 option (@pxref{Mode Options, ,Choosing modes}).
12926
12927 @cindex init file name
12928 On some configurations of @value{GDBN}, the init file is known by a
12929 different name (these are typically environments where a specialized
12930 form of @value{GDBN} may need to coexist with other forms, hence a
12931 different name for the specialized version's init file).  These are the
12932 environments with special init file names:
12933
12934 @cindex @file{.vxgdbinit}
12935 @itemize @bullet
12936 @item
12937 VxWorks (Wind River Systems real-time OS): @file{.vxgdbinit}
12938
12939 @cindex @file{.os68gdbinit}
12940 @item
12941 OS68K (Enea Data Systems real-time OS): @file{.os68gdbinit}
12942
12943 @cindex @file{.esgdbinit}
12944 @item
12945 ES-1800 (Ericsson Telecom AB M68000 emulator): @file{.esgdbinit}
12946 @end itemize
12947
12948 You can also request the execution of a command file with the
12949 @code{source} command:
12950
12951 @table @code
12952 @kindex source
12953 @item source @var{filename}
12954 Execute the command file @var{filename}.
12955 @end table
12956
12957 The lines in a command file are executed sequentially.  They are not
12958 printed as they are executed.  An error in any command terminates execution
12959 of the command file.
12960
12961 Commands that would ask for confirmation if used interactively proceed
12962 without asking when used in a command file.  Many @value{GDBN} commands that
12963 normally print messages to say what they are doing omit the messages
12964 when called from command files.
12965
12966 @value{GDBN} also accepts command input from standard input.  In this
12967 mode, normal output goes to standard output and error output goes to
12968 standard error.  Errors in a command file supplied on standard input do
12969 not terminate execution of the command file --- execution continues with
12970 the next command.
12971
12972 @smallexample
12973 gdb < cmds > log 2>&1
12974 @end smallexample
12975
12976 (The syntax above will vary depending on the shell used.) This example
12977 will execute commands from the file @file{cmds}. All output and errors
12978 would be directed to @file{log}.
12979
12980 @node Output
12981 @section Commands for controlled output
12982
12983 During the execution of a command file or a user-defined command, normal
12984 @value{GDBN} output is suppressed; the only output that appears is what is
12985 explicitly printed by the commands in the definition.  This section
12986 describes three commands useful for generating exactly the output you
12987 want.
12988
12989 @table @code
12990 @kindex echo
12991 @item echo @var{text}
12992 @c I do not consider backslash-space a standard C escape sequence
12993 @c because it is not in ANSI.
12994 Print @var{text}.  Nonprinting characters can be included in
12995 @var{text} using C escape sequences, such as @samp{\n} to print a
12996 newline.  @strong{No newline is printed unless you specify one.}
12997 In addition to the standard C escape sequences, a backslash followed
12998 by a space stands for a space.  This is useful for displaying a
12999 string with spaces at the beginning or the end, since leading and
13000 trailing spaces are otherwise trimmed from all arguments.
13001 To print @samp{@w{ }and foo =@w{ }}, use the command
13002 @samp{echo \@w{ }and foo = \@w{ }}.
13003
13004 A backslash at the end of @var{text} can be used, as in C, to continue
13005 the command onto subsequent lines.  For example,
13006
13007 @smallexample
13008 echo This is some text\n\
13009 which is continued\n\
13010 onto several lines.\n
13011 @end smallexample
13012
13013 produces the same output as
13014
13015 @smallexample
13016 echo This is some text\n
13017 echo which is continued\n
13018 echo onto several lines.\n
13019 @end smallexample
13020
13021 @kindex output
13022 @item output @var{expression}
13023 Print the value of @var{expression} and nothing but that value: no
13024 newlines, no @samp{$@var{nn} = }.  The value is not entered in the
13025 value history either.  @xref{Expressions, ,Expressions}, for more information
13026 on expressions.
13027
13028 @item output/@var{fmt} @var{expression}
13029 Print the value of @var{expression} in format @var{fmt}.  You can use
13030 the same formats as for @code{print}.  @xref{Output Formats,,Output
13031 formats}, for more information.
13032
13033 @kindex printf
13034 @item printf @var{string}, @var{expressions}@dots{}
13035 Print the values of the @var{expressions} under the control of
13036 @var{string}.  The @var{expressions} are separated by commas and may be
13037 either numbers or pointers.  Their values are printed as specified by
13038 @var{string}, exactly as if your program were to execute the C
13039 subroutine
13040 @c FIXME: the above implies that at least all ANSI C formats are
13041 @c supported, but it isn't true: %E and %G don't work (or so it seems).
13042 @c Either this is a bug, or the manual should document what formats are
13043 @c supported.
13044
13045 @smallexample
13046 printf (@var{string}, @var{expressions}@dots{});
13047 @end smallexample
13048
13049 For example, you can print two values in hex like this:
13050
13051 @smallexample
13052 printf "foo, bar-foo = 0x%x, 0x%x\n", foo, bar-foo
13053 @end smallexample
13054
13055 The only backslash-escape sequences that you can use in the format
13056 string are the simple ones that consist of backslash followed by a
13057 letter.
13058 @end table
13059
13060 @node TUI
13061 @chapter @value{GDBN} Text User Interface
13062 @cindex TUI
13063
13064 @menu
13065 * TUI Overview::                TUI overview
13066 * TUI Keys::                    TUI key bindings
13067 * TUI Commands::                TUI specific commands
13068 * TUI Configuration::           TUI configuration variables
13069 @end menu
13070
13071 The @value{GDBN} Text User Interface, TUI in short,
13072 is a terminal interface which uses the @code{curses} library
13073 to show the source file, the assembly output, the program registers
13074 and @value{GDBN} commands in separate text windows.
13075 The TUI is available only when @value{GDBN} is configured
13076 with the @code{--enable-tui} configure option (@pxref{Configure Options}).
13077
13078 @node TUI Overview
13079 @section TUI overview
13080
13081 The TUI has two display modes that can be switched while
13082 @value{GDBN} runs:
13083
13084 @itemize @bullet
13085 @item
13086 A curses (or TUI) mode in which it displays several text
13087 windows on the terminal.
13088
13089 @item
13090 A standard mode which corresponds to the @value{GDBN} configured without
13091 the TUI.
13092 @end itemize
13093
13094 In the TUI mode, @value{GDBN} can display several text window
13095 on the terminal:
13096
13097 @table @emph
13098 @item command
13099 This window is the @value{GDBN} command window with the @value{GDBN}
13100 prompt and the @value{GDBN} outputs.  The @value{GDBN} input is still
13101 managed using readline but through the TUI.  The @emph{command}
13102 window is always visible.
13103
13104 @item source
13105 The source window shows the source file of the program.  The current
13106 line as well as active breakpoints are displayed in this window.
13107 The current program position is shown with the @samp{>} marker and
13108 active breakpoints are shown with @samp{*} markers.
13109
13110 @item assembly
13111 The assembly window shows the disassembly output of the program.
13112
13113 @item register
13114 This window shows the processor registers.  It detects when
13115 a register is changed and when this is the case, registers that have
13116 changed are highlighted.
13117
13118 @end table
13119
13120 The source, assembly and register windows are attached to the thread
13121 and the frame position.  They are updated when the current thread
13122 changes, when the frame changes or when the program counter changes.
13123 These three windows are arranged by the TUI according to several
13124 layouts.  The layout defines which of these three windows are visible.
13125 The following layouts are available:
13126
13127 @itemize @bullet
13128 @item
13129 source
13130
13131 @item
13132 assembly
13133
13134 @item
13135 source and assembly
13136
13137 @item
13138 source and registers
13139
13140 @item
13141 assembly and registers
13142
13143 @end itemize
13144
13145 @node TUI Keys
13146 @section TUI Key Bindings
13147 @cindex TUI key bindings
13148
13149 The TUI installs several key bindings in the readline keymaps
13150 (@pxref{Command Line Editing}).
13151 They allow to leave or enter in the TUI mode or they operate
13152 directly on the TUI layout and windows.  The following key bindings
13153 are installed for both TUI mode and the @value{GDBN} standard mode.
13154
13155 @table @kbd
13156 @kindex C-x C-a
13157 @item C-x C-a
13158 @kindex C-x a
13159 @itemx C-x a
13160 @kindex C-x A
13161 @itemx C-x A
13162 Enter or leave the TUI mode.  When the TUI mode is left,
13163 the curses window management is left and @value{GDBN} operates using
13164 its standard mode writing on the terminal directly.  When the TUI
13165 mode is entered, the control is given back to the curses windows.
13166 The screen is then refreshed.
13167
13168 @kindex C-x 1
13169 @item C-x 1
13170 Use a TUI layout with only one window.  The layout will
13171 either be @samp{source} or @samp{assembly}.  When the TUI mode
13172 is not active, it will switch to the TUI mode.
13173
13174 Think of this key binding as the Emacs @kbd{C-x 1} binding.
13175
13176 @kindex C-x 2
13177 @item C-x 2
13178 Use a TUI layout with at least two windows.  When the current
13179 layout shows already two windows, a next layout with two windows is used.
13180 When a new layout is chosen, one window will always be common to the
13181 previous layout and the new one.
13182
13183 Think of it as the Emacs @kbd{C-x 2} binding.
13184
13185 @end table
13186
13187 The following key bindings are handled only by the TUI mode:
13188
13189 @table @key
13190 @kindex PgUp
13191 @item PgUp
13192 Scroll the active window one page up.
13193
13194 @kindex PgDn
13195 @item PgDn
13196 Scroll the active window one page down.
13197
13198 @kindex Up
13199 @item Up
13200 Scroll the active window one line up.
13201
13202 @kindex Down
13203 @item Down
13204 Scroll the active window one line down.
13205
13206 @kindex Left
13207 @item Left
13208 Scroll the active window one column left.
13209
13210 @kindex Right
13211 @item Right
13212 Scroll the active window one column right.
13213
13214 @kindex C-L
13215 @item C-L
13216 Refresh the screen.
13217
13218 @end table
13219
13220 In the TUI mode, the arrow keys are used by the active window
13221 for scrolling.  This means they are not available for readline.  It is
13222 necessary to use other readline key bindings such as @key{C-p}, @key{C-n},
13223 @key{C-b} and @key{C-f}.
13224
13225 @node TUI Commands
13226 @section TUI specific commands
13227 @cindex TUI commands
13228
13229 The TUI has specific commands to control the text windows.
13230 These commands are always available, that is they do not depend on
13231 the current terminal mode in which @value{GDBN} runs.  When @value{GDBN}
13232 is in the standard mode, using these commands will automatically switch
13233 in the TUI mode.
13234
13235 @table @code
13236 @item layout next
13237 @kindex layout next
13238 Display the next layout.
13239
13240 @item layout prev
13241 @kindex layout prev
13242 Display the previous layout.
13243
13244 @item layout src
13245 @kindex layout src
13246 Display the source window only.
13247
13248 @item layout asm
13249 @kindex layout asm
13250 Display the assembly window only.
13251
13252 @item layout split
13253 @kindex layout split
13254 Display the source and assembly window.
13255
13256 @item layout regs
13257 @kindex layout regs
13258 Display the register window together with the source or assembly window.
13259
13260 @item focus next | prev | src | asm | regs | split
13261 @kindex focus
13262 Set the focus to the named window.
13263 This command allows to change the active window so that scrolling keys
13264 can be affected to another window.
13265
13266 @item refresh
13267 @kindex refresh
13268 Refresh the screen.  This is similar to using @key{C-L} key.
13269
13270 @item update
13271 @kindex update
13272 Update the source window and the current execution point.
13273
13274 @item winheight @var{name} +@var{count}
13275 @itemx winheight @var{name} -@var{count}
13276 @kindex winheight
13277 Change the height of the window @var{name} by @var{count}
13278 lines.  Positive counts increase the height, while negative counts
13279 decrease it.
13280
13281 @end table
13282
13283 @node TUI Configuration
13284 @section TUI configuration variables
13285 @cindex TUI configuration variables
13286
13287 The TUI has several configuration variables that control the
13288 appearance of windows on the terminal.
13289
13290 @table @code
13291 @item set tui border-kind @var{kind}
13292 @kindex set tui border-kind
13293 Select the border appearance for the source, assembly and register windows.
13294 The possible values are the following:
13295 @table @code
13296 @item space
13297 Use a space character to draw the border.
13298
13299 @item ascii
13300 Use ascii characters + - and | to draw the border.
13301
13302 @item acs
13303 Use the Alternate Character Set to draw the border.  The border is
13304 drawn using character line graphics if the terminal supports them.
13305
13306 @end table
13307
13308 @item set tui active-border-mode @var{mode}
13309 @kindex set tui active-border-mode
13310 Select the attributes to display the border of the active window.
13311 The possible values are @code{normal}, @code{standout}, @code{reverse},
13312 @code{half}, @code{half-standout}, @code{bold} and @code{bold-standout}.
13313
13314 @item set tui border-mode @var{mode}
13315 @kindex set tui border-mode
13316 Select the attributes to display the border of other windows.
13317 The @var{mode} can be one of the following:
13318 @table @code
13319 @item normal
13320 Use normal attributes to display the border.
13321
13322 @item standout
13323 Use standout mode.
13324
13325 @item reverse
13326 Use reverse video mode.
13327
13328 @item half
13329 Use half bright mode.
13330
13331 @item half-standout
13332 Use half bright and standout mode.
13333
13334 @item bold
13335 Use extra bright or bold mode.
13336
13337 @item bold-standout
13338 Use extra bright or bold and standout mode.
13339
13340 @end table
13341
13342 @end table
13343
13344 @node Emacs
13345 @chapter Using @value{GDBN} under @sc{gnu} Emacs
13346
13347 @cindex Emacs
13348 @cindex @sc{gnu} Emacs
13349 A special interface allows you to use @sc{gnu} Emacs to view (and
13350 edit) the source files for the program you are debugging with
13351 @value{GDBN}.
13352
13353 To use this interface, use the command @kbd{M-x gdb} in Emacs.  Give the
13354 executable file you want to debug as an argument.  This command starts
13355 @value{GDBN} as a subprocess of Emacs, with input and output through a newly
13356 created Emacs buffer.
13357 @c (Do not use the @code{-tui} option to run @value{GDBN} from Emacs.)
13358
13359 Using @value{GDBN} under Emacs is just like using @value{GDBN} normally except for two
13360 things:
13361
13362 @itemize @bullet
13363 @item
13364 All ``terminal'' input and output goes through the Emacs buffer.
13365 @end itemize
13366
13367 This applies both to @value{GDBN} commands and their output, and to the input
13368 and output done by the program you are debugging.
13369
13370 This is useful because it means that you can copy the text of previous
13371 commands and input them again; you can even use parts of the output
13372 in this way.
13373
13374 All the facilities of Emacs' Shell mode are available for interacting
13375 with your program.  In particular, you can send signals the usual
13376 way---for example, @kbd{C-c C-c} for an interrupt, @kbd{C-c C-z} for a
13377 stop.
13378
13379 @itemize @bullet
13380 @item
13381 @value{GDBN} displays source code through Emacs.
13382 @end itemize
13383
13384 Each time @value{GDBN} displays a stack frame, Emacs automatically finds the
13385 source file for that frame and puts an arrow (@samp{=>}) at the
13386 left margin of the current line.  Emacs uses a separate buffer for
13387 source display, and splits the screen to show both your @value{GDBN} session
13388 and the source.
13389
13390 Explicit @value{GDBN} @code{list} or search commands still produce output as
13391 usual, but you probably have no reason to use them from Emacs.
13392
13393 @quotation
13394 @emph{Warning:} If the directory where your program resides is not your
13395 current directory, it can be easy to confuse Emacs about the location of
13396 the source files, in which case the auxiliary display buffer does not
13397 appear to show your source.  @value{GDBN} can find programs by searching your
13398 environment's @code{PATH} variable, so the @value{GDBN} input and output
13399 session proceeds normally; but Emacs does not get enough information
13400 back from @value{GDBN} to locate the source files in this situation.  To
13401 avoid this problem, either start @value{GDBN} mode from the directory where
13402 your program resides, or specify an absolute file name when prompted for the
13403 @kbd{M-x gdb} argument.
13404
13405 A similar confusion can result if you use the @value{GDBN} @code{file} command to
13406 switch to debugging a program in some other location, from an existing
13407 @value{GDBN} buffer in Emacs.
13408 @end quotation
13409
13410 By default, @kbd{M-x gdb} calls the program called @file{gdb}.  If
13411 you need to call @value{GDBN} by a different name (for example, if you keep
13412 several configurations around, with different names) you can set the
13413 Emacs variable @code{gdb-command-name}; for example,
13414
13415 @smallexample
13416 (setq gdb-command-name "mygdb")
13417 @end smallexample
13418
13419 @noindent
13420 (preceded by @kbd{M-:} or @kbd{ESC :}, or typed in the @code{*scratch*} buffer, or
13421 in your @file{.emacs} file) makes Emacs call the program named
13422 ``@code{mygdb}'' instead.
13423
13424 In the @value{GDBN} I/O buffer, you can use these special Emacs commands in
13425 addition to the standard Shell mode commands:
13426
13427 @table @kbd
13428 @item C-h m
13429 Describe the features of Emacs' @value{GDBN} Mode.
13430
13431 @item M-s
13432 Execute to another source line, like the @value{GDBN} @code{step} command; also
13433 update the display window to show the current file and location.
13434
13435 @item M-n
13436 Execute to next source line in this function, skipping all function
13437 calls, like the @value{GDBN} @code{next} command.  Then update the display window
13438 to show the current file and location.
13439
13440 @item M-i
13441 Execute one instruction, like the @value{GDBN} @code{stepi} command; update
13442 display window accordingly.
13443
13444 @item M-x gdb-nexti
13445 Execute to next instruction, using the @value{GDBN} @code{nexti} command; update
13446 display window accordingly.
13447
13448 @item C-c C-f
13449 Execute until exit from the selected stack frame, like the @value{GDBN}
13450 @code{finish} command.
13451
13452 @item M-c
13453 Continue execution of your program, like the @value{GDBN} @code{continue}
13454 command.
13455
13456 @emph{Warning:} In Emacs v19, this command is @kbd{C-c C-p}.
13457
13458 @item M-u
13459 Go up the number of frames indicated by the numeric argument
13460 (@pxref{Arguments, , Numeric Arguments, Emacs, The @sc{gnu} Emacs Manual}),
13461 like the @value{GDBN} @code{up} command.
13462
13463 @emph{Warning:} In Emacs v19, this command is @kbd{C-c C-u}.
13464
13465 @item M-d
13466 Go down the number of frames indicated by the numeric argument, like the
13467 @value{GDBN} @code{down} command.
13468
13469 @emph{Warning:} In Emacs v19, this command is @kbd{C-c C-d}.
13470
13471 @item C-x &
13472 Read the number where the cursor is positioned, and insert it at the end
13473 of the @value{GDBN} I/O buffer.  For example, if you wish to disassemble code
13474 around an address that was displayed earlier, type @kbd{disassemble};
13475 then move the cursor to the address display, and pick up the
13476 argument for @code{disassemble} by typing @kbd{C-x &}.
13477
13478 You can customize this further by defining elements of the list
13479 @code{gdb-print-command}; once it is defined, you can format or
13480 otherwise process numbers picked up by @kbd{C-x &} before they are
13481 inserted.  A numeric argument to @kbd{C-x &} indicates that you
13482 wish special formatting, and also acts as an index to pick an element of the
13483 list.  If the list element is a string, the number to be inserted is
13484 formatted using the Emacs function @code{format}; otherwise the number
13485 is passed as an argument to the corresponding list element.
13486 @end table
13487
13488 In any source file, the Emacs command @kbd{C-x SPC} (@code{gdb-break})
13489 tells @value{GDBN} to set a breakpoint on the source line point is on.
13490
13491 If you accidentally delete the source-display buffer, an easy way to get
13492 it back is to type the command @code{f} in the @value{GDBN} buffer, to
13493 request a frame display; when you run under Emacs, this recreates
13494 the source buffer if necessary to show you the context of the current
13495 frame.
13496
13497 The source files displayed in Emacs are in ordinary Emacs buffers
13498 which are visiting the source files in the usual way.  You can edit
13499 the files with these buffers if you wish; but keep in mind that @value{GDBN}
13500 communicates with Emacs in terms of line numbers.  If you add or
13501 delete lines from the text, the line numbers that @value{GDBN} knows cease
13502 to correspond properly with the code.
13503
13504 @c The following dropped because Epoch is nonstandard.  Reactivate
13505 @c if/when v19 does something similar. ---doc@cygnus.com 19dec1990
13506 @ignore
13507 @kindex Emacs Epoch environment
13508 @kindex Epoch
13509 @kindex inspect
13510
13511 Version 18 of @sc{gnu} Emacs has a built-in window system
13512 called the @code{epoch}
13513 environment.  Users of this environment can use a new command,
13514 @code{inspect} which performs identically to @code{print} except that
13515 each value is printed in its own window.
13516 @end ignore
13517
13518 @include annotate.texi
13519 @include gdbmi.texinfo
13520
13521 @node GDB Bugs
13522 @chapter Reporting Bugs in @value{GDBN}
13523 @cindex bugs in @value{GDBN}
13524 @cindex reporting bugs in @value{GDBN}
13525
13526 Your bug reports play an essential role in making @value{GDBN} reliable.
13527
13528 Reporting a bug may help you by bringing a solution to your problem, or it
13529 may not.  But in any case the principal function of a bug report is to help
13530 the entire community by making the next version of @value{GDBN} work better.  Bug
13531 reports are your contribution to the maintenance of @value{GDBN}.
13532
13533 In order for a bug report to serve its purpose, you must include the
13534 information that enables us to fix the bug.
13535
13536 @menu
13537 * Bug Criteria::                Have you found a bug?
13538 * Bug Reporting::               How to report bugs
13539 @end menu
13540
13541 @node Bug Criteria
13542 @section Have you found a bug?
13543 @cindex bug criteria
13544
13545 If you are not sure whether you have found a bug, here are some guidelines:
13546
13547 @itemize @bullet
13548 @cindex fatal signal
13549 @cindex debugger crash
13550 @cindex crash of debugger
13551 @item
13552 If the debugger gets a fatal signal, for any input whatever, that is a
13553 @value{GDBN} bug.  Reliable debuggers never crash.
13554
13555 @cindex error on valid input
13556 @item
13557 If @value{GDBN} produces an error message for valid input, that is a
13558 bug.  (Note that if you're cross debugging, the problem may also be
13559 somewhere in the connection to the target.)
13560
13561 @cindex invalid input
13562 @item
13563 If @value{GDBN} does not produce an error message for invalid input,
13564 that is a bug.  However, you should note that your idea of
13565 ``invalid input'' might be our idea of ``an extension'' or ``support
13566 for traditional practice''.
13567
13568 @item
13569 If you are an experienced user of debugging tools, your suggestions
13570 for improvement of @value{GDBN} are welcome in any case.
13571 @end itemize
13572
13573 @node Bug Reporting
13574 @section How to report bugs
13575 @cindex bug reports
13576 @cindex @value{GDBN} bugs, reporting
13577
13578 A number of companies and individuals offer support for @sc{gnu} products.
13579 If you obtained @value{GDBN} from a support organization, we recommend you
13580 contact that organization first.
13581
13582 You can find contact information for many support companies and
13583 individuals in the file @file{etc/SERVICE} in the @sc{gnu} Emacs
13584 distribution.
13585 @c should add a web page ref...
13586
13587 In any event, we also recommend that you submit bug reports for
13588 @value{GDBN}.  The prefered method is to submit them directly using
13589 @uref{http://www.gnu.org/software/gdb/bugs/, @value{GDBN}'s Bugs web
13590 page}.  Alternatively, the @email{bug-gdb@@gnu.org, e-mail gateway} can
13591 be used.
13592
13593 @strong{Do not send bug reports to @samp{info-gdb}, or to
13594 @samp{help-gdb}, or to any newsgroups.}  Most users of @value{GDBN} do
13595 not want to receive bug reports.  Those that do have arranged to receive
13596 @samp{bug-gdb}.
13597
13598 The mailing list @samp{bug-gdb} has a newsgroup @samp{gnu.gdb.bug} which
13599 serves as a repeater.  The mailing list and the newsgroup carry exactly
13600 the same messages.  Often people think of posting bug reports to the
13601 newsgroup instead of mailing them.  This appears to work, but it has one
13602 problem which can be crucial: a newsgroup posting often lacks a mail
13603 path back to the sender.  Thus, if we need to ask for more information,
13604 we may be unable to reach you.  For this reason, it is better to send
13605 bug reports to the mailing list.
13606
13607 The fundamental principle of reporting bugs usefully is this:
13608 @strong{report all the facts}.  If you are not sure whether to state a
13609 fact or leave it out, state it!
13610
13611 Often people omit facts because they think they know what causes the
13612 problem and assume that some details do not matter.  Thus, you might
13613 assume that the name of the variable you use in an example does not matter.
13614 Well, probably it does not, but one cannot be sure.  Perhaps the bug is a
13615 stray memory reference which happens to fetch from the location where that
13616 name is stored in memory; perhaps, if the name were different, the contents
13617 of that location would fool the debugger into doing the right thing despite
13618 the bug.  Play it safe and give a specific, complete example.  That is the
13619 easiest thing for you to do, and the most helpful.
13620
13621 Keep in mind that the purpose of a bug report is to enable us to fix the
13622 bug.  It may be that the bug has been reported previously, but neither
13623 you nor we can know that unless your bug report is complete and
13624 self-contained.
13625
13626 Sometimes people give a few sketchy facts and ask, ``Does this ring a
13627 bell?''  Those bug reports are useless, and we urge everyone to
13628 @emph{refuse to respond to them} except to chide the sender to report
13629 bugs properly.
13630
13631 To enable us to fix the bug, you should include all these things:
13632
13633 @itemize @bullet
13634 @item
13635 The version of @value{GDBN}.  @value{GDBN} announces it if you start
13636 with no arguments; you can also print it at any time using @code{show
13637 version}.
13638
13639 Without this, we will not know whether there is any point in looking for
13640 the bug in the current version of @value{GDBN}.
13641
13642 @item
13643 The type of machine you are using, and the operating system name and
13644 version number.
13645
13646 @item
13647 What compiler (and its version) was used to compile @value{GDBN}---e.g.
13648 ``@value{GCC}--2.8.1''.
13649
13650 @item
13651 What compiler (and its version) was used to compile the program you are
13652 debugging---e.g.  ``@value{GCC}--2.8.1'', or ``HP92453-01 A.10.32.03 HP
13653 C Compiler''.  For GCC, you can say @code{gcc --version} to get this
13654 information; for other compilers, see the documentation for those
13655 compilers.
13656
13657 @item
13658 The command arguments you gave the compiler to compile your example and
13659 observe the bug.  For example, did you use @samp{-O}?  To guarantee
13660 you will not omit something important, list them all.  A copy of the
13661 Makefile (or the output from make) is sufficient.
13662
13663 If we were to try to guess the arguments, we would probably guess wrong
13664 and then we might not encounter the bug.
13665
13666 @item
13667 A complete input script, and all necessary source files, that will
13668 reproduce the bug.
13669
13670 @item
13671 A description of what behavior you observe that you believe is
13672 incorrect.  For example, ``It gets a fatal signal.''
13673
13674 Of course, if the bug is that @value{GDBN} gets a fatal signal, then we
13675 will certainly notice it.  But if the bug is incorrect output, we might
13676 not notice unless it is glaringly wrong.  You might as well not give us
13677 a chance to make a mistake.
13678
13679 Even if the problem you experience is a fatal signal, you should still
13680 say so explicitly.  Suppose something strange is going on, such as, your
13681 copy of @value{GDBN} is out of synch, or you have encountered a bug in
13682 the C library on your system.  (This has happened!)  Your copy might
13683 crash and ours would not.  If you told us to expect a crash, then when
13684 ours fails to crash, we would know that the bug was not happening for
13685 us.  If you had not told us to expect a crash, then we would not be able
13686 to draw any conclusion from our observations.
13687
13688 @item
13689 If you wish to suggest changes to the @value{GDBN} source, send us context
13690 diffs.  If you even discuss something in the @value{GDBN} source, refer to
13691 it by context, not by line number.
13692
13693 The line numbers in our development sources will not match those in your
13694 sources.  Your line numbers would convey no useful information to us.
13695
13696 @end itemize
13697
13698 Here are some things that are not necessary:
13699
13700 @itemize @bullet
13701 @item
13702 A description of the envelope of the bug.
13703
13704 Often people who encounter a bug spend a lot of time investigating
13705 which changes to the input file will make the bug go away and which
13706 changes will not affect it.
13707
13708 This is often time consuming and not very useful, because the way we
13709 will find the bug is by running a single example under the debugger
13710 with breakpoints, not by pure deduction from a series of examples.
13711 We recommend that you save your time for something else.
13712
13713 Of course, if you can find a simpler example to report @emph{instead}
13714 of the original one, that is a convenience for us.  Errors in the
13715 output will be easier to spot, running under the debugger will take
13716 less time, and so on.
13717
13718 However, simplification is not vital; if you do not want to do this,
13719 report the bug anyway and send us the entire test case you used.
13720
13721 @item
13722 A patch for the bug.
13723
13724 A patch for the bug does help us if it is a good one.  But do not omit
13725 the necessary information, such as the test case, on the assumption that
13726 a patch is all we need.  We might see problems with your patch and decide
13727 to fix the problem another way, or we might not understand it at all.
13728
13729 Sometimes with a program as complicated as @value{GDBN} it is very hard to
13730 construct an example that will make the program follow a certain path
13731 through the code.  If you do not send us the example, we will not be able
13732 to construct one, so we will not be able to verify that the bug is fixed.
13733
13734 And if we cannot understand what bug you are trying to fix, or why your
13735 patch should be an improvement, we will not install it.  A test case will
13736 help us to understand.
13737
13738 @item
13739 A guess about what the bug is or what it depends on.
13740
13741 Such guesses are usually wrong.  Even we cannot guess right about such
13742 things without first using the debugger to find the facts.
13743 @end itemize
13744
13745 @c The readline documentation is distributed with the readline code
13746 @c and consists of the two following files:
13747 @c     rluser.texinfo
13748 @c     inc-hist.texinfo
13749 @c Use -I with makeinfo to point to the appropriate directory,
13750 @c environment var TEXINPUTS with TeX.
13751 @include rluser.texinfo
13752 @include inc-hist.texinfo
13753
13754
13755 @node Formatting Documentation
13756 @appendix Formatting Documentation
13757
13758 @cindex @value{GDBN} reference card
13759 @cindex reference card
13760 The @value{GDBN} 4 release includes an already-formatted reference card, ready
13761 for printing with PostScript or Ghostscript, in the @file{gdb}
13762 subdirectory of the main source directory@footnote{In
13763 @file{gdb-@value{GDBVN}/gdb/refcard.ps} of the version @value{GDBVN}
13764 release.}.  If you can use PostScript or Ghostscript with your printer,
13765 you can print the reference card immediately with @file{refcard.ps}.
13766
13767 The release also includes the source for the reference card.  You
13768 can format it, using @TeX{}, by typing:
13769
13770 @smallexample
13771 make refcard.dvi
13772 @end smallexample
13773
13774 The @value{GDBN} reference card is designed to print in @dfn{landscape}
13775 mode on US ``letter'' size paper;
13776 that is, on a sheet 11 inches wide by 8.5 inches
13777 high.  You will need to specify this form of printing as an option to
13778 your @sc{dvi} output program.
13779
13780 @cindex documentation
13781
13782 All the documentation for @value{GDBN} comes as part of the machine-readable
13783 distribution.  The documentation is written in Texinfo format, which is
13784 a documentation system that uses a single source file to produce both
13785 on-line information and a printed manual.  You can use one of the Info
13786 formatting commands to create the on-line version of the documentation
13787 and @TeX{} (or @code{texi2roff}) to typeset the printed version.
13788
13789 @value{GDBN} includes an already formatted copy of the on-line Info
13790 version of this manual in the @file{gdb} subdirectory.  The main Info
13791 file is @file{gdb-@value{GDBVN}/gdb/gdb.info}, and it refers to
13792 subordinate files matching @samp{gdb.info*} in the same directory.  If
13793 necessary, you can print out these files, or read them with any editor;
13794 but they are easier to read using the @code{info} subsystem in @sc{gnu}
13795 Emacs or the standalone @code{info} program, available as part of the
13796 @sc{gnu} Texinfo distribution.
13797
13798 If you want to format these Info files yourself, you need one of the
13799 Info formatting programs, such as @code{texinfo-format-buffer} or
13800 @code{makeinfo}.
13801
13802 If you have @code{makeinfo} installed, and are in the top level
13803 @value{GDBN} source directory (@file{gdb-@value{GDBVN}}, in the case of
13804 version @value{GDBVN}), you can make the Info file by typing:
13805
13806 @smallexample
13807 cd gdb
13808 make gdb.info
13809 @end smallexample
13810
13811 If you want to typeset and print copies of this manual, you need @TeX{},
13812 a program to print its @sc{dvi} output files, and @file{texinfo.tex}, the
13813 Texinfo definitions file.
13814
13815 @TeX{} is a typesetting program; it does not print files directly, but
13816 produces output files called @sc{dvi} files.  To print a typeset
13817 document, you need a program to print @sc{dvi} files.  If your system
13818 has @TeX{} installed, chances are it has such a program.  The precise
13819 command to use depends on your system; @kbd{lpr -d} is common; another
13820 (for PostScript devices) is @kbd{dvips}.  The @sc{dvi} print command may
13821 require a file name without any extension or a @samp{.dvi} extension.
13822
13823 @TeX{} also requires a macro definitions file called
13824 @file{texinfo.tex}.  This file tells @TeX{} how to typeset a document
13825 written in Texinfo format.  On its own, @TeX{} cannot either read or
13826 typeset a Texinfo file.  @file{texinfo.tex} is distributed with GDB
13827 and is located in the @file{gdb-@var{version-number}/texinfo}
13828 directory.
13829
13830 If you have @TeX{} and a @sc{dvi} printer program installed, you can
13831 typeset and print this manual.  First switch to the the @file{gdb}
13832 subdirectory of the main source directory (for example, to
13833 @file{gdb-@value{GDBVN}/gdb}) and type:
13834
13835 @smallexample
13836 make gdb.dvi
13837 @end smallexample
13838
13839 Then give @file{gdb.dvi} to your @sc{dvi} printing program.
13840
13841 @node Installing GDB
13842 @appendix Installing @value{GDBN}
13843 @cindex configuring @value{GDBN}
13844 @cindex installation
13845
13846 @value{GDBN} comes with a @code{configure} script that automates the process
13847 of preparing @value{GDBN} for installation; you can then use @code{make} to
13848 build the @code{gdb} program.
13849 @iftex
13850 @c irrelevant in info file; it's as current as the code it lives with.
13851 @footnote{If you have a more recent version of @value{GDBN} than @value{GDBVN},
13852 look at the @file{README} file in the sources; we may have improved the
13853 installation procedures since publishing this manual.}
13854 @end iftex
13855
13856 The @value{GDBN} distribution includes all the source code you need for
13857 @value{GDBN} in a single directory, whose name is usually composed by
13858 appending the version number to @samp{gdb}.
13859
13860 For example, the @value{GDBN} version @value{GDBVN} distribution is in the
13861 @file{gdb-@value{GDBVN}} directory.  That directory contains:
13862
13863 @table @code
13864 @item gdb-@value{GDBVN}/configure @r{(and supporting files)}
13865 script for configuring @value{GDBN} and all its supporting libraries
13866
13867 @item gdb-@value{GDBVN}/gdb
13868 the source specific to @value{GDBN} itself
13869
13870 @item gdb-@value{GDBVN}/bfd
13871 source for the Binary File Descriptor library
13872
13873 @item gdb-@value{GDBVN}/include
13874 @sc{gnu} include files
13875
13876 @item gdb-@value{GDBVN}/libiberty
13877 source for the @samp{-liberty} free software library
13878
13879 @item gdb-@value{GDBVN}/opcodes
13880 source for the library of opcode tables and disassemblers
13881
13882 @item gdb-@value{GDBVN}/readline
13883 source for the @sc{gnu} command-line interface
13884
13885 @item gdb-@value{GDBVN}/glob
13886 source for the @sc{gnu} filename pattern-matching subroutine
13887
13888 @item gdb-@value{GDBVN}/mmalloc
13889 source for the @sc{gnu} memory-mapped malloc package
13890 @end table
13891
13892 The simplest way to configure and build @value{GDBN} is to run @code{configure}
13893 from the @file{gdb-@var{version-number}} source directory, which in
13894 this example is the @file{gdb-@value{GDBVN}} directory.
13895
13896 First switch to the @file{gdb-@var{version-number}} source directory
13897 if you are not already in it; then run @code{configure}.  Pass the
13898 identifier for the platform on which @value{GDBN} will run as an
13899 argument.
13900
13901 For example:
13902
13903 @smallexample
13904 cd gdb-@value{GDBVN}
13905 ./configure @var{host}
13906 make
13907 @end smallexample
13908
13909 @noindent
13910 where @var{host} is an identifier such as @samp{sun4} or
13911 @samp{decstation}, that identifies the platform where @value{GDBN} will run.
13912 (You can often leave off @var{host}; @code{configure} tries to guess the
13913 correct value by examining your system.)
13914
13915 Running @samp{configure @var{host}} and then running @code{make} builds the
13916 @file{bfd}, @file{readline}, @file{mmalloc}, and @file{libiberty}
13917 libraries, then @code{gdb} itself.  The configured source files, and the
13918 binaries, are left in the corresponding source directories.
13919
13920 @need 750
13921 @code{configure} is a Bourne-shell (@code{/bin/sh}) script; if your
13922 system does not recognize this automatically when you run a different
13923 shell, you may need to run @code{sh} on it explicitly:
13924
13925 @smallexample
13926 sh configure @var{host}
13927 @end smallexample
13928
13929 If you run @code{configure} from a directory that contains source
13930 directories for multiple libraries or programs, such as the
13931 @file{gdb-@value{GDBVN}} source directory for version @value{GDBVN}, @code{configure}
13932 creates configuration files for every directory level underneath (unless
13933 you tell it not to, with the @samp{--norecursion} option).
13934
13935 You can run the @code{configure} script from any of the
13936 subordinate directories in the @value{GDBN} distribution if you only want to
13937 configure that subdirectory, but be sure to specify a path to it.
13938
13939 For example, with version @value{GDBVN}, type the following to configure only
13940 the @code{bfd} subdirectory:
13941
13942 @smallexample
13943 @group
13944 cd gdb-@value{GDBVN}/bfd
13945 ../configure @var{host}
13946 @end group
13947 @end smallexample
13948
13949 You can install @code{@value{GDBP}} anywhere; it has no hardwired paths.
13950 However, you should make sure that the shell on your path (named by
13951 the @samp{SHELL} environment variable) is publicly readable.  Remember
13952 that @value{GDBN} uses the shell to start your program---some systems refuse to
13953 let @value{GDBN} debug child processes whose programs are not readable.
13954
13955 @menu
13956 * Separate Objdir::             Compiling @value{GDBN} in another directory
13957 * Config Names::                Specifying names for hosts and targets
13958 * Configure Options::           Summary of options for configure
13959 @end menu
13960
13961 @node Separate Objdir
13962 @section Compiling @value{GDBN} in another directory
13963
13964 If you want to run @value{GDBN} versions for several host or target machines,
13965 you need a different @code{gdb} compiled for each combination of
13966 host and target.  @code{configure} is designed to make this easy by
13967 allowing you to generate each configuration in a separate subdirectory,
13968 rather than in the source directory.  If your @code{make} program
13969 handles the @samp{VPATH} feature (@sc{gnu} @code{make} does), running
13970 @code{make} in each of these directories builds the @code{gdb}
13971 program specified there.
13972
13973 To build @code{gdb} in a separate directory, run @code{configure}
13974 with the @samp{--srcdir} option to specify where to find the source.
13975 (You also need to specify a path to find @code{configure}
13976 itself from your working directory.  If the path to @code{configure}
13977 would be the same as the argument to @samp{--srcdir}, you can leave out
13978 the @samp{--srcdir} option; it is assumed.)
13979
13980 For example, with version @value{GDBVN}, you can build @value{GDBN} in a
13981 separate directory for a Sun 4 like this:
13982
13983 @smallexample
13984 @group
13985 cd gdb-@value{GDBVN}
13986 mkdir ../gdb-sun4
13987 cd ../gdb-sun4
13988 ../gdb-@value{GDBVN}/configure sun4
13989 make
13990 @end group
13991 @end smallexample
13992
13993 When @code{configure} builds a configuration using a remote source
13994 directory, it creates a tree for the binaries with the same structure
13995 (and using the same names) as the tree under the source directory.  In
13996 the example, you'd find the Sun 4 library @file{libiberty.a} in the
13997 directory @file{gdb-sun4/libiberty}, and @value{GDBN} itself in
13998 @file{gdb-sun4/gdb}.
13999
14000 One popular reason to build several @value{GDBN} configurations in separate
14001 directories is to configure @value{GDBN} for cross-compiling (where
14002 @value{GDBN} runs on one machine---the @dfn{host}---while debugging
14003 programs that run on another machine---the @dfn{target}).
14004 You specify a cross-debugging target by
14005 giving the @samp{--target=@var{target}} option to @code{configure}.
14006
14007 When you run @code{make} to build a program or library, you must run
14008 it in a configured directory---whatever directory you were in when you
14009 called @code{configure} (or one of its subdirectories).
14010
14011 The @code{Makefile} that @code{configure} generates in each source
14012 directory also runs recursively.  If you type @code{make} in a source
14013 directory such as @file{gdb-@value{GDBVN}} (or in a separate configured
14014 directory configured with @samp{--srcdir=@var{dirname}/gdb-@value{GDBVN}}), you
14015 will build all the required libraries, and then build GDB.
14016
14017 When you have multiple hosts or targets configured in separate
14018 directories, you can run @code{make} on them in parallel (for example,
14019 if they are NFS-mounted on each of the hosts); they will not interfere
14020 with each other.
14021
14022 @node Config Names
14023 @section Specifying names for hosts and targets
14024
14025 The specifications used for hosts and targets in the @code{configure}
14026 script are based on a three-part naming scheme, but some short predefined
14027 aliases are also supported.  The full naming scheme encodes three pieces
14028 of information in the following pattern:
14029
14030 @smallexample
14031 @var{architecture}-@var{vendor}-@var{os}
14032 @end smallexample
14033
14034 For example, you can use the alias @code{sun4} as a @var{host} argument,
14035 or as the value for @var{target} in a @code{--target=@var{target}}
14036 option.  The equivalent full name is @samp{sparc-sun-sunos4}.
14037
14038 The @code{configure} script accompanying @value{GDBN} does not provide
14039 any query facility to list all supported host and target names or
14040 aliases.  @code{configure} calls the Bourne shell script
14041 @code{config.sub} to map abbreviations to full names; you can read the
14042 script, if you wish, or you can use it to test your guesses on
14043 abbreviations---for example:
14044
14045 @smallexample
14046 % sh config.sub i386-linux
14047 i386-pc-linux-gnu
14048 % sh config.sub alpha-linux
14049 alpha-unknown-linux-gnu
14050 % sh config.sub hp9k700
14051 hppa1.1-hp-hpux
14052 % sh config.sub sun4
14053 sparc-sun-sunos4.1.1
14054 % sh config.sub sun3
14055 m68k-sun-sunos4.1.1
14056 % sh config.sub i986v
14057 Invalid configuration `i986v': machine `i986v' not recognized
14058 @end smallexample
14059
14060 @noindent
14061 @code{config.sub} is also distributed in the @value{GDBN} source
14062 directory (@file{gdb-@value{GDBVN}}, for version @value{GDBVN}).
14063
14064 @node Configure Options
14065 @section @code{configure} options
14066
14067 Here is a summary of the @code{configure} options and arguments that
14068 are most often useful for building @value{GDBN}.  @code{configure} also has
14069 several other options not listed here.  @inforef{What Configure
14070 Does,,configure.info}, for a full explanation of @code{configure}.
14071
14072 @smallexample
14073 configure @r{[}--help@r{]}
14074           @r{[}--prefix=@var{dir}@r{]}
14075           @r{[}--exec-prefix=@var{dir}@r{]}
14076           @r{[}--srcdir=@var{dirname}@r{]}
14077           @r{[}--norecursion@r{]} @r{[}--rm@r{]}
14078           @r{[}--target=@var{target}@r{]}
14079           @var{host}
14080 @end smallexample
14081
14082 @noindent
14083 You may introduce options with a single @samp{-} rather than
14084 @samp{--} if you prefer; but you may abbreviate option names if you use
14085 @samp{--}.
14086
14087 @table @code
14088 @item --help
14089 Display a quick summary of how to invoke @code{configure}.
14090
14091 @item --prefix=@var{dir}
14092 Configure the source to install programs and files under directory
14093 @file{@var{dir}}.
14094
14095 @item --exec-prefix=@var{dir}
14096 Configure the source to install programs under directory
14097 @file{@var{dir}}.
14098
14099 @c avoid splitting the warning from the explanation:
14100 @need 2000
14101 @item --srcdir=@var{dirname}
14102 @strong{Warning: using this option requires @sc{gnu} @code{make}, or another
14103 @code{make} that implements the @code{VPATH} feature.}@*
14104 Use this option to make configurations in directories separate from the
14105 @value{GDBN} source directories.  Among other things, you can use this to
14106 build (or maintain) several configurations simultaneously, in separate
14107 directories.  @code{configure} writes configuration specific files in
14108 the current directory, but arranges for them to use the source in the
14109 directory @var{dirname}.  @code{configure} creates directories under
14110 the working directory in parallel to the source directories below
14111 @var{dirname}.
14112
14113 @item --norecursion
14114 Configure only the directory level where @code{configure} is executed; do not
14115 propagate configuration to subdirectories.
14116
14117 @item --target=@var{target}
14118 Configure @value{GDBN} for cross-debugging programs running on the specified
14119 @var{target}.  Without this option, @value{GDBN} is configured to debug
14120 programs that run on the same machine (@var{host}) as @value{GDBN} itself.
14121
14122 There is no convenient way to generate a list of all available targets.
14123
14124 @item @var{host} @dots{}
14125 Configure @value{GDBN} to run on the specified @var{host}.
14126
14127 There is no convenient way to generate a list of all available hosts.
14128 @end table
14129
14130 There are many other options available as well, but they are generally
14131 needed for special purposes only.
14132
14133 @node Maintenance Commands
14134 @appendix Maintenance Commands
14135 @cindex maintenance commands
14136 @cindex internal commands
14137
14138 In addition to commands intended for @value{GDBN} users, @value{GDBN}
14139 includes a number of commands intended for @value{GDBN} developers.
14140 These commands are provided here for reference.
14141
14142 @table @code
14143 @kindex maint info breakpoints
14144 @item @anchor{maint info breakpoints}maint info breakpoints
14145 Using the same format as @samp{info breakpoints}, display both the
14146 breakpoints you've set explicitly, and those @value{GDBN} is using for
14147 internal purposes.  Internal breakpoints are shown with negative
14148 breakpoint numbers.  The type column identifies what kind of breakpoint
14149 is shown:
14150
14151 @table @code
14152 @item breakpoint
14153 Normal, explicitly set breakpoint.
14154
14155 @item watchpoint
14156 Normal, explicitly set watchpoint.
14157
14158 @item longjmp
14159 Internal breakpoint, used to handle correctly stepping through
14160 @code{longjmp} calls.
14161
14162 @item longjmp resume
14163 Internal breakpoint at the target of a @code{longjmp}.
14164
14165 @item until
14166 Temporary internal breakpoint used by the @value{GDBN} @code{until} command.
14167
14168 @item finish
14169 Temporary internal breakpoint used by the @value{GDBN} @code{finish} command.
14170
14171 @item shlib events
14172 Shared library events.
14173
14174 @end table
14175
14176 @end table
14177
14178
14179 @node Remote Protocol
14180 @appendix @value{GDBN} Remote Serial Protocol
14181
14182 There may be occasions when you need to know something about the
14183 protocol---for example, if there is only one serial port to your target
14184 machine, you might want your program to do something special if it
14185 recognizes a packet meant for @value{GDBN}.
14186
14187 In the examples below, @samp{<-} and @samp{->} are used to indicate
14188 transmitted and received data respectfully.
14189
14190 @cindex protocol, @value{GDBN} remote serial
14191 @cindex serial protocol, @value{GDBN} remote
14192 @cindex remote serial protocol
14193 All @value{GDBN} commands and responses (other than acknowledgments) are
14194 sent as a @var{packet}.  A @var{packet} is introduced with the character
14195 @samp{$}, the actual @var{packet-data}, and the terminating character
14196 @samp{#} followed by a two-digit @var{checksum}:
14197
14198 @smallexample
14199 @code{$}@var{packet-data}@code{#}@var{checksum}
14200 @end smallexample
14201 @noindent
14202
14203 @cindex checksum, for @value{GDBN} remote
14204 @noindent
14205 The two-digit @var{checksum} is computed as the modulo 256 sum of all
14206 characters between the leading @samp{$} and the trailing @samp{#} (an
14207 eight bit unsigned checksum).
14208
14209 Implementors should note that prior to @value{GDBN} 5.0 the protocol
14210 specification also included an optional two-digit @var{sequence-id}:
14211
14212 @smallexample
14213 @code{$}@var{sequence-id}@code{:}@var{packet-data}@code{#}@var{checksum}
14214 @end smallexample
14215
14216 @cindex sequence-id, for @value{GDBN} remote
14217 @noindent
14218 That @var{sequence-id} was appended to the acknowledgment.  @value{GDBN}
14219 has never output @var{sequence-id}s.  Stubs that handle packets added
14220 since @value{GDBN} 5.0 must not accept @var{sequence-id}.
14221
14222 @cindex acknowledgment, for @value{GDBN} remote
14223 When either the host or the target machine receives a packet, the first
14224 response expected is an acknowledgment: either @samp{+} (to indicate
14225 the package was received correctly) or @samp{-} (to request
14226 retransmission):
14227
14228 @smallexample
14229 <- @code{$}@var{packet-data}@code{#}@var{checksum}
14230 -> @code{+}
14231 @end smallexample
14232 @noindent
14233
14234 The host (@value{GDBN}) sends @var{command}s, and the target (the
14235 debugging stub incorporated in your program) sends a @var{response}.  In
14236 the case of step and continue @var{command}s, the response is only sent
14237 when the operation has completed (the target has again stopped).
14238
14239 @var{packet-data} consists of a sequence of characters with the
14240 exception of @samp{#} and @samp{$} (see @samp{X} packet for additional
14241 exceptions).
14242
14243 Fields within the packet should be separated using @samp{,} @samp{;} or
14244 @samp{:}.  Except where otherwise noted all numbers are represented in
14245 HEX with leading zeros suppressed.
14246
14247 Implementors should note that prior to @value{GDBN} 5.0, the character
14248 @samp{:} could not appear as the third character in a packet (as it
14249 would potentially conflict with the @var{sequence-id}).
14250
14251 Response @var{data} can be run-length encoded to save space.  A @samp{*}
14252 means that the next character is an @sc{ascii} encoding giving a repeat count
14253 which stands for that many repetitions of the character preceding the
14254 @samp{*}.  The encoding is @code{n+29}, yielding a printable character
14255 where @code{n >=3} (which is where rle starts to win).  The printable
14256 characters @samp{$}, @samp{#}, @samp{+} and @samp{-} or with a numeric
14257 value greater than 126 should not be used.
14258
14259 Some remote systems have used a different run-length encoding mechanism
14260 loosely refered to as the cisco encoding.  Following the @samp{*}
14261 character are two hex digits that indicate the size of the packet.
14262
14263 So:
14264 @smallexample
14265 "@code{0* }"
14266 @end smallexample
14267 @noindent
14268 means the same as "0000".
14269
14270 The error response returned for some packets includes a two character
14271 error number.  That number is not well defined.
14272
14273 For any @var{command} not supported by the stub, an empty response
14274 (@samp{$#00}) should be returned.  That way it is possible to extend the
14275 protocol.  A newer @value{GDBN} can tell if a packet is supported based
14276 on that response.
14277
14278 A stub is required to support the @samp{g}, @samp{G}, @samp{m}, @samp{M}, 
14279 @samp{c}, and @samp{s} @var{command}s.  All other @var{command}s are 
14280 optional.
14281
14282 Below is a complete list of all currently defined @var{command}s and
14283 their corresponding response @var{data}:
14284 @page
14285 @multitable @columnfractions .30 .30 .40
14286 @item Packet
14287 @tab Request
14288 @tab Description
14289
14290 @item extended mode
14291 @tab @code{!}
14292 @tab
14293 Enable extended mode.  In extended mode, the remote server is made
14294 persistent.  The @samp{R} packet is used to restart the program being
14295 debugged.
14296 @item
14297 @tab reply @samp{OK}
14298 @tab
14299 The remote target both supports and has enabled extended mode.
14300
14301 @item last signal
14302 @tab @code{?}
14303 @tab
14304 Indicate the reason the target halted.  The reply is the same as for step
14305 and continue.
14306 @item
14307 @tab reply
14308 @tab see below
14309
14310
14311 @item reserved
14312 @tab @code{a}
14313 @tab Reserved for future use
14314
14315 @item set program arguments @strong{(reserved)}
14316 @tab @code{A}@var{arglen}@code{,}@var{argnum}@code{,}@var{arg}@code{,...}
14317 @tab
14318 @item
14319 @tab
14320 @tab
14321 Initialized @samp{argv[]} array passed into program. @var{arglen}
14322 specifies the number of bytes in the hex encoded byte stream @var{arg}.
14323 See @file{gdbserver} for more details.
14324 @item
14325 @tab reply @code{OK}
14326 @item
14327 @tab reply @code{E}@var{NN}
14328
14329 @item set baud @strong{(deprecated)}
14330 @tab @code{b}@var{baud}
14331 @tab
14332 Change the serial line speed to @var{baud}.  JTC: @emph{When does the
14333 transport layer state change?  When it's received, or after the ACK is
14334 transmitted.  In either case, there are problems if the command or the
14335 acknowledgment packet is dropped.} Stan: @emph{If people really wanted
14336 to add something like this, and get it working for the first time, they
14337 ought to modify ser-unix.c to send some kind of out-of-band message to a
14338 specially-setup stub and have the switch happen "in between" packets, so
14339 that from remote protocol's point of view, nothing actually
14340 happened.}
14341
14342 @item set breakpoint @strong{(deprecated)}
14343 @tab @code{B}@var{addr},@var{mode}
14344 @tab
14345 Set (@var{mode} is @samp{S}) or clear (@var{mode} is @samp{C}) a
14346 breakpoint at @var{addr}.  @emph{This has been replaced by the @samp{Z} and
14347 @samp{z} packets.}
14348
14349 @item continue
14350 @tab @code{c}@var{addr}
14351 @tab
14352 @var{addr} is address to resume. If @var{addr} is omitted, resume at
14353 current address.
14354 @item
14355 @tab reply
14356 @tab see below
14357
14358 @item continue with signal
14359 @tab @code{C}@var{sig}@code{;}@var{addr}
14360 @tab
14361 Continue with signal @var{sig} (hex signal number).  If
14362 @code{;}@var{addr} is omitted, resume at same address.
14363 @item
14364 @tab reply
14365 @tab see below
14366
14367 @item toggle debug @strong{(deprecated)}
14368 @tab @code{d}
14369 @tab
14370 toggle debug flag.
14371
14372 @item detach
14373 @tab @code{D}
14374 @tab
14375 Detach @value{GDBN} from the remote system.  Sent to the remote target before
14376 @value{GDBN} disconnects.
14377 @item
14378 @tab reply @emph{no response}
14379 @tab
14380 @value{GDBN} does not check for any response after sending this packet.
14381
14382 @item reserved
14383 @tab @code{e}
14384 @tab Reserved for future use
14385
14386 @item reserved
14387 @tab @code{E}
14388 @tab Reserved for future use
14389
14390 @item reserved
14391 @tab @code{f}
14392 @tab Reserved for future use
14393
14394 @item reserved
14395 @tab @code{F}
14396 @tab Reserved for future use
14397
14398 @item read registers
14399 @tab @code{g}
14400 @tab Read general registers.
14401 @item
14402 @tab reply @var{XX...}
14403 @tab
14404 Each byte of register data is described by two hex digits.  The bytes
14405 with the register are transmitted in target byte order.  The size of
14406 each register and their position within the @samp{g} @var{packet} are
14407 determined by the @value{GDBN} internal macros @var{REGISTER_RAW_SIZE} and
14408 @var{REGISTER_NAME} macros.  The specification of several standard
14409 @code{g} packets is specified below.
14410 @item
14411 @tab @code{E}@var{NN}
14412 @tab for an error.
14413
14414 @item write regs
14415 @tab @code{G}@var{XX...}
14416 @tab
14417 See @samp{g} for a description of the @var{XX...} data.
14418 @item
14419 @tab reply @code{OK}
14420 @tab for success
14421 @item
14422 @tab reply @code{E}@var{NN}
14423 @tab for an error
14424
14425 @item reserved
14426 @tab @code{h}
14427 @tab Reserved for future use
14428
14429 @item set thread 
14430 @tab @code{H}@var{c}@var{t...}
14431 @tab
14432 Set thread for subsequent operations (@samp{m}, @samp{M}, @samp{g},
14433 @samp{G}, et.al.).  @var{c} = @samp{c} for thread used in step and
14434 continue; @var{t...} can be -1 for all threads.  @var{c} = @samp{g} for
14435 thread used in other operations.  If zero, pick a thread, any thread.
14436 @item
14437 @tab reply @code{OK}
14438 @tab for success
14439 @item
14440 @tab reply @code{E}@var{NN}
14441 @tab for an error
14442
14443 @c FIXME: JTC:
14444 @c   'H': How restrictive (or permissive) is the thread model.  If a
14445 @c        thread is selected and stopped, are other threads allowed
14446 @c        to continue to execute?  As I mentioned above, I think the
14447 @c        semantics of each command when a thread is selected must be
14448 @c        described.  For example:
14449 @c
14450 @c        'g':    If the stub supports threads and a specific thread is
14451 @c                selected, returns the register block from that thread;
14452 @c                otherwise returns current registers.
14453 @c
14454 @c        'G'     If the stub supports threads and a specific thread is
14455 @c                selected, sets the registers of the register block of
14456 @c                that thread; otherwise sets current registers.
14457
14458 @item cycle step @strong{(draft)}
14459 @tab @code{i}@var{addr}@code{,}@var{nnn}
14460 @tab
14461 Step the remote target by a single clock cycle.  If @code{,}@var{nnn} is
14462 present, cycle step @var{nnn} cycles.  If @var{addr} is present, cycle
14463 step starting at that address.
14464
14465 @item signal then cycle step @strong{(reserved)}
14466 @tab @code{I}
14467 @tab
14468 See @samp{i} and @samp{S} for likely syntax and semantics.
14469
14470 @item reserved
14471 @tab @code{j}
14472 @tab Reserved for future use
14473
14474 @item reserved
14475 @tab @code{J}
14476 @tab Reserved for future use
14477
14478 @item kill request
14479 @tab @code{k}
14480 @tab
14481 FIXME: @emph{There is no description of how to operate when a specific
14482 thread context has been selected (i.e.@: does 'k' kill only that thread?)}.
14483
14484 @item reserved
14485 @tab @code{l}
14486 @tab Reserved for future use
14487
14488 @item reserved
14489 @tab @code{L}
14490 @tab Reserved for future use
14491
14492 @item read memory
14493 @tab @code{m}@var{addr}@code{,}@var{length}
14494 @tab
14495 Read @var{length} bytes of memory starting at address @var{addr}.
14496 Neither @value{GDBN} nor the stub assume that sized memory transfers are assumed
14497 using word alligned accesses. FIXME: @emph{A word aligned memory
14498 transfer mechanism is needed.}
14499 @item
14500 @tab reply @var{XX...}
14501 @tab
14502 @var{XX...} is mem contents. Can be fewer bytes than requested if able
14503 to read only part of the data.  Neither @value{GDBN} nor the stub assume that
14504 sized memory transfers are assumed using word alligned accesses. FIXME:
14505 @emph{A word aligned memory transfer mechanism is needed.}
14506 @item
14507 @tab reply @code{E}@var{NN}
14508 @tab @var{NN} is errno
14509
14510 @item write mem
14511 @tab @code{M}@var{addr},@var{length}@code{:}@var{XX...}
14512 @tab
14513 Write @var{length} bytes of memory starting at address @var{addr}.
14514 @var{XX...} is the data.
14515 @item
14516 @tab reply @code{OK}
14517 @tab for success
14518 @item
14519 @tab reply @code{E}@var{NN}
14520 @tab
14521 for an error (this includes the case where only part of the data was
14522 written).
14523
14524 @item reserved
14525 @tab @code{n}
14526 @tab Reserved for future use
14527
14528 @item reserved
14529 @tab @code{N}
14530 @tab Reserved for future use
14531
14532 @item reserved
14533 @tab @code{o}
14534 @tab Reserved for future use
14535
14536 @item reserved
14537 @tab @code{O}
14538 @tab Reserved for future use
14539
14540 @item read reg @strong{(reserved)}
14541 @tab @code{p}@var{n...}
14542 @tab
14543 See write register.
14544 @item
14545 @tab return @var{r....}
14546 @tab The hex encoded value of the register in target byte order.
14547
14548 @item write reg
14549 @tab @code{P}@var{n...}@code{=}@var{r...}
14550 @tab
14551 Write register @var{n...} with value @var{r...}, which contains two hex
14552 digits for each byte in the register (target byte order).
14553 @item
14554 @tab reply @code{OK}
14555 @tab for success
14556 @item
14557 @tab reply @code{E}@var{NN}
14558 @tab for an error
14559
14560 @item general query
14561 @tab @code{q}@var{query}
14562 @tab
14563 Request info about @var{query}.  In general @value{GDBN} queries
14564 have a leading upper case letter.  Custom vendor queries should use a
14565 company prefix (in lower case) ex: @samp{qfsf.var}.  @var{query} may
14566 optionally be followed by a @samp{,} or @samp{;} separated list.  Stubs
14567 must ensure that they match the full @var{query} name.
14568 @item
14569 @tab reply @code{XX...}
14570 @tab Hex encoded data from query.  The reply can not be empty.
14571 @item
14572 @tab reply @code{E}@var{NN}
14573 @tab error reply
14574 @item
14575 @tab reply @samp{}
14576 @tab Indicating an unrecognized @var{query}.
14577
14578 @item general set
14579 @tab @code{Q}@var{var}@code{=}@var{val}
14580 @tab
14581 Set value of @var{var} to @var{val}.  See @samp{q} for a discussing of
14582 naming conventions.
14583
14584 @item reset @strong{(deprecated)}
14585 @tab @code{r}
14586 @tab
14587 Reset the entire system.
14588
14589 @item remote restart
14590 @tab @code{R}@var{XX}
14591 @tab
14592 Restart the program being debugged.  @var{XX}, while needed, is ignored.
14593 This packet is only available in extended mode.
14594 @item
14595 @tab
14596 no reply
14597 @tab
14598 The @samp{R} packet has no reply.
14599
14600 @item step
14601 @tab @code{s}@var{addr}
14602 @tab
14603 @var{addr} is address to resume.  If @var{addr} is omitted, resume at
14604 same address.
14605 @item
14606 @tab reply
14607 @tab see below
14608
14609 @item step with signal
14610 @tab @code{S}@var{sig}@code{;}@var{addr}
14611 @tab
14612 Like @samp{C} but step not continue.
14613 @item
14614 @tab reply
14615 @tab see below
14616
14617 @item search 
14618 @tab @code{t}@var{addr}@code{:}@var{PP}@code{,}@var{MM}
14619 @tab
14620 Search backwards starting at address @var{addr} for a match with pattern
14621 @var{PP} and mask @var{MM}.  @var{PP} and @var{MM} are 4
14622 bytes.  @var{addr} must be at least 3 digits.
14623
14624 @item thread alive
14625 @tab @code{T}@var{XX}
14626 @tab Find out if the thread XX is alive.
14627 @item
14628 @tab reply @code{OK}
14629 @tab thread is still alive
14630 @item
14631 @tab reply @code{E}@var{NN}
14632 @tab thread is dead
14633
14634 @item reserved
14635 @tab @code{u}
14636 @tab Reserved for future use
14637
14638 @item reserved
14639 @tab @code{U}
14640 @tab Reserved for future use
14641
14642 @item reserved
14643 @tab @code{v}
14644 @tab Reserved for future use
14645
14646 @item reserved
14647 @tab @code{V}
14648 @tab Reserved for future use
14649
14650 @item reserved
14651 @tab @code{w}
14652 @tab Reserved for future use
14653
14654 @item reserved
14655 @tab @code{W}
14656 @tab Reserved for future use
14657
14658 @item reserved
14659 @tab @code{x}
14660 @tab Reserved for future use
14661
14662 @item write mem (binary)
14663 @tab @code{X}@var{addr}@code{,}@var{length}@var{:}@var{XX...}
14664 @tab
14665 @var{addr} is address, @var{length} is number of bytes, @var{XX...} is
14666 binary data.  The characters @code{$}, @code{#}, and @code{0x7d} are
14667 escaped using @code{0x7d}.
14668 @item
14669 @tab reply @code{OK}
14670 @tab for success
14671 @item
14672 @tab reply @code{E}@var{NN}
14673 @tab for an error
14674
14675 @item reserved
14676 @tab @code{y}
14677 @tab Reserved for future use
14678
14679 @item reserved
14680 @tab @code{Y}
14681 @tab Reserved for future use
14682
14683 @item remove break or watchpoint @strong{(draft)}
14684 @tab @code{z}@var{t}@code{,}@var{addr}@code{,}@var{length}
14685 @tab
14686 See @samp{Z}.
14687
14688 @item insert break or watchpoint @strong{(draft)}
14689 @tab @code{Z}@var{t}@code{,}@var{addr}@code{,}@var{length}
14690 @tab
14691 @var{t} is type: @samp{0} - software breakpoint, @samp{1} - hardware
14692 breakpoint, @samp{2} - write watchpoint, @samp{3} - read watchpoint,
14693 @samp{4} - access watchpoint; @var{addr} is address; @var{length} is in
14694 bytes.  For a software breakpoint, @var{length} specifies the size of
14695 the instruction to be patched.  For hardware breakpoints and watchpoints
14696 @var{length} specifies the memory region to be monitored.  To avoid
14697 potential problems with duplicate packets, the operations should be
14698 implemented in an idempotent way.
14699 @item
14700 @tab reply @code{E}@var{NN}
14701 @tab for an error
14702 @item
14703 @tab reply @code{OK}
14704 @tab for success
14705 @item
14706 @tab @samp{}
14707 @tab If not supported.
14708
14709 @item reserved
14710 @tab <other>
14711 @tab Reserved for future use
14712
14713 @end multitable
14714
14715 The @samp{C}, @samp{c}, @samp{S}, @samp{s} and @samp{?} packets can
14716 receive any of the below as a reply.  In the case of the @samp{C},
14717 @samp{c}, @samp{S} and @samp{s} packets, that reply is only returned
14718 when the target halts.  In the below the exact meaning of @samp{signal
14719 number} is poorly defined.  In general one of the UNIX signal numbering
14720 conventions is used.
14721
14722 @multitable @columnfractions .4 .6
14723
14724 @item @code{S}@var{AA}
14725 @tab @var{AA} is the signal number
14726
14727 @item @code{T}@var{AA}@var{n...}@code{:}@var{r...}@code{;}@var{n...}@code{:}@var{r...}@code{;}@var{n...}@code{:}@var{r...}@code{;}
14728 @tab
14729 @var{AA} = two hex digit signal number; @var{n...} = register number
14730 (hex), @var{r...}  = target byte ordered register contents, size defined
14731 by @code{REGISTER_RAW_SIZE}; @var{n...} = @samp{thread}, @var{r...} =
14732 thread process ID, this is a hex integer; @var{n...} = other string not
14733 starting with valid hex digit.  @value{GDBN} should ignore this
14734 @var{n...}, @var{r...} pair and go on to the next.  This way we can
14735 extend the protocol.
14736
14737 @item @code{W}@var{AA}
14738 @tab
14739 The process exited, and @var{AA} is the exit status.  This is only
14740 applicable for certains sorts of targets.
14741
14742 @item @code{X}@var{AA}
14743 @tab
14744 The process terminated with signal @var{AA}.
14745
14746 @item @code{N}@var{AA}@code{;}@var{t...}@code{;}@var{d...}@code{;}@var{b...} @strong{(obsolete)}
14747 @tab
14748 @var{AA} = signal number; @var{t...} = address of symbol "_start";
14749 @var{d...} = base of data section; @var{b...} = base of bss section.
14750 @emph{Note: only used by Cisco Systems targets.  The difference between
14751 this reply and the "qOffsets" query is that the 'N' packet may arrive
14752 spontaneously whereas the 'qOffsets' is a query initiated by the host
14753 debugger.}
14754
14755 @item @code{O}@var{XX...}
14756 @tab
14757 @var{XX...} is hex encoding of @sc{ascii} data.  This can happen at any time
14758 while the program is running and the debugger should continue to wait
14759 for 'W', 'T', etc.
14760
14761 @end multitable
14762
14763 The following set and query packets have already been defined.
14764
14765 @multitable @columnfractions .2 .2 .6
14766
14767 @item current thread
14768 @tab @code{q}@code{C}
14769 @tab Return the current thread id.
14770 @item
14771 @tab reply @code{QC}@var{pid}
14772 @tab
14773 Where @var{pid} is a HEX encoded 16 bit process id.
14774 @item
14775 @tab reply *
14776 @tab Any other reply implies the old pid.
14777
14778 @item all thread ids
14779 @tab @code{q}@code{fThreadInfo}
14780 @item
14781 @tab @code{q}@code{sThreadInfo}
14782 @tab
14783 Obtain a list of active thread ids from the target (OS).  Since there
14784 may be too many active threads to fit into one reply packet, this query
14785 works iteratively: it may require more than one query/reply sequence to
14786 obtain the entire list of threads.  The first query of the sequence will
14787 be the @code{qf}@code{ThreadInfo} query; subsequent queries in the
14788 sequence will be the @code{qs}@code{ThreadInfo} query.
14789 @item
14790 @tab
14791 @tab NOTE: replaces the @code{qL} query (see below).
14792 @item
14793 @tab reply @code{m}@var{<id>}
14794 @tab A single thread id
14795 @item
14796 @tab reply @code{m}@var{<id>},@var{<id>...}
14797 @tab a comma-separated list of thread ids
14798 @item
14799 @tab reply @code{l}
14800 @tab (lower case 'el') denotes end of list.
14801 @item
14802 @tab
14803 @tab
14804 In response to each query, the target will reply with a list of one
14805 or more thread ids, in big-endian hex, separated by commas.  GDB will
14806 respond to each reply with a request for more thread ids (using the
14807 @code{qs} form of the query), until the target responds with @code{l}
14808 (lower-case el, for @code{'last'}).
14809
14810 @item extra thread info
14811 @tab @code{q}@code{ThreadExtraInfo}@code{,}@var{id}
14812 @tab
14813 @item
14814 @tab
14815 @tab
14816 Where @var{<id>} is a thread-id in big-endian hex.
14817 Obtain a printable string description of a thread's attributes from
14818 the target OS.  This string may contain anything that the target OS
14819 thinks is interesting for @value{GDBN} to tell the user about the thread.
14820 The string is displayed in @value{GDBN}'s @samp{info threads} display.
14821 Some examples of possible thread extra info strings are "Runnable", or
14822 "Blocked on Mutex".
14823 @item
14824 @tab reply @var{XX...}
14825 @tab
14826 Where @var{XX...} is a hex encoding of @sc{ascii} data, comprising the
14827 printable string containing the extra information about the thread's
14828 attributes.
14829
14830 @item query @var{LIST} or @var{threadLIST} @strong{(deprecated)}
14831 @tab @code{q}@code{L}@var{startflag}@var{threadcount}@var{nextthread}
14832 @tab
14833 @item
14834 @tab
14835 @tab
14836 Obtain thread information from RTOS.  Where: @var{startflag} (one hex
14837 digit) is one to indicate the first query and zero to indicate a
14838 subsequent query; @var{threadcount} (two hex digits) is the maximum
14839 number of threads the response packet can contain; and @var{nextthread}
14840 (eight hex digits), for subsequent queries (@var{startflag} is zero), is
14841 returned in the response as @var{argthread}.
14842 @item
14843 @tab
14844 @tab NOTE: this query is replaced by the @code{q}@code{fThreadInfo}
14845 query (see above).
14846 @item
14847 @tab reply @code{q}@code{M}@var{count}@var{done}@var{argthread}@var{thread...}
14848 @tab
14849 @item
14850 @tab
14851 @tab
14852 Where: @var{count} (two hex digits) is the number of threads being
14853 returned; @var{done} (one hex digit) is zero to indicate more threads
14854 and one indicates no further threads; @var{argthreadid} (eight hex
14855 digits) is @var{nextthread} from the request packet; @var{thread...} is
14856 a sequence of thread IDs from the target.  @var{threadid} (eight hex
14857 digits).  See @code{remote.c:parse_threadlist_response()}.
14858
14859 @item compute CRC of memory block
14860 @tab @code{q}@code{CRC:}@var{addr}@code{,}@var{length}
14861 @tab
14862 @item
14863 @tab reply @code{E}@var{NN}
14864 @tab An error (such as memory fault)
14865 @item
14866 @tab reply @code{C}@var{CRC32}
14867 @tab A 32 bit cyclic redundancy check of the specified memory region.
14868
14869 @item query sect offs
14870 @tab @code{q}@code{Offsets}
14871 @tab
14872 Get section offsets that the target used when re-locating the downloaded
14873 image.  @emph{Note: while a @code{Bss} offset is included in the
14874 response, @value{GDBN} ignores this and instead applies the @code{Data}
14875 offset to the @code{Bss} section.}
14876 @item
14877 @tab reply @code{Text=}@var{xxx}@code{;Data=}@var{yyy}@code{;Bss=}@var{zzz}
14878
14879 @item thread info request
14880 @tab @code{q}@code{P}@var{mode}@var{threadid}
14881 @tab
14882 @item
14883 @tab
14884 @tab
14885 Returns information on @var{threadid}.  Where: @var{mode} is a hex
14886 encoded 32 bit mode; @var{threadid} is a hex encoded 64 bit thread ID.
14887 @item
14888 @tab reply *
14889 @tab
14890 See @code{remote.c:remote_unpack_thread_info_response()}.
14891
14892 @item remote command
14893 @tab @code{q}@code{Rcmd,}@var{COMMAND}
14894 @tab
14895 @item
14896 @tab
14897 @tab
14898 @var{COMMAND} (hex encoded) is passed to the local interpreter for
14899 execution.  Invalid commands should be reported using the output string.
14900 Before the final result packet, the target may also respond with a
14901 number of intermediate @code{O}@var{OUTPUT} console output
14902 packets.  @emph{Implementors should note that providing access to a
14903 stubs's interpreter may have security implications}.
14904 @item
14905 @tab reply @code{OK}
14906 @tab
14907 A command response with no output.
14908 @item
14909 @tab reply @var{OUTPUT}
14910 @tab
14911 A command response with the hex encoded output string @var{OUTPUT}.
14912 @item
14913 @tab reply @code{E}@var{NN}
14914 @tab
14915 Indicate a badly formed request.
14916
14917 @item
14918 @tab reply @samp{}
14919 @tab
14920 When @samp{q}@samp{Rcmd} is not recognized.
14921
14922 @item symbol lookup
14923 @tab @code{qSymbol::}
14924 @tab
14925 Notify the target that @value{GDBN} is prepared to serve symbol lookup
14926 requests.  Accept requests from the target for the values of symbols.
14927 @item
14928 @tab
14929 @tab
14930 @item
14931 @tab reply @code{OK}
14932 @tab
14933 The target does not need to look up any (more) symbols.
14934 @item
14935 @tab reply @code{qSymbol:}@var{sym_name}
14936 @tab
14937 @sp 2
14938 @noindent
14939 The target requests the value of symbol @var{sym_name} (hex encoded).  
14940 @value{GDBN} may provide the value by using the 
14941 @code{qSymbol:}@var{sym_value}:@var{sym_name}
14942 message, described below.
14943
14944 @item symbol value
14945 @tab @code{qSymbol:}@var{sym_value}:@var{sym_name}
14946 @tab
14947 @sp 1
14948 @noindent
14949 Set the value of SYM_NAME to SYM_VALUE.
14950 @item
14951 @tab
14952 @tab
14953 @var{sym_name} (hex encoded) is the name of a symbol whose value
14954 the target has previously requested.
14955 @item
14956 @tab
14957 @tab
14958 @var{sym_value} (hex) is the value for symbol @var{sym_name}.
14959 If @value{GDBN} cannot supply a value for @var{sym_name}, then this
14960 field will be empty.
14961 @item
14962 @tab reply @code{OK}
14963 @tab
14964 The target does not need to look up any (more) symbols.
14965 @item
14966 @tab reply @code{qSymbol:}@var{sym_name}
14967 @tab
14968 @sp 2
14969 @noindent
14970 The target requests the value of a new symbol @var{sym_name} (hex encoded).
14971 @value{GDBN} will continue to supply the values of symbols (if available),
14972 until the target ceases to request them.
14973
14974 @end multitable
14975
14976 The following @samp{g}/@samp{G} packets have previously been defined.
14977 In the below, some thirty-two bit registers are transferred as sixty-four
14978 bits.  Those registers should be zero/sign extended (which?) to fill the
14979 space allocated.  Register bytes are transfered in target byte order.
14980 The two nibbles within a register byte are transfered most-significant -
14981 least-significant.
14982
14983 @multitable @columnfractions .5 .5
14984
14985 @item MIPS32
14986 @tab
14987 All registers are transfered as thirty-two bit quantities in the order:
14988 32 general-purpose; sr; lo; hi; bad; cause; pc; 32 floating-point
14989 registers; fsr; fir; fp.
14990
14991 @item MIPS64
14992 @tab
14993 All registers are transfered as sixty-four bit quantities (including
14994 thirty-two bit registers such as @code{sr}).  The ordering is the same
14995 as @code{MIPS32}.
14996
14997 @end multitable
14998
14999 Example sequence of a target being re-started.  Notice how the restart
15000 does not get any direct output:
15001
15002 @smallexample
15003 <- @code{R00}
15004 -> @code{+}
15005 @emph{target restarts}
15006 <- @code{?}
15007 -> @code{+}
15008 -> @code{T001:1234123412341234}
15009 <- @code{+}
15010 @end smallexample
15011
15012 Example sequence of a target being stepped by a single instruction:
15013
15014 @smallexample
15015 <- @code{G1445...}
15016 -> @code{+}
15017 <- @code{s}
15018 -> @code{+}
15019 @emph{time passes}
15020 -> @code{T001:1234123412341234}
15021 <- @code{+}
15022 <- @code{g}
15023 -> @code{+}
15024 -> @code{1455...}
15025 <- @code{+}
15026 @end smallexample
15027
15028 @include gpl.texi
15029
15030 @include fdl.texi
15031
15032 @node Index
15033 @unnumbered Index
15034
15035 @printindex cp
15036
15037 @tex
15038 % I think something like @colophon should be in texinfo.  In the
15039 % meantime:
15040 \long\def\colophon{\hbox to0pt{}\vfill
15041 \centerline{The body of this manual is set in}
15042 \centerline{\fontname\tenrm,}
15043 \centerline{with headings in {\bf\fontname\tenbf}}
15044 \centerline{and examples in {\tt\fontname\tentt}.}
15045 \centerline{{\it\fontname\tenit\/},}
15046 \centerline{{\bf\fontname\tenbf}, and}
15047 \centerline{{\sl\fontname\tensl\/}}
15048 \centerline{are used for emphasis.}\vfill}
15049 \page\colophon
15050 % Blame: doc@cygnus.com, 1991.
15051 @end tex
15052
15053 @bye