gdb: Introduce 'print max-depth' feature
[external/binutils.git] / gdb / doc / gdb.texinfo
1 \input texinfo      @c -*-texinfo-*-
2 @c Copyright (C) 1988-2019 Free Software Foundation, Inc.
3 @c
4 @c %**start of header
5 @c makeinfo ignores cmds prev to setfilename, so its arg cannot make use
6 @c of @set vars.  However, you can override filename with makeinfo -o.
7 @setfilename gdb.info
8 @c
9 @c man begin INCLUDE
10 @include gdb-cfg.texi
11 @c man end
12 @c
13 @settitle Debugging with @value{GDBN}
14 @setchapternewpage odd
15 @c %**end of header
16
17 @iftex
18 @c @smallbook
19 @c @cropmarks
20 @end iftex
21
22 @finalout
23 @c To avoid file-name clashes between index.html and Index.html, when
24 @c the manual is produced on a Posix host and then moved to a
25 @c case-insensitive filesystem (e.g., MS-Windows), we separate the
26 @c indices into two: Concept Index and all the rest.
27 @syncodeindex ky fn
28 @syncodeindex tp fn
29
30 @c readline appendices use @vindex, @findex and @ftable,
31 @c annotate.texi and gdbmi use @findex.
32 @syncodeindex vr fn
33
34 @c !!set GDB manual's edition---not the same as GDB version!
35 @c This is updated by GNU Press.
36 @set EDITION Tenth
37
38 @c !!set GDB edit command default editor
39 @set EDITOR /bin/ex
40
41 @c THIS MANUAL REQUIRES TEXINFO 4.0 OR LATER.
42
43 @c This is a dir.info fragment to support semi-automated addition of
44 @c manuals to an info tree.
45 @dircategory Software development
46 @direntry
47 * Gdb: (gdb).                     The GNU debugger.
48 * gdbserver: (gdb) Server.        The GNU debugging server.
49 @end direntry
50
51 @copying
52 @c man begin COPYRIGHT
53 Copyright @copyright{} 1988-2019 Free Software Foundation, Inc.
54
55 Permission is granted to copy, distribute and/or modify this document
56 under the terms of the GNU Free Documentation License, Version 1.3 or
57 any later version published by the Free Software Foundation; with the
58 Invariant Sections being ``Free Software'' and ``Free Software Needs
59 Free Documentation'', with the Front-Cover Texts being ``A GNU Manual,''
60 and with the Back-Cover Texts as in (a) below.
61
62 (a) The FSF's Back-Cover Text is: ``You are free to copy and modify
63 this GNU Manual.  Buying copies from GNU Press supports the FSF in
64 developing GNU and promoting software freedom.''
65 @c man end
66 @end copying
67
68 @ifnottex
69 This file documents the @sc{gnu} debugger @value{GDBN}.
70
71 This is the @value{EDITION} Edition, of @cite{Debugging with
72 @value{GDBN}: the @sc{gnu} Source-Level Debugger} for @value{GDBN}
73 @ifset VERSION_PACKAGE
74 @value{VERSION_PACKAGE}
75 @end ifset
76 Version @value{GDBVN}.
77
78 @insertcopying
79 @end ifnottex
80
81 @titlepage
82 @title Debugging with @value{GDBN}
83 @subtitle The @sc{gnu} Source-Level Debugger
84 @sp 1
85 @subtitle @value{EDITION} Edition, for @value{GDBN} version @value{GDBVN}
86 @ifset VERSION_PACKAGE
87 @sp 1
88 @subtitle @value{VERSION_PACKAGE}
89 @end ifset
90 @author Richard Stallman, Roland Pesch, Stan Shebs, et al.
91 @page
92 @tex
93 {\parskip=0pt
94 \hfill (Send bugs and comments on @value{GDBN} to @value{BUGURL}.)\par
95 \hfill {\it Debugging with @value{GDBN}}\par
96 \hfill \TeX{}info \texinfoversion\par
97 }
98 @end tex
99
100 @vskip 0pt plus 1filll
101 Published by the Free Software Foundation @*
102 51 Franklin Street, Fifth Floor,
103 Boston, MA 02110-1301, USA@*
104 ISBN 978-0-9831592-3-0 @*
105
106 @insertcopying
107 @end titlepage
108 @page
109
110 @ifnottex
111 @node Top, Summary, (dir), (dir)
112
113 @top Debugging with @value{GDBN}
114
115 This file describes @value{GDBN}, the @sc{gnu} symbolic debugger.
116
117 This is the @value{EDITION} Edition, for @value{GDBN}
118 @ifset VERSION_PACKAGE
119 @value{VERSION_PACKAGE}
120 @end ifset
121 Version @value{GDBVN}.
122
123 Copyright (C) 1988-2019 Free Software Foundation, Inc.
124
125 This edition of the GDB manual is dedicated to the memory of Fred
126 Fish.  Fred was a long-standing contributor to GDB and to Free
127 software in general.  We will miss him.
128
129 @menu
130 * Summary::                     Summary of @value{GDBN}
131 * Sample Session::              A sample @value{GDBN} session
132
133 * Invocation::                  Getting in and out of @value{GDBN}
134 * Commands::                    @value{GDBN} commands
135 * Running::                     Running programs under @value{GDBN}
136 * Stopping::                    Stopping and continuing
137 * Reverse Execution::           Running programs backward
138 * Process Record and Replay::   Recording inferior's execution and replaying it
139 * Stack::                       Examining the stack
140 * Source::                      Examining source files
141 * Data::                        Examining data
142 * Optimized Code::              Debugging optimized code
143 * Macros::                      Preprocessor Macros
144 * Tracepoints::                 Debugging remote targets non-intrusively
145 * Overlays::                    Debugging programs that use overlays
146
147 * Languages::                   Using @value{GDBN} with different languages
148
149 * Symbols::                     Examining the symbol table
150 * Altering::                    Altering execution
151 * GDB Files::                   @value{GDBN} files
152 * Targets::                     Specifying a debugging target
153 * Remote Debugging::            Debugging remote programs
154 * Configurations::              Configuration-specific information
155 * Controlling GDB::             Controlling @value{GDBN}
156 * Extending GDB::               Extending @value{GDBN}
157 * Interpreters::                Command Interpreters
158 * TUI::                         @value{GDBN} Text User Interface
159 * Emacs::                       Using @value{GDBN} under @sc{gnu} Emacs
160 * GDB/MI::                      @value{GDBN}'s Machine Interface.
161 * Annotations::                 @value{GDBN}'s annotation interface.
162 * JIT Interface::               Using the JIT debugging interface.
163 * In-Process Agent::            In-Process Agent
164
165 * GDB Bugs::                    Reporting bugs in @value{GDBN}
166
167 @ifset SYSTEM_READLINE
168 * Command Line Editing: (rluserman).         Command Line Editing
169 * Using History Interactively: (history).    Using History Interactively
170 @end ifset
171 @ifclear SYSTEM_READLINE
172 * Command Line Editing::        Command Line Editing
173 * Using History Interactively:: Using History Interactively
174 @end ifclear
175 * In Memoriam::                 In Memoriam
176 * Formatting Documentation::    How to format and print @value{GDBN} documentation
177 * Installing GDB::              Installing GDB
178 * Maintenance Commands::        Maintenance Commands
179 * Remote Protocol::             GDB Remote Serial Protocol
180 * Agent Expressions::           The GDB Agent Expression Mechanism
181 * Target Descriptions::         How targets can describe themselves to
182                                 @value{GDBN}
183 * Operating System Information:: Getting additional information from
184                                  the operating system
185 * Trace File Format::           GDB trace file format
186 * Index Section Format::        .gdb_index section format
187 * Man Pages::                   Manual pages
188 * Copying::                     GNU General Public License says
189                                 how you can copy and share GDB
190 * GNU Free Documentation License::  The license for this documentation
191 * Concept Index::               Index of @value{GDBN} concepts
192 * Command and Variable Index::  Index of @value{GDBN} commands, variables,
193                                   functions, and Python data types
194 @end menu
195
196 @end ifnottex
197
198 @contents
199
200 @node Summary
201 @unnumbered Summary of @value{GDBN}
202
203 The purpose of a debugger such as @value{GDBN} is to allow you to see what is
204 going on ``inside'' another program while it executes---or what another
205 program was doing at the moment it crashed.
206
207 @value{GDBN} can do four main kinds of things (plus other things in support of
208 these) to help you catch bugs in the act:
209
210 @itemize @bullet
211 @item
212 Start your program, specifying anything that might affect its behavior.
213
214 @item
215 Make your program stop on specified conditions.
216
217 @item
218 Examine what has happened, when your program has stopped.
219
220 @item
221 Change things in your program, so you can experiment with correcting the
222 effects of one bug and go on to learn about another.
223 @end itemize
224
225 You can use @value{GDBN} to debug programs written in C and C@t{++}.
226 For more information, see @ref{Supported Languages,,Supported Languages}.
227 For more information, see @ref{C,,C and C++}.
228
229 Support for D is partial.  For information on D, see
230 @ref{D,,D}.
231
232 @cindex Modula-2
233 Support for Modula-2 is partial.  For information on Modula-2, see
234 @ref{Modula-2,,Modula-2}.
235
236 Support for OpenCL C is partial.  For information on OpenCL C, see
237 @ref{OpenCL C,,OpenCL C}.
238
239 @cindex Pascal
240 Debugging Pascal programs which use sets, subranges, file variables, or
241 nested functions does not currently work.  @value{GDBN} does not support
242 entering expressions, printing values, or similar features using Pascal
243 syntax.
244
245 @cindex Fortran
246 @value{GDBN} can be used to debug programs written in Fortran, although
247 it may be necessary to refer to some variables with a trailing
248 underscore.
249
250 @value{GDBN} can be used to debug programs written in Objective-C,
251 using either the Apple/NeXT or the GNU Objective-C runtime.
252
253 @menu
254 * Free Software::               Freely redistributable software
255 * Free Documentation::          Free Software Needs Free Documentation
256 * Contributors::                Contributors to GDB
257 @end menu
258
259 @node Free Software
260 @unnumberedsec Free Software
261
262 @value{GDBN} is @dfn{free software}, protected by the @sc{gnu}
263 General Public License
264 (GPL).  The GPL gives you the freedom to copy or adapt a licensed
265 program---but every person getting a copy also gets with it the
266 freedom to modify that copy (which means that they must get access to
267 the source code), and the freedom to distribute further copies.
268 Typical software companies use copyrights to limit your freedoms; the
269 Free Software Foundation uses the GPL to preserve these freedoms.
270
271 Fundamentally, the General Public License is a license which says that
272 you have these freedoms and that you cannot take these freedoms away
273 from anyone else.
274
275 @node Free Documentation
276 @unnumberedsec Free Software Needs Free Documentation
277
278 The biggest deficiency in the free software community today is not in
279 the software---it is the lack of good free documentation that we can
280 include with the free software.  Many of our most important
281 programs do not come with free reference manuals and free introductory
282 texts.  Documentation is an essential part of any software package;
283 when an important free software package does not come with a free
284 manual and a free tutorial, that is a major gap.  We have many such
285 gaps today.
286
287 Consider Perl, for instance.  The tutorial manuals that people
288 normally use are non-free.  How did this come about?  Because the
289 authors of those manuals published them with restrictive terms---no
290 copying, no modification, source files not available---which exclude
291 them from the free software world.
292
293 That wasn't the first time this sort of thing happened, and it was far
294 from the last.  Many times we have heard a GNU user eagerly describe a
295 manual that he is writing, his intended contribution to the community,
296 only to learn that he had ruined everything by signing a publication
297 contract to make it non-free.
298
299 Free documentation, like free software, is a matter of freedom, not
300 price.  The problem with the non-free manual is not that publishers
301 charge a price for printed copies---that in itself is fine.  (The Free
302 Software Foundation sells printed copies of manuals, too.)  The
303 problem is the restrictions on the use of the manual.  Free manuals
304 are available in source code form, and give you permission to copy and
305 modify.  Non-free manuals do not allow this.
306
307 The criteria of freedom for a free manual are roughly the same as for
308 free software.  Redistribution (including the normal kinds of
309 commercial redistribution) must be permitted, so that the manual can
310 accompany every copy of the program, both on-line and on paper.
311
312 Permission for modification of the technical content is crucial too.
313 When people modify the software, adding or changing features, if they
314 are conscientious they will change the manual too---so they can
315 provide accurate and clear documentation for the modified program.  A
316 manual that leaves you no choice but to write a new manual to document
317 a changed version of the program is not really available to our
318 community.
319
320 Some kinds of limits on the way modification is handled are
321 acceptable.  For example, requirements to preserve the original
322 author's copyright notice, the distribution terms, or the list of
323 authors, are ok.  It is also no problem to require modified versions
324 to include notice that they were modified.  Even entire sections that
325 may not be deleted or changed are acceptable, as long as they deal
326 with nontechnical topics (like this one).  These kinds of restrictions
327 are acceptable because they don't obstruct the community's normal use
328 of the manual.
329
330 However, it must be possible to modify all the @emph{technical}
331 content of the manual, and then distribute the result in all the usual
332 media, through all the usual channels.  Otherwise, the restrictions
333 obstruct the use of the manual, it is not free, and we need another
334 manual to replace it.
335
336 Please spread the word about this issue.  Our community continues to
337 lose manuals to proprietary publishing.  If we spread the word that
338 free software needs free reference manuals and free tutorials, perhaps
339 the next person who wants to contribute by writing documentation will
340 realize, before it is too late, that only free manuals contribute to
341 the free software community.
342
343 If you are writing documentation, please insist on publishing it under
344 the GNU Free Documentation License or another free documentation
345 license.  Remember that this decision requires your approval---you
346 don't have to let the publisher decide.  Some commercial publishers
347 will use a free license if you insist, but they will not propose the
348 option; it is up to you to raise the issue and say firmly that this is
349 what you want.  If the publisher you are dealing with refuses, please
350 try other publishers.  If you're not sure whether a proposed license
351 is free, write to @email{licensing@@gnu.org}.
352
353 You can encourage commercial publishers to sell more free, copylefted
354 manuals and tutorials by buying them, and particularly by buying
355 copies from the publishers that paid for their writing or for major
356 improvements.  Meanwhile, try to avoid buying non-free documentation
357 at all.  Check the distribution terms of a manual before you buy it,
358 and insist that whoever seeks your business must respect your freedom.
359 Check the history of the book, and try to reward the publishers that
360 have paid or pay the authors to work on it.
361
362 The Free Software Foundation maintains a list of free documentation
363 published by other publishers, at
364 @url{http://www.fsf.org/doc/other-free-books.html}.
365
366 @node Contributors
367 @unnumberedsec Contributors to @value{GDBN}
368
369 Richard Stallman was the original author of @value{GDBN}, and of many
370 other @sc{gnu} programs.  Many others have contributed to its
371 development.  This section attempts to credit major contributors.  One
372 of the virtues of free software is that everyone is free to contribute
373 to it; with regret, we cannot actually acknowledge everyone here.  The
374 file @file{ChangeLog} in the @value{GDBN} distribution approximates a
375 blow-by-blow account.
376
377 Changes much prior to version 2.0 are lost in the mists of time.
378
379 @quotation
380 @emph{Plea:} Additions to this section are particularly welcome.  If you
381 or your friends (or enemies, to be evenhanded) have been unfairly
382 omitted from this list, we would like to add your names!
383 @end quotation
384
385 So that they may not regard their many labors as thankless, we
386 particularly thank those who shepherded @value{GDBN} through major
387 releases:
388 Andrew Cagney (releases 6.3, 6.2, 6.1, 6.0, 5.3, 5.2, 5.1 and 5.0);
389 Jim Blandy (release 4.18);
390 Jason Molenda (release 4.17);
391 Stan Shebs (release 4.14);
392 Fred Fish (releases 4.16, 4.15, 4.13, 4.12, 4.11, 4.10, and 4.9);
393 Stu Grossman and John Gilmore (releases 4.8, 4.7, 4.6, 4.5, and 4.4);
394 John Gilmore (releases 4.3, 4.2, 4.1, 4.0, and 3.9);
395 Jim Kingdon (releases 3.5, 3.4, and 3.3);
396 and Randy Smith (releases 3.2, 3.1, and 3.0).
397
398 Richard Stallman, assisted at various times by Peter TerMaat, Chris
399 Hanson, and Richard Mlynarik, handled releases through 2.8.
400
401 Michael Tiemann is the author of most of the @sc{gnu} C@t{++} support
402 in @value{GDBN}, with significant additional contributions from Per
403 Bothner and Daniel Berlin.  James Clark wrote the @sc{gnu} C@t{++}
404 demangler.  Early work on C@t{++} was by Peter TerMaat (who also did
405 much general update work leading to release 3.0).
406
407 @value{GDBN} uses the BFD subroutine library to examine multiple
408 object-file formats; BFD was a joint project of David V.
409 Henkel-Wallace, Rich Pixley, Steve Chamberlain, and John Gilmore.
410
411 David Johnson wrote the original COFF support; Pace Willison did
412 the original support for encapsulated COFF.
413
414 Brent Benson of Harris Computer Systems contributed DWARF 2 support.
415
416 Adam de Boor and Bradley Davis contributed the ISI Optimum V support.
417 Per Bothner, Noboyuki Hikichi, and Alessandro Forin contributed MIPS
418 support.
419 Jean-Daniel Fekete contributed Sun 386i support.
420 Chris Hanson improved the HP9000 support.
421 Noboyuki Hikichi and Tomoyuki Hasei contributed Sony/News OS 3 support.
422 David Johnson contributed Encore Umax support.
423 Jyrki Kuoppala contributed Altos 3068 support.
424 Jeff Law contributed HP PA and SOM support.
425 Keith Packard contributed NS32K support.
426 Doug Rabson contributed Acorn Risc Machine support.
427 Bob Rusk contributed Harris Nighthawk CX-UX support.
428 Chris Smith contributed Convex support (and Fortran debugging).
429 Jonathan Stone contributed Pyramid support.
430 Michael Tiemann contributed SPARC support.
431 Tim Tucker contributed support for the Gould NP1 and Gould Powernode.
432 Pace Willison contributed Intel 386 support.
433 Jay Vosburgh contributed Symmetry support.
434 Marko Mlinar contributed OpenRISC 1000 support.
435
436 Andreas Schwab contributed M68K @sc{gnu}/Linux support.
437
438 Rich Schaefer and Peter Schauer helped with support of SunOS shared
439 libraries.
440
441 Jay Fenlason and Roland McGrath ensured that @value{GDBN} and GAS agree
442 about several machine instruction sets.
443
444 Patrick Duval, Ted Goldstein, Vikram Koka and Glenn Engel helped develop
445 remote debugging.  Intel Corporation, Wind River Systems, AMD, and ARM
446 contributed remote debugging modules for the i960, VxWorks, A29K UDI,
447 and RDI targets, respectively.
448
449 Brian Fox is the author of the readline libraries providing
450 command-line editing and command history.
451
452 Andrew Beers of SUNY Buffalo wrote the language-switching code, the
453 Modula-2 support, and contributed the Languages chapter of this manual.
454
455 Fred Fish wrote most of the support for Unix System Vr4.
456 He also enhanced the command-completion support to cover C@t{++} overloaded
457 symbols.
458
459 Hitachi America (now Renesas America), Ltd. sponsored the support for
460 H8/300, H8/500, and Super-H processors.
461
462 NEC sponsored the support for the v850, Vr4xxx, and Vr5xxx processors.
463
464 Mitsubishi (now Renesas) sponsored the support for D10V, D30V, and M32R/D
465 processors.
466
467 Toshiba sponsored the support for the TX39 Mips processor.
468
469 Matsushita sponsored the support for the MN10200 and MN10300 processors.
470
471 Fujitsu sponsored the support for SPARClite and FR30 processors.
472
473 Kung Hsu, Jeff Law, and Rick Sladkey added support for hardware
474 watchpoints.
475
476 Michael Snyder added support for tracepoints.
477
478 Stu Grossman wrote gdbserver.
479
480 Jim Kingdon, Peter Schauer, Ian Taylor, and Stu Grossman made
481 nearly innumerable bug fixes and cleanups throughout @value{GDBN}.
482
483 The following people at the Hewlett-Packard Company contributed
484 support for the PA-RISC 2.0 architecture, HP-UX 10.20, 10.30, and 11.0
485 (narrow mode), HP's implementation of kernel threads, HP's aC@t{++}
486 compiler, and the Text User Interface (nee Terminal User Interface):
487 Ben Krepp, Richard Title, John Bishop, Susan Macchia, Kathy Mann,
488 Satish Pai, India Paul, Steve Rehrauer, and Elena Zannoni.  Kim Haase
489 provided HP-specific information in this manual.
490
491 DJ Delorie ported @value{GDBN} to MS-DOS, for the DJGPP project.
492 Robert Hoehne made significant contributions to the DJGPP port.
493
494 Cygnus Solutions has sponsored @value{GDBN} maintenance and much of its
495 development since 1991.  Cygnus engineers who have worked on @value{GDBN}
496 fulltime include Mark Alexander, Jim Blandy, Per Bothner, Kevin
497 Buettner, Edith Epstein, Chris Faylor, Fred Fish, Martin Hunt, Jim
498 Ingham, John Gilmore, Stu Grossman, Kung Hsu, Jim Kingdon, John Metzler,
499 Fernando Nasser, Geoffrey Noer, Dawn Perchik, Rich Pixley, Zdenek
500 Radouch, Keith Seitz, Stan Shebs, David Taylor, and Elena Zannoni.  In
501 addition, Dave Brolley, Ian Carmichael, Steve Chamberlain, Nick Clifton,
502 JT Conklin, Stan Cox, DJ Delorie, Ulrich Drepper, Frank Eigler, Doug
503 Evans, Sean Fagan, David Henkel-Wallace, Richard Henderson, Jeff
504 Holcomb, Jeff Law, Jim Lemke, Tom Lord, Bob Manson, Michael Meissner,
505 Jason Merrill, Catherine Moore, Drew Moseley, Ken Raeburn, Gavin
506 Romig-Koch, Rob Savoye, Jamie Smith, Mike Stump, Ian Taylor, Angela
507 Thomas, Michael Tiemann, Tom Tromey, Ron Unrau, Jim Wilson, and David
508 Zuhn have made contributions both large and small.
509
510 Andrew Cagney, Fernando Nasser, and Elena Zannoni, while working for
511 Cygnus Solutions, implemented the original @sc{gdb/mi} interface.
512
513 Jim Blandy added support for preprocessor macros, while working for Red
514 Hat.
515
516 Andrew Cagney designed @value{GDBN}'s architecture vector.  Many
517 people including Andrew Cagney, Stephane Carrez, Randolph Chung, Nick
518 Duffek, Richard Henderson, Mark Kettenis, Grace Sainsbury, Kei
519 Sakamoto, Yoshinori Sato, Michael Snyder, Andreas Schwab, Jason
520 Thorpe, Corinna Vinschen, Ulrich Weigand, and Elena Zannoni, helped
521 with the migration of old architectures to this new framework.
522
523 Andrew Cagney completely re-designed and re-implemented @value{GDBN}'s
524 unwinder framework, this consisting of a fresh new design featuring
525 frame IDs, independent frame sniffers, and the sentinel frame.  Mark
526 Kettenis implemented the @sc{dwarf 2} unwinder, Jeff Johnston the
527 libunwind unwinder, and Andrew Cagney the dummy, sentinel, tramp, and
528 trad unwinders.  The architecture-specific changes, each involving a
529 complete rewrite of the architecture's frame code, were carried out by
530 Jim Blandy, Joel Brobecker, Kevin Buettner, Andrew Cagney, Stephane
531 Carrez, Randolph Chung, Orjan Friberg, Richard Henderson, Daniel
532 Jacobowitz, Jeff Johnston, Mark Kettenis, Theodore A. Roth, Kei
533 Sakamoto, Yoshinori Sato, Michael Snyder, Corinna Vinschen, and Ulrich
534 Weigand.
535
536 Christian Zankel, Ross Morley, Bob Wilson, and Maxim Grigoriev from
537 Tensilica, Inc.@: contributed support for Xtensa processors.  Others
538 who have worked on the Xtensa port of @value{GDBN} in the past include
539 Steve Tjiang, John Newlin, and Scott Foehner.
540
541 Michael Eager and staff of Xilinx, Inc., contributed support for the
542 Xilinx MicroBlaze architecture.
543
544 Initial support for the FreeBSD/mips target and native configuration
545 was developed by SRI International and the University of Cambridge
546 Computer Laboratory under DARPA/AFRL contract FA8750-10-C-0237
547 ("CTSRD"), as part of the DARPA CRASH research programme.
548
549 Initial support for the FreeBSD/riscv target and native configuration
550 was developed by SRI International and the University of Cambridge
551 Computer Laboratory (Department of Computer Science and Technology)
552 under DARPA contract HR0011-18-C-0016 ("ECATS"), as part of the DARPA
553 SSITH research programme.
554
555 The original port to the OpenRISC 1000 is believed to be due to
556 Alessandro Forin and Per Bothner.  More recent ports have been the work
557 of Jeremy Bennett, Franck Jullien, Stefan Wallentowitz and
558 Stafford Horne.
559
560 @node Sample Session
561 @chapter A Sample @value{GDBN} Session
562
563 You can use this manual at your leisure to read all about @value{GDBN}.
564 However, a handful of commands are enough to get started using the
565 debugger.  This chapter illustrates those commands.
566
567 @iftex
568 In this sample session, we emphasize user input like this: @b{input},
569 to make it easier to pick out from the surrounding output.
570 @end iftex
571
572 @c FIXME: this example may not be appropriate for some configs, where
573 @c FIXME...primary interest is in remote use.
574
575 One of the preliminary versions of @sc{gnu} @code{m4} (a generic macro
576 processor) exhibits the following bug: sometimes, when we change its
577 quote strings from the default, the commands used to capture one macro
578 definition within another stop working.  In the following short @code{m4}
579 session, we define a macro @code{foo} which expands to @code{0000}; we
580 then use the @code{m4} built-in @code{defn} to define @code{bar} as the
581 same thing.  However, when we change the open quote string to
582 @code{<QUOTE>} and the close quote string to @code{<UNQUOTE>}, the same
583 procedure fails to define a new synonym @code{baz}:
584
585 @smallexample
586 $ @b{cd gnu/m4}
587 $ @b{./m4}
588 @b{define(foo,0000)}
589
590 @b{foo}
591 0000
592 @b{define(bar,defn(`foo'))}
593
594 @b{bar}
595 0000
596 @b{changequote(<QUOTE>,<UNQUOTE>)}
597
598 @b{define(baz,defn(<QUOTE>foo<UNQUOTE>))}
599 @b{baz}
600 @b{Ctrl-d}
601 m4: End of input: 0: fatal error: EOF in string
602 @end smallexample
603
604 @noindent
605 Let us use @value{GDBN} to try to see what is going on.
606
607 @smallexample
608 $ @b{@value{GDBP} m4}
609 @c FIXME: this falsifies the exact text played out, to permit smallbook
610 @c FIXME... format to come out better.
611 @value{GDBN} is free software and you are welcome to distribute copies
612  of it under certain conditions; type "show copying" to see
613  the conditions.
614 There is absolutely no warranty for @value{GDBN}; type "show warranty"
615  for details.
616
617 @value{GDBN} @value{GDBVN}, Copyright 1999 Free Software Foundation, Inc...
618 (@value{GDBP})
619 @end smallexample
620
621 @noindent
622 @value{GDBN} reads only enough symbol data to know where to find the
623 rest when needed; as a result, the first prompt comes up very quickly.
624 We now tell @value{GDBN} to use a narrower display width than usual, so
625 that examples fit in this manual.
626
627 @smallexample
628 (@value{GDBP}) @b{set width 70}
629 @end smallexample
630
631 @noindent
632 We need to see how the @code{m4} built-in @code{changequote} works.
633 Having looked at the source, we know the relevant subroutine is
634 @code{m4_changequote}, so we set a breakpoint there with the @value{GDBN}
635 @code{break} command.
636
637 @smallexample
638 (@value{GDBP}) @b{break m4_changequote}
639 Breakpoint 1 at 0x62f4: file builtin.c, line 879.
640 @end smallexample
641
642 @noindent
643 Using the @code{run} command, we start @code{m4} running under @value{GDBN}
644 control; as long as control does not reach the @code{m4_changequote}
645 subroutine, the program runs as usual:
646
647 @smallexample
648 (@value{GDBP}) @b{run}
649 Starting program: /work/Editorial/gdb/gnu/m4/m4
650 @b{define(foo,0000)}
651
652 @b{foo}
653 0000
654 @end smallexample
655
656 @noindent
657 To trigger the breakpoint, we call @code{changequote}.  @value{GDBN}
658 suspends execution of @code{m4}, displaying information about the
659 context where it stops.
660
661 @smallexample
662 @b{changequote(<QUOTE>,<UNQUOTE>)}
663
664 Breakpoint 1, m4_changequote (argc=3, argv=0x33c70)
665     at builtin.c:879
666 879         if (bad_argc(TOKEN_DATA_TEXT(argv[0]),argc,1,3))
667 @end smallexample
668
669 @noindent
670 Now we use the command @code{n} (@code{next}) to advance execution to
671 the next line of the current function.
672
673 @smallexample
674 (@value{GDBP}) @b{n}
675 882         set_quotes((argc >= 2) ? TOKEN_DATA_TEXT(argv[1])\
676  : nil,
677 @end smallexample
678
679 @noindent
680 @code{set_quotes} looks like a promising subroutine.  We can go into it
681 by using the command @code{s} (@code{step}) instead of @code{next}.
682 @code{step} goes to the next line to be executed in @emph{any}
683 subroutine, so it steps into @code{set_quotes}.
684
685 @smallexample
686 (@value{GDBP}) @b{s}
687 set_quotes (lq=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")
688     at input.c:530
689 530         if (lquote != def_lquote)
690 @end smallexample
691
692 @noindent
693 The display that shows the subroutine where @code{m4} is now
694 suspended (and its arguments) is called a stack frame display.  It
695 shows a summary of the stack.  We can use the @code{backtrace}
696 command (which can also be spelled @code{bt}), to see where we are
697 in the stack as a whole: the @code{backtrace} command displays a
698 stack frame for each active subroutine.
699
700 @smallexample
701 (@value{GDBP}) @b{bt}
702 #0  set_quotes (lq=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")
703     at input.c:530
704 #1  0x6344 in m4_changequote (argc=3, argv=0x33c70)
705     at builtin.c:882
706 #2  0x8174 in expand_macro (sym=0x33320) at macro.c:242
707 #3  0x7a88 in expand_token (obs=0x0, t=209696, td=0xf7fffa30)
708     at macro.c:71
709 #4  0x79dc in expand_input () at macro.c:40
710 #5  0x2930 in main (argc=0, argv=0xf7fffb20) at m4.c:195
711 @end smallexample
712
713 @noindent
714 We step through a few more lines to see what happens.  The first two
715 times, we can use @samp{s}; the next two times we use @code{n} to avoid
716 falling into the @code{xstrdup} subroutine.
717
718 @smallexample
719 (@value{GDBP}) @b{s}
720 0x3b5c  532         if (rquote != def_rquote)
721 (@value{GDBP}) @b{s}
722 0x3b80  535         lquote = (lq == nil || *lq == '\0') ?  \
723 def_lquote : xstrdup(lq);
724 (@value{GDBP}) @b{n}
725 536         rquote = (rq == nil || *rq == '\0') ? def_rquote\
726  : xstrdup(rq);
727 (@value{GDBP}) @b{n}
728 538         len_lquote = strlen(rquote);
729 @end smallexample
730
731 @noindent
732 The last line displayed looks a little odd; we can examine the variables
733 @code{lquote} and @code{rquote} to see if they are in fact the new left
734 and right quotes we specified.  We use the command @code{p}
735 (@code{print}) to see their values.
736
737 @smallexample
738 (@value{GDBP}) @b{p lquote}
739 $1 = 0x35d40 "<QUOTE>"
740 (@value{GDBP}) @b{p rquote}
741 $2 = 0x35d50 "<UNQUOTE>"
742 @end smallexample
743
744 @noindent
745 @code{lquote} and @code{rquote} are indeed the new left and right quotes.
746 To look at some context, we can display ten lines of source
747 surrounding the current line with the @code{l} (@code{list}) command.
748
749 @smallexample
750 (@value{GDBP}) @b{l}
751 533             xfree(rquote);
752 534
753 535         lquote = (lq == nil || *lq == '\0') ? def_lquote\
754  : xstrdup (lq);
755 536         rquote = (rq == nil || *rq == '\0') ? def_rquote\
756  : xstrdup (rq);
757 537
758 538         len_lquote = strlen(rquote);
759 539         len_rquote = strlen(lquote);
760 540     @}
761 541
762 542     void
763 @end smallexample
764
765 @noindent
766 Let us step past the two lines that set @code{len_lquote} and
767 @code{len_rquote}, and then examine the values of those variables.
768
769 @smallexample
770 (@value{GDBP}) @b{n}
771 539         len_rquote = strlen(lquote);
772 (@value{GDBP}) @b{n}
773 540     @}
774 (@value{GDBP}) @b{p len_lquote}
775 $3 = 9
776 (@value{GDBP}) @b{p len_rquote}
777 $4 = 7
778 @end smallexample
779
780 @noindent
781 That certainly looks wrong, assuming @code{len_lquote} and
782 @code{len_rquote} are meant to be the lengths of @code{lquote} and
783 @code{rquote} respectively.  We can set them to better values using
784 the @code{p} command, since it can print the value of
785 any expression---and that expression can include subroutine calls and
786 assignments.
787
788 @smallexample
789 (@value{GDBP}) @b{p len_lquote=strlen(lquote)}
790 $5 = 7
791 (@value{GDBP}) @b{p len_rquote=strlen(rquote)}
792 $6 = 9
793 @end smallexample
794
795 @noindent
796 Is that enough to fix the problem of using the new quotes with the
797 @code{m4} built-in @code{defn}?  We can allow @code{m4} to continue
798 executing with the @code{c} (@code{continue}) command, and then try the
799 example that caused trouble initially:
800
801 @smallexample
802 (@value{GDBP}) @b{c}
803 Continuing.
804
805 @b{define(baz,defn(<QUOTE>foo<UNQUOTE>))}
806
807 baz
808 0000
809 @end smallexample
810
811 @noindent
812 Success!  The new quotes now work just as well as the default ones.  The
813 problem seems to have been just the two typos defining the wrong
814 lengths.  We allow @code{m4} exit by giving it an EOF as input:
815
816 @smallexample
817 @b{Ctrl-d}
818 Program exited normally.
819 @end smallexample
820
821 @noindent
822 The message @samp{Program exited normally.} is from @value{GDBN}; it
823 indicates @code{m4} has finished executing.  We can end our @value{GDBN}
824 session with the @value{GDBN} @code{quit} command.
825
826 @smallexample
827 (@value{GDBP}) @b{quit}
828 @end smallexample
829
830 @node Invocation
831 @chapter Getting In and Out of @value{GDBN}
832
833 This chapter discusses how to start @value{GDBN}, and how to get out of it.
834 The essentials are:
835 @itemize @bullet
836 @item
837 type @samp{@value{GDBP}} to start @value{GDBN}.
838 @item
839 type @kbd{quit} or @kbd{Ctrl-d} to exit.
840 @end itemize
841
842 @menu
843 * Invoking GDB::                How to start @value{GDBN}
844 * Quitting GDB::                How to quit @value{GDBN}
845 * Shell Commands::              How to use shell commands inside @value{GDBN}
846 * Logging Output::              How to log @value{GDBN}'s output to a file
847 @end menu
848
849 @node Invoking GDB
850 @section Invoking @value{GDBN}
851
852 Invoke @value{GDBN} by running the program @code{@value{GDBP}}.  Once started,
853 @value{GDBN} reads commands from the terminal until you tell it to exit.
854
855 You can also run @code{@value{GDBP}} with a variety of arguments and options,
856 to specify more of your debugging environment at the outset.
857
858 The command-line options described here are designed
859 to cover a variety of situations; in some environments, some of these
860 options may effectively be unavailable.
861
862 The most usual way to start @value{GDBN} is with one argument,
863 specifying an executable program:
864
865 @smallexample
866 @value{GDBP} @var{program}
867 @end smallexample
868
869 @noindent
870 You can also start with both an executable program and a core file
871 specified:
872
873 @smallexample
874 @value{GDBP} @var{program} @var{core}
875 @end smallexample
876
877 You can, instead, specify a process ID as a second argument, if you want
878 to debug a running process:
879
880 @smallexample
881 @value{GDBP} @var{program} 1234
882 @end smallexample
883
884 @noindent
885 would attach @value{GDBN} to process @code{1234} (unless you also have a file
886 named @file{1234}; @value{GDBN} does check for a core file first).
887
888 Taking advantage of the second command-line argument requires a fairly
889 complete operating system; when you use @value{GDBN} as a remote
890 debugger attached to a bare board, there may not be any notion of
891 ``process'', and there is often no way to get a core dump.  @value{GDBN}
892 will warn you if it is unable to attach or to read core dumps.
893
894 You can optionally have @code{@value{GDBP}} pass any arguments after the
895 executable file to the inferior using @code{--args}.  This option stops
896 option processing.
897 @smallexample
898 @value{GDBP} --args gcc -O2 -c foo.c
899 @end smallexample
900 This will cause @code{@value{GDBP}} to debug @code{gcc}, and to set
901 @code{gcc}'s command-line arguments (@pxref{Arguments}) to @samp{-O2 -c foo.c}.
902
903 You can run @code{@value{GDBP}} without printing the front material, which describes
904 @value{GDBN}'s non-warranty, by specifying @code{--silent}
905 (or @code{-q}/@code{--quiet}):
906
907 @smallexample
908 @value{GDBP} --silent
909 @end smallexample
910
911 @noindent
912 You can further control how @value{GDBN} starts up by using command-line
913 options.  @value{GDBN} itself can remind you of the options available.
914
915 @noindent
916 Type
917
918 @smallexample
919 @value{GDBP} -help
920 @end smallexample
921
922 @noindent
923 to display all available options and briefly describe their use
924 (@samp{@value{GDBP} -h} is a shorter equivalent).
925
926 All options and command line arguments you give are processed
927 in sequential order.  The order makes a difference when the
928 @samp{-x} option is used.
929
930
931 @menu
932 * File Options::                Choosing files
933 * Mode Options::                Choosing modes
934 * Startup::                     What @value{GDBN} does during startup
935 @end menu
936
937 @node File Options
938 @subsection Choosing Files
939
940 When @value{GDBN} starts, it reads any arguments other than options as
941 specifying an executable file and core file (or process ID).  This is
942 the same as if the arguments were specified by the @samp{-se} and
943 @samp{-c} (or @samp{-p}) options respectively.  (@value{GDBN} reads the
944 first argument that does not have an associated option flag as
945 equivalent to the @samp{-se} option followed by that argument; and the
946 second argument that does not have an associated option flag, if any, as
947 equivalent to the @samp{-c}/@samp{-p} option followed by that argument.)
948 If the second argument begins with a decimal digit, @value{GDBN} will
949 first attempt to attach to it as a process, and if that fails, attempt
950 to open it as a corefile.  If you have a corefile whose name begins with
951 a digit, you can prevent @value{GDBN} from treating it as a pid by
952 prefixing it with @file{./}, e.g.@: @file{./12345}.
953
954 If @value{GDBN} has not been configured to included core file support,
955 such as for most embedded targets, then it will complain about a second
956 argument and ignore it.
957
958 Many options have both long and short forms; both are shown in the
959 following list.  @value{GDBN} also recognizes the long forms if you truncate
960 them, so long as enough of the option is present to be unambiguous.
961 (If you prefer, you can flag option arguments with @samp{--} rather
962 than @samp{-}, though we illustrate the more usual convention.)
963
964 @c NOTE: the @cindex entries here use double dashes ON PURPOSE.  This
965 @c way, both those who look for -foo and --foo in the index, will find
966 @c it.
967
968 @table @code
969 @item -symbols @var{file}
970 @itemx -s @var{file}
971 @cindex @code{--symbols}
972 @cindex @code{-s}
973 Read symbol table from file @var{file}.
974
975 @item -exec @var{file}
976 @itemx -e @var{file}
977 @cindex @code{--exec}
978 @cindex @code{-e}
979 Use file @var{file} as the executable file to execute when appropriate,
980 and for examining pure data in conjunction with a core dump.
981
982 @item -se @var{file}
983 @cindex @code{--se}
984 Read symbol table from file @var{file} and use it as the executable
985 file.
986
987 @item -core @var{file}
988 @itemx -c @var{file}
989 @cindex @code{--core}
990 @cindex @code{-c}
991 Use file @var{file} as a core dump to examine.
992
993 @item -pid @var{number}
994 @itemx -p @var{number}
995 @cindex @code{--pid}
996 @cindex @code{-p}
997 Connect to process ID @var{number}, as with the @code{attach} command.
998
999 @item -command @var{file}
1000 @itemx -x @var{file}
1001 @cindex @code{--command}
1002 @cindex @code{-x}
1003 Execute commands from file @var{file}.  The contents of this file is
1004 evaluated exactly as the @code{source} command would.
1005 @xref{Command Files,, Command files}.
1006
1007 @item -eval-command @var{command}
1008 @itemx -ex @var{command}
1009 @cindex @code{--eval-command}
1010 @cindex @code{-ex}
1011 Execute a single @value{GDBN} command.
1012
1013 This option may be used multiple times to call multiple commands.  It may
1014 also be interleaved with @samp{-command} as required.
1015
1016 @smallexample
1017 @value{GDBP} -ex 'target sim' -ex 'load' \
1018    -x setbreakpoints -ex 'run' a.out
1019 @end smallexample
1020
1021 @item -init-command @var{file}
1022 @itemx -ix @var{file}
1023 @cindex @code{--init-command}
1024 @cindex @code{-ix}
1025 Execute commands from file @var{file} before loading the inferior (but
1026 after loading gdbinit files).
1027 @xref{Startup}.
1028
1029 @item -init-eval-command @var{command}
1030 @itemx -iex @var{command}
1031 @cindex @code{--init-eval-command}
1032 @cindex @code{-iex}
1033 Execute a single @value{GDBN} command before loading the inferior (but
1034 after loading gdbinit files).
1035 @xref{Startup}.
1036
1037 @item -directory @var{directory}
1038 @itemx -d @var{directory}
1039 @cindex @code{--directory}
1040 @cindex @code{-d}
1041 Add @var{directory} to the path to search for source and script files.
1042
1043 @item -r
1044 @itemx -readnow
1045 @cindex @code{--readnow}
1046 @cindex @code{-r}
1047 Read each symbol file's entire symbol table immediately, rather than
1048 the default, which is to read it incrementally as it is needed.
1049 This makes startup slower, but makes future operations faster.
1050
1051 @item --readnever
1052 @anchor{--readnever}
1053 @cindex @code{--readnever}, command-line option
1054 Do not read each symbol file's symbolic debug information.  This makes
1055 startup faster but at the expense of not being able to perform
1056 symbolic debugging.  DWARF unwind information is also not read,
1057 meaning backtraces may become incomplete or inaccurate.  One use of
1058 this is when a user simply wants to do the following sequence: attach,
1059 dump core, detach.  Loading the debugging information in this case is
1060 an unnecessary cause of delay.
1061 @end table
1062
1063 @node Mode Options
1064 @subsection Choosing Modes
1065
1066 You can run @value{GDBN} in various alternative modes---for example, in
1067 batch mode or quiet mode.
1068
1069 @table @code
1070 @anchor{-nx}
1071 @item -nx
1072 @itemx -n
1073 @cindex @code{--nx}
1074 @cindex @code{-n}
1075 Do not execute commands found in any initialization file.
1076 There are three init files, loaded in the following order:
1077
1078 @table @code
1079 @item @file{system.gdbinit}
1080 This is the system-wide init file.
1081 Its location is specified with the @code{--with-system-gdbinit}
1082 configure option (@pxref{System-wide configuration}).
1083 It is loaded first when @value{GDBN} starts, before command line options
1084 have been processed.
1085 @item @file{~/.gdbinit}
1086 This is the init file in your home directory.
1087 It is loaded next, after @file{system.gdbinit}, and before
1088 command options have been processed.
1089 @item @file{./.gdbinit}
1090 This is the init file in the current directory.
1091 It is loaded last, after command line options other than @code{-x} and
1092 @code{-ex} have been processed.  Command line options @code{-x} and
1093 @code{-ex} are processed last, after @file{./.gdbinit} has been loaded.
1094 @end table
1095
1096 For further documentation on startup processing, @xref{Startup}.
1097 For documentation on how to write command files,
1098 @xref{Command Files,,Command Files}.
1099
1100 @anchor{-nh}
1101 @item -nh
1102 @cindex @code{--nh}
1103 Do not execute commands found in @file{~/.gdbinit}, the init file
1104 in your home directory.
1105 @xref{Startup}.
1106
1107 @item -quiet
1108 @itemx -silent
1109 @itemx -q
1110 @cindex @code{--quiet}
1111 @cindex @code{--silent}
1112 @cindex @code{-q}
1113 ``Quiet''.  Do not print the introductory and copyright messages.  These
1114 messages are also suppressed in batch mode.
1115
1116 @item -batch
1117 @cindex @code{--batch}
1118 Run in batch mode.  Exit with status @code{0} after processing all the
1119 command files specified with @samp{-x} (and all commands from
1120 initialization files, if not inhibited with @samp{-n}).  Exit with
1121 nonzero status if an error occurs in executing the @value{GDBN} commands
1122 in the command files.  Batch mode also disables pagination, sets unlimited
1123 terminal width and height @pxref{Screen Size}, and acts as if @kbd{set confirm
1124 off} were in effect (@pxref{Messages/Warnings}).
1125
1126 Batch mode may be useful for running @value{GDBN} as a filter, for
1127 example to download and run a program on another computer; in order to
1128 make this more useful, the message
1129
1130 @smallexample
1131 Program exited normally.
1132 @end smallexample
1133
1134 @noindent
1135 (which is ordinarily issued whenever a program running under
1136 @value{GDBN} control terminates) is not issued when running in batch
1137 mode.
1138
1139 @item -batch-silent
1140 @cindex @code{--batch-silent}
1141 Run in batch mode exactly like @samp{-batch}, but totally silently.  All
1142 @value{GDBN} output to @code{stdout} is prevented (@code{stderr} is
1143 unaffected).  This is much quieter than @samp{-silent} and would be useless
1144 for an interactive session.
1145
1146 This is particularly useful when using targets that give @samp{Loading section}
1147 messages, for example.
1148
1149 Note that targets that give their output via @value{GDBN}, as opposed to
1150 writing directly to @code{stdout}, will also be made silent.
1151
1152 @item -return-child-result
1153 @cindex @code{--return-child-result}
1154 The return code from @value{GDBN} will be the return code from the child
1155 process (the process being debugged), with the following exceptions:
1156
1157 @itemize @bullet
1158 @item
1159 @value{GDBN} exits abnormally.  E.g., due to an incorrect argument or an
1160 internal error.  In this case the exit code is the same as it would have been
1161 without @samp{-return-child-result}.
1162 @item
1163 The user quits with an explicit value.  E.g., @samp{quit 1}.
1164 @item
1165 The child process never runs, or is not allowed to terminate, in which case
1166 the exit code will be -1.
1167 @end itemize
1168
1169 This option is useful in conjunction with @samp{-batch} or @samp{-batch-silent},
1170 when @value{GDBN} is being used as a remote program loader or simulator
1171 interface.
1172
1173 @item -nowindows
1174 @itemx -nw
1175 @cindex @code{--nowindows}
1176 @cindex @code{-nw}
1177 ``No windows''.  If @value{GDBN} comes with a graphical user interface
1178 (GUI) built in, then this option tells @value{GDBN} to only use the command-line
1179 interface.  If no GUI is available, this option has no effect.
1180
1181 @item -windows
1182 @itemx -w
1183 @cindex @code{--windows}
1184 @cindex @code{-w}
1185 If @value{GDBN} includes a GUI, then this option requires it to be
1186 used if possible.
1187
1188 @item -cd @var{directory}
1189 @cindex @code{--cd}
1190 Run @value{GDBN} using @var{directory} as its working directory,
1191 instead of the current directory.
1192
1193 @item -data-directory @var{directory}
1194 @itemx -D @var{directory}
1195 @cindex @code{--data-directory}
1196 @cindex @code{-D}
1197 Run @value{GDBN} using @var{directory} as its data directory.
1198 The data directory is where @value{GDBN} searches for its
1199 auxiliary files.  @xref{Data Files}.
1200
1201 @item -fullname
1202 @itemx -f
1203 @cindex @code{--fullname}
1204 @cindex @code{-f}
1205 @sc{gnu} Emacs sets this option when it runs @value{GDBN} as a
1206 subprocess.  It tells @value{GDBN} to output the full file name and line
1207 number in a standard, recognizable fashion each time a stack frame is
1208 displayed (which includes each time your program stops).  This
1209 recognizable format looks like two @samp{\032} characters, followed by
1210 the file name, line number and character position separated by colons,
1211 and a newline.  The Emacs-to-@value{GDBN} interface program uses the two
1212 @samp{\032} characters as a signal to display the source code for the
1213 frame.
1214
1215 @item -annotate @var{level}
1216 @cindex @code{--annotate}
1217 This option sets the @dfn{annotation level} inside @value{GDBN}.  Its
1218 effect is identical to using @samp{set annotate @var{level}}
1219 (@pxref{Annotations}).  The annotation @var{level} controls how much
1220 information @value{GDBN} prints together with its prompt, values of
1221 expressions, source lines, and other types of output.  Level 0 is the
1222 normal, level 1 is for use when @value{GDBN} is run as a subprocess of
1223 @sc{gnu} Emacs, level 3 is the maximum annotation suitable for programs
1224 that control @value{GDBN}, and level 2 has been deprecated.
1225
1226 The annotation mechanism has largely been superseded by @sc{gdb/mi}
1227 (@pxref{GDB/MI}).
1228
1229 @item --args
1230 @cindex @code{--args}
1231 Change interpretation of command line so that arguments following the
1232 executable file are passed as command line arguments to the inferior.
1233 This option stops option processing.
1234
1235 @item -baud @var{bps}
1236 @itemx -b @var{bps}
1237 @cindex @code{--baud}
1238 @cindex @code{-b}
1239 Set the line speed (baud rate or bits per second) of any serial
1240 interface used by @value{GDBN} for remote debugging.
1241
1242 @item -l @var{timeout}
1243 @cindex @code{-l}
1244 Set the timeout (in seconds) of any communication used by @value{GDBN}
1245 for remote debugging.
1246
1247 @item -tty @var{device}
1248 @itemx -t @var{device}
1249 @cindex @code{--tty}
1250 @cindex @code{-t}
1251 Run using @var{device} for your program's standard input and output.
1252 @c FIXME: kingdon thinks there is more to -tty.  Investigate.
1253
1254 @c resolve the situation of these eventually
1255 @item -tui
1256 @cindex @code{--tui}
1257 Activate the @dfn{Text User Interface} when starting.  The Text User
1258 Interface manages several text windows on the terminal, showing
1259 source, assembly, registers and @value{GDBN} command outputs
1260 (@pxref{TUI, ,@value{GDBN} Text User Interface}).  Do not use this
1261 option if you run @value{GDBN} from Emacs (@pxref{Emacs, ,
1262 Using @value{GDBN} under @sc{gnu} Emacs}).
1263
1264 @item -interpreter @var{interp}
1265 @cindex @code{--interpreter}
1266 Use the interpreter @var{interp} for interface with the controlling
1267 program or device.  This option is meant to be set by programs which
1268 communicate with @value{GDBN} using it as a back end.
1269 @xref{Interpreters, , Command Interpreters}.
1270
1271 @samp{--interpreter=mi} (or @samp{--interpreter=mi3}) causes
1272 @value{GDBN} to use the @dfn{@sc{gdb/mi} interface} version 3 (@pxref{GDB/MI, ,
1273 The @sc{gdb/mi} Interface}) included since @value{GDBN} version 9.1.  @sc{gdb/mi}
1274 version 2 (@code{mi2}), included in @value{GDBN} 6.0 and version 1 (@code{mi1}),
1275 included in @value{GDBN} 5.3, are also available.  Earlier @sc{gdb/mi}
1276 interfaces are no longer supported.
1277
1278 @item -write
1279 @cindex @code{--write}
1280 Open the executable and core files for both reading and writing.  This
1281 is equivalent to the @samp{set write on} command inside @value{GDBN}
1282 (@pxref{Patching}).
1283
1284 @item -statistics
1285 @cindex @code{--statistics}
1286 This option causes @value{GDBN} to print statistics about time and
1287 memory usage after it completes each command and returns to the prompt.
1288
1289 @item -version
1290 @cindex @code{--version}
1291 This option causes @value{GDBN} to print its version number and
1292 no-warranty blurb, and exit.
1293
1294 @item -configuration
1295 @cindex @code{--configuration}
1296 This option causes @value{GDBN} to print details about its build-time
1297 configuration parameters, and then exit.  These details can be
1298 important when reporting @value{GDBN} bugs (@pxref{GDB Bugs}).
1299
1300 @end table
1301
1302 @node Startup
1303 @subsection What @value{GDBN} Does During Startup
1304 @cindex @value{GDBN} startup
1305
1306 Here's the description of what @value{GDBN} does during session startup:
1307
1308 @enumerate
1309 @item
1310 Sets up the command interpreter as specified by the command line
1311 (@pxref{Mode Options, interpreter}).
1312
1313 @item
1314 @cindex init file
1315 Reads the system-wide @dfn{init file} (if @option{--with-system-gdbinit} was
1316 used when building @value{GDBN}; @pxref{System-wide configuration,
1317  ,System-wide configuration and settings}) and executes all the commands in
1318 that file.
1319
1320 @anchor{Home Directory Init File}
1321 @item
1322 Reads the init file (if any) in your home directory@footnote{On
1323 DOS/Windows systems, the home directory is the one pointed to by the
1324 @code{HOME} environment variable.} and executes all the commands in
1325 that file.
1326
1327 @anchor{Option -init-eval-command}
1328 @item
1329 Executes commands and command files specified by the @samp{-iex} and
1330 @samp{-ix} options in their specified order.  Usually you should use the
1331 @samp{-ex} and @samp{-x} options instead, but this way you can apply
1332 settings before @value{GDBN} init files get executed and before inferior
1333 gets loaded.
1334
1335 @item
1336 Processes command line options and operands.
1337
1338 @anchor{Init File in the Current Directory during Startup}
1339 @item
1340 Reads and executes the commands from init file (if any) in the current
1341 working directory as long as @samp{set auto-load local-gdbinit} is set to
1342 @samp{on} (@pxref{Init File in the Current Directory}).
1343 This is only done if the current directory is
1344 different from your home directory.  Thus, you can have more than one
1345 init file, one generic in your home directory, and another, specific
1346 to the program you are debugging, in the directory where you invoke
1347 @value{GDBN}.
1348
1349 @item
1350 If the command line specified a program to debug, or a process to
1351 attach to, or a core file, @value{GDBN} loads any auto-loaded
1352 scripts provided for the program or for its loaded shared libraries.
1353 @xref{Auto-loading}.
1354
1355 If you wish to disable the auto-loading during startup,
1356 you must do something like the following:
1357
1358 @smallexample
1359 $ gdb -iex "set auto-load python-scripts off" myprogram
1360 @end smallexample
1361
1362 Option @samp{-ex} does not work because the auto-loading is then turned
1363 off too late.
1364
1365 @item
1366 Executes commands and command files specified by the @samp{-ex} and
1367 @samp{-x} options in their specified order.  @xref{Command Files}, for
1368 more details about @value{GDBN} command files.
1369
1370 @item
1371 Reads the command history recorded in the @dfn{history file}.
1372 @xref{Command History}, for more details about the command history and the
1373 files where @value{GDBN} records it.
1374 @end enumerate
1375
1376 Init files use the same syntax as @dfn{command files} (@pxref{Command
1377 Files}) and are processed by @value{GDBN} in the same way.  The init
1378 file in your home directory can set options (such as @samp{set
1379 complaints}) that affect subsequent processing of command line options
1380 and operands.  Init files are not executed if you use the @samp{-nx}
1381 option (@pxref{Mode Options, ,Choosing Modes}).
1382
1383 To display the list of init files loaded by gdb at startup, you
1384 can use @kbd{gdb --help}.
1385
1386 @cindex init file name
1387 @cindex @file{.gdbinit}
1388 @cindex @file{gdb.ini}
1389 The @value{GDBN} init files are normally called @file{.gdbinit}.
1390 The DJGPP port of @value{GDBN} uses the name @file{gdb.ini}, due to
1391 the limitations of file names imposed by DOS filesystems.  The Windows
1392 port of @value{GDBN} uses the standard name, but if it finds a
1393 @file{gdb.ini} file in your home directory, it warns you about that
1394 and suggests to rename the file to the standard name.
1395
1396
1397 @node Quitting GDB
1398 @section Quitting @value{GDBN}
1399 @cindex exiting @value{GDBN}
1400 @cindex leaving @value{GDBN}
1401
1402 @table @code
1403 @kindex quit @r{[}@var{expression}@r{]}
1404 @kindex q @r{(@code{quit})}
1405 @item quit @r{[}@var{expression}@r{]}
1406 @itemx q
1407 To exit @value{GDBN}, use the @code{quit} command (abbreviated
1408 @code{q}), or type an end-of-file character (usually @kbd{Ctrl-d}).  If you
1409 do not supply @var{expression}, @value{GDBN} will terminate normally;
1410 otherwise it will terminate using the result of @var{expression} as the
1411 error code.
1412 @end table
1413
1414 @cindex interrupt
1415 An interrupt (often @kbd{Ctrl-c}) does not exit from @value{GDBN}, but rather
1416 terminates the action of any @value{GDBN} command that is in progress and
1417 returns to @value{GDBN} command level.  It is safe to type the interrupt
1418 character at any time because @value{GDBN} does not allow it to take effect
1419 until a time when it is safe.
1420
1421 If you have been using @value{GDBN} to control an attached process or
1422 device, you can release it with the @code{detach} command
1423 (@pxref{Attach, ,Debugging an Already-running Process}).
1424
1425 @node Shell Commands
1426 @section Shell Commands
1427
1428 If you need to execute occasional shell commands during your
1429 debugging session, there is no need to leave or suspend @value{GDBN}; you can
1430 just use the @code{shell} command.
1431
1432 @table @code
1433 @kindex shell
1434 @kindex !
1435 @cindex shell escape
1436 @item shell @var{command-string}
1437 @itemx !@var{command-string}
1438 Invoke a standard shell to execute @var{command-string}.
1439 Note that no space is needed between @code{!} and @var{command-string}.
1440 If it exists, the environment variable @code{SHELL} determines which
1441 shell to run.  Otherwise @value{GDBN} uses the default shell
1442 (@file{/bin/sh} on Unix systems, @file{COMMAND.COM} on MS-DOS, etc.).
1443 @end table
1444
1445 The utility @code{make} is often needed in development environments.
1446 You do not have to use the @code{shell} command for this purpose in
1447 @value{GDBN}:
1448
1449 @table @code
1450 @kindex make
1451 @cindex calling make
1452 @item make @var{make-args}
1453 Execute the @code{make} program with the specified
1454 arguments.  This is equivalent to @samp{shell make @var{make-args}}.
1455 @end table
1456
1457 @node Logging Output
1458 @section Logging Output
1459 @cindex logging @value{GDBN} output
1460 @cindex save @value{GDBN} output to a file
1461
1462 You may want to save the output of @value{GDBN} commands to a file.
1463 There are several commands to control @value{GDBN}'s logging.
1464
1465 @table @code
1466 @kindex set logging
1467 @item set logging on
1468 Enable logging.
1469 @item set logging off
1470 Disable logging.
1471 @cindex logging file name
1472 @item set logging file @var{file}
1473 Change the name of the current logfile.  The default logfile is @file{gdb.txt}.
1474 @item set logging overwrite [on|off]
1475 By default, @value{GDBN} will append to the logfile.  Set @code{overwrite} if
1476 you want @code{set logging on} to overwrite the logfile instead.
1477 @item set logging redirect [on|off]
1478 By default, @value{GDBN} output will go to both the terminal and the logfile.
1479 Set @code{redirect} if you want output to go only to the log file.
1480 @kindex show logging
1481 @item show logging
1482 Show the current values of the logging settings.
1483 @end table
1484
1485 @node Commands
1486 @chapter @value{GDBN} Commands
1487
1488 You can abbreviate a @value{GDBN} command to the first few letters of the command
1489 name, if that abbreviation is unambiguous; and you can repeat certain
1490 @value{GDBN} commands by typing just @key{RET}.  You can also use the @key{TAB}
1491 key to get @value{GDBN} to fill out the rest of a word in a command (or to
1492 show you the alternatives available, if there is more than one possibility).
1493
1494 @menu
1495 * Command Syntax::              How to give commands to @value{GDBN}
1496 * Completion::                  Command completion
1497 * Help::                        How to ask @value{GDBN} for help
1498 @end menu
1499
1500 @node Command Syntax
1501 @section Command Syntax
1502
1503 A @value{GDBN} command is a single line of input.  There is no limit on
1504 how long it can be.  It starts with a command name, which is followed by
1505 arguments whose meaning depends on the command name.  For example, the
1506 command @code{step} accepts an argument which is the number of times to
1507 step, as in @samp{step 5}.  You can also use the @code{step} command
1508 with no arguments.  Some commands do not allow any arguments.
1509
1510 @cindex abbreviation
1511 @value{GDBN} command names may always be truncated if that abbreviation is
1512 unambiguous.  Other possible command abbreviations are listed in the
1513 documentation for individual commands.  In some cases, even ambiguous
1514 abbreviations are allowed; for example, @code{s} is specially defined as
1515 equivalent to @code{step} even though there are other commands whose
1516 names start with @code{s}.  You can test abbreviations by using them as
1517 arguments to the @code{help} command.
1518
1519 @cindex repeating commands
1520 @kindex RET @r{(repeat last command)}
1521 A blank line as input to @value{GDBN} (typing just @key{RET}) means to
1522 repeat the previous command.  Certain commands (for example, @code{run})
1523 will not repeat this way; these are commands whose unintentional
1524 repetition might cause trouble and which you are unlikely to want to
1525 repeat.  User-defined commands can disable this feature; see
1526 @ref{Define, dont-repeat}.
1527
1528 The @code{list} and @code{x} commands, when you repeat them with
1529 @key{RET}, construct new arguments rather than repeating
1530 exactly as typed.  This permits easy scanning of source or memory.
1531
1532 @value{GDBN} can also use @key{RET} in another way: to partition lengthy
1533 output, in a way similar to the common utility @code{more}
1534 (@pxref{Screen Size,,Screen Size}).  Since it is easy to press one
1535 @key{RET} too many in this situation, @value{GDBN} disables command
1536 repetition after any command that generates this sort of display.
1537
1538 @kindex # @r{(a comment)}
1539 @cindex comment
1540 Any text from a @kbd{#} to the end of the line is a comment; it does
1541 nothing.  This is useful mainly in command files (@pxref{Command
1542 Files,,Command Files}).
1543
1544 @cindex repeating command sequences
1545 @kindex Ctrl-o @r{(operate-and-get-next)}
1546 The @kbd{Ctrl-o} binding is useful for repeating a complex sequence of
1547 commands.  This command accepts the current line, like @key{RET}, and
1548 then fetches the next line relative to the current line from the history
1549 for editing.
1550
1551 @node Completion
1552 @section Command Completion
1553
1554 @cindex completion
1555 @cindex word completion
1556 @value{GDBN} can fill in the rest of a word in a command for you, if there is
1557 only one possibility; it can also show you what the valid possibilities
1558 are for the next word in a command, at any time.  This works for @value{GDBN}
1559 commands, @value{GDBN} subcommands, and the names of symbols in your program.
1560
1561 Press the @key{TAB} key whenever you want @value{GDBN} to fill out the rest
1562 of a word.  If there is only one possibility, @value{GDBN} fills in the
1563 word, and waits for you to finish the command (or press @key{RET} to
1564 enter it).  For example, if you type
1565
1566 @c FIXME "@key" does not distinguish its argument sufficiently to permit
1567 @c complete accuracy in these examples; space introduced for clarity.
1568 @c If texinfo enhancements make it unnecessary, it would be nice to
1569 @c replace " @key" by "@key" in the following...
1570 @smallexample
1571 (@value{GDBP}) info bre @key{TAB}
1572 @end smallexample
1573
1574 @noindent
1575 @value{GDBN} fills in the rest of the word @samp{breakpoints}, since that is
1576 the only @code{info} subcommand beginning with @samp{bre}:
1577
1578 @smallexample
1579 (@value{GDBP}) info breakpoints
1580 @end smallexample
1581
1582 @noindent
1583 You can either press @key{RET} at this point, to run the @code{info
1584 breakpoints} command, or backspace and enter something else, if
1585 @samp{breakpoints} does not look like the command you expected.  (If you
1586 were sure you wanted @code{info breakpoints} in the first place, you
1587 might as well just type @key{RET} immediately after @samp{info bre},
1588 to exploit command abbreviations rather than command completion).
1589
1590 If there is more than one possibility for the next word when you press
1591 @key{TAB}, @value{GDBN} sounds a bell.  You can either supply more
1592 characters and try again, or just press @key{TAB} a second time;
1593 @value{GDBN} displays all the possible completions for that word.  For
1594 example, you might want to set a breakpoint on a subroutine whose name
1595 begins with @samp{make_}, but when you type @kbd{b make_@key{TAB}} @value{GDBN}
1596 just sounds the bell.  Typing @key{TAB} again displays all the
1597 function names in your program that begin with those characters, for
1598 example:
1599
1600 @smallexample
1601 (@value{GDBP}) b make_ @key{TAB}
1602 @exdent @value{GDBN} sounds bell; press @key{TAB} again, to see:
1603 make_a_section_from_file     make_environ
1604 make_abs_section             make_function_type
1605 make_blockvector             make_pointer_type
1606 make_cleanup                 make_reference_type
1607 make_command                 make_symbol_completion_list
1608 (@value{GDBP}) b make_
1609 @end smallexample
1610
1611 @noindent
1612 After displaying the available possibilities, @value{GDBN} copies your
1613 partial input (@samp{b make_} in the example) so you can finish the
1614 command.
1615
1616 If you just want to see the list of alternatives in the first place, you
1617 can press @kbd{M-?} rather than pressing @key{TAB} twice.  @kbd{M-?}
1618 means @kbd{@key{META} ?}.  You can type this either by holding down a
1619 key designated as the @key{META} shift on your keyboard (if there is
1620 one) while typing @kbd{?}, or as @key{ESC} followed by @kbd{?}.
1621
1622 If the number of possible completions is large, @value{GDBN} will
1623 print as much of the list as it has collected, as well as a message
1624 indicating that the list may be truncated.
1625
1626 @smallexample
1627 (@value{GDBP}) b m@key{TAB}@key{TAB}
1628 main
1629 <... the rest of the possible completions ...>
1630 *** List may be truncated, max-completions reached. ***
1631 (@value{GDBP}) b m
1632 @end smallexample
1633
1634 @noindent
1635 This behavior can be controlled with the following commands:
1636
1637 @table @code
1638 @kindex set max-completions
1639 @item set max-completions @var{limit}
1640 @itemx set max-completions unlimited
1641 Set the maximum number of completion candidates.  @value{GDBN} will
1642 stop looking for more completions once it collects this many candidates.
1643 This is useful when completing on things like function names as collecting
1644 all the possible candidates can be time consuming.
1645 The default value is 200.  A value of zero disables tab-completion.
1646 Note that setting either no limit or a very large limit can make
1647 completion slow.
1648 @kindex show max-completions
1649 @item show max-completions
1650 Show the maximum number of candidates that @value{GDBN} will collect and show
1651 during completion.
1652 @end table
1653
1654 @cindex quotes in commands
1655 @cindex completion of quoted strings
1656 Sometimes the string you need, while logically a ``word'', may contain
1657 parentheses or other characters that @value{GDBN} normally excludes from
1658 its notion of a word.  To permit word completion to work in this
1659 situation, you may enclose words in @code{'} (single quote marks) in
1660 @value{GDBN} commands.
1661
1662 A likely situation where you might need this is in typing an
1663 expression that involves a C@t{++} symbol name with template
1664 parameters.  This is because when completing expressions, GDB treats
1665 the @samp{<} character as word delimiter, assuming that it's the
1666 less-than comparison operator (@pxref{C Operators, , C and C@t{++}
1667 Operators}).
1668
1669 For example, when you want to call a C@t{++} template function
1670 interactively using the @code{print} or @code{call} commands, you may
1671 need to distinguish whether you mean the version of @code{name} that
1672 was specialized for @code{int}, @code{name<int>()}, or the version
1673 that was specialized for @code{float}, @code{name<float>()}.  To use
1674 the word-completion facilities in this situation, type a single quote
1675 @code{'} at the beginning of the function name.  This alerts
1676 @value{GDBN} that it may need to consider more information than usual
1677 when you press @key{TAB} or @kbd{M-?} to request word completion:
1678
1679 @smallexample
1680 (@value{GDBP}) p 'func< @kbd{M-?}
1681 func<int>()    func<float>()
1682 (@value{GDBP}) p 'func<
1683 @end smallexample
1684
1685 When setting breakpoints however (@pxref{Specify Location}), you don't
1686 usually need to type a quote before the function name, because
1687 @value{GDBN} understands that you want to set a breakpoint on a
1688 function:
1689
1690 @smallexample
1691 (@value{GDBP}) b func< @kbd{M-?}
1692 func<int>()    func<float>()
1693 (@value{GDBP}) b func<
1694 @end smallexample
1695
1696 This is true even in the case of typing the name of C@t{++} overloaded
1697 functions (multiple definitions of the same function, distinguished by
1698 argument type).  For example, when you want to set a breakpoint you
1699 don't need to distinguish whether you mean the version of @code{name}
1700 that takes an @code{int} parameter, @code{name(int)}, or the version
1701 that takes a @code{float} parameter, @code{name(float)}.
1702
1703 @smallexample
1704 (@value{GDBP}) b bubble( @kbd{M-?}
1705 bubble(int)    bubble(double)
1706 (@value{GDBP}) b bubble(dou @kbd{M-?}
1707 bubble(double)
1708 @end smallexample
1709
1710 See @ref{quoting names} for a description of other scenarios that
1711 require quoting.
1712
1713 For more information about overloaded functions, see @ref{C Plus Plus
1714 Expressions, ,C@t{++} Expressions}.  You can use the command @code{set
1715 overload-resolution off} to disable overload resolution;
1716 see @ref{Debugging C Plus Plus, ,@value{GDBN} Features for C@t{++}}.
1717
1718 @cindex completion of structure field names
1719 @cindex structure field name completion
1720 @cindex completion of union field names
1721 @cindex union field name completion
1722 When completing in an expression which looks up a field in a
1723 structure, @value{GDBN} also tries@footnote{The completer can be
1724 confused by certain kinds of invalid expressions.  Also, it only
1725 examines the static type of the expression, not the dynamic type.} to
1726 limit completions to the field names available in the type of the
1727 left-hand-side:
1728
1729 @smallexample
1730 (@value{GDBP}) p gdb_stdout.@kbd{M-?}
1731 magic                to_fputs             to_rewind
1732 to_data              to_isatty            to_write
1733 to_delete            to_put               to_write_async_safe
1734 to_flush             to_read
1735 @end smallexample
1736
1737 @noindent
1738 This is because the @code{gdb_stdout} is a variable of the type
1739 @code{struct ui_file} that is defined in @value{GDBN} sources as
1740 follows:
1741
1742 @smallexample
1743 struct ui_file
1744 @{
1745    int *magic;
1746    ui_file_flush_ftype *to_flush;
1747    ui_file_write_ftype *to_write;
1748    ui_file_write_async_safe_ftype *to_write_async_safe;
1749    ui_file_fputs_ftype *to_fputs;
1750    ui_file_read_ftype *to_read;
1751    ui_file_delete_ftype *to_delete;
1752    ui_file_isatty_ftype *to_isatty;
1753    ui_file_rewind_ftype *to_rewind;
1754    ui_file_put_ftype *to_put;
1755    void *to_data;
1756 @}
1757 @end smallexample
1758
1759
1760 @node Help
1761 @section Getting Help
1762 @cindex online documentation
1763 @kindex help
1764
1765 You can always ask @value{GDBN} itself for information on its commands,
1766 using the command @code{help}.
1767
1768 @table @code
1769 @kindex h @r{(@code{help})}
1770 @item help
1771 @itemx h
1772 You can use @code{help} (abbreviated @code{h}) with no arguments to
1773 display a short list of named classes of commands:
1774
1775 @smallexample
1776 (@value{GDBP}) help
1777 List of classes of commands:
1778
1779 aliases -- Aliases of other commands
1780 breakpoints -- Making program stop at certain points
1781 data -- Examining data
1782 files -- Specifying and examining files
1783 internals -- Maintenance commands
1784 obscure -- Obscure features
1785 running -- Running the program
1786 stack -- Examining the stack
1787 status -- Status inquiries
1788 support -- Support facilities
1789 tracepoints -- Tracing of program execution without
1790                stopping the program
1791 user-defined -- User-defined commands
1792
1793 Type "help" followed by a class name for a list of
1794 commands in that class.
1795 Type "help" followed by command name for full
1796 documentation.
1797 Command name abbreviations are allowed if unambiguous.
1798 (@value{GDBP})
1799 @end smallexample
1800 @c the above line break eliminates huge line overfull...
1801
1802 @item help @var{class}
1803 Using one of the general help classes as an argument, you can get a
1804 list of the individual commands in that class.  For example, here is the
1805 help display for the class @code{status}:
1806
1807 @smallexample
1808 (@value{GDBP}) help status
1809 Status inquiries.
1810
1811 List of commands:
1812
1813 @c Line break in "show" line falsifies real output, but needed
1814 @c to fit in smallbook page size.
1815 info -- Generic command for showing things
1816         about the program being debugged
1817 show -- Generic command for showing things
1818         about the debugger
1819
1820 Type "help" followed by command name for full
1821 documentation.
1822 Command name abbreviations are allowed if unambiguous.
1823 (@value{GDBP})
1824 @end smallexample
1825
1826 @item help @var{command}
1827 With a command name as @code{help} argument, @value{GDBN} displays a
1828 short paragraph on how to use that command.
1829
1830 @kindex apropos
1831 @item apropos @var{args}
1832 The @code{apropos} command searches through all of the @value{GDBN}
1833 commands, and their documentation, for the regular expression specified in
1834 @var{args}.  It prints out all matches found.  For example:
1835
1836 @smallexample
1837 apropos alias
1838 @end smallexample
1839
1840 @noindent
1841 results in:
1842
1843 @smallexample
1844 @c @group
1845 alias -- Define a new command that is an alias of an existing command
1846 aliases -- Aliases of other commands
1847 d -- Delete some breakpoints or auto-display expressions
1848 del -- Delete some breakpoints or auto-display expressions
1849 delete -- Delete some breakpoints or auto-display expressions
1850 @c @end group
1851 @end smallexample
1852
1853 @kindex complete
1854 @item complete @var{args}
1855 The @code{complete @var{args}} command lists all the possible completions
1856 for the beginning of a command.  Use @var{args} to specify the beginning of the
1857 command you want completed.  For example:
1858
1859 @smallexample
1860 complete i
1861 @end smallexample
1862
1863 @noindent results in:
1864
1865 @smallexample
1866 @group
1867 if
1868 ignore
1869 info
1870 inspect
1871 @end group
1872 @end smallexample
1873
1874 @noindent This is intended for use by @sc{gnu} Emacs.
1875 @end table
1876
1877 In addition to @code{help}, you can use the @value{GDBN} commands @code{info}
1878 and @code{show} to inquire about the state of your program, or the state
1879 of @value{GDBN} itself.  Each command supports many topics of inquiry; this
1880 manual introduces each of them in the appropriate context.  The listings
1881 under @code{info} and under @code{show} in the Command, Variable, and
1882 Function Index point to all the sub-commands.  @xref{Command and Variable
1883 Index}.
1884
1885 @c @group
1886 @table @code
1887 @kindex info
1888 @kindex i @r{(@code{info})}
1889 @item info
1890 This command (abbreviated @code{i}) is for describing the state of your
1891 program.  For example, you can show the arguments passed to a function
1892 with @code{info args}, list the registers currently in use with @code{info
1893 registers}, or list the breakpoints you have set with @code{info breakpoints}.
1894 You can get a complete list of the @code{info} sub-commands with
1895 @w{@code{help info}}.
1896
1897 @kindex set
1898 @item set
1899 You can assign the result of an expression to an environment variable with
1900 @code{set}.  For example, you can set the @value{GDBN} prompt to a $-sign with
1901 @code{set prompt $}.
1902
1903 @kindex show
1904 @item show
1905 In contrast to @code{info}, @code{show} is for describing the state of
1906 @value{GDBN} itself.
1907 You can change most of the things you can @code{show}, by using the
1908 related command @code{set}; for example, you can control what number
1909 system is used for displays with @code{set radix}, or simply inquire
1910 which is currently in use with @code{show radix}.
1911
1912 @kindex info set
1913 To display all the settable parameters and their current
1914 values, you can use @code{show} with no arguments; you may also use
1915 @code{info set}.  Both commands produce the same display.
1916 @c FIXME: "info set" violates the rule that "info" is for state of
1917 @c FIXME...program.  Ck w/ GNU: "info set" to be called something else,
1918 @c FIXME...or change desc of rule---eg "state of prog and debugging session"?
1919 @end table
1920 @c @end group
1921
1922 Here are several miscellaneous @code{show} subcommands, all of which are
1923 exceptional in lacking corresponding @code{set} commands:
1924
1925 @table @code
1926 @kindex show version
1927 @cindex @value{GDBN} version number
1928 @item show version
1929 Show what version of @value{GDBN} is running.  You should include this
1930 information in @value{GDBN} bug-reports.  If multiple versions of
1931 @value{GDBN} are in use at your site, you may need to determine which
1932 version of @value{GDBN} you are running; as @value{GDBN} evolves, new
1933 commands are introduced, and old ones may wither away.  Also, many
1934 system vendors ship variant versions of @value{GDBN}, and there are
1935 variant versions of @value{GDBN} in @sc{gnu}/Linux distributions as well.
1936 The version number is the same as the one announced when you start
1937 @value{GDBN}.
1938
1939 @kindex show copying
1940 @kindex info copying
1941 @cindex display @value{GDBN} copyright
1942 @item show copying
1943 @itemx info copying
1944 Display information about permission for copying @value{GDBN}.
1945
1946 @kindex show warranty
1947 @kindex info warranty
1948 @item show warranty
1949 @itemx info warranty
1950 Display the @sc{gnu} ``NO WARRANTY'' statement, or a warranty,
1951 if your version of @value{GDBN} comes with one.
1952
1953 @kindex show configuration
1954 @item show configuration
1955 Display detailed information about the way @value{GDBN} was configured
1956 when it was built.  This displays the optional arguments passed to the
1957 @file{configure} script and also configuration parameters detected
1958 automatically by @command{configure}.  When reporting a @value{GDBN}
1959 bug (@pxref{GDB Bugs}), it is important to include this information in
1960 your report.
1961
1962 @end table
1963
1964 @node Running
1965 @chapter Running Programs Under @value{GDBN}
1966
1967 When you run a program under @value{GDBN}, you must first generate
1968 debugging information when you compile it.
1969
1970 You may start @value{GDBN} with its arguments, if any, in an environment
1971 of your choice.  If you are doing native debugging, you may redirect
1972 your program's input and output, debug an already running process, or
1973 kill a child process.
1974
1975 @menu
1976 * Compilation::                 Compiling for debugging
1977 * Starting::                    Starting your program
1978 * Arguments::                   Your program's arguments
1979 * Environment::                 Your program's environment
1980
1981 * Working Directory::           Your program's working directory
1982 * Input/Output::                Your program's input and output
1983 * Attach::                      Debugging an already-running process
1984 * Kill Process::                Killing the child process
1985
1986 * Inferiors and Programs::      Debugging multiple inferiors and programs
1987 * Threads::                     Debugging programs with multiple threads
1988 * Forks::                       Debugging forks
1989 * Checkpoint/Restart::          Setting a @emph{bookmark} to return to later
1990 @end menu
1991
1992 @node Compilation
1993 @section Compiling for Debugging
1994
1995 In order to debug a program effectively, you need to generate
1996 debugging information when you compile it.  This debugging information
1997 is stored in the object file; it describes the data type of each
1998 variable or function and the correspondence between source line numbers
1999 and addresses in the executable code.
2000
2001 To request debugging information, specify the @samp{-g} option when you run
2002 the compiler.
2003
2004 Programs that are to be shipped to your customers are compiled with
2005 optimizations, using the @samp{-O} compiler option.  However, some
2006 compilers are unable to handle the @samp{-g} and @samp{-O} options
2007 together.  Using those compilers, you cannot generate optimized
2008 executables containing debugging information.
2009
2010 @value{NGCC}, the @sc{gnu} C/C@t{++} compiler, supports @samp{-g} with or
2011 without @samp{-O}, making it possible to debug optimized code.  We
2012 recommend that you @emph{always} use @samp{-g} whenever you compile a
2013 program.  You may think your program is correct, but there is no sense
2014 in pushing your luck.  For more information, see @ref{Optimized Code}.
2015
2016 Older versions of the @sc{gnu} C compiler permitted a variant option
2017 @w{@samp{-gg}} for debugging information.  @value{GDBN} no longer supports this
2018 format; if your @sc{gnu} C compiler has this option, do not use it.
2019
2020 @value{GDBN} knows about preprocessor macros and can show you their
2021 expansion (@pxref{Macros}).  Most compilers do not include information
2022 about preprocessor macros in the debugging information if you specify
2023 the @option{-g} flag alone.  Version 3.1 and later of @value{NGCC},
2024 the @sc{gnu} C compiler, provides macro information if you are using
2025 the DWARF debugging format, and specify the option @option{-g3}.
2026
2027 @xref{Debugging Options,,Options for Debugging Your Program or GCC,
2028 gcc, Using the @sc{gnu} Compiler Collection (GCC)}, for more
2029 information on @value{NGCC} options affecting debug information.
2030
2031 You will have the best debugging experience if you use the latest
2032 version of the DWARF debugging format that your compiler supports.
2033 DWARF is currently the most expressive and best supported debugging
2034 format in @value{GDBN}.
2035
2036 @need 2000
2037 @node Starting
2038 @section Starting your Program
2039 @cindex starting
2040 @cindex running
2041
2042 @table @code
2043 @kindex run
2044 @kindex r @r{(@code{run})}
2045 @item run
2046 @itemx r
2047 Use the @code{run} command to start your program under @value{GDBN}.
2048 You must first specify the program name with an argument to
2049 @value{GDBN} (@pxref{Invocation, ,Getting In and Out of
2050 @value{GDBN}}), or by using the @code{file} or @code{exec-file}
2051 command (@pxref{Files, ,Commands to Specify Files}).
2052
2053 @end table
2054
2055 If you are running your program in an execution environment that
2056 supports processes, @code{run} creates an inferior process and makes
2057 that process run your program.  In some environments without processes,
2058 @code{run} jumps to the start of your program.  Other targets,
2059 like @samp{remote}, are always running.  If you get an error
2060 message like this one:
2061
2062 @smallexample
2063 The "remote" target does not support "run".
2064 Try "help target" or "continue".
2065 @end smallexample
2066
2067 @noindent
2068 then use @code{continue} to run your program.  You may need @code{load}
2069 first (@pxref{load}).
2070
2071 The execution of a program is affected by certain information it
2072 receives from its superior.  @value{GDBN} provides ways to specify this
2073 information, which you must do @emph{before} starting your program.  (You
2074 can change it after starting your program, but such changes only affect
2075 your program the next time you start it.)  This information may be
2076 divided into four categories:
2077
2078 @table @asis
2079 @item The @emph{arguments.}
2080 Specify the arguments to give your program as the arguments of the
2081 @code{run} command.  If a shell is available on your target, the shell
2082 is used to pass the arguments, so that you may use normal conventions
2083 (such as wildcard expansion or variable substitution) in describing
2084 the arguments.
2085 In Unix systems, you can control which shell is used with the
2086 @code{SHELL} environment variable.  If you do not define @code{SHELL},
2087 @value{GDBN} uses the default shell (@file{/bin/sh}).  You can disable
2088 use of any shell with the @code{set startup-with-shell} command (see
2089 below for details).
2090
2091 @item The @emph{environment.}
2092 Your program normally inherits its environment from @value{GDBN}, but you can
2093 use the @value{GDBN} commands @code{set environment} and @code{unset
2094 environment} to change parts of the environment that affect
2095 your program.  @xref{Environment, ,Your Program's Environment}.
2096
2097 @item The @emph{working directory.}
2098 You can set your program's working directory with the command
2099 @kbd{set cwd}.  If you do not set any working directory with this
2100 command, your program will inherit @value{GDBN}'s working directory if
2101 native debugging, or the remote server's working directory if remote
2102 debugging.  @xref{Working Directory, ,Your Program's Working
2103 Directory}.
2104
2105 @item The @emph{standard input and output.}
2106 Your program normally uses the same device for standard input and
2107 standard output as @value{GDBN} is using.  You can redirect input and output
2108 in the @code{run} command line, or you can use the @code{tty} command to
2109 set a different device for your program.
2110 @xref{Input/Output, ,Your Program's Input and Output}.
2111
2112 @cindex pipes
2113 @emph{Warning:} While input and output redirection work, you cannot use
2114 pipes to pass the output of the program you are debugging to another
2115 program; if you attempt this, @value{GDBN} is likely to wind up debugging the
2116 wrong program.
2117 @end table
2118
2119 When you issue the @code{run} command, your program begins to execute
2120 immediately.  @xref{Stopping, ,Stopping and Continuing}, for discussion
2121 of how to arrange for your program to stop.  Once your program has
2122 stopped, you may call functions in your program, using the @code{print}
2123 or @code{call} commands.  @xref{Data, ,Examining Data}.
2124
2125 If the modification time of your symbol file has changed since the last
2126 time @value{GDBN} read its symbols, @value{GDBN} discards its symbol
2127 table, and reads it again.  When it does this, @value{GDBN} tries to retain
2128 your current breakpoints.
2129
2130 @table @code
2131 @kindex start
2132 @item start
2133 @cindex run to main procedure
2134 The name of the main procedure can vary from language to language.
2135 With C or C@t{++}, the main procedure name is always @code{main}, but
2136 other languages such as Ada do not require a specific name for their
2137 main procedure.  The debugger provides a convenient way to start the
2138 execution of the program and to stop at the beginning of the main
2139 procedure, depending on the language used.
2140
2141 The @samp{start} command does the equivalent of setting a temporary
2142 breakpoint at the beginning of the main procedure and then invoking
2143 the @samp{run} command.
2144
2145 @cindex elaboration phase
2146 Some programs contain an @dfn{elaboration} phase where some startup code is
2147 executed before the main procedure is called.  This depends on the
2148 languages used to write your program.  In C@t{++}, for instance,
2149 constructors for static and global objects are executed before
2150 @code{main} is called.  It is therefore possible that the debugger stops
2151 before reaching the main procedure.  However, the temporary breakpoint
2152 will remain to halt execution.
2153
2154 Specify the arguments to give to your program as arguments to the
2155 @samp{start} command.  These arguments will be given verbatim to the
2156 underlying @samp{run} command.  Note that the same arguments will be
2157 reused if no argument is provided during subsequent calls to
2158 @samp{start} or @samp{run}.
2159
2160 It is sometimes necessary to debug the program during elaboration.  In
2161 these cases, using the @code{start} command would stop the execution
2162 of your program too late, as the program would have already completed
2163 the elaboration phase.  Under these circumstances, either insert
2164 breakpoints in your elaboration code before running your program or
2165 use the @code{starti} command.
2166
2167 @kindex starti
2168 @item starti
2169 @cindex run to first instruction
2170 The @samp{starti} command does the equivalent of setting a temporary
2171 breakpoint at the first instruction of a program's execution and then
2172 invoking the @samp{run} command.  For programs containing an
2173 elaboration phase, the @code{starti} command will stop execution at
2174 the start of the elaboration phase.
2175
2176 @anchor{set exec-wrapper}
2177 @kindex set exec-wrapper
2178 @item set exec-wrapper @var{wrapper}
2179 @itemx show exec-wrapper
2180 @itemx unset exec-wrapper
2181 When @samp{exec-wrapper} is set, the specified wrapper is used to
2182 launch programs for debugging.  @value{GDBN} starts your program
2183 with a shell command of the form @kbd{exec @var{wrapper}
2184 @var{program}}.  Quoting is added to @var{program} and its
2185 arguments, but not to @var{wrapper}, so you should add quotes if
2186 appropriate for your shell.  The wrapper runs until it executes
2187 your program, and then @value{GDBN} takes control.
2188
2189 You can use any program that eventually calls @code{execve} with
2190 its arguments as a wrapper.  Several standard Unix utilities do
2191 this, e.g.@: @code{env} and @code{nohup}.  Any Unix shell script ending
2192 with @code{exec "$@@"} will also work.
2193
2194 For example, you can use @code{env} to pass an environment variable to
2195 the debugged program, without setting the variable in your shell's
2196 environment:
2197
2198 @smallexample
2199 (@value{GDBP}) set exec-wrapper env 'LD_PRELOAD=libtest.so'
2200 (@value{GDBP}) run
2201 @end smallexample
2202
2203 This command is available when debugging locally on most targets, excluding
2204 @sc{djgpp}, Cygwin, MS Windows, and QNX Neutrino.
2205
2206 @kindex set startup-with-shell
2207 @anchor{set startup-with-shell}
2208 @item set startup-with-shell
2209 @itemx set startup-with-shell on
2210 @itemx set startup-with-shell off
2211 @itemx show startup-with-shell
2212 On Unix systems, by default, if a shell is available on your target,
2213 @value{GDBN}) uses it to start your program.  Arguments of the
2214 @code{run} command are passed to the shell, which does variable
2215 substitution, expands wildcard characters and performs redirection of
2216 I/O.  In some circumstances, it may be useful to disable such use of a
2217 shell, for example, when debugging the shell itself or diagnosing
2218 startup failures such as:
2219
2220 @smallexample
2221 (@value{GDBP}) run
2222 Starting program: ./a.out
2223 During startup program terminated with signal SIGSEGV, Segmentation fault.
2224 @end smallexample
2225
2226 @noindent
2227 which indicates the shell or the wrapper specified with
2228 @samp{exec-wrapper} crashed, not your program.  Most often, this is
2229 caused by something odd in your shell's non-interactive mode
2230 initialization file---such as @file{.cshrc} for C-shell,
2231 $@file{.zshenv} for the Z shell, or the file specified in the
2232 @samp{BASH_ENV} environment variable for BASH.
2233
2234 @anchor{set auto-connect-native-target}
2235 @kindex set auto-connect-native-target
2236 @item set auto-connect-native-target
2237 @itemx set auto-connect-native-target on
2238 @itemx set auto-connect-native-target off
2239 @itemx show auto-connect-native-target
2240
2241 By default, if not connected to any target yet (e.g., with
2242 @code{target remote}), the @code{run} command starts your program as a
2243 native process under @value{GDBN}, on your local machine.  If you're
2244 sure you don't want to debug programs on your local machine, you can
2245 tell @value{GDBN} to not connect to the native target automatically
2246 with the @code{set auto-connect-native-target off} command.
2247
2248 If @code{on}, which is the default, and if @value{GDBN} is not
2249 connected to a target already, the @code{run} command automaticaly
2250 connects to the native target, if one is available.
2251
2252 If @code{off}, and if @value{GDBN} is not connected to a target
2253 already, the @code{run} command fails with an error:
2254
2255 @smallexample
2256 (@value{GDBP}) run
2257 Don't know how to run.  Try "help target".
2258 @end smallexample
2259
2260 If @value{GDBN} is already connected to a target, @value{GDBN} always
2261 uses it with the @code{run} command.
2262
2263 In any case, you can explicitly connect to the native target with the
2264 @code{target native} command.  For example,
2265
2266 @smallexample
2267 (@value{GDBP}) set auto-connect-native-target off
2268 (@value{GDBP}) run
2269 Don't know how to run.  Try "help target".
2270 (@value{GDBP}) target native
2271 (@value{GDBP}) run
2272 Starting program: ./a.out
2273 [Inferior 1 (process 10421) exited normally]
2274 @end smallexample
2275
2276 In case you connected explicitly to the @code{native} target,
2277 @value{GDBN} remains connected even if all inferiors exit, ready for
2278 the next @code{run} command.  Use the @code{disconnect} command to
2279 disconnect.
2280
2281 Examples of other commands that likewise respect the
2282 @code{auto-connect-native-target} setting: @code{attach}, @code{info
2283 proc}, @code{info os}.
2284
2285 @kindex set disable-randomization
2286 @item set disable-randomization
2287 @itemx set disable-randomization on
2288 This option (enabled by default in @value{GDBN}) will turn off the native
2289 randomization of the virtual address space of the started program.  This option
2290 is useful for multiple debugging sessions to make the execution better
2291 reproducible and memory addresses reusable across debugging sessions.
2292
2293 This feature is implemented only on certain targets, including @sc{gnu}/Linux.
2294 On @sc{gnu}/Linux you can get the same behavior using
2295
2296 @smallexample
2297 (@value{GDBP}) set exec-wrapper setarch `uname -m` -R
2298 @end smallexample
2299
2300 @item set disable-randomization off
2301 Leave the behavior of the started executable unchanged.  Some bugs rear their
2302 ugly heads only when the program is loaded at certain addresses.  If your bug
2303 disappears when you run the program under @value{GDBN}, that might be because
2304 @value{GDBN} by default disables the address randomization on platforms, such
2305 as @sc{gnu}/Linux, which do that for stand-alone programs.  Use @kbd{set
2306 disable-randomization off} to try to reproduce such elusive bugs.
2307
2308 On targets where it is available, virtual address space randomization
2309 protects the programs against certain kinds of security attacks.  In these
2310 cases the attacker needs to know the exact location of a concrete executable
2311 code.  Randomizing its location makes it impossible to inject jumps misusing
2312 a code at its expected addresses.
2313
2314 Prelinking shared libraries provides a startup performance advantage but it
2315 makes addresses in these libraries predictable for privileged processes by
2316 having just unprivileged access at the target system.  Reading the shared
2317 library binary gives enough information for assembling the malicious code
2318 misusing it.  Still even a prelinked shared library can get loaded at a new
2319 random address just requiring the regular relocation process during the
2320 startup.  Shared libraries not already prelinked are always loaded at
2321 a randomly chosen address.
2322
2323 Position independent executables (PIE) contain position independent code
2324 similar to the shared libraries and therefore such executables get loaded at
2325 a randomly chosen address upon startup.  PIE executables always load even
2326 already prelinked shared libraries at a random address.  You can build such
2327 executable using @command{gcc -fPIE -pie}.
2328
2329 Heap (malloc storage), stack and custom mmap areas are always placed randomly
2330 (as long as the randomization is enabled).
2331
2332 @item show disable-randomization
2333 Show the current setting of the explicit disable of the native randomization of
2334 the virtual address space of the started program.
2335
2336 @end table
2337
2338 @node Arguments
2339 @section Your Program's Arguments
2340
2341 @cindex arguments (to your program)
2342 The arguments to your program can be specified by the arguments of the
2343 @code{run} command.
2344 They are passed to a shell, which expands wildcard characters and
2345 performs redirection of I/O, and thence to your program.  Your
2346 @code{SHELL} environment variable (if it exists) specifies what shell
2347 @value{GDBN} uses.  If you do not define @code{SHELL}, @value{GDBN} uses
2348 the default shell (@file{/bin/sh} on Unix).
2349
2350 On non-Unix systems, the program is usually invoked directly by
2351 @value{GDBN}, which emulates I/O redirection via the appropriate system
2352 calls, and the wildcard characters are expanded by the startup code of
2353 the program, not by the shell.
2354
2355 @code{run} with no arguments uses the same arguments used by the previous
2356 @code{run}, or those set by the @code{set args} command.
2357
2358 @table @code
2359 @kindex set args
2360 @item set args
2361 Specify the arguments to be used the next time your program is run.  If
2362 @code{set args} has no arguments, @code{run} executes your program
2363 with no arguments.  Once you have run your program with arguments,
2364 using @code{set args} before the next @code{run} is the only way to run
2365 it again without arguments.
2366
2367 @kindex show args
2368 @item show args
2369 Show the arguments to give your program when it is started.
2370 @end table
2371
2372 @node Environment
2373 @section Your Program's Environment
2374
2375 @cindex environment (of your program)
2376 The @dfn{environment} consists of a set of environment variables and
2377 their values.  Environment variables conventionally record such things as
2378 your user name, your home directory, your terminal type, and your search
2379 path for programs to run.  Usually you set up environment variables with
2380 the shell and they are inherited by all the other programs you run.  When
2381 debugging, it can be useful to try running your program with a modified
2382 environment without having to start @value{GDBN} over again.
2383
2384 @table @code
2385 @kindex path
2386 @item path @var{directory}
2387 Add @var{directory} to the front of the @code{PATH} environment variable
2388 (the search path for executables) that will be passed to your program.
2389 The value of @code{PATH} used by @value{GDBN} does not change.
2390 You may specify several directory names, separated by whitespace or by a
2391 system-dependent separator character (@samp{:} on Unix, @samp{;} on
2392 MS-DOS and MS-Windows).  If @var{directory} is already in the path, it
2393 is moved to the front, so it is searched sooner.
2394
2395 You can use the string @samp{$cwd} to refer to whatever is the current
2396 working directory at the time @value{GDBN} searches the path.  If you
2397 use @samp{.} instead, it refers to the directory where you executed the
2398 @code{path} command.  @value{GDBN} replaces @samp{.} in the
2399 @var{directory} argument (with the current path) before adding
2400 @var{directory} to the search path.
2401 @c 'path' is explicitly nonrepeatable, but RMS points out it is silly to
2402 @c document that, since repeating it would be a no-op.
2403
2404 @kindex show paths
2405 @item show paths
2406 Display the list of search paths for executables (the @code{PATH}
2407 environment variable).
2408
2409 @kindex show environment
2410 @item show environment @r{[}@var{varname}@r{]}
2411 Print the value of environment variable @var{varname} to be given to
2412 your program when it starts.  If you do not supply @var{varname},
2413 print the names and values of all environment variables to be given to
2414 your program.  You can abbreviate @code{environment} as @code{env}.
2415
2416 @kindex set environment
2417 @anchor{set environment}
2418 @item set environment @var{varname} @r{[}=@var{value}@r{]}
2419 Set environment variable @var{varname} to @var{value}.  The value
2420 changes for your program (and the shell @value{GDBN} uses to launch
2421 it), not for @value{GDBN} itself.  The @var{value} may be any string; the
2422 values of environment variables are just strings, and any
2423 interpretation is supplied by your program itself.  The @var{value}
2424 parameter is optional; if it is eliminated, the variable is set to a
2425 null value.
2426 @c "any string" here does not include leading, trailing
2427 @c blanks. Gnu asks: does anyone care?
2428
2429 For example, this command:
2430
2431 @smallexample
2432 set env USER = foo
2433 @end smallexample
2434
2435 @noindent
2436 tells the debugged program, when subsequently run, that its user is named
2437 @samp{foo}.  (The spaces around @samp{=} are used for clarity here; they
2438 are not actually required.)
2439
2440 Note that on Unix systems, @value{GDBN} runs your program via a shell,
2441 which also inherits the environment set with @code{set environment}.
2442 If necessary, you can avoid that by using the @samp{env} program as a
2443 wrapper instead of using @code{set environment}.  @xref{set
2444 exec-wrapper}, for an example doing just that.
2445
2446 Environment variables that are set by the user are also transmitted to
2447 @command{gdbserver} to be used when starting the remote inferior.
2448 @pxref{QEnvironmentHexEncoded}.
2449
2450 @kindex unset environment
2451 @anchor{unset environment}
2452 @item unset environment @var{varname}
2453 Remove variable @var{varname} from the environment to be passed to your
2454 program.  This is different from @samp{set env @var{varname} =};
2455 @code{unset environment} removes the variable from the environment,
2456 rather than assigning it an empty value.
2457
2458 Environment variables that are unset by the user are also unset on
2459 @command{gdbserver} when starting the remote inferior.
2460 @pxref{QEnvironmentUnset}.
2461 @end table
2462
2463 @emph{Warning:} On Unix systems, @value{GDBN} runs your program using
2464 the shell indicated by your @code{SHELL} environment variable if it
2465 exists (or @code{/bin/sh} if not).  If your @code{SHELL} variable
2466 names a shell that runs an initialization file when started
2467 non-interactively---such as @file{.cshrc} for C-shell, $@file{.zshenv}
2468 for the Z shell, or the file specified in the @samp{BASH_ENV}
2469 environment variable for BASH---any variables you set in that file
2470 affect your program.  You may wish to move setting of environment
2471 variables to files that are only run when you sign on, such as
2472 @file{.login} or @file{.profile}.
2473
2474 @node Working Directory
2475 @section Your Program's Working Directory
2476
2477 @cindex working directory (of your program)
2478 Each time you start your program with @code{run}, the inferior will be
2479 initialized with the current working directory specified by the
2480 @kbd{set cwd} command.  If no directory has been specified by this
2481 command, then the inferior will inherit @value{GDBN}'s current working
2482 directory as its working directory if native debugging, or it will
2483 inherit the remote server's current working directory if remote
2484 debugging.
2485
2486 @table @code
2487 @kindex set cwd
2488 @cindex change inferior's working directory
2489 @anchor{set cwd command}
2490 @item set cwd @r{[}@var{directory}@r{]}
2491 Set the inferior's working directory to @var{directory}, which will be
2492 @code{glob}-expanded in order to resolve tildes (@file{~}).  If no
2493 argument has been specified, the command clears the setting and resets
2494 it to an empty state.  This setting has no effect on @value{GDBN}'s
2495 working directory, and it only takes effect the next time you start
2496 the inferior.  The @file{~} in @var{directory} is a short for the
2497 @dfn{home directory}, usually pointed to by the @env{HOME} environment
2498 variable.  On MS-Windows, if @env{HOME} is not defined, @value{GDBN}
2499 uses the concatenation of @env{HOMEDRIVE} and @env{HOMEPATH} as
2500 fallback.
2501
2502 You can also change @value{GDBN}'s current working directory by using
2503 the @code{cd} command.
2504 @xref{cd command}.
2505
2506 @kindex show cwd
2507 @cindex show inferior's working directory
2508 @item show cwd
2509 Show the inferior's working directory.  If no directory has been
2510 specified by @kbd{set cwd}, then the default inferior's working
2511 directory is the same as @value{GDBN}'s working directory.
2512
2513 @kindex cd
2514 @cindex change @value{GDBN}'s working directory
2515 @anchor{cd command}
2516 @item cd @r{[}@var{directory}@r{]}
2517 Set the @value{GDBN} working directory to @var{directory}.  If not
2518 given, @var{directory} uses @file{'~'}.
2519
2520 The @value{GDBN} working directory serves as a default for the
2521 commands that specify files for @value{GDBN} to operate on.
2522 @xref{Files, ,Commands to Specify Files}.
2523 @xref{set cwd command}.
2524
2525 @kindex pwd
2526 @item pwd
2527 Print the @value{GDBN} working directory.
2528 @end table
2529
2530 It is generally impossible to find the current working directory of
2531 the process being debugged (since a program can change its directory
2532 during its run).  If you work on a system where @value{GDBN} supports
2533 the @code{info proc} command (@pxref{Process Information}), you can
2534 use the @code{info proc} command to find out the
2535 current working directory of the debuggee.
2536
2537 @node Input/Output
2538 @section Your Program's Input and Output
2539
2540 @cindex redirection
2541 @cindex i/o
2542 @cindex terminal
2543 By default, the program you run under @value{GDBN} does input and output to
2544 the same terminal that @value{GDBN} uses.  @value{GDBN} switches the terminal
2545 to its own terminal modes to interact with you, but it records the terminal
2546 modes your program was using and switches back to them when you continue
2547 running your program.
2548
2549 @table @code
2550 @kindex info terminal
2551 @item info terminal
2552 Displays information recorded by @value{GDBN} about the terminal modes your
2553 program is using.
2554 @end table
2555
2556 You can redirect your program's input and/or output using shell
2557 redirection with the @code{run} command.  For example,
2558
2559 @smallexample
2560 run > outfile
2561 @end smallexample
2562
2563 @noindent
2564 starts your program, diverting its output to the file @file{outfile}.
2565
2566 @kindex tty
2567 @cindex controlling terminal
2568 Another way to specify where your program should do input and output is
2569 with the @code{tty} command.  This command accepts a file name as
2570 argument, and causes this file to be the default for future @code{run}
2571 commands.  It also resets the controlling terminal for the child
2572 process, for future @code{run} commands.  For example,
2573
2574 @smallexample
2575 tty /dev/ttyb
2576 @end smallexample
2577
2578 @noindent
2579 directs that processes started with subsequent @code{run} commands
2580 default to do input and output on the terminal @file{/dev/ttyb} and have
2581 that as their controlling terminal.
2582
2583 An explicit redirection in @code{run} overrides the @code{tty} command's
2584 effect on the input/output device, but not its effect on the controlling
2585 terminal.
2586
2587 When you use the @code{tty} command or redirect input in the @code{run}
2588 command, only the input @emph{for your program} is affected.  The input
2589 for @value{GDBN} still comes from your terminal.  @code{tty} is an alias
2590 for @code{set inferior-tty}.
2591
2592 @cindex inferior tty
2593 @cindex set inferior controlling terminal
2594 You can use the @code{show inferior-tty} command to tell @value{GDBN} to
2595 display the name of the terminal that will be used for future runs of your
2596 program.
2597
2598 @table @code
2599 @item set inferior-tty [ @var{tty} ]
2600 @kindex set inferior-tty
2601 Set the tty for the program being debugged to @var{tty}.  Omitting @var{tty}
2602 restores the default behavior, which is to use the same terminal as
2603 @value{GDBN}.
2604
2605 @item show inferior-tty
2606 @kindex show inferior-tty
2607 Show the current tty for the program being debugged.
2608 @end table
2609
2610 @node Attach
2611 @section Debugging an Already-running Process
2612 @kindex attach
2613 @cindex attach
2614
2615 @table @code
2616 @item attach @var{process-id}
2617 This command attaches to a running process---one that was started
2618 outside @value{GDBN}.  (@code{info files} shows your active
2619 targets.)  The command takes as argument a process ID.  The usual way to
2620 find out the @var{process-id} of a Unix process is with the @code{ps} utility,
2621 or with the @samp{jobs -l} shell command.
2622
2623 @code{attach} does not repeat if you press @key{RET} a second time after
2624 executing the command.
2625 @end table
2626
2627 To use @code{attach}, your program must be running in an environment
2628 which supports processes; for example, @code{attach} does not work for
2629 programs on bare-board targets that lack an operating system.  You must
2630 also have permission to send the process a signal.
2631
2632 When you use @code{attach}, the debugger finds the program running in
2633 the process first by looking in the current working directory, then (if
2634 the program is not found) by using the source file search path
2635 (@pxref{Source Path, ,Specifying Source Directories}).  You can also use
2636 the @code{file} command to load the program.  @xref{Files, ,Commands to
2637 Specify Files}.
2638
2639 The first thing @value{GDBN} does after arranging to debug the specified
2640 process is to stop it.  You can examine and modify an attached process
2641 with all the @value{GDBN} commands that are ordinarily available when
2642 you start processes with @code{run}.  You can insert breakpoints; you
2643 can step and continue; you can modify storage.  If you would rather the
2644 process continue running, you may use the @code{continue} command after
2645 attaching @value{GDBN} to the process.
2646
2647 @table @code
2648 @kindex detach
2649 @item detach
2650 When you have finished debugging the attached process, you can use the
2651 @code{detach} command to release it from @value{GDBN} control.  Detaching
2652 the process continues its execution.  After the @code{detach} command,
2653 that process and @value{GDBN} become completely independent once more, and you
2654 are ready to @code{attach} another process or start one with @code{run}.
2655 @code{detach} does not repeat if you press @key{RET} again after
2656 executing the command.
2657 @end table
2658
2659 If you exit @value{GDBN} while you have an attached process, you detach
2660 that process.  If you use the @code{run} command, you kill that process.
2661 By default, @value{GDBN} asks for confirmation if you try to do either of these
2662 things; you can control whether or not you need to confirm by using the
2663 @code{set confirm} command (@pxref{Messages/Warnings, ,Optional Warnings and
2664 Messages}).
2665
2666 @node Kill Process
2667 @section Killing the Child Process
2668
2669 @table @code
2670 @kindex kill
2671 @item kill
2672 Kill the child process in which your program is running under @value{GDBN}.
2673 @end table
2674
2675 This command is useful if you wish to debug a core dump instead of a
2676 running process.  @value{GDBN} ignores any core dump file while your program
2677 is running.
2678
2679 On some operating systems, a program cannot be executed outside @value{GDBN}
2680 while you have breakpoints set on it inside @value{GDBN}.  You can use the
2681 @code{kill} command in this situation to permit running your program
2682 outside the debugger.
2683
2684 The @code{kill} command is also useful if you wish to recompile and
2685 relink your program, since on many systems it is impossible to modify an
2686 executable file while it is running in a process.  In this case, when you
2687 next type @code{run}, @value{GDBN} notices that the file has changed, and
2688 reads the symbol table again (while trying to preserve your current
2689 breakpoint settings).
2690
2691 @node Inferiors and Programs
2692 @section Debugging Multiple Inferiors and Programs
2693
2694 @value{GDBN} lets you run and debug multiple programs in a single
2695 session.  In addition, @value{GDBN} on some systems may let you run
2696 several programs simultaneously (otherwise you have to exit from one
2697 before starting another).  In the most general case, you can have
2698 multiple threads of execution in each of multiple processes, launched
2699 from multiple executables.
2700
2701 @cindex inferior
2702 @value{GDBN} represents the state of each program execution with an
2703 object called an @dfn{inferior}.  An inferior typically corresponds to
2704 a process, but is more general and applies also to targets that do not
2705 have processes.  Inferiors may be created before a process runs, and
2706 may be retained after a process exits.  Inferiors have unique
2707 identifiers that are different from process ids.  Usually each
2708 inferior will also have its own distinct address space, although some
2709 embedded targets may have several inferiors running in different parts
2710 of a single address space.  Each inferior may in turn have multiple
2711 threads running in it.
2712
2713 To find out what inferiors exist at any moment, use @w{@code{info
2714 inferiors}}:
2715
2716 @table @code
2717 @kindex info inferiors [ @var{id}@dots{} ]
2718 @item info inferiors
2719 Print a list of all inferiors currently being managed by @value{GDBN}.
2720 By default all inferiors are printed, but the argument @var{id}@dots{}
2721 -- a space separated list of inferior numbers -- can be used to limit
2722 the display to just the requested inferiors.
2723
2724 @value{GDBN} displays for each inferior (in this order):
2725
2726 @enumerate
2727 @item
2728 the inferior number assigned by @value{GDBN}
2729
2730 @item
2731 the target system's inferior identifier
2732
2733 @item
2734 the name of the executable the inferior is running.
2735
2736 @end enumerate
2737
2738 @noindent
2739 An asterisk @samp{*} preceding the @value{GDBN} inferior number
2740 indicates the current inferior.
2741
2742 For example,
2743 @end table
2744 @c end table here to get a little more width for example
2745
2746 @smallexample
2747 (@value{GDBP}) info inferiors
2748   Num  Description       Executable
2749   2    process 2307      hello
2750 * 1    process 3401      goodbye
2751 @end smallexample
2752
2753 To switch focus between inferiors, use the @code{inferior} command:
2754
2755 @table @code
2756 @kindex inferior @var{infno}
2757 @item inferior @var{infno}
2758 Make inferior number @var{infno} the current inferior.  The argument
2759 @var{infno} is the inferior number assigned by @value{GDBN}, as shown
2760 in the first field of the @samp{info inferiors} display.
2761 @end table
2762
2763 @vindex $_inferior@r{, convenience variable}
2764 The debugger convenience variable @samp{$_inferior} contains the
2765 number of the current inferior.  You may find this useful in writing
2766 breakpoint conditional expressions, command scripts, and so forth.
2767 @xref{Convenience Vars,, Convenience Variables}, for general
2768 information on convenience variables.
2769
2770 You can get multiple executables into a debugging session via the
2771 @code{add-inferior} and @w{@code{clone-inferior}} commands.  On some
2772 systems @value{GDBN} can add inferiors to the debug session
2773 automatically by following calls to @code{fork} and @code{exec}.  To
2774 remove inferiors from the debugging session use the
2775 @w{@code{remove-inferiors}} command.
2776
2777 @table @code
2778 @kindex add-inferior
2779 @item add-inferior [ -copies @var{n} ] [ -exec @var{executable} ]
2780 Adds @var{n} inferiors to be run using @var{executable} as the
2781 executable; @var{n} defaults to 1.  If no executable is specified,
2782 the inferiors begins empty, with no program.  You can still assign or
2783 change the program assigned to the inferior at any time by using the
2784 @code{file} command with the executable name as its argument.
2785
2786 @kindex clone-inferior
2787 @item clone-inferior [ -copies @var{n} ] [ @var{infno} ]
2788 Adds @var{n} inferiors ready to execute the same program as inferior
2789 @var{infno}; @var{n} defaults to 1, and @var{infno} defaults to the
2790 number of the current inferior.  This is a convenient command when you
2791 want to run another instance of the inferior you are debugging.
2792
2793 @smallexample
2794 (@value{GDBP}) info inferiors
2795   Num  Description       Executable
2796 * 1    process 29964     helloworld
2797 (@value{GDBP}) clone-inferior
2798 Added inferior 2.
2799 1 inferiors added.
2800 (@value{GDBP}) info inferiors
2801   Num  Description       Executable
2802   2    <null>            helloworld
2803 * 1    process 29964     helloworld
2804 @end smallexample
2805
2806 You can now simply switch focus to inferior 2 and run it.
2807
2808 @kindex remove-inferiors
2809 @item remove-inferiors @var{infno}@dots{}
2810 Removes the inferior or inferiors @var{infno}@dots{}.  It is not
2811 possible to remove an inferior that is running with this command.  For
2812 those, use the @code{kill} or @code{detach} command first.
2813
2814 @end table
2815
2816 To quit debugging one of the running inferiors that is not the current
2817 inferior, you can either detach from it by using the @w{@code{detach
2818 inferior}} command (allowing it to run independently), or kill it
2819 using the @w{@code{kill inferiors}} command:
2820
2821 @table @code
2822 @kindex detach inferiors @var{infno}@dots{}
2823 @item detach inferior @var{infno}@dots{}
2824 Detach from the inferior or inferiors identified by @value{GDBN}
2825 inferior number(s) @var{infno}@dots{}.  Note that the inferior's entry
2826 still stays on the list of inferiors shown by @code{info inferiors},
2827 but its Description will show @samp{<null>}.
2828
2829 @kindex kill inferiors @var{infno}@dots{}
2830 @item kill inferiors @var{infno}@dots{}
2831 Kill the inferior or inferiors identified by @value{GDBN} inferior
2832 number(s) @var{infno}@dots{}.  Note that the inferior's entry still
2833 stays on the list of inferiors shown by @code{info inferiors}, but its
2834 Description will show @samp{<null>}.
2835 @end table
2836
2837 After the successful completion of a command such as @code{detach},
2838 @code{detach inferiors}, @code{kill} or @code{kill inferiors}, or after
2839 a normal process exit, the inferior is still valid and listed with
2840 @code{info inferiors}, ready to be restarted.
2841
2842
2843 To be notified when inferiors are started or exit under @value{GDBN}'s
2844 control use @w{@code{set print inferior-events}}:
2845
2846 @table @code
2847 @kindex set print inferior-events
2848 @cindex print messages on inferior start and exit
2849 @item set print inferior-events
2850 @itemx set print inferior-events on
2851 @itemx set print inferior-events off
2852 The @code{set print inferior-events} command allows you to enable or
2853 disable printing of messages when @value{GDBN} notices that new
2854 inferiors have started or that inferiors have exited or have been
2855 detached.  By default, these messages will not be printed.
2856
2857 @kindex show print inferior-events
2858 @item show print inferior-events
2859 Show whether messages will be printed when @value{GDBN} detects that
2860 inferiors have started, exited or have been detached.
2861 @end table
2862
2863 Many commands will work the same with multiple programs as with a
2864 single program: e.g., @code{print myglobal} will simply display the
2865 value of @code{myglobal} in the current inferior.
2866
2867
2868 Occasionaly, when debugging @value{GDBN} itself, it may be useful to
2869 get more info about the relationship of inferiors, programs, address
2870 spaces in a debug session.  You can do that with the @w{@code{maint
2871 info program-spaces}} command.
2872
2873 @table @code
2874 @kindex maint info program-spaces
2875 @item maint info program-spaces
2876 Print a list of all program spaces currently being managed by
2877 @value{GDBN}.
2878
2879 @value{GDBN} displays for each program space (in this order):
2880
2881 @enumerate
2882 @item
2883 the program space number assigned by @value{GDBN}
2884
2885 @item
2886 the name of the executable loaded into the program space, with e.g.,
2887 the @code{file} command.
2888
2889 @end enumerate
2890
2891 @noindent
2892 An asterisk @samp{*} preceding the @value{GDBN} program space number
2893 indicates the current program space.
2894
2895 In addition, below each program space line, @value{GDBN} prints extra
2896 information that isn't suitable to display in tabular form.  For
2897 example, the list of inferiors bound to the program space.
2898
2899 @smallexample
2900 (@value{GDBP}) maint info program-spaces
2901   Id   Executable
2902 * 1    hello
2903   2    goodbye
2904         Bound inferiors: ID 1 (process 21561)
2905 @end smallexample
2906
2907 Here we can see that no inferior is running the program @code{hello},
2908 while @code{process 21561} is running the program @code{goodbye}.  On
2909 some targets, it is possible that multiple inferiors are bound to the
2910 same program space.  The most common example is that of debugging both
2911 the parent and child processes of a @code{vfork} call.  For example,
2912
2913 @smallexample
2914 (@value{GDBP}) maint info program-spaces
2915   Id   Executable
2916 * 1    vfork-test
2917         Bound inferiors: ID 2 (process 18050), ID 1 (process 18045)
2918 @end smallexample
2919
2920 Here, both inferior 2 and inferior 1 are running in the same program
2921 space as a result of inferior 1 having executed a @code{vfork} call.
2922 @end table
2923
2924 @node Threads
2925 @section Debugging Programs with Multiple Threads
2926
2927 @cindex threads of execution
2928 @cindex multiple threads
2929 @cindex switching threads
2930 In some operating systems, such as GNU/Linux and Solaris, a single program
2931 may have more than one @dfn{thread} of execution.  The precise semantics
2932 of threads differ from one operating system to another, but in general
2933 the threads of a single program are akin to multiple processes---except
2934 that they share one address space (that is, they can all examine and
2935 modify the same variables).  On the other hand, each thread has its own
2936 registers and execution stack, and perhaps private memory.
2937
2938 @value{GDBN} provides these facilities for debugging multi-thread
2939 programs:
2940
2941 @itemize @bullet
2942 @item automatic notification of new threads
2943 @item @samp{thread @var{thread-id}}, a command to switch among threads
2944 @item @samp{info threads}, a command to inquire about existing threads
2945 @item @samp{thread apply [@var{thread-id-list} | all] @var{args}},
2946 a command to apply a command to a list of threads
2947 @item thread-specific breakpoints
2948 @item @samp{set print thread-events}, which controls printing of 
2949 messages on thread start and exit.
2950 @item @samp{set libthread-db-search-path @var{path}}, which lets
2951 the user specify which @code{libthread_db} to use if the default choice
2952 isn't compatible with the program.
2953 @end itemize
2954
2955 @cindex focus of debugging
2956 @cindex current thread
2957 The @value{GDBN} thread debugging facility allows you to observe all
2958 threads while your program runs---but whenever @value{GDBN} takes
2959 control, one thread in particular is always the focus of debugging.
2960 This thread is called the @dfn{current thread}.  Debugging commands show
2961 program information from the perspective of the current thread.
2962
2963 @cindex @code{New} @var{systag} message
2964 @cindex thread identifier (system)
2965 @c FIXME-implementors!! It would be more helpful if the [New...] message
2966 @c included GDB's numeric thread handle, so you could just go to that
2967 @c thread without first checking `info threads'.
2968 Whenever @value{GDBN} detects a new thread in your program, it displays
2969 the target system's identification for the thread with a message in the
2970 form @samp{[New @var{systag}]}, where @var{systag} is a thread identifier
2971 whose form varies depending on the particular system.  For example, on
2972 @sc{gnu}/Linux, you might see
2973
2974 @smallexample
2975 [New Thread 0x41e02940 (LWP 25582)]
2976 @end smallexample
2977
2978 @noindent
2979 when @value{GDBN} notices a new thread.  In contrast, on other systems,
2980 the @var{systag} is simply something like @samp{process 368}, with no
2981 further qualifier.
2982
2983 @c FIXME!! (1) Does the [New...] message appear even for the very first
2984 @c         thread of a program, or does it only appear for the
2985 @c         second---i.e.@: when it becomes obvious we have a multithread
2986 @c         program?
2987 @c         (2) *Is* there necessarily a first thread always?  Or do some
2988 @c         multithread systems permit starting a program with multiple
2989 @c         threads ab initio?
2990
2991 @anchor{thread numbers}
2992 @cindex thread number, per inferior
2993 @cindex thread identifier (GDB)
2994 For debugging purposes, @value{GDBN} associates its own thread number
2995 ---always a single integer---with each thread of an inferior.  This
2996 number is unique between all threads of an inferior, but not unique
2997 between threads of different inferiors.
2998
2999 @cindex qualified thread ID
3000 You can refer to a given thread in an inferior using the qualified
3001 @var{inferior-num}.@var{thread-num} syntax, also known as
3002 @dfn{qualified thread ID}, with @var{inferior-num} being the inferior
3003 number and @var{thread-num} being the thread number of the given
3004 inferior.  For example, thread @code{2.3} refers to thread number 3 of
3005 inferior 2.  If you omit @var{inferior-num} (e.g., @code{thread 3}),
3006 then @value{GDBN} infers you're referring to a thread of the current
3007 inferior.
3008
3009 Until you create a second inferior, @value{GDBN} does not show the
3010 @var{inferior-num} part of thread IDs, even though you can always use
3011 the full @var{inferior-num}.@var{thread-num} form to refer to threads
3012 of inferior 1, the initial inferior.
3013
3014 @anchor{thread ID lists}
3015 @cindex thread ID lists
3016 Some commands accept a space-separated @dfn{thread ID list} as
3017 argument.  A list element can be:
3018
3019 @enumerate
3020 @item
3021 A thread ID as shown in the first field of the @samp{info threads}
3022 display, with or without an inferior qualifier.  E.g., @samp{2.1} or
3023 @samp{1}.
3024
3025 @item
3026 A range of thread numbers, again with or without an inferior
3027 qualifier, as in @var{inf}.@var{thr1}-@var{thr2} or
3028 @var{thr1}-@var{thr2}.  E.g., @samp{1.2-4} or @samp{2-4}.
3029
3030 @item
3031 All threads of an inferior, specified with a star wildcard, with or
3032 without an inferior qualifier, as in @var{inf}.@code{*} (e.g.,
3033 @samp{1.*}) or @code{*}.  The former refers to all threads of the
3034 given inferior, and the latter form without an inferior qualifier
3035 refers to all threads of the current inferior.
3036
3037 @end enumerate
3038
3039 For example, if the current inferior is 1, and inferior 7 has one
3040 thread with ID 7.1, the thread list @samp{1 2-3 4.5 6.7-9 7.*}
3041 includes threads 1 to 3 of inferior 1, thread 5 of inferior 4, threads
3042 7 to 9 of inferior 6 and all threads of inferior 7.  That is, in
3043 expanded qualified form, the same as @samp{1.1 1.2 1.3 4.5 6.7 6.8 6.9
3044 7.1}.
3045
3046
3047 @anchor{global thread numbers}
3048 @cindex global thread number
3049 @cindex global thread identifier (GDB)
3050 In addition to a @emph{per-inferior} number, each thread is also
3051 assigned a unique @emph{global} number, also known as @dfn{global
3052 thread ID}, a single integer.  Unlike the thread number component of
3053 the thread ID, no two threads have the same global ID, even when
3054 you're debugging multiple inferiors.
3055
3056 From @value{GDBN}'s perspective, a process always has at least one
3057 thread.  In other words, @value{GDBN} assigns a thread number to the
3058 program's ``main thread'' even if the program is not multi-threaded.
3059
3060 @vindex $_thread@r{, convenience variable}
3061 @vindex $_gthread@r{, convenience variable}
3062 The debugger convenience variables @samp{$_thread} and
3063 @samp{$_gthread} contain, respectively, the per-inferior thread number
3064 and the global thread number of the current thread.  You may find this
3065 useful in writing breakpoint conditional expressions, command scripts,
3066 and so forth.  @xref{Convenience Vars,, Convenience Variables}, for
3067 general information on convenience variables.
3068
3069 If @value{GDBN} detects the program is multi-threaded, it augments the
3070 usual message about stopping at a breakpoint with the ID and name of
3071 the thread that hit the breakpoint.
3072
3073 @smallexample
3074 Thread 2 "client" hit Breakpoint 1, send_message () at client.c:68
3075 @end smallexample
3076
3077 Likewise when the program receives a signal:
3078
3079 @smallexample
3080 Thread 1 "main" received signal SIGINT, Interrupt.
3081 @end smallexample
3082
3083 @table @code
3084 @kindex info threads
3085 @item info threads @r{[}@var{thread-id-list}@r{]}
3086
3087 Display information about one or more threads.  With no arguments
3088 displays information about all threads.  You can specify the list of
3089 threads that you want to display using the thread ID list syntax
3090 (@pxref{thread ID lists}).
3091
3092 @value{GDBN} displays for each thread (in this order):
3093
3094 @enumerate
3095 @item
3096 the per-inferior thread number assigned by @value{GDBN}
3097
3098 @item
3099 the global thread number assigned by @value{GDBN}, if the @samp{-gid}
3100 option was specified
3101
3102 @item
3103 the target system's thread identifier (@var{systag})
3104
3105 @item
3106 the thread's name, if one is known.  A thread can either be named by
3107 the user (see @code{thread name}, below), or, in some cases, by the
3108 program itself.
3109
3110 @item
3111 the current stack frame summary for that thread
3112 @end enumerate
3113
3114 @noindent
3115 An asterisk @samp{*} to the left of the @value{GDBN} thread number
3116 indicates the current thread.
3117
3118 For example,
3119 @end table
3120 @c end table here to get a little more width for example
3121
3122 @smallexample
3123 (@value{GDBP}) info threads
3124   Id   Target Id         Frame
3125 * 1    process 35 thread 13  main (argc=1, argv=0x7ffffff8)
3126   2    process 35 thread 23  0x34e5 in sigpause ()
3127   3    process 35 thread 27  0x34e5 in sigpause ()
3128     at threadtest.c:68
3129 @end smallexample
3130
3131 If you're debugging multiple inferiors, @value{GDBN} displays thread
3132 IDs using the qualified @var{inferior-num}.@var{thread-num} format.
3133 Otherwise, only @var{thread-num} is shown.
3134
3135 If you specify the @samp{-gid} option, @value{GDBN} displays a column
3136 indicating each thread's global thread ID:
3137
3138 @smallexample
3139 (@value{GDBP}) info threads
3140   Id   GId  Target Id             Frame
3141   1.1  1    process 35 thread 13  main (argc=1, argv=0x7ffffff8)
3142   1.2  3    process 35 thread 23  0x34e5 in sigpause ()
3143   1.3  4    process 35 thread 27  0x34e5 in sigpause ()
3144 * 2.1  2    process 65 thread 1   main (argc=1, argv=0x7ffffff8)
3145 @end smallexample
3146
3147 On Solaris, you can display more information about user threads with a
3148 Solaris-specific command:
3149
3150 @table @code
3151 @item maint info sol-threads
3152 @kindex maint info sol-threads
3153 @cindex thread info (Solaris)
3154 Display info on Solaris user threads.
3155 @end table
3156
3157 @table @code
3158 @kindex thread @var{thread-id}
3159 @item thread @var{thread-id}
3160 Make thread ID @var{thread-id} the current thread.  The command
3161 argument @var{thread-id} is the @value{GDBN} thread ID, as shown in
3162 the first field of the @samp{info threads} display, with or without an
3163 inferior qualifier (e.g., @samp{2.1} or @samp{1}).
3164
3165 @value{GDBN} responds by displaying the system identifier of the
3166 thread you selected, and its current stack frame summary:
3167
3168 @smallexample
3169 (@value{GDBP}) thread 2
3170 [Switching to thread 2 (Thread 0xb7fdab70 (LWP 12747))]
3171 #0  some_function (ignore=0x0) at example.c:8
3172 8           printf ("hello\n");
3173 @end smallexample
3174
3175 @noindent
3176 As with the @samp{[New @dots{}]} message, the form of the text after
3177 @samp{Switching to} depends on your system's conventions for identifying
3178 threads.
3179
3180 @kindex thread apply
3181 @cindex apply command to several threads
3182 @item thread apply [@var{thread-id-list} | all [-ascending]] [@var{flag}]@dots{} @var{command}
3183 The @code{thread apply} command allows you to apply the named
3184 @var{command} to one or more threads.  Specify the threads that you
3185 want affected using the thread ID list syntax (@pxref{thread ID
3186 lists}), or specify @code{all} to apply to all threads.  To apply a
3187 command to all threads in descending order, type @kbd{thread apply all
3188 @var{command}}.  To apply a command to all threads in ascending order,
3189 type @kbd{thread apply all -ascending @var{command}}.
3190
3191 The @var{flag} arguments control what output to produce and how to handle
3192 errors raised when applying @var{command} to a thread.  @var{flag}
3193 must start with a @code{-} directly followed by one letter in
3194 @code{qcs}.  If several flags are provided, they must be given
3195 individually, such as @code{-c -q}.
3196
3197 By default, @value{GDBN} displays some thread information before the
3198 output produced by @var{command}, and an error raised during the
3199 execution of a @var{command} will abort @code{thread apply}.  The
3200 following flags can be used to fine-tune this behavior:
3201
3202 @table @code
3203 @item -c
3204 The flag @code{-c}, which stands for @samp{continue}, causes any
3205 errors in @var{command} to be displayed, and the execution of
3206 @code{thread apply} then continues.
3207 @item -s
3208 The flag @code{-s}, which stands for @samp{silent}, causes any errors
3209 or empty output produced by a @var{command} to be silently ignored.
3210 That is, the execution continues, but the thread information and errors
3211 are not printed.
3212 @item -q
3213 The flag @code{-q} (@samp{quiet}) disables printing the thread
3214 information.
3215 @end table
3216
3217 Flags @code{-c} and @code{-s} cannot be used together.
3218
3219 @kindex taas
3220 @cindex apply command to all threads (ignoring errors and empty output)
3221 @item taas @var{command}
3222 Shortcut for @code{thread apply all -s @var{command}}.
3223 Applies @var{command} on all threads, ignoring errors and empty output.
3224
3225 @kindex tfaas
3226 @cindex apply a command to all frames of all threads (ignoring errors and empty output)
3227 @item tfaas @var{command}
3228 Shortcut for @code{thread apply all -s frame apply all -s @var{command}}.
3229 Applies @var{command} on all frames of all threads, ignoring errors
3230 and empty output.  Note that the flag @code{-s} is specified twice:
3231 The first @code{-s} ensures that @code{thread apply} only shows the thread
3232 information of the threads for which @code{frame apply} produces
3233 some output.  The second @code{-s} is needed to ensure that @code{frame
3234 apply} shows the frame information of a frame only if the
3235 @var{command} successfully produced some output.
3236
3237 It can for example be used to print a local variable or a function
3238 argument without knowing the thread or frame where this variable or argument
3239 is, using:
3240 @smallexample
3241 (@value{GDBP}) tfaas p some_local_var_i_do_not_remember_where_it_is
3242 @end smallexample
3243
3244
3245 @kindex thread name
3246 @cindex name a thread
3247 @item thread name [@var{name}]
3248 This command assigns a name to the current thread.  If no argument is
3249 given, any existing user-specified name is removed.  The thread name
3250 appears in the @samp{info threads} display.
3251
3252 On some systems, such as @sc{gnu}/Linux, @value{GDBN} is able to
3253 determine the name of the thread as given by the OS.  On these
3254 systems, a name specified with @samp{thread name} will override the
3255 system-give name, and removing the user-specified name will cause
3256 @value{GDBN} to once again display the system-specified name.
3257
3258 @kindex thread find
3259 @cindex search for a thread
3260 @item thread find [@var{regexp}]
3261 Search for and display thread ids whose name or @var{systag}
3262 matches the supplied regular expression.
3263
3264 As well as being the complement to the @samp{thread name} command, 
3265 this command also allows you to identify a thread by its target 
3266 @var{systag}.  For instance, on @sc{gnu}/Linux, the target @var{systag}
3267 is the LWP id.
3268
3269 @smallexample
3270 (@value{GDBN}) thread find 26688
3271 Thread 4 has target id 'Thread 0x41e02940 (LWP 26688)'
3272 (@value{GDBN}) info thread 4
3273   Id   Target Id         Frame 
3274   4    Thread 0x41e02940 (LWP 26688) 0x00000031ca6cd372 in select ()
3275 @end smallexample
3276
3277 @kindex set print thread-events
3278 @cindex print messages on thread start and exit
3279 @item set print thread-events
3280 @itemx set print thread-events on
3281 @itemx set print thread-events off
3282 The @code{set print thread-events} command allows you to enable or
3283 disable printing of messages when @value{GDBN} notices that new threads have
3284 started or that threads have exited.  By default, these messages will
3285 be printed if detection of these events is supported by the target.
3286 Note that these messages cannot be disabled on all targets.
3287
3288 @kindex show print thread-events
3289 @item show print thread-events
3290 Show whether messages will be printed when @value{GDBN} detects that threads
3291 have started and exited.
3292 @end table
3293
3294 @xref{Thread Stops,,Stopping and Starting Multi-thread Programs}, for
3295 more information about how @value{GDBN} behaves when you stop and start
3296 programs with multiple threads.
3297
3298 @xref{Set Watchpoints,,Setting Watchpoints}, for information about
3299 watchpoints in programs with multiple threads.
3300
3301 @anchor{set libthread-db-search-path}
3302 @table @code
3303 @kindex set libthread-db-search-path
3304 @cindex search path for @code{libthread_db}
3305 @item set libthread-db-search-path @r{[}@var{path}@r{]}
3306 If this variable is set, @var{path} is a colon-separated list of
3307 directories @value{GDBN} will use to search for @code{libthread_db}.
3308 If you omit @var{path}, @samp{libthread-db-search-path} will be reset to
3309 its default value (@code{$sdir:$pdir} on @sc{gnu}/Linux and Solaris systems).
3310 Internally, the default value comes from the @code{LIBTHREAD_DB_SEARCH_PATH}
3311 macro.
3312
3313 On @sc{gnu}/Linux and Solaris systems, @value{GDBN} uses a ``helper''
3314 @code{libthread_db} library to obtain information about threads in the
3315 inferior process.  @value{GDBN} will use @samp{libthread-db-search-path}
3316 to find @code{libthread_db}.  @value{GDBN} also consults first if inferior
3317 specific thread debugging library loading is enabled
3318 by @samp{set auto-load libthread-db} (@pxref{libthread_db.so.1 file}).
3319
3320 A special entry @samp{$sdir} for @samp{libthread-db-search-path}
3321 refers to the default system directories that are
3322 normally searched for loading shared libraries.  The @samp{$sdir} entry
3323 is the only kind not needing to be enabled by @samp{set auto-load libthread-db}
3324 (@pxref{libthread_db.so.1 file}).
3325
3326 A special entry @samp{$pdir} for @samp{libthread-db-search-path}
3327 refers to the directory from which @code{libpthread}
3328 was loaded in the inferior process.
3329
3330 For any @code{libthread_db} library @value{GDBN} finds in above directories,
3331 @value{GDBN} attempts to initialize it with the current inferior process.
3332 If this initialization fails (which could happen because of a version
3333 mismatch between @code{libthread_db} and @code{libpthread}), @value{GDBN}
3334 will unload @code{libthread_db}, and continue with the next directory.
3335 If none of @code{libthread_db} libraries initialize successfully,
3336 @value{GDBN} will issue a warning and thread debugging will be disabled.
3337
3338 Setting @code{libthread-db-search-path} is currently implemented
3339 only on some platforms.
3340
3341 @kindex show libthread-db-search-path 
3342 @item show libthread-db-search-path 
3343 Display current libthread_db search path.
3344
3345 @kindex set debug libthread-db
3346 @kindex show debug libthread-db
3347 @cindex debugging @code{libthread_db}
3348 @item set debug libthread-db
3349 @itemx show debug libthread-db
3350 Turns on or off display of @code{libthread_db}-related events.
3351 Use @code{1} to enable, @code{0} to disable.
3352 @end table
3353
3354 @node Forks
3355 @section Debugging Forks
3356
3357 @cindex fork, debugging programs which call
3358 @cindex multiple processes
3359 @cindex processes, multiple
3360 On most systems, @value{GDBN} has no special support for debugging
3361 programs which create additional processes using the @code{fork}
3362 function.  When a program forks, @value{GDBN} will continue to debug the
3363 parent process and the child process will run unimpeded.  If you have
3364 set a breakpoint in any code which the child then executes, the child
3365 will get a @code{SIGTRAP} signal which (unless it catches the signal)
3366 will cause it to terminate.
3367
3368 However, if you want to debug the child process there is a workaround
3369 which isn't too painful.  Put a call to @code{sleep} in the code which
3370 the child process executes after the fork.  It may be useful to sleep
3371 only if a certain environment variable is set, or a certain file exists,
3372 so that the delay need not occur when you don't want to run @value{GDBN}
3373 on the child.  While the child is sleeping, use the @code{ps} program to
3374 get its process ID.  Then tell @value{GDBN} (a new invocation of
3375 @value{GDBN} if you are also debugging the parent process) to attach to
3376 the child process (@pxref{Attach}).  From that point on you can debug
3377 the child process just like any other process which you attached to.
3378
3379 On some systems, @value{GDBN} provides support for debugging programs
3380 that create additional processes using the @code{fork} or @code{vfork}
3381 functions.  On @sc{gnu}/Linux platforms, this feature is supported
3382 with kernel version 2.5.46 and later.
3383
3384 The fork debugging commands are supported in native mode and when
3385 connected to @code{gdbserver} in either @code{target remote} mode or
3386 @code{target extended-remote} mode.
3387
3388 By default, when a program forks, @value{GDBN} will continue to debug
3389 the parent process and the child process will run unimpeded.
3390
3391 If you want to follow the child process instead of the parent process,
3392 use the command @w{@code{set follow-fork-mode}}.
3393
3394 @table @code
3395 @kindex set follow-fork-mode
3396 @item set follow-fork-mode @var{mode}
3397 Set the debugger response to a program call of @code{fork} or
3398 @code{vfork}.  A call to @code{fork} or @code{vfork} creates a new
3399 process.  The @var{mode} argument can be:
3400
3401 @table @code
3402 @item parent
3403 The original process is debugged after a fork.  The child process runs
3404 unimpeded.  This is the default.
3405
3406 @item child
3407 The new process is debugged after a fork.  The parent process runs
3408 unimpeded.
3409
3410 @end table
3411
3412 @kindex show follow-fork-mode
3413 @item show follow-fork-mode
3414 Display the current debugger response to a @code{fork} or @code{vfork} call.
3415 @end table
3416
3417 @cindex debugging multiple processes
3418 On Linux, if you want to debug both the parent and child processes, use the
3419 command @w{@code{set detach-on-fork}}.
3420
3421 @table @code
3422 @kindex set detach-on-fork
3423 @item set detach-on-fork @var{mode}
3424 Tells gdb whether to detach one of the processes after a fork, or
3425 retain debugger control over them both.
3426
3427 @table @code
3428 @item on
3429 The child process (or parent process, depending on the value of
3430 @code{follow-fork-mode}) will be detached and allowed to run 
3431 independently.  This is the default.
3432
3433 @item off
3434 Both processes will be held under the control of @value{GDBN}.
3435 One process (child or parent, depending on the value of 
3436 @code{follow-fork-mode}) is debugged as usual, while the other
3437 is held suspended.  
3438
3439 @end table
3440
3441 @kindex show detach-on-fork
3442 @item show detach-on-fork
3443 Show whether detach-on-fork mode is on/off.
3444 @end table
3445
3446 If you choose to set @samp{detach-on-fork} mode off, then @value{GDBN}
3447 will retain control of all forked processes (including nested forks).
3448 You can list the forked processes under the control of @value{GDBN} by
3449 using the @w{@code{info inferiors}} command, and switch from one fork
3450 to another by using the @code{inferior} command (@pxref{Inferiors and
3451 Programs, ,Debugging Multiple Inferiors and Programs}).
3452
3453 To quit debugging one of the forked processes, you can either detach
3454 from it by using the @w{@code{detach inferiors}} command (allowing it
3455 to run independently), or kill it using the @w{@code{kill inferiors}}
3456 command.  @xref{Inferiors and Programs, ,Debugging Multiple Inferiors
3457 and Programs}.
3458
3459 If you ask to debug a child process and a @code{vfork} is followed by an
3460 @code{exec}, @value{GDBN} executes the new target up to the first
3461 breakpoint in the new target.  If you have a breakpoint set on
3462 @code{main} in your original program, the breakpoint will also be set on
3463 the child process's @code{main}.
3464
3465 On some systems, when a child process is spawned by @code{vfork}, you
3466 cannot debug the child or parent until an @code{exec} call completes.
3467
3468 If you issue a @code{run} command to @value{GDBN} after an @code{exec}
3469 call executes, the new target restarts.  To restart the parent
3470 process, use the @code{file} command with the parent executable name
3471 as its argument.  By default, after an @code{exec} call executes,
3472 @value{GDBN} discards the symbols of the previous executable image.
3473 You can change this behaviour with the @w{@code{set follow-exec-mode}}
3474 command.
3475
3476 @table @code
3477 @kindex set follow-exec-mode
3478 @item set follow-exec-mode @var{mode}
3479
3480 Set debugger response to a program call of @code{exec}.  An
3481 @code{exec} call replaces the program image of a process.
3482
3483 @code{follow-exec-mode} can be:
3484
3485 @table @code
3486 @item new
3487 @value{GDBN} creates a new inferior and rebinds the process to this
3488 new inferior.  The program the process was running before the
3489 @code{exec} call can be restarted afterwards by restarting the
3490 original inferior.
3491
3492 For example:
3493
3494 @smallexample
3495 (@value{GDBP}) info inferiors
3496 (gdb) info inferior
3497   Id   Description   Executable
3498 * 1    <null>        prog1
3499 (@value{GDBP}) run
3500 process 12020 is executing new program: prog2
3501 Program exited normally.
3502 (@value{GDBP}) info inferiors
3503   Id   Description   Executable
3504   1    <null>        prog1
3505 * 2    <null>        prog2
3506 @end smallexample
3507
3508 @item same
3509 @value{GDBN} keeps the process bound to the same inferior.  The new
3510 executable image replaces the previous executable loaded in the
3511 inferior.  Restarting the inferior after the @code{exec} call, with
3512 e.g., the @code{run} command, restarts the executable the process was
3513 running after the @code{exec} call.  This is the default mode.
3514
3515 For example:
3516
3517 @smallexample
3518 (@value{GDBP}) info inferiors
3519   Id   Description   Executable
3520 * 1    <null>        prog1
3521 (@value{GDBP}) run
3522 process 12020 is executing new program: prog2
3523 Program exited normally.
3524 (@value{GDBP}) info inferiors
3525   Id   Description   Executable
3526 * 1    <null>        prog2
3527 @end smallexample
3528
3529 @end table
3530 @end table
3531
3532 @code{follow-exec-mode} is supported in native mode and
3533 @code{target extended-remote} mode.
3534
3535 You can use the @code{catch} command to make @value{GDBN} stop whenever
3536 a @code{fork}, @code{vfork}, or @code{exec} call is made.  @xref{Set
3537 Catchpoints, ,Setting Catchpoints}.
3538
3539 @node Checkpoint/Restart
3540 @section Setting a @emph{Bookmark} to Return to Later
3541
3542 @cindex checkpoint
3543 @cindex restart
3544 @cindex bookmark
3545 @cindex snapshot of a process
3546 @cindex rewind program state
3547
3548 On certain operating systems@footnote{Currently, only
3549 @sc{gnu}/Linux.}, @value{GDBN} is able to save a @dfn{snapshot} of a
3550 program's state, called a @dfn{checkpoint}, and come back to it
3551 later.
3552
3553 Returning to a checkpoint effectively undoes everything that has
3554 happened in the program since the @code{checkpoint} was saved.  This
3555 includes changes in memory, registers, and even (within some limits)
3556 system state.  Effectively, it is like going back in time to the
3557 moment when the checkpoint was saved.
3558
3559 Thus, if you're stepping thru a program and you think you're 
3560 getting close to the point where things go wrong, you can save
3561 a checkpoint.  Then, if you accidentally go too far and miss
3562 the critical statement, instead of having to restart your program
3563 from the beginning, you can just go back to the checkpoint and
3564 start again from there.
3565
3566 This can be especially useful if it takes a lot of time or 
3567 steps to reach the point where you think the bug occurs.  
3568
3569 To use the @code{checkpoint}/@code{restart} method of debugging:
3570
3571 @table @code
3572 @kindex checkpoint
3573 @item checkpoint
3574 Save a snapshot of the debugged program's current execution state.
3575 The @code{checkpoint} command takes no arguments, but each checkpoint
3576 is assigned a small integer id, similar to a breakpoint id.
3577
3578 @kindex info checkpoints
3579 @item info checkpoints
3580 List the checkpoints that have been saved in the current debugging
3581 session.  For each checkpoint, the following information will be
3582 listed:
3583
3584 @table @code
3585 @item Checkpoint ID
3586 @item Process ID
3587 @item Code Address
3588 @item Source line, or label
3589 @end table
3590
3591 @kindex restart @var{checkpoint-id}
3592 @item restart @var{checkpoint-id}
3593 Restore the program state that was saved as checkpoint number
3594 @var{checkpoint-id}.  All program variables, registers, stack frames
3595 etc.@:  will be returned to the values that they had when the checkpoint
3596 was saved.  In essence, gdb will ``wind back the clock'' to the point
3597 in time when the checkpoint was saved.
3598
3599 Note that breakpoints, @value{GDBN} variables, command history etc.
3600 are not affected by restoring a checkpoint.  In general, a checkpoint
3601 only restores things that reside in the program being debugged, not in
3602 the debugger.
3603
3604 @kindex delete checkpoint @var{checkpoint-id}
3605 @item delete checkpoint @var{checkpoint-id}
3606 Delete the previously-saved checkpoint identified by @var{checkpoint-id}.
3607
3608 @end table
3609
3610 Returning to a previously saved checkpoint will restore the user state
3611 of the program being debugged, plus a significant subset of the system
3612 (OS) state, including file pointers.  It won't ``un-write'' data from
3613 a file, but it will rewind the file pointer to the previous location,
3614 so that the previously written data can be overwritten.  For files
3615 opened in read mode, the pointer will also be restored so that the
3616 previously read data can be read again.
3617
3618 Of course, characters that have been sent to a printer (or other
3619 external device) cannot be ``snatched back'', and characters received
3620 from eg.@: a serial device can be removed from internal program buffers,
3621 but they cannot be ``pushed back'' into the serial pipeline, ready to
3622 be received again.  Similarly, the actual contents of files that have
3623 been changed cannot be restored (at this time).
3624
3625 However, within those constraints, you actually can ``rewind'' your
3626 program to a previously saved point in time, and begin debugging it
3627 again --- and you can change the course of events so as to debug a
3628 different execution path this time.
3629
3630 @cindex checkpoints and process id
3631 Finally, there is one bit of internal program state that will be
3632 different when you return to a checkpoint --- the program's process
3633 id.  Each checkpoint will have a unique process id (or @var{pid}), 
3634 and each will be different from the program's original @var{pid}.
3635 If your program has saved a local copy of its process id, this could
3636 potentially pose a problem.
3637
3638 @subsection A Non-obvious Benefit of Using Checkpoints
3639
3640 On some systems such as @sc{gnu}/Linux, address space randomization
3641 is performed on new processes for security reasons.  This makes it 
3642 difficult or impossible to set a breakpoint, or watchpoint, on an
3643 absolute address if you have to restart the program, since the 
3644 absolute location of a symbol will change from one execution to the
3645 next.
3646
3647 A checkpoint, however, is an @emph{identical} copy of a process. 
3648 Therefore if you create a checkpoint at (eg.@:) the start of main, 
3649 and simply return to that checkpoint instead of restarting the 
3650 process, you can avoid the effects of address randomization and
3651 your symbols will all stay in the same place.
3652
3653 @node Stopping
3654 @chapter Stopping and Continuing
3655
3656 The principal purposes of using a debugger are so that you can stop your
3657 program before it terminates; or so that, if your program runs into
3658 trouble, you can investigate and find out why.
3659
3660 Inside @value{GDBN}, your program may stop for any of several reasons,
3661 such as a signal, a breakpoint, or reaching a new line after a
3662 @value{GDBN} command such as @code{step}.  You may then examine and
3663 change variables, set new breakpoints or remove old ones, and then
3664 continue execution.  Usually, the messages shown by @value{GDBN} provide
3665 ample explanation of the status of your program---but you can also
3666 explicitly request this information at any time.
3667
3668 @table @code
3669 @kindex info program
3670 @item info program
3671 Display information about the status of your program: whether it is
3672 running or not, what process it is, and why it stopped.
3673 @end table
3674
3675 @menu
3676 * Breakpoints::                 Breakpoints, watchpoints, and catchpoints
3677 * Continuing and Stepping::     Resuming execution
3678 * Skipping Over Functions and Files::
3679                                 Skipping over functions and files
3680 * Signals::                     Signals
3681 * Thread Stops::                Stopping and starting multi-thread programs
3682 @end menu
3683
3684 @node Breakpoints
3685 @section Breakpoints, Watchpoints, and Catchpoints
3686
3687 @cindex breakpoints
3688 A @dfn{breakpoint} makes your program stop whenever a certain point in
3689 the program is reached.  For each breakpoint, you can add conditions to
3690 control in finer detail whether your program stops.  You can set
3691 breakpoints with the @code{break} command and its variants (@pxref{Set
3692 Breaks, ,Setting Breakpoints}), to specify the place where your program
3693 should stop by line number, function name or exact address in the
3694 program.
3695
3696 On some systems, you can set breakpoints in shared libraries before
3697 the executable is run.
3698
3699 @cindex watchpoints
3700 @cindex data breakpoints
3701 @cindex memory tracing
3702 @cindex breakpoint on memory address
3703 @cindex breakpoint on variable modification
3704 A @dfn{watchpoint} is a special breakpoint that stops your program
3705 when the value of an expression changes.  The expression may be a value
3706 of a variable, or it could involve values of one or more variables
3707 combined by operators, such as @samp{a + b}.  This is sometimes called
3708 @dfn{data breakpoints}.  You must use a different command to set
3709 watchpoints (@pxref{Set Watchpoints, ,Setting Watchpoints}), but aside
3710 from that, you can manage a watchpoint like any other breakpoint: you
3711 enable, disable, and delete both breakpoints and watchpoints using the
3712 same commands.
3713
3714 You can arrange to have values from your program displayed automatically
3715 whenever @value{GDBN} stops at a breakpoint.  @xref{Auto Display,,
3716 Automatic Display}.
3717
3718 @cindex catchpoints
3719 @cindex breakpoint on events
3720 A @dfn{catchpoint} is another special breakpoint that stops your program
3721 when a certain kind of event occurs, such as the throwing of a C@t{++}
3722 exception or the loading of a library.  As with watchpoints, you use a
3723 different command to set a catchpoint (@pxref{Set Catchpoints, ,Setting
3724 Catchpoints}), but aside from that, you can manage a catchpoint like any
3725 other breakpoint.  (To stop when your program receives a signal, use the
3726 @code{handle} command; see @ref{Signals, ,Signals}.)
3727
3728 @cindex breakpoint numbers
3729 @cindex numbers for breakpoints
3730 @value{GDBN} assigns a number to each breakpoint, watchpoint, or
3731 catchpoint when you create it; these numbers are successive integers
3732 starting with one.  In many of the commands for controlling various
3733 features of breakpoints you use the breakpoint number to say which
3734 breakpoint you want to change.  Each breakpoint may be @dfn{enabled} or
3735 @dfn{disabled}; if disabled, it has no effect on your program until you
3736 enable it again.
3737
3738 @cindex breakpoint ranges
3739 @cindex breakpoint lists
3740 @cindex ranges of breakpoints
3741 @cindex lists of breakpoints
3742 Some @value{GDBN} commands accept a space-separated list of breakpoints
3743 on which to operate.  A list element can be either a single breakpoint number,
3744 like @samp{5}, or a range of such numbers, like @samp{5-7}.
3745 When a breakpoint list is given to a command, all breakpoints in that list
3746 are operated on.
3747
3748 @menu
3749 * Set Breaks::                  Setting breakpoints
3750 * Set Watchpoints::             Setting watchpoints
3751 * Set Catchpoints::             Setting catchpoints
3752 * Delete Breaks::               Deleting breakpoints
3753 * Disabling::                   Disabling breakpoints
3754 * Conditions::                  Break conditions
3755 * Break Commands::              Breakpoint command lists
3756 * Dynamic Printf::              Dynamic printf
3757 * Save Breakpoints::            How to save breakpoints in a file
3758 * Static Probe Points::         Listing static probe points
3759 * Error in Breakpoints::        ``Cannot insert breakpoints''
3760 * Breakpoint-related Warnings:: ``Breakpoint address adjusted...''
3761 @end menu
3762
3763 @node Set Breaks
3764 @subsection Setting Breakpoints
3765
3766 @c FIXME LMB what does GDB do if no code on line of breakpt?
3767 @c       consider in particular declaration with/without initialization.
3768 @c
3769 @c FIXME 2 is there stuff on this already? break at fun start, already init?
3770
3771 @kindex break
3772 @kindex b @r{(@code{break})}
3773 @vindex $bpnum@r{, convenience variable}
3774 @cindex latest breakpoint
3775 Breakpoints are set with the @code{break} command (abbreviated
3776 @code{b}).  The debugger convenience variable @samp{$bpnum} records the
3777 number of the breakpoint you've set most recently; see @ref{Convenience
3778 Vars,, Convenience Variables}, for a discussion of what you can do with
3779 convenience variables.
3780
3781 @table @code
3782 @item break @var{location}
3783 Set a breakpoint at the given @var{location}, which can specify a
3784 function name, a line number, or an address of an instruction.
3785 (@xref{Specify Location}, for a list of all the possible ways to
3786 specify a @var{location}.)  The breakpoint will stop your program just
3787 before it executes any of the code in the specified @var{location}.
3788
3789 When using source languages that permit overloading of symbols, such as
3790 C@t{++}, a function name may refer to more than one possible place to break.
3791 @xref{Ambiguous Expressions,,Ambiguous Expressions}, for a discussion of
3792 that situation.
3793
3794 It is also possible to insert a breakpoint that will stop the program
3795 only if a specific thread (@pxref{Thread-Specific Breakpoints})
3796 or a specific task (@pxref{Ada Tasks}) hits that breakpoint.
3797
3798 @item break
3799 When called without any arguments, @code{break} sets a breakpoint at
3800 the next instruction to be executed in the selected stack frame
3801 (@pxref{Stack, ,Examining the Stack}).  In any selected frame but the
3802 innermost, this makes your program stop as soon as control
3803 returns to that frame.  This is similar to the effect of a
3804 @code{finish} command in the frame inside the selected frame---except
3805 that @code{finish} does not leave an active breakpoint.  If you use
3806 @code{break} without an argument in the innermost frame, @value{GDBN} stops
3807 the next time it reaches the current location; this may be useful
3808 inside loops.
3809
3810 @value{GDBN} normally ignores breakpoints when it resumes execution, until at
3811 least one instruction has been executed.  If it did not do this, you
3812 would be unable to proceed past a breakpoint without first disabling the
3813 breakpoint.  This rule applies whether or not the breakpoint already
3814 existed when your program stopped.
3815
3816 @item break @dots{} if @var{cond}
3817 Set a breakpoint with condition @var{cond}; evaluate the expression
3818 @var{cond} each time the breakpoint is reached, and stop only if the
3819 value is nonzero---that is, if @var{cond} evaluates as true.
3820 @samp{@dots{}} stands for one of the possible arguments described
3821 above (or no argument) specifying where to break.  @xref{Conditions,
3822 ,Break Conditions}, for more information on breakpoint conditions.
3823
3824 @kindex tbreak
3825 @item tbreak @var{args}
3826 Set a breakpoint enabled only for one stop.  The @var{args} are the
3827 same as for the @code{break} command, and the breakpoint is set in the same
3828 way, but the breakpoint is automatically deleted after the first time your
3829 program stops there.  @xref{Disabling, ,Disabling Breakpoints}.
3830
3831 @kindex hbreak
3832 @cindex hardware breakpoints
3833 @item hbreak @var{args}
3834 Set a hardware-assisted breakpoint.  The @var{args} are the same as for the
3835 @code{break} command and the breakpoint is set in the same way, but the
3836 breakpoint requires hardware support and some target hardware may not
3837 have this support.  The main purpose of this is EPROM/ROM code
3838 debugging, so you can set a breakpoint at an instruction without
3839 changing the instruction.  This can be used with the new trap-generation
3840 provided by SPARClite DSU and most x86-based targets.  These targets
3841 will generate traps when a program accesses some data or instruction
3842 address that is assigned to the debug registers.  However the hardware
3843 breakpoint registers can take a limited number of breakpoints.  For
3844 example, on the DSU, only two data breakpoints can be set at a time, and
3845 @value{GDBN} will reject this command if more than two are used.  Delete
3846 or disable unused hardware breakpoints before setting new ones
3847 (@pxref{Disabling, ,Disabling Breakpoints}).
3848 @xref{Conditions, ,Break Conditions}.
3849 For remote targets, you can restrict the number of hardware
3850 breakpoints @value{GDBN} will use, see @ref{set remote
3851 hardware-breakpoint-limit}.
3852
3853 @kindex thbreak
3854 @item thbreak @var{args}
3855 Set a hardware-assisted breakpoint enabled only for one stop.  The @var{args}
3856 are the same as for the @code{hbreak} command and the breakpoint is set in
3857 the same way.  However, like the @code{tbreak} command,
3858 the breakpoint is automatically deleted after the
3859 first time your program stops there.  Also, like the @code{hbreak}
3860 command, the breakpoint requires hardware support and some target hardware
3861 may not have this support.  @xref{Disabling, ,Disabling Breakpoints}.
3862 See also @ref{Conditions, ,Break Conditions}.
3863
3864 @kindex rbreak
3865 @cindex regular expression
3866 @cindex breakpoints at functions matching a regexp
3867 @cindex set breakpoints in many functions
3868 @item rbreak @var{regex}
3869 Set breakpoints on all functions matching the regular expression
3870 @var{regex}.  This command sets an unconditional breakpoint on all
3871 matches, printing a list of all breakpoints it set.  Once these
3872 breakpoints are set, they are treated just like the breakpoints set with
3873 the @code{break} command.  You can delete them, disable them, or make
3874 them conditional the same way as any other breakpoint.
3875
3876 In programs using different languages, @value{GDBN} chooses the syntax
3877 to print the list of all breakpoints it sets according to the
3878 @samp{set language} value: using @samp{set language auto}
3879 (see @ref{Automatically, ,Set Language Automatically}) means to use the
3880 language of the breakpoint's function, other values mean to use
3881 the manually specified language (see @ref{Manually, ,Set Language Manually}).
3882
3883 The syntax of the regular expression is the standard one used with tools
3884 like @file{grep}.  Note that this is different from the syntax used by
3885 shells, so for instance @code{foo*} matches all functions that include
3886 an @code{fo} followed by zero or more @code{o}s.  There is an implicit
3887 @code{.*} leading and trailing the regular expression you supply, so to
3888 match only functions that begin with @code{foo}, use @code{^foo}.
3889
3890 @cindex non-member C@t{++} functions, set breakpoint in
3891 When debugging C@t{++} programs, @code{rbreak} is useful for setting
3892 breakpoints on overloaded functions that are not members of any special
3893 classes.
3894
3895 @cindex set breakpoints on all functions
3896 The @code{rbreak} command can be used to set breakpoints in
3897 @strong{all} the functions in a program, like this:
3898
3899 @smallexample
3900 (@value{GDBP}) rbreak .
3901 @end smallexample
3902
3903 @item rbreak @var{file}:@var{regex}
3904 If @code{rbreak} is called with a filename qualification, it limits
3905 the search for functions matching the given regular expression to the
3906 specified @var{file}.  This can be used, for example, to set breakpoints on
3907 every function in a given file:
3908
3909 @smallexample
3910 (@value{GDBP}) rbreak file.c:.
3911 @end smallexample
3912
3913 The colon separating the filename qualifier from the regex may
3914 optionally be surrounded by spaces.
3915
3916 @kindex info breakpoints
3917 @cindex @code{$_} and @code{info breakpoints}
3918 @item info breakpoints @r{[}@var{list}@dots{}@r{]}
3919 @itemx info break @r{[}@var{list}@dots{}@r{]}
3920 Print a table of all breakpoints, watchpoints, and catchpoints set and
3921 not deleted.  Optional argument @var{n} means print information only
3922 about the specified breakpoint(s) (or watchpoint(s) or catchpoint(s)).
3923 For each breakpoint, following columns are printed:
3924
3925 @table @emph
3926 @item Breakpoint Numbers
3927 @item Type
3928 Breakpoint, watchpoint, or catchpoint.
3929 @item Disposition
3930 Whether the breakpoint is marked to be disabled or deleted when hit.
3931 @item Enabled or Disabled
3932 Enabled breakpoints are marked with @samp{y}.  @samp{n} marks breakpoints
3933 that are not enabled.
3934 @item Address
3935 Where the breakpoint is in your program, as a memory address.  For a
3936 pending breakpoint whose address is not yet known, this field will
3937 contain @samp{<PENDING>}.  Such breakpoint won't fire until a shared
3938 library that has the symbol or line referred by breakpoint is loaded.
3939 See below for details.  A breakpoint with several locations will
3940 have @samp{<MULTIPLE>} in this field---see below for details.
3941 @item What
3942 Where the breakpoint is in the source for your program, as a file and
3943 line number.  For a pending breakpoint, the original string passed to
3944 the breakpoint command will be listed as it cannot be resolved until
3945 the appropriate shared library is loaded in the future.
3946 @end table
3947
3948 @noindent
3949 If a breakpoint is conditional, there are two evaluation modes: ``host'' and
3950 ``target''.  If mode is ``host'', breakpoint condition evaluation is done by
3951 @value{GDBN} on the host's side.  If it is ``target'', then the condition
3952 is evaluated by the target.  The @code{info break} command shows
3953 the condition on the line following the affected breakpoint, together with
3954 its condition evaluation mode in between parentheses.
3955
3956 Breakpoint commands, if any, are listed after that.  A pending breakpoint is
3957 allowed to have a condition specified for it.  The condition is not parsed for
3958 validity until a shared library is loaded that allows the pending
3959 breakpoint to resolve to a valid location.
3960
3961 @noindent
3962 @code{info break} with a breakpoint
3963 number @var{n} as argument lists only that breakpoint.  The
3964 convenience variable @code{$_} and the default examining-address for
3965 the @code{x} command are set to the address of the last breakpoint
3966 listed (@pxref{Memory, ,Examining Memory}).
3967
3968 @noindent
3969 @code{info break} displays a count of the number of times the breakpoint
3970 has been hit.  This is especially useful in conjunction with the
3971 @code{ignore} command.  You can ignore a large number of breakpoint
3972 hits, look at the breakpoint info to see how many times the breakpoint
3973 was hit, and then run again, ignoring one less than that number.  This
3974 will get you quickly to the last hit of that breakpoint.
3975
3976 @noindent
3977 For a breakpoints with an enable count (xref) greater than 1,
3978 @code{info break} also displays that count.
3979
3980 @end table
3981
3982 @value{GDBN} allows you to set any number of breakpoints at the same place in
3983 your program.  There is nothing silly or meaningless about this.  When
3984 the breakpoints are conditional, this is even useful
3985 (@pxref{Conditions, ,Break Conditions}).
3986
3987 @cindex multiple locations, breakpoints
3988 @cindex breakpoints, multiple locations
3989 It is possible that a breakpoint corresponds to several locations
3990 in your program.  Examples of this situation are:
3991
3992 @itemize @bullet
3993 @item
3994 Multiple functions in the program may have the same name.
3995
3996 @item
3997 For a C@t{++} constructor, the @value{NGCC} compiler generates several
3998 instances of the function body, used in different cases.
3999
4000 @item
4001 For a C@t{++} template function, a given line in the function can
4002 correspond to any number of instantiations.
4003
4004 @item
4005 For an inlined function, a given source line can correspond to
4006 several places where that function is inlined.
4007 @end itemize
4008
4009 In all those cases, @value{GDBN} will insert a breakpoint at all
4010 the relevant locations.
4011
4012 A breakpoint with multiple locations is displayed in the breakpoint
4013 table using several rows---one header row, followed by one row for
4014 each breakpoint location.  The header row has @samp{<MULTIPLE>} in the
4015 address column.  The rows for individual locations contain the actual
4016 addresses for locations, and show the functions to which those
4017 locations belong.  The number column for a location is of the form
4018 @var{breakpoint-number}.@var{location-number}.
4019
4020 For example:
4021
4022 @smallexample
4023 Num     Type           Disp Enb  Address    What
4024 1       breakpoint     keep y    <MULTIPLE>
4025         stop only if i==1
4026         breakpoint already hit 1 time
4027 1.1                         y    0x080486a2 in void foo<int>() at t.cc:8
4028 1.2                         y    0x080486ca in void foo<double>() at t.cc:8
4029 @end smallexample
4030
4031 You cannot delete the individual locations from a breakpoint.  However,
4032 each location can be individually enabled or disabled by passing
4033 @var{breakpoint-number}.@var{location-number} as argument to the
4034 @code{enable} and @code{disable} commands.  It's also possible to
4035 @code{enable} and @code{disable} a range of @var{location-number}
4036 locations using a @var{breakpoint-number} and two @var{location-number}s,
4037 in increasing order, separated by a hyphen, like
4038 @kbd{@var{breakpoint-number}.@var{location-number1}-@var{location-number2}},
4039 in which case @value{GDBN} acts on all the locations in the range (inclusive).
4040 Disabling or enabling the parent breakpoint (@pxref{Disabling}) affects
4041 all of the locations that belong to that breakpoint.
4042
4043 @cindex pending breakpoints
4044 It's quite common to have a breakpoint inside a shared library.
4045 Shared libraries can be loaded and unloaded explicitly,
4046 and possibly repeatedly, as the program is executed.  To support
4047 this use case, @value{GDBN} updates breakpoint locations whenever
4048 any shared library is loaded or unloaded.  Typically, you would
4049 set a breakpoint in a shared library at the beginning of your
4050 debugging session, when the library is not loaded, and when the
4051 symbols from the library are not available.  When you try to set
4052 breakpoint, @value{GDBN} will ask you if you want to set
4053 a so called @dfn{pending breakpoint}---breakpoint whose address
4054 is not yet resolved.
4055
4056 After the program is run, whenever a new shared library is loaded,
4057 @value{GDBN} reevaluates all the breakpoints.  When a newly loaded
4058 shared library contains the symbol or line referred to by some
4059 pending breakpoint, that breakpoint is resolved and becomes an
4060 ordinary breakpoint.  When a library is unloaded, all breakpoints
4061 that refer to its symbols or source lines become pending again.
4062
4063 This logic works for breakpoints with multiple locations, too.  For
4064 example, if you have a breakpoint in a C@t{++} template function, and
4065 a newly loaded shared library has an instantiation of that template,
4066 a new location is added to the list of locations for the breakpoint.
4067
4068 Except for having unresolved address, pending breakpoints do not
4069 differ from regular breakpoints.  You can set conditions or commands,
4070 enable and disable them and perform other breakpoint operations.
4071
4072 @value{GDBN} provides some additional commands for controlling what
4073 happens when the @samp{break} command cannot resolve breakpoint
4074 address specification to an address:
4075
4076 @kindex set breakpoint pending
4077 @kindex show breakpoint pending
4078 @table @code
4079 @item set breakpoint pending auto
4080 This is the default behavior.  When @value{GDBN} cannot find the breakpoint
4081 location, it queries you whether a pending breakpoint should be created.
4082
4083 @item set breakpoint pending on
4084 This indicates that an unrecognized breakpoint location should automatically
4085 result in a pending breakpoint being created.
4086
4087 @item set breakpoint pending off
4088 This indicates that pending breakpoints are not to be created.  Any
4089 unrecognized breakpoint location results in an error.  This setting does
4090 not affect any pending breakpoints previously created.
4091
4092 @item show breakpoint pending
4093 Show the current behavior setting for creating pending breakpoints.
4094 @end table
4095
4096 The settings above only affect the @code{break} command and its
4097 variants.  Once breakpoint is set, it will be automatically updated
4098 as shared libraries are loaded and unloaded.
4099
4100 @cindex automatic hardware breakpoints
4101 For some targets, @value{GDBN} can automatically decide if hardware or
4102 software breakpoints should be used, depending on whether the
4103 breakpoint address is read-only or read-write.  This applies to
4104 breakpoints set with the @code{break} command as well as to internal
4105 breakpoints set by commands like @code{next} and @code{finish}.  For
4106 breakpoints set with @code{hbreak}, @value{GDBN} will always use hardware
4107 breakpoints.
4108
4109 You can control this automatic behaviour with the following commands:
4110
4111 @kindex set breakpoint auto-hw
4112 @kindex show breakpoint auto-hw
4113 @table @code
4114 @item set breakpoint auto-hw on
4115 This is the default behavior.  When @value{GDBN} sets a breakpoint, it
4116 will try to use the target memory map to decide if software or hardware
4117 breakpoint must be used.
4118
4119 @item set breakpoint auto-hw off
4120 This indicates @value{GDBN} should not automatically select breakpoint
4121 type.  If the target provides a memory map, @value{GDBN} will warn when
4122 trying to set software breakpoint at a read-only address.
4123 @end table
4124
4125 @value{GDBN} normally implements breakpoints by replacing the program code
4126 at the breakpoint address with a special instruction, which, when
4127 executed, given control to the debugger.  By default, the program
4128 code is so modified only when the program is resumed.  As soon as
4129 the program stops, @value{GDBN} restores the original instructions.  This
4130 behaviour guards against leaving breakpoints inserted in the
4131 target should gdb abrubptly disconnect.  However, with slow remote
4132 targets, inserting and removing breakpoint can reduce the performance.
4133 This behavior can be controlled with the following commands::
4134
4135 @kindex set breakpoint always-inserted
4136 @kindex show breakpoint always-inserted
4137 @table @code
4138 @item set breakpoint always-inserted off
4139 All breakpoints, including newly added by the user, are inserted in
4140 the target only when the target is resumed.  All breakpoints are
4141 removed from the target when it stops.  This is the default mode.
4142
4143 @item set breakpoint always-inserted on
4144 Causes all breakpoints to be inserted in the target at all times.  If
4145 the user adds a new breakpoint, or changes an existing breakpoint, the
4146 breakpoints in the target are updated immediately.  A breakpoint is
4147 removed from the target only when breakpoint itself is deleted.
4148 @end table
4149
4150 @value{GDBN} handles conditional breakpoints by evaluating these conditions
4151 when a breakpoint breaks.  If the condition is true, then the process being
4152 debugged stops, otherwise the process is resumed.
4153
4154 If the target supports evaluating conditions on its end, @value{GDBN} may
4155 download the breakpoint, together with its conditions, to it.
4156
4157 This feature can be controlled via the following commands:
4158
4159 @kindex set breakpoint condition-evaluation
4160 @kindex show breakpoint condition-evaluation
4161 @table @code
4162 @item set breakpoint condition-evaluation host
4163 This option commands @value{GDBN} to evaluate the breakpoint
4164 conditions on the host's side.  Unconditional breakpoints are sent to
4165 the target which in turn receives the triggers and reports them back to GDB
4166 for condition evaluation.  This is the standard evaluation mode.
4167
4168 @item set breakpoint condition-evaluation target
4169 This option commands @value{GDBN} to download breakpoint conditions
4170 to the target at the moment of their insertion.  The target
4171 is responsible for evaluating the conditional expression and reporting
4172 breakpoint stop events back to @value{GDBN} whenever the condition
4173 is true.  Due to limitations of target-side evaluation, some conditions
4174 cannot be evaluated there, e.g., conditions that depend on local data
4175 that is only known to the host.  Examples include
4176 conditional expressions involving convenience variables, complex types
4177 that cannot be handled by the agent expression parser and expressions
4178 that are too long to be sent over to the target, specially when the
4179 target is a remote system.  In these cases, the conditions will be
4180 evaluated by @value{GDBN}.
4181
4182 @item set breakpoint condition-evaluation auto
4183 This is the default mode.  If the target supports evaluating breakpoint
4184 conditions on its end, @value{GDBN} will download breakpoint conditions to
4185 the target (limitations mentioned previously apply).  If the target does
4186 not support breakpoint condition evaluation, then @value{GDBN} will fallback
4187 to evaluating all these conditions on the host's side.
4188 @end table
4189
4190
4191 @cindex negative breakpoint numbers
4192 @cindex internal @value{GDBN} breakpoints
4193 @value{GDBN} itself sometimes sets breakpoints in your program for
4194 special purposes, such as proper handling of @code{longjmp} (in C
4195 programs).  These internal breakpoints are assigned negative numbers,
4196 starting with @code{-1}; @samp{info breakpoints} does not display them.
4197 You can see these breakpoints with the @value{GDBN} maintenance command
4198 @samp{maint info breakpoints} (@pxref{maint info breakpoints}).
4199
4200
4201 @node Set Watchpoints
4202 @subsection Setting Watchpoints
4203
4204 @cindex setting watchpoints
4205 You can use a watchpoint to stop execution whenever the value of an
4206 expression changes, without having to predict a particular place where
4207 this may happen.  (This is sometimes called a @dfn{data breakpoint}.)
4208 The expression may be as simple as the value of a single variable, or
4209 as complex as many variables combined by operators.  Examples include:
4210
4211 @itemize @bullet
4212 @item
4213 A reference to the value of a single variable.
4214
4215 @item
4216 An address cast to an appropriate data type.  For example,
4217 @samp{*(int *)0x12345678} will watch a 4-byte region at the specified
4218 address (assuming an @code{int} occupies 4 bytes).
4219
4220 @item
4221 An arbitrarily complex expression, such as @samp{a*b + c/d}.  The
4222 expression can use any operators valid in the program's native
4223 language (@pxref{Languages}).
4224 @end itemize
4225
4226 You can set a watchpoint on an expression even if the expression can
4227 not be evaluated yet.  For instance, you can set a watchpoint on
4228 @samp{*global_ptr} before @samp{global_ptr} is initialized.
4229 @value{GDBN} will stop when your program sets @samp{global_ptr} and
4230 the expression produces a valid value.  If the expression becomes
4231 valid in some other way than changing a variable (e.g.@: if the memory
4232 pointed to by @samp{*global_ptr} becomes readable as the result of a
4233 @code{malloc} call), @value{GDBN} may not stop until the next time
4234 the expression changes.
4235
4236 @cindex software watchpoints
4237 @cindex hardware watchpoints
4238 Depending on your system, watchpoints may be implemented in software or
4239 hardware.  @value{GDBN} does software watchpointing by single-stepping your
4240 program and testing the variable's value each time, which is hundreds of
4241 times slower than normal execution.  (But this may still be worth it, to
4242 catch errors where you have no clue what part of your program is the
4243 culprit.)
4244
4245 On some systems, such as most PowerPC or x86-based targets,
4246 @value{GDBN} includes support for hardware watchpoints, which do not
4247 slow down the running of your program.
4248
4249 @table @code
4250 @kindex watch
4251 @item watch @r{[}-l@r{|}-location@r{]} @var{expr} @r{[}thread @var{thread-id}@r{]} @r{[}mask @var{maskvalue}@r{]}
4252 Set a watchpoint for an expression.  @value{GDBN} will break when the
4253 expression @var{expr} is written into by the program and its value
4254 changes.  The simplest (and the most popular) use of this command is
4255 to watch the value of a single variable:
4256
4257 @smallexample
4258 (@value{GDBP}) watch foo
4259 @end smallexample
4260
4261 If the command includes a @code{@r{[}thread @var{thread-id}@r{]}}
4262 argument, @value{GDBN} breaks only when the thread identified by
4263 @var{thread-id} changes the value of @var{expr}.  If any other threads
4264 change the value of @var{expr}, @value{GDBN} will not break.  Note
4265 that watchpoints restricted to a single thread in this way only work
4266 with Hardware Watchpoints.
4267
4268 Ordinarily a watchpoint respects the scope of variables in @var{expr}
4269 (see below).  The @code{-location} argument tells @value{GDBN} to
4270 instead watch the memory referred to by @var{expr}.  In this case,
4271 @value{GDBN} will evaluate @var{expr}, take the address of the result,
4272 and watch the memory at that address.  The type of the result is used
4273 to determine the size of the watched memory.  If the expression's
4274 result does not have an address, then @value{GDBN} will print an
4275 error.
4276
4277 The @code{@r{[}mask @var{maskvalue}@r{]}} argument allows creation
4278 of masked watchpoints, if the current architecture supports this
4279 feature (e.g., PowerPC Embedded architecture, see @ref{PowerPC
4280 Embedded}.)  A @dfn{masked watchpoint} specifies a mask in addition
4281 to an address to watch.  The mask specifies that some bits of an address
4282 (the bits which are reset in the mask) should be ignored when matching
4283 the address accessed by the inferior against the watchpoint address.
4284 Thus, a masked watchpoint watches many addresses simultaneously---those
4285 addresses whose unmasked bits are identical to the unmasked bits in the
4286 watchpoint address.  The @code{mask} argument implies @code{-location}.
4287 Examples:
4288
4289 @smallexample
4290 (@value{GDBP}) watch foo mask 0xffff00ff
4291 (@value{GDBP}) watch *0xdeadbeef mask 0xffffff00
4292 @end smallexample
4293
4294 @kindex rwatch
4295 @item rwatch @r{[}-l@r{|}-location@r{]} @var{expr} @r{[}thread @var{thread-id}@r{]} @r{[}mask @var{maskvalue}@r{]}
4296 Set a watchpoint that will break when the value of @var{expr} is read
4297 by the program.
4298
4299 @kindex awatch
4300 @item awatch @r{[}-l@r{|}-location@r{]} @var{expr} @r{[}thread @var{thread-id}@r{]} @r{[}mask @var{maskvalue}@r{]}
4301 Set a watchpoint that will break when @var{expr} is either read from
4302 or written into by the program.
4303
4304 @kindex info watchpoints @r{[}@var{list}@dots{}@r{]}
4305 @item info watchpoints @r{[}@var{list}@dots{}@r{]}
4306 This command prints a list of watchpoints, using the same format as
4307 @code{info break} (@pxref{Set Breaks}).
4308 @end table
4309
4310 If you watch for a change in a numerically entered address you need to
4311 dereference it, as the address itself is just a constant number which will
4312 never change.  @value{GDBN} refuses to create a watchpoint that watches
4313 a never-changing value:
4314
4315 @smallexample
4316 (@value{GDBP}) watch 0x600850
4317 Cannot watch constant value 0x600850.
4318 (@value{GDBP}) watch *(int *) 0x600850
4319 Watchpoint 1: *(int *) 6293584
4320 @end smallexample
4321
4322 @value{GDBN} sets a @dfn{hardware watchpoint} if possible.  Hardware
4323 watchpoints execute very quickly, and the debugger reports a change in
4324 value at the exact instruction where the change occurs.  If @value{GDBN}
4325 cannot set a hardware watchpoint, it sets a software watchpoint, which
4326 executes more slowly and reports the change in value at the next
4327 @emph{statement}, not the instruction, after the change occurs.
4328
4329 @cindex use only software watchpoints
4330 You can force @value{GDBN} to use only software watchpoints with the
4331 @kbd{set can-use-hw-watchpoints 0} command.  With this variable set to
4332 zero, @value{GDBN} will never try to use hardware watchpoints, even if
4333 the underlying system supports them.  (Note that hardware-assisted
4334 watchpoints that were set @emph{before} setting
4335 @code{can-use-hw-watchpoints} to zero will still use the hardware
4336 mechanism of watching expression values.)
4337
4338 @table @code
4339 @item set can-use-hw-watchpoints
4340 @kindex set can-use-hw-watchpoints
4341 Set whether or not to use hardware watchpoints.
4342
4343 @item show can-use-hw-watchpoints
4344 @kindex show can-use-hw-watchpoints
4345 Show the current mode of using hardware watchpoints.
4346 @end table
4347
4348 For remote targets, you can restrict the number of hardware
4349 watchpoints @value{GDBN} will use, see @ref{set remote
4350 hardware-breakpoint-limit}.
4351
4352 When you issue the @code{watch} command, @value{GDBN} reports
4353
4354 @smallexample
4355 Hardware watchpoint @var{num}: @var{expr}
4356 @end smallexample
4357
4358 @noindent
4359 if it was able to set a hardware watchpoint.
4360
4361 Currently, the @code{awatch} and @code{rwatch} commands can only set
4362 hardware watchpoints, because accesses to data that don't change the
4363 value of the watched expression cannot be detected without examining
4364 every instruction as it is being executed, and @value{GDBN} does not do
4365 that currently.  If @value{GDBN} finds that it is unable to set a
4366 hardware breakpoint with the @code{awatch} or @code{rwatch} command, it
4367 will print a message like this:
4368
4369 @smallexample
4370 Expression cannot be implemented with read/access watchpoint.
4371 @end smallexample
4372
4373 Sometimes, @value{GDBN} cannot set a hardware watchpoint because the
4374 data type of the watched expression is wider than what a hardware
4375 watchpoint on the target machine can handle.  For example, some systems
4376 can only watch regions that are up to 4 bytes wide; on such systems you
4377 cannot set hardware watchpoints for an expression that yields a
4378 double-precision floating-point number (which is typically 8 bytes
4379 wide).  As a work-around, it might be possible to break the large region
4380 into a series of smaller ones and watch them with separate watchpoints.
4381
4382 If you set too many hardware watchpoints, @value{GDBN} might be unable
4383 to insert all of them when you resume the execution of your program.
4384 Since the precise number of active watchpoints is unknown until such
4385 time as the program is about to be resumed, @value{GDBN} might not be
4386 able to warn you about this when you set the watchpoints, and the
4387 warning will be printed only when the program is resumed:
4388
4389 @smallexample
4390 Hardware watchpoint @var{num}: Could not insert watchpoint
4391 @end smallexample
4392
4393 @noindent
4394 If this happens, delete or disable some of the watchpoints.
4395
4396 Watching complex expressions that reference many variables can also
4397 exhaust the resources available for hardware-assisted watchpoints.
4398 That's because @value{GDBN} needs to watch every variable in the
4399 expression with separately allocated resources.
4400
4401 If you call a function interactively using @code{print} or @code{call},
4402 any watchpoints you have set will be inactive until @value{GDBN} reaches another
4403 kind of breakpoint or the call completes.
4404
4405 @value{GDBN} automatically deletes watchpoints that watch local
4406 (automatic) variables, or expressions that involve such variables, when
4407 they go out of scope, that is, when the execution leaves the block in
4408 which these variables were defined.  In particular, when the program
4409 being debugged terminates, @emph{all} local variables go out of scope,
4410 and so only watchpoints that watch global variables remain set.  If you
4411 rerun the program, you will need to set all such watchpoints again.  One
4412 way of doing that would be to set a code breakpoint at the entry to the
4413 @code{main} function and when it breaks, set all the watchpoints.
4414
4415 @cindex watchpoints and threads
4416 @cindex threads and watchpoints
4417 In multi-threaded programs, watchpoints will detect changes to the
4418 watched expression from every thread.
4419
4420 @quotation
4421 @emph{Warning:} In multi-threaded programs, software watchpoints
4422 have only limited usefulness.  If @value{GDBN} creates a software
4423 watchpoint, it can only watch the value of an expression @emph{in a
4424 single thread}.  If you are confident that the expression can only
4425 change due to the current thread's activity (and if you are also
4426 confident that no other thread can become current), then you can use
4427 software watchpoints as usual.  However, @value{GDBN} may not notice
4428 when a non-current thread's activity changes the expression.  (Hardware
4429 watchpoints, in contrast, watch an expression in all threads.)
4430 @end quotation
4431
4432 @xref{set remote hardware-watchpoint-limit}.
4433
4434 @node Set Catchpoints
4435 @subsection Setting Catchpoints
4436 @cindex catchpoints, setting
4437 @cindex exception handlers
4438 @cindex event handling
4439
4440 You can use @dfn{catchpoints} to cause the debugger to stop for certain
4441 kinds of program events, such as C@t{++} exceptions or the loading of a
4442 shared library.  Use the @code{catch} command to set a catchpoint.
4443
4444 @table @code
4445 @kindex catch
4446 @item catch @var{event}
4447 Stop when @var{event} occurs.  The @var{event} can be any of the following:
4448
4449 @table @code
4450 @item throw @r{[}@var{regexp}@r{]}
4451 @itemx rethrow @r{[}@var{regexp}@r{]}
4452 @itemx catch @r{[}@var{regexp}@r{]}
4453 @kindex catch throw
4454 @kindex catch rethrow
4455 @kindex catch catch
4456 @cindex stop on C@t{++} exceptions
4457 The throwing, re-throwing, or catching of a C@t{++} exception.
4458
4459 If @var{regexp} is given, then only exceptions whose type matches the
4460 regular expression will be caught.
4461
4462 @vindex $_exception@r{, convenience variable}
4463 The convenience variable @code{$_exception} is available at an
4464 exception-related catchpoint, on some systems.  This holds the
4465 exception being thrown.
4466
4467 There are currently some limitations to C@t{++} exception handling in
4468 @value{GDBN}:
4469
4470 @itemize @bullet
4471 @item
4472 The support for these commands is system-dependent.  Currently, only
4473 systems using the @samp{gnu-v3} C@t{++} ABI (@pxref{ABI}) are
4474 supported.
4475
4476 @item
4477 The regular expression feature and the @code{$_exception} convenience
4478 variable rely on the presence of some SDT probes in @code{libstdc++}.
4479 If these probes are not present, then these features cannot be used.
4480 These probes were first available in the GCC 4.8 release, but whether
4481 or not they are available in your GCC also depends on how it was
4482 built.
4483
4484 @item
4485 The @code{$_exception} convenience variable is only valid at the
4486 instruction at which an exception-related catchpoint is set.
4487
4488 @item
4489 When an exception-related catchpoint is hit, @value{GDBN} stops at a
4490 location in the system library which implements runtime exception
4491 support for C@t{++}, usually @code{libstdc++}.  You can use @code{up}
4492 (@pxref{Selection}) to get to your code.
4493
4494 @item
4495 If you call a function interactively, @value{GDBN} normally returns
4496 control to you when the function has finished executing.  If the call
4497 raises an exception, however, the call may bypass the mechanism that
4498 returns control to you and cause your program either to abort or to
4499 simply continue running until it hits a breakpoint, catches a signal
4500 that @value{GDBN} is listening for, or exits.  This is the case even if
4501 you set a catchpoint for the exception; catchpoints on exceptions are
4502 disabled within interactive calls.  @xref{Calling}, for information on
4503 controlling this with @code{set unwind-on-terminating-exception}.
4504
4505 @item
4506 You cannot raise an exception interactively.
4507
4508 @item
4509 You cannot install an exception handler interactively.
4510 @end itemize
4511
4512 @item exception
4513 @kindex catch exception
4514 @cindex Ada exception catching
4515 @cindex catch Ada exceptions
4516 An Ada exception being raised.  If an exception name is specified
4517 at the end of the command (eg @code{catch exception Program_Error}),
4518 the debugger will stop only when this specific exception is raised.
4519 Otherwise, the debugger stops execution when any Ada exception is raised.
4520
4521 When inserting an exception catchpoint on a user-defined exception whose
4522 name is identical to one of the exceptions defined by the language, the
4523 fully qualified name must be used as the exception name.  Otherwise,
4524 @value{GDBN} will assume that it should stop on the pre-defined exception
4525 rather than the user-defined one.  For instance, assuming an exception
4526 called @code{Constraint_Error} is defined in package @code{Pck}, then
4527 the command to use to catch such exceptions is @kbd{catch exception
4528 Pck.Constraint_Error}.
4529
4530 @item handlers
4531 @kindex catch handlers
4532 @cindex Ada exception handlers catching
4533 @cindex catch Ada exceptions when handled
4534 An Ada exception being handled.  If an exception name is
4535 specified at the end of the command
4536  (eg @kbd{catch handlers Program_Error}), the debugger will stop
4537 only when this specific exception is handled.
4538 Otherwise, the debugger stops execution when any Ada exception is handled.
4539
4540 When inserting a handlers catchpoint on a user-defined
4541 exception whose name is identical to one of the exceptions
4542 defined by the language, the fully qualified name must be used
4543 as the exception name.  Otherwise, @value{GDBN} will assume that it
4544 should stop on the pre-defined exception rather than the
4545 user-defined one.  For instance, assuming an exception called
4546  @code{Constraint_Error} is defined in package @code{Pck}, then the
4547 command to use to catch such exceptions handling is
4548 @kbd{catch handlers Pck.Constraint_Error}.
4549
4550 @item exception unhandled
4551 @kindex catch exception unhandled
4552 An exception that was raised but is not handled by the program.
4553
4554 @item assert
4555 @kindex catch assert
4556 A failed Ada assertion.
4557
4558 @item exec
4559 @kindex catch exec
4560 @cindex break on fork/exec
4561 A call to @code{exec}.
4562
4563 @anchor{catch syscall}
4564 @item syscall
4565 @itemx syscall @r{[}@var{name} @r{|} @var{number} @r{|} @r{group:}@var{groupname} @r{|} @r{g:}@var{groupname}@r{]} @dots{}
4566 @kindex catch syscall
4567 @cindex break on a system call.
4568 A call to or return from a system call, a.k.a.@: @dfn{syscall}.  A
4569 syscall is a mechanism for application programs to request a service
4570 from the operating system (OS) or one of the OS system services.
4571 @value{GDBN} can catch some or all of the syscalls issued by the
4572 debuggee, and show the related information for each syscall.  If no
4573 argument is specified, calls to and returns from all system calls
4574 will be caught.
4575
4576 @var{name} can be any system call name that is valid for the
4577 underlying OS.  Just what syscalls are valid depends on the OS.  On
4578 GNU and Unix systems, you can find the full list of valid syscall
4579 names on @file{/usr/include/asm/unistd.h}.
4580
4581 @c For MS-Windows, the syscall names and the corresponding numbers
4582 @c can be found, e.g., on this URL:
4583 @c http://www.metasploit.com/users/opcode/syscalls.html
4584 @c but we don't support Windows syscalls yet.
4585
4586 Normally, @value{GDBN} knows in advance which syscalls are valid for
4587 each OS, so you can use the @value{GDBN} command-line completion
4588 facilities (@pxref{Completion,, command completion}) to list the
4589 available choices.
4590
4591 You may also specify the system call numerically.  A syscall's
4592 number is the value passed to the OS's syscall dispatcher to
4593 identify the requested service.  When you specify the syscall by its
4594 name, @value{GDBN} uses its database of syscalls to convert the name
4595 into the corresponding numeric code, but using the number directly
4596 may be useful if @value{GDBN}'s database does not have the complete
4597 list of syscalls on your system (e.g., because @value{GDBN} lags
4598 behind the OS upgrades).
4599
4600 You may specify a group of related syscalls to be caught at once using
4601 the @code{group:} syntax (@code{g:} is a shorter equivalent).  For
4602 instance, on some platforms @value{GDBN} allows you to catch all
4603 network related syscalls, by passing the argument @code{group:network}
4604 to @code{catch syscall}.  Note that not all syscall groups are
4605 available in every system.  You can use the command completion
4606 facilities (@pxref{Completion,, command completion}) to list the
4607 syscall groups available on your environment.
4608
4609 The example below illustrates how this command works if you don't provide
4610 arguments to it:
4611
4612 @smallexample
4613 (@value{GDBP}) catch syscall
4614 Catchpoint 1 (syscall)
4615 (@value{GDBP}) r
4616 Starting program: /tmp/catch-syscall
4617
4618 Catchpoint 1 (call to syscall 'close'), \
4619            0xffffe424 in __kernel_vsyscall ()
4620 (@value{GDBP}) c
4621 Continuing.
4622
4623 Catchpoint 1 (returned from syscall 'close'), \
4624         0xffffe424 in __kernel_vsyscall ()
4625 (@value{GDBP})
4626 @end smallexample
4627
4628 Here is an example of catching a system call by name:
4629
4630 @smallexample
4631 (@value{GDBP}) catch syscall chroot
4632 Catchpoint 1 (syscall 'chroot' [61])
4633 (@value{GDBP}) r
4634 Starting program: /tmp/catch-syscall
4635
4636 Catchpoint 1 (call to syscall 'chroot'), \
4637                    0xffffe424 in __kernel_vsyscall ()
4638 (@value{GDBP}) c
4639 Continuing.
4640
4641 Catchpoint 1 (returned from syscall 'chroot'), \
4642         0xffffe424 in __kernel_vsyscall ()
4643 (@value{GDBP})
4644 @end smallexample
4645
4646 An example of specifying a system call numerically.  In the case
4647 below, the syscall number has a corresponding entry in the XML
4648 file, so @value{GDBN} finds its name and prints it:
4649
4650 @smallexample
4651 (@value{GDBP}) catch syscall 252
4652 Catchpoint 1 (syscall(s) 'exit_group')
4653 (@value{GDBP}) r
4654 Starting program: /tmp/catch-syscall
4655
4656 Catchpoint 1 (call to syscall 'exit_group'), \
4657                    0xffffe424 in __kernel_vsyscall ()
4658 (@value{GDBP}) c
4659 Continuing.
4660
4661 Program exited normally.
4662 (@value{GDBP})
4663 @end smallexample
4664
4665 Here is an example of catching a syscall group:
4666
4667 @smallexample
4668 (@value{GDBP}) catch syscall group:process
4669 Catchpoint 1 (syscalls 'exit' [1] 'fork' [2] 'waitpid' [7]
4670 'execve' [11] 'wait4' [114] 'clone' [120] 'vfork' [190]
4671 'exit_group' [252] 'waitid' [284] 'unshare' [310])
4672 (@value{GDBP}) r
4673 Starting program: /tmp/catch-syscall
4674
4675 Catchpoint 1 (call to syscall fork), 0x00007ffff7df4e27 in open64 ()
4676    from /lib64/ld-linux-x86-64.so.2
4677
4678 (@value{GDBP}) c
4679 Continuing.
4680 @end smallexample
4681
4682 However, there can be situations when there is no corresponding name
4683 in XML file for that syscall number.  In this case, @value{GDBN} prints
4684 a warning message saying that it was not able to find the syscall name,
4685 but the catchpoint will be set anyway.  See the example below:
4686
4687 @smallexample
4688 (@value{GDBP}) catch syscall 764
4689 warning: The number '764' does not represent a known syscall.
4690 Catchpoint 2 (syscall 764)
4691 (@value{GDBP})
4692 @end smallexample
4693
4694 If you configure @value{GDBN} using the @samp{--without-expat} option,
4695 it will not be able to display syscall names.  Also, if your
4696 architecture does not have an XML file describing its system calls,
4697 you will not be able to see the syscall names.  It is important to
4698 notice that these two features are used for accessing the syscall
4699 name database.  In either case, you will see a warning like this:
4700
4701 @smallexample
4702 (@value{GDBP}) catch syscall
4703 warning: Could not open "syscalls/i386-linux.xml"
4704 warning: Could not load the syscall XML file 'syscalls/i386-linux.xml'.
4705 GDB will not be able to display syscall names.
4706 Catchpoint 1 (syscall)
4707 (@value{GDBP})
4708 @end smallexample
4709
4710 Of course, the file name will change depending on your architecture and system.
4711
4712 Still using the example above, you can also try to catch a syscall by its
4713 number.  In this case, you would see something like:
4714
4715 @smallexample
4716 (@value{GDBP}) catch syscall 252
4717 Catchpoint 1 (syscall(s) 252)
4718 @end smallexample
4719
4720 Again, in this case @value{GDBN} would not be able to display syscall's names.
4721
4722 @item fork
4723 @kindex catch fork
4724 A call to @code{fork}.
4725
4726 @item vfork
4727 @kindex catch vfork
4728 A call to @code{vfork}.
4729
4730 @item load @r{[}regexp@r{]}
4731 @itemx unload @r{[}regexp@r{]}
4732 @kindex catch load
4733 @kindex catch unload
4734 The loading or unloading of a shared library.  If @var{regexp} is
4735 given, then the catchpoint will stop only if the regular expression
4736 matches one of the affected libraries.
4737
4738 @item signal @r{[}@var{signal}@dots{} @r{|} @samp{all}@r{]}
4739 @kindex catch signal
4740 The delivery of a signal.
4741
4742 With no arguments, this catchpoint will catch any signal that is not
4743 used internally by @value{GDBN}, specifically, all signals except
4744 @samp{SIGTRAP} and @samp{SIGINT}.
4745
4746 With the argument @samp{all}, all signals, including those used by
4747 @value{GDBN}, will be caught.  This argument cannot be used with other
4748 signal names.
4749
4750 Otherwise, the arguments are a list of signal names as given to
4751 @code{handle} (@pxref{Signals}).  Only signals specified in this list
4752 will be caught.
4753
4754 One reason that @code{catch signal} can be more useful than
4755 @code{handle} is that you can attach commands and conditions to the
4756 catchpoint.
4757
4758 When a signal is caught by a catchpoint, the signal's @code{stop} and
4759 @code{print} settings, as specified by @code{handle}, are ignored.
4760 However, whether the signal is still delivered to the inferior depends
4761 on the @code{pass} setting; this can be changed in the catchpoint's
4762 commands.
4763
4764 @end table
4765
4766 @item tcatch @var{event}
4767 @kindex tcatch
4768 Set a catchpoint that is enabled only for one stop.  The catchpoint is
4769 automatically deleted after the first time the event is caught.
4770
4771 @end table
4772
4773 Use the @code{info break} command to list the current catchpoints.
4774
4775
4776 @node Delete Breaks
4777 @subsection Deleting Breakpoints
4778
4779 @cindex clearing breakpoints, watchpoints, catchpoints
4780 @cindex deleting breakpoints, watchpoints, catchpoints
4781 It is often necessary to eliminate a breakpoint, watchpoint, or
4782 catchpoint once it has done its job and you no longer want your program
4783 to stop there.  This is called @dfn{deleting} the breakpoint.  A
4784 breakpoint that has been deleted no longer exists; it is forgotten.
4785
4786 With the @code{clear} command you can delete breakpoints according to
4787 where they are in your program.  With the @code{delete} command you can
4788 delete individual breakpoints, watchpoints, or catchpoints by specifying
4789 their breakpoint numbers.
4790
4791 It is not necessary to delete a breakpoint to proceed past it.  @value{GDBN}
4792 automatically ignores breakpoints on the first instruction to be executed
4793 when you continue execution without changing the execution address.
4794
4795 @table @code
4796 @kindex clear
4797 @item clear
4798 Delete any breakpoints at the next instruction to be executed in the
4799 selected stack frame (@pxref{Selection, ,Selecting a Frame}).  When
4800 the innermost frame is selected, this is a good way to delete a
4801 breakpoint where your program just stopped.
4802
4803 @item clear @var{location}
4804 Delete any breakpoints set at the specified @var{location}.
4805 @xref{Specify Location}, for the various forms of @var{location}; the
4806 most useful ones are listed below:
4807
4808 @table @code
4809 @item clear @var{function}
4810 @itemx clear @var{filename}:@var{function}
4811 Delete any breakpoints set at entry to the named @var{function}.
4812
4813 @item clear @var{linenum}
4814 @itemx clear @var{filename}:@var{linenum}
4815 Delete any breakpoints set at or within the code of the specified
4816 @var{linenum} of the specified @var{filename}.
4817 @end table
4818
4819 @cindex delete breakpoints
4820 @kindex delete
4821 @kindex d @r{(@code{delete})}
4822 @item delete @r{[}breakpoints@r{]} @r{[}@var{list}@dots{}@r{]}
4823 Delete the breakpoints, watchpoints, or catchpoints of the breakpoint
4824 list specified as argument.  If no argument is specified, delete all
4825 breakpoints (@value{GDBN} asks confirmation, unless you have @code{set
4826 confirm off}).  You can abbreviate this command as @code{d}.
4827 @end table
4828
4829 @node Disabling
4830 @subsection Disabling Breakpoints
4831
4832 @cindex enable/disable a breakpoint
4833 Rather than deleting a breakpoint, watchpoint, or catchpoint, you might
4834 prefer to @dfn{disable} it.  This makes the breakpoint inoperative as if
4835 it had been deleted, but remembers the information on the breakpoint so
4836 that you can @dfn{enable} it again later.
4837
4838 You disable and enable breakpoints, watchpoints, and catchpoints with
4839 the @code{enable} and @code{disable} commands, optionally specifying
4840 one or more breakpoint numbers as arguments.  Use @code{info break} to
4841 print a list of all breakpoints, watchpoints, and catchpoints if you
4842 do not know which numbers to use.
4843
4844 Disabling and enabling a breakpoint that has multiple locations
4845 affects all of its locations.
4846
4847 A breakpoint, watchpoint, or catchpoint can have any of several
4848 different states of enablement:
4849
4850 @itemize @bullet
4851 @item
4852 Enabled.  The breakpoint stops your program.  A breakpoint set
4853 with the @code{break} command starts out in this state.
4854 @item
4855 Disabled.  The breakpoint has no effect on your program.
4856 @item
4857 Enabled once.  The breakpoint stops your program, but then becomes
4858 disabled.
4859 @item
4860 Enabled for a count.  The breakpoint stops your program for the next
4861 N times, then becomes disabled.
4862 @item
4863 Enabled for deletion.  The breakpoint stops your program, but
4864 immediately after it does so it is deleted permanently.  A breakpoint
4865 set with the @code{tbreak} command starts out in this state.
4866 @end itemize
4867
4868 You can use the following commands to enable or disable breakpoints,
4869 watchpoints, and catchpoints:
4870
4871 @table @code
4872 @kindex disable
4873 @kindex dis @r{(@code{disable})}
4874 @item disable @r{[}breakpoints@r{]} @r{[}@var{list}@dots{}@r{]}
4875 Disable the specified breakpoints---or all breakpoints, if none are
4876 listed.  A disabled breakpoint has no effect but is not forgotten.  All
4877 options such as ignore-counts, conditions and commands are remembered in
4878 case the breakpoint is enabled again later.  You may abbreviate
4879 @code{disable} as @code{dis}.
4880
4881 @kindex enable
4882 @item enable @r{[}breakpoints@r{]} @r{[}@var{list}@dots{}@r{]}
4883 Enable the specified breakpoints (or all defined breakpoints).  They
4884 become effective once again in stopping your program.
4885
4886 @item enable @r{[}breakpoints@r{]} once @var{list}@dots{}
4887 Enable the specified breakpoints temporarily.  @value{GDBN} disables any
4888 of these breakpoints immediately after stopping your program.
4889
4890 @item enable @r{[}breakpoints@r{]} count @var{count} @var{list}@dots{}
4891 Enable the specified breakpoints temporarily.  @value{GDBN} records
4892 @var{count} with each of the specified breakpoints, and decrements a
4893 breakpoint's count when it is hit.  When any count reaches 0,
4894 @value{GDBN} disables that breakpoint.  If a breakpoint has an ignore
4895 count (@pxref{Conditions, ,Break Conditions}), that will be
4896 decremented to 0 before @var{count} is affected.
4897
4898 @item enable @r{[}breakpoints@r{]} delete @var{list}@dots{}
4899 Enable the specified breakpoints to work once, then die.  @value{GDBN}
4900 deletes any of these breakpoints as soon as your program stops there.
4901 Breakpoints set by the @code{tbreak} command start out in this state.
4902 @end table
4903
4904 @c FIXME: I think the following ``Except for [...] @code{tbreak}'' is
4905 @c confusing: tbreak is also initially enabled.
4906 Except for a breakpoint set with @code{tbreak} (@pxref{Set Breaks,
4907 ,Setting Breakpoints}), breakpoints that you set are initially enabled;
4908 subsequently, they become disabled or enabled only when you use one of
4909 the commands above.  (The command @code{until} can set and delete a
4910 breakpoint of its own, but it does not change the state of your other
4911 breakpoints; see @ref{Continuing and Stepping, ,Continuing and
4912 Stepping}.)
4913
4914 @node Conditions
4915 @subsection Break Conditions
4916 @cindex conditional breakpoints
4917 @cindex breakpoint conditions
4918
4919 @c FIXME what is scope of break condition expr?  Context where wanted?
4920 @c      in particular for a watchpoint?
4921 The simplest sort of breakpoint breaks every time your program reaches a
4922 specified place.  You can also specify a @dfn{condition} for a
4923 breakpoint.  A condition is just a Boolean expression in your
4924 programming language (@pxref{Expressions, ,Expressions}).  A breakpoint with
4925 a condition evaluates the expression each time your program reaches it,
4926 and your program stops only if the condition is @emph{true}.
4927
4928 This is the converse of using assertions for program validation; in that
4929 situation, you want to stop when the assertion is violated---that is,
4930 when the condition is false.  In C, if you want to test an assertion expressed
4931 by the condition @var{assert}, you should set the condition
4932 @samp{! @var{assert}} on the appropriate breakpoint.
4933
4934 Conditions are also accepted for watchpoints; you may not need them,
4935 since a watchpoint is inspecting the value of an expression anyhow---but
4936 it might be simpler, say, to just set a watchpoint on a variable name,
4937 and specify a condition that tests whether the new value is an interesting
4938 one.
4939
4940 Break conditions can have side effects, and may even call functions in
4941 your program.  This can be useful, for example, to activate functions
4942 that log program progress, or to use your own print functions to
4943 format special data structures.  The effects are completely predictable
4944 unless there is another enabled breakpoint at the same address.  (In
4945 that case, @value{GDBN} might see the other breakpoint first and stop your
4946 program without checking the condition of this one.)  Note that
4947 breakpoint commands are usually more convenient and flexible than break
4948 conditions for the
4949 purpose of performing side effects when a breakpoint is reached
4950 (@pxref{Break Commands, ,Breakpoint Command Lists}).
4951
4952 Breakpoint conditions can also be evaluated on the target's side if
4953 the target supports it.  Instead of evaluating the conditions locally,
4954 @value{GDBN} encodes the expression into an agent expression
4955 (@pxref{Agent Expressions}) suitable for execution on the target,
4956 independently of @value{GDBN}.  Global variables become raw memory
4957 locations, locals become stack accesses, and so forth.
4958
4959 In this case, @value{GDBN} will only be notified of a breakpoint trigger
4960 when its condition evaluates to true.  This mechanism may provide faster
4961 response times depending on the performance characteristics of the target
4962 since it does not need to keep @value{GDBN} informed about
4963 every breakpoint trigger, even those with false conditions.
4964
4965 Break conditions can be specified when a breakpoint is set, by using
4966 @samp{if} in the arguments to the @code{break} command.  @xref{Set
4967 Breaks, ,Setting Breakpoints}.  They can also be changed at any time
4968 with the @code{condition} command.
4969
4970 You can also use the @code{if} keyword with the @code{watch} command.
4971 The @code{catch} command does not recognize the @code{if} keyword;
4972 @code{condition} is the only way to impose a further condition on a
4973 catchpoint.
4974
4975 @table @code
4976 @kindex condition
4977 @item condition @var{bnum} @var{expression}
4978 Specify @var{expression} as the break condition for breakpoint,
4979 watchpoint, or catchpoint number @var{bnum}.  After you set a condition,
4980 breakpoint @var{bnum} stops your program only if the value of
4981 @var{expression} is true (nonzero, in C).  When you use
4982 @code{condition}, @value{GDBN} checks @var{expression} immediately for
4983 syntactic correctness, and to determine whether symbols in it have
4984 referents in the context of your breakpoint.  If @var{expression} uses
4985 symbols not referenced in the context of the breakpoint, @value{GDBN}
4986 prints an error message:
4987
4988 @smallexample
4989 No symbol "foo" in current context.
4990 @end smallexample
4991
4992 @noindent
4993 @value{GDBN} does
4994 not actually evaluate @var{expression} at the time the @code{condition}
4995 command (or a command that sets a breakpoint with a condition, like
4996 @code{break if @dots{}}) is given, however.  @xref{Expressions, ,Expressions}.
4997
4998 @item condition @var{bnum}
4999 Remove the condition from breakpoint number @var{bnum}.  It becomes
5000 an ordinary unconditional breakpoint.
5001 @end table
5002
5003 @cindex ignore count (of breakpoint)
5004 A special case of a breakpoint condition is to stop only when the
5005 breakpoint has been reached a certain number of times.  This is so
5006 useful that there is a special way to do it, using the @dfn{ignore
5007 count} of the breakpoint.  Every breakpoint has an ignore count, which
5008 is an integer.  Most of the time, the ignore count is zero, and
5009 therefore has no effect.  But if your program reaches a breakpoint whose
5010 ignore count is positive, then instead of stopping, it just decrements
5011 the ignore count by one and continues.  As a result, if the ignore count
5012 value is @var{n}, the breakpoint does not stop the next @var{n} times
5013 your program reaches it.
5014
5015 @table @code
5016 @kindex ignore
5017 @item ignore @var{bnum} @var{count}
5018 Set the ignore count of breakpoint number @var{bnum} to @var{count}.
5019 The next @var{count} times the breakpoint is reached, your program's
5020 execution does not stop; other than to decrement the ignore count, @value{GDBN}
5021 takes no action.
5022
5023 To make the breakpoint stop the next time it is reached, specify
5024 a count of zero.
5025
5026 When you use @code{continue} to resume execution of your program from a
5027 breakpoint, you can specify an ignore count directly as an argument to
5028 @code{continue}, rather than using @code{ignore}.  @xref{Continuing and
5029 Stepping,,Continuing and Stepping}.
5030
5031 If a breakpoint has a positive ignore count and a condition, the
5032 condition is not checked.  Once the ignore count reaches zero,
5033 @value{GDBN} resumes checking the condition.
5034
5035 You could achieve the effect of the ignore count with a condition such
5036 as @w{@samp{$foo-- <= 0}} using a debugger convenience variable that
5037 is decremented each time.  @xref{Convenience Vars, ,Convenience
5038 Variables}.
5039 @end table
5040
5041 Ignore counts apply to breakpoints, watchpoints, and catchpoints.
5042
5043
5044 @node Break Commands
5045 @subsection Breakpoint Command Lists
5046
5047 @cindex breakpoint commands
5048 You can give any breakpoint (or watchpoint or catchpoint) a series of
5049 commands to execute when your program stops due to that breakpoint.  For
5050 example, you might want to print the values of certain expressions, or
5051 enable other breakpoints.
5052
5053 @table @code
5054 @kindex commands
5055 @kindex end@r{ (breakpoint commands)}
5056 @item commands @r{[}@var{list}@dots{}@r{]}
5057 @itemx @dots{} @var{command-list} @dots{}
5058 @itemx end
5059 Specify a list of commands for the given breakpoints.  The commands
5060 themselves appear on the following lines.  Type a line containing just
5061 @code{end} to terminate the commands.
5062
5063 To remove all commands from a breakpoint, type @code{commands} and
5064 follow it immediately with @code{end}; that is, give no commands.
5065
5066 With no argument, @code{commands} refers to the last breakpoint,
5067 watchpoint, or catchpoint set (not to the breakpoint most recently
5068 encountered).  If the most recent breakpoints were set with a single
5069 command, then the @code{commands} will apply to all the breakpoints
5070 set by that command.  This applies to breakpoints set by
5071 @code{rbreak}, and also applies when a single @code{break} command
5072 creates multiple breakpoints (@pxref{Ambiguous Expressions,,Ambiguous
5073 Expressions}).
5074 @end table
5075
5076 Pressing @key{RET} as a means of repeating the last @value{GDBN} command is
5077 disabled within a @var{command-list}.
5078
5079 You can use breakpoint commands to start your program up again.  Simply
5080 use the @code{continue} command, or @code{step}, or any other command
5081 that resumes execution.
5082
5083 Any other commands in the command list, after a command that resumes
5084 execution, are ignored.  This is because any time you resume execution
5085 (even with a simple @code{next} or @code{step}), you may encounter
5086 another breakpoint---which could have its own command list, leading to
5087 ambiguities about which list to execute.
5088
5089 @kindex silent
5090 If the first command you specify in a command list is @code{silent}, the
5091 usual message about stopping at a breakpoint is not printed.  This may
5092 be desirable for breakpoints that are to print a specific message and
5093 then continue.  If none of the remaining commands print anything, you
5094 see no sign that the breakpoint was reached.  @code{silent} is
5095 meaningful only at the beginning of a breakpoint command list.
5096
5097 The commands @code{echo}, @code{output}, and @code{printf} allow you to
5098 print precisely controlled output, and are often useful in silent
5099 breakpoints.  @xref{Output, ,Commands for Controlled Output}.
5100
5101 For example, here is how you could use breakpoint commands to print the
5102 value of @code{x} at entry to @code{foo} whenever @code{x} is positive.
5103
5104 @smallexample
5105 break foo if x>0
5106 commands
5107 silent
5108 printf "x is %d\n",x
5109 cont
5110 end
5111 @end smallexample
5112
5113 One application for breakpoint commands is to compensate for one bug so
5114 you can test for another.  Put a breakpoint just after the erroneous line
5115 of code, give it a condition to detect the case in which something
5116 erroneous has been done, and give it commands to assign correct values
5117 to any variables that need them.  End with the @code{continue} command
5118 so that your program does not stop, and start with the @code{silent}
5119 command so that no output is produced.  Here is an example:
5120
5121 @smallexample
5122 break 403
5123 commands
5124 silent
5125 set x = y + 4
5126 cont
5127 end
5128 @end smallexample
5129
5130 @node Dynamic Printf
5131 @subsection Dynamic Printf
5132
5133 @cindex dynamic printf
5134 @cindex dprintf
5135 The dynamic printf command @code{dprintf} combines a breakpoint with
5136 formatted printing of your program's data to give you the effect of
5137 inserting @code{printf} calls into your program on-the-fly, without
5138 having to recompile it.
5139
5140 In its most basic form, the output goes to the GDB console.  However,
5141 you can set the variable @code{dprintf-style} for alternate handling.
5142 For instance, you can ask to format the output by calling your
5143 program's @code{printf} function.  This has the advantage that the
5144 characters go to the program's output device, so they can recorded in
5145 redirects to files and so forth.
5146
5147 If you are doing remote debugging with a stub or agent, you can also
5148 ask to have the printf handled by the remote agent.  In addition to
5149 ensuring that the output goes to the remote program's device along
5150 with any other output the program might produce, you can also ask that
5151 the dprintf remain active even after disconnecting from the remote
5152 target.  Using the stub/agent is also more efficient, as it can do
5153 everything without needing to communicate with @value{GDBN}.
5154
5155 @table @code
5156 @kindex dprintf
5157 @item dprintf @var{location},@var{template},@var{expression}[,@var{expression}@dots{}]
5158 Whenever execution reaches @var{location}, print the values of one or
5159 more @var{expressions} under the control of the string @var{template}.
5160 To print several values, separate them with commas.
5161
5162 @item set dprintf-style @var{style}
5163 Set the dprintf output to be handled in one of several different
5164 styles enumerated below.  A change of style affects all existing
5165 dynamic printfs immediately.  (If you need individual control over the
5166 print commands, simply define normal breakpoints with
5167 explicitly-supplied command lists.)
5168
5169 @table @code
5170 @item gdb
5171 @kindex dprintf-style gdb
5172 Handle the output using the @value{GDBN} @code{printf} command.
5173
5174 @item call
5175 @kindex dprintf-style call
5176 Handle the output by calling a function in your program (normally
5177 @code{printf}).
5178
5179 @item agent
5180 @kindex dprintf-style agent
5181 Have the remote debugging agent (such as @code{gdbserver}) handle
5182 the output itself.  This style is only available for agents that
5183 support running commands on the target.
5184 @end table
5185
5186 @item set dprintf-function @var{function}
5187 Set the function to call if the dprintf style is @code{call}.  By
5188 default its value is @code{printf}.  You may set it to any expression.
5189 that @value{GDBN} can evaluate to a function, as per the @code{call}
5190 command.
5191
5192 @item set dprintf-channel @var{channel}
5193 Set a ``channel'' for dprintf.  If set to a non-empty value,
5194 @value{GDBN} will evaluate it as an expression and pass the result as
5195 a first argument to the @code{dprintf-function}, in the manner of
5196 @code{fprintf} and similar functions.  Otherwise, the dprintf format
5197 string will be the first argument, in the manner of @code{printf}.
5198
5199 As an example, if you wanted @code{dprintf} output to go to a logfile
5200 that is a standard I/O stream assigned to the variable @code{mylog},
5201 you could do the following:
5202
5203 @example
5204 (gdb) set dprintf-style call
5205 (gdb) set dprintf-function fprintf
5206 (gdb) set dprintf-channel mylog
5207 (gdb) dprintf 25,"at line 25, glob=%d\n",glob
5208 Dprintf 1 at 0x123456: file main.c, line 25.
5209 (gdb) info break
5210 1       dprintf        keep y   0x00123456 in main at main.c:25
5211         call (void) fprintf (mylog,"at line 25, glob=%d\n",glob)
5212         continue
5213 (gdb)
5214 @end example
5215
5216 Note that the @code{info break} displays the dynamic printf commands
5217 as normal breakpoint commands; you can thus easily see the effect of
5218 the variable settings.
5219
5220 @item set disconnected-dprintf on
5221 @itemx set disconnected-dprintf off
5222 @kindex set disconnected-dprintf
5223 Choose whether @code{dprintf} commands should continue to run if
5224 @value{GDBN} has disconnected from the target.  This only applies
5225 if the @code{dprintf-style} is @code{agent}.
5226
5227 @item show disconnected-dprintf off
5228 @kindex show disconnected-dprintf
5229 Show the current choice for disconnected @code{dprintf}.
5230
5231 @end table
5232
5233 @value{GDBN} does not check the validity of function and channel,
5234 relying on you to supply values that are meaningful for the contexts
5235 in which they are being used.  For instance, the function and channel
5236 may be the values of local variables, but if that is the case, then
5237 all enabled dynamic prints must be at locations within the scope of
5238 those locals.  If evaluation fails, @value{GDBN} will report an error.
5239
5240 @node Save Breakpoints
5241 @subsection How to save breakpoints to a file
5242
5243 To save breakpoint definitions to a file use the @w{@code{save
5244 breakpoints}} command.
5245
5246 @table @code
5247 @kindex save breakpoints
5248 @cindex save breakpoints to a file for future sessions
5249 @item save breakpoints [@var{filename}]
5250 This command saves all current breakpoint definitions together with
5251 their commands and ignore counts, into a file @file{@var{filename}}
5252 suitable for use in a later debugging session.  This includes all
5253 types of breakpoints (breakpoints, watchpoints, catchpoints,
5254 tracepoints).  To read the saved breakpoint definitions, use the
5255 @code{source} command (@pxref{Command Files}).  Note that watchpoints
5256 with expressions involving local variables may fail to be recreated
5257 because it may not be possible to access the context where the
5258 watchpoint is valid anymore.  Because the saved breakpoint definitions
5259 are simply a sequence of @value{GDBN} commands that recreate the
5260 breakpoints, you can edit the file in your favorite editing program,
5261 and remove the breakpoint definitions you're not interested in, or
5262 that can no longer be recreated.
5263 @end table
5264
5265 @node Static Probe Points
5266 @subsection Static Probe Points
5267
5268 @cindex static probe point, SystemTap
5269 @cindex static probe point, DTrace
5270 @value{GDBN} supports @dfn{SDT} probes in the code.  @acronym{SDT} stands
5271 for Statically Defined Tracing, and the probes are designed to have a tiny
5272 runtime code and data footprint, and no dynamic relocations.
5273
5274 Currently, the following types of probes are supported on
5275 ELF-compatible systems:
5276
5277 @itemize @bullet
5278
5279 @item @code{SystemTap} (@uref{http://sourceware.org/systemtap/})
5280 @acronym{SDT} probes@footnote{See
5281 @uref{http://sourceware.org/systemtap/wiki/AddingUserSpaceProbingToApps}
5282 for more information on how to add @code{SystemTap} @acronym{SDT}
5283 probes in your applications.}.  @code{SystemTap} probes are usable
5284 from assembly, C and C@t{++} languages@footnote{See
5285 @uref{http://sourceware.org/systemtap/wiki/UserSpaceProbeImplementation}
5286 for a good reference on how the @acronym{SDT} probes are implemented.}.  
5287
5288 @item @code{DTrace} (@uref{http://oss.oracle.com/projects/DTrace})
5289 @acronym{USDT} probes.  @code{DTrace} probes are usable from C and
5290 C@t{++} languages.
5291 @end itemize
5292
5293 @cindex semaphores on static probe points
5294 Some @code{SystemTap} probes have an associated semaphore variable;
5295 for instance, this happens automatically if you defined your probe
5296 using a DTrace-style @file{.d} file.  If your probe has a semaphore,
5297 @value{GDBN} will automatically enable it when you specify a
5298 breakpoint using the @samp{-probe-stap} notation.  But, if you put a
5299 breakpoint at a probe's location by some other method (e.g.,
5300 @code{break file:line}), then @value{GDBN} will not automatically set
5301 the semaphore.  @code{DTrace} probes do not support semaphores.
5302
5303 You can examine the available static static probes using @code{info
5304 probes}, with optional arguments:
5305
5306 @table @code
5307 @kindex info probes
5308 @item info probes @r{[}@var{type}@r{]} @r{[}@var{provider} @r{[}@var{name} @r{[}@var{objfile}@r{]}@r{]}@r{]}
5309 If given, @var{type} is either @code{stap} for listing
5310 @code{SystemTap} probes or @code{dtrace} for listing @code{DTrace}
5311 probes.  If omitted all probes are listed regardless of their types.
5312
5313 If given, @var{provider} is a regular expression used to match against provider
5314 names when selecting which probes to list.  If omitted, probes by all
5315 probes from all providers are listed.
5316
5317 If given, @var{name} is a regular expression to match against probe names
5318 when selecting which probes to list.  If omitted, probe names are not
5319 considered when deciding whether to display them.
5320
5321 If given, @var{objfile} is a regular expression used to select which
5322 object files (executable or shared libraries) to examine.  If not
5323 given, all object files are considered.
5324
5325 @item info probes all
5326 List the available static probes, from all types.
5327 @end table
5328
5329 @cindex enabling and disabling probes
5330 Some probe points can be enabled and/or disabled.  The effect of
5331 enabling or disabling a probe depends on the type of probe being
5332 handled.  Some @code{DTrace} probes can be enabled or
5333 disabled, but @code{SystemTap} probes cannot be disabled.
5334
5335 You can enable (or disable) one or more probes using the following
5336 commands, with optional arguments:
5337
5338 @table @code
5339 @kindex enable probes
5340 @item enable probes @r{[}@var{provider} @r{[}@var{name} @r{[}@var{objfile}@r{]}@r{]}@r{]}
5341 If given, @var{provider} is a regular expression used to match against
5342 provider names when selecting which probes to enable.  If omitted,
5343 all probes from all providers are enabled.
5344
5345 If given, @var{name} is a regular expression to match against probe
5346 names when selecting which probes to enable.  If omitted, probe names
5347 are not considered when deciding whether to enable them.
5348
5349 If given, @var{objfile} is a regular expression used to select which
5350 object files (executable or shared libraries) to examine.  If not
5351 given, all object files are considered.
5352
5353 @kindex disable probes
5354 @item disable probes @r{[}@var{provider} @r{[}@var{name} @r{[}@var{objfile}@r{]}@r{]}@r{]}
5355 See the @code{enable probes} command above for a description of the
5356 optional arguments accepted by this command.
5357 @end table
5358
5359 @vindex $_probe_arg@r{, convenience variable}
5360 A probe may specify up to twelve arguments.  These are available at the
5361 point at which the probe is defined---that is, when the current PC is
5362 at the probe's location.  The arguments are available using the
5363 convenience variables (@pxref{Convenience Vars})
5364 @code{$_probe_arg0}@dots{}@code{$_probe_arg11}.  In @code{SystemTap}
5365 probes each probe argument is an integer of the appropriate size;
5366 types are not preserved.  In @code{DTrace} probes types are preserved
5367 provided that they are recognized as such by @value{GDBN}; otherwise
5368 the value of the probe argument will be a long integer.  The
5369 convenience variable @code{$_probe_argc} holds the number of arguments
5370 at the current probe point.
5371
5372 These variables are always available, but attempts to access them at
5373 any location other than a probe point will cause @value{GDBN} to give
5374 an error message.
5375
5376
5377 @c  @ifclear BARETARGET
5378 @node Error in Breakpoints
5379 @subsection ``Cannot insert breakpoints''
5380
5381 If you request too many active hardware-assisted breakpoints and
5382 watchpoints, you will see this error message:
5383
5384 @c FIXME: the precise wording of this message may change; the relevant
5385 @c source change is not committed yet (Sep 3, 1999).
5386 @smallexample
5387 Stopped; cannot insert breakpoints.
5388 You may have requested too many hardware breakpoints and watchpoints.
5389 @end smallexample
5390
5391 @noindent
5392 This message is printed when you attempt to resume the program, since
5393 only then @value{GDBN} knows exactly how many hardware breakpoints and
5394 watchpoints it needs to insert.
5395
5396 When this message is printed, you need to disable or remove some of the
5397 hardware-assisted breakpoints and watchpoints, and then continue.
5398
5399 @node Breakpoint-related Warnings
5400 @subsection ``Breakpoint address adjusted...''
5401 @cindex breakpoint address adjusted
5402
5403 Some processor architectures place constraints on the addresses at
5404 which breakpoints may be placed.  For architectures thus constrained,
5405 @value{GDBN} will attempt to adjust the breakpoint's address to comply
5406 with the constraints dictated by the architecture.
5407
5408 One example of such an architecture is the Fujitsu FR-V.  The FR-V is
5409 a VLIW architecture in which a number of RISC-like instructions may be
5410 bundled together for parallel execution.  The FR-V architecture
5411 constrains the location of a breakpoint instruction within such a
5412 bundle to the instruction with the lowest address.  @value{GDBN}
5413 honors this constraint by adjusting a breakpoint's address to the
5414 first in the bundle.
5415
5416 It is not uncommon for optimized code to have bundles which contain
5417 instructions from different source statements, thus it may happen that
5418 a breakpoint's address will be adjusted from one source statement to
5419 another.  Since this adjustment may significantly alter @value{GDBN}'s
5420 breakpoint related behavior from what the user expects, a warning is
5421 printed when the breakpoint is first set and also when the breakpoint
5422 is hit.
5423
5424 A warning like the one below is printed when setting a breakpoint
5425 that's been subject to address adjustment:
5426
5427 @smallexample
5428 warning: Breakpoint address adjusted from 0x00010414 to 0x00010410.
5429 @end smallexample
5430
5431 Such warnings are printed both for user settable and @value{GDBN}'s
5432 internal breakpoints.  If you see one of these warnings, you should
5433 verify that a breakpoint set at the adjusted address will have the
5434 desired affect.  If not, the breakpoint in question may be removed and
5435 other breakpoints may be set which will have the desired behavior.
5436 E.g., it may be sufficient to place the breakpoint at a later
5437 instruction.  A conditional breakpoint may also be useful in some
5438 cases to prevent the breakpoint from triggering too often.
5439
5440 @value{GDBN} will also issue a warning when stopping at one of these
5441 adjusted breakpoints:
5442
5443 @smallexample
5444 warning: Breakpoint 1 address previously adjusted from 0x00010414
5445 to 0x00010410.
5446 @end smallexample
5447
5448 When this warning is encountered, it may be too late to take remedial
5449 action except in cases where the breakpoint is hit earlier or more
5450 frequently than expected.
5451
5452 @node Continuing and Stepping
5453 @section Continuing and Stepping
5454
5455 @cindex stepping
5456 @cindex continuing
5457 @cindex resuming execution
5458 @dfn{Continuing} means resuming program execution until your program
5459 completes normally.  In contrast, @dfn{stepping} means executing just
5460 one more ``step'' of your program, where ``step'' may mean either one
5461 line of source code, or one machine instruction (depending on what
5462 particular command you use).  Either when continuing or when stepping,
5463 your program may stop even sooner, due to a breakpoint or a signal.  (If
5464 it stops due to a signal, you may want to use @code{handle}, or use
5465 @samp{signal 0} to resume execution (@pxref{Signals, ,Signals}),
5466 or you may step into the signal's handler (@pxref{stepping and signal
5467 handlers}).)
5468
5469 @table @code
5470 @kindex continue
5471 @kindex c @r{(@code{continue})}
5472 @kindex fg @r{(resume foreground execution)}
5473 @item continue @r{[}@var{ignore-count}@r{]}
5474 @itemx c @r{[}@var{ignore-count}@r{]}
5475 @itemx fg @r{[}@var{ignore-count}@r{]}
5476 Resume program execution, at the address where your program last stopped;
5477 any breakpoints set at that address are bypassed.  The optional argument
5478 @var{ignore-count} allows you to specify a further number of times to
5479 ignore a breakpoint at this location; its effect is like that of
5480 @code{ignore} (@pxref{Conditions, ,Break Conditions}).
5481
5482 The argument @var{ignore-count} is meaningful only when your program
5483 stopped due to a breakpoint.  At other times, the argument to
5484 @code{continue} is ignored.
5485
5486 The synonyms @code{c} and @code{fg} (for @dfn{foreground}, as the
5487 debugged program is deemed to be the foreground program) are provided
5488 purely for convenience, and have exactly the same behavior as
5489 @code{continue}.
5490 @end table
5491
5492 To resume execution at a different place, you can use @code{return}
5493 (@pxref{Returning, ,Returning from a Function}) to go back to the
5494 calling function; or @code{jump} (@pxref{Jumping, ,Continuing at a
5495 Different Address}) to go to an arbitrary location in your program.
5496
5497 A typical technique for using stepping is to set a breakpoint
5498 (@pxref{Breakpoints, ,Breakpoints; Watchpoints; and Catchpoints}) at the
5499 beginning of the function or the section of your program where a problem
5500 is believed to lie, run your program until it stops at that breakpoint,
5501 and then step through the suspect area, examining the variables that are
5502 interesting, until you see the problem happen.
5503
5504 @table @code
5505 @kindex step
5506 @kindex s @r{(@code{step})}
5507 @item step
5508 Continue running your program until control reaches a different source
5509 line, then stop it and return control to @value{GDBN}.  This command is
5510 abbreviated @code{s}.
5511
5512 @quotation
5513 @c "without debugging information" is imprecise; actually "without line
5514 @c numbers in the debugging information".  (gcc -g1 has debugging info but
5515 @c not line numbers).  But it seems complex to try to make that
5516 @c distinction here.
5517 @emph{Warning:} If you use the @code{step} command while control is
5518 within a function that was compiled without debugging information,
5519 execution proceeds until control reaches a function that does have
5520 debugging information.  Likewise, it will not step into a function which
5521 is compiled without debugging information.  To step through functions
5522 without debugging information, use the @code{stepi} command, described
5523 below.
5524 @end quotation
5525
5526 The @code{step} command only stops at the first instruction of a source
5527 line.  This prevents the multiple stops that could otherwise occur in
5528 @code{switch} statements, @code{for} loops, etc.  @code{step} continues
5529 to stop if a function that has debugging information is called within
5530 the line.  In other words, @code{step} @emph{steps inside} any functions
5531 called within the line.
5532
5533 Also, the @code{step} command only enters a function if there is line
5534 number information for the function.  Otherwise it acts like the
5535 @code{next} command.  This avoids problems when using @code{cc -gl}
5536 on @acronym{MIPS} machines.  Previously, @code{step} entered subroutines if there
5537 was any debugging information about the routine.
5538
5539 @item step @var{count}
5540 Continue running as in @code{step}, but do so @var{count} times.  If a
5541 breakpoint is reached, or a signal not related to stepping occurs before
5542 @var{count} steps, stepping stops right away.
5543
5544 @kindex next
5545 @kindex n @r{(@code{next})}
5546 @item next @r{[}@var{count}@r{]}
5547 Continue to the next source line in the current (innermost) stack frame.
5548 This is similar to @code{step}, but function calls that appear within
5549 the line of code are executed without stopping.  Execution stops when
5550 control reaches a different line of code at the original stack level
5551 that was executing when you gave the @code{next} command.  This command
5552 is abbreviated @code{n}.
5553
5554 An argument @var{count} is a repeat count, as for @code{step}.
5555
5556
5557 @c  FIX ME!!  Do we delete this, or is there a way it fits in with
5558 @c  the following paragraph?   ---  Vctoria
5559 @c
5560 @c  @code{next} within a function that lacks debugging information acts like
5561 @c  @code{step}, but any function calls appearing within the code of the
5562 @c  function are executed without stopping.
5563
5564 The @code{next} command only stops at the first instruction of a
5565 source line.  This prevents multiple stops that could otherwise occur in
5566 @code{switch} statements, @code{for} loops, etc.
5567
5568 @kindex set step-mode
5569 @item set step-mode
5570 @cindex functions without line info, and stepping
5571 @cindex stepping into functions with no line info
5572 @itemx set step-mode on
5573 The @code{set step-mode on} command causes the @code{step} command to
5574 stop at the first instruction of a function which contains no debug line
5575 information rather than stepping over it.
5576
5577 This is useful in cases where you may be interested in inspecting the
5578 machine instructions of a function which has no symbolic info and do not
5579 want @value{GDBN} to automatically skip over this function.
5580
5581 @item set step-mode off
5582 Causes the @code{step} command to step over any functions which contains no
5583 debug information.  This is the default.
5584
5585 @item show step-mode
5586 Show whether @value{GDBN} will stop in or step over functions without
5587 source line debug information.
5588
5589 @kindex finish
5590 @kindex fin @r{(@code{finish})}
5591 @item finish
5592 Continue running until just after function in the selected stack frame
5593 returns.  Print the returned value (if any).  This command can be
5594 abbreviated as @code{fin}.
5595
5596 Contrast this with the @code{return} command (@pxref{Returning,
5597 ,Returning from a Function}).
5598
5599 @kindex until
5600 @kindex u @r{(@code{until})}
5601 @cindex run until specified location
5602 @item until
5603 @itemx u
5604 Continue running until a source line past the current line, in the
5605 current stack frame, is reached.  This command is used to avoid single
5606 stepping through a loop more than once.  It is like the @code{next}
5607 command, except that when @code{until} encounters a jump, it
5608 automatically continues execution until the program counter is greater
5609 than the address of the jump.
5610
5611 This means that when you reach the end of a loop after single stepping
5612 though it, @code{until} makes your program continue execution until it
5613 exits the loop.  In contrast, a @code{next} command at the end of a loop
5614 simply steps back to the beginning of the loop, which forces you to step
5615 through the next iteration.
5616
5617 @code{until} always stops your program if it attempts to exit the current
5618 stack frame.
5619
5620 @code{until} may produce somewhat counterintuitive results if the order
5621 of machine code does not match the order of the source lines.  For
5622 example, in the following excerpt from a debugging session, the @code{f}
5623 (@code{frame}) command shows that execution is stopped at line
5624 @code{206}; yet when we use @code{until}, we get to line @code{195}:
5625
5626 @smallexample
5627 (@value{GDBP}) f
5628 #0  main (argc=4, argv=0xf7fffae8) at m4.c:206
5629 206                 expand_input();
5630 (@value{GDBP}) until
5631 195             for ( ; argc > 0; NEXTARG) @{
5632 @end smallexample
5633
5634 This happened because, for execution efficiency, the compiler had
5635 generated code for the loop closure test at the end, rather than the
5636 start, of the loop---even though the test in a C @code{for}-loop is
5637 written before the body of the loop.  The @code{until} command appeared
5638 to step back to the beginning of the loop when it advanced to this
5639 expression; however, it has not really gone to an earlier
5640 statement---not in terms of the actual machine code.
5641
5642 @code{until} with no argument works by means of single
5643 instruction stepping, and hence is slower than @code{until} with an
5644 argument.
5645
5646 @item until @var{location}
5647 @itemx u @var{location}
5648 Continue running your program until either the specified @var{location} is
5649 reached, or the current stack frame returns.  The location is any of
5650 the forms described in @ref{Specify Location}.
5651 This form of the command uses temporary breakpoints, and
5652 hence is quicker than @code{until} without an argument.  The specified
5653 location is actually reached only if it is in the current frame.  This
5654 implies that @code{until} can be used to skip over recursive function
5655 invocations.  For instance in the code below, if the current location is
5656 line @code{96}, issuing @code{until 99} will execute the program up to
5657 line @code{99} in the same invocation of factorial, i.e., after the inner
5658 invocations have returned.
5659
5660 @smallexample
5661 94      int factorial (int value)
5662 95      @{
5663 96          if (value > 1) @{
5664 97            value *= factorial (value - 1);
5665 98          @}
5666 99          return (value);
5667 100     @}
5668 @end smallexample
5669
5670
5671 @kindex advance @var{location}
5672 @item advance @var{location}
5673 Continue running the program up to the given @var{location}.  An argument is
5674 required, which should be of one of the forms described in
5675 @ref{Specify Location}.
5676 Execution will also stop upon exit from the current stack
5677 frame.  This command is similar to @code{until}, but @code{advance} will
5678 not skip over recursive function calls, and the target location doesn't
5679 have to be in the same frame as the current one.
5680
5681
5682 @kindex stepi
5683 @kindex si @r{(@code{stepi})}
5684 @item stepi
5685 @itemx stepi @var{arg}
5686 @itemx si
5687 Execute one machine instruction, then stop and return to the debugger.
5688
5689 It is often useful to do @samp{display/i $pc} when stepping by machine
5690 instructions.  This makes @value{GDBN} automatically display the next
5691 instruction to be executed, each time your program stops.  @xref{Auto
5692 Display,, Automatic Display}.
5693
5694 An argument is a repeat count, as in @code{step}.
5695
5696 @need 750
5697 @kindex nexti
5698 @kindex ni @r{(@code{nexti})}
5699 @item nexti
5700 @itemx nexti @var{arg}
5701 @itemx ni
5702 Execute one machine instruction, but if it is a function call,
5703 proceed until the function returns.
5704
5705 An argument is a repeat count, as in @code{next}.
5706
5707 @end table
5708
5709 @anchor{range stepping}
5710 @cindex range stepping
5711 @cindex target-assisted range stepping
5712 By default, and if available, @value{GDBN} makes use of
5713 target-assisted @dfn{range stepping}.  In other words, whenever you
5714 use a stepping command (e.g., @code{step}, @code{next}), @value{GDBN}
5715 tells the target to step the corresponding range of instruction
5716 addresses instead of issuing multiple single-steps.  This speeds up
5717 line stepping, particularly for remote targets.  Ideally, there should
5718 be no reason you would want to turn range stepping off.  However, it's
5719 possible that a bug in the debug info, a bug in the remote stub (for
5720 remote targets), or even a bug in @value{GDBN} could make line
5721 stepping behave incorrectly when target-assisted range stepping is
5722 enabled.  You can use the following command to turn off range stepping
5723 if necessary:
5724
5725 @table @code
5726 @kindex set range-stepping
5727 @kindex show range-stepping
5728 @item set range-stepping
5729 @itemx show range-stepping
5730 Control whether range stepping is enabled.
5731
5732 If @code{on}, and the target supports it, @value{GDBN} tells the
5733 target to step a range of addresses itself, instead of issuing
5734 multiple single-steps.  If @code{off}, @value{GDBN} always issues
5735 single-steps, even if range stepping is supported by the target.  The
5736 default is @code{on}.
5737
5738 @end table
5739
5740 @node Skipping Over Functions and Files
5741 @section Skipping Over Functions and Files
5742 @cindex skipping over functions and files
5743
5744 The program you are debugging may contain some functions which are
5745 uninteresting to debug.  The @code{skip} command lets you tell @value{GDBN} to
5746 skip a function, all functions in a file or a particular function in
5747 a particular file when stepping.
5748
5749 For example, consider the following C function:
5750
5751 @smallexample
5752 101     int func()
5753 102     @{
5754 103         foo(boring());
5755 104         bar(boring());
5756 105     @}
5757 @end smallexample
5758
5759 @noindent
5760 Suppose you wish to step into the functions @code{foo} and @code{bar}, but you
5761 are not interested in stepping through @code{boring}.  If you run @code{step}
5762 at line 103, you'll enter @code{boring()}, but if you run @code{next}, you'll
5763 step over both @code{foo} and @code{boring}!
5764
5765 One solution is to @code{step} into @code{boring} and use the @code{finish}
5766 command to immediately exit it.  But this can become tedious if @code{boring}
5767 is called from many places.
5768
5769 A more flexible solution is to execute @kbd{skip boring}.  This instructs
5770 @value{GDBN} never to step into @code{boring}.  Now when you execute
5771 @code{step} at line 103, you'll step over @code{boring} and directly into
5772 @code{foo}.
5773
5774 Functions may be skipped by providing either a function name, linespec
5775 (@pxref{Specify Location}), regular expression that matches the function's
5776 name, file name or a @code{glob}-style pattern that matches the file name.
5777
5778 On Posix systems the form of the regular expression is
5779 ``Extended Regular Expressions''.  See for example @samp{man 7 regex}
5780 on @sc{gnu}/Linux systems.  On non-Posix systems the form of the regular
5781 expression is whatever is provided by the @code{regcomp} function of
5782 the underlying system.
5783 See for example @samp{man 7 glob} on @sc{gnu}/Linux systems for a
5784 description of @code{glob}-style patterns.
5785
5786 @table @code
5787 @kindex skip
5788 @item skip @r{[}@var{options}@r{]}
5789 The basic form of the @code{skip} command takes zero or more options
5790 that specify what to skip.
5791 The @var{options} argument is any useful combination of the following:
5792
5793 @table @code
5794 @item -file @var{file}
5795 @itemx -fi @var{file}
5796 Functions in @var{file} will be skipped over when stepping.
5797
5798 @item -gfile @var{file-glob-pattern}
5799 @itemx -gfi @var{file-glob-pattern}
5800 @cindex skipping over files via glob-style patterns
5801 Functions in files matching @var{file-glob-pattern} will be skipped
5802 over when stepping.
5803
5804 @smallexample
5805 (gdb) skip -gfi utils/*.c
5806 @end smallexample
5807
5808 @item -function @var{linespec}
5809 @itemx -fu @var{linespec}
5810 Functions named by @var{linespec} or the function containing the line
5811 named by @var{linespec} will be skipped over when stepping.
5812 @xref{Specify Location}.
5813
5814 @item -rfunction @var{regexp}
5815 @itemx -rfu @var{regexp}
5816 @cindex skipping over functions via regular expressions
5817 Functions whose name matches @var{regexp} will be skipped over when stepping.
5818
5819 This form is useful for complex function names.
5820 For example, there is generally no need to step into C@t{++} @code{std::string}
5821 constructors or destructors.  Plus with C@t{++} templates it can be hard to
5822 write out the full name of the function, and often it doesn't matter what
5823 the template arguments are.  Specifying the function to be skipped as a
5824 regular expression makes this easier.
5825
5826 @smallexample
5827 (gdb) skip -rfu ^std::(allocator|basic_string)<.*>::~?\1 *\(
5828 @end smallexample
5829
5830 If you want to skip every templated C@t{++} constructor and destructor
5831 in the @code{std} namespace you can do:
5832
5833 @smallexample
5834 (gdb) skip -rfu ^std::([a-zA-z0-9_]+)<.*>::~?\1 *\(
5835 @end smallexample
5836 @end table
5837
5838 If no options are specified, the function you're currently debugging
5839 will be skipped.
5840
5841 @kindex skip function
5842 @item skip function @r{[}@var{linespec}@r{]}
5843 After running this command, the function named by @var{linespec} or the
5844 function containing the line named by @var{linespec} will be skipped over when
5845 stepping.  @xref{Specify Location}.
5846
5847 If you do not specify @var{linespec}, the function you're currently debugging
5848 will be skipped.
5849
5850 (If you have a function called @code{file} that you want to skip, use
5851 @kbd{skip function file}.)
5852
5853 @kindex skip file
5854 @item skip file @r{[}@var{filename}@r{]}
5855 After running this command, any function whose source lives in @var{filename}
5856 will be skipped over when stepping.
5857
5858 @smallexample
5859 (gdb) skip file boring.c
5860 File boring.c will be skipped when stepping.
5861 @end smallexample
5862
5863 If you do not specify @var{filename}, functions whose source lives in the file
5864 you're currently debugging will be skipped.
5865 @end table
5866
5867 Skips can be listed, deleted, disabled, and enabled, much like breakpoints.
5868 These are the commands for managing your list of skips:
5869
5870 @table @code
5871 @kindex info skip
5872 @item info skip @r{[}@var{range}@r{]}
5873 Print details about the specified skip(s).  If @var{range} is not specified,
5874 print a table with details about all functions and files marked for skipping.
5875 @code{info skip} prints the following information about each skip:
5876
5877 @table @emph
5878 @item Identifier
5879 A number identifying this skip.
5880 @item Enabled or Disabled
5881 Enabled skips are marked with @samp{y}.
5882 Disabled skips are marked with @samp{n}.
5883 @item Glob
5884 If the file name is a @samp{glob} pattern this is @samp{y}.
5885 Otherwise it is @samp{n}.
5886 @item File
5887 The name or @samp{glob} pattern of the file to be skipped.
5888 If no file is specified this is @samp{<none>}.
5889 @item RE
5890 If the function name is a @samp{regular expression} this is @samp{y}.
5891 Otherwise it is @samp{n}.
5892 @item Function
5893 The name or regular expression of the function to skip.
5894 If no function is specified this is @samp{<none>}.
5895 @end table
5896
5897 @kindex skip delete
5898 @item skip delete @r{[}@var{range}@r{]}
5899 Delete the specified skip(s).  If @var{range} is not specified, delete all
5900 skips.
5901
5902 @kindex skip enable
5903 @item skip enable @r{[}@var{range}@r{]}
5904 Enable the specified skip(s).  If @var{range} is not specified, enable all
5905 skips.
5906
5907 @kindex skip disable
5908 @item skip disable @r{[}@var{range}@r{]}
5909 Disable the specified skip(s).  If @var{range} is not specified, disable all
5910 skips.
5911
5912 @kindex set debug skip
5913 @item set debug skip @r{[}on|off@r{]}
5914 Set whether to print the debug output about skipping files and functions.
5915
5916 @kindex show debug skip
5917 @item show debug skip
5918 Show whether the debug output about skipping files and functions is printed.
5919
5920 @end table
5921
5922 @node Signals
5923 @section Signals
5924 @cindex signals
5925
5926 A signal is an asynchronous event that can happen in a program.  The
5927 operating system defines the possible kinds of signals, and gives each
5928 kind a name and a number.  For example, in Unix @code{SIGINT} is the
5929 signal a program gets when you type an interrupt character (often @kbd{Ctrl-c});
5930 @code{SIGSEGV} is the signal a program gets from referencing a place in
5931 memory far away from all the areas in use; @code{SIGALRM} occurs when
5932 the alarm clock timer goes off (which happens only if your program has
5933 requested an alarm).
5934
5935 @cindex fatal signals
5936 Some signals, including @code{SIGALRM}, are a normal part of the
5937 functioning of your program.  Others, such as @code{SIGSEGV}, indicate
5938 errors; these signals are @dfn{fatal} (they kill your program immediately) if the
5939 program has not specified in advance some other way to handle the signal.
5940 @code{SIGINT} does not indicate an error in your program, but it is normally
5941 fatal so it can carry out the purpose of the interrupt: to kill the program.
5942
5943 @value{GDBN} has the ability to detect any occurrence of a signal in your
5944 program.  You can tell @value{GDBN} in advance what to do for each kind of
5945 signal.
5946
5947 @cindex handling signals
5948 Normally, @value{GDBN} is set up to let the non-erroneous signals like
5949 @code{SIGALRM} be silently passed to your program
5950 (so as not to interfere with their role in the program's functioning)
5951 but to stop your program immediately whenever an error signal happens.
5952 You can change these settings with the @code{handle} command.
5953
5954 @table @code
5955 @kindex info signals
5956 @kindex info handle
5957 @item info signals
5958 @itemx info handle
5959 Print a table of all the kinds of signals and how @value{GDBN} has been told to
5960 handle each one.  You can use this to see the signal numbers of all
5961 the defined types of signals.
5962
5963 @item info signals @var{sig}
5964 Similar, but print information only about the specified signal number.
5965
5966 @code{info handle} is an alias for @code{info signals}.
5967
5968 @item catch signal @r{[}@var{signal}@dots{} @r{|} @samp{all}@r{]}
5969 Set a catchpoint for the indicated signals.  @xref{Set Catchpoints},
5970 for details about this command.
5971
5972 @kindex handle
5973 @item handle @var{signal} @r{[}@var{keywords}@dots{}@r{]}
5974 Change the way @value{GDBN} handles signal @var{signal}.  The @var{signal}
5975 can be the number of a signal or its name (with or without the
5976 @samp{SIG} at the beginning); a list of signal numbers of the form
5977 @samp{@var{low}-@var{high}}; or the word @samp{all}, meaning all the
5978 known signals.  Optional arguments @var{keywords}, described below,
5979 say what change to make.
5980 @end table
5981
5982 @c @group
5983 The keywords allowed by the @code{handle} command can be abbreviated.
5984 Their full names are:
5985
5986 @table @code
5987 @item nostop
5988 @value{GDBN} should not stop your program when this signal happens.  It may
5989 still print a message telling you that the signal has come in.
5990
5991 @item stop
5992 @value{GDBN} should stop your program when this signal happens.  This implies
5993 the @code{print} keyword as well.
5994
5995 @item print
5996 @value{GDBN} should print a message when this signal happens.
5997
5998 @item noprint
5999 @value{GDBN} should not mention the occurrence of the signal at all.  This
6000 implies the @code{nostop} keyword as well.
6001
6002 @item pass
6003 @itemx noignore
6004 @value{GDBN} should allow your program to see this signal; your program
6005 can handle the signal, or else it may terminate if the signal is fatal
6006 and not handled.  @code{pass} and @code{noignore} are synonyms.
6007
6008 @item nopass
6009 @itemx ignore
6010 @value{GDBN} should not allow your program to see this signal.
6011 @code{nopass} and @code{ignore} are synonyms.
6012 @end table
6013 @c @end group
6014
6015 When a signal stops your program, the signal is not visible to the
6016 program until you
6017 continue.  Your program sees the signal then, if @code{pass} is in
6018 effect for the signal in question @emph{at that time}.  In other words,
6019 after @value{GDBN} reports a signal, you can use the @code{handle}
6020 command with @code{pass} or @code{nopass} to control whether your
6021 program sees that signal when you continue.
6022
6023 The default is set to @code{nostop}, @code{noprint}, @code{pass} for
6024 non-erroneous signals such as @code{SIGALRM}, @code{SIGWINCH} and
6025 @code{SIGCHLD}, and to @code{stop}, @code{print}, @code{pass} for the
6026 erroneous signals.
6027
6028 You can also use the @code{signal} command to prevent your program from
6029 seeing a signal, or cause it to see a signal it normally would not see,
6030 or to give it any signal at any time.  For example, if your program stopped
6031 due to some sort of memory reference error, you might store correct
6032 values into the erroneous variables and continue, hoping to see more
6033 execution; but your program would probably terminate immediately as
6034 a result of the fatal signal once it saw the signal.  To prevent this,
6035 you can continue with @samp{signal 0}.  @xref{Signaling, ,Giving your
6036 Program a Signal}.
6037
6038 @cindex stepping and signal handlers
6039 @anchor{stepping and signal handlers}
6040
6041 @value{GDBN} optimizes for stepping the mainline code.  If a signal
6042 that has @code{handle nostop} and @code{handle pass} set arrives while
6043 a stepping command (e.g., @code{stepi}, @code{step}, @code{next}) is
6044 in progress, @value{GDBN} lets the signal handler run and then resumes
6045 stepping the mainline code once the signal handler returns.  In other
6046 words, @value{GDBN} steps over the signal handler.  This prevents
6047 signals that you've specified as not interesting (with @code{handle
6048 nostop}) from changing the focus of debugging unexpectedly.  Note that
6049 the signal handler itself may still hit a breakpoint, stop for another
6050 signal that has @code{handle stop} in effect, or for any other event
6051 that normally results in stopping the stepping command sooner.  Also
6052 note that @value{GDBN} still informs you that the program received a
6053 signal if @code{handle print} is set.
6054
6055 @anchor{stepping into signal handlers}
6056
6057 If you set @code{handle pass} for a signal, and your program sets up a
6058 handler for it, then issuing a stepping command, such as @code{step}
6059 or @code{stepi}, when your program is stopped due to the signal will
6060 step @emph{into} the signal handler (if the target supports that).
6061
6062 Likewise, if you use the @code{queue-signal} command to queue a signal
6063 to be delivered to the current thread when execution of the thread
6064 resumes (@pxref{Signaling, ,Giving your Program a Signal}), then a
6065 stepping command will step into the signal handler.
6066
6067 Here's an example, using @code{stepi} to step to the first instruction
6068 of @code{SIGUSR1}'s handler:
6069
6070 @smallexample
6071 (@value{GDBP}) handle SIGUSR1
6072 Signal        Stop      Print   Pass to program Description
6073 SIGUSR1       Yes       Yes     Yes             User defined signal 1
6074 (@value{GDBP}) c
6075 Continuing.
6076
6077 Program received signal SIGUSR1, User defined signal 1.
6078 main () sigusr1.c:28
6079 28        p = 0;
6080 (@value{GDBP}) si
6081 sigusr1_handler () at sigusr1.c:9
6082 9       @{
6083 @end smallexample
6084
6085 The same, but using @code{queue-signal} instead of waiting for the
6086 program to receive the signal first:
6087
6088 @smallexample
6089 (@value{GDBP}) n
6090 28        p = 0;
6091 (@value{GDBP}) queue-signal SIGUSR1
6092 (@value{GDBP}) si
6093 sigusr1_handler () at sigusr1.c:9
6094 9       @{
6095 (@value{GDBP})
6096 @end smallexample
6097
6098 @cindex extra signal information
6099 @anchor{extra signal information}
6100
6101 On some targets, @value{GDBN} can inspect extra signal information
6102 associated with the intercepted signal, before it is actually
6103 delivered to the program being debugged.  This information is exported
6104 by the convenience variable @code{$_siginfo}, and consists of data
6105 that is passed by the kernel to the signal handler at the time of the
6106 receipt of a signal.  The data type of the information itself is
6107 target dependent.  You can see the data type using the @code{ptype
6108 $_siginfo} command.  On Unix systems, it typically corresponds to the
6109 standard @code{siginfo_t} type, as defined in the @file{signal.h}
6110 system header.
6111
6112 Here's an example, on a @sc{gnu}/Linux system, printing the stray
6113 referenced address that raised a segmentation fault.
6114
6115 @smallexample
6116 @group
6117 (@value{GDBP}) continue
6118 Program received signal SIGSEGV, Segmentation fault.
6119 0x0000000000400766 in main ()
6120 69        *(int *)p = 0;
6121 (@value{GDBP}) ptype $_siginfo
6122 type = struct @{
6123     int si_signo;
6124     int si_errno;
6125     int si_code;
6126     union @{
6127         int _pad[28];
6128         struct @{...@} _kill;
6129         struct @{...@} _timer;
6130         struct @{...@} _rt;
6131         struct @{...@} _sigchld;
6132         struct @{...@} _sigfault;
6133         struct @{...@} _sigpoll;
6134     @} _sifields;
6135 @}
6136 (@value{GDBP}) ptype $_siginfo._sifields._sigfault
6137 type = struct @{
6138     void *si_addr;
6139 @}
6140 (@value{GDBP}) p $_siginfo._sifields._sigfault.si_addr
6141 $1 = (void *) 0x7ffff7ff7000
6142 @end group
6143 @end smallexample
6144
6145 Depending on target support, @code{$_siginfo} may also be writable.
6146
6147 @cindex Intel MPX boundary violations
6148 @cindex boundary violations, Intel MPX
6149 On some targets, a @code{SIGSEGV} can be caused by a boundary
6150 violation, i.e., accessing an address outside of the allowed range.
6151 In those cases @value{GDBN} may displays additional information,
6152 depending on how @value{GDBN} has been told to handle the signal.
6153 With @code{handle stop SIGSEGV}, @value{GDBN} displays the violation
6154 kind: "Upper" or "Lower", the memory address accessed and the
6155 bounds, while with @code{handle nostop SIGSEGV} no additional
6156 information is displayed.
6157
6158 The usual output of a segfault is:
6159 @smallexample
6160 Program received signal SIGSEGV, Segmentation fault
6161 0x0000000000400d7c in upper () at i386-mpx-sigsegv.c:68
6162 68        value = *(p + len);
6163 @end smallexample
6164
6165 While a bound violation is presented as:
6166 @smallexample
6167 Program received signal SIGSEGV, Segmentation fault
6168 Upper bound violation while accessing address 0x7fffffffc3b3
6169 Bounds: [lower = 0x7fffffffc390, upper = 0x7fffffffc3a3]
6170 0x0000000000400d7c in upper () at i386-mpx-sigsegv.c:68
6171 68        value = *(p + len);
6172 @end smallexample
6173
6174 @node Thread Stops
6175 @section Stopping and Starting Multi-thread Programs
6176
6177 @cindex stopped threads
6178 @cindex threads, stopped
6179
6180 @cindex continuing threads
6181 @cindex threads, continuing
6182
6183 @value{GDBN} supports debugging programs with multiple threads
6184 (@pxref{Threads,, Debugging Programs with Multiple Threads}).  There
6185 are two modes of controlling execution of your program within the
6186 debugger.  In the default mode, referred to as @dfn{all-stop mode},
6187 when any thread in your program stops (for example, at a breakpoint 
6188 or while being stepped), all other threads in the program are also stopped by 
6189 @value{GDBN}.  On some targets, @value{GDBN} also supports 
6190 @dfn{non-stop mode}, in which other threads can continue to run freely while
6191 you examine the stopped thread in the debugger.
6192
6193 @menu
6194 * All-Stop Mode::               All threads stop when GDB takes control
6195 * Non-Stop Mode::               Other threads continue to execute
6196 * Background Execution::        Running your program asynchronously
6197 * Thread-Specific Breakpoints:: Controlling breakpoints
6198 * Interrupted System Calls::    GDB may interfere with system calls
6199 * Observer Mode::               GDB does not alter program behavior
6200 @end menu
6201
6202 @node All-Stop Mode
6203 @subsection All-Stop Mode
6204
6205 @cindex all-stop mode
6206
6207 In all-stop mode, whenever your program stops under @value{GDBN} for any reason,
6208 @emph{all} threads of execution stop, not just the current thread.  This
6209 allows you to examine the overall state of the program, including
6210 switching between threads, without worrying that things may change
6211 underfoot.
6212
6213 Conversely, whenever you restart the program, @emph{all} threads start
6214 executing.  @emph{This is true even when single-stepping} with commands
6215 like @code{step} or @code{next}.
6216
6217 In particular, @value{GDBN} cannot single-step all threads in lockstep.
6218 Since thread scheduling is up to your debugging target's operating
6219 system (not controlled by @value{GDBN}), other threads may
6220 execute more than one statement while the current thread completes a
6221 single step.  Moreover, in general other threads stop in the middle of a
6222 statement, rather than at a clean statement boundary, when the program
6223 stops.
6224
6225 You might even find your program stopped in another thread after
6226 continuing or even single-stepping.  This happens whenever some other
6227 thread runs into a breakpoint, a signal, or an exception before the
6228 first thread completes whatever you requested.
6229
6230 @cindex automatic thread selection
6231 @cindex switching threads automatically
6232 @cindex threads, automatic switching
6233 Whenever @value{GDBN} stops your program, due to a breakpoint or a
6234 signal, it automatically selects the thread where that breakpoint or
6235 signal happened.  @value{GDBN} alerts you to the context switch with a
6236 message such as @samp{[Switching to Thread @var{n}]} to identify the
6237 thread.  
6238
6239 On some OSes, you can modify @value{GDBN}'s default behavior by
6240 locking the OS scheduler to allow only a single thread to run.
6241
6242 @table @code
6243 @item set scheduler-locking @var{mode}
6244 @cindex scheduler locking mode
6245 @cindex lock scheduler
6246 Set the scheduler locking mode.  It applies to normal execution,
6247 record mode, and replay mode.  If it is @code{off}, then there is no
6248 locking and any thread may run at any time.  If @code{on}, then only
6249 the current thread may run when the inferior is resumed.  The
6250 @code{step} mode optimizes for single-stepping; it prevents other
6251 threads from preempting the current thread while you are stepping, so
6252 that the focus of debugging does not change unexpectedly.  Other
6253 threads never get a chance to run when you step, and they are
6254 completely free to run when you use commands like @samp{continue},
6255 @samp{until}, or @samp{finish}.  However, unless another thread hits a
6256 breakpoint during its timeslice, @value{GDBN} does not change the
6257 current thread away from the thread that you are debugging.  The
6258 @code{replay} mode behaves like @code{off} in record mode and like
6259 @code{on} in replay mode.
6260
6261 @item show scheduler-locking
6262 Display the current scheduler locking mode.
6263 @end table
6264
6265 @cindex resume threads of multiple processes simultaneously
6266 By default, when you issue one of the execution commands such as
6267 @code{continue}, @code{next} or @code{step}, @value{GDBN} allows only
6268 threads of the current inferior to run.  For example, if @value{GDBN}
6269 is attached to two inferiors, each with two threads, the
6270 @code{continue} command resumes only the two threads of the current
6271 inferior.  This is useful, for example, when you debug a program that
6272 forks and you want to hold the parent stopped (so that, for instance,
6273 it doesn't run to exit), while you debug the child.  In other
6274 situations, you may not be interested in inspecting the current state
6275 of any of the processes @value{GDBN} is attached to, and you may want
6276 to resume them all until some breakpoint is hit.  In the latter case,
6277 you can instruct @value{GDBN} to allow all threads of all the
6278 inferiors to run with the @w{@code{set schedule-multiple}} command.
6279
6280 @table @code
6281 @kindex set schedule-multiple
6282 @item set schedule-multiple
6283 Set the mode for allowing threads of multiple processes to be resumed
6284 when an execution command is issued.  When @code{on}, all threads of
6285 all processes are allowed to run.  When @code{off}, only the threads
6286 of the current process are resumed.  The default is @code{off}.  The
6287 @code{scheduler-locking} mode takes precedence when set to @code{on},
6288 or while you are stepping and set to @code{step}.
6289
6290 @item show schedule-multiple
6291 Display the current mode for resuming the execution of threads of
6292 multiple processes.
6293 @end table
6294
6295 @node Non-Stop Mode
6296 @subsection Non-Stop Mode
6297
6298 @cindex non-stop mode
6299
6300 @c This section is really only a place-holder, and needs to be expanded
6301 @c with more details.
6302
6303 For some multi-threaded targets, @value{GDBN} supports an optional
6304 mode of operation in which you can examine stopped program threads in
6305 the debugger while other threads continue to execute freely.  This
6306 minimizes intrusion when debugging live systems, such as programs
6307 where some threads have real-time constraints or must continue to
6308 respond to external events.  This is referred to as @dfn{non-stop} mode.
6309
6310 In non-stop mode, when a thread stops to report a debugging event,
6311 @emph{only} that thread is stopped; @value{GDBN} does not stop other
6312 threads as well, in contrast to the all-stop mode behavior.  Additionally,
6313 execution commands such as @code{continue} and @code{step} apply by default
6314 only to the current thread in non-stop mode, rather than all threads as
6315 in all-stop mode.  This allows you to control threads explicitly in
6316 ways that are not possible in all-stop mode --- for example, stepping
6317 one thread while allowing others to run freely, stepping
6318 one thread while holding all others stopped, or stepping several threads
6319 independently and simultaneously.
6320
6321 To enter non-stop mode, use this sequence of commands before you run
6322 or attach to your program:
6323
6324 @smallexample
6325 # If using the CLI, pagination breaks non-stop.
6326 set pagination off
6327
6328 # Finally, turn it on!
6329 set non-stop on
6330 @end smallexample
6331
6332 You can use these commands to manipulate the non-stop mode setting:
6333
6334 @table @code
6335 @kindex set non-stop
6336 @item set non-stop on
6337 Enable selection of non-stop mode.
6338 @item set non-stop off
6339 Disable selection of non-stop mode.
6340 @kindex show non-stop
6341 @item show non-stop
6342 Show the current non-stop enablement setting.
6343 @end table
6344
6345 Note these commands only reflect whether non-stop mode is enabled,
6346 not whether the currently-executing program is being run in non-stop mode.
6347 In particular, the @code{set non-stop} preference is only consulted when
6348 @value{GDBN} starts or connects to the target program, and it is generally
6349 not possible to switch modes once debugging has started.  Furthermore,
6350 since not all targets support non-stop mode, even when you have enabled
6351 non-stop mode, @value{GDBN} may still fall back to all-stop operation by
6352 default.
6353
6354 In non-stop mode, all execution commands apply only to the current thread
6355 by default.  That is, @code{continue} only continues one thread.
6356 To continue all threads, issue @code{continue -a} or @code{c -a}.
6357
6358 You can use @value{GDBN}'s background execution commands
6359 (@pxref{Background Execution}) to run some threads in the background
6360 while you continue to examine or step others from @value{GDBN}.
6361 The MI execution commands (@pxref{GDB/MI Program Execution}) are
6362 always executed asynchronously in non-stop mode.
6363
6364 Suspending execution is done with the @code{interrupt} command when
6365 running in the background, or @kbd{Ctrl-c} during foreground execution.
6366 In all-stop mode, this stops the whole process;
6367 but in non-stop mode the interrupt applies only to the current thread.
6368 To stop the whole program, use @code{interrupt -a}.
6369
6370 Other execution commands do not currently support the @code{-a} option.
6371
6372 In non-stop mode, when a thread stops, @value{GDBN} doesn't automatically make
6373 that thread current, as it does in all-stop mode.  This is because the
6374 thread stop notifications are asynchronous with respect to @value{GDBN}'s
6375 command interpreter, and it would be confusing if @value{GDBN} unexpectedly
6376 changed to a different thread just as you entered a command to operate on the
6377 previously current thread.
6378
6379 @node Background Execution
6380 @subsection Background Execution
6381
6382 @cindex foreground execution
6383 @cindex background execution
6384 @cindex asynchronous execution
6385 @cindex execution, foreground, background and asynchronous
6386
6387 @value{GDBN}'s execution commands have two variants:  the normal
6388 foreground (synchronous) behavior, and a background
6389 (asynchronous) behavior.  In foreground execution, @value{GDBN} waits for
6390 the program to report that some thread has stopped before prompting for
6391 another command.  In background execution, @value{GDBN} immediately gives
6392 a command prompt so that you can issue other commands while your program runs.
6393
6394 If the target doesn't support async mode, @value{GDBN} issues an error
6395 message if you attempt to use the background execution commands.
6396
6397 @cindex @code{&}, background execution of commands
6398 To specify background execution, add a @code{&} to the command.  For example,
6399 the background form of the @code{continue} command is @code{continue&}, or
6400 just @code{c&}.  The execution commands that accept background execution
6401 are:
6402
6403 @table @code
6404 @kindex run&
6405 @item run
6406 @xref{Starting, , Starting your Program}.
6407
6408 @item attach
6409 @kindex attach&
6410 @xref{Attach, , Debugging an Already-running Process}.
6411
6412 @item step
6413 @kindex step&
6414 @xref{Continuing and Stepping, step}.
6415
6416 @item stepi
6417 @kindex stepi&
6418 @xref{Continuing and Stepping, stepi}.
6419
6420 @item next
6421 @kindex next&
6422 @xref{Continuing and Stepping, next}.
6423
6424 @item nexti
6425 @kindex nexti&
6426 @xref{Continuing and Stepping, nexti}.
6427
6428 @item continue
6429 @kindex continue&
6430 @xref{Continuing and Stepping, continue}.
6431
6432 @item finish
6433 @kindex finish&
6434 @xref{Continuing and Stepping, finish}.
6435
6436 @item until
6437 @kindex until&
6438 @xref{Continuing and Stepping, until}.
6439
6440 @end table
6441
6442 Background execution is especially useful in conjunction with non-stop
6443 mode for debugging programs with multiple threads; see @ref{Non-Stop Mode}.
6444 However, you can also use these commands in the normal all-stop mode with
6445 the restriction that you cannot issue another execution command until the
6446 previous one finishes.  Examples of commands that are valid in all-stop
6447 mode while the program is running include @code{help} and @code{info break}.
6448
6449 You can interrupt your program while it is running in the background by
6450 using the @code{interrupt} command.
6451
6452 @table @code
6453 @kindex interrupt
6454 @item interrupt
6455 @itemx interrupt -a
6456
6457 Suspend execution of the running program.  In all-stop mode,
6458 @code{interrupt} stops the whole process, but in non-stop mode, it stops
6459 only the current thread.  To stop the whole program in non-stop mode,
6460 use @code{interrupt -a}.
6461 @end table
6462
6463 @node Thread-Specific Breakpoints
6464 @subsection Thread-Specific Breakpoints
6465
6466 When your program has multiple threads (@pxref{Threads,, Debugging
6467 Programs with Multiple Threads}), you can choose whether to set
6468 breakpoints on all threads, or on a particular thread.
6469
6470 @table @code
6471 @cindex breakpoints and threads
6472 @cindex thread breakpoints
6473 @kindex break @dots{} thread @var{thread-id}
6474 @item break @var{location} thread @var{thread-id}
6475 @itemx break @var{location} thread @var{thread-id} if @dots{}
6476 @var{location} specifies source lines; there are several ways of
6477 writing them (@pxref{Specify Location}), but the effect is always to
6478 specify some source line.
6479
6480 Use the qualifier @samp{thread @var{thread-id}} with a breakpoint command
6481 to specify that you only want @value{GDBN} to stop the program when a
6482 particular thread reaches this breakpoint.  The @var{thread-id} specifier
6483 is one of the thread identifiers assigned by @value{GDBN}, shown
6484 in the first column of the @samp{info threads} display.
6485
6486 If you do not specify @samp{thread @var{thread-id}} when you set a
6487 breakpoint, the breakpoint applies to @emph{all} threads of your
6488 program.
6489
6490 You can use the @code{thread} qualifier on conditional breakpoints as
6491 well; in this case, place @samp{thread @var{thread-id}} before or
6492 after the breakpoint condition, like this:
6493
6494 @smallexample
6495 (@value{GDBP}) break frik.c:13 thread 28 if bartab > lim
6496 @end smallexample
6497
6498 @end table
6499
6500 Thread-specific breakpoints are automatically deleted when
6501 @value{GDBN} detects the corresponding thread is no longer in the
6502 thread list.  For example:
6503
6504 @smallexample
6505 (@value{GDBP}) c
6506 Thread-specific breakpoint 3 deleted - thread 28 no longer in the thread list.
6507 @end smallexample
6508
6509 There are several ways for a thread to disappear, such as a regular
6510 thread exit, but also when you detach from the process with the
6511 @code{detach} command (@pxref{Attach, ,Debugging an Already-running
6512 Process}), or if @value{GDBN} loses the remote connection
6513 (@pxref{Remote Debugging}), etc.  Note that with some targets,
6514 @value{GDBN} is only able to detect a thread has exited when the user
6515 explictly asks for the thread list with the @code{info threads}
6516 command.
6517
6518 @node Interrupted System Calls
6519 @subsection Interrupted System Calls 
6520
6521 @cindex thread breakpoints and system calls
6522 @cindex system calls and thread breakpoints
6523 @cindex premature return from system calls
6524 There is an unfortunate side effect when using @value{GDBN} to debug
6525 multi-threaded programs.  If one thread stops for a
6526 breakpoint, or for some other reason, and another thread is blocked in a
6527 system call, then the system call may return prematurely.  This is a
6528 consequence of the interaction between multiple threads and the signals
6529 that @value{GDBN} uses to implement breakpoints and other events that
6530 stop execution.
6531
6532 To handle this problem, your program should check the return value of
6533 each system call and react appropriately.  This is good programming
6534 style anyways.
6535
6536 For example, do not write code like this:
6537
6538 @smallexample
6539   sleep (10);
6540 @end smallexample
6541
6542 The call to @code{sleep} will return early if a different thread stops
6543 at a breakpoint or for some other reason.
6544
6545 Instead, write this:
6546
6547 @smallexample
6548   int unslept = 10;
6549   while (unslept > 0)
6550     unslept = sleep (unslept);
6551 @end smallexample
6552
6553 A system call is allowed to return early, so the system is still
6554 conforming to its specification.  But @value{GDBN} does cause your
6555 multi-threaded program to behave differently than it would without
6556 @value{GDBN}.
6557
6558 Also, @value{GDBN} uses internal breakpoints in the thread library to
6559 monitor certain events such as thread creation and thread destruction.
6560 When such an event happens, a system call in another thread may return
6561 prematurely, even though your program does not appear to stop.
6562
6563 @node Observer Mode
6564 @subsection Observer Mode
6565
6566 If you want to build on non-stop mode and observe program behavior
6567 without any chance of disruption by @value{GDBN}, you can set
6568 variables to disable all of the debugger's attempts to modify state,
6569 whether by writing memory, inserting breakpoints, etc.  These operate
6570 at a low level, intercepting operations from all commands.
6571
6572 When all of these are set to @code{off}, then @value{GDBN} is said to
6573 be @dfn{observer mode}.  As a convenience, the variable
6574 @code{observer} can be set to disable these, plus enable non-stop
6575 mode.
6576
6577 Note that @value{GDBN} will not prevent you from making nonsensical
6578 combinations of these settings. For instance, if you have enabled
6579 @code{may-insert-breakpoints} but disabled @code{may-write-memory},
6580 then breakpoints that work by writing trap instructions into the code
6581 stream will still not be able to be placed.
6582
6583 @table @code
6584
6585 @kindex observer
6586 @item set observer on
6587 @itemx set observer off
6588 When set to @code{on}, this disables all the permission variables
6589 below (except for @code{insert-fast-tracepoints}), plus enables
6590 non-stop debugging.  Setting this to @code{off} switches back to
6591 normal debugging, though remaining in non-stop mode.
6592
6593 @item show observer
6594 Show whether observer mode is on or off.
6595
6596 @kindex may-write-registers
6597 @item set may-write-registers on
6598 @itemx set may-write-registers off
6599 This controls whether @value{GDBN} will attempt to alter the values of
6600 registers, such as with assignment expressions in @code{print}, or the
6601 @code{jump} command.  It defaults to @code{on}.
6602
6603 @item show may-write-registers
6604 Show the current permission to write registers.
6605
6606 @kindex may-write-memory
6607 @item set may-write-memory on
6608 @itemx set may-write-memory off
6609 This controls whether @value{GDBN} will attempt to alter the contents
6610 of memory, such as with assignment expressions in @code{print}.  It
6611 defaults to @code{on}.
6612
6613 @item show may-write-memory
6614 Show the current permission to write memory.
6615
6616 @kindex may-insert-breakpoints
6617 @item set may-insert-breakpoints on
6618 @itemx set may-insert-breakpoints off
6619 This controls whether @value{GDBN} will attempt to insert breakpoints.
6620 This affects all breakpoints, including internal breakpoints defined
6621 by @value{GDBN}.  It defaults to @code{on}.
6622
6623 @item show may-insert-breakpoints
6624 Show the current permission to insert breakpoints.
6625
6626 @kindex may-insert-tracepoints
6627 @item set may-insert-tracepoints on
6628 @itemx set may-insert-tracepoints off
6629 This controls whether @value{GDBN} will attempt to insert (regular)
6630 tracepoints at the beginning of a tracing experiment.  It affects only
6631 non-fast tracepoints, fast tracepoints being under the control of
6632 @code{may-insert-fast-tracepoints}.  It defaults to @code{on}.
6633
6634 @item show may-insert-tracepoints
6635 Show the current permission to insert tracepoints.
6636
6637 @kindex may-insert-fast-tracepoints
6638 @item set may-insert-fast-tracepoints on
6639 @itemx set may-insert-fast-tracepoints off
6640 This controls whether @value{GDBN} will attempt to insert fast
6641 tracepoints at the beginning of a tracing experiment.  It affects only
6642 fast tracepoints, regular (non-fast) tracepoints being under the
6643 control of @code{may-insert-tracepoints}.  It defaults to @code{on}.
6644
6645 @item show may-insert-fast-tracepoints
6646 Show the current permission to insert fast tracepoints.
6647
6648 @kindex may-interrupt
6649 @item set may-interrupt on
6650 @itemx set may-interrupt off
6651 This controls whether @value{GDBN} will attempt to interrupt or stop
6652 program execution.  When this variable is @code{off}, the
6653 @code{interrupt} command will have no effect, nor will
6654 @kbd{Ctrl-c}. It defaults to @code{on}.
6655
6656 @item show may-interrupt
6657 Show the current permission to interrupt or stop the program.
6658
6659 @end table
6660
6661 @node Reverse Execution
6662 @chapter Running programs backward
6663 @cindex reverse execution
6664 @cindex running programs backward
6665
6666 When you are debugging a program, it is not unusual to realize that
6667 you have gone too far, and some event of interest has already happened.
6668 If the target environment supports it, @value{GDBN} can allow you to
6669 ``rewind'' the program by running it backward.
6670
6671 A target environment that supports reverse execution should be able
6672 to ``undo'' the changes in machine state that have taken place as the
6673 program was executing normally.  Variables, registers etc.@: should
6674 revert to their previous values.  Obviously this requires a great
6675 deal of sophistication on the part of the target environment; not
6676 all target environments can support reverse execution.
6677
6678 When a program is executed in reverse, the instructions that
6679 have most recently been executed are ``un-executed'', in reverse
6680 order.  The program counter runs backward, following the previous
6681 thread of execution in reverse.  As each instruction is ``un-executed'',
6682 the values of memory and/or registers that were changed by that
6683 instruction are reverted to their previous states.  After executing
6684 a piece of source code in reverse, all side effects of that code
6685 should be ``undone'', and all variables should be returned to their
6686 prior values@footnote{
6687 Note that some side effects are easier to undo than others.  For instance,
6688 memory and registers are relatively easy, but device I/O is hard.  Some
6689 targets may be able undo things like device I/O, and some may not.
6690
6691 The contract between @value{GDBN} and the reverse executing target
6692 requires only that the target do something reasonable when
6693 @value{GDBN} tells it to execute backwards, and then report the 
6694 results back to @value{GDBN}.  Whatever the target reports back to
6695 @value{GDBN}, @value{GDBN} will report back to the user.  @value{GDBN}
6696 assumes that the memory and registers that the target reports are in a
6697 consistant state, but @value{GDBN} accepts whatever it is given.
6698 }.
6699
6700 On some platforms, @value{GDBN} has built-in support for reverse
6701 execution, activated with the @code{record} or @code{record btrace}
6702 commands.  @xref{Process Record and Replay}.  Some remote targets,
6703 typically full system emulators, support reverse execution directly
6704 without requiring any special command.
6705
6706 If you are debugging in a target environment that supports
6707 reverse execution, @value{GDBN} provides the following commands.
6708
6709 @table @code
6710 @kindex reverse-continue
6711 @kindex rc @r{(@code{reverse-continue})}
6712 @item reverse-continue @r{[}@var{ignore-count}@r{]}
6713 @itemx rc @r{[}@var{ignore-count}@r{]}
6714 Beginning at the point where your program last stopped, start executing
6715 in reverse.  Reverse execution will stop for breakpoints and synchronous
6716 exceptions (signals), just like normal execution.  Behavior of
6717 asynchronous signals depends on the target environment.
6718
6719 @kindex reverse-step
6720 @kindex rs @r{(@code{step})}
6721 @item reverse-step @r{[}@var{count}@r{]}
6722 Run the program backward until control reaches the start of a
6723 different source line; then stop it, and return control to @value{GDBN}.
6724
6725 Like the @code{step} command, @code{reverse-step} will only stop
6726 at the beginning of a source line.  It ``un-executes'' the previously
6727 executed source line.  If the previous source line included calls to
6728 debuggable functions, @code{reverse-step} will step (backward) into
6729 the called function, stopping at the beginning of the @emph{last}
6730 statement in the called function (typically a return statement).
6731
6732 Also, as with the @code{step} command, if non-debuggable functions are
6733 called, @code{reverse-step} will run thru them backward without stopping.
6734
6735 @kindex reverse-stepi
6736 @kindex rsi @r{(@code{reverse-stepi})}
6737 @item reverse-stepi @r{[}@var{count}@r{]}
6738 Reverse-execute one machine instruction.  Note that the instruction
6739 to be reverse-executed is @emph{not} the one pointed to by the program
6740 counter, but the instruction executed prior to that one.  For instance,
6741 if the last instruction was a jump, @code{reverse-stepi} will take you
6742 back from the destination of the jump to the jump instruction itself.
6743
6744 @kindex reverse-next
6745 @kindex rn @r{(@code{reverse-next})}
6746 @item reverse-next @r{[}@var{count}@r{]}
6747 Run backward to the beginning of the previous line executed in
6748 the current (innermost) stack frame.  If the line contains function
6749 calls, they will be ``un-executed'' without stopping.  Starting from
6750 the first line of a function, @code{reverse-next} will take you back
6751 to the caller of that function, @emph{before} the function was called,
6752 just as the normal @code{next} command would take you from the last 
6753 line of a function back to its return to its caller
6754 @footnote{Unless the code is too heavily optimized.}.
6755
6756 @kindex reverse-nexti
6757 @kindex rni @r{(@code{reverse-nexti})}
6758 @item reverse-nexti @r{[}@var{count}@r{]}
6759 Like @code{nexti}, @code{reverse-nexti} executes a single instruction
6760 in reverse, except that called functions are ``un-executed'' atomically.
6761 That is, if the previously executed instruction was a return from
6762 another function, @code{reverse-nexti} will continue to execute
6763 in reverse until the call to that function (from the current stack
6764 frame) is reached.
6765
6766 @kindex reverse-finish
6767 @item reverse-finish
6768 Just as the @code{finish} command takes you to the point where the
6769 current function returns, @code{reverse-finish} takes you to the point
6770 where it was called.  Instead of ending up at the end of the current
6771 function invocation, you end up at the beginning.
6772
6773 @kindex set exec-direction
6774 @item set exec-direction
6775 Set the direction of target execution.
6776 @item set exec-direction reverse
6777 @cindex execute forward or backward in time
6778 @value{GDBN} will perform all execution commands in reverse, until the
6779 exec-direction mode is changed to ``forward''.  Affected commands include
6780 @code{step, stepi, next, nexti, continue, and finish}.  The @code{return}
6781 command cannot be used in reverse mode.
6782 @item set exec-direction forward
6783 @value{GDBN} will perform all execution commands in the normal fashion.
6784 This is the default.
6785 @end table
6786
6787
6788 @node Process Record and Replay
6789 @chapter Recording Inferior's Execution and Replaying It
6790 @cindex process record and replay
6791 @cindex recording inferior's execution and replaying it
6792
6793 On some platforms, @value{GDBN} provides a special @dfn{process record
6794 and replay} target that can record a log of the process execution, and
6795 replay it later with both forward and reverse execution commands.
6796
6797 @cindex replay mode
6798 When this target is in use, if the execution log includes the record
6799 for the next instruction, @value{GDBN} will debug in @dfn{replay
6800 mode}.  In the replay mode, the inferior does not really execute code
6801 instructions.  Instead, all the events that normally happen during
6802 code execution are taken from the execution log.  While code is not
6803 really executed in replay mode, the values of registers (including the
6804 program counter register) and the memory of the inferior are still
6805 changed as they normally would.  Their contents are taken from the
6806 execution log.
6807
6808 @cindex record mode
6809 If the record for the next instruction is not in the execution log,
6810 @value{GDBN} will debug in @dfn{record mode}.  In this mode, the
6811 inferior executes normally, and @value{GDBN} records the execution log
6812 for future replay.
6813
6814 The process record and replay target supports reverse execution
6815 (@pxref{Reverse Execution}), even if the platform on which the
6816 inferior runs does not.  However, the reverse execution is limited in
6817 this case by the range of the instructions recorded in the execution
6818 log.  In other words, reverse execution on platforms that don't
6819 support it directly can only be done in the replay mode.
6820
6821 When debugging in the reverse direction, @value{GDBN} will work in
6822 replay mode as long as the execution log includes the record for the
6823 previous instruction; otherwise, it will work in record mode, if the
6824 platform supports reverse execution, or stop if not.
6825
6826 Currently, process record and replay is supported on ARM, Aarch64,
6827 Moxie, PowerPC, PowerPC64, S/390, and x86 (i386/amd64) running
6828 GNU/Linux.  Process record and replay can be used both when native
6829 debugging, and when remote debugging via @code{gdbserver}.
6830
6831 For architecture environments that support process record and replay,
6832 @value{GDBN} provides the following commands:
6833
6834 @table @code
6835 @kindex target record
6836 @kindex target record-full
6837 @kindex target record-btrace
6838 @kindex record
6839 @kindex record full
6840 @kindex record btrace
6841 @kindex record btrace bts
6842 @kindex record btrace pt
6843 @kindex record bts
6844 @kindex record pt
6845 @kindex rec
6846 @kindex rec full
6847 @kindex rec btrace
6848 @kindex rec btrace bts
6849 @kindex rec btrace pt
6850 @kindex rec bts
6851 @kindex rec pt
6852 @item record @var{method}
6853 This command starts the process record and replay target.  The
6854 recording method can be specified as parameter.  Without a parameter
6855 the command uses the @code{full} recording method.  The following
6856 recording methods are available:
6857
6858 @table @code
6859 @item full
6860 Full record/replay recording using @value{GDBN}'s software record and
6861 replay implementation.  This method allows replaying and reverse
6862 execution.
6863
6864 @item btrace @var{format}
6865 Hardware-supported instruction recording, supported on Intel
6866 processors.  This method does not record data.  Further, the data is
6867 collected in a ring buffer so old data will be overwritten when the
6868 buffer is full.  It allows limited reverse execution.  Variables and
6869 registers are not available during reverse execution.  In remote
6870 debugging, recording continues on disconnect.  Recorded data can be
6871 inspected after reconnecting.  The recording may be stopped using
6872 @code{record stop}.
6873
6874 The recording format can be specified as parameter.  Without a parameter
6875 the command chooses the recording format.  The following recording
6876 formats are available:
6877
6878 @table @code
6879 @item bts
6880 @cindex branch trace store
6881 Use the @dfn{Branch Trace Store} (@acronym{BTS}) recording format.  In
6882 this format, the processor stores a from/to record for each executed
6883 branch in the btrace ring buffer.
6884
6885 @item pt
6886 @cindex Intel Processor Trace
6887 Use the @dfn{Intel Processor Trace} recording format.  In this
6888 format, the processor stores the execution trace in a compressed form
6889 that is afterwards decoded by @value{GDBN}.
6890
6891 The trace can be recorded with very low overhead.  The compressed
6892 trace format also allows small trace buffers to already contain a big
6893 number of instructions compared to @acronym{BTS}.
6894
6895 Decoding the recorded execution trace, on the other hand, is more
6896 expensive than decoding @acronym{BTS} trace.  This is mostly due to the
6897 increased number of instructions to process.  You should increase the
6898 buffer-size with care.
6899 @end table
6900
6901 Not all recording formats may be available on all processors.
6902 @end table
6903
6904 The process record and replay target can only debug a process that is
6905 already running.  Therefore, you need first to start the process with
6906 the @kbd{run} or @kbd{start} commands, and then start the recording
6907 with the @kbd{record @var{method}} command.
6908
6909 @cindex displaced stepping, and process record and replay
6910 Displaced stepping (@pxref{Maintenance Commands,, displaced stepping})
6911 will be automatically disabled when process record and replay target
6912 is started.  That's because the process record and replay target
6913 doesn't support displaced stepping.
6914
6915 @cindex non-stop mode, and process record and replay
6916 @cindex asynchronous execution, and process record and replay
6917 If the inferior is in the non-stop mode (@pxref{Non-Stop Mode}) or in
6918 the asynchronous execution mode (@pxref{Background Execution}), not
6919 all recording methods are available.  The @code{full} recording method
6920 does not support these two modes.
6921
6922 @kindex record stop
6923 @kindex rec s
6924 @item record stop
6925 Stop the process record and replay target.  When process record and
6926 replay target stops, the entire execution log will be deleted and the
6927 inferior will either be terminated, or will remain in its final state.
6928
6929 When you stop the process record and replay target in record mode (at
6930 the end of the execution log), the inferior will be stopped at the
6931 next instruction that would have been recorded.  In other words, if
6932 you record for a while and then stop recording, the inferior process
6933 will be left in the same state as if the recording never happened.
6934
6935 On the other hand, if the process record and replay target is stopped
6936 while in replay mode (that is, not at the end of the execution log,
6937 but at some earlier point), the inferior process will become ``live''
6938 at that earlier state, and it will then be possible to continue the
6939 usual ``live'' debugging of the process from that state.
6940
6941 When the inferior process exits, or @value{GDBN} detaches from it,
6942 process record and replay target will automatically stop itself.
6943
6944 @kindex record goto
6945 @item record goto
6946 Go to a specific location in the execution log.  There are several
6947 ways to specify the location to go to:
6948
6949 @table @code
6950 @item record goto begin
6951 @itemx record goto start
6952 Go to the beginning of the execution log.
6953
6954 @item record goto end
6955 Go to the end of the execution log.
6956
6957 @item record goto @var{n}
6958 Go to instruction number @var{n} in the execution log.
6959 @end table
6960
6961 @kindex record save
6962 @item record save @var{filename}
6963 Save the execution log to a file @file{@var{filename}}.
6964 Default filename is @file{gdb_record.@var{process_id}}, where
6965 @var{process_id} is the process ID of the inferior.
6966
6967 This command may not be available for all recording methods.
6968
6969 @kindex record restore
6970 @item record restore @var{filename}
6971 Restore the execution log from a file @file{@var{filename}}.
6972 File must have been created with @code{record save}.
6973
6974 @kindex set record full
6975 @item set record full insn-number-max @var{limit}
6976 @itemx set record full insn-number-max unlimited
6977 Set the limit of instructions to be recorded for the @code{full}
6978 recording method.  Default value is 200000.
6979
6980 If @var{limit} is a positive number, then @value{GDBN} will start
6981 deleting instructions from the log once the number of the record
6982 instructions becomes greater than @var{limit}.  For every new recorded
6983 instruction, @value{GDBN} will delete the earliest recorded
6984 instruction to keep the number of recorded instructions at the limit.
6985 (Since deleting recorded instructions loses information, @value{GDBN}
6986 lets you control what happens when the limit is reached, by means of
6987 the @code{stop-at-limit} option, described below.)
6988
6989 If @var{limit} is @code{unlimited} or zero, @value{GDBN} will never
6990 delete recorded instructions from the execution log.  The number of
6991 recorded instructions is limited only by the available memory.
6992
6993 @kindex show record full
6994 @item show record full insn-number-max
6995 Show the limit of instructions to be recorded with the @code{full}
6996 recording method.
6997
6998 @item set record full stop-at-limit
6999 Control the behavior of the  @code{full} recording method when the
7000 number of recorded instructions reaches the limit.  If ON (the
7001 default), @value{GDBN} will stop when the limit is reached for the
7002 first time and ask you whether you want to stop the inferior or
7003 continue running it and recording the execution log.  If you decide
7004 to continue recording, each new recorded instruction will cause the
7005 oldest one to be deleted.
7006
7007 If this option is OFF, @value{GDBN} will automatically delete the
7008 oldest record to make room for each new one, without asking.
7009
7010 @item show record full stop-at-limit
7011 Show the current setting of @code{stop-at-limit}.
7012
7013 @item set record full memory-query
7014 Control the behavior when @value{GDBN} is unable to record memory
7015 changes caused by an instruction for the @code{full} recording method.
7016 If ON, @value{GDBN} will query whether to stop the inferior in that
7017 case.
7018
7019 If this option is OFF (the default), @value{GDBN} will automatically
7020 ignore the effect of such instructions on memory.  Later, when
7021 @value{GDBN} replays this execution log, it will mark the log of this
7022 instruction as not accessible, and it will not affect the replay
7023 results.
7024
7025 @item show record full memory-query
7026 Show the current setting of @code{memory-query}.
7027
7028 @kindex set record btrace
7029 The @code{btrace} record target does not trace data.  As a
7030 convenience, when replaying, @value{GDBN} reads read-only memory off
7031 the live program directly, assuming that the addresses of the
7032 read-only areas don't change.  This for example makes it possible to
7033 disassemble code while replaying, but not to print variables.
7034 In some cases, being able to inspect variables might be useful.
7035 You can use the following command for that:
7036
7037 @item set record btrace replay-memory-access
7038 Control the behavior of the @code{btrace} recording method when
7039 accessing memory during replay.  If @code{read-only} (the default),
7040 @value{GDBN} will only allow accesses to read-only memory.
7041 If @code{read-write}, @value{GDBN} will allow accesses to read-only
7042 and to read-write memory.  Beware that the accessed memory corresponds
7043 to the live target and not necessarily to the current replay
7044 position.
7045
7046 @item set record btrace cpu @var{identifier}
7047 Set the processor to be used for enabling workarounds for processor
7048 errata when decoding the trace.
7049
7050 Processor errata are defects in processor operation, caused by its
7051 design or manufacture.  They can cause a trace not to match the
7052 specification.  This, in turn, may cause trace decode to fail.
7053 @value{GDBN} can detect erroneous trace packets and correct them, thus
7054 avoiding the decoding failures.  These corrections are known as
7055 @dfn{errata workarounds}, and are enabled based on the processor on
7056 which the trace was recorded.
7057
7058 By default, @value{GDBN} attempts to detect the processor
7059 automatically, and apply the necessary workarounds for it.  However,
7060 you may need to specify the processor if @value{GDBN} does not yet
7061 support it.  This command allows you to do that, and also allows to
7062 disable the workarounds.
7063
7064 The argument @var{identifier} identifies the @sc{cpu} and is of the
7065 form: @code{@var{vendor}:@var{procesor identifier}}.  In addition,
7066 there are two special identifiers, @code{none} and @code{auto}
7067 (default).
7068
7069 The following vendor identifiers and corresponding processor
7070 identifiers are currently supported:
7071
7072 @multitable @columnfractions .1 .9
7073
7074 @item @code{intel}
7075 @tab @var{family}/@var{model}[/@var{stepping}]
7076
7077 @end multitable
7078
7079 On GNU/Linux systems, the processor @var{family}, @var{model}, and
7080 @var{stepping} can be obtained from @code{/proc/cpuinfo}.
7081
7082 If @var{identifier} is @code{auto}, enable errata workarounds for the
7083 processor on which the trace was recorded.  If @var{identifier} is
7084 @code{none}, errata workarounds are disabled.
7085
7086 For example, when using an old @value{GDBN} on a new system, decode
7087 may fail because @value{GDBN} does not support the new processor.  It
7088 often suffices to specify an older processor that @value{GDBN}
7089 supports.
7090
7091 @smallexample
7092 (gdb) info record
7093 Active record target: record-btrace
7094 Recording format: Intel Processor Trace.
7095 Buffer size: 16kB.
7096 Failed to configure the Intel Processor Trace decoder: unknown cpu.
7097 (gdb) set record btrace cpu intel:6/158
7098 (gdb) info record
7099 Active record target: record-btrace
7100 Recording format: Intel Processor Trace.
7101 Buffer size: 16kB.
7102 Recorded 84872 instructions in 3189 functions (0 gaps) for thread 1 (...).
7103 @end smallexample
7104
7105 @kindex show record btrace
7106 @item show record btrace replay-memory-access
7107 Show the current setting of @code{replay-memory-access}.
7108
7109 @item show record btrace cpu
7110 Show the processor to be used for enabling trace decode errata
7111 workarounds.
7112
7113 @kindex set record btrace bts
7114 @item set record btrace bts buffer-size @var{size}
7115 @itemx set record btrace bts buffer-size unlimited
7116 Set the requested ring buffer size for branch tracing in @acronym{BTS}
7117 format.  Default is 64KB.
7118
7119 If @var{size} is a positive number, then @value{GDBN} will try to
7120 allocate a buffer of at least @var{size} bytes for each new thread
7121 that uses the btrace recording method and the @acronym{BTS} format.
7122 The actually obtained buffer size may differ from the requested
7123 @var{size}.  Use the @code{info record} command to see the actual
7124 buffer size for each thread that uses the btrace recording method and
7125 the @acronym{BTS} format.
7126
7127 If @var{limit} is @code{unlimited} or zero, @value{GDBN} will try to
7128 allocate a buffer of 4MB.
7129
7130 Bigger buffers mean longer traces.  On the other hand, @value{GDBN} will
7131 also need longer to process the branch trace data before it can be used.
7132
7133 @item show record btrace bts buffer-size @var{size}
7134 Show the current setting of the requested ring buffer size for branch
7135 tracing in @acronym{BTS} format.
7136
7137 @kindex set record btrace pt
7138 @item set record btrace pt buffer-size @var{size}
7139 @itemx set record btrace pt buffer-size unlimited
7140 Set the requested ring buffer size for branch tracing in Intel
7141 Processor Trace format.  Default is 16KB.
7142
7143 If @var{size} is a positive number, then @value{GDBN} will try to
7144 allocate a buffer of at least @var{size} bytes for each new thread
7145 that uses the btrace recording method and the Intel Processor Trace
7146 format.  The actually obtained buffer size may differ from the
7147 requested @var{size}.  Use the @code{info record} command to see the
7148 actual buffer size for each thread.
7149
7150 If @var{limit} is @code{unlimited} or zero, @value{GDBN} will try to
7151 allocate a buffer of 4MB.
7152
7153 Bigger buffers mean longer traces.  On the other hand, @value{GDBN} will
7154 also need longer to process the branch trace data before it can be used.
7155
7156 @item show record btrace pt buffer-size @var{size}
7157 Show the current setting of the requested ring buffer size for branch
7158 tracing in Intel Processor Trace format.
7159
7160 @kindex info record
7161 @item info record
7162 Show various statistics about the recording depending on the recording
7163 method:
7164
7165 @table @code
7166 @item full
7167 For the @code{full} recording method, it shows the state of process
7168 record and its in-memory execution log buffer, including:
7169
7170 @itemize @bullet
7171 @item
7172 Whether in record mode or replay mode.
7173 @item
7174 Lowest recorded instruction number (counting from when the current execution log started recording instructions).
7175 @item
7176 Highest recorded instruction number.
7177 @item
7178 Current instruction about to be replayed (if in replay mode).
7179 @item
7180 Number of instructions contained in the execution log.
7181 @item
7182 Maximum number of instructions that may be contained in the execution log.
7183 @end itemize
7184
7185 @item btrace
7186 For the @code{btrace} recording method, it shows:
7187
7188 @itemize @bullet
7189 @item
7190 Recording format.
7191 @item
7192 Number of instructions that have been recorded.
7193 @item
7194 Number of blocks of sequential control-flow formed by the recorded
7195 instructions.
7196 @item
7197 Whether in record mode or replay mode.
7198 @end itemize
7199
7200 For the @code{bts} recording format, it also shows:
7201 @itemize @bullet
7202 @item
7203 Size of the perf ring buffer.
7204 @end itemize
7205
7206 For the @code{pt} recording format, it also shows:
7207 @itemize @bullet
7208 @item
7209 Size of the perf ring buffer.
7210 @end itemize
7211 @end table
7212
7213 @kindex record delete
7214 @kindex rec del
7215 @item record delete
7216 When record target runs in replay mode (``in the past''), delete the
7217 subsequent execution log and begin to record a new execution log starting
7218 from the current address.  This means you will abandon the previously
7219 recorded ``future'' and begin recording a new ``future''.
7220
7221 @kindex record instruction-history
7222 @kindex rec instruction-history
7223 @item record instruction-history
7224 Disassembles instructions from the recorded execution log.  By
7225 default, ten instructions are disassembled.  This can be changed using
7226 the @code{set record instruction-history-size} command.  Instructions
7227 are printed in execution order.
7228
7229 It can also print mixed source+disassembly if you specify the the
7230 @code{/m} or @code{/s} modifier, and print the raw instructions in hex
7231 as well as in symbolic form by specifying the @code{/r} modifier.
7232
7233 The current position marker is printed for the instruction at the
7234 current program counter value.  This instruction can appear multiple
7235 times in the trace and the current position marker will be printed
7236 every time.  To omit the current position marker, specify the
7237 @code{/p} modifier.
7238
7239 To better align the printed instructions when the trace contains
7240 instructions from more than one function, the function name may be
7241 omitted by specifying the @code{/f} modifier.
7242
7243 Speculatively executed instructions are prefixed with @samp{?}.  This
7244 feature is not available for all recording formats.
7245
7246 There are several ways to specify what part of the execution log to
7247 disassemble:
7248
7249 @table @code
7250 @item record instruction-history @var{insn}
7251 Disassembles ten instructions starting from instruction number
7252 @var{insn}.
7253
7254 @item record instruction-history @var{insn}, +/-@var{n}
7255 Disassembles @var{n} instructions around instruction number
7256 @var{insn}.  If @var{n} is preceded with @code{+}, disassembles
7257 @var{n} instructions after instruction number @var{insn}.  If
7258 @var{n} is preceded with @code{-}, disassembles @var{n}
7259 instructions before instruction number @var{insn}.
7260
7261 @item record instruction-history
7262 Disassembles ten more instructions after the last disassembly.
7263
7264 @item record instruction-history -
7265 Disassembles ten more instructions before the last disassembly.
7266
7267 @item record instruction-history @var{begin}, @var{end}
7268 Disassembles instructions beginning with instruction number
7269 @var{begin} until instruction number @var{end}.  The instruction
7270 number @var{end} is included.
7271 @end table
7272
7273 This command may not be available for all recording methods.
7274
7275 @kindex set record
7276 @item set record instruction-history-size @var{size}
7277 @itemx set record instruction-history-size unlimited
7278 Define how many instructions to disassemble in the @code{record
7279 instruction-history} command.  The default value is 10.
7280 A @var{size} of @code{unlimited} means unlimited instructions.
7281
7282 @kindex show record
7283 @item show record instruction-history-size
7284 Show how many instructions to disassemble in the @code{record
7285 instruction-history} command.
7286
7287 @kindex record function-call-history
7288 @kindex rec function-call-history
7289 @item record function-call-history
7290 Prints the execution history at function granularity. It prints one
7291 line for each sequence of instructions that belong to the same
7292 function giving the name of that function, the source lines
7293 for this instruction sequence (if the @code{/l} modifier is
7294 specified), and the instructions numbers that form the sequence (if
7295 the @code{/i} modifier is specified).  The function names are indented
7296 to reflect the call stack depth if the @code{/c} modifier is
7297 specified.  The @code{/l}, @code{/i}, and @code{/c} modifiers can be
7298 given together.
7299
7300 @smallexample
7301 (@value{GDBP}) @b{list 1, 10}
7302 1   void foo (void)
7303 2   @{
7304 3   @}
7305 4
7306 5   void bar (void)
7307 6   @{
7308 7     ...
7309 8     foo ();
7310 9     ...
7311 10  @}
7312 (@value{GDBP}) @b{record function-call-history /ilc}
7313 1  bar     inst 1,4     at foo.c:6,8
7314 2    foo   inst 5,10    at foo.c:2,3
7315 3  bar     inst 11,13   at foo.c:9,10
7316 @end smallexample
7317
7318 By default, ten lines are printed.  This can be changed using the
7319 @code{set record function-call-history-size} command.  Functions are
7320 printed in execution order.  There are several ways to specify what
7321 to print:
7322
7323 @table @code
7324 @item record function-call-history @var{func}
7325 Prints ten functions starting from function number @var{func}.
7326
7327 @item record function-call-history @var{func}, +/-@var{n}
7328 Prints @var{n} functions around function number @var{func}.  If
7329 @var{n} is preceded with @code{+}, prints @var{n} functions after
7330 function number @var{func}.  If @var{n} is preceded with @code{-},
7331 prints @var{n} functions before function number @var{func}.
7332
7333 @item record function-call-history
7334 Prints ten more functions after the last ten-line print.
7335
7336 @item record function-call-history -
7337 Prints ten more functions before the last ten-line print.
7338
7339 @item record function-call-history @var{begin}, @var{end}
7340 Prints functions beginning with function number @var{begin} until
7341 function number @var{end}.  The function number @var{end} is included.
7342 @end table
7343
7344 This command may not be available for all recording methods.
7345
7346 @item set record function-call-history-size @var{size}
7347 @itemx set record function-call-history-size unlimited
7348 Define how many lines to print in the
7349 @code{record function-call-history} command.  The default value is 10.
7350 A size of @code{unlimited} means unlimited lines.
7351
7352 @item show record function-call-history-size
7353 Show how many lines to print in the
7354 @code{record function-call-history} command.
7355 @end table
7356
7357
7358 @node Stack
7359 @chapter Examining the Stack
7360
7361 When your program has stopped, the first thing you need to know is where it
7362 stopped and how it got there.
7363
7364 @cindex call stack
7365 Each time your program performs a function call, information about the call
7366 is generated.
7367 That information includes the location of the call in your program,
7368 the arguments of the call,
7369 and the local variables of the function being called.
7370 The information is saved in a block of data called a @dfn{stack frame}.
7371 The stack frames are allocated in a region of memory called the @dfn{call
7372 stack}.
7373
7374 When your program stops, the @value{GDBN} commands for examining the
7375 stack allow you to see all of this information.
7376
7377 @cindex selected frame
7378 One of the stack frames is @dfn{selected} by @value{GDBN} and many
7379 @value{GDBN} commands refer implicitly to the selected frame.  In
7380 particular, whenever you ask @value{GDBN} for the value of a variable in
7381 your program, the value is found in the selected frame.  There are
7382 special @value{GDBN} commands to select whichever frame you are
7383 interested in.  @xref{Selection, ,Selecting a Frame}.
7384
7385 When your program stops, @value{GDBN} automatically selects the
7386 currently executing frame and describes it briefly, similar to the
7387 @code{frame} command (@pxref{Frame Info, ,Information about a Frame}).
7388
7389 @menu
7390 * Frames::                      Stack frames
7391 * Backtrace::                   Backtraces
7392 * Selection::                   Selecting a frame
7393 * Frame Info::                  Information on a frame
7394 * Frame Apply::                 Applying a command to several frames
7395 * Frame Filter Management::     Managing frame filters
7396
7397 @end menu
7398
7399 @node Frames
7400 @section Stack Frames
7401
7402 @cindex frame, definition
7403 @cindex stack frame
7404 The call stack is divided up into contiguous pieces called @dfn{stack
7405 frames}, or @dfn{frames} for short; each frame is the data associated
7406 with one call to one function.  The frame contains the arguments given
7407 to the function, the function's local variables, and the address at
7408 which the function is executing.
7409
7410 @cindex initial frame
7411 @cindex outermost frame
7412 @cindex innermost frame
7413 When your program is started, the stack has only one frame, that of the
7414 function @code{main}.  This is called the @dfn{initial} frame or the
7415 @dfn{outermost} frame.  Each time a function is called, a new frame is
7416 made.  Each time a function returns, the frame for that function invocation
7417 is eliminated.  If a function is recursive, there can be many frames for
7418 the same function.  The frame for the function in which execution is
7419 actually occurring is called the @dfn{innermost} frame.  This is the most
7420 recently created of all the stack frames that still exist.
7421
7422 @cindex frame pointer
7423 Inside your program, stack frames are identified by their addresses.  A
7424 stack frame consists of many bytes, each of which has its own address; each
7425 kind of computer has a convention for choosing one byte whose
7426 address serves as the address of the frame.  Usually this address is kept
7427 in a register called the @dfn{frame pointer register}
7428 (@pxref{Registers, $fp}) while execution is going on in that frame.
7429
7430 @cindex frame level
7431 @cindex frame number
7432 @value{GDBN} labels each existing stack frame with a @dfn{level}, a
7433 number that is zero for the innermost frame, one for the frame that
7434 called it, and so on upward.  These level numbers give you a way of
7435 designating stack frames in @value{GDBN} commands.  The terms
7436 @dfn{frame number} and @dfn{frame level} can be used interchangeably to
7437 describe this number.
7438
7439 @c The -fomit-frame-pointer below perennially causes hbox overflow
7440 @c underflow problems.
7441 @cindex frameless execution
7442 Some compilers provide a way to compile functions so that they operate
7443 without stack frames.  (For example, the @value{NGCC} option
7444 @smallexample
7445 @samp{-fomit-frame-pointer}
7446 @end smallexample
7447 generates functions without a frame.)
7448 This is occasionally done with heavily used library functions to save
7449 the frame setup time.  @value{GDBN} has limited facilities for dealing
7450 with these function invocations.  If the innermost function invocation
7451 has no stack frame, @value{GDBN} nevertheless regards it as though
7452 it had a separate frame, which is numbered zero as usual, allowing
7453 correct tracing of the function call chain.  However, @value{GDBN} has
7454 no provision for frameless functions elsewhere in the stack.
7455
7456 @node Backtrace
7457 @section Backtraces
7458
7459 @cindex traceback
7460 @cindex call stack traces
7461 A backtrace is a summary of how your program got where it is.  It shows one
7462 line per frame, for many frames, starting with the currently executing
7463 frame (frame zero), followed by its caller (frame one), and on up the
7464 stack.
7465
7466 @anchor{backtrace-command}
7467 @kindex backtrace
7468 @kindex bt @r{(@code{backtrace})}
7469 To print a backtrace of the entire stack, use the @code{backtrace}
7470 command, or its alias @code{bt}.  This command will print one line per
7471 frame for frames in the stack.  By default, all stack frames are
7472 printed.  You can stop the backtrace at any time by typing the system
7473 interrupt character, normally @kbd{Ctrl-c}.
7474
7475 @table @code
7476 @item backtrace [@var{args}@dots{}]
7477 @itemx bt [@var{args}@dots{}]
7478 Print the backtrace of the entire stack.  The optional @var{args} can
7479 be one of the following:
7480
7481 @table @code
7482 @item @var{n}
7483 @itemx @var{n}
7484 Print only the innermost @var{n} frames, where @var{n} is a positive
7485 number.
7486
7487 @item -@var{n}
7488 @itemx -@var{n}
7489 Print only the outermost @var{n} frames, where @var{n} is a positive
7490 number.
7491
7492 @item full
7493 Print the values of the local variables also.  This can be combined
7494 with a number to limit the number of frames shown.
7495
7496 @item no-filters
7497 Do not run Python frame filters on this backtrace.  @xref{Frame
7498 Filter API}, for more information.  Additionally use @ref{disable
7499 frame-filter all} to turn off all frame filters.  This is only
7500 relevant when @value{GDBN} has been configured with @code{Python}
7501 support.
7502
7503 @item hide
7504 A Python frame filter might decide to ``elide'' some frames.  Normally
7505 such elided frames are still printed, but they are indented relative
7506 to the filtered frames that cause them to be elided.  The @code{hide}
7507 option causes elided frames to not be printed at all.
7508 @end table
7509 @end table
7510
7511 @kindex where
7512 @kindex info stack
7513 The names @code{where} and @code{info stack} (abbreviated @code{info s})
7514 are additional aliases for @code{backtrace}.
7515
7516 @cindex multiple threads, backtrace
7517 In a multi-threaded program, @value{GDBN} by default shows the
7518 backtrace only for the current thread.  To display the backtrace for
7519 several or all of the threads, use the command @code{thread apply}
7520 (@pxref{Threads, thread apply}).  For example, if you type @kbd{thread
7521 apply all backtrace}, @value{GDBN} will display the backtrace for all
7522 the threads; this is handy when you debug a core dump of a
7523 multi-threaded program.
7524
7525 Each line in the backtrace shows the frame number and the function name.
7526 The program counter value is also shown---unless you use @code{set
7527 print address off}.  The backtrace also shows the source file name and
7528 line number, as well as the arguments to the function.  The program
7529 counter value is omitted if it is at the beginning of the code for that
7530 line number.
7531
7532 Here is an example of a backtrace.  It was made with the command
7533 @samp{bt 3}, so it shows the innermost three frames.
7534
7535 @smallexample
7536 @group
7537 #0  m4_traceon (obs=0x24eb0, argc=1, argv=0x2b8c8)
7538     at builtin.c:993
7539 #1  0x6e38 in expand_macro (sym=0x2b600, data=...) at macro.c:242
7540 #2  0x6840 in expand_token (obs=0x0, t=177664, td=0xf7fffb08)
7541     at macro.c:71
7542 (More stack frames follow...)
7543 @end group
7544 @end smallexample
7545
7546 @noindent
7547 The display for frame zero does not begin with a program counter
7548 value, indicating that your program has stopped at the beginning of the
7549 code for line @code{993} of @code{builtin.c}.
7550
7551 @noindent
7552 The value of parameter @code{data} in frame 1 has been replaced by
7553 @code{@dots{}}.  By default, @value{GDBN} prints the value of a parameter
7554 only if it is a scalar (integer, pointer, enumeration, etc).  See command
7555 @kbd{set print frame-arguments} in @ref{Print Settings} for more details
7556 on how to configure the way function parameter values are printed.
7557
7558 @cindex optimized out, in backtrace
7559 @cindex function call arguments, optimized out
7560 If your program was compiled with optimizations, some compilers will
7561 optimize away arguments passed to functions if those arguments are
7562 never used after the call.  Such optimizations generate code that
7563 passes arguments through registers, but doesn't store those arguments
7564 in the stack frame.  @value{GDBN} has no way of displaying such
7565 arguments in stack frames other than the innermost one.  Here's what
7566 such a backtrace might look like:
7567
7568 @smallexample
7569 @group
7570 #0  m4_traceon (obs=0x24eb0, argc=1, argv=0x2b8c8)
7571     at builtin.c:993
7572 #1  0x6e38 in expand_macro (sym=<optimized out>) at macro.c:242
7573 #2  0x6840 in expand_token (obs=0x0, t=<optimized out>, td=0xf7fffb08)
7574     at macro.c:71
7575 (More stack frames follow...)
7576 @end group
7577 @end smallexample
7578
7579 @noindent
7580 The values of arguments that were not saved in their stack frames are
7581 shown as @samp{<optimized out>}.
7582
7583 If you need to display the values of such optimized-out arguments,
7584 either deduce that from other variables whose values depend on the one
7585 you are interested in, or recompile without optimizations.
7586
7587 @cindex backtrace beyond @code{main} function
7588 @cindex program entry point
7589 @cindex startup code, and backtrace
7590 Most programs have a standard user entry point---a place where system
7591 libraries and startup code transition into user code.  For C this is
7592 @code{main}@footnote{
7593 Note that embedded programs (the so-called ``free-standing''
7594 environment) are not required to have a @code{main} function as the
7595 entry point.  They could even have multiple entry points.}.
7596 When @value{GDBN} finds the entry function in a backtrace
7597 it will terminate the backtrace, to avoid tracing into highly
7598 system-specific (and generally uninteresting) code.
7599
7600 If you need to examine the startup code, or limit the number of levels
7601 in a backtrace, you can change this behavior:
7602
7603 @table @code
7604 @item set backtrace past-main
7605 @itemx set backtrace past-main on
7606 @kindex set backtrace
7607 Backtraces will continue past the user entry point.
7608
7609 @item set backtrace past-main off
7610 Backtraces will stop when they encounter the user entry point.  This is the
7611 default.
7612
7613 @item show backtrace past-main
7614 @kindex show backtrace
7615 Display the current user entry point backtrace policy.
7616
7617 @item set backtrace past-entry
7618 @itemx set backtrace past-entry on
7619 Backtraces will continue past the internal entry point of an application.
7620 This entry point is encoded by the linker when the application is built,
7621 and is likely before the user entry point @code{main} (or equivalent) is called.
7622
7623 @item set backtrace past-entry off
7624 Backtraces will stop when they encounter the internal entry point of an
7625 application.  This is the default.
7626
7627 @item show backtrace past-entry
7628 Display the current internal entry point backtrace policy.
7629
7630 @item set backtrace limit @var{n}
7631 @itemx set backtrace limit 0
7632 @itemx set backtrace limit unlimited
7633 @cindex backtrace limit
7634 Limit the backtrace to @var{n} levels.  A value of @code{unlimited}
7635 or zero means unlimited levels.
7636
7637 @item show backtrace limit
7638 Display the current limit on backtrace levels.
7639 @end table
7640
7641 You can control how file names are displayed.
7642
7643 @table @code
7644 @item set filename-display
7645 @itemx set filename-display relative
7646 @cindex filename-display
7647 Display file names relative to the compilation directory.  This is the default.
7648
7649 @item set filename-display basename
7650 Display only basename of a filename.
7651
7652 @item set filename-display absolute
7653 Display an absolute filename.
7654
7655 @item show filename-display
7656 Show the current way to display filenames.
7657 @end table
7658
7659 @node Selection
7660 @section Selecting a Frame
7661
7662 Most commands for examining the stack and other data in your program work on
7663 whichever stack frame is selected at the moment.  Here are the commands for
7664 selecting a stack frame; all of them finish by printing a brief description
7665 of the stack frame just selected.
7666
7667 @table @code
7668 @kindex frame@r{, selecting}
7669 @kindex f @r{(@code{frame})}
7670 @item frame @r{[} @var{frame-selection-spec} @r{]}
7671 @item f @r{[} @var{frame-selection-spec} @r{]}
7672 The @command{frame} command allows different stack frames to be
7673 selected.  The @var{frame-selection-spec} can be any of the following:
7674
7675 @table @code
7676 @kindex frame level
7677 @item @var{num}
7678 @item level @var{num}
7679 Select frame level @var{num}.  Recall that frame zero is the innermost
7680 (currently executing) frame, frame one is the frame that called the
7681 innermost one, and so on.  The highest level frame is usually the one
7682 for @code{main}.
7683
7684 As this is the most common method of navigating the frame stack, the
7685 string @command{level} can be omitted.  For example, the following two
7686 commands are equivalent:
7687
7688 @smallexample
7689 (@value{GDBP}) frame 3
7690 (@value{GDBP}) frame level 3
7691 @end smallexample
7692
7693 @kindex frame address
7694 @item address @var{stack-address}
7695 Select the frame with stack address @var{stack-address}.  The
7696 @var{stack-address} for a frame can be seen in the output of
7697 @command{info frame}, for example:
7698
7699 @smallexample
7700 (gdb) info frame
7701 Stack level 1, frame at 0x7fffffffda30:
7702  rip = 0x40066d in b (amd64-entry-value.cc:59); saved rip 0x4004c5
7703  tail call frame, caller of frame at 0x7fffffffda30
7704  source language c++.
7705  Arglist at unknown address.
7706  Locals at unknown address, Previous frame's sp is 0x7fffffffda30
7707 @end smallexample
7708
7709 The @var{stack-address} for this frame is @code{0x7fffffffda30} as
7710 indicated by the line:
7711
7712 @smallexample
7713 Stack level 1, frame at 0x7fffffffda30:
7714 @end smallexample
7715
7716 @kindex frame function
7717 @item function @var{function-name}
7718 Select the stack frame for function @var{function-name}.  If there are
7719 multiple stack frames for function @var{function-name} then the inner
7720 most stack frame is selected.
7721
7722 @kindex frame view
7723 @item view @var{stack-address} @r{[} @var{pc-addr} @r{]}
7724 View a frame that is not part of @value{GDBN}'s backtrace.  The frame
7725 viewed has stack address @var{stack-addr}, and optionally, a program
7726 counter address of @var{pc-addr}.
7727
7728 This is useful mainly if the chaining of stack frames has been
7729 damaged by a bug, making it impossible for @value{GDBN} to assign
7730 numbers properly to all frames.  In addition, this can be useful
7731 when your program has multiple stacks and switches between them.
7732
7733 When viewing a frame outside the current backtrace using
7734 @command{frame view} then you can always return to the original
7735 stack using one of the previous stack frame selection instructions,
7736 for example @command{frame level 0}.
7737
7738 @end table
7739
7740 @kindex up
7741 @item up @var{n}
7742 Move @var{n} frames up the stack; @var{n} defaults to 1.  For positive
7743 numbers @var{n}, this advances toward the outermost frame, to higher
7744 frame numbers, to frames that have existed longer.
7745
7746 @kindex down
7747 @kindex do @r{(@code{down})}
7748 @item down @var{n}
7749 Move @var{n} frames down the stack; @var{n} defaults to 1.  For
7750 positive numbers @var{n}, this advances toward the innermost frame, to
7751 lower frame numbers, to frames that were created more recently.
7752 You may abbreviate @code{down} as @code{do}.
7753 @end table
7754
7755 All of these commands end by printing two lines of output describing the
7756 frame.  The first line shows the frame number, the function name, the
7757 arguments, and the source file and line number of execution in that
7758 frame.  The second line shows the text of that source line.
7759
7760 @need 1000
7761 For example:
7762
7763 @smallexample
7764 @group
7765 (@value{GDBP}) up
7766 #1  0x22f0 in main (argc=1, argv=0xf7fffbf4, env=0xf7fffbfc)
7767     at env.c:10
7768 10              read_input_file (argv[i]);
7769 @end group
7770 @end smallexample
7771
7772 After such a printout, the @code{list} command with no arguments
7773 prints ten lines centered on the point of execution in the frame.
7774 You can also edit the program at the point of execution with your favorite
7775 editing program by typing @code{edit}.
7776 @xref{List, ,Printing Source Lines},
7777 for details.
7778
7779 @table @code
7780 @kindex select-frame
7781 @item select-frame @r{[} @var{frame-selection-spec} @r{]}
7782 The @code{select-frame} command is a variant of @code{frame} that does
7783 not display the new frame after selecting it.  This command is
7784 intended primarily for use in @value{GDBN} command scripts, where the
7785 output might be unnecessary and distracting.  The
7786 @var{frame-selection-spec} is as for the @command{frame} command
7787 described in @ref{Selection, ,Selecting a Frame}.
7788
7789 @kindex down-silently
7790 @kindex up-silently
7791 @item up-silently @var{n}
7792 @itemx down-silently @var{n}
7793 These two commands are variants of @code{up} and @code{down},
7794 respectively; they differ in that they do their work silently, without
7795 causing display of the new frame.  They are intended primarily for use
7796 in @value{GDBN} command scripts, where the output might be unnecessary and
7797 distracting.
7798 @end table
7799
7800 @node Frame Info
7801 @section Information About a Frame
7802
7803 There are several other commands to print information about the selected
7804 stack frame.
7805
7806 @table @code
7807 @item frame
7808 @itemx f
7809 When used without any argument, this command does not change which
7810 frame is selected, but prints a brief description of the currently
7811 selected stack frame.  It can be abbreviated @code{f}.  With an
7812 argument, this command is used to select a stack frame.
7813 @xref{Selection, ,Selecting a Frame}.
7814
7815 @kindex info frame
7816 @kindex info f @r{(@code{info frame})}
7817 @item info frame
7818 @itemx info f
7819 This command prints a verbose description of the selected stack frame,
7820 including:
7821
7822 @itemize @bullet
7823 @item
7824 the address of the frame
7825 @item
7826 the address of the next frame down (called by this frame)
7827 @item
7828 the address of the next frame up (caller of this frame)
7829 @item
7830 the language in which the source code corresponding to this frame is written
7831 @item
7832 the address of the frame's arguments
7833 @item
7834 the address of the frame's local variables
7835 @item
7836 the program counter saved in it (the address of execution in the caller frame)
7837 @item
7838 which registers were saved in the frame
7839 @end itemize
7840
7841 @noindent The verbose description is useful when
7842 something has gone wrong that has made the stack format fail to fit
7843 the usual conventions.
7844
7845 @item info frame @r{[} @var{frame-selection-spec} @r{]}
7846 @itemx info f @r{[} @var{frame-selection-spec} @r{]}
7847 Print a verbose description of the frame selected by
7848 @var{frame-selection-spec}.  The @var{frame-selection-spec} is the
7849 same as for the @command{frame} command (@pxref{Selection, ,Selecting
7850 a Frame}).  The selected frame remains unchanged by this command.
7851
7852 @kindex info args
7853 @item info args [-q]
7854 Print the arguments of the selected frame, each on a separate line.
7855
7856 The optional flag @samp{-q}, which stands for @samp{quiet}, disables
7857 printing header information and messages explaining why no argument
7858 have been printed.
7859
7860 @item info args [-q] [-t @var{type_regexp}] [@var{regexp}]
7861 Like @kbd{info args}, but only print the arguments selected
7862 with the provided regexp(s).
7863
7864 If @var{regexp} is provided, print only the arguments whose names
7865 match the regular expression @var{regexp}.
7866
7867 If @var{type_regexp} is provided, print only the arguments whose
7868 types, as printed by the @code{whatis} command, match
7869 the regular expression @var{type_regexp}.
7870 If @var{type_regexp} contains space(s), it should be enclosed in
7871 quote characters.  If needed, use backslash to escape the meaning
7872 of special characters or quotes.
7873
7874 If both @var{regexp} and @var{type_regexp} are provided, an argument
7875 is printed only if its name matches @var{regexp} and its type matches
7876 @var{type_regexp}.
7877
7878 @item info locals [-q]
7879 @kindex info locals
7880 Print the local variables of the selected frame, each on a separate
7881 line.  These are all variables (declared either static or automatic)
7882 accessible at the point of execution of the selected frame.
7883
7884 The optional flag @samp{-q}, which stands for @samp{quiet}, disables
7885 printing header information and messages explaining why no local variables
7886 have been printed.
7887
7888 @item info locals [-q] [-t @var{type_regexp}] [@var{regexp}]
7889 Like @kbd{info locals}, but only print the local variables selected
7890 with the provided regexp(s).
7891
7892 If @var{regexp} is provided, print only the local variables whose names
7893 match the regular expression @var{regexp}.
7894
7895 If @var{type_regexp} is provided, print only the local variables whose
7896 types, as printed by the @code{whatis} command, match
7897 the regular expression @var{type_regexp}.
7898 If @var{type_regexp} contains space(s), it should be enclosed in
7899 quote characters.  If needed, use backslash to escape the meaning
7900 of special characters or quotes.
7901
7902 If both @var{regexp} and @var{type_regexp} are provided, a local variable
7903 is printed only if its name matches @var{regexp} and its type matches
7904 @var{type_regexp}.
7905
7906 The command @kbd{info locals -q -t @var{type_regexp}} can usefully be
7907 combined with the commands @kbd{frame apply} and @kbd{thread apply}.
7908 For example, your program might use Resource Acquisition Is
7909 Initialization types (RAII) such as @code{lock_something_t}: each
7910 local variable of type @code{lock_something_t} automatically places a
7911 lock that is destroyed when the variable goes out of scope.  You can
7912 then list all acquired locks in your program by doing
7913 @smallexample
7914 thread apply all -s frame apply all -s info locals -q -t lock_something_t
7915 @end smallexample
7916 @noindent
7917 or the equivalent shorter form
7918 @smallexample
7919 tfaas i lo -q -t lock_something_t
7920 @end smallexample
7921
7922 @end table
7923
7924 @node Frame Apply
7925 @section Applying a Command to Several Frames.
7926 @kindex frame apply
7927 @cindex apply command to several frames
7928 @table @code
7929 @item frame apply [all | @var{count} | @var{-count} | level @var{level}@dots{}] [@var{flag}]@dots{} @var{command}
7930 The @code{frame apply} command allows you to apply the named
7931 @var{command} to one or more frames.
7932
7933 @table @code
7934 @item @code{all}
7935 Specify @code{all} to apply @var{command} to all frames.
7936
7937 @item @var{count}
7938 Use @var{count} to apply @var{command} to the innermost @var{count}
7939 frames, where @var{count} is a positive number.
7940
7941 @item @var{-count}
7942 Use @var{-count} to apply @var{command} to the outermost @var{count}
7943 frames, where @var{count} is a positive number.
7944
7945 @item @code{level}
7946 Use @code{level} to apply @var{command} to the set of frames identified
7947 by the @var{level} list.  @var{level} is a frame level or a range of frame
7948 levels as @var{level1}-@var{level2}.  The frame level is the number shown
7949 in the first field of the @samp{backtrace} command output.
7950 E.g., @samp{2-4 6-8 3} indicates to apply @var{command} for the frames
7951 at levels 2, 3, 4, 6, 7, 8, and then again on frame at level 3.
7952
7953 @end table
7954
7955 @end table
7956
7957 Note that the frames on which @code{frame apply} applies a command are
7958 also influenced by the @code{set backtrace} settings such as @code{set
7959 backtrace past-main} and @code{set backtrace limit N}.  See
7960 @xref{Backtrace,,Backtraces}.
7961
7962 The @var{flag} arguments control what output to produce and how to handle
7963 errors raised when applying @var{command} to a frame.  @var{flag}
7964 must start with a @code{-} directly followed by one letter in
7965 @code{qcs}.  If several flags are provided, they must be given
7966 individually, such as @code{-c -q}.
7967
7968 By default, @value{GDBN} displays some frame information before the
7969 output produced by @var{command}, and an error raised during the
7970 execution of a @var{command} will abort @code{frame apply}.  The
7971 following flags can be used to fine-tune this behavior:
7972
7973 @table @code
7974 @item -c
7975 The flag @code{-c}, which stands for @samp{continue}, causes any
7976 errors in @var{command} to be displayed, and the execution of
7977 @code{frame apply} then continues.
7978 @item -s
7979 The flag @code{-s}, which stands for @samp{silent}, causes any errors
7980 or empty output produced by a @var{command} to be silently ignored.
7981 That is, the execution continues, but the frame information and errors
7982 are not printed.
7983 @item -q
7984 The flag @code{-q} (@samp{quiet}) disables printing the frame
7985 information.
7986 @end table
7987
7988 The following example shows how the flags @code{-c} and @code{-s} are
7989 working when applying the command @code{p j} to all frames, where
7990 variable @code{j} can only be successfully printed in the outermost
7991 @code{#1 main} frame.
7992
7993 @smallexample
7994 @group
7995 (gdb) frame apply all p j
7996 #0  some_function (i=5) at fun.c:4
7997 No symbol "j" in current context.
7998 (gdb) frame apply all -c p j
7999 #0  some_function (i=5) at fun.c:4
8000 No symbol "j" in current context.
8001 #1  0x565555fb in main (argc=1, argv=0xffffd2c4) at fun.c:11
8002 $1 = 5
8003 (gdb) frame apply all -s p j
8004 #1  0x565555fb in main (argc=1, argv=0xffffd2c4) at fun.c:11
8005 $2 = 5
8006 (gdb)
8007 @end group
8008 @end smallexample
8009
8010 By default, @samp{frame apply}, prints the frame location
8011 information before the command output:
8012
8013 @smallexample
8014 @group
8015 (gdb) frame apply all p $sp
8016 #0  some_function (i=5) at fun.c:4
8017 $4 = (void *) 0xffffd1e0
8018 #1  0x565555fb in main (argc=1, argv=0xffffd2c4) at fun.c:11
8019 $5 = (void *) 0xffffd1f0
8020 (gdb)
8021 @end group
8022 @end smallexample
8023
8024 If flag @code{-q} is given, no frame information is printed:
8025 @smallexample
8026 @group
8027 (gdb) frame apply all -q p $sp
8028 $12 = (void *) 0xffffd1e0
8029 $13 = (void *) 0xffffd1f0
8030 (gdb)
8031 @end group
8032 @end smallexample
8033
8034 @table @code
8035
8036 @kindex faas
8037 @cindex apply a command to all frames (ignoring errors and empty output)
8038 @item faas @var{command}
8039 Shortcut for @code{frame apply all -s @var{command}}.
8040 Applies @var{command} on all frames, ignoring errors and empty output.
8041
8042 It can for example be used to print a local variable or a function
8043 argument without knowing the frame where this variable or argument
8044 is, using:
8045 @smallexample
8046 (@value{GDBP}) faas p some_local_var_i_do_not_remember_where_it_is
8047 @end smallexample
8048
8049 Note that the command @code{tfaas @var{command}} applies @var{command}
8050 on all frames of all threads.  See @xref{Threads,,Threads}.
8051 @end table
8052
8053
8054 @node Frame Filter Management
8055 @section Management of Frame Filters.
8056 @cindex managing frame filters
8057
8058 Frame filters are Python based utilities to manage and decorate the
8059 output of frames.  @xref{Frame Filter API}, for further information.
8060
8061 Managing frame filters is performed by several commands available
8062 within @value{GDBN}, detailed here.
8063
8064 @table @code
8065 @kindex info frame-filter
8066 @item info frame-filter
8067 Print a list of installed frame filters from all dictionaries, showing
8068 their name, priority and enabled status.
8069
8070 @kindex disable frame-filter
8071 @anchor{disable frame-filter all}
8072 @item disable frame-filter @var{filter-dictionary} @var{filter-name}
8073 Disable a frame filter in the dictionary matching
8074 @var{filter-dictionary} and @var{filter-name}.  The
8075 @var{filter-dictionary} may be @code{all}, @code{global},
8076 @code{progspace}, or the name of the object file where the frame filter
8077 dictionary resides.  When @code{all} is specified, all frame filters
8078 across all dictionaries are disabled.  The @var{filter-name} is the name
8079 of the frame filter and is used when @code{all} is not the option for
8080 @var{filter-dictionary}.  A disabled frame-filter is not deleted, it
8081 may be enabled again later.
8082
8083 @kindex enable frame-filter
8084 @item enable frame-filter @var{filter-dictionary} @var{filter-name}
8085 Enable a frame filter in the dictionary matching
8086 @var{filter-dictionary} and @var{filter-name}.  The
8087 @var{filter-dictionary} may be @code{all}, @code{global},
8088 @code{progspace} or the name of the object file where the frame filter
8089 dictionary resides.  When @code{all} is specified, all frame filters across
8090 all dictionaries are enabled.  The @var{filter-name} is the name of the frame
8091 filter and is used when @code{all} is not the option for
8092 @var{filter-dictionary}.
8093
8094 Example:
8095
8096 @smallexample
8097 (gdb) info frame-filter
8098
8099 global frame-filters:
8100   Priority  Enabled  Name
8101   1000      No       PrimaryFunctionFilter
8102   100       Yes      Reverse
8103
8104 progspace /build/test frame-filters:
8105   Priority  Enabled  Name
8106   100       Yes      ProgspaceFilter
8107
8108 objfile /build/test frame-filters:
8109   Priority  Enabled  Name
8110   999       Yes      BuildProgra Filter
8111
8112 (gdb) disable frame-filter /build/test BuildProgramFilter
8113 (gdb) info frame-filter
8114
8115 global frame-filters:
8116   Priority  Enabled  Name
8117   1000      No       PrimaryFunctionFilter
8118   100       Yes      Reverse
8119
8120 progspace /build/test frame-filters:
8121   Priority  Enabled  Name
8122   100       Yes      ProgspaceFilter
8123
8124 objfile /build/test frame-filters:
8125   Priority  Enabled  Name
8126   999       No       BuildProgramFilter
8127
8128 (gdb) enable frame-filter global PrimaryFunctionFilter
8129 (gdb) info frame-filter
8130
8131 global frame-filters:
8132   Priority  Enabled  Name
8133   1000      Yes      PrimaryFunctionFilter
8134   100       Yes      Reverse
8135
8136 progspace /build/test frame-filters:
8137   Priority  Enabled  Name
8138   100       Yes      ProgspaceFilter
8139
8140 objfile /build/test frame-filters:
8141   Priority  Enabled  Name
8142   999       No       BuildProgramFilter
8143 @end smallexample
8144
8145 @kindex set frame-filter priority
8146 @item set frame-filter priority @var{filter-dictionary} @var{filter-name} @var{priority}
8147 Set the @var{priority} of a frame filter in the dictionary matching
8148 @var{filter-dictionary}, and the frame filter name matching
8149 @var{filter-name}.  The @var{filter-dictionary} may be @code{global},
8150 @code{progspace} or the name of the object file where the frame filter
8151 dictionary resides.  The @var{priority} is an integer.
8152
8153 @kindex show frame-filter priority
8154 @item show frame-filter priority @var{filter-dictionary} @var{filter-name}
8155 Show the @var{priority} of a frame filter in the dictionary matching
8156 @var{filter-dictionary}, and the frame filter name matching
8157 @var{filter-name}.  The @var{filter-dictionary} may be @code{global},
8158 @code{progspace} or the name of the object file where the frame filter
8159 dictionary resides.
8160
8161 Example:
8162
8163 @smallexample
8164 (gdb) info frame-filter
8165
8166 global frame-filters:
8167   Priority  Enabled  Name
8168   1000      Yes      PrimaryFunctionFilter
8169   100       Yes      Reverse
8170
8171 progspace /build/test frame-filters:
8172   Priority  Enabled  Name
8173   100       Yes      ProgspaceFilter
8174
8175 objfile /build/test frame-filters:
8176   Priority  Enabled  Name
8177   999       No       BuildProgramFilter
8178
8179 (gdb) set frame-filter priority global Reverse 50
8180 (gdb) info frame-filter
8181
8182 global frame-filters:
8183   Priority  Enabled  Name
8184   1000      Yes      PrimaryFunctionFilter
8185   50        Yes      Reverse
8186
8187 progspace /build/test frame-filters:
8188   Priority  Enabled  Name
8189   100       Yes      ProgspaceFilter
8190
8191 objfile /build/test frame-filters:
8192   Priority  Enabled  Name
8193   999       No       BuildProgramFilter
8194 @end smallexample
8195 @end table
8196
8197 @node Source
8198 @chapter Examining Source Files
8199
8200 @value{GDBN} can print parts of your program's source, since the debugging
8201 information recorded in the program tells @value{GDBN} what source files were
8202 used to build it.  When your program stops, @value{GDBN} spontaneously prints
8203 the line where it stopped.  Likewise, when you select a stack frame
8204 (@pxref{Selection, ,Selecting a Frame}), @value{GDBN} prints the line where
8205 execution in that frame has stopped.  You can print other portions of
8206 source files by explicit command.
8207
8208 If you use @value{GDBN} through its @sc{gnu} Emacs interface, you may
8209 prefer to use Emacs facilities to view source; see @ref{Emacs, ,Using
8210 @value{GDBN} under @sc{gnu} Emacs}.
8211
8212 @menu
8213 * List::                        Printing source lines
8214 * Specify Location::            How to specify code locations
8215 * Edit::                        Editing source files
8216 * Search::                      Searching source files
8217 * Source Path::                 Specifying source directories
8218 * Machine Code::                Source and machine code
8219 @end menu
8220
8221 @node List
8222 @section Printing Source Lines
8223
8224 @kindex list
8225 @kindex l @r{(@code{list})}
8226 To print lines from a source file, use the @code{list} command
8227 (abbreviated @code{l}).  By default, ten lines are printed.
8228 There are several ways to specify what part of the file you want to
8229 print; see @ref{Specify Location}, for the full list.
8230
8231 Here are the forms of the @code{list} command most commonly used:
8232
8233 @table @code
8234 @item list @var{linenum}
8235 Print lines centered around line number @var{linenum} in the
8236 current source file.
8237
8238 @item list @var{function}
8239 Print lines centered around the beginning of function
8240 @var{function}.
8241
8242 @item list
8243 Print more lines.  If the last lines printed were printed with a
8244 @code{list} command, this prints lines following the last lines
8245 printed; however, if the last line printed was a solitary line printed
8246 as part of displaying a stack frame (@pxref{Stack, ,Examining the
8247 Stack}), this prints lines centered around that line.
8248
8249 @item list -
8250 Print lines just before the lines last printed.
8251 @end table
8252
8253 @cindex @code{list}, how many lines to display
8254 By default, @value{GDBN} prints ten source lines with any of these forms of
8255 the @code{list} command.  You can change this using @code{set listsize}:
8256
8257 @table @code
8258 @kindex set listsize
8259 @item set listsize @var{count}
8260 @itemx set listsize unlimited
8261 Make the @code{list} command display @var{count} source lines (unless
8262 the @code{list} argument explicitly specifies some other number).
8263 Setting @var{count} to @code{unlimited} or 0 means there's no limit.
8264
8265 @kindex show listsize
8266 @item show listsize
8267 Display the number of lines that @code{list} prints.
8268 @end table
8269
8270 Repeating a @code{list} command with @key{RET} discards the argument,
8271 so it is equivalent to typing just @code{list}.  This is more useful
8272 than listing the same lines again.  An exception is made for an
8273 argument of @samp{-}; that argument is preserved in repetition so that
8274 each repetition moves up in the source file.
8275
8276 In general, the @code{list} command expects you to supply zero, one or two
8277 @dfn{locations}.  Locations specify source lines; there are several ways
8278 of writing them (@pxref{Specify Location}), but the effect is always
8279 to specify some source line.
8280
8281 Here is a complete description of the possible arguments for @code{list}:
8282
8283 @table @code
8284 @item list @var{location}
8285 Print lines centered around the line specified by @var{location}.
8286
8287 @item list @var{first},@var{last}
8288 Print lines from @var{first} to @var{last}.  Both arguments are
8289 locations.  When a @code{list} command has two locations, and the
8290 source file of the second location is omitted, this refers to
8291 the same source file as the first location.
8292
8293 @item list ,@var{last}
8294 Print lines ending with @var{last}.
8295
8296 @item list @var{first},
8297 Print lines starting with @var{first}.
8298
8299 @item list +
8300 Print lines just after the lines last printed.
8301
8302 @item list -
8303 Print lines just before the lines last printed.
8304
8305 @item list
8306 As described in the preceding table.
8307 @end table
8308
8309 @node Specify Location
8310 @section Specifying a Location
8311 @cindex specifying location
8312 @cindex location
8313 @cindex source location
8314
8315 @menu
8316 * Linespec Locations::                Linespec locations
8317 * Explicit Locations::                Explicit locations
8318 * Address Locations::                 Address locations
8319 @end menu
8320
8321 Several @value{GDBN} commands accept arguments that specify a location
8322 of your program's code.  Since @value{GDBN} is a source-level
8323 debugger, a location usually specifies some line in the source code.
8324 Locations may be specified using three different formats:
8325 linespec locations, explicit locations, or address locations.
8326
8327 @node Linespec Locations
8328 @subsection Linespec Locations
8329 @cindex linespec locations
8330
8331 A @dfn{linespec} is a colon-separated list of source location parameters such
8332 as file name, function name, etc.  Here are all the different ways of
8333 specifying a linespec:
8334
8335 @table @code
8336 @item @var{linenum}
8337 Specifies the line number @var{linenum} of the current source file.
8338
8339 @item -@var{offset}
8340 @itemx +@var{offset}
8341 Specifies the line @var{offset} lines before or after the @dfn{current
8342 line}.  For the @code{list} command, the current line is the last one
8343 printed; for the breakpoint commands, this is the line at which
8344 execution stopped in the currently selected @dfn{stack frame}
8345 (@pxref{Frames, ,Frames}, for a description of stack frames.)  When
8346 used as the second of the two linespecs in a @code{list} command,
8347 this specifies the line @var{offset} lines up or down from the first
8348 linespec.
8349
8350 @item @var{filename}:@var{linenum}
8351 Specifies the line @var{linenum} in the source file @var{filename}.
8352 If @var{filename} is a relative file name, then it will match any
8353 source file name with the same trailing components.  For example, if
8354 @var{filename} is @samp{gcc/expr.c}, then it will match source file
8355 name of @file{/build/trunk/gcc/expr.c}, but not
8356 @file{/build/trunk/libcpp/expr.c} or @file{/build/trunk/gcc/x-expr.c}.
8357
8358 @item @var{function}
8359 Specifies the line that begins the body of the function @var{function}.
8360 For example, in C, this is the line with the open brace.
8361
8362 By default, in C@t{++} and Ada, @var{function} is interpreted as
8363 specifying all functions named @var{function} in all scopes.  For
8364 C@t{++}, this means in all namespaces and classes.  For Ada, this
8365 means in all packages.
8366
8367 For example, assuming a program with C@t{++} symbols named
8368 @code{A::B::func} and @code{B::func}, both commands @w{@kbd{break
8369 func}} and @w{@kbd{break B::func}} set a breakpoint on both symbols.
8370
8371 Commands that accept a linespec let you override this with the
8372 @code{-qualified} option.  For example, @w{@kbd{break -qualified
8373 func}} sets a breakpoint on a free-function named @code{func} ignoring
8374 any C@t{++} class methods and namespace functions called @code{func}.
8375
8376 @xref{Explicit Locations}.
8377
8378 @item @var{function}:@var{label}
8379 Specifies the line where @var{label} appears in @var{function}.
8380
8381 @item @var{filename}:@var{function}
8382 Specifies the line that begins the body of the function @var{function}
8383 in the file @var{filename}.  You only need the file name with a
8384 function name to avoid ambiguity when there are identically named
8385 functions in different source files.
8386
8387 @item @var{label}
8388 Specifies the line at which the label named @var{label} appears
8389 in the function corresponding to the currently selected stack frame.
8390 If there is no current selected stack frame (for instance, if the inferior
8391 is not running), then @value{GDBN} will not search for a label.
8392
8393 @cindex breakpoint at static probe point
8394 @item -pstap|-probe-stap @r{[}@var{objfile}:@r{[}@var{provider}:@r{]}@r{]}@var{name}
8395 The @sc{gnu}/Linux tool @code{SystemTap} provides a way for
8396 applications to embed static probes.  @xref{Static Probe Points}, for more
8397 information on finding and using static probes.  This form of linespec
8398 specifies the location of such a static probe.
8399
8400 If @var{objfile} is given, only probes coming from that shared library
8401 or executable matching @var{objfile} as a regular expression are considered.
8402 If @var{provider} is given, then only probes from that provider are considered.
8403 If several probes match the spec, @value{GDBN} will insert a breakpoint at
8404 each one of those probes.
8405 @end table
8406
8407 @node Explicit Locations
8408 @subsection Explicit Locations
8409 @cindex explicit locations
8410
8411 @dfn{Explicit locations} allow the user to directly specify the source
8412 location's parameters using option-value pairs.
8413
8414 Explicit locations are useful when several functions, labels, or
8415 file names have the same name (base name for files) in the program's
8416 sources.  In these cases, explicit locations point to the source
8417 line you meant more accurately and unambiguously.  Also, using
8418 explicit locations might be faster in large programs.
8419
8420 For example, the linespec @samp{foo:bar} may refer to a function @code{bar}
8421 defined in the file named @file{foo} or the label @code{bar} in a function
8422 named @code{foo}.  @value{GDBN} must search either the file system or
8423 the symbol table to know.
8424
8425 The list of valid explicit location options is summarized in the
8426 following table:
8427
8428 @table @code
8429 @item -source @var{filename}
8430 The value specifies the source file name.  To differentiate between
8431 files with the same base name, prepend as many directories as is necessary
8432 to uniquely identify the desired file, e.g., @file{foo/bar/baz.c}.  Otherwise
8433 @value{GDBN} will use the first file it finds with the given base
8434 name.   This option requires the use of either @code{-function} or @code{-line}.
8435
8436 @item -function @var{function}
8437 The value specifies the name of a function.  Operations
8438 on function locations unmodified by other options (such as @code{-label}
8439 or @code{-line}) refer to the line that begins the body of the function.
8440 In C, for example, this is the line with the open brace.
8441
8442 By default, in C@t{++} and Ada, @var{function} is interpreted as
8443 specifying all functions named @var{function} in all scopes.  For
8444 C@t{++}, this means in all namespaces and classes.  For Ada, this
8445 means in all packages.
8446
8447 For example, assuming a program with C@t{++} symbols named
8448 @code{A::B::func} and @code{B::func}, both commands @w{@kbd{break
8449 -function func}} and @w{@kbd{break -function B::func}} set a
8450 breakpoint on both symbols.
8451
8452 You can use the @kbd{-qualified} flag to override this (see below).
8453
8454 @item -qualified
8455
8456 This flag makes @value{GDBN} interpret a function name specified with
8457 @kbd{-function} as a complete fully-qualified name.
8458
8459 For example, assuming a C@t{++} program with symbols named
8460 @code{A::B::func} and @code{B::func}, the @w{@kbd{break -qualified
8461 -function B::func}} command sets a breakpoint on @code{B::func}, only.
8462
8463 (Note: the @kbd{-qualified} option can precede a linespec as well
8464 (@pxref{Linespec Locations}), so the particular example above could be
8465 simplified as @w{@kbd{break -qualified B::func}}.)
8466
8467 @item -label @var{label}
8468 The value specifies the name of a label.  When the function
8469 name is not specified, the label is searched in the function of the currently
8470 selected stack frame.
8471
8472 @item -line @var{number}
8473 The value specifies a line offset for the location.  The offset may either
8474 be absolute (@code{-line 3}) or relative (@code{-line +3}), depending on
8475 the command.  When specified without any other options, the line offset is
8476 relative to the current line.
8477 @end table
8478
8479 Explicit location options may be abbreviated by omitting any non-unique
8480 trailing characters from the option name, e.g., @w{@kbd{break -s main.c -li 3}}.
8481
8482 @node Address Locations
8483 @subsection Address Locations
8484 @cindex address locations
8485
8486 @dfn{Address locations} indicate a specific program address.  They have
8487 the generalized form *@var{address}.
8488
8489 For line-oriented commands, such as @code{list} and @code{edit}, this
8490 specifies a source line that contains @var{address}.  For @code{break} and
8491 other breakpoint-oriented commands, this can be used to set breakpoints in
8492 parts of your program which do not have debugging information or
8493 source files.
8494
8495 Here @var{address} may be any expression valid in the current working
8496 language (@pxref{Languages, working language}) that specifies a code
8497 address.  In addition, as a convenience, @value{GDBN} extends the
8498 semantics of expressions used in locations to cover several situations
8499 that frequently occur during debugging.  Here are the various forms
8500 of @var{address}:
8501
8502 @table @code
8503 @item @var{expression}
8504 Any expression valid in the current working language.
8505
8506 @item @var{funcaddr}
8507 An address of a function or procedure derived from its name.  In C,
8508 C@t{++}, Objective-C, Fortran, minimal, and assembly, this is
8509 simply the function's name @var{function} (and actually a special case
8510 of a valid expression).  In Pascal and Modula-2, this is
8511 @code{&@var{function}}.  In Ada, this is @code{@var{function}'Address}
8512 (although the Pascal form also works).
8513
8514 This form specifies the address of the function's first instruction,
8515 before the stack frame and arguments have been set up.
8516
8517 @item '@var{filename}':@var{funcaddr}
8518 Like @var{funcaddr} above, but also specifies the name of the source
8519 file explicitly.  This is useful if the name of the function does not
8520 specify the function unambiguously, e.g., if there are several
8521 functions with identical names in different source files.
8522 @end table
8523
8524 @node Edit
8525 @section Editing Source Files
8526 @cindex editing source files
8527
8528 @kindex edit
8529 @kindex e @r{(@code{edit})}
8530 To edit the lines in a source file, use the @code{edit} command.
8531 The editing program of your choice
8532 is invoked with the current line set to
8533 the active line in the program.
8534 Alternatively, there are several ways to specify what part of the file you
8535 want to print if you want to see other parts of the program:
8536
8537 @table @code
8538 @item edit @var{location}
8539 Edit the source file specified by @code{location}.  Editing starts at
8540 that @var{location}, e.g., at the specified source line of the
8541 specified file.  @xref{Specify Location}, for all the possible forms
8542 of the @var{location} argument; here are the forms of the @code{edit}
8543 command most commonly used:
8544
8545 @table @code
8546 @item edit @var{number}
8547 Edit the current source file with @var{number} as the active line number.
8548
8549 @item edit @var{function}
8550 Edit the file containing @var{function} at the beginning of its definition.
8551 @end table
8552
8553 @end table
8554
8555 @subsection Choosing your Editor
8556 You can customize @value{GDBN} to use any editor you want
8557 @footnote{
8558 The only restriction is that your editor (say @code{ex}), recognizes the
8559 following command-line syntax:
8560 @smallexample
8561 ex +@var{number} file
8562 @end smallexample
8563 The optional numeric value +@var{number} specifies the number of the line in
8564 the file where to start editing.}.
8565 By default, it is @file{@value{EDITOR}}, but you can change this
8566 by setting the environment variable @code{EDITOR} before using
8567 @value{GDBN}.  For example, to configure @value{GDBN} to use the
8568 @code{vi} editor, you could use these commands with the @code{sh} shell:
8569 @smallexample
8570 EDITOR=/usr/bin/vi
8571 export EDITOR
8572 gdb @dots{}
8573 @end smallexample
8574 or in the @code{csh} shell,
8575 @smallexample
8576 setenv EDITOR /usr/bin/vi
8577 gdb @dots{}
8578 @end smallexample
8579
8580 @node Search
8581 @section Searching Source Files
8582 @cindex searching source files
8583
8584 There are two commands for searching through the current source file for a
8585 regular expression.
8586
8587 @table @code
8588 @kindex search
8589 @kindex forward-search
8590 @kindex fo @r{(@code{forward-search})}
8591 @item forward-search @var{regexp}
8592 @itemx search @var{regexp}
8593 The command @samp{forward-search @var{regexp}} checks each line,
8594 starting with the one following the last line listed, for a match for
8595 @var{regexp}.  It lists the line that is found.  You can use the
8596 synonym @samp{search @var{regexp}} or abbreviate the command name as
8597 @code{fo}.
8598
8599 @kindex reverse-search
8600 @item reverse-search @var{regexp}
8601 The command @samp{reverse-search @var{regexp}} checks each line, starting
8602 with the one before the last line listed and going backward, for a match
8603 for @var{regexp}.  It lists the line that is found.  You can abbreviate
8604 this command as @code{rev}.
8605 @end table
8606
8607 @node Source Path
8608 @section Specifying Source Directories
8609
8610 @cindex source path
8611 @cindex directories for source files
8612 Executable programs sometimes do not record the directories of the source
8613 files from which they were compiled, just the names.  Even when they do,
8614 the directories could be moved between the compilation and your debugging
8615 session.  @value{GDBN} has a list of directories to search for source files;
8616 this is called the @dfn{source path}.  Each time @value{GDBN} wants a source file,
8617 it tries all the directories in the list, in the order they are present
8618 in the list, until it finds a file with the desired name.
8619
8620 For example, suppose an executable references the file
8621 @file{/usr/src/foo-1.0/lib/foo.c}, and our source path is
8622 @file{/mnt/cross}.  The file is first looked up literally; if this
8623 fails, @file{/mnt/cross/usr/src/foo-1.0/lib/foo.c} is tried; if this
8624 fails, @file{/mnt/cross/foo.c} is opened; if this fails, an error
8625 message is printed.  @value{GDBN} does not look up the parts of the
8626 source file name, such as @file{/mnt/cross/src/foo-1.0/lib/foo.c}.
8627 Likewise, the subdirectories of the source path are not searched: if
8628 the source path is @file{/mnt/cross}, and the binary refers to
8629 @file{foo.c}, @value{GDBN} would not find it under
8630 @file{/mnt/cross/usr/src/foo-1.0/lib}.
8631
8632 Plain file names, relative file names with leading directories, file
8633 names containing dots, etc.@: are all treated as described above; for
8634 instance, if the source path is @file{/mnt/cross}, and the source file
8635 is recorded as @file{../lib/foo.c}, @value{GDBN} would first try
8636 @file{../lib/foo.c}, then @file{/mnt/cross/../lib/foo.c}, and after
8637 that---@file{/mnt/cross/foo.c}.
8638
8639 Note that the executable search path is @emph{not} used to locate the
8640 source files.
8641
8642 Whenever you reset or rearrange the source path, @value{GDBN} clears out
8643 any information it has cached about where source files are found and where
8644 each line is in the file.
8645
8646 @kindex directory
8647 @kindex dir
8648 When you start @value{GDBN}, its source path includes only @samp{cdir}
8649 and @samp{cwd}, in that order.
8650 To add other directories, use the @code{directory} command.
8651
8652 The search path is used to find both program source files and @value{GDBN}
8653 script files (read using the @samp{-command} option and @samp{source} command).
8654
8655 In addition to the source path, @value{GDBN} provides a set of commands
8656 that manage a list of source path substitution rules.  A @dfn{substitution
8657 rule} specifies how to rewrite source directories stored in the program's
8658 debug information in case the sources were moved to a different
8659 directory between compilation and debugging.  A rule is made of
8660 two strings, the first specifying what needs to be rewritten in
8661 the path, and the second specifying how it should be rewritten.
8662 In @ref{set substitute-path}, we name these two parts @var{from} and
8663 @var{to} respectively.  @value{GDBN} does a simple string replacement
8664 of @var{from} with @var{to} at the start of the directory part of the
8665 source file name, and uses that result instead of the original file
8666 name to look up the sources.
8667
8668 Using the previous example, suppose the @file{foo-1.0} tree has been
8669 moved from @file{/usr/src} to @file{/mnt/cross}, then you can tell
8670 @value{GDBN} to replace @file{/usr/src} in all source path names with
8671 @file{/mnt/cross}.  The first lookup will then be
8672 @file{/mnt/cross/foo-1.0/lib/foo.c} in place of the original location
8673 of @file{/usr/src/foo-1.0/lib/foo.c}.  To define a source path
8674 substitution rule, use the @code{set substitute-path} command
8675 (@pxref{set substitute-path}).
8676
8677 To avoid unexpected substitution results, a rule is applied only if the
8678 @var{from} part of the directory name ends at a directory separator.
8679 For instance, a rule substituting  @file{/usr/source} into
8680 @file{/mnt/cross} will be applied to @file{/usr/source/foo-1.0} but
8681 not to @file{/usr/sourceware/foo-2.0}.  And because the substitution
8682 is applied only at the beginning of the directory name, this rule will
8683 not be applied to @file{/root/usr/source/baz.c} either.
8684
8685 In many cases, you can achieve the same result using the @code{directory}
8686 command.  However, @code{set substitute-path} can be more efficient in
8687 the case where the sources are organized in a complex tree with multiple
8688 subdirectories.  With the @code{directory} command, you need to add each
8689 subdirectory of your project.  If you moved the entire tree while
8690 preserving its internal organization, then @code{set substitute-path}
8691 allows you to direct the debugger to all the sources with one single
8692 command.
8693
8694 @code{set substitute-path} is also more than just a shortcut command.
8695 The source path is only used if the file at the original location no
8696 longer exists.  On the other hand, @code{set substitute-path} modifies
8697 the debugger behavior to look at the rewritten location instead.  So, if
8698 for any reason a source file that is not relevant to your executable is
8699 located at the original location, a substitution rule is the only
8700 method available to point @value{GDBN} at the new location.
8701
8702 @cindex @samp{--with-relocated-sources}
8703 @cindex default source path substitution
8704 You can configure a default source path substitution rule by
8705 configuring @value{GDBN} with the
8706 @samp{--with-relocated-sources=@var{dir}} option.  The @var{dir}
8707 should be the name of a directory under @value{GDBN}'s configured
8708 prefix (set with @samp{--prefix} or @samp{--exec-prefix}), and
8709 directory names in debug information under @var{dir} will be adjusted
8710 automatically if the installed @value{GDBN} is moved to a new
8711 location.  This is useful if @value{GDBN}, libraries or executables
8712 with debug information and corresponding source code are being moved
8713 together.
8714
8715 @table @code
8716 @item directory @var{dirname} @dots{}
8717 @item dir @var{dirname} @dots{}
8718 Add directory @var{dirname} to the front of the source path.  Several
8719 directory names may be given to this command, separated by @samp{:}
8720 (@samp{;} on MS-DOS and MS-Windows, where @samp{:} usually appears as
8721 part of absolute file names) or
8722 whitespace.  You may specify a directory that is already in the source
8723 path; this moves it forward, so @value{GDBN} searches it sooner.
8724
8725 @kindex cdir
8726 @kindex cwd
8727 @vindex $cdir@r{, convenience variable}
8728 @vindex $cwd@r{, convenience variable}
8729 @cindex compilation directory
8730 @cindex current directory
8731 @cindex working directory
8732 @cindex directory, current
8733 @cindex directory, compilation
8734 You can use the string @samp{$cdir} to refer to the compilation
8735 directory (if one is recorded), and @samp{$cwd} to refer to the current
8736 working directory.  @samp{$cwd} is not the same as @samp{.}---the former
8737 tracks the current working directory as it changes during your @value{GDBN}
8738 session, while the latter is immediately expanded to the current
8739 directory at the time you add an entry to the source path.
8740
8741 @item directory
8742 Reset the source path to its default value (@samp{$cdir:$cwd} on Unix systems).  This requires confirmation.
8743
8744 @c RET-repeat for @code{directory} is explicitly disabled, but since
8745 @c repeating it would be a no-op we do not say that.  (thanks to RMS)
8746
8747 @item set directories @var{path-list}
8748 @kindex set directories
8749 Set the source path to @var{path-list}.
8750 @samp{$cdir:$cwd} are added if missing.
8751
8752 @item show directories
8753 @kindex show directories
8754 Print the source path: show which directories it contains.
8755
8756 @anchor{set substitute-path}
8757 @item set substitute-path @var{from} @var{to}
8758 @kindex set substitute-path
8759 Define a source path substitution rule, and add it at the end of the
8760 current list of existing substitution rules.  If a rule with the same
8761 @var{from} was already defined, then the old rule is also deleted.
8762
8763 For example, if the file @file{/foo/bar/baz.c} was moved to
8764 @file{/mnt/cross/baz.c}, then the command
8765
8766 @smallexample
8767 (@value{GDBP}) set substitute-path /foo/bar /mnt/cross
8768 @end smallexample
8769
8770 @noindent
8771 will tell @value{GDBN} to replace @samp{/foo/bar} with
8772 @samp{/mnt/cross}, which will allow @value{GDBN} to find the file
8773 @file{baz.c} even though it was moved.
8774
8775 In the case when more than one substitution rule have been defined,
8776 the rules are evaluated one by one in the order where they have been
8777 defined.  The first one matching, if any, is selected to perform
8778 the substitution.
8779
8780 For instance, if we had entered the following commands:
8781
8782 @smallexample
8783 (@value{GDBP}) set substitute-path /usr/src/include /mnt/include
8784 (@value{GDBP}) set substitute-path /usr/src /mnt/src
8785 @end smallexample
8786
8787 @noindent
8788 @value{GDBN} would then rewrite @file{/usr/src/include/defs.h} into
8789 @file{/mnt/include/defs.h} by using the first rule.  However, it would
8790 use the second rule to rewrite @file{/usr/src/lib/foo.c} into
8791 @file{/mnt/src/lib/foo.c}.
8792
8793
8794 @item unset substitute-path [path]
8795 @kindex unset substitute-path
8796 If a path is specified, search the current list of substitution rules
8797 for a rule that would rewrite that path.  Delete that rule if found.
8798 A warning is emitted by the debugger if no rule could be found.
8799
8800 If no path is specified, then all substitution rules are deleted.
8801
8802 @item show substitute-path [path]
8803 @kindex show substitute-path
8804 If a path is specified, then print the source path substitution rule
8805 which would rewrite that path, if any.
8806
8807 If no path is specified, then print all existing source path substitution
8808 rules.
8809
8810 @end table
8811
8812 If your source path is cluttered with directories that are no longer of
8813 interest, @value{GDBN} may sometimes cause confusion by finding the wrong
8814 versions of source.  You can correct the situation as follows:
8815
8816 @enumerate
8817 @item
8818 Use @code{directory} with no argument to reset the source path to its default value.
8819
8820 @item
8821 Use @code{directory} with suitable arguments to reinstall the
8822 directories you want in the source path.  You can add all the
8823 directories in one command.
8824 @end enumerate
8825
8826 @node Machine Code
8827 @section Source and Machine Code
8828 @cindex source line and its code address
8829
8830 You can use the command @code{info line} to map source lines to program
8831 addresses (and vice versa), and the command @code{disassemble} to display
8832 a range of addresses as machine instructions.  You can use the command
8833 @code{set disassemble-next-line} to set whether to disassemble next
8834 source line when execution stops.  When run under @sc{gnu} Emacs
8835 mode, the @code{info line} command causes the arrow to point to the
8836 line specified.  Also, @code{info line} prints addresses in symbolic form as
8837 well as hex.
8838
8839 @table @code
8840 @kindex info line
8841 @item info line
8842 @itemx info line @var{location}
8843 Print the starting and ending addresses of the compiled code for
8844 source line @var{location}.  You can specify source lines in any of
8845 the ways documented in @ref{Specify Location}.  With no @var{location}
8846 information about the current source line is printed.
8847 @end table
8848
8849 For example, we can use @code{info line} to discover the location of
8850 the object code for the first line of function
8851 @code{m4_changequote}:
8852
8853 @smallexample
8854 (@value{GDBP}) info line m4_changequote
8855 Line 895 of "builtin.c" starts at pc 0x634c <m4_changequote> and \
8856         ends at 0x6350 <m4_changequote+4>.
8857 @end smallexample
8858
8859 @noindent
8860 @cindex code address and its source line
8861 We can also inquire (using @code{*@var{addr}} as the form for
8862 @var{location}) what source line covers a particular address:
8863 @smallexample
8864 (@value{GDBP}) info line *0x63ff
8865 Line 926 of "builtin.c" starts at pc 0x63e4 <m4_changequote+152> and \
8866         ends at 0x6404 <m4_changequote+184>.
8867 @end smallexample
8868
8869 @cindex @code{$_} and @code{info line}
8870 @cindex @code{x} command, default address
8871 @kindex x@r{(examine), and} info line
8872 After @code{info line}, the default address for the @code{x} command
8873 is changed to the starting address of the line, so that @samp{x/i} is
8874 sufficient to begin examining the machine code (@pxref{Memory,
8875 ,Examining Memory}).  Also, this address is saved as the value of the
8876 convenience variable @code{$_} (@pxref{Convenience Vars, ,Convenience
8877 Variables}).
8878
8879 @cindex info line, repeated calls
8880 After @code{info line}, using @code{info line} again without
8881 specifying a location will display information about the next source
8882 line.
8883
8884 @table @code
8885 @kindex disassemble
8886 @cindex assembly instructions
8887 @cindex instructions, assembly
8888 @cindex machine instructions
8889 @cindex listing machine instructions
8890 @item disassemble
8891 @itemx disassemble /m
8892 @itemx disassemble /s
8893 @itemx disassemble /r
8894 This specialized command dumps a range of memory as machine
8895 instructions.  It can also print mixed source+disassembly by specifying
8896 the @code{/m} or @code{/s} modifier and print the raw instructions in hex
8897 as well as in symbolic form by specifying the @code{/r} modifier.
8898 The default memory range is the function surrounding the
8899 program counter of the selected frame.  A single argument to this
8900 command is a program counter value; @value{GDBN} dumps the function
8901 surrounding this value.  When two arguments are given, they should
8902 be separated by a comma, possibly surrounded by whitespace.  The
8903 arguments specify a range of addresses to dump, in one of two forms:
8904
8905 @table @code
8906 @item @var{start},@var{end}
8907 the addresses from @var{start} (inclusive) to @var{end} (exclusive)
8908 @item @var{start},+@var{length}
8909 the addresses from @var{start} (inclusive) to
8910 @code{@var{start}+@var{length}} (exclusive).
8911 @end table
8912
8913 @noindent
8914 When 2 arguments are specified, the name of the function is also
8915 printed (since there could be several functions in the given range).
8916
8917 The argument(s) can be any expression yielding a numeric value, such as
8918 @samp{0x32c4}, @samp{&main+10} or @samp{$pc - 8}.
8919
8920 If the range of memory being disassembled contains current program counter,
8921 the instruction at that location is shown with a @code{=>} marker.
8922 @end table
8923
8924 The following example shows the disassembly of a range of addresses of
8925 HP PA-RISC 2.0 code:
8926
8927 @smallexample
8928 (@value{GDBP}) disas 0x32c4, 0x32e4
8929 Dump of assembler code from 0x32c4 to 0x32e4:
8930    0x32c4 <main+204>:      addil 0,dp
8931    0x32c8 <main+208>:      ldw 0x22c(sr0,r1),r26
8932    0x32cc <main+212>:      ldil 0x3000,r31
8933    0x32d0 <main+216>:      ble 0x3f8(sr4,r31)
8934    0x32d4 <main+220>:      ldo 0(r31),rp
8935    0x32d8 <main+224>:      addil -0x800,dp
8936    0x32dc <main+228>:      ldo 0x588(r1),r26
8937    0x32e0 <main+232>:      ldil 0x3000,r31
8938 End of assembler dump.
8939 @end smallexample
8940
8941 Here is an example showing mixed source+assembly for Intel x86
8942 with @code{/m} or @code{/s}, when the program is stopped just after
8943 function prologue in a non-optimized function with no inline code.
8944
8945 @smallexample
8946 (@value{GDBP}) disas /m main
8947 Dump of assembler code for function main:
8948 5       @{
8949    0x08048330 <+0>:    push   %ebp
8950    0x08048331 <+1>:    mov    %esp,%ebp
8951    0x08048333 <+3>:    sub    $0x8,%esp
8952    0x08048336 <+6>:    and    $0xfffffff0,%esp
8953    0x08048339 <+9>:    sub    $0x10,%esp
8954
8955 6         printf ("Hello.\n");
8956 => 0x0804833c <+12>:   movl   $0x8048440,(%esp)
8957    0x08048343 <+19>:   call   0x8048284 <puts@@plt>
8958
8959 7         return 0;
8960 8       @}
8961    0x08048348 <+24>:   mov    $0x0,%eax
8962    0x0804834d <+29>:   leave
8963    0x0804834e <+30>:   ret
8964
8965 End of assembler dump.
8966 @end smallexample
8967
8968 The @code{/m} option is deprecated as its output is not useful when
8969 there is either inlined code or re-ordered code.
8970 The @code{/s} option is the preferred choice.
8971 Here is an example for AMD x86-64 showing the difference between
8972 @code{/m} output and @code{/s} output.
8973 This example has one inline function defined in a header file,
8974 and the code is compiled with @samp{-O2} optimization.
8975 Note how the @code{/m} output is missing the disassembly of
8976 several instructions that are present in the @code{/s} output.
8977
8978 @file{foo.h}:
8979
8980 @smallexample
8981 int
8982 foo (int a)
8983 @{
8984   if (a < 0)
8985     return a * 2;
8986   if (a == 0)
8987     return 1;
8988   return a + 10;
8989 @}
8990 @end smallexample
8991
8992 @file{foo.c}:
8993
8994 @smallexample
8995 #include "foo.h"
8996 volatile int x, y;
8997 int
8998 main ()
8999 @{
9000   x = foo (y);
9001   return 0;
9002 @}
9003 @end smallexample
9004
9005 @smallexample
9006 (@value{GDBP}) disas /m main
9007 Dump of assembler code for function main:
9008 5       @{
9009
9010 6         x = foo (y);
9011    0x0000000000400400 <+0>:     mov    0x200c2e(%rip),%eax # 0x601034 <y>
9012    0x0000000000400417 <+23>:    mov    %eax,0x200c13(%rip) # 0x601030 <x>
9013
9014 7         return 0;
9015 8       @}
9016    0x000000000040041d <+29>:    xor    %eax,%eax
9017    0x000000000040041f <+31>:    retq
9018    0x0000000000400420 <+32>:    add    %eax,%eax
9019    0x0000000000400422 <+34>:    jmp    0x400417 <main+23>
9020
9021 End of assembler dump.
9022 (@value{GDBP}) disas /s main
9023 Dump of assembler code for function main:
9024 foo.c:
9025 5       @{
9026 6         x = foo (y);
9027    0x0000000000400400 <+0>:     mov    0x200c2e(%rip),%eax # 0x601034 <y>
9028
9029 foo.h:
9030 4         if (a < 0)
9031    0x0000000000400406 <+6>:     test   %eax,%eax
9032    0x0000000000400408 <+8>:     js     0x400420 <main+32>
9033
9034 6         if (a == 0)
9035 7           return 1;
9036 8         return a + 10;
9037    0x000000000040040a <+10>:    lea    0xa(%rax),%edx
9038    0x000000000040040d <+13>:    test   %eax,%eax
9039    0x000000000040040f <+15>:    mov    $0x1,%eax
9040    0x0000000000400414 <+20>:    cmovne %edx,%eax
9041
9042 foo.c:
9043 6         x = foo (y);
9044    0x0000000000400417 <+23>:    mov    %eax,0x200c13(%rip) # 0x601030 <x>
9045
9046 7         return 0;
9047 8       @}
9048    0x000000000040041d <+29>:    xor    %eax,%eax
9049    0x000000000040041f <+31>:    retq
9050
9051 foo.h:
9052 5           return a * 2;
9053    0x0000000000400420 <+32>:    add    %eax,%eax
9054    0x0000000000400422 <+34>:    jmp    0x400417 <main+23>
9055 End of assembler dump.
9056 @end smallexample
9057
9058 Here is another example showing raw instructions in hex for AMD x86-64,
9059
9060 @smallexample
9061 (gdb) disas /r 0x400281,+10
9062 Dump of assembler code from 0x400281 to 0x40028b:
9063    0x0000000000400281:  38 36  cmp    %dh,(%rsi)
9064    0x0000000000400283:  2d 36 34 2e 73 sub    $0x732e3436,%eax
9065    0x0000000000400288:  6f     outsl  %ds:(%rsi),(%dx)
9066    0x0000000000400289:  2e 32 00       xor    %cs:(%rax),%al
9067 End of assembler dump.
9068 @end smallexample
9069
9070 Addresses cannot be specified as a location (@pxref{Specify Location}).
9071 So, for example, if you want to disassemble function @code{bar}
9072 in file @file{foo.c}, you must type @samp{disassemble 'foo.c'::bar}
9073 and not @samp{disassemble foo.c:bar}.
9074
9075 Some architectures have more than one commonly-used set of instruction
9076 mnemonics or other syntax.
9077
9078 For programs that were dynamically linked and use shared libraries,
9079 instructions that call functions or branch to locations in the shared
9080 libraries might show a seemingly bogus location---it's actually a
9081 location of the relocation table.  On some architectures, @value{GDBN}
9082 might be able to resolve these to actual function names.
9083
9084 @table @code
9085 @kindex set disassembler-options
9086 @cindex disassembler options
9087 @item set disassembler-options @var{option1}[,@var{option2}@dots{}]
9088 This command controls the passing of target specific information to
9089 the disassembler.  For a list of valid options, please refer to the
9090 @code{-M}/@code{--disassembler-options} section of the @samp{objdump}
9091 manual and/or the output of @kbd{objdump --help}
9092 (@pxref{objdump,,objdump,binutils,The GNU Binary Utilities}).
9093 The default value is the empty string.
9094
9095 If it is necessary to specify more than one disassembler option, then
9096 multiple options can be placed together into a comma separated list.
9097 Currently this command is only supported on targets ARM, MIPS, PowerPC
9098 and S/390.
9099
9100 @kindex show disassembler-options
9101 @item show disassembler-options
9102 Show the current setting of the disassembler options.
9103 @end table
9104
9105 @table @code
9106 @kindex set disassembly-flavor
9107 @cindex Intel disassembly flavor
9108 @cindex AT&T disassembly flavor
9109 @item set disassembly-flavor @var{instruction-set}
9110 Select the instruction set to use when disassembling the
9111 program via the @code{disassemble} or @code{x/i} commands.
9112
9113 Currently this command is only defined for the Intel x86 family.  You
9114 can set @var{instruction-set} to either @code{intel} or @code{att}.
9115 The default is @code{att}, the AT&T flavor used by default by Unix
9116 assemblers for x86-based targets.
9117
9118 @kindex show disassembly-flavor
9119 @item show disassembly-flavor
9120 Show the current setting of the disassembly flavor.
9121 @end table
9122
9123 @table @code
9124 @kindex set disassemble-next-line
9125 @kindex show disassemble-next-line
9126 @item set disassemble-next-line
9127 @itemx show disassemble-next-line
9128 Control whether or not @value{GDBN} will disassemble the next source
9129 line or instruction when execution stops.  If ON, @value{GDBN} will
9130 display disassembly of the next source line when execution of the
9131 program being debugged stops.  This is @emph{in addition} to
9132 displaying the source line itself, which @value{GDBN} always does if
9133 possible.  If the next source line cannot be displayed for some reason
9134 (e.g., if @value{GDBN} cannot find the source file, or there's no line
9135 info in the debug info), @value{GDBN} will display disassembly of the
9136 next @emph{instruction} instead of showing the next source line.  If
9137 AUTO, @value{GDBN} will display disassembly of next instruction only
9138 if the source line cannot be displayed.  This setting causes
9139 @value{GDBN} to display some feedback when you step through a function
9140 with no line info or whose source file is unavailable.  The default is
9141 OFF, which means never display the disassembly of the next line or
9142 instruction.
9143 @end table
9144
9145
9146 @node Data
9147 @chapter Examining Data
9148
9149 @cindex printing data
9150 @cindex examining data
9151 @kindex print
9152 @kindex inspect
9153 The usual way to examine data in your program is with the @code{print}
9154 command (abbreviated @code{p}), or its synonym @code{inspect}.  It
9155 evaluates and prints the value of an expression of the language your
9156 program is written in (@pxref{Languages, ,Using @value{GDBN} with
9157 Different Languages}).  It may also print the expression using a
9158 Python-based pretty-printer (@pxref{Pretty Printing}).
9159
9160 @table @code
9161 @item print @var{expr}
9162 @itemx print /@var{f} @var{expr}
9163 @var{expr} is an expression (in the source language).  By default the
9164 value of @var{expr} is printed in a format appropriate to its data type;
9165 you can choose a different format by specifying @samp{/@var{f}}, where
9166 @var{f} is a letter specifying the format; see @ref{Output Formats,,Output
9167 Formats}.
9168
9169 @item print
9170 @itemx print /@var{f}
9171 @cindex reprint the last value
9172 If you omit @var{expr}, @value{GDBN} displays the last value again (from the
9173 @dfn{value history}; @pxref{Value History, ,Value History}).  This allows you to
9174 conveniently inspect the same value in an alternative format.
9175 @end table
9176
9177 A more low-level way of examining data is with the @code{x} command.
9178 It examines data in memory at a specified address and prints it in a
9179 specified format.  @xref{Memory, ,Examining Memory}.
9180
9181 If you are interested in information about types, or about how the
9182 fields of a struct or a class are declared, use the @code{ptype @var{exp}}
9183 command rather than @code{print}.  @xref{Symbols, ,Examining the Symbol
9184 Table}.
9185
9186 @cindex exploring hierarchical data structures
9187 @kindex explore
9188 Another way of examining values of expressions and type information is
9189 through the Python extension command @code{explore} (available only if
9190 the @value{GDBN} build is configured with @code{--with-python}).  It
9191 offers an interactive way to start at the highest level (or, the most
9192 abstract level) of the data type of an expression (or, the data type
9193 itself) and explore all the way down to leaf scalar values/fields
9194 embedded in the higher level data types.
9195
9196 @table @code
9197 @item explore @var{arg}
9198 @var{arg} is either an expression (in the source language), or a type
9199 visible in the current context of the program being debugged.
9200 @end table
9201
9202 The working of the @code{explore} command can be illustrated with an
9203 example.  If a data type @code{struct ComplexStruct} is defined in your
9204 C program as
9205
9206 @smallexample
9207 struct SimpleStruct
9208 @{
9209   int i;
9210   double d;
9211 @};
9212
9213 struct ComplexStruct
9214 @{
9215   struct SimpleStruct *ss_p;
9216   int arr[10];
9217 @};
9218 @end smallexample
9219
9220 @noindent
9221 followed by variable declarations as
9222
9223 @smallexample
9224 struct SimpleStruct ss = @{ 10, 1.11 @};
9225 struct ComplexStruct cs = @{ &ss, @{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 @} @};
9226 @end smallexample
9227
9228 @noindent
9229 then, the value of the variable @code{cs} can be explored using the
9230 @code{explore} command as follows.
9231
9232 @smallexample
9233 (gdb) explore cs
9234 The value of `cs' is a struct/class of type `struct ComplexStruct' with
9235 the following fields:
9236
9237   ss_p = <Enter 0 to explore this field of type `struct SimpleStruct *'>
9238    arr = <Enter 1 to explore this field of type `int [10]'>
9239
9240 Enter the field number of choice:
9241 @end smallexample
9242
9243 @noindent
9244 Since the fields of @code{cs} are not scalar values, you are being
9245 prompted to chose the field you want to explore.  Let's say you choose
9246 the field @code{ss_p} by entering @code{0}.  Then, since this field is a
9247 pointer, you will be asked if it is pointing to a single value.  From
9248 the declaration of @code{cs} above, it is indeed pointing to a single
9249 value, hence you enter @code{y}.  If you enter @code{n}, then you will
9250 be asked if it were pointing to an array of values, in which case this
9251 field will be explored as if it were an array.
9252
9253 @smallexample
9254 `cs.ss_p' is a pointer to a value of type `struct SimpleStruct'
9255 Continue exploring it as a pointer to a single value [y/n]: y
9256 The value of `*(cs.ss_p)' is a struct/class of type `struct
9257 SimpleStruct' with the following fields:
9258
9259   i = 10 .. (Value of type `int')
9260   d = 1.1100000000000001 .. (Value of type `double')
9261
9262 Press enter to return to parent value:
9263 @end smallexample
9264
9265 @noindent
9266 If the field @code{arr} of @code{cs} was chosen for exploration by
9267 entering @code{1} earlier, then since it is as array, you will be
9268 prompted to enter the index of the element in the array that you want
9269 to explore.
9270
9271 @smallexample
9272 `cs.arr' is an array of `int'.
9273 Enter the index of the element you want to explore in `cs.arr': 5
9274
9275 `(cs.arr)[5]' is a scalar value of type `int'.
9276
9277 (cs.arr)[5] = 4
9278
9279 Press enter to return to parent value: 
9280 @end smallexample
9281
9282 In general, at any stage of exploration, you can go deeper towards the
9283 leaf values by responding to the prompts appropriately, or hit the
9284 return key to return to the enclosing data structure (the @i{higher}
9285 level data structure).
9286
9287 Similar to exploring values, you can use the @code{explore} command to
9288 explore types.  Instead of specifying a value (which is typically a
9289 variable name or an expression valid in the current context of the
9290 program being debugged), you specify a type name.  If you consider the
9291 same example as above, your can explore the type
9292 @code{struct ComplexStruct} by passing the argument
9293 @code{struct ComplexStruct} to the @code{explore} command.
9294
9295 @smallexample
9296 (gdb) explore struct ComplexStruct
9297 @end smallexample
9298
9299 @noindent
9300 By responding to the prompts appropriately in the subsequent interactive
9301 session, you can explore the type @code{struct ComplexStruct} in a
9302 manner similar to how the value @code{cs} was explored in the above
9303 example.
9304
9305 The @code{explore} command also has two sub-commands,
9306 @code{explore value} and @code{explore type}. The former sub-command is
9307 a way to explicitly specify that value exploration of the argument is
9308 being invoked, while the latter is a way to explicitly specify that type
9309 exploration of the argument is being invoked.
9310
9311 @table @code
9312 @item explore value @var{expr}
9313 @cindex explore value
9314 This sub-command of @code{explore} explores the value of the
9315 expression @var{expr} (if @var{expr} is an expression valid in the
9316 current context of the program being debugged).  The behavior of this
9317 command is identical to that of the behavior of the @code{explore}
9318 command being passed the argument @var{expr}.
9319
9320 @item explore type @var{arg}
9321 @cindex explore type
9322 This sub-command of @code{explore} explores the type of @var{arg} (if
9323 @var{arg} is a type visible in the current context of program being
9324 debugged), or the type of the value/expression @var{arg} (if @var{arg}
9325 is an expression valid in the current context of the program being
9326 debugged).  If @var{arg} is a type, then the behavior of this command is
9327 identical to that of the @code{explore} command being passed the
9328 argument @var{arg}.  If @var{arg} is an expression, then the behavior of
9329 this command will be identical to that of the @code{explore} command
9330 being passed the type of @var{arg} as the argument.
9331 @end table
9332
9333 @menu
9334 * Expressions::                 Expressions
9335 * Ambiguous Expressions::       Ambiguous Expressions
9336 * Variables::                   Program variables
9337 * Arrays::                      Artificial arrays
9338 * Output Formats::              Output formats
9339 * Memory::                      Examining memory
9340 * Auto Display::                Automatic display
9341 * Print Settings::              Print settings
9342 * Pretty Printing::             Python pretty printing
9343 * Value History::               Value history
9344 * Convenience Vars::            Convenience variables
9345 * Convenience Funs::            Convenience functions
9346 * Registers::                   Registers
9347 * Floating Point Hardware::     Floating point hardware
9348 * Vector Unit::                 Vector Unit
9349 * OS Information::              Auxiliary data provided by operating system
9350 * Memory Region Attributes::    Memory region attributes
9351 * Dump/Restore Files::          Copy between memory and a file
9352 * Core File Generation::        Cause a program dump its core
9353 * Character Sets::              Debugging programs that use a different
9354                                 character set than GDB does
9355 * Caching Target Data::         Data caching for targets
9356 * Searching Memory::            Searching memory for a sequence of bytes
9357 * Value Sizes::                 Managing memory allocated for values
9358 @end menu
9359
9360 @node Expressions
9361 @section Expressions
9362
9363 @cindex expressions
9364 @code{print} and many other @value{GDBN} commands accept an expression and
9365 compute its value.  Any kind of constant, variable or operator defined
9366 by the programming language you are using is valid in an expression in
9367 @value{GDBN}.  This includes conditional expressions, function calls,
9368 casts, and string constants.  It also includes preprocessor macros, if
9369 you compiled your program to include this information; see
9370 @ref{Compilation}.
9371
9372 @cindex arrays in expressions
9373 @value{GDBN} supports array constants in expressions input by
9374 the user.  The syntax is @{@var{element}, @var{element}@dots{}@}.  For example,
9375 you can use the command @code{print @{1, 2, 3@}} to create an array
9376 of three integers.  If you pass an array to a function or assign it
9377 to a program variable, @value{GDBN} copies the array to memory that
9378 is @code{malloc}ed in the target program.
9379
9380 Because C is so widespread, most of the expressions shown in examples in
9381 this manual are in C.  @xref{Languages, , Using @value{GDBN} with Different
9382 Languages}, for information on how to use expressions in other
9383 languages.
9384
9385 In this section, we discuss operators that you can use in @value{GDBN}
9386 expressions regardless of your programming language.
9387
9388 @cindex casts, in expressions
9389 Casts are supported in all languages, not just in C, because it is so
9390 useful to cast a number into a pointer in order to examine a structure
9391 at that address in memory.
9392 @c FIXME: casts supported---Mod2 true?
9393
9394 @value{GDBN} supports these operators, in addition to those common
9395 to programming languages:
9396
9397 @table @code
9398 @item @@
9399 @samp{@@} is a binary operator for treating parts of memory as arrays.
9400 @xref{Arrays, ,Artificial Arrays}, for more information.
9401
9402 @item ::
9403 @samp{::} allows you to specify a variable in terms of the file or
9404 function where it is defined.  @xref{Variables, ,Program Variables}.
9405
9406 @cindex @{@var{type}@}
9407 @cindex type casting memory
9408 @cindex memory, viewing as typed object
9409 @cindex casts, to view memory
9410 @item @{@var{type}@} @var{addr}
9411 Refers to an object of type @var{type} stored at address @var{addr} in
9412 memory.  The address @var{addr} may be any expression whose value is
9413 an integer or pointer (but parentheses are required around binary
9414 operators, just as in a cast).  This construct is allowed regardless
9415 of what kind of data is normally supposed to reside at @var{addr}.
9416 @end table
9417
9418 @node Ambiguous Expressions
9419 @section Ambiguous Expressions
9420 @cindex ambiguous expressions
9421
9422 Expressions can sometimes contain some ambiguous elements.  For instance,
9423 some programming languages (notably Ada, C@t{++} and Objective-C) permit
9424 a single function name to be defined several times, for application in
9425 different contexts.  This is called @dfn{overloading}.  Another example
9426 involving Ada is generics.  A @dfn{generic package} is similar to C@t{++}
9427 templates and is typically instantiated several times, resulting in
9428 the same function name being defined in different contexts.
9429
9430 In some cases and depending on the language, it is possible to adjust
9431 the expression to remove the ambiguity.  For instance in C@t{++}, you
9432 can specify the signature of the function you want to break on, as in
9433 @kbd{break @var{function}(@var{types})}.  In Ada, using the fully
9434 qualified name of your function often makes the expression unambiguous
9435 as well.
9436
9437 When an ambiguity that needs to be resolved is detected, the debugger
9438 has the capability to display a menu of numbered choices for each
9439 possibility, and then waits for the selection with the prompt @samp{>}.
9440 The first option is always @samp{[0] cancel}, and typing @kbd{0 @key{RET}}
9441 aborts the current command.  If the command in which the expression was
9442 used allows more than one choice to be selected, the next option in the
9443 menu is @samp{[1] all}, and typing @kbd{1 @key{RET}} selects all possible
9444 choices.
9445
9446 For example, the following session excerpt shows an attempt to set a
9447 breakpoint at the overloaded symbol @code{String::after}.
9448 We choose three particular definitions of that function name:
9449
9450 @c FIXME! This is likely to change to show arg type lists, at least
9451 @smallexample
9452 @group
9453 (@value{GDBP}) b String::after
9454 [0] cancel
9455 [1] all
9456 [2] file:String.cc; line number:867
9457 [3] file:String.cc; line number:860
9458 [4] file:String.cc; line number:875
9459 [5] file:String.cc; line number:853
9460 [6] file:String.cc; line number:846
9461 [7] file:String.cc; line number:735
9462 > 2 4 6
9463 Breakpoint 1 at 0xb26c: file String.cc, line 867.
9464 Breakpoint 2 at 0xb344: file String.cc, line 875.
9465 Breakpoint 3 at 0xafcc: file String.cc, line 846.
9466 Multiple breakpoints were set.
9467 Use the "delete" command to delete unwanted
9468  breakpoints.
9469 (@value{GDBP})
9470 @end group
9471 @end smallexample
9472
9473 @table @code
9474 @kindex set multiple-symbols
9475 @item set multiple-symbols @var{mode}
9476 @cindex multiple-symbols menu
9477
9478 This option allows you to adjust the debugger behavior when an expression
9479 is ambiguous.
9480
9481 By default, @var{mode} is set to @code{all}.  If the command with which
9482 the expression is used allows more than one choice, then @value{GDBN}
9483 automatically selects all possible choices.  For instance, inserting
9484 a breakpoint on a function using an ambiguous name results in a breakpoint
9485 inserted on each possible match.  However, if a unique choice must be made,
9486 then @value{GDBN} uses the menu to help you disambiguate the expression.
9487 For instance, printing the address of an overloaded function will result
9488 in the use of the menu.
9489
9490 When @var{mode} is set to @code{ask}, the debugger always uses the menu
9491 when an ambiguity is detected.
9492
9493 Finally, when @var{mode} is set to @code{cancel}, the debugger reports
9494 an error due to the ambiguity and the command is aborted.
9495
9496 @kindex show multiple-symbols
9497 @item show multiple-symbols
9498 Show the current value of the @code{multiple-symbols} setting.
9499 @end table
9500
9501 @node Variables
9502 @section Program Variables
9503
9504 The most common kind of expression to use is the name of a variable
9505 in your program.
9506
9507 Variables in expressions are understood in the selected stack frame
9508 (@pxref{Selection, ,Selecting a Frame}); they must be either:
9509
9510 @itemize @bullet
9511 @item
9512 global (or file-static)
9513 @end itemize
9514
9515 @noindent or
9516
9517 @itemize @bullet
9518 @item
9519 visible according to the scope rules of the
9520 programming language from the point of execution in that frame
9521 @end itemize
9522
9523 @noindent This means that in the function
9524
9525 @smallexample
9526 foo (a)
9527      int a;
9528 @{
9529   bar (a);
9530   @{
9531     int b = test ();
9532     bar (b);
9533   @}
9534 @}
9535 @end smallexample
9536
9537 @noindent
9538 you can examine and use the variable @code{a} whenever your program is
9539 executing within the function @code{foo}, but you can only use or
9540 examine the variable @code{b} while your program is executing inside
9541 the block where @code{b} is declared.
9542
9543 @cindex variable name conflict
9544 There is an exception: you can refer to a variable or function whose
9545 scope is a single source file even if the current execution point is not
9546 in this file.  But it is possible to have more than one such variable or
9547 function with the same name (in different source files).  If that
9548 happens, referring to that name has unpredictable effects.  If you wish,
9549 you can specify a static variable in a particular function or file by
9550 using the colon-colon (@code{::}) notation:
9551
9552 @cindex colon-colon, context for variables/functions
9553 @ifnotinfo
9554 @c info cannot cope with a :: index entry, but why deprive hard copy readers?
9555 @cindex @code{::}, context for variables/functions
9556 @end ifnotinfo
9557 @smallexample
9558 @var{file}::@var{variable}
9559 @var{function}::@var{variable}
9560 @end smallexample
9561
9562 @noindent
9563 Here @var{file} or @var{function} is the name of the context for the
9564 static @var{variable}.  In the case of file names, you can use quotes to
9565 make sure @value{GDBN} parses the file name as a single word---for example,
9566 to print a global value of @code{x} defined in @file{f2.c}:
9567
9568 @smallexample
9569 (@value{GDBP}) p 'f2.c'::x
9570 @end smallexample
9571
9572 The @code{::} notation is normally used for referring to
9573 static variables, since you typically disambiguate uses of local variables
9574 in functions by selecting the appropriate frame and using the
9575 simple name of the variable.  However, you may also use this notation
9576 to refer to local variables in frames enclosing the selected frame:
9577
9578 @smallexample
9579 void
9580 foo (int a)
9581 @{
9582   if (a < 10)
9583     bar (a);
9584   else
9585     process (a);    /* Stop here */
9586 @}
9587
9588 int
9589 bar (int a)
9590 @{
9591   foo (a + 5);
9592 @}
9593 @end smallexample
9594
9595 @noindent
9596 For example, if there is a breakpoint at the commented line,
9597 here is what you might see
9598 when the program stops after executing the call @code{bar(0)}:
9599
9600 @smallexample
9601 (@value{GDBP}) p a
9602 $1 = 10
9603 (@value{GDBP}) p bar::a
9604 $2 = 5
9605 (@value{GDBP}) up 2
9606 #2  0x080483d0 in foo (a=5) at foobar.c:12
9607 (@value{GDBP}) p a
9608 $3 = 5
9609 (@value{GDBP}) p bar::a
9610 $4 = 0
9611 @end smallexample
9612
9613 @cindex C@t{++} scope resolution
9614 These uses of @samp{::} are very rarely in conflict with the very
9615 similar use of the same notation in C@t{++}.  When they are in
9616 conflict, the C@t{++} meaning takes precedence; however, this can be
9617 overridden by quoting the file or function name with single quotes.
9618
9619 For example, suppose the program is stopped in a method of a class
9620 that has a field named @code{includefile}, and there is also an
9621 include file named @file{includefile} that defines a variable,
9622 @code{some_global}.
9623
9624 @smallexample
9625 (@value{GDBP}) p includefile
9626 $1 = 23
9627 (@value{GDBP}) p includefile::some_global
9628 A syntax error in expression, near `'.
9629 (@value{GDBP}) p 'includefile'::some_global
9630 $2 = 27
9631 @end smallexample
9632
9633 @cindex wrong values
9634 @cindex variable values, wrong
9635 @cindex function entry/exit, wrong values of variables
9636 @cindex optimized code, wrong values of variables
9637 @quotation
9638 @emph{Warning:} Occasionally, a local variable may appear to have the
9639 wrong value at certain points in a function---just after entry to a new
9640 scope, and just before exit.
9641 @end quotation
9642 You may see this problem when you are stepping by machine instructions.
9643 This is because, on most machines, it takes more than one instruction to
9644 set up a stack frame (including local variable definitions); if you are
9645 stepping by machine instructions, variables may appear to have the wrong
9646 values until the stack frame is completely built.  On exit, it usually
9647 also takes more than one machine instruction to destroy a stack frame;
9648 after you begin stepping through that group of instructions, local
9649 variable definitions may be gone.
9650
9651 This may also happen when the compiler does significant optimizations.
9652 To be sure of always seeing accurate values, turn off all optimization
9653 when compiling.
9654
9655 @cindex ``No symbol "foo" in current context''
9656 Another possible effect of compiler optimizations is to optimize
9657 unused variables out of existence, or assign variables to registers (as
9658 opposed to memory addresses).  Depending on the support for such cases
9659 offered by the debug info format used by the compiler, @value{GDBN}
9660 might not be able to display values for such local variables.  If that
9661 happens, @value{GDBN} will print a message like this:
9662
9663 @smallexample
9664 No symbol "foo" in current context.
9665 @end smallexample
9666
9667 To solve such problems, either recompile without optimizations, or use a
9668 different debug info format, if the compiler supports several such
9669 formats.  @xref{Compilation}, for more information on choosing compiler
9670 options.  @xref{C, ,C and C@t{++}}, for more information about debug
9671 info formats that are best suited to C@t{++} programs.
9672
9673 If you ask to print an object whose contents are unknown to
9674 @value{GDBN}, e.g., because its data type is not completely specified
9675 by the debug information, @value{GDBN} will say @samp{<incomplete
9676 type>}.  @xref{Symbols, incomplete type}, for more about this.
9677
9678 @cindex no debug info variables
9679 If you try to examine or use the value of a (global) variable for
9680 which @value{GDBN} has no type information, e.g., because the program
9681 includes no debug information, @value{GDBN} displays an error message.
9682 @xref{Symbols, unknown type}, for more about unknown types.  If you
9683 cast the variable to its declared type, @value{GDBN} gets the
9684 variable's value using the cast-to type as the variable's type.  For
9685 example, in a C program:
9686
9687 @smallexample
9688   (@value{GDBP}) p var
9689   'var' has unknown type; cast it to its declared type
9690   (@value{GDBP}) p (float) var
9691   $1 = 3.14
9692 @end smallexample
9693
9694 If you append @kbd{@@entry} string to a function parameter name you get its
9695 value at the time the function got called.  If the value is not available an
9696 error message is printed.  Entry values are available only with some compilers.
9697 Entry values are normally also printed at the function parameter list according
9698 to @ref{set print entry-values}.
9699
9700 @smallexample
9701 Breakpoint 1, d (i=30) at gdb.base/entry-value.c:29
9702 29        i++;
9703 (gdb) next
9704 30        e (i);
9705 (gdb) print i
9706 $1 = 31
9707 (gdb) print i@@entry
9708 $2 = 30
9709 @end smallexample
9710
9711 Strings are identified as arrays of @code{char} values without specified
9712 signedness.  Arrays of either @code{signed char} or @code{unsigned char} get
9713 printed as arrays of 1 byte sized integers.  @code{-fsigned-char} or
9714 @code{-funsigned-char} @value{NGCC} options have no effect as @value{GDBN}
9715 defines literal string type @code{"char"} as @code{char} without a sign.
9716 For program code
9717
9718 @smallexample
9719 char var0[] = "A";
9720 signed char var1[] = "A";
9721 @end smallexample
9722
9723 You get during debugging
9724 @smallexample
9725 (gdb) print var0
9726 $1 = "A"
9727 (gdb) print var1
9728 $2 = @{65 'A', 0 '\0'@}
9729 @end smallexample
9730
9731 @node Arrays
9732 @section Artificial Arrays
9733
9734 @cindex artificial array
9735 @cindex arrays
9736 @kindex @@@r{, referencing memory as an array}
9737 It is often useful to print out several successive objects of the
9738 same type in memory; a section of an array, or an array of
9739 dynamically determined size for which only a pointer exists in the
9740 program.
9741
9742 You can do this by referring to a contiguous span of memory as an
9743 @dfn{artificial array}, using the binary operator @samp{@@}.  The left
9744 operand of @samp{@@} should be the first element of the desired array
9745 and be an individual object.  The right operand should be the desired length
9746 of the array.  The result is an array value whose elements are all of
9747 the type of the left argument.  The first element is actually the left
9748 argument; the second element comes from bytes of memory immediately
9749 following those that hold the first element, and so on.  Here is an
9750 example.  If a program says
9751
9752 @smallexample
9753 int *array = (int *) malloc (len * sizeof (int));
9754 @end smallexample
9755
9756 @noindent
9757 you can print the contents of @code{array} with
9758
9759 @smallexample
9760 p *array@@len
9761 @end smallexample
9762
9763 The left operand of @samp{@@} must reside in memory.  Array values made
9764 with @samp{@@} in this way behave just like other arrays in terms of
9765 subscripting, and are coerced to pointers when used in expressions.
9766 Artificial arrays most often appear in expressions via the value history
9767 (@pxref{Value History, ,Value History}), after printing one out.
9768
9769 Another way to create an artificial array is to use a cast.
9770 This re-interprets a value as if it were an array.
9771 The value need not be in memory:
9772 @smallexample
9773 (@value{GDBP}) p/x (short[2])0x12345678
9774 $1 = @{0x1234, 0x5678@}
9775 @end smallexample
9776
9777 As a convenience, if you leave the array length out (as in
9778 @samp{(@var{type}[])@var{value}}) @value{GDBN} calculates the size to fill
9779 the value (as @samp{sizeof(@var{value})/sizeof(@var{type})}:
9780 @smallexample
9781 (@value{GDBP}) p/x (short[])0x12345678
9782 $2 = @{0x1234, 0x5678@}
9783 @end smallexample
9784
9785 Sometimes the artificial array mechanism is not quite enough; in
9786 moderately complex data structures, the elements of interest may not
9787 actually be adjacent---for example, if you are interested in the values
9788 of pointers in an array.  One useful work-around in this situation is
9789 to use a convenience variable (@pxref{Convenience Vars, ,Convenience
9790 Variables}) as a counter in an expression that prints the first
9791 interesting value, and then repeat that expression via @key{RET}.  For
9792 instance, suppose you have an array @code{dtab} of pointers to
9793 structures, and you are interested in the values of a field @code{fv}
9794 in each structure.  Here is an example of what you might type:
9795
9796 @smallexample
9797 set $i = 0
9798 p dtab[$i++]->fv
9799 @key{RET}
9800 @key{RET}
9801 @dots{}
9802 @end smallexample
9803
9804 @node Output Formats
9805 @section Output Formats
9806
9807 @cindex formatted output
9808 @cindex output formats
9809 By default, @value{GDBN} prints a value according to its data type.  Sometimes
9810 this is not what you want.  For example, you might want to print a number
9811 in hex, or a pointer in decimal.  Or you might want to view data in memory
9812 at a certain address as a character string or as an instruction.  To do
9813 these things, specify an @dfn{output format} when you print a value.
9814
9815 The simplest use of output formats is to say how to print a value
9816 already computed.  This is done by starting the arguments of the
9817 @code{print} command with a slash and a format letter.  The format
9818 letters supported are:
9819
9820 @table @code
9821 @item x
9822 Regard the bits of the value as an integer, and print the integer in
9823 hexadecimal.
9824
9825 @item d
9826 Print as integer in signed decimal.
9827
9828 @item u
9829 Print as integer in unsigned decimal.
9830
9831 @item o
9832 Print as integer in octal.
9833
9834 @item t
9835 Print as integer in binary.  The letter @samp{t} stands for ``two''.
9836 @footnote{@samp{b} cannot be used because these format letters are also
9837 used with the @code{x} command, where @samp{b} stands for ``byte'';
9838 see @ref{Memory,,Examining Memory}.}
9839
9840 @item a
9841 @cindex unknown address, locating
9842 @cindex locate address
9843 Print as an address, both absolute in hexadecimal and as an offset from
9844 the nearest preceding symbol.  You can use this format used to discover
9845 where (in what function) an unknown address is located:
9846
9847 @smallexample
9848 (@value{GDBP}) p/a 0x54320
9849 $3 = 0x54320 <_initialize_vx+396>
9850 @end smallexample
9851
9852 @noindent
9853 The command @code{info symbol 0x54320} yields similar results.
9854 @xref{Symbols, info symbol}.
9855
9856 @item c
9857 Regard as an integer and print it as a character constant.  This
9858 prints both the numerical value and its character representation.  The
9859 character representation is replaced with the octal escape @samp{\nnn}
9860 for characters outside the 7-bit @sc{ascii} range.
9861
9862 Without this format, @value{GDBN} displays @code{char},
9863 @w{@code{unsigned char}}, and @w{@code{signed char}} data as character
9864 constants.  Single-byte members of vectors are displayed as integer
9865 data.
9866
9867 @item f
9868 Regard the bits of the value as a floating point number and print
9869 using typical floating point syntax.
9870
9871 @item s
9872 @cindex printing strings
9873 @cindex printing byte arrays
9874 Regard as a string, if possible.  With this format, pointers to single-byte
9875 data are displayed as null-terminated strings and arrays of single-byte data
9876 are displayed as fixed-length strings.  Other values are displayed in their
9877 natural types.
9878
9879 Without this format, @value{GDBN} displays pointers to and arrays of
9880 @code{char}, @w{@code{unsigned char}}, and @w{@code{signed char}} as
9881 strings.  Single-byte members of a vector are displayed as an integer
9882 array.
9883
9884 @item z
9885 Like @samp{x} formatting, the value is treated as an integer and
9886 printed as hexadecimal, but leading zeros are printed to pad the value
9887 to the size of the integer type.
9888
9889 @item r
9890 @cindex raw printing
9891 Print using the @samp{raw} formatting.  By default, @value{GDBN} will
9892 use a Python-based pretty-printer, if one is available (@pxref{Pretty
9893 Printing}).  This typically results in a higher-level display of the
9894 value's contents.  The @samp{r} format bypasses any Python
9895 pretty-printer which might exist.
9896 @end table
9897
9898 For example, to print the program counter in hex (@pxref{Registers}), type
9899
9900 @smallexample
9901 p/x $pc
9902 @end smallexample
9903
9904 @noindent
9905 Note that no space is required before the slash; this is because command
9906 names in @value{GDBN} cannot contain a slash.
9907
9908 To reprint the last value in the value history with a different format,
9909 you can use the @code{print} command with just a format and no
9910 expression.  For example, @samp{p/x} reprints the last value in hex.
9911
9912 @node Memory
9913 @section Examining Memory
9914
9915 You can use the command @code{x} (for ``examine'') to examine memory in
9916 any of several formats, independently of your program's data types.
9917
9918 @cindex examining memory
9919 @table @code
9920 @kindex x @r{(examine memory)}
9921 @item x/@var{nfu} @var{addr}
9922 @itemx x @var{addr}
9923 @itemx x
9924 Use the @code{x} command to examine memory.
9925 @end table
9926
9927 @var{n}, @var{f}, and @var{u} are all optional parameters that specify how
9928 much memory to display and how to format it; @var{addr} is an
9929 expression giving the address where you want to start displaying memory.
9930 If you use defaults for @var{nfu}, you need not type the slash @samp{/}.
9931 Several commands set convenient defaults for @var{addr}.
9932
9933 @table @r
9934 @item @var{n}, the repeat count
9935 The repeat count is a decimal integer; the default is 1.  It specifies
9936 how much memory (counting by units @var{u}) to display.  If a negative
9937 number is specified, memory is examined backward from @var{addr}.
9938 @c This really is **decimal**; unaffected by 'set radix' as of GDB
9939 @c 4.1.2.
9940
9941 @item @var{f}, the display format
9942 The display format is one of the formats used by @code{print}
9943 (@samp{x}, @samp{d}, @samp{u}, @samp{o}, @samp{t}, @samp{a}, @samp{c},
9944 @samp{f}, @samp{s}), and in addition @samp{i} (for machine instructions).
9945 The default is @samp{x} (hexadecimal) initially.  The default changes
9946 each time you use either @code{x} or @code{print}.
9947
9948 @item @var{u}, the unit size
9949 The unit size is any of
9950
9951 @table @code
9952 @item b
9953 Bytes.
9954 @item h
9955 Halfwords (two bytes).
9956 @item w
9957 Words (four bytes).  This is the initial default.
9958 @item g
9959 Giant words (eight bytes).
9960 @end table
9961
9962 Each time you specify a unit size with @code{x}, that size becomes the
9963 default unit the next time you use @code{x}.  For the @samp{i} format,
9964 the unit size is ignored and is normally not written.  For the @samp{s} format,
9965 the unit size defaults to @samp{b}, unless it is explicitly given.
9966 Use @kbd{x /hs} to display 16-bit char strings and @kbd{x /ws} to display
9967 32-bit strings.  The next use of @kbd{x /s} will again display 8-bit strings.
9968 Note that the results depend on the programming language of the
9969 current compilation unit.  If the language is C, the @samp{s}
9970 modifier will use the UTF-16 encoding while @samp{w} will use
9971 UTF-32.  The encoding is set by the programming language and cannot
9972 be altered.
9973
9974 @item @var{addr}, starting display address
9975 @var{addr} is the address where you want @value{GDBN} to begin displaying
9976 memory.  The expression need not have a pointer value (though it may);
9977 it is always interpreted as an integer address of a byte of memory.
9978 @xref{Expressions, ,Expressions}, for more information on expressions.  The default for
9979 @var{addr} is usually just after the last address examined---but several
9980 other commands also set the default address: @code{info breakpoints} (to
9981 the address of the last breakpoint listed), @code{info line} (to the
9982 starting address of a line), and @code{print} (if you use it to display
9983 a value from memory).
9984 @end table
9985
9986 For example, @samp{x/3uh 0x54320} is a request to display three halfwords
9987 (@code{h}) of memory, formatted as unsigned decimal integers (@samp{u}),
9988 starting at address @code{0x54320}.  @samp{x/4xw $sp} prints the four
9989 words (@samp{w}) of memory above the stack pointer (here, @samp{$sp};
9990 @pxref{Registers, ,Registers}) in hexadecimal (@samp{x}).
9991
9992 You can also specify a negative repeat count to examine memory backward
9993 from the given address.  For example, @samp{x/-3uh 0x54320} prints three
9994 halfwords (@code{h}) at @code{0x54314}, @code{0x54328}, and @code{0x5431c}.
9995
9996 Since the letters indicating unit sizes are all distinct from the
9997 letters specifying output formats, you do not have to remember whether
9998 unit size or format comes first; either order works.  The output
9999 specifications @samp{4xw} and @samp{4wx} mean exactly the same thing.
10000 (However, the count @var{n} must come first; @samp{wx4} does not work.)
10001
10002 Even though the unit size @var{u} is ignored for the formats @samp{s}
10003 and @samp{i}, you might still want to use a count @var{n}; for example,
10004 @samp{3i} specifies that you want to see three machine instructions,
10005 including any operands.  For convenience, especially when used with
10006 the @code{display} command, the @samp{i} format also prints branch delay
10007 slot instructions, if any, beyond the count specified, which immediately
10008 follow the last instruction that is within the count.  The command
10009 @code{disassemble} gives an alternative way of inspecting machine
10010 instructions; see @ref{Machine Code,,Source and Machine Code}.
10011
10012 If a negative repeat count is specified for the formats @samp{s} or @samp{i},
10013 the command displays null-terminated strings or instructions before the given
10014 address as many as the absolute value of the given number.  For the @samp{i}
10015 format, we use line number information in the debug info to accurately locate
10016 instruction boundaries while disassembling backward.  If line info is not
10017 available, the command stops examining memory with an error message.
10018
10019 All the defaults for the arguments to @code{x} are designed to make it
10020 easy to continue scanning memory with minimal specifications each time
10021 you use @code{x}.  For example, after you have inspected three machine
10022 instructions with @samp{x/3i @var{addr}}, you can inspect the next seven
10023 with just @samp{x/7}.  If you use @key{RET} to repeat the @code{x} command,
10024 the repeat count @var{n} is used again; the other arguments default as
10025 for successive uses of @code{x}.
10026
10027 When examining machine instructions, the instruction at current program
10028 counter is shown with a @code{=>} marker. For example:
10029
10030 @smallexample
10031 (@value{GDBP}) x/5i $pc-6
10032    0x804837f <main+11>: mov    %esp,%ebp
10033    0x8048381 <main+13>: push   %ecx
10034    0x8048382 <main+14>: sub    $0x4,%esp
10035 => 0x8048385 <main+17>: movl   $0x8048460,(%esp)
10036    0x804838c <main+24>: call   0x80482d4 <puts@@plt>
10037 @end smallexample
10038
10039 @cindex @code{$_}, @code{$__}, and value history
10040 The addresses and contents printed by the @code{x} command are not saved
10041 in the value history because there is often too much of them and they
10042 would get in the way.  Instead, @value{GDBN} makes these values available for
10043 subsequent use in expressions as values of the convenience variables
10044 @code{$_} and @code{$__}.  After an @code{x} command, the last address
10045 examined is available for use in expressions in the convenience variable
10046 @code{$_}.  The contents of that address, as examined, are available in
10047 the convenience variable @code{$__}.
10048
10049 If the @code{x} command has a repeat count, the address and contents saved
10050 are from the last memory unit printed; this is not the same as the last
10051 address printed if several units were printed on the last line of output.
10052
10053 @anchor{addressable memory unit}
10054 @cindex addressable memory unit
10055 Most targets have an addressable memory unit size of 8 bits.  This means
10056 that to each memory address are associated 8 bits of data.  Some
10057 targets, however, have other addressable memory unit sizes.
10058 Within @value{GDBN} and this document, the term
10059 @dfn{addressable memory unit} (or @dfn{memory unit} for short) is used
10060 when explicitly referring to a chunk of data of that size.  The word
10061 @dfn{byte} is used to refer to a chunk of data of 8 bits, regardless of
10062 the addressable memory unit size of the target.  For most systems,
10063 addressable memory unit is a synonym of byte.
10064
10065 @cindex remote memory comparison
10066 @cindex target memory comparison
10067 @cindex verify remote memory image
10068 @cindex verify target memory image
10069 When you are debugging a program running on a remote target machine
10070 (@pxref{Remote Debugging}), you may wish to verify the program's image
10071 in the remote machine's memory against the executable file you
10072 downloaded to the target.  Or, on any target, you may want to check
10073 whether the program has corrupted its own read-only sections.  The
10074 @code{compare-sections} command is provided for such situations.
10075
10076 @table @code
10077 @kindex compare-sections
10078 @item compare-sections @r{[}@var{section-name}@r{|}@code{-r}@r{]}
10079 Compare the data of a loadable section @var{section-name} in the
10080 executable file of the program being debugged with the same section in
10081 the target machine's memory, and report any mismatches.  With no
10082 arguments, compares all loadable sections.  With an argument of
10083 @code{-r}, compares all loadable read-only sections.
10084
10085 Note: for remote targets, this command can be accelerated if the
10086 target supports computing the CRC checksum of a block of memory
10087 (@pxref{qCRC packet}).
10088 @end table
10089
10090 @node Auto Display
10091 @section Automatic Display
10092 @cindex automatic display
10093 @cindex display of expressions
10094
10095 If you find that you want to print the value of an expression frequently
10096 (to see how it changes), you might want to add it to the @dfn{automatic
10097 display list} so that @value{GDBN} prints its value each time your program stops.
10098 Each expression added to the list is given a number to identify it;
10099 to remove an expression from the list, you specify that number.
10100 The automatic display looks like this:
10101
10102 @smallexample
10103 2: foo = 38
10104 3: bar[5] = (struct hack *) 0x3804
10105 @end smallexample
10106
10107 @noindent
10108 This display shows item numbers, expressions and their current values.  As with
10109 displays you request manually using @code{x} or @code{print}, you can
10110 specify the output format you prefer; in fact, @code{display} decides
10111 whether to use @code{print} or @code{x} depending your format
10112 specification---it uses @code{x} if you specify either the @samp{i}
10113 or @samp{s} format, or a unit size; otherwise it uses @code{print}.
10114
10115 @table @code
10116 @kindex display
10117 @item display @var{expr}
10118 Add the expression @var{expr} to the list of expressions to display
10119 each time your program stops.  @xref{Expressions, ,Expressions}.
10120
10121 @code{display} does not repeat if you press @key{RET} again after using it.
10122
10123 @item display/@var{fmt} @var{expr}
10124 For @var{fmt} specifying only a display format and not a size or
10125 count, add the expression @var{expr} to the auto-display list but
10126 arrange to display it each time in the specified format @var{fmt}.
10127 @xref{Output Formats,,Output Formats}.
10128
10129 @item display/@var{fmt} @var{addr}
10130 For @var{fmt} @samp{i} or @samp{s}, or including a unit-size or a
10131 number of units, add the expression @var{addr} as a memory address to
10132 be examined each time your program stops.  Examining means in effect
10133 doing @samp{x/@var{fmt} @var{addr}}.  @xref{Memory, ,Examining Memory}.
10134 @end table
10135
10136 For example, @samp{display/i $pc} can be helpful, to see the machine
10137 instruction about to be executed each time execution stops (@samp{$pc}
10138 is a common name for the program counter; @pxref{Registers, ,Registers}).
10139
10140 @table @code
10141 @kindex delete display
10142 @kindex undisplay
10143 @item undisplay @var{dnums}@dots{}
10144 @itemx delete display @var{dnums}@dots{}
10145 Remove items from the list of expressions to display.  Specify the
10146 numbers of the displays that you want affected with the command
10147 argument @var{dnums}.  It can be a single display number, one of the
10148 numbers shown in the first field of the @samp{info display} display;
10149 or it could be a range of display numbers, as in @code{2-4}.
10150
10151 @code{undisplay} does not repeat if you press @key{RET} after using it.
10152 (Otherwise you would just get the error @samp{No display number @dots{}}.)
10153
10154 @kindex disable display
10155 @item disable display @var{dnums}@dots{}
10156 Disable the display of item numbers @var{dnums}.  A disabled display
10157 item is not printed automatically, but is not forgotten.  It may be
10158 enabled again later.  Specify the numbers of the displays that you
10159 want affected with the command argument @var{dnums}.  It can be a
10160 single display number, one of the numbers shown in the first field of
10161 the @samp{info display} display; or it could be a range of display
10162 numbers, as in @code{2-4}.
10163
10164 @kindex enable display
10165 @item enable display @var{dnums}@dots{}
10166 Enable display of item numbers @var{dnums}.  It becomes effective once
10167 again in auto display of its expression, until you specify otherwise.
10168 Specify the numbers of the displays that you want affected with the
10169 command argument @var{dnums}.  It can be a single display number, one
10170 of the numbers shown in the first field of the @samp{info display}
10171 display; or it could be a range of display numbers, as in @code{2-4}.
10172
10173 @item display
10174 Display the current values of the expressions on the list, just as is
10175 done when your program stops.
10176
10177 @kindex info display
10178 @item info display
10179 Print the list of expressions previously set up to display
10180 automatically, each one with its item number, but without showing the
10181 values.  This includes disabled expressions, which are marked as such.
10182 It also includes expressions which would not be displayed right now
10183 because they refer to automatic variables not currently available.
10184 @end table
10185
10186 @cindex display disabled out of scope
10187 If a display expression refers to local variables, then it does not make
10188 sense outside the lexical context for which it was set up.  Such an
10189 expression is disabled when execution enters a context where one of its
10190 variables is not defined.  For example, if you give the command
10191 @code{display last_char} while inside a function with an argument
10192 @code{last_char}, @value{GDBN} displays this argument while your program
10193 continues to stop inside that function.  When it stops elsewhere---where
10194 there is no variable @code{last_char}---the display is disabled
10195 automatically.  The next time your program stops where @code{last_char}
10196 is meaningful, you can enable the display expression once again.
10197
10198 @node Print Settings
10199 @section Print Settings
10200
10201 @cindex format options
10202 @cindex print settings
10203 @value{GDBN} provides the following ways to control how arrays, structures,
10204 and symbols are printed.
10205
10206 @noindent
10207 These settings are useful for debugging programs in any language:
10208
10209 @table @code
10210 @kindex set print
10211 @item set print address
10212 @itemx set print address on
10213 @cindex print/don't print memory addresses
10214 @value{GDBN} prints memory addresses showing the location of stack
10215 traces, structure values, pointer values, breakpoints, and so forth,
10216 even when it also displays the contents of those addresses.  The default
10217 is @code{on}.  For example, this is what a stack frame display looks like with
10218 @code{set print address on}:
10219
10220 @smallexample
10221 @group
10222 (@value{GDBP}) f
10223 #0  set_quotes (lq=0x34c78 "<<", rq=0x34c88 ">>")
10224     at input.c:530
10225 530         if (lquote != def_lquote)
10226 @end group
10227 @end smallexample
10228
10229 @item set print address off
10230 Do not print addresses when displaying their contents.  For example,
10231 this is the same stack frame displayed with @code{set print address off}:
10232
10233 @smallexample
10234 @group
10235 (@value{GDBP}) set print addr off
10236 (@value{GDBP}) f
10237 #0  set_quotes (lq="<<", rq=">>") at input.c:530
10238 530         if (lquote != def_lquote)
10239 @end group
10240 @end smallexample
10241
10242 You can use @samp{set print address off} to eliminate all machine
10243 dependent displays from the @value{GDBN} interface.  For example, with
10244 @code{print address off}, you should get the same text for backtraces on
10245 all machines---whether or not they involve pointer arguments.
10246
10247 @kindex show print
10248 @item show print address
10249 Show whether or not addresses are to be printed.
10250 @end table
10251
10252 When @value{GDBN} prints a symbolic address, it normally prints the
10253 closest earlier symbol plus an offset.  If that symbol does not uniquely
10254 identify the address (for example, it is a name whose scope is a single
10255 source file), you may need to clarify.  One way to do this is with
10256 @code{info line}, for example @samp{info line *0x4537}.  Alternately,
10257 you can set @value{GDBN} to print the source file and line number when
10258 it prints a symbolic address:
10259
10260 @table @code
10261 @item set print symbol-filename on
10262 @cindex source file and line of a symbol
10263 @cindex symbol, source file and line
10264 Tell @value{GDBN} to print the source file name and line number of a
10265 symbol in the symbolic form of an address.
10266
10267 @item set print symbol-filename off
10268 Do not print source file name and line number of a symbol.  This is the
10269 default.
10270
10271 @item show print symbol-filename
10272 Show whether or not @value{GDBN} will print the source file name and
10273 line number of a symbol in the symbolic form of an address.
10274 @end table
10275
10276 Another situation where it is helpful to show symbol filenames and line
10277 numbers is when disassembling code; @value{GDBN} shows you the line
10278 number and source file that corresponds to each instruction.
10279
10280 Also, you may wish to see the symbolic form only if the address being
10281 printed is reasonably close to the closest earlier symbol:
10282
10283 @table @code
10284 @item set print max-symbolic-offset @var{max-offset}
10285 @itemx set print max-symbolic-offset unlimited
10286 @cindex maximum value for offset of closest symbol
10287 Tell @value{GDBN} to only display the symbolic form of an address if the
10288 offset between the closest earlier symbol and the address is less than
10289 @var{max-offset}.  The default is @code{unlimited}, which tells @value{GDBN}
10290 to always print the symbolic form of an address if any symbol precedes
10291 it.  Zero is equivalent to @code{unlimited}.
10292
10293 @item show print max-symbolic-offset
10294 Ask how large the maximum offset is that @value{GDBN} prints in a
10295 symbolic address.
10296 @end table
10297
10298 @cindex wild pointer, interpreting
10299 @cindex pointer, finding referent
10300 If you have a pointer and you are not sure where it points, try
10301 @samp{set print symbol-filename on}.  Then you can determine the name
10302 and source file location of the variable where it points, using
10303 @samp{p/a @var{pointer}}.  This interprets the address in symbolic form.
10304 For example, here @value{GDBN} shows that a variable @code{ptt} points
10305 at another variable @code{t}, defined in @file{hi2.c}:
10306
10307 @smallexample
10308 (@value{GDBP}) set print symbol-filename on
10309 (@value{GDBP}) p/a ptt
10310 $4 = 0xe008 <t in hi2.c>
10311 @end smallexample
10312
10313 @quotation
10314 @emph{Warning:} For pointers that point to a local variable, @samp{p/a}
10315 does not show the symbol name and filename of the referent, even with
10316 the appropriate @code{set print} options turned on.
10317 @end quotation
10318
10319 You can also enable @samp{/a}-like formatting all the time using
10320 @samp{set print symbol on}:
10321
10322 @table @code
10323 @item set print symbol on
10324 Tell @value{GDBN} to print the symbol corresponding to an address, if
10325 one exists.
10326
10327 @item set print symbol off
10328 Tell @value{GDBN} not to print the symbol corresponding to an
10329 address.  In this mode, @value{GDBN} will still print the symbol
10330 corresponding to pointers to functions.  This is the default.
10331
10332 @item show print symbol
10333 Show whether @value{GDBN} will display the symbol corresponding to an
10334 address.
10335 @end table
10336
10337 Other settings control how different kinds of objects are printed:
10338
10339 @table @code
10340 @item set print array
10341 @itemx set print array on
10342 @cindex pretty print arrays
10343 Pretty print arrays.  This format is more convenient to read,
10344 but uses more space.  The default is off.
10345
10346 @item set print array off
10347 Return to compressed format for arrays.
10348
10349 @item show print array
10350 Show whether compressed or pretty format is selected for displaying
10351 arrays.
10352
10353 @cindex print array indexes
10354 @item set print array-indexes
10355 @itemx set print array-indexes on
10356 Print the index of each element when displaying arrays.  May be more
10357 convenient to locate a given element in the array or quickly find the
10358 index of a given element in that printed array.  The default is off.
10359
10360 @item set print array-indexes off
10361 Stop printing element indexes when displaying arrays.
10362
10363 @item show print array-indexes
10364 Show whether the index of each element is printed when displaying
10365 arrays.
10366
10367 @item set print elements @var{number-of-elements}
10368 @itemx set print elements unlimited
10369 @cindex number of array elements to print
10370 @cindex limit on number of printed array elements
10371 Set a limit on how many elements of an array @value{GDBN} will print.
10372 If @value{GDBN} is printing a large array, it stops printing after it has
10373 printed the number of elements set by the @code{set print elements} command.
10374 This limit also applies to the display of strings.
10375 When @value{GDBN} starts, this limit is set to 200.
10376 Setting @var{number-of-elements} to @code{unlimited} or zero means
10377 that the number of elements to print is unlimited.
10378
10379 @item show print elements
10380 Display the number of elements of a large array that @value{GDBN} will print.
10381 If the number is 0, then the printing is unlimited.
10382
10383 @item set print frame-arguments @var{value}
10384 @kindex set print frame-arguments
10385 @cindex printing frame argument values
10386 @cindex print all frame argument values
10387 @cindex print frame argument values for scalars only
10388 @cindex do not print frame argument values
10389 This command allows to control how the values of arguments are printed
10390 when the debugger prints a frame (@pxref{Frames}).  The possible
10391 values are:
10392
10393 @table @code
10394 @item all
10395 The values of all arguments are printed.
10396
10397 @item scalars
10398 Print the value of an argument only if it is a scalar.  The value of more
10399 complex arguments such as arrays, structures, unions, etc, is replaced
10400 by @code{@dots{}}.  This is the default.  Here is an example where
10401 only scalar arguments are shown:
10402
10403 @smallexample
10404 #1  0x08048361 in call_me (i=3, s=@dots{}, ss=0xbf8d508c, u=@dots{}, e=green)
10405   at frame-args.c:23
10406 @end smallexample
10407
10408 @item none
10409 None of the argument values are printed.  Instead, the value of each argument
10410 is replaced by @code{@dots{}}.  In this case, the example above now becomes:
10411
10412 @smallexample
10413 #1  0x08048361 in call_me (i=@dots{}, s=@dots{}, ss=@dots{}, u=@dots{}, e=@dots{})
10414   at frame-args.c:23
10415 @end smallexample
10416 @end table
10417
10418 By default, only scalar arguments are printed.  This command can be used
10419 to configure the debugger to print the value of all arguments, regardless
10420 of their type.  However, it is often advantageous to not print the value
10421 of more complex parameters.  For instance, it reduces the amount of
10422 information printed in each frame, making the backtrace more readable.
10423 Also, it improves performance when displaying Ada frames, because
10424 the computation of large arguments can sometimes be CPU-intensive,
10425 especially in large applications.  Setting @code{print frame-arguments}
10426 to @code{scalars} (the default) or @code{none} avoids this computation,
10427 thus speeding up the display of each Ada frame.
10428
10429 @item show print frame-arguments
10430 Show how the value of arguments should be displayed when printing a frame.
10431
10432 @item set print raw frame-arguments on
10433 Print frame arguments in raw, non pretty-printed, form.
10434
10435 @item set print raw frame-arguments off
10436 Print frame arguments in pretty-printed form, if there is a pretty-printer
10437 for the value (@pxref{Pretty Printing}),
10438 otherwise print the value in raw form.
10439 This is the default.
10440
10441 @item show print raw frame-arguments
10442 Show whether to print frame arguments in raw form.
10443
10444 @anchor{set print entry-values}
10445 @item set print entry-values @var{value}
10446 @kindex set print entry-values
10447 Set printing of frame argument values at function entry.  In some cases
10448 @value{GDBN} can determine the value of function argument which was passed by
10449 the function caller, even if the value was modified inside the called function
10450 and therefore is different.  With optimized code, the current value could be
10451 unavailable, but the entry value may still be known.
10452
10453 The default value is @code{default} (see below for its description).  Older
10454 @value{GDBN} behaved as with the setting @code{no}.  Compilers not supporting
10455 this feature will behave in the @code{default} setting the same way as with the
10456 @code{no} setting.
10457
10458 This functionality is currently supported only by DWARF 2 debugging format and
10459 the compiler has to produce @samp{DW_TAG_call_site} tags.  With
10460 @value{NGCC}, you need to specify @option{-O -g} during compilation, to get
10461 this information.
10462
10463 The @var{value} parameter can be one of the following:
10464
10465 @table @code
10466 @item no
10467 Print only actual parameter values, never print values from function entry
10468 point.
10469 @smallexample
10470 #0  equal (val=5)
10471 #0  different (val=6)
10472 #0  lost (val=<optimized out>)
10473 #0  born (val=10)
10474 #0  invalid (val=<optimized out>)
10475 @end smallexample
10476
10477 @item only
10478 Print only parameter values from function entry point.  The actual parameter
10479 values are never printed.
10480 @smallexample
10481 #0  equal (val@@entry=5)
10482 #0  different (val@@entry=5)
10483 #0  lost (val@@entry=5)
10484 #0  born (val@@entry=<optimized out>)
10485 #0  invalid (val@@entry=<optimized out>)
10486 @end smallexample
10487
10488 @item preferred
10489 Print only parameter values from function entry point.  If value from function
10490 entry point is not known while the actual value is known, print the actual
10491 value for such parameter.
10492 @smallexample
10493 #0  equal (val@@entry=5)
10494 #0  different (val@@entry=5)
10495 #0  lost (val@@entry=5)
10496 #0  born (val=10)
10497 #0  invalid (val@@entry=<optimized out>)
10498 @end smallexample
10499
10500 @item if-needed
10501 Print actual parameter values.  If actual parameter value is not known while
10502 value from function entry point is known, print the entry point value for such
10503 parameter.
10504 @smallexample
10505 #0  equal (val=5)
10506 #0  different (val=6)
10507 #0  lost (val@@entry=5)
10508 #0  born (val=10)
10509 #0  invalid (val=<optimized out>)
10510 @end smallexample
10511
10512 @item both
10513 Always print both the actual parameter value and its value from function entry
10514 point, even if values of one or both are not available due to compiler
10515 optimizations.
10516 @smallexample
10517 #0  equal (val=5, val@@entry=5)
10518 #0  different (val=6, val@@entry=5)
10519 #0  lost (val=<optimized out>, val@@entry=5)
10520 #0  born (val=10, val@@entry=<optimized out>)
10521 #0  invalid (val=<optimized out>, val@@entry=<optimized out>)
10522 @end smallexample
10523
10524 @item compact
10525 Print the actual parameter value if it is known and also its value from
10526 function entry point if it is known.  If neither is known, print for the actual
10527 value @code{<optimized out>}.  If not in MI mode (@pxref{GDB/MI}) and if both
10528 values are known and identical, print the shortened
10529 @code{param=param@@entry=VALUE} notation.
10530 @smallexample
10531 #0  equal (val=val@@entry=5)
10532 #0  different (val=6, val@@entry=5)
10533 #0  lost (val@@entry=5)
10534 #0  born (val=10)
10535 #0  invalid (val=<optimized out>)
10536 @end smallexample
10537
10538 @item default
10539 Always print the actual parameter value.  Print also its value from function
10540 entry point, but only if it is known.  If not in MI mode (@pxref{GDB/MI}) and
10541 if both values are known and identical, print the shortened
10542 @code{param=param@@entry=VALUE} notation.
10543 @smallexample
10544 #0  equal (val=val@@entry=5)
10545 #0  different (val=6, val@@entry=5)
10546 #0  lost (val=<optimized out>, val@@entry=5)
10547 #0  born (val=10)
10548 #0  invalid (val=<optimized out>)
10549 @end smallexample
10550 @end table
10551
10552 For analysis messages on possible failures of frame argument values at function
10553 entry resolution see @ref{set debug entry-values}.
10554
10555 @item show print entry-values
10556 Show the method being used for printing of frame argument values at function
10557 entry.
10558
10559 @item set print repeats @var{number-of-repeats}
10560 @itemx set print repeats unlimited
10561 @cindex repeated array elements
10562 Set the threshold for suppressing display of repeated array
10563 elements.  When the number of consecutive identical elements of an
10564 array exceeds the threshold, @value{GDBN} prints the string
10565 @code{"<repeats @var{n} times>"}, where @var{n} is the number of
10566 identical repetitions, instead of displaying the identical elements
10567 themselves.  Setting the threshold to @code{unlimited} or zero will
10568 cause all elements to be individually printed.  The default threshold
10569 is 10.
10570
10571 @item show print repeats
10572 Display the current threshold for printing repeated identical
10573 elements.
10574
10575 @item set print max-depth @var{depth}
10576 @item set print max-depth unlimited
10577 @cindex printing nested structures
10578 Set the threshold after which nested structures are replaced with
10579 ellipsis, this can make visualising deeply nested structures easier.
10580
10581 For example, given this C code
10582
10583 @smallexample
10584 typedef struct s1 @{ int a; @} s1;
10585 typedef struct s2 @{ s1 b; @} s2;
10586 typedef struct s3 @{ s2 c; @} s3;
10587 typedef struct s4 @{ s3 d; @} s4;
10588
10589 s4 var = @{ @{ @{ @{ 3 @} @} @} @};
10590 @end smallexample
10591
10592 The following table shows how different values of @var{depth} will
10593 effect how @code{var} is printed by @value{GDBN}:
10594
10595 @multitable @columnfractions .3 .7
10596 @headitem @var{depth} setting @tab Result of @samp{p var}
10597 @item unlimited
10598 @tab @code{$1 = @{d = @{c = @{b = @{a = 3@}@}@}@}}
10599 @item @code{0}
10600 @tab @code{$1 = @{...@}}
10601 @item @code{1}
10602 @tab @code{$1 = @{d = @{...@}@}}
10603 @item @code{2}
10604 @tab @code{$1 = @{d = @{c = @{...@}@}@}}
10605 @item @code{3}
10606 @tab @code{$1 = @{d = @{c = @{b = @{...@}@}@}@}}
10607 @item @code{4}
10608 @tab @code{$1 = @{d = @{c = @{b = @{a = 3@}@}@}@}}
10609 @end multitable
10610
10611 To see the contents of structures that have been hidden the user can
10612 either increase the print max-depth, or they can print the elements of
10613 the structure that are visible, for example
10614
10615 @smallexample
10616 (gdb) set print max-depth 2
10617 (gdb) p var
10618 $1 = @{d = @{c = @{...@}@}@}
10619 (gdb) p var.d
10620 $2 = @{c = @{b = @{...@}@}@}
10621 (gdb) p var.d.c
10622 $3 = @{b = @{a = 3@}@}
10623 @end smallexample
10624
10625 The pattern used to replace nested structures varies based on
10626 language, for most languages @code{@{...@}} is used, but Fortran uses
10627 @code{(...)}.
10628
10629 @item show print max-depth
10630 Display the current threshold after which nested structures are
10631 replaces with ellipsis.
10632
10633 @item set print null-stop
10634 @cindex @sc{null} elements in arrays
10635 Cause @value{GDBN} to stop printing the characters of an array when the first
10636 @sc{null} is encountered.  This is useful when large arrays actually
10637 contain only short strings.
10638 The default is off.
10639
10640 @item show print null-stop
10641 Show whether @value{GDBN} stops printing an array on the first
10642 @sc{null} character.
10643
10644 @item set print pretty on
10645 @cindex print structures in indented form
10646 @cindex indentation in structure display
10647 Cause @value{GDBN} to print structures in an indented format with one member
10648 per line, like this:
10649
10650 @smallexample
10651 @group
10652 $1 = @{
10653   next = 0x0,
10654   flags = @{
10655     sweet = 1,
10656     sour = 1
10657   @},
10658   meat = 0x54 "Pork"
10659 @}
10660 @end group
10661 @end smallexample
10662
10663 @item set print pretty off
10664 Cause @value{GDBN} to print structures in a compact format, like this:
10665
10666 @smallexample
10667 @group
10668 $1 = @{next = 0x0, flags = @{sweet = 1, sour = 1@}, \
10669 meat = 0x54 "Pork"@}
10670 @end group
10671 @end smallexample
10672
10673 @noindent
10674 This is the default format.
10675
10676 @item show print pretty
10677 Show which format @value{GDBN} is using to print structures.
10678
10679 @item set print sevenbit-strings on
10680 @cindex eight-bit characters in strings
10681 @cindex octal escapes in strings
10682 Print using only seven-bit characters; if this option is set,
10683 @value{GDBN} displays any eight-bit characters (in strings or
10684 character values) using the notation @code{\}@var{nnn}.  This setting is
10685 best if you are working in English (@sc{ascii}) and you use the
10686 high-order bit of characters as a marker or ``meta'' bit.
10687
10688 @item set print sevenbit-strings off
10689 Print full eight-bit characters.  This allows the use of more
10690 international character sets, and is the default.
10691
10692 @item show print sevenbit-strings
10693 Show whether or not @value{GDBN} is printing only seven-bit characters.
10694
10695 @item set print union on
10696 @cindex unions in structures, printing
10697 Tell @value{GDBN} to print unions which are contained in structures
10698 and other unions.  This is the default setting.
10699
10700 @item set print union off
10701 Tell @value{GDBN} not to print unions which are contained in
10702 structures and other unions.  @value{GDBN} will print @code{"@{...@}"}
10703 instead.
10704
10705 @item show print union
10706 Ask @value{GDBN} whether or not it will print unions which are contained in
10707 structures and other unions.
10708
10709 For example, given the declarations
10710
10711 @smallexample
10712 typedef enum @{Tree, Bug@} Species;
10713 typedef enum @{Big_tree, Acorn, Seedling@} Tree_forms;
10714 typedef enum @{Caterpillar, Cocoon, Butterfly@}
10715               Bug_forms;
10716
10717 struct thing @{
10718   Species it;
10719   union @{
10720     Tree_forms tree;
10721     Bug_forms bug;
10722   @} form;
10723 @};
10724
10725 struct thing foo = @{Tree, @{Acorn@}@};
10726 @end smallexample
10727
10728 @noindent
10729 with @code{set print union on} in effect @samp{p foo} would print
10730
10731 @smallexample
10732 $1 = @{it = Tree, form = @{tree = Acorn, bug = Cocoon@}@}
10733 @end smallexample
10734
10735 @noindent
10736 and with @code{set print union off} in effect it would print
10737
10738 @smallexample
10739 $1 = @{it = Tree, form = @{...@}@}
10740 @end smallexample
10741
10742 @noindent
10743 @code{set print union} affects programs written in C-like languages
10744 and in Pascal.
10745 @end table
10746
10747 @need 1000
10748 @noindent
10749 These settings are of interest when debugging C@t{++} programs:
10750
10751 @table @code
10752 @cindex demangling C@t{++} names
10753 @item set print demangle
10754 @itemx set print demangle on
10755 Print C@t{++} names in their source form rather than in the encoded
10756 (``mangled'') form passed to the assembler and linker for type-safe
10757 linkage.  The default is on.
10758
10759 @item show print demangle
10760 Show whether C@t{++} names are printed in mangled or demangled form.
10761
10762 @item set print asm-demangle
10763 @itemx set print asm-demangle on
10764 Print C@t{++} names in their source form rather than their mangled form, even
10765 in assembler code printouts such as instruction disassemblies.
10766 The default is off.
10767
10768 @item show print asm-demangle
10769 Show whether C@t{++} names in assembly listings are printed in mangled
10770 or demangled form.
10771
10772 @cindex C@t{++} symbol decoding style
10773 @cindex symbol decoding style, C@t{++}
10774 @kindex set demangle-style
10775 @item set demangle-style @var{style}
10776 Choose among several encoding schemes used by different compilers to represent
10777 C@t{++} names.  If you omit @var{style}, you will see a list of possible
10778 formats.  The default value is @var{auto}, which lets @value{GDBN} choose a
10779 decoding style by inspecting your program.
10780
10781 @item show demangle-style
10782 Display the encoding style currently in use for decoding C@t{++} symbols.
10783
10784 @item set print object
10785 @itemx set print object on
10786 @cindex derived type of an object, printing
10787 @cindex display derived types
10788 When displaying a pointer to an object, identify the @emph{actual}
10789 (derived) type of the object rather than the @emph{declared} type, using
10790 the virtual function table.  Note that the virtual function table is
10791 required---this feature can only work for objects that have run-time
10792 type identification; a single virtual method in the object's declared
10793 type is sufficient.  Note that this setting is also taken into account when
10794 working with variable objects via MI (@pxref{GDB/MI}).
10795
10796 @item set print object off
10797 Display only the declared type of objects, without reference to the
10798 virtual function table.  This is the default setting.
10799
10800 @item show print object
10801 Show whether actual, or declared, object types are displayed.
10802
10803 @item set print static-members
10804 @itemx set print static-members on
10805 @cindex static members of C@t{++} objects
10806 Print static members when displaying a C@t{++} object.  The default is on.
10807
10808 @item set print static-members off
10809 Do not print static members when displaying a C@t{++} object.
10810
10811 @item show print static-members
10812 Show whether C@t{++} static members are printed or not.
10813
10814 @item set print pascal_static-members
10815 @itemx set print pascal_static-members on
10816 @cindex static members of Pascal objects
10817 @cindex Pascal objects, static members display
10818 Print static members when displaying a Pascal object.  The default is on.
10819
10820 @item set print pascal_static-members off
10821 Do not print static members when displaying a Pascal object.
10822
10823 @item show print pascal_static-members
10824 Show whether Pascal static members are printed or not.
10825
10826 @c These don't work with HP ANSI C++ yet.
10827 @item set print vtbl
10828 @itemx set print vtbl on
10829 @cindex pretty print C@t{++} virtual function tables
10830 @cindex virtual functions (C@t{++}) display
10831 @cindex VTBL display
10832 Pretty print C@t{++} virtual function tables.  The default is off.
10833 (The @code{vtbl} commands do not work on programs compiled with the HP
10834 ANSI C@t{++} compiler (@code{aCC}).)
10835
10836 @item set print vtbl off
10837 Do not pretty print C@t{++} virtual function tables.
10838
10839 @item show print vtbl
10840 Show whether C@t{++} virtual function tables are pretty printed, or not.
10841 @end table
10842
10843 @node Pretty Printing
10844 @section Pretty Printing
10845
10846 @value{GDBN} provides a mechanism to allow pretty-printing of values using
10847 Python code.  It greatly simplifies the display of complex objects.  This
10848 mechanism works for both MI and the CLI.
10849
10850 @menu
10851 * Pretty-Printer Introduction::  Introduction to pretty-printers
10852 * Pretty-Printer Example::       An example pretty-printer
10853 * Pretty-Printer Commands::      Pretty-printer commands
10854 @end menu
10855
10856 @node Pretty-Printer Introduction
10857 @subsection Pretty-Printer Introduction
10858
10859 When @value{GDBN} prints a value, it first sees if there is a pretty-printer
10860 registered for the value.  If there is then @value{GDBN} invokes the
10861 pretty-printer to print the value.  Otherwise the value is printed normally.
10862
10863 Pretty-printers are normally named.  This makes them easy to manage.
10864 The @samp{info pretty-printer} command will list all the installed
10865 pretty-printers with their names.
10866 If a pretty-printer can handle multiple data types, then its
10867 @dfn{subprinters} are the printers for the individual data types.
10868 Each such subprinter has its own name.
10869 The format of the name is @var{printer-name};@var{subprinter-name}.
10870
10871 Pretty-printers are installed by @dfn{registering} them with @value{GDBN}.
10872 Typically they are automatically loaded and registered when the corresponding
10873 debug information is loaded, thus making them available without having to
10874 do anything special.
10875
10876 There are three places where a pretty-printer can be registered.
10877
10878 @itemize @bullet
10879 @item
10880 Pretty-printers registered globally are available when debugging
10881 all inferiors.
10882
10883 @item
10884 Pretty-printers registered with a program space are available only
10885 when debugging that program.
10886 @xref{Progspaces In Python}, for more details on program spaces in Python.
10887
10888 @item
10889 Pretty-printers registered with an objfile are loaded and unloaded
10890 with the corresponding objfile (e.g., shared library).
10891 @xref{Objfiles In Python}, for more details on objfiles in Python.
10892 @end itemize
10893
10894 @xref{Selecting Pretty-Printers}, for further information on how 
10895 pretty-printers are selected,
10896
10897 @xref{Writing a Pretty-Printer}, for implementing pretty printers
10898 for new types.
10899
10900 @node Pretty-Printer Example
10901 @subsection Pretty-Printer Example
10902
10903 Here is how a C@t{++} @code{std::string} looks without a pretty-printer:
10904
10905 @smallexample
10906 (@value{GDBP}) print s
10907 $1 = @{
10908   static npos = 4294967295, 
10909   _M_dataplus = @{
10910     <std::allocator<char>> = @{
10911       <__gnu_cxx::new_allocator<char>> = @{
10912         <No data fields>@}, <No data fields>
10913       @},
10914     members of std::basic_string<char, std::char_traits<char>,
10915       std::allocator<char> >::_Alloc_hider:
10916     _M_p = 0x804a014 "abcd"
10917   @}
10918 @}
10919 @end smallexample
10920
10921 With a pretty-printer for @code{std::string} only the contents are printed:
10922
10923 @smallexample
10924 (@value{GDBP}) print s
10925 $2 = "abcd"
10926 @end smallexample
10927
10928 @node Pretty-Printer Commands
10929 @subsection Pretty-Printer Commands
10930 @cindex pretty-printer commands
10931
10932 @table @code
10933 @kindex info pretty-printer
10934 @item info pretty-printer [@var{object-regexp} [@var{name-regexp}]]
10935 Print the list of installed pretty-printers.
10936 This includes disabled pretty-printers, which are marked as such.
10937
10938 @var{object-regexp} is a regular expression matching the objects
10939 whose pretty-printers to list.
10940 Objects can be @code{global}, the program space's file
10941 (@pxref{Progspaces In Python}),
10942 and the object files within that program space (@pxref{Objfiles In Python}).
10943 @xref{Selecting Pretty-Printers}, for details on how @value{GDBN}
10944 looks up a printer from these three objects.
10945
10946 @var{name-regexp} is a regular expression matching the name of the printers
10947 to list.
10948
10949 @kindex disable pretty-printer
10950 @item disable pretty-printer [@var{object-regexp} [@var{name-regexp}]]
10951 Disable pretty-printers matching @var{object-regexp} and @var{name-regexp}.
10952 A disabled pretty-printer is not forgotten, it may be enabled again later.
10953
10954 @kindex enable pretty-printer
10955 @item enable pretty-printer [@var{object-regexp} [@var{name-regexp}]]
10956 Enable pretty-printers matching @var{object-regexp} and @var{name-regexp}.
10957 @end table
10958
10959 Example:
10960
10961 Suppose we have three pretty-printers installed: one from library1.so
10962 named @code{foo} that prints objects of type @code{foo}, and
10963 another from library2.so named @code{bar} that prints two types of objects,
10964 @code{bar1} and @code{bar2}.
10965
10966 @smallexample
10967 (gdb) info pretty-printer
10968 library1.so:
10969   foo
10970 library2.so:
10971   bar
10972     bar1
10973     bar2
10974 (gdb) info pretty-printer library2
10975 library2.so:
10976   bar
10977     bar1
10978     bar2
10979 (gdb) disable pretty-printer library1
10980 1 printer disabled
10981 2 of 3 printers enabled
10982 (gdb) info pretty-printer
10983 library1.so:
10984   foo [disabled]
10985 library2.so:
10986   bar
10987     bar1
10988     bar2
10989 (gdb) disable pretty-printer library2 bar;bar1
10990 1 printer disabled
10991 1 of 3 printers enabled
10992 (gdb) info pretty-printer library2
10993 library1.so:
10994   foo [disabled]
10995 library2.so:
10996   bar
10997     bar1 [disabled]
10998     bar2
10999 (gdb) disable pretty-printer library2 bar
11000 1 printer disabled
11001 0 of 3 printers enabled
11002 (gdb) info pretty-printer library2
11003 library1.so:
11004   foo [disabled]
11005 library2.so:
11006   bar [disabled]
11007     bar1 [disabled]
11008     bar2
11009 @end smallexample
11010
11011 Note that for @code{bar} the entire printer can be disabled,
11012 as can each individual subprinter.
11013
11014 @node Value History
11015 @section Value History
11016
11017 @cindex value history
11018 @cindex history of values printed by @value{GDBN}
11019 Values printed by the @code{print} command are saved in the @value{GDBN}
11020 @dfn{value history}.  This allows you to refer to them in other expressions.
11021 Values are kept until the symbol table is re-read or discarded
11022 (for example with the @code{file} or @code{symbol-file} commands).
11023 When the symbol table changes, the value history is discarded,
11024 since the values may contain pointers back to the types defined in the
11025 symbol table.
11026
11027 @cindex @code{$}
11028 @cindex @code{$$}
11029 @cindex history number
11030 The values printed are given @dfn{history numbers} by which you can
11031 refer to them.  These are successive integers starting with one.
11032 @code{print} shows you the history number assigned to a value by
11033 printing @samp{$@var{num} = } before the value; here @var{num} is the
11034 history number.
11035
11036 To refer to any previous value, use @samp{$} followed by the value's
11037 history number.  The way @code{print} labels its output is designed to
11038 remind you of this.  Just @code{$} refers to the most recent value in
11039 the history, and @code{$$} refers to the value before that.
11040 @code{$$@var{n}} refers to the @var{n}th value from the end; @code{$$2}
11041 is the value just prior to @code{$$}, @code{$$1} is equivalent to
11042 @code{$$}, and @code{$$0} is equivalent to @code{$}.
11043
11044 For example, suppose you have just printed a pointer to a structure and
11045 want to see the contents of the structure.  It suffices to type
11046
11047 @smallexample
11048 p *$
11049 @end smallexample
11050
11051 If you have a chain of structures where the component @code{next} points
11052 to the next one, you can print the contents of the next one with this:
11053
11054 @smallexample
11055 p *$.next
11056 @end smallexample
11057
11058 @noindent
11059 You can print successive links in the chain by repeating this
11060 command---which you can do by just typing @key{RET}.
11061
11062 Note that the history records values, not expressions.  If the value of
11063 @code{x} is 4 and you type these commands:
11064
11065 @smallexample
11066 print x
11067 set x=5
11068 @end smallexample
11069
11070 @noindent
11071 then the value recorded in the value history by the @code{print} command
11072 remains 4 even though the value of @code{x} has changed.
11073
11074 @table @code
11075 @kindex show values
11076 @item show values
11077 Print the last ten values in the value history, with their item numbers.
11078 This is like @samp{p@ $$9} repeated ten times, except that @code{show
11079 values} does not change the history.
11080
11081 @item show values @var{n}
11082 Print ten history values centered on history item number @var{n}.
11083
11084 @item show values +
11085 Print ten history values just after the values last printed.  If no more
11086 values are available, @code{show values +} produces no display.
11087 @end table
11088
11089 Pressing @key{RET} to repeat @code{show values @var{n}} has exactly the
11090 same effect as @samp{show values +}.
11091
11092 @node Convenience Vars
11093 @section Convenience Variables
11094
11095 @cindex convenience variables
11096 @cindex user-defined variables
11097 @value{GDBN} provides @dfn{convenience variables} that you can use within
11098 @value{GDBN} to hold on to a value and refer to it later.  These variables
11099 exist entirely within @value{GDBN}; they are not part of your program, and
11100 setting a convenience variable has no direct effect on further execution
11101 of your program.  That is why you can use them freely.
11102
11103 Convenience variables are prefixed with @samp{$}.  Any name preceded by
11104 @samp{$} can be used for a convenience variable, unless it is one of
11105 the predefined machine-specific register names (@pxref{Registers, ,Registers}).
11106 (Value history references, in contrast, are @emph{numbers} preceded
11107 by @samp{$}.  @xref{Value History, ,Value History}.)
11108
11109 You can save a value in a convenience variable with an assignment
11110 expression, just as you would set a variable in your program.
11111 For example:
11112
11113 @smallexample
11114 set $foo = *object_ptr
11115 @end smallexample
11116
11117 @noindent
11118 would save in @code{$foo} the value contained in the object pointed to by
11119 @code{object_ptr}.
11120
11121 Using a convenience variable for the first time creates it, but its
11122 value is @code{void} until you assign a new value.  You can alter the
11123 value with another assignment at any time.
11124
11125 Convenience variables have no fixed types.  You can assign a convenience
11126 variable any type of value, including structures and arrays, even if
11127 that variable already has a value of a different type.  The convenience
11128 variable, when used as an expression, has the type of its current value.
11129
11130 @table @code
11131 @kindex show convenience
11132 @cindex show all user variables and functions
11133 @item show convenience
11134 Print a list of convenience variables used so far, and their values,
11135 as well as a list of the convenience functions.
11136 Abbreviated @code{show conv}.
11137
11138 @kindex init-if-undefined
11139 @cindex convenience variables, initializing
11140 @item init-if-undefined $@var{variable} = @var{expression}
11141 Set a convenience variable if it has not already been set.  This is useful
11142 for user-defined commands that keep some state.  It is similar, in concept,
11143 to using local static variables with initializers in C (except that
11144 convenience variables are global).  It can also be used to allow users to
11145 override default values used in a command script.
11146
11147 If the variable is already defined then the expression is not evaluated so
11148 any side-effects do not occur.
11149 @end table
11150
11151 One of the ways to use a convenience variable is as a counter to be
11152 incremented or a pointer to be advanced.  For example, to print
11153 a field from successive elements of an array of structures:
11154
11155 @smallexample
11156 set $i = 0
11157 print bar[$i++]->contents
11158 @end smallexample
11159
11160 @noindent
11161 Repeat that command by typing @key{RET}.
11162
11163 Some convenience variables are created automatically by @value{GDBN} and given
11164 values likely to be useful.
11165
11166 @table @code
11167 @vindex $_@r{, convenience variable}
11168 @item $_
11169 The variable @code{$_} is automatically set by the @code{x} command to
11170 the last address examined (@pxref{Memory, ,Examining Memory}).  Other
11171 commands which provide a default address for @code{x} to examine also
11172 set @code{$_} to that address; these commands include @code{info line}
11173 and @code{info breakpoint}.  The type of @code{$_} is @code{void *}
11174 except when set by the @code{x} command, in which case it is a pointer
11175 to the type of @code{$__}.
11176
11177 @vindex $__@r{, convenience variable}
11178 @item $__
11179 The variable @code{$__} is automatically set by the @code{x} command
11180 to the value found in the last address examined.  Its type is chosen
11181 to match the format in which the data was printed.
11182
11183 @item $_exitcode
11184 @vindex $_exitcode@r{, convenience variable}
11185 When the program being debugged terminates normally, @value{GDBN}
11186 automatically sets this variable to the exit code of the program, and
11187 resets @code{$_exitsignal} to @code{void}.
11188
11189 @item $_exitsignal
11190 @vindex $_exitsignal@r{, convenience variable}
11191 When the program being debugged dies due to an uncaught signal,
11192 @value{GDBN} automatically sets this variable to that signal's number,
11193 and resets @code{$_exitcode} to @code{void}.
11194
11195 To distinguish between whether the program being debugged has exited
11196 (i.e., @code{$_exitcode} is not @code{void}) or signalled (i.e.,
11197 @code{$_exitsignal} is not @code{void}), the convenience function
11198 @code{$_isvoid} can be used (@pxref{Convenience Funs,, Convenience
11199 Functions}).  For example, considering the following source code:
11200
11201 @smallexample
11202 #include <signal.h>
11203
11204 int
11205 main (int argc, char *argv[])
11206 @{
11207   raise (SIGALRM);
11208   return 0;
11209 @}
11210 @end smallexample
11211
11212 A valid way of telling whether the program being debugged has exited
11213 or signalled would be:
11214
11215 @smallexample
11216 (@value{GDBP}) define has_exited_or_signalled
11217 Type commands for definition of ``has_exited_or_signalled''.
11218 End with a line saying just ``end''.
11219 >if $_isvoid ($_exitsignal)
11220  >echo The program has exited\n
11221  >else
11222  >echo The program has signalled\n
11223  >end
11224 >end
11225 (@value{GDBP}) run
11226 Starting program:
11227
11228 Program terminated with signal SIGALRM, Alarm clock.
11229 The program no longer exists.
11230 (@value{GDBP}) has_exited_or_signalled
11231 The program has signalled
11232 @end smallexample
11233
11234 As can be seen, @value{GDBN} correctly informs that the program being
11235 debugged has signalled, since it calls @code{raise} and raises a
11236 @code{SIGALRM} signal.  If the program being debugged had not called
11237 @code{raise}, then @value{GDBN} would report a normal exit:
11238
11239 @smallexample
11240 (@value{GDBP}) has_exited_or_signalled
11241 The program has exited
11242 @end smallexample
11243
11244 @item $_exception
11245 The variable @code{$_exception} is set to the exception object being
11246 thrown at an exception-related catchpoint.  @xref{Set Catchpoints}.
11247
11248 @item $_probe_argc
11249 @itemx $_probe_arg0@dots{}$_probe_arg11
11250 Arguments to a static probe.  @xref{Static Probe Points}.
11251
11252 @item $_sdata
11253 @vindex $_sdata@r{, inspect, convenience variable}
11254 The variable @code{$_sdata} contains extra collected static tracepoint
11255 data.  @xref{Tracepoint Actions,,Tracepoint Action Lists}.  Note that
11256 @code{$_sdata} could be empty, if not inspecting a trace buffer, or
11257 if extra static tracepoint data has not been collected.
11258
11259 @item $_siginfo
11260 @vindex $_siginfo@r{, convenience variable}
11261 The variable @code{$_siginfo} contains extra signal information
11262 (@pxref{extra signal information}).  Note that @code{$_siginfo}
11263 could be empty, if the application has not yet received any signals.
11264 For example, it will be empty before you execute the @code{run} command.
11265
11266 @item $_tlb
11267 @vindex $_tlb@r{, convenience variable}
11268 The variable @code{$_tlb} is automatically set when debugging
11269 applications running on MS-Windows in native mode or connected to
11270 gdbserver that supports the @code{qGetTIBAddr} request.
11271 @xref{General Query Packets}.
11272 This variable contains the address of the thread information block.
11273
11274 @item $_inferior
11275 The number of the current inferior.  @xref{Inferiors and
11276 Programs, ,Debugging Multiple Inferiors and Programs}.
11277
11278 @item $_thread
11279 The thread number of the current thread.  @xref{thread numbers}.
11280
11281 @item $_gthread
11282 The global number of the current thread.  @xref{global thread numbers}.
11283
11284 @item $_gdb_major
11285 @itemx $_gdb_minor
11286 @vindex $_gdb_major@r{, convenience variable}
11287 @vindex $_gdb_minor@r{, convenience variable}
11288 The major and minor version numbers of the running @value{GDBN}.
11289 Development snapshots and pretest versions have their minor version
11290 incremented by one; thus, @value{GDBN} pretest 9.11.90 will produce
11291 the value 12 for @code{$_gdb_minor}.  These variables allow you to
11292 write scripts that work with different versions of @value{GDBN}
11293 without errors caused by features unavailable in some of those
11294 versions.
11295 @end table
11296
11297 @node Convenience Funs
11298 @section Convenience Functions
11299
11300 @cindex convenience functions
11301 @value{GDBN} also supplies some @dfn{convenience functions}.  These
11302 have a syntax similar to convenience variables.  A convenience
11303 function can be used in an expression just like an ordinary function;
11304 however, a convenience function is implemented internally to
11305 @value{GDBN}.
11306
11307 These functions do not require @value{GDBN} to be configured with
11308 @code{Python} support, which means that they are always available.
11309
11310 @table @code
11311
11312 @item $_isvoid (@var{expr})
11313 @findex $_isvoid@r{, convenience function}
11314 Return one if the expression @var{expr} is @code{void}.  Otherwise it
11315 returns zero.
11316
11317 A @code{void} expression is an expression where the type of the result
11318 is @code{void}.  For example, you can examine a convenience variable
11319 (see @ref{Convenience Vars,, Convenience Variables}) to check whether
11320 it is @code{void}:
11321
11322 @smallexample
11323 (@value{GDBP}) print $_exitcode
11324 $1 = void
11325 (@value{GDBP}) print $_isvoid ($_exitcode)
11326 $2 = 1
11327 (@value{GDBP}) run
11328 Starting program: ./a.out
11329 [Inferior 1 (process 29572) exited normally]
11330 (@value{GDBP}) print $_exitcode
11331 $3 = 0
11332 (@value{GDBP}) print $_isvoid ($_exitcode)
11333 $4 = 0
11334 @end smallexample
11335
11336 In the example above, we used @code{$_isvoid} to check whether
11337 @code{$_exitcode} is @code{void} before and after the execution of the
11338 program being debugged.  Before the execution there is no exit code to
11339 be examined, therefore @code{$_exitcode} is @code{void}.  After the
11340 execution the program being debugged returned zero, therefore
11341 @code{$_exitcode} is zero, which means that it is not @code{void}
11342 anymore.
11343
11344 The @code{void} expression can also be a call of a function from the
11345 program being debugged.  For example, given the following function:
11346
11347 @smallexample
11348 void
11349 foo (void)
11350 @{
11351 @}
11352 @end smallexample
11353
11354 The result of calling it inside @value{GDBN} is @code{void}:
11355
11356 @smallexample
11357 (@value{GDBP}) print foo ()
11358 $1 = void
11359 (@value{GDBP}) print $_isvoid (foo ())
11360 $2 = 1
11361 (@value{GDBP}) set $v = foo ()
11362 (@value{GDBP}) print $v
11363 $3 = void
11364 (@value{GDBP}) print $_isvoid ($v)
11365 $4 = 1
11366 @end smallexample
11367
11368 @end table
11369
11370 These functions require @value{GDBN} to be configured with
11371 @code{Python} support.
11372
11373 @table @code
11374
11375 @item $_memeq(@var{buf1}, @var{buf2}, @var{length})
11376 @findex $_memeq@r{, convenience function}
11377 Returns one if the @var{length} bytes at the addresses given by
11378 @var{buf1} and @var{buf2} are equal.
11379 Otherwise it returns zero.
11380
11381 @item $_regex(@var{str}, @var{regex})
11382 @findex $_regex@r{, convenience function}
11383 Returns one if the string @var{str} matches the regular expression
11384 @var{regex}.  Otherwise it returns zero.
11385 The syntax of the regular expression is that specified by @code{Python}'s
11386 regular expression support.
11387
11388 @item $_streq(@var{str1}, @var{str2})
11389 @findex $_streq@r{, convenience function}
11390 Returns one if the strings @var{str1} and @var{str2} are equal.
11391 Otherwise it returns zero.
11392
11393 @item $_strlen(@var{str})
11394 @findex $_strlen@r{, convenience function}
11395 Returns the length of string @var{str}.
11396
11397 @item $_caller_is(@var{name}@r{[}, @var{number_of_frames}@r{]})
11398 @findex $_caller_is@r{, convenience function}
11399 Returns one if the calling function's name is equal to @var{name}.
11400 Otherwise it returns zero.
11401
11402 If the optional argument @var{number_of_frames} is provided,
11403 it is the number of frames up in the stack to look.
11404 The default is 1.
11405
11406 Example:
11407
11408 @smallexample
11409 (gdb) backtrace
11410 #0  bottom_func ()
11411     at testsuite/gdb.python/py-caller-is.c:21
11412 #1  0x00000000004005a0 in middle_func ()
11413     at testsuite/gdb.python/py-caller-is.c:27
11414 #2  0x00000000004005ab in top_func ()
11415     at testsuite/gdb.python/py-caller-is.c:33
11416 #3  0x00000000004005b6 in main ()
11417     at testsuite/gdb.python/py-caller-is.c:39
11418 (gdb) print $_caller_is ("middle_func")
11419 $1 = 1
11420 (gdb) print $_caller_is ("top_func", 2)
11421 $1 = 1
11422 @end smallexample
11423
11424 @item $_caller_matches(@var{regexp}@r{[}, @var{number_of_frames}@r{]})
11425 @findex $_caller_matches@r{, convenience function}
11426 Returns one if the calling function's name matches the regular expression
11427 @var{regexp}.  Otherwise it returns zero.
11428
11429 If the optional argument @var{number_of_frames} is provided,
11430 it is the number of frames up in the stack to look.
11431 The default is 1.
11432
11433 @item $_any_caller_is(@var{name}@r{[}, @var{number_of_frames}@r{]})
11434 @findex $_any_caller_is@r{, convenience function}
11435 Returns one if any calling function's name is equal to @var{name}.
11436 Otherwise it returns zero.
11437
11438 If the optional argument @var{number_of_frames} is provided,
11439 it is the number of frames up in the stack to look.
11440 The default is 1.
11441
11442 This function differs from @code{$_caller_is} in that this function
11443 checks all stack frames from the immediate caller to the frame specified
11444 by @var{number_of_frames}, whereas @code{$_caller_is} only checks the
11445 frame specified by @var{number_of_frames}.
11446
11447 @item $_any_caller_matches(@var{regexp}@r{[}, @var{number_of_frames}@r{]})
11448 @findex $_any_caller_matches@r{, convenience function}
11449 Returns one if any calling function's name matches the regular expression
11450 @var{regexp}.  Otherwise it returns zero.
11451
11452 If the optional argument @var{number_of_frames} is provided,
11453 it is the number of frames up in the stack to look.
11454 The default is 1.
11455
11456 This function differs from @code{$_caller_matches} in that this function
11457 checks all stack frames from the immediate caller to the frame specified
11458 by @var{number_of_frames}, whereas @code{$_caller_matches} only checks the
11459 frame specified by @var{number_of_frames}.
11460
11461 @item $_as_string(@var{value})
11462 @findex $_as_string@r{, convenience function}
11463 Return the string representation of @var{value}.
11464
11465 This function is useful to obtain the textual label (enumerator) of an
11466 enumeration value.  For example, assuming the variable @var{node} is of
11467 an enumerated type:
11468
11469 @smallexample
11470 (gdb) printf "Visiting node of type %s\n", $_as_string(node)
11471 Visiting node of type NODE_INTEGER
11472 @end smallexample
11473
11474 @item $_cimag(@var{value})
11475 @itemx $_creal(@var{value})
11476 @findex $_cimag@r{, convenience function}
11477 @findex $_creal@r{, convenience function}
11478 Return the imaginary (@code{$_cimag}) or real (@code{$_creal}) part of
11479 the complex number @var{value}.
11480
11481 The type of the imaginary or real part depends on the type of the
11482 complex number, e.g., using @code{$_cimag} on a @code{float complex}
11483 will return an imaginary part of type @code{float}.
11484
11485 @end table
11486
11487 @value{GDBN} provides the ability to list and get help on
11488 convenience functions.
11489
11490 @table @code
11491 @item help function
11492 @kindex help function
11493 @cindex show all convenience functions
11494 Print a list of all convenience functions.
11495 @end table
11496
11497 @node Registers
11498 @section Registers
11499
11500 @cindex registers
11501 You can refer to machine register contents, in expressions, as variables
11502 with names starting with @samp{$}.  The names of registers are different
11503 for each machine; use @code{info registers} to see the names used on
11504 your machine.
11505
11506 @table @code
11507 @kindex info registers
11508 @item info registers
11509 Print the names and values of all registers except floating-point
11510 and vector registers (in the selected stack frame).
11511
11512 @kindex info all-registers
11513 @cindex floating point registers
11514 @item info all-registers
11515 Print the names and values of all registers, including floating-point
11516 and vector registers (in the selected stack frame).
11517
11518 @item info registers @var{reggroup} @dots{}
11519 Print the name and value of the registers in each of the specified
11520 @var{reggroup}s.  The @var{reggoup} can be any of those returned by
11521 @code{maint print reggroups} (@pxref{Maintenance Commands}).
11522
11523 @item info registers @var{regname} @dots{}
11524 Print the @dfn{relativized} value of each specified register @var{regname}.
11525 As discussed in detail below, register values are normally relative to
11526 the selected stack frame.  The @var{regname} may be any register name valid on
11527 the machine you are using, with or without the initial @samp{$}.
11528 @end table
11529
11530 @anchor{standard registers}
11531 @cindex stack pointer register
11532 @cindex program counter register
11533 @cindex process status register
11534 @cindex frame pointer register
11535 @cindex standard registers
11536 @value{GDBN} has four ``standard'' register names that are available (in
11537 expressions) on most machines---whenever they do not conflict with an
11538 architecture's canonical mnemonics for registers.  The register names
11539 @code{$pc} and @code{$sp} are used for the program counter register and
11540 the stack pointer.  @code{$fp} is used for a register that contains a
11541 pointer to the current stack frame, and @code{$ps} is used for a
11542 register that contains the processor status.  For example,
11543 you could print the program counter in hex with
11544
11545 @smallexample
11546 p/x $pc
11547 @end smallexample
11548
11549 @noindent
11550 or print the instruction to be executed next with
11551
11552 @smallexample
11553 x/i $pc
11554 @end smallexample
11555
11556 @noindent
11557 or add four to the stack pointer@footnote{This is a way of removing
11558 one word from the stack, on machines where stacks grow downward in
11559 memory (most machines, nowadays).  This assumes that the innermost
11560 stack frame is selected; setting @code{$sp} is not allowed when other
11561 stack frames are selected.  To pop entire frames off the stack,
11562 regardless of machine architecture, use @code{return};
11563 see @ref{Returning, ,Returning from a Function}.} with
11564
11565 @smallexample
11566 set $sp += 4
11567 @end smallexample
11568
11569 Whenever possible, these four standard register names are available on
11570 your machine even though the machine has different canonical mnemonics,
11571 so long as there is no conflict.  The @code{info registers} command
11572 shows the canonical names.  For example, on the SPARC, @code{info
11573 registers} displays the processor status register as @code{$psr} but you
11574 can also refer to it as @code{$ps}; and on x86-based machines @code{$ps}
11575 is an alias for the @sc{eflags} register.
11576
11577 @value{GDBN} always considers the contents of an ordinary register as an
11578 integer when the register is examined in this way.  Some machines have
11579 special registers which can hold nothing but floating point; these
11580 registers are considered to have floating point values.  There is no way
11581 to refer to the contents of an ordinary register as floating point value
11582 (although you can @emph{print} it as a floating point value with
11583 @samp{print/f $@var{regname}}).
11584
11585 Some registers have distinct ``raw'' and ``virtual'' data formats.  This
11586 means that the data format in which the register contents are saved by
11587 the operating system is not the same one that your program normally
11588 sees.  For example, the registers of the 68881 floating point
11589 coprocessor are always saved in ``extended'' (raw) format, but all C
11590 programs expect to work with ``double'' (virtual) format.  In such
11591 cases, @value{GDBN} normally works with the virtual format only (the format
11592 that makes sense for your program), but the @code{info registers} command
11593 prints the data in both formats.
11594
11595 @cindex SSE registers (x86)
11596 @cindex MMX registers (x86)
11597 Some machines have special registers whose contents can be interpreted
11598 in several different ways.  For example, modern x86-based machines
11599 have SSE and MMX registers that can hold several values packed
11600 together in several different formats.  @value{GDBN} refers to such
11601 registers in @code{struct} notation:
11602
11603 @smallexample
11604 (@value{GDBP}) print $xmm1
11605 $1 = @{
11606   v4_float = @{0, 3.43859137e-038, 1.54142831e-044, 1.821688e-044@},
11607   v2_double = @{9.92129282474342e-303, 2.7585945287983262e-313@},
11608   v16_int8 = "\000\000\000\000\3706;\001\v\000\000\000\r\000\000",
11609   v8_int16 = @{0, 0, 14072, 315, 11, 0, 13, 0@},
11610   v4_int32 = @{0, 20657912, 11, 13@},
11611   v2_int64 = @{88725056443645952, 55834574859@},
11612   uint128 = 0x0000000d0000000b013b36f800000000
11613 @}
11614 @end smallexample
11615
11616 @noindent
11617 To set values of such registers, you need to tell @value{GDBN} which
11618 view of the register you wish to change, as if you were assigning
11619 value to a @code{struct} member:
11620
11621 @smallexample
11622  (@value{GDBP}) set $xmm1.uint128 = 0x000000000000000000000000FFFFFFFF
11623 @end smallexample
11624
11625 Normally, register values are relative to the selected stack frame
11626 (@pxref{Selection, ,Selecting a Frame}).  This means that you get the
11627 value that the register would contain if all stack frames farther in
11628 were exited and their saved registers restored.  In order to see the
11629 true contents of hardware registers, you must select the innermost
11630 frame (with @samp{frame 0}).
11631
11632 @cindex caller-saved registers
11633 @cindex call-clobbered registers
11634 @cindex volatile registers
11635 @cindex <not saved> values
11636 Usually ABIs reserve some registers as not needed to be saved by the
11637 callee (a.k.a.: ``caller-saved'', ``call-clobbered'' or ``volatile''
11638 registers).  It may therefore not be possible for @value{GDBN} to know
11639 the value a register had before the call (in other words, in the outer
11640 frame), if the register value has since been changed by the callee.
11641 @value{GDBN} tries to deduce where the inner frame saved
11642 (``callee-saved'') registers, from the debug info, unwind info, or the
11643 machine code generated by your compiler.  If some register is not
11644 saved, and @value{GDBN} knows the register is ``caller-saved'' (via
11645 its own knowledge of the ABI, or because the debug/unwind info
11646 explicitly says the register's value is undefined), @value{GDBN}
11647 displays @w{@samp{<not saved>}} as the register's value.  With targets
11648 that @value{GDBN} has no knowledge of the register saving convention,
11649 if a register was not saved by the callee, then its value and location
11650 in the outer frame are assumed to be the same of the inner frame.
11651 This is usually harmless, because if the register is call-clobbered,
11652 the caller either does not care what is in the register after the
11653 call, or has code to restore the value that it does care about.  Note,
11654 however, that if you change such a register in the outer frame, you
11655 may also be affecting the inner frame.  Also, the more ``outer'' the
11656 frame is you're looking at, the more likely a call-clobbered
11657 register's value is to be wrong, in the sense that it doesn't actually
11658 represent the value the register had just before the call.
11659
11660 @node Floating Point Hardware
11661 @section Floating Point Hardware
11662 @cindex floating point
11663
11664 Depending on the configuration, @value{GDBN} may be able to give
11665 you more information about the status of the floating point hardware.
11666
11667 @table @code
11668 @kindex info float
11669 @item info float
11670 Display hardware-dependent information about the floating
11671 point unit.  The exact contents and layout vary depending on the
11672 floating point chip.  Currently, @samp{info float} is supported on
11673 the ARM and x86 machines.
11674 @end table
11675
11676 @node Vector Unit
11677 @section Vector Unit
11678 @cindex vector unit
11679
11680 Depending on the configuration, @value{GDBN} may be able to give you
11681 more information about the status of the vector unit.
11682
11683 @table @code
11684 @kindex info vector
11685 @item info vector
11686 Display information about the vector unit.  The exact contents and
11687 layout vary depending on the hardware.
11688 @end table
11689
11690 @node OS Information
11691 @section Operating System Auxiliary Information
11692 @cindex OS information
11693
11694 @value{GDBN} provides interfaces to useful OS facilities that can help
11695 you debug your program.
11696
11697 @cindex auxiliary vector
11698 @cindex vector, auxiliary
11699 Some operating systems supply an @dfn{auxiliary vector} to programs at
11700 startup.  This is akin to the arguments and environment that you
11701 specify for a program, but contains a system-dependent variety of
11702 binary values that tell system libraries important details about the
11703 hardware, operating system, and process.  Each value's purpose is
11704 identified by an integer tag; the meanings are well-known but system-specific.
11705 Depending on the configuration and operating system facilities,
11706 @value{GDBN} may be able to show you this information.  For remote
11707 targets, this functionality may further depend on the remote stub's
11708 support of the @samp{qXfer:auxv:read} packet, see
11709 @ref{qXfer auxiliary vector read}.
11710
11711 @table @code
11712 @kindex info auxv
11713 @item info auxv
11714 Display the auxiliary vector of the inferior, which can be either a
11715 live process or a core dump file.  @value{GDBN} prints each tag value
11716 numerically, and also shows names and text descriptions for recognized
11717 tags.  Some values in the vector are numbers, some bit masks, and some
11718 pointers to strings or other data.  @value{GDBN} displays each value in the
11719 most appropriate form for a recognized tag, and in hexadecimal for
11720 an unrecognized tag.
11721 @end table
11722
11723 On some targets, @value{GDBN} can access operating system-specific
11724 information and show it to you.  The types of information available
11725 will differ depending on the type of operating system running on the
11726 target.  The mechanism used to fetch the data is described in
11727 @ref{Operating System Information}.  For remote targets, this
11728 functionality depends on the remote stub's support of the
11729 @samp{qXfer:osdata:read} packet, see @ref{qXfer osdata read}.
11730
11731 @table @code
11732 @kindex info os
11733 @item info os @var{infotype}
11734
11735 Display OS information of the requested type.
11736
11737 On @sc{gnu}/Linux, the following values of @var{infotype} are valid:
11738
11739 @anchor{linux info os infotypes}
11740 @table @code
11741 @kindex info os cpus
11742 @item cpus
11743 Display the list of all CPUs/cores. For each CPU/core, @value{GDBN} prints
11744 the available fields from /proc/cpuinfo. For each supported architecture
11745 different fields are available. Two common entries are processor which gives
11746 CPU number and bogomips; a system constant that is calculated during
11747 kernel initialization.
11748
11749 @kindex info os files
11750 @item files
11751 Display the list of open file descriptors on the target.  For each
11752 file descriptor, @value{GDBN} prints the identifier of the process
11753 owning the descriptor, the command of the owning process, the value
11754 of the descriptor, and the target of the descriptor.
11755
11756 @kindex info os modules
11757 @item modules
11758 Display the list of all loaded kernel modules on the target.  For each
11759 module, @value{GDBN} prints the module name, the size of the module in
11760 bytes, the number of times the module is used, the dependencies of the
11761 module, the status of the module, and the address of the loaded module
11762 in memory.
11763
11764 @kindex info os msg
11765 @item msg
11766 Display the list of all System V message queues on the target.  For each
11767 message queue, @value{GDBN} prints the message queue key, the message
11768 queue identifier, the access permissions, the current number of bytes
11769 on the queue, the current number of messages on the queue, the processes
11770 that last sent and received a message on the queue, the user and group
11771 of the owner and creator of the message queue, the times at which a
11772 message was last sent and received on the queue, and the time at which
11773 the message queue was last changed.
11774
11775 @kindex info os processes
11776 @item processes
11777 Display the list of processes on the target.  For each process,
11778 @value{GDBN} prints the process identifier, the name of the user, the
11779 command corresponding to the process, and the list of processor cores
11780 that the process is currently running on.  (To understand what these
11781 properties mean, for this and the following info types, please consult
11782 the general @sc{gnu}/Linux documentation.)
11783
11784 @kindex info os procgroups
11785 @item procgroups
11786 Display the list of process groups on the target.  For each process,
11787 @value{GDBN} prints the identifier of the process group that it belongs
11788 to, the command corresponding to the process group leader, the process
11789 identifier, and the command line of the process.  The list is sorted
11790 first by the process group identifier, then by the process identifier,
11791 so that processes belonging to the same process group are grouped together
11792 and the process group leader is listed first.
11793
11794 @kindex info os semaphores
11795 @item semaphores
11796 Display the list of all System V semaphore sets on the target.  For each
11797 semaphore set, @value{GDBN} prints the semaphore set key, the semaphore
11798 set identifier, the access permissions, the number of semaphores in the
11799 set, the user and group of the owner and creator of the semaphore set,
11800 and the times at which the semaphore set was operated upon and changed.
11801
11802 @kindex info os shm
11803 @item shm
11804 Display the list of all System V shared-memory regions on the target.
11805 For each shared-memory region, @value{GDBN} prints the region key,
11806 the shared-memory identifier, the access permissions, the size of the
11807 region, the process that created the region, the process that last
11808 attached to or detached from the region, the current number of live
11809 attaches to the region, and the times at which the region was last
11810 attached to, detach from, and changed.
11811
11812 @kindex info os sockets
11813 @item sockets
11814 Display the list of Internet-domain sockets on the target.  For each
11815 socket, @value{GDBN} prints the address and port of the local and
11816 remote endpoints, the current state of the connection, the creator of
11817 the socket, the IP address family of the socket, and the type of the
11818 connection.
11819
11820 @kindex info os threads
11821 @item threads
11822 Display the list of threads running on the target.  For each thread,
11823 @value{GDBN} prints the identifier of the process that the thread
11824 belongs to, the command of the process, the thread identifier, and the
11825 processor core that it is currently running on.  The main thread of a
11826 process is not listed.
11827 @end table
11828
11829 @item info os
11830 If @var{infotype} is omitted, then list the possible values for
11831 @var{infotype} and the kind of OS information available for each
11832 @var{infotype}.  If the target does not return a list of possible
11833 types, this command will report an error.
11834 @end table
11835
11836 @node Memory Region Attributes
11837 @section Memory Region Attributes
11838 @cindex memory region attributes
11839
11840 @dfn{Memory region attributes} allow you to describe special handling
11841 required by regions of your target's memory.  @value{GDBN} uses
11842 attributes to determine whether to allow certain types of memory
11843 accesses; whether to use specific width accesses; and whether to cache
11844 target memory.  By default the description of memory regions is
11845 fetched from the target (if the current target supports this), but the
11846 user can override the fetched regions.
11847
11848 Defined memory regions can be individually enabled and disabled.  When a
11849 memory region is disabled, @value{GDBN} uses the default attributes when
11850 accessing memory in that region.  Similarly, if no memory regions have
11851 been defined, @value{GDBN} uses the default attributes when accessing
11852 all memory.
11853
11854 When a memory region is defined, it is given a number to identify it;
11855 to enable, disable, or remove a memory region, you specify that number.
11856
11857 @table @code
11858 @kindex mem
11859 @item mem @var{lower} @var{upper} @var{attributes}@dots{}
11860 Define a memory region bounded by @var{lower} and @var{upper} with
11861 attributes @var{attributes}@dots{}, and add it to the list of regions
11862 monitored by @value{GDBN}.  Note that @var{upper} == 0 is a special
11863 case: it is treated as the target's maximum memory address.
11864 (0xffff on 16 bit targets, 0xffffffff on 32 bit targets, etc.)
11865
11866 @item mem auto
11867 Discard any user changes to the memory regions and use target-supplied
11868 regions, if available, or no regions if the target does not support.
11869
11870 @kindex delete mem
11871 @item delete mem @var{nums}@dots{}
11872 Remove memory regions @var{nums}@dots{} from the list of regions
11873 monitored by @value{GDBN}.
11874
11875 @kindex disable mem
11876 @item disable mem @var{nums}@dots{}
11877 Disable monitoring of memory regions @var{nums}@dots{}.
11878 A disabled memory region is not forgotten.
11879 It may be enabled again later.
11880
11881 @kindex enable mem
11882 @item enable mem @var{nums}@dots{}
11883 Enable monitoring of memory regions @var{nums}@dots{}.
11884
11885 @kindex info mem
11886 @item info mem
11887 Print a table of all defined memory regions, with the following columns
11888 for each region:
11889
11890 @table @emph
11891 @item Memory Region Number
11892 @item Enabled or Disabled.
11893 Enabled memory regions are marked with @samp{y}.
11894 Disabled memory regions are marked with @samp{n}.
11895
11896 @item Lo Address
11897 The address defining the inclusive lower bound of the memory region.
11898
11899 @item Hi Address
11900 The address defining the exclusive upper bound of the memory region.
11901
11902 @item Attributes
11903 The list of attributes set for this memory region.
11904 @end table
11905 @end table
11906
11907
11908 @subsection Attributes
11909
11910 @subsubsection Memory Access Mode
11911 The access mode attributes set whether @value{GDBN} may make read or
11912 write accesses to a memory region.
11913
11914 While these attributes prevent @value{GDBN} from performing invalid
11915 memory accesses, they do nothing to prevent the target system, I/O DMA,
11916 etc.@: from accessing memory.
11917
11918 @table @code
11919 @item ro
11920 Memory is read only.
11921 @item wo
11922 Memory is write only.
11923 @item rw
11924 Memory is read/write.  This is the default.
11925 @end table
11926
11927 @subsubsection Memory Access Size
11928 The access size attribute tells @value{GDBN} to use specific sized
11929 accesses in the memory region.  Often memory mapped device registers
11930 require specific sized accesses.  If no access size attribute is
11931 specified, @value{GDBN} may use accesses of any size.
11932
11933 @table @code
11934 @item 8
11935 Use 8 bit memory accesses.
11936 @item 16
11937 Use 16 bit memory accesses.
11938 @item 32
11939 Use 32 bit memory accesses.
11940 @item 64
11941 Use 64 bit memory accesses.
11942 @end table
11943
11944 @c @subsubsection Hardware/Software Breakpoints
11945 @c The hardware/software breakpoint attributes set whether @value{GDBN}
11946 @c will use hardware or software breakpoints for the internal breakpoints
11947 @c used by the step, next, finish, until, etc. commands.
11948 @c
11949 @c @table @code
11950 @c @item hwbreak
11951 @c Always use hardware breakpoints
11952 @c @item swbreak (default)
11953 @c @end table
11954
11955 @subsubsection Data Cache
11956 The data cache attributes set whether @value{GDBN} will cache target
11957 memory.  While this generally improves performance by reducing debug
11958 protocol overhead, it can lead to incorrect results because @value{GDBN}
11959 does not know about volatile variables or memory mapped device
11960 registers.
11961
11962 @table @code
11963 @item cache
11964 Enable @value{GDBN} to cache target memory.
11965 @item nocache
11966 Disable @value{GDBN} from caching target memory.  This is the default.
11967 @end table
11968
11969 @subsection Memory Access Checking
11970 @value{GDBN} can be instructed to refuse accesses to memory that is
11971 not explicitly described.  This can be useful if accessing such
11972 regions has undesired effects for a specific target, or to provide
11973 better error checking.  The following commands control this behaviour.
11974
11975 @table @code
11976 @kindex set mem inaccessible-by-default
11977 @item set mem inaccessible-by-default [on|off]
11978 If @code{on} is specified, make  @value{GDBN} treat memory not
11979 explicitly described by the memory ranges as non-existent and refuse accesses
11980 to such memory.  The checks are only performed if there's at least one
11981 memory range defined.  If @code{off} is specified, make @value{GDBN}
11982 treat the memory not explicitly described by the memory ranges as RAM.
11983 The default value is @code{on}.
11984 @kindex show mem inaccessible-by-default
11985 @item show mem inaccessible-by-default
11986 Show the current handling of accesses to unknown memory.
11987 @end table
11988
11989
11990 @c @subsubsection Memory Write Verification
11991 @c The memory write verification attributes set whether @value{GDBN}
11992 @c will re-reads data after each write to verify the write was successful.
11993 @c
11994 @c @table @code
11995 @c @item verify
11996 @c @item noverify (default)
11997 @c @end table
11998
11999 @node Dump/Restore Files
12000 @section Copy Between Memory and a File
12001 @cindex dump/restore files
12002 @cindex append data to a file
12003 @cindex dump data to a file
12004 @cindex restore data from a file
12005
12006 You can use the commands @code{dump}, @code{append}, and
12007 @code{restore} to copy data between target memory and a file.  The
12008 @code{dump} and @code{append} commands write data to a file, and the
12009 @code{restore} command reads data from a file back into the inferior's
12010 memory.  Files may be in binary, Motorola S-record, Intel hex,
12011 Tektronix Hex, or Verilog Hex format; however, @value{GDBN} can only
12012 append to binary files, and cannot read from Verilog Hex files.
12013
12014 @table @code
12015
12016 @kindex dump
12017 @item dump @r{[}@var{format}@r{]} memory @var{filename} @var{start_addr} @var{end_addr}
12018 @itemx dump @r{[}@var{format}@r{]} value @var{filename} @var{expr}
12019 Dump the contents of memory from @var{start_addr} to @var{end_addr},
12020 or the value of @var{expr}, to @var{filename} in the given format.
12021
12022 The @var{format} parameter may be any one of:
12023 @table @code
12024 @item binary
12025 Raw binary form.
12026 @item ihex
12027 Intel hex format.
12028 @item srec
12029 Motorola S-record format.
12030 @item tekhex
12031 Tektronix Hex format.
12032 @item verilog
12033 Verilog Hex format.
12034 @end table
12035
12036 @value{GDBN} uses the same definitions of these formats as the
12037 @sc{gnu} binary utilities, like @samp{objdump} and @samp{objcopy}.  If
12038 @var{format} is omitted, @value{GDBN} dumps the data in raw binary
12039 form.
12040
12041 @kindex append
12042 @item append @r{[}binary@r{]} memory @var{filename} @var{start_addr} @var{end_addr}
12043 @itemx append @r{[}binary@r{]} value @var{filename} @var{expr}
12044 Append the contents of memory from @var{start_addr} to @var{end_addr},
12045 or the value of @var{expr}, to the file @var{filename}, in raw binary form.
12046 (@value{GDBN} can only append data to files in raw binary form.)
12047
12048 @kindex restore
12049 @item restore @var{filename} @r{[}binary@r{]} @var{bias} @var{start} @var{end}
12050 Restore the contents of file @var{filename} into memory.  The
12051 @code{restore} command can automatically recognize any known @sc{bfd}
12052 file format, except for raw binary.  To restore a raw binary file you
12053 must specify the optional keyword @code{binary} after the filename.
12054
12055 If @var{bias} is non-zero, its value will be added to the addresses
12056 contained in the file.  Binary files always start at address zero, so
12057 they will be restored at address @var{bias}.  Other bfd files have
12058 a built-in location; they will be restored at offset @var{bias}
12059 from that location.
12060
12061 If @var{start} and/or @var{end} are non-zero, then only data between
12062 file offset @var{start} and file offset @var{end} will be restored.
12063 These offsets are relative to the addresses in the file, before
12064 the @var{bias} argument is applied.
12065
12066 @end table
12067
12068 @node Core File Generation
12069 @section How to Produce a Core File from Your Program
12070 @cindex dump core from inferior
12071
12072 A @dfn{core file} or @dfn{core dump} is a file that records the memory
12073 image of a running process and its process status (register values
12074 etc.).  Its primary use is post-mortem debugging of a program that
12075 crashed while it ran outside a debugger.  A program that crashes
12076 automatically produces a core file, unless this feature is disabled by
12077 the user.  @xref{Files}, for information on invoking @value{GDBN} in
12078 the post-mortem debugging mode.
12079
12080 Occasionally, you may wish to produce a core file of the program you
12081 are debugging in order to preserve a snapshot of its state.
12082 @value{GDBN} has a special command for that.
12083
12084 @table @code
12085 @kindex gcore
12086 @kindex generate-core-file
12087 @item generate-core-file [@var{file}]
12088 @itemx gcore [@var{file}]
12089 Produce a core dump of the inferior process.  The optional argument
12090 @var{file} specifies the file name where to put the core dump.  If not
12091 specified, the file name defaults to @file{core.@var{pid}}, where
12092 @var{pid} is the inferior process ID.
12093
12094 Note that this command is implemented only for some systems (as of
12095 this writing, @sc{gnu}/Linux, FreeBSD, Solaris, and S390).
12096
12097 On @sc{gnu}/Linux, this command can take into account the value of the
12098 file @file{/proc/@var{pid}/coredump_filter} when generating the core
12099 dump (@pxref{set use-coredump-filter}), and by default honors the
12100 @code{VM_DONTDUMP} flag for mappings where it is present in the file
12101 @file{/proc/@var{pid}/smaps} (@pxref{set dump-excluded-mappings}).
12102
12103 @kindex set use-coredump-filter
12104 @anchor{set use-coredump-filter}
12105 @item set use-coredump-filter on
12106 @itemx set use-coredump-filter off
12107 Enable or disable the use of the file
12108 @file{/proc/@var{pid}/coredump_filter} when generating core dump
12109 files.  This file is used by the Linux kernel to decide what types of
12110 memory mappings will be dumped or ignored when generating a core dump
12111 file.  @var{pid} is the process ID of a currently running process.
12112
12113 To make use of this feature, you have to write in the
12114 @file{/proc/@var{pid}/coredump_filter} file a value, in hexadecimal,
12115 which is a bit mask representing the memory mapping types.  If a bit
12116 is set in the bit mask, then the memory mappings of the corresponding
12117 types will be dumped; otherwise, they will be ignored.  This
12118 configuration is inherited by child processes.  For more information
12119 about the bits that can be set in the
12120 @file{/proc/@var{pid}/coredump_filter} file, please refer to the
12121 manpage of @code{core(5)}.
12122
12123 By default, this option is @code{on}.  If this option is turned
12124 @code{off}, @value{GDBN} does not read the @file{coredump_filter} file
12125 and instead uses the same default value as the Linux kernel in order
12126 to decide which pages will be dumped in the core dump file.  This
12127 value is currently @code{0x33}, which means that bits @code{0}
12128 (anonymous private mappings), @code{1} (anonymous shared mappings),
12129 @code{4} (ELF headers) and @code{5} (private huge pages) are active.
12130 This will cause these memory mappings to be dumped automatically.
12131
12132 @kindex set dump-excluded-mappings
12133 @anchor{set dump-excluded-mappings}
12134 @item set dump-excluded-mappings on
12135 @itemx set dump-excluded-mappings off
12136 If @code{on} is specified, @value{GDBN} will dump memory mappings
12137 marked with the @code{VM_DONTDUMP} flag.  This flag is represented in
12138 the file @file{/proc/@var{pid}/smaps} with the acronym @code{dd}.
12139
12140 The default value is @code{off}.
12141 @end table
12142
12143 @node Character Sets
12144 @section Character Sets
12145 @cindex character sets
12146 @cindex charset
12147 @cindex translating between character sets
12148 @cindex host character set
12149 @cindex target character set
12150
12151 If the program you are debugging uses a different character set to
12152 represent characters and strings than the one @value{GDBN} uses itself,
12153 @value{GDBN} can automatically translate between the character sets for
12154 you.  The character set @value{GDBN} uses we call the @dfn{host
12155 character set}; the one the inferior program uses we call the
12156 @dfn{target character set}.
12157
12158 For example, if you are running @value{GDBN} on a @sc{gnu}/Linux system, which
12159 uses the ISO Latin 1 character set, but you are using @value{GDBN}'s
12160 remote protocol (@pxref{Remote Debugging}) to debug a program
12161 running on an IBM mainframe, which uses the @sc{ebcdic} character set,
12162 then the host character set is Latin-1, and the target character set is
12163 @sc{ebcdic}.  If you give @value{GDBN} the command @code{set
12164 target-charset EBCDIC-US}, then @value{GDBN} translates between
12165 @sc{ebcdic} and Latin 1 as you print character or string values, or use
12166 character and string literals in expressions.
12167
12168 @value{GDBN} has no way to automatically recognize which character set
12169 the inferior program uses; you must tell it, using the @code{set
12170 target-charset} command, described below.
12171
12172 Here are the commands for controlling @value{GDBN}'s character set
12173 support:
12174
12175 @table @code
12176 @item set target-charset @var{charset}
12177 @kindex set target-charset
12178 Set the current target character set to @var{charset}.  To display the
12179 list of supported target character sets, type
12180 @kbd{@w{set target-charset @key{TAB}@key{TAB}}}.
12181
12182 @item set host-charset @var{charset}
12183 @kindex set host-charset
12184 Set the current host character set to @var{charset}.
12185
12186 By default, @value{GDBN} uses a host character set appropriate to the
12187 system it is running on; you can override that default using the
12188 @code{set host-charset} command.  On some systems, @value{GDBN} cannot
12189 automatically determine the appropriate host character set.  In this
12190 case, @value{GDBN} uses @samp{UTF-8}.
12191
12192 @value{GDBN} can only use certain character sets as its host character
12193 set.  If you type @kbd{@w{set host-charset @key{TAB}@key{TAB}}},
12194 @value{GDBN} will list the host character sets it supports.
12195
12196 @item set charset @var{charset}
12197 @kindex set charset
12198 Set the current host and target character sets to @var{charset}.  As
12199 above, if you type @kbd{@w{set charset @key{TAB}@key{TAB}}},
12200 @value{GDBN} will list the names of the character sets that can be used
12201 for both host and target.
12202
12203 @item show charset
12204 @kindex show charset
12205 Show the names of the current host and target character sets.
12206
12207 @item show host-charset
12208 @kindex show host-charset
12209 Show the name of the current host character set.
12210
12211 @item show target-charset
12212 @kindex show target-charset
12213 Show the name of the current target character set.
12214
12215 @item set target-wide-charset @var{charset}
12216 @kindex set target-wide-charset
12217 Set the current target's wide character set to @var{charset}.  This is
12218 the character set used by the target's @code{wchar_t} type.  To
12219 display the list of supported wide character sets, type
12220 @kbd{@w{set target-wide-charset @key{TAB}@key{TAB}}}.
12221
12222 @item show target-wide-charset
12223 @kindex show target-wide-charset
12224 Show the name of the current target's wide character set.
12225 @end table
12226
12227 Here is an example of @value{GDBN}'s character set support in action.
12228 Assume that the following source code has been placed in the file
12229 @file{charset-test.c}:
12230
12231 @smallexample
12232 #include <stdio.h>
12233
12234 char ascii_hello[]
12235   = @{72, 101, 108, 108, 111, 44, 32, 119,
12236      111, 114, 108, 100, 33, 10, 0@};
12237 char ibm1047_hello[]
12238   = @{200, 133, 147, 147, 150, 107, 64, 166,
12239      150, 153, 147, 132, 90, 37, 0@};
12240
12241 main ()
12242 @{
12243   printf ("Hello, world!\n");
12244 @}
12245 @end smallexample
12246
12247 In this program, @code{ascii_hello} and @code{ibm1047_hello} are arrays
12248 containing the string @samp{Hello, world!} followed by a newline,
12249 encoded in the @sc{ascii} and @sc{ibm1047} character sets.
12250
12251 We compile the program, and invoke the debugger on it:
12252
12253 @smallexample
12254 $ gcc -g charset-test.c -o charset-test
12255 $ gdb -nw charset-test
12256 GNU gdb 2001-12-19-cvs
12257 Copyright 2001 Free Software Foundation, Inc.
12258 @dots{}
12259 (@value{GDBP})
12260 @end smallexample
12261
12262 We can use the @code{show charset} command to see what character sets
12263 @value{GDBN} is currently using to interpret and display characters and
12264 strings:
12265
12266 @smallexample
12267 (@value{GDBP}) show charset
12268 The current host and target character set is `ISO-8859-1'.
12269 (@value{GDBP})
12270 @end smallexample
12271
12272 For the sake of printing this manual, let's use @sc{ascii} as our
12273 initial character set:
12274 @smallexample
12275 (@value{GDBP}) set charset ASCII
12276 (@value{GDBP}) show charset
12277 The current host and target character set is `ASCII'.
12278 (@value{GDBP})
12279 @end smallexample
12280
12281 Let's assume that @sc{ascii} is indeed the correct character set for our
12282 host system --- in other words, let's assume that if @value{GDBN} prints
12283 characters using the @sc{ascii} character set, our terminal will display
12284 them properly.  Since our current target character set is also
12285 @sc{ascii}, the contents of @code{ascii_hello} print legibly:
12286
12287 @smallexample
12288 (@value{GDBP}) print ascii_hello
12289 $1 = 0x401698 "Hello, world!\n"
12290 (@value{GDBP}) print ascii_hello[0]
12291 $2 = 72 'H'
12292 (@value{GDBP})
12293 @end smallexample
12294
12295 @value{GDBN} uses the target character set for character and string
12296 literals you use in expressions:
12297
12298 @smallexample
12299 (@value{GDBP}) print '+'
12300 $3 = 43 '+'
12301 (@value{GDBP})
12302 @end smallexample
12303
12304 The @sc{ascii} character set uses the number 43 to encode the @samp{+}
12305 character.
12306
12307 @value{GDBN} relies on the user to tell it which character set the
12308 target program uses.  If we print @code{ibm1047_hello} while our target
12309 character set is still @sc{ascii}, we get jibberish:
12310
12311 @smallexample
12312 (@value{GDBP}) print ibm1047_hello
12313 $4 = 0x4016a8 "\310\205\223\223\226k@@\246\226\231\223\204Z%"
12314 (@value{GDBP}) print ibm1047_hello[0]
12315 $5 = 200 '\310'
12316 (@value{GDBP})
12317 @end smallexample
12318
12319 If we invoke the @code{set target-charset} followed by @key{TAB}@key{TAB},
12320 @value{GDBN} tells us the character sets it supports:
12321
12322 @smallexample
12323 (@value{GDBP}) set target-charset
12324 ASCII       EBCDIC-US   IBM1047     ISO-8859-1
12325 (@value{GDBP}) set target-charset
12326 @end smallexample
12327
12328 We can select @sc{ibm1047} as our target character set, and examine the
12329 program's strings again.  Now the @sc{ascii} string is wrong, but
12330 @value{GDBN} translates the contents of @code{ibm1047_hello} from the
12331 target character set, @sc{ibm1047}, to the host character set,
12332 @sc{ascii}, and they display correctly:
12333
12334 @smallexample
12335 (@value{GDBP}) set target-charset IBM1047
12336 (@value{GDBP}) show charset
12337 The current host character set is `ASCII'.
12338 The current target character set is `IBM1047'.
12339 (@value{GDBP}) print ascii_hello
12340 $6 = 0x401698 "\110\145%%?\054\040\167?\162%\144\041\012"
12341 (@value{GDBP}) print ascii_hello[0]
12342 $7 = 72 '\110'
12343 (@value{GDBP}) print ibm1047_hello
12344 $8 = 0x4016a8 "Hello, world!\n"
12345 (@value{GDBP}) print ibm1047_hello[0]
12346 $9 = 200 'H'
12347 (@value{GDBP})
12348 @end smallexample
12349
12350 As above, @value{GDBN} uses the target character set for character and
12351 string literals you use in expressions:
12352
12353 @smallexample
12354 (@value{GDBP}) print '+'
12355 $10 = 78 '+'
12356 (@value{GDBP})
12357 @end smallexample
12358
12359 The @sc{ibm1047} character set uses the number 78 to encode the @samp{+}
12360 character.
12361
12362 @node Caching Target Data
12363 @section Caching Data of Targets
12364 @cindex caching data of targets
12365
12366 @value{GDBN} caches data exchanged between the debugger and a target.
12367 Each cache is associated with the address space of the inferior.
12368 @xref{Inferiors and Programs}, about inferior and address space.
12369 Such caching generally improves performance in remote debugging
12370 (@pxref{Remote Debugging}), because it reduces the overhead of the
12371 remote protocol by bundling memory reads and writes into large chunks.
12372 Unfortunately, simply caching everything would lead to incorrect results,
12373 since @value{GDBN} does not necessarily know anything about volatile
12374 values, memory-mapped I/O addresses, etc.  Furthermore, in non-stop mode
12375 (@pxref{Non-Stop Mode}) memory can be changed @emph{while} a gdb command
12376 is executing.
12377 Therefore, by default, @value{GDBN} only caches data
12378 known to be on the stack@footnote{In non-stop mode, it is moderately
12379 rare for a running thread to modify the stack of a stopped thread
12380 in a way that would interfere with a backtrace, and caching of
12381 stack reads provides a significant speed up of remote backtraces.} or
12382 in the code segment.
12383 Other regions of memory can be explicitly marked as
12384 cacheable; @pxref{Memory Region Attributes}.
12385
12386 @table @code
12387 @kindex set remotecache
12388 @item set remotecache on
12389 @itemx set remotecache off
12390 This option no longer does anything; it exists for compatibility
12391 with old scripts.
12392
12393 @kindex show remotecache
12394 @item show remotecache
12395 Show the current state of the obsolete remotecache flag.
12396
12397 @kindex set stack-cache
12398 @item set stack-cache on
12399 @itemx set stack-cache off
12400 Enable or disable caching of stack accesses.  When @code{on}, use
12401 caching.  By default, this option is @code{on}.
12402
12403 @kindex show stack-cache
12404 @item show stack-cache
12405 Show the current state of data caching for memory accesses.
12406
12407 @kindex set code-cache
12408 @item set code-cache on
12409 @itemx set code-cache off
12410 Enable or disable caching of code segment accesses.  When @code{on},
12411 use caching.  By default, this option is @code{on}.  This improves
12412 performance of disassembly in remote debugging.
12413
12414 @kindex show code-cache
12415 @item show code-cache
12416 Show the current state of target memory cache for code segment
12417 accesses.
12418
12419 @kindex info dcache
12420 @item info dcache @r{[}line@r{]}
12421 Print the information about the performance of data cache of the
12422 current inferior's address space.  The information displayed
12423 includes the dcache width and depth, and for each cache line, its
12424 number, address, and how many times it was referenced.  This
12425 command is useful for debugging the data cache operation.
12426
12427 If a line number is specified, the contents of that line will be
12428 printed in hex.
12429
12430 @item set dcache size @var{size}
12431 @cindex dcache size
12432 @kindex set dcache size
12433 Set maximum number of entries in dcache (dcache depth above).
12434
12435 @item set dcache line-size @var{line-size}
12436 @cindex dcache line-size
12437 @kindex set dcache line-size
12438 Set number of bytes each dcache entry caches (dcache width above).
12439 Must be a power of 2.
12440
12441 @item show dcache size
12442 @kindex show dcache size
12443 Show maximum number of dcache entries.  @xref{Caching Target Data, info dcache}.
12444
12445 @item show dcache line-size
12446 @kindex show dcache line-size
12447 Show default size of dcache lines.
12448
12449 @end table
12450
12451 @node Searching Memory
12452 @section Search Memory
12453 @cindex searching memory
12454
12455 Memory can be searched for a particular sequence of bytes with the
12456 @code{find} command.
12457
12458 @table @code
12459 @kindex find
12460 @item find @r{[}/@var{sn}@r{]} @var{start_addr}, +@var{len}, @var{val1} @r{[}, @var{val2}, @dots{}@r{]}
12461 @itemx find @r{[}/@var{sn}@r{]} @var{start_addr}, @var{end_addr}, @var{val1} @r{[}, @var{val2}, @dots{}@r{]}
12462 Search memory for the sequence of bytes specified by @var{val1}, @var{val2},
12463 etc.  The search begins at address @var{start_addr} and continues for either
12464 @var{len} bytes or through to @var{end_addr} inclusive.
12465 @end table
12466
12467 @var{s} and @var{n} are optional parameters.
12468 They may be specified in either order, apart or together.
12469
12470 @table @r
12471 @item @var{s}, search query size
12472 The size of each search query value.
12473
12474 @table @code
12475 @item b
12476 bytes
12477 @item h
12478 halfwords (two bytes)
12479 @item w
12480 words (four bytes)
12481 @item g
12482 giant words (eight bytes)
12483 @end table
12484
12485 All values are interpreted in the current language.
12486 This means, for example, that if the current source language is C/C@t{++}
12487 then searching for the string ``hello'' includes the trailing '\0'.
12488 The null terminator can be removed from searching by using casts,
12489 e.g.: @samp{@{char[5]@}"hello"}.
12490
12491 If the value size is not specified, it is taken from the
12492 value's type in the current language.
12493 This is useful when one wants to specify the search
12494 pattern as a mixture of types.
12495 Note that this means, for example, that in the case of C-like languages
12496 a search for an untyped 0x42 will search for @samp{(int) 0x42}
12497 which is typically four bytes.
12498
12499 @item @var{n}, maximum number of finds
12500 The maximum number of matches to print.  The default is to print all finds.
12501 @end table
12502
12503 You can use strings as search values.  Quote them with double-quotes
12504  (@code{"}).
12505 The string value is copied into the search pattern byte by byte,
12506 regardless of the endianness of the target and the size specification.
12507
12508 The address of each match found is printed as well as a count of the
12509 number of matches found.
12510
12511 The address of the last value found is stored in convenience variable
12512 @samp{$_}.
12513 A count of the number of matches is stored in @samp{$numfound}.
12514
12515 For example, if stopped at the @code{printf} in this function:
12516
12517 @smallexample
12518 void
12519 hello ()
12520 @{
12521   static char hello[] = "hello-hello";
12522   static struct @{ char c; short s; int i; @}
12523     __attribute__ ((packed)) mixed
12524     = @{ 'c', 0x1234, 0x87654321 @};
12525   printf ("%s\n", hello);
12526 @}
12527 @end smallexample
12528
12529 @noindent
12530 you get during debugging:
12531
12532 @smallexample
12533 (gdb) find &hello[0], +sizeof(hello), "hello"
12534 0x804956d <hello.1620+6>
12535 1 pattern found
12536 (gdb) find &hello[0], +sizeof(hello), 'h', 'e', 'l', 'l', 'o'
12537 0x8049567 <hello.1620>
12538 0x804956d <hello.1620+6>
12539 2 patterns found.
12540 (gdb) find &hello[0], +sizeof(hello), @{char[5]@}"hello"
12541 0x8049567 <hello.1620>
12542 0x804956d <hello.1620+6>
12543 2 patterns found.
12544 (gdb) find /b1 &hello[0], +sizeof(hello), 'h', 0x65, 'l'
12545 0x8049567 <hello.1620>
12546 1 pattern found
12547 (gdb) find &mixed, +sizeof(mixed), (char) 'c', (short) 0x1234, (int) 0x87654321
12548 0x8049560 <mixed.1625>
12549 1 pattern found
12550 (gdb) print $numfound
12551 $1 = 1
12552 (gdb) print $_
12553 $2 = (void *) 0x8049560
12554 @end smallexample
12555
12556 @node Value Sizes
12557 @section Value Sizes
12558
12559 Whenever @value{GDBN} prints a value memory will be allocated within
12560 @value{GDBN} to hold the contents of the value.  It is possible in
12561 some languages with dynamic typing systems, that an invalid program
12562 may indicate a value that is incorrectly large, this in turn may cause
12563 @value{GDBN} to try and allocate an overly large ammount of memory.
12564
12565 @table @code
12566 @kindex set max-value-size
12567 @item set max-value-size @var{bytes}
12568 @itemx set max-value-size unlimited
12569 Set the maximum size of memory that @value{GDBN} will allocate for the
12570 contents of a value to @var{bytes}, trying to display a value that
12571 requires more memory than that will result in an error.
12572
12573 Setting this variable does not effect values that have already been
12574 allocated within @value{GDBN}, only future allocations.
12575
12576 There's a minimum size that @code{max-value-size} can be set to in
12577 order that @value{GDBN} can still operate correctly, this minimum is
12578 currently 16 bytes.
12579
12580 The limit applies to the results of some subexpressions as well as to
12581 complete expressions.  For example, an expression denoting a simple
12582 integer component, such as @code{x.y.z}, may fail if the size of
12583 @var{x.y} is dynamic and exceeds @var{bytes}.  On the other hand,
12584 @value{GDBN} is sometimes clever; the expression @code{A[i]}, where
12585 @var{A} is an array variable with non-constant size, will generally
12586 succeed regardless of the bounds on @var{A}, as long as the component
12587 size is less than @var{bytes}.
12588
12589 The default value of @code{max-value-size} is currently 64k.
12590
12591 @kindex show max-value-size
12592 @item show max-value-size
12593 Show the maximum size of memory, in bytes, that @value{GDBN} will
12594 allocate for the contents of a value.
12595 @end table
12596
12597 @node Optimized Code
12598 @chapter Debugging Optimized Code
12599 @cindex optimized code, debugging
12600 @cindex debugging optimized code
12601
12602 Almost all compilers support optimization.  With optimization
12603 disabled, the compiler generates assembly code that corresponds
12604 directly to your source code, in a simplistic way.  As the compiler
12605 applies more powerful optimizations, the generated assembly code
12606 diverges from your original source code.  With help from debugging
12607 information generated by the compiler, @value{GDBN} can map from
12608 the running program back to constructs from your original source.
12609
12610 @value{GDBN} is more accurate with optimization disabled.  If you
12611 can recompile without optimization, it is easier to follow the
12612 progress of your program during debugging.  But, there are many cases
12613 where you may need to debug an optimized version.
12614
12615 When you debug a program compiled with @samp{-g -O}, remember that the
12616 optimizer has rearranged your code; the debugger shows you what is
12617 really there.  Do not be too surprised when the execution path does not
12618 exactly match your source file!  An extreme example: if you define a
12619 variable, but never use it, @value{GDBN} never sees that
12620 variable---because the compiler optimizes it out of existence.
12621
12622 Some things do not work as well with @samp{-g -O} as with just
12623 @samp{-g}, particularly on machines with instruction scheduling.  If in
12624 doubt, recompile with @samp{-g} alone, and if this fixes the problem,
12625 please report it to us as a bug (including a test case!).
12626 @xref{Variables}, for more information about debugging optimized code.
12627
12628 @menu
12629 * Inline Functions::            How @value{GDBN} presents inlining
12630 * Tail Call Frames::            @value{GDBN} analysis of jumps to functions
12631 @end menu
12632
12633 @node Inline Functions
12634 @section Inline Functions
12635 @cindex inline functions, debugging
12636
12637 @dfn{Inlining} is an optimization that inserts a copy of the function
12638 body directly at each call site, instead of jumping to a shared
12639 routine.  @value{GDBN} displays inlined functions just like
12640 non-inlined functions.  They appear in backtraces.  You can view their
12641 arguments and local variables, step into them with @code{step}, skip
12642 them with @code{next}, and escape from them with @code{finish}.
12643 You can check whether a function was inlined by using the
12644 @code{info frame} command.
12645
12646 For @value{GDBN} to support inlined functions, the compiler must
12647 record information about inlining in the debug information ---
12648 @value{NGCC} using the @sc{dwarf 2} format does this, and several
12649 other compilers do also.  @value{GDBN} only supports inlined functions
12650 when using @sc{dwarf 2}.  Versions of @value{NGCC} before 4.1
12651 do not emit two required attributes (@samp{DW_AT_call_file} and
12652 @samp{DW_AT_call_line}); @value{GDBN} does not display inlined
12653 function calls with earlier versions of @value{NGCC}.  It instead
12654 displays the arguments and local variables of inlined functions as
12655 local variables in the caller.
12656
12657 The body of an inlined function is directly included at its call site;
12658 unlike a non-inlined function, there are no instructions devoted to
12659 the call.  @value{GDBN} still pretends that the call site and the
12660 start of the inlined function are different instructions.  Stepping to
12661 the call site shows the call site, and then stepping again shows
12662 the first line of the inlined function, even though no additional
12663 instructions are executed.
12664
12665 This makes source-level debugging much clearer; you can see both the
12666 context of the call and then the effect of the call.  Only stepping by
12667 a single instruction using @code{stepi} or @code{nexti} does not do
12668 this; single instruction steps always show the inlined body.
12669
12670 There are some ways that @value{GDBN} does not pretend that inlined
12671 function calls are the same as normal calls:
12672
12673 @itemize @bullet
12674 @item
12675 Setting breakpoints at the call site of an inlined function may not
12676 work, because the call site does not contain any code.  @value{GDBN}
12677 may incorrectly move the breakpoint to the next line of the enclosing
12678 function, after the call.  This limitation will be removed in a future
12679 version of @value{GDBN}; until then, set a breakpoint on an earlier line
12680 or inside the inlined function instead.
12681
12682 @item
12683 @value{GDBN} cannot locate the return value of inlined calls after
12684 using the @code{finish} command.  This is a limitation of compiler-generated
12685 debugging information; after @code{finish}, you can step to the next line
12686 and print a variable where your program stored the return value.
12687
12688 @end itemize
12689
12690 @node Tail Call Frames
12691 @section Tail Call Frames
12692 @cindex tail call frames, debugging
12693
12694 Function @code{B} can call function @code{C} in its very last statement.  In
12695 unoptimized compilation the call of @code{C} is immediately followed by return
12696 instruction at the end of @code{B} code.  Optimizing compiler may replace the
12697 call and return in function @code{B} into one jump to function @code{C}
12698 instead.  Such use of a jump instruction is called @dfn{tail call}.
12699
12700 During execution of function @code{C}, there will be no indication in the
12701 function call stack frames that it was tail-called from @code{B}.  If function
12702 @code{A} regularly calls function @code{B} which tail-calls function @code{C},
12703 then @value{GDBN} will see @code{A} as the caller of @code{C}.  However, in
12704 some cases @value{GDBN} can determine that @code{C} was tail-called from
12705 @code{B}, and it will then create fictitious call frame for that, with the
12706 return address set up as if @code{B} called @code{C} normally.
12707
12708 This functionality is currently supported only by DWARF 2 debugging format and
12709 the compiler has to produce @samp{DW_TAG_call_site} tags.  With
12710 @value{NGCC}, you need to specify @option{-O -g} during compilation, to get
12711 this information.
12712
12713 @kbd{info frame} command (@pxref{Frame Info}) will indicate the tail call frame
12714 kind by text @code{tail call frame} such as in this sample @value{GDBN} output:
12715
12716 @smallexample
12717 (gdb) x/i $pc - 2
12718    0x40066b <b(int, double)+11>: jmp 0x400640 <c(int, double)>
12719 (gdb) info frame
12720 Stack level 1, frame at 0x7fffffffda30:
12721  rip = 0x40066d in b (amd64-entry-value.cc:59); saved rip 0x4004c5
12722  tail call frame, caller of frame at 0x7fffffffda30
12723  source language c++.
12724  Arglist at unknown address.
12725  Locals at unknown address, Previous frame's sp is 0x7fffffffda30
12726 @end smallexample
12727
12728 The detection of all the possible code path executions can find them ambiguous.
12729 There is no execution history stored (possible @ref{Reverse Execution} is never
12730 used for this purpose) and the last known caller could have reached the known
12731 callee by multiple different jump sequences.  In such case @value{GDBN} still
12732 tries to show at least all the unambiguous top tail callers and all the
12733 unambiguous bottom tail calees, if any.
12734
12735 @table @code
12736 @anchor{set debug entry-values}
12737 @item set debug entry-values
12738 @kindex set debug entry-values
12739 When set to on, enables printing of analysis messages for both frame argument
12740 values at function entry and tail calls.  It will show all the possible valid
12741 tail calls code paths it has considered.  It will also print the intersection
12742 of them with the final unambiguous (possibly partial or even empty) code path
12743 result.
12744
12745 @item show debug entry-values
12746 @kindex show debug entry-values
12747 Show the current state of analysis messages printing for both frame argument
12748 values at function entry and tail calls.
12749 @end table
12750
12751 The analysis messages for tail calls can for example show why the virtual tail
12752 call frame for function @code{c} has not been recognized (due to the indirect
12753 reference by variable @code{x}):
12754
12755 @smallexample
12756 static void __attribute__((noinline, noclone)) c (void);
12757 void (*x) (void) = c;
12758 static void __attribute__((noinline, noclone)) a (void) @{ x++; @}
12759 static void __attribute__((noinline, noclone)) c (void) @{ a (); @}
12760 int main (void) @{ x (); return 0; @}
12761
12762 Breakpoint 1, DW_OP_entry_value resolving cannot find
12763 DW_TAG_call_site 0x40039a in main
12764 a () at t.c:3
12765 3       static void __attribute__((noinline, noclone)) a (void) @{ x++; @}
12766 (gdb) bt
12767 #0  a () at t.c:3
12768 #1  0x000000000040039a in main () at t.c:5
12769 @end smallexample
12770
12771 Another possibility is an ambiguous virtual tail call frames resolution:
12772
12773 @smallexample
12774 int i;
12775 static void __attribute__((noinline, noclone)) f (void) @{ i++; @}
12776 static void __attribute__((noinline, noclone)) e (void) @{ f (); @}
12777 static void __attribute__((noinline, noclone)) d (void) @{ f (); @}
12778 static void __attribute__((noinline, noclone)) c (void) @{ d (); @}
12779 static void __attribute__((noinline, noclone)) b (void)
12780 @{ if (i) c (); else e (); @}
12781 static void __attribute__((noinline, noclone)) a (void) @{ b (); @}
12782 int main (void) @{ a (); return 0; @}
12783
12784 tailcall: initial: 0x4004d2(a) 0x4004ce(b) 0x4004b2(c) 0x4004a2(d)
12785 tailcall: compare: 0x4004d2(a) 0x4004cc(b) 0x400492(e)
12786 tailcall: reduced: 0x4004d2(a) |
12787 (gdb) bt
12788 #0  f () at t.c:2
12789 #1  0x00000000004004d2 in a () at t.c:8
12790 #2  0x0000000000400395 in main () at t.c:9
12791 @end smallexample
12792
12793 @set CALLSEQ1A @code{main@value{ARROW}a@value{ARROW}b@value{ARROW}c@value{ARROW}d@value{ARROW}f}
12794 @set CALLSEQ2A @code{main@value{ARROW}a@value{ARROW}b@value{ARROW}e@value{ARROW}f}
12795
12796 @c Convert CALLSEQ#A to CALLSEQ#B depending on HAVE_MAKEINFO_CLICK.
12797 @ifset HAVE_MAKEINFO_CLICK
12798 @set ARROW @click{}
12799 @set CALLSEQ1B @clicksequence{@value{CALLSEQ1A}}
12800 @set CALLSEQ2B @clicksequence{@value{CALLSEQ2A}}
12801 @end ifset
12802 @ifclear HAVE_MAKEINFO_CLICK
12803 @set ARROW ->
12804 @set CALLSEQ1B @value{CALLSEQ1A}
12805 @set CALLSEQ2B @value{CALLSEQ2A}
12806 @end ifclear
12807
12808 Frames #0 and #2 are real, #1 is a virtual tail call frame.
12809 The code can have possible execution paths @value{CALLSEQ1B} or
12810 @value{CALLSEQ2B}, @value{GDBN} cannot find which one from the inferior state.
12811
12812 @code{initial:} state shows some random possible calling sequence @value{GDBN}
12813 has found.  It then finds another possible calling sequcen - that one is
12814 prefixed by @code{compare:}.  The non-ambiguous intersection of these two is
12815 printed as the @code{reduced:} calling sequence.  That one could have many
12816 futher @code{compare:} and @code{reduced:} statements as long as there remain
12817 any non-ambiguous sequence entries.
12818
12819 For the frame of function @code{b} in both cases there are different possible
12820 @code{$pc} values (@code{0x4004cc} or @code{0x4004ce}), therefore this frame is
12821 also ambigous.  The only non-ambiguous frame is the one for function @code{a},
12822 therefore this one is displayed to the user while the ambiguous frames are
12823 omitted.
12824
12825 There can be also reasons why printing of frame argument values at function
12826 entry may fail:
12827
12828 @smallexample
12829 int v;
12830 static void __attribute__((noinline, noclone)) c (int i) @{ v++; @}
12831 static void __attribute__((noinline, noclone)) a (int i);
12832 static void __attribute__((noinline, noclone)) b (int i) @{ a (i); @}
12833 static void __attribute__((noinline, noclone)) a (int i)
12834 @{ if (i) b (i - 1); else c (0); @}
12835 int main (void) @{ a (5); return 0; @}
12836
12837 (gdb) bt
12838 #0  c (i=i@@entry=0) at t.c:2
12839 #1  0x0000000000400428 in a (DW_OP_entry_value resolving has found
12840 function "a" at 0x400420 can call itself via tail calls
12841 i=<optimized out>) at t.c:6
12842 #2  0x000000000040036e in main () at t.c:7
12843 @end smallexample
12844
12845 @value{GDBN} cannot find out from the inferior state if and how many times did
12846 function @code{a} call itself (via function @code{b}) as these calls would be
12847 tail calls.  Such tail calls would modify thue @code{i} variable, therefore
12848 @value{GDBN} cannot be sure the value it knows would be right - @value{GDBN}
12849 prints @code{<optimized out>} instead.
12850
12851 @node Macros
12852 @chapter C Preprocessor Macros
12853
12854 Some languages, such as C and C@t{++}, provide a way to define and invoke
12855 ``preprocessor macros'' which expand into strings of tokens.
12856 @value{GDBN} can evaluate expressions containing macro invocations, show
12857 the result of macro expansion, and show a macro's definition, including
12858 where it was defined.
12859
12860 You may need to compile your program specially to provide @value{GDBN}
12861 with information about preprocessor macros.  Most compilers do not
12862 include macros in their debugging information, even when you compile
12863 with the @option{-g} flag.  @xref{Compilation}.
12864
12865 A program may define a macro at one point, remove that definition later,
12866 and then provide a different definition after that.  Thus, at different
12867 points in the program, a macro may have different definitions, or have
12868 no definition at all.  If there is a current stack frame, @value{GDBN}
12869 uses the macros in scope at that frame's source code line.  Otherwise,
12870 @value{GDBN} uses the macros in scope at the current listing location;
12871 see @ref{List}.
12872
12873 Whenever @value{GDBN} evaluates an expression, it always expands any
12874 macro invocations present in the expression.  @value{GDBN} also provides
12875 the following commands for working with macros explicitly.
12876
12877 @table @code
12878
12879 @kindex macro expand
12880 @cindex macro expansion, showing the results of preprocessor
12881 @cindex preprocessor macro expansion, showing the results of
12882 @cindex expanding preprocessor macros
12883 @item macro expand @var{expression}
12884 @itemx macro exp @var{expression}
12885 Show the results of expanding all preprocessor macro invocations in
12886 @var{expression}.  Since @value{GDBN} simply expands macros, but does
12887 not parse the result, @var{expression} need not be a valid expression;
12888 it can be any string of tokens.
12889
12890 @kindex macro exp1
12891 @item macro expand-once @var{expression}
12892 @itemx macro exp1 @var{expression}
12893 @cindex expand macro once
12894 @i{(This command is not yet implemented.)}  Show the results of
12895 expanding those preprocessor macro invocations that appear explicitly in
12896 @var{expression}.  Macro invocations appearing in that expansion are
12897 left unchanged.  This command allows you to see the effect of a
12898 particular macro more clearly, without being confused by further
12899 expansions.  Since @value{GDBN} simply expands macros, but does not
12900 parse the result, @var{expression} need not be a valid expression; it
12901 can be any string of tokens.
12902
12903 @kindex info macro
12904 @cindex macro definition, showing
12905 @cindex definition of a macro, showing
12906 @cindex macros, from debug info
12907 @item info macro [-a|-all] [--] @var{macro}
12908 Show the current definition or all definitions of the named @var{macro},
12909 and describe the source location or compiler command-line where that
12910 definition was established.  The optional double dash is to signify the end of
12911 argument processing and the beginning of @var{macro} for non C-like macros where
12912 the macro may begin with a hyphen.
12913
12914 @kindex info macros
12915 @item info macros @var{location}
12916 Show all macro definitions that are in effect at the location specified
12917 by @var{location},  and describe the source location or compiler
12918 command-line where those definitions were established.
12919
12920 @kindex macro define
12921 @cindex user-defined macros
12922 @cindex defining macros interactively
12923 @cindex macros, user-defined
12924 @item macro define @var{macro} @var{replacement-list}
12925 @itemx macro define @var{macro}(@var{arglist}) @var{replacement-list}
12926 Introduce a definition for a preprocessor macro named @var{macro},
12927 invocations of which are replaced by the tokens given in
12928 @var{replacement-list}.  The first form of this command defines an
12929 ``object-like'' macro, which takes no arguments; the second form
12930 defines a ``function-like'' macro, which takes the arguments given in
12931 @var{arglist}.
12932
12933 A definition introduced by this command is in scope in every
12934 expression evaluated in @value{GDBN}, until it is removed with the
12935 @code{macro undef} command, described below.  The definition overrides
12936 all definitions for @var{macro} present in the program being debugged,
12937 as well as any previous user-supplied definition.
12938
12939 @kindex macro undef
12940 @item macro undef @var{macro}
12941 Remove any user-supplied definition for the macro named @var{macro}.
12942 This command only affects definitions provided with the @code{macro
12943 define} command, described above; it cannot remove definitions present
12944 in the program being debugged.
12945
12946 @kindex macro list
12947 @item macro list
12948 List all the macros defined using the @code{macro define} command.
12949 @end table
12950
12951 @cindex macros, example of debugging with
12952 Here is a transcript showing the above commands in action.  First, we
12953 show our source files:
12954
12955 @smallexample
12956 $ cat sample.c
12957 #include <stdio.h>
12958 #include "sample.h"
12959
12960 #define M 42
12961 #define ADD(x) (M + x)
12962
12963 main ()
12964 @{
12965 #define N 28
12966   printf ("Hello, world!\n");
12967 #undef N
12968   printf ("We're so creative.\n");
12969 #define N 1729
12970   printf ("Goodbye, world!\n");
12971 @}
12972 $ cat sample.h
12973 #define Q <
12974 $
12975 @end smallexample
12976
12977 Now, we compile the program using the @sc{gnu} C compiler,
12978 @value{NGCC}.  We pass the @option{-gdwarf-2}@footnote{This is the
12979 minimum.  Recent versions of @value{NGCC} support @option{-gdwarf-3}
12980 and @option{-gdwarf-4}; we recommend always choosing the most recent
12981 version of DWARF.} @emph{and} @option{-g3} flags to ensure the compiler
12982 includes information about preprocessor macros in the debugging
12983 information.
12984
12985 @smallexample
12986 $ gcc -gdwarf-2 -g3 sample.c -o sample
12987 $
12988 @end smallexample
12989
12990 Now, we start @value{GDBN} on our sample program:
12991
12992 @smallexample
12993 $ gdb -nw sample
12994 GNU gdb 2002-05-06-cvs
12995 Copyright 2002 Free Software Foundation, Inc.
12996 GDB is free software, @dots{}
12997 (@value{GDBP})
12998 @end smallexample
12999
13000 We can expand macros and examine their definitions, even when the
13001 program is not running.  @value{GDBN} uses the current listing position
13002 to decide which macro definitions are in scope:
13003
13004 @smallexample
13005 (@value{GDBP}) list main
13006 3
13007 4       #define M 42
13008 5       #define ADD(x) (M + x)
13009 6
13010 7       main ()
13011 8       @{
13012 9       #define N 28
13013 10        printf ("Hello, world!\n");
13014 11      #undef N
13015 12        printf ("We're so creative.\n");
13016 (@value{GDBP}) info macro ADD
13017 Defined at /home/jimb/gdb/macros/play/sample.c:5
13018 #define ADD(x) (M + x)
13019 (@value{GDBP}) info macro Q
13020 Defined at /home/jimb/gdb/macros/play/sample.h:1
13021   included at /home/jimb/gdb/macros/play/sample.c:2
13022 #define Q <
13023 (@value{GDBP}) macro expand ADD(1)
13024 expands to: (42 + 1)
13025 (@value{GDBP}) macro expand-once ADD(1)
13026 expands to: once (M + 1)
13027 (@value{GDBP})
13028 @end smallexample
13029
13030 In the example above, note that @code{macro expand-once} expands only
13031 the macro invocation explicit in the original text --- the invocation of
13032 @code{ADD} --- but does not expand the invocation of the macro @code{M},
13033 which was introduced by @code{ADD}.
13034
13035 Once the program is running, @value{GDBN} uses the macro definitions in
13036 force at the source line of the current stack frame:
13037
13038 @smallexample
13039 (@value{GDBP}) break main
13040 Breakpoint 1 at 0x8048370: file sample.c, line 10.
13041 (@value{GDBP}) run
13042 Starting program: /home/jimb/gdb/macros/play/sample
13043
13044 Breakpoint 1, main () at sample.c:10
13045 10        printf ("Hello, world!\n");
13046 (@value{GDBP})
13047 @end smallexample
13048
13049 At line 10, the definition of the macro @code{N} at line 9 is in force:
13050
13051 @smallexample
13052 (@value{GDBP}) info macro N
13053 Defined at /home/jimb/gdb/macros/play/sample.c:9
13054 #define N 28
13055 (@value{GDBP}) macro expand N Q M
13056 expands to: 28 < 42
13057 (@value{GDBP}) print N Q M
13058 $1 = 1
13059 (@value{GDBP})
13060 @end smallexample
13061
13062 As we step over directives that remove @code{N}'s definition, and then
13063 give it a new definition, @value{GDBN} finds the definition (or lack
13064 thereof) in force at each point:
13065
13066 @smallexample
13067 (@value{GDBP}) next
13068 Hello, world!
13069 12        printf ("We're so creative.\n");
13070 (@value{GDBP}) info macro N
13071 The symbol `N' has no definition as a C/C++ preprocessor macro
13072 at /home/jimb/gdb/macros/play/sample.c:12
13073 (@value{GDBP}) next
13074 We're so creative.
13075 14        printf ("Goodbye, world!\n");
13076 (@value{GDBP}) info macro N
13077 Defined at /home/jimb/gdb/macros/play/sample.c:13
13078 #define N 1729
13079 (@value{GDBP}) macro expand N Q M
13080 expands to: 1729 < 42
13081 (@value{GDBP}) print N Q M
13082 $2 = 0
13083 (@value{GDBP})
13084 @end smallexample
13085
13086 In addition to source files, macros can be defined on the compilation command
13087 line using the @option{-D@var{name}=@var{value}} syntax.  For macros defined in
13088 such a way, @value{GDBN} displays the location of their definition as line zero
13089 of the source file submitted to the compiler.
13090
13091 @smallexample
13092 (@value{GDBP}) info macro __STDC__
13093 Defined at /home/jimb/gdb/macros/play/sample.c:0
13094 -D__STDC__=1
13095 (@value{GDBP})
13096 @end smallexample
13097
13098
13099 @node Tracepoints
13100 @chapter Tracepoints
13101 @c This chapter is based on the documentation written by Michael
13102 @c Snyder, David Taylor, Jim Blandy, and Elena Zannoni.
13103
13104 @cindex tracepoints
13105 In some applications, it is not feasible for the debugger to interrupt
13106 the program's execution long enough for the developer to learn
13107 anything helpful about its behavior.  If the program's correctness
13108 depends on its real-time behavior, delays introduced by a debugger
13109 might cause the program to change its behavior drastically, or perhaps
13110 fail, even when the code itself is correct.  It is useful to be able
13111 to observe the program's behavior without interrupting it.
13112
13113 Using @value{GDBN}'s @code{trace} and @code{collect} commands, you can
13114 specify locations in the program, called @dfn{tracepoints}, and
13115 arbitrary expressions to evaluate when those tracepoints are reached.
13116 Later, using the @code{tfind} command, you can examine the values
13117 those expressions had when the program hit the tracepoints.  The
13118 expressions may also denote objects in memory---structures or arrays,
13119 for example---whose values @value{GDBN} should record; while visiting
13120 a particular tracepoint, you may inspect those objects as if they were
13121 in memory at that moment.  However, because @value{GDBN} records these
13122 values without interacting with you, it can do so quickly and
13123 unobtrusively, hopefully not disturbing the program's behavior.
13124
13125 The tracepoint facility is currently available only for remote
13126 targets.  @xref{Targets}.  In addition, your remote target must know
13127 how to collect trace data.  This functionality is implemented in the
13128 remote stub; however, none of the stubs distributed with @value{GDBN}
13129 support tracepoints as of this writing.  The format of the remote
13130 packets used to implement tracepoints are described in @ref{Tracepoint
13131 Packets}.
13132
13133 It is also possible to get trace data from a file, in a manner reminiscent
13134 of corefiles; you specify the filename, and use @code{tfind} to search
13135 through the file.  @xref{Trace Files}, for more details.
13136
13137 This chapter describes the tracepoint commands and features.
13138
13139 @menu
13140 * Set Tracepoints::
13141 * Analyze Collected Data::
13142 * Tracepoint Variables::
13143 * Trace Files::
13144 @end menu
13145
13146 @node Set Tracepoints
13147 @section Commands to Set Tracepoints
13148
13149 Before running such a @dfn{trace experiment}, an arbitrary number of
13150 tracepoints can be set.  A tracepoint is actually a special type of
13151 breakpoint (@pxref{Set Breaks}), so you can manipulate it using
13152 standard breakpoint commands.  For instance, as with breakpoints,
13153 tracepoint numbers are successive integers starting from one, and many
13154 of the commands associated with tracepoints take the tracepoint number
13155 as their argument, to identify which tracepoint to work on.
13156
13157 For each tracepoint, you can specify, in advance, some arbitrary set
13158 of data that you want the target to collect in the trace buffer when
13159 it hits that tracepoint.  The collected data can include registers,
13160 local variables, or global data.  Later, you can use @value{GDBN}
13161 commands to examine the values these data had at the time the
13162 tracepoint was hit.
13163
13164 Tracepoints do not support every breakpoint feature.  Ignore counts on
13165 tracepoints have no effect, and tracepoints cannot run @value{GDBN}
13166 commands when they are hit.  Tracepoints may not be thread-specific
13167 either.
13168
13169 @cindex fast tracepoints
13170 Some targets may support @dfn{fast tracepoints}, which are inserted in
13171 a different way (such as with a jump instead of a trap), that is
13172 faster but possibly restricted in where they may be installed.
13173
13174 @cindex static tracepoints
13175 @cindex markers, static tracepoints
13176 @cindex probing markers, static tracepoints
13177 Regular and fast tracepoints are dynamic tracing facilities, meaning
13178 that they can be used to insert tracepoints at (almost) any location
13179 in the target.  Some targets may also support controlling @dfn{static
13180 tracepoints} from @value{GDBN}.  With static tracing, a set of
13181 instrumentation points, also known as @dfn{markers}, are embedded in
13182 the target program, and can be activated or deactivated by name or
13183 address.  These are usually placed at locations which facilitate
13184 investigating what the target is actually doing.  @value{GDBN}'s
13185 support for static tracing includes being able to list instrumentation
13186 points, and attach them with @value{GDBN} defined high level
13187 tracepoints that expose the whole range of convenience of
13188 @value{GDBN}'s tracepoints support.  Namely, support for collecting
13189 registers values and values of global or local (to the instrumentation
13190 point) variables; tracepoint conditions and trace state variables.
13191 The act of installing a @value{GDBN} static tracepoint on an
13192 instrumentation point, or marker, is referred to as @dfn{probing} a
13193 static tracepoint marker.
13194
13195 @code{gdbserver} supports tracepoints on some target systems.
13196 @xref{Server,,Tracepoints support in @code{gdbserver}}.
13197
13198 This section describes commands to set tracepoints and associated
13199 conditions and actions.
13200
13201 @menu
13202 * Create and Delete Tracepoints::
13203 * Enable and Disable Tracepoints::
13204 * Tracepoint Passcounts::
13205 * Tracepoint Conditions::
13206 * Trace State Variables::
13207 * Tracepoint Actions::
13208 * Listing Tracepoints::
13209 * Listing Static Tracepoint Markers::
13210 * Starting and Stopping Trace Experiments::
13211 * Tracepoint Restrictions::
13212 @end menu
13213
13214 @node Create and Delete Tracepoints
13215 @subsection Create and Delete Tracepoints
13216
13217 @table @code
13218 @cindex set tracepoint
13219 @kindex trace
13220 @item trace @var{location}
13221 The @code{trace} command is very similar to the @code{break} command.
13222 Its argument @var{location} can be any valid location.
13223 @xref{Specify Location}.  The @code{trace} command defines a tracepoint,
13224 which is a point in the target program where the debugger will briefly stop,
13225 collect some data, and then allow the program to continue.  Setting a tracepoint
13226 or changing its actions takes effect immediately if the remote stub
13227 supports the @samp{InstallInTrace} feature (@pxref{install tracepoint
13228 in tracing}).
13229 If remote stub doesn't support the @samp{InstallInTrace} feature, all
13230 these changes don't take effect until the next @code{tstart}
13231 command, and once a trace experiment is running, further changes will
13232 not have any effect until the next trace experiment starts.  In addition,
13233 @value{GDBN} supports @dfn{pending tracepoints}---tracepoints whose
13234 address is not yet resolved.  (This is similar to pending breakpoints.)
13235 Pending tracepoints are not downloaded to the target and not installed
13236 until they are resolved.  The resolution of pending tracepoints requires
13237 @value{GDBN} support---when debugging with the remote target, and
13238 @value{GDBN} disconnects from the remote stub (@pxref{disconnected
13239 tracing}), pending tracepoints can not be resolved (and downloaded to
13240 the remote stub) while @value{GDBN} is disconnected.
13241
13242 Here are some examples of using the @code{trace} command:
13243
13244 @smallexample
13245 (@value{GDBP}) @b{trace foo.c:121}    // a source file and line number
13246
13247 (@value{GDBP}) @b{trace +2}           // 2 lines forward
13248
13249 (@value{GDBP}) @b{trace my_function}  // first source line of function
13250
13251 (@value{GDBP}) @b{trace *my_function} // EXACT start address of function
13252
13253 (@value{GDBP}) @b{trace *0x2117c4}    // an address
13254 @end smallexample
13255
13256 @noindent
13257 You can abbreviate @code{trace} as @code{tr}.
13258
13259 @item trace @var{location} if @var{cond}
13260 Set a tracepoint with condition @var{cond}; evaluate the expression
13261 @var{cond} each time the tracepoint is reached, and collect data only
13262 if the value is nonzero---that is, if @var{cond} evaluates as true.
13263 @xref{Tracepoint Conditions, ,Tracepoint Conditions}, for more
13264 information on tracepoint conditions.
13265
13266 @item ftrace @var{location} [ if @var{cond} ]
13267 @cindex set fast tracepoint
13268 @cindex fast tracepoints, setting
13269 @kindex ftrace
13270 The @code{ftrace} command sets a fast tracepoint.  For targets that
13271 support them, fast tracepoints will use a more efficient but possibly
13272 less general technique to trigger data collection, such as a jump
13273 instruction instead of a trap, or some sort of hardware support.  It
13274 may not be possible to create a fast tracepoint at the desired
13275 location, in which case the command will exit with an explanatory
13276 message.
13277
13278 @value{GDBN} handles arguments to @code{ftrace} exactly as for
13279 @code{trace}.
13280
13281 On 32-bit x86-architecture systems, fast tracepoints normally need to
13282 be placed at an instruction that is 5 bytes or longer, but can be
13283 placed at 4-byte instructions if the low 64K of memory of the target
13284 program is available to install trampolines.  Some Unix-type systems,
13285 such as @sc{gnu}/Linux, exclude low addresses from the program's
13286 address space; but for instance with the Linux kernel it is possible
13287 to let @value{GDBN} use this area by doing a @command{sysctl} command
13288 to set the @code{mmap_min_addr} kernel parameter, as in
13289
13290 @example
13291 sudo sysctl -w vm.mmap_min_addr=32768
13292 @end example
13293
13294 @noindent
13295 which sets the low address to 32K, which leaves plenty of room for
13296 trampolines.  The minimum address should be set to a page boundary.
13297
13298 @item strace @var{location} [ if @var{cond} ]
13299 @cindex set static tracepoint
13300 @cindex static tracepoints, setting
13301 @cindex probe static tracepoint marker
13302 @kindex strace
13303 The @code{strace} command sets a static tracepoint.  For targets that
13304 support it, setting a static tracepoint probes a static
13305 instrumentation point, or marker, found at @var{location}.  It may not
13306 be possible to set a static tracepoint at the desired location, in
13307 which case the command will exit with an explanatory message.
13308
13309 @value{GDBN} handles arguments to @code{strace} exactly as for
13310 @code{trace}, with the addition that the user can also specify
13311 @code{-m @var{marker}} as @var{location}.  This probes the marker
13312 identified by the @var{marker} string identifier.  This identifier
13313 depends on the static tracepoint backend library your program is
13314 using.  You can find all the marker identifiers in the @samp{ID} field
13315 of the @code{info static-tracepoint-markers} command output.
13316 @xref{Listing Static Tracepoint Markers,,Listing Static Tracepoint
13317 Markers}.  For example, in the following small program using the UST
13318 tracing engine:
13319
13320 @smallexample
13321 main ()
13322 @{
13323   trace_mark(ust, bar33, "str %s", "FOOBAZ");
13324 @}
13325 @end smallexample
13326
13327 @noindent
13328 the marker id is composed of joining the first two arguments to the
13329 @code{trace_mark} call with a slash, which translates to:
13330
13331 @smallexample
13332 (@value{GDBP}) info static-tracepoint-markers
13333 Cnt Enb ID         Address            What
13334 1   n   ust/bar33  0x0000000000400ddc in main at stexample.c:22
13335          Data: "str %s"
13336 [etc...]
13337 @end smallexample
13338
13339 @noindent
13340 so you may probe the marker above with:
13341
13342 @smallexample
13343 (@value{GDBP}) strace -m ust/bar33
13344 @end smallexample
13345
13346 Static tracepoints accept an extra collect action --- @code{collect
13347 $_sdata}.  This collects arbitrary user data passed in the probe point
13348 call to the tracing library.  In the UST example above, you'll see
13349 that the third argument to @code{trace_mark} is a printf-like format
13350 string.  The user data is then the result of running that formating
13351 string against the following arguments.  Note that @code{info
13352 static-tracepoint-markers} command output lists that format string in
13353 the @samp{Data:} field.
13354
13355 You can inspect this data when analyzing the trace buffer, by printing
13356 the $_sdata variable like any other variable available to
13357 @value{GDBN}.  @xref{Tracepoint Actions,,Tracepoint Action Lists}.
13358
13359 @vindex $tpnum
13360 @cindex last tracepoint number
13361 @cindex recent tracepoint number
13362 @cindex tracepoint number
13363 The convenience variable @code{$tpnum} records the tracepoint number
13364 of the most recently set tracepoint.
13365
13366 @kindex delete tracepoint
13367 @cindex tracepoint deletion
13368 @item delete tracepoint @r{[}@var{num}@r{]}
13369 Permanently delete one or more tracepoints.  With no argument, the
13370 default is to delete all tracepoints.  Note that the regular
13371 @code{delete} command can remove tracepoints also.
13372
13373 Examples:
13374
13375 @smallexample
13376 (@value{GDBP}) @b{delete trace 1 2 3} // remove three tracepoints
13377
13378 (@value{GDBP}) @b{delete trace}       // remove all tracepoints
13379 @end smallexample
13380
13381 @noindent
13382 You can abbreviate this command as @code{del tr}.
13383 @end table
13384
13385 @node Enable and Disable Tracepoints
13386 @subsection Enable and Disable Tracepoints
13387
13388 These commands are deprecated; they are equivalent to plain @code{disable} and @code{enable}.
13389
13390 @table @code
13391 @kindex disable tracepoint
13392 @item disable tracepoint @r{[}@var{num}@r{]}
13393 Disable tracepoint @var{num}, or all tracepoints if no argument
13394 @var{num} is given.  A disabled tracepoint will have no effect during
13395 a trace experiment, but it is not forgotten.  You can re-enable
13396 a disabled tracepoint using the @code{enable tracepoint} command.
13397 If the command is issued during a trace experiment and the debug target
13398 has support for disabling tracepoints during a trace experiment, then the
13399 change will be effective immediately.  Otherwise, it will be applied to the
13400 next trace experiment.
13401
13402 @kindex enable tracepoint
13403 @item enable tracepoint @r{[}@var{num}@r{]}
13404 Enable tracepoint @var{num}, or all tracepoints.  If this command is
13405 issued during a trace experiment and the debug target supports enabling
13406 tracepoints during a trace experiment, then the enabled tracepoints will
13407 become effective immediately.  Otherwise, they will become effective the
13408 next time a trace experiment is run.
13409 @end table
13410
13411 @node Tracepoint Passcounts
13412 @subsection Tracepoint Passcounts
13413
13414 @table @code
13415 @kindex passcount
13416 @cindex tracepoint pass count
13417 @item passcount @r{[}@var{n} @r{[}@var{num}@r{]]}
13418 Set the @dfn{passcount} of a tracepoint.  The passcount is a way to
13419 automatically stop a trace experiment.  If a tracepoint's passcount is
13420 @var{n}, then the trace experiment will be automatically stopped on
13421 the @var{n}'th time that tracepoint is hit.  If the tracepoint number
13422 @var{num} is not specified, the @code{passcount} command sets the
13423 passcount of the most recently defined tracepoint.  If no passcount is
13424 given, the trace experiment will run until stopped explicitly by the
13425 user.
13426
13427 Examples:
13428
13429 @smallexample
13430 (@value{GDBP}) @b{passcount 5 2} // Stop on the 5th execution of
13431 @exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// tracepoint 2}
13432
13433 (@value{GDBP}) @b{passcount 12}  // Stop on the 12th execution of the
13434 @exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// most recently defined tracepoint.}
13435 (@value{GDBP}) @b{trace foo}
13436 (@value{GDBP}) @b{pass 3}
13437 (@value{GDBP}) @b{trace bar}
13438 (@value{GDBP}) @b{pass 2}
13439 (@value{GDBP}) @b{trace baz}
13440 (@value{GDBP}) @b{pass 1}        // Stop tracing when foo has been
13441 @exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// executed 3 times OR when bar has}
13442 @exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// been executed 2 times}
13443 @exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// OR when baz has been executed 1 time.}
13444 @end smallexample
13445 @end table
13446
13447 @node Tracepoint Conditions
13448 @subsection Tracepoint Conditions
13449 @cindex conditional tracepoints
13450 @cindex tracepoint conditions
13451
13452 The simplest sort of tracepoint collects data every time your program
13453 reaches a specified place.  You can also specify a @dfn{condition} for
13454 a tracepoint.  A condition is just a Boolean expression in your
13455 programming language (@pxref{Expressions, ,Expressions}).  A
13456 tracepoint with a condition evaluates the expression each time your
13457 program reaches it, and data collection happens only if the condition
13458 is true.
13459
13460 Tracepoint conditions can be specified when a tracepoint is set, by
13461 using @samp{if} in the arguments to the @code{trace} command.
13462 @xref{Create and Delete Tracepoints, ,Setting Tracepoints}.  They can
13463 also be set or changed at any time with the @code{condition} command,
13464 just as with breakpoints.
13465
13466 Unlike breakpoint conditions, @value{GDBN} does not actually evaluate
13467 the conditional expression itself.  Instead, @value{GDBN} encodes the
13468 expression into an agent expression (@pxref{Agent Expressions})
13469 suitable for execution on the target, independently of @value{GDBN}.
13470 Global variables become raw memory locations, locals become stack
13471 accesses, and so forth.
13472
13473 For instance, suppose you have a function that is usually called
13474 frequently, but should not be called after an error has occurred.  You
13475 could use the following tracepoint command to collect data about calls
13476 of that function that happen while the error code is propagating
13477 through the program; an unconditional tracepoint could end up
13478 collecting thousands of useless trace frames that you would have to
13479 search through.
13480
13481 @smallexample
13482 (@value{GDBP}) @kbd{trace normal_operation if errcode > 0}
13483 @end smallexample
13484
13485 @node Trace State Variables
13486 @subsection Trace State Variables
13487 @cindex trace state variables
13488
13489 A @dfn{trace state variable} is a special type of variable that is
13490 created and managed by target-side code.  The syntax is the same as
13491 that for GDB's convenience variables (a string prefixed with ``$''),
13492 but they are stored on the target.  They must be created explicitly,
13493 using a @code{tvariable} command.  They are always 64-bit signed
13494 integers.
13495
13496 Trace state variables are remembered by @value{GDBN}, and downloaded
13497 to the target along with tracepoint information when the trace
13498 experiment starts.  There are no intrinsic limits on the number of
13499 trace state variables, beyond memory limitations of the target.
13500
13501 @cindex convenience variables, and trace state variables
13502 Although trace state variables are managed by the target, you can use
13503 them in print commands and expressions as if they were convenience
13504 variables; @value{GDBN} will get the current value from the target
13505 while the trace experiment is running.  Trace state variables share
13506 the same namespace as other ``$'' variables, which means that you
13507 cannot have trace state variables with names like @code{$23} or
13508 @code{$pc}, nor can you have a trace state variable and a convenience
13509 variable with the same name.
13510
13511 @table @code
13512
13513 @item tvariable $@var{name} [ = @var{expression} ]
13514 @kindex tvariable
13515 The @code{tvariable} command creates a new trace state variable named
13516 @code{$@var{name}}, and optionally gives it an initial value of
13517 @var{expression}.  The @var{expression} is evaluated when this command is
13518 entered; the result will be converted to an integer if possible,
13519 otherwise @value{GDBN} will report an error. A subsequent
13520 @code{tvariable} command specifying the same name does not create a
13521 variable, but instead assigns the supplied initial value to the
13522 existing variable of that name, overwriting any previous initial
13523 value. The default initial value is 0.
13524
13525 @item info tvariables
13526 @kindex info tvariables
13527 List all the trace state variables along with their initial values.
13528 Their current values may also be displayed, if the trace experiment is
13529 currently running.
13530
13531 @item delete tvariable @r{[} $@var{name} @dots{} @r{]}
13532 @kindex delete tvariable
13533 Delete the given trace state variables, or all of them if no arguments
13534 are specified.
13535
13536 @end table
13537
13538 @node Tracepoint Actions
13539 @subsection Tracepoint Action Lists
13540
13541 @table @code
13542 @kindex actions
13543 @cindex tracepoint actions
13544 @item actions @r{[}@var{num}@r{]}
13545 This command will prompt for a list of actions to be taken when the
13546 tracepoint is hit.  If the tracepoint number @var{num} is not
13547 specified, this command sets the actions for the one that was most
13548 recently defined (so that you can define a tracepoint and then say
13549 @code{actions} without bothering about its number).  You specify the
13550 actions themselves on the following lines, one action at a time, and
13551 terminate the actions list with a line containing just @code{end}.  So
13552 far, the only defined actions are @code{collect}, @code{teval}, and
13553 @code{while-stepping}.
13554
13555 @code{actions} is actually equivalent to @code{commands} (@pxref{Break
13556 Commands, ,Breakpoint Command Lists}), except that only the defined
13557 actions are allowed; any other @value{GDBN} command is rejected.
13558
13559 @cindex remove actions from a tracepoint
13560 To remove all actions from a tracepoint, type @samp{actions @var{num}}
13561 and follow it immediately with @samp{end}.
13562
13563 @smallexample
13564 (@value{GDBP}) @b{collect @var{data}} // collect some data
13565
13566 (@value{GDBP}) @b{while-stepping 5} // single-step 5 times, collect data
13567
13568 (@value{GDBP}) @b{end}              // signals the end of actions.
13569 @end smallexample
13570
13571 In the following example, the action list begins with @code{collect}
13572 commands indicating the things to be collected when the tracepoint is
13573 hit.  Then, in order to single-step and collect additional data
13574 following the tracepoint, a @code{while-stepping} command is used,
13575 followed by the list of things to be collected after each step in a
13576 sequence of single steps.  The @code{while-stepping} command is
13577 terminated by its own separate @code{end} command.  Lastly, the action
13578 list is terminated by an @code{end} command.
13579
13580 @smallexample
13581 (@value{GDBP}) @b{trace foo}
13582 (@value{GDBP}) @b{actions}
13583 Enter actions for tracepoint 1, one per line:
13584 > collect bar,baz
13585 > collect $regs
13586 > while-stepping 12
13587   > collect $pc, arr[i]
13588   > end
13589 end
13590 @end smallexample
13591
13592 @kindex collect @r{(tracepoints)}
13593 @item collect@r{[}/@var{mods}@r{]} @var{expr1}, @var{expr2}, @dots{}
13594 Collect values of the given expressions when the tracepoint is hit.
13595 This command accepts a comma-separated list of any valid expressions.
13596 In addition to global, static, or local variables, the following
13597 special arguments are supported:
13598
13599 @table @code
13600 @item $regs
13601 Collect all registers.
13602
13603 @item $args
13604 Collect all function arguments.
13605
13606 @item $locals
13607 Collect all local variables.
13608
13609 @item $_ret
13610 Collect the return address.  This is helpful if you want to see more
13611 of a backtrace.
13612
13613 @emph{Note:} The return address location can not always be reliably
13614 determined up front, and the wrong address / registers may end up
13615 collected instead.  On some architectures the reliability is higher
13616 for tracepoints at function entry, while on others it's the opposite.
13617 When this happens, backtracing will stop because the return address is
13618 found unavailable (unless another collect rule happened to match it).
13619
13620 @item $_probe_argc
13621 Collects the number of arguments from the static probe at which the
13622 tracepoint is located.
13623 @xref{Static Probe Points}.
13624
13625 @item $_probe_arg@var{n}
13626 @var{n} is an integer between 0 and 11.  Collects the @var{n}th argument
13627 from the static probe at which the tracepoint is located.
13628 @xref{Static Probe Points}.
13629
13630 @item $_sdata
13631 @vindex $_sdata@r{, collect}
13632 Collect static tracepoint marker specific data.  Only available for
13633 static tracepoints.  @xref{Tracepoint Actions,,Tracepoint Action
13634 Lists}.  On the UST static tracepoints library backend, an
13635 instrumentation point resembles a @code{printf} function call.  The
13636 tracing library is able to collect user specified data formatted to a
13637 character string using the format provided by the programmer that
13638 instrumented the program.  Other backends have similar mechanisms.
13639 Here's an example of a UST marker call:
13640
13641 @smallexample
13642  const char master_name[] = "$your_name";
13643  trace_mark(channel1, marker1, "hello %s", master_name)
13644 @end smallexample
13645
13646 In this case, collecting @code{$_sdata} collects the string
13647 @samp{hello $yourname}.  When analyzing the trace buffer, you can
13648 inspect @samp{$_sdata} like any other variable available to
13649 @value{GDBN}.
13650 @end table
13651
13652 You can give several consecutive @code{collect} commands, each one
13653 with a single argument, or one @code{collect} command with several
13654 arguments separated by commas; the effect is the same.
13655
13656 The optional @var{mods} changes the usual handling of the arguments.
13657 @code{s} requests that pointers to chars be handled as strings, in
13658 particular collecting the contents of the memory being pointed at, up
13659 to the first zero.  The upper bound is by default the value of the
13660 @code{print elements} variable; if @code{s} is followed by a decimal
13661 number, that is the upper bound instead.  So for instance
13662 @samp{collect/s25 mystr} collects as many as 25 characters at
13663 @samp{mystr}.
13664
13665 The command @code{info scope} (@pxref{Symbols, info scope}) is
13666 particularly useful for figuring out what data to collect.
13667
13668 @kindex teval @r{(tracepoints)}
13669 @item teval @var{expr1}, @var{expr2}, @dots{}
13670 Evaluate the given expressions when the tracepoint is hit.  This
13671 command accepts a comma-separated list of expressions.  The results
13672 are discarded, so this is mainly useful for assigning values to trace
13673 state variables (@pxref{Trace State Variables}) without adding those
13674 values to the trace buffer, as would be the case if the @code{collect}
13675 action were used.
13676
13677 @kindex while-stepping @r{(tracepoints)}
13678 @item while-stepping @var{n}
13679 Perform @var{n} single-step instruction traces after the tracepoint,
13680 collecting new data after each step.  The @code{while-stepping}
13681 command is followed by the list of what to collect while stepping
13682 (followed by its own @code{end} command):
13683
13684 @smallexample
13685 > while-stepping 12
13686   > collect $regs, myglobal
13687   > end
13688 >
13689 @end smallexample
13690
13691 @noindent
13692 Note that @code{$pc} is not automatically collected by
13693 @code{while-stepping}; you need to explicitly collect that register if
13694 you need it.  You may abbreviate @code{while-stepping} as @code{ws} or
13695 @code{stepping}.
13696
13697 @item set default-collect @var{expr1}, @var{expr2}, @dots{}
13698 @kindex set default-collect
13699 @cindex default collection action
13700 This variable is a list of expressions to collect at each tracepoint
13701 hit.  It is effectively an additional @code{collect} action prepended
13702 to every tracepoint action list.  The expressions are parsed
13703 individually for each tracepoint, so for instance a variable named
13704 @code{xyz} may be interpreted as a global for one tracepoint, and a
13705 local for another, as appropriate to the tracepoint's location.
13706
13707 @item show default-collect
13708 @kindex show default-collect
13709 Show the list of expressions that are collected by default at each
13710 tracepoint hit.
13711
13712 @end table
13713
13714 @node Listing Tracepoints
13715 @subsection Listing Tracepoints
13716
13717 @table @code
13718 @kindex info tracepoints @r{[}@var{n}@dots{}@r{]}
13719 @kindex info tp @r{[}@var{n}@dots{}@r{]}
13720 @cindex information about tracepoints
13721 @item info tracepoints @r{[}@var{num}@dots{}@r{]}
13722 Display information about the tracepoint @var{num}.  If you don't
13723 specify a tracepoint number, displays information about all the
13724 tracepoints defined so far.  The format is similar to that used for
13725 @code{info breakpoints}; in fact, @code{info tracepoints} is the same
13726 command, simply restricting itself to tracepoints.
13727
13728 A tracepoint's listing may include additional information specific to
13729 tracing:
13730
13731 @itemize @bullet
13732 @item
13733 its passcount as given by the @code{passcount @var{n}} command
13734
13735 @item
13736 the state about installed on target of each location
13737 @end itemize
13738
13739 @smallexample
13740 (@value{GDBP}) @b{info trace}
13741 Num     Type           Disp Enb Address    What
13742 1       tracepoint     keep y   0x0804ab57 in foo() at main.cxx:7
13743         while-stepping 20
13744           collect globfoo, $regs
13745         end
13746         collect globfoo2
13747         end
13748         pass count 1200 
13749 2       tracepoint     keep y   <MULTIPLE>
13750         collect $eip
13751 2.1                         y     0x0804859c in func4 at change-loc.h:35
13752         installed on target
13753 2.2                         y     0xb7ffc480 in func4 at change-loc.h:35
13754         installed on target
13755 2.3                         y     <PENDING>  set_tracepoint
13756 3       tracepoint     keep y   0x080485b1 in foo at change-loc.c:29
13757         not installed on target
13758 (@value{GDBP})
13759 @end smallexample
13760
13761 @noindent
13762 This command can be abbreviated @code{info tp}.
13763 @end table
13764
13765 @node Listing Static Tracepoint Markers
13766 @subsection Listing Static Tracepoint Markers
13767
13768 @table @code
13769 @kindex info static-tracepoint-markers
13770 @cindex information about static tracepoint markers
13771 @item info static-tracepoint-markers
13772 Display information about all static tracepoint markers defined in the
13773 program.
13774
13775 For each marker, the following columns are printed:
13776
13777 @table @emph
13778 @item Count
13779 An incrementing counter, output to help readability.  This is not a
13780 stable identifier.
13781 @item ID
13782 The marker ID, as reported by the target.
13783 @item Enabled or Disabled
13784 Probed markers are tagged with @samp{y}.  @samp{n} identifies marks
13785 that are not enabled.
13786 @item Address
13787 Where the marker is in your program, as a memory address.
13788 @item What
13789 Where the marker is in the source for your program, as a file and line
13790 number.  If the debug information included in the program does not
13791 allow @value{GDBN} to locate the source of the marker, this column
13792 will be left blank.
13793 @end table
13794
13795 @noindent
13796 In addition, the following information may be printed for each marker:
13797
13798 @table @emph
13799 @item Data
13800 User data passed to the tracing library by the marker call.  In the
13801 UST backend, this is the format string passed as argument to the
13802 marker call.
13803 @item Static tracepoints probing the marker
13804 The list of static tracepoints attached to the marker.
13805 @end table
13806
13807 @smallexample
13808 (@value{GDBP}) info static-tracepoint-markers
13809 Cnt ID         Enb Address            What
13810 1   ust/bar2   y   0x0000000000400e1a in main at stexample.c:25
13811      Data: number1 %d number2 %d
13812      Probed by static tracepoints: #2
13813 2   ust/bar33  n   0x0000000000400c87 in main at stexample.c:24
13814      Data: str %s
13815 (@value{GDBP})
13816 @end smallexample
13817 @end table
13818
13819 @node Starting and Stopping Trace Experiments
13820 @subsection Starting and Stopping Trace Experiments
13821
13822 @table @code
13823 @kindex tstart [ @var{notes} ]
13824 @cindex start a new trace experiment
13825 @cindex collected data discarded
13826 @item tstart
13827 This command starts the trace experiment, and begins collecting data.
13828 It has the side effect of discarding all the data collected in the
13829 trace buffer during the previous trace experiment.  If any arguments
13830 are supplied, they are taken as a note and stored with the trace
13831 experiment's state.  The notes may be arbitrary text, and are
13832 especially useful with disconnected tracing in a multi-user context;
13833 the notes can explain what the trace is doing, supply user contact
13834 information, and so forth.
13835
13836 @kindex tstop [ @var{notes} ]
13837 @cindex stop a running trace experiment
13838 @item tstop
13839 This command stops the trace experiment.  If any arguments are
13840 supplied, they are recorded with the experiment as a note.  This is
13841 useful if you are stopping a trace started by someone else, for
13842 instance if the trace is interfering with the system's behavior and
13843 needs to be stopped quickly.
13844
13845 @strong{Note}: a trace experiment and data collection may stop
13846 automatically if any tracepoint's passcount is reached
13847 (@pxref{Tracepoint Passcounts}), or if the trace buffer becomes full.
13848
13849 @kindex tstatus
13850 @cindex status of trace data collection
13851 @cindex trace experiment, status of
13852 @item tstatus
13853 This command displays the status of the current trace data
13854 collection.
13855 @end table
13856
13857 Here is an example of the commands we described so far:
13858
13859 @smallexample
13860 (@value{GDBP}) @b{trace gdb_c_test}
13861 (@value{GDBP}) @b{actions}
13862 Enter actions for tracepoint #1, one per line.
13863 > collect $regs,$locals,$args
13864 > while-stepping 11
13865   > collect $regs
13866   > end
13867 > end
13868 (@value{GDBP}) @b{tstart}
13869         [time passes @dots{}]
13870 (@value{GDBP}) @b{tstop}
13871 @end smallexample
13872
13873 @anchor{disconnected tracing}
13874 @cindex disconnected tracing
13875 You can choose to continue running the trace experiment even if
13876 @value{GDBN} disconnects from the target, voluntarily or
13877 involuntarily.  For commands such as @code{detach}, the debugger will
13878 ask what you want to do with the trace.  But for unexpected
13879 terminations (@value{GDBN} crash, network outage), it would be
13880 unfortunate to lose hard-won trace data, so the variable
13881 @code{disconnected-tracing} lets you decide whether the trace should
13882 continue running without @value{GDBN}.
13883
13884 @table @code
13885 @item set disconnected-tracing on
13886 @itemx set disconnected-tracing off
13887 @kindex set disconnected-tracing
13888 Choose whether a tracing run should continue to run if @value{GDBN}
13889 has disconnected from the target.  Note that @code{detach} or
13890 @code{quit} will ask you directly what to do about a running trace no
13891 matter what this variable's setting, so the variable is mainly useful
13892 for handling unexpected situations, such as loss of the network.
13893
13894 @item show disconnected-tracing
13895 @kindex show disconnected-tracing
13896 Show the current choice for disconnected tracing.
13897
13898 @end table
13899
13900 When you reconnect to the target, the trace experiment may or may not
13901 still be running; it might have filled the trace buffer in the
13902 meantime, or stopped for one of the other reasons.  If it is running,
13903 it will continue after reconnection.
13904
13905 Upon reconnection, the target will upload information about the
13906 tracepoints in effect.  @value{GDBN} will then compare that
13907 information to the set of tracepoints currently defined, and attempt
13908 to match them up, allowing for the possibility that the numbers may
13909 have changed due to creation and deletion in the meantime.  If one of
13910 the target's tracepoints does not match any in @value{GDBN}, the
13911 debugger will create a new tracepoint, so that you have a number with
13912 which to specify that tracepoint.  This matching-up process is
13913 necessarily heuristic, and it may result in useless tracepoints being
13914 created; you may simply delete them if they are of no use.
13915
13916 @cindex circular trace buffer
13917 If your target agent supports a @dfn{circular trace buffer}, then you
13918 can run a trace experiment indefinitely without filling the trace
13919 buffer; when space runs out, the agent deletes already-collected trace
13920 frames, oldest first, until there is enough room to continue
13921 collecting.  This is especially useful if your tracepoints are being
13922 hit too often, and your trace gets terminated prematurely because the
13923 buffer is full.  To ask for a circular trace buffer, simply set
13924 @samp{circular-trace-buffer} to on.  You can set this at any time,
13925 including during tracing; if the agent can do it, it will change
13926 buffer handling on the fly, otherwise it will not take effect until
13927 the next run.
13928
13929 @table @code
13930 @item set circular-trace-buffer on
13931 @itemx set circular-trace-buffer off
13932 @kindex set circular-trace-buffer
13933 Choose whether a tracing run should use a linear or circular buffer
13934 for trace data.  A linear buffer will not lose any trace data, but may
13935 fill up prematurely, while a circular buffer will discard old trace
13936 data, but it will have always room for the latest tracepoint hits.
13937
13938 @item show circular-trace-buffer
13939 @kindex show circular-trace-buffer
13940 Show the current choice for the trace buffer.  Note that this may not
13941 match the agent's current buffer handling, nor is it guaranteed to
13942 match the setting that might have been in effect during a past run,
13943 for instance if you are looking at frames from a trace file.
13944
13945 @end table
13946
13947 @table @code
13948 @item set trace-buffer-size @var{n}
13949 @itemx set trace-buffer-size unlimited
13950 @kindex set trace-buffer-size
13951 Request that the target use a trace buffer of @var{n} bytes.  Not all
13952 targets will honor the request; they may have a compiled-in size for
13953 the trace buffer, or some other limitation.  Set to a value of
13954 @code{unlimited} or @code{-1} to let the target use whatever size it
13955 likes.  This is also the default.
13956
13957 @item show trace-buffer-size
13958 @kindex show trace-buffer-size
13959 Show the current requested size for the trace buffer.  Note that this
13960 will only match the actual size if the target supports size-setting,
13961 and was able to handle the requested size.  For instance, if the
13962 target can only change buffer size between runs, this variable will
13963 not reflect the change until the next run starts.  Use @code{tstatus}
13964 to get a report of the actual buffer size.
13965 @end table
13966
13967 @table @code
13968 @item set trace-user @var{text}
13969 @kindex set trace-user
13970
13971 @item show trace-user
13972 @kindex show trace-user
13973
13974 @item set trace-notes @var{text}
13975 @kindex set trace-notes
13976 Set the trace run's notes.
13977
13978 @item show trace-notes
13979 @kindex show trace-notes
13980 Show the trace run's notes.
13981
13982 @item set trace-stop-notes @var{text}
13983 @kindex set trace-stop-notes
13984 Set the trace run's stop notes.  The handling of the note is as for
13985 @code{tstop} arguments; the set command is convenient way to fix a
13986 stop note that is mistaken or incomplete.
13987
13988 @item show trace-stop-notes
13989 @kindex show trace-stop-notes
13990 Show the trace run's stop notes.
13991
13992 @end table
13993
13994 @node Tracepoint Restrictions
13995 @subsection Tracepoint Restrictions
13996
13997 @cindex tracepoint restrictions
13998 There are a number of restrictions on the use of tracepoints.  As
13999 described above, tracepoint data gathering occurs on the target
14000 without interaction from @value{GDBN}.  Thus the full capabilities of
14001 the debugger are not available during data gathering, and then at data
14002 examination time, you will be limited by only having what was
14003 collected.  The following items describe some common problems, but it
14004 is not exhaustive, and you may run into additional difficulties not
14005 mentioned here.
14006
14007 @itemize @bullet
14008
14009 @item
14010 Tracepoint expressions are intended to gather objects (lvalues).  Thus
14011 the full flexibility of GDB's expression evaluator is not available.
14012 You cannot call functions, cast objects to aggregate types, access
14013 convenience variables or modify values (except by assignment to trace
14014 state variables).  Some language features may implicitly call
14015 functions (for instance Objective-C fields with accessors), and therefore
14016 cannot be collected either.
14017
14018 @item
14019 Collection of local variables, either individually or in bulk with
14020 @code{$locals} or @code{$args}, during @code{while-stepping} may
14021 behave erratically.  The stepping action may enter a new scope (for
14022 instance by stepping into a function), or the location of the variable
14023 may change (for instance it is loaded into a register).  The
14024 tracepoint data recorded uses the location information for the
14025 variables that is correct for the tracepoint location.  When the
14026 tracepoint is created, it is not possible, in general, to determine
14027 where the steps of a @code{while-stepping} sequence will advance the
14028 program---particularly if a conditional branch is stepped.
14029
14030 @item
14031 Collection of an incompletely-initialized or partially-destroyed object
14032 may result in something that @value{GDBN} cannot display, or displays
14033 in a misleading way.
14034
14035 @item
14036 When @value{GDBN} displays a pointer to character it automatically
14037 dereferences the pointer to also display characters of the string
14038 being pointed to.  However, collecting the pointer during tracing does
14039 not automatically collect the string.  You need to explicitly
14040 dereference the pointer and provide size information if you want to
14041 collect not only the pointer, but the memory pointed to.  For example,
14042 @code{*ptr@@50} can be used to collect the 50 element array pointed to
14043 by @code{ptr}.
14044
14045 @item
14046 It is not possible to collect a complete stack backtrace at a
14047 tracepoint.  Instead, you may collect the registers and a few hundred
14048 bytes from the stack pointer with something like @code{*(unsigned char *)$esp@@300}
14049 (adjust to use the name of the actual stack pointer register on your
14050 target architecture, and the amount of stack you wish to capture).
14051 Then the @code{backtrace} command will show a partial backtrace when
14052 using a trace frame.  The number of stack frames that can be examined
14053 depends on the sizes of the frames in the collected stack.  Note that
14054 if you ask for a block so large that it goes past the bottom of the
14055 stack, the target agent may report an error trying to read from an
14056 invalid address.
14057
14058 @item
14059 If you do not collect registers at a tracepoint, @value{GDBN} can
14060 infer that the value of @code{$pc} must be the same as the address of
14061 the tracepoint and use that when you are looking at a trace frame
14062 for that tracepoint.  However, this cannot work if the tracepoint has
14063 multiple locations (for instance if it was set in a function that was
14064 inlined), or if it has a @code{while-stepping} loop.  In those cases
14065 @value{GDBN} will warn you that it can't infer @code{$pc}, and default
14066 it to zero.
14067
14068 @end itemize
14069
14070 @node Analyze Collected Data
14071 @section Using the Collected Data
14072
14073 After the tracepoint experiment ends, you use @value{GDBN} commands
14074 for examining the trace data.  The basic idea is that each tracepoint
14075 collects a trace @dfn{snapshot} every time it is hit and another
14076 snapshot every time it single-steps.  All these snapshots are
14077 consecutively numbered from zero and go into a buffer, and you can
14078 examine them later.  The way you examine them is to @dfn{focus} on a
14079 specific trace snapshot.  When the remote stub is focused on a trace
14080 snapshot, it will respond to all @value{GDBN} requests for memory and
14081 registers by reading from the buffer which belongs to that snapshot,
14082 rather than from @emph{real} memory or registers of the program being
14083 debugged.  This means that @strong{all} @value{GDBN} commands
14084 (@code{print}, @code{info registers}, @code{backtrace}, etc.) will
14085 behave as if we were currently debugging the program state as it was
14086 when the tracepoint occurred.  Any requests for data that are not in
14087 the buffer will fail.
14088
14089 @menu
14090 * tfind::                       How to select a trace snapshot
14091 * tdump::                       How to display all data for a snapshot
14092 * save tracepoints::            How to save tracepoints for a future run
14093 @end menu
14094
14095 @node tfind
14096 @subsection @code{tfind @var{n}}
14097
14098 @kindex tfind
14099 @cindex select trace snapshot
14100 @cindex find trace snapshot
14101 The basic command for selecting a trace snapshot from the buffer is
14102 @code{tfind @var{n}}, which finds trace snapshot number @var{n},
14103 counting from zero.  If no argument @var{n} is given, the next
14104 snapshot is selected.
14105
14106 Here are the various forms of using the @code{tfind} command.
14107
14108 @table @code
14109 @item tfind start
14110 Find the first snapshot in the buffer.  This is a synonym for
14111 @code{tfind 0} (since 0 is the number of the first snapshot).
14112
14113 @item tfind none
14114 Stop debugging trace snapshots, resume @emph{live} debugging.
14115
14116 @item tfind end
14117 Same as @samp{tfind none}.
14118
14119 @item tfind
14120 No argument means find the next trace snapshot or find the first
14121 one if no trace snapshot is selected.
14122
14123 @item tfind -
14124 Find the previous trace snapshot before the current one.  This permits
14125 retracing earlier steps.
14126
14127 @item tfind tracepoint @var{num}
14128 Find the next snapshot associated with tracepoint @var{num}.  Search
14129 proceeds forward from the last examined trace snapshot.  If no
14130 argument @var{num} is given, it means find the next snapshot collected
14131 for the same tracepoint as the current snapshot.
14132
14133 @item tfind pc @var{addr}
14134 Find the next snapshot associated with the value @var{addr} of the
14135 program counter.  Search proceeds forward from the last examined trace
14136 snapshot.  If no argument @var{addr} is given, it means find the next
14137 snapshot with the same value of PC as the current snapshot.
14138
14139 @item tfind outside @var{addr1}, @var{addr2}
14140 Find the next snapshot whose PC is outside the given range of
14141 addresses (exclusive).
14142
14143 @item tfind range @var{addr1}, @var{addr2}
14144 Find the next snapshot whose PC is between @var{addr1} and
14145 @var{addr2} (inclusive).
14146
14147 @item tfind line @r{[}@var{file}:@r{]}@var{n}
14148 Find the next snapshot associated with the source line @var{n}.  If
14149 the optional argument @var{file} is given, refer to line @var{n} in
14150 that source file.  Search proceeds forward from the last examined
14151 trace snapshot.  If no argument @var{n} is given, it means find the
14152 next line other than the one currently being examined; thus saying
14153 @code{tfind line} repeatedly can appear to have the same effect as
14154 stepping from line to line in a @emph{live} debugging session.
14155 @end table
14156
14157 The default arguments for the @code{tfind} commands are specifically
14158 designed to make it easy to scan through the trace buffer.  For
14159 instance, @code{tfind} with no argument selects the next trace
14160 snapshot, and @code{tfind -} with no argument selects the previous
14161 trace snapshot.  So, by giving one @code{tfind} command, and then
14162 simply hitting @key{RET} repeatedly you can examine all the trace
14163 snapshots in order.  Or, by saying @code{tfind -} and then hitting
14164 @key{RET} repeatedly you can examine the snapshots in reverse order.
14165 The @code{tfind line} command with no argument selects the snapshot
14166 for the next source line executed.  The @code{tfind pc} command with
14167 no argument selects the next snapshot with the same program counter
14168 (PC) as the current frame.  The @code{tfind tracepoint} command with
14169 no argument selects the next trace snapshot collected by the same
14170 tracepoint as the current one.
14171
14172 In addition to letting you scan through the trace buffer manually,
14173 these commands make it easy to construct @value{GDBN} scripts that
14174 scan through the trace buffer and print out whatever collected data
14175 you are interested in.  Thus, if we want to examine the PC, FP, and SP
14176 registers from each trace frame in the buffer, we can say this:
14177
14178 @smallexample
14179 (@value{GDBP}) @b{tfind start}
14180 (@value{GDBP}) @b{while ($trace_frame != -1)}
14181 > printf "Frame %d, PC = %08X, SP = %08X, FP = %08X\n", \
14182           $trace_frame, $pc, $sp, $fp
14183 > tfind
14184 > end
14185
14186 Frame 0, PC = 0020DC64, SP = 0030BF3C, FP = 0030BF44
14187 Frame 1, PC = 0020DC6C, SP = 0030BF38, FP = 0030BF44
14188 Frame 2, PC = 0020DC70, SP = 0030BF34, FP = 0030BF44
14189 Frame 3, PC = 0020DC74, SP = 0030BF30, FP = 0030BF44
14190 Frame 4, PC = 0020DC78, SP = 0030BF2C, FP = 0030BF44
14191 Frame 5, PC = 0020DC7C, SP = 0030BF28, FP = 0030BF44
14192 Frame 6, PC = 0020DC80, SP = 0030BF24, FP = 0030BF44
14193 Frame 7, PC = 0020DC84, SP = 0030BF20, FP = 0030BF44
14194 Frame 8, PC = 0020DC88, SP = 0030BF1C, FP = 0030BF44
14195 Frame 9, PC = 0020DC8E, SP = 0030BF18, FP = 0030BF44
14196 Frame 10, PC = 00203F6C, SP = 0030BE3C, FP = 0030BF14
14197 @end smallexample
14198
14199 Or, if we want to examine the variable @code{X} at each source line in
14200 the buffer:
14201
14202 @smallexample
14203 (@value{GDBP}) @b{tfind start}
14204 (@value{GDBP}) @b{while ($trace_frame != -1)}
14205 > printf "Frame %d, X == %d\n", $trace_frame, X
14206 > tfind line
14207 > end
14208
14209 Frame 0, X = 1
14210 Frame 7, X = 2
14211 Frame 13, X = 255
14212 @end smallexample
14213
14214 @node tdump
14215 @subsection @code{tdump}
14216 @kindex tdump
14217 @cindex dump all data collected at tracepoint
14218 @cindex tracepoint data, display
14219
14220 This command takes no arguments.  It prints all the data collected at
14221 the current trace snapshot.
14222
14223 @smallexample
14224 (@value{GDBP}) @b{trace 444}
14225 (@value{GDBP}) @b{actions}
14226 Enter actions for tracepoint #2, one per line:
14227 > collect $regs, $locals, $args, gdb_long_test
14228 > end
14229
14230 (@value{GDBP}) @b{tstart}
14231
14232 (@value{GDBP}) @b{tfind line 444}
14233 #0  gdb_test (p1=0x11, p2=0x22, p3=0x33, p4=0x44, p5=0x55, p6=0x66)
14234 at gdb_test.c:444
14235 444        printp( "%s: arguments = 0x%X 0x%X 0x%X 0x%X 0x%X 0x%X\n", )
14236
14237 (@value{GDBP}) @b{tdump}
14238 Data collected at tracepoint 2, trace frame 1:
14239 d0             0xc4aa0085       -995491707
14240 d1             0x18     24
14241 d2             0x80     128
14242 d3             0x33     51
14243 d4             0x71aea3d        119204413
14244 d5             0x22     34
14245 d6             0xe0     224
14246 d7             0x380035 3670069
14247 a0             0x19e24a 1696330
14248 a1             0x3000668        50333288
14249 a2             0x100    256
14250 a3             0x322000 3284992
14251 a4             0x3000698        50333336
14252 a5             0x1ad3cc 1758156
14253 fp             0x30bf3c 0x30bf3c
14254 sp             0x30bf34 0x30bf34
14255 ps             0x0      0
14256 pc             0x20b2c8 0x20b2c8
14257 fpcontrol      0x0      0
14258 fpstatus       0x0      0
14259 fpiaddr        0x0      0
14260 p = 0x20e5b4 "gdb-test"
14261 p1 = (void *) 0x11
14262 p2 = (void *) 0x22
14263 p3 = (void *) 0x33
14264 p4 = (void *) 0x44
14265 p5 = (void *) 0x55
14266 p6 = (void *) 0x66
14267 gdb_long_test = 17 '\021'
14268
14269 (@value{GDBP})
14270 @end smallexample
14271
14272 @code{tdump} works by scanning the tracepoint's current collection
14273 actions and printing the value of each expression listed.  So
14274 @code{tdump} can fail, if after a run, you change the tracepoint's
14275 actions to mention variables that were not collected during the run.
14276
14277 Also, for tracepoints with @code{while-stepping} loops, @code{tdump}
14278 uses the collected value of @code{$pc} to distinguish between trace
14279 frames that were collected at the tracepoint hit, and frames that were
14280 collected while stepping.  This allows it to correctly choose whether
14281 to display the basic list of collections, or the collections from the
14282 body of the while-stepping loop.  However, if @code{$pc} was not collected,
14283 then @code{tdump} will always attempt to dump using the basic collection
14284 list, and may fail if a while-stepping frame does not include all the
14285 same data that is collected at the tracepoint hit.
14286 @c This is getting pretty arcane, example would be good.
14287
14288 @node save tracepoints
14289 @subsection @code{save tracepoints @var{filename}}
14290 @kindex save tracepoints
14291 @kindex save-tracepoints
14292 @cindex save tracepoints for future sessions
14293
14294 This command saves all current tracepoint definitions together with
14295 their actions and passcounts, into a file @file{@var{filename}}
14296 suitable for use in a later debugging session.  To read the saved
14297 tracepoint definitions, use the @code{source} command (@pxref{Command
14298 Files}).  The @w{@code{save-tracepoints}} command is a deprecated
14299 alias for @w{@code{save tracepoints}}
14300
14301 @node Tracepoint Variables
14302 @section Convenience Variables for Tracepoints
14303 @cindex tracepoint variables
14304 @cindex convenience variables for tracepoints
14305
14306 @table @code
14307 @vindex $trace_frame
14308 @item (int) $trace_frame
14309 The current trace snapshot (a.k.a.@: @dfn{frame}) number, or -1 if no
14310 snapshot is selected.
14311
14312 @vindex $tracepoint
14313 @item (int) $tracepoint
14314 The tracepoint for the current trace snapshot.
14315
14316 @vindex $trace_line
14317 @item (int) $trace_line
14318 The line number for the current trace snapshot.
14319
14320 @vindex $trace_file
14321 @item (char []) $trace_file
14322 The source file for the current trace snapshot.
14323
14324 @vindex $trace_func
14325 @item (char []) $trace_func
14326 The name of the function containing @code{$tracepoint}.
14327 @end table
14328
14329 Note: @code{$trace_file} is not suitable for use in @code{printf},
14330 use @code{output} instead.
14331
14332 Here's a simple example of using these convenience variables for
14333 stepping through all the trace snapshots and printing some of their
14334 data.  Note that these are not the same as trace state variables,
14335 which are managed by the target.
14336
14337 @smallexample
14338 (@value{GDBP}) @b{tfind start}
14339
14340 (@value{GDBP}) @b{while $trace_frame != -1}
14341 > output $trace_file
14342 > printf ", line %d (tracepoint #%d)\n", $trace_line, $tracepoint
14343 > tfind
14344 > end
14345 @end smallexample
14346
14347 @node Trace Files
14348 @section Using Trace Files
14349 @cindex trace files
14350
14351 In some situations, the target running a trace experiment may no
14352 longer be available; perhaps it crashed, or the hardware was needed
14353 for a different activity.  To handle these cases, you can arrange to
14354 dump the trace data into a file, and later use that file as a source
14355 of trace data, via the @code{target tfile} command.
14356
14357 @table @code
14358
14359 @kindex tsave
14360 @item tsave [ -r ] @var{filename}
14361 @itemx tsave [-ctf] @var{dirname}
14362 Save the trace data to @var{filename}.  By default, this command
14363 assumes that @var{filename} refers to the host filesystem, so if
14364 necessary @value{GDBN} will copy raw trace data up from the target and
14365 then save it.  If the target supports it, you can also supply the
14366 optional argument @code{-r} (``remote'') to direct the target to save
14367 the data directly into @var{filename} in its own filesystem, which may be
14368 more efficient if the trace buffer is very large.  (Note, however, that
14369 @code{target tfile} can only read from files accessible to the host.)
14370 By default, this command will save trace frame in tfile format.
14371 You can supply the optional argument @code{-ctf} to save data in CTF
14372 format.  The @dfn{Common Trace Format} (CTF) is proposed as a trace format
14373 that can be shared by multiple debugging and tracing tools.  Please go to
14374 @indicateurl{http://www.efficios.com/ctf} to get more information.
14375
14376 @kindex target tfile
14377 @kindex tfile
14378 @kindex target ctf
14379 @kindex ctf
14380 @item target tfile @var{filename}
14381 @itemx target ctf @var{dirname}
14382 Use the file named @var{filename} or directory named @var{dirname} as
14383 a source of trace data.  Commands that examine data work as they do with
14384 a live target, but it is not possible to run any new trace experiments.
14385 @code{tstatus} will report the state of the trace run at the moment
14386 the data was saved, as well as the current trace frame you are examining.
14387 Both @var{filename} and @var{dirname} must be on a filesystem accessible to
14388 the host.
14389
14390 @smallexample
14391 (@value{GDBP}) target ctf ctf.ctf
14392 (@value{GDBP}) tfind
14393 Found trace frame 0, tracepoint 2
14394 39            ++a;  /* set tracepoint 1 here */
14395 (@value{GDBP}) tdump
14396 Data collected at tracepoint 2, trace frame 0:
14397 i = 0
14398 a = 0
14399 b = 1 '\001'
14400 c = @{"123", "456", "789", "123", "456", "789"@}
14401 d = @{@{@{a = 1, b = 2@}, @{a = 3, b = 4@}@}, @{@{a = 5, b = 6@}, @{a = 7, b = 8@}@}@}
14402 (@value{GDBP}) p b
14403 $1 = 1
14404 @end smallexample
14405
14406 @end table
14407
14408 @node Overlays
14409 @chapter Debugging Programs That Use Overlays
14410 @cindex overlays
14411
14412 If your program is too large to fit completely in your target system's
14413 memory, you can sometimes use @dfn{overlays} to work around this
14414 problem.  @value{GDBN} provides some support for debugging programs that
14415 use overlays.
14416
14417 @menu
14418 * How Overlays Work::              A general explanation of overlays.
14419 * Overlay Commands::               Managing overlays in @value{GDBN}.
14420 * Automatic Overlay Debugging::    @value{GDBN} can find out which overlays are
14421                                    mapped by asking the inferior.
14422 * Overlay Sample Program::         A sample program using overlays.
14423 @end menu
14424
14425 @node How Overlays Work
14426 @section How Overlays Work
14427 @cindex mapped overlays
14428 @cindex unmapped overlays
14429 @cindex load address, overlay's
14430 @cindex mapped address
14431 @cindex overlay area
14432
14433 Suppose you have a computer whose instruction address space is only 64
14434 kilobytes long, but which has much more memory which can be accessed by
14435 other means: special instructions, segment registers, or memory
14436 management hardware, for example.  Suppose further that you want to
14437 adapt a program which is larger than 64 kilobytes to run on this system.
14438
14439 One solution is to identify modules of your program which are relatively
14440 independent, and need not call each other directly; call these modules
14441 @dfn{overlays}.  Separate the overlays from the main program, and place
14442 their machine code in the larger memory.  Place your main program in
14443 instruction memory, but leave at least enough space there to hold the
14444 largest overlay as well.
14445
14446 Now, to call a function located in an overlay, you must first copy that
14447 overlay's machine code from the large memory into the space set aside
14448 for it in the instruction memory, and then jump to its entry point
14449 there.
14450
14451 @c NB:  In the below the mapped area's size is greater or equal to the
14452 @c size of all overlays.  This is intentional to remind the developer
14453 @c that overlays don't necessarily need to be the same size.
14454
14455 @smallexample
14456 @group
14457     Data             Instruction            Larger
14458 Address Space       Address Space        Address Space
14459 +-----------+       +-----------+        +-----------+
14460 |           |       |           |        |           |
14461 +-----------+       +-----------+        +-----------+<-- overlay 1
14462 | program   |       |   main    |   .----| overlay 1 | load address
14463 | variables |       |  program  |   |    +-----------+
14464 | and heap  |       |           |   |    |           |
14465 +-----------+       |           |   |    +-----------+<-- overlay 2
14466 |           |       +-----------+   |    |           | load address
14467 +-----------+       |           |   |  .-| overlay 2 |
14468                     |           |   |  | |           |
14469          mapped --->+-----------+   |  | +-----------+
14470          address    |           |   |  | |           |
14471                     |  overlay  | <-'  | |           |
14472                     |   area    |  <---' +-----------+<-- overlay 3
14473                     |           | <---.  |           | load address
14474                     +-----------+     `--| overlay 3 |
14475                     |           |        |           |
14476                     +-----------+        |           |
14477                                          +-----------+
14478                                          |           |
14479                                          +-----------+
14480
14481                     @anchor{A code overlay}A code overlay
14482 @end group
14483 @end smallexample
14484
14485 The diagram (@pxref{A code overlay}) shows a system with separate data
14486 and instruction address spaces.  To map an overlay, the program copies
14487 its code from the larger address space to the instruction address space.
14488 Since the overlays shown here all use the same mapped address, only one
14489 may be mapped at a time.  For a system with a single address space for
14490 data and instructions, the diagram would be similar, except that the
14491 program variables and heap would share an address space with the main
14492 program and the overlay area.
14493
14494 An overlay loaded into instruction memory and ready for use is called a
14495 @dfn{mapped} overlay; its @dfn{mapped address} is its address in the
14496 instruction memory.  An overlay not present (or only partially present)
14497 in instruction memory is called @dfn{unmapped}; its @dfn{load address}
14498 is its address in the larger memory.  The mapped address is also called
14499 the @dfn{virtual memory address}, or @dfn{VMA}; the load address is also
14500 called the @dfn{load memory address}, or @dfn{LMA}.
14501
14502 Unfortunately, overlays are not a completely transparent way to adapt a
14503 program to limited instruction memory.  They introduce a new set of
14504 global constraints you must keep in mind as you design your program:
14505
14506 @itemize @bullet
14507
14508 @item
14509 Before calling or returning to a function in an overlay, your program
14510 must make sure that overlay is actually mapped.  Otherwise, the call or
14511 return will transfer control to the right address, but in the wrong
14512 overlay, and your program will probably crash.
14513
14514 @item
14515 If the process of mapping an overlay is expensive on your system, you
14516 will need to choose your overlays carefully to minimize their effect on
14517 your program's performance.
14518
14519 @item
14520 The executable file you load onto your system must contain each
14521 overlay's instructions, appearing at the overlay's load address, not its
14522 mapped address.  However, each overlay's instructions must be relocated
14523 and its symbols defined as if the overlay were at its mapped address.
14524 You can use GNU linker scripts to specify different load and relocation
14525 addresses for pieces of your program; see @ref{Overlay Description,,,
14526 ld.info, Using ld: the GNU linker}.
14527
14528 @item
14529 The procedure for loading executable files onto your system must be able
14530 to load their contents into the larger address space as well as the
14531 instruction and data spaces.
14532
14533 @end itemize
14534
14535 The overlay system described above is rather simple, and could be
14536 improved in many ways:
14537
14538 @itemize @bullet
14539
14540 @item
14541 If your system has suitable bank switch registers or memory management
14542 hardware, you could use those facilities to make an overlay's load area
14543 contents simply appear at their mapped address in instruction space.
14544 This would probably be faster than copying the overlay to its mapped
14545 area in the usual way.
14546
14547 @item
14548 If your overlays are small enough, you could set aside more than one
14549 overlay area, and have more than one overlay mapped at a time.
14550
14551 @item
14552 You can use overlays to manage data, as well as instructions.  In
14553 general, data overlays are even less transparent to your design than
14554 code overlays: whereas code overlays only require care when you call or
14555 return to functions, data overlays require care every time you access
14556 the data.  Also, if you change the contents of a data overlay, you
14557 must copy its contents back out to its load address before you can copy a
14558 different data overlay into the same mapped area.
14559
14560 @end itemize
14561
14562
14563 @node Overlay Commands
14564 @section Overlay Commands
14565
14566 To use @value{GDBN}'s overlay support, each overlay in your program must
14567 correspond to a separate section of the executable file.  The section's
14568 virtual memory address and load memory address must be the overlay's
14569 mapped and load addresses.  Identifying overlays with sections allows
14570 @value{GDBN} to determine the appropriate address of a function or
14571 variable, depending on whether the overlay is mapped or not.
14572
14573 @value{GDBN}'s overlay commands all start with the word @code{overlay};
14574 you can abbreviate this as @code{ov} or @code{ovly}.  The commands are:
14575
14576 @table @code
14577 @item overlay off
14578 @kindex overlay
14579 Disable @value{GDBN}'s overlay support.  When overlay support is
14580 disabled, @value{GDBN} assumes that all functions and variables are
14581 always present at their mapped addresses.  By default, @value{GDBN}'s
14582 overlay support is disabled.
14583
14584 @item overlay manual
14585 @cindex manual overlay debugging
14586 Enable @dfn{manual} overlay debugging.  In this mode, @value{GDBN}
14587 relies on you to tell it which overlays are mapped, and which are not,
14588 using the @code{overlay map-overlay} and @code{overlay unmap-overlay}
14589 commands described below.
14590
14591 @item overlay map-overlay @var{overlay}
14592 @itemx overlay map @var{overlay}
14593 @cindex map an overlay
14594 Tell @value{GDBN} that @var{overlay} is now mapped; @var{overlay} must
14595 be the name of the object file section containing the overlay.  When an
14596 overlay is mapped, @value{GDBN} assumes it can find the overlay's
14597 functions and variables at their mapped addresses.  @value{GDBN} assumes
14598 that any other overlays whose mapped ranges overlap that of
14599 @var{overlay} are now unmapped.
14600
14601 @item overlay unmap-overlay @var{overlay}
14602 @itemx overlay unmap @var{overlay}
14603 @cindex unmap an overlay
14604 Tell @value{GDBN} that @var{overlay} is no longer mapped; @var{overlay}
14605 must be the name of the object file section containing the overlay.
14606 When an overlay is unmapped, @value{GDBN} assumes it can find the
14607 overlay's functions and variables at their load addresses.
14608
14609 @item overlay auto
14610 Enable @dfn{automatic} overlay debugging.  In this mode, @value{GDBN}
14611 consults a data structure the overlay manager maintains in the inferior
14612 to see which overlays are mapped.  For details, see @ref{Automatic
14613 Overlay Debugging}.
14614
14615 @item overlay load-target
14616 @itemx overlay load
14617 @cindex reloading the overlay table
14618 Re-read the overlay table from the inferior.  Normally, @value{GDBN}
14619 re-reads the table @value{GDBN} automatically each time the inferior
14620 stops, so this command should only be necessary if you have changed the
14621 overlay mapping yourself using @value{GDBN}.  This command is only
14622 useful when using automatic overlay debugging.
14623
14624 @item overlay list-overlays
14625 @itemx overlay list
14626 @cindex listing mapped overlays
14627 Display a list of the overlays currently mapped, along with their mapped
14628 addresses, load addresses, and sizes.
14629
14630 @end table
14631
14632 Normally, when @value{GDBN} prints a code address, it includes the name
14633 of the function the address falls in:
14634
14635 @smallexample
14636 (@value{GDBP}) print main
14637 $3 = @{int ()@} 0x11a0 <main>
14638 @end smallexample
14639 @noindent
14640 When overlay debugging is enabled, @value{GDBN} recognizes code in
14641 unmapped overlays, and prints the names of unmapped functions with
14642 asterisks around them.  For example, if @code{foo} is a function in an
14643 unmapped overlay, @value{GDBN} prints it this way:
14644
14645 @smallexample
14646 (@value{GDBP}) overlay list
14647 No sections are mapped.
14648 (@value{GDBP}) print foo
14649 $5 = @{int (int)@} 0x100000 <*foo*>
14650 @end smallexample
14651 @noindent
14652 When @code{foo}'s overlay is mapped, @value{GDBN} prints the function's
14653 name normally:
14654
14655 @smallexample
14656 (@value{GDBP}) overlay list
14657 Section .ov.foo.text, loaded at 0x100000 - 0x100034,
14658         mapped at 0x1016 - 0x104a
14659 (@value{GDBP}) print foo
14660 $6 = @{int (int)@} 0x1016 <foo>
14661 @end smallexample
14662
14663 When overlay debugging is enabled, @value{GDBN} can find the correct
14664 address for functions and variables in an overlay, whether or not the
14665 overlay is mapped.  This allows most @value{GDBN} commands, like
14666 @code{break} and @code{disassemble}, to work normally, even on unmapped
14667 code.  However, @value{GDBN}'s breakpoint support has some limitations:
14668
14669 @itemize @bullet
14670 @item
14671 @cindex breakpoints in overlays
14672 @cindex overlays, setting breakpoints in
14673 You can set breakpoints in functions in unmapped overlays, as long as
14674 @value{GDBN} can write to the overlay at its load address.
14675 @item
14676 @value{GDBN} can not set hardware or simulator-based breakpoints in
14677 unmapped overlays.  However, if you set a breakpoint at the end of your
14678 overlay manager (and tell @value{GDBN} which overlays are now mapped, if
14679 you are using manual overlay management), @value{GDBN} will re-set its
14680 breakpoints properly.
14681 @end itemize
14682
14683
14684 @node Automatic Overlay Debugging
14685 @section Automatic Overlay Debugging
14686 @cindex automatic overlay debugging
14687
14688 @value{GDBN} can automatically track which overlays are mapped and which
14689 are not, given some simple co-operation from the overlay manager in the
14690 inferior.  If you enable automatic overlay debugging with the
14691 @code{overlay auto} command (@pxref{Overlay Commands}), @value{GDBN}
14692 looks in the inferior's memory for certain variables describing the
14693 current state of the overlays.
14694
14695 Here are the variables your overlay manager must define to support
14696 @value{GDBN}'s automatic overlay debugging:
14697
14698 @table @asis
14699
14700 @item @code{_ovly_table}:
14701 This variable must be an array of the following structures:
14702
14703 @smallexample
14704 struct
14705 @{
14706   /* The overlay's mapped address.  */
14707   unsigned long vma;
14708
14709   /* The size of the overlay, in bytes.  */
14710   unsigned long size;
14711
14712   /* The overlay's load address.  */
14713   unsigned long lma;
14714
14715   /* Non-zero if the overlay is currently mapped;
14716      zero otherwise.  */
14717   unsigned long mapped;
14718 @}
14719 @end smallexample
14720
14721 @item @code{_novlys}:
14722 This variable must be a four-byte signed integer, holding the total
14723 number of elements in @code{_ovly_table}.
14724
14725 @end table
14726
14727 To decide whether a particular overlay is mapped or not, @value{GDBN}
14728 looks for an entry in @w{@code{_ovly_table}} whose @code{vma} and
14729 @code{lma} members equal the VMA and LMA of the overlay's section in the
14730 executable file.  When @value{GDBN} finds a matching entry, it consults
14731 the entry's @code{mapped} member to determine whether the overlay is
14732 currently mapped.
14733
14734 In addition, your overlay manager may define a function called
14735 @code{_ovly_debug_event}.  If this function is defined, @value{GDBN}
14736 will silently set a breakpoint there.  If the overlay manager then
14737 calls this function whenever it has changed the overlay table, this
14738 will enable @value{GDBN} to accurately keep track of which overlays
14739 are in program memory, and update any breakpoints that may be set
14740 in overlays.  This will allow breakpoints to work even if the
14741 overlays are kept in ROM or other non-writable memory while they
14742 are not being executed.
14743
14744 @node Overlay Sample Program
14745 @section Overlay Sample Program
14746 @cindex overlay example program
14747
14748 When linking a program which uses overlays, you must place the overlays
14749 at their load addresses, while relocating them to run at their mapped
14750 addresses.  To do this, you must write a linker script (@pxref{Overlay
14751 Description,,, ld.info, Using ld: the GNU linker}).  Unfortunately,
14752 since linker scripts are specific to a particular host system, target
14753 architecture, and target memory layout, this manual cannot provide
14754 portable sample code demonstrating @value{GDBN}'s overlay support.
14755
14756 However, the @value{GDBN} source distribution does contain an overlaid
14757 program, with linker scripts for a few systems, as part of its test
14758 suite.  The program consists of the following files from
14759 @file{gdb/testsuite/gdb.base}:
14760
14761 @table @file
14762 @item overlays.c
14763 The main program file.
14764 @item ovlymgr.c
14765 A simple overlay manager, used by @file{overlays.c}.
14766 @item foo.c
14767 @itemx bar.c
14768 @itemx baz.c
14769 @itemx grbx.c
14770 Overlay modules, loaded and used by @file{overlays.c}.
14771 @item d10v.ld
14772 @itemx m32r.ld
14773 Linker scripts for linking the test program on the @code{d10v-elf}
14774 and @code{m32r-elf} targets.
14775 @end table
14776
14777 You can build the test program using the @code{d10v-elf} GCC
14778 cross-compiler like this:
14779
14780 @smallexample
14781 $ d10v-elf-gcc -g -c overlays.c
14782 $ d10v-elf-gcc -g -c ovlymgr.c
14783 $ d10v-elf-gcc -g -c foo.c
14784 $ d10v-elf-gcc -g -c bar.c
14785 $ d10v-elf-gcc -g -c baz.c
14786 $ d10v-elf-gcc -g -c grbx.c
14787 $ d10v-elf-gcc -g overlays.o ovlymgr.o foo.o bar.o \
14788                   baz.o grbx.o -Wl,-Td10v.ld -o overlays
14789 @end smallexample
14790
14791 The build process is identical for any other architecture, except that
14792 you must substitute the appropriate compiler and linker script for the
14793 target system for @code{d10v-elf-gcc} and @code{d10v.ld}.
14794
14795
14796 @node Languages
14797 @chapter Using @value{GDBN} with Different Languages
14798 @cindex languages
14799
14800 Although programming languages generally have common aspects, they are
14801 rarely expressed in the same manner.  For instance, in ANSI C,
14802 dereferencing a pointer @code{p} is accomplished by @code{*p}, but in
14803 Modula-2, it is accomplished by @code{p^}.  Values can also be
14804 represented (and displayed) differently.  Hex numbers in C appear as
14805 @samp{0x1ae}, while in Modula-2 they appear as @samp{1AEH}.
14806
14807 @cindex working language
14808 Language-specific information is built into @value{GDBN} for some languages,
14809 allowing you to express operations like the above in your program's
14810 native language, and allowing @value{GDBN} to output values in a manner
14811 consistent with the syntax of your program's native language.  The
14812 language you use to build expressions is called the @dfn{working
14813 language}.
14814
14815 @menu
14816 * Setting::                     Switching between source languages
14817 * Show::                        Displaying the language
14818 * Checks::                      Type and range checks
14819 * Supported Languages::         Supported languages
14820 * Unsupported Languages::       Unsupported languages
14821 @end menu
14822
14823 @node Setting
14824 @section Switching Between Source Languages
14825
14826 There are two ways to control the working language---either have @value{GDBN}
14827 set it automatically, or select it manually yourself.  You can use the
14828 @code{set language} command for either purpose.  On startup, @value{GDBN}
14829 defaults to setting the language automatically.  The working language is
14830 used to determine how expressions you type are interpreted, how values
14831 are printed, etc.
14832
14833 In addition to the working language, every source file that
14834 @value{GDBN} knows about has its own working language.  For some object
14835 file formats, the compiler might indicate which language a particular
14836 source file is in.  However, most of the time @value{GDBN} infers the
14837 language from the name of the file.  The language of a source file
14838 controls whether C@t{++} names are demangled---this way @code{backtrace} can
14839 show each frame appropriately for its own language.  There is no way to
14840 set the language of a source file from within @value{GDBN}, but you can
14841 set the language associated with a filename extension.  @xref{Show, ,
14842 Displaying the Language}.
14843
14844 This is most commonly a problem when you use a program, such
14845 as @code{cfront} or @code{f2c}, that generates C but is written in
14846 another language.  In that case, make the
14847 program use @code{#line} directives in its C output; that way
14848 @value{GDBN} will know the correct language of the source code of the original
14849 program, and will display that source code, not the generated C code.
14850
14851 @menu
14852 * Filenames::                   Filename extensions and languages.
14853 * Manually::                    Setting the working language manually
14854 * Automatically::               Having @value{GDBN} infer the source language
14855 @end menu
14856
14857 @node Filenames
14858 @subsection List of Filename Extensions and Languages
14859
14860 If a source file name ends in one of the following extensions, then
14861 @value{GDBN} infers that its language is the one indicated.
14862
14863 @table @file
14864 @item .ada
14865 @itemx .ads
14866 @itemx .adb
14867 @itemx .a
14868 Ada source file.
14869
14870 @item .c
14871 C source file
14872
14873 @item .C
14874 @itemx .cc
14875 @itemx .cp
14876 @itemx .cpp
14877 @itemx .cxx
14878 @itemx .c++
14879 C@t{++} source file
14880
14881 @item .d
14882 D source file
14883
14884 @item .m
14885 Objective-C source file
14886
14887 @item .f
14888 @itemx .F
14889 Fortran source file
14890
14891 @item .mod
14892 Modula-2 source file
14893
14894 @item .s
14895 @itemx .S
14896 Assembler source file.  This actually behaves almost like C, but
14897 @value{GDBN} does not skip over function prologues when stepping.
14898 @end table
14899
14900 In addition, you may set the language associated with a filename
14901 extension.  @xref{Show, , Displaying the Language}.
14902
14903 @node Manually
14904 @subsection Setting the Working Language
14905
14906 If you allow @value{GDBN} to set the language automatically,
14907 expressions are interpreted the same way in your debugging session and
14908 your program.
14909
14910 @kindex set language
14911 If you wish, you may set the language manually.  To do this, issue the
14912 command @samp{set language @var{lang}}, where @var{lang} is the name of
14913 a language, such as
14914 @code{c} or @code{modula-2}.
14915 For a list of the supported languages, type @samp{set language}.
14916
14917 Setting the language manually prevents @value{GDBN} from updating the working
14918 language automatically.  This can lead to confusion if you try
14919 to debug a program when the working language is not the same as the
14920 source language, when an expression is acceptable to both
14921 languages---but means different things.  For instance, if the current
14922 source file were written in C, and @value{GDBN} was parsing Modula-2, a
14923 command such as:
14924
14925 @smallexample
14926 print a = b + c
14927 @end smallexample
14928
14929 @noindent
14930 might not have the effect you intended.  In C, this means to add
14931 @code{b} and @code{c} and place the result in @code{a}.  The result
14932 printed would be the value of @code{a}.  In Modula-2, this means to compare
14933 @code{a} to the result of @code{b+c}, yielding a @code{BOOLEAN} value.
14934
14935 @node Automatically
14936 @subsection Having @value{GDBN} Infer the Source Language
14937
14938 To have @value{GDBN} set the working language automatically, use
14939 @samp{set language local} or @samp{set language auto}.  @value{GDBN}
14940 then infers the working language.  That is, when your program stops in a
14941 frame (usually by encountering a breakpoint), @value{GDBN} sets the
14942 working language to the language recorded for the function in that
14943 frame.  If the language for a frame is unknown (that is, if the function
14944 or block corresponding to the frame was defined in a source file that
14945 does not have a recognized extension), the current working language is
14946 not changed, and @value{GDBN} issues a warning.
14947
14948 This may not seem necessary for most programs, which are written
14949 entirely in one source language.  However, program modules and libraries
14950 written in one source language can be used by a main program written in
14951 a different source language.  Using @samp{set language auto} in this
14952 case frees you from having to set the working language manually.
14953
14954 @node Show
14955 @section Displaying the Language
14956
14957 The following commands help you find out which language is the
14958 working language, and also what language source files were written in.
14959
14960 @table @code
14961 @item show language
14962 @anchor{show language}
14963 @kindex show language
14964 Display the current working language.  This is the
14965 language you can use with commands such as @code{print} to
14966 build and compute expressions that may involve variables in your program.
14967
14968 @item info frame
14969 @kindex info frame@r{, show the source language}
14970 Display the source language for this frame.  This language becomes the
14971 working language if you use an identifier from this frame.
14972 @xref{Frame Info, ,Information about a Frame}, to identify the other
14973 information listed here.
14974
14975 @item info source
14976 @kindex info source@r{, show the source language}
14977 Display the source language of this source file.
14978 @xref{Symbols, ,Examining the Symbol Table}, to identify the other
14979 information listed here.
14980 @end table
14981
14982 In unusual circumstances, you may have source files with extensions
14983 not in the standard list.  You can then set the extension associated
14984 with a language explicitly:
14985
14986 @table @code
14987 @item set extension-language @var{ext} @var{language}
14988 @kindex set extension-language
14989 Tell @value{GDBN} that source files with extension @var{ext} are to be
14990 assumed as written in the source language @var{language}.
14991
14992 @item info extensions
14993 @kindex info extensions
14994 List all the filename extensions and the associated languages.
14995 @end table
14996
14997 @node Checks
14998 @section Type and Range Checking
14999
15000 Some languages are designed to guard you against making seemingly common
15001 errors through a series of compile- and run-time checks.  These include
15002 checking the type of arguments to functions and operators and making
15003 sure mathematical overflows are caught at run time.  Checks such as
15004 these help to ensure a program's correctness once it has been compiled
15005 by eliminating type mismatches and providing active checks for range
15006 errors when your program is running.
15007
15008 By default @value{GDBN} checks for these errors according to the
15009 rules of the current source language.  Although @value{GDBN} does not check
15010 the statements in your program, it can check expressions entered directly
15011 into @value{GDBN} for evaluation via the @code{print} command, for example.
15012
15013 @menu
15014 * Type Checking::               An overview of type checking
15015 * Range Checking::              An overview of range checking
15016 @end menu
15017
15018 @cindex type checking
15019 @cindex checks, type
15020 @node Type Checking
15021 @subsection An Overview of Type Checking
15022
15023 Some languages, such as C and C@t{++}, are strongly typed, meaning that the
15024 arguments to operators and functions have to be of the correct type,
15025 otherwise an error occurs.  These checks prevent type mismatch
15026 errors from ever causing any run-time problems.  For example,
15027
15028 @smallexample
15029 int klass::my_method(char *b) @{ return  b ? 1 : 2; @}
15030
15031 (@value{GDBP}) print obj.my_method (0)
15032 $1 = 2
15033 @exdent but
15034 (@value{GDBP}) print obj.my_method (0x1234)
15035 Cannot resolve method klass::my_method to any overloaded instance
15036 @end smallexample
15037
15038 The second example fails because in C@t{++} the integer constant
15039 @samp{0x1234} is not type-compatible with the pointer parameter type.
15040
15041 For the expressions you use in @value{GDBN} commands, you can tell
15042 @value{GDBN} to not enforce strict type checking or
15043 to treat any mismatches as errors and abandon the expression;
15044 When type checking is disabled, @value{GDBN} successfully evaluates
15045 expressions like the second example above.
15046
15047 Even if type checking is off, there may be other reasons
15048 related to type that prevent @value{GDBN} from evaluating an expression.
15049 For instance, @value{GDBN} does not know how to add an @code{int} and
15050 a @code{struct foo}.  These particular type errors have nothing to do
15051 with the language in use and usually arise from expressions which make
15052 little sense to evaluate anyway.
15053
15054 @value{GDBN} provides some additional commands for controlling type checking:
15055
15056 @kindex set check type
15057 @kindex show check type
15058 @table @code
15059 @item set check type on
15060 @itemx set check type off
15061 Set strict type checking on or off.  If any type mismatches occur in
15062 evaluating an expression while type checking is on, @value{GDBN} prints a
15063 message and aborts evaluation of the expression.
15064
15065 @item show check type
15066 Show the current setting of type checking and whether @value{GDBN}
15067 is enforcing strict type checking rules.
15068 @end table
15069
15070 @cindex range checking
15071 @cindex checks, range
15072 @node Range Checking
15073 @subsection An Overview of Range Checking
15074
15075 In some languages (such as Modula-2), it is an error to exceed the
15076 bounds of a type; this is enforced with run-time checks.  Such range
15077 checking is meant to ensure program correctness by making sure
15078 computations do not overflow, or indices on an array element access do
15079 not exceed the bounds of the array.
15080
15081 For expressions you use in @value{GDBN} commands, you can tell
15082 @value{GDBN} to treat range errors in one of three ways: ignore them,
15083 always treat them as errors and abandon the expression, or issue
15084 warnings but evaluate the expression anyway.
15085
15086 A range error can result from numerical overflow, from exceeding an
15087 array index bound, or when you type a constant that is not a member
15088 of any type.  Some languages, however, do not treat overflows as an
15089 error.  In many implementations of C, mathematical overflow causes the
15090 result to ``wrap around'' to lower values---for example, if @var{m} is
15091 the largest integer value, and @var{s} is the smallest, then
15092
15093 @smallexample
15094 @var{m} + 1 @result{} @var{s}
15095 @end smallexample
15096
15097 This, too, is specific to individual languages, and in some cases
15098 specific to individual compilers or machines.  @xref{Supported Languages, ,
15099 Supported Languages}, for further details on specific languages.
15100
15101 @value{GDBN} provides some additional commands for controlling the range checker:
15102
15103 @kindex set check range
15104 @kindex show check range
15105 @table @code
15106 @item set check range auto
15107 Set range checking on or off based on the current working language.
15108 @xref{Supported Languages, ,Supported Languages}, for the default settings for
15109 each language.
15110
15111 @item set check range on
15112 @itemx set check range off
15113 Set range checking on or off, overriding the default setting for the
15114 current working language.  A warning is issued if the setting does not
15115 match the language default.  If a range error occurs and range checking is on,
15116 then a message is printed and evaluation of the expression is aborted.
15117
15118 @item set check range warn
15119 Output messages when the @value{GDBN} range checker detects a range error,
15120 but attempt to evaluate the expression anyway.  Evaluating the
15121 expression may still be impossible for other reasons, such as accessing
15122 memory that the process does not own (a typical example from many Unix
15123 systems).
15124
15125 @item show range
15126 Show the current setting of the range checker, and whether or not it is
15127 being set automatically by @value{GDBN}.
15128 @end table
15129
15130 @node Supported Languages
15131 @section Supported Languages
15132
15133 @value{GDBN} supports C, C@t{++}, D, Go, Objective-C, Fortran,
15134 OpenCL C, Pascal, Rust, assembly, Modula-2, and Ada.
15135 @c This is false ...
15136 Some @value{GDBN} features may be used in expressions regardless of the
15137 language you use: the @value{GDBN} @code{@@} and @code{::} operators,
15138 and the @samp{@{type@}addr} construct (@pxref{Expressions,
15139 ,Expressions}) can be used with the constructs of any supported
15140 language.
15141
15142 The following sections detail to what degree each source language is
15143 supported by @value{GDBN}.  These sections are not meant to be language
15144 tutorials or references, but serve only as a reference guide to what the
15145 @value{GDBN} expression parser accepts, and what input and output
15146 formats should look like for different languages.  There are many good
15147 books written on each of these languages; please look to these for a
15148 language reference or tutorial.
15149
15150 @menu
15151 * C::                           C and C@t{++}
15152 * D::                           D
15153 * Go::                          Go
15154 * Objective-C::                 Objective-C
15155 * OpenCL C::                    OpenCL C
15156 * Fortran::                     Fortran
15157 * Pascal::                      Pascal
15158 * Rust::                        Rust
15159 * Modula-2::                    Modula-2
15160 * Ada::                         Ada
15161 @end menu
15162
15163 @node C
15164 @subsection C and C@t{++}
15165
15166 @cindex C and C@t{++}
15167 @cindex expressions in C or C@t{++}
15168
15169 Since C and C@t{++} are so closely related, many features of @value{GDBN} apply
15170 to both languages.  Whenever this is the case, we discuss those languages
15171 together.
15172
15173 @cindex C@t{++}
15174 @cindex @code{g++}, @sc{gnu} C@t{++} compiler
15175 @cindex @sc{gnu} C@t{++}
15176 The C@t{++} debugging facilities are jointly implemented by the C@t{++}
15177 compiler and @value{GDBN}.  Therefore, to debug your C@t{++} code
15178 effectively, you must compile your C@t{++} programs with a supported
15179 C@t{++} compiler, such as @sc{gnu} @code{g++}, or the HP ANSI C@t{++}
15180 compiler (@code{aCC}).
15181
15182 @menu
15183 * C Operators::                 C and C@t{++} operators
15184 * C Constants::                 C and C@t{++} constants
15185 * C Plus Plus Expressions::     C@t{++} expressions
15186 * C Defaults::                  Default settings for C and C@t{++}
15187 * C Checks::                    C and C@t{++} type and range checks
15188 * Debugging C::                 @value{GDBN} and C
15189 * Debugging C Plus Plus::       @value{GDBN} features for C@t{++}
15190 * Decimal Floating Point::      Numbers in Decimal Floating Point format
15191 @end menu
15192
15193 @node C Operators
15194 @subsubsection C and C@t{++} Operators
15195
15196 @cindex C and C@t{++} operators
15197
15198 Operators must be defined on values of specific types.  For instance,
15199 @code{+} is defined on numbers, but not on structures.  Operators are
15200 often defined on groups of types.
15201
15202 For the purposes of C and C@t{++}, the following definitions hold:
15203
15204 @itemize @bullet
15205
15206 @item
15207 @emph{Integral types} include @code{int} with any of its storage-class
15208 specifiers; @code{char}; @code{enum}; and, for C@t{++}, @code{bool}.
15209
15210 @item
15211 @emph{Floating-point types} include @code{float}, @code{double}, and
15212 @code{long double} (if supported by the target platform).
15213
15214 @item
15215 @emph{Pointer types} include all types defined as @code{(@var{type} *)}.
15216
15217 @item
15218 @emph{Scalar types} include all of the above.
15219
15220 @end itemize
15221
15222 @noindent
15223 The following operators are supported.  They are listed here
15224 in order of increasing precedence:
15225
15226 @table @code
15227 @item ,
15228 The comma or sequencing operator.  Expressions in a comma-separated list
15229 are evaluated from left to right, with the result of the entire
15230 expression being the last expression evaluated.
15231
15232 @item =
15233 Assignment.  The value of an assignment expression is the value
15234 assigned.  Defined on scalar types.
15235
15236 @item @var{op}=
15237 Used in an expression of the form @w{@code{@var{a} @var{op}= @var{b}}},
15238 and translated to @w{@code{@var{a} = @var{a op b}}}.
15239 @w{@code{@var{op}=}} and @code{=} have the same precedence.  The operator
15240 @var{op} is any one of the operators @code{|}, @code{^}, @code{&},
15241 @code{<<}, @code{>>}, @code{+}, @code{-}, @code{*}, @code{/}, @code{%}.
15242
15243 @item ?:
15244 The ternary operator.  @code{@var{a} ? @var{b} : @var{c}} can be thought
15245 of as:  if @var{a} then @var{b} else @var{c}.  The argument @var{a}
15246 should be of an integral type.
15247
15248 @item ||
15249 Logical @sc{or}.  Defined on integral types.
15250
15251 @item &&
15252 Logical @sc{and}.  Defined on integral types.
15253
15254 @item |
15255 Bitwise @sc{or}.  Defined on integral types.
15256
15257 @item ^
15258 Bitwise exclusive-@sc{or}.  Defined on integral types.
15259
15260 @item &
15261 Bitwise @sc{and}.  Defined on integral types.
15262
15263 @item ==@r{, }!=
15264 Equality and inequality.  Defined on scalar types.  The value of these
15265 expressions is 0 for false and non-zero for true.
15266
15267 @item <@r{, }>@r{, }<=@r{, }>=
15268 Less than, greater than, less than or equal, greater than or equal.
15269 Defined on scalar types.  The value of these expressions is 0 for false
15270 and non-zero for true.
15271
15272 @item <<@r{, }>>
15273 left shift, and right shift.  Defined on integral types.
15274
15275 @item @@
15276 The @value{GDBN} ``artificial array'' operator (@pxref{Expressions, ,Expressions}).
15277
15278 @item +@r{, }-
15279 Addition and subtraction.  Defined on integral types, floating-point types and
15280 pointer types.
15281
15282 @item *@r{, }/@r{, }%
15283 Multiplication, division, and modulus.  Multiplication and division are
15284 defined on integral and floating-point types.  Modulus is defined on
15285 integral types.
15286
15287 @item ++@r{, }--
15288 Increment and decrement.  When appearing before a variable, the
15289 operation is performed before the variable is used in an expression;
15290 when appearing after it, the variable's value is used before the
15291 operation takes place.
15292
15293 @item *
15294 Pointer dereferencing.  Defined on pointer types.  Same precedence as
15295 @code{++}.
15296
15297 @item &
15298 Address operator.  Defined on variables.  Same precedence as @code{++}.
15299
15300 For debugging C@t{++}, @value{GDBN} implements a use of @samp{&} beyond what is
15301 allowed in the C@t{++} language itself: you can use @samp{&(&@var{ref})}
15302 to examine the address
15303 where a C@t{++} reference variable (declared with @samp{&@var{ref}}) is
15304 stored.
15305
15306 @item -
15307 Negative.  Defined on integral and floating-point types.  Same
15308 precedence as @code{++}.
15309
15310 @item !
15311 Logical negation.  Defined on integral types.  Same precedence as
15312 @code{++}.
15313
15314 @item ~
15315 Bitwise complement operator.  Defined on integral types.  Same precedence as
15316 @code{++}.
15317
15318
15319 @item .@r{, }->
15320 Structure member, and pointer-to-structure member.  For convenience,
15321 @value{GDBN} regards the two as equivalent, choosing whether to dereference a
15322 pointer based on the stored type information.
15323 Defined on @code{struct} and @code{union} data.
15324
15325 @item .*@r{, }->*
15326 Dereferences of pointers to members.
15327
15328 @item []
15329 Array indexing.  @code{@var{a}[@var{i}]} is defined as
15330 @code{*(@var{a}+@var{i})}.  Same precedence as @code{->}.
15331
15332 @item ()
15333 Function parameter list.  Same precedence as @code{->}.
15334
15335 @item ::
15336 C@t{++} scope resolution operator.  Defined on @code{struct}, @code{union},
15337 and @code{class} types.
15338
15339 @item ::
15340 Doubled colons also represent the @value{GDBN} scope operator
15341 (@pxref{Expressions, ,Expressions}).  Same precedence as @code{::},
15342 above.
15343 @end table
15344
15345 If an operator is redefined in the user code, @value{GDBN} usually
15346 attempts to invoke the redefined version instead of using the operator's
15347 predefined meaning.
15348
15349 @node C Constants
15350 @subsubsection C and C@t{++} Constants
15351
15352 @cindex C and C@t{++} constants
15353
15354 @value{GDBN} allows you to express the constants of C and C@t{++} in the
15355 following ways:
15356
15357 @itemize @bullet
15358 @item
15359 Integer constants are a sequence of digits.  Octal constants are
15360 specified by a leading @samp{0} (i.e.@: zero), and hexadecimal constants
15361 by a leading @samp{0x} or @samp{0X}.  Constants may also end with a letter
15362 @samp{l}, specifying that the constant should be treated as a
15363 @code{long} value.
15364
15365 @item
15366 Floating point constants are a sequence of digits, followed by a decimal
15367 point, followed by a sequence of digits, and optionally followed by an
15368 exponent.  An exponent is of the form:
15369 @samp{@w{e@r{[[}+@r{]|}-@r{]}@var{nnn}}}, where @var{nnn} is another
15370 sequence of digits.  The @samp{+} is optional for positive exponents.
15371 A floating-point constant may also end with a letter @samp{f} or
15372 @samp{F}, specifying that the constant should be treated as being of
15373 the @code{float} (as opposed to the default @code{double}) type; or with
15374 a letter @samp{l} or @samp{L}, which specifies a @code{long double}
15375 constant.
15376
15377 @item
15378 Enumerated constants consist of enumerated identifiers, or their
15379 integral equivalents.
15380
15381 @item
15382 Character constants are a single character surrounded by single quotes
15383 (@code{'}), or a number---the ordinal value of the corresponding character
15384 (usually its @sc{ascii} value).  Within quotes, the single character may
15385 be represented by a letter or by @dfn{escape sequences}, which are of
15386 the form @samp{\@var{nnn}}, where @var{nnn} is the octal representation
15387 of the character's ordinal value; or of the form @samp{\@var{x}}, where
15388 @samp{@var{x}} is a predefined special character---for example,
15389 @samp{\n} for newline.
15390
15391 Wide character constants can be written by prefixing a character
15392 constant with @samp{L}, as in C.  For example, @samp{L'x'} is the wide
15393 form of @samp{x}.  The target wide character set is used when
15394 computing the value of this constant (@pxref{Character Sets}).
15395
15396 @item
15397 String constants are a sequence of character constants surrounded by
15398 double quotes (@code{"}).  Any valid character constant (as described
15399 above) may appear.  Double quotes within the string must be preceded by
15400 a backslash, so for instance @samp{"a\"b'c"} is a string of five
15401 characters.
15402
15403 Wide string constants can be written by prefixing a string constant
15404 with @samp{L}, as in C.  The target wide character set is used when
15405 computing the value of this constant (@pxref{Character Sets}).
15406
15407 @item
15408 Pointer constants are an integral value.  You can also write pointers
15409 to constants using the C operator @samp{&}.
15410
15411 @item
15412 Array constants are comma-separated lists surrounded by braces @samp{@{}
15413 and @samp{@}}; for example, @samp{@{1,2,3@}} is a three-element array of
15414 integers, @samp{@{@{1,2@}, @{3,4@}, @{5,6@}@}} is a three-by-two array,
15415 and @samp{@{&"hi", &"there", &"fred"@}} is a three-element array of pointers.
15416 @end itemize
15417
15418 @node C Plus Plus Expressions
15419 @subsubsection C@t{++} Expressions
15420
15421 @cindex expressions in C@t{++}
15422 @value{GDBN} expression handling can interpret most C@t{++} expressions.
15423
15424 @cindex debugging C@t{++} programs
15425 @cindex C@t{++} compilers
15426 @cindex debug formats and C@t{++}
15427 @cindex @value{NGCC} and C@t{++}
15428 @quotation
15429 @emph{Warning:} @value{GDBN} can only debug C@t{++} code if you use
15430 the proper compiler and the proper debug format.  Currently,
15431 @value{GDBN} works best when debugging C@t{++} code that is compiled
15432 with the most recent version of @value{NGCC} possible.  The DWARF
15433 debugging format is preferred; @value{NGCC} defaults to this on most
15434 popular platforms.  Other compilers and/or debug formats are likely to
15435 work badly or not at all when using @value{GDBN} to debug C@t{++}
15436 code.  @xref{Compilation}.
15437 @end quotation
15438
15439 @enumerate
15440
15441 @cindex member functions
15442 @item
15443 Member function calls are allowed; you can use expressions like
15444
15445 @smallexample
15446 count = aml->GetOriginal(x, y)
15447 @end smallexample
15448
15449 @vindex this@r{, inside C@t{++} member functions}
15450 @cindex namespace in C@t{++}
15451 @item
15452 While a member function is active (in the selected stack frame), your
15453 expressions have the same namespace available as the member function;
15454 that is, @value{GDBN} allows implicit references to the class instance
15455 pointer @code{this} following the same rules as C@t{++}.  @code{using}
15456 declarations in the current scope are also respected by @value{GDBN}.
15457
15458 @cindex call overloaded functions
15459 @cindex overloaded functions, calling
15460 @cindex type conversions in C@t{++}
15461 @item
15462 You can call overloaded functions; @value{GDBN} resolves the function
15463 call to the right definition, with some restrictions.  @value{GDBN} does not
15464 perform overload resolution involving user-defined type conversions,
15465 calls to constructors, or instantiations of templates that do not exist
15466 in the program.  It also cannot handle ellipsis argument lists or
15467 default arguments.
15468
15469 It does perform integral conversions and promotions, floating-point
15470 promotions, arithmetic conversions, pointer conversions, conversions of
15471 class objects to base classes, and standard conversions such as those of
15472 functions or arrays to pointers; it requires an exact match on the
15473 number of function arguments.
15474
15475 Overload resolution is always performed, unless you have specified
15476 @code{set overload-resolution off}.  @xref{Debugging C Plus Plus,
15477 ,@value{GDBN} Features for C@t{++}}.
15478
15479 You must specify @code{set overload-resolution off} in order to use an
15480 explicit function signature to call an overloaded function, as in
15481 @smallexample
15482 p 'foo(char,int)'('x', 13)
15483 @end smallexample
15484
15485 The @value{GDBN} command-completion facility can simplify this;
15486 see @ref{Completion, ,Command Completion}.
15487
15488 @cindex reference declarations
15489 @item
15490 @value{GDBN} understands variables declared as C@t{++} lvalue or rvalue
15491 references; you can use them in expressions just as you do in C@t{++}
15492 source---they are automatically dereferenced.
15493
15494 In the parameter list shown when @value{GDBN} displays a frame, the values of
15495 reference variables are not displayed (unlike other variables); this
15496 avoids clutter, since references are often used for large structures.
15497 The @emph{address} of a reference variable is always shown, unless
15498 you have specified @samp{set print address off}.
15499
15500 @item
15501 @value{GDBN} supports the C@t{++} name resolution operator @code{::}---your
15502 expressions can use it just as expressions in your program do.  Since
15503 one scope may be defined in another, you can use @code{::} repeatedly if
15504 necessary, for example in an expression like
15505 @samp{@var{scope1}::@var{scope2}::@var{name}}.  @value{GDBN} also allows
15506 resolving name scope by reference to source files, in both C and C@t{++}
15507 debugging (@pxref{Variables, ,Program Variables}).
15508
15509 @item
15510 @value{GDBN} performs argument-dependent lookup, following the C@t{++}
15511 specification.
15512 @end enumerate
15513
15514 @node C Defaults
15515 @subsubsection C and C@t{++} Defaults
15516
15517 @cindex C and C@t{++} defaults
15518
15519 If you allow @value{GDBN} to set range checking automatically, it
15520 defaults to @code{off} whenever the working language changes to
15521 C or C@t{++}.  This happens regardless of whether you or @value{GDBN}
15522 selects the working language.
15523
15524 If you allow @value{GDBN} to set the language automatically, it
15525 recognizes source files whose names end with @file{.c}, @file{.C}, or
15526 @file{.cc}, etc, and when @value{GDBN} enters code compiled from one of
15527 these files, it sets the working language to C or C@t{++}.
15528 @xref{Automatically, ,Having @value{GDBN} Infer the Source Language},
15529 for further details.
15530
15531 @node C Checks
15532 @subsubsection C and C@t{++} Type and Range Checks
15533
15534 @cindex C and C@t{++} checks
15535
15536 By default, when @value{GDBN} parses C or C@t{++} expressions, strict type
15537 checking is used.  However, if you turn type checking off, @value{GDBN}
15538 will allow certain non-standard conversions, such as promoting integer
15539 constants to pointers.
15540
15541 Range checking, if turned on, is done on mathematical operations.  Array
15542 indices are not checked, since they are often used to index a pointer
15543 that is not itself an array.
15544
15545 @node Debugging C
15546 @subsubsection @value{GDBN} and C
15547
15548 The @code{set print union} and @code{show print union} commands apply to
15549 the @code{union} type.  When set to @samp{on}, any @code{union} that is
15550 inside a @code{struct} or @code{class} is also printed.  Otherwise, it
15551 appears as @samp{@{...@}}.
15552
15553 The @code{@@} operator aids in the debugging of dynamic arrays, formed
15554 with pointers and a memory allocation function.  @xref{Expressions,
15555 ,Expressions}.
15556
15557 @node Debugging C Plus Plus
15558 @subsubsection @value{GDBN} Features for C@t{++}
15559
15560 @cindex commands for C@t{++}
15561
15562 Some @value{GDBN} commands are particularly useful with C@t{++}, and some are
15563 designed specifically for use with C@t{++}.  Here is a summary:
15564
15565 @table @code
15566 @cindex break in overloaded functions
15567 @item @r{breakpoint menus}
15568 When you want a breakpoint in a function whose name is overloaded,
15569 @value{GDBN} has the capability to display a menu of possible breakpoint
15570 locations to help you specify which function definition you want.
15571 @xref{Ambiguous Expressions,,Ambiguous Expressions}.
15572
15573 @cindex overloading in C@t{++}
15574 @item rbreak @var{regex}
15575 Setting breakpoints using regular expressions is helpful for setting
15576 breakpoints on overloaded functions that are not members of any special
15577 classes.
15578 @xref{Set Breaks, ,Setting Breakpoints}.
15579
15580 @cindex C@t{++} exception handling
15581 @item catch throw
15582 @itemx catch rethrow
15583 @itemx catch catch
15584 Debug C@t{++} exception handling using these commands.  @xref{Set
15585 Catchpoints, , Setting Catchpoints}.
15586
15587 @cindex inheritance
15588 @item ptype @var{typename}
15589 Print inheritance relationships as well as other information for type
15590 @var{typename}.
15591 @xref{Symbols, ,Examining the Symbol Table}.
15592
15593 @item info vtbl @var{expression}.
15594 The @code{info vtbl} command can be used to display the virtual
15595 method tables of the object computed by @var{expression}.  This shows
15596 one entry per virtual table; there may be multiple virtual tables when
15597 multiple inheritance is in use.
15598
15599 @cindex C@t{++} demangling
15600 @item demangle @var{name}
15601 Demangle @var{name}.
15602 @xref{Symbols}, for a more complete description of the @code{demangle} command.
15603
15604 @cindex C@t{++} symbol display
15605 @item set print demangle
15606 @itemx show print demangle
15607 @itemx set print asm-demangle
15608 @itemx show print asm-demangle
15609 Control whether C@t{++} symbols display in their source form, both when
15610 displaying code as C@t{++} source and when displaying disassemblies.
15611 @xref{Print Settings, ,Print Settings}.
15612
15613 @item set print object
15614 @itemx show print object
15615 Choose whether to print derived (actual) or declared types of objects.
15616 @xref{Print Settings, ,Print Settings}.
15617
15618 @item set print vtbl
15619 @itemx show print vtbl
15620 Control the format for printing virtual function tables.
15621 @xref{Print Settings, ,Print Settings}.
15622 (The @code{vtbl} commands do not work on programs compiled with the HP
15623 ANSI C@t{++} compiler (@code{aCC}).)
15624
15625 @kindex set overload-resolution
15626 @cindex overloaded functions, overload resolution
15627 @item set overload-resolution on
15628 Enable overload resolution for C@t{++} expression evaluation.  The default
15629 is on.  For overloaded functions, @value{GDBN} evaluates the arguments
15630 and searches for a function whose signature matches the argument types,
15631 using the standard C@t{++} conversion rules (see @ref{C Plus Plus
15632 Expressions, ,C@t{++} Expressions}, for details).
15633 If it cannot find a match, it emits a message.
15634
15635 @item set overload-resolution off
15636 Disable overload resolution for C@t{++} expression evaluation.  For
15637 overloaded functions that are not class member functions, @value{GDBN}
15638 chooses the first function of the specified name that it finds in the
15639 symbol table, whether or not its arguments are of the correct type.  For
15640 overloaded functions that are class member functions, @value{GDBN}
15641 searches for a function whose signature @emph{exactly} matches the
15642 argument types.
15643
15644 @kindex show overload-resolution
15645 @item show overload-resolution
15646 Show the current setting of overload resolution.
15647
15648 @item @r{Overloaded symbol names}
15649 You can specify a particular definition of an overloaded symbol, using
15650 the same notation that is used to declare such symbols in C@t{++}: type
15651 @code{@var{symbol}(@var{types})} rather than just @var{symbol}.  You can
15652 also use the @value{GDBN} command-line word completion facilities to list the
15653 available choices, or to finish the type list for you.
15654 @xref{Completion,, Command Completion}, for details on how to do this.
15655
15656 @item @r{Breakpoints in functions with ABI tags}
15657
15658 The GNU C@t{++} compiler introduced the notion of ABI ``tags'', which
15659 correspond to changes in the ABI of a type, function, or variable that
15660 would not otherwise be reflected in a mangled name.  See
15661 @url{https://developers.redhat.com/blog/2015/02/05/gcc5-and-the-c11-abi/}
15662 for more detail.
15663
15664 The ABI tags are visible in C@t{++} demangled names.  For example, a
15665 function that returns a std::string:
15666
15667 @smallexample
15668 std::string function(int);
15669 @end smallexample
15670
15671 @noindent
15672 when compiled for the C++11 ABI is marked with the @code{cxx11} ABI
15673 tag, and @value{GDBN} displays the symbol like this:
15674
15675 @smallexample
15676 function[abi:cxx11](int)
15677 @end smallexample
15678
15679 You can set a breakpoint on such functions simply as if they had no
15680 tag.  For example:
15681
15682 @smallexample
15683 (gdb) b function(int)
15684 Breakpoint 2 at 0x40060d: file main.cc, line 10.
15685 (gdb) info breakpoints
15686 Num     Type           Disp Enb Address    What
15687 1       breakpoint     keep y   0x0040060d in function[abi:cxx11](int)
15688                                            at main.cc:10
15689 @end smallexample
15690
15691 On the rare occasion you need to disambiguate between different ABI
15692 tags, you can do so by simply including the ABI tag in the function
15693 name, like:
15694
15695 @smallexample
15696 (@value{GDBP}) b ambiguous[abi:other_tag](int)
15697 @end smallexample
15698 @end table
15699
15700 @node Decimal Floating Point
15701 @subsubsection Decimal Floating Point format
15702 @cindex decimal floating point format
15703
15704 @value{GDBN} can examine, set and perform computations with numbers in
15705 decimal floating point format, which in the C language correspond to the
15706 @code{_Decimal32}, @code{_Decimal64} and @code{_Decimal128} types as
15707 specified by the extension to support decimal floating-point arithmetic.
15708
15709 There are two encodings in use, depending on the architecture: BID (Binary
15710 Integer Decimal) for x86 and x86-64, and DPD (Densely Packed Decimal) for
15711 PowerPC and S/390.  @value{GDBN} will use the appropriate encoding for the
15712 configured target.
15713
15714 Because of a limitation in @file{libdecnumber}, the library used by @value{GDBN}
15715 to manipulate decimal floating point numbers, it is not possible to convert
15716 (using a cast, for example) integers wider than 32-bit to decimal float.
15717
15718 In addition, in order to imitate @value{GDBN}'s behaviour with binary floating
15719 point computations, error checking in decimal float operations ignores
15720 underflow, overflow and divide by zero exceptions.
15721
15722 In the PowerPC architecture, @value{GDBN} provides a set of pseudo-registers
15723 to inspect @code{_Decimal128} values stored in floating point registers.
15724 See @ref{PowerPC,,PowerPC} for more details.
15725
15726 @node D
15727 @subsection D
15728
15729 @cindex D
15730 @value{GDBN} can be used to debug programs written in D and compiled with
15731 GDC, LDC or DMD compilers. Currently @value{GDBN} supports only one D
15732 specific feature --- dynamic arrays.
15733
15734 @node Go
15735 @subsection Go
15736
15737 @cindex Go (programming language)
15738 @value{GDBN} can be used to debug programs written in Go and compiled with
15739 @file{gccgo} or @file{6g} compilers.
15740
15741 Here is a summary of the Go-specific features and restrictions:
15742
15743 @table @code
15744 @cindex current Go package
15745 @item The current Go package
15746 The name of the current package does not need to be specified when
15747 specifying global variables and functions.
15748
15749 For example, given the program:
15750
15751 @example
15752 package main
15753 var myglob = "Shall we?"
15754 func main () @{
15755   // ...
15756 @}
15757 @end example
15758
15759 When stopped inside @code{main} either of these work:
15760
15761 @example
15762 (gdb) p myglob
15763 (gdb) p main.myglob
15764 @end example
15765
15766 @cindex builtin Go types
15767 @item Builtin Go types
15768 The @code{string} type is recognized by @value{GDBN} and is printed
15769 as a string.
15770
15771 @cindex builtin Go functions
15772 @item Builtin Go functions
15773 The @value{GDBN} expression parser recognizes the @code{unsafe.Sizeof}
15774 function and handles it internally.
15775
15776 @cindex restrictions on Go expressions
15777 @item Restrictions on Go expressions
15778 All Go operators are supported except @code{&^}.
15779 The Go @code{_} ``blank identifier'' is not supported.
15780 Automatic dereferencing of pointers is not supported.
15781 @end table
15782
15783 @node Objective-C
15784 @subsection Objective-C
15785
15786 @cindex Objective-C
15787 This section provides information about some commands and command
15788 options that are useful for debugging Objective-C code.  See also
15789 @ref{Symbols, info classes}, and @ref{Symbols, info selectors}, for a
15790 few more commands specific to Objective-C support.
15791
15792 @menu
15793 * Method Names in Commands::
15794 * The Print Command with Objective-C::
15795 @end menu
15796
15797 @node Method Names in Commands
15798 @subsubsection Method Names in Commands
15799
15800 The following commands have been extended to accept Objective-C method
15801 names as line specifications:
15802
15803 @kindex clear@r{, and Objective-C}
15804 @kindex break@r{, and Objective-C}
15805 @kindex info line@r{, and Objective-C}
15806 @kindex jump@r{, and Objective-C}
15807 @kindex list@r{, and Objective-C}
15808 @itemize
15809 @item @code{clear}
15810 @item @code{break}
15811 @item @code{info line}
15812 @item @code{jump}
15813 @item @code{list}
15814 @end itemize
15815
15816 A fully qualified Objective-C method name is specified as
15817
15818 @smallexample
15819 -[@var{Class} @var{methodName}]
15820 @end smallexample
15821
15822 where the minus sign is used to indicate an instance method and a
15823 plus sign (not shown) is used to indicate a class method.  The class
15824 name @var{Class} and method name @var{methodName} are enclosed in
15825 brackets, similar to the way messages are specified in Objective-C
15826 source code.  For example, to set a breakpoint at the @code{create}
15827 instance method of class @code{Fruit} in the program currently being
15828 debugged, enter:
15829
15830 @smallexample
15831 break -[Fruit create]
15832 @end smallexample
15833
15834 To list ten program lines around the @code{initialize} class method,
15835 enter:
15836
15837 @smallexample
15838 list +[NSText initialize]
15839 @end smallexample
15840
15841 In the current version of @value{GDBN}, the plus or minus sign is
15842 required.  In future versions of @value{GDBN}, the plus or minus
15843 sign will be optional, but you can use it to narrow the search.  It
15844 is also possible to specify just a method name:
15845
15846 @smallexample
15847 break create
15848 @end smallexample
15849
15850 You must specify the complete method name, including any colons.  If
15851 your program's source files contain more than one @code{create} method,
15852 you'll be presented with a numbered list of classes that implement that
15853 method.  Indicate your choice by number, or type @samp{0} to exit if
15854 none apply.
15855
15856 As another example, to clear a breakpoint established at the
15857 @code{makeKeyAndOrderFront:} method of the @code{NSWindow} class, enter:
15858
15859 @smallexample
15860 clear -[NSWindow makeKeyAndOrderFront:]
15861 @end smallexample
15862
15863 @node The Print Command with Objective-C
15864 @subsubsection The Print Command With Objective-C
15865 @cindex Objective-C, print objects
15866 @kindex print-object
15867 @kindex po @r{(@code{print-object})}
15868
15869 The print command has also been extended to accept methods.  For example:
15870
15871 @smallexample
15872 print -[@var{object} hash]
15873 @end smallexample
15874
15875 @cindex print an Objective-C object description
15876 @cindex @code{_NSPrintForDebugger}, and printing Objective-C objects
15877 @noindent
15878 will tell @value{GDBN} to send the @code{hash} message to @var{object}
15879 and print the result.  Also, an additional command has been added,
15880 @code{print-object} or @code{po} for short, which is meant to print
15881 the description of an object.  However, this command may only work
15882 with certain Objective-C libraries that have a particular hook
15883 function, @code{_NSPrintForDebugger}, defined.
15884
15885 @node OpenCL C
15886 @subsection OpenCL C
15887
15888 @cindex OpenCL C
15889 This section provides information about @value{GDBN}s OpenCL C support.
15890
15891 @menu
15892 * OpenCL C Datatypes::
15893 * OpenCL C Expressions::
15894 * OpenCL C Operators::
15895 @end menu
15896
15897 @node OpenCL C Datatypes
15898 @subsubsection OpenCL C Datatypes
15899
15900 @cindex OpenCL C Datatypes
15901 @value{GDBN} supports the builtin scalar and vector datatypes specified
15902 by OpenCL 1.1.  In addition the half- and double-precision floating point
15903 data types of the @code{cl_khr_fp16} and @code{cl_khr_fp64} OpenCL
15904 extensions are also known to @value{GDBN}.
15905
15906 @node OpenCL C Expressions
15907 @subsubsection OpenCL C Expressions
15908
15909 @cindex OpenCL C Expressions
15910 @value{GDBN} supports accesses to vector components including the access as
15911 lvalue where possible.  Since OpenCL C is based on C99 most C expressions
15912 supported by @value{GDBN} can be used as well.
15913
15914 @node OpenCL C Operators
15915 @subsubsection OpenCL C Operators
15916
15917 @cindex OpenCL C Operators
15918 @value{GDBN} supports the operators specified by OpenCL 1.1 for scalar and
15919 vector data types.
15920
15921 @node Fortran
15922 @subsection Fortran
15923 @cindex Fortran-specific support in @value{GDBN}
15924
15925 @value{GDBN} can be used to debug programs written in Fortran, but it
15926 currently supports only the features of Fortran 77 language.
15927
15928 @cindex trailing underscore, in Fortran symbols
15929 Some Fortran compilers (@sc{gnu} Fortran 77 and Fortran 95 compilers
15930 among them) append an underscore to the names of variables and
15931 functions.  When you debug programs compiled by those compilers, you
15932 will need to refer to variables and functions with a trailing
15933 underscore.
15934
15935 @menu
15936 * Fortran Operators::           Fortran operators and expressions
15937 * Fortran Defaults::            Default settings for Fortran
15938 * Special Fortran Commands::    Special @value{GDBN} commands for Fortran
15939 @end menu
15940
15941 @node Fortran Operators
15942 @subsubsection Fortran Operators and Expressions
15943
15944 @cindex Fortran operators and expressions
15945
15946 Operators must be defined on values of specific types.  For instance,
15947 @code{+} is defined on numbers, but not on characters or other non-
15948 arithmetic types.  Operators are often defined on groups of types.
15949
15950 @table @code
15951 @item **
15952 The exponentiation operator.  It raises the first operand to the power
15953 of the second one.
15954
15955 @item :
15956 The range operator.  Normally used in the form of array(low:high) to
15957 represent a section of array.
15958
15959 @item %
15960 The access component operator.  Normally used to access elements in derived
15961 types.  Also suitable for unions.  As unions aren't part of regular Fortran,
15962 this can only happen when accessing a register that uses a gdbarch-defined
15963 union type.
15964 @end table
15965
15966 @node Fortran Defaults
15967 @subsubsection Fortran Defaults
15968
15969 @cindex Fortran Defaults
15970
15971 Fortran symbols are usually case-insensitive, so @value{GDBN} by
15972 default uses case-insensitive matches for Fortran symbols.  You can
15973 change that with the @samp{set case-insensitive} command, see
15974 @ref{Symbols}, for the details.
15975
15976 @node Special Fortran Commands
15977 @subsubsection Special Fortran Commands
15978
15979 @cindex Special Fortran commands
15980
15981 @value{GDBN} has some commands to support Fortran-specific features,
15982 such as displaying common blocks.
15983
15984 @table @code
15985 @cindex @code{COMMON} blocks, Fortran
15986 @kindex info common
15987 @item info common @r{[}@var{common-name}@r{]}
15988 This command prints the values contained in the Fortran @code{COMMON}
15989 block whose name is @var{common-name}.  With no argument, the names of
15990 all @code{COMMON} blocks visible at the current program location are
15991 printed.
15992 @end table
15993
15994 @node Pascal
15995 @subsection Pascal
15996
15997 @cindex Pascal support in @value{GDBN}, limitations
15998 Debugging Pascal programs which use sets, subranges, file variables, or
15999 nested functions does not currently work.  @value{GDBN} does not support
16000 entering expressions, printing values, or similar features using Pascal
16001 syntax.
16002
16003 The Pascal-specific command @code{set print pascal_static-members}
16004 controls whether static members of Pascal objects are displayed.
16005 @xref{Print Settings, pascal_static-members}.
16006
16007 @node Rust
16008 @subsection Rust
16009
16010 @value{GDBN} supports the @url{https://www.rust-lang.org/, Rust
16011 Programming Language}.  Type- and value-printing, and expression
16012 parsing, are reasonably complete.  However, there are a few
16013 peculiarities and holes to be aware of.
16014
16015 @itemize @bullet
16016 @item
16017 Linespecs (@pxref{Specify Location}) are never relative to the current
16018 crate.  Instead, they act as if there were a global namespace of
16019 crates, somewhat similar to the way @code{extern crate} behaves.
16020
16021 That is, if @value{GDBN} is stopped at a breakpoint in a function in
16022 crate @samp{A}, module @samp{B}, then @code{break B::f} will attempt
16023 to set a breakpoint in a function named @samp{f} in a crate named
16024 @samp{B}.
16025
16026 As a consequence of this approach, linespecs also cannot refer to
16027 items using @samp{self::} or @samp{super::}.
16028
16029 @item
16030 Because @value{GDBN} implements Rust name-lookup semantics in
16031 expressions, it will sometimes prepend the current crate to a name.
16032 For example, if @value{GDBN} is stopped at a breakpoint in the crate
16033 @samp{K}, then @code{print ::x::y} will try to find the symbol
16034 @samp{K::x::y}.
16035
16036 However, since it is useful to be able to refer to other crates when
16037 debugging, @value{GDBN} provides the @code{extern} extension to
16038 circumvent this.  To use the extension, just put @code{extern} before
16039 a path expression to refer to the otherwise unavailable ``global''
16040 scope.
16041
16042 In the above example, if you wanted to refer to the symbol @samp{y} in
16043 the crate @samp{x}, you would use @code{print extern x::y}.
16044
16045 @item
16046 The Rust expression evaluator does not support ``statement-like''
16047 expressions such as @code{if} or @code{match}, or lambda expressions.
16048
16049 @item
16050 Tuple expressions are not implemented.
16051
16052 @item
16053 The Rust expression evaluator does not currently implement the
16054 @code{Drop} trait.  Objects that may be created by the evaluator will
16055 never be destroyed.
16056
16057 @item
16058 @value{GDBN} does not implement type inference for generics.  In order
16059 to call generic functions or otherwise refer to generic items, you
16060 will have to specify the type parameters manually.
16061
16062 @item
16063 @value{GDBN} currently uses the C@t{++} demangler for Rust.  In most
16064 cases this does not cause any problems.  However, in an expression
16065 context, completing a generic function name will give syntactically
16066 invalid results.  This happens because Rust requires the @samp{::}
16067 operator between the function name and its generic arguments.  For
16068 example, @value{GDBN} might provide a completion like
16069 @code{crate::f<u32>}, where the parser would require
16070 @code{crate::f::<u32>}.
16071
16072 @item
16073 As of this writing, the Rust compiler (version 1.8) has a few holes in
16074 the debugging information it generates.  These holes prevent certain
16075 features from being implemented by @value{GDBN}:
16076 @itemize @bullet
16077
16078 @item
16079 Method calls cannot be made via traits.
16080
16081 @item
16082 Operator overloading is not implemented.
16083
16084 @item
16085 When debugging in a monomorphized function, you cannot use the generic
16086 type names.
16087
16088 @item
16089 The type @code{Self} is not available.
16090
16091 @item
16092 @code{use} statements are not available, so some names may not be
16093 available in the crate.
16094 @end itemize
16095 @end itemize
16096
16097 @node Modula-2
16098 @subsection Modula-2
16099
16100 @cindex Modula-2, @value{GDBN} support
16101
16102 The extensions made to @value{GDBN} to support Modula-2 only support
16103 output from the @sc{gnu} Modula-2 compiler (which is currently being
16104 developed).  Other Modula-2 compilers are not currently supported, and
16105 attempting to debug executables produced by them is most likely
16106 to give an error as @value{GDBN} reads in the executable's symbol
16107 table.
16108
16109 @cindex expressions in Modula-2
16110 @menu
16111 * M2 Operators::                Built-in operators
16112 * Built-In Func/Proc::          Built-in functions and procedures
16113 * M2 Constants::                Modula-2 constants
16114 * M2 Types::                    Modula-2 types
16115 * M2 Defaults::                 Default settings for Modula-2
16116 * Deviations::                  Deviations from standard Modula-2
16117 * M2 Checks::                   Modula-2 type and range checks
16118 * M2 Scope::                    The scope operators @code{::} and @code{.}
16119 * GDB/M2::                      @value{GDBN} and Modula-2
16120 @end menu
16121
16122 @node M2 Operators
16123 @subsubsection Operators
16124 @cindex Modula-2 operators
16125
16126 Operators must be defined on values of specific types.  For instance,
16127 @code{+} is defined on numbers, but not on structures.  Operators are
16128 often defined on groups of types.  For the purposes of Modula-2, the
16129 following definitions hold:
16130
16131 @itemize @bullet
16132
16133 @item
16134 @emph{Integral types} consist of @code{INTEGER}, @code{CARDINAL}, and
16135 their subranges.
16136
16137 @item
16138 @emph{Character types} consist of @code{CHAR} and its subranges.
16139
16140 @item
16141 @emph{Floating-point types} consist of @code{REAL}.
16142
16143 @item
16144 @emph{Pointer types} consist of anything declared as @code{POINTER TO
16145 @var{type}}.
16146
16147 @item
16148 @emph{Scalar types} consist of all of the above.
16149
16150 @item
16151 @emph{Set types} consist of @code{SET} and @code{BITSET} types.
16152
16153 @item
16154 @emph{Boolean types} consist of @code{BOOLEAN}.
16155 @end itemize
16156
16157 @noindent
16158 The following operators are supported, and appear in order of
16159 increasing precedence:
16160
16161 @table @code
16162 @item ,
16163 Function argument or array index separator.
16164
16165 @item :=
16166 Assignment.  The value of @var{var} @code{:=} @var{value} is
16167 @var{value}.
16168
16169 @item <@r{, }>
16170 Less than, greater than on integral, floating-point, or enumerated
16171 types.
16172
16173 @item <=@r{, }>=
16174 Less than or equal to, greater than or equal to
16175 on integral, floating-point and enumerated types, or set inclusion on
16176 set types.  Same precedence as @code{<}.
16177
16178 @item =@r{, }<>@r{, }#
16179 Equality and two ways of expressing inequality, valid on scalar types.
16180 Same precedence as @code{<}.  In @value{GDBN} scripts, only @code{<>} is
16181 available for inequality, since @code{#} conflicts with the script
16182 comment character.
16183
16184 @item IN
16185 Set membership.  Defined on set types and the types of their members.
16186 Same precedence as @code{<}.
16187
16188 @item OR
16189 Boolean disjunction.  Defined on boolean types.
16190
16191 @item AND@r{, }&
16192 Boolean conjunction.  Defined on boolean types.
16193
16194 @item @@
16195 The @value{GDBN} ``artificial array'' operator (@pxref{Expressions, ,Expressions}).
16196
16197 @item +@r{, }-
16198 Addition and subtraction on integral and floating-point types, or union
16199 and difference on set types.
16200
16201 @item *
16202 Multiplication on integral and floating-point types, or set intersection
16203 on set types.
16204
16205 @item /
16206 Division on floating-point types, or symmetric set difference on set
16207 types.  Same precedence as @code{*}.
16208
16209 @item DIV@r{, }MOD
16210 Integer division and remainder.  Defined on integral types.  Same
16211 precedence as @code{*}.
16212
16213 @item -
16214 Negative.  Defined on @code{INTEGER} and @code{REAL} data.
16215
16216 @item ^
16217 Pointer dereferencing.  Defined on pointer types.
16218
16219 @item NOT
16220 Boolean negation.  Defined on boolean types.  Same precedence as
16221 @code{^}.
16222
16223 @item .
16224 @code{RECORD} field selector.  Defined on @code{RECORD} data.  Same
16225 precedence as @code{^}.
16226
16227 @item []
16228 Array indexing.  Defined on @code{ARRAY} data.  Same precedence as @code{^}.
16229
16230 @item ()
16231 Procedure argument list.  Defined on @code{PROCEDURE} objects.  Same precedence
16232 as @code{^}.
16233
16234 @item ::@r{, }.
16235 @value{GDBN} and Modula-2 scope operators.
16236 @end table
16237
16238 @quotation
16239 @emph{Warning:} Set expressions and their operations are not yet supported, so @value{GDBN}
16240 treats the use of the operator @code{IN}, or the use of operators
16241 @code{+}, @code{-}, @code{*}, @code{/}, @code{=}, , @code{<>}, @code{#},
16242 @code{<=}, and @code{>=} on sets as an error.
16243 @end quotation
16244
16245
16246 @node Built-In Func/Proc
16247 @subsubsection Built-in Functions and Procedures
16248 @cindex Modula-2 built-ins
16249
16250 Modula-2 also makes available several built-in procedures and functions.
16251 In describing these, the following metavariables are used:
16252
16253 @table @var
16254
16255 @item a
16256 represents an @code{ARRAY} variable.
16257
16258 @item c
16259 represents a @code{CHAR} constant or variable.
16260
16261 @item i
16262 represents a variable or constant of integral type.
16263
16264 @item m
16265 represents an identifier that belongs to a set.  Generally used in the
16266 same function with the metavariable @var{s}.  The type of @var{s} should
16267 be @code{SET OF @var{mtype}} (where @var{mtype} is the type of @var{m}).
16268
16269 @item n
16270 represents a variable or constant of integral or floating-point type.
16271
16272 @item r
16273 represents a variable or constant of floating-point type.
16274
16275 @item t
16276 represents a type.
16277
16278 @item v
16279 represents a variable.
16280
16281 @item x
16282 represents a variable or constant of one of many types.  See the
16283 explanation of the function for details.
16284 @end table
16285
16286 All Modula-2 built-in procedures also return a result, described below.
16287
16288 @table @code
16289 @item ABS(@var{n})
16290 Returns the absolute value of @var{n}.
16291
16292 @item CAP(@var{c})
16293 If @var{c} is a lower case letter, it returns its upper case
16294 equivalent, otherwise it returns its argument.
16295
16296 @item CHR(@var{i})
16297 Returns the character whose ordinal value is @var{i}.
16298
16299 @item DEC(@var{v})
16300 Decrements the value in the variable @var{v} by one.  Returns the new value.
16301
16302 @item DEC(@var{v},@var{i})
16303 Decrements the value in the variable @var{v} by @var{i}.  Returns the
16304 new value.
16305
16306 @item EXCL(@var{m},@var{s})
16307 Removes the element @var{m} from the set @var{s}.  Returns the new
16308 set.
16309
16310 @item FLOAT(@var{i})
16311 Returns the floating point equivalent of the integer @var{i}.
16312
16313 @item HIGH(@var{a})
16314 Returns the index of the last member of @var{a}.
16315
16316 @item INC(@var{v})
16317 Increments the value in the variable @var{v} by one.  Returns the new value.
16318
16319 @item INC(@var{v},@var{i})
16320 Increments the value in the variable @var{v} by @var{i}.  Returns the
16321 new value.
16322
16323 @item INCL(@var{m},@var{s})
16324 Adds the element @var{m} to the set @var{s} if it is not already
16325 there.  Returns the new set.
16326
16327 @item MAX(@var{t})
16328 Returns the maximum value of the type @var{t}.
16329
16330 @item MIN(@var{t})
16331 Returns the minimum value of the type @var{t}.
16332
16333 @item ODD(@var{i})
16334 Returns boolean TRUE if @var{i} is an odd number.
16335
16336 @item ORD(@var{x})
16337 Returns the ordinal value of its argument.  For example, the ordinal
16338 value of a character is its @sc{ascii} value (on machines supporting
16339 the @sc{ascii} character set).  The argument @var{x} must be of an
16340 ordered type, which include integral, character and enumerated types.
16341
16342 @item SIZE(@var{x})
16343 Returns the size of its argument.  The argument @var{x} can be a
16344 variable or a type.
16345
16346 @item TRUNC(@var{r})
16347 Returns the integral part of @var{r}.
16348
16349 @item TSIZE(@var{x})
16350 Returns the size of its argument.  The argument @var{x} can be a
16351 variable or a type.
16352
16353 @item VAL(@var{t},@var{i})
16354 Returns the member of the type @var{t} whose ordinal value is @var{i}.
16355 @end table
16356
16357 @quotation
16358 @emph{Warning:}  Sets and their operations are not yet supported, so
16359 @value{GDBN} treats the use of procedures @code{INCL} and @code{EXCL} as
16360 an error.
16361 @end quotation
16362
16363 @cindex Modula-2 constants
16364 @node M2 Constants
16365 @subsubsection Constants
16366
16367 @value{GDBN} allows you to express the constants of Modula-2 in the following
16368 ways:
16369
16370 @itemize @bullet
16371
16372 @item
16373 Integer constants are simply a sequence of digits.  When used in an
16374 expression, a constant is interpreted to be type-compatible with the
16375 rest of the expression.  Hexadecimal integers are specified by a
16376 trailing @samp{H}, and octal integers by a trailing @samp{B}.
16377
16378 @item
16379 Floating point constants appear as a sequence of digits, followed by a
16380 decimal point and another sequence of digits.  An optional exponent can
16381 then be specified, in the form @samp{E@r{[}+@r{|}-@r{]}@var{nnn}}, where
16382 @samp{@r{[}+@r{|}-@r{]}@var{nnn}} is the desired exponent.  All of the
16383 digits of the floating point constant must be valid decimal (base 10)
16384 digits.
16385
16386 @item
16387 Character constants consist of a single character enclosed by a pair of
16388 like quotes, either single (@code{'}) or double (@code{"}).  They may
16389 also be expressed by their ordinal value (their @sc{ascii} value, usually)
16390 followed by a @samp{C}.
16391
16392 @item
16393 String constants consist of a sequence of characters enclosed by a
16394 pair of like quotes, either single (@code{'}) or double (@code{"}).
16395 Escape sequences in the style of C are also allowed.  @xref{C
16396 Constants, ,C and C@t{++} Constants}, for a brief explanation of escape
16397 sequences.
16398
16399 @item
16400 Enumerated constants consist of an enumerated identifier.
16401
16402 @item
16403 Boolean constants consist of the identifiers @code{TRUE} and
16404 @code{FALSE}.
16405
16406 @item
16407 Pointer constants consist of integral values only.
16408
16409 @item
16410 Set constants are not yet supported.
16411 @end itemize
16412
16413 @node M2 Types
16414 @subsubsection Modula-2 Types
16415 @cindex Modula-2 types
16416
16417 Currently @value{GDBN} can print the following data types in Modula-2
16418 syntax: array types, record types, set types, pointer types, procedure
16419 types, enumerated types, subrange types and base types.  You can also
16420 print the contents of variables declared using these type.
16421 This section gives a number of simple source code examples together with
16422 sample @value{GDBN} sessions.
16423
16424 The first example contains the following section of code:
16425
16426 @smallexample
16427 VAR
16428    s: SET OF CHAR ;
16429    r: [20..40] ;
16430 @end smallexample
16431
16432 @noindent
16433 and you can request @value{GDBN} to interrogate the type and value of
16434 @code{r} and @code{s}.
16435
16436 @smallexample
16437 (@value{GDBP}) print s
16438 @{'A'..'C', 'Z'@}
16439 (@value{GDBP}) ptype s
16440 SET OF CHAR
16441 (@value{GDBP}) print r
16442 21
16443 (@value{GDBP}) ptype r
16444 [20..40]
16445 @end smallexample
16446
16447 @noindent
16448 Likewise if your source code declares @code{s} as:
16449
16450 @smallexample
16451 VAR
16452    s: SET ['A'..'Z'] ;
16453 @end smallexample
16454
16455 @noindent
16456 then you may query the type of @code{s} by:
16457
16458 @smallexample
16459 (@value{GDBP}) ptype s
16460 type = SET ['A'..'Z']
16461 @end smallexample
16462
16463 @noindent
16464 Note that at present you cannot interactively manipulate set
16465 expressions using the debugger.
16466
16467 The following example shows how you might declare an array in Modula-2
16468 and how you can interact with @value{GDBN} to print its type and contents:
16469
16470 @smallexample
16471 VAR
16472    s: ARRAY [-10..10] OF CHAR ;
16473 @end smallexample
16474
16475 @smallexample
16476 (@value{GDBP}) ptype s
16477 ARRAY [-10..10] OF CHAR
16478 @end smallexample
16479
16480 Note that the array handling is not yet complete and although the type
16481 is printed correctly, expression handling still assumes that all
16482 arrays have a lower bound of zero and not @code{-10} as in the example
16483 above.
16484
16485 Here are some more type related Modula-2 examples:
16486
16487 @smallexample
16488 TYPE
16489    colour = (blue, red, yellow, green) ;
16490    t = [blue..yellow] ;
16491 VAR
16492    s: t ;
16493 BEGIN
16494    s := blue ;
16495 @end smallexample
16496
16497 @noindent
16498 The @value{GDBN} interaction shows how you can query the data type
16499 and value of a variable.
16500
16501 @smallexample
16502 (@value{GDBP}) print s
16503 $1 = blue
16504 (@value{GDBP}) ptype t
16505 type = [blue..yellow]
16506 @end smallexample
16507
16508 @noindent
16509 In this example a Modula-2 array is declared and its contents
16510 displayed.  Observe that the contents are written in the same way as
16511 their @code{C} counterparts.
16512
16513 @smallexample
16514 VAR
16515    s: ARRAY [1..5] OF CARDINAL ;
16516 BEGIN
16517    s[1] := 1 ;
16518 @end smallexample
16519
16520 @smallexample
16521 (@value{GDBP}) print s
16522 $1 = @{1, 0, 0, 0, 0@}
16523 (@value{GDBP}) ptype s
16524 type = ARRAY [1..5] OF CARDINAL
16525 @end smallexample
16526
16527 The Modula-2 language interface to @value{GDBN} also understands
16528 pointer types as shown in this example:
16529
16530 @smallexample
16531 VAR
16532    s: POINTER TO ARRAY [1..5] OF CARDINAL ;
16533 BEGIN
16534    NEW(s) ;
16535    s^[1] := 1 ;
16536 @end smallexample
16537
16538 @noindent
16539 and you can request that @value{GDBN} describes the type of @code{s}.
16540
16541 @smallexample
16542 (@value{GDBP}) ptype s
16543 type = POINTER TO ARRAY [1..5] OF CARDINAL
16544 @end smallexample
16545
16546 @value{GDBN} handles compound types as we can see in this example.
16547 Here we combine array types, record types, pointer types and subrange
16548 types:
16549
16550 @smallexample
16551 TYPE
16552    foo = RECORD
16553             f1: CARDINAL ;
16554             f2: CHAR ;
16555             f3: myarray ;
16556          END ;
16557
16558    myarray = ARRAY myrange OF CARDINAL ;
16559    myrange = [-2..2] ;
16560 VAR
16561    s: POINTER TO ARRAY myrange OF foo ;
16562 @end smallexample
16563
16564 @noindent
16565 and you can ask @value{GDBN} to describe the type of @code{s} as shown
16566 below.
16567
16568 @smallexample
16569 (@value{GDBP}) ptype s
16570 type = POINTER TO ARRAY [-2..2] OF foo = RECORD
16571     f1 : CARDINAL;
16572     f2 : CHAR;
16573     f3 : ARRAY [-2..2] OF CARDINAL;
16574 END 
16575 @end smallexample
16576
16577 @node M2 Defaults
16578 @subsubsection Modula-2 Defaults
16579 @cindex Modula-2 defaults
16580
16581 If type and range checking are set automatically by @value{GDBN}, they
16582 both default to @code{on} whenever the working language changes to
16583 Modula-2.  This happens regardless of whether you or @value{GDBN}
16584 selected the working language.
16585
16586 If you allow @value{GDBN} to set the language automatically, then entering
16587 code compiled from a file whose name ends with @file{.mod} sets the
16588 working language to Modula-2.  @xref{Automatically, ,Having @value{GDBN}
16589 Infer the Source Language}, for further details.
16590
16591 @node Deviations
16592 @subsubsection Deviations from Standard Modula-2
16593 @cindex Modula-2, deviations from
16594
16595 A few changes have been made to make Modula-2 programs easier to debug.
16596 This is done primarily via loosening its type strictness:
16597
16598 @itemize @bullet
16599 @item
16600 Unlike in standard Modula-2, pointer constants can be formed by
16601 integers.  This allows you to modify pointer variables during
16602 debugging.  (In standard Modula-2, the actual address contained in a
16603 pointer variable is hidden from you; it can only be modified
16604 through direct assignment to another pointer variable or expression that
16605 returned a pointer.)
16606
16607 @item
16608 C escape sequences can be used in strings and characters to represent
16609 non-printable characters.  @value{GDBN} prints out strings with these
16610 escape sequences embedded.  Single non-printable characters are
16611 printed using the @samp{CHR(@var{nnn})} format.
16612
16613 @item
16614 The assignment operator (@code{:=}) returns the value of its right-hand
16615 argument.
16616
16617 @item
16618 All built-in procedures both modify @emph{and} return their argument.
16619 @end itemize
16620
16621 @node M2 Checks
16622 @subsubsection Modula-2 Type and Range Checks
16623 @cindex Modula-2 checks
16624
16625 @quotation
16626 @emph{Warning:} in this release, @value{GDBN} does not yet perform type or
16627 range checking.
16628 @end quotation
16629 @c FIXME remove warning when type/range checks added
16630
16631 @value{GDBN} considers two Modula-2 variables type equivalent if:
16632
16633 @itemize @bullet
16634 @item
16635 They are of types that have been declared equivalent via a @code{TYPE
16636 @var{t1} = @var{t2}} statement
16637
16638 @item
16639 They have been declared on the same line.  (Note:  This is true of the
16640 @sc{gnu} Modula-2 compiler, but it may not be true of other compilers.)
16641 @end itemize
16642
16643 As long as type checking is enabled, any attempt to combine variables
16644 whose types are not equivalent is an error.
16645
16646 Range checking is done on all mathematical operations, assignment, array
16647 index bounds, and all built-in functions and procedures.
16648
16649 @node M2 Scope
16650 @subsubsection The Scope Operators @code{::} and @code{.}
16651 @cindex scope
16652 @cindex @code{.}, Modula-2 scope operator
16653 @cindex colon, doubled as scope operator
16654 @ifinfo
16655 @vindex colon-colon@r{, in Modula-2}
16656 @c Info cannot handle :: but TeX can.
16657 @end ifinfo
16658 @ifnotinfo
16659 @vindex ::@r{, in Modula-2}
16660 @end ifnotinfo
16661
16662 There are a few subtle differences between the Modula-2 scope operator
16663 (@code{.}) and the @value{GDBN} scope operator (@code{::}).  The two have
16664 similar syntax:
16665
16666 @smallexample
16667
16668 @var{module} . @var{id}
16669 @var{scope} :: @var{id}
16670 @end smallexample
16671
16672 @noindent
16673 where @var{scope} is the name of a module or a procedure,
16674 @var{module} the name of a module, and @var{id} is any declared
16675 identifier within your program, except another module.
16676
16677 Using the @code{::} operator makes @value{GDBN} search the scope
16678 specified by @var{scope} for the identifier @var{id}.  If it is not
16679 found in the specified scope, then @value{GDBN} searches all scopes
16680 enclosing the one specified by @var{scope}.
16681
16682 Using the @code{.} operator makes @value{GDBN} search the current scope for
16683 the identifier specified by @var{id} that was imported from the
16684 definition module specified by @var{module}.  With this operator, it is
16685 an error if the identifier @var{id} was not imported from definition
16686 module @var{module}, or if @var{id} is not an identifier in
16687 @var{module}.
16688
16689 @node GDB/M2
16690 @subsubsection @value{GDBN} and Modula-2
16691
16692 Some @value{GDBN} commands have little use when debugging Modula-2 programs.
16693 Five subcommands of @code{set print} and @code{show print} apply
16694 specifically to C and C@t{++}: @samp{vtbl}, @samp{demangle},
16695 @samp{asm-demangle}, @samp{object}, and @samp{union}.  The first four
16696 apply to C@t{++}, and the last to the C @code{union} type, which has no direct
16697 analogue in Modula-2.
16698
16699 The @code{@@} operator (@pxref{Expressions, ,Expressions}), while available
16700 with any language, is not useful with Modula-2.  Its
16701 intent is to aid the debugging of @dfn{dynamic arrays}, which cannot be
16702 created in Modula-2 as they can in C or C@t{++}.  However, because an
16703 address can be specified by an integral constant, the construct
16704 @samp{@{@var{type}@}@var{adrexp}} is still useful.
16705
16706 @cindex @code{#} in Modula-2
16707 In @value{GDBN} scripts, the Modula-2 inequality operator @code{#} is
16708 interpreted as the beginning of a comment.  Use @code{<>} instead.
16709
16710 @node Ada
16711 @subsection Ada
16712 @cindex Ada
16713
16714 The extensions made to @value{GDBN} for Ada only support
16715 output from the @sc{gnu} Ada (GNAT) compiler.
16716 Other Ada compilers are not currently supported, and
16717 attempting to debug executables produced by them is most likely
16718 to be difficult.
16719
16720
16721 @cindex expressions in Ada
16722 @menu
16723 * Ada Mode Intro::              General remarks on the Ada syntax 
16724                                    and semantics supported by Ada mode 
16725                                    in @value{GDBN}.
16726 * Omissions from Ada::          Restrictions on the Ada expression syntax.
16727 * Additions to Ada::            Extensions of the Ada expression syntax.
16728 * Overloading support for Ada:: Support for expressions involving overloaded
16729                                    subprograms.
16730 * Stopping Before Main Program:: Debugging the program during elaboration.
16731 * Ada Exceptions::              Ada Exceptions
16732 * Ada Tasks::                   Listing and setting breakpoints in tasks.
16733 * Ada Tasks and Core Files::    Tasking Support when Debugging Core Files
16734 * Ravenscar Profile::           Tasking Support when using the Ravenscar
16735                                    Profile
16736 * Ada Settings::                New settable GDB parameters for Ada.
16737 * Ada Glitches::                Known peculiarities of Ada mode.
16738 @end menu
16739
16740 @node Ada Mode Intro
16741 @subsubsection Introduction
16742 @cindex Ada mode, general
16743
16744 The Ada mode of @value{GDBN} supports a fairly large subset of Ada expression 
16745 syntax, with some extensions.
16746 The philosophy behind the design of this subset is 
16747
16748 @itemize @bullet
16749 @item
16750 That @value{GDBN} should provide basic literals and access to operations for 
16751 arithmetic, dereferencing, field selection, indexing, and subprogram calls, 
16752 leaving more sophisticated computations to subprograms written into the
16753 program (which therefore may be called from @value{GDBN}).
16754
16755 @item 
16756 That type safety and strict adherence to Ada language restrictions
16757 are not particularly important to the @value{GDBN} user.
16758
16759 @item 
16760 That brevity is important to the @value{GDBN} user.
16761 @end itemize
16762
16763 Thus, for brevity, the debugger acts as if all names declared in
16764 user-written packages are directly visible, even if they are not visible
16765 according to Ada rules, thus making it unnecessary to fully qualify most
16766 names with their packages, regardless of context.  Where this causes
16767 ambiguity, @value{GDBN} asks the user's intent.
16768
16769 The debugger will start in Ada mode if it detects an Ada main program. 
16770 As for other languages, it will enter Ada mode when stopped in a program that
16771 was translated from an Ada source file.
16772
16773 While in Ada mode, you may use `@t{--}' for comments.  This is useful 
16774 mostly for documenting command files.  The standard @value{GDBN} comment 
16775 (@samp{#}) still works at the beginning of a line in Ada mode, but not in the 
16776 middle (to allow based literals).
16777
16778 @node Omissions from Ada
16779 @subsubsection Omissions from Ada
16780 @cindex Ada, omissions from
16781
16782 Here are the notable omissions from the subset:
16783
16784 @itemize @bullet
16785 @item
16786 Only a subset of the attributes are supported:
16787
16788 @itemize @minus
16789 @item
16790 @t{'First}, @t{'Last}, and @t{'Length}
16791  on array objects (not on types and subtypes).
16792
16793 @item
16794 @t{'Min} and @t{'Max}.  
16795
16796 @item 
16797 @t{'Pos} and @t{'Val}. 
16798
16799 @item
16800 @t{'Tag}.
16801
16802 @item
16803 @t{'Range} on array objects (not subtypes), but only as the right
16804 operand of the membership (@code{in}) operator.
16805
16806 @item 
16807 @t{'Access}, @t{'Unchecked_Access}, and 
16808 @t{'Unrestricted_Access} (a GNAT extension).
16809
16810 @item
16811 @t{'Address}.
16812 @end itemize
16813
16814 @item
16815 The names in
16816 @code{Characters.Latin_1} are not available and
16817 concatenation is not implemented.  Thus, escape characters in strings are 
16818 not currently available.
16819
16820 @item
16821 Equality tests (@samp{=} and @samp{/=}) on arrays test for bitwise
16822 equality of representations.  They will generally work correctly
16823 for strings and arrays whose elements have integer or enumeration types.
16824 They may not work correctly for arrays whose element
16825 types have user-defined equality, for arrays of real values 
16826 (in particular, IEEE-conformant floating point, because of negative
16827 zeroes and NaNs), and for arrays whose elements contain unused bits with
16828 indeterminate values.  
16829
16830 @item
16831 The other component-by-component array operations (@code{and}, @code{or}, 
16832 @code{xor}, @code{not}, and relational tests other than equality)
16833 are not implemented. 
16834
16835 @item 
16836 @cindex array aggregates (Ada)
16837 @cindex record aggregates (Ada)
16838 @cindex aggregates (Ada) 
16839 There is limited support for array and record aggregates.  They are
16840 permitted only on the right sides of assignments, as in these examples:
16841
16842 @smallexample
16843 (@value{GDBP}) set An_Array := (1, 2, 3, 4, 5, 6)
16844 (@value{GDBP}) set An_Array := (1, others => 0)
16845 (@value{GDBP}) set An_Array := (0|4 => 1, 1..3 => 2, 5 => 6)
16846 (@value{GDBP}) set A_2D_Array := ((1, 2, 3), (4, 5, 6), (7, 8, 9))
16847 (@value{GDBP}) set A_Record := (1, "Peter", True);
16848 (@value{GDBP}) set A_Record := (Name => "Peter", Id => 1, Alive => True)
16849 @end smallexample
16850
16851 Changing a
16852 discriminant's value by assigning an aggregate has an
16853 undefined effect if that discriminant is used within the record.
16854 However, you can first modify discriminants by directly assigning to
16855 them (which normally would not be allowed in Ada), and then performing an
16856 aggregate assignment.  For example, given a variable @code{A_Rec} 
16857 declared to have a type such as:
16858
16859 @smallexample
16860 type Rec (Len : Small_Integer := 0) is record
16861     Id : Integer;
16862     Vals : IntArray (1 .. Len);
16863 end record;
16864 @end smallexample
16865
16866 you can assign a value with a different size of @code{Vals} with two
16867 assignments:
16868
16869 @smallexample
16870 (@value{GDBP}) set A_Rec.Len := 4
16871 (@value{GDBP}) set A_Rec := (Id => 42, Vals => (1, 2, 3, 4))
16872 @end smallexample
16873
16874 As this example also illustrates, @value{GDBN} is very loose about the usual
16875 rules concerning aggregates.  You may leave out some of the
16876 components of an array or record aggregate (such as the @code{Len} 
16877 component in the assignment to @code{A_Rec} above); they will retain their
16878 original values upon assignment.  You may freely use dynamic values as
16879 indices in component associations.  You may even use overlapping or
16880 redundant component associations, although which component values are
16881 assigned in such cases is not defined.
16882
16883 @item
16884 Calls to dispatching subprograms are not implemented.
16885
16886 @item
16887 The overloading algorithm is much more limited (i.e., less selective)
16888 than that of real Ada.  It makes only limited use of the context in
16889 which a subexpression appears to resolve its meaning, and it is much
16890 looser in its rules for allowing type matches.  As a result, some
16891 function calls will be ambiguous, and the user will be asked to choose
16892 the proper resolution.
16893
16894 @item
16895 The @code{new} operator is not implemented.
16896
16897 @item
16898 Entry calls are not implemented.
16899
16900 @item 
16901 Aside from printing, arithmetic operations on the native VAX floating-point 
16902 formats are not supported.
16903
16904 @item
16905 It is not possible to slice a packed array.
16906
16907 @item
16908 The names @code{True} and @code{False}, when not part of a qualified name, 
16909 are interpreted as if implicitly prefixed by @code{Standard}, regardless of 
16910 context.
16911 Should your program
16912 redefine these names in a package or procedure (at best a dubious practice),
16913 you will have to use fully qualified names to access their new definitions.
16914 @end itemize
16915
16916 @node Additions to Ada
16917 @subsubsection Additions to Ada
16918 @cindex Ada, deviations from 
16919
16920 As it does for other languages, @value{GDBN} makes certain generic
16921 extensions to Ada (@pxref{Expressions}):
16922
16923 @itemize @bullet
16924 @item
16925 If the expression @var{E} is a variable residing in memory (typically
16926 a local variable or array element) and @var{N} is a positive integer,
16927 then @code{@var{E}@@@var{N}} displays the values of @var{E} and the
16928 @var{N}-1 adjacent variables following it in memory as an array.  In
16929 Ada, this operator is generally not necessary, since its prime use is
16930 in displaying parts of an array, and slicing will usually do this in
16931 Ada.  However, there are occasional uses when debugging programs in
16932 which certain debugging information has been optimized away.
16933
16934 @item
16935 @code{@var{B}::@var{var}} means ``the variable named @var{var} that
16936 appears in function or file @var{B}.''  When @var{B} is a file name,
16937 you must typically surround it in single quotes.
16938
16939 @item 
16940 The expression @code{@{@var{type}@} @var{addr}} means ``the variable of type
16941 @var{type} that appears at address @var{addr}.''
16942
16943 @item
16944 A name starting with @samp{$} is a convenience variable 
16945 (@pxref{Convenience Vars}) or a machine register (@pxref{Registers}).
16946 @end itemize
16947
16948 In addition, @value{GDBN} provides a few other shortcuts and outright
16949 additions specific to Ada:
16950
16951 @itemize @bullet
16952 @item 
16953 The assignment statement is allowed as an expression, returning
16954 its right-hand operand as its value.  Thus, you may enter
16955
16956 @smallexample
16957 (@value{GDBP}) set x := y + 3
16958 (@value{GDBP}) print A(tmp := y + 1)
16959 @end smallexample
16960
16961 @item 
16962 The semicolon is allowed as an ``operator,''  returning as its value 
16963 the value of its right-hand operand.
16964 This allows, for example,
16965 complex conditional breaks:
16966
16967 @smallexample
16968 (@value{GDBP}) break f
16969 (@value{GDBP}) condition 1 (report(i); k += 1; A(k) > 100)
16970 @end smallexample
16971
16972 @item 
16973 Rather than use catenation and symbolic character names to introduce special 
16974 characters into strings, one may instead use a special bracket notation, 
16975 which is also used to print strings.  A sequence of characters of the form 
16976 @samp{["@var{XX}"]} within a string or character literal denotes the 
16977 (single) character whose numeric encoding is @var{XX} in hexadecimal.  The
16978 sequence of characters @samp{["""]} also denotes a single quotation mark 
16979 in strings.   For example,
16980 @smallexample
16981    "One line.["0a"]Next line.["0a"]"
16982 @end smallexample
16983 @noindent
16984 contains an ASCII newline character (@code{Ada.Characters.Latin_1.LF})
16985 after each period.
16986
16987 @item
16988 The subtype used as a prefix for the attributes @t{'Pos}, @t{'Min}, and
16989 @t{'Max} is optional (and is ignored in any case).  For example, it is valid
16990 to write
16991
16992 @smallexample
16993 (@value{GDBP}) print 'max(x, y)
16994 @end smallexample
16995
16996 @item
16997 When printing arrays, @value{GDBN} uses positional notation when the 
16998 array has a lower bound of 1, and uses a modified named notation otherwise.
16999 For example, a one-dimensional array of three integers with a lower bound
17000 of 3 might print as
17001
17002 @smallexample
17003 (3 => 10, 17, 1)
17004 @end smallexample
17005
17006 @noindent
17007 That is, in contrast to valid Ada, only the first component has a @code{=>} 
17008 clause.
17009
17010 @item
17011 You may abbreviate attributes in expressions with any unique,
17012 multi-character subsequence of 
17013 their names (an exact match gets preference).
17014 For example, you may use @t{a'len}, @t{a'gth}, or @t{a'lh}
17015 in place of  @t{a'length}.
17016
17017 @item
17018 @cindex quoting Ada internal identifiers
17019 Since Ada is case-insensitive, the debugger normally maps identifiers you type 
17020 to lower case.  The GNAT compiler uses upper-case characters for 
17021 some of its internal identifiers, which are normally of no interest to users.
17022 For the rare occasions when you actually have to look at them,
17023 enclose them in angle brackets to avoid the lower-case mapping. 
17024 For example,
17025 @smallexample
17026 (@value{GDBP}) print <JMPBUF_SAVE>[0]
17027 @end smallexample
17028
17029 @item
17030 Printing an object of class-wide type or dereferencing an 
17031 access-to-class-wide value will display all the components of the object's
17032 specific type (as indicated by its run-time tag).  Likewise, component
17033 selection on such a value will operate on the specific type of the
17034 object.
17035
17036 @end itemize
17037
17038 @node Overloading support for Ada
17039 @subsubsection Overloading support for Ada
17040 @cindex overloading, Ada
17041
17042 The debugger supports limited overloading.  Given a subprogram call in which
17043 the function symbol has multiple definitions, it will use the number of
17044 actual parameters and some information about their types to attempt to narrow
17045 the set of definitions.  It also makes very limited use of context, preferring
17046 procedures to functions in the context of the @code{call} command, and
17047 functions to procedures elsewhere.
17048
17049 If, after narrowing, the set of matching definitions still contains more than
17050 one definition, @value{GDBN} will display a menu to query which one it should
17051 use, for instance:
17052
17053 @smallexample
17054 (@value{GDBP}) print f(1)
17055 Multiple matches for f
17056 [0] cancel
17057 [1] foo.f (integer) return boolean at foo.adb:23
17058 [2] foo.f (foo.new_integer) return boolean at foo.adb:28
17059
17060 @end smallexample
17061
17062 In this case, just select one menu entry either to cancel expression evaluation
17063 (type @kbd{0} and press @key{RET}) or to continue evaluation with a specific
17064 instance (type the corresponding number and press @key{RET}).
17065
17066 Here are a couple of commands to customize @value{GDBN}'s behavior in this
17067 case:
17068
17069 @table @code
17070
17071 @kindex set ada print-signatures
17072 @item set ada print-signatures
17073 Control whether parameter types and return types are displayed in overloads
17074 selection menus.  It is @code{on} by default.
17075 @xref{Overloading support for Ada}.
17076
17077 @kindex show ada print-signatures
17078 @item show ada print-signatures
17079 Show the current setting for displaying parameter types and return types in
17080 overloads selection menu.
17081 @xref{Overloading support for Ada}.
17082
17083 @end table
17084
17085 @node Stopping Before Main Program
17086 @subsubsection Stopping at the Very Beginning
17087
17088 @cindex breakpointing Ada elaboration code
17089 It is sometimes necessary to debug the program during elaboration, and
17090 before reaching the main procedure.
17091 As defined in the Ada Reference
17092 Manual, the elaboration code is invoked from a procedure called
17093 @code{adainit}.  To run your program up to the beginning of
17094 elaboration, simply use the following two commands:
17095 @code{tbreak adainit} and @code{run}.
17096
17097 @node Ada Exceptions
17098 @subsubsection Ada Exceptions
17099
17100 A command is provided to list all Ada exceptions:
17101
17102 @table @code
17103 @kindex info exceptions
17104 @item info exceptions
17105 @itemx info exceptions @var{regexp}
17106 The @code{info exceptions} command allows you to list all Ada exceptions
17107 defined within the program being debugged, as well as their addresses.
17108 With a regular expression, @var{regexp}, as argument, only those exceptions
17109 whose names match @var{regexp} are listed.
17110 @end table
17111
17112 Below is a small example, showing how the command can be used, first
17113 without argument, and next with a regular expression passed as an
17114 argument.
17115
17116 @smallexample
17117 (@value{GDBP}) info exceptions
17118 All defined Ada exceptions:
17119 constraint_error: 0x613da0
17120 program_error: 0x613d20
17121 storage_error: 0x613ce0
17122 tasking_error: 0x613ca0
17123 const.aint_global_e: 0x613b00
17124 (@value{GDBP}) info exceptions const.aint
17125 All Ada exceptions matching regular expression "const.aint":
17126 constraint_error: 0x613da0
17127 const.aint_global_e: 0x613b00
17128 @end smallexample
17129
17130 It is also possible to ask @value{GDBN} to stop your program's execution
17131 when an exception is raised.  For more details, see @ref{Set Catchpoints}.
17132
17133 @node Ada Tasks
17134 @subsubsection Extensions for Ada Tasks
17135 @cindex Ada, tasking
17136
17137 Support for Ada tasks is analogous to that for threads (@pxref{Threads}).
17138 @value{GDBN} provides the following task-related commands:
17139
17140 @table @code
17141 @kindex info tasks
17142 @item info tasks
17143 This command shows a list of current Ada tasks, as in the following example:
17144
17145
17146 @smallexample
17147 @iftex
17148 @leftskip=0.5cm
17149 @end iftex
17150 (@value{GDBP}) info tasks
17151   ID       TID P-ID Pri State                 Name
17152    1   8088000   0   15 Child Activation Wait main_task
17153    2   80a4000   1   15 Accept Statement      b
17154    3   809a800   1   15 Child Activation Wait a
17155 *  4   80ae800   3   15 Runnable              c
17156
17157 @end smallexample
17158
17159 @noindent
17160 In this listing, the asterisk before the last task indicates it to be the
17161 task currently being inspected.
17162
17163 @table @asis
17164 @item ID
17165 Represents @value{GDBN}'s internal task number.
17166
17167 @item TID
17168 The Ada task ID.
17169
17170 @item P-ID
17171 The parent's task ID (@value{GDBN}'s internal task number).
17172
17173 @item Pri
17174 The base priority of the task.
17175
17176 @item State
17177 Current state of the task.
17178
17179 @table @code
17180 @item Unactivated
17181 The task has been created but has not been activated.  It cannot be
17182 executing.
17183
17184 @item Runnable
17185 The task is not blocked for any reason known to Ada.  (It may be waiting
17186 for a mutex, though.) It is conceptually "executing" in normal mode.
17187
17188 @item Terminated
17189 The task is terminated, in the sense of ARM 9.3 (5).  Any dependents
17190 that were waiting on terminate alternatives have been awakened and have
17191 terminated themselves.
17192
17193 @item Child Activation Wait
17194 The task is waiting for created tasks to complete activation.
17195
17196 @item Accept Statement
17197 The task is waiting on an accept or selective wait statement.
17198
17199 @item Waiting on entry call
17200 The task is waiting on an entry call.
17201
17202 @item Async Select Wait
17203 The task is waiting to start the abortable part of an asynchronous
17204 select statement.
17205
17206 @item Delay Sleep
17207 The task is waiting on a select statement with only a delay
17208 alternative open.
17209
17210 @item Child Termination Wait
17211 The task is sleeping having completed a master within itself, and is
17212 waiting for the tasks dependent on that master to become terminated or
17213 waiting on a terminate Phase.
17214
17215 @item Wait Child in Term Alt
17216 The task is sleeping waiting for tasks on terminate alternatives to
17217 finish terminating.
17218
17219 @item Accepting RV with @var{taskno}
17220 The task is accepting a rendez-vous with the task @var{taskno}.
17221 @end table
17222
17223 @item Name
17224 Name of the task in the program.
17225
17226 @end table
17227
17228 @kindex info task @var{taskno}
17229 @item info task @var{taskno}
17230 This command shows detailled informations on the specified task, as in
17231 the following example:
17232 @smallexample
17233 @iftex
17234 @leftskip=0.5cm
17235 @end iftex
17236 (@value{GDBP}) info tasks
17237   ID       TID P-ID Pri State                  Name
17238    1   8077880    0  15 Child Activation Wait  main_task
17239 *  2   807c468    1  15 Runnable               task_1
17240 (@value{GDBP}) info task 2
17241 Ada Task: 0x807c468
17242 Name: task_1
17243 Thread: 0
17244 LWP: 0x1fac
17245 Parent: 1 (main_task)
17246 Base Priority: 15
17247 State: Runnable
17248 @end smallexample
17249
17250 @item task
17251 @kindex task@r{ (Ada)}
17252 @cindex current Ada task ID
17253 This command prints the ID of the current task.
17254
17255 @smallexample
17256 @iftex
17257 @leftskip=0.5cm
17258 @end iftex
17259 (@value{GDBP}) info tasks
17260   ID       TID P-ID Pri State                  Name
17261    1   8077870    0  15 Child Activation Wait  main_task
17262 *  2   807c458    1  15 Runnable               t
17263 (@value{GDBP}) task
17264 [Current task is 2]
17265 @end smallexample
17266
17267 @item task @var{taskno}
17268 @cindex Ada task switching
17269 This command is like the @code{thread @var{thread-id}}
17270 command (@pxref{Threads}).  It switches the context of debugging
17271 from the current task to the given task.
17272
17273 @smallexample
17274 @iftex
17275 @leftskip=0.5cm
17276 @end iftex
17277 (@value{GDBP}) info tasks
17278   ID       TID P-ID Pri State                  Name
17279    1   8077870    0  15 Child Activation Wait  main_task
17280 *  2   807c458    1  15 Runnable               t
17281 (@value{GDBP}) task 1
17282 [Switching to task 1]
17283 #0  0x8067726 in pthread_cond_wait ()
17284 (@value{GDBP}) bt
17285 #0  0x8067726 in pthread_cond_wait ()
17286 #1  0x8056714 in system.os_interface.pthread_cond_wait ()
17287 #2  0x805cb63 in system.task_primitives.operations.sleep ()
17288 #3  0x806153e in system.tasking.stages.activate_tasks ()
17289 #4  0x804aacc in un () at un.adb:5
17290 @end smallexample
17291
17292 @item break @var{location} task @var{taskno}
17293 @itemx break @var{location} task @var{taskno} if @dots{}
17294 @cindex breakpoints and tasks, in Ada
17295 @cindex task breakpoints, in Ada
17296 @kindex break @dots{} task @var{taskno}@r{ (Ada)}
17297 These commands are like the @code{break @dots{} thread @dots{}}
17298 command (@pxref{Thread Stops}).  The
17299 @var{location} argument specifies source lines, as described
17300 in @ref{Specify Location}.
17301
17302 Use the qualifier @samp{task @var{taskno}} with a breakpoint command
17303 to specify that you only want @value{GDBN} to stop the program when a
17304 particular Ada task reaches this breakpoint.  The @var{taskno} is one of the
17305 numeric task identifiers assigned by @value{GDBN}, shown in the first
17306 column of the @samp{info tasks} display.
17307
17308 If you do not specify @samp{task @var{taskno}} when you set a
17309 breakpoint, the breakpoint applies to @emph{all} tasks of your
17310 program.
17311
17312 You can use the @code{task} qualifier on conditional breakpoints as
17313 well; in this case, place @samp{task @var{taskno}} before the
17314 breakpoint condition (before the @code{if}).
17315
17316 For example,
17317
17318 @smallexample
17319 @iftex
17320 @leftskip=0.5cm
17321 @end iftex
17322 (@value{GDBP}) info tasks
17323   ID       TID P-ID Pri State                 Name
17324    1 140022020   0   15 Child Activation Wait main_task
17325    2 140045060   1   15 Accept/Select Wait    t2
17326    3 140044840   1   15 Runnable              t1
17327 *  4 140056040   1   15 Runnable              t3
17328 (@value{GDBP}) b 15 task 2
17329 Breakpoint 5 at 0x120044cb0: file test_task_debug.adb, line 15.
17330 (@value{GDBP}) cont
17331 Continuing.
17332 task # 1 running
17333 task # 2 running
17334
17335 Breakpoint 5, test_task_debug () at test_task_debug.adb:15
17336 15               flush;
17337 (@value{GDBP}) info tasks
17338   ID       TID P-ID Pri State                 Name
17339    1 140022020   0   15 Child Activation Wait main_task
17340 *  2 140045060   1   15 Runnable              t2
17341    3 140044840   1   15 Runnable              t1
17342    4 140056040   1   15 Delay Sleep           t3
17343 @end smallexample
17344 @end table
17345
17346 @node Ada Tasks and Core Files
17347 @subsubsection Tasking Support when Debugging Core Files
17348 @cindex Ada tasking and core file debugging
17349
17350 When inspecting a core file, as opposed to debugging a live program,
17351 tasking support may be limited or even unavailable, depending on
17352 the platform being used.
17353 For instance, on x86-linux, the list of tasks is available, but task
17354 switching is not supported.
17355
17356 On certain platforms, the debugger needs to perform some
17357 memory writes in order to provide Ada tasking support.  When inspecting
17358 a core file, this means that the core file must be opened with read-write
17359 privileges, using the command @samp{"set write on"} (@pxref{Patching}).
17360 Under these circumstances, you should make a backup copy of the core
17361 file before inspecting it with @value{GDBN}.
17362
17363 @node Ravenscar Profile
17364 @subsubsection Tasking Support when using the Ravenscar Profile
17365 @cindex Ravenscar Profile
17366
17367 The @dfn{Ravenscar Profile} is a subset of the Ada tasking features,
17368 specifically designed for systems with safety-critical real-time
17369 requirements.
17370
17371 @table @code
17372 @kindex set ravenscar task-switching on
17373 @cindex task switching with program using Ravenscar Profile
17374 @item set ravenscar task-switching on
17375 Allows task switching when debugging a program that uses the Ravenscar
17376 Profile.  This is the default.
17377
17378 @kindex set ravenscar task-switching off
17379 @item set ravenscar task-switching off
17380 Turn off task switching when debugging a program that uses the Ravenscar
17381 Profile.  This is mostly intended to disable the code that adds support
17382 for the Ravenscar Profile, in case a bug in either @value{GDBN} or in
17383 the Ravenscar runtime is preventing @value{GDBN} from working properly.
17384 To be effective, this command should be run before the program is started.
17385
17386 @kindex show ravenscar task-switching
17387 @item show ravenscar task-switching
17388 Show whether it is possible to switch from task to task in a program
17389 using the Ravenscar Profile.
17390
17391 @end table
17392
17393 @node Ada Settings
17394 @subsubsection Ada Settings
17395 @cindex Ada settings
17396
17397 @table @code
17398 @kindex set varsize-limit
17399 @item set varsize-limit @var{size}
17400 Prevent @value{GDBN} from attempting to evaluate objects whose size
17401 is above the given limit (@var{size}) when those sizes are computed
17402 from run-time quantities.  This is typically the case when the object
17403 has a variable size, such as an array whose bounds are not known at
17404 compile time for example.  Setting @var{size} to @code{unlimited}
17405 removes the size limitation.  By default, the limit is about 65KB.
17406
17407 The purpose of having such a limit is to prevent @value{GDBN} from
17408 trying to grab enormous chunks of virtual memory when asked to evaluate
17409 a quantity whose bounds have been corrupted or have not yet been fully
17410 initialized.  The limit applies to the results of some subexpressions
17411 as well as to complete expressions.  For example, an expression denoting
17412 a simple integer component, such as @code{x.y.z}, may fail if the size of
17413 @code{x.y} is variable and exceeds @code{size}.  On the other hand,
17414 @value{GDBN} is sometimes clever; the expression @code{A(i)}, where
17415 @code{A} is an array variable with non-constant size, will generally
17416 succeed regardless of the bounds on @code{A}, as long as the component
17417 size is less than @var{size}.
17418
17419 @kindex show varsize-limit
17420 @item show varsize-limit
17421 Show the limit on types whose size is determined by run-time quantities.
17422 @end table
17423
17424 @node Ada Glitches
17425 @subsubsection Known Peculiarities of Ada Mode
17426 @cindex Ada, problems
17427
17428 Besides the omissions listed previously (@pxref{Omissions from Ada}),
17429 we know of several problems with and limitations of Ada mode in
17430 @value{GDBN},
17431 some of which will be fixed with planned future releases of the debugger 
17432 and the GNU Ada compiler.
17433
17434 @itemize @bullet
17435 @item 
17436 Static constants that the compiler chooses not to materialize as objects in 
17437 storage are invisible to the debugger.
17438
17439 @item
17440 Named parameter associations in function argument lists are ignored (the
17441 argument lists are treated as positional).
17442
17443 @item
17444 Many useful library packages are currently invisible to the debugger.
17445
17446 @item
17447 Fixed-point arithmetic, conversions, input, and output is carried out using 
17448 floating-point arithmetic, and may give results that only approximate those on 
17449 the host machine.
17450
17451 @item
17452 The GNAT compiler never generates the prefix @code{Standard} for any of 
17453 the standard symbols defined by the Ada language.  @value{GDBN} knows about 
17454 this: it will strip the prefix from names when you use it, and will never
17455 look for a name you have so qualified among local symbols, nor match against
17456 symbols in other packages or subprograms.  If you have 
17457 defined entities anywhere in your program other than parameters and 
17458 local variables whose simple names match names in @code{Standard}, 
17459 GNAT's lack of qualification here can cause confusion.  When this happens,
17460 you can usually resolve the confusion 
17461 by qualifying the problematic names with package
17462 @code{Standard} explicitly.  
17463 @end itemize
17464
17465 Older versions of the compiler sometimes generate erroneous debugging
17466 information, resulting in the debugger incorrectly printing the value
17467 of affected entities.  In some cases, the debugger is able to work
17468 around an issue automatically. In other cases, the debugger is able
17469 to work around the issue, but the work-around has to be specifically
17470 enabled.
17471
17472 @kindex set ada trust-PAD-over-XVS
17473 @kindex show ada trust-PAD-over-XVS
17474 @table @code
17475
17476 @item set ada trust-PAD-over-XVS on
17477 Configure GDB to strictly follow the GNAT encoding when computing the
17478 value of Ada entities, particularly when @code{PAD} and @code{PAD___XVS}
17479 types are involved (see @code{ada/exp_dbug.ads} in the GCC sources for
17480 a complete description of the encoding used by the GNAT compiler).
17481 This is the default.
17482
17483 @item set ada trust-PAD-over-XVS off
17484 This is related to the encoding using by the GNAT compiler.  If @value{GDBN}
17485 sometimes prints the wrong value for certain entities, changing @code{ada
17486 trust-PAD-over-XVS} to @code{off} activates a work-around which may fix
17487 the issue.  It is always safe to set @code{ada trust-PAD-over-XVS} to
17488 @code{off}, but this incurs a slight performance penalty, so it is
17489 recommended to leave this setting to @code{on} unless necessary.
17490
17491 @end table
17492
17493 @cindex GNAT descriptive types
17494 @cindex GNAT encoding
17495 Internally, the debugger also relies on the compiler following a number
17496 of conventions known as the @samp{GNAT Encoding}, all documented in
17497 @file{gcc/ada/exp_dbug.ads} in the GCC sources. This encoding describes
17498 how the debugging information should be generated for certain types.
17499 In particular, this convention makes use of @dfn{descriptive types},
17500 which are artificial types generated purely to help the debugger.
17501
17502 These encodings were defined at a time when the debugging information
17503 format used was not powerful enough to describe some of the more complex
17504 types available in Ada.  Since DWARF allows us to express nearly all
17505 Ada features, the long-term goal is to slowly replace these descriptive
17506 types by their pure DWARF equivalent.  To facilitate that transition,
17507 a new maintenance option is available to force the debugger to ignore
17508 those descriptive types.  It allows the user to quickly evaluate how
17509 well @value{GDBN} works without them.
17510
17511 @table @code
17512
17513 @kindex maint ada set ignore-descriptive-types
17514 @item maintenance ada set ignore-descriptive-types [on|off]
17515 Control whether the debugger should ignore descriptive types.
17516 The default is not to ignore descriptives types (@code{off}).
17517
17518 @kindex maint ada show ignore-descriptive-types
17519 @item maintenance ada show ignore-descriptive-types
17520 Show if descriptive types are ignored by @value{GDBN}.
17521
17522 @end table
17523
17524 @node Unsupported Languages
17525 @section Unsupported Languages
17526
17527 @cindex unsupported languages
17528 @cindex minimal language
17529 In addition to the other fully-supported programming languages,
17530 @value{GDBN} also provides a pseudo-language, called @code{minimal}.
17531 It does not represent a real programming language, but provides a set
17532 of capabilities close to what the C or assembly languages provide.
17533 This should allow most simple operations to be performed while debugging
17534 an application that uses a language currently not supported by @value{GDBN}.
17535
17536 If the language is set to @code{auto}, @value{GDBN} will automatically
17537 select this language if the current frame corresponds to an unsupported
17538 language.
17539
17540 @node Symbols
17541 @chapter Examining the Symbol Table
17542
17543 The commands described in this chapter allow you to inquire about the
17544 symbols (names of variables, functions and types) defined in your
17545 program.  This information is inherent in the text of your program and
17546 does not change as your program executes.  @value{GDBN} finds it in your
17547 program's symbol table, in the file indicated when you started @value{GDBN}
17548 (@pxref{File Options, ,Choosing Files}), or by one of the
17549 file-management commands (@pxref{Files, ,Commands to Specify Files}).
17550
17551 @cindex symbol names
17552 @cindex names of symbols
17553 @cindex quoting names
17554 @anchor{quoting names}
17555 Occasionally, you may need to refer to symbols that contain unusual
17556 characters, which @value{GDBN} ordinarily treats as word delimiters.  The
17557 most frequent case is in referring to static variables in other
17558 source files (@pxref{Variables,,Program Variables}).  File names
17559 are recorded in object files as debugging symbols, but @value{GDBN} would
17560 ordinarily parse a typical file name, like @file{foo.c}, as the three words
17561 @samp{foo} @samp{.} @samp{c}.  To allow @value{GDBN} to recognize
17562 @samp{foo.c} as a single symbol, enclose it in single quotes; for example,
17563
17564 @smallexample
17565 p 'foo.c'::x
17566 @end smallexample
17567
17568 @noindent
17569 looks up the value of @code{x} in the scope of the file @file{foo.c}.
17570
17571 @table @code
17572 @cindex case-insensitive symbol names
17573 @cindex case sensitivity in symbol names
17574 @kindex set case-sensitive
17575 @item set case-sensitive on
17576 @itemx set case-sensitive off
17577 @itemx set case-sensitive auto
17578 Normally, when @value{GDBN} looks up symbols, it matches their names
17579 with case sensitivity determined by the current source language.
17580 Occasionally, you may wish to control that.  The command @code{set
17581 case-sensitive} lets you do that by specifying @code{on} for
17582 case-sensitive matches or @code{off} for case-insensitive ones.  If
17583 you specify @code{auto}, case sensitivity is reset to the default
17584 suitable for the source language.  The default is case-sensitive
17585 matches for all languages except for Fortran, for which the default is
17586 case-insensitive matches.
17587
17588 @kindex show case-sensitive
17589 @item show case-sensitive
17590 This command shows the current setting of case sensitivity for symbols
17591 lookups.
17592
17593 @kindex set print type methods
17594 @item set print type methods
17595 @itemx set print type methods on
17596 @itemx set print type methods off
17597 Normally, when @value{GDBN} prints a class, it displays any methods
17598 declared in that class.  You can control this behavior either by
17599 passing the appropriate flag to @code{ptype}, or using @command{set
17600 print type methods}.  Specifying @code{on} will cause @value{GDBN} to
17601 display the methods; this is the default.  Specifying @code{off} will
17602 cause @value{GDBN} to omit the methods.
17603
17604 @kindex show print type methods
17605 @item show print type methods
17606 This command shows the current setting of method display when printing
17607 classes.
17608
17609 @kindex set print type nested-type-limit
17610 @item set print type nested-type-limit @var{limit}
17611 @itemx set print type nested-type-limit unlimited
17612 Set the limit of displayed nested types that the type printer will
17613 show.  A @var{limit} of @code{unlimited} or @code{-1} will show all
17614 nested definitions.  By default, the type printer will not show any nested
17615 types defined in classes.
17616
17617 @kindex show print type nested-type-limit
17618 @item show print type nested-type-limit
17619 This command shows the current display limit of nested types when
17620 printing classes.
17621
17622 @kindex set print type typedefs
17623 @item set print type typedefs
17624 @itemx set print type typedefs on
17625 @itemx set print type typedefs off
17626
17627 Normally, when @value{GDBN} prints a class, it displays any typedefs
17628 defined in that class.  You can control this behavior either by
17629 passing the appropriate flag to @code{ptype}, or using @command{set
17630 print type typedefs}.  Specifying @code{on} will cause @value{GDBN} to
17631 display the typedef definitions; this is the default.  Specifying
17632 @code{off} will cause @value{GDBN} to omit the typedef definitions.
17633 Note that this controls whether the typedef definition itself is
17634 printed, not whether typedef names are substituted when printing other
17635 types.
17636
17637 @kindex show print type typedefs
17638 @item show print type typedefs
17639 This command shows the current setting of typedef display when
17640 printing classes.
17641
17642 @kindex info address
17643 @cindex address of a symbol
17644 @item info address @var{symbol}
17645 Describe where the data for @var{symbol} is stored.  For a register
17646 variable, this says which register it is kept in.  For a non-register
17647 local variable, this prints the stack-frame offset at which the variable
17648 is always stored.
17649
17650 Note the contrast with @samp{print &@var{symbol}}, which does not work
17651 at all for a register variable, and for a stack local variable prints
17652 the exact address of the current instantiation of the variable.
17653
17654 @kindex info symbol
17655 @cindex symbol from address
17656 @cindex closest symbol and offset for an address
17657 @item info symbol @var{addr}
17658 Print the name of a symbol which is stored at the address @var{addr}.
17659 If no symbol is stored exactly at @var{addr}, @value{GDBN} prints the
17660 nearest symbol and an offset from it:
17661
17662 @smallexample
17663 (@value{GDBP}) info symbol 0x54320
17664 _initialize_vx + 396 in section .text
17665 @end smallexample
17666
17667 @noindent
17668 This is the opposite of the @code{info address} command.  You can use
17669 it to find out the name of a variable or a function given its address.
17670
17671 For dynamically linked executables, the name of executable or shared
17672 library containing the symbol is also printed:
17673
17674 @smallexample
17675 (@value{GDBP}) info symbol 0x400225
17676 _start + 5 in section .text of /tmp/a.out
17677 (@value{GDBP}) info symbol 0x2aaaac2811cf
17678 __read_nocancel + 6 in section .text of /usr/lib64/libc.so.6
17679 @end smallexample
17680
17681 @kindex demangle
17682 @cindex demangle
17683 @item demangle @r{[}-l @var{language}@r{]} @r{[}@var{--}@r{]} @var{name}
17684 Demangle @var{name}.
17685 If @var{language} is provided it is the name of the language to demangle
17686 @var{name} in.  Otherwise @var{name} is demangled in the current language.
17687
17688 The @samp{--} option specifies the end of options,
17689 and is useful when @var{name} begins with a dash.
17690
17691 The parameter @code{demangle-style} specifies how to interpret the kind
17692 of mangling used. @xref{Print Settings}.
17693
17694 @kindex whatis
17695 @item whatis[/@var{flags}] [@var{arg}]
17696 Print the data type of @var{arg}, which can be either an expression
17697 or a name of a data type.  With no argument, print the data type of
17698 @code{$}, the last value in the value history.
17699
17700 If @var{arg} is an expression (@pxref{Expressions, ,Expressions}), it
17701 is not actually evaluated, and any side-effecting operations (such as
17702 assignments or function calls) inside it do not take place.
17703
17704 If @var{arg} is a variable or an expression, @code{whatis} prints its
17705 literal type as it is used in the source code.  If the type was
17706 defined using a @code{typedef}, @code{whatis} will @emph{not} print
17707 the data type underlying the @code{typedef}.  If the type of the
17708 variable or the expression is a compound data type, such as
17709 @code{struct} or  @code{class}, @code{whatis} never prints their
17710 fields or methods.  It just prints the @code{struct}/@code{class}
17711 name (a.k.a.@: its @dfn{tag}).  If you want to see the members of
17712 such a compound data type, use @code{ptype}.
17713
17714 If @var{arg} is a type name that was defined using @code{typedef},
17715 @code{whatis} @dfn{unrolls} only one level of that @code{typedef}.
17716 Unrolling means that @code{whatis} will show the underlying type used
17717 in the @code{typedef} declaration of @var{arg}.  However, if that
17718 underlying type is also a @code{typedef}, @code{whatis} will not
17719 unroll it.
17720
17721 For C code, the type names may also have the form @samp{class
17722 @var{class-name}}, @samp{struct @var{struct-tag}}, @samp{union
17723 @var{union-tag}} or @samp{enum @var{enum-tag}}.
17724
17725 @var{flags} can be used to modify how the type is displayed.
17726 Available flags are:
17727
17728 @table @code
17729 @item r
17730 Display in ``raw'' form.  Normally, @value{GDBN} substitutes template
17731 parameters and typedefs defined in a class when printing the class'
17732 members.  The @code{/r} flag disables this.
17733
17734 @item m
17735 Do not print methods defined in the class.
17736
17737 @item M
17738 Print methods defined in the class.  This is the default, but the flag
17739 exists in case you change the default with @command{set print type methods}.
17740
17741 @item t
17742 Do not print typedefs defined in the class.  Note that this controls
17743 whether the typedef definition itself is printed, not whether typedef
17744 names are substituted when printing other types.
17745
17746 @item T
17747 Print typedefs defined in the class.  This is the default, but the flag
17748 exists in case you change the default with @command{set print type typedefs}.
17749
17750 @item o
17751 Print the offsets and sizes of fields in a struct, similar to what the
17752 @command{pahole} tool does.  This option implies the @code{/tm} flags.
17753
17754 For example, given the following declarations:
17755
17756 @smallexample
17757 struct tuv
17758 @{
17759   int a1;
17760   char *a2;
17761   int a3;
17762 @};
17763
17764 struct xyz
17765 @{
17766   int f1;
17767   char f2;
17768   void *f3;
17769   struct tuv f4;
17770 @};
17771
17772 union qwe
17773 @{
17774   struct tuv fff1;
17775   struct xyz fff2;
17776 @};
17777
17778 struct tyu
17779 @{
17780   int a1 : 1;
17781   int a2 : 3;
17782   int a3 : 23;
17783   char a4 : 2;
17784   int64_t a5;
17785   int a6 : 5;
17786   int64_t a7 : 3;
17787 @};
17788 @end smallexample
17789
17790 Issuing a @kbd{ptype /o struct tuv} command would print:
17791
17792 @smallexample
17793 (@value{GDBP}) ptype /o struct tuv
17794 /* offset    |  size */  type = struct tuv @{
17795 /*    0      |     4 */    int a1;
17796 /* XXX  4-byte hole  */
17797 /*    8      |     8 */    char *a2;
17798 /*   16      |     4 */    int a3;
17799
17800                            /* total size (bytes):   24 */
17801                          @}
17802 @end smallexample
17803
17804 Notice the format of the first column of comments.  There, you can
17805 find two parts separated by the @samp{|} character: the @emph{offset},
17806 which indicates where the field is located inside the struct, in
17807 bytes, and the @emph{size} of the field.  Another interesting line is
17808 the marker of a @emph{hole} in the struct, indicating that it may be
17809 possible to pack the struct and make it use less space by reorganizing
17810 its fields.
17811
17812 It is also possible to print offsets inside an union:
17813
17814 @smallexample
17815 (@value{GDBP}) ptype /o union qwe
17816 /* offset    |  size */  type = union qwe @{
17817 /*                24 */    struct tuv @{
17818 /*    0      |     4 */        int a1;
17819 /* XXX  4-byte hole  */
17820 /*    8      |     8 */        char *a2;
17821 /*   16      |     4 */        int a3;
17822
17823                                /* total size (bytes):   24 */
17824                            @} fff1;
17825 /*                40 */    struct xyz @{
17826 /*    0      |     4 */        int f1;
17827 /*    4      |     1 */        char f2;
17828 /* XXX  3-byte hole  */
17829 /*    8      |     8 */        void *f3;
17830 /*   16      |    24 */        struct tuv @{
17831 /*   16      |     4 */            int a1;
17832 /* XXX  4-byte hole  */
17833 /*   24      |     8 */            char *a2;
17834 /*   32      |     4 */            int a3;
17835
17836                                    /* total size (bytes):   24 */
17837                                @} f4;
17838
17839                                /* total size (bytes):   40 */
17840                            @} fff2;
17841
17842                            /* total size (bytes):   40 */
17843                          @}
17844 @end smallexample
17845
17846 In this case, since @code{struct tuv} and @code{struct xyz} occupy the
17847 same space (because we are dealing with an union), the offset is not
17848 printed for them.  However, you can still examine the offset of each
17849 of these structures' fields.
17850
17851 Another useful scenario is printing the offsets of a struct containing
17852 bitfields:
17853
17854 @smallexample
17855 (@value{GDBP}) ptype /o struct tyu
17856 /* offset    |  size */  type = struct tyu @{
17857 /*    0:31   |     4 */    int a1 : 1;
17858 /*    0:28   |     4 */    int a2 : 3;
17859 /*    0: 5   |     4 */    int a3 : 23;
17860 /*    3: 3   |     1 */    signed char a4 : 2;
17861 /* XXX  3-bit hole   */
17862 /* XXX  4-byte hole  */
17863 /*    8      |     8 */    int64_t a5;
17864 /*   16:27   |     4 */    int a6 : 5;
17865 /*   16:56   |     8 */    int64_t a7 : 3;
17866
17867                            /* total size (bytes):   24 */
17868                          @}
17869 @end smallexample
17870
17871 Note how the offset information is now extended to also include how
17872 many bits are left to be used in each bitfield.
17873 @end table
17874
17875 @kindex ptype
17876 @item ptype[/@var{flags}] [@var{arg}]
17877 @code{ptype} accepts the same arguments as @code{whatis}, but prints a
17878 detailed description of the type, instead of just the name of the type.
17879 @xref{Expressions, ,Expressions}.
17880
17881 Contrary to @code{whatis}, @code{ptype} always unrolls any
17882 @code{typedef}s in its argument declaration, whether the argument is
17883 a variable, expression, or a data type.  This means that @code{ptype}
17884 of a variable or an expression will not print literally its type as
17885 present in the source code---use @code{whatis} for that.  @code{typedef}s at
17886 the pointer or reference targets are also unrolled.  Only @code{typedef}s of
17887 fields, methods and inner @code{class typedef}s of @code{struct}s,
17888 @code{class}es and @code{union}s are not unrolled even with @code{ptype}.
17889
17890 For example, for this variable declaration:
17891
17892 @smallexample
17893 typedef double real_t;
17894 struct complex @{ real_t real; double imag; @};
17895 typedef struct complex complex_t;
17896 complex_t var;
17897 real_t *real_pointer_var;
17898 @end smallexample
17899
17900 @noindent
17901 the two commands give this output:
17902
17903 @smallexample
17904 @group
17905 (@value{GDBP}) whatis var
17906 type = complex_t
17907 (@value{GDBP}) ptype var
17908 type = struct complex @{
17909     real_t real;
17910     double imag;
17911 @}
17912 (@value{GDBP}) whatis complex_t
17913 type = struct complex
17914 (@value{GDBP}) whatis struct complex
17915 type = struct complex
17916 (@value{GDBP}) ptype struct complex
17917 type = struct complex @{
17918     real_t real;
17919     double imag;
17920 @}
17921 (@value{GDBP}) whatis real_pointer_var
17922 type = real_t *
17923 (@value{GDBP}) ptype real_pointer_var
17924 type = double *
17925 @end group
17926 @end smallexample
17927
17928 @noindent
17929 As with @code{whatis}, using @code{ptype} without an argument refers to
17930 the type of @code{$}, the last value in the value history.
17931
17932 @cindex incomplete type
17933 Sometimes, programs use opaque data types or incomplete specifications
17934 of complex data structure.  If the debug information included in the
17935 program does not allow @value{GDBN} to display a full declaration of
17936 the data type, it will say @samp{<incomplete type>}.  For example,
17937 given these declarations:
17938
17939 @smallexample
17940     struct foo;
17941     struct foo *fooptr;
17942 @end smallexample
17943
17944 @noindent
17945 but no definition for @code{struct foo} itself, @value{GDBN} will say:
17946
17947 @smallexample
17948   (@value{GDBP}) ptype foo
17949   $1 = <incomplete type>
17950 @end smallexample
17951
17952 @noindent
17953 ``Incomplete type'' is C terminology for data types that are not
17954 completely specified.
17955
17956 @cindex unknown type
17957 Othertimes, information about a variable's type is completely absent
17958 from the debug information included in the program.  This most often
17959 happens when the program or library where the variable is defined
17960 includes no debug information at all.  @value{GDBN} knows the variable
17961 exists from inspecting the linker/loader symbol table (e.g., the ELF
17962 dynamic symbol table), but such symbols do not contain type
17963 information.  Inspecting the type of a (global) variable for which
17964 @value{GDBN} has no type information shows:
17965
17966 @smallexample
17967   (@value{GDBP}) ptype var
17968   type = <data variable, no debug info>
17969 @end smallexample
17970
17971 @xref{Variables, no debug info variables}, for how to print the values
17972 of such variables.
17973
17974 @kindex info types
17975 @item info types @var{regexp}
17976 @itemx info types
17977 Print a brief description of all types whose names match the regular
17978 expression @var{regexp} (or all types in your program, if you supply
17979 no argument).  Each complete typename is matched as though it were a
17980 complete line; thus, @samp{i type value} gives information on all
17981 types in your program whose names include the string @code{value}, but
17982 @samp{i type ^value$} gives information only on types whose complete
17983 name is @code{value}.
17984
17985 In programs using different languages, @value{GDBN} chooses the syntax
17986 to print the type description according to the
17987 @samp{set language} value: using @samp{set language auto}
17988 (see @ref{Automatically, ,Set Language Automatically}) means to use the
17989 language of the type, other values mean to use
17990 the manually specified language (see @ref{Manually, ,Set Language Manually}).
17991
17992 This command differs from @code{ptype} in two ways: first, like
17993 @code{whatis}, it does not print a detailed description; second, it
17994 lists all source files and line numbers where a type is defined.
17995
17996 @kindex info type-printers
17997 @item info type-printers
17998 Versions of @value{GDBN} that ship with Python scripting enabled may
17999 have ``type printers'' available.  When using @command{ptype} or
18000 @command{whatis}, these printers are consulted when the name of a type
18001 is needed.  @xref{Type Printing API}, for more information on writing
18002 type printers.
18003
18004 @code{info type-printers} displays all the available type printers.
18005
18006 @kindex enable type-printer
18007 @kindex disable type-printer
18008 @item enable type-printer @var{name}@dots{}
18009 @item disable type-printer @var{name}@dots{}
18010 These commands can be used to enable or disable type printers.
18011
18012 @kindex info scope
18013 @cindex local variables
18014 @item info scope @var{location}
18015 List all the variables local to a particular scope.  This command
18016 accepts a @var{location} argument---a function name, a source line, or
18017 an address preceded by a @samp{*}, and prints all the variables local
18018 to the scope defined by that location.  (@xref{Specify Location}, for
18019 details about supported forms of @var{location}.)  For example:
18020
18021 @smallexample
18022 (@value{GDBP}) @b{info scope command_line_handler}
18023 Scope for command_line_handler:
18024 Symbol rl is an argument at stack/frame offset 8, length 4.
18025 Symbol linebuffer is in static storage at address 0x150a18, length 4.
18026 Symbol linelength is in static storage at address 0x150a1c, length 4.
18027 Symbol p is a local variable in register $esi, length 4.
18028 Symbol p1 is a local variable in register $ebx, length 4.
18029 Symbol nline is a local variable in register $edx, length 4.
18030 Symbol repeat is a local variable at frame offset -8, length 4.
18031 @end smallexample
18032
18033 @noindent
18034 This command is especially useful for determining what data to collect
18035 during a @dfn{trace experiment}, see @ref{Tracepoint Actions,
18036 collect}.
18037
18038 @kindex info source
18039 @item info source
18040 Show information about the current source file---that is, the source file for
18041 the function containing the current point of execution:
18042 @itemize @bullet
18043 @item
18044 the name of the source file, and the directory containing it,
18045 @item
18046 the directory it was compiled in,
18047 @item
18048 its length, in lines,
18049 @item
18050 which programming language it is written in,
18051 @item
18052 if the debug information provides it, the program that compiled the file
18053 (which may include, e.g., the compiler version and command line arguments),
18054 @item
18055 whether the executable includes debugging information for that file, and
18056 if so, what format the information is in (e.g., STABS, Dwarf 2, etc.), and
18057 @item
18058 whether the debugging information includes information about
18059 preprocessor macros.
18060 @end itemize
18061
18062
18063 @kindex info sources
18064 @item info sources
18065 Print the names of all source files in your program for which there is
18066 debugging information, organized into two lists: files whose symbols
18067 have already been read, and files whose symbols will be read when needed.
18068
18069 @kindex info functions
18070 @item info functions [-q]
18071 Print the names and data types of all defined functions.
18072 Similarly to @samp{info types}, this command groups its output by source
18073 files and annotates each function definition with its source line
18074 number.
18075
18076 In programs using different languages, @value{GDBN} chooses the syntax
18077 to print the function name and type according to the
18078 @samp{set language} value: using @samp{set language auto}
18079 (see @ref{Automatically, ,Set Language Automatically}) means to use the
18080 language of the function, other values mean to use
18081 the manually specified language (see @ref{Manually, ,Set Language Manually}).
18082
18083 The optional flag @samp{-q}, which stands for @samp{quiet}, disables
18084 printing header information and messages explaining why no functions
18085 have been printed.
18086
18087 @item info functions [-q] [-t @var{type_regexp}] [@var{regexp}]
18088 Like @samp{info functions}, but only print the names and data types
18089 of the functions selected with the provided regexp(s).
18090
18091 If @var{regexp} is provided, print only the functions whose names
18092 match the regular expression @var{regexp}.
18093 Thus, @samp{info fun step} finds all functions whose
18094 names include @code{step}; @samp{info fun ^step} finds those whose names
18095 start with @code{step}.  If a function name contains characters that
18096 conflict with the regular expression language (e.g.@:
18097 @samp{operator*()}), they may be quoted with a backslash.
18098
18099 If @var{type_regexp} is provided, print only the functions whose
18100 types, as printed by the @code{whatis} command, match
18101 the regular expression @var{type_regexp}.
18102 If @var{type_regexp} contains space(s), it should be enclosed in
18103 quote characters.  If needed, use backslash to escape the meaning
18104 of special characters or quotes.
18105 Thus, @samp{info fun -t '^int ('} finds the functions that return
18106 an integer; @samp{info fun -t '(.*int.*'} finds the functions that
18107 have an argument type containing int; @samp{info fun -t '^int (' ^step}
18108 finds the functions whose names start with @code{step} and that return
18109 int.
18110
18111 If both @var{regexp} and @var{type_regexp} are provided, a function
18112 is printed only if its name matches @var{regexp} and its type matches
18113 @var{type_regexp}.
18114
18115
18116 @kindex info variables
18117 @item info variables [-q]
18118 Print the names and data types of all variables that are defined
18119 outside of functions (i.e.@: excluding local variables).
18120 The printed variables are grouped by source files and annotated with
18121 their respective source line numbers.
18122
18123 In programs using different languages, @value{GDBN} chooses the syntax
18124 to print the variable name and type according to the
18125 @samp{set language} value: using @samp{set language auto}
18126 (see @ref{Automatically, ,Set Language Automatically}) means to use the
18127 language of the variable, other values mean to use
18128 the manually specified language (see @ref{Manually, ,Set Language Manually}).
18129
18130 The optional flag @samp{-q}, which stands for @samp{quiet}, disables
18131 printing header information and messages explaining why no variables
18132 have been printed.
18133
18134 @item info variables [-q] [-t @var{type_regexp}] [@var{regexp}]
18135 Like @kbd{info variables}, but only print the variables selected
18136 with the provided regexp(s).
18137
18138 If @var{regexp} is provided, print only the variables whose names
18139 match the regular expression @var{regexp}.
18140
18141 If @var{type_regexp} is provided, print only the variables whose
18142 types, as printed by the @code{whatis} command, match
18143 the regular expression @var{type_regexp}.
18144 If @var{type_regexp} contains space(s), it should be enclosed in
18145 quote characters.  If needed, use backslash to escape the meaning
18146 of special characters or quotes.
18147
18148 If both @var{regexp} and @var{type_regexp} are provided, an argument
18149 is printed only if its name matches @var{regexp} and its type matches
18150 @var{type_regexp}.
18151
18152 @kindex info classes
18153 @cindex Objective-C, classes and selectors
18154 @item info classes
18155 @itemx info classes @var{regexp}
18156 Display all Objective-C classes in your program, or
18157 (with the @var{regexp} argument) all those matching a particular regular
18158 expression.
18159
18160 @kindex info selectors
18161 @item info selectors
18162 @itemx info selectors @var{regexp}
18163 Display all Objective-C selectors in your program, or
18164 (with the @var{regexp} argument) all those matching a particular regular
18165 expression.
18166
18167 @ignore
18168 This was never implemented.
18169 @kindex info methods
18170 @item info methods
18171 @itemx info methods @var{regexp}
18172 The @code{info methods} command permits the user to examine all defined
18173 methods within C@t{++} program, or (with the @var{regexp} argument) a
18174 specific set of methods found in the various C@t{++} classes.  Many
18175 C@t{++} classes provide a large number of methods.  Thus, the output
18176 from the @code{ptype} command can be overwhelming and hard to use.  The
18177 @code{info-methods} command filters the methods, printing only those
18178 which match the regular-expression @var{regexp}.
18179 @end ignore
18180
18181 @cindex opaque data types
18182 @kindex set opaque-type-resolution
18183 @item set opaque-type-resolution on
18184 Tell @value{GDBN} to resolve opaque types.  An opaque type is a type
18185 declared as a pointer to a @code{struct}, @code{class}, or
18186 @code{union}---for example, @code{struct MyType *}---that is used in one
18187 source file although the full declaration of @code{struct MyType} is in
18188 another source file.  The default is on.
18189
18190 A change in the setting of this subcommand will not take effect until
18191 the next time symbols for a file are loaded.
18192
18193 @item set opaque-type-resolution off
18194 Tell @value{GDBN} not to resolve opaque types.  In this case, the type
18195 is printed as follows:
18196 @smallexample
18197 @{<no data fields>@}
18198 @end smallexample
18199
18200 @kindex show opaque-type-resolution
18201 @item show opaque-type-resolution
18202 Show whether opaque types are resolved or not.
18203
18204 @kindex set print symbol-loading
18205 @cindex print messages when symbols are loaded
18206 @item set print symbol-loading
18207 @itemx set print symbol-loading full
18208 @itemx set print symbol-loading brief
18209 @itemx set print symbol-loading off
18210 The @code{set print symbol-loading} command allows you to control the
18211 printing of messages when @value{GDBN} loads symbol information.
18212 By default a message is printed for the executable and one for each
18213 shared library, and normally this is what you want.  However, when
18214 debugging apps with large numbers of shared libraries these messages
18215 can be annoying.
18216 When set to @code{brief} a message is printed for each executable,
18217 and when @value{GDBN} loads a collection of shared libraries at once
18218 it will only print one message regardless of the number of shared
18219 libraries.  When set to @code{off} no messages are printed.
18220
18221 @kindex show print symbol-loading
18222 @item show print symbol-loading
18223 Show whether messages will be printed when a @value{GDBN} command
18224 entered from the keyboard causes symbol information to be loaded.
18225
18226 @kindex maint print symbols
18227 @cindex symbol dump
18228 @kindex maint print psymbols
18229 @cindex partial symbol dump
18230 @kindex maint print msymbols
18231 @cindex minimal symbol dump
18232 @item maint print symbols @r{[}-pc @var{address}@r{]} @r{[}@var{filename}@r{]}
18233 @itemx maint print symbols @r{[}-objfile @var{objfile}@r{]} @r{[}-source @var{source}@r{]} @r{[}--@r{]} @r{[}@var{filename}@r{]}
18234 @itemx maint print psymbols @r{[}-objfile @var{objfile}@r{]} @r{[}-pc @var{address}@r{]} @r{[}--@r{]} @r{[}@var{filename}@r{]}
18235 @itemx maint print psymbols @r{[}-objfile @var{objfile}@r{]} @r{[}-source @var{source}@r{]} @r{[}--@r{]} @r{[}@var{filename}@r{]}
18236 @itemx maint print msymbols @r{[}-objfile @var{objfile}@r{]} @r{[}--@r{]} @r{[}@var{filename}@r{]}
18237 Write a dump of debugging symbol data into the file @var{filename} or
18238 the terminal if @var{filename} is unspecified.
18239 If @code{-objfile @var{objfile}} is specified, only dump symbols for
18240 that objfile.
18241 If @code{-pc @var{address}} is specified, only dump symbols for the file
18242 with code at that address.  Note that @var{address} may be a symbol like
18243 @code{main}.
18244 If @code{-source @var{source}} is specified, only dump symbols for that
18245 source file.
18246
18247 These commands are used to debug the @value{GDBN} symbol-reading code.
18248 These commands do not modify internal @value{GDBN} state, therefore
18249 @samp{maint print symbols} will only print symbols for already expanded symbol
18250 tables.
18251 You can use the command @code{info sources} to find out which files these are.
18252 If you use @samp{maint print psymbols} instead, the dump shows information
18253 about symbols that @value{GDBN} only knows partially---that is, symbols
18254 defined in files that @value{GDBN} has skimmed, but not yet read completely.
18255 Finally, @samp{maint print msymbols} just dumps ``minimal symbols'', e.g.,
18256 ``ELF symbols''.
18257
18258 @xref{Files, ,Commands to Specify Files}, for a discussion of how
18259 @value{GDBN} reads symbols (in the description of @code{symbol-file}).
18260
18261 @kindex maint info symtabs
18262 @kindex maint info psymtabs
18263 @cindex listing @value{GDBN}'s internal symbol tables
18264 @cindex symbol tables, listing @value{GDBN}'s internal
18265 @cindex full symbol tables, listing @value{GDBN}'s internal
18266 @cindex partial symbol tables, listing @value{GDBN}'s internal
18267 @item maint info symtabs @r{[} @var{regexp} @r{]}
18268 @itemx maint info psymtabs @r{[} @var{regexp} @r{]}
18269
18270 List the @code{struct symtab} or @code{struct partial_symtab}
18271 structures whose names match @var{regexp}.  If @var{regexp} is not
18272 given, list them all.  The output includes expressions which you can
18273 copy into a @value{GDBN} debugging this one to examine a particular
18274 structure in more detail.  For example:
18275
18276 @smallexample
18277 (@value{GDBP}) maint info psymtabs dwarf2read
18278 @{ objfile /home/gnu/build/gdb/gdb
18279   ((struct objfile *) 0x82e69d0)
18280   @{ psymtab /home/gnu/src/gdb/dwarf2read.c
18281     ((struct partial_symtab *) 0x8474b10)
18282     readin no
18283     fullname (null)
18284     text addresses 0x814d3c8 -- 0x8158074
18285     globals (* (struct partial_symbol **) 0x8507a08 @@ 9)
18286     statics (* (struct partial_symbol **) 0x40e95b78 @@ 2882)
18287     dependencies (none)
18288   @}
18289 @}
18290 (@value{GDBP}) maint info symtabs
18291 (@value{GDBP})
18292 @end smallexample
18293 @noindent
18294 We see that there is one partial symbol table whose filename contains
18295 the string @samp{dwarf2read}, belonging to the @samp{gdb} executable;
18296 and we see that @value{GDBN} has not read in any symtabs yet at all.
18297 If we set a breakpoint on a function, that will cause @value{GDBN} to
18298 read the symtab for the compilation unit containing that function:
18299
18300 @smallexample
18301 (@value{GDBP}) break dwarf2_psymtab_to_symtab
18302 Breakpoint 1 at 0x814e5da: file /home/gnu/src/gdb/dwarf2read.c,
18303 line 1574.
18304 (@value{GDBP}) maint info symtabs
18305 @{ objfile /home/gnu/build/gdb/gdb
18306   ((struct objfile *) 0x82e69d0)
18307   @{ symtab /home/gnu/src/gdb/dwarf2read.c
18308     ((struct symtab *) 0x86c1f38)
18309     dirname (null)
18310     fullname (null)
18311     blockvector ((struct blockvector *) 0x86c1bd0) (primary)
18312     linetable ((struct linetable *) 0x8370fa0)
18313     debugformat DWARF 2
18314   @}
18315 @}
18316 (@value{GDBP})
18317 @end smallexample
18318
18319 @kindex maint info line-table
18320 @cindex listing @value{GDBN}'s internal line tables
18321 @cindex line tables, listing @value{GDBN}'s internal
18322 @item maint info line-table @r{[} @var{regexp} @r{]}
18323
18324 List the @code{struct linetable} from all @code{struct symtab}
18325 instances whose name matches @var{regexp}.  If @var{regexp} is not
18326 given, list the @code{struct linetable} from all @code{struct symtab}.
18327
18328 @kindex maint set symbol-cache-size
18329 @cindex symbol cache size
18330 @item maint set symbol-cache-size @var{size}
18331 Set the size of the symbol cache to @var{size}.
18332 The default size is intended to be good enough for debugging
18333 most applications.  This option exists to allow for experimenting
18334 with different sizes.
18335
18336 @kindex maint show symbol-cache-size
18337 @item maint show symbol-cache-size
18338 Show the size of the symbol cache.
18339
18340 @kindex maint print symbol-cache
18341 @cindex symbol cache, printing its contents
18342 @item maint print symbol-cache
18343 Print the contents of the symbol cache.
18344 This is useful when debugging symbol cache issues.
18345
18346 @kindex maint print symbol-cache-statistics
18347 @cindex symbol cache, printing usage statistics
18348 @item maint print symbol-cache-statistics
18349 Print symbol cache usage statistics.
18350 This helps determine how well the cache is being utilized.
18351
18352 @kindex maint flush-symbol-cache
18353 @cindex symbol cache, flushing
18354 @item maint flush-symbol-cache
18355 Flush the contents of the symbol cache, all entries are removed.
18356 This command is useful when debugging the symbol cache.
18357 It is also useful when collecting performance data.
18358
18359 @end table
18360
18361 @node Altering
18362 @chapter Altering Execution
18363
18364 Once you think you have found an error in your program, you might want to
18365 find out for certain whether correcting the apparent error would lead to
18366 correct results in the rest of the run.  You can find the answer by
18367 experiment, using the @value{GDBN} features for altering execution of the
18368 program.
18369
18370 For example, you can store new values into variables or memory
18371 locations, give your program a signal, restart it at a different
18372 address, or even return prematurely from a function.
18373
18374 @menu
18375 * Assignment::                  Assignment to variables
18376 * Jumping::                     Continuing at a different address
18377 * Signaling::                   Giving your program a signal
18378 * Returning::                   Returning from a function
18379 * Calling::                     Calling your program's functions
18380 * Patching::                    Patching your program
18381 * Compiling and Injecting Code:: Compiling and injecting code in @value{GDBN}
18382 @end menu
18383
18384 @node Assignment
18385 @section Assignment to Variables
18386
18387 @cindex assignment
18388 @cindex setting variables
18389 To alter the value of a variable, evaluate an assignment expression.
18390 @xref{Expressions, ,Expressions}.  For example,
18391
18392 @smallexample
18393 print x=4
18394 @end smallexample
18395
18396 @noindent
18397 stores the value 4 into the variable @code{x}, and then prints the
18398 value of the assignment expression (which is 4).
18399 @xref{Languages, ,Using @value{GDBN} with Different Languages}, for more
18400 information on operators in supported languages.
18401
18402 @kindex set variable
18403 @cindex variables, setting
18404 If you are not interested in seeing the value of the assignment, use the
18405 @code{set} command instead of the @code{print} command.  @code{set} is
18406 really the same as @code{print} except that the expression's value is
18407 not printed and is not put in the value history (@pxref{Value History,
18408 ,Value History}).  The expression is evaluated only for its effects.
18409
18410 If the beginning of the argument string of the @code{set} command
18411 appears identical to a @code{set} subcommand, use the @code{set
18412 variable} command instead of just @code{set}.  This command is identical
18413 to @code{set} except for its lack of subcommands.  For example, if your
18414 program has a variable @code{width}, you get an error if you try to set
18415 a new value with just @samp{set width=13}, because @value{GDBN} has the
18416 command @code{set width}:
18417
18418 @smallexample
18419 (@value{GDBP}) whatis width
18420 type = double
18421 (@value{GDBP}) p width
18422 $4 = 13
18423 (@value{GDBP}) set width=47
18424 Invalid syntax in expression.
18425 @end smallexample
18426
18427 @noindent
18428 The invalid expression, of course, is @samp{=47}.  In
18429 order to actually set the program's variable @code{width}, use
18430
18431 @smallexample
18432 (@value{GDBP}) set var width=47
18433 @end smallexample
18434
18435 Because the @code{set} command has many subcommands that can conflict
18436 with the names of program variables, it is a good idea to use the
18437 @code{set variable} command instead of just @code{set}.  For example, if
18438 your program has a variable @code{g}, you run into problems if you try
18439 to set a new value with just @samp{set g=4}, because @value{GDBN} has
18440 the command @code{set gnutarget}, abbreviated @code{set g}:
18441
18442 @smallexample
18443 @group
18444 (@value{GDBP}) whatis g
18445 type = double
18446 (@value{GDBP}) p g
18447 $1 = 1
18448 (@value{GDBP}) set g=4
18449 (@value{GDBP}) p g
18450 $2 = 1
18451 (@value{GDBP}) r
18452 The program being debugged has been started already.
18453 Start it from the beginning? (y or n) y
18454 Starting program: /home/smith/cc_progs/a.out
18455 "/home/smith/cc_progs/a.out": can't open to read symbols:
18456                                  Invalid bfd target.
18457 (@value{GDBP}) show g
18458 The current BFD target is "=4".
18459 @end group
18460 @end smallexample
18461
18462 @noindent
18463 The program variable @code{g} did not change, and you silently set the
18464 @code{gnutarget} to an invalid value.  In order to set the variable
18465 @code{g}, use
18466
18467 @smallexample
18468 (@value{GDBP}) set var g=4
18469 @end smallexample
18470
18471 @value{GDBN} allows more implicit conversions in assignments than C; you can
18472 freely store an integer value into a pointer variable or vice versa,
18473 and you can convert any structure to any other structure that is the
18474 same length or shorter.
18475 @comment FIXME: how do structs align/pad in these conversions?
18476 @comment        /doc@cygnus.com 18dec1990
18477
18478 To store values into arbitrary places in memory, use the @samp{@{@dots{}@}}
18479 construct to generate a value of specified type at a specified address
18480 (@pxref{Expressions, ,Expressions}).  For example, @code{@{int@}0x83040} refers
18481 to memory location @code{0x83040} as an integer (which implies a certain size
18482 and representation in memory), and
18483
18484 @smallexample
18485 set @{int@}0x83040 = 4
18486 @end smallexample
18487
18488 @noindent
18489 stores the value 4 into that memory location.
18490
18491 @node Jumping
18492 @section Continuing at a Different Address
18493
18494 Ordinarily, when you continue your program, you do so at the place where
18495 it stopped, with the @code{continue} command.  You can instead continue at
18496 an address of your own choosing, with the following commands:
18497
18498 @table @code
18499 @kindex jump
18500 @kindex j @r{(@code{jump})}
18501 @item jump @var{location}
18502 @itemx j @var{location}
18503 Resume execution at @var{location}.  Execution stops again immediately
18504 if there is a breakpoint there.  @xref{Specify Location}, for a description
18505 of the different forms of @var{location}.  It is common
18506 practice to use the @code{tbreak} command in conjunction with
18507 @code{jump}.  @xref{Set Breaks, ,Setting Breakpoints}.
18508
18509 The @code{jump} command does not change the current stack frame, or
18510 the stack pointer, or the contents of any memory location or any
18511 register other than the program counter.  If @var{location} is in
18512 a different function from the one currently executing, the results may
18513 be bizarre if the two functions expect different patterns of arguments or
18514 of local variables.  For this reason, the @code{jump} command requests
18515 confirmation if the specified line is not in the function currently
18516 executing.  However, even bizarre results are predictable if you are
18517 well acquainted with the machine-language code of your program.
18518 @end table
18519
18520 On many systems, you can get much the same effect as the @code{jump}
18521 command by storing a new value into the register @code{$pc}.  The
18522 difference is that this does not start your program running; it only
18523 changes the address of where it @emph{will} run when you continue.  For
18524 example,
18525
18526 @smallexample
18527 set $pc = 0x485
18528 @end smallexample
18529
18530 @noindent
18531 makes the next @code{continue} command or stepping command execute at
18532 address @code{0x485}, rather than at the address where your program stopped.
18533 @xref{Continuing and Stepping, ,Continuing and Stepping}.
18534
18535 The most common occasion to use the @code{jump} command is to back
18536 up---perhaps with more breakpoints set---over a portion of a program
18537 that has already executed, in order to examine its execution in more
18538 detail.
18539
18540 @c @group
18541 @node Signaling
18542 @section Giving your Program a Signal
18543 @cindex deliver a signal to a program
18544
18545 @table @code
18546 @kindex signal
18547 @item signal @var{signal}
18548 Resume execution where your program is stopped, but immediately give it the
18549 signal @var{signal}.  The @var{signal} can be the name or the number of a
18550 signal.  For example, on many systems @code{signal 2} and @code{signal
18551 SIGINT} are both ways of sending an interrupt signal.
18552
18553 Alternatively, if @var{signal} is zero, continue execution without
18554 giving a signal.  This is useful when your program stopped on account of
18555 a signal and would ordinarily see the signal when resumed with the
18556 @code{continue} command; @samp{signal 0} causes it to resume without a
18557 signal.
18558
18559 @emph{Note:} When resuming a multi-threaded program, @var{signal} is
18560 delivered to the currently selected thread, not the thread that last
18561 reported a stop.  This includes the situation where a thread was
18562 stopped due to a signal.  So if you want to continue execution
18563 suppressing the signal that stopped a thread, you should select that
18564 same thread before issuing the @samp{signal 0} command.  If you issue
18565 the @samp{signal 0} command with another thread as the selected one,
18566 @value{GDBN} detects that and asks for confirmation.
18567
18568 Invoking the @code{signal} command is not the same as invoking the
18569 @code{kill} utility from the shell.  Sending a signal with @code{kill}
18570 causes @value{GDBN} to decide what to do with the signal depending on
18571 the signal handling tables (@pxref{Signals}).  The @code{signal} command
18572 passes the signal directly to your program.
18573
18574 @code{signal} does not repeat when you press @key{RET} a second time
18575 after executing the command.
18576
18577 @kindex queue-signal
18578 @item queue-signal @var{signal}
18579 Queue @var{signal} to be delivered immediately to the current thread
18580 when execution of the thread resumes.  The @var{signal} can be the name or
18581 the number of a signal.  For example, on many systems @code{signal 2} and
18582 @code{signal SIGINT} are both ways of sending an interrupt signal.
18583 The handling of the signal must be set to pass the signal to the program,
18584 otherwise @value{GDBN} will report an error.
18585 You can control the handling of signals from @value{GDBN} with the
18586 @code{handle} command (@pxref{Signals}).
18587
18588 Alternatively, if @var{signal} is zero, any currently queued signal
18589 for the current thread is discarded and when execution resumes no signal
18590 will be delivered.  This is useful when your program stopped on account
18591 of a signal and would ordinarily see the signal when resumed with the
18592 @code{continue} command.
18593
18594 This command differs from the @code{signal} command in that the signal
18595 is just queued, execution is not resumed.  And @code{queue-signal} cannot
18596 be used to pass a signal whose handling state has been set to @code{nopass}
18597 (@pxref{Signals}).
18598 @end table
18599 @c @end group
18600
18601 @xref{stepping into signal handlers}, for information on how stepping
18602 commands behave when the thread has a signal queued.
18603
18604 @node Returning
18605 @section Returning from a Function
18606
18607 @table @code
18608 @cindex returning from a function
18609 @kindex return
18610 @item return
18611 @itemx return @var{expression}
18612 You can cancel execution of a function call with the @code{return}
18613 command.  If you give an
18614 @var{expression} argument, its value is used as the function's return
18615 value.
18616 @end table
18617
18618 When you use @code{return}, @value{GDBN} discards the selected stack frame
18619 (and all frames within it).  You can think of this as making the
18620 discarded frame return prematurely.  If you wish to specify a value to
18621 be returned, give that value as the argument to @code{return}.
18622
18623 This pops the selected stack frame (@pxref{Selection, ,Selecting a
18624 Frame}), and any other frames inside of it, leaving its caller as the
18625 innermost remaining frame.  That frame becomes selected.  The
18626 specified value is stored in the registers used for returning values
18627 of functions.
18628
18629 The @code{return} command does not resume execution; it leaves the
18630 program stopped in the state that would exist if the function had just
18631 returned.  In contrast, the @code{finish} command (@pxref{Continuing
18632 and Stepping, ,Continuing and Stepping}) resumes execution until the
18633 selected stack frame returns naturally.
18634
18635 @value{GDBN} needs to know how the @var{expression} argument should be set for
18636 the inferior.  The concrete registers assignment depends on the OS ABI and the
18637 type being returned by the selected stack frame.  For example it is common for
18638 OS ABI to return floating point values in FPU registers while integer values in
18639 CPU registers.  Still some ABIs return even floating point values in CPU
18640 registers.  Larger integer widths (such as @code{long long int}) also have
18641 specific placement rules.  @value{GDBN} already knows the OS ABI from its
18642 current target so it needs to find out also the type being returned to make the
18643 assignment into the right register(s).
18644
18645 Normally, the selected stack frame has debug info.  @value{GDBN} will always
18646 use the debug info instead of the implicit type of @var{expression} when the
18647 debug info is available.  For example, if you type @kbd{return -1}, and the
18648 function in the current stack frame is declared to return a @code{long long
18649 int}, @value{GDBN} transparently converts the implicit @code{int} value of -1
18650 into a @code{long long int}:
18651
18652 @smallexample
18653 Breakpoint 1, func () at gdb.base/return-nodebug.c:29
18654 29        return 31;
18655 (@value{GDBP}) return -1
18656 Make func return now? (y or n) y
18657 #0  0x004004f6 in main () at gdb.base/return-nodebug.c:43
18658 43        printf ("result=%lld\n", func ());
18659 (@value{GDBP})
18660 @end smallexample
18661
18662 However, if the selected stack frame does not have a debug info, e.g., if the
18663 function was compiled without debug info, @value{GDBN} has to find out the type
18664 to return from user.  Specifying a different type by mistake may set the value
18665 in different inferior registers than the caller code expects.  For example,
18666 typing @kbd{return -1} with its implicit type @code{int} would set only a part
18667 of a @code{long long int} result for a debug info less function (on 32-bit
18668 architectures).  Therefore the user is required to specify the return type by
18669 an appropriate cast explicitly:
18670
18671 @smallexample
18672 Breakpoint 2, 0x0040050b in func ()
18673 (@value{GDBP}) return -1
18674 Return value type not available for selected stack frame.
18675 Please use an explicit cast of the value to return.
18676 (@value{GDBP}) return (long long int) -1
18677 Make selected stack frame return now? (y or n) y
18678 #0  0x00400526 in main ()
18679 (@value{GDBP})
18680 @end smallexample
18681
18682 @node Calling
18683 @section Calling Program Functions
18684
18685 @table @code
18686 @cindex calling functions
18687 @cindex inferior functions, calling
18688 @item print @var{expr}
18689 Evaluate the expression @var{expr} and display the resulting value.
18690 The expression may include calls to functions in the program being
18691 debugged.
18692
18693 @kindex call
18694 @item call @var{expr}
18695 Evaluate the expression @var{expr} without displaying @code{void}
18696 returned values.
18697
18698 You can use this variant of the @code{print} command if you want to
18699 execute a function from your program that does not return anything
18700 (a.k.a.@: @dfn{a void function}), but without cluttering the output
18701 with @code{void} returned values that @value{GDBN} will otherwise
18702 print.  If the result is not void, it is printed and saved in the
18703 value history.
18704 @end table
18705
18706 It is possible for the function you call via the @code{print} or
18707 @code{call} command to generate a signal (e.g., if there's a bug in
18708 the function, or if you passed it incorrect arguments).  What happens
18709 in that case is controlled by the @code{set unwindonsignal} command.
18710
18711 Similarly, with a C@t{++} program it is possible for the function you
18712 call via the @code{print} or @code{call} command to generate an
18713 exception that is not handled due to the constraints of the dummy
18714 frame.  In this case, any exception that is raised in the frame, but has
18715 an out-of-frame exception handler will not be found.  GDB builds a
18716 dummy-frame for the inferior function call, and the unwinder cannot
18717 seek for exception handlers outside of this dummy-frame.  What happens
18718 in that case is controlled by the
18719 @code{set unwind-on-terminating-exception} command.
18720
18721 @table @code
18722 @item set unwindonsignal
18723 @kindex set unwindonsignal
18724 @cindex unwind stack in called functions
18725 @cindex call dummy stack unwinding
18726 Set unwinding of the stack if a signal is received while in a function
18727 that @value{GDBN} called in the program being debugged.  If set to on,
18728 @value{GDBN} unwinds the stack it created for the call and restores
18729 the context to what it was before the call.  If set to off (the
18730 default), @value{GDBN} stops in the frame where the signal was
18731 received.
18732
18733 @item show unwindonsignal
18734 @kindex show unwindonsignal
18735 Show the current setting of stack unwinding in the functions called by
18736 @value{GDBN}.
18737
18738 @item set unwind-on-terminating-exception
18739 @kindex set unwind-on-terminating-exception
18740 @cindex unwind stack in called functions with unhandled exceptions
18741 @cindex call dummy stack unwinding on unhandled exception.
18742 Set unwinding of the stack if a C@t{++} exception is raised, but left
18743 unhandled while in a function that @value{GDBN} called in the program being
18744 debugged.  If set to on (the default), @value{GDBN} unwinds the stack
18745 it created for the call and restores the context to what it was before
18746 the call.  If set to off, @value{GDBN} the exception is delivered to
18747 the default C@t{++} exception handler and the inferior terminated.
18748
18749 @item show unwind-on-terminating-exception
18750 @kindex show unwind-on-terminating-exception
18751 Show the current setting of stack unwinding in the functions called by
18752 @value{GDBN}.
18753
18754 @item set may-call-functions
18755 @kindex set may-call-functions
18756 @cindex disabling calling functions in the program
18757 @cindex calling functions in the program, disabling
18758 Set permission to call functions in the program.
18759 This controls whether @value{GDBN} will attempt to call functions in
18760 the program, such as with expressions in the @code{print} command.  It
18761 defaults to @code{on}.
18762
18763 To call a function in the program, @value{GDBN} has to temporarily
18764 modify the state of the inferior.  This has potentially undesired side
18765 effects.  Also, having @value{GDBN} call nested functions is likely to
18766 be erroneous and may even crash the program being debugged.  You can
18767 avoid such hazards by forbidding @value{GDBN} from calling functions
18768 in the program being debugged.  If calling functions in the program
18769 is forbidden, GDB will throw an error when a command (such as printing
18770 an expression) starts a function call in the program.
18771
18772 @item show may-call-functions
18773 @kindex show may-call-functions
18774 Show permission to call functions in the program.
18775
18776 @end table
18777
18778 @subsection Calling functions with no debug info
18779
18780 @cindex no debug info functions
18781 Sometimes, a function you wish to call is missing debug information.
18782 In such case, @value{GDBN} does not know the type of the function,
18783 including the types of the function's parameters.  To avoid calling
18784 the inferior function incorrectly, which could result in the called
18785 function functioning erroneously and even crash, @value{GDBN} refuses
18786 to call the function unless you tell it the type of the function.
18787
18788 For prototyped (i.e.@: ANSI/ISO style) functions, there are two ways
18789 to do that.  The simplest is to cast the call to the function's
18790 declared return type.  For example:
18791
18792 @smallexample
18793 (@value{GDBP}) p getenv ("PATH")
18794 'getenv' has unknown return type; cast the call to its declared return type
18795 (@value{GDBP}) p (char *) getenv ("PATH")
18796 $1 = 0x7fffffffe7ba "/usr/local/bin:/"...
18797 @end smallexample
18798
18799 Casting the return type of a no-debug function is equivalent to
18800 casting the function to a pointer to a prototyped function that has a
18801 prototype that matches the types of the passed-in arguments, and
18802 calling that.  I.e., the call above is equivalent to:
18803
18804 @smallexample
18805 (@value{GDBP}) p ((char * (*) (const char *)) getenv) ("PATH")
18806 @end smallexample
18807
18808 @noindent
18809 and given this prototyped C or C++ function with float parameters:
18810
18811 @smallexample
18812 float multiply (float v1, float v2) @{ return v1 * v2; @}
18813 @end smallexample
18814
18815 @noindent
18816 these calls are equivalent:
18817
18818 @smallexample
18819 (@value{GDBP}) p (float) multiply (2.0f, 3.0f)
18820 (@value{GDBP}) p ((float (*) (float, float)) multiply) (2.0f, 3.0f)
18821 @end smallexample
18822
18823 If the function you wish to call is declared as unprototyped (i.e.@:
18824 old K&R style), you must use the cast-to-function-pointer syntax, so
18825 that @value{GDBN} knows that it needs to apply default argument
18826 promotions (promote float arguments to double).  @xref{ABI, float
18827 promotion}.  For example, given this unprototyped C function with
18828 float parameters, and no debug info:
18829
18830 @smallexample
18831 float
18832 multiply_noproto (v1, v2)
18833   float v1, v2;
18834 @{
18835   return v1 * v2;
18836 @}
18837 @end smallexample
18838
18839 @noindent
18840 you call it like this:
18841
18842 @smallexample
18843   (@value{GDBP}) p ((float (*) ()) multiply_noproto) (2.0f, 3.0f)
18844 @end smallexample
18845
18846 @node Patching
18847 @section Patching Programs
18848
18849 @cindex patching binaries
18850 @cindex writing into executables
18851 @cindex writing into corefiles
18852
18853 By default, @value{GDBN} opens the file containing your program's
18854 executable code (or the corefile) read-only.  This prevents accidental
18855 alterations to machine code; but it also prevents you from intentionally
18856 patching your program's binary.
18857
18858 If you'd like to be able to patch the binary, you can specify that
18859 explicitly with the @code{set write} command.  For example, you might
18860 want to turn on internal debugging flags, or even to make emergency
18861 repairs.
18862
18863 @table @code
18864 @kindex set write
18865 @item set write on
18866 @itemx set write off
18867 If you specify @samp{set write on}, @value{GDBN} opens executable and
18868 core files for both reading and writing; if you specify @kbd{set write
18869 off} (the default), @value{GDBN} opens them read-only.
18870
18871 If you have already loaded a file, you must load it again (using the
18872 @code{exec-file} or @code{core-file} command) after changing @code{set
18873 write}, for your new setting to take effect.
18874
18875 @item show write
18876 @kindex show write
18877 Display whether executable files and core files are opened for writing
18878 as well as reading.
18879 @end table
18880
18881 @node Compiling and Injecting Code
18882 @section Compiling and injecting code in @value{GDBN}
18883 @cindex injecting code
18884 @cindex writing into executables
18885 @cindex compiling code
18886
18887 @value{GDBN} supports on-demand compilation and code injection into
18888 programs running under @value{GDBN}.  GCC 5.0 or higher built with
18889 @file{libcc1.so} must be installed for this functionality to be enabled.
18890 This functionality is implemented with the following commands.
18891
18892 @table @code
18893 @kindex compile code
18894 @item compile code @var{source-code}
18895 @itemx compile code -raw @var{--} @var{source-code}
18896 Compile @var{source-code} with the compiler language found as the current
18897 language in @value{GDBN} (@pxref{Languages}).  If compilation and
18898 injection is not supported with the current language specified in
18899 @value{GDBN}, or the compiler does not support this feature, an error
18900 message will be printed.  If @var{source-code} compiles and links
18901 successfully, @value{GDBN} will load the object-code emitted,
18902 and execute it within the context of the currently selected inferior.
18903 It is important to note that the compiled code is executed immediately.
18904 After execution, the compiled code is removed from @value{GDBN} and any
18905 new types or variables you have defined will be deleted.
18906
18907 The command allows you to specify @var{source-code} in two ways.
18908 The simplest method is to provide a single line of code to the command.
18909 E.g.:
18910
18911 @smallexample
18912 compile code printf ("hello world\n");
18913 @end smallexample
18914
18915 If you specify options on the command line as well as source code, they
18916 may conflict.  The @samp{--} delimiter can be used to separate options
18917 from actual source code.  E.g.:
18918
18919 @smallexample
18920 compile code -r -- printf ("hello world\n");
18921 @end smallexample
18922
18923 Alternatively you can enter source code as multiple lines of text.  To
18924 enter this mode, invoke the @samp{compile code} command without any text
18925 following the command.  This will start the multiple-line editor and
18926 allow you to type as many lines of source code as required.  When you
18927 have completed typing, enter @samp{end} on its own line to exit the
18928 editor.
18929
18930 @smallexample
18931 compile code
18932 >printf ("hello\n");
18933 >printf ("world\n");
18934 >end
18935 @end smallexample
18936
18937 Specifying @samp{-raw}, prohibits @value{GDBN} from wrapping the
18938 provided @var{source-code} in a callable scope.  In this case, you must
18939 specify the entry point of the code by defining a function named
18940 @code{_gdb_expr_}.  The @samp{-raw} code cannot access variables of the
18941 inferior.  Using @samp{-raw} option may be needed for example when
18942 @var{source-code} requires @samp{#include} lines which may conflict with
18943 inferior symbols otherwise.
18944
18945 @kindex compile file
18946 @item compile file @var{filename}
18947 @itemx compile file -raw @var{filename}
18948 Like @code{compile code}, but take the source code from @var{filename}.
18949
18950 @smallexample
18951 compile file /home/user/example.c
18952 @end smallexample
18953 @end table
18954
18955 @table @code
18956 @item compile print @var{expr}
18957 @itemx compile print /@var{f} @var{expr}
18958 Compile and execute @var{expr} with the compiler language found as the
18959 current language in @value{GDBN} (@pxref{Languages}).  By default the
18960 value of @var{expr} is printed in a format appropriate to its data type;
18961 you can choose a different format by specifying @samp{/@var{f}}, where
18962 @var{f} is a letter specifying the format; see @ref{Output Formats,,Output
18963 Formats}.
18964
18965 @item compile print
18966 @itemx compile print /@var{f}
18967 @cindex reprint the last value
18968 Alternatively you can enter the expression (source code producing it) as
18969 multiple lines of text.  To enter this mode, invoke the @samp{compile print}
18970 command without any text following the command.  This will start the
18971 multiple-line editor.
18972 @end table
18973
18974 @noindent
18975 The process of compiling and injecting the code can be inspected using:
18976
18977 @table @code
18978 @anchor{set debug compile}
18979 @item set debug compile
18980 @cindex compile command debugging info
18981 Turns on or off display of @value{GDBN} process of compiling and
18982 injecting the code.  The default is off.
18983
18984 @item show debug compile
18985 Displays the current state of displaying @value{GDBN} process of
18986 compiling and injecting the code.
18987
18988 @anchor{set debug compile-cplus-types}
18989 @item set debug compile-cplus-types
18990 @cindex compile C@t{++} type conversion
18991 Turns on or off the display of C@t{++} type conversion debugging information.
18992 The default is off.
18993
18994 @item show debug compile-cplus-types
18995 Displays the current state of displaying debugging information for
18996 C@t{++} type conversion.
18997 @end table
18998
18999 @subsection Compilation options for the @code{compile} command
19000
19001 @value{GDBN} needs to specify the right compilation options for the code
19002 to be injected, in part to make its ABI compatible with the inferior
19003 and in part to make the injected code compatible with @value{GDBN}'s
19004 injecting process.
19005
19006 @noindent
19007 The options used, in increasing precedence:
19008
19009 @table @asis
19010 @item target architecture and OS options (@code{gdbarch})
19011 These options depend on target processor type and target operating
19012 system, usually they specify at least 32-bit (@code{-m32}) or 64-bit
19013 (@code{-m64}) compilation option.
19014
19015 @item compilation options recorded in the target
19016 @value{NGCC} (since version 4.7) stores the options used for compilation
19017 into @code{DW_AT_producer} part of DWARF debugging information according
19018 to the @value{NGCC} option @code{-grecord-gcc-switches}.  One has to
19019 explicitly specify @code{-g} during inferior compilation otherwise
19020 @value{NGCC} produces no DWARF.  This feature is only relevant for
19021 platforms where @code{-g} produces DWARF by default, otherwise one may
19022 try to enforce DWARF by using @code{-gdwarf-4}.
19023
19024 @item compilation options set by @code{set compile-args}
19025 @end table
19026
19027 @noindent
19028 You can override compilation options using the following command:
19029
19030 @table @code
19031 @item set compile-args
19032 @cindex compile command options override
19033 Set compilation options used for compiling and injecting code with the
19034 @code{compile} commands.  These options override any conflicting ones
19035 from the target architecture and/or options stored during inferior
19036 compilation.
19037
19038 @item show compile-args
19039 Displays the current state of compilation options override.
19040 This does not show all the options actually used during compilation,
19041 use @ref{set debug compile} for that.
19042 @end table
19043
19044 @subsection Caveats when using the @code{compile} command
19045
19046 There are a few caveats to keep in mind when using the @code{compile}
19047 command.  As the caveats are different per language, the table below
19048 highlights specific issues on a per language basis.
19049
19050 @table @asis
19051 @item C code examples and caveats
19052 When the language in @value{GDBN} is set to @samp{C}, the compiler will
19053 attempt to compile the source code with a @samp{C} compiler.  The source
19054 code provided to the @code{compile} command will have much the same
19055 access to variables and types as it normally would if it were part of
19056 the program currently being debugged in @value{GDBN}.
19057
19058 Below is a sample program that forms the basis of the examples that
19059 follow.  This program has been compiled and loaded into @value{GDBN},
19060 much like any other normal debugging session.
19061
19062 @smallexample
19063 void function1 (void)
19064 @{
19065    int i = 42;
19066    printf ("function 1\n");
19067 @}
19068
19069 void function2 (void)
19070 @{
19071    int j = 12;
19072    function1 ();
19073 @}
19074
19075 int main(void)
19076 @{
19077    int k = 6;
19078    int *p;
19079    function2 ();
19080    return 0;
19081 @}
19082 @end smallexample
19083
19084 For the purposes of the examples in this section, the program above has
19085 been compiled, loaded into @value{GDBN}, stopped at the function
19086 @code{main}, and @value{GDBN} is awaiting input from the user.
19087
19088 To access variables and types for any program in @value{GDBN}, the
19089 program must be compiled and packaged with debug information.  The
19090 @code{compile} command is not an exception to this rule.  Without debug
19091 information, you can still use the @code{compile} command, but you will
19092 be very limited in what variables and types you can access.
19093
19094 So with that in mind, the example above has been compiled with debug
19095 information enabled.  The @code{compile} command will have access to
19096 all variables and types (except those that may have been optimized
19097 out).  Currently, as @value{GDBN} has stopped the program in the
19098 @code{main} function, the @code{compile} command would have access to
19099 the variable @code{k}.  You could invoke the @code{compile} command
19100 and type some source code to set the value of @code{k}.  You can also
19101 read it, or do anything with that variable you would normally do in
19102 @code{C}.  Be aware that changes to inferior variables in the
19103 @code{compile} command are persistent.  In the following example:
19104
19105 @smallexample
19106 compile code k = 3;
19107 @end smallexample
19108
19109 @noindent
19110 the variable @code{k} is now 3.  It will retain that value until
19111 something else in the example program changes it, or another
19112 @code{compile} command changes it.
19113
19114 Normal scope and access rules apply to source code compiled and
19115 injected by the @code{compile} command.  In the example, the variables
19116 @code{j} and @code{k} are not accessible yet, because the program is
19117 currently stopped in the @code{main} function, where these variables
19118 are not in scope.  Therefore, the following command
19119
19120 @smallexample
19121 compile code j = 3;
19122 @end smallexample
19123
19124 @noindent
19125 will result in a compilation error message.
19126
19127 Once the program is continued, execution will bring these variables in
19128 scope, and they will become accessible; then the code you specify via
19129 the @code{compile} command will be able to access them.
19130
19131 You can create variables and types with the @code{compile} command as
19132 part of your source code.  Variables and types that are created as part
19133 of the @code{compile} command are not visible to the rest of the program for
19134 the duration of its run.  This example is valid:
19135
19136 @smallexample
19137 compile code int ff = 5; printf ("ff is %d\n", ff);
19138 @end smallexample
19139
19140 However, if you were to type the following into @value{GDBN} after that
19141 command has completed:
19142
19143 @smallexample
19144 compile code printf ("ff is %d\n'', ff);
19145 @end smallexample
19146
19147 @noindent
19148 a compiler error would be raised as the variable @code{ff} no longer
19149 exists.  Object code generated and injected by the @code{compile}
19150 command is removed when its execution ends.  Caution is advised
19151 when assigning to program variables values of variables created by the
19152 code submitted to the @code{compile} command.  This example is valid:
19153
19154 @smallexample
19155 compile code int ff = 5; k = ff;
19156 @end smallexample
19157
19158 The value of the variable @code{ff} is assigned to @code{k}.  The variable
19159 @code{k} does not require the existence of @code{ff} to maintain the value
19160 it has been assigned.  However, pointers require particular care in
19161 assignment.  If the source code compiled with the @code{compile} command
19162 changed the address of a pointer in the example program, perhaps to a
19163 variable created in the @code{compile} command, that pointer would point
19164 to an invalid location when the command exits.  The following example
19165 would likely cause issues with your debugged program:
19166
19167 @smallexample
19168 compile code int ff = 5; p = &ff;
19169 @end smallexample
19170
19171 In this example, @code{p} would point to @code{ff} when the
19172 @code{compile} command is executing the source code provided to it.
19173 However, as variables in the (example) program persist with their
19174 assigned values, the variable @code{p} would point to an invalid
19175 location when the command exists.  A general rule should be followed
19176 in that you should either assign @code{NULL} to any assigned pointers,
19177 or restore a valid location to the pointer before the command exits.
19178
19179 Similar caution must be exercised with any structs, unions, and typedefs
19180 defined in @code{compile} command.  Types defined in the @code{compile}
19181 command will no longer be available in the next @code{compile} command.
19182 Therefore, if you cast a variable to a type defined in the
19183 @code{compile} command, care must be taken to ensure that any future
19184 need to resolve the type can be achieved.
19185
19186 @smallexample
19187 (gdb) compile code static struct a @{ int a; @} v = @{ 42 @}; argv = &v;
19188 (gdb) compile code printf ("%d\n", ((struct a *) argv)->a);
19189 gdb command line:1:36: error: dereferencing pointer to incomplete type â€˜struct a’
19190 Compilation failed.
19191 (gdb) compile code struct a @{ int a; @}; printf ("%d\n", ((struct a *) argv)->a);
19192 42
19193 @end smallexample
19194
19195 Variables that have been optimized away by the compiler are not
19196 accessible to the code submitted to the @code{compile} command.
19197 Access to those variables will generate a compiler error which @value{GDBN}
19198 will print to the console.
19199 @end table
19200
19201 @subsection Compiler search for the @code{compile} command
19202
19203 @value{GDBN} needs to find @value{NGCC} for the inferior being debugged
19204 which may not be obvious for remote targets of different architecture
19205 than where @value{GDBN} is running.  Environment variable @code{PATH} on
19206 @value{GDBN} host is searched for @value{NGCC} binary matching the
19207 target architecture and operating system.  This search can be overriden
19208 by @code{set compile-gcc} @value{GDBN} command below.  @code{PATH} is
19209 taken from shell that executed @value{GDBN}, it is not the value set by
19210 @value{GDBN} command @code{set environment}).  @xref{Environment}.
19211
19212
19213 Specifically @code{PATH} is searched for binaries matching regular expression
19214 @code{@var{arch}(-[^-]*)?-@var{os}-gcc} according to the inferior target being
19215 debugged.  @var{arch} is processor name --- multiarch is supported, so for
19216 example both @code{i386} and @code{x86_64} targets look for pattern
19217 @code{(x86_64|i.86)} and both @code{s390} and @code{s390x} targets look
19218 for pattern @code{s390x?}.  @var{os} is currently supported only for
19219 pattern @code{linux(-gnu)?}.
19220
19221 On Posix hosts the compiler driver @value{GDBN} needs to find also
19222 shared library @file{libcc1.so} from the compiler.  It is searched in
19223 default shared library search path (overridable with usual environment
19224 variable @code{LD_LIBRARY_PATH}), unrelated to @code{PATH} or @code{set
19225 compile-gcc} settings.  Contrary to it @file{libcc1plugin.so} is found
19226 according to the installation of the found compiler --- as possibly
19227 specified by the @code{set compile-gcc} command.
19228
19229 @table @code
19230 @item set compile-gcc
19231 @cindex compile command driver filename override
19232 Set compilation command used for compiling and injecting code with the
19233 @code{compile} commands.  If this option is not set (it is set to
19234 an empty string), the search described above will occur --- that is the
19235 default.
19236
19237 @item show compile-gcc
19238 Displays the current compile command @value{NGCC} driver filename.
19239 If set, it is the main command @command{gcc}, found usually for example
19240 under name @file{x86_64-linux-gnu-gcc}.
19241 @end table
19242
19243 @node GDB Files
19244 @chapter @value{GDBN} Files
19245
19246 @value{GDBN} needs to know the file name of the program to be debugged,
19247 both in order to read its symbol table and in order to start your
19248 program.  To debug a core dump of a previous run, you must also tell
19249 @value{GDBN} the name of the core dump file.
19250
19251 @menu
19252 * Files::                       Commands to specify files
19253 * File Caching::                Information about @value{GDBN}'s file caching
19254 * Separate Debug Files::        Debugging information in separate files
19255 * MiniDebugInfo::               Debugging information in a special section
19256 * Index Files::                 Index files speed up GDB
19257 * Symbol Errors::               Errors reading symbol files
19258 * Data Files::                  GDB data files
19259 @end menu
19260
19261 @node Files
19262 @section Commands to Specify Files
19263
19264 @cindex symbol table
19265 @cindex core dump file
19266
19267 You may want to specify executable and core dump file names.  The usual
19268 way to do this is at start-up time, using the arguments to
19269 @value{GDBN}'s start-up commands (@pxref{Invocation, , Getting In and
19270 Out of @value{GDBN}}).
19271
19272 Occasionally it is necessary to change to a different file during a
19273 @value{GDBN} session.  Or you may run @value{GDBN} and forget to
19274 specify a file you want to use.  Or you are debugging a remote target
19275 via @code{gdbserver} (@pxref{Server, file, Using the @code{gdbserver}
19276 Program}).  In these situations the @value{GDBN} commands to specify
19277 new files are useful.
19278
19279 @table @code
19280 @cindex executable file
19281 @kindex file
19282 @item file @var{filename}
19283 Use @var{filename} as the program to be debugged.  It is read for its
19284 symbols and for the contents of pure memory.  It is also the program
19285 executed when you use the @code{run} command.  If you do not specify a
19286 directory and the file is not found in the @value{GDBN} working directory,
19287 @value{GDBN} uses the environment variable @code{PATH} as a list of
19288 directories to search, just as the shell does when looking for a program
19289 to run.  You can change the value of this variable, for both @value{GDBN}
19290 and your program, using the @code{path} command.
19291
19292 @cindex unlinked object files
19293 @cindex patching object files
19294 You can load unlinked object @file{.o} files into @value{GDBN} using
19295 the @code{file} command.  You will not be able to ``run'' an object
19296 file, but you can disassemble functions and inspect variables.  Also,
19297 if the underlying BFD functionality supports it, you could use
19298 @kbd{gdb -write} to patch object files using this technique.  Note
19299 that @value{GDBN} can neither interpret nor modify relocations in this
19300 case, so branches and some initialized variables will appear to go to
19301 the wrong place.  But this feature is still handy from time to time.
19302
19303 @item file
19304 @code{file} with no argument makes @value{GDBN} discard any information it
19305 has on both executable file and the symbol table.
19306
19307 @kindex exec-file
19308 @item exec-file @r{[} @var{filename} @r{]}
19309 Specify that the program to be run (but not the symbol table) is found
19310 in @var{filename}.  @value{GDBN} searches the environment variable @code{PATH}
19311 if necessary to locate your program.  Omitting @var{filename} means to
19312 discard information on the executable file.
19313
19314 @kindex symbol-file
19315 @item symbol-file @r{[} @var{filename} @r{[} -o @var{offset} @r{]]}
19316 Read symbol table information from file @var{filename}.  @code{PATH} is
19317 searched when necessary.  Use the @code{file} command to get both symbol
19318 table and program to run from the same file.
19319
19320 If an optional @var{offset} is specified, it is added to the start
19321 address of each section in the symbol file.  This is useful if the
19322 program is relocated at runtime, such as the Linux kernel with kASLR
19323 enabled.
19324
19325 @code{symbol-file} with no argument clears out @value{GDBN} information on your
19326 program's symbol table.
19327
19328 The @code{symbol-file} command causes @value{GDBN} to forget the contents of
19329 some breakpoints and auto-display expressions.  This is because they may
19330 contain pointers to the internal data recording symbols and data types,
19331 which are part of the old symbol table data being discarded inside
19332 @value{GDBN}.
19333
19334 @code{symbol-file} does not repeat if you press @key{RET} again after
19335 executing it once.
19336
19337 When @value{GDBN} is configured for a particular environment, it
19338 understands debugging information in whatever format is the standard
19339 generated for that environment; you may use either a @sc{gnu} compiler, or
19340 other compilers that adhere to the local conventions.
19341 Best results are usually obtained from @sc{gnu} compilers; for example,
19342 using @code{@value{NGCC}} you can generate debugging information for
19343 optimized code.
19344
19345 For most kinds of object files, with the exception of old SVR3 systems
19346 using COFF, the @code{symbol-file} command does not normally read the
19347 symbol table in full right away.  Instead, it scans the symbol table
19348 quickly to find which source files and which symbols are present.  The
19349 details are read later, one source file at a time, as they are needed.
19350
19351 The purpose of this two-stage reading strategy is to make @value{GDBN}
19352 start up faster.  For the most part, it is invisible except for
19353 occasional pauses while the symbol table details for a particular source
19354 file are being read.  (The @code{set verbose} command can turn these
19355 pauses into messages if desired.  @xref{Messages/Warnings, ,Optional
19356 Warnings and Messages}.)
19357
19358 We have not implemented the two-stage strategy for COFF yet.  When the
19359 symbol table is stored in COFF format, @code{symbol-file} reads the
19360 symbol table data in full right away.  Note that ``stabs-in-COFF''
19361 still does the two-stage strategy, since the debug info is actually
19362 in stabs format.
19363
19364 @kindex readnow
19365 @cindex reading symbols immediately
19366 @cindex symbols, reading immediately
19367 @item symbol-file @r{[} -readnow @r{]} @var{filename}
19368 @itemx file @r{[} -readnow @r{]} @var{filename}
19369 You can override the @value{GDBN} two-stage strategy for reading symbol
19370 tables by using the @samp{-readnow} option with any of the commands that
19371 load symbol table information, if you want to be sure @value{GDBN} has the
19372 entire symbol table available.
19373
19374 @cindex @code{-readnever}, option for symbol-file command
19375 @cindex never read symbols
19376 @cindex symbols, never read
19377 @item symbol-file @r{[} -readnever @r{]} @var{filename}
19378 @itemx file @r{[} -readnever @r{]} @var{filename}
19379 You can instruct @value{GDBN} to never read the symbolic information
19380 contained in @var{filename} by using the @samp{-readnever} option.
19381 @xref{--readnever}.
19382
19383 @c FIXME: for now no mention of directories, since this seems to be in
19384 @c flux.  13mar1992 status is that in theory GDB would look either in
19385 @c current dir or in same dir as myprog; but issues like competing
19386 @c GDB's, or clutter in system dirs, mean that in practice right now
19387 @c only current dir is used.  FFish says maybe a special GDB hierarchy
19388 @c (eg rooted in val of env var GDBSYMS) could exist for mappable symbol
19389 @c files.
19390
19391 @kindex core-file
19392 @item core-file @r{[}@var{filename}@r{]}
19393 @itemx core
19394 Specify the whereabouts of a core dump file to be used as the ``contents
19395 of memory''.  Traditionally, core files contain only some parts of the
19396 address space of the process that generated them; @value{GDBN} can access the
19397 executable file itself for other parts.
19398
19399 @code{core-file} with no argument specifies that no core file is
19400 to be used.
19401
19402 Note that the core file is ignored when your program is actually running
19403 under @value{GDBN}.  So, if you have been running your program and you
19404 wish to debug a core file instead, you must kill the subprocess in which
19405 the program is running.  To do this, use the @code{kill} command
19406 (@pxref{Kill Process, ,Killing the Child Process}).
19407
19408 @kindex add-symbol-file
19409 @cindex dynamic linking
19410 @item add-symbol-file @var{filename} @r{[} -readnow @r{|} -readnever @r{]} @r{[} -o @var{offset} @r{]} @r{[} @var{textaddress} @r{]} @r{[} -s @var{section} @var{address} @dots{} @r{]}
19411 The @code{add-symbol-file} command reads additional symbol table
19412 information from the file @var{filename}.  You would use this command
19413 when @var{filename} has been dynamically loaded (by some other means)
19414 into the program that is running.  The @var{textaddress} parameter gives
19415 the memory address at which the file's text section has been loaded.
19416 You can additionally specify the base address of other sections using
19417 an arbitrary number of @samp{-s @var{section} @var{address}} pairs.
19418 If a section is omitted, @value{GDBN} will use its default addresses
19419 as found in @var{filename}.  Any @var{address} or @var{textaddress}
19420 can be given as an expression.
19421
19422 If an optional @var{offset} is specified, it is added to the start
19423 address of each section, except those for which the address was
19424 specified explicitly.
19425
19426 The symbol table of the file @var{filename} is added to the symbol table
19427 originally read with the @code{symbol-file} command.  You can use the
19428 @code{add-symbol-file} command any number of times; the new symbol data
19429 thus read is kept in addition to the old.
19430
19431 Changes can be reverted using the command @code{remove-symbol-file}.
19432
19433 @cindex relocatable object files, reading symbols from
19434 @cindex object files, relocatable, reading symbols from
19435 @cindex reading symbols from relocatable object files
19436 @cindex symbols, reading from relocatable object files
19437 @cindex @file{.o} files, reading symbols from
19438 Although @var{filename} is typically a shared library file, an
19439 executable file, or some other object file which has been fully
19440 relocated for loading into a process, you can also load symbolic
19441 information from relocatable @file{.o} files, as long as:
19442
19443 @itemize @bullet
19444 @item
19445 the file's symbolic information refers only to linker symbols defined in
19446 that file, not to symbols defined by other object files,
19447 @item
19448 every section the file's symbolic information refers to has actually
19449 been loaded into the inferior, as it appears in the file, and
19450 @item
19451 you can determine the address at which every section was loaded, and
19452 provide these to the @code{add-symbol-file} command.
19453 @end itemize
19454
19455 @noindent
19456 Some embedded operating systems, like Sun Chorus and VxWorks, can load
19457 relocatable files into an already running program; such systems
19458 typically make the requirements above easy to meet.  However, it's
19459 important to recognize that many native systems use complex link
19460 procedures (@code{.linkonce} section factoring and C@t{++} constructor table
19461 assembly, for example) that make the requirements difficult to meet.  In
19462 general, one cannot assume that using @code{add-symbol-file} to read a
19463 relocatable object file's symbolic information will have the same effect
19464 as linking the relocatable object file into the program in the normal
19465 way.
19466
19467 @code{add-symbol-file} does not repeat if you press @key{RET} after using it.
19468
19469 @kindex remove-symbol-file
19470 @item remove-symbol-file @var{filename}
19471 @item remove-symbol-file -a @var{address}
19472 Remove a symbol file added via the @code{add-symbol-file} command.  The
19473 file to remove can be identified by its @var{filename} or by an @var{address}
19474 that lies within the boundaries of this symbol file in memory.  Example:
19475
19476 @smallexample
19477 (gdb) add-symbol-file /home/user/gdb/mylib.so 0x7ffff7ff9480
19478 add symbol table from file "/home/user/gdb/mylib.so" at
19479     .text_addr = 0x7ffff7ff9480
19480 (y or n) y
19481 Reading symbols from /home/user/gdb/mylib.so...done.
19482 (gdb) remove-symbol-file -a 0x7ffff7ff9480
19483 Remove symbol table from file "/home/user/gdb/mylib.so"? (y or n) y
19484 (gdb)
19485 @end smallexample
19486
19487
19488 @code{remove-symbol-file} does not repeat if you press @key{RET} after using it.
19489
19490 @kindex add-symbol-file-from-memory
19491 @cindex @code{syscall DSO}
19492 @cindex load symbols from memory
19493 @item add-symbol-file-from-memory @var{address}
19494 Load symbols from the given @var{address} in a dynamically loaded
19495 object file whose image is mapped directly into the inferior's memory.
19496 For example, the Linux kernel maps a @code{syscall DSO} into each
19497 process's address space; this DSO provides kernel-specific code for
19498 some system calls.  The argument can be any expression whose
19499 evaluation yields the address of the file's shared object file header.
19500 For this command to work, you must have used @code{symbol-file} or
19501 @code{exec-file} commands in advance.
19502
19503 @kindex section
19504 @item section @var{section} @var{addr}
19505 The @code{section} command changes the base address of the named
19506 @var{section} of the exec file to @var{addr}.  This can be used if the
19507 exec file does not contain section addresses, (such as in the
19508 @code{a.out} format), or when the addresses specified in the file
19509 itself are wrong.  Each section must be changed separately.  The
19510 @code{info files} command, described below, lists all the sections and
19511 their addresses.
19512
19513 @kindex info files
19514 @kindex info target
19515 @item info files
19516 @itemx info target
19517 @code{info files} and @code{info target} are synonymous; both print the
19518 current target (@pxref{Targets, ,Specifying a Debugging Target}),
19519 including the names of the executable and core dump files currently in
19520 use by @value{GDBN}, and the files from which symbols were loaded.  The
19521 command @code{help target} lists all possible targets rather than
19522 current ones.
19523
19524 @kindex maint info sections
19525 @item maint info sections
19526 Another command that can give you extra information about program sections
19527 is @code{maint info sections}.  In addition to the section information
19528 displayed by @code{info files}, this command displays the flags and file
19529 offset of each section in the executable and core dump files.  In addition,
19530 @code{maint info sections} provides the following command options (which
19531 may be arbitrarily combined):
19532
19533 @table @code
19534 @item ALLOBJ
19535 Display sections for all loaded object files, including shared libraries.
19536 @item @var{sections}
19537 Display info only for named @var{sections}.
19538 @item @var{section-flags}
19539 Display info only for sections for which @var{section-flags} are true.
19540 The section flags that @value{GDBN} currently knows about are:
19541 @table @code
19542 @item ALLOC
19543 Section will have space allocated in the process when loaded.
19544 Set for all sections except those containing debug information.
19545 @item LOAD
19546 Section will be loaded from the file into the child process memory.
19547 Set for pre-initialized code and data, clear for @code{.bss} sections.
19548 @item RELOC
19549 Section needs to be relocated before loading.
19550 @item READONLY
19551 Section cannot be modified by the child process.
19552 @item CODE
19553 Section contains executable code only.
19554 @item DATA
19555 Section contains data only (no executable code).
19556 @item ROM
19557 Section will reside in ROM.
19558 @item CONSTRUCTOR
19559 Section contains data for constructor/destructor lists.
19560 @item HAS_CONTENTS
19561 Section is not empty.
19562 @item NEVER_LOAD
19563 An instruction to the linker to not output the section.
19564 @item COFF_SHARED_LIBRARY
19565 A notification to the linker that the section contains
19566 COFF shared library information.
19567 @item IS_COMMON
19568 Section contains common symbols.
19569 @end table
19570 @end table
19571 @kindex set trust-readonly-sections
19572 @cindex read-only sections
19573 @item set trust-readonly-sections on
19574 Tell @value{GDBN} that readonly sections in your object file
19575 really are read-only (i.e.@: that their contents will not change).
19576 In that case, @value{GDBN} can fetch values from these sections
19577 out of the object file, rather than from the target program.
19578 For some targets (notably embedded ones), this can be a significant
19579 enhancement to debugging performance.
19580
19581 The default is off.
19582
19583 @item set trust-readonly-sections off
19584 Tell @value{GDBN} not to trust readonly sections.  This means that
19585 the contents of the section might change while the program is running,
19586 and must therefore be fetched from the target when needed.
19587
19588 @item show trust-readonly-sections
19589 Show the current setting of trusting readonly sections.
19590 @end table
19591
19592 All file-specifying commands allow both absolute and relative file names
19593 as arguments.  @value{GDBN} always converts the file name to an absolute file
19594 name and remembers it that way.
19595
19596 @cindex shared libraries
19597 @anchor{Shared Libraries}
19598 @value{GDBN} supports @sc{gnu}/Linux, MS-Windows, SunOS,
19599 Darwin/Mach-O, SVr4, IBM RS/6000 AIX, QNX Neutrino, FDPIC (FR-V), and
19600 DSBT (TIC6X) shared libraries.
19601
19602 On MS-Windows @value{GDBN} must be linked with the Expat library to support
19603 shared libraries.  @xref{Expat}.
19604
19605 @value{GDBN} automatically loads symbol definitions from shared libraries
19606 when you use the @code{run} command, or when you examine a core file.
19607 (Before you issue the @code{run} command, @value{GDBN} does not understand
19608 references to a function in a shared library, however---unless you are
19609 debugging a core file).
19610
19611 @c FIXME: some @value{GDBN} release may permit some refs to undef
19612 @c FIXME...symbols---eg in a break cmd---assuming they are from a shared
19613 @c FIXME...lib; check this from time to time when updating manual
19614
19615 There are times, however, when you may wish to not automatically load
19616 symbol definitions from shared libraries, such as when they are
19617 particularly large or there are many of them.
19618
19619 To control the automatic loading of shared library symbols, use the
19620 commands:
19621
19622 @table @code
19623 @kindex set auto-solib-add
19624 @item set auto-solib-add @var{mode}
19625 If @var{mode} is @code{on}, symbols from all shared object libraries
19626 will be loaded automatically when the inferior begins execution, you
19627 attach to an independently started inferior, or when the dynamic linker
19628 informs @value{GDBN} that a new library has been loaded.  If @var{mode}
19629 is @code{off}, symbols must be loaded manually, using the
19630 @code{sharedlibrary} command.  The default value is @code{on}.
19631
19632 @cindex memory used for symbol tables
19633 If your program uses lots of shared libraries with debug info that
19634 takes large amounts of memory, you can decrease the @value{GDBN}
19635 memory footprint by preventing it from automatically loading the
19636 symbols from shared libraries.  To that end, type @kbd{set
19637 auto-solib-add off} before running the inferior, then load each
19638 library whose debug symbols you do need with @kbd{sharedlibrary
19639 @var{regexp}}, where @var{regexp} is a regular expression that matches
19640 the libraries whose symbols you want to be loaded.
19641
19642 @kindex show auto-solib-add
19643 @item show auto-solib-add
19644 Display the current autoloading mode.
19645 @end table
19646
19647 @cindex load shared library
19648 To explicitly load shared library symbols, use the @code{sharedlibrary}
19649 command:
19650
19651 @table @code
19652 @kindex info sharedlibrary
19653 @kindex info share
19654 @item info share @var{regex}
19655 @itemx info sharedlibrary @var{regex}
19656 Print the names of the shared libraries which are currently loaded
19657 that match @var{regex}.  If @var{regex} is omitted then print
19658 all shared libraries that are loaded.
19659
19660 @kindex info dll
19661 @item info dll @var{regex}
19662 This is an alias of @code{info sharedlibrary}.
19663
19664 @kindex sharedlibrary
19665 @kindex share
19666 @item sharedlibrary @var{regex}
19667 @itemx share @var{regex}
19668 Load shared object library symbols for files matching a
19669 Unix regular expression.
19670 As with files loaded automatically, it only loads shared libraries
19671 required by your program for a core file or after typing @code{run}.  If
19672 @var{regex} is omitted all shared libraries required by your program are
19673 loaded.
19674
19675 @item nosharedlibrary
19676 @kindex nosharedlibrary
19677 @cindex unload symbols from shared libraries
19678 Unload all shared object library symbols.  This discards all symbols
19679 that have been loaded from all shared libraries.  Symbols from shared
19680 libraries that were loaded by explicit user requests are not
19681 discarded.
19682 @end table
19683
19684 Sometimes you may wish that @value{GDBN} stops and gives you control
19685 when any of shared library events happen.  The best way to do this is
19686 to use @code{catch load} and @code{catch unload} (@pxref{Set
19687 Catchpoints}).
19688
19689 @value{GDBN} also supports the the @code{set stop-on-solib-events}
19690 command for this.  This command exists for historical reasons.  It is
19691 less useful than setting a catchpoint, because it does not allow for
19692 conditions or commands as a catchpoint does.
19693
19694 @table @code
19695 @item set stop-on-solib-events
19696 @kindex set stop-on-solib-events
19697 This command controls whether @value{GDBN} should give you control
19698 when the dynamic linker notifies it about some shared library event.
19699 The most common event of interest is loading or unloading of a new
19700 shared library.
19701
19702 @item show stop-on-solib-events
19703 @kindex show stop-on-solib-events
19704 Show whether @value{GDBN} stops and gives you control when shared
19705 library events happen.
19706 @end table
19707
19708 Shared libraries are also supported in many cross or remote debugging
19709 configurations.  @value{GDBN} needs to have access to the target's libraries;
19710 this can be accomplished either by providing copies of the libraries
19711 on the host system, or by asking @value{GDBN} to automatically retrieve the
19712 libraries from the target.  If copies of the target libraries are
19713 provided, they need to be the same as the target libraries, although the
19714 copies on the target can be stripped as long as the copies on the host are
19715 not.
19716
19717 @cindex where to look for shared libraries
19718 For remote debugging, you need to tell @value{GDBN} where the target
19719 libraries are, so that it can load the correct copies---otherwise, it
19720 may try to load the host's libraries.  @value{GDBN} has two variables
19721 to specify the search directories for target libraries.
19722
19723 @table @code
19724 @cindex prefix for executable and shared library file names
19725 @cindex system root, alternate
19726 @kindex set solib-absolute-prefix
19727 @kindex set sysroot
19728 @item set sysroot @var{path}
19729 Use @var{path} as the system root for the program being debugged.  Any
19730 absolute shared library paths will be prefixed with @var{path}; many
19731 runtime loaders store the absolute paths to the shared library in the
19732 target program's memory.  When starting processes remotely, and when
19733 attaching to already-running processes (local or remote), their
19734 executable filenames will be prefixed with @var{path} if reported to
19735 @value{GDBN} as absolute by the operating system.  If you use
19736 @code{set sysroot} to find executables and shared libraries, they need
19737 to be laid out in the same way that they are on the target, with
19738 e.g.@: a @file{/bin}, @file{/lib} and @file{/usr/lib} hierarchy under
19739 @var{path}.
19740
19741 If @var{path} starts with the sequence @file{target:} and the target
19742 system is remote then @value{GDBN} will retrieve the target binaries
19743 from the remote system.  This is only supported when using a remote
19744 target that supports the @code{remote get} command (@pxref{File
19745 Transfer,,Sending files to a remote system}).  The part of @var{path}
19746 following the initial @file{target:} (if present) is used as system
19747 root prefix on the remote file system.  If @var{path} starts with the
19748 sequence @file{remote:} this is converted to the sequence
19749 @file{target:} by @code{set sysroot}@footnote{Historically the
19750 functionality to retrieve binaries from the remote system was
19751 provided by prefixing @var{path} with @file{remote:}}.  If you want
19752 to specify a local system root using a directory that happens to be
19753 named @file{target:} or @file{remote:}, you need to use some
19754 equivalent variant of the name like @file{./target:}.
19755
19756 For targets with an MS-DOS based filesystem, such as MS-Windows and
19757 SymbianOS, @value{GDBN} tries prefixing a few variants of the target
19758 absolute file name with @var{path}.  But first, on Unix hosts,
19759 @value{GDBN} converts all backslash directory separators into forward
19760 slashes, because the backslash is not a directory separator on Unix:
19761
19762 @smallexample
19763   c:\foo\bar.dll @result{} c:/foo/bar.dll
19764 @end smallexample
19765
19766 Then, @value{GDBN} attempts prefixing the target file name with
19767 @var{path}, and looks for the resulting file name in the host file
19768 system:
19769
19770 @smallexample
19771   c:/foo/bar.dll @result{} /path/to/sysroot/c:/foo/bar.dll
19772 @end smallexample
19773
19774 If that does not find the binary, @value{GDBN} tries removing
19775 the @samp{:} character from the drive spec, both for convenience, and,
19776 for the case of the host file system not supporting file names with
19777 colons:
19778
19779 @smallexample
19780   c:/foo/bar.dll @result{} /path/to/sysroot/c/foo/bar.dll
19781 @end smallexample
19782
19783 This makes it possible to have a system root that mirrors a target
19784 with more than one drive.  E.g., you may want to setup your local
19785 copies of the target system shared libraries like so (note @samp{c} vs
19786 @samp{z}):
19787
19788 @smallexample
19789  @file{/path/to/sysroot/c/sys/bin/foo.dll}
19790  @file{/path/to/sysroot/c/sys/bin/bar.dll}
19791  @file{/path/to/sysroot/z/sys/bin/bar.dll}
19792 @end smallexample
19793
19794 @noindent
19795 and point the system root at @file{/path/to/sysroot}, so that
19796 @value{GDBN} can find the correct copies of both
19797 @file{c:\sys\bin\foo.dll}, and @file{z:\sys\bin\bar.dll}.
19798
19799 If that still does not find the binary, @value{GDBN} tries
19800 removing the whole drive spec from the target file name:
19801
19802 @smallexample
19803   c:/foo/bar.dll @result{} /path/to/sysroot/foo/bar.dll
19804 @end smallexample
19805
19806 This last lookup makes it possible to not care about the drive name,
19807 if you don't want or need to.
19808
19809 The @code{set solib-absolute-prefix} command is an alias for @code{set
19810 sysroot}.
19811
19812 @cindex default system root
19813 @cindex @samp{--with-sysroot}
19814 You can set the default system root by using the configure-time
19815 @samp{--with-sysroot} option.  If the system root is inside
19816 @value{GDBN}'s configured binary prefix (set with @samp{--prefix} or
19817 @samp{--exec-prefix}), then the default system root will be updated
19818 automatically if the installed @value{GDBN} is moved to a new
19819 location.
19820
19821 @kindex show sysroot
19822 @item show sysroot
19823 Display the current executable and shared library prefix.
19824
19825 @kindex set solib-search-path
19826 @item set solib-search-path @var{path}
19827 If this variable is set, @var{path} is a colon-separated list of
19828 directories to search for shared libraries.  @samp{solib-search-path}
19829 is used after @samp{sysroot} fails to locate the library, or if the
19830 path to the library is relative instead of absolute.  If you want to
19831 use @samp{solib-search-path} instead of @samp{sysroot}, be sure to set
19832 @samp{sysroot} to a nonexistent directory to prevent @value{GDBN} from
19833 finding your host's libraries.  @samp{sysroot} is preferred; setting
19834 it to a nonexistent directory may interfere with automatic loading
19835 of shared library symbols.
19836
19837 @kindex show solib-search-path
19838 @item show solib-search-path
19839 Display the current shared library search path.
19840
19841 @cindex DOS file-name semantics of file names.
19842 @kindex set target-file-system-kind (unix|dos-based|auto)
19843 @kindex show target-file-system-kind
19844 @item set target-file-system-kind @var{kind}
19845 Set assumed file system kind for target reported file names.
19846
19847 Shared library file names as reported by the target system may not
19848 make sense as is on the system @value{GDBN} is running on.  For
19849 example, when remote debugging a target that has MS-DOS based file
19850 system semantics, from a Unix host, the target may be reporting to
19851 @value{GDBN} a list of loaded shared libraries with file names such as
19852 @file{c:\Windows\kernel32.dll}.  On Unix hosts, there's no concept of
19853 drive letters, so the @samp{c:\} prefix is not normally understood as
19854 indicating an absolute file name, and neither is the backslash
19855 normally considered a directory separator character.  In that case,
19856 the native file system would interpret this whole absolute file name
19857 as a relative file name with no directory components.  This would make
19858 it impossible to point @value{GDBN} at a copy of the remote target's
19859 shared libraries on the host using @code{set sysroot}, and impractical
19860 with @code{set solib-search-path}.  Setting
19861 @code{target-file-system-kind} to @code{dos-based} tells @value{GDBN}
19862 to interpret such file names similarly to how the target would, and to
19863 map them to file names valid on @value{GDBN}'s native file system
19864 semantics.  The value of @var{kind} can be @code{"auto"}, in addition
19865 to one of the supported file system kinds.  In that case, @value{GDBN}
19866 tries to determine the appropriate file system variant based on the
19867 current target's operating system (@pxref{ABI, ,Configuring the
19868 Current ABI}).  The supported file system settings are:
19869
19870 @table @code
19871 @item unix
19872 Instruct @value{GDBN} to assume the target file system is of Unix
19873 kind.  Only file names starting the forward slash (@samp{/}) character
19874 are considered absolute, and the directory separator character is also
19875 the forward slash.
19876
19877 @item dos-based
19878 Instruct @value{GDBN} to assume the target file system is DOS based.
19879 File names starting with either a forward slash, or a drive letter
19880 followed by a colon (e.g., @samp{c:}), are considered absolute, and
19881 both the slash (@samp{/}) and the backslash (@samp{\\}) characters are
19882 considered directory separators.
19883
19884 @item auto
19885 Instruct @value{GDBN} to use the file system kind associated with the
19886 target operating system (@pxref{ABI, ,Configuring the Current ABI}).
19887 This is the default.
19888 @end table
19889 @end table
19890
19891 @cindex file name canonicalization
19892 @cindex base name differences
19893 When processing file names provided by the user, @value{GDBN}
19894 frequently needs to compare them to the file names recorded in the
19895 program's debug info.  Normally, @value{GDBN} compares just the
19896 @dfn{base names} of the files as strings, which is reasonably fast
19897 even for very large programs.  (The base name of a file is the last
19898 portion of its name, after stripping all the leading directories.)
19899 This shortcut in comparison is based upon the assumption that files
19900 cannot have more than one base name.  This is usually true, but
19901 references to files that use symlinks or similar filesystem
19902 facilities violate that assumption.  If your program records files
19903 using such facilities, or if you provide file names to @value{GDBN}
19904 using symlinks etc., you can set @code{basenames-may-differ} to
19905 @code{true} to instruct @value{GDBN} to completely canonicalize each
19906 pair of file names it needs to compare.  This will make file-name
19907 comparisons accurate, but at a price of a significant slowdown.
19908
19909 @table @code
19910 @item set basenames-may-differ
19911 @kindex set basenames-may-differ
19912 Set whether a source file may have multiple base names.
19913
19914 @item show basenames-may-differ
19915 @kindex show basenames-may-differ
19916 Show whether a source file may have multiple base names.
19917 @end table
19918
19919 @node File Caching
19920 @section File Caching
19921 @cindex caching of opened files
19922 @cindex caching of bfd objects
19923
19924 To speed up file loading, and reduce memory usage, @value{GDBN} will
19925 reuse the @code{bfd} objects used to track open files.  @xref{Top, ,
19926 BFD, bfd, The Binary File Descriptor Library}.  The following commands
19927 allow visibility and control of the caching behavior.
19928
19929 @table @code
19930 @kindex maint info bfds
19931 @item maint info bfds
19932 This prints information about each @code{bfd} object that is known to
19933 @value{GDBN}.
19934
19935 @kindex maint set bfd-sharing
19936 @kindex maint show bfd-sharing
19937 @kindex bfd caching
19938 @item maint set bfd-sharing
19939 @item maint show bfd-sharing
19940 Control whether @code{bfd} objects can be shared.  When sharing is
19941 enabled @value{GDBN} reuses already open @code{bfd} objects rather
19942 than reopening the same file.  Turning sharing off does not cause
19943 already shared @code{bfd} objects to be unshared, but all future files
19944 that are opened will create a new @code{bfd} object.  Similarly,
19945 re-enabling sharing does not cause multiple existing @code{bfd}
19946 objects to be collapsed into a single shared @code{bfd} object.
19947
19948 @kindex set debug bfd-cache @var{level}
19949 @kindex bfd caching
19950 @item set debug bfd-cache @var{level}
19951 Turns on debugging of the bfd cache, setting the level to @var{level}.
19952
19953 @kindex show debug bfd-cache
19954 @kindex bfd caching
19955 @item show debug bfd-cache
19956 Show the current debugging level of the bfd cache.
19957 @end table
19958
19959 @node Separate Debug Files
19960 @section Debugging Information in Separate Files
19961 @cindex separate debugging information files
19962 @cindex debugging information in separate files
19963 @cindex @file{.debug} subdirectories
19964 @cindex debugging information directory, global
19965 @cindex global debugging information directories
19966 @cindex build ID, and separate debugging files
19967 @cindex @file{.build-id} directory
19968
19969 @value{GDBN} allows you to put a program's debugging information in a
19970 file separate from the executable itself, in a way that allows
19971 @value{GDBN} to find and load the debugging information automatically.
19972 Since debugging information can be very large---sometimes larger
19973 than the executable code itself---some systems distribute debugging
19974 information for their executables in separate files, which users can
19975 install only when they need to debug a problem.
19976
19977 @value{GDBN} supports two ways of specifying the separate debug info
19978 file:
19979
19980 @itemize @bullet
19981 @item
19982 The executable contains a @dfn{debug link} that specifies the name of
19983 the separate debug info file.  The separate debug file's name is
19984 usually @file{@var{executable}.debug}, where @var{executable} is the
19985 name of the corresponding executable file without leading directories
19986 (e.g., @file{ls.debug} for @file{/usr/bin/ls}).  In addition, the
19987 debug link specifies a 32-bit @dfn{Cyclic Redundancy Check} (CRC)
19988 checksum for the debug file, which @value{GDBN} uses to validate that
19989 the executable and the debug file came from the same build.
19990
19991 @item
19992 The executable contains a @dfn{build ID}, a unique bit string that is
19993 also present in the corresponding debug info file.  (This is supported
19994 only on some operating systems, when using the ELF or PE file formats
19995 for binary files and the @sc{gnu} Binutils.)  For more details about
19996 this feature, see the description of the @option{--build-id}
19997 command-line option in @ref{Options, , Command Line Options, ld,
19998 The GNU Linker}.  The debug info file's name is not specified
19999 explicitly by the build ID, but can be computed from the build ID, see
20000 below.
20001 @end itemize
20002
20003 Depending on the way the debug info file is specified, @value{GDBN}
20004 uses two different methods of looking for the debug file:
20005
20006 @itemize @bullet
20007 @item
20008 For the ``debug link'' method, @value{GDBN} looks up the named file in
20009 the directory of the executable file, then in a subdirectory of that
20010 directory named @file{.debug}, and finally under each one of the global debug
20011 directories, in a subdirectory whose name is identical to the leading
20012 directories of the executable's absolute file name.
20013
20014 @item
20015 For the ``build ID'' method, @value{GDBN} looks in the
20016 @file{.build-id} subdirectory of each one of the global debug directories for
20017 a file named @file{@var{nn}/@var{nnnnnnnn}.debug}, where @var{nn} are the
20018 first 2 hex characters of the build ID bit string, and @var{nnnnnnnn}
20019 are the rest of the bit string.  (Real build ID strings are 32 or more
20020 hex characters, not 10.)
20021 @end itemize
20022
20023 So, for example, suppose you ask @value{GDBN} to debug
20024 @file{/usr/bin/ls}, which has a debug link that specifies the
20025 file @file{ls.debug}, and a build ID whose value in hex is
20026 @code{abcdef1234}.  If the list of the global debug directories includes
20027 @file{/usr/lib/debug}, then @value{GDBN} will look for the following
20028 debug information files, in the indicated order:
20029
20030 @itemize @minus
20031 @item
20032 @file{/usr/lib/debug/.build-id/ab/cdef1234.debug}
20033 @item
20034 @file{/usr/bin/ls.debug}
20035 @item
20036 @file{/usr/bin/.debug/ls.debug}
20037 @item
20038 @file{/usr/lib/debug/usr/bin/ls.debug}.
20039 @end itemize
20040
20041 @anchor{debug-file-directory}
20042 Global debugging info directories default to what is set by @value{GDBN}
20043 configure option @option{--with-separate-debug-dir}.  During @value{GDBN} run
20044 you can also set the global debugging info directories, and view the list
20045 @value{GDBN} is currently using.
20046
20047 @table @code
20048
20049 @kindex set debug-file-directory
20050 @item set debug-file-directory @var{directories}
20051 Set the directories which @value{GDBN} searches for separate debugging
20052 information files to @var{directory}.  Multiple path components can be set
20053 concatenating them by a path separator.
20054
20055 @kindex show debug-file-directory
20056 @item show debug-file-directory
20057 Show the directories @value{GDBN} searches for separate debugging
20058 information files.
20059
20060 @end table
20061
20062 @cindex @code{.gnu_debuglink} sections
20063 @cindex debug link sections
20064 A debug link is a special section of the executable file named
20065 @code{.gnu_debuglink}.  The section must contain:
20066
20067 @itemize
20068 @item
20069 A filename, with any leading directory components removed, followed by
20070 a zero byte,
20071 @item
20072 zero to three bytes of padding, as needed to reach the next four-byte
20073 boundary within the section, and
20074 @item
20075 a four-byte CRC checksum, stored in the same endianness used for the
20076 executable file itself.  The checksum is computed on the debugging
20077 information file's full contents by the function given below, passing
20078 zero as the @var{crc} argument.
20079 @end itemize
20080
20081 Any executable file format can carry a debug link, as long as it can
20082 contain a section named @code{.gnu_debuglink} with the contents
20083 described above.
20084
20085 @cindex @code{.note.gnu.build-id} sections
20086 @cindex build ID sections
20087 The build ID is a special section in the executable file (and in other
20088 ELF binary files that @value{GDBN} may consider).  This section is
20089 often named @code{.note.gnu.build-id}, but that name is not mandatory.
20090 It contains unique identification for the built files---the ID remains
20091 the same across multiple builds of the same build tree.  The default
20092 algorithm SHA1 produces 160 bits (40 hexadecimal characters) of the
20093 content for the build ID string.  The same section with an identical
20094 value is present in the original built binary with symbols, in its
20095 stripped variant, and in the separate debugging information file.
20096
20097 The debugging information file itself should be an ordinary
20098 executable, containing a full set of linker symbols, sections, and
20099 debugging information.  The sections of the debugging information file
20100 should have the same names, addresses, and sizes as the original file,
20101 but they need not contain any data---much like a @code{.bss} section
20102 in an ordinary executable.
20103
20104 The @sc{gnu} binary utilities (Binutils) package includes the
20105 @samp{objcopy} utility that can produce
20106 the separated executable / debugging information file pairs using the
20107 following commands:
20108
20109 @smallexample
20110 @kbd{objcopy --only-keep-debug foo foo.debug}
20111 @kbd{strip -g foo}
20112 @end smallexample
20113
20114 @noindent
20115 These commands remove the debugging
20116 information from the executable file @file{foo} and place it in the file
20117 @file{foo.debug}.  You can use the first, second or both methods to link the
20118 two files:
20119
20120 @itemize @bullet
20121 @item
20122 The debug link method needs the following additional command to also leave
20123 behind a debug link in @file{foo}:
20124
20125 @smallexample
20126 @kbd{objcopy --add-gnu-debuglink=foo.debug foo}
20127 @end smallexample
20128
20129 Ulrich Drepper's @file{elfutils} package, starting with version 0.53, contains
20130 a version of the @code{strip} command such that the command @kbd{strip foo -f
20131 foo.debug} has the same functionality as the two @code{objcopy} commands and
20132 the @code{ln -s} command above, together.
20133
20134 @item
20135 Build ID gets embedded into the main executable using @code{ld --build-id} or
20136 the @value{NGCC} counterpart @code{gcc -Wl,--build-id}.  Build ID support plus
20137 compatibility fixes for debug files separation are present in @sc{gnu} binary
20138 utilities (Binutils) package since version 2.18.
20139 @end itemize
20140
20141 @noindent
20142
20143 @cindex CRC algorithm definition
20144 The CRC used in @code{.gnu_debuglink} is the CRC-32 defined in
20145 IEEE 802.3 using the polynomial:
20146
20147 @c TexInfo requires naked braces for multi-digit exponents for Tex
20148 @c output, but this causes HTML output to barf. HTML has to be set using
20149 @c raw commands. So we end up having to specify this equation in 2
20150 @c different ways!
20151 @ifhtml
20152 @display
20153 @html
20154  <em>x</em><sup>32</sup> + <em>x</em><sup>26</sup> + <em>x</em><sup>23</sup> + <em>x</em><sup>22</sup> + <em>x</em><sup>16</sup> + <em>x</em><sup>12</sup> + <em>x</em><sup>11</sup>
20155  + <em>x</em><sup>10</sup> + <em>x</em><sup>8</sup> + <em>x</em><sup>7</sup> + <em>x</em><sup>5</sup> + <em>x</em><sup>4</sup> + <em>x</em><sup>2</sup> + <em>x</em> + 1
20156 @end html
20157 @end display
20158 @end ifhtml
20159 @ifnothtml
20160 @display
20161  @math{x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11}}
20162  @math{+ x^{10} + x^8 + x^7 + x^5 + x^4 + x^2 + x + 1}
20163 @end display
20164 @end ifnothtml
20165
20166 The function is computed byte at a time, taking the least
20167 significant bit of each byte first.  The initial pattern
20168 @code{0xffffffff} is used, to ensure leading zeros affect the CRC and
20169 the final result is inverted to ensure trailing zeros also affect the
20170 CRC.
20171
20172 @emph{Note:} This is the same CRC polynomial as used in handling the
20173 @dfn{Remote Serial Protocol} @code{qCRC} packet (@pxref{qCRC packet}).
20174 However in the case of the Remote Serial Protocol, the CRC is computed
20175 @emph{most} significant bit first, and the result is not inverted, so
20176 trailing zeros have no effect on the CRC value.
20177
20178 To complete the description, we show below the code of the function
20179 which produces the CRC used in @code{.gnu_debuglink}.  Inverting the
20180 initially supplied @code{crc} argument means that an initial call to
20181 this function passing in zero will start computing the CRC using
20182 @code{0xffffffff}.
20183
20184 @kindex gnu_debuglink_crc32
20185 @smallexample
20186 unsigned long
20187 gnu_debuglink_crc32 (unsigned long crc,
20188                      unsigned char *buf, size_t len)
20189 @{
20190   static const unsigned long crc32_table[256] =
20191     @{
20192       0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419,
20193       0x706af48f, 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4,
20194       0xe0d5e91e, 0x97d2d988, 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07,
20195       0x90bf1d91, 0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de,
20196       0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 0x136c9856,
20197       0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,
20198       0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4,
20199       0xa2677172, 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b,
20200       0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3,
20201       0x45df5c75, 0xdcd60dcf, 0xabd13d59, 0x26d930ac, 0x51de003a,
20202       0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 0xcfba9599,
20203       0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
20204       0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190,
20205       0x01db7106, 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f,
20206       0x9fbfe4a5, 0xe8b8d433, 0x7807c9a2, 0x0f00f934, 0x9609a88e,
20207       0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01,
20208       0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 0x6c0695ed,
20209       0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,
20210       0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3,
20211       0xfbd44c65, 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2,
20212       0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a,
20213       0x346ed9fc, 0xad678846, 0xda60b8d0, 0x44042d73, 0x33031de5,
20214       0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 0xbe0b1010,
20215       0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
20216       0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17,
20217       0x2eb40d81, 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6,
20218       0x03b6e20c, 0x74b1d29a, 0xead54739, 0x9dd277af, 0x04db2615,
20219       0x73dc1683, 0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8,
20220       0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 0xf00f9344,
20221       0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
20222       0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a,
20223       0x67dd4acc, 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5,
20224       0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1,
20225       0xa6bc5767, 0x3fb506dd, 0x48b2364b, 0xd80d2bda, 0xaf0a1b4c,
20226       0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 0x316e8eef,
20227       0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
20228       0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe,
20229       0xb2bd0b28, 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31,
20230       0x2cd99e8b, 0x5bdeae1d, 0x9b64c2b0, 0xec63f226, 0x756aa39c,
20231       0x026d930a, 0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713,
20232       0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 0x92d28e9b,
20233       0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,
20234       0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1,
20235       0x18b74777, 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c,
20236       0x8f659eff, 0xf862ae69, 0x616bffd3, 0x166ccf45, 0xa00ae278,
20237       0xd70dd2ee, 0x4e048354, 0x3903b3c2, 0xa7672661, 0xd06016f7,
20238       0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 0x40df0b66,
20239       0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
20240       0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605,
20241       0xcdd70693, 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8,
20242       0x5d681b02, 0x2a6f2b94, 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b,
20243       0x2d02ef8d
20244     @};
20245   unsigned char *end;
20246
20247   crc = ~crc & 0xffffffff;
20248   for (end = buf + len; buf < end; ++buf)
20249     crc = crc32_table[(crc ^ *buf) & 0xff] ^ (crc >> 8);
20250   return ~crc & 0xffffffff;
20251 @}
20252 @end smallexample
20253
20254 @noindent
20255 This computation does not apply to the ``build ID'' method.
20256
20257 @node MiniDebugInfo
20258 @section Debugging information in a special section
20259 @cindex separate debug sections
20260 @cindex @samp{.gnu_debugdata} section
20261
20262 Some systems ship pre-built executables and libraries that have a
20263 special @samp{.gnu_debugdata} section.  This feature is called
20264 @dfn{MiniDebugInfo}.  This section holds an LZMA-compressed object and
20265 is used to supply extra symbols for backtraces.
20266
20267 The intent of this section is to provide extra minimal debugging
20268 information for use in simple backtraces.  It is not intended to be a
20269 replacement for full separate debugging information (@pxref{Separate
20270 Debug Files}).  The example below shows the intended use; however,
20271 @value{GDBN} does not currently put restrictions on what sort of
20272 debugging information might be included in the section.
20273
20274 @value{GDBN} has support for this extension.  If the section exists,
20275 then it is used provided that no other source of debugging information
20276 can be found, and that @value{GDBN} was configured with LZMA support.
20277
20278 This section can be easily created using @command{objcopy} and other
20279 standard utilities:
20280
20281 @smallexample
20282 # Extract the dynamic symbols from the main binary, there is no need
20283 # to also have these in the normal symbol table.
20284 nm -D @var{binary} --format=posix --defined-only \
20285   | awk '@{ print $1 @}' | sort > dynsyms
20286
20287 # Extract all the text (i.e. function) symbols from the debuginfo.
20288 # (Note that we actually also accept "D" symbols, for the benefit
20289 # of platforms like PowerPC64 that use function descriptors.)
20290 nm @var{binary} --format=posix --defined-only \
20291   | awk '@{ if ($2 == "T" || $2 == "t" || $2 == "D") print $1 @}' \
20292   | sort > funcsyms
20293
20294 # Keep all the function symbols not already in the dynamic symbol
20295 # table.
20296 comm -13 dynsyms funcsyms > keep_symbols
20297
20298 # Separate full debug info into debug binary.
20299 objcopy --only-keep-debug @var{binary} debug
20300
20301 # Copy the full debuginfo, keeping only a minimal set of symbols and
20302 # removing some unnecessary sections.
20303 objcopy -S --remove-section .gdb_index --remove-section .comment \
20304   --keep-symbols=keep_symbols debug mini_debuginfo
20305
20306 # Drop the full debug info from the original binary.
20307 strip --strip-all -R .comment @var{binary}
20308
20309 # Inject the compressed data into the .gnu_debugdata section of the
20310 # original binary.
20311 xz mini_debuginfo
20312 objcopy --add-section .gnu_debugdata=mini_debuginfo.xz @var{binary}
20313 @end smallexample
20314
20315 @node Index Files
20316 @section Index Files Speed Up @value{GDBN}
20317 @cindex index files
20318 @cindex @samp{.gdb_index} section
20319
20320 When @value{GDBN} finds a symbol file, it scans the symbols in the
20321 file in order to construct an internal symbol table.  This lets most
20322 @value{GDBN} operations work quickly---at the cost of a delay early
20323 on.  For large programs, this delay can be quite lengthy, so
20324 @value{GDBN} provides a way to build an index, which speeds up
20325 startup.
20326
20327 For convenience, @value{GDBN} comes with a program,
20328 @command{gdb-add-index}, which can be used to add the index to a
20329 symbol file.  It takes the symbol file as its only argument:
20330
20331 @smallexample
20332 $ gdb-add-index symfile
20333 @end smallexample
20334
20335 @xref{gdb-add-index}.
20336
20337 It is also possible to do the work manually.  Here is what
20338 @command{gdb-add-index} does behind the curtains.
20339
20340 The index is stored as a section in the symbol file.  @value{GDBN} can
20341 write the index to a file, then you can put it into the symbol file
20342 using @command{objcopy}.
20343
20344 To create an index file, use the @code{save gdb-index} command:
20345
20346 @table @code
20347 @item save gdb-index [-dwarf-5] @var{directory}
20348 @kindex save gdb-index
20349 Create index files for all symbol files currently known by
20350 @value{GDBN}.  For each known @var{symbol-file}, this command by
20351 default creates it produces a single file
20352 @file{@var{symbol-file}.gdb-index}.  If you invoke this command with
20353 the @option{-dwarf-5} option, it produces 2 files:
20354 @file{@var{symbol-file}.debug_names} and
20355 @file{@var{symbol-file}.debug_str}.  The files are created in the
20356 given @var{directory}.
20357 @end table
20358
20359 Once you have created an index file you can merge it into your symbol
20360 file, here named @file{symfile}, using @command{objcopy}:
20361
20362 @smallexample
20363 $ objcopy --add-section .gdb_index=symfile.gdb-index \
20364     --set-section-flags .gdb_index=readonly symfile symfile
20365 @end smallexample
20366
20367 Or for @code{-dwarf-5}:
20368
20369 @smallexample
20370 $ objcopy --dump-section .debug_str=symfile.debug_str.new symfile
20371 $ cat symfile.debug_str >>symfile.debug_str.new
20372 $ objcopy --add-section .debug_names=symfile.gdb-index \
20373     --set-section-flags .debug_names=readonly \
20374     --update-section .debug_str=symfile.debug_str.new symfile symfile
20375 @end smallexample
20376
20377 @value{GDBN} will normally ignore older versions of @file{.gdb_index}
20378 sections that have been deprecated.  Usually they are deprecated because
20379 they are missing a new feature or have performance issues.
20380 To tell @value{GDBN} to use a deprecated index section anyway
20381 specify @code{set use-deprecated-index-sections on}.
20382 The default is @code{off}.
20383 This can speed up startup, but may result in some functionality being lost.
20384 @xref{Index Section Format}.
20385
20386 @emph{Warning:} Setting @code{use-deprecated-index-sections} to @code{on}
20387 must be done before gdb reads the file.  The following will not work:
20388
20389 @smallexample
20390 $ gdb -ex "set use-deprecated-index-sections on" <program>
20391 @end smallexample
20392
20393 Instead you must do, for example,
20394
20395 @smallexample
20396 $ gdb -iex "set use-deprecated-index-sections on" <program>
20397 @end smallexample
20398
20399 There are currently some limitation on indices.  They only work when
20400 for DWARF debugging information, not stabs.  And, they do not
20401 currently work for programs using Ada.
20402
20403 @subsection Automatic symbol index cache
20404
20405 It is possible for @value{GDBN} to automatically save a copy of this index in a
20406 cache on disk and retrieve it from there when loading the same binary in the
20407 future.  This feature can be turned on with @kbd{set index-cache on}.  The
20408 following commands can be used to tweak the behavior of the index cache.
20409
20410 @table @code
20411
20412 @item set index-cache on
20413 @itemx set index-cache off
20414 Enable or disable the use of the symbol index cache.
20415
20416 @item set index-cache directory @var{directory}
20417 @itemx show index-cache directory
20418 Set/show the directory where index files will be saved.
20419
20420 The default value for this directory depends on the host platform.  On
20421 most systems, the index is cached in the @file{gdb} subdirectory of
20422 the directory pointed to by the @env{XDG_CACHE_HOME} environment
20423 variable, if it is defined, else in the @file{.cache/gdb} subdirectory
20424 of your home directory.  However, on some systems, the default may
20425 differ according to local convention.
20426
20427 There is no limit on the disk space used by index cache.  It is perfectly safe
20428 to delete the content of that directory to free up disk space.
20429
20430 @item show index-cache stats
20431 Print the number of cache hits and misses since the launch of @value{GDBN}.
20432
20433 @end table
20434
20435 @node Symbol Errors
20436 @section Errors Reading Symbol Files
20437
20438 While reading a symbol file, @value{GDBN} occasionally encounters problems,
20439 such as symbol types it does not recognize, or known bugs in compiler
20440 output.  By default, @value{GDBN} does not notify you of such problems, since
20441 they are relatively common and primarily of interest to people
20442 debugging compilers.  If you are interested in seeing information
20443 about ill-constructed symbol tables, you can either ask @value{GDBN} to print
20444 only one message about each such type of problem, no matter how many
20445 times the problem occurs; or you can ask @value{GDBN} to print more messages,
20446 to see how many times the problems occur, with the @code{set
20447 complaints} command (@pxref{Messages/Warnings, ,Optional Warnings and
20448 Messages}).
20449
20450 The messages currently printed, and their meanings, include:
20451
20452 @table @code
20453 @item inner block not inside outer block in @var{symbol}
20454
20455 The symbol information shows where symbol scopes begin and end
20456 (such as at the start of a function or a block of statements).  This
20457 error indicates that an inner scope block is not fully contained
20458 in its outer scope blocks.
20459
20460 @value{GDBN} circumvents the problem by treating the inner block as if it had
20461 the same scope as the outer block.  In the error message, @var{symbol}
20462 may be shown as ``@code{(don't know)}'' if the outer block is not a
20463 function.
20464
20465 @item block at @var{address} out of order
20466
20467 The symbol information for symbol scope blocks should occur in
20468 order of increasing addresses.  This error indicates that it does not
20469 do so.
20470
20471 @value{GDBN} does not circumvent this problem, and has trouble
20472 locating symbols in the source file whose symbols it is reading.  (You
20473 can often determine what source file is affected by specifying
20474 @code{set verbose on}.  @xref{Messages/Warnings, ,Optional Warnings and
20475 Messages}.)
20476
20477 @item bad block start address patched
20478
20479 The symbol information for a symbol scope block has a start address
20480 smaller than the address of the preceding source line.  This is known
20481 to occur in the SunOS 4.1.1 (and earlier) C compiler.
20482
20483 @value{GDBN} circumvents the problem by treating the symbol scope block as
20484 starting on the previous source line.
20485
20486 @item bad string table offset in symbol @var{n}
20487
20488 @cindex foo
20489 Symbol number @var{n} contains a pointer into the string table which is
20490 larger than the size of the string table.
20491
20492 @value{GDBN} circumvents the problem by considering the symbol to have the
20493 name @code{foo}, which may cause other problems if many symbols end up
20494 with this name.
20495
20496 @item unknown symbol type @code{0x@var{nn}}
20497
20498 The symbol information contains new data types that @value{GDBN} does
20499 not yet know how to read.  @code{0x@var{nn}} is the symbol type of the
20500 uncomprehended information, in hexadecimal.
20501
20502 @value{GDBN} circumvents the error by ignoring this symbol information.
20503 This usually allows you to debug your program, though certain symbols
20504 are not accessible.  If you encounter such a problem and feel like
20505 debugging it, you can debug @code{@value{GDBP}} with itself, breakpoint
20506 on @code{complain}, then go up to the function @code{read_dbx_symtab}
20507 and examine @code{*bufp} to see the symbol.
20508
20509 @item stub type has NULL name
20510
20511 @value{GDBN} could not find the full definition for a struct or class.
20512
20513 @item const/volatile indicator missing (ok if using g++ v1.x), got@dots{}
20514 The symbol information for a C@t{++} member function is missing some
20515 information that recent versions of the compiler should have output for
20516 it.
20517
20518 @item info mismatch between compiler and debugger
20519
20520 @value{GDBN} could not parse a type specification output by the compiler.
20521
20522 @end table
20523
20524 @node Data Files
20525 @section GDB Data Files
20526
20527 @cindex prefix for data files
20528 @value{GDBN} will sometimes read an auxiliary data file.  These files
20529 are kept in a directory known as the @dfn{data directory}.
20530
20531 You can set the data directory's name, and view the name @value{GDBN}
20532 is currently using.
20533
20534 @table @code
20535 @kindex set data-directory
20536 @item set data-directory @var{directory}
20537 Set the directory which @value{GDBN} searches for auxiliary data files
20538 to @var{directory}.
20539
20540 @kindex show data-directory
20541 @item show data-directory
20542 Show the directory @value{GDBN} searches for auxiliary data files.
20543 @end table
20544
20545 @cindex default data directory
20546 @cindex @samp{--with-gdb-datadir}
20547 You can set the default data directory by using the configure-time
20548 @samp{--with-gdb-datadir} option.  If the data directory is inside
20549 @value{GDBN}'s configured binary prefix (set with @samp{--prefix} or
20550 @samp{--exec-prefix}), then the default data directory will be updated
20551 automatically if the installed @value{GDBN} is moved to a new
20552 location.
20553
20554 The data directory may also be specified with the
20555 @code{--data-directory} command line option.
20556 @xref{Mode Options}.
20557
20558 @node Targets
20559 @chapter Specifying a Debugging Target
20560
20561 @cindex debugging target
20562 A @dfn{target} is the execution environment occupied by your program.
20563
20564 Often, @value{GDBN} runs in the same host environment as your program;
20565 in that case, the debugging target is specified as a side effect when
20566 you use the @code{file} or @code{core} commands.  When you need more
20567 flexibility---for example, running @value{GDBN} on a physically separate
20568 host, or controlling a standalone system over a serial port or a
20569 realtime system over a TCP/IP connection---you can use the @code{target}
20570 command to specify one of the target types configured for @value{GDBN}
20571 (@pxref{Target Commands, ,Commands for Managing Targets}).
20572
20573 @cindex target architecture
20574 It is possible to build @value{GDBN} for several different @dfn{target
20575 architectures}.  When @value{GDBN} is built like that, you can choose
20576 one of the available architectures with the @kbd{set architecture}
20577 command.
20578
20579 @table @code
20580 @kindex set architecture
20581 @kindex show architecture
20582 @item set architecture @var{arch}
20583 This command sets the current target architecture to @var{arch}.  The
20584 value of @var{arch} can be @code{"auto"}, in addition to one of the
20585 supported architectures.
20586
20587 @item show architecture
20588 Show the current target architecture.
20589
20590 @item set processor
20591 @itemx processor
20592 @kindex set processor
20593 @kindex show processor
20594 These are alias commands for, respectively, @code{set architecture}
20595 and @code{show architecture}.
20596 @end table
20597
20598 @menu
20599 * Active Targets::              Active targets
20600 * Target Commands::             Commands for managing targets
20601 * Byte Order::                  Choosing target byte order
20602 @end menu
20603
20604 @node Active Targets
20605 @section Active Targets
20606
20607 @cindex stacking targets
20608 @cindex active targets
20609 @cindex multiple targets
20610
20611 There are multiple classes of targets such as: processes, executable files or
20612 recording sessions.  Core files belong to the process class, making core file
20613 and process mutually exclusive.  Otherwise, @value{GDBN} can work concurrently
20614 on multiple active targets, one in each class.  This allows you to (for
20615 example) start a process and inspect its activity, while still having access to
20616 the executable file after the process finishes.  Or if you start process
20617 recording (@pxref{Reverse Execution}) and @code{reverse-step} there, you are
20618 presented a virtual layer of the recording target, while the process target
20619 remains stopped at the chronologically last point of the process execution.
20620
20621 Use the @code{core-file} and @code{exec-file} commands to select a new core
20622 file or executable target (@pxref{Files, ,Commands to Specify Files}).  To
20623 specify as a target a process that is already running, use the @code{attach}
20624 command (@pxref{Attach, ,Debugging an Already-running Process}).
20625
20626 @node Target Commands
20627 @section Commands for Managing Targets
20628
20629 @table @code
20630 @item target @var{type} @var{parameters}
20631 Connects the @value{GDBN} host environment to a target machine or
20632 process.  A target is typically a protocol for talking to debugging
20633 facilities.  You use the argument @var{type} to specify the type or
20634 protocol of the target machine.
20635
20636 Further @var{parameters} are interpreted by the target protocol, but
20637 typically include things like device names or host names to connect
20638 with, process numbers, and baud rates.
20639
20640 The @code{target} command does not repeat if you press @key{RET} again
20641 after executing the command.
20642
20643 @kindex help target
20644 @item help target
20645 Displays the names of all targets available.  To display targets
20646 currently selected, use either @code{info target} or @code{info files}
20647 (@pxref{Files, ,Commands to Specify Files}).
20648
20649 @item help target @var{name}
20650 Describe a particular target, including any parameters necessary to
20651 select it.
20652
20653 @kindex set gnutarget
20654 @item set gnutarget @var{args}
20655 @value{GDBN} uses its own library BFD to read your files.  @value{GDBN}
20656 knows whether it is reading an @dfn{executable},
20657 a @dfn{core}, or a @dfn{.o} file; however, you can specify the file format
20658 with the @code{set gnutarget} command.  Unlike most @code{target} commands,
20659 with @code{gnutarget} the @code{target} refers to a program, not a machine.
20660
20661 @quotation
20662 @emph{Warning:} To specify a file format with @code{set gnutarget},
20663 you must know the actual BFD name.
20664 @end quotation
20665
20666 @noindent
20667 @xref{Files, , Commands to Specify Files}.
20668
20669 @kindex show gnutarget
20670 @item show gnutarget
20671 Use the @code{show gnutarget} command to display what file format
20672 @code{gnutarget} is set to read.  If you have not set @code{gnutarget},
20673 @value{GDBN} will determine the file format for each file automatically,
20674 and @code{show gnutarget} displays @samp{The current BFD target is "auto"}.
20675 @end table
20676
20677 @cindex common targets
20678 Here are some common targets (available, or not, depending on the GDB
20679 configuration):
20680
20681 @table @code
20682 @kindex target
20683 @item target exec @var{program}
20684 @cindex executable file target
20685 An executable file.  @samp{target exec @var{program}} is the same as
20686 @samp{exec-file @var{program}}.
20687
20688 @item target core @var{filename}
20689 @cindex core dump file target
20690 A core dump file.  @samp{target core @var{filename}} is the same as
20691 @samp{core-file @var{filename}}.
20692
20693 @item target remote @var{medium}
20694 @cindex remote target
20695 A remote system connected to @value{GDBN} via a serial line or network
20696 connection.  This command tells @value{GDBN} to use its own remote
20697 protocol over @var{medium} for debugging.  @xref{Remote Debugging}.
20698
20699 For example, if you have a board connected to @file{/dev/ttya} on the
20700 machine running @value{GDBN}, you could say:
20701
20702 @smallexample
20703 target remote /dev/ttya
20704 @end smallexample
20705
20706 @code{target remote} supports the @code{load} command.  This is only
20707 useful if you have some other way of getting the stub to the target
20708 system, and you can put it somewhere in memory where it won't get
20709 clobbered by the download.
20710
20711 @item target sim @r{[}@var{simargs}@r{]} @dots{}
20712 @cindex built-in simulator target
20713 Builtin CPU simulator.  @value{GDBN} includes simulators for most architectures.
20714 In general,
20715 @smallexample
20716         target sim
20717         load
20718         run
20719 @end smallexample
20720 @noindent
20721 works; however, you cannot assume that a specific memory map, device
20722 drivers, or even basic I/O is available, although some simulators do
20723 provide these.  For info about any processor-specific simulator details,
20724 see the appropriate section in @ref{Embedded Processors, ,Embedded
20725 Processors}.
20726
20727 @item target native
20728 @cindex native target
20729 Setup for local/native process debugging.  Useful to make the
20730 @code{run} command spawn native processes (likewise @code{attach},
20731 etc.@:) even when @code{set auto-connect-native-target} is @code{off}
20732 (@pxref{set auto-connect-native-target}).
20733
20734 @end table
20735
20736 Different targets are available on different configurations of @value{GDBN};
20737 your configuration may have more or fewer targets.
20738
20739 Many remote targets require you to download the executable's code once
20740 you've successfully established a connection.  You may wish to control
20741 various aspects of this process.
20742
20743 @table @code
20744
20745 @item set hash
20746 @kindex set hash@r{, for remote monitors}
20747 @cindex hash mark while downloading
20748 This command controls whether a hash mark @samp{#} is displayed while
20749 downloading a file to the remote monitor.  If on, a hash mark is
20750 displayed after each S-record is successfully downloaded to the
20751 monitor.
20752
20753 @item show hash
20754 @kindex show hash@r{, for remote monitors}
20755 Show the current status of displaying the hash mark.
20756
20757 @item set debug monitor
20758 @kindex set debug monitor
20759 @cindex display remote monitor communications
20760 Enable or disable display of communications messages between
20761 @value{GDBN} and the remote monitor.
20762
20763 @item show debug monitor
20764 @kindex show debug monitor
20765 Show the current status of displaying communications between
20766 @value{GDBN} and the remote monitor.
20767 @end table
20768
20769 @table @code
20770
20771 @kindex load @var{filename} @var{offset}
20772 @item load @var{filename} @var{offset}
20773 @anchor{load}
20774 Depending on what remote debugging facilities are configured into
20775 @value{GDBN}, the @code{load} command may be available.  Where it exists, it
20776 is meant to make @var{filename} (an executable) available for debugging
20777 on the remote system---by downloading, or dynamic linking, for example.
20778 @code{load} also records the @var{filename} symbol table in @value{GDBN}, like
20779 the @code{add-symbol-file} command.
20780
20781 If your @value{GDBN} does not have a @code{load} command, attempting to
20782 execute it gets the error message ``@code{You can't do that when your
20783 target is @dots{}}''
20784
20785 The file is loaded at whatever address is specified in the executable.
20786 For some object file formats, you can specify the load address when you
20787 link the program; for other formats, like a.out, the object file format
20788 specifies a fixed address.
20789 @c FIXME! This would be a good place for an xref to the GNU linker doc.
20790
20791 It is also possible to tell @value{GDBN} to load the executable file at a
20792 specific offset described by the optional argument @var{offset}.  When
20793 @var{offset} is provided, @var{filename} must also be provided.
20794
20795 Depending on the remote side capabilities, @value{GDBN} may be able to
20796 load programs into flash memory.
20797
20798 @code{load} does not repeat if you press @key{RET} again after using it.
20799 @end table
20800
20801 @table @code
20802
20803 @kindex flash-erase
20804 @item flash-erase
20805 @anchor{flash-erase}
20806
20807 Erases all known flash memory regions on the target.
20808
20809 @end table
20810
20811 @node Byte Order
20812 @section Choosing Target Byte Order
20813
20814 @cindex choosing target byte order
20815 @cindex target byte order
20816
20817 Some types of processors, such as the @acronym{MIPS}, PowerPC, and Renesas SH,
20818 offer the ability to run either big-endian or little-endian byte
20819 orders.  Usually the executable or symbol will include a bit to
20820 designate the endian-ness, and you will not need to worry about
20821 which to use.  However, you may still find it useful to adjust
20822 @value{GDBN}'s idea of processor endian-ness manually.
20823
20824 @table @code
20825 @kindex set endian
20826 @item set endian big
20827 Instruct @value{GDBN} to assume the target is big-endian.
20828
20829 @item set endian little
20830 Instruct @value{GDBN} to assume the target is little-endian.
20831
20832 @item set endian auto
20833 Instruct @value{GDBN} to use the byte order associated with the
20834 executable.
20835
20836 @item show endian
20837 Display @value{GDBN}'s current idea of the target byte order.
20838
20839 @end table
20840
20841 If the @code{set endian auto} mode is in effect and no executable has
20842 been selected, then the endianness used is the last one chosen either
20843 by one of the @code{set endian big} and @code{set endian little}
20844 commands or by inferring from the last executable used.  If no
20845 endianness has been previously chosen, then the default for this mode
20846 is inferred from the target @value{GDBN} has been built for, and is
20847 @code{little} if the name of the target CPU has an @code{el} suffix
20848 and @code{big} otherwise.
20849
20850 Note that these commands merely adjust interpretation of symbolic
20851 data on the host, and that they have absolutely no effect on the
20852 target system.
20853
20854
20855 @node Remote Debugging
20856 @chapter Debugging Remote Programs
20857 @cindex remote debugging
20858
20859 If you are trying to debug a program running on a machine that cannot run
20860 @value{GDBN} in the usual way, it is often useful to use remote debugging.
20861 For example, you might use remote debugging on an operating system kernel,
20862 or on a small system which does not have a general purpose operating system
20863 powerful enough to run a full-featured debugger.
20864
20865 Some configurations of @value{GDBN} have special serial or TCP/IP interfaces
20866 to make this work with particular debugging targets.  In addition,
20867 @value{GDBN} comes with a generic serial protocol (specific to @value{GDBN},
20868 but not specific to any particular target system) which you can use if you
20869 write the remote stubs---the code that runs on the remote system to
20870 communicate with @value{GDBN}.
20871
20872 Other remote targets may be available in your
20873 configuration of @value{GDBN}; use @code{help target} to list them.
20874
20875 @menu
20876 * Connecting::                  Connecting to a remote target
20877 * File Transfer::               Sending files to a remote system
20878 * Server::                      Using the gdbserver program
20879 * Remote Configuration::        Remote configuration
20880 * Remote Stub::                 Implementing a remote stub
20881 @end menu
20882
20883 @node Connecting
20884 @section Connecting to a Remote Target
20885 @cindex remote debugging, connecting
20886 @cindex @code{gdbserver}, connecting
20887 @cindex remote debugging, types of connections
20888 @cindex @code{gdbserver}, types of connections
20889 @cindex @code{gdbserver}, @code{target remote} mode
20890 @cindex @code{gdbserver}, @code{target extended-remote} mode
20891
20892 This section describes how to connect to a remote target, including the
20893 types of connections and their differences, how to set up executable and
20894 symbol files on the host and target, and the commands used for
20895 connecting to and disconnecting from the remote target.
20896
20897 @subsection Types of Remote Connections
20898
20899 @value{GDBN} supports two types of remote connections, @code{target remote}
20900 mode and @code{target extended-remote} mode.  Note that many remote targets
20901 support only @code{target remote} mode.  There are several major
20902 differences between the two types of connections, enumerated here:
20903
20904 @table @asis
20905
20906 @cindex remote debugging, detach and program exit
20907 @item Result of detach or program exit
20908 @strong{With target remote mode:} When the debugged program exits or you
20909 detach from it, @value{GDBN} disconnects from the target.  When using
20910 @code{gdbserver}, @code{gdbserver} will exit.
20911
20912 @strong{With target extended-remote mode:} When the debugged program exits or
20913 you detach from it, @value{GDBN} remains connected to the target, even
20914 though no program is running.  You can rerun the program, attach to a
20915 running program, or use @code{monitor} commands specific to the target.
20916
20917 When using @code{gdbserver} in this case, it does not exit unless it was
20918 invoked using the @option{--once} option.  If the @option{--once} option
20919 was not used, you can ask @code{gdbserver} to exit using the
20920 @code{monitor exit} command (@pxref{Monitor Commands for gdbserver}).
20921
20922 @item Specifying the program to debug
20923 For both connection types you use the @code{file} command to specify the
20924 program on the host system.  If you are using @code{gdbserver} there are
20925 some differences in how to specify the location of the program on the
20926 target.
20927
20928 @strong{With target remote mode:} You must either specify the program to debug
20929 on the @code{gdbserver} command line or use the @option{--attach} option
20930 (@pxref{Attaching to a program,,Attaching to a Running Program}).
20931
20932 @cindex @option{--multi}, @code{gdbserver} option
20933 @strong{With target extended-remote mode:} You may specify the program to debug
20934 on the @code{gdbserver} command line, or you can load the program or attach
20935 to it using @value{GDBN} commands after connecting to @code{gdbserver}.
20936
20937 @anchor{--multi Option in Types of Remote Connnections}
20938 You can start @code{gdbserver} without supplying an initial command to run
20939 or process ID to attach.  To do this, use the @option{--multi} command line
20940 option.  Then you can connect using @code{target extended-remote} and start
20941 the program you want to debug (see below for details on using the
20942 @code{run} command in this scenario).  Note that the conditions under which
20943 @code{gdbserver} terminates depend on how @value{GDBN} connects to it
20944 (@code{target remote} or @code{target extended-remote}).  The
20945 @option{--multi} option to @code{gdbserver} has no influence on that.
20946
20947 @item The @code{run} command
20948 @strong{With target remote mode:} The @code{run} command is not
20949 supported.  Once a connection has been established, you can use all
20950 the usual @value{GDBN} commands to examine and change data.  The
20951 remote program is already running, so you can use commands like
20952 @kbd{step} and @kbd{continue}.
20953
20954 @strong{With target extended-remote mode:} The @code{run} command is
20955 supported.  The @code{run} command uses the value set by
20956 @code{set remote exec-file} (@pxref{set remote exec-file}) to select
20957 the program to run.  Command line arguments are supported, except for
20958 wildcard expansion and I/O redirection (@pxref{Arguments}).
20959
20960 If you specify the program to debug on the command line, then the
20961 @code{run} command is not required to start execution, and you can
20962 resume using commands like @kbd{step} and @kbd{continue} as with
20963 @code{target remote} mode.
20964
20965 @anchor{Attaching in Types of Remote Connections}
20966 @item Attaching
20967 @strong{With target remote mode:} The @value{GDBN} command @code{attach} is
20968 not supported.  To attach to a running program using @code{gdbserver}, you
20969 must use the @option{--attach} option (@pxref{Running gdbserver}).
20970
20971 @strong{With target extended-remote mode:} To attach to a running program,
20972 you may use the @code{attach} command after the connection has been
20973 established.  If you are using @code{gdbserver}, you may also invoke
20974 @code{gdbserver} using the @option{--attach} option
20975 (@pxref{Running gdbserver}).
20976
20977 @end table
20978
20979 @anchor{Host and target files}
20980 @subsection Host and Target Files
20981 @cindex remote debugging, symbol files
20982 @cindex symbol files, remote debugging
20983
20984 @value{GDBN}, running on the host, needs access to symbol and debugging
20985 information for your program running on the target.  This requires 
20986 access to an unstripped copy of your program, and possibly any associated
20987 symbol files.  Note that this section applies equally to both @code{target
20988 remote} mode and @code{target extended-remote} mode.
20989
20990 Some remote targets (@pxref{qXfer executable filename read}, and
20991 @pxref{Host I/O Packets}) allow @value{GDBN} to access program files over
20992 the same connection used to communicate with @value{GDBN}.  With such a
20993 target, if the remote program is unstripped, the only command you need is
20994 @code{target remote} (or @code{target extended-remote}).
20995
20996 If the remote program is stripped, or the target does not support remote
20997 program file access, start up @value{GDBN} using the name of the local
20998 unstripped copy of your program as the first argument, or use the
20999 @code{file} command.  Use @code{set sysroot} to specify the location (on
21000 the host) of target libraries (unless your @value{GDBN} was compiled with
21001 the correct sysroot using @code{--with-sysroot}).  Alternatively, you
21002 may use @code{set solib-search-path} to specify how @value{GDBN} locates
21003 target libraries.
21004
21005 The symbol file and target libraries must exactly match the executable
21006 and libraries on the target, with one exception: the files on the host
21007 system should not be stripped, even if the files on the target system
21008 are.  Mismatched or missing files will lead to confusing results
21009 during debugging.  On @sc{gnu}/Linux targets, mismatched or missing
21010 files may also prevent @code{gdbserver} from debugging multi-threaded
21011 programs.
21012
21013 @subsection Remote Connection Commands
21014 @cindex remote connection commands
21015 @value{GDBN} can communicate with the target over a serial line, a
21016 local Unix domain socket, or
21017 over an @acronym{IP} network using @acronym{TCP} or @acronym{UDP}.  In
21018 each case, @value{GDBN} uses the same protocol for debugging your
21019 program; only the medium carrying the debugging packets varies.  The
21020 @code{target remote} and @code{target extended-remote} commands
21021 establish a connection to the target.  Both commands accept the same
21022 arguments, which indicate the medium to use:
21023
21024 @table @code
21025
21026 @item target remote @var{serial-device}
21027 @itemx target extended-remote @var{serial-device}
21028 @cindex serial line, @code{target remote}
21029 Use @var{serial-device} to communicate with the target.  For example,
21030 to use a serial line connected to the device named @file{/dev/ttyb}:
21031
21032 @smallexample
21033 target remote /dev/ttyb
21034 @end smallexample
21035
21036 If you're using a serial line, you may want to give @value{GDBN} the
21037 @samp{--baud} option, or use the @code{set serial baud} command
21038 (@pxref{Remote Configuration, set serial baud}) before the
21039 @code{target} command.
21040
21041 @item target remote @var{local-socket}
21042 @itemx target extended-remote @var{local-socket}
21043 @cindex local socket, @code{target remote}
21044 @cindex Unix domain socket
21045 Use @var{local-socket} to communicate with the target.  For example,
21046 to use a local Unix domain socket bound to the file system entry @file{/tmp/gdb-socket0}:
21047
21048 @smallexample
21049 target remote /tmp/gdb-socket0
21050 @end smallexample
21051
21052 Note that this command has the same form as the command to connect
21053 to a serial line.  @value{GDBN} will automatically determine which
21054 kind of file you have specified and will make the appropriate kind
21055 of connection.
21056 This feature is not available if the host system does not support
21057 Unix domain sockets.
21058
21059 @item target remote @code{@var{host}:@var{port}}
21060 @itemx target remote @code{@var{[host]}:@var{port}}
21061 @itemx target remote @code{tcp:@var{host}:@var{port}}
21062 @itemx target remote @code{tcp:@var{[host]}:@var{port}}
21063 @itemx target remote @code{tcp4:@var{host}:@var{port}}
21064 @itemx target remote @code{tcp6:@var{host}:@var{port}}
21065 @itemx target remote @code{tcp6:@var{[host]}:@var{port}}
21066 @itemx target extended-remote @code{@var{host}:@var{port}}
21067 @itemx target extended-remote @code{@var{[host]}:@var{port}}
21068 @itemx target extended-remote @code{tcp:@var{host}:@var{port}}
21069 @itemx target extended-remote @code{tcp:@var{[host]}:@var{port}}
21070 @itemx target extended-remote @code{tcp4:@var{host}:@var{port}}
21071 @itemx target extended-remote @code{tcp6:@var{host}:@var{port}}
21072 @itemx target extended-remote @code{tcp6:@var{[host]}:@var{port}}
21073 @cindex @acronym{TCP} port, @code{target remote}
21074 Debug using a @acronym{TCP} connection to @var{port} on @var{host}.
21075 The @var{host} may be either a host name, a numeric @acronym{IPv4}
21076 address, or a numeric @acronym{IPv6} address (with or without the
21077 square brackets to separate the address from the port); @var{port}
21078 must be a decimal number.  The @var{host} could be the target machine
21079 itself, if it is directly connected to the net, or it might be a
21080 terminal server which in turn has a serial line to the target.
21081
21082 For example, to connect to port 2828 on a terminal server named
21083 @code{manyfarms}:
21084
21085 @smallexample
21086 target remote manyfarms:2828
21087 @end smallexample
21088
21089 To connect to port 2828 on a terminal server whose address is
21090 @code{2001:0db8:85a3:0000:0000:8a2e:0370:7334}, you can either use the
21091 square bracket syntax:
21092
21093 @smallexample
21094 target remote [2001:0db8:85a3:0000:0000:8a2e:0370:7334]:2828
21095 @end smallexample
21096
21097 @noindent
21098 or explicitly specify the @acronym{IPv6} protocol:
21099
21100 @smallexample
21101 target remote tcp6:2001:0db8:85a3:0000:0000:8a2e:0370:7334:2828
21102 @end smallexample
21103
21104 This last example may be confusing to the reader, because there is no
21105 visible separation between the hostname and the port number.
21106 Therefore, we recommend the user to provide @acronym{IPv6} addresses
21107 using square brackets for clarity.  However, it is important to
21108 mention that for @value{GDBN} there is no ambiguity: the number after
21109 the last colon is considered to be the port number.
21110
21111 If your remote target is actually running on the same machine as your
21112 debugger session (e.g.@: a simulator for your target running on the
21113 same host), you can omit the hostname.  For example, to connect to
21114 port 1234 on your local machine:
21115
21116 @smallexample
21117 target remote :1234
21118 @end smallexample
21119 @noindent
21120
21121 Note that the colon is still required here.
21122
21123 @item target remote @code{udp:@var{host}:@var{port}}
21124 @itemx target remote @code{udp:@var{[host]}:@var{port}}
21125 @itemx target remote @code{udp4:@var{host}:@var{port}}
21126 @itemx target remote @code{udp6:@var{[host]}:@var{port}}
21127 @itemx target extended-remote @code{udp:@var{host}:@var{port}}
21128 @itemx target extended-remote @code{udp:@var{host}:@var{port}}
21129 @itemx target extended-remote @code{udp:@var{[host]}:@var{port}}
21130 @itemx target extended-remote @code{udp4:@var{host}:@var{port}}
21131 @itemx target extended-remote @code{udp6:@var{host}:@var{port}}
21132 @itemx target extended-remote @code{udp6:@var{[host]}:@var{port}}
21133 @cindex @acronym{UDP} port, @code{target remote}
21134 Debug using @acronym{UDP} packets to @var{port} on @var{host}.  For example, to
21135 connect to @acronym{UDP} port 2828 on a terminal server named @code{manyfarms}:
21136
21137 @smallexample
21138 target remote udp:manyfarms:2828
21139 @end smallexample
21140
21141 When using a @acronym{UDP} connection for remote debugging, you should
21142 keep in mind that the `U' stands for ``Unreliable''.  @acronym{UDP}
21143 can silently drop packets on busy or unreliable networks, which will
21144 cause havoc with your debugging session.
21145
21146 @item target remote | @var{command}
21147 @itemx target extended-remote | @var{command}
21148 @cindex pipe, @code{target remote} to
21149 Run @var{command} in the background and communicate with it using a
21150 pipe.  The @var{command} is a shell command, to be parsed and expanded
21151 by the system's command shell, @code{/bin/sh}; it should expect remote
21152 protocol packets on its standard input, and send replies on its
21153 standard output.  You could use this to run a stand-alone simulator
21154 that speaks the remote debugging protocol, to make net connections
21155 using programs like @code{ssh}, or for other similar tricks.
21156
21157 If @var{command} closes its standard output (perhaps by exiting),
21158 @value{GDBN} will try to send it a @code{SIGTERM} signal.  (If the
21159 program has already exited, this will have no effect.)
21160
21161 @end table
21162
21163 @cindex interrupting remote programs
21164 @cindex remote programs, interrupting
21165 Whenever @value{GDBN} is waiting for the remote program, if you type the
21166 interrupt character (often @kbd{Ctrl-c}), @value{GDBN} attempts to stop the
21167 program.  This may or may not succeed, depending in part on the hardware
21168 and the serial drivers the remote system uses.  If you type the
21169 interrupt character once again, @value{GDBN} displays this prompt:
21170
21171 @smallexample
21172 Interrupted while waiting for the program.
21173 Give up (and stop debugging it)?  (y or n)
21174 @end smallexample
21175
21176 In @code{target remote} mode, if you type @kbd{y}, @value{GDBN} abandons
21177 the remote debugging session.  (If you decide you want to try again later,
21178 you can use @kbd{target remote} again to connect once more.)  If you type
21179 @kbd{n}, @value{GDBN} goes back to waiting.
21180
21181 In @code{target extended-remote} mode, typing @kbd{n} will leave
21182 @value{GDBN} connected to the target.
21183
21184 @table @code
21185 @kindex detach (remote)
21186 @item detach
21187 When you have finished debugging the remote program, you can use the
21188 @code{detach} command to release it from @value{GDBN} control.
21189 Detaching from the target normally resumes its execution, but the results
21190 will depend on your particular remote stub.  After the @code{detach}
21191 command in @code{target remote} mode, @value{GDBN} is free to connect to
21192 another target.  In @code{target extended-remote} mode, @value{GDBN} is
21193 still connected to the target.
21194
21195 @kindex disconnect
21196 @item disconnect
21197 The @code{disconnect} command closes the connection to the target, and
21198 the target is generally not resumed.  It will wait for @value{GDBN}
21199 (this instance or another one) to connect and continue debugging.  After
21200 the @code{disconnect} command, @value{GDBN} is again free to connect to
21201 another target.
21202
21203 @cindex send command to remote monitor
21204 @cindex extend @value{GDBN} for remote targets
21205 @cindex add new commands for external monitor
21206 @kindex monitor
21207 @item monitor @var{cmd}
21208 This command allows you to send arbitrary commands directly to the
21209 remote monitor.  Since @value{GDBN} doesn't care about the commands it
21210 sends like this, this command is the way to extend @value{GDBN}---you
21211 can add new commands that only the external monitor will understand
21212 and implement.
21213 @end table
21214
21215 @node File Transfer
21216 @section Sending files to a remote system
21217 @cindex remote target, file transfer
21218 @cindex file transfer
21219 @cindex sending files to remote systems
21220
21221 Some remote targets offer the ability to transfer files over the same
21222 connection used to communicate with @value{GDBN}.  This is convenient
21223 for targets accessible through other means, e.g.@: @sc{gnu}/Linux systems
21224 running @code{gdbserver} over a network interface.  For other targets,
21225 e.g.@: embedded devices with only a single serial port, this may be
21226 the only way to upload or download files.
21227
21228 Not all remote targets support these commands.
21229
21230 @table @code
21231 @kindex remote put
21232 @item remote put @var{hostfile} @var{targetfile}
21233 Copy file @var{hostfile} from the host system (the machine running
21234 @value{GDBN}) to @var{targetfile} on the target system.
21235
21236 @kindex remote get
21237 @item remote get @var{targetfile} @var{hostfile}
21238 Copy file @var{targetfile} from the target system to @var{hostfile}
21239 on the host system.
21240
21241 @kindex remote delete
21242 @item remote delete @var{targetfile}
21243 Delete @var{targetfile} from the target system.
21244
21245 @end table
21246
21247 @node Server
21248 @section Using the @code{gdbserver} Program
21249
21250 @kindex gdbserver
21251 @cindex remote connection without stubs
21252 @code{gdbserver} is a control program for Unix-like systems, which
21253 allows you to connect your program with a remote @value{GDBN} via
21254 @code{target remote} or @code{target extended-remote}---but without
21255 linking in the usual debugging stub.
21256
21257 @code{gdbserver} is not a complete replacement for the debugging stubs,
21258 because it requires essentially the same operating-system facilities
21259 that @value{GDBN} itself does.  In fact, a system that can run
21260 @code{gdbserver} to connect to a remote @value{GDBN} could also run
21261 @value{GDBN} locally!  @code{gdbserver} is sometimes useful nevertheless,
21262 because it is a much smaller program than @value{GDBN} itself.  It is
21263 also easier to port than all of @value{GDBN}, so you may be able to get
21264 started more quickly on a new system by using @code{gdbserver}.
21265 Finally, if you develop code for real-time systems, you may find that
21266 the tradeoffs involved in real-time operation make it more convenient to
21267 do as much development work as possible on another system, for example
21268 by cross-compiling.  You can use @code{gdbserver} to make a similar
21269 choice for debugging.
21270
21271 @value{GDBN} and @code{gdbserver} communicate via either a serial line
21272 or a TCP connection, using the standard @value{GDBN} remote serial
21273 protocol.
21274
21275 @quotation
21276 @emph{Warning:} @code{gdbserver} does not have any built-in security.
21277 Do not run @code{gdbserver} connected to any public network; a
21278 @value{GDBN} connection to @code{gdbserver} provides access to the
21279 target system with the same privileges as the user running
21280 @code{gdbserver}.
21281 @end quotation
21282
21283 @anchor{Running gdbserver}
21284 @subsection Running @code{gdbserver}
21285 @cindex arguments, to @code{gdbserver}
21286 @cindex @code{gdbserver}, command-line arguments
21287
21288 Run @code{gdbserver} on the target system.  You need a copy of the
21289 program you want to debug, including any libraries it requires.
21290 @code{gdbserver} does not need your program's symbol table, so you can
21291 strip the program if necessary to save space.  @value{GDBN} on the host
21292 system does all the symbol handling.
21293
21294 To use the server, you must tell it how to communicate with @value{GDBN};
21295 the name of your program; and the arguments for your program.  The usual
21296 syntax is:
21297
21298 @smallexample
21299 target> gdbserver @var{comm} @var{program} [ @var{args} @dots{} ]
21300 @end smallexample
21301
21302 @var{comm} is either a device name (to use a serial line), or a TCP
21303 hostname and portnumber, or @code{-} or @code{stdio} to use
21304 stdin/stdout of @code{gdbserver}.
21305 For example, to debug Emacs with the argument
21306 @samp{foo.txt} and communicate with @value{GDBN} over the serial port
21307 @file{/dev/com1}:
21308
21309 @smallexample
21310 target> gdbserver /dev/com1 emacs foo.txt
21311 @end smallexample
21312
21313 @code{gdbserver} waits passively for the host @value{GDBN} to communicate
21314 with it.
21315
21316 To use a TCP connection instead of a serial line:
21317
21318 @smallexample
21319 target> gdbserver host:2345 emacs foo.txt
21320 @end smallexample
21321
21322 The only difference from the previous example is the first argument,
21323 specifying that you are communicating with the host @value{GDBN} via
21324 TCP.  The @samp{host:2345} argument means that @code{gdbserver} is to
21325 expect a TCP connection from machine @samp{host} to local TCP port 2345.
21326 (Currently, the @samp{host} part is ignored.)  You can choose any number
21327 you want for the port number as long as it does not conflict with any
21328 TCP ports already in use on the target system (for example, @code{23} is
21329 reserved for @code{telnet}).@footnote{If you choose a port number that
21330 conflicts with another service, @code{gdbserver} prints an error message
21331 and exits.}  You must use the same port number with the host @value{GDBN}
21332 @code{target remote} command.
21333
21334 The @code{stdio} connection is useful when starting @code{gdbserver}
21335 with ssh:
21336
21337 @smallexample
21338 (gdb) target remote | ssh -T hostname gdbserver - hello
21339 @end smallexample
21340
21341 The @samp{-T} option to ssh is provided because we don't need a remote pty,
21342 and we don't want escape-character handling.  Ssh does this by default when
21343 a command is provided, the flag is provided to make it explicit.
21344 You could elide it if you want to.
21345
21346 Programs started with stdio-connected gdbserver have @file{/dev/null} for
21347 @code{stdin}, and @code{stdout},@code{stderr} are sent back to gdb for
21348 display through a pipe connected to gdbserver.
21349 Both @code{stdout} and @code{stderr} use the same pipe.
21350
21351 @anchor{Attaching to a program}
21352 @subsubsection Attaching to a Running Program
21353 @cindex attach to a program, @code{gdbserver}
21354 @cindex @option{--attach}, @code{gdbserver} option
21355
21356 On some targets, @code{gdbserver} can also attach to running programs.
21357 This is accomplished via the @code{--attach} argument.  The syntax is:
21358
21359 @smallexample
21360 target> gdbserver --attach @var{comm} @var{pid}
21361 @end smallexample
21362
21363 @var{pid} is the process ID of a currently running process.  It isn't
21364 necessary to point @code{gdbserver} at a binary for the running process.
21365
21366 In @code{target extended-remote} mode, you can also attach using the
21367 @value{GDBN} attach command
21368 (@pxref{Attaching in Types of Remote Connections}).
21369
21370 @pindex pidof
21371 You can debug processes by name instead of process ID if your target has the
21372 @code{pidof} utility:
21373
21374 @smallexample
21375 target> gdbserver --attach @var{comm} `pidof @var{program}`
21376 @end smallexample
21377
21378 In case more than one copy of @var{program} is running, or @var{program}
21379 has multiple threads, most versions of @code{pidof} support the
21380 @code{-s} option to only return the first process ID.
21381
21382 @subsubsection TCP port allocation lifecycle of @code{gdbserver}
21383
21384 This section applies only when @code{gdbserver} is run to listen on a TCP
21385 port.
21386
21387 @code{gdbserver} normally terminates after all of its debugged processes have
21388 terminated in @kbd{target remote} mode.  On the other hand, for @kbd{target
21389 extended-remote}, @code{gdbserver} stays running even with no processes left.
21390 @value{GDBN} normally terminates the spawned debugged process on its exit,
21391 which normally also terminates @code{gdbserver} in the @kbd{target remote}
21392 mode.  Therefore, when the connection drops unexpectedly, and @value{GDBN}
21393 cannot ask @code{gdbserver} to kill its debugged processes, @code{gdbserver}
21394 stays running even in the @kbd{target remote} mode.
21395
21396 When @code{gdbserver} stays running, @value{GDBN} can connect to it again later.
21397 Such reconnecting is useful for features like @ref{disconnected tracing}.  For
21398 completeness, at most one @value{GDBN} can be connected at a time.
21399
21400 @cindex @option{--once}, @code{gdbserver} option
21401 By default, @code{gdbserver} keeps the listening TCP port open, so that
21402 subsequent connections are possible.  However, if you start @code{gdbserver}
21403 with the @option{--once} option, it will stop listening for any further
21404 connection attempts after connecting to the first @value{GDBN} session.  This
21405 means no further connections to @code{gdbserver} will be possible after the
21406 first one.  It also means @code{gdbserver} will terminate after the first
21407 connection with remote @value{GDBN} has closed, even for unexpectedly closed
21408 connections and even in the @kbd{target extended-remote} mode.  The
21409 @option{--once} option allows reusing the same port number for connecting to
21410 multiple instances of @code{gdbserver} running on the same host, since each
21411 instance closes its port after the first connection.
21412
21413 @anchor{Other Command-Line Arguments for gdbserver}
21414 @subsubsection Other Command-Line Arguments for @code{gdbserver}
21415
21416 You can use the @option{--multi} option to start @code{gdbserver} without
21417 specifying a program to debug or a process to attach to.  Then you can
21418 attach in @code{target extended-remote} mode and run or attach to a
21419 program.  For more information,
21420 @pxref{--multi Option in Types of Remote Connnections}.
21421
21422 @cindex @option{--debug}, @code{gdbserver} option
21423 The @option{--debug} option tells @code{gdbserver} to display extra
21424 status information about the debugging process.
21425 @cindex @option{--remote-debug}, @code{gdbserver} option
21426 The @option{--remote-debug} option tells @code{gdbserver} to display
21427 remote protocol debug output.
21428 @cindex @option{--debug-file}, @code{gdbserver} option
21429 @cindex @code{gdbserver}, send all debug output to a single file
21430 The @option{--debug-file=@var{filename}} option tells @code{gdbserver} to
21431 write any debug output to the given @var{filename}.  These options are intended
21432 for @code{gdbserver} development and for bug reports to the developers.
21433
21434 @cindex @option{--debug-format}, @code{gdbserver} option
21435 The @option{--debug-format=option1[,option2,...]} option tells
21436 @code{gdbserver} to include additional information in each output.
21437 Possible options are:
21438
21439 @table @code
21440 @item none
21441 Turn off all extra information in debugging output.
21442 @item all
21443 Turn on all extra information in debugging output.
21444 @item timestamps
21445 Include a timestamp in each line of debugging output.
21446 @end table
21447
21448 Options are processed in order.  Thus, for example, if @option{none}
21449 appears last then no additional information is added to debugging output.
21450
21451 @cindex @option{--wrapper}, @code{gdbserver} option
21452 The @option{--wrapper} option specifies a wrapper to launch programs
21453 for debugging.  The option should be followed by the name of the
21454 wrapper, then any command-line arguments to pass to the wrapper, then
21455 @kbd{--} indicating the end of the wrapper arguments.
21456
21457 @code{gdbserver} runs the specified wrapper program with a combined
21458 command line including the wrapper arguments, then the name of the
21459 program to debug, then any arguments to the program.  The wrapper
21460 runs until it executes your program, and then @value{GDBN} gains control.
21461
21462 You can use any program that eventually calls @code{execve} with
21463 its arguments as a wrapper.  Several standard Unix utilities do
21464 this, e.g.@: @code{env} and @code{nohup}.  Any Unix shell script ending
21465 with @code{exec "$@@"} will also work.
21466
21467 For example, you can use @code{env} to pass an environment variable to
21468 the debugged program, without setting the variable in @code{gdbserver}'s
21469 environment:
21470
21471 @smallexample
21472 $ gdbserver --wrapper env LD_PRELOAD=libtest.so -- :2222 ./testprog
21473 @end smallexample
21474
21475 @cindex @option{--selftest}
21476 The @option{--selftest} option runs the self tests in @code{gdbserver}:
21477
21478 @smallexample
21479 $ gdbserver --selftest
21480 Ran 2 unit tests, 0 failed
21481 @end smallexample
21482
21483 These tests are disabled in release.
21484 @subsection Connecting to @code{gdbserver}
21485
21486 The basic procedure for connecting to the remote target is:
21487 @itemize
21488
21489 @item
21490 Run @value{GDBN} on the host system.
21491
21492 @item
21493 Make sure you have the necessary symbol files
21494 (@pxref{Host and target files}).
21495 Load symbols for your application using the @code{file} command before you
21496 connect.  Use @code{set sysroot} to locate target libraries (unless your
21497 @value{GDBN} was compiled with the correct sysroot using
21498 @code{--with-sysroot}).
21499
21500 @item
21501 Connect to your target (@pxref{Connecting,,Connecting to a Remote Target}).
21502 For TCP connections, you must start up @code{gdbserver} prior to using
21503 the @code{target} command.  Otherwise you may get an error whose
21504 text depends on the host system, but which usually looks something like
21505 @samp{Connection refused}.  Don't use the @code{load}
21506 command in @value{GDBN} when using @code{target remote} mode, since the
21507 program is already on the target.
21508
21509 @end itemize
21510
21511 @anchor{Monitor Commands for gdbserver}
21512 @subsection Monitor Commands for @code{gdbserver}
21513 @cindex monitor commands, for @code{gdbserver}
21514
21515 During a @value{GDBN} session using @code{gdbserver}, you can use the
21516 @code{monitor} command to send special requests to @code{gdbserver}.
21517 Here are the available commands.
21518
21519 @table @code
21520 @item monitor help
21521 List the available monitor commands.
21522
21523 @item monitor set debug 0
21524 @itemx monitor set debug 1
21525 Disable or enable general debugging messages.
21526
21527 @item monitor set remote-debug 0
21528 @itemx monitor set remote-debug 1
21529 Disable or enable specific debugging messages associated with the remote
21530 protocol (@pxref{Remote Protocol}).
21531
21532 @item monitor set debug-file filename
21533 @itemx monitor set debug-file
21534 Send any debug output to the given file, or to stderr.
21535
21536 @item monitor set debug-format option1@r{[},option2,...@r{]}
21537 Specify additional text to add to debugging messages.
21538 Possible options are:
21539
21540 @table @code
21541 @item none
21542 Turn off all extra information in debugging output.
21543 @item all
21544 Turn on all extra information in debugging output.
21545 @item timestamps
21546 Include a timestamp in each line of debugging output.
21547 @end table
21548
21549 Options are processed in order.  Thus, for example, if @option{none}
21550 appears last then no additional information is added to debugging output.
21551
21552 @item monitor set libthread-db-search-path [PATH]
21553 @cindex gdbserver, search path for @code{libthread_db}
21554 When this command is issued, @var{path} is a colon-separated list of
21555 directories to search for @code{libthread_db} (@pxref{Threads,,set
21556 libthread-db-search-path}).  If you omit @var{path},
21557 @samp{libthread-db-search-path} will be reset to its default value.
21558
21559 The special entry @samp{$pdir} for @samp{libthread-db-search-path} is
21560 not supported in @code{gdbserver}.
21561
21562 @item monitor exit
21563 Tell gdbserver to exit immediately.  This command should be followed by
21564 @code{disconnect} to close the debugging session.  @code{gdbserver} will
21565 detach from any attached processes and kill any processes it created.
21566 Use @code{monitor exit} to terminate @code{gdbserver} at the end
21567 of a multi-process mode debug session.
21568
21569 @end table
21570
21571 @subsection Tracepoints support in @code{gdbserver}
21572 @cindex tracepoints support in @code{gdbserver}
21573
21574 On some targets, @code{gdbserver} supports tracepoints, fast
21575 tracepoints and static tracepoints.
21576
21577 For fast or static tracepoints to work, a special library called the
21578 @dfn{in-process agent} (IPA), must be loaded in the inferior process.
21579 This library is built and distributed as an integral part of
21580 @code{gdbserver}.  In addition, support for static tracepoints
21581 requires building the in-process agent library with static tracepoints
21582 support.  At present, the UST (LTTng Userspace Tracer,
21583 @url{http://lttng.org/ust}) tracing engine is supported.  This support
21584 is automatically available if UST development headers are found in the
21585 standard include path when @code{gdbserver} is built, or if
21586 @code{gdbserver} was explicitly configured using @option{--with-ust}
21587 to point at such headers.  You can explicitly disable the support
21588 using @option{--with-ust=no}.
21589
21590 There are several ways to load the in-process agent in your program:
21591
21592 @table @code
21593 @item Specifying it as dependency at link time
21594
21595 You can link your program dynamically with the in-process agent
21596 library.  On most systems, this is accomplished by adding
21597 @code{-linproctrace} to the link command.
21598
21599 @item Using the system's preloading mechanisms
21600
21601 You can force loading the in-process agent at startup time by using
21602 your system's support for preloading shared libraries.  Many Unixes
21603 support the concept of preloading user defined libraries.  In most
21604 cases, you do that by specifying @code{LD_PRELOAD=libinproctrace.so}
21605 in the environment.  See also the description of @code{gdbserver}'s
21606 @option{--wrapper} command line option.
21607
21608 @item Using @value{GDBN} to force loading the agent at run time
21609
21610 On some systems, you can force the inferior to load a shared library,
21611 by calling a dynamic loader function in the inferior that takes care
21612 of dynamically looking up and loading a shared library.  On most Unix
21613 systems, the function is @code{dlopen}.  You'll use the @code{call}
21614 command for that.  For example:
21615
21616 @smallexample
21617 (@value{GDBP}) call dlopen ("libinproctrace.so", ...)
21618 @end smallexample
21619
21620 Note that on most Unix systems, for the @code{dlopen} function to be
21621 available, the program needs to be linked with @code{-ldl}.
21622 @end table
21623
21624 On systems that have a userspace dynamic loader, like most Unix
21625 systems, when you connect to @code{gdbserver} using @code{target
21626 remote}, you'll find that the program is stopped at the dynamic
21627 loader's entry point, and no shared library has been loaded in the
21628 program's address space yet, including the in-process agent.  In that
21629 case, before being able to use any of the fast or static tracepoints
21630 features, you need to let the loader run and load the shared
21631 libraries.  The simplest way to do that is to run the program to the
21632 main procedure.  E.g., if debugging a C or C@t{++} program, start
21633 @code{gdbserver} like so:
21634
21635 @smallexample
21636 $ gdbserver :9999 myprogram
21637 @end smallexample
21638
21639 Start GDB and connect to @code{gdbserver} like so, and run to main:
21640
21641 @smallexample
21642 $ gdb myprogram
21643 (@value{GDBP}) target remote myhost:9999
21644 0x00007f215893ba60 in ?? () from /lib64/ld-linux-x86-64.so.2
21645 (@value{GDBP}) b main
21646 (@value{GDBP}) continue
21647 @end smallexample
21648
21649 The in-process tracing agent library should now be loaded into the
21650 process; you can confirm it with the @code{info sharedlibrary}
21651 command, which will list @file{libinproctrace.so} as loaded in the
21652 process.  You are now ready to install fast tracepoints, list static
21653 tracepoint markers, probe static tracepoints markers, and start
21654 tracing.
21655
21656 @node Remote Configuration
21657 @section Remote Configuration
21658
21659 @kindex set remote
21660 @kindex show remote
21661 This section documents the configuration options available when
21662 debugging remote programs.  For the options related to the File I/O
21663 extensions of the remote protocol, see @ref{system,
21664 system-call-allowed}.
21665
21666 @table @code
21667 @item set remoteaddresssize @var{bits}
21668 @cindex address size for remote targets
21669 @cindex bits in remote address
21670 Set the maximum size of address in a memory packet to the specified
21671 number of bits.  @value{GDBN} will mask off the address bits above
21672 that number, when it passes addresses to the remote target.  The
21673 default value is the number of bits in the target's address.
21674
21675 @item show remoteaddresssize
21676 Show the current value of remote address size in bits.
21677
21678 @item set serial baud @var{n}
21679 @cindex baud rate for remote targets
21680 Set the baud rate for the remote serial I/O to @var{n} baud.  The
21681 value is used to set the speed of the serial port used for debugging
21682 remote targets.
21683
21684 @item show serial baud
21685 Show the current speed of the remote connection.
21686
21687 @item set serial parity @var{parity}
21688 Set the parity for the remote serial I/O.  Supported values of @var{parity} are:
21689 @code{even}, @code{none}, and @code{odd}.  The default is @code{none}.
21690
21691 @item show serial parity
21692 Show the current parity of the serial port.
21693
21694 @item set remotebreak
21695 @cindex interrupt remote programs
21696 @cindex BREAK signal instead of Ctrl-C
21697 @anchor{set remotebreak}
21698 If set to on, @value{GDBN} sends a @code{BREAK} signal to the remote
21699 when you type @kbd{Ctrl-c} to interrupt the program running
21700 on the remote.  If set to off, @value{GDBN} sends the @samp{Ctrl-C}
21701 character instead.  The default is off, since most remote systems
21702 expect to see @samp{Ctrl-C} as the interrupt signal.
21703
21704 @item show remotebreak
21705 Show whether @value{GDBN} sends @code{BREAK} or @samp{Ctrl-C} to
21706 interrupt the remote program.
21707
21708 @item set remoteflow on
21709 @itemx set remoteflow off
21710 @kindex set remoteflow
21711 Enable or disable hardware flow control (@code{RTS}/@code{CTS})
21712 on the serial port used to communicate to the remote target.
21713
21714 @item show remoteflow
21715 @kindex show remoteflow
21716 Show the current setting of hardware flow control.
21717
21718 @item set remotelogbase @var{base}
21719 Set the base (a.k.a.@: radix) of logging serial protocol
21720 communications to @var{base}.  Supported values of @var{base} are:
21721 @code{ascii}, @code{octal}, and @code{hex}.  The default is
21722 @code{ascii}.
21723
21724 @item show remotelogbase
21725 Show the current setting of the radix for logging remote serial
21726 protocol.
21727
21728 @item set remotelogfile @var{file}
21729 @cindex record serial communications on file
21730 Record remote serial communications on the named @var{file}.  The
21731 default is not to record at all.
21732
21733 @item show remotelogfile
21734 Show the current setting  of the file name on which to record the
21735 serial communications.
21736
21737 @item set remotetimeout @var{num}
21738 @cindex timeout for serial communications
21739 @cindex remote timeout
21740 Set the timeout limit to wait for the remote target to respond to
21741 @var{num} seconds.  The default is 2 seconds.
21742
21743 @item show remotetimeout
21744 Show the current number of seconds to wait for the remote target
21745 responses.
21746
21747 @cindex limit hardware breakpoints and watchpoints
21748 @cindex remote target, limit break- and watchpoints
21749 @anchor{set remote hardware-watchpoint-limit}
21750 @anchor{set remote hardware-breakpoint-limit}
21751 @item set remote hardware-watchpoint-limit @var{limit}
21752 @itemx set remote hardware-breakpoint-limit @var{limit}
21753 Restrict @value{GDBN} to using @var{limit} remote hardware watchpoints
21754 or breakpoints.  The @var{limit} can be set to 0 to disable hardware
21755 watchpoints or breakpoints, and @code{unlimited} for unlimited
21756 watchpoints or breakpoints.
21757
21758 @item show remote hardware-watchpoint-limit
21759 @itemx show remote hardware-breakpoint-limit
21760 Show the current limit for the number of hardware watchpoints or
21761 breakpoints that @value{GDBN} can use.
21762
21763 @cindex limit hardware watchpoints length
21764 @cindex remote target, limit watchpoints length
21765 @anchor{set remote hardware-watchpoint-length-limit}
21766 @item set remote hardware-watchpoint-length-limit @var{limit}
21767 Restrict @value{GDBN} to using @var{limit} bytes for the maximum
21768 length of a remote hardware watchpoint.  A @var{limit} of 0 disables
21769 hardware watchpoints and @code{unlimited} allows watchpoints of any
21770 length.
21771
21772 @item show remote hardware-watchpoint-length-limit
21773 Show the current limit (in bytes) of the maximum length of
21774 a remote hardware watchpoint.
21775
21776 @item set remote exec-file @var{filename}
21777 @itemx show remote exec-file
21778 @anchor{set remote exec-file}
21779 @cindex executable file, for remote target
21780 Select the file used for @code{run} with @code{target
21781 extended-remote}.  This should be set to a filename valid on the
21782 target system.  If it is not set, the target will use a default
21783 filename (e.g.@: the last program run).
21784
21785 @item set remote interrupt-sequence
21786 @cindex interrupt remote programs
21787 @cindex select Ctrl-C, BREAK or BREAK-g
21788 Allow the user to select one of @samp{Ctrl-C}, a @code{BREAK} or
21789 @samp{BREAK-g} as the
21790 sequence to the remote target in order to interrupt the execution.
21791 @samp{Ctrl-C} is a default.  Some system prefers @code{BREAK} which
21792 is high level of serial line for some certain time.
21793 Linux kernel prefers @samp{BREAK-g}, a.k.a Magic SysRq g.
21794 It is @code{BREAK} signal followed by character @code{g}.
21795
21796 @item show interrupt-sequence
21797 Show which of @samp{Ctrl-C}, @code{BREAK} or @code{BREAK-g}
21798 is sent by @value{GDBN} to interrupt the remote program.
21799 @code{BREAK-g} is BREAK signal followed by @code{g} and
21800 also known as Magic SysRq g.
21801
21802 @item set remote interrupt-on-connect
21803 @cindex send interrupt-sequence on start
21804 Specify whether interrupt-sequence is sent to remote target when
21805 @value{GDBN} connects to it.  This is mostly needed when you debug
21806 Linux kernel.  Linux kernel expects @code{BREAK} followed by @code{g}
21807 which is known as Magic SysRq g in order to connect @value{GDBN}.
21808
21809 @item show interrupt-on-connect
21810 Show whether interrupt-sequence is sent
21811 to remote target when @value{GDBN} connects to it.
21812
21813 @kindex set tcp
21814 @kindex show tcp
21815 @item set tcp auto-retry on
21816 @cindex auto-retry, for remote TCP target
21817 Enable auto-retry for remote TCP connections.  This is useful if the remote
21818 debugging agent is launched in parallel with @value{GDBN}; there is a race
21819 condition because the agent may not become ready to accept the connection
21820 before @value{GDBN} attempts to connect.  When auto-retry is
21821 enabled, if the initial attempt to connect fails, @value{GDBN} reattempts
21822 to establish the connection using the timeout specified by 
21823 @code{set tcp connect-timeout}.
21824
21825 @item set tcp auto-retry off
21826 Do not auto-retry failed TCP connections.
21827
21828 @item show tcp auto-retry
21829 Show the current auto-retry setting.
21830
21831 @item set tcp connect-timeout @var{seconds}
21832 @itemx set tcp connect-timeout unlimited
21833 @cindex connection timeout, for remote TCP target
21834 @cindex timeout, for remote target connection
21835 Set the timeout for establishing a TCP connection to the remote target to
21836 @var{seconds}.  The timeout affects both polling to retry failed connections 
21837 (enabled by @code{set tcp auto-retry on}) and waiting for connections
21838 that are merely slow to complete, and represents an approximate cumulative
21839 value.  If @var{seconds} is @code{unlimited}, there is no timeout and
21840 @value{GDBN} will keep attempting to establish a connection forever,
21841 unless interrupted with @kbd{Ctrl-c}.  The default is 15 seconds.
21842
21843 @item show tcp connect-timeout
21844 Show the current connection timeout setting.
21845 @end table
21846
21847 @cindex remote packets, enabling and disabling
21848 The @value{GDBN} remote protocol autodetects the packets supported by
21849 your debugging stub.  If you need to override the autodetection, you
21850 can use these commands to enable or disable individual packets.  Each
21851 packet can be set to @samp{on} (the remote target supports this
21852 packet), @samp{off} (the remote target does not support this packet),
21853 or @samp{auto} (detect remote target support for this packet).  They
21854 all default to @samp{auto}.  For more information about each packet,
21855 see @ref{Remote Protocol}.
21856
21857 During normal use, you should not have to use any of these commands.
21858 If you do, that may be a bug in your remote debugging stub, or a bug
21859 in @value{GDBN}.  You may want to report the problem to the
21860 @value{GDBN} developers.
21861
21862 For each packet @var{name}, the command to enable or disable the
21863 packet is @code{set remote @var{name}-packet}.  The available settings
21864 are:
21865
21866 @multitable @columnfractions 0.28 0.32 0.25
21867 @item Command Name
21868 @tab Remote Packet
21869 @tab Related Features
21870
21871 @item @code{fetch-register}
21872 @tab @code{p}
21873 @tab @code{info registers}
21874
21875 @item @code{set-register}
21876 @tab @code{P}
21877 @tab @code{set}
21878
21879 @item @code{binary-download}
21880 @tab @code{X}
21881 @tab @code{load}, @code{set}
21882
21883 @item @code{read-aux-vector}
21884 @tab @code{qXfer:auxv:read}
21885 @tab @code{info auxv}
21886
21887 @item @code{symbol-lookup}
21888 @tab @code{qSymbol}
21889 @tab Detecting multiple threads
21890
21891 @item @code{attach}
21892 @tab @code{vAttach}
21893 @tab @code{attach}
21894
21895 @item @code{verbose-resume}
21896 @tab @code{vCont}
21897 @tab Stepping or resuming multiple threads
21898
21899 @item @code{run}
21900 @tab @code{vRun}
21901 @tab @code{run}
21902
21903 @item @code{software-breakpoint}
21904 @tab @code{Z0}
21905 @tab @code{break}
21906
21907 @item @code{hardware-breakpoint}
21908 @tab @code{Z1}
21909 @tab @code{hbreak}
21910
21911 @item @code{write-watchpoint}
21912 @tab @code{Z2}
21913 @tab @code{watch}
21914
21915 @item @code{read-watchpoint}
21916 @tab @code{Z3}
21917 @tab @code{rwatch}
21918
21919 @item @code{access-watchpoint}
21920 @tab @code{Z4}
21921 @tab @code{awatch}
21922
21923 @item @code{pid-to-exec-file}
21924 @tab @code{qXfer:exec-file:read}
21925 @tab @code{attach}, @code{run}
21926
21927 @item @code{target-features}
21928 @tab @code{qXfer:features:read}
21929 @tab @code{set architecture}
21930
21931 @item @code{library-info}
21932 @tab @code{qXfer:libraries:read}
21933 @tab @code{info sharedlibrary}
21934
21935 @item @code{memory-map}
21936 @tab @code{qXfer:memory-map:read}
21937 @tab @code{info mem}
21938
21939 @item @code{read-sdata-object}
21940 @tab @code{qXfer:sdata:read}
21941 @tab @code{print $_sdata}
21942
21943 @item @code{read-spu-object}
21944 @tab @code{qXfer:spu:read}
21945 @tab @code{info spu}
21946
21947 @item @code{write-spu-object}
21948 @tab @code{qXfer:spu:write}
21949 @tab @code{info spu}
21950
21951 @item @code{read-siginfo-object}
21952 @tab @code{qXfer:siginfo:read}
21953 @tab @code{print $_siginfo}
21954
21955 @item @code{write-siginfo-object}
21956 @tab @code{qXfer:siginfo:write}
21957 @tab @code{set $_siginfo}
21958
21959 @item @code{threads}
21960 @tab @code{qXfer:threads:read}
21961 @tab @code{info threads}
21962
21963 @item @code{get-thread-local-@*storage-address}
21964 @tab @code{qGetTLSAddr}
21965 @tab Displaying @code{__thread} variables
21966
21967 @item @code{get-thread-information-block-address}
21968 @tab @code{qGetTIBAddr}
21969 @tab Display MS-Windows Thread Information Block.
21970
21971 @item @code{search-memory}
21972 @tab @code{qSearch:memory}
21973 @tab @code{find}
21974
21975 @item @code{supported-packets}
21976 @tab @code{qSupported}
21977 @tab Remote communications parameters
21978
21979 @item @code{catch-syscalls}
21980 @tab @code{QCatchSyscalls}
21981 @tab @code{catch syscall}
21982
21983 @item @code{pass-signals}
21984 @tab @code{QPassSignals}
21985 @tab @code{handle @var{signal}}
21986
21987 @item @code{program-signals}
21988 @tab @code{QProgramSignals}
21989 @tab @code{handle @var{signal}}
21990
21991 @item @code{hostio-close-packet}
21992 @tab @code{vFile:close}
21993 @tab @code{remote get}, @code{remote put}
21994
21995 @item @code{hostio-open-packet}
21996 @tab @code{vFile:open}
21997 @tab @code{remote get}, @code{remote put}
21998
21999 @item @code{hostio-pread-packet}
22000 @tab @code{vFile:pread}
22001 @tab @code{remote get}, @code{remote put}
22002
22003 @item @code{hostio-pwrite-packet}
22004 @tab @code{vFile:pwrite}
22005 @tab @code{remote get}, @code{remote put}
22006
22007 @item @code{hostio-unlink-packet}
22008 @tab @code{vFile:unlink}
22009 @tab @code{remote delete}
22010
22011 @item @code{hostio-readlink-packet}
22012 @tab @code{vFile:readlink}
22013 @tab Host I/O
22014
22015 @item @code{hostio-fstat-packet}
22016 @tab @code{vFile:fstat}
22017 @tab Host I/O
22018
22019 @item @code{hostio-setfs-packet}
22020 @tab @code{vFile:setfs}
22021 @tab Host I/O
22022
22023 @item @code{noack-packet}
22024 @tab @code{QStartNoAckMode}
22025 @tab Packet acknowledgment
22026
22027 @item @code{osdata}
22028 @tab @code{qXfer:osdata:read}
22029 @tab @code{info os}
22030
22031 @item @code{query-attached}
22032 @tab @code{qAttached}
22033 @tab Querying remote process attach state.
22034
22035 @item @code{trace-buffer-size}
22036 @tab @code{QTBuffer:size}
22037 @tab @code{set trace-buffer-size}
22038
22039 @item @code{trace-status}
22040 @tab @code{qTStatus}
22041 @tab @code{tstatus}
22042
22043 @item @code{traceframe-info}
22044 @tab @code{qXfer:traceframe-info:read}
22045 @tab Traceframe info
22046
22047 @item @code{install-in-trace}
22048 @tab @code{InstallInTrace}
22049 @tab Install tracepoint in tracing
22050
22051 @item @code{disable-randomization}
22052 @tab @code{QDisableRandomization}
22053 @tab @code{set disable-randomization}
22054
22055 @item @code{startup-with-shell}
22056 @tab @code{QStartupWithShell}
22057 @tab @code{set startup-with-shell}
22058
22059 @item @code{environment-hex-encoded}
22060 @tab @code{QEnvironmentHexEncoded}
22061 @tab @code{set environment}
22062
22063 @item @code{environment-unset}
22064 @tab @code{QEnvironmentUnset}
22065 @tab @code{unset environment}
22066
22067 @item @code{environment-reset}
22068 @tab @code{QEnvironmentReset}
22069 @tab @code{Reset the inferior environment (i.e., unset user-set variables)}
22070
22071 @item @code{set-working-dir}
22072 @tab @code{QSetWorkingDir}
22073 @tab @code{set cwd}
22074
22075 @item @code{conditional-breakpoints-packet}
22076 @tab @code{Z0 and Z1}
22077 @tab @code{Support for target-side breakpoint condition evaluation}
22078
22079 @item @code{multiprocess-extensions}
22080 @tab @code{multiprocess extensions}
22081 @tab Debug multiple processes and remote process PID awareness
22082
22083 @item @code{swbreak-feature}
22084 @tab @code{swbreak stop reason}
22085 @tab @code{break}
22086
22087 @item @code{hwbreak-feature}
22088 @tab @code{hwbreak stop reason}
22089 @tab @code{hbreak}
22090
22091 @item @code{fork-event-feature}
22092 @tab @code{fork stop reason}
22093 @tab @code{fork}
22094
22095 @item @code{vfork-event-feature}
22096 @tab @code{vfork stop reason}
22097 @tab @code{vfork}
22098
22099 @item @code{exec-event-feature}
22100 @tab @code{exec stop reason}
22101 @tab @code{exec}
22102
22103 @item @code{thread-events}
22104 @tab @code{QThreadEvents}
22105 @tab Tracking thread lifetime.
22106
22107 @item @code{no-resumed-stop-reply}
22108 @tab @code{no resumed thread left stop reply}
22109 @tab Tracking thread lifetime.
22110
22111 @end multitable
22112
22113 @node Remote Stub
22114 @section Implementing a Remote Stub
22115
22116 @cindex debugging stub, example
22117 @cindex remote stub, example
22118 @cindex stub example, remote debugging
22119 The stub files provided with @value{GDBN} implement the target side of the
22120 communication protocol, and the @value{GDBN} side is implemented in the
22121 @value{GDBN} source file @file{remote.c}.  Normally, you can simply allow
22122 these subroutines to communicate, and ignore the details.  (If you're
22123 implementing your own stub file, you can still ignore the details: start
22124 with one of the existing stub files.  @file{sparc-stub.c} is the best
22125 organized, and therefore the easiest to read.)
22126
22127 @cindex remote serial debugging, overview
22128 To debug a program running on another machine (the debugging
22129 @dfn{target} machine), you must first arrange for all the usual
22130 prerequisites for the program to run by itself.  For example, for a C
22131 program, you need:
22132
22133 @enumerate
22134 @item
22135 A startup routine to set up the C runtime environment; these usually
22136 have a name like @file{crt0}.  The startup routine may be supplied by
22137 your hardware supplier, or you may have to write your own.
22138
22139 @item
22140 A C subroutine library to support your program's
22141 subroutine calls, notably managing input and output.
22142
22143 @item
22144 A way of getting your program to the other machine---for example, a
22145 download program.  These are often supplied by the hardware
22146 manufacturer, but you may have to write your own from hardware
22147 documentation.
22148 @end enumerate
22149
22150 The next step is to arrange for your program to use a serial port to
22151 communicate with the machine where @value{GDBN} is running (the @dfn{host}
22152 machine).  In general terms, the scheme looks like this:
22153
22154 @table @emph
22155 @item On the host,
22156 @value{GDBN} already understands how to use this protocol; when everything
22157 else is set up, you can simply use the @samp{target remote} command
22158 (@pxref{Targets,,Specifying a Debugging Target}).
22159
22160 @item On the target,
22161 you must link with your program a few special-purpose subroutines that
22162 implement the @value{GDBN} remote serial protocol.  The file containing these
22163 subroutines is called  a @dfn{debugging stub}.
22164
22165 On certain remote targets, you can use an auxiliary program
22166 @code{gdbserver} instead of linking a stub into your program.
22167 @xref{Server,,Using the @code{gdbserver} Program}, for details.
22168 @end table
22169
22170 The debugging stub is specific to the architecture of the remote
22171 machine; for example, use @file{sparc-stub.c} to debug programs on
22172 @sc{sparc} boards.
22173
22174 @cindex remote serial stub list
22175 These working remote stubs are distributed with @value{GDBN}:
22176
22177 @table @code
22178
22179 @item i386-stub.c
22180 @cindex @file{i386-stub.c}
22181 @cindex Intel
22182 @cindex i386
22183 For Intel 386 and compatible architectures.
22184
22185 @item m68k-stub.c
22186 @cindex @file{m68k-stub.c}
22187 @cindex Motorola 680x0
22188 @cindex m680x0
22189 For Motorola 680x0 architectures.
22190
22191 @item sh-stub.c
22192 @cindex @file{sh-stub.c}
22193 @cindex Renesas
22194 @cindex SH
22195 For Renesas SH architectures.
22196
22197 @item sparc-stub.c
22198 @cindex @file{sparc-stub.c}
22199 @cindex Sparc
22200 For @sc{sparc} architectures.
22201
22202 @item sparcl-stub.c
22203 @cindex @file{sparcl-stub.c}
22204 @cindex Fujitsu
22205 @cindex SparcLite
22206 For Fujitsu @sc{sparclite} architectures.
22207
22208 @end table
22209
22210 The @file{README} file in the @value{GDBN} distribution may list other
22211 recently added stubs.
22212
22213 @menu
22214 * Stub Contents::       What the stub can do for you
22215 * Bootstrapping::       What you must do for the stub
22216 * Debug Session::       Putting it all together
22217 @end menu
22218
22219 @node Stub Contents
22220 @subsection What the Stub Can Do for You
22221
22222 @cindex remote serial stub
22223 The debugging stub for your architecture supplies these three
22224 subroutines:
22225
22226 @table @code
22227 @item set_debug_traps
22228 @findex set_debug_traps
22229 @cindex remote serial stub, initialization
22230 This routine arranges for @code{handle_exception} to run when your
22231 program stops.  You must call this subroutine explicitly in your
22232 program's startup code.
22233
22234 @item handle_exception
22235 @findex handle_exception
22236 @cindex remote serial stub, main routine
22237 This is the central workhorse, but your program never calls it
22238 explicitly---the setup code arranges for @code{handle_exception} to
22239 run when a trap is triggered.
22240
22241 @code{handle_exception} takes control when your program stops during
22242 execution (for example, on a breakpoint), and mediates communications
22243 with @value{GDBN} on the host machine.  This is where the communications
22244 protocol is implemented; @code{handle_exception} acts as the @value{GDBN}
22245 representative on the target machine.  It begins by sending summary
22246 information on the state of your program, then continues to execute,
22247 retrieving and transmitting any information @value{GDBN} needs, until you
22248 execute a @value{GDBN} command that makes your program resume; at that point,
22249 @code{handle_exception} returns control to your own code on the target
22250 machine.
22251
22252 @item breakpoint
22253 @cindex @code{breakpoint} subroutine, remote
22254 Use this auxiliary subroutine to make your program contain a
22255 breakpoint.  Depending on the particular situation, this may be the only
22256 way for @value{GDBN} to get control.  For instance, if your target
22257 machine has some sort of interrupt button, you won't need to call this;
22258 pressing the interrupt button transfers control to
22259 @code{handle_exception}---in effect, to @value{GDBN}.  On some machines,
22260 simply receiving characters on the serial port may also trigger a trap;
22261 again, in that situation, you don't need to call @code{breakpoint} from
22262 your own program---simply running @samp{target remote} from the host
22263 @value{GDBN} session gets control.
22264
22265 Call @code{breakpoint} if none of these is true, or if you simply want
22266 to make certain your program stops at a predetermined point for the
22267 start of your debugging session.
22268 @end table
22269
22270 @node Bootstrapping
22271 @subsection What You Must Do for the Stub
22272
22273 @cindex remote stub, support routines
22274 The debugging stubs that come with @value{GDBN} are set up for a particular
22275 chip architecture, but they have no information about the rest of your
22276 debugging target machine.
22277
22278 First of all you need to tell the stub how to communicate with the
22279 serial port.
22280
22281 @table @code
22282 @item int getDebugChar()
22283 @findex getDebugChar
22284 Write this subroutine to read a single character from the serial port.
22285 It may be identical to @code{getchar} for your target system; a
22286 different name is used to allow you to distinguish the two if you wish.
22287
22288 @item void putDebugChar(int)
22289 @findex putDebugChar
22290 Write this subroutine to write a single character to the serial port.
22291 It may be identical to @code{putchar} for your target system; a
22292 different name is used to allow you to distinguish the two if you wish.
22293 @end table
22294
22295 @cindex control C, and remote debugging
22296 @cindex interrupting remote targets
22297 If you want @value{GDBN} to be able to stop your program while it is
22298 running, you need to use an interrupt-driven serial driver, and arrange
22299 for it to stop when it receives a @code{^C} (@samp{\003}, the control-C
22300 character).  That is the character which @value{GDBN} uses to tell the
22301 remote system to stop.
22302
22303 Getting the debugging target to return the proper status to @value{GDBN}
22304 probably requires changes to the standard stub; one quick and dirty way
22305 is to just execute a breakpoint instruction (the ``dirty'' part is that
22306 @value{GDBN} reports a @code{SIGTRAP} instead of a @code{SIGINT}).
22307
22308 Other routines you need to supply are:
22309
22310 @table @code
22311 @item void exceptionHandler (int @var{exception_number}, void *@var{exception_address})
22312 @findex exceptionHandler
22313 Write this function to install @var{exception_address} in the exception
22314 handling tables.  You need to do this because the stub does not have any
22315 way of knowing what the exception handling tables on your target system
22316 are like (for example, the processor's table might be in @sc{rom},
22317 containing entries which point to a table in @sc{ram}).
22318 The @var{exception_number} specifies the exception which should be changed;
22319 its meaning is architecture-dependent (for example, different numbers
22320 might represent divide by zero, misaligned access, etc).  When this
22321 exception occurs, control should be transferred directly to
22322 @var{exception_address}, and the processor state (stack, registers,
22323 and so on) should be just as it is when a processor exception occurs.  So if
22324 you want to use a jump instruction to reach @var{exception_address}, it
22325 should be a simple jump, not a jump to subroutine.
22326
22327 For the 386, @var{exception_address} should be installed as an interrupt
22328 gate so that interrupts are masked while the handler runs.  The gate
22329 should be at privilege level 0 (the most privileged level).  The
22330 @sc{sparc} and 68k stubs are able to mask interrupts themselves without
22331 help from @code{exceptionHandler}.
22332
22333 @item void flush_i_cache()
22334 @findex flush_i_cache
22335 On @sc{sparc} and @sc{sparclite} only, write this subroutine to flush the
22336 instruction cache, if any, on your target machine.  If there is no
22337 instruction cache, this subroutine may be a no-op.
22338
22339 On target machines that have instruction caches, @value{GDBN} requires this
22340 function to make certain that the state of your program is stable.
22341 @end table
22342
22343 @noindent
22344 You must also make sure this library routine is available:
22345
22346 @table @code
22347 @item void *memset(void *, int, int)
22348 @findex memset
22349 This is the standard library function @code{memset} that sets an area of
22350 memory to a known value.  If you have one of the free versions of
22351 @code{libc.a}, @code{memset} can be found there; otherwise, you must
22352 either obtain it from your hardware manufacturer, or write your own.
22353 @end table
22354
22355 If you do not use the GNU C compiler, you may need other standard
22356 library subroutines as well; this varies from one stub to another,
22357 but in general the stubs are likely to use any of the common library
22358 subroutines which @code{@value{NGCC}} generates as inline code.
22359
22360
22361 @node Debug Session
22362 @subsection Putting it All Together
22363
22364 @cindex remote serial debugging summary
22365 In summary, when your program is ready to debug, you must follow these
22366 steps.
22367
22368 @enumerate
22369 @item
22370 Make sure you have defined the supporting low-level routines
22371 (@pxref{Bootstrapping,,What You Must Do for the Stub}):
22372 @display
22373 @code{getDebugChar}, @code{putDebugChar},
22374 @code{flush_i_cache}, @code{memset}, @code{exceptionHandler}.
22375 @end display
22376
22377 @item
22378 Insert these lines in your program's startup code, before the main
22379 procedure is called:
22380
22381 @smallexample
22382 set_debug_traps();
22383 breakpoint();
22384 @end smallexample
22385
22386 On some machines, when a breakpoint trap is raised, the hardware
22387 automatically makes the PC point to the instruction after the
22388 breakpoint.  If your machine doesn't do that, you may need to adjust
22389 @code{handle_exception} to arrange for it to return to the instruction
22390 after the breakpoint on this first invocation, so that your program
22391 doesn't keep hitting the initial breakpoint instead of making
22392 progress.
22393
22394 @item
22395 For the 680x0 stub only, you need to provide a variable called
22396 @code{exceptionHook}.  Normally you just use:
22397
22398 @smallexample
22399 void (*exceptionHook)() = 0;
22400 @end smallexample
22401
22402 @noindent
22403 but if before calling @code{set_debug_traps}, you set it to point to a
22404 function in your program, that function is called when
22405 @code{@value{GDBN}} continues after stopping on a trap (for example, bus
22406 error).  The function indicated by @code{exceptionHook} is called with
22407 one parameter: an @code{int} which is the exception number.
22408
22409 @item
22410 Compile and link together: your program, the @value{GDBN} debugging stub for
22411 your target architecture, and the supporting subroutines.
22412
22413 @item
22414 Make sure you have a serial connection between your target machine and
22415 the @value{GDBN} host, and identify the serial port on the host.
22416
22417 @item
22418 @c The "remote" target now provides a `load' command, so we should
22419 @c document that.  FIXME.
22420 Download your program to your target machine (or get it there by
22421 whatever means the manufacturer provides), and start it.
22422
22423 @item
22424 Start @value{GDBN} on the host, and connect to the target
22425 (@pxref{Connecting,,Connecting to a Remote Target}).
22426
22427 @end enumerate
22428
22429 @node Configurations
22430 @chapter Configuration-Specific Information
22431
22432 While nearly all @value{GDBN} commands are available for all native and
22433 cross versions of the debugger, there are some exceptions.  This chapter
22434 describes things that are only available in certain configurations.
22435
22436 There are three major categories of configurations: native
22437 configurations, where the host and target are the same, embedded
22438 operating system configurations, which are usually the same for several
22439 different processor architectures, and bare embedded processors, which
22440 are quite different from each other.
22441
22442 @menu
22443 * Native::
22444 * Embedded OS::
22445 * Embedded Processors::
22446 * Architectures::
22447 @end menu
22448
22449 @node Native
22450 @section Native
22451
22452 This section describes details specific to particular native
22453 configurations.
22454
22455 @menu
22456 * BSD libkvm Interface::        Debugging BSD kernel memory images
22457 * Process Information::         Process information
22458 * DJGPP Native::                Features specific to the DJGPP port
22459 * Cygwin Native::               Features specific to the Cygwin port
22460 * Hurd Native::                 Features specific to @sc{gnu} Hurd
22461 * Darwin::                      Features specific to Darwin
22462 * FreeBSD::                     Features specific to FreeBSD
22463 @end menu
22464
22465 @node BSD libkvm Interface
22466 @subsection BSD libkvm Interface
22467
22468 @cindex libkvm
22469 @cindex kernel memory image
22470 @cindex kernel crash dump
22471
22472 BSD-derived systems (FreeBSD/NetBSD/OpenBSD) have a kernel memory
22473 interface that provides a uniform interface for accessing kernel virtual
22474 memory images, including live systems and crash dumps.  @value{GDBN}
22475 uses this interface to allow you to debug live kernels and kernel crash
22476 dumps on many native BSD configurations.  This is implemented as a
22477 special @code{kvm} debugging target.  For debugging a live system, load
22478 the currently running kernel into @value{GDBN} and connect to the
22479 @code{kvm} target:
22480
22481 @smallexample
22482 (@value{GDBP}) @b{target kvm}
22483 @end smallexample
22484
22485 For debugging crash dumps, provide the file name of the crash dump as an
22486 argument:
22487
22488 @smallexample
22489 (@value{GDBP}) @b{target kvm /var/crash/bsd.0}
22490 @end smallexample
22491
22492 Once connected to the @code{kvm} target, the following commands are
22493 available:
22494
22495 @table @code
22496 @kindex kvm
22497 @item kvm pcb
22498 Set current context from the @dfn{Process Control Block} (PCB) address.
22499
22500 @item kvm proc
22501 Set current context from proc address.  This command isn't available on
22502 modern FreeBSD systems.
22503 @end table
22504
22505 @node Process Information
22506 @subsection Process Information
22507 @cindex /proc
22508 @cindex examine process image
22509 @cindex process info via @file{/proc}
22510
22511 Some operating systems provide interfaces to fetch additional
22512 information about running processes beyond memory and per-thread
22513 register state.  If @value{GDBN} is configured for an operating system
22514 with a supported interface, the command @code{info proc} is available
22515 to report information about the process running your program, or about
22516 any process running on your system.
22517
22518 One supported interface is a facility called @samp{/proc} that can be
22519 used to examine the image of a running process using file-system
22520 subroutines.  This facility is supported on @sc{gnu}/Linux and Solaris
22521 systems.
22522
22523 On FreeBSD systems, system control nodes are used to query process
22524 information.
22525
22526 In addition, some systems may provide additional process information
22527 in core files.  Note that a core file may include a subset of the
22528 information available from a live process.  Process information is
22529 currently avaiable from cores created on @sc{gnu}/Linux and FreeBSD
22530 systems.
22531
22532 @table @code
22533 @kindex info proc
22534 @cindex process ID
22535 @item info proc
22536 @itemx info proc @var{process-id}
22537 Summarize available information about a process.  If a
22538 process ID is specified by @var{process-id}, display information about
22539 that process; otherwise display information about the program being
22540 debugged.  The summary includes the debugged process ID, the command
22541 line used to invoke it, its current working directory, and its
22542 executable file's absolute file name.
22543
22544 On some systems, @var{process-id} can be of the form
22545 @samp{[@var{pid}]/@var{tid}} which specifies a certain thread ID
22546 within a process.  If the optional @var{pid} part is missing, it means
22547 a thread from the process being debugged (the leading @samp{/} still
22548 needs to be present, or else @value{GDBN} will interpret the number as
22549 a process ID rather than a thread ID).
22550
22551 @item info proc cmdline
22552 @cindex info proc cmdline
22553 Show the original command line of the process.  This command is
22554 supported on @sc{gnu}/Linux and FreeBSD.
22555
22556 @item info proc cwd
22557 @cindex info proc cwd
22558 Show the current working directory of the process.  This command is
22559 supported on @sc{gnu}/Linux and FreeBSD.
22560
22561 @item info proc exe
22562 @cindex info proc exe
22563 Show the name of executable of the process.  This command is supported
22564 on @sc{gnu}/Linux and FreeBSD.
22565
22566 @item info proc files
22567 @cindex info proc files
22568 Show the file descriptors open by the process.  For each open file
22569 descriptor, @value{GDBN} shows its number, type (file, directory,
22570 character device, socket), file pointer offset, and the name of the
22571 resource open on the descriptor.  The resource name can be a file name
22572 (for files, directories, and devices) or a protocol followed by socket
22573 address (for network connections).  This command is supported on
22574 FreeBSD.
22575
22576 This example shows the open file descriptors for a process using a
22577 tty for standard input and output as well as two network sockets:
22578
22579 @smallexample
22580 (gdb) info proc files 22136
22581 process 22136
22582 Open files:
22583
22584       FD   Type     Offset   Flags   Name
22585     text   file          - r-------- /usr/bin/ssh
22586     ctty    chr          - rw------- /dev/pts/20
22587      cwd    dir          - r-------- /usr/home/john
22588     root    dir          - r-------- /
22589        0    chr  0x32933a4 rw------- /dev/pts/20
22590        1    chr  0x32933a4 rw------- /dev/pts/20
22591        2    chr  0x32933a4 rw------- /dev/pts/20
22592        3 socket        0x0 rw----n-- tcp4 10.0.1.2:53014 -> 10.0.1.10:22
22593        4 socket        0x0 rw------- unix stream:/tmp/ssh-FIt89oAzOn5f/agent.2456
22594 @end smallexample
22595
22596 @item info proc mappings
22597 @cindex memory address space mappings
22598 Report the memory address space ranges accessible in a process.  On
22599 Solaris and FreeBSD systems, each memory range includes information on
22600 whether the process has read, write, or execute access rights to each
22601 range.  On @sc{gnu}/Linux and FreeBSD systems, each memory range
22602 includes the object file which is mapped to that range.
22603
22604 @item info proc stat
22605 @itemx info proc status
22606 @cindex process detailed status information
22607 Show additional process-related information, including the user ID and
22608 group ID; virtual memory usage; the signals that are pending, blocked,
22609 and ignored; its TTY; its consumption of system and user time; its
22610 stack size; its @samp{nice} value; etc.  These commands are supported
22611 on @sc{gnu}/Linux and FreeBSD.
22612
22613 For @sc{gnu}/Linux systems, see the @samp{proc} man page for more
22614 information (type @kbd{man 5 proc} from your shell prompt).
22615
22616 For FreeBSD systems, @code{info proc stat} is an alias for @code{info
22617 proc status}.
22618
22619 @item info proc all
22620 Show all the information about the process described under all of the
22621 above @code{info proc} subcommands.
22622
22623 @ignore
22624 @comment These sub-options of 'info proc' were not included when
22625 @comment procfs.c was re-written.  Keep their descriptions around
22626 @comment against the day when someone finds the time to put them back in.
22627 @kindex info proc times
22628 @item info proc times
22629 Starting time, user CPU time, and system CPU time for your program and
22630 its children.
22631
22632 @kindex info proc id
22633 @item info proc id
22634 Report on the process IDs related to your program: its own process ID,
22635 the ID of its parent, the process group ID, and the session ID.
22636 @end ignore
22637
22638 @item set procfs-trace
22639 @kindex set procfs-trace
22640 @cindex @code{procfs} API calls
22641 This command enables and disables tracing of @code{procfs} API calls.
22642
22643 @item show procfs-trace
22644 @kindex show procfs-trace
22645 Show the current state of @code{procfs} API call tracing.
22646
22647 @item set procfs-file @var{file}
22648 @kindex set procfs-file
22649 Tell @value{GDBN} to write @code{procfs} API trace to the named
22650 @var{file}.  @value{GDBN} appends the trace info to the previous
22651 contents of the file.  The default is to display the trace on the
22652 standard output.
22653
22654 @item show procfs-file
22655 @kindex show procfs-file
22656 Show the file to which @code{procfs} API trace is written.
22657
22658 @item proc-trace-entry
22659 @itemx proc-trace-exit
22660 @itemx proc-untrace-entry
22661 @itemx proc-untrace-exit
22662 @kindex proc-trace-entry
22663 @kindex proc-trace-exit
22664 @kindex proc-untrace-entry
22665 @kindex proc-untrace-exit
22666 These commands enable and disable tracing of entries into and exits
22667 from the @code{syscall} interface.
22668
22669 @item info pidlist
22670 @kindex info pidlist
22671 @cindex process list, QNX Neutrino
22672 For QNX Neutrino only, this command displays the list of all the
22673 processes and all the threads within each process.
22674
22675 @item info meminfo
22676 @kindex info meminfo
22677 @cindex mapinfo list, QNX Neutrino
22678 For QNX Neutrino only, this command displays the list of all mapinfos.
22679 @end table
22680
22681 @node DJGPP Native
22682 @subsection Features for Debugging @sc{djgpp} Programs
22683 @cindex @sc{djgpp} debugging
22684 @cindex native @sc{djgpp} debugging
22685 @cindex MS-DOS-specific commands
22686
22687 @cindex DPMI
22688 @sc{djgpp} is a port of the @sc{gnu} development tools to MS-DOS and
22689 MS-Windows.  @sc{djgpp} programs are 32-bit protected-mode programs
22690 that use the @dfn{DPMI} (DOS Protected-Mode Interface) API to run on
22691 top of real-mode DOS systems and their emulations.
22692
22693 @value{GDBN} supports native debugging of @sc{djgpp} programs, and
22694 defines a few commands specific to the @sc{djgpp} port.  This
22695 subsection describes those commands.
22696
22697 @table @code
22698 @kindex info dos
22699 @item info dos
22700 This is a prefix of @sc{djgpp}-specific commands which print
22701 information about the target system and important OS structures.
22702
22703 @kindex sysinfo
22704 @cindex MS-DOS system info
22705 @cindex free memory information (MS-DOS)
22706 @item info dos sysinfo
22707 This command displays assorted information about the underlying
22708 platform: the CPU type and features, the OS version and flavor, the
22709 DPMI version, and the available conventional and DPMI memory.
22710
22711 @cindex GDT
22712 @cindex LDT
22713 @cindex IDT
22714 @cindex segment descriptor tables
22715 @cindex descriptor tables display
22716 @item info dos gdt
22717 @itemx info dos ldt
22718 @itemx info dos idt
22719 These 3 commands display entries from, respectively, Global, Local,
22720 and Interrupt Descriptor Tables (GDT, LDT, and IDT).  The descriptor
22721 tables are data structures which store a descriptor for each segment
22722 that is currently in use.  The segment's selector is an index into a
22723 descriptor table; the table entry for that index holds the
22724 descriptor's base address and limit, and its attributes and access
22725 rights.
22726
22727 A typical @sc{djgpp} program uses 3 segments: a code segment, a data
22728 segment (used for both data and the stack), and a DOS segment (which
22729 allows access to DOS/BIOS data structures and absolute addresses in
22730 conventional memory).  However, the DPMI host will usually define
22731 additional segments in order to support the DPMI environment.
22732
22733 @cindex garbled pointers
22734 These commands allow to display entries from the descriptor tables.
22735 Without an argument, all entries from the specified table are
22736 displayed.  An argument, which should be an integer expression, means
22737 display a single entry whose index is given by the argument.  For
22738 example, here's a convenient way to display information about the
22739 debugged program's data segment:
22740
22741 @smallexample
22742 @exdent @code{(@value{GDBP}) info dos ldt $ds}
22743 @exdent @code{0x13f: base=0x11970000 limit=0x0009ffff 32-Bit Data (Read/Write, Exp-up)}
22744 @end smallexample
22745
22746 @noindent
22747 This comes in handy when you want to see whether a pointer is outside
22748 the data segment's limit (i.e.@: @dfn{garbled}).
22749
22750 @cindex page tables display (MS-DOS)
22751 @item info dos pde
22752 @itemx info dos pte
22753 These two commands display entries from, respectively, the Page
22754 Directory and the Page Tables.  Page Directories and Page Tables are
22755 data structures which control how virtual memory addresses are mapped
22756 into physical addresses.  A Page Table includes an entry for every
22757 page of memory that is mapped into the program's address space; there
22758 may be several Page Tables, each one holding up to 4096 entries.  A
22759 Page Directory has up to 4096 entries, one each for every Page Table
22760 that is currently in use.
22761
22762 Without an argument, @kbd{info dos pde} displays the entire Page
22763 Directory, and @kbd{info dos pte} displays all the entries in all of
22764 the Page Tables.  An argument, an integer expression, given to the
22765 @kbd{info dos pde} command means display only that entry from the Page
22766 Directory table.  An argument given to the @kbd{info dos pte} command
22767 means display entries from a single Page Table, the one pointed to by
22768 the specified entry in the Page Directory.
22769
22770 @cindex direct memory access (DMA) on MS-DOS
22771 These commands are useful when your program uses @dfn{DMA} (Direct
22772 Memory Access), which needs physical addresses to program the DMA
22773 controller.
22774
22775 These commands are supported only with some DPMI servers.
22776
22777 @cindex physical address from linear address
22778 @item info dos address-pte @var{addr}
22779 This command displays the Page Table entry for a specified linear
22780 address.  The argument @var{addr} is a linear address which should
22781 already have the appropriate segment's base address added to it,
22782 because this command accepts addresses which may belong to @emph{any}
22783 segment.  For example, here's how to display the Page Table entry for
22784 the page where a variable @code{i} is stored:
22785
22786 @smallexample
22787 @exdent @code{(@value{GDBP}) info dos address-pte __djgpp_base_address + (char *)&i}
22788 @exdent @code{Page Table entry for address 0x11a00d30:}
22789 @exdent @code{Base=0x02698000 Dirty Acc. Not-Cached Write-Back Usr Read-Write +0xd30}
22790 @end smallexample
22791
22792 @noindent
22793 This says that @code{i} is stored at offset @code{0xd30} from the page
22794 whose physical base address is @code{0x02698000}, and shows all the
22795 attributes of that page.
22796
22797 Note that you must cast the addresses of variables to a @code{char *},
22798 since otherwise the value of @code{__djgpp_base_address}, the base
22799 address of all variables and functions in a @sc{djgpp} program, will
22800 be added using the rules of C pointer arithmetics: if @code{i} is
22801 declared an @code{int}, @value{GDBN} will add 4 times the value of
22802 @code{__djgpp_base_address} to the address of @code{i}.
22803
22804 Here's another example, it displays the Page Table entry for the
22805 transfer buffer:
22806
22807 @smallexample
22808 @exdent @code{(@value{GDBP}) info dos address-pte *((unsigned *)&_go32_info_block + 3)}
22809 @exdent @code{Page Table entry for address 0x29110:}
22810 @exdent @code{Base=0x00029000 Dirty Acc. Not-Cached Write-Back Usr Read-Write +0x110}
22811 @end smallexample
22812
22813 @noindent
22814 (The @code{+ 3} offset is because the transfer buffer's address is the
22815 3rd member of the @code{_go32_info_block} structure.)  The output
22816 clearly shows that this DPMI server maps the addresses in conventional
22817 memory 1:1, i.e.@: the physical (@code{0x00029000} + @code{0x110}) and
22818 linear (@code{0x29110}) addresses are identical.
22819
22820 This command is supported only with some DPMI servers.
22821 @end table
22822
22823 @cindex DOS serial data link, remote debugging
22824 In addition to native debugging, the DJGPP port supports remote
22825 debugging via a serial data link.  The following commands are specific
22826 to remote serial debugging in the DJGPP port of @value{GDBN}.
22827
22828 @table @code
22829 @kindex set com1base
22830 @kindex set com1irq
22831 @kindex set com2base
22832 @kindex set com2irq
22833 @kindex set com3base
22834 @kindex set com3irq
22835 @kindex set com4base
22836 @kindex set com4irq
22837 @item set com1base @var{addr}
22838 This command sets the base I/O port address of the @file{COM1} serial
22839 port.
22840
22841 @item set com1irq @var{irq}
22842 This command sets the @dfn{Interrupt Request} (@code{IRQ}) line to use
22843 for the @file{COM1} serial port.
22844
22845 There are similar commands @samp{set com2base}, @samp{set com3irq},
22846 etc.@: for setting the port address and the @code{IRQ} lines for the
22847 other 3 COM ports.
22848
22849 @kindex show com1base
22850 @kindex show com1irq
22851 @kindex show com2base
22852 @kindex show com2irq
22853 @kindex show com3base
22854 @kindex show com3irq
22855 @kindex show com4base
22856 @kindex show com4irq
22857 The related commands @samp{show com1base}, @samp{show com1irq} etc.@:
22858 display the current settings of the base address and the @code{IRQ}
22859 lines used by the COM ports.
22860
22861 @item info serial
22862 @kindex info serial
22863 @cindex DOS serial port status
22864 This command prints the status of the 4 DOS serial ports.  For each
22865 port, it prints whether it's active or not, its I/O base address and
22866 IRQ number, whether it uses a 16550-style FIFO, its baudrate, and the
22867 counts of various errors encountered so far.
22868 @end table
22869
22870
22871 @node Cygwin Native
22872 @subsection Features for Debugging MS Windows PE Executables
22873 @cindex MS Windows debugging
22874 @cindex native Cygwin debugging
22875 @cindex Cygwin-specific commands
22876
22877 @value{GDBN} supports native debugging of MS Windows programs, including
22878 DLLs with and without symbolic debugging information.
22879
22880 @cindex Ctrl-BREAK, MS-Windows
22881 @cindex interrupt debuggee on MS-Windows
22882 MS-Windows programs that call @code{SetConsoleMode} to switch off the
22883 special meaning of the @samp{Ctrl-C} keystroke cannot be interrupted
22884 by typing @kbd{C-c}.  For this reason, @value{GDBN} on MS-Windows
22885 supports @kbd{C-@key{BREAK}} as an alternative interrupt key
22886 sequence, which can be used to interrupt the debuggee even if it
22887 ignores @kbd{C-c}.
22888
22889 There are various additional Cygwin-specific commands, described in
22890 this section.  Working with DLLs that have no debugging symbols is
22891 described in @ref{Non-debug DLL Symbols}.
22892
22893 @table @code
22894 @kindex info w32
22895 @item info w32
22896 This is a prefix of MS Windows-specific commands which print
22897 information about the target system and important OS structures.
22898
22899 @item info w32 selector
22900 This command displays information returned by
22901 the Win32 API @code{GetThreadSelectorEntry} function.
22902 It takes an optional argument that is evaluated to
22903 a long value to give the information about this given selector.
22904 Without argument, this command displays information
22905 about the six segment registers.
22906
22907 @item info w32 thread-information-block
22908 This command displays thread specific information stored in the
22909 Thread Information Block (readable on the X86 CPU family using @code{$fs}
22910 selector for 32-bit programs and @code{$gs} for 64-bit programs).
22911
22912 @kindex signal-event
22913 @item signal-event @var{id}
22914 This command signals an event with user-provided @var{id}.  Used to resume
22915 crashing process when attached to it using MS-Windows JIT debugging (AeDebug).
22916
22917 To use it, create or edit the following keys in
22918 @code{HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\AeDebug} and/or
22919 @code{HKLM\SOFTWARE\Wow6432Node\Microsoft\Windows NT\CurrentVersion\AeDebug}
22920 (for x86_64 versions):
22921
22922 @itemize @minus
22923 @item
22924 @code{Debugger} (REG_SZ) --- a command to launch the debugger.
22925 Suggested command is: @code{@var{fully-qualified-path-to-gdb.exe} -ex
22926 "attach %ld" -ex "signal-event %ld" -ex "continue"}.
22927
22928 The first @code{%ld} will be replaced by the process ID of the
22929 crashing process, the second @code{%ld} will be replaced by the ID of
22930 the event that blocks the crashing process, waiting for @value{GDBN}
22931 to attach.
22932
22933 @item
22934 @code{Auto} (REG_SZ) --- either @code{1} or @code{0}.  @code{1} will
22935 make the system run debugger specified by the Debugger key
22936 automatically, @code{0} will cause a dialog box with ``OK'' and
22937 ``Cancel'' buttons to appear, which allows the user to either
22938 terminate the crashing process (OK) or debug it (Cancel).
22939 @end itemize
22940
22941 @kindex set cygwin-exceptions
22942 @cindex debugging the Cygwin DLL
22943 @cindex Cygwin DLL, debugging
22944 @item set cygwin-exceptions @var{mode}
22945 If @var{mode} is @code{on}, @value{GDBN} will break on exceptions that
22946 happen inside the Cygwin DLL.  If @var{mode} is @code{off},
22947 @value{GDBN} will delay recognition of exceptions, and may ignore some
22948 exceptions which seem to be caused by internal Cygwin DLL
22949 ``bookkeeping''.  This option is meant primarily for debugging the
22950 Cygwin DLL itself; the default value is @code{off} to avoid annoying
22951 @value{GDBN} users with false @code{SIGSEGV} signals.
22952
22953 @kindex show cygwin-exceptions
22954 @item show cygwin-exceptions
22955 Displays whether @value{GDBN} will break on exceptions that happen
22956 inside the Cygwin DLL itself.
22957
22958 @kindex set new-console
22959 @item set new-console @var{mode}
22960 If @var{mode} is @code{on} the debuggee will
22961 be started in a new console on next start.
22962 If @var{mode} is @code{off}, the debuggee will
22963 be started in the same console as the debugger.
22964
22965 @kindex show new-console
22966 @item show new-console
22967 Displays whether a new console is used
22968 when the debuggee is started.
22969
22970 @kindex set new-group
22971 @item set new-group @var{mode}
22972 This boolean value controls whether the debuggee should
22973 start a new group or stay in the same group as the debugger.
22974 This affects the way the Windows OS handles
22975 @samp{Ctrl-C}.
22976
22977 @kindex show new-group
22978 @item show new-group
22979 Displays current value of new-group boolean.
22980
22981 @kindex set debugevents
22982 @item set debugevents
22983 This boolean value adds debug output concerning kernel events related
22984 to the debuggee seen by the debugger.  This includes events that
22985 signal thread and process creation and exit, DLL loading and
22986 unloading, console interrupts, and debugging messages produced by the
22987 Windows @code{OutputDebugString} API call.
22988
22989 @kindex set debugexec
22990 @item set debugexec
22991 This boolean value adds debug output concerning execute events
22992 (such as resume thread) seen by the debugger.
22993
22994 @kindex set debugexceptions
22995 @item set debugexceptions
22996 This boolean value adds debug output concerning exceptions in the
22997 debuggee seen by the debugger.
22998
22999 @kindex set debugmemory
23000 @item set debugmemory
23001 This boolean value adds debug output concerning debuggee memory reads
23002 and writes by the debugger.
23003
23004 @kindex set shell
23005 @item set shell
23006 This boolean values specifies whether the debuggee is called
23007 via a shell or directly (default value is on).
23008
23009 @kindex show shell
23010 @item show shell
23011 Displays if the debuggee will be started with a shell.
23012
23013 @end table
23014
23015 @menu
23016 * Non-debug DLL Symbols::  Support for DLLs without debugging symbols
23017 @end menu
23018
23019 @node Non-debug DLL Symbols
23020 @subsubsection Support for DLLs without Debugging Symbols
23021 @cindex DLLs with no debugging symbols
23022 @cindex Minimal symbols and DLLs
23023
23024 Very often on windows, some of the DLLs that your program relies on do
23025 not include symbolic debugging information (for example,
23026 @file{kernel32.dll}).  When @value{GDBN} doesn't recognize any debugging
23027 symbols in a DLL, it relies on the minimal amount of symbolic
23028 information contained in the DLL's export table.  This section
23029 describes working with such symbols, known internally to @value{GDBN} as
23030 ``minimal symbols''.
23031
23032 Note that before the debugged program has started execution, no DLLs
23033 will have been loaded.  The easiest way around this problem is simply to
23034 start the program --- either by setting a breakpoint or letting the
23035 program run once to completion.
23036
23037 @subsubsection DLL Name Prefixes
23038
23039 In keeping with the naming conventions used by the Microsoft debugging
23040 tools, DLL export symbols are made available with a prefix based on the
23041 DLL name, for instance @code{KERNEL32!CreateFileA}.  The plain name is
23042 also entered into the symbol table, so @code{CreateFileA} is often
23043 sufficient.  In some cases there will be name clashes within a program
23044 (particularly if the executable itself includes full debugging symbols)
23045 necessitating the use of the fully qualified name when referring to the
23046 contents of the DLL.  Use single-quotes around the name to avoid the
23047 exclamation mark (``!'')  being interpreted as a language operator.
23048
23049 Note that the internal name of the DLL may be all upper-case, even
23050 though the file name of the DLL is lower-case, or vice-versa.  Since
23051 symbols within @value{GDBN} are @emph{case-sensitive} this may cause
23052 some confusion. If in doubt, try the @code{info functions} and
23053 @code{info variables} commands or even @code{maint print msymbols}
23054 (@pxref{Symbols}). Here's an example:
23055
23056 @smallexample
23057 (@value{GDBP}) info function CreateFileA
23058 All functions matching regular expression "CreateFileA":
23059
23060 Non-debugging symbols:
23061 0x77e885f4  CreateFileA
23062 0x77e885f4  KERNEL32!CreateFileA
23063 @end smallexample
23064
23065 @smallexample
23066 (@value{GDBP}) info function !
23067 All functions matching regular expression "!":
23068
23069 Non-debugging symbols:
23070 0x6100114c  cygwin1!__assert
23071 0x61004034  cygwin1!_dll_crt0@@0
23072 0x61004240  cygwin1!dll_crt0(per_process *)
23073 [etc...]
23074 @end smallexample
23075
23076 @subsubsection Working with Minimal Symbols
23077
23078 Symbols extracted from a DLL's export table do not contain very much
23079 type information. All that @value{GDBN} can do is guess whether a symbol
23080 refers to a function or variable depending on the linker section that
23081 contains the symbol. Also note that the actual contents of the memory
23082 contained in a DLL are not available unless the program is running. This
23083 means that you cannot examine the contents of a variable or disassemble
23084 a function within a DLL without a running program.
23085
23086 Variables are generally treated as pointers and dereferenced
23087 automatically. For this reason, it is often necessary to prefix a
23088 variable name with the address-of operator (``&'') and provide explicit
23089 type information in the command. Here's an example of the type of
23090 problem:
23091
23092 @smallexample
23093 (@value{GDBP}) print 'cygwin1!__argv'
23094 'cygwin1!__argv' has unknown type; cast it to its declared type
23095 @end smallexample
23096
23097 @smallexample
23098 (@value{GDBP}) x 'cygwin1!__argv'
23099 'cygwin1!__argv' has unknown type; cast it to its declared type
23100 @end smallexample
23101
23102 And two possible solutions:
23103
23104 @smallexample
23105 (@value{GDBP}) print ((char **)'cygwin1!__argv')[0]
23106 $2 = 0x22fd98 "/cygdrive/c/mydirectory/myprogram"
23107 @end smallexample
23108
23109 @smallexample
23110 (@value{GDBP}) x/2x &'cygwin1!__argv'
23111 0x610c0aa8 <cygwin1!__argv>:    0x10021608      0x00000000
23112 (@value{GDBP}) x/x 0x10021608
23113 0x10021608:     0x0022fd98
23114 (@value{GDBP}) x/s 0x0022fd98
23115 0x22fd98:        "/cygdrive/c/mydirectory/myprogram"
23116 @end smallexample
23117
23118 Setting a break point within a DLL is possible even before the program
23119 starts execution. However, under these circumstances, @value{GDBN} can't
23120 examine the initial instructions of the function in order to skip the
23121 function's frame set-up code. You can work around this by using ``*&''
23122 to set the breakpoint at a raw memory address:
23123
23124 @smallexample
23125 (@value{GDBP}) break *&'python22!PyOS_Readline'
23126 Breakpoint 1 at 0x1e04eff0
23127 @end smallexample
23128
23129 The author of these extensions is not entirely convinced that setting a
23130 break point within a shared DLL like @file{kernel32.dll} is completely
23131 safe.
23132
23133 @node Hurd Native
23134 @subsection Commands Specific to @sc{gnu} Hurd Systems
23135 @cindex @sc{gnu} Hurd debugging
23136
23137 This subsection describes @value{GDBN} commands specific to the
23138 @sc{gnu} Hurd native debugging.
23139
23140 @table @code
23141 @item set signals
23142 @itemx set sigs
23143 @kindex set signals@r{, Hurd command}
23144 @kindex set sigs@r{, Hurd command}
23145 This command toggles the state of inferior signal interception by
23146 @value{GDBN}.  Mach exceptions, such as breakpoint traps, are not
23147 affected by this command.  @code{sigs} is a shorthand alias for
23148 @code{signals}.
23149
23150 @item show signals
23151 @itemx show sigs
23152 @kindex show signals@r{, Hurd command}
23153 @kindex show sigs@r{, Hurd command}
23154 Show the current state of intercepting inferior's signals.
23155
23156 @item set signal-thread
23157 @itemx set sigthread
23158 @kindex set signal-thread
23159 @kindex set sigthread
23160 This command tells @value{GDBN} which thread is the @code{libc} signal
23161 thread.  That thread is run when a signal is delivered to a running
23162 process.  @code{set sigthread} is the shorthand alias of @code{set
23163 signal-thread}.
23164
23165 @item show signal-thread
23166 @itemx show sigthread
23167 @kindex show signal-thread
23168 @kindex show sigthread
23169 These two commands show which thread will run when the inferior is
23170 delivered a signal.
23171
23172 @item set stopped
23173 @kindex set stopped@r{, Hurd command}
23174 This commands tells @value{GDBN} that the inferior process is stopped,
23175 as with the @code{SIGSTOP} signal.  The stopped process can be
23176 continued by delivering a signal to it.
23177
23178 @item show stopped
23179 @kindex show stopped@r{, Hurd command}
23180 This command shows whether @value{GDBN} thinks the debuggee is
23181 stopped.
23182
23183 @item set exceptions
23184 @kindex set exceptions@r{, Hurd command}
23185 Use this command to turn off trapping of exceptions in the inferior.
23186 When exception trapping is off, neither breakpoints nor
23187 single-stepping will work.  To restore the default, set exception
23188 trapping on.
23189
23190 @item show exceptions
23191 @kindex show exceptions@r{, Hurd command}
23192 Show the current state of trapping exceptions in the inferior.
23193
23194 @item set task pause
23195 @kindex set task@r{, Hurd commands}
23196 @cindex task attributes (@sc{gnu} Hurd)
23197 @cindex pause current task (@sc{gnu} Hurd)
23198 This command toggles task suspension when @value{GDBN} has control.
23199 Setting it to on takes effect immediately, and the task is suspended
23200 whenever @value{GDBN} gets control.  Setting it to off will take
23201 effect the next time the inferior is continued.  If this option is set
23202 to off, you can use @code{set thread default pause on} or @code{set
23203 thread pause on} (see below) to pause individual threads.
23204
23205 @item show task pause
23206 @kindex show task@r{, Hurd commands}
23207 Show the current state of task suspension.
23208
23209 @item set task detach-suspend-count
23210 @cindex task suspend count
23211 @cindex detach from task, @sc{gnu} Hurd
23212 This command sets the suspend count the task will be left with when
23213 @value{GDBN} detaches from it.
23214
23215 @item show task detach-suspend-count
23216 Show the suspend count the task will be left with when detaching.
23217
23218 @item set task exception-port
23219 @itemx set task excp
23220 @cindex task exception port, @sc{gnu} Hurd
23221 This command sets the task exception port to which @value{GDBN} will
23222 forward exceptions.  The argument should be the value of the @dfn{send
23223 rights} of the task.  @code{set task excp} is a shorthand alias.
23224
23225 @item set noninvasive
23226 @cindex noninvasive task options
23227 This command switches @value{GDBN} to a mode that is the least
23228 invasive as far as interfering with the inferior is concerned.  This
23229 is the same as using @code{set task pause}, @code{set exceptions}, and
23230 @code{set signals} to values opposite to the defaults.
23231
23232 @item info send-rights
23233 @itemx info receive-rights
23234 @itemx info port-rights
23235 @itemx info port-sets
23236 @itemx info dead-names
23237 @itemx info ports
23238 @itemx info psets
23239 @cindex send rights, @sc{gnu} Hurd
23240 @cindex receive rights, @sc{gnu} Hurd
23241 @cindex port rights, @sc{gnu} Hurd
23242 @cindex port sets, @sc{gnu} Hurd
23243 @cindex dead names, @sc{gnu} Hurd
23244 These commands display information about, respectively, send rights,
23245 receive rights, port rights, port sets, and dead names of a task.
23246 There are also shorthand aliases: @code{info ports} for @code{info
23247 port-rights} and @code{info psets} for @code{info port-sets}.
23248
23249 @item set thread pause
23250 @kindex set thread@r{, Hurd command}
23251 @cindex thread properties, @sc{gnu} Hurd
23252 @cindex pause current thread (@sc{gnu} Hurd)
23253 This command toggles current thread suspension when @value{GDBN} has
23254 control.  Setting it to on takes effect immediately, and the current
23255 thread is suspended whenever @value{GDBN} gets control.  Setting it to
23256 off will take effect the next time the inferior is continued.
23257 Normally, this command has no effect, since when @value{GDBN} has
23258 control, the whole task is suspended.  However, if you used @code{set
23259 task pause off} (see above), this command comes in handy to suspend
23260 only the current thread.
23261
23262 @item show thread pause
23263 @kindex show thread@r{, Hurd command}
23264 This command shows the state of current thread suspension.
23265
23266 @item set thread run
23267 This command sets whether the current thread is allowed to run.
23268
23269 @item show thread run
23270 Show whether the current thread is allowed to run.
23271
23272 @item set thread detach-suspend-count
23273 @cindex thread suspend count, @sc{gnu} Hurd
23274 @cindex detach from thread, @sc{gnu} Hurd
23275 This command sets the suspend count @value{GDBN} will leave on a
23276 thread when detaching.  This number is relative to the suspend count
23277 found by @value{GDBN} when it notices the thread; use @code{set thread
23278 takeover-suspend-count} to force it to an absolute value.
23279
23280 @item show thread detach-suspend-count
23281 Show the suspend count @value{GDBN} will leave on the thread when
23282 detaching.
23283
23284 @item set thread exception-port
23285 @itemx set thread excp
23286 Set the thread exception port to which to forward exceptions.  This
23287 overrides the port set by @code{set task exception-port} (see above).
23288 @code{set thread excp} is the shorthand alias.
23289
23290 @item set thread takeover-suspend-count
23291 Normally, @value{GDBN}'s thread suspend counts are relative to the
23292 value @value{GDBN} finds when it notices each thread.  This command
23293 changes the suspend counts to be absolute instead.
23294
23295 @item set thread default
23296 @itemx show thread default
23297 @cindex thread default settings, @sc{gnu} Hurd
23298 Each of the above @code{set thread} commands has a @code{set thread
23299 default} counterpart (e.g., @code{set thread default pause}, @code{set
23300 thread default exception-port}, etc.).  The @code{thread default}
23301 variety of commands sets the default thread properties for all
23302 threads; you can then change the properties of individual threads with
23303 the non-default commands.
23304 @end table
23305
23306 @node Darwin
23307 @subsection Darwin
23308 @cindex Darwin
23309
23310 @value{GDBN} provides the following commands specific to the Darwin target:
23311
23312 @table @code
23313 @item set debug darwin @var{num}
23314 @kindex set debug darwin
23315 When set to a non zero value, enables debugging messages specific to
23316 the Darwin support.  Higher values produce more verbose output.
23317
23318 @item show debug darwin
23319 @kindex show debug darwin
23320 Show the current state of Darwin messages.
23321
23322 @item set debug mach-o @var{num}
23323 @kindex set debug mach-o
23324 When set to a non zero value, enables debugging messages while
23325 @value{GDBN} is reading Darwin object files.  (@dfn{Mach-O} is the
23326 file format used on Darwin for object and executable files.)  Higher
23327 values produce more verbose output.  This is a command to diagnose
23328 problems internal to @value{GDBN} and should not be needed in normal
23329 usage.
23330
23331 @item show debug mach-o
23332 @kindex show debug mach-o
23333 Show the current state of Mach-O file messages.
23334
23335 @item set mach-exceptions on
23336 @itemx set mach-exceptions off
23337 @kindex set mach-exceptions
23338 On Darwin, faults are first reported as a Mach exception and are then
23339 mapped to a Posix signal.  Use this command to turn on trapping of
23340 Mach exceptions in the inferior.  This might be sometimes useful to
23341 better understand the cause of a fault.  The default is off.
23342
23343 @item show mach-exceptions
23344 @kindex show mach-exceptions
23345 Show the current state of exceptions trapping.
23346 @end table
23347
23348 @node FreeBSD
23349 @subsection FreeBSD
23350 @cindex FreeBSD
23351
23352 When the ABI of a system call is changed in the FreeBSD kernel, this
23353 is implemented by leaving a compatibility system call using the old
23354 ABI at the existing number and allocating a new system call number for
23355 the version using the new ABI.  As a convenience, when a system call
23356 is caught by name (@pxref{catch syscall}), compatibility system calls
23357 are also caught.
23358
23359 For example, FreeBSD 12 introduced a new variant of the @code{kevent}
23360 system call and catching the @code{kevent} system call by name catches
23361 both variants:
23362
23363 @smallexample
23364 (@value{GDBP}) catch syscall kevent
23365 Catchpoint 1 (syscalls 'freebsd11_kevent' [363] 'kevent' [560])
23366 (@value{GDBP})
23367 @end smallexample
23368
23369
23370 @node Embedded OS
23371 @section Embedded Operating Systems
23372
23373 This section describes configurations involving the debugging of
23374 embedded operating systems that are available for several different
23375 architectures.
23376
23377 @value{GDBN} includes the ability to debug programs running on
23378 various real-time operating systems.
23379
23380 @node Embedded Processors
23381 @section Embedded Processors
23382
23383 This section goes into details specific to particular embedded
23384 configurations.
23385
23386 @cindex send command to simulator
23387 Whenever a specific embedded processor has a simulator, @value{GDBN}
23388 allows to send an arbitrary command to the simulator.
23389
23390 @table @code
23391 @item sim @var{command}
23392 @kindex sim@r{, a command}
23393 Send an arbitrary @var{command} string to the simulator.  Consult the
23394 documentation for the specific simulator in use for information about
23395 acceptable commands.
23396 @end table
23397
23398
23399 @menu
23400 * ARC::                         Synopsys ARC
23401 * ARM::                         ARM
23402 * M68K::                        Motorola M68K
23403 * MicroBlaze::                  Xilinx MicroBlaze
23404 * MIPS Embedded::               MIPS Embedded
23405 * OpenRISC 1000::               OpenRISC 1000 (or1k)
23406 * PowerPC Embedded::            PowerPC Embedded
23407 * AVR::                         Atmel AVR
23408 * CRIS::                        CRIS
23409 * Super-H::                     Renesas Super-H
23410 @end menu
23411
23412 @node ARC
23413 @subsection Synopsys ARC
23414 @cindex Synopsys ARC
23415 @cindex ARC specific commands
23416 @cindex ARC600
23417 @cindex ARC700
23418 @cindex ARC EM
23419 @cindex ARC HS
23420
23421 @value{GDBN} provides the following ARC-specific commands:
23422
23423 @table @code
23424 @item set debug arc
23425 @kindex set debug arc
23426 Control the level of ARC specific debug messages.  Use 0 for no messages (the
23427 default), 1 for debug messages, and 2 for even more debug messages.
23428
23429 @item show debug arc
23430 @kindex show debug arc
23431 Show the level of ARC specific debugging in operation.
23432
23433 @item maint print arc arc-instruction @var{address}
23434 @kindex maint print arc arc-instruction
23435 Print internal disassembler information about instruction at a given address.
23436
23437 @end table
23438
23439 @node ARM
23440 @subsection ARM
23441
23442 @value{GDBN} provides the following ARM-specific commands:
23443
23444 @table @code
23445 @item set arm disassembler
23446 @kindex set arm
23447 This commands selects from a list of disassembly styles.  The
23448 @code{"std"} style is the standard style.
23449
23450 @item show arm disassembler
23451 @kindex show arm
23452 Show the current disassembly style.
23453
23454 @item set arm apcs32
23455 @cindex ARM 32-bit mode
23456 This command toggles ARM operation mode between 32-bit and 26-bit.
23457
23458 @item show arm apcs32
23459 Display the current usage of the ARM 32-bit mode.
23460
23461 @item set arm fpu @var{fputype}
23462 This command sets the ARM floating-point unit (FPU) type.  The
23463 argument @var{fputype} can be one of these:
23464
23465 @table @code
23466 @item auto
23467 Determine the FPU type by querying the OS ABI.
23468 @item softfpa
23469 Software FPU, with mixed-endian doubles on little-endian ARM
23470 processors.
23471 @item fpa
23472 GCC-compiled FPA co-processor.
23473 @item softvfp
23474 Software FPU with pure-endian doubles.
23475 @item vfp
23476 VFP co-processor.
23477 @end table
23478
23479 @item show arm fpu
23480 Show the current type of the FPU.
23481
23482 @item set arm abi
23483 This command forces @value{GDBN} to use the specified ABI.
23484
23485 @item show arm abi
23486 Show the currently used ABI.
23487
23488 @item set arm fallback-mode (arm|thumb|auto)
23489 @value{GDBN} uses the symbol table, when available, to determine
23490 whether instructions are ARM or Thumb.  This command controls
23491 @value{GDBN}'s default behavior when the symbol table is not
23492 available.  The default is @samp{auto}, which causes @value{GDBN} to
23493 use the current execution mode (from the @code{T} bit in the @code{CPSR}
23494 register).
23495
23496 @item show arm fallback-mode
23497 Show the current fallback instruction mode.
23498
23499 @item set arm force-mode (arm|thumb|auto)
23500 This command overrides use of the symbol table to determine whether
23501 instructions are ARM or Thumb.  The default is @samp{auto}, which
23502 causes @value{GDBN} to use the symbol table and then the setting
23503 of @samp{set arm fallback-mode}.
23504
23505 @item show arm force-mode
23506 Show the current forced instruction mode.
23507
23508 @item set debug arm
23509 Toggle whether to display ARM-specific debugging messages from the ARM
23510 target support subsystem.
23511
23512 @item show debug arm
23513 Show whether ARM-specific debugging messages are enabled.
23514 @end table
23515
23516 @table @code
23517 @item target sim @r{[}@var{simargs}@r{]} @dots{} 
23518 The @value{GDBN} ARM simulator accepts the following optional arguments.
23519
23520 @table @code
23521 @item --swi-support=@var{type}
23522 Tell the simulator which SWI interfaces to support.  The argument
23523 @var{type} may be a comma separated list of the following values.
23524 The default value is @code{all}.
23525
23526 @table @code
23527 @item none
23528 @item demon
23529 @item angel
23530 @item redboot
23531 @item all
23532 @end table
23533 @end table
23534 @end table
23535
23536 @node M68K
23537 @subsection M68k
23538
23539 The Motorola m68k configuration includes ColdFire support.
23540
23541 @node MicroBlaze
23542 @subsection MicroBlaze
23543 @cindex Xilinx MicroBlaze
23544 @cindex XMD, Xilinx Microprocessor Debugger
23545
23546 The MicroBlaze is a soft-core processor supported on various Xilinx
23547 FPGAs, such as Spartan or Virtex series.  Boards with these processors
23548 usually have JTAG ports which connect to a host system running the Xilinx
23549 Embedded Development Kit (EDK) or Software Development Kit (SDK).
23550 This host system is used to download the configuration bitstream to
23551 the target FPGA.  The Xilinx Microprocessor Debugger (XMD) program
23552 communicates with the target board using the JTAG interface and
23553 presents a @code{gdbserver} interface to the board.  By default
23554 @code{xmd} uses port @code{1234}.  (While it is possible to change 
23555 this default port, it requires the use of undocumented @code{xmd} 
23556 commands.  Contact Xilinx support if you need to do this.)
23557
23558 Use these GDB commands to connect to the MicroBlaze target processor.
23559
23560 @table @code
23561 @item target remote :1234
23562 Use this command to connect to the target if you are running @value{GDBN}
23563 on the same system as @code{xmd}.
23564
23565 @item target remote @var{xmd-host}:1234
23566 Use this command to connect to the target if it is connected to @code{xmd}
23567 running on a different system named @var{xmd-host}.
23568
23569 @item load
23570 Use this command to download a program to the MicroBlaze target.
23571
23572 @item set debug microblaze @var{n}
23573 Enable MicroBlaze-specific debugging messages if non-zero.
23574
23575 @item show debug microblaze @var{n}
23576 Show MicroBlaze-specific debugging level.
23577 @end table
23578
23579 @node MIPS Embedded
23580 @subsection @acronym{MIPS} Embedded
23581
23582 @noindent
23583 @value{GDBN} supports these special commands for @acronym{MIPS} targets:
23584
23585 @table @code
23586 @item set mipsfpu double
23587 @itemx set mipsfpu single
23588 @itemx set mipsfpu none
23589 @itemx set mipsfpu auto
23590 @itemx show mipsfpu
23591 @kindex set mipsfpu
23592 @kindex show mipsfpu
23593 @cindex @acronym{MIPS} remote floating point
23594 @cindex floating point, @acronym{MIPS} remote
23595 If your target board does not support the @acronym{MIPS} floating point
23596 coprocessor, you should use the command @samp{set mipsfpu none} (if you
23597 need this, you may wish to put the command in your @value{GDBN} init
23598 file).  This tells @value{GDBN} how to find the return value of
23599 functions which return floating point values.  It also allows
23600 @value{GDBN} to avoid saving the floating point registers when calling
23601 functions on the board.  If you are using a floating point coprocessor
23602 with only single precision floating point support, as on the @sc{r4650}
23603 processor, use the command @samp{set mipsfpu single}.  The default
23604 double precision floating point coprocessor may be selected using
23605 @samp{set mipsfpu double}.
23606
23607 In previous versions the only choices were double precision or no
23608 floating point, so @samp{set mipsfpu on} will select double precision
23609 and @samp{set mipsfpu off} will select no floating point.
23610
23611 As usual, you can inquire about the @code{mipsfpu} variable with
23612 @samp{show mipsfpu}.
23613 @end table
23614
23615 @node OpenRISC 1000
23616 @subsection OpenRISC 1000
23617 @cindex OpenRISC 1000
23618
23619 @noindent
23620 The OpenRISC 1000 provides a free RISC instruction set architecture.  It is
23621 mainly provided as a soft-core which can run on Xilinx, Altera and other
23622 FPGA's.
23623
23624 @value{GDBN} for OpenRISC supports the below commands when connecting to
23625 a target:
23626
23627 @table @code
23628
23629 @kindex target sim
23630 @item target sim
23631
23632 Runs the builtin CPU simulator which can run very basic
23633 programs but does not support most hardware functions like MMU.
23634 For more complex use cases the user is advised to run an external
23635 target, and connect using @samp{target remote}.
23636
23637 Example: @code{target sim}
23638
23639 @item set debug or1k
23640 Toggle whether to display OpenRISC-specific debugging messages from the
23641 OpenRISC target support subsystem.
23642
23643 @item show debug or1k
23644 Show whether OpenRISC-specific debugging messages are enabled.
23645 @end table
23646
23647 @node PowerPC Embedded
23648 @subsection PowerPC Embedded
23649
23650 @cindex DVC register
23651 @value{GDBN} supports using the DVC (Data Value Compare) register to
23652 implement in hardware simple hardware watchpoint conditions of the form:
23653
23654 @smallexample
23655 (@value{GDBP}) watch @var{ADDRESS|VARIABLE} \
23656   if  @var{ADDRESS|VARIABLE} == @var{CONSTANT EXPRESSION}
23657 @end smallexample
23658
23659 The DVC register will be automatically used when @value{GDBN} detects
23660 such pattern in a condition expression, and the created watchpoint uses one
23661 debug register (either the @code{exact-watchpoints} option is on and the
23662 variable is scalar, or the variable has a length of one byte).  This feature
23663 is available in native @value{GDBN} running on a Linux kernel version 2.6.34
23664 or newer.
23665
23666 When running on PowerPC embedded processors, @value{GDBN} automatically uses
23667 ranged hardware watchpoints, unless the @code{exact-watchpoints} option is on,
23668 in which case watchpoints using only one debug register are created when
23669 watching variables of scalar types.
23670
23671 You can create an artificial array to watch an arbitrary memory
23672 region using one of the following commands (@pxref{Expressions}):
23673
23674 @smallexample
23675 (@value{GDBP}) watch *((char *) @var{address})@@@var{length}
23676 (@value{GDBP}) watch @{char[@var{length}]@} @var{address}
23677 @end smallexample
23678
23679 PowerPC embedded processors support masked watchpoints.  See the discussion
23680 about the @code{mask} argument in @ref{Set Watchpoints}.
23681
23682 @cindex ranged breakpoint
23683 PowerPC embedded processors support hardware accelerated
23684 @dfn{ranged breakpoints}.  A ranged breakpoint stops execution of
23685 the inferior whenever it executes an instruction at any address within
23686 the range it specifies.  To set a ranged breakpoint in @value{GDBN},
23687 use the @code{break-range} command.
23688
23689 @value{GDBN} provides the following PowerPC-specific commands:
23690
23691 @table @code
23692 @kindex break-range
23693 @item break-range @var{start-location}, @var{end-location}
23694 Set a breakpoint for an address range given by
23695 @var{start-location} and @var{end-location}, which can specify a function name,
23696 a line number, an offset of lines from the current line or from the start
23697 location, or an address of an instruction (see @ref{Specify Location},
23698 for a list of all the possible ways to specify a @var{location}.)
23699 The breakpoint will stop execution of the inferior whenever it
23700 executes an instruction at any address within the specified range,
23701 (including @var{start-location} and @var{end-location}.)
23702
23703 @kindex set powerpc
23704 @item set powerpc soft-float
23705 @itemx show powerpc soft-float
23706 Force @value{GDBN} to use (or not use) a software floating point calling
23707 convention.  By default, @value{GDBN} selects the calling convention based
23708 on the selected architecture and the provided executable file.
23709
23710 @item set powerpc vector-abi
23711 @itemx show powerpc vector-abi
23712 Force @value{GDBN} to use the specified calling convention for vector
23713 arguments and return values.  The valid options are @samp{auto};
23714 @samp{generic}, to avoid vector registers even if they are present;
23715 @samp{altivec}, to use AltiVec registers; and @samp{spe} to use SPE
23716 registers.  By default, @value{GDBN} selects the calling convention
23717 based on the selected architecture and the provided executable file.
23718
23719 @item set powerpc exact-watchpoints
23720 @itemx show powerpc exact-watchpoints
23721 Allow @value{GDBN} to use only one debug register when watching a variable
23722 of scalar type, thus assuming that the variable is accessed through the
23723 address of its first byte.
23724
23725 @end table
23726
23727 @node AVR
23728 @subsection Atmel AVR
23729 @cindex AVR
23730
23731 When configured for debugging the Atmel AVR, @value{GDBN} supports the
23732 following AVR-specific commands:
23733
23734 @table @code
23735 @item info io_registers
23736 @kindex info io_registers@r{, AVR}
23737 @cindex I/O registers (Atmel AVR)
23738 This command displays information about the AVR I/O registers.  For
23739 each register, @value{GDBN} prints its number and value.
23740 @end table
23741
23742 @node CRIS
23743 @subsection CRIS
23744 @cindex CRIS
23745
23746 When configured for debugging CRIS, @value{GDBN} provides the
23747 following CRIS-specific commands:
23748
23749 @table @code
23750 @item set cris-version @var{ver}
23751 @cindex CRIS version
23752 Set the current CRIS version to @var{ver}, either @samp{10} or @samp{32}.
23753 The CRIS version affects register names and sizes.  This command is useful in
23754 case autodetection of the CRIS version fails.
23755
23756 @item show cris-version
23757 Show the current CRIS version.
23758
23759 @item set cris-dwarf2-cfi
23760 @cindex DWARF-2 CFI and CRIS
23761 Set the usage of DWARF-2 CFI for CRIS debugging.  The default is @samp{on}.
23762 Change to @samp{off} when using @code{gcc-cris} whose version is below 
23763 @code{R59}.
23764
23765 @item show cris-dwarf2-cfi
23766 Show the current state of using DWARF-2 CFI.
23767
23768 @item set cris-mode @var{mode}
23769 @cindex CRIS mode
23770 Set the current CRIS mode to @var{mode}.  It should only be changed when
23771 debugging in guru mode, in which case it should be set to 
23772 @samp{guru} (the default is @samp{normal}).
23773
23774 @item show cris-mode
23775 Show the current CRIS mode.
23776 @end table
23777
23778 @node Super-H
23779 @subsection Renesas Super-H
23780 @cindex Super-H
23781
23782 For the Renesas Super-H processor, @value{GDBN} provides these
23783 commands:
23784
23785 @table @code
23786 @item set sh calling-convention @var{convention}
23787 @kindex set sh calling-convention
23788 Set the calling-convention used when calling functions from @value{GDBN}.
23789 Allowed values are @samp{gcc}, which is the default setting, and @samp{renesas}.
23790 With the @samp{gcc} setting, functions are called using the @value{NGCC} calling
23791 convention.  If the DWARF-2 information of the called function specifies
23792 that the function follows the Renesas calling convention, the function
23793 is called using the Renesas calling convention.  If the calling convention
23794 is set to @samp{renesas}, the Renesas calling convention is always used,
23795 regardless of the DWARF-2 information.  This can be used to override the
23796 default of @samp{gcc} if debug information is missing, or the compiler
23797 does not emit the DWARF-2 calling convention entry for a function.
23798
23799 @item show sh calling-convention
23800 @kindex show sh calling-convention
23801 Show the current calling convention setting.
23802
23803 @end table
23804
23805
23806 @node Architectures
23807 @section Architectures
23808
23809 This section describes characteristics of architectures that affect
23810 all uses of @value{GDBN} with the architecture, both native and cross.
23811
23812 @menu
23813 * AArch64::
23814 * i386::
23815 * Alpha::
23816 * MIPS::
23817 * HPPA::               HP PA architecture
23818 * SPU::                Cell Broadband Engine SPU architecture
23819 * PowerPC::
23820 * Nios II::
23821 * Sparc64::
23822 * S12Z::
23823 @end menu
23824
23825 @node AArch64
23826 @subsection AArch64
23827 @cindex AArch64 support
23828
23829 When @value{GDBN} is debugging the AArch64 architecture, it provides the
23830 following special commands:
23831
23832 @table @code
23833 @item set debug aarch64
23834 @kindex set debug aarch64
23835 This command determines whether AArch64 architecture-specific debugging
23836 messages are to be displayed.
23837
23838 @item show debug aarch64
23839 Show whether AArch64 debugging messages are displayed.
23840
23841 @end table
23842
23843 @subsubsection AArch64 SVE.
23844 @cindex AArch64 SVE.
23845
23846 When @value{GDBN} is debugging the AArch64 architecture, if the Scalable Vector
23847 Extension (SVE) is present, then @value{GDBN} will provide the vector registers
23848 @code{$z0} through @code{$z31}, vector predicate registers @code{$p0} through
23849 @code{$p15}, and the @code{$ffr} register.  In addition, the pseudo register
23850 @code{$vg} will be provided.  This is the vector granule for the current thread
23851 and represents the number of 64-bit chunks in an SVE @code{z} register.
23852
23853 If the vector length changes, then the @code{$vg} register will be updated,
23854 but the lengths of the @code{z} and @code{p} registers will not change.  This
23855 is a known limitation of @value{GDBN} and does not affect the execution of the
23856 target process.
23857
23858
23859 @node i386
23860 @subsection x86 Architecture-specific Issues
23861
23862 @table @code
23863 @item set struct-convention @var{mode}
23864 @kindex set struct-convention
23865 @cindex struct return convention
23866 @cindex struct/union returned in registers
23867 Set the convention used by the inferior to return @code{struct}s and
23868 @code{union}s from functions to @var{mode}.  Possible values of
23869 @var{mode} are @code{"pcc"}, @code{"reg"}, and @code{"default"} (the
23870 default).  @code{"default"} or @code{"pcc"} means that @code{struct}s
23871 are returned on the stack, while @code{"reg"} means that a
23872 @code{struct} or a @code{union} whose size is 1, 2, 4, or 8 bytes will
23873 be returned in a register.
23874
23875 @item show struct-convention
23876 @kindex show struct-convention
23877 Show the current setting of the convention to return @code{struct}s
23878 from functions.
23879 @end table
23880
23881
23882 @subsubsection Intel @dfn{Memory Protection Extensions} (MPX).
23883 @cindex Intel Memory Protection Extensions (MPX).
23884
23885 Memory Protection Extension (MPX) adds the bound registers @samp{BND0}
23886 @footnote{The register named with capital letters represent the architecture
23887 registers.} through @samp{BND3}.  Bound registers store a pair of 64-bit values
23888 which are the lower bound and upper bound.  Bounds are effective addresses or
23889 memory locations.  The upper bounds are architecturally represented in 1's
23890 complement form.  A bound having lower bound = 0, and upper bound = 0
23891 (1's complement of all bits set) will allow access to the entire address space.
23892
23893 @samp{BND0} through @samp{BND3} are represented in @value{GDBN} as @samp{bnd0raw}
23894 through @samp{bnd3raw}.  Pseudo registers @samp{bnd0} through @samp{bnd3}
23895 display the upper bound performing the complement of one operation on the
23896 upper bound value, i.e.@ when upper bound in @samp{bnd0raw} is 0 in the
23897 @value{GDBN} @samp{bnd0} it will be @code{0xfff@dots{}}.  In this sense it
23898 can also be noted that the upper bounds are inclusive.
23899
23900 As an example, assume that the register BND0 holds bounds for a pointer having
23901 access allowed for the range between 0x32 and 0x71.  The values present on
23902 bnd0raw and bnd registers are presented as follows:
23903
23904 @smallexample
23905         bnd0raw = @{0x32, 0xffffffff8e@}
23906         bnd0 = @{lbound = 0x32, ubound = 0x71@} : size 64
23907 @end smallexample
23908
23909 This way the raw value can be accessed via bnd0raw@dots{}bnd3raw.  Any
23910 change on bnd0@dots{}bnd3 or bnd0raw@dots{}bnd3raw is reflect on its
23911 counterpart.  When the bnd0@dots{}bnd3 registers are displayed via
23912 Python, the display includes the memory size, in bits, accessible to
23913 the pointer.
23914
23915 Bounds can also be stored in bounds tables, which are stored in
23916 application memory.  These tables store bounds for pointers by specifying
23917 the bounds pointer's value along with its bounds.  Evaluating and changing
23918 bounds located in bound tables is therefore interesting while investigating
23919 bugs on MPX context.  @value{GDBN} provides commands for this purpose:
23920
23921 @table @code
23922 @item show mpx bound @var{pointer}
23923 @kindex show mpx bound
23924 Display bounds of the given @var{pointer}.
23925
23926 @item set mpx bound @var{pointer}, @var{lbound}, @var{ubound}
23927 @kindex  set mpx bound
23928 Set the bounds of a pointer in the bound table.
23929 This command takes three parameters: @var{pointer} is the pointers
23930 whose bounds are to be changed, @var{lbound} and @var{ubound} are new values
23931 for lower and upper bounds respectively.
23932 @end table
23933
23934 When you call an inferior function on an Intel MPX enabled program,
23935 GDB sets the inferior's bound registers to the init (disabled) state
23936 before calling the function.  As a consequence, bounds checks for the
23937 pointer arguments passed to the function will always pass.
23938
23939 This is necessary because when you call an inferior function, the
23940 program is usually in the middle of the execution of other function.
23941 Since at that point bound registers are in an arbitrary state, not
23942 clearing them would lead to random bound violations in the called
23943 function.
23944
23945 You can still examine the influence of the bound registers on the
23946 execution of the called function by stopping the execution of the
23947 called function at its prologue, setting bound registers, and
23948 continuing the execution.  For example:
23949
23950 @smallexample
23951         $ break *upper
23952         Breakpoint 2 at 0x4009de: file i386-mpx-call.c, line 47.
23953         $ print upper (a, b, c, d, 1)
23954         Breakpoint 2, upper (a=0x0, b=0x6e0000005b, c=0x0, d=0x0, len=48)....
23955         $ print $bnd0
23956         @{lbound = 0x0, ubound = ffffffff@} : size -1
23957 @end smallexample
23958
23959 At this last step the value of bnd0 can be changed for investigation of bound
23960 violations caused along the execution of the call.  In order to know how to
23961 set the bound registers or bound table for the call consult the ABI.
23962
23963 @node Alpha
23964 @subsection Alpha
23965
23966 See the following section.
23967
23968 @node MIPS
23969 @subsection @acronym{MIPS}
23970
23971 @cindex stack on Alpha
23972 @cindex stack on @acronym{MIPS}
23973 @cindex Alpha stack
23974 @cindex @acronym{MIPS} stack
23975 Alpha- and @acronym{MIPS}-based computers use an unusual stack frame, which
23976 sometimes requires @value{GDBN} to search backward in the object code to
23977 find the beginning of a function.
23978
23979 @cindex response time, @acronym{MIPS} debugging
23980 To improve response time (especially for embedded applications, where
23981 @value{GDBN} may be restricted to a slow serial line for this search)
23982 you may want to limit the size of this search, using one of these
23983 commands:
23984
23985 @table @code
23986 @cindex @code{heuristic-fence-post} (Alpha, @acronym{MIPS})
23987 @item set heuristic-fence-post @var{limit}
23988 Restrict @value{GDBN} to examining at most @var{limit} bytes in its
23989 search for the beginning of a function.  A value of @var{0} (the
23990 default) means there is no limit.  However, except for @var{0}, the
23991 larger the limit the more bytes @code{heuristic-fence-post} must search
23992 and therefore the longer it takes to run.  You should only need to use
23993 this command when debugging a stripped executable.
23994
23995 @item show heuristic-fence-post
23996 Display the current limit.
23997 @end table
23998
23999 @noindent
24000 These commands are available @emph{only} when @value{GDBN} is configured
24001 for debugging programs on Alpha or @acronym{MIPS} processors.
24002
24003 Several @acronym{MIPS}-specific commands are available when debugging @acronym{MIPS}
24004 programs:
24005
24006 @table @code
24007 @item set mips abi @var{arg}
24008 @kindex set mips abi
24009 @cindex set ABI for @acronym{MIPS}
24010 Tell @value{GDBN} which @acronym{MIPS} ABI is used by the inferior.  Possible
24011 values of @var{arg} are:
24012
24013 @table @samp
24014 @item auto
24015 The default ABI associated with the current binary (this is the
24016 default).
24017 @item o32
24018 @item o64
24019 @item n32
24020 @item n64
24021 @item eabi32
24022 @item eabi64
24023 @end table
24024
24025 @item show mips abi
24026 @kindex show mips abi
24027 Show the @acronym{MIPS} ABI used by @value{GDBN} to debug the inferior.
24028
24029 @item set mips compression @var{arg}
24030 @kindex set mips compression
24031 @cindex code compression, @acronym{MIPS}
24032 Tell @value{GDBN} which @acronym{MIPS} compressed
24033 @acronym{ISA, Instruction Set Architecture} encoding is used by the
24034 inferior.  @value{GDBN} uses this for code disassembly and other
24035 internal interpretation purposes.  This setting is only referred to
24036 when no executable has been associated with the debugging session or
24037 the executable does not provide information about the encoding it uses.
24038 Otherwise this setting is automatically updated from information
24039 provided by the executable.
24040
24041 Possible values of @var{arg} are @samp{mips16} and @samp{micromips}.
24042 The default compressed @acronym{ISA} encoding is @samp{mips16}, as
24043 executables containing @acronym{MIPS16} code frequently are not
24044 identified as such.
24045
24046 This setting is ``sticky''; that is, it retains its value across
24047 debugging sessions until reset either explicitly with this command or
24048 implicitly from an executable.
24049
24050 The compiler and/or assembler typically add symbol table annotations to
24051 identify functions compiled for the @acronym{MIPS16} or
24052 @acronym{microMIPS} @acronym{ISA}s.  If these function-scope annotations
24053 are present, @value{GDBN} uses them in preference to the global
24054 compressed @acronym{ISA} encoding setting.
24055
24056 @item show mips compression
24057 @kindex show mips compression
24058 Show the @acronym{MIPS} compressed @acronym{ISA} encoding used by
24059 @value{GDBN} to debug the inferior.
24060
24061 @item set mipsfpu
24062 @itemx show mipsfpu
24063 @xref{MIPS Embedded, set mipsfpu}.
24064
24065 @item set mips mask-address @var{arg}
24066 @kindex set mips mask-address
24067 @cindex @acronym{MIPS} addresses, masking
24068 This command determines whether the most-significant 32 bits of 64-bit
24069 @acronym{MIPS} addresses are masked off.  The argument @var{arg} can be
24070 @samp{on}, @samp{off}, or @samp{auto}.  The latter is the default
24071 setting, which lets @value{GDBN} determine the correct value.
24072
24073 @item show mips mask-address
24074 @kindex show mips mask-address
24075 Show whether the upper 32 bits of @acronym{MIPS} addresses are masked off or
24076 not.
24077
24078 @item set remote-mips64-transfers-32bit-regs
24079 @kindex set remote-mips64-transfers-32bit-regs
24080 This command controls compatibility with 64-bit @acronym{MIPS} targets that
24081 transfer data in 32-bit quantities.  If you have an old @acronym{MIPS} 64 target
24082 that transfers 32 bits for some registers, like @sc{sr} and @sc{fsr},
24083 and 64 bits for other registers, set this option to @samp{on}.
24084
24085 @item show remote-mips64-transfers-32bit-regs
24086 @kindex show remote-mips64-transfers-32bit-regs
24087 Show the current setting of compatibility with older @acronym{MIPS} 64 targets.
24088
24089 @item set debug mips
24090 @kindex set debug mips
24091 This command turns on and off debugging messages for the @acronym{MIPS}-specific
24092 target code in @value{GDBN}.
24093
24094 @item show debug mips
24095 @kindex show debug mips
24096 Show the current setting of @acronym{MIPS} debugging messages.
24097 @end table
24098
24099
24100 @node HPPA
24101 @subsection HPPA
24102 @cindex HPPA support
24103
24104 When @value{GDBN} is debugging the HP PA architecture, it provides the
24105 following special commands:
24106
24107 @table @code
24108 @item set debug hppa
24109 @kindex set debug hppa
24110 This command determines whether HPPA architecture-specific debugging
24111 messages are to be displayed.
24112
24113 @item show debug hppa
24114 Show whether HPPA debugging messages are displayed.
24115
24116 @item maint print unwind @var{address}
24117 @kindex maint print unwind@r{, HPPA}
24118 This command displays the contents of the unwind table entry at the
24119 given @var{address}.
24120
24121 @end table
24122
24123
24124 @node SPU
24125 @subsection Cell Broadband Engine SPU architecture
24126 @cindex Cell Broadband Engine
24127 @cindex SPU
24128
24129 When @value{GDBN} is debugging the Cell Broadband Engine SPU architecture,
24130 it provides the following special commands:
24131
24132 @table @code
24133 @item info spu event
24134 @kindex info spu
24135 Display SPU event facility status.  Shows current event mask
24136 and pending event status.
24137
24138 @item info spu signal
24139 Display SPU signal notification facility status.  Shows pending
24140 signal-control word and signal notification mode of both signal
24141 notification channels.
24142
24143 @item info spu mailbox
24144 Display SPU mailbox facility status.  Shows all pending entries,
24145 in order of processing, in each of the SPU Write Outbound,
24146 SPU Write Outbound Interrupt, and SPU Read Inbound mailboxes.
24147
24148 @item info spu dma
24149 Display MFC DMA status.  Shows all pending commands in the MFC
24150 DMA queue.  For each entry, opcode, tag, class IDs, effective
24151 and local store addresses and transfer size are shown.
24152
24153 @item info spu proxydma
24154 Display MFC Proxy-DMA status.  Shows all pending commands in the MFC
24155 Proxy-DMA queue.  For each entry, opcode, tag, class IDs, effective
24156 and local store addresses and transfer size are shown.
24157
24158 @end table
24159  
24160 When @value{GDBN} is debugging a combined PowerPC/SPU application
24161 on the Cell Broadband Engine, it provides in addition the following
24162 special commands:
24163
24164 @table @code
24165 @item set spu stop-on-load @var{arg}
24166 @kindex set spu
24167 Set whether to stop for new SPE threads.  When set to @code{on}, @value{GDBN}
24168 will give control to the user when a new SPE thread enters its @code{main}
24169 function.  The default is @code{off}.
24170
24171 @item show spu stop-on-load
24172 @kindex show spu
24173 Show whether to stop for new SPE threads.
24174
24175 @item set spu auto-flush-cache @var{arg}
24176 Set whether to automatically flush the software-managed cache.  When set to
24177 @code{on}, @value{GDBN} will automatically cause the SPE software-managed
24178 cache to be flushed whenever SPE execution stops.  This provides a consistent
24179 view of PowerPC memory that is accessed via the cache.  If an application
24180 does not use the software-managed cache, this option has no effect.
24181
24182 @item show spu auto-flush-cache
24183 Show whether to automatically flush the software-managed cache.
24184
24185 @end table
24186
24187 @node PowerPC
24188 @subsection PowerPC
24189 @cindex PowerPC architecture
24190
24191 When @value{GDBN} is debugging the PowerPC architecture, it provides a set of 
24192 pseudo-registers to enable inspection of 128-bit wide Decimal Floating Point
24193 numbers stored in the floating point registers. These values must be stored
24194 in two consecutive registers, always starting at an even register like
24195 @code{f0} or @code{f2}.
24196
24197 The pseudo-registers go from @code{$dl0} through @code{$dl15}, and are formed
24198 by joining the even/odd register pairs @code{f0} and @code{f1} for @code{$dl0},
24199 @code{f2} and @code{f3} for @code{$dl1} and so on.
24200
24201 For POWER7 processors, @value{GDBN} provides a set of pseudo-registers, the 64-bit
24202 wide Extended Floating Point Registers (@samp{f32} through @samp{f63}).
24203
24204 @node Nios II
24205 @subsection Nios II
24206 @cindex Nios II architecture
24207
24208 When @value{GDBN} is debugging the Nios II architecture,
24209 it provides the following special commands:
24210
24211 @table @code
24212
24213 @item set debug nios2
24214 @kindex set debug nios2
24215 This command turns on and off debugging messages for the Nios II
24216 target code in @value{GDBN}.
24217
24218 @item show debug nios2
24219 @kindex show debug nios2
24220 Show the current setting of Nios II debugging messages.
24221 @end table
24222
24223 @node Sparc64
24224 @subsection Sparc64
24225 @cindex Sparc64 support
24226 @cindex Application Data Integrity
24227 @subsubsection ADI Support
24228
24229 The M7 processor supports an Application Data Integrity (ADI) feature that 
24230 detects invalid data accesses.  When software allocates memory and enables 
24231 ADI on the allocated memory, it chooses a 4-bit version number, sets the 
24232 version in the upper 4 bits of the 64-bit pointer to that data, and stores 
24233 the 4-bit version in every cacheline of that data.  Hardware saves the latter 
24234 in spare bits in the cache and memory hierarchy.  On each load and store, 
24235 the processor compares the upper 4 VA (virtual address) bits to the 
24236 cacheline's version.  If there is a mismatch, the processor generates a 
24237 version mismatch trap which can be either precise or disrupting.  The trap 
24238 is an error condition which the kernel delivers to the process as a SIGSEGV 
24239 signal.
24240
24241 Note that only 64-bit applications can use ADI and need to be built with
24242 ADI-enabled.
24243
24244 Values of the ADI version tags, which are in granularity of a 
24245 cacheline (64 bytes), can be viewed or modified. 
24246
24247
24248 @table @code
24249 @kindex adi examine
24250 @item adi (examine | x) [ / @var{n} ] @var{addr}
24251
24252 The @code{adi examine} command displays the value of one ADI version tag per 
24253 cacheline. 
24254
24255 @var{n} is a decimal integer specifying the number in bytes; the default 
24256 is 1.  It specifies how much ADI version information, at the ratio of 1:ADI 
24257 block size, to display. 
24258
24259 @var{addr} is the address in user address space where you want @value{GDBN} 
24260 to begin displaying the ADI version tags. 
24261
24262 Below is an example of displaying ADI versions of variable "shmaddr".
24263
24264 @smallexample
24265 (@value{GDBP}) adi x/100 shmaddr
24266    0xfff800010002c000:     0 0
24267 @end smallexample
24268
24269 @kindex adi assign
24270 @item adi (assign | a) [ / @var{n} ] @var{addr} = @var{tag}
24271
24272 The @code{adi assign} command is used to assign new ADI version tag 
24273 to an address. 
24274
24275 @var{n} is a decimal integer specifying the number in bytes; 
24276 the default is 1.  It specifies how much ADI version information, at the 
24277 ratio of 1:ADI block size, to modify. 
24278
24279 @var{addr} is the address in user address space where you want @value{GDBN} 
24280 to begin modifying the ADI version tags. 
24281
24282 @var{tag} is the new ADI version tag.
24283
24284 For example, do the following to modify then verify ADI versions of 
24285 variable "shmaddr":
24286
24287 @smallexample
24288 (@value{GDBP}) adi a/100 shmaddr = 7
24289 (@value{GDBP}) adi x/100 shmaddr
24290    0xfff800010002c000:     7 7
24291 @end smallexample
24292
24293 @end table
24294
24295 @node S12Z
24296 @subsection S12Z
24297 @cindex S12Z support
24298
24299 When @value{GDBN} is debugging the S12Z architecture,
24300 it provides the following special command:
24301
24302 @table @code
24303 @item maint info bdccsr
24304 @kindex maint info bdccsr@r{, S12Z}
24305 This command displays the current value of the microprocessor's
24306 BDCCSR register.
24307 @end table
24308
24309
24310 @node Controlling GDB
24311 @chapter Controlling @value{GDBN}
24312
24313 You can alter the way @value{GDBN} interacts with you by using the
24314 @code{set} command.  For commands controlling how @value{GDBN} displays
24315 data, see @ref{Print Settings, ,Print Settings}.  Other settings are
24316 described here.
24317
24318 @menu
24319 * Prompt::                      Prompt
24320 * Editing::                     Command editing
24321 * Command History::             Command history
24322 * Screen Size::                 Screen size
24323 * Output Styling::              Output styling
24324 * Numbers::                     Numbers
24325 * ABI::                         Configuring the current ABI
24326 * Auto-loading::                Automatically loading associated files
24327 * Messages/Warnings::           Optional warnings and messages
24328 * Debugging Output::            Optional messages about internal happenings
24329 * Other Misc Settings::         Other Miscellaneous Settings
24330 @end menu
24331
24332 @node Prompt
24333 @section Prompt
24334
24335 @cindex prompt
24336
24337 @value{GDBN} indicates its readiness to read a command by printing a string
24338 called the @dfn{prompt}.  This string is normally @samp{(@value{GDBP})}.  You
24339 can change the prompt string with the @code{set prompt} command.  For
24340 instance, when debugging @value{GDBN} with @value{GDBN}, it is useful to change
24341 the prompt in one of the @value{GDBN} sessions so that you can always tell
24342 which one you are talking to.
24343
24344 @emph{Note:}  @code{set prompt} does not add a space for you after the
24345 prompt you set.  This allows you to set a prompt which ends in a space
24346 or a prompt that does not.
24347
24348 @table @code
24349 @kindex set prompt
24350 @item set prompt @var{newprompt}
24351 Directs @value{GDBN} to use @var{newprompt} as its prompt string henceforth.
24352
24353 @kindex show prompt
24354 @item show prompt
24355 Prints a line of the form: @samp{Gdb's prompt is: @var{your-prompt}}
24356 @end table
24357
24358 Versions of @value{GDBN} that ship with Python scripting enabled have
24359 prompt extensions.  The commands for interacting with these extensions
24360 are:
24361
24362 @table @code
24363 @kindex set extended-prompt
24364 @item set extended-prompt @var{prompt}
24365 Set an extended prompt that allows for substitutions.
24366 @xref{gdb.prompt}, for a list of escape sequences that can be used for
24367 substitution.  Any escape sequences specified as part of the prompt
24368 string are replaced with the corresponding strings each time the prompt
24369 is displayed.
24370
24371 For example:
24372
24373 @smallexample
24374 set extended-prompt Current working directory: \w (gdb)
24375 @end smallexample
24376
24377 Note that when an extended-prompt is set, it takes control of the
24378 @var{prompt_hook} hook.  @xref{prompt_hook}, for further information.
24379
24380 @kindex show extended-prompt
24381 @item show extended-prompt
24382 Prints the extended prompt.  Any escape sequences specified as part of
24383 the prompt string with @code{set extended-prompt}, are replaced with the
24384 corresponding strings each time the prompt is displayed.
24385 @end table
24386
24387 @node Editing
24388 @section Command Editing
24389 @cindex readline
24390 @cindex command line editing
24391
24392 @value{GDBN} reads its input commands via the @dfn{Readline} interface.  This
24393 @sc{gnu} library provides consistent behavior for programs which provide a
24394 command line interface to the user.  Advantages are @sc{gnu} Emacs-style
24395 or @dfn{vi}-style inline editing of commands, @code{csh}-like history
24396 substitution, and a storage and recall of command history across
24397 debugging sessions.
24398
24399 You may control the behavior of command line editing in @value{GDBN} with the
24400 command @code{set}.
24401
24402 @table @code
24403 @kindex set editing
24404 @cindex editing
24405 @item set editing
24406 @itemx set editing on
24407 Enable command line editing (enabled by default).
24408
24409 @item set editing off
24410 Disable command line editing.
24411
24412 @kindex show editing
24413 @item show editing
24414 Show whether command line editing is enabled.
24415 @end table
24416
24417 @ifset SYSTEM_READLINE
24418 @xref{Command Line Editing, , , rluserman, GNU Readline Library},
24419 @end ifset
24420 @ifclear SYSTEM_READLINE
24421 @xref{Command Line Editing},
24422 @end ifclear
24423 for more details about the Readline
24424 interface.  Users unfamiliar with @sc{gnu} Emacs or @code{vi} are
24425 encouraged to read that chapter.
24426
24427 @node Command History
24428 @section Command History
24429 @cindex command history
24430
24431 @value{GDBN} can keep track of the commands you type during your
24432 debugging sessions, so that you can be certain of precisely what
24433 happened.  Use these commands to manage the @value{GDBN} command
24434 history facility.
24435
24436 @value{GDBN} uses the @sc{gnu} History library, a part of the Readline
24437 package, to provide the history facility.
24438 @ifset SYSTEM_READLINE
24439 @xref{Using History Interactively, , , history, GNU History Library},
24440 @end ifset
24441 @ifclear SYSTEM_READLINE
24442 @xref{Using History Interactively},
24443 @end ifclear
24444 for the detailed description of the History library.
24445
24446 To issue a command to @value{GDBN} without affecting certain aspects of
24447 the state which is seen by users, prefix it with @samp{server }
24448 (@pxref{Server Prefix}).  This
24449 means that this command will not affect the command history, nor will it
24450 affect @value{GDBN}'s notion of which command to repeat if @key{RET} is
24451 pressed on a line by itself.
24452
24453 @cindex @code{server}, command prefix
24454 The server prefix does not affect the recording of values into the value
24455 history; to print a value without recording it into the value history,
24456 use the @code{output} command instead of the @code{print} command.
24457
24458 Here is the description of @value{GDBN} commands related to command
24459 history.
24460
24461 @table @code
24462 @cindex history substitution
24463 @cindex history file
24464 @kindex set history filename
24465 @cindex @env{GDBHISTFILE}, environment variable
24466 @item set history filename @var{fname}
24467 Set the name of the @value{GDBN} command history file to @var{fname}.
24468 This is the file where @value{GDBN} reads an initial command history
24469 list, and where it writes the command history from this session when it
24470 exits.  You can access this list through history expansion or through
24471 the history command editing characters listed below.  This file defaults
24472 to the value of the environment variable @code{GDBHISTFILE}, or to
24473 @file{./.gdb_history} (@file{./_gdb_history} on MS-DOS) if this variable
24474 is not set.
24475
24476 @cindex save command history
24477 @kindex set history save
24478 @item set history save
24479 @itemx set history save on
24480 Record command history in a file, whose name may be specified with the
24481 @code{set history filename} command.  By default, this option is disabled.
24482
24483 @item set history save off
24484 Stop recording command history in a file.
24485
24486 @cindex history size
24487 @kindex set history size
24488 @cindex @env{GDBHISTSIZE}, environment variable
24489 @item set history size @var{size}
24490 @itemx set history size unlimited
24491 Set the number of commands which @value{GDBN} keeps in its history list.
24492 This defaults to the value of the environment variable @env{GDBHISTSIZE}, or
24493 to 256 if this variable is not set.  Non-numeric values of @env{GDBHISTSIZE}
24494 are ignored.  If @var{size} is @code{unlimited} or if @env{GDBHISTSIZE} is
24495 either a negative number or the empty string, then the number of commands
24496 @value{GDBN} keeps in the history list is unlimited.
24497
24498 @cindex remove duplicate history
24499 @kindex set history remove-duplicates
24500 @item set history remove-duplicates @var{count}
24501 @itemx set history remove-duplicates unlimited
24502 Control the removal of duplicate history entries in the command history list.
24503 If @var{count} is non-zero, @value{GDBN} will look back at the last @var{count}
24504 history entries and remove the first entry that is a duplicate of the current
24505 entry being added to the command history list.  If @var{count} is
24506 @code{unlimited} then this lookbehind is unbounded.  If @var{count} is 0, then
24507 removal of duplicate history entries is disabled.
24508
24509 Only history entries added during the current session are considered for
24510 removal.  This option is set to 0 by default.
24511
24512 @end table
24513
24514 History expansion assigns special meaning to the character @kbd{!}.
24515 @ifset SYSTEM_READLINE
24516 @xref{Event Designators, , , history, GNU History Library},
24517 @end ifset
24518 @ifclear SYSTEM_READLINE
24519 @xref{Event Designators},
24520 @end ifclear
24521 for more details.
24522
24523 @cindex history expansion, turn on/off
24524 Since @kbd{!} is also the logical not operator in C, history expansion
24525 is off by default. If you decide to enable history expansion with the
24526 @code{set history expansion on} command, you may sometimes need to
24527 follow @kbd{!} (when it is used as logical not, in an expression) with
24528 a space or a tab to prevent it from being expanded.  The readline
24529 history facilities do not attempt substitution on the strings
24530 @kbd{!=} and @kbd{!(}, even when history expansion is enabled.
24531
24532 The commands to control history expansion are:
24533
24534 @table @code
24535 @item set history expansion on
24536 @itemx set history expansion
24537 @kindex set history expansion
24538 Enable history expansion.  History expansion is off by default.
24539
24540 @item set history expansion off
24541 Disable history expansion.
24542
24543 @c @group
24544 @kindex show history
24545 @item show history
24546 @itemx show history filename
24547 @itemx show history save
24548 @itemx show history size
24549 @itemx show history expansion
24550 These commands display the state of the @value{GDBN} history parameters.
24551 @code{show history} by itself displays all four states.
24552 @c @end group
24553 @end table
24554
24555 @table @code
24556 @kindex show commands
24557 @cindex show last commands
24558 @cindex display command history
24559 @item show commands
24560 Display the last ten commands in the command history.
24561
24562 @item show commands @var{n}
24563 Print ten commands centered on command number @var{n}.
24564
24565 @item show commands +
24566 Print ten commands just after the commands last printed.
24567 @end table
24568
24569 @node Screen Size
24570 @section Screen Size
24571 @cindex size of screen
24572 @cindex screen size
24573 @cindex pagination
24574 @cindex page size
24575 @cindex pauses in output
24576
24577 Certain commands to @value{GDBN} may produce large amounts of
24578 information output to the screen.  To help you read all of it,
24579 @value{GDBN} pauses and asks you for input at the end of each page of
24580 output.  Type @key{RET} when you want to see one more page of output,
24581 @kbd{q} to discard the remaining output, or @kbd{c} to continue
24582 without paging for the rest of the current command.  Also, the screen
24583 width setting determines when to wrap lines of output.  Depending on
24584 what is being printed, @value{GDBN} tries to break the line at a
24585 readable place, rather than simply letting it overflow onto the
24586 following line.
24587
24588 Normally @value{GDBN} knows the size of the screen from the terminal
24589 driver software.  For example, on Unix @value{GDBN} uses the termcap data base
24590 together with the value of the @code{TERM} environment variable and the
24591 @code{stty rows} and @code{stty cols} settings.  If this is not correct,
24592 you can override it with the @code{set height} and @code{set
24593 width} commands:
24594
24595 @table @code
24596 @kindex set height
24597 @kindex set width
24598 @kindex show width
24599 @kindex show height
24600 @item set height @var{lpp}
24601 @itemx set height unlimited
24602 @itemx show height
24603 @itemx set width @var{cpl}
24604 @itemx set width unlimited
24605 @itemx show width
24606 These @code{set} commands specify a screen height of @var{lpp} lines and
24607 a screen width of @var{cpl} characters.  The associated @code{show}
24608 commands display the current settings.
24609
24610 If you specify a height of either @code{unlimited} or zero lines,
24611 @value{GDBN} does not pause during output no matter how long the
24612 output is.  This is useful if output is to a file or to an editor
24613 buffer.
24614
24615 Likewise, you can specify @samp{set width unlimited} or @samp{set
24616 width 0} to prevent @value{GDBN} from wrapping its output.
24617
24618 @item set pagination on
24619 @itemx set pagination off
24620 @kindex set pagination
24621 Turn the output pagination on or off; the default is on.  Turning
24622 pagination off is the alternative to @code{set height unlimited}.  Note that
24623 running @value{GDBN} with the @option{--batch} option (@pxref{Mode
24624 Options, -batch}) also automatically disables pagination.
24625
24626 @item show pagination
24627 @kindex show pagination
24628 Show the current pagination mode.
24629 @end table
24630
24631 @node Output Styling
24632 @section Output Styling
24633 @cindex styling
24634 @cindex colors
24635
24636 @kindex set style
24637 @kindex show style
24638 @value{GDBN} can style its output on a capable terminal.  This is
24639 enabled by default on most systems, but disabled by default when in
24640 batch mode (@pxref{Mode Options}).  Various style settings are available;
24641 and styles can also be disabled entirely.
24642
24643 @table @code
24644 @item set style enabled @samp{on|off}
24645 Enable or disable all styling.  The default is host-dependent, with
24646 most hosts defaulting to @samp{on}.
24647
24648 @item show style enabled
24649 Show the current state of styling.
24650
24651 @item set style sources @samp{on|off}
24652 Enable or disable source code styling.  This affects whether source
24653 code, such as the output of the @code{list} command, is styled.  Note
24654 that source styling only works if styling in general is enabled, and
24655 if @value{GDBN} was linked with the GNU Source Highlight library.  The
24656 default is @samp{on}.
24657
24658 @item show style sources
24659 Show the current state of source code styling.
24660 @end table
24661
24662 Subcommands of @code{set style} control specific forms of styling.
24663 These subcommands all follow the same pattern: each style-able object
24664 can be styled with a foreground color, a background color, and an
24665 intensity.
24666
24667 For example, the style of file names can be controlled using the
24668 @code{set style filename} group of commands:
24669
24670 @table @code
24671 @item set style filename background @var{color}
24672 Set the background to @var{color}.  Valid colors are @samp{none}
24673 (meaning the terminal's default color), @samp{black}, @samp{red},
24674 @samp{green}, @samp{yellow}, @samp{blue}, @samp{magenta}, @samp{cyan},
24675 and@samp{white}.
24676
24677 @item set style filename foreground @var{color}
24678 Set the foreground to @var{color}.  Valid colors are @samp{none}
24679 (meaning the terminal's default color), @samp{black}, @samp{red},
24680 @samp{green}, @samp{yellow}, @samp{blue}, @samp{magenta}, @samp{cyan},
24681 and@samp{white}.
24682
24683 @item set style filename intensity @var{value}
24684 Set the intensity to @var{value}.  Valid intensities are @samp{normal}
24685 (the default), @samp{bold}, and @samp{dim}.
24686 @end table
24687
24688 The style-able objects are:
24689 @table @code
24690 @item filename
24691 Control the styling of file names.  By default, this style's
24692 foreground color is green.
24693
24694 @item function
24695 Control the styling of function names.  These are managed with the
24696 @code{set style function} family of commands.  By default, this
24697 style's foreground color is yellow.
24698
24699 @item variable
24700 Control the styling of variable names.  These are managed with the
24701 @code{set style variable} family of commands.  By default, this style's
24702 foreground color is cyan.
24703
24704 @item address
24705 Control the styling of addresses.  These are managed with the
24706 @code{set style address} family of commands.  By default, this style's
24707 foreground color is blue.
24708 @end table
24709
24710 @node Numbers
24711 @section Numbers
24712 @cindex number representation
24713 @cindex entering numbers
24714
24715 You can always enter numbers in octal, decimal, or hexadecimal in
24716 @value{GDBN} by the usual conventions: octal numbers begin with
24717 @samp{0}, decimal numbers end with @samp{.}, and hexadecimal numbers
24718 begin with @samp{0x}.  Numbers that neither begin with @samp{0} or
24719 @samp{0x}, nor end with a @samp{.} are, by default, entered in base
24720 10; likewise, the default display for numbers---when no particular
24721 format is specified---is base 10.  You can change the default base for
24722 both input and output with the commands described below.
24723
24724 @table @code
24725 @kindex set input-radix
24726 @item set input-radix @var{base}
24727 Set the default base for numeric input.  Supported choices
24728 for @var{base} are decimal 8, 10, or 16.  The base must itself be
24729 specified either unambiguously or using the current input radix; for
24730 example, any of
24731
24732 @smallexample
24733 set input-radix 012
24734 set input-radix 10.
24735 set input-radix 0xa
24736 @end smallexample
24737
24738 @noindent
24739 sets the input base to decimal.  On the other hand, @samp{set input-radix 10}
24740 leaves the input radix unchanged, no matter what it was, since
24741 @samp{10}, being without any leading or trailing signs of its base, is
24742 interpreted in the current radix.  Thus, if the current radix is 16,
24743 @samp{10} is interpreted in hex, i.e.@: as 16 decimal, which doesn't
24744 change the radix.
24745
24746 @kindex set output-radix
24747 @item set output-radix @var{base}
24748 Set the default base for numeric display.  Supported choices
24749 for @var{base} are decimal 8, 10, or 16.  The base must itself be
24750 specified either unambiguously or using the current input radix.
24751
24752 @kindex show input-radix
24753 @item show input-radix
24754 Display the current default base for numeric input.
24755
24756 @kindex show output-radix
24757 @item show output-radix
24758 Display the current default base for numeric display.
24759
24760 @item set radix @r{[}@var{base}@r{]}
24761 @itemx show radix
24762 @kindex set radix
24763 @kindex show radix
24764 These commands set and show the default base for both input and output
24765 of numbers.  @code{set radix} sets the radix of input and output to
24766 the same base; without an argument, it resets the radix back to its
24767 default value of 10.
24768
24769 @end table
24770
24771 @node ABI
24772 @section Configuring the Current ABI
24773
24774 @value{GDBN} can determine the @dfn{ABI} (Application Binary Interface) of your
24775 application automatically.  However, sometimes you need to override its
24776 conclusions.  Use these commands to manage @value{GDBN}'s view of the
24777 current ABI.
24778
24779 @cindex OS ABI
24780 @kindex set osabi
24781 @kindex show osabi
24782 @cindex Newlib OS ABI and its influence on the longjmp handling
24783
24784 One @value{GDBN} configuration can debug binaries for multiple operating
24785 system targets, either via remote debugging or native emulation.
24786 @value{GDBN} will autodetect the @dfn{OS ABI} (Operating System ABI) in use,
24787 but you can override its conclusion using the @code{set osabi} command.
24788 One example where this is useful is in debugging of binaries which use
24789 an alternate C library (e.g.@: @sc{uClibc} for @sc{gnu}/Linux) which does
24790 not have the same identifying marks that the standard C library for your
24791 platform provides.
24792
24793 When @value{GDBN} is debugging the AArch64 architecture, it provides a
24794 ``Newlib'' OS ABI.  This is useful for handling @code{setjmp} and
24795 @code{longjmp} when debugging binaries that use the @sc{newlib} C library.
24796 The ``Newlib'' OS ABI can be selected by @code{set osabi Newlib}.
24797
24798 @table @code
24799 @item show osabi
24800 Show the OS ABI currently in use.
24801
24802 @item set osabi
24803 With no argument, show the list of registered available OS ABI's.
24804
24805 @item set osabi @var{abi}
24806 Set the current OS ABI to @var{abi}.
24807 @end table
24808
24809 @cindex float promotion
24810
24811 Generally, the way that an argument of type @code{float} is passed to a
24812 function depends on whether the function is prototyped.  For a prototyped
24813 (i.e.@: ANSI/ISO style) function, @code{float} arguments are passed unchanged,
24814 according to the architecture's convention for @code{float}.  For unprototyped
24815 (i.e.@: K&R style) functions, @code{float} arguments are first promoted to type
24816 @code{double} and then passed.
24817
24818 Unfortunately, some forms of debug information do not reliably indicate whether
24819 a function is prototyped.  If @value{GDBN} calls a function that is not marked
24820 as prototyped, it consults @kbd{set coerce-float-to-double}.
24821
24822 @table @code
24823 @kindex set coerce-float-to-double
24824 @item set coerce-float-to-double
24825 @itemx set coerce-float-to-double on
24826 Arguments of type @code{float} will be promoted to @code{double} when passed
24827 to an unprototyped function.  This is the default setting.
24828
24829 @item set coerce-float-to-double off
24830 Arguments of type @code{float} will be passed directly to unprototyped
24831 functions.
24832
24833 @kindex show coerce-float-to-double
24834 @item show coerce-float-to-double
24835 Show the current setting of promoting @code{float} to @code{double}.
24836 @end table
24837
24838 @kindex set cp-abi
24839 @kindex show cp-abi
24840 @value{GDBN} needs to know the ABI used for your program's C@t{++}
24841 objects.  The correct C@t{++} ABI depends on which C@t{++} compiler was
24842 used to build your application.  @value{GDBN} only fully supports
24843 programs with a single C@t{++} ABI; if your program contains code using
24844 multiple C@t{++} ABI's or if @value{GDBN} can not identify your
24845 program's ABI correctly, you can tell @value{GDBN} which ABI to use.
24846 Currently supported ABI's include ``gnu-v2'', for @code{g++} versions
24847 before 3.0, ``gnu-v3'', for @code{g++} versions 3.0 and later, and
24848 ``hpaCC'' for the HP ANSI C@t{++} compiler.  Other C@t{++} compilers may
24849 use the ``gnu-v2'' or ``gnu-v3'' ABI's as well.  The default setting is
24850 ``auto''.
24851
24852 @table @code
24853 @item show cp-abi
24854 Show the C@t{++} ABI currently in use.
24855
24856 @item set cp-abi
24857 With no argument, show the list of supported C@t{++} ABI's.
24858
24859 @item set cp-abi @var{abi}
24860 @itemx set cp-abi auto
24861 Set the current C@t{++} ABI to @var{abi}, or return to automatic detection.
24862 @end table
24863
24864 @node Auto-loading
24865 @section Automatically loading associated files
24866 @cindex auto-loading
24867
24868 @value{GDBN} sometimes reads files with commands and settings automatically,
24869 without being explicitly told so by the user.  We call this feature
24870 @dfn{auto-loading}.  While auto-loading is useful for automatically adapting
24871 @value{GDBN} to the needs of your project, it can sometimes produce unexpected
24872 results or introduce security risks (e.g., if the file comes from untrusted
24873 sources).
24874
24875 @menu
24876 * Init File in the Current Directory:: @samp{set/show/info auto-load local-gdbinit}
24877 * libthread_db.so.1 file::             @samp{set/show/info auto-load libthread-db}
24878
24879 * Auto-loading safe path::             @samp{set/show/info auto-load safe-path}
24880 * Auto-loading verbose mode::          @samp{set/show debug auto-load}
24881 @end menu
24882
24883 There are various kinds of files @value{GDBN} can automatically load.
24884 In addition to these files, @value{GDBN} supports auto-loading code written
24885 in various extension languages.  @xref{Auto-loading extensions}.
24886
24887 Note that loading of these associated files (including the local @file{.gdbinit}
24888 file) requires accordingly configured @code{auto-load safe-path}
24889 (@pxref{Auto-loading safe path}).
24890
24891 For these reasons, @value{GDBN} includes commands and options to let you
24892 control when to auto-load files and which files should be auto-loaded.
24893
24894 @table @code
24895 @anchor{set auto-load off}
24896 @kindex set auto-load off
24897 @item set auto-load off
24898 Globally disable loading of all auto-loaded files.
24899 You may want to use this command with the @samp{-iex} option
24900 (@pxref{Option -init-eval-command}) such as:
24901 @smallexample
24902 $ @kbd{gdb -iex "set auto-load off" untrusted-executable corefile}
24903 @end smallexample
24904
24905 Be aware that system init file (@pxref{System-wide configuration})
24906 and init files from your home directory (@pxref{Home Directory Init File})
24907 still get read (as they come from generally trusted directories).
24908 To prevent @value{GDBN} from auto-loading even those init files, use the
24909 @option{-nx} option (@pxref{Mode Options}), in addition to
24910 @code{set auto-load no}.
24911
24912 @anchor{show auto-load}
24913 @kindex show auto-load
24914 @item show auto-load
24915 Show whether auto-loading of each specific @samp{auto-load} file(s) is enabled
24916 or disabled.
24917
24918 @smallexample
24919 (gdb) show auto-load
24920 gdb-scripts:  Auto-loading of canned sequences of commands scripts is on.
24921 libthread-db:  Auto-loading of inferior specific libthread_db is on.
24922 local-gdbinit:  Auto-loading of .gdbinit script from current directory
24923                 is on.
24924 python-scripts:  Auto-loading of Python scripts is on.
24925 safe-path:  List of directories from which it is safe to auto-load files
24926             is $debugdir:$datadir/auto-load.
24927 scripts-directory:  List of directories from which to load auto-loaded scripts
24928                     is $debugdir:$datadir/auto-load.
24929 @end smallexample
24930
24931 @anchor{info auto-load}
24932 @kindex info auto-load
24933 @item info auto-load
24934 Print whether each specific @samp{auto-load} file(s) have been auto-loaded or
24935 not.
24936
24937 @smallexample
24938 (gdb) info auto-load
24939 gdb-scripts:
24940 Loaded  Script
24941 Yes     /home/user/gdb/gdb-gdb.gdb
24942 libthread-db:  No auto-loaded libthread-db.
24943 local-gdbinit:  Local .gdbinit file "/home/user/gdb/.gdbinit" has been
24944                 loaded.
24945 python-scripts:
24946 Loaded  Script
24947 Yes     /home/user/gdb/gdb-gdb.py
24948 @end smallexample
24949 @end table
24950
24951 These are @value{GDBN} control commands for the auto-loading:
24952
24953 @multitable @columnfractions .5 .5
24954 @item @xref{set auto-load off}.
24955 @tab Disable auto-loading globally.
24956 @item @xref{show auto-load}.
24957 @tab Show setting of all kinds of files.
24958 @item @xref{info auto-load}.
24959 @tab Show state of all kinds of files.
24960 @item @xref{set auto-load gdb-scripts}.
24961 @tab Control for @value{GDBN} command scripts.
24962 @item @xref{show auto-load gdb-scripts}.
24963 @tab Show setting of @value{GDBN} command scripts.
24964 @item @xref{info auto-load gdb-scripts}.
24965 @tab Show state of @value{GDBN} command scripts.
24966 @item @xref{set auto-load python-scripts}.
24967 @tab Control for @value{GDBN} Python scripts.
24968 @item @xref{show auto-load python-scripts}.
24969 @tab Show setting of @value{GDBN} Python scripts.
24970 @item @xref{info auto-load python-scripts}.
24971 @tab Show state of @value{GDBN} Python scripts.
24972 @item @xref{set auto-load guile-scripts}.
24973 @tab Control for @value{GDBN} Guile scripts.
24974 @item @xref{show auto-load guile-scripts}.
24975 @tab Show setting of @value{GDBN} Guile scripts.
24976 @item @xref{info auto-load guile-scripts}.
24977 @tab Show state of @value{GDBN} Guile scripts.
24978 @item @xref{set auto-load scripts-directory}.
24979 @tab Control for @value{GDBN} auto-loaded scripts location.
24980 @item @xref{show auto-load scripts-directory}.
24981 @tab Show @value{GDBN} auto-loaded scripts location.
24982 @item @xref{add-auto-load-scripts-directory}.
24983 @tab Add directory for auto-loaded scripts location list.
24984 @item @xref{set auto-load local-gdbinit}.
24985 @tab Control for init file in the current directory.
24986 @item @xref{show auto-load local-gdbinit}.
24987 @tab Show setting of init file in the current directory.
24988 @item @xref{info auto-load local-gdbinit}.
24989 @tab Show state of init file in the current directory.
24990 @item @xref{set auto-load libthread-db}.
24991 @tab Control for thread debugging library.
24992 @item @xref{show auto-load libthread-db}.
24993 @tab Show setting of thread debugging library.
24994 @item @xref{info auto-load libthread-db}.
24995 @tab Show state of thread debugging library.
24996 @item @xref{set auto-load safe-path}.
24997 @tab Control directories trusted for automatic loading.
24998 @item @xref{show auto-load safe-path}.
24999 @tab Show directories trusted for automatic loading.
25000 @item @xref{add-auto-load-safe-path}.
25001 @tab Add directory trusted for automatic loading.
25002 @end multitable
25003
25004 @node Init File in the Current Directory
25005 @subsection Automatically loading init file in the current directory
25006 @cindex auto-loading init file in the current directory
25007
25008 By default, @value{GDBN} reads and executes the canned sequences of commands
25009 from init file (if any) in the current working directory,
25010 see @ref{Init File in the Current Directory during Startup}.
25011
25012 Note that loading of this local @file{.gdbinit} file also requires accordingly
25013 configured @code{auto-load safe-path} (@pxref{Auto-loading safe path}).
25014
25015 @table @code
25016 @anchor{set auto-load local-gdbinit}
25017 @kindex set auto-load local-gdbinit
25018 @item set auto-load local-gdbinit [on|off]
25019 Enable or disable the auto-loading of canned sequences of commands
25020 (@pxref{Sequences}) found in init file in the current directory.
25021
25022 @anchor{show auto-load local-gdbinit}
25023 @kindex show auto-load local-gdbinit
25024 @item show auto-load local-gdbinit
25025 Show whether auto-loading of canned sequences of commands from init file in the
25026 current directory is enabled or disabled.
25027
25028 @anchor{info auto-load local-gdbinit}
25029 @kindex info auto-load local-gdbinit
25030 @item info auto-load local-gdbinit
25031 Print whether canned sequences of commands from init file in the
25032 current directory have been auto-loaded.
25033 @end table
25034
25035 @node libthread_db.so.1 file
25036 @subsection Automatically loading thread debugging library
25037 @cindex auto-loading libthread_db.so.1
25038
25039 This feature is currently present only on @sc{gnu}/Linux native hosts.
25040
25041 @value{GDBN} reads in some cases thread debugging library from places specific
25042 to the inferior (@pxref{set libthread-db-search-path}).
25043
25044 The special @samp{libthread-db-search-path} entry @samp{$sdir} is processed
25045 without checking this @samp{set auto-load libthread-db} switch as system
25046 libraries have to be trusted in general.  In all other cases of
25047 @samp{libthread-db-search-path} entries @value{GDBN} checks first if @samp{set
25048 auto-load libthread-db} is enabled before trying to open such thread debugging
25049 library.
25050
25051 Note that loading of this debugging library also requires accordingly configured
25052 @code{auto-load safe-path} (@pxref{Auto-loading safe path}).
25053
25054 @table @code
25055 @anchor{set auto-load libthread-db}
25056 @kindex set auto-load libthread-db
25057 @item set auto-load libthread-db [on|off]
25058 Enable or disable the auto-loading of inferior specific thread debugging library.
25059
25060 @anchor{show auto-load libthread-db}
25061 @kindex show auto-load libthread-db
25062 @item show auto-load libthread-db
25063 Show whether auto-loading of inferior specific thread debugging library is
25064 enabled or disabled.
25065
25066 @anchor{info auto-load libthread-db}
25067 @kindex info auto-load libthread-db
25068 @item info auto-load libthread-db
25069 Print the list of all loaded inferior specific thread debugging libraries and
25070 for each such library print list of inferior @var{pid}s using it.
25071 @end table
25072
25073 @node Auto-loading safe path
25074 @subsection Security restriction for auto-loading
25075 @cindex auto-loading safe-path
25076
25077 As the files of inferior can come from untrusted source (such as submitted by
25078 an application user) @value{GDBN} does not always load any files automatically.
25079 @value{GDBN} provides the @samp{set auto-load safe-path} setting to list
25080 directories trusted for loading files not explicitly requested by user.
25081 Each directory can also be a shell wildcard pattern.
25082
25083 If the path is not set properly you will see a warning and the file will not
25084 get loaded:
25085
25086 @smallexample
25087 $ ./gdb -q ./gdb
25088 Reading symbols from /home/user/gdb/gdb...done.
25089 warning: File "/home/user/gdb/gdb-gdb.gdb" auto-loading has been
25090          declined by your `auto-load safe-path' set
25091          to "$debugdir:$datadir/auto-load".
25092 warning: File "/home/user/gdb/gdb-gdb.py" auto-loading has been
25093          declined by your `auto-load safe-path' set
25094          to "$debugdir:$datadir/auto-load".
25095 @end smallexample
25096
25097 @noindent
25098 To instruct @value{GDBN} to go ahead and use the init files anyway,
25099 invoke @value{GDBN} like this:
25100
25101 @smallexample
25102 $ gdb -q -iex "set auto-load safe-path /home/user/gdb" ./gdb
25103 @end smallexample
25104
25105 The list of trusted directories is controlled by the following commands:
25106
25107 @table @code
25108 @anchor{set auto-load safe-path}
25109 @kindex set auto-load safe-path
25110 @item set auto-load safe-path @r{[}@var{directories}@r{]}
25111 Set the list of directories (and their subdirectories) trusted for automatic
25112 loading and execution of scripts.  You can also enter a specific trusted file.
25113 Each directory can also be a shell wildcard pattern; wildcards do not match
25114 directory separator - see @code{FNM_PATHNAME} for system function @code{fnmatch}
25115 (@pxref{Wildcard Matching, fnmatch, , libc, GNU C Library Reference Manual}).
25116 If you omit @var{directories}, @samp{auto-load safe-path} will be reset to
25117 its default value as specified during @value{GDBN} compilation.
25118
25119 The list of directories uses path separator (@samp{:} on GNU and Unix
25120 systems, @samp{;} on MS-Windows and MS-DOS) to separate directories, similarly
25121 to the @env{PATH} environment variable.
25122
25123 @anchor{show auto-load safe-path}
25124 @kindex show auto-load safe-path
25125 @item show auto-load safe-path
25126 Show the list of directories trusted for automatic loading and execution of
25127 scripts.
25128
25129 @anchor{add-auto-load-safe-path}
25130 @kindex add-auto-load-safe-path
25131 @item add-auto-load-safe-path
25132 Add an entry (or list of entries) to the list of directories trusted for
25133 automatic loading and execution of scripts.  Multiple entries may be delimited
25134 by the host platform path separator in use.
25135 @end table
25136
25137 This variable defaults to what @code{--with-auto-load-dir} has been configured
25138 to (@pxref{with-auto-load-dir}).  @file{$debugdir} and @file{$datadir}
25139 substitution applies the same as for @ref{set auto-load scripts-directory}.
25140 The default @code{set auto-load safe-path} value can be also overriden by
25141 @value{GDBN} configuration option @option{--with-auto-load-safe-path}.
25142
25143 Setting this variable to @file{/} disables this security protection,
25144 corresponding @value{GDBN} configuration option is
25145 @option{--without-auto-load-safe-path}.
25146 This variable is supposed to be set to the system directories writable by the
25147 system superuser only.  Users can add their source directories in init files in
25148 their home directories (@pxref{Home Directory Init File}).  See also deprecated
25149 init file in the current directory
25150 (@pxref{Init File in the Current Directory during Startup}).
25151
25152 To force @value{GDBN} to load the files it declined to load in the previous
25153 example, you could use one of the following ways:
25154
25155 @table @asis
25156 @item @file{~/.gdbinit}: @samp{add-auto-load-safe-path ~/src/gdb}
25157 Specify this trusted directory (or a file) as additional component of the list.
25158 You have to specify also any existing directories displayed by
25159 by @samp{show auto-load safe-path} (such as @samp{/usr:/bin} in this example).
25160
25161 @item @kbd{gdb -iex "set auto-load safe-path /usr:/bin:~/src/gdb" @dots{}}
25162 Specify this directory as in the previous case but just for a single
25163 @value{GDBN} session.
25164
25165 @item @kbd{gdb -iex "set auto-load safe-path /" @dots{}}
25166 Disable auto-loading safety for a single @value{GDBN} session.
25167 This assumes all the files you debug during this @value{GDBN} session will come
25168 from trusted sources.
25169
25170 @item @kbd{./configure --without-auto-load-safe-path}
25171 During compilation of @value{GDBN} you may disable any auto-loading safety.
25172 This assumes all the files you will ever debug with this @value{GDBN} come from
25173 trusted sources.
25174 @end table
25175
25176 On the other hand you can also explicitly forbid automatic files loading which
25177 also suppresses any such warning messages:
25178
25179 @table @asis
25180 @item @kbd{gdb -iex "set auto-load no" @dots{}}
25181 You can use @value{GDBN} command-line option for a single @value{GDBN} session.
25182
25183 @item @file{~/.gdbinit}: @samp{set auto-load no}
25184 Disable auto-loading globally for the user
25185 (@pxref{Home Directory Init File}).  While it is improbable, you could also
25186 use system init file instead (@pxref{System-wide configuration}).
25187 @end table
25188
25189 This setting applies to the file names as entered by user.  If no entry matches
25190 @value{GDBN} tries as a last resort to also resolve all the file names into
25191 their canonical form (typically resolving symbolic links) and compare the
25192 entries again.  @value{GDBN} already canonicalizes most of the filenames on its
25193 own before starting the comparison so a canonical form of directories is
25194 recommended to be entered.
25195
25196 @node Auto-loading verbose mode
25197 @subsection Displaying files tried for auto-load
25198 @cindex auto-loading verbose mode
25199
25200 For better visibility of all the file locations where you can place scripts to
25201 be auto-loaded with inferior --- or to protect yourself against accidental
25202 execution of untrusted scripts --- @value{GDBN} provides a feature for printing
25203 all the files attempted to be loaded.  Both existing and non-existing files may
25204 be printed.
25205
25206 For example the list of directories from which it is safe to auto-load files
25207 (@pxref{Auto-loading safe path}) applies also to canonicalized filenames which
25208 may not be too obvious while setting it up.
25209
25210 @smallexample
25211 (gdb) set debug auto-load on
25212 (gdb) file ~/src/t/true
25213 auto-load: Loading canned sequences of commands script "/tmp/true-gdb.gdb"
25214            for objfile "/tmp/true".
25215 auto-load: Updating directories of "/usr:/opt".
25216 auto-load: Using directory "/usr".
25217 auto-load: Using directory "/opt".
25218 warning: File "/tmp/true-gdb.gdb" auto-loading has been declined
25219          by your `auto-load safe-path' set to "/usr:/opt".
25220 @end smallexample
25221
25222 @table @code
25223 @anchor{set debug auto-load}
25224 @kindex set debug auto-load
25225 @item set debug auto-load [on|off]
25226 Set whether to print the filenames attempted to be auto-loaded.
25227
25228 @anchor{show debug auto-load}
25229 @kindex show debug auto-load
25230 @item show debug auto-load
25231 Show whether printing of the filenames attempted to be auto-loaded is turned
25232 on or off.
25233 @end table
25234
25235 @node Messages/Warnings
25236 @section Optional Warnings and Messages
25237
25238 @cindex verbose operation
25239 @cindex optional warnings
25240 By default, @value{GDBN} is silent about its inner workings.  If you are
25241 running on a slow machine, you may want to use the @code{set verbose}
25242 command.  This makes @value{GDBN} tell you when it does a lengthy
25243 internal operation, so you will not think it has crashed.
25244
25245 Currently, the messages controlled by @code{set verbose} are those
25246 which announce that the symbol table for a source file is being read;
25247 see @code{symbol-file} in @ref{Files, ,Commands to Specify Files}.
25248
25249 @table @code
25250 @kindex set verbose
25251 @item set verbose on
25252 Enables @value{GDBN} output of certain informational messages.
25253
25254 @item set verbose off
25255 Disables @value{GDBN} output of certain informational messages.
25256
25257 @kindex show verbose
25258 @item show verbose
25259 Displays whether @code{set verbose} is on or off.
25260 @end table
25261
25262 By default, if @value{GDBN} encounters bugs in the symbol table of an
25263 object file, it is silent; but if you are debugging a compiler, you may
25264 find this information useful (@pxref{Symbol Errors, ,Errors Reading
25265 Symbol Files}).
25266
25267 @table @code
25268
25269 @kindex set complaints
25270 @item set complaints @var{limit}
25271 Permits @value{GDBN} to output @var{limit} complaints about each type of
25272 unusual symbols before becoming silent about the problem.  Set
25273 @var{limit} to zero to suppress all complaints; set it to a large number
25274 to prevent complaints from being suppressed.
25275
25276 @kindex show complaints
25277 @item show complaints
25278 Displays how many symbol complaints @value{GDBN} is permitted to produce.
25279
25280 @end table
25281
25282 @anchor{confirmation requests}
25283 By default, @value{GDBN} is cautious, and asks what sometimes seems to be a
25284 lot of stupid questions to confirm certain commands.  For example, if
25285 you try to run a program which is already running:
25286
25287 @smallexample
25288 (@value{GDBP}) run
25289 The program being debugged has been started already.
25290 Start it from the beginning? (y or n)
25291 @end smallexample
25292
25293 If you are willing to unflinchingly face the consequences of your own
25294 commands, you can disable this ``feature'':
25295
25296 @table @code
25297
25298 @kindex set confirm
25299 @cindex flinching
25300 @cindex confirmation
25301 @cindex stupid questions
25302 @item set confirm off
25303 Disables confirmation requests.  Note that running @value{GDBN} with
25304 the @option{--batch} option (@pxref{Mode Options, -batch}) also
25305 automatically disables confirmation requests.
25306
25307 @item set confirm on
25308 Enables confirmation requests (the default).
25309
25310 @kindex show confirm
25311 @item show confirm
25312 Displays state of confirmation requests.
25313
25314 @end table
25315
25316 @cindex command tracing
25317 If you need to debug user-defined commands or sourced files you may find it
25318 useful to enable @dfn{command tracing}.  In this mode each command will be
25319 printed as it is executed, prefixed with one or more @samp{+} symbols, the
25320 quantity denoting the call depth of each command.
25321
25322 @table @code
25323 @kindex set trace-commands
25324 @cindex command scripts, debugging
25325 @item set trace-commands on
25326 Enable command tracing.
25327 @item set trace-commands off
25328 Disable command tracing.
25329 @item show trace-commands
25330 Display the current state of command tracing.
25331 @end table
25332
25333 @node Debugging Output
25334 @section Optional Messages about Internal Happenings
25335 @cindex optional debugging messages
25336
25337 @value{GDBN} has commands that enable optional debugging messages from
25338 various @value{GDBN} subsystems; normally these commands are of
25339 interest to @value{GDBN} maintainers, or when reporting a bug.  This
25340 section documents those commands.
25341
25342 @table @code
25343 @kindex set exec-done-display
25344 @item set exec-done-display
25345 Turns on or off the notification of asynchronous commands'
25346 completion.  When on, @value{GDBN} will print a message when an
25347 asynchronous command finishes its execution.  The default is off.
25348 @kindex show exec-done-display
25349 @item show exec-done-display
25350 Displays the current setting of asynchronous command completion
25351 notification.
25352 @kindex set debug
25353 @cindex ARM AArch64
25354 @item set debug aarch64
25355 Turns on or off display of debugging messages related to ARM AArch64.
25356 The default is off.
25357 @kindex show debug
25358 @item show debug aarch64
25359 Displays the current state of displaying debugging messages related to
25360 ARM AArch64.
25361 @cindex gdbarch debugging info
25362 @cindex architecture debugging info
25363 @item set debug arch
25364 Turns on or off display of gdbarch debugging info.  The default is off
25365 @item show debug arch
25366 Displays the current state of displaying gdbarch debugging info.
25367 @item set debug aix-solib
25368 @cindex AIX shared library debugging
25369 Control display of debugging messages from the AIX shared library
25370 support module.  The default is off.
25371 @item show debug aix-thread
25372 Show the current state of displaying AIX shared library debugging messages.
25373 @item set debug aix-thread
25374 @cindex AIX threads
25375 Display debugging messages about inner workings of the AIX thread
25376 module.
25377 @item show debug aix-thread
25378 Show the current state of AIX thread debugging info display.
25379 @item set debug check-physname
25380 @cindex physname
25381 Check the results of the ``physname'' computation.  When reading DWARF
25382 debugging information for C@t{++}, @value{GDBN} attempts to compute
25383 each entity's name.  @value{GDBN} can do this computation in two
25384 different ways, depending on exactly what information is present.
25385 When enabled, this setting causes @value{GDBN} to compute the names
25386 both ways and display any discrepancies.
25387 @item show debug check-physname
25388 Show the current state of ``physname'' checking.
25389 @item set debug coff-pe-read
25390 @cindex COFF/PE exported symbols
25391 Control display of debugging messages related to reading of COFF/PE
25392 exported symbols.  The default is off.
25393 @item show debug coff-pe-read
25394 Displays the current state of displaying debugging messages related to
25395 reading of COFF/PE exported symbols.
25396 @item set debug dwarf-die
25397 @cindex DWARF DIEs
25398 Dump DWARF DIEs after they are read in.
25399 The value is the number of nesting levels to print.
25400 A value of zero turns off the display.
25401 @item show debug dwarf-die
25402 Show the current state of DWARF DIE debugging.
25403 @item set debug dwarf-line
25404 @cindex DWARF Line Tables
25405 Turns on or off display of debugging messages related to reading
25406 DWARF line tables.  The default is 0 (off).
25407 A value of 1 provides basic information.
25408 A value greater than 1 provides more verbose information.
25409 @item show debug dwarf-line
25410 Show the current state of DWARF line table debugging.
25411 @item set debug dwarf-read
25412 @cindex DWARF Reading
25413 Turns on or off display of debugging messages related to reading
25414 DWARF debug info.  The default is 0 (off).
25415 A value of 1 provides basic information.
25416 A value greater than 1 provides more verbose information.
25417 @item show debug dwarf-read
25418 Show the current state of DWARF reader debugging.
25419 @item set debug displaced
25420 @cindex displaced stepping debugging info
25421 Turns on or off display of @value{GDBN} debugging info for the
25422 displaced stepping support.  The default is off.
25423 @item show debug displaced
25424 Displays the current state of displaying @value{GDBN} debugging info
25425 related to displaced stepping.
25426 @item set debug event
25427 @cindex event debugging info
25428 Turns on or off display of @value{GDBN} event debugging info.  The
25429 default is off.
25430 @item show debug event
25431 Displays the current state of displaying @value{GDBN} event debugging
25432 info.
25433 @item set debug expression
25434 @cindex expression debugging info
25435 Turns on or off display of debugging info about @value{GDBN}
25436 expression parsing.  The default is off.
25437 @item show debug expression
25438 Displays the current state of displaying debugging info about
25439 @value{GDBN} expression parsing.
25440 @item set debug fbsd-lwp
25441 @cindex FreeBSD LWP debug messages
25442 Turns on or off debugging messages from the FreeBSD LWP debug support.
25443 @item show debug fbsd-lwp
25444 Show the current state of FreeBSD LWP debugging messages.
25445 @item set debug fbsd-nat
25446 @cindex FreeBSD native target debug messages
25447 Turns on or off debugging messages from the FreeBSD native target.
25448 @item show debug fbsd-nat
25449 Show the current state of FreeBSD native target debugging messages.
25450 @item set debug frame
25451 @cindex frame debugging info
25452 Turns on or off display of @value{GDBN} frame debugging info.  The
25453 default is off.
25454 @item show debug frame
25455 Displays the current state of displaying @value{GDBN} frame debugging
25456 info.
25457 @item set debug gnu-nat
25458 @cindex @sc{gnu}/Hurd debug messages
25459 Turn on or off debugging messages from the @sc{gnu}/Hurd debug support.
25460 @item show debug gnu-nat
25461 Show the current state of @sc{gnu}/Hurd debugging messages.
25462 @item set debug infrun
25463 @cindex inferior debugging info
25464 Turns on or off display of @value{GDBN} debugging info for running the inferior.
25465 The default is off.  @file{infrun.c} contains GDB's runtime state machine used 
25466 for implementing operations such as single-stepping the inferior.
25467 @item show debug infrun
25468 Displays the current state of @value{GDBN} inferior debugging.
25469 @item set debug jit
25470 @cindex just-in-time compilation, debugging messages
25471 Turn on or off debugging messages from JIT debug support.
25472 @item show debug jit
25473 Displays the current state of @value{GDBN} JIT debugging.
25474 @item set debug lin-lwp
25475 @cindex @sc{gnu}/Linux LWP debug messages
25476 @cindex Linux lightweight processes
25477 Turn on or off debugging messages from the Linux LWP debug support.
25478 @item show debug lin-lwp
25479 Show the current state of Linux LWP debugging messages.
25480 @item set debug linux-namespaces
25481 @cindex @sc{gnu}/Linux namespaces debug messages
25482 Turn on or off debugging messages from the Linux namespaces debug support.
25483 @item show debug linux-namespaces
25484 Show the current state of Linux namespaces debugging messages.
25485 @item set debug mach-o
25486 @cindex Mach-O symbols processing
25487 Control display of debugging messages related to Mach-O symbols
25488 processing.  The default is off.
25489 @item show debug mach-o
25490 Displays the current state of displaying debugging messages related to
25491 reading of COFF/PE exported symbols.
25492 @item set debug notification
25493 @cindex remote async notification debugging info
25494 Turn on or off debugging messages about remote async notification.
25495 The default is off.
25496 @item show debug notification
25497 Displays the current state of remote async notification debugging messages.
25498 @item set debug observer
25499 @cindex observer debugging info
25500 Turns on or off display of @value{GDBN} observer debugging.  This
25501 includes info such as the notification of observable events.
25502 @item show debug observer
25503 Displays the current state of observer debugging.
25504 @item set debug overload
25505 @cindex C@t{++} overload debugging info
25506 Turns on or off display of @value{GDBN} C@t{++} overload debugging
25507 info. This includes info such as ranking of functions, etc.  The default
25508 is off.
25509 @item show debug overload
25510 Displays the current state of displaying @value{GDBN} C@t{++} overload
25511 debugging info.
25512 @cindex expression parser, debugging info
25513 @cindex debug expression parser
25514 @item set debug parser
25515 Turns on or off the display of expression parser debugging output.
25516 Internally, this sets the @code{yydebug} variable in the expression
25517 parser.  @xref{Tracing, , Tracing Your Parser, bison, Bison}, for
25518 details.  The default is off.
25519 @item show debug parser
25520 Show the current state of expression parser debugging.
25521 @cindex packets, reporting on stdout
25522 @cindex serial connections, debugging
25523 @cindex debug remote protocol
25524 @cindex remote protocol debugging
25525 @cindex display remote packets
25526 @item set debug remote
25527 Turns on or off display of reports on all packets sent back and forth across
25528 the serial line to the remote machine.  The info is printed on the
25529 @value{GDBN} standard output stream. The default is off.
25530 @item show debug remote
25531 Displays the state of display of remote packets.
25532
25533 @item set debug separate-debug-file
25534 Turns on or off display of debug output about separate debug file search.
25535 @item show debug separate-debug-file
25536 Displays the state of separate debug file search debug output.
25537
25538 @item set debug serial
25539 Turns on or off display of @value{GDBN} serial debugging info. The
25540 default is off.
25541 @item show debug serial
25542 Displays the current state of displaying @value{GDBN} serial debugging
25543 info.
25544 @item set debug solib-frv
25545 @cindex FR-V shared-library debugging
25546 Turn on or off debugging messages for FR-V shared-library code.
25547 @item show debug solib-frv
25548 Display the current state of FR-V shared-library code debugging
25549 messages.
25550 @item set debug symbol-lookup
25551 @cindex symbol lookup
25552 Turns on or off display of debugging messages related to symbol lookup.
25553 The default is 0 (off).
25554 A value of 1 provides basic information.
25555 A value greater than 1 provides more verbose information.
25556 @item show debug symbol-lookup
25557 Show the current state of symbol lookup debugging messages.
25558 @item set debug symfile
25559 @cindex symbol file functions
25560 Turns on or off display of debugging messages related to symbol file functions.
25561 The default is off.  @xref{Files}.
25562 @item show debug symfile
25563 Show the current state of symbol file debugging messages.
25564 @item set debug symtab-create
25565 @cindex symbol table creation
25566 Turns on or off display of debugging messages related to symbol table creation.
25567 The default is 0 (off).
25568 A value of 1 provides basic information.
25569 A value greater than 1 provides more verbose information.
25570 @item show debug symtab-create
25571 Show the current state of symbol table creation debugging.
25572 @item set debug target
25573 @cindex target debugging info
25574 Turns on or off display of @value{GDBN} target debugging info. This info
25575 includes what is going on at the target level of GDB, as it happens. The
25576 default is 0.  Set it to 1 to track events, and to 2 to also track the
25577 value of large memory transfers.
25578 @item show debug target
25579 Displays the current state of displaying @value{GDBN} target debugging
25580 info.
25581 @item set debug timestamp
25582 @cindex timestampping debugging info
25583 Turns on or off display of timestamps with @value{GDBN} debugging info.
25584 When enabled, seconds and microseconds are displayed before each debugging
25585 message.
25586 @item show debug timestamp
25587 Displays the current state of displaying timestamps with @value{GDBN}
25588 debugging info.
25589 @item set debug varobj
25590 @cindex variable object debugging info
25591 Turns on or off display of @value{GDBN} variable object debugging
25592 info. The default is off.
25593 @item show debug varobj
25594 Displays the current state of displaying @value{GDBN} variable object
25595 debugging info.
25596 @item set debug xml
25597 @cindex XML parser debugging
25598 Turn on or off debugging messages for built-in XML parsers.
25599 @item show debug xml
25600 Displays the current state of XML debugging messages.
25601 @end table
25602
25603 @node Other Misc Settings
25604 @section Other Miscellaneous Settings
25605 @cindex miscellaneous settings
25606
25607 @table @code
25608 @kindex set interactive-mode
25609 @item set interactive-mode
25610 If @code{on}, forces @value{GDBN} to assume that GDB was started
25611 in a terminal.  In practice, this means that @value{GDBN} should wait
25612 for the user to answer queries generated by commands entered at
25613 the command prompt.  If @code{off}, forces @value{GDBN} to operate
25614 in the opposite mode, and it uses the default answers to all queries.
25615 If @code{auto} (the default), @value{GDBN} tries to determine whether
25616 its standard input is a terminal, and works in interactive-mode if it
25617 is, non-interactively otherwise.
25618
25619 In the vast majority of cases, the debugger should be able to guess
25620 correctly which mode should be used.  But this setting can be useful
25621 in certain specific cases, such as running a MinGW @value{GDBN}
25622 inside a cygwin window.
25623
25624 @kindex show interactive-mode
25625 @item show interactive-mode
25626 Displays whether the debugger is operating in interactive mode or not.
25627 @end table
25628
25629 @node Extending GDB
25630 @chapter Extending @value{GDBN}
25631 @cindex extending GDB
25632
25633 @value{GDBN} provides several mechanisms for extension.
25634 @value{GDBN} also provides the ability to automatically load
25635 extensions when it reads a file for debugging.  This allows the
25636 user to automatically customize @value{GDBN} for the program
25637 being debugged.
25638
25639 @menu
25640 * Sequences::                Canned Sequences of @value{GDBN} Commands
25641 * Python::                   Extending @value{GDBN} using Python
25642 * Guile::                    Extending @value{GDBN} using Guile
25643 * Auto-loading extensions::  Automatically loading extensions
25644 * Multiple Extension Languages:: Working with multiple extension languages
25645 * Aliases::                  Creating new spellings of existing commands
25646 @end menu
25647
25648 To facilitate the use of extension languages, @value{GDBN} is capable
25649 of evaluating the contents of a file.  When doing so, @value{GDBN}
25650 can recognize which extension language is being used by looking at
25651 the filename extension.  Files with an unrecognized filename extension
25652 are always treated as a @value{GDBN} Command Files.
25653 @xref{Command Files,, Command files}.
25654
25655 You can control how @value{GDBN} evaluates these files with the following
25656 setting:
25657
25658 @table @code
25659 @kindex set script-extension
25660 @kindex show script-extension
25661 @item set script-extension off
25662 All scripts are always evaluated as @value{GDBN} Command Files.
25663
25664 @item set script-extension soft
25665 The debugger determines the scripting language based on filename
25666 extension.  If this scripting language is supported, @value{GDBN}
25667 evaluates the script using that language.  Otherwise, it evaluates
25668 the file as a @value{GDBN} Command File.
25669
25670 @item set script-extension strict
25671 The debugger determines the scripting language based on filename
25672 extension, and evaluates the script using that language.  If the
25673 language is not supported, then the evaluation fails.
25674
25675 @item show script-extension
25676 Display the current value of the @code{script-extension} option.
25677
25678 @end table
25679
25680 @node Sequences
25681 @section Canned Sequences of Commands
25682
25683 Aside from breakpoint commands (@pxref{Break Commands, ,Breakpoint
25684 Command Lists}), @value{GDBN} provides two ways to store sequences of
25685 commands for execution as a unit: user-defined commands and command
25686 files.
25687
25688 @menu
25689 * Define::             How to define your own commands
25690 * Hooks::              Hooks for user-defined commands
25691 * Command Files::      How to write scripts of commands to be stored in a file
25692 * Output::             Commands for controlled output
25693 * Auto-loading sequences::  Controlling auto-loaded command files
25694 @end menu
25695
25696 @node Define
25697 @subsection User-defined Commands
25698
25699 @cindex user-defined command
25700 @cindex arguments, to user-defined commands
25701 A @dfn{user-defined command} is a sequence of @value{GDBN} commands to
25702 which you assign a new name as a command.  This is done with the
25703 @code{define} command.  User commands may accept an unlimited number of arguments
25704 separated by whitespace.  Arguments are accessed within the user command
25705 via @code{$arg0@dots{}$argN}.  A trivial example:
25706
25707 @smallexample
25708 define adder
25709   print $arg0 + $arg1 + $arg2
25710 end
25711 @end smallexample
25712
25713 @noindent
25714 To execute the command use:
25715
25716 @smallexample
25717 adder 1 2 3
25718 @end smallexample
25719
25720 @noindent
25721 This defines the command @code{adder}, which prints the sum of
25722 its three arguments.  Note the arguments are text substitutions, so they may
25723 reference variables, use complex expressions, or even perform inferior
25724 functions calls.
25725
25726 @cindex argument count in user-defined commands
25727 @cindex how many arguments (user-defined commands)
25728 In addition, @code{$argc} may be used to find out how many arguments have
25729 been passed.
25730
25731 @smallexample
25732 define adder
25733   if $argc == 2
25734     print $arg0 + $arg1
25735   end
25736   if $argc == 3
25737     print $arg0 + $arg1 + $arg2
25738   end
25739 end
25740 @end smallexample
25741
25742 Combining with the @code{eval} command (@pxref{eval}) makes it easier
25743 to process a variable number of arguments:
25744
25745 @smallexample
25746 define adder
25747   set $i = 0
25748   set $sum = 0
25749   while $i < $argc
25750     eval "set $sum = $sum + $arg%d", $i
25751     set $i = $i + 1
25752   end
25753   print $sum
25754 end
25755 @end smallexample
25756
25757 @table @code
25758
25759 @kindex define
25760 @item define @var{commandname}
25761 Define a command named @var{commandname}.  If there is already a command
25762 by that name, you are asked to confirm that you want to redefine it.
25763 The argument @var{commandname} may be a bare command name consisting of letters,
25764 numbers, dashes, and underscores.  It may also start with any predefined
25765 prefix command.  For example, @samp{define target my-target} creates
25766 a user-defined @samp{target my-target} command.
25767
25768 The definition of the command is made up of other @value{GDBN} command lines,
25769 which are given following the @code{define} command.  The end of these
25770 commands is marked by a line containing @code{end}.
25771
25772 @kindex document
25773 @kindex end@r{ (user-defined commands)}
25774 @item document @var{commandname}
25775 Document the user-defined command @var{commandname}, so that it can be
25776 accessed by @code{help}.  The command @var{commandname} must already be
25777 defined.  This command reads lines of documentation just as @code{define}
25778 reads the lines of the command definition, ending with @code{end}.
25779 After the @code{document} command is finished, @code{help} on command
25780 @var{commandname} displays the documentation you have written.
25781
25782 You may use the @code{document} command again to change the
25783 documentation of a command.  Redefining the command with @code{define}
25784 does not change the documentation.
25785
25786 @kindex dont-repeat
25787 @cindex don't repeat command
25788 @item dont-repeat
25789 Used inside a user-defined command, this tells @value{GDBN} that this
25790 command should not be repeated when the user hits @key{RET}
25791 (@pxref{Command Syntax, repeat last command}).
25792
25793 @kindex help user-defined
25794 @item help user-defined
25795 List all user-defined commands and all python commands defined in class
25796 COMAND_USER.  The first line of the documentation or docstring is
25797 included (if any).
25798
25799 @kindex show user
25800 @item show user
25801 @itemx show user @var{commandname}
25802 Display the @value{GDBN} commands used to define @var{commandname} (but
25803 not its documentation).  If no @var{commandname} is given, display the
25804 definitions for all user-defined commands.
25805 This does not work for user-defined python commands.
25806
25807 @cindex infinite recursion in user-defined commands
25808 @kindex show max-user-call-depth
25809 @kindex set max-user-call-depth
25810 @item show max-user-call-depth
25811 @itemx set max-user-call-depth
25812 The value of @code{max-user-call-depth} controls how many recursion
25813 levels are allowed in user-defined commands before @value{GDBN} suspects an
25814 infinite recursion and aborts the command.
25815 This does not apply to user-defined python commands.
25816 @end table
25817
25818 In addition to the above commands, user-defined commands frequently
25819 use control flow commands, described in @ref{Command Files}.
25820
25821 When user-defined commands are executed, the
25822 commands of the definition are not printed.  An error in any command
25823 stops execution of the user-defined command.
25824
25825 If used interactively, commands that would ask for confirmation proceed
25826 without asking when used inside a user-defined command.  Many @value{GDBN}
25827 commands that normally print messages to say what they are doing omit the
25828 messages when used in a user-defined command.
25829
25830 @node Hooks
25831 @subsection User-defined Command Hooks
25832 @cindex command hooks
25833 @cindex hooks, for commands
25834 @cindex hooks, pre-command
25835
25836 @kindex hook
25837 You may define @dfn{hooks}, which are a special kind of user-defined
25838 command.  Whenever you run the command @samp{foo}, if the user-defined
25839 command @samp{hook-foo} exists, it is executed (with no arguments)
25840 before that command.
25841
25842 @cindex hooks, post-command
25843 @kindex hookpost
25844 A hook may also be defined which is run after the command you executed.
25845 Whenever you run the command @samp{foo}, if the user-defined command
25846 @samp{hookpost-foo} exists, it is executed (with no arguments) after
25847 that command.  Post-execution hooks may exist simultaneously with
25848 pre-execution hooks, for the same command.
25849
25850 It is valid for a hook to call the command which it hooks.  If this
25851 occurs, the hook is not re-executed, thereby avoiding infinite recursion.
25852
25853 @c It would be nice if hookpost could be passed a parameter indicating
25854 @c if the command it hooks executed properly or not.  FIXME!
25855
25856 @kindex stop@r{, a pseudo-command}
25857 In addition, a pseudo-command, @samp{stop} exists.  Defining
25858 (@samp{hook-stop}) makes the associated commands execute every time
25859 execution stops in your program: before breakpoint commands are run,
25860 displays are printed, or the stack frame is printed.
25861
25862 For example, to ignore @code{SIGALRM} signals while
25863 single-stepping, but treat them normally during normal execution,
25864 you could define:
25865
25866 @smallexample
25867 define hook-stop
25868 handle SIGALRM nopass
25869 end
25870
25871 define hook-run
25872 handle SIGALRM pass
25873 end
25874
25875 define hook-continue
25876 handle SIGALRM pass
25877 end
25878 @end smallexample
25879
25880 As a further example, to hook at the beginning and end of the @code{echo}
25881 command, and to add extra text to the beginning and end of the message,
25882 you could define:
25883
25884 @smallexample
25885 define hook-echo
25886 echo <<<---
25887 end
25888
25889 define hookpost-echo
25890 echo --->>>\n
25891 end
25892
25893 (@value{GDBP}) echo Hello World
25894 <<<---Hello World--->>>
25895 (@value{GDBP})
25896
25897 @end smallexample
25898
25899 You can define a hook for any single-word command in @value{GDBN}, but
25900 not for command aliases; you should define a hook for the basic command
25901 name, e.g.@:  @code{backtrace} rather than @code{bt}.
25902 @c FIXME!  So how does Joe User discover whether a command is an alias
25903 @c or not?
25904 You can hook a multi-word command by adding @code{hook-} or
25905 @code{hookpost-} to the last word of the command, e.g.@:
25906 @samp{define target hook-remote} to add a hook to @samp{target remote}.
25907
25908 If an error occurs during the execution of your hook, execution of
25909 @value{GDBN} commands stops and @value{GDBN} issues a prompt
25910 (before the command that you actually typed had a chance to run).
25911
25912 If you try to define a hook which does not match any known command, you
25913 get a warning from the @code{define} command.
25914
25915 @node Command Files
25916 @subsection Command Files
25917
25918 @cindex command files
25919 @cindex scripting commands
25920 A command file for @value{GDBN} is a text file made of lines that are
25921 @value{GDBN} commands.  Comments (lines starting with @kbd{#}) may
25922 also be included.  An empty line in a command file does nothing; it
25923 does not mean to repeat the last command, as it would from the
25924 terminal.
25925
25926 You can request the execution of a command file with the @code{source}
25927 command.  Note that the @code{source} command is also used to evaluate
25928 scripts that are not Command Files.  The exact behavior can be configured
25929 using the @code{script-extension} setting.
25930 @xref{Extending GDB,, Extending GDB}.
25931
25932 @table @code
25933 @kindex source
25934 @cindex execute commands from a file
25935 @item source [-s] [-v] @var{filename}
25936 Execute the command file @var{filename}.
25937 @end table
25938
25939 The lines in a command file are generally executed sequentially,
25940 unless the order of execution is changed by one of the
25941 @emph{flow-control commands} described below.  The commands are not
25942 printed as they are executed.  An error in any command terminates
25943 execution of the command file and control is returned to the console.
25944
25945 @value{GDBN} first searches for @var{filename} in the current directory.
25946 If the file is not found there, and @var{filename} does not specify a
25947 directory, then @value{GDBN} also looks for the file on the source search path
25948 (specified with the @samp{directory} command);
25949 except that @file{$cdir} is not searched because the compilation directory
25950 is not relevant to scripts.
25951
25952 If @code{-s} is specified, then @value{GDBN} searches for @var{filename}
25953 on the search path even if @var{filename} specifies a directory.
25954 The search is done by appending @var{filename} to each element of the
25955 search path.  So, for example, if @var{filename} is @file{mylib/myscript}
25956 and the search path contains @file{/home/user} then @value{GDBN} will
25957 look for the script @file{/home/user/mylib/myscript}.
25958 The search is also done if @var{filename} is an absolute path.
25959 For example, if @var{filename} is @file{/tmp/myscript} and
25960 the search path contains @file{/home/user} then @value{GDBN} will
25961 look for the script @file{/home/user/tmp/myscript}.
25962 For DOS-like systems, if @var{filename} contains a drive specification,
25963 it is stripped before concatenation.  For example, if @var{filename} is
25964 @file{d:myscript} and the search path contains @file{c:/tmp} then @value{GDBN}
25965 will look for the script @file{c:/tmp/myscript}.
25966
25967 If @code{-v}, for verbose mode, is given then @value{GDBN} displays
25968 each command as it is executed.  The option must be given before
25969 @var{filename}, and is interpreted as part of the filename anywhere else.
25970
25971 Commands that would ask for confirmation if used interactively proceed
25972 without asking when used in a command file.  Many @value{GDBN} commands that
25973 normally print messages to say what they are doing omit the messages
25974 when called from command files.
25975
25976 @value{GDBN} also accepts command input from standard input.  In this
25977 mode, normal output goes to standard output and error output goes to
25978 standard error.  Errors in a command file supplied on standard input do
25979 not terminate execution of the command file---execution continues with
25980 the next command.
25981
25982 @smallexample
25983 gdb < cmds > log 2>&1
25984 @end smallexample
25985
25986 (The syntax above will vary depending on the shell used.) This example
25987 will execute commands from the file @file{cmds}. All output and errors
25988 would be directed to @file{log}.
25989
25990 Since commands stored on command files tend to be more general than
25991 commands typed interactively, they frequently need to deal with
25992 complicated situations, such as different or unexpected values of
25993 variables and symbols, changes in how the program being debugged is
25994 built, etc.  @value{GDBN} provides a set of flow-control commands to
25995 deal with these complexities.  Using these commands, you can write
25996 complex scripts that loop over data structures, execute commands
25997 conditionally, etc.
25998
25999 @table @code
26000 @kindex if
26001 @kindex else
26002 @item if
26003 @itemx else
26004 This command allows to include in your script conditionally executed
26005 commands. The @code{if} command takes a single argument, which is an
26006 expression to evaluate.  It is followed by a series of commands that
26007 are executed only if the expression is true (its value is nonzero).
26008 There can then optionally be an @code{else} line, followed by a series
26009 of commands that are only executed if the expression was false.  The
26010 end of the list is marked by a line containing @code{end}.
26011
26012 @kindex while
26013 @item while
26014 This command allows to write loops.  Its syntax is similar to
26015 @code{if}: the command takes a single argument, which is an expression
26016 to evaluate, and must be followed by the commands to execute, one per
26017 line, terminated by an @code{end}.  These commands are called the
26018 @dfn{body} of the loop.  The commands in the body of @code{while} are
26019 executed repeatedly as long as the expression evaluates to true.
26020
26021 @kindex loop_break
26022 @item loop_break
26023 This command exits the @code{while} loop in whose body it is included.
26024 Execution of the script continues after that @code{while}s @code{end}
26025 line.
26026
26027 @kindex loop_continue
26028 @item loop_continue
26029 This command skips the execution of the rest of the body of commands
26030 in the @code{while} loop in whose body it is included.  Execution
26031 branches to the beginning of the @code{while} loop, where it evaluates
26032 the controlling expression.
26033
26034 @kindex end@r{ (if/else/while commands)}
26035 @item end
26036 Terminate the block of commands that are the body of @code{if},
26037 @code{else}, or @code{while} flow-control commands.
26038 @end table
26039
26040
26041 @node Output
26042 @subsection Commands for Controlled Output
26043
26044 During the execution of a command file or a user-defined command, normal
26045 @value{GDBN} output is suppressed; the only output that appears is what is
26046 explicitly printed by the commands in the definition.  This section
26047 describes three commands useful for generating exactly the output you
26048 want.
26049
26050 @table @code
26051 @kindex echo
26052 @item echo @var{text}
26053 @c I do not consider backslash-space a standard C escape sequence
26054 @c because it is not in ANSI.
26055 Print @var{text}.  Nonprinting characters can be included in
26056 @var{text} using C escape sequences, such as @samp{\n} to print a
26057 newline.  @strong{No newline is printed unless you specify one.}
26058 In addition to the standard C escape sequences, a backslash followed
26059 by a space stands for a space.  This is useful for displaying a
26060 string with spaces at the beginning or the end, since leading and
26061 trailing spaces are otherwise trimmed from all arguments.
26062 To print @samp{@w{ }and foo =@w{ }}, use the command
26063 @samp{echo \@w{ }and foo = \@w{ }}.
26064
26065 A backslash at the end of @var{text} can be used, as in C, to continue
26066 the command onto subsequent lines.  For example,
26067
26068 @smallexample
26069 echo This is some text\n\
26070 which is continued\n\
26071 onto several lines.\n
26072 @end smallexample
26073
26074 produces the same output as
26075
26076 @smallexample
26077 echo This is some text\n
26078 echo which is continued\n
26079 echo onto several lines.\n
26080 @end smallexample
26081
26082 @kindex output
26083 @item output @var{expression}
26084 Print the value of @var{expression} and nothing but that value: no
26085 newlines, no @samp{$@var{nn} = }.  The value is not entered in the
26086 value history either.  @xref{Expressions, ,Expressions}, for more information
26087 on expressions.
26088
26089 @item output/@var{fmt} @var{expression}
26090 Print the value of @var{expression} in format @var{fmt}.  You can use
26091 the same formats as for @code{print}.  @xref{Output Formats,,Output
26092 Formats}, for more information.
26093
26094 @kindex printf
26095 @item printf @var{template}, @var{expressions}@dots{}
26096 Print the values of one or more @var{expressions} under the control of
26097 the string @var{template}.  To print several values, make
26098 @var{expressions} be a comma-separated list of individual expressions,
26099 which may be either numbers or pointers.  Their values are printed as
26100 specified by @var{template}, exactly as a C program would do by
26101 executing the code below:
26102
26103 @smallexample
26104 printf (@var{template}, @var{expressions}@dots{});
26105 @end smallexample
26106
26107 As in @code{C} @code{printf}, ordinary characters in @var{template}
26108 are printed verbatim, while @dfn{conversion specification} introduced
26109 by the @samp{%} character cause subsequent @var{expressions} to be
26110 evaluated, their values converted and formatted according to type and
26111 style information encoded in the conversion specifications, and then
26112 printed.
26113
26114 For example, you can print two values in hex like this:
26115
26116 @smallexample
26117 printf "foo, bar-foo = 0x%x, 0x%x\n", foo, bar-foo
26118 @end smallexample
26119
26120 @code{printf} supports all the standard @code{C} conversion
26121 specifications, including the flags and modifiers between the @samp{%}
26122 character and the conversion letter, with the following exceptions:
26123
26124 @itemize @bullet
26125 @item
26126 The argument-ordering modifiers, such as @samp{2$}, are not supported.
26127
26128 @item
26129 The modifier @samp{*} is not supported for specifying precision or
26130 width.
26131
26132 @item
26133 The @samp{'} flag (for separation of digits into groups according to
26134 @code{LC_NUMERIC'}) is not supported.
26135
26136 @item
26137 The type modifiers @samp{hh}, @samp{j}, @samp{t}, and @samp{z} are not
26138 supported.
26139
26140 @item
26141 The conversion letter @samp{n} (as in @samp{%n}) is not supported.
26142
26143 @item
26144 The conversion letters @samp{a} and @samp{A} are not supported.
26145 @end itemize
26146
26147 @noindent
26148 Note that the @samp{ll} type modifier is supported only if the
26149 underlying @code{C} implementation used to build @value{GDBN} supports
26150 the @code{long long int} type, and the @samp{L} type modifier is
26151 supported only if @code{long double} type is available.
26152
26153 As in @code{C}, @code{printf} supports simple backslash-escape
26154 sequences, such as @code{\n}, @samp{\t}, @samp{\\}, @samp{\"},
26155 @samp{\a}, and @samp{\f}, that consist of backslash followed by a
26156 single character.  Octal and hexadecimal escape sequences are not
26157 supported.
26158
26159 Additionally, @code{printf} supports conversion specifications for DFP
26160 (@dfn{Decimal Floating Point}) types using the following length modifiers
26161 together with a floating point specifier.
26162 letters:
26163
26164 @itemize @bullet
26165 @item
26166 @samp{H} for printing @code{Decimal32} types.
26167
26168 @item
26169 @samp{D} for printing @code{Decimal64} types.
26170
26171 @item
26172 @samp{DD} for printing @code{Decimal128} types.
26173 @end itemize
26174
26175 If the underlying @code{C} implementation used to build @value{GDBN} has
26176 support for the three length modifiers for DFP types, other modifiers
26177 such as width and precision will also be available for @value{GDBN} to use.
26178
26179 In case there is no such @code{C} support, no additional modifiers will be
26180 available and the value will be printed in the standard way.
26181
26182 Here's an example of printing DFP types using the above conversion letters:
26183 @smallexample
26184 printf "D32: %Hf - D64: %Df - D128: %DDf\n",1.2345df,1.2E10dd,1.2E1dl
26185 @end smallexample
26186
26187 @anchor{eval}
26188 @kindex eval
26189 @item eval @var{template}, @var{expressions}@dots{}
26190 Convert the values of one or more @var{expressions} under the control of
26191 the string @var{template} to a command line, and call it.
26192
26193 @end table
26194
26195 @node Auto-loading sequences
26196 @subsection Controlling auto-loading native @value{GDBN} scripts
26197 @cindex native script auto-loading
26198
26199 When a new object file is read (for example, due to the @code{file}
26200 command, or because the inferior has loaded a shared library),
26201 @value{GDBN} will look for the command file @file{@var{objfile}-gdb.gdb}.
26202 @xref{Auto-loading extensions}.
26203
26204 Auto-loading can be enabled or disabled,
26205 and the list of auto-loaded scripts can be printed.
26206
26207 @table @code
26208 @anchor{set auto-load gdb-scripts}
26209 @kindex set auto-load gdb-scripts
26210 @item set auto-load gdb-scripts [on|off]
26211 Enable or disable the auto-loading of canned sequences of commands scripts.
26212
26213 @anchor{show auto-load gdb-scripts}
26214 @kindex show auto-load gdb-scripts
26215 @item show auto-load gdb-scripts
26216 Show whether auto-loading of canned sequences of commands scripts is enabled or
26217 disabled.
26218
26219 @anchor{info auto-load gdb-scripts}
26220 @kindex info auto-load gdb-scripts
26221 @cindex print list of auto-loaded canned sequences of commands scripts
26222 @item info auto-load gdb-scripts [@var{regexp}]
26223 Print the list of all canned sequences of commands scripts that @value{GDBN}
26224 auto-loaded.
26225 @end table
26226
26227 If @var{regexp} is supplied only canned sequences of commands scripts with
26228 matching names are printed.
26229
26230 @c Python docs live in a separate file.
26231 @include python.texi
26232
26233 @c Guile docs live in a separate file.
26234 @include guile.texi
26235
26236 @node Auto-loading extensions
26237 @section Auto-loading extensions
26238 @cindex auto-loading extensions
26239
26240 @value{GDBN} provides two mechanisms for automatically loading extensions
26241 when a new object file is read (for example, due to the @code{file}
26242 command, or because the inferior has loaded a shared library):
26243 @file{@var{objfile}-gdb.@var{ext}} and the @code{.debug_gdb_scripts}
26244 section of modern file formats like ELF.
26245
26246 @menu
26247 * objfile-gdb.ext file: objfile-gdbdotext file.  The @file{@var{objfile}-gdb.@var{ext}} file
26248 * .debug_gdb_scripts section: dotdebug_gdb_scripts section.  The @code{.debug_gdb_scripts} section
26249 * Which flavor to choose?::
26250 @end menu
26251
26252 The auto-loading feature is useful for supplying application-specific
26253 debugging commands and features.
26254
26255 Auto-loading can be enabled or disabled,
26256 and the list of auto-loaded scripts can be printed.
26257 See the @samp{auto-loading} section of each extension language
26258 for more information.
26259 For @value{GDBN} command files see @ref{Auto-loading sequences}.
26260 For Python files see @ref{Python Auto-loading}.
26261
26262 Note that loading of this script file also requires accordingly configured
26263 @code{auto-load safe-path} (@pxref{Auto-loading safe path}).
26264
26265 @node objfile-gdbdotext file
26266 @subsection The @file{@var{objfile}-gdb.@var{ext}} file
26267 @cindex @file{@var{objfile}-gdb.gdb}
26268 @cindex @file{@var{objfile}-gdb.py}
26269 @cindex @file{@var{objfile}-gdb.scm}
26270
26271 When a new object file is read, @value{GDBN} looks for a file named
26272 @file{@var{objfile}-gdb.@var{ext}} (we call it @var{script-name} below),
26273 where @var{objfile} is the object file's name and
26274 where @var{ext} is the file extension for the extension language:
26275
26276 @table @code
26277 @item @file{@var{objfile}-gdb.gdb}
26278 GDB's own command language
26279 @item @file{@var{objfile}-gdb.py}
26280 Python
26281 @item @file{@var{objfile}-gdb.scm}
26282 Guile
26283 @end table
26284
26285 @var{script-name} is formed by ensuring that the file name of @var{objfile}
26286 is absolute, following all symlinks, and resolving @code{.} and @code{..}
26287 components, and appending the @file{-gdb.@var{ext}} suffix.
26288 If this file exists and is readable, @value{GDBN} will evaluate it as a
26289 script in the specified extension language.
26290
26291 If this file does not exist, then @value{GDBN} will look for
26292 @var{script-name} file in all of the directories as specified below.
26293
26294 Note that loading of these files requires an accordingly configured
26295 @code{auto-load safe-path} (@pxref{Auto-loading safe path}).
26296
26297 For object files using @file{.exe} suffix @value{GDBN} tries to load first the
26298 scripts normally according to its @file{.exe} filename.  But if no scripts are
26299 found @value{GDBN} also tries script filenames matching the object file without
26300 its @file{.exe} suffix.  This @file{.exe} stripping is case insensitive and it
26301 is attempted on any platform.  This makes the script filenames compatible
26302 between Unix and MS-Windows hosts.
26303
26304 @table @code
26305 @anchor{set auto-load scripts-directory}
26306 @kindex set auto-load scripts-directory
26307 @item set auto-load scripts-directory @r{[}@var{directories}@r{]}
26308 Control @value{GDBN} auto-loaded scripts location.  Multiple directory entries
26309 may be delimited by the host platform path separator in use
26310 (@samp{:} on Unix, @samp{;} on MS-Windows and MS-DOS).
26311
26312 Each entry here needs to be covered also by the security setting
26313 @code{set auto-load safe-path} (@pxref{set auto-load safe-path}).
26314
26315 @anchor{with-auto-load-dir}
26316 This variable defaults to @file{$debugdir:$datadir/auto-load}.  The default
26317 @code{set auto-load safe-path} value can be also overriden by @value{GDBN}
26318 configuration option @option{--with-auto-load-dir}.
26319
26320 Any reference to @file{$debugdir} will get replaced by
26321 @var{debug-file-directory} value (@pxref{Separate Debug Files}) and any
26322 reference to @file{$datadir} will get replaced by @var{data-directory} which is
26323 determined at @value{GDBN} startup (@pxref{Data Files}).  @file{$debugdir} and
26324 @file{$datadir} must be placed as a directory component --- either alone or
26325 delimited by @file{/} or @file{\} directory separators, depending on the host
26326 platform.
26327
26328 The list of directories uses path separator (@samp{:} on GNU and Unix
26329 systems, @samp{;} on MS-Windows and MS-DOS) to separate directories, similarly
26330 to the @env{PATH} environment variable.
26331
26332 @anchor{show auto-load scripts-directory}
26333 @kindex show auto-load scripts-directory
26334 @item show auto-load scripts-directory
26335 Show @value{GDBN} auto-loaded scripts location.
26336
26337 @anchor{add-auto-load-scripts-directory}
26338 @kindex add-auto-load-scripts-directory
26339 @item add-auto-load-scripts-directory @r{[}@var{directories}@dots{}@r{]}
26340 Add an entry (or list of entries) to the list of auto-loaded scripts locations.
26341 Multiple entries may be delimited by the host platform path separator in use.
26342 @end table
26343
26344 @value{GDBN} does not track which files it has already auto-loaded this way.
26345 @value{GDBN} will load the associated script every time the corresponding
26346 @var{objfile} is opened.
26347 So your @file{-gdb.@var{ext}} file should be careful to avoid errors if it
26348 is evaluated more than once.
26349
26350 @node dotdebug_gdb_scripts section
26351 @subsection The @code{.debug_gdb_scripts} section
26352 @cindex @code{.debug_gdb_scripts} section
26353
26354 For systems using file formats like ELF and COFF,
26355 when @value{GDBN} loads a new object file
26356 it will look for a special section named @code{.debug_gdb_scripts}.
26357 If this section exists, its contents is a list of null-terminated entries
26358 specifying scripts to load.  Each entry begins with a non-null prefix byte that
26359 specifies the kind of entry, typically the extension language and whether the
26360 script is in a file or inlined in @code{.debug_gdb_scripts}.
26361
26362 The following entries are supported:
26363
26364 @table @code
26365 @item SECTION_SCRIPT_ID_PYTHON_FILE = 1
26366 @item SECTION_SCRIPT_ID_SCHEME_FILE = 3
26367 @item SECTION_SCRIPT_ID_PYTHON_TEXT = 4
26368 @item SECTION_SCRIPT_ID_SCHEME_TEXT = 6
26369 @end table
26370
26371 @subsubsection Script File Entries
26372
26373 If the entry specifies a file, @value{GDBN} will look for the file first
26374 in the current directory and then along the source search path
26375 (@pxref{Source Path, ,Specifying Source Directories}),
26376 except that @file{$cdir} is not searched, since the compilation
26377 directory is not relevant to scripts.
26378
26379 File entries can be placed in section @code{.debug_gdb_scripts} with,
26380 for example, this GCC macro for Python scripts.
26381
26382 @example
26383 /* Note: The "MS" section flags are to remove duplicates.  */
26384 #define DEFINE_GDB_PY_SCRIPT(script_name) \
26385   asm("\
26386 .pushsection \".debug_gdb_scripts\", \"MS\",@@progbits,1\n\
26387 .byte 1 /* Python */\n\
26388 .asciz \"" script_name "\"\n\
26389 .popsection \n\
26390 ");
26391 @end example
26392
26393 @noindent
26394 For Guile scripts, replace @code{.byte 1} with @code{.byte 3}.
26395 Then one can reference the macro in a header or source file like this:
26396
26397 @example
26398 DEFINE_GDB_PY_SCRIPT ("my-app-scripts.py")
26399 @end example
26400
26401 The script name may include directories if desired.
26402
26403 Note that loading of this script file also requires accordingly configured
26404 @code{auto-load safe-path} (@pxref{Auto-loading safe path}).
26405
26406 If the macro invocation is put in a header, any application or library
26407 using this header will get a reference to the specified script,
26408 and with the use of @code{"MS"} attributes on the section, the linker
26409 will remove duplicates.
26410
26411 @subsubsection Script Text Entries
26412
26413 Script text entries allow to put the executable script in the entry
26414 itself instead of loading it from a file.
26415 The first line of the entry, everything after the prefix byte and up to
26416 the first newline (@code{0xa}) character, is the script name, and must not
26417 contain any kind of space character, e.g., spaces or tabs.
26418 The rest of the entry, up to the trailing null byte, is the script to
26419 execute in the specified language.  The name needs to be unique among
26420 all script names, as @value{GDBN} executes each script only once based
26421 on its name.
26422
26423 Here is an example from file @file{py-section-script.c} in the @value{GDBN}
26424 testsuite.
26425
26426 @example
26427 #include "symcat.h"
26428 #include "gdb/section-scripts.h"
26429 asm(
26430 ".pushsection \".debug_gdb_scripts\", \"MS\",@@progbits,1\n"
26431 ".byte " XSTRING (SECTION_SCRIPT_ID_PYTHON_TEXT) "\n"
26432 ".ascii \"gdb.inlined-script\\n\"\n"
26433 ".ascii \"class test_cmd (gdb.Command):\\n\"\n"
26434 ".ascii \"  def __init__ (self):\\n\"\n"
26435 ".ascii \"    super (test_cmd, self).__init__ ("
26436     "\\\"test-cmd\\\", gdb.COMMAND_OBSCURE)\\n\"\n"
26437 ".ascii \"  def invoke (self, arg, from_tty):\\n\"\n"
26438 ".ascii \"    print (\\\"test-cmd output, arg = %s\\\" % arg)\\n\"\n"
26439 ".ascii \"test_cmd ()\\n\"\n"
26440 ".byte 0\n"
26441 ".popsection\n"
26442 );
26443 @end example
26444
26445 Loading of inlined scripts requires a properly configured
26446 @code{auto-load safe-path} (@pxref{Auto-loading safe path}).
26447 The path to specify in @code{auto-load safe-path} is the path of the file
26448 containing the @code{.debug_gdb_scripts} section.
26449
26450 @node Which flavor to choose?
26451 @subsection Which flavor to choose?
26452
26453 Given the multiple ways of auto-loading extensions, it might not always
26454 be clear which one to choose.  This section provides some guidance.
26455
26456 @noindent
26457 Benefits of the @file{-gdb.@var{ext}} way:
26458
26459 @itemize @bullet
26460 @item
26461 Can be used with file formats that don't support multiple sections.
26462
26463 @item
26464 Ease of finding scripts for public libraries.
26465
26466 Scripts specified in the @code{.debug_gdb_scripts} section are searched for
26467 in the source search path.
26468 For publicly installed libraries, e.g., @file{libstdc++}, there typically
26469 isn't a source directory in which to find the script.
26470
26471 @item
26472 Doesn't require source code additions.
26473 @end itemize
26474
26475 @noindent
26476 Benefits of the @code{.debug_gdb_scripts} way:
26477
26478 @itemize @bullet
26479 @item
26480 Works with static linking.
26481
26482 Scripts for libraries done the @file{-gdb.@var{ext}} way require an objfile to
26483 trigger their loading.  When an application is statically linked the only
26484 objfile available is the executable, and it is cumbersome to attach all the
26485 scripts from all the input libraries to the executable's
26486 @file{-gdb.@var{ext}} script.
26487
26488 @item
26489 Works with classes that are entirely inlined.
26490
26491 Some classes can be entirely inlined, and thus there may not be an associated
26492 shared library to attach a @file{-gdb.@var{ext}} script to.
26493
26494 @item
26495 Scripts needn't be copied out of the source tree.
26496
26497 In some circumstances, apps can be built out of large collections of internal
26498 libraries, and the build infrastructure necessary to install the
26499 @file{-gdb.@var{ext}} scripts in a place where @value{GDBN} can find them is
26500 cumbersome.  It may be easier to specify the scripts in the
26501 @code{.debug_gdb_scripts} section as relative paths, and add a path to the
26502 top of the source tree to the source search path.
26503 @end itemize
26504
26505 @node Multiple Extension Languages
26506 @section Multiple Extension Languages
26507
26508 The Guile and Python extension languages do not share any state,
26509 and generally do not interfere with each other.
26510 There are some things to be aware of, however.
26511
26512 @subsection Python comes first
26513
26514 Python was @value{GDBN}'s first extension language, and to avoid breaking
26515 existing behaviour Python comes first.  This is generally solved by the
26516 ``first one wins'' principle.  @value{GDBN} maintains a list of enabled
26517 extension languages, and when it makes a call to an extension language,
26518 (say to pretty-print a value), it tries each in turn until an extension
26519 language indicates it has performed the request (e.g., has returned the
26520 pretty-printed form of a value).
26521 This extends to errors while performing such requests: If an error happens
26522 while, for example, trying to pretty-print an object then the error is
26523 reported and any following extension languages are not tried.
26524
26525 @node Aliases
26526 @section Creating new spellings of existing commands
26527 @cindex aliases for commands
26528
26529 It is often useful to define alternate spellings of existing commands.
26530 For example, if a new @value{GDBN} command defined in Python has
26531 a long name to type, it is handy to have an abbreviated version of it
26532 that involves less typing.
26533
26534 @value{GDBN} itself uses aliases.  For example @samp{s} is an alias
26535 of the @samp{step} command even though it is otherwise an ambiguous
26536 abbreviation of other commands like @samp{set} and @samp{show}.
26537
26538 Aliases are also used to provide shortened or more common versions
26539 of multi-word commands.  For example, @value{GDBN} provides the
26540 @samp{tty} alias of the @samp{set inferior-tty} command.
26541
26542 You can define a new alias with the @samp{alias} command.
26543
26544 @table @code
26545
26546 @kindex alias
26547 @item alias [-a] [--] @var{ALIAS} = @var{COMMAND}
26548
26549 @end table
26550
26551 @var{ALIAS} specifies the name of the new alias.
26552 Each word of @var{ALIAS} must consist of letters, numbers, dashes and
26553 underscores.
26554
26555 @var{COMMAND} specifies the name of an existing command
26556 that is being aliased.
26557
26558 The @samp{-a} option specifies that the new alias is an abbreviation
26559 of the command.  Abbreviations are not shown in command
26560 lists displayed by the @samp{help} command.
26561
26562 The @samp{--} option specifies the end of options,
26563 and is useful when @var{ALIAS} begins with a dash.
26564
26565 Here is a simple example showing how to make an abbreviation
26566 of a command so that there is less to type.
26567 Suppose you were tired of typing @samp{disas}, the current
26568 shortest unambiguous abbreviation of the @samp{disassemble} command
26569 and you wanted an even shorter version named @samp{di}.
26570 The following will accomplish this.
26571
26572 @smallexample
26573 (gdb) alias -a di = disas
26574 @end smallexample
26575
26576 Note that aliases are different from user-defined commands.
26577 With a user-defined command, you also need to write documentation
26578 for it with the @samp{document} command.
26579 An alias automatically picks up the documentation of the existing command.
26580
26581 Here is an example where we make @samp{elms} an abbreviation of
26582 @samp{elements} in the @samp{set print elements} command.
26583 This is to show that you can make an abbreviation of any part
26584 of a command.
26585
26586 @smallexample
26587 (gdb) alias -a set print elms = set print elements
26588 (gdb) alias -a show print elms = show print elements
26589 (gdb) set p elms 20
26590 (gdb) show p elms
26591 Limit on string chars or array elements to print is 200.
26592 @end smallexample
26593
26594 Note that if you are defining an alias of a @samp{set} command,
26595 and you want to have an alias for the corresponding @samp{show}
26596 command, then you need to define the latter separately.
26597
26598 Unambiguously abbreviated commands are allowed in @var{COMMAND} and
26599 @var{ALIAS}, just as they are normally.
26600
26601 @smallexample
26602 (gdb) alias -a set pr elms = set p ele
26603 @end smallexample
26604
26605 Finally, here is an example showing the creation of a one word
26606 alias for a more complex command.
26607 This creates alias @samp{spe} of the command @samp{set print elements}.
26608
26609 @smallexample
26610 (gdb) alias spe = set print elements
26611 (gdb) spe 20
26612 @end smallexample
26613
26614 @node Interpreters
26615 @chapter Command Interpreters
26616 @cindex command interpreters
26617
26618 @value{GDBN} supports multiple command interpreters, and some command
26619 infrastructure to allow users or user interface writers to switch
26620 between interpreters or run commands in other interpreters.
26621
26622 @value{GDBN} currently supports two command interpreters, the console
26623 interpreter (sometimes called the command-line interpreter or @sc{cli})
26624 and the machine interface interpreter (or @sc{gdb/mi}).  This manual
26625 describes both of these interfaces in great detail.
26626
26627 By default, @value{GDBN} will start with the console interpreter.
26628 However, the user may choose to start @value{GDBN} with another
26629 interpreter by specifying the @option{-i} or @option{--interpreter}
26630 startup options.  Defined interpreters include:
26631
26632 @table @code
26633 @item console
26634 @cindex console interpreter
26635 The traditional console or command-line interpreter.  This is the most often
26636 used interpreter with @value{GDBN}. With no interpreter specified at runtime,
26637 @value{GDBN} will use this interpreter.
26638
26639 @item mi
26640 @cindex mi interpreter
26641 The newest @sc{gdb/mi} interface (currently @code{mi3}).  Used primarily
26642 by programs wishing to use @value{GDBN} as a backend for a debugger GUI
26643 or an IDE.  For more information, see @ref{GDB/MI, ,The @sc{gdb/mi}
26644 Interface}.
26645
26646 @item mi3
26647 @cindex mi3 interpreter
26648 The @sc{gdb/mi} interface introduced in @value{GDBN} 9.1.
26649
26650 @item mi2
26651 @cindex mi2 interpreter
26652 The @sc{gdb/mi} interface introduced in @value{GDBN} 6.0.
26653
26654 @item mi1
26655 @cindex mi1 interpreter
26656 The @sc{gdb/mi} interface introduced in @value{GDBN} 5.1.
26657
26658 @end table
26659
26660 @cindex invoke another interpreter
26661
26662 @kindex interpreter-exec
26663 You may execute commands in any interpreter from the current
26664 interpreter using the appropriate command.  If you are running the
26665 console interpreter, simply use the @code{interpreter-exec} command:
26666
26667 @smallexample
26668 interpreter-exec mi "-data-list-register-names"
26669 @end smallexample
26670
26671 @sc{gdb/mi} has a similar command, although it is only available in versions of
26672 @value{GDBN} which support @sc{gdb/mi} version 2 (or greater).
26673
26674 Note that @code{interpreter-exec} only changes the interpreter for the
26675 duration of the specified command.  It does not change the interpreter
26676 permanently.
26677
26678 @cindex start a new independent interpreter
26679
26680 Although you may only choose a single interpreter at startup, it is
26681 possible to run an independent interpreter on a specified input/output
26682 device (usually a tty).
26683
26684 For example, consider a debugger GUI or IDE that wants to provide a
26685 @value{GDBN} console view.  It may do so by embedding a terminal
26686 emulator widget in its GUI, starting @value{GDBN} in the traditional
26687 command-line mode with stdin/stdout/stderr redirected to that
26688 terminal, and then creating an MI interpreter running on a specified
26689 input/output device.  The console interpreter created by @value{GDBN}
26690 at startup handles commands the user types in the terminal widget,
26691 while the GUI controls and synchronizes state with @value{GDBN} using
26692 the separate MI interpreter.
26693
26694 To start a new secondary @dfn{user interface} running MI, use the
26695 @code{new-ui} command:
26696
26697 @kindex new-ui
26698 @cindex new user interface
26699 @smallexample
26700 new-ui @var{interpreter} @var{tty}
26701 @end smallexample
26702
26703 The @var{interpreter} parameter specifies the interpreter to run.
26704 This accepts the same values as the @code{interpreter-exec} command.
26705 For example, @samp{console}, @samp{mi}, @samp{mi2}, etc.  The
26706 @var{tty} parameter specifies the name of the bidirectional file the
26707 interpreter uses for input/output, usually the name of a
26708 pseudoterminal slave on Unix systems.  For example:
26709
26710 @smallexample
26711 (@value{GDBP}) new-ui mi /dev/pts/9
26712 @end smallexample
26713
26714 @noindent
26715 runs an MI interpreter on @file{/dev/pts/9}.
26716
26717 @node TUI
26718 @chapter @value{GDBN} Text User Interface
26719 @cindex TUI
26720 @cindex Text User Interface
26721
26722 @menu
26723 * TUI Overview::                TUI overview
26724 * TUI Keys::                    TUI key bindings
26725 * TUI Single Key Mode::         TUI single key mode
26726 * TUI Commands::                TUI-specific commands
26727 * TUI Configuration::           TUI configuration variables
26728 @end menu
26729
26730 The @value{GDBN} Text User Interface (TUI) is a terminal
26731 interface which uses the @code{curses} library to show the source
26732 file, the assembly output, the program registers and @value{GDBN}
26733 commands in separate text windows.  The TUI mode is supported only
26734 on platforms where a suitable version of the @code{curses} library
26735 is available.
26736
26737 The TUI mode is enabled by default when you invoke @value{GDBN} as
26738 @samp{@value{GDBP} -tui}.
26739 You can also switch in and out of TUI mode while @value{GDBN} runs by
26740 using various TUI commands and key bindings, such as @command{tui
26741 enable} or @kbd{C-x C-a}.  @xref{TUI Commands, ,TUI Commands}, and
26742 @ref{TUI Keys, ,TUI Key Bindings}.
26743
26744 @node TUI Overview
26745 @section TUI Overview
26746
26747 In TUI mode, @value{GDBN} can display several text windows:
26748
26749 @table @emph
26750 @item command
26751 This window is the @value{GDBN} command window with the @value{GDBN}
26752 prompt and the @value{GDBN} output.  The @value{GDBN} input is still
26753 managed using readline.
26754
26755 @item source
26756 The source window shows the source file of the program.  The current
26757 line and active breakpoints are displayed in this window.
26758
26759 @item assembly
26760 The assembly window shows the disassembly output of the program.
26761
26762 @item register
26763 This window shows the processor registers.  Registers are highlighted
26764 when their values change.
26765 @end table
26766
26767 The source and assembly windows show the current program position
26768 by highlighting the current line and marking it with a @samp{>} marker.
26769 Breakpoints are indicated with two markers.  The first marker
26770 indicates the breakpoint type:
26771
26772 @table @code
26773 @item B
26774 Breakpoint which was hit at least once.
26775
26776 @item b
26777 Breakpoint which was never hit.
26778
26779 @item H
26780 Hardware breakpoint which was hit at least once.
26781
26782 @item h
26783 Hardware breakpoint which was never hit.
26784 @end table
26785
26786 The second marker indicates whether the breakpoint is enabled or not:
26787
26788 @table @code
26789 @item +
26790 Breakpoint is enabled.
26791
26792 @item -
26793 Breakpoint is disabled.
26794 @end table
26795
26796 The source, assembly and register windows are updated when the current
26797 thread changes, when the frame changes, or when the program counter
26798 changes.
26799
26800 These windows are not all visible at the same time.  The command
26801 window is always visible.  The others can be arranged in several
26802 layouts:
26803
26804 @itemize @bullet
26805 @item
26806 source only,
26807
26808 @item
26809 assembly only,
26810
26811 @item
26812 source and assembly,
26813
26814 @item
26815 source and registers, or
26816
26817 @item
26818 assembly and registers.
26819 @end itemize
26820
26821 A status line above the command window shows the following information:
26822
26823 @table @emph
26824 @item target
26825 Indicates the current @value{GDBN} target.
26826 (@pxref{Targets, ,Specifying a Debugging Target}).
26827
26828 @item process
26829 Gives the current process or thread number.
26830 When no process is being debugged, this field is set to @code{No process}.
26831
26832 @item function
26833 Gives the current function name for the selected frame.
26834 The name is demangled if demangling is turned on (@pxref{Print Settings}).
26835 When there is no symbol corresponding to the current program counter,
26836 the string @code{??} is displayed.
26837
26838 @item line
26839 Indicates the current line number for the selected frame.
26840 When the current line number is not known, the string @code{??} is displayed.
26841
26842 @item pc
26843 Indicates the current program counter address.
26844 @end table
26845
26846 @node TUI Keys
26847 @section TUI Key Bindings
26848 @cindex TUI key bindings
26849
26850 The TUI installs several key bindings in the readline keymaps
26851 @ifset SYSTEM_READLINE
26852 (@pxref{Command Line Editing, , , rluserman, GNU Readline Library}).
26853 @end ifset
26854 @ifclear SYSTEM_READLINE
26855 (@pxref{Command Line Editing}).
26856 @end ifclear
26857 The following key bindings are installed for both TUI mode and the
26858 @value{GDBN} standard mode.
26859
26860 @table @kbd
26861 @kindex C-x C-a
26862 @item C-x C-a
26863 @kindex C-x a
26864 @itemx C-x a
26865 @kindex C-x A
26866 @itemx C-x A
26867 Enter or leave the TUI mode.  When leaving the TUI mode,
26868 the curses window management stops and @value{GDBN} operates using
26869 its standard mode, writing on the terminal directly.  When reentering
26870 the TUI mode, control is given back to the curses windows.
26871 The screen is then refreshed.
26872
26873 @kindex C-x 1
26874 @item C-x 1
26875 Use a TUI layout with only one window.  The layout will
26876 either be @samp{source} or @samp{assembly}.  When the TUI mode
26877 is not active, it will switch to the TUI mode.
26878
26879 Think of this key binding as the Emacs @kbd{C-x 1} binding.
26880
26881 @kindex C-x 2
26882 @item C-x 2
26883 Use a TUI layout with at least two windows.  When the current
26884 layout already has two windows, the next layout with two windows is used.
26885 When a new layout is chosen, one window will always be common to the
26886 previous layout and the new one.
26887
26888 Think of it as the Emacs @kbd{C-x 2} binding.
26889
26890 @kindex C-x o
26891 @item C-x o
26892 Change the active window.  The TUI associates several key bindings
26893 (like scrolling and arrow keys) with the active window.  This command
26894 gives the focus to the next TUI window.
26895
26896 Think of it as the Emacs @kbd{C-x o} binding.
26897
26898 @kindex C-x s
26899 @item C-x s
26900 Switch in and out of the TUI SingleKey mode that binds single
26901 keys to @value{GDBN} commands (@pxref{TUI Single Key Mode}).
26902 @end table
26903
26904 The following key bindings only work in the TUI mode:
26905
26906 @table @asis
26907 @kindex PgUp
26908 @item @key{PgUp}
26909 Scroll the active window one page up.
26910
26911 @kindex PgDn
26912 @item @key{PgDn}
26913 Scroll the active window one page down.
26914
26915 @kindex Up
26916 @item @key{Up}
26917 Scroll the active window one line up.
26918
26919 @kindex Down
26920 @item @key{Down}
26921 Scroll the active window one line down.
26922
26923 @kindex Left
26924 @item @key{Left}
26925 Scroll the active window one column left.
26926
26927 @kindex Right
26928 @item @key{Right}
26929 Scroll the active window one column right.
26930
26931 @kindex C-L
26932 @item @kbd{C-L}
26933 Refresh the screen.
26934 @end table
26935
26936 Because the arrow keys scroll the active window in the TUI mode, they
26937 are not available for their normal use by readline unless the command
26938 window has the focus.  When another window is active, you must use
26939 other readline key bindings such as @kbd{C-p}, @kbd{C-n}, @kbd{C-b}
26940 and @kbd{C-f} to control the command window.
26941
26942 @node TUI Single Key Mode
26943 @section TUI Single Key Mode
26944 @cindex TUI single key mode
26945
26946 The TUI also provides a @dfn{SingleKey} mode, which binds several
26947 frequently used @value{GDBN} commands to single keys.  Type @kbd{C-x s} to
26948 switch into this mode, where the following key bindings are used:
26949
26950 @table @kbd
26951 @kindex c @r{(SingleKey TUI key)}
26952 @item c
26953 continue
26954
26955 @kindex d @r{(SingleKey TUI key)}
26956 @item d
26957 down
26958
26959 @kindex f @r{(SingleKey TUI key)}
26960 @item f
26961 finish
26962
26963 @kindex n @r{(SingleKey TUI key)}
26964 @item n
26965 next
26966
26967 @kindex o @r{(SingleKey TUI key)}
26968 @item o
26969 nexti.  The shortcut letter @samp{o} stands for ``step Over''.
26970
26971 @kindex q @r{(SingleKey TUI key)}
26972 @item q
26973 exit the SingleKey mode.
26974
26975 @kindex r @r{(SingleKey TUI key)}
26976 @item r
26977 run
26978
26979 @kindex s @r{(SingleKey TUI key)}
26980 @item s
26981 step
26982
26983 @kindex i @r{(SingleKey TUI key)}
26984 @item i
26985 stepi.  The shortcut letter @samp{i} stands for ``step Into''.
26986
26987 @kindex u @r{(SingleKey TUI key)}
26988 @item u
26989 up
26990
26991 @kindex v @r{(SingleKey TUI key)}
26992 @item v
26993 info locals
26994
26995 @kindex w @r{(SingleKey TUI key)}
26996 @item w
26997 where
26998 @end table
26999
27000 Other keys temporarily switch to the @value{GDBN} command prompt.
27001 The key that was pressed is inserted in the editing buffer so that
27002 it is possible to type most @value{GDBN} commands without interaction
27003 with the TUI SingleKey mode.  Once the command is entered the TUI
27004 SingleKey mode is restored.  The only way to permanently leave
27005 this mode is by typing @kbd{q} or @kbd{C-x s}.
27006
27007
27008 @node TUI Commands
27009 @section TUI-specific Commands
27010 @cindex TUI commands
27011
27012 The TUI has specific commands to control the text windows.
27013 These commands are always available, even when @value{GDBN} is not in
27014 the TUI mode.  When @value{GDBN} is in the standard mode, most
27015 of these commands will automatically switch to the TUI mode.
27016
27017 Note that if @value{GDBN}'s @code{stdout} is not connected to a
27018 terminal, or @value{GDBN} has been started with the machine interface
27019 interpreter (@pxref{GDB/MI, ,The @sc{gdb/mi} Interface}), most of
27020 these commands will fail with an error, because it would not be
27021 possible or desirable to enable curses window management.
27022
27023 @table @code
27024 @item tui enable
27025 @kindex tui enable
27026 Activate TUI mode.  The last active TUI window layout will be used if
27027 TUI mode has prevsiouly been used in the current debugging session,
27028 otherwise a default layout is used.
27029
27030 @item tui disable
27031 @kindex tui disable
27032 Disable TUI mode, returning to the console interpreter.
27033
27034 @item info win
27035 @kindex info win
27036 List and give the size of all displayed windows.
27037
27038 @item layout @var{name}
27039 @kindex layout
27040 Changes which TUI windows are displayed.  In each layout the command
27041 window is always displayed, the @var{name} parameter controls which
27042 additional windows are displayed, and can be any of the following:
27043
27044 @table @code
27045 @item next
27046 Display the next layout.
27047
27048 @item prev
27049 Display the previous layout.
27050
27051 @item src
27052 Display the source and command windows.
27053
27054 @item asm
27055 Display the assembly and command windows.
27056
27057 @item split
27058 Display the source, assembly, and command windows.
27059
27060 @item regs
27061 When in @code{src} layout display the register, source, and command
27062 windows.  When in @code{asm} or @code{split} layout display the
27063 register, assembler, and command windows.
27064 @end table
27065
27066 @item focus @var{name}
27067 @kindex focus
27068 Changes which TUI window is currently active for scrolling.  The
27069 @var{name} parameter can be any of the following:
27070
27071 @table @code
27072 @item next
27073 Make the next window active for scrolling.
27074
27075 @item prev
27076 Make the previous window active for scrolling.
27077
27078 @item src
27079 Make the source window active for scrolling.
27080
27081 @item asm
27082 Make the assembly window active for scrolling.
27083
27084 @item regs
27085 Make the register window active for scrolling.
27086
27087 @item cmd
27088 Make the command window active for scrolling.
27089 @end table
27090
27091 @item refresh
27092 @kindex refresh
27093 Refresh the screen.  This is similar to typing @kbd{C-L}.
27094
27095 @item tui reg @var{group}
27096 @kindex tui reg
27097 Changes the register group displayed in the tui register window to
27098 @var{group}.  If the register window is not currently displayed this
27099 command will cause the register window to be displayed.  The list of
27100 register groups, as well as their order is target specific. The
27101 following groups are available on most targets:
27102 @table @code
27103 @item next
27104 Repeatedly selecting this group will cause the display to cycle
27105 through all of the available register groups.
27106
27107 @item prev
27108 Repeatedly selecting this group will cause the display to cycle
27109 through all of the available register groups in the reverse order to
27110 @var{next}.
27111
27112 @item general
27113 Display the general registers.
27114 @item float
27115 Display the floating point registers.
27116 @item system
27117 Display the system registers.
27118 @item vector
27119 Display the vector registers.
27120 @item all
27121 Display all registers.
27122 @end table
27123
27124 @item update
27125 @kindex update
27126 Update the source window and the current execution point.
27127
27128 @item winheight @var{name} +@var{count}
27129 @itemx winheight @var{name} -@var{count}
27130 @kindex winheight
27131 Change the height of the window @var{name} by @var{count}
27132 lines.  Positive counts increase the height, while negative counts
27133 decrease it.  The @var{name} parameter can be one of @code{src} (the
27134 source window), @code{cmd} (the command window), @code{asm} (the
27135 disassembly window), or @code{regs} (the register display window).
27136 @end table
27137
27138 @node TUI Configuration
27139 @section TUI Configuration Variables
27140 @cindex TUI configuration variables
27141
27142 Several configuration variables control the appearance of TUI windows.
27143
27144 @table @code
27145 @item set tui border-kind @var{kind}
27146 @kindex set tui border-kind
27147 Select the border appearance for the source, assembly and register windows.
27148 The possible values are the following:
27149 @table @code
27150 @item space
27151 Use a space character to draw the border.
27152
27153 @item ascii
27154 Use @sc{ascii} characters @samp{+}, @samp{-} and @samp{|} to draw the border.
27155
27156 @item acs
27157 Use the Alternate Character Set to draw the border.  The border is
27158 drawn using character line graphics if the terminal supports them.
27159 @end table
27160
27161 @item set tui border-mode @var{mode}
27162 @kindex set tui border-mode
27163 @itemx set tui active-border-mode @var{mode}
27164 @kindex set tui active-border-mode
27165 Select the display attributes for the borders of the inactive windows
27166 or the active window.  The @var{mode} can be one of the following:
27167 @table @code
27168 @item normal
27169 Use normal attributes to display the border.
27170
27171 @item standout
27172 Use standout mode.
27173
27174 @item reverse
27175 Use reverse video mode.
27176
27177 @item half
27178 Use half bright mode.
27179
27180 @item half-standout
27181 Use half bright and standout mode.
27182
27183 @item bold
27184 Use extra bright or bold mode.
27185
27186 @item bold-standout
27187 Use extra bright or bold and standout mode.
27188 @end table
27189
27190 @item set tui tab-width @var{nchars}
27191 @kindex set tui tab-width
27192 @kindex tabset
27193 Set the width of tab stops to be @var{nchars} characters.  This
27194 setting affects the display of TAB characters in the source and
27195 assembly windows.
27196 @end table
27197
27198 @node Emacs
27199 @chapter Using @value{GDBN} under @sc{gnu} Emacs
27200
27201 @cindex Emacs
27202 @cindex @sc{gnu} Emacs
27203 A special interface allows you to use @sc{gnu} Emacs to view (and
27204 edit) the source files for the program you are debugging with
27205 @value{GDBN}.
27206
27207 To use this interface, use the command @kbd{M-x gdb} in Emacs.  Give the
27208 executable file you want to debug as an argument.  This command starts
27209 @value{GDBN} as a subprocess of Emacs, with input and output through a newly
27210 created Emacs buffer.
27211 @c (Do not use the @code{-tui} option to run @value{GDBN} from Emacs.)
27212
27213 Running @value{GDBN} under Emacs can be just like running @value{GDBN} normally except for two
27214 things:
27215
27216 @itemize @bullet
27217 @item
27218 All ``terminal'' input and output goes through an Emacs buffer, called
27219 the GUD buffer.
27220
27221 This applies both to @value{GDBN} commands and their output, and to the input
27222 and output done by the program you are debugging.
27223
27224 This is useful because it means that you can copy the text of previous
27225 commands and input them again; you can even use parts of the output
27226 in this way.
27227
27228 All the facilities of Emacs' Shell mode are available for interacting
27229 with your program.  In particular, you can send signals the usual
27230 way---for example, @kbd{C-c C-c} for an interrupt, @kbd{C-c C-z} for a
27231 stop.
27232
27233 @item
27234 @value{GDBN} displays source code through Emacs.
27235
27236 Each time @value{GDBN} displays a stack frame, Emacs automatically finds the
27237 source file for that frame and puts an arrow (@samp{=>}) at the
27238 left margin of the current line.  Emacs uses a separate buffer for
27239 source display, and splits the screen to show both your @value{GDBN} session
27240 and the source.
27241
27242 Explicit @value{GDBN} @code{list} or search commands still produce output as
27243 usual, but you probably have no reason to use them from Emacs.
27244 @end itemize
27245
27246 We call this @dfn{text command mode}.  Emacs 22.1, and later, also uses
27247 a graphical mode, enabled by default, which provides further buffers
27248 that can control the execution and describe the state of your program.
27249 @xref{GDB Graphical Interface,,, Emacs, The @sc{gnu} Emacs Manual}.
27250
27251 If you specify an absolute file name when prompted for the @kbd{M-x
27252 gdb} argument, then Emacs sets your current working directory to where
27253 your program resides.  If you only specify the file name, then Emacs
27254 sets your current working directory to the directory associated
27255 with the previous buffer.  In this case, @value{GDBN} may find your
27256 program by searching your environment's @code{PATH} variable, but on
27257 some operating systems it might not find the source.  So, although the
27258 @value{GDBN} input and output session proceeds normally, the auxiliary
27259 buffer does not display the current source and line of execution.
27260
27261 The initial working directory of @value{GDBN} is printed on the top
27262 line of the GUD buffer and this serves as a default for the commands
27263 that specify files for @value{GDBN} to operate on.  @xref{Files,
27264 ,Commands to Specify Files}.
27265
27266 By default, @kbd{M-x gdb} calls the program called @file{gdb}.  If you
27267 need to call @value{GDBN} by a different name (for example, if you
27268 keep several configurations around, with different names) you can
27269 customize the Emacs variable @code{gud-gdb-command-name} to run the
27270 one you want.
27271
27272 In the GUD buffer, you can use these special Emacs commands in
27273 addition to the standard Shell mode commands:
27274
27275 @table @kbd
27276 @item C-h m
27277 Describe the features of Emacs' GUD Mode.
27278
27279 @item C-c C-s
27280 Execute to another source line, like the @value{GDBN} @code{step} command; also
27281 update the display window to show the current file and location.
27282
27283 @item C-c C-n
27284 Execute to next source line in this function, skipping all function
27285 calls, like the @value{GDBN} @code{next} command.  Then update the display window
27286 to show the current file and location.
27287
27288 @item C-c C-i
27289 Execute one instruction, like the @value{GDBN} @code{stepi} command; update
27290 display window accordingly.
27291
27292 @item C-c C-f
27293 Execute until exit from the selected stack frame, like the @value{GDBN}
27294 @code{finish} command.
27295
27296 @item C-c C-r
27297 Continue execution of your program, like the @value{GDBN} @code{continue}
27298 command.
27299
27300 @item C-c <
27301 Go up the number of frames indicated by the numeric argument
27302 (@pxref{Arguments, , Numeric Arguments, Emacs, The @sc{gnu} Emacs Manual}),
27303 like the @value{GDBN} @code{up} command.
27304
27305 @item C-c >
27306 Go down the number of frames indicated by the numeric argument, like the
27307 @value{GDBN} @code{down} command.
27308 @end table
27309
27310 In any source file, the Emacs command @kbd{C-x @key{SPC}} (@code{gud-break})
27311 tells @value{GDBN} to set a breakpoint on the source line point is on.
27312
27313 In text command mode, if you type @kbd{M-x speedbar}, Emacs displays a
27314 separate frame which shows a backtrace when the GUD buffer is current.
27315 Move point to any frame in the stack and type @key{RET} to make it
27316 become the current frame and display the associated source in the
27317 source buffer.  Alternatively, click @kbd{Mouse-2} to make the
27318 selected frame become the current one.  In graphical mode, the
27319 speedbar displays watch expressions.
27320
27321 If you accidentally delete the source-display buffer, an easy way to get
27322 it back is to type the command @code{f} in the @value{GDBN} buffer, to
27323 request a frame display; when you run under Emacs, this recreates
27324 the source buffer if necessary to show you the context of the current
27325 frame.
27326
27327 The source files displayed in Emacs are in ordinary Emacs buffers
27328 which are visiting the source files in the usual way.  You can edit
27329 the files with these buffers if you wish; but keep in mind that @value{GDBN}
27330 communicates with Emacs in terms of line numbers.  If you add or
27331 delete lines from the text, the line numbers that @value{GDBN} knows cease
27332 to correspond properly with the code.
27333
27334 A more detailed description of Emacs' interaction with @value{GDBN} is
27335 given in the Emacs manual (@pxref{Debuggers,,, Emacs, The @sc{gnu}
27336 Emacs Manual}).
27337
27338 @node GDB/MI
27339 @chapter The @sc{gdb/mi} Interface
27340
27341 @unnumberedsec Function and Purpose
27342
27343 @cindex @sc{gdb/mi}, its purpose
27344 @sc{gdb/mi} is a line based machine oriented text interface to
27345 @value{GDBN} and is activated by specifying using the
27346 @option{--interpreter} command line option (@pxref{Mode Options}).  It
27347 is specifically intended to support the development of systems which
27348 use the debugger as just one small component of a larger system.
27349
27350 This chapter is a specification of the @sc{gdb/mi} interface.  It is written
27351 in the form of a reference manual.
27352
27353 Note that @sc{gdb/mi} is still under construction, so some of the
27354 features described below are incomplete and subject to change
27355 (@pxref{GDB/MI Development and Front Ends, , @sc{gdb/mi} Development and Front Ends}).  
27356
27357 @unnumberedsec Notation and Terminology
27358
27359 @cindex notational conventions, for @sc{gdb/mi}
27360 This chapter uses the following notation:
27361
27362 @itemize @bullet
27363 @item
27364 @code{|} separates two alternatives.
27365
27366 @item
27367 @code{[ @var{something} ]} indicates that @var{something} is optional:
27368 it may or may not be given.
27369
27370 @item
27371 @code{( @var{group} )*} means that @var{group} inside the parentheses
27372 may repeat zero or more times.
27373
27374 @item
27375 @code{( @var{group} )+} means that @var{group} inside the parentheses
27376 may repeat one or more times.
27377
27378 @item
27379 @code{"@var{string}"} means a literal @var{string}.
27380 @end itemize
27381
27382 @ignore
27383 @heading Dependencies
27384 @end ignore
27385
27386 @menu
27387 * GDB/MI General Design::
27388 * GDB/MI Command Syntax::
27389 * GDB/MI Compatibility with CLI::
27390 * GDB/MI Development and Front Ends::
27391 * GDB/MI Output Records::
27392 * GDB/MI Simple Examples::
27393 * GDB/MI Command Description Format::
27394 * GDB/MI Breakpoint Commands::
27395 * GDB/MI Catchpoint Commands::
27396 * GDB/MI Program Context::
27397 * GDB/MI Thread Commands::
27398 * GDB/MI Ada Tasking Commands::
27399 * GDB/MI Program Execution::
27400 * GDB/MI Stack Manipulation::
27401 * GDB/MI Variable Objects::
27402 * GDB/MI Data Manipulation::
27403 * GDB/MI Tracepoint Commands::
27404 * GDB/MI Symbol Query::
27405 * GDB/MI File Commands::
27406 @ignore
27407 * GDB/MI Kod Commands::
27408 * GDB/MI Memory Overlay Commands::
27409 * GDB/MI Signal Handling Commands::
27410 @end ignore
27411 * GDB/MI Target Manipulation::
27412 * GDB/MI File Transfer Commands::
27413 * GDB/MI Ada Exceptions Commands::
27414 * GDB/MI Support Commands::
27415 * GDB/MI Miscellaneous Commands::
27416 @end menu
27417
27418 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
27419 @node GDB/MI General Design
27420 @section @sc{gdb/mi} General Design
27421 @cindex GDB/MI General Design
27422
27423 Interaction of a @sc{GDB/MI} frontend with @value{GDBN} involves three
27424 parts---commands sent to @value{GDBN}, responses to those commands
27425 and notifications.  Each command results in exactly one response,
27426 indicating either successful completion of the command, or an error.
27427 For the commands that do not resume the target, the response contains the
27428 requested information.  For the commands that resume the target, the
27429 response only indicates whether the target was successfully resumed.
27430 Notifications is the mechanism for reporting changes in the state of the
27431 target, or in @value{GDBN} state, that cannot conveniently be associated with
27432 a command and reported as part of that command response.
27433
27434 The important examples of notifications are:
27435 @itemize @bullet
27436
27437 @item 
27438 Exec notifications.  These are used to report changes in
27439 target state---when a target is resumed, or stopped.  It would not
27440 be feasible to include this information in response of resuming
27441 commands, because one resume commands can result in multiple events in
27442 different threads.  Also, quite some time may pass before any event
27443 happens in the target, while a frontend needs to know whether the resuming
27444 command itself was successfully executed.
27445
27446 @item 
27447 Console output, and status notifications.  Console output
27448 notifications are used to report output of CLI commands, as well as
27449 diagnostics for other commands.  Status notifications are used to
27450 report the progress of a long-running operation.  Naturally, including
27451 this information in command response would mean no output is produced
27452 until the command is finished, which is undesirable.
27453
27454 @item
27455 General notifications.  Commands may have various side effects on
27456 the @value{GDBN} or target state beyond their official purpose.  For example,
27457 a command may change the selected thread.  Although such changes can
27458 be included in command response, using notification allows for more
27459 orthogonal frontend design.
27460
27461 @end itemize
27462
27463 There's no guarantee that whenever an MI command reports an error,
27464 @value{GDBN} or the target are in any specific state, and especially,
27465 the state is not reverted to the state before the MI command was
27466 processed.  Therefore, whenever an MI command results in an error, 
27467 we recommend that the frontend refreshes all the information shown in 
27468 the user interface.
27469
27470
27471 @menu
27472 * Context management::
27473 * Asynchronous and non-stop modes::
27474 * Thread groups::
27475 @end menu
27476
27477 @node Context management
27478 @subsection Context management
27479
27480 @subsubsection Threads and Frames
27481
27482 In most cases when @value{GDBN} accesses the target, this access is
27483 done in context of a specific thread and frame (@pxref{Frames}).
27484 Often, even when accessing global data, the target requires that a thread
27485 be specified.  The CLI interface maintains the selected thread and frame,
27486 and supplies them to target on each command.  This is convenient,
27487 because a command line user would not want to specify that information
27488 explicitly on each command, and because user interacts with
27489 @value{GDBN} via a single terminal, so no confusion is possible as 
27490 to what thread and frame are the current ones.
27491
27492 In the case of MI, the concept of selected thread and frame is less
27493 useful.  First, a frontend can easily remember this information
27494 itself.  Second, a graphical frontend can have more than one window,
27495 each one used for debugging a different thread, and the frontend might
27496 want to access additional threads for internal purposes.  This
27497 increases the risk that by relying on implicitly selected thread, the
27498 frontend may be operating on a wrong one.  Therefore, each MI command
27499 should explicitly specify which thread and frame to operate on.  To
27500 make it possible, each MI command accepts the @samp{--thread} and
27501 @samp{--frame} options, the value to each is @value{GDBN} global
27502 identifier for thread and frame to operate on.
27503
27504 Usually, each top-level window in a frontend allows the user to select
27505 a thread and a frame, and remembers the user selection for further
27506 operations.  However, in some cases @value{GDBN} may suggest that the
27507 current thread or frame be changed.  For example, when stopping on a
27508 breakpoint it is reasonable to switch to the thread where breakpoint is
27509 hit.  For another example, if the user issues the CLI @samp{thread} or
27510 @samp{frame} commands via the frontend, it is desirable to change the
27511 frontend's selection to the one specified by user.  @value{GDBN}
27512 communicates the suggestion to change current thread and frame using the
27513 @samp{=thread-selected} notification.
27514
27515 Note that historically, MI shares the selected thread with CLI, so 
27516 frontends used the @code{-thread-select} to execute commands in the
27517 right context.  However, getting this to work right is cumbersome.  The
27518 simplest way is for frontend to emit @code{-thread-select} command
27519 before every command.  This doubles the number of commands that need
27520 to be sent.  The alternative approach is to suppress @code{-thread-select}
27521 if the selected thread in @value{GDBN} is supposed to be identical to the
27522 thread the frontend wants to operate on.  However, getting this
27523 optimization right can be tricky.  In particular, if the frontend
27524 sends several commands to @value{GDBN}, and one of the commands changes the
27525 selected thread, then the behaviour of subsequent commands will
27526 change.  So, a frontend should either wait for response from such
27527 problematic commands, or explicitly add @code{-thread-select} for
27528 all subsequent commands.  No frontend is known to do this exactly
27529 right, so it is suggested to just always pass the @samp{--thread} and
27530 @samp{--frame} options.
27531
27532 @subsubsection Language
27533
27534 The execution of several commands depends on which language is selected.
27535 By default, the current language (@pxref{show language}) is used.
27536 But for commands known to be language-sensitive, it is recommended
27537 to use the @samp{--language} option.  This option takes one argument,
27538 which is the name of the language to use while executing the command.
27539 For instance:
27540
27541 @smallexample
27542 -data-evaluate-expression --language c "sizeof (void*)"
27543 ^done,value="4"
27544 (gdb) 
27545 @end smallexample
27546
27547 The valid language names are the same names accepted by the
27548 @samp{set language} command (@pxref{Manually}), excluding @samp{auto},
27549 @samp{local} or @samp{unknown}.
27550
27551 @node Asynchronous and non-stop modes
27552 @subsection Asynchronous command execution and non-stop mode
27553
27554 On some targets, @value{GDBN} is capable of processing MI commands
27555 even while the target is running.  This is called @dfn{asynchronous
27556 command execution} (@pxref{Background Execution}).  The frontend may
27557 specify a preferrence for asynchronous execution using the
27558 @code{-gdb-set mi-async 1} command, which should be emitted before
27559 either running the executable or attaching to the target.  After the
27560 frontend has started the executable or attached to the target, it can
27561 find if asynchronous execution is enabled using the
27562 @code{-list-target-features} command.
27563
27564 @table @code
27565 @item -gdb-set mi-async on
27566 @item -gdb-set mi-async off
27567 Set whether MI is in asynchronous mode.
27568
27569 When @code{off}, which is the default, MI execution commands (e.g.,
27570 @code{-exec-continue}) are foreground commands, and @value{GDBN} waits
27571 for the program to stop before processing further commands.
27572
27573 When @code{on}, MI execution commands are background execution
27574 commands (e.g., @code{-exec-continue} becomes the equivalent of the
27575 @code{c&} CLI command), and so @value{GDBN} is capable of processing
27576 MI commands even while the target is running.
27577
27578 @item -gdb-show mi-async
27579 Show whether MI asynchronous mode is enabled.
27580 @end table
27581
27582 Note: In @value{GDBN} version 7.7 and earlier, this option was called
27583 @code{target-async} instead of @code{mi-async}, and it had the effect
27584 of both putting MI in asynchronous mode and making CLI background
27585 commands possible.  CLI background commands are now always possible
27586 ``out of the box'' if the target supports them.  The old spelling is
27587 kept as a deprecated alias for backwards compatibility.
27588
27589 Even if @value{GDBN} can accept a command while target is running,
27590 many commands that access the target do not work when the target is
27591 running.  Therefore, asynchronous command execution is most useful
27592 when combined with non-stop mode (@pxref{Non-Stop Mode}).  Then,
27593 it is possible to examine the state of one thread, while other threads
27594 are running.
27595
27596 When a given thread is running, MI commands that try to access the
27597 target in the context of that thread may not work, or may work only on
27598 some targets.  In particular, commands that try to operate on thread's
27599 stack will not work, on any target.  Commands that read memory, or
27600 modify breakpoints, may work or not work, depending on the target.  Note
27601 that even commands that operate on global state, such as @code{print},
27602 @code{set}, and breakpoint commands, still access the target in the
27603 context of a specific thread,  so frontend should try to find a
27604 stopped thread and perform the operation on that thread (using the
27605 @samp{--thread} option).
27606
27607 Which commands will work in the context of a running thread is
27608 highly target dependent.  However, the two commands
27609 @code{-exec-interrupt}, to stop a thread, and @code{-thread-info},
27610 to find the state of a thread, will always work.
27611
27612 @node Thread groups
27613 @subsection Thread groups
27614 @value{GDBN} may be used to debug several processes at the same time.
27615 On some platfroms, @value{GDBN} may support debugging of several
27616 hardware systems, each one having several cores with several different
27617 processes running on each core.  This section describes the MI
27618 mechanism to support such debugging scenarios.
27619
27620 The key observation is that regardless of the structure of the 
27621 target, MI can have a global list of threads, because most commands that 
27622 accept the @samp{--thread} option do not need to know what process that
27623 thread belongs to.  Therefore, it is not necessary to introduce
27624 neither additional @samp{--process} option, nor an notion of the
27625 current process in the MI interface.  The only strictly new feature
27626 that is required is the ability to find how the threads are grouped
27627 into processes.
27628
27629 To allow the user to discover such grouping, and to support arbitrary
27630 hierarchy of machines/cores/processes, MI introduces the concept of a
27631 @dfn{thread group}.  Thread group is a collection of threads and other
27632 thread groups.  A thread group always has a string identifier, a type,
27633 and may have additional attributes specific to the type.  A new
27634 command, @code{-list-thread-groups}, returns the list of top-level
27635 thread groups, which correspond to processes that @value{GDBN} is
27636 debugging at the moment.  By passing an identifier of a thread group
27637 to the @code{-list-thread-groups} command, it is possible to obtain
27638 the members of specific thread group.
27639
27640 To allow the user to easily discover processes, and other objects, he
27641 wishes to debug, a concept of @dfn{available thread group} is
27642 introduced.  Available thread group is an thread group that
27643 @value{GDBN} is not debugging, but that can be attached to, using the
27644 @code{-target-attach} command.  The list of available top-level thread
27645 groups can be obtained using @samp{-list-thread-groups --available}.
27646 In general, the content of a thread group may be only retrieved only
27647 after attaching to that thread group.
27648
27649 Thread groups are related to inferiors (@pxref{Inferiors and
27650 Programs}).  Each inferior corresponds to a thread group of a special
27651 type @samp{process}, and some additional operations are permitted on
27652 such thread groups.
27653
27654 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
27655 @node GDB/MI Command Syntax
27656 @section @sc{gdb/mi} Command Syntax
27657
27658 @menu
27659 * GDB/MI Input Syntax::
27660 * GDB/MI Output Syntax::
27661 @end menu
27662
27663 @node GDB/MI Input Syntax
27664 @subsection @sc{gdb/mi} Input Syntax
27665
27666 @cindex input syntax for @sc{gdb/mi}
27667 @cindex @sc{gdb/mi}, input syntax
27668 @table @code
27669 @item @var{command} @expansion{}
27670 @code{@var{cli-command} | @var{mi-command}}
27671
27672 @item @var{cli-command} @expansion{}
27673 @code{[ @var{token} ] @var{cli-command} @var{nl}}, where
27674 @var{cli-command} is any existing @value{GDBN} CLI command.
27675
27676 @item @var{mi-command} @expansion{}
27677 @code{[ @var{token} ] "-" @var{operation} ( " " @var{option} )*
27678 @code{[} " --" @code{]} ( " " @var{parameter} )* @var{nl}}
27679
27680 @item @var{token} @expansion{}
27681 "any sequence of digits"
27682
27683 @item @var{option} @expansion{}
27684 @code{"-" @var{parameter} [ " " @var{parameter} ]}
27685
27686 @item @var{parameter} @expansion{}
27687 @code{@var{non-blank-sequence} | @var{c-string}}
27688
27689 @item @var{operation} @expansion{}
27690 @emph{any of the operations described in this chapter}
27691
27692 @item @var{non-blank-sequence} @expansion{}
27693 @emph{anything, provided it doesn't contain special characters such as
27694 "-", @var{nl}, """ and of course " "}
27695
27696 @item @var{c-string} @expansion{}
27697 @code{""" @var{seven-bit-iso-c-string-content} """}
27698
27699 @item @var{nl} @expansion{}
27700 @code{CR | CR-LF}
27701 @end table
27702
27703 @noindent
27704 Notes:
27705
27706 @itemize @bullet
27707 @item
27708 The CLI commands are still handled by the @sc{mi} interpreter; their
27709 output is described below.
27710
27711 @item
27712 The @code{@var{token}}, when present, is passed back when the command
27713 finishes.
27714
27715 @item
27716 Some @sc{mi} commands accept optional arguments as part of the parameter
27717 list.  Each option is identified by a leading @samp{-} (dash) and may be
27718 followed by an optional argument parameter.  Options occur first in the
27719 parameter list and can be delimited from normal parameters using
27720 @samp{--} (this is useful when some parameters begin with a dash).
27721 @end itemize
27722
27723 Pragmatics:
27724
27725 @itemize @bullet
27726 @item
27727 We want easy access to the existing CLI syntax (for debugging).
27728
27729 @item
27730 We want it to be easy to spot a @sc{mi} operation.
27731 @end itemize
27732
27733 @node GDB/MI Output Syntax
27734 @subsection @sc{gdb/mi} Output Syntax
27735
27736 @cindex output syntax of @sc{gdb/mi}
27737 @cindex @sc{gdb/mi}, output syntax
27738 The output from @sc{gdb/mi} consists of zero or more out-of-band records
27739 followed, optionally, by a single result record.  This result record
27740 is for the most recent command.  The sequence of output records is
27741 terminated by @samp{(gdb)}.
27742
27743 If an input command was prefixed with a @code{@var{token}} then the
27744 corresponding output for that command will also be prefixed by that same
27745 @var{token}.
27746
27747 @table @code
27748 @item @var{output} @expansion{}
27749 @code{( @var{out-of-band-record} )* [ @var{result-record} ] "(gdb)" @var{nl}}
27750
27751 @item @var{result-record} @expansion{}
27752 @code{ [ @var{token} ] "^" @var{result-class} ( "," @var{result} )* @var{nl}}
27753
27754 @item @var{out-of-band-record} @expansion{}
27755 @code{@var{async-record} | @var{stream-record}}
27756
27757 @item @var{async-record} @expansion{}
27758 @code{@var{exec-async-output} | @var{status-async-output} | @var{notify-async-output}}
27759
27760 @item @var{exec-async-output} @expansion{}
27761 @code{[ @var{token} ] "*" @var{async-output nl}}
27762
27763 @item @var{status-async-output} @expansion{}
27764 @code{[ @var{token} ] "+" @var{async-output nl}}
27765
27766 @item @var{notify-async-output} @expansion{}
27767 @code{[ @var{token} ] "=" @var{async-output nl}}
27768
27769 @item @var{async-output} @expansion{}
27770 @code{@var{async-class} ( "," @var{result} )*}
27771
27772 @item @var{result-class} @expansion{}
27773 @code{"done" | "running" | "connected" | "error" | "exit"}
27774
27775 @item @var{async-class} @expansion{}
27776 @code{"stopped" | @var{others}} (where @var{others} will be added
27777 depending on the needs---this is still in development).
27778
27779 @item @var{result} @expansion{}
27780 @code{ @var{variable} "=" @var{value}}
27781
27782 @item @var{variable} @expansion{}
27783 @code{ @var{string} }
27784
27785 @item @var{value} @expansion{}
27786 @code{ @var{const} | @var{tuple} | @var{list} }
27787
27788 @item @var{const} @expansion{}
27789 @code{@var{c-string}}
27790
27791 @item @var{tuple} @expansion{}
27792 @code{ "@{@}" | "@{" @var{result} ( "," @var{result} )* "@}" }
27793
27794 @item @var{list} @expansion{}
27795 @code{ "[]" | "[" @var{value} ( "," @var{value} )* "]" | "["
27796 @var{result} ( "," @var{result} )* "]" }
27797
27798 @item @var{stream-record} @expansion{}
27799 @code{@var{console-stream-output} | @var{target-stream-output} | @var{log-stream-output}}
27800
27801 @item @var{console-stream-output} @expansion{}
27802 @code{"~" @var{c-string nl}}
27803
27804 @item @var{target-stream-output} @expansion{}
27805 @code{"@@" @var{c-string nl}}
27806
27807 @item @var{log-stream-output} @expansion{}
27808 @code{"&" @var{c-string nl}}
27809
27810 @item @var{nl} @expansion{}
27811 @code{CR | CR-LF}
27812
27813 @item @var{token} @expansion{}
27814 @emph{any sequence of digits}.
27815 @end table
27816
27817 @noindent
27818 Notes:
27819
27820 @itemize @bullet
27821 @item
27822 All output sequences end in a single line containing a period.
27823
27824 @item
27825 The @code{@var{token}} is from the corresponding request.  Note that
27826 for all async output, while the token is allowed by the grammar and
27827 may be output by future versions of @value{GDBN} for select async
27828 output messages, it is generally omitted.  Frontends should treat
27829 all async output as reporting general changes in the state of the
27830 target and there should be no need to associate async output to any
27831 prior command.
27832
27833 @item
27834 @cindex status output in @sc{gdb/mi}
27835 @var{status-async-output} contains on-going status information about the
27836 progress of a slow operation.  It can be discarded.  All status output is
27837 prefixed by @samp{+}.
27838
27839 @item
27840 @cindex async output in @sc{gdb/mi}
27841 @var{exec-async-output} contains asynchronous state change on the target
27842 (stopped, started, disappeared).  All async output is prefixed by
27843 @samp{*}.
27844
27845 @item
27846 @cindex notify output in @sc{gdb/mi}
27847 @var{notify-async-output} contains supplementary information that the
27848 client should handle (e.g., a new breakpoint information).  All notify
27849 output is prefixed by @samp{=}.
27850
27851 @item
27852 @cindex console output in @sc{gdb/mi}
27853 @var{console-stream-output} is output that should be displayed as is in the
27854 console.  It is the textual response to a CLI command.  All the console
27855 output is prefixed by @samp{~}.
27856
27857 @item
27858 @cindex target output in @sc{gdb/mi}
27859 @var{target-stream-output} is the output produced by the target program.
27860 All the target output is prefixed by @samp{@@}.
27861
27862 @item
27863 @cindex log output in @sc{gdb/mi}
27864 @var{log-stream-output} is output text coming from @value{GDBN}'s internals, for
27865 instance messages that should be displayed as part of an error log.  All
27866 the log output is prefixed by @samp{&}.
27867
27868 @item
27869 @cindex list output in @sc{gdb/mi}
27870 New @sc{gdb/mi} commands should only output @var{lists} containing
27871 @var{values}.
27872
27873
27874 @end itemize
27875
27876 @xref{GDB/MI Stream Records, , @sc{gdb/mi} Stream Records}, for more
27877 details about the various output records.
27878
27879 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
27880 @node GDB/MI Compatibility with CLI
27881 @section @sc{gdb/mi} Compatibility with CLI
27882
27883 @cindex compatibility, @sc{gdb/mi} and CLI
27884 @cindex @sc{gdb/mi}, compatibility with CLI
27885
27886 For the developers convenience CLI commands can be entered directly,
27887 but there may be some unexpected behaviour.  For example, commands
27888 that query the user will behave as if the user replied yes, breakpoint
27889 command lists are not executed and some CLI commands, such as
27890 @code{if}, @code{when} and @code{define}, prompt for further input with
27891 @samp{>}, which is not valid MI output.
27892
27893 This feature may be removed at some stage in the future and it is
27894 recommended that front ends use the @code{-interpreter-exec} command
27895 (@pxref{-interpreter-exec}).
27896
27897 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
27898 @node GDB/MI Development and Front Ends
27899 @section @sc{gdb/mi} Development and Front Ends
27900 @cindex @sc{gdb/mi} development
27901
27902 The application which takes the MI output and presents the state of the
27903 program being debugged to the user is called a @dfn{front end}.
27904
27905 Since @sc{gdb/mi} is used by a variety of front ends to @value{GDBN}, changes
27906 to the MI interface may break existing usage.  This section describes how the
27907 protocol changes and how to request previous version of the protocol when it
27908 does.
27909
27910 Some changes in MI need not break a carefully designed front end, and
27911 for these the MI version will remain unchanged.  The following is a
27912 list of changes that may occur within one level, so front ends should
27913 parse MI output in a way that can handle them:
27914
27915 @itemize @bullet
27916 @item
27917 New MI commands may be added.
27918
27919 @item
27920 New fields may be added to the output of any MI command.
27921
27922 @item
27923 The range of values for fields with specified values, e.g.,
27924 @code{in_scope} (@pxref{-var-update}) may be extended.
27925
27926 @c The format of field's content e.g type prefix, may change so parse it
27927 @c   at your own risk.  Yes, in general?
27928
27929 @c The order of fields may change?  Shouldn't really matter but it might
27930 @c resolve inconsistencies.
27931 @end itemize
27932
27933 If the changes are likely to break front ends, the MI version level
27934 will be increased by one.  The new versions of the MI protocol are not compatible
27935 with the old versions.  Old versions of MI remain available, allowing front ends
27936 to keep using them until they are modified to use the latest MI version.
27937
27938 Since @code{--interpreter=mi} always points to the latest MI version, it is
27939 recommended that front ends request a specific version of MI when launching
27940 @value{GDBN} (e.g. @code{--interpreter=mi2}) to make sure they get an
27941 interpreter with the MI version they expect.
27942
27943 The following table gives a summary of the the released versions of the MI
27944 interface: the version number, the version of GDB in which it first appeared
27945 and the breaking changes compared to the previous version.
27946
27947 @multitable @columnfractions .05 .05 .9
27948 @headitem MI version @tab GDB version @tab Breaking changes
27949
27950 @item
27951 @center 1
27952 @tab
27953 @center 5.1
27954 @tab
27955 None
27956
27957 @item
27958 @center 2
27959 @tab
27960 @center 6.0
27961 @tab
27962
27963 @itemize
27964 @item
27965 The @code{-environment-pwd}, @code{-environment-directory} and
27966 @code{-environment-path} commands now returns values using the MI output
27967 syntax, rather than CLI output syntax.
27968
27969 @item
27970 @code{-var-list-children}'s @code{children} result field is now a list, rather
27971 than a tuple.
27972
27973 @item
27974 @code{-var-update}'s @code{changelist} result field is now a list, rather than
27975 a tuple.
27976 @end itemize
27977
27978 @item
27979 @center 3
27980 @tab
27981 @center 9.1
27982 @tab
27983
27984 @itemize
27985 @item
27986 The output of information about multi-location breakpoints has changed in the
27987 responses to the @code{-break-insert} and @code{-break-info} commands, as well
27988 as in the @code{=breakpoint-created} and @code{=breakpoint-modified} events.
27989 The multiple locations are now placed in a @code{locations} field, whose value
27990 is a list.
27991 @end itemize
27992
27993 @end multitable
27994
27995 If your front end cannot yet migrate to a more recent version of the
27996 MI protocol, you can nevertheless selectively enable specific features
27997 available in those recent MI versions, using the following commands:
27998
27999 @table @code
28000
28001 @item -fix-multi-location-breakpoint-output
28002 Use the output for multi-location breakpoints which was introduced by
28003 MI 3, even when using MI versions 2 or 1.  This command has no
28004 effect when using MI version 3 or later.
28005
28006 @end table
28007
28008 The best way to avoid unexpected changes in MI that might break your front
28009 end is to make your project known to @value{GDBN} developers and
28010 follow development on @email{gdb@@sourceware.org} and
28011 @email{gdb-patches@@sourceware.org}.
28012 @cindex mailing lists
28013
28014 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
28015 @node GDB/MI Output Records
28016 @section @sc{gdb/mi} Output Records
28017
28018 @menu
28019 * GDB/MI Result Records::
28020 * GDB/MI Stream Records::
28021 * GDB/MI Async Records::
28022 * GDB/MI Breakpoint Information::
28023 * GDB/MI Frame Information::
28024 * GDB/MI Thread Information::
28025 * GDB/MI Ada Exception Information::
28026 @end menu
28027
28028 @node GDB/MI Result Records
28029 @subsection @sc{gdb/mi} Result Records
28030
28031 @cindex result records in @sc{gdb/mi}
28032 @cindex @sc{gdb/mi}, result records
28033 In addition to a number of out-of-band notifications, the response to a
28034 @sc{gdb/mi} command includes one of the following result indications:
28035
28036 @table @code
28037 @findex ^done
28038 @item "^done" [ "," @var{results} ]
28039 The synchronous operation was successful, @code{@var{results}} are the return
28040 values.
28041
28042 @item "^running"
28043 @findex ^running
28044 This result record is equivalent to @samp{^done}.  Historically, it
28045 was output instead of @samp{^done} if the command has resumed the
28046 target.  This behaviour is maintained for backward compatibility, but
28047 all frontends should treat @samp{^done} and @samp{^running}
28048 identically and rely on the @samp{*running} output record to determine
28049 which threads are resumed.
28050
28051 @item "^connected"
28052 @findex ^connected
28053 @value{GDBN} has connected to a remote target.
28054
28055 @item "^error" "," "msg=" @var{c-string} [ "," "code=" @var{c-string} ]
28056 @findex ^error
28057 The operation failed.  The @code{msg=@var{c-string}} variable contains
28058 the corresponding error message.
28059
28060 If present, the @code{code=@var{c-string}} variable provides an error
28061 code on which consumers can rely on to detect the corresponding
28062 error condition.  At present, only one error code is defined:
28063
28064 @table @samp
28065 @item "undefined-command"
28066 Indicates that the command causing the error does not exist.
28067 @end table
28068
28069 @item "^exit"
28070 @findex ^exit
28071 @value{GDBN} has terminated.
28072
28073 @end table
28074
28075 @node GDB/MI Stream Records
28076 @subsection @sc{gdb/mi} Stream Records
28077
28078 @cindex @sc{gdb/mi}, stream records
28079 @cindex stream records in @sc{gdb/mi}
28080 @value{GDBN} internally maintains a number of output streams: the console, the
28081 target, and the log.  The output intended for each of these streams is
28082 funneled through the @sc{gdb/mi} interface using @dfn{stream records}.
28083
28084 Each stream record begins with a unique @dfn{prefix character} which
28085 identifies its stream (@pxref{GDB/MI Output Syntax, , @sc{gdb/mi} Output
28086 Syntax}).  In addition to the prefix, each stream record contains a
28087 @code{@var{string-output}}.  This is either raw text (with an implicit new
28088 line) or a quoted C string (which does not contain an implicit newline).
28089
28090 @table @code
28091 @item "~" @var{string-output}
28092 The console output stream contains text that should be displayed in the
28093 CLI console window.  It contains the textual responses to CLI commands.
28094
28095 @item "@@" @var{string-output}
28096 The target output stream contains any textual output from the running
28097 target.  This is only present when GDB's event loop is truly
28098 asynchronous, which is currently only the case for remote targets.
28099
28100 @item "&" @var{string-output}
28101 The log stream contains debugging messages being produced by @value{GDBN}'s
28102 internals.
28103 @end table
28104
28105 @node GDB/MI Async Records
28106 @subsection @sc{gdb/mi} Async Records
28107
28108 @cindex async records in @sc{gdb/mi}
28109 @cindex @sc{gdb/mi}, async records
28110 @dfn{Async} records are used to notify the @sc{gdb/mi} client of
28111 additional changes that have occurred.  Those changes can either be a
28112 consequence of @sc{gdb/mi} commands (e.g., a breakpoint modified) or a result of
28113 target activity (e.g., target stopped).
28114
28115 The following is the list of possible async records:
28116
28117 @table @code
28118
28119 @item *running,thread-id="@var{thread}"
28120 The target is now running.  The @var{thread} field can be the global
28121 thread ID of the the thread that is now running, and it can be
28122 @samp{all} if all threads are running.  The frontend should assume
28123 that no interaction with a running thread is possible after this
28124 notification is produced.  The frontend should not assume that this
28125 notification is output only once for any command.  @value{GDBN} may
28126 emit this notification several times, either for different threads,
28127 because it cannot resume all threads together, or even for a single
28128 thread, if the thread must be stepped though some code before letting
28129 it run freely.
28130
28131 @item *stopped,reason="@var{reason}",thread-id="@var{id}",stopped-threads="@var{stopped}",core="@var{core}"
28132 The target has stopped.  The @var{reason} field can have one of the
28133 following values:
28134
28135 @table @code
28136 @item breakpoint-hit
28137 A breakpoint was reached.
28138 @item watchpoint-trigger
28139 A watchpoint was triggered.
28140 @item read-watchpoint-trigger
28141 A read watchpoint was triggered.
28142 @item access-watchpoint-trigger 
28143 An access watchpoint was triggered.
28144 @item function-finished
28145 An -exec-finish or similar CLI command was accomplished.
28146 @item location-reached
28147 An -exec-until or similar CLI command was accomplished.
28148 @item watchpoint-scope
28149 A watchpoint has gone out of scope.
28150 @item end-stepping-range
28151 An -exec-next, -exec-next-instruction, -exec-step, -exec-step-instruction or 
28152 similar CLI command was accomplished.
28153 @item exited-signalled 
28154 The inferior exited because of a signal.
28155 @item exited 
28156 The inferior exited.
28157 @item exited-normally 
28158 The inferior exited normally.
28159 @item signal-received 
28160 A signal was received by the inferior.
28161 @item solib-event
28162 The inferior has stopped due to a library being loaded or unloaded.
28163 This can happen when @code{stop-on-solib-events} (@pxref{Files}) is
28164 set or when a @code{catch load} or @code{catch unload} catchpoint is
28165 in use (@pxref{Set Catchpoints}).
28166 @item fork
28167 The inferior has forked.  This is reported when @code{catch fork}
28168 (@pxref{Set Catchpoints}) has been used.
28169 @item vfork
28170 The inferior has vforked.  This is reported in when @code{catch vfork}
28171 (@pxref{Set Catchpoints}) has been used.
28172 @item syscall-entry
28173 The inferior entered a system call.  This is reported when @code{catch
28174 syscall} (@pxref{Set Catchpoints}) has been used.
28175 @item syscall-return
28176 The inferior returned from a system call.  This is reported when
28177 @code{catch syscall} (@pxref{Set Catchpoints}) has been used.
28178 @item exec
28179 The inferior called @code{exec}.  This is reported when @code{catch exec}
28180 (@pxref{Set Catchpoints}) has been used.
28181 @end table
28182
28183 The @var{id} field identifies the global thread ID of the thread
28184 that directly caused the stop -- for example by hitting a breakpoint.
28185 Depending on whether all-stop
28186 mode is in effect (@pxref{All-Stop Mode}), @value{GDBN} may either
28187 stop all threads, or only the thread that directly triggered the stop.
28188 If all threads are stopped, the @var{stopped} field will have the
28189 value of @code{"all"}.  Otherwise, the value of the @var{stopped}
28190 field will be a list of thread identifiers.  Presently, this list will
28191 always include a single thread, but frontend should be prepared to see
28192 several threads in the list.  The @var{core} field reports the
28193 processor core on which the stop event has happened.  This field may be absent
28194 if such information is not available.
28195
28196 @item =thread-group-added,id="@var{id}"
28197 @itemx =thread-group-removed,id="@var{id}"
28198 A thread group was either added or removed.  The @var{id} field
28199 contains the @value{GDBN} identifier of the thread group.  When a thread
28200 group is added, it generally might not be associated with a running
28201 process.  When a thread group is removed, its id becomes invalid and
28202 cannot be used in any way.
28203
28204 @item =thread-group-started,id="@var{id}",pid="@var{pid}"
28205 A thread group became associated with a running program,
28206 either because the program was just started or the thread group
28207 was attached to a program.  The @var{id} field contains the
28208 @value{GDBN} identifier of the thread group.  The @var{pid} field
28209 contains process identifier, specific to the operating system.
28210
28211 @item =thread-group-exited,id="@var{id}"[,exit-code="@var{code}"]
28212 A thread group is no longer associated with a running program,
28213 either because the program has exited, or because it was detached
28214 from.  The @var{id} field contains the @value{GDBN} identifier of the
28215 thread group.  The @var{code} field is the exit code of the inferior; it exists
28216 only when the inferior exited with some code.
28217
28218 @item =thread-created,id="@var{id}",group-id="@var{gid}"
28219 @itemx =thread-exited,id="@var{id}",group-id="@var{gid}"
28220 A thread either was created, or has exited.  The @var{id} field
28221 contains the global @value{GDBN} identifier of the thread.  The @var{gid}
28222 field identifies the thread group this thread belongs to.
28223
28224 @item =thread-selected,id="@var{id}"[,frame="@var{frame}"]
28225 Informs that the selected thread or frame were changed.  This notification
28226 is not emitted as result of the @code{-thread-select} or
28227 @code{-stack-select-frame} commands, but is emitted whenever an MI command
28228 that is not documented to change the selected thread and frame actually
28229 changes them.  In particular, invoking, directly or indirectly
28230 (via user-defined command), the CLI @code{thread} or @code{frame} commands,
28231 will generate this notification.  Changing the thread or frame from another
28232 user interface (see @ref{Interpreters}) will also generate this notification.
28233
28234 The @var{frame} field is only present if the newly selected thread is
28235 stopped.  See @ref{GDB/MI Frame Information} for the format of its value.
28236
28237 We suggest that in response to this notification, front ends
28238 highlight the selected thread and cause subsequent commands to apply to
28239 that thread.
28240
28241 @item =library-loaded,...
28242 Reports that a new library file was loaded by the program.  This
28243 notification has 5 fields---@var{id}, @var{target-name},
28244 @var{host-name}, @var{symbols-loaded} and @var{ranges}.  The @var{id} field is an
28245 opaque identifier of the library.  For remote debugging case,
28246 @var{target-name} and @var{host-name} fields give the name of the
28247 library file on the target, and on the host respectively.  For native
28248 debugging, both those fields have the same value.  The
28249 @var{symbols-loaded} field is emitted only for backward compatibility
28250 and should not be relied on to convey any useful information.  The
28251 @var{thread-group} field, if present, specifies the id of the thread
28252 group in whose context the library was loaded.  If the field is
28253 absent, it means the library was loaded in the context of all present
28254 thread groups.  The @var{ranges} field specifies the ranges of addresses belonging
28255 to this library.
28256
28257 @item =library-unloaded,...
28258 Reports that a library was unloaded by the program.  This notification
28259 has 3 fields---@var{id}, @var{target-name} and @var{host-name} with
28260 the same meaning as for the @code{=library-loaded} notification.
28261 The @var{thread-group} field, if present, specifies the id of the
28262 thread group in whose context the library was unloaded.  If the field is
28263 absent, it means the library was unloaded in the context of all present
28264 thread groups.
28265
28266 @item =traceframe-changed,num=@var{tfnum},tracepoint=@var{tpnum}
28267 @itemx =traceframe-changed,end
28268 Reports that the trace frame was changed and its new number is
28269 @var{tfnum}.  The number of the tracepoint associated with this trace
28270 frame is @var{tpnum}.
28271
28272 @item =tsv-created,name=@var{name},initial=@var{initial}
28273 Reports that the new trace state variable @var{name} is created with
28274 initial value @var{initial}.
28275
28276 @item =tsv-deleted,name=@var{name}
28277 @itemx =tsv-deleted
28278 Reports that the trace state variable @var{name} is deleted or all
28279 trace state variables are deleted.
28280
28281 @item =tsv-modified,name=@var{name},initial=@var{initial}[,current=@var{current}]
28282 Reports that the trace state variable @var{name} is modified with
28283 the initial value @var{initial}. The current value @var{current} of
28284 trace state variable is optional and is reported if the current
28285 value of trace state variable is known.
28286
28287 @item =breakpoint-created,bkpt=@{...@}
28288 @itemx =breakpoint-modified,bkpt=@{...@}
28289 @itemx =breakpoint-deleted,id=@var{number}
28290 Reports that a breakpoint was created, modified, or deleted,
28291 respectively.  Only user-visible breakpoints are reported to the MI
28292 user.
28293
28294 The @var{bkpt} argument is of the same form as returned by the various
28295 breakpoint commands; @xref{GDB/MI Breakpoint Commands}.  The
28296 @var{number} is the ordinal number of the breakpoint.
28297
28298 Note that if a breakpoint is emitted in the result record of a
28299 command, then it will not also be emitted in an async record.
28300
28301 @item =record-started,thread-group="@var{id}",method="@var{method}"[,format="@var{format}"]
28302 @itemx =record-stopped,thread-group="@var{id}"
28303 Execution log recording was either started or stopped on an
28304 inferior.  The @var{id} is the @value{GDBN} identifier of the thread
28305 group corresponding to the affected inferior.
28306
28307 The @var{method} field indicates the method used to record execution.  If the
28308 method in use supports multiple recording formats, @var{format} will be present
28309 and contain the currently used format.  @xref{Process Record and Replay},
28310 for existing method and format values.
28311
28312 @item =cmd-param-changed,param=@var{param},value=@var{value}
28313 Reports that a parameter of the command @code{set @var{param}} is
28314 changed to @var{value}.  In the multi-word @code{set} command,
28315 the @var{param} is the whole parameter list to @code{set} command.
28316 For example, In command @code{set check type on}, @var{param}
28317 is @code{check type} and @var{value} is @code{on}.
28318
28319 @item =memory-changed,thread-group=@var{id},addr=@var{addr},len=@var{len}[,type="code"]
28320 Reports that bytes from @var{addr} to @var{data} + @var{len} were
28321 written in an inferior.  The @var{id} is the identifier of the
28322 thread group corresponding to the affected inferior.  The optional
28323 @code{type="code"} part is reported if the memory written to holds
28324 executable code.
28325 @end table
28326
28327 @node GDB/MI Breakpoint Information
28328 @subsection @sc{gdb/mi} Breakpoint Information
28329
28330 When @value{GDBN} reports information about a breakpoint, a
28331 tracepoint, a watchpoint, or a catchpoint, it uses a tuple with the
28332 following fields:
28333
28334 @table @code
28335 @item number
28336 The breakpoint number.
28337
28338 @item type
28339 The type of the breakpoint.  For ordinary breakpoints this will be
28340 @samp{breakpoint}, but many values are possible.
28341
28342 @item catch-type
28343 If the type of the breakpoint is @samp{catchpoint}, then this
28344 indicates the exact type of catchpoint.
28345
28346 @item disp
28347 This is the breakpoint disposition---either @samp{del}, meaning that
28348 the breakpoint will be deleted at the next stop, or @samp{keep},
28349 meaning that the breakpoint will not be deleted.
28350
28351 @item enabled
28352 This indicates whether the breakpoint is enabled, in which case the
28353 value is @samp{y}, or disabled, in which case the value is @samp{n}.
28354 Note that this is not the same as the field @code{enable}.
28355
28356 @item addr
28357 The address of the breakpoint.  This may be a hexidecimal number,
28358 giving the address; or the string @samp{<PENDING>}, for a pending
28359 breakpoint; or the string @samp{<MULTIPLE>}, for a breakpoint with
28360 multiple locations.  This field will not be present if no address can
28361 be determined.  For example, a watchpoint does not have an address.
28362
28363 @item func
28364 If known, the function in which the breakpoint appears.
28365 If not known, this field is not present.
28366
28367 @item filename
28368 The name of the source file which contains this function, if known.
28369 If not known, this field is not present.
28370
28371 @item fullname
28372 The full file name of the source file which contains this function, if
28373 known.  If not known, this field is not present.
28374
28375 @item line
28376 The line number at which this breakpoint appears, if known.
28377 If not known, this field is not present.
28378
28379 @item at
28380 If the source file is not known, this field may be provided.  If
28381 provided, this holds the address of the breakpoint, possibly followed
28382 by a symbol name.
28383
28384 @item pending
28385 If this breakpoint is pending, this field is present and holds the
28386 text used to set the breakpoint, as entered by the user.
28387
28388 @item evaluated-by
28389 Where this breakpoint's condition is evaluated, either @samp{host} or
28390 @samp{target}.
28391
28392 @item thread
28393 If this is a thread-specific breakpoint, then this identifies the
28394 thread in which the breakpoint can trigger.
28395
28396 @item task
28397 If this breakpoint is restricted to a particular Ada task, then this
28398 field will hold the task identifier.
28399
28400 @item cond
28401 If the breakpoint is conditional, this is the condition expression.
28402
28403 @item ignore
28404 The ignore count of the breakpoint.
28405
28406 @item enable
28407 The enable count of the breakpoint.
28408
28409 @item traceframe-usage
28410 FIXME.
28411
28412 @item static-tracepoint-marker-string-id
28413 For a static tracepoint, the name of the static tracepoint marker.
28414
28415 @item mask
28416 For a masked watchpoint, this is the mask.
28417
28418 @item pass
28419 A tracepoint's pass count.
28420
28421 @item original-location
28422 The location of the breakpoint as originally specified by the user.
28423 This field is optional.
28424
28425 @item times
28426 The number of times the breakpoint has been hit.
28427
28428 @item installed
28429 This field is only given for tracepoints.  This is either @samp{y},
28430 meaning that the tracepoint is installed, or @samp{n}, meaning that it
28431 is not.
28432
28433 @item what
28434 Some extra data, the exact contents of which are type-dependent.
28435
28436 @item locations
28437 This field is present if the breakpoint has multiple locations.  It is also
28438 exceptionally present if the breakpoint is enabled and has a single, disabled
28439 location.
28440
28441 The value is a list of locations.  The format of a location is decribed below.
28442
28443 @end table
28444
28445 A location in a multi-location breakpoint is represented as a tuple with the
28446 following fields:
28447
28448 @table @code
28449
28450 @item number
28451 The location number as a dotted pair, like @samp{1.2}.  The first digit is the
28452 number of the parent breakpoint.  The second digit is the number of the
28453 location within that breakpoint.
28454
28455 @item enabled
28456 This indicates whether the location is enabled, in which case the
28457 value is @samp{y}, or disabled, in which case the value is @samp{n}.
28458 Note that this is not the same as the field @code{enable}.
28459
28460 @item addr
28461 The address of this location as an hexidecimal number.
28462
28463 @item func
28464 If known, the function in which the location appears.
28465 If not known, this field is not present.
28466
28467 @item file
28468 The name of the source file which contains this location, if known.
28469 If not known, this field is not present.
28470
28471 @item fullname
28472 The full file name of the source file which contains this location, if
28473 known.  If not known, this field is not present.
28474
28475 @item line
28476 The line number at which this location appears, if known.
28477 If not known, this field is not present.
28478
28479 @item thread-groups
28480 The thread groups this location is in.
28481
28482 @end table
28483
28484 For example, here is what the output of @code{-break-insert}
28485 (@pxref{GDB/MI Breakpoint Commands}) might be:
28486
28487 @smallexample
28488 -> -break-insert main
28489 <- ^done,bkpt=@{number="1",type="breakpoint",disp="keep",
28490     enabled="y",addr="0x08048564",func="main",file="myprog.c",
28491     fullname="/home/nickrob/myprog.c",line="68",thread-groups=["i1"],
28492     times="0"@}
28493 <- (gdb)
28494 @end smallexample
28495
28496 @node GDB/MI Frame Information
28497 @subsection @sc{gdb/mi} Frame Information
28498
28499 Response from many MI commands includes an information about stack
28500 frame.  This information is a tuple that may have the following
28501 fields:
28502
28503 @table @code
28504 @item level
28505 The level of the stack frame.  The innermost frame has the level of
28506 zero.  This field is always present.
28507
28508 @item func
28509 The name of the function corresponding to the frame.  This field may
28510 be absent if @value{GDBN} is unable to determine the function name.
28511
28512 @item addr
28513 The code address for the frame.  This field is always present.
28514
28515 @item file
28516 The name of the source files that correspond to the frame's code
28517 address.  This field may be absent.
28518
28519 @item line
28520 The source line corresponding to the frames' code address.  This field
28521 may be absent.
28522
28523 @item from
28524 The name of the binary file (either executable or shared library) the
28525 corresponds to the frame's code address.  This field may be absent.
28526
28527 @end table
28528
28529 @node GDB/MI Thread Information
28530 @subsection @sc{gdb/mi} Thread Information
28531
28532 Whenever @value{GDBN} has to report an information about a thread, it
28533 uses a tuple with the following fields.  The fields are always present unless
28534 stated otherwise.
28535
28536 @table @code
28537 @item id
28538 The global numeric id assigned to the thread by @value{GDBN}.
28539
28540 @item target-id
28541 The target-specific string identifying the thread.
28542
28543 @item details
28544 Additional information about the thread provided by the target.
28545 It is supposed to be human-readable and not interpreted by the
28546 frontend.  This field is optional.
28547
28548 @item name
28549 The name of the thread.  If the user specified a name using the
28550 @code{thread name} command, then this name is given.  Otherwise, if
28551 @value{GDBN} can extract the thread name from the target, then that
28552 name is given.  If @value{GDBN} cannot find the thread name, then this
28553 field is omitted.
28554
28555 @item state
28556 The execution state of the thread, either @samp{stopped} or @samp{running},
28557 depending on whether the thread is presently running.
28558
28559 @item frame
28560 The stack frame currently executing in the thread.  This field is only present
28561 if the thread is stopped.  Its format is documented in
28562 @ref{GDB/MI Frame Information}.
28563
28564 @item core
28565 The value of this field is an integer number of the processor core the
28566 thread was last seen on.  This field is optional.
28567 @end table
28568
28569 @node GDB/MI Ada Exception Information
28570 @subsection @sc{gdb/mi} Ada Exception Information
28571
28572 Whenever a @code{*stopped} record is emitted because the program
28573 stopped after hitting an exception catchpoint (@pxref{Set Catchpoints}),
28574 @value{GDBN} provides the name of the exception that was raised via
28575 the @code{exception-name} field.  Also, for exceptions that were raised
28576 with an exception message, @value{GDBN} provides that message via
28577 the @code{exception-message} field.
28578
28579 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
28580 @node GDB/MI Simple Examples
28581 @section Simple Examples of @sc{gdb/mi} Interaction
28582 @cindex @sc{gdb/mi}, simple examples
28583
28584 This subsection presents several simple examples of interaction using
28585 the @sc{gdb/mi} interface.  In these examples, @samp{->} means that the
28586 following line is passed to @sc{gdb/mi} as input, while @samp{<-} means
28587 the output received from @sc{gdb/mi}.
28588
28589 Note the line breaks shown in the examples are here only for
28590 readability, they don't appear in the real output.
28591
28592 @subheading Setting a Breakpoint
28593
28594 Setting a breakpoint generates synchronous output which contains detailed
28595 information of the breakpoint.
28596
28597 @smallexample
28598 -> -break-insert main
28599 <- ^done,bkpt=@{number="1",type="breakpoint",disp="keep",
28600     enabled="y",addr="0x08048564",func="main",file="myprog.c",
28601     fullname="/home/nickrob/myprog.c",line="68",thread-groups=["i1"],
28602     times="0"@}
28603 <- (gdb)
28604 @end smallexample
28605
28606 @subheading Program Execution
28607
28608 Program execution generates asynchronous records and MI gives the
28609 reason that execution stopped.
28610
28611 @smallexample
28612 -> -exec-run
28613 <- ^running
28614 <- (gdb)
28615 <- *stopped,reason="breakpoint-hit",disp="keep",bkptno="1",thread-id="0",
28616    frame=@{addr="0x08048564",func="main",
28617    args=[@{name="argc",value="1"@},@{name="argv",value="0xbfc4d4d4"@}],
28618    file="myprog.c",fullname="/home/nickrob/myprog.c",line="68",
28619    arch="i386:x86_64"@}
28620 <- (gdb)
28621 -> -exec-continue
28622 <- ^running
28623 <- (gdb)
28624 <- *stopped,reason="exited-normally"
28625 <- (gdb)
28626 @end smallexample
28627
28628 @subheading Quitting @value{GDBN}
28629
28630 Quitting @value{GDBN} just prints the result class @samp{^exit}.
28631
28632 @smallexample
28633 -> (gdb)
28634 <- -gdb-exit
28635 <- ^exit
28636 @end smallexample
28637
28638 Please note that @samp{^exit} is printed immediately, but it might
28639 take some time for @value{GDBN} to actually exit.  During that time, @value{GDBN}
28640 performs necessary cleanups, including killing programs being debugged
28641 or disconnecting from debug hardware, so the frontend should wait till
28642 @value{GDBN} exits and should only forcibly kill @value{GDBN} if it
28643 fails to exit in reasonable time.
28644
28645 @subheading A Bad Command
28646
28647 Here's what happens if you pass a non-existent command:
28648
28649 @smallexample
28650 -> -rubbish
28651 <- ^error,msg="Undefined MI command: rubbish"
28652 <- (gdb)
28653 @end smallexample
28654
28655
28656 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
28657 @node GDB/MI Command Description Format
28658 @section @sc{gdb/mi} Command Description Format
28659
28660 The remaining sections describe blocks of commands.  Each block of
28661 commands is laid out in a fashion similar to this section.
28662
28663 @subheading Motivation
28664
28665 The motivation for this collection of commands.
28666
28667 @subheading Introduction
28668
28669 A brief introduction to this collection of commands as a whole.
28670
28671 @subheading Commands
28672
28673 For each command in the block, the following is described:
28674
28675 @subsubheading Synopsis
28676
28677 @smallexample
28678  -command @var{args}@dots{}
28679 @end smallexample
28680
28681 @subsubheading Result
28682
28683 @subsubheading @value{GDBN} Command
28684
28685 The corresponding @value{GDBN} CLI command(s), if any.
28686
28687 @subsubheading Example
28688
28689 Example(s) formatted for readability.  Some of the described commands  have
28690 not been implemented yet and these are labeled N.A.@: (not available).
28691
28692
28693 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
28694 @node GDB/MI Breakpoint Commands
28695 @section @sc{gdb/mi} Breakpoint Commands
28696
28697 @cindex breakpoint commands for @sc{gdb/mi}
28698 @cindex @sc{gdb/mi}, breakpoint commands
28699 This section documents @sc{gdb/mi} commands for manipulating
28700 breakpoints.
28701
28702 @subheading The @code{-break-after} Command
28703 @findex -break-after
28704
28705 @subsubheading Synopsis
28706
28707 @smallexample
28708  -break-after @var{number} @var{count}
28709 @end smallexample
28710
28711 The breakpoint number @var{number} is not in effect until it has been
28712 hit @var{count} times.  To see how this is reflected in the output of
28713 the @samp{-break-list} command, see the description of the
28714 @samp{-break-list} command below.
28715
28716 @subsubheading @value{GDBN} Command
28717
28718 The corresponding @value{GDBN} command is @samp{ignore}.
28719
28720 @subsubheading Example
28721
28722 @smallexample
28723 (gdb)
28724 -break-insert main
28725 ^done,bkpt=@{number="1",type="breakpoint",disp="keep",
28726 enabled="y",addr="0x000100d0",func="main",file="hello.c",
28727 fullname="/home/foo/hello.c",line="5",thread-groups=["i1"],
28728 times="0"@}
28729 (gdb)
28730 -break-after 1 3
28731 ~
28732 ^done
28733 (gdb)
28734 -break-list
28735 ^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
28736 hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
28737 @{width="14",alignment="-1",col_name="type",colhdr="Type"@},
28738 @{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
28739 @{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
28740 @{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
28741 @{width="40",alignment="2",col_name="what",colhdr="What"@}],
28742 body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
28743 addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
28744 line="5",thread-groups=["i1"],times="0",ignore="3"@}]@}
28745 (gdb)
28746 @end smallexample
28747
28748 @ignore
28749 @subheading The @code{-break-catch} Command
28750 @findex -break-catch
28751 @end ignore
28752
28753 @subheading The @code{-break-commands} Command
28754 @findex -break-commands
28755
28756 @subsubheading Synopsis
28757
28758 @smallexample
28759  -break-commands @var{number} [ @var{command1} ... @var{commandN} ]
28760 @end smallexample
28761
28762 Specifies the CLI commands that should be executed when breakpoint
28763 @var{number} is hit.  The parameters @var{command1} to @var{commandN}
28764 are the commands.  If no command is specified, any previously-set
28765 commands are cleared.  @xref{Break Commands}.  Typical use of this
28766 functionality is tracing a program, that is, printing of values of
28767 some variables whenever breakpoint is hit and then continuing.
28768
28769 @subsubheading @value{GDBN} Command
28770
28771 The corresponding @value{GDBN} command is @samp{commands}.
28772
28773 @subsubheading Example
28774
28775 @smallexample
28776 (gdb)
28777 -break-insert main
28778 ^done,bkpt=@{number="1",type="breakpoint",disp="keep",
28779 enabled="y",addr="0x000100d0",func="main",file="hello.c",
28780 fullname="/home/foo/hello.c",line="5",thread-groups=["i1"],
28781 times="0"@}
28782 (gdb)
28783 -break-commands 1 "print v" "continue"
28784 ^done
28785 (gdb)
28786 @end smallexample
28787
28788 @subheading The @code{-break-condition} Command
28789 @findex -break-condition
28790
28791 @subsubheading Synopsis
28792
28793 @smallexample
28794  -break-condition @var{number} @var{expr}
28795 @end smallexample
28796
28797 Breakpoint @var{number} will stop the program only if the condition in
28798 @var{expr} is true.  The condition becomes part of the
28799 @samp{-break-list} output (see the description of the @samp{-break-list}
28800 command below).
28801
28802 @subsubheading @value{GDBN} Command
28803
28804 The corresponding @value{GDBN} command is @samp{condition}.
28805
28806 @subsubheading Example
28807
28808 @smallexample
28809 (gdb)
28810 -break-condition 1 1
28811 ^done
28812 (gdb)
28813 -break-list
28814 ^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
28815 hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
28816 @{width="14",alignment="-1",col_name="type",colhdr="Type"@},
28817 @{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
28818 @{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
28819 @{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
28820 @{width="40",alignment="2",col_name="what",colhdr="What"@}],
28821 body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
28822 addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
28823 line="5",cond="1",thread-groups=["i1"],times="0",ignore="3"@}]@}
28824 (gdb)
28825 @end smallexample
28826
28827 @subheading The @code{-break-delete} Command
28828 @findex -break-delete
28829
28830 @subsubheading Synopsis
28831
28832 @smallexample
28833  -break-delete ( @var{breakpoint} )+
28834 @end smallexample
28835
28836 Delete the breakpoint(s) whose number(s) are specified in the argument
28837 list.  This is obviously reflected in the breakpoint list.
28838
28839 @subsubheading @value{GDBN} Command
28840
28841 The corresponding @value{GDBN} command is @samp{delete}.
28842
28843 @subsubheading Example
28844
28845 @smallexample
28846 (gdb)
28847 -break-delete 1
28848 ^done
28849 (gdb)
28850 -break-list
28851 ^done,BreakpointTable=@{nr_rows="0",nr_cols="6",
28852 hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
28853 @{width="14",alignment="-1",col_name="type",colhdr="Type"@},
28854 @{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
28855 @{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
28856 @{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
28857 @{width="40",alignment="2",col_name="what",colhdr="What"@}],
28858 body=[]@}
28859 (gdb)
28860 @end smallexample
28861
28862 @subheading The @code{-break-disable} Command
28863 @findex -break-disable
28864
28865 @subsubheading Synopsis
28866
28867 @smallexample
28868  -break-disable ( @var{breakpoint} )+
28869 @end smallexample
28870
28871 Disable the named @var{breakpoint}(s).  The field @samp{enabled} in the
28872 break list is now set to @samp{n} for the named @var{breakpoint}(s).
28873
28874 @subsubheading @value{GDBN} Command
28875
28876 The corresponding @value{GDBN} command is @samp{disable}.
28877
28878 @subsubheading Example
28879
28880 @smallexample
28881 (gdb)
28882 -break-disable 2
28883 ^done
28884 (gdb)
28885 -break-list
28886 ^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
28887 hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
28888 @{width="14",alignment="-1",col_name="type",colhdr="Type"@},
28889 @{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
28890 @{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
28891 @{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
28892 @{width="40",alignment="2",col_name="what",colhdr="What"@}],
28893 body=[bkpt=@{number="2",type="breakpoint",disp="keep",enabled="n",
28894 addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
28895 line="5",thread-groups=["i1"],times="0"@}]@}
28896 (gdb)
28897 @end smallexample
28898
28899 @subheading The @code{-break-enable} Command
28900 @findex -break-enable
28901
28902 @subsubheading Synopsis
28903
28904 @smallexample
28905  -break-enable ( @var{breakpoint} )+
28906 @end smallexample
28907
28908 Enable (previously disabled) @var{breakpoint}(s).
28909
28910 @subsubheading @value{GDBN} Command
28911
28912 The corresponding @value{GDBN} command is @samp{enable}.
28913
28914 @subsubheading Example
28915
28916 @smallexample
28917 (gdb)
28918 -break-enable 2
28919 ^done
28920 (gdb)
28921 -break-list
28922 ^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
28923 hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
28924 @{width="14",alignment="-1",col_name="type",colhdr="Type"@},
28925 @{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
28926 @{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
28927 @{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
28928 @{width="40",alignment="2",col_name="what",colhdr="What"@}],
28929 body=[bkpt=@{number="2",type="breakpoint",disp="keep",enabled="y",
28930 addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
28931 line="5",thread-groups=["i1"],times="0"@}]@}
28932 (gdb)
28933 @end smallexample
28934
28935 @subheading The @code{-break-info} Command
28936 @findex -break-info
28937
28938 @subsubheading Synopsis
28939
28940 @smallexample
28941  -break-info @var{breakpoint}
28942 @end smallexample
28943
28944 @c REDUNDANT???
28945 Get information about a single breakpoint.
28946
28947 The result is a table of breakpoints.  @xref{GDB/MI Breakpoint
28948 Information}, for details on the format of each breakpoint in the
28949 table.
28950
28951 @subsubheading @value{GDBN} Command
28952
28953 The corresponding @value{GDBN} command is @samp{info break @var{breakpoint}}.
28954
28955 @subsubheading Example
28956 N.A.
28957
28958 @subheading The @code{-break-insert} Command
28959 @findex -break-insert
28960 @anchor{-break-insert}
28961
28962 @subsubheading Synopsis
28963
28964 @smallexample
28965  -break-insert [ -t ] [ -h ] [ -f ] [ -d ] [ -a ]
28966     [ -c @var{condition} ] [ -i @var{ignore-count} ]
28967     [ -p @var{thread-id} ] [ @var{location} ]
28968 @end smallexample
28969
28970 @noindent
28971 If specified, @var{location}, can be one of:
28972
28973 @table @var
28974 @item linespec location
28975 A linespec location.  @xref{Linespec Locations}.
28976
28977 @item explicit location
28978 An explicit location.  @sc{gdb/mi} explicit locations are
28979 analogous to the CLI's explicit locations using the option names
28980 listed below.  @xref{Explicit Locations}.
28981
28982 @table @samp
28983 @item --source @var{filename}
28984 The source file name of the location.  This option requires the use
28985 of either @samp{--function} or @samp{--line}.
28986
28987 @item --function @var{function}
28988 The name of a function or method.
28989
28990 @item --label @var{label}
28991 The name of a label.
28992
28993 @item --line @var{lineoffset}
28994 An absolute or relative line offset from the start of the location.
28995 @end table
28996
28997 @item address location
28998 An address location, *@var{address}.  @xref{Address Locations}.
28999 @end table
29000
29001 @noindent
29002 The possible optional parameters of this command are:
29003
29004 @table @samp
29005 @item -t
29006 Insert a temporary breakpoint.
29007 @item -h
29008 Insert a hardware breakpoint.
29009 @item -f
29010 If @var{location} cannot be parsed (for example if it
29011 refers to unknown files or functions), create a pending
29012 breakpoint. Without this flag, @value{GDBN} will report
29013 an error, and won't create a breakpoint, if @var{location}
29014 cannot be parsed.
29015 @item -d
29016 Create a disabled breakpoint.
29017 @item -a
29018 Create a tracepoint.  @xref{Tracepoints}.  When this parameter
29019 is used together with @samp{-h}, a fast tracepoint is created.
29020 @item -c @var{condition}
29021 Make the breakpoint conditional on @var{condition}.
29022 @item -i @var{ignore-count}
29023 Initialize the @var{ignore-count}.
29024 @item -p @var{thread-id}
29025 Restrict the breakpoint to the thread with the specified global
29026 @var{thread-id}.
29027 @end table
29028
29029 @subsubheading Result
29030
29031 @xref{GDB/MI Breakpoint Information}, for details on the format of the
29032 resulting breakpoint.
29033
29034 Note: this format is open to change.
29035 @c An out-of-band breakpoint instead of part of the result?
29036
29037 @subsubheading @value{GDBN} Command
29038
29039 The corresponding @value{GDBN} commands are @samp{break}, @samp{tbreak},
29040 @samp{hbreak}, and @samp{thbreak}. @c and @samp{rbreak}.
29041
29042 @subsubheading Example
29043
29044 @smallexample
29045 (gdb)
29046 -break-insert main
29047 ^done,bkpt=@{number="1",addr="0x0001072c",file="recursive2.c",
29048 fullname="/home/foo/recursive2.c,line="4",thread-groups=["i1"],
29049 times="0"@}
29050 (gdb)
29051 -break-insert -t foo
29052 ^done,bkpt=@{number="2",addr="0x00010774",file="recursive2.c",
29053 fullname="/home/foo/recursive2.c,line="11",thread-groups=["i1"],
29054 times="0"@}
29055 (gdb)
29056 -break-list
29057 ^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
29058 hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
29059 @{width="14",alignment="-1",col_name="type",colhdr="Type"@},
29060 @{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
29061 @{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
29062 @{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
29063 @{width="40",alignment="2",col_name="what",colhdr="What"@}],
29064 body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
29065 addr="0x0001072c", func="main",file="recursive2.c",
29066 fullname="/home/foo/recursive2.c,"line="4",thread-groups=["i1"],
29067 times="0"@},
29068 bkpt=@{number="2",type="breakpoint",disp="del",enabled="y",
29069 addr="0x00010774",func="foo",file="recursive2.c",
29070 fullname="/home/foo/recursive2.c",line="11",thread-groups=["i1"],
29071 times="0"@}]@}
29072 (gdb)
29073 @c -break-insert -r foo.*
29074 @c ~int foo(int, int);
29075 @c ^done,bkpt=@{number="3",addr="0x00010774",file="recursive2.c,
29076 @c "fullname="/home/foo/recursive2.c",line="11",thread-groups=["i1"],
29077 @c times="0"@}
29078 @c (gdb)
29079 @end smallexample
29080
29081 @subheading The @code{-dprintf-insert} Command
29082 @findex -dprintf-insert
29083
29084 @subsubheading Synopsis
29085
29086 @smallexample
29087  -dprintf-insert [ -t ] [ -f ] [ -d ]
29088     [ -c @var{condition} ] [ -i @var{ignore-count} ]
29089     [ -p @var{thread-id} ] [ @var{location} ] [ @var{format} ]
29090     [ @var{argument} ]
29091 @end smallexample
29092
29093 @noindent
29094 If supplied, @var{location} may be specified the same way as for
29095 the @code{-break-insert} command.  @xref{-break-insert}.
29096
29097 The possible optional parameters of this command are:
29098
29099 @table @samp
29100 @item -t
29101 Insert a temporary breakpoint.
29102 @item -f
29103 If @var{location} cannot be parsed (for example, if it
29104 refers to unknown files or functions), create a pending
29105 breakpoint.  Without this flag, @value{GDBN} will report
29106 an error, and won't create a breakpoint, if @var{location}
29107 cannot be parsed.
29108 @item -d
29109 Create a disabled breakpoint.
29110 @item -c @var{condition}
29111 Make the breakpoint conditional on @var{condition}.
29112 @item -i @var{ignore-count}
29113 Set the ignore count of the breakpoint (@pxref{Conditions, ignore count})
29114 to @var{ignore-count}.
29115 @item -p @var{thread-id}
29116 Restrict the breakpoint to the thread with the specified global
29117 @var{thread-id}.
29118 @end table
29119
29120 @subsubheading Result
29121
29122 @xref{GDB/MI Breakpoint Information}, for details on the format of the
29123 resulting breakpoint.
29124
29125 @c An out-of-band breakpoint instead of part of the result?
29126
29127 @subsubheading @value{GDBN} Command
29128
29129 The corresponding @value{GDBN} command is @samp{dprintf}.
29130
29131 @subsubheading Example
29132
29133 @smallexample
29134 (gdb)
29135 4-dprintf-insert foo "At foo entry\n"
29136 4^done,bkpt=@{number="1",type="dprintf",disp="keep",enabled="y",
29137 addr="0x000000000040061b",func="foo",file="mi-dprintf.c",
29138 fullname="mi-dprintf.c",line="25",thread-groups=["i1"],
29139 times="0",script=@{"printf \"At foo entry\\n\"","continue"@},
29140 original-location="foo"@}
29141 (gdb)
29142 5-dprintf-insert 26 "arg=%d, g=%d\n" arg g
29143 5^done,bkpt=@{number="2",type="dprintf",disp="keep",enabled="y",
29144 addr="0x000000000040062a",func="foo",file="mi-dprintf.c",
29145 fullname="mi-dprintf.c",line="26",thread-groups=["i1"],
29146 times="0",script=@{"printf \"arg=%d, g=%d\\n\", arg, g","continue"@},
29147 original-location="mi-dprintf.c:26"@}
29148 (gdb)
29149 @end smallexample
29150
29151 @subheading The @code{-break-list} Command
29152 @findex -break-list
29153
29154 @subsubheading Synopsis
29155
29156 @smallexample
29157  -break-list
29158 @end smallexample
29159
29160 Displays the list of inserted breakpoints, showing the following fields:
29161
29162 @table @samp
29163 @item Number
29164 number of the breakpoint
29165 @item Type
29166 type of the breakpoint: @samp{breakpoint} or @samp{watchpoint}
29167 @item Disposition
29168 should the breakpoint be deleted or disabled when it is hit: @samp{keep}
29169 or @samp{nokeep}
29170 @item Enabled
29171 is the breakpoint enabled or no: @samp{y} or @samp{n}
29172 @item Address
29173 memory location at which the breakpoint is set
29174 @item What
29175 logical location of the breakpoint, expressed by function name, file
29176 name, line number
29177 @item Thread-groups
29178 list of thread groups to which this breakpoint applies
29179 @item Times
29180 number of times the breakpoint has been hit
29181 @end table
29182
29183 If there are no breakpoints or watchpoints, the @code{BreakpointTable}
29184 @code{body} field is an empty list.
29185
29186 @subsubheading @value{GDBN} Command
29187
29188 The corresponding @value{GDBN} command is @samp{info break}.
29189
29190 @subsubheading Example
29191
29192 @smallexample
29193 (gdb)
29194 -break-list
29195 ^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
29196 hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
29197 @{width="14",alignment="-1",col_name="type",colhdr="Type"@},
29198 @{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
29199 @{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
29200 @{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
29201 @{width="40",alignment="2",col_name="what",colhdr="What"@}],
29202 body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
29203 addr="0x000100d0",func="main",file="hello.c",line="5",thread-groups=["i1"],
29204 times="0"@},
29205 bkpt=@{number="2",type="breakpoint",disp="keep",enabled="y",
29206 addr="0x00010114",func="foo",file="hello.c",fullname="/home/foo/hello.c",
29207 line="13",thread-groups=["i1"],times="0"@}]@}
29208 (gdb)
29209 @end smallexample
29210
29211 Here's an example of the result when there are no breakpoints:
29212
29213 @smallexample
29214 (gdb)
29215 -break-list
29216 ^done,BreakpointTable=@{nr_rows="0",nr_cols="6",
29217 hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
29218 @{width="14",alignment="-1",col_name="type",colhdr="Type"@},
29219 @{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
29220 @{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
29221 @{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
29222 @{width="40",alignment="2",col_name="what",colhdr="What"@}],
29223 body=[]@}
29224 (gdb)
29225 @end smallexample
29226
29227 @subheading The @code{-break-passcount} Command
29228 @findex -break-passcount
29229
29230 @subsubheading Synopsis
29231
29232 @smallexample
29233  -break-passcount @var{tracepoint-number} @var{passcount}
29234 @end smallexample
29235
29236 Set the passcount for tracepoint @var{tracepoint-number} to
29237 @var{passcount}.  If the breakpoint referred to by @var{tracepoint-number}
29238 is not a tracepoint, error is emitted.  This corresponds to CLI
29239 command @samp{passcount}.
29240
29241 @subheading The @code{-break-watch} Command
29242 @findex -break-watch
29243
29244 @subsubheading Synopsis
29245
29246 @smallexample
29247  -break-watch [ -a | -r ]
29248 @end smallexample
29249
29250 Create a watchpoint.  With the @samp{-a} option it will create an
29251 @dfn{access} watchpoint, i.e., a watchpoint that triggers either on a
29252 read from or on a write to the memory location.  With the @samp{-r}
29253 option, the watchpoint created is a @dfn{read} watchpoint, i.e., it will
29254 trigger only when the memory location is accessed for reading.  Without
29255 either of the options, the watchpoint created is a regular watchpoint,
29256 i.e., it will trigger when the memory location is accessed for writing.
29257 @xref{Set Watchpoints, , Setting Watchpoints}.
29258
29259 Note that @samp{-break-list} will report a single list of watchpoints and
29260 breakpoints inserted.
29261
29262 @subsubheading @value{GDBN} Command
29263
29264 The corresponding @value{GDBN} commands are @samp{watch}, @samp{awatch}, and
29265 @samp{rwatch}.
29266
29267 @subsubheading Example
29268
29269 Setting a watchpoint on a variable in the @code{main} function:
29270
29271 @smallexample
29272 (gdb)
29273 -break-watch x
29274 ^done,wpt=@{number="2",exp="x"@}
29275 (gdb)
29276 -exec-continue
29277 ^running
29278 (gdb)
29279 *stopped,reason="watchpoint-trigger",wpt=@{number="2",exp="x"@},
29280 value=@{old="-268439212",new="55"@},
29281 frame=@{func="main",args=[],file="recursive2.c",
29282 fullname="/home/foo/bar/recursive2.c",line="5",arch="i386:x86_64"@}
29283 (gdb)
29284 @end smallexample
29285
29286 Setting a watchpoint on a variable local to a function.  @value{GDBN} will stop
29287 the program execution twice: first for the variable changing value, then
29288 for the watchpoint going out of scope.
29289
29290 @smallexample
29291 (gdb)
29292 -break-watch C
29293 ^done,wpt=@{number="5",exp="C"@}
29294 (gdb)
29295 -exec-continue
29296 ^running
29297 (gdb)
29298 *stopped,reason="watchpoint-trigger",
29299 wpt=@{number="5",exp="C"@},value=@{old="-276895068",new="3"@},
29300 frame=@{func="callee4",args=[],
29301 file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
29302 fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="13",
29303 arch="i386:x86_64"@}
29304 (gdb)
29305 -exec-continue
29306 ^running
29307 (gdb)
29308 *stopped,reason="watchpoint-scope",wpnum="5",
29309 frame=@{func="callee3",args=[@{name="strarg",
29310 value="0x11940 \"A string argument.\""@}],
29311 file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
29312 fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="18",
29313 arch="i386:x86_64"@}
29314 (gdb)
29315 @end smallexample
29316
29317 Listing breakpoints and watchpoints, at different points in the program
29318 execution.  Note that once the watchpoint goes out of scope, it is
29319 deleted.
29320
29321 @smallexample
29322 (gdb)
29323 -break-watch C
29324 ^done,wpt=@{number="2",exp="C"@}
29325 (gdb)
29326 -break-list
29327 ^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
29328 hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
29329 @{width="14",alignment="-1",col_name="type",colhdr="Type"@},
29330 @{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
29331 @{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
29332 @{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
29333 @{width="40",alignment="2",col_name="what",colhdr="What"@}],
29334 body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
29335 addr="0x00010734",func="callee4",
29336 file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
29337 fullname="/home/foo/devo/gdb/testsuite/gdb.mi/basics.c"line="8",thread-groups=["i1"],
29338 times="1"@},
29339 bkpt=@{number="2",type="watchpoint",disp="keep",
29340 enabled="y",addr="",what="C",thread-groups=["i1"],times="0"@}]@}
29341 (gdb)
29342 -exec-continue
29343 ^running
29344 (gdb)
29345 *stopped,reason="watchpoint-trigger",wpt=@{number="2",exp="C"@},
29346 value=@{old="-276895068",new="3"@},
29347 frame=@{func="callee4",args=[],
29348 file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
29349 fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="13",
29350 arch="i386:x86_64"@}
29351 (gdb)
29352 -break-list
29353 ^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
29354 hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
29355 @{width="14",alignment="-1",col_name="type",colhdr="Type"@},
29356 @{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
29357 @{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
29358 @{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
29359 @{width="40",alignment="2",col_name="what",colhdr="What"@}],
29360 body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
29361 addr="0x00010734",func="callee4",
29362 file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
29363 fullname="/home/foo/devo/gdb/testsuite/gdb.mi/basics.c",line="8",thread-groups=["i1"],
29364 times="1"@},
29365 bkpt=@{number="2",type="watchpoint",disp="keep",
29366 enabled="y",addr="",what="C",thread-groups=["i1"],times="-5"@}]@}
29367 (gdb)
29368 -exec-continue
29369 ^running
29370 ^done,reason="watchpoint-scope",wpnum="2",
29371 frame=@{func="callee3",args=[@{name="strarg",
29372 value="0x11940 \"A string argument.\""@}],
29373 file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
29374 fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="18",
29375 arch="i386:x86_64"@}
29376 (gdb)
29377 -break-list
29378 ^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
29379 hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
29380 @{width="14",alignment="-1",col_name="type",colhdr="Type"@},
29381 @{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
29382 @{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
29383 @{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
29384 @{width="40",alignment="2",col_name="what",colhdr="What"@}],
29385 body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
29386 addr="0x00010734",func="callee4",
29387 file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
29388 fullname="/home/foo/devo/gdb/testsuite/gdb.mi/basics.c",line="8",
29389 thread-groups=["i1"],times="1"@}]@}
29390 (gdb)
29391 @end smallexample
29392
29393
29394 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
29395 @node GDB/MI Catchpoint Commands
29396 @section @sc{gdb/mi} Catchpoint Commands
29397
29398 This section documents @sc{gdb/mi} commands for manipulating
29399 catchpoints.
29400
29401 @menu
29402 * Shared Library GDB/MI Catchpoint Commands::
29403 * Ada Exception GDB/MI Catchpoint Commands::
29404 @end menu
29405
29406 @node Shared Library GDB/MI Catchpoint Commands
29407 @subsection Shared Library @sc{gdb/mi} Catchpoints
29408
29409 @subheading The @code{-catch-load} Command
29410 @findex -catch-load
29411
29412 @subsubheading Synopsis
29413
29414 @smallexample
29415  -catch-load [ -t ] [ -d ] @var{regexp}
29416 @end smallexample
29417
29418 Add a catchpoint for library load events.  If the @samp{-t} option is used,
29419 the catchpoint is a temporary one (@pxref{Set Breaks, ,Setting
29420 Breakpoints}).  If the @samp{-d} option is used, the catchpoint is created
29421 in a disabled state.  The @samp{regexp} argument is a regular
29422 expression used to match the name of the loaded library.
29423
29424
29425 @subsubheading @value{GDBN} Command
29426
29427 The corresponding @value{GDBN} command is @samp{catch load}.
29428
29429 @subsubheading Example
29430
29431 @smallexample
29432 -catch-load -t foo.so
29433 ^done,bkpt=@{number="1",type="catchpoint",disp="del",enabled="y",
29434 what="load of library matching foo.so",catch-type="load",times="0"@}
29435 (gdb)
29436 @end smallexample
29437
29438
29439 @subheading The @code{-catch-unload} Command
29440 @findex -catch-unload
29441
29442 @subsubheading Synopsis
29443
29444 @smallexample
29445  -catch-unload [ -t ] [ -d ] @var{regexp}
29446 @end smallexample
29447
29448 Add a catchpoint for library unload events.  If the @samp{-t} option is
29449 used, the catchpoint is a temporary one (@pxref{Set Breaks, ,Setting
29450 Breakpoints}).  If the @samp{-d} option is used, the catchpoint is
29451 created in a disabled state.  The @samp{regexp} argument is a regular
29452 expression used to match the name of the unloaded library.
29453
29454 @subsubheading @value{GDBN} Command
29455
29456 The corresponding @value{GDBN} command is @samp{catch unload}.
29457
29458 @subsubheading Example
29459
29460 @smallexample
29461 -catch-unload -d bar.so
29462 ^done,bkpt=@{number="2",type="catchpoint",disp="keep",enabled="n",
29463 what="load of library matching bar.so",catch-type="unload",times="0"@}
29464 (gdb)
29465 @end smallexample
29466
29467 @node Ada Exception GDB/MI Catchpoint Commands
29468 @subsection Ada Exception @sc{gdb/mi} Catchpoints
29469
29470 The following @sc{gdb/mi} commands can be used to create catchpoints
29471 that stop the execution when Ada exceptions are being raised.
29472
29473 @subheading The @code{-catch-assert} Command
29474 @findex -catch-assert
29475
29476 @subsubheading Synopsis
29477
29478 @smallexample
29479  -catch-assert [ -c @var{condition}] [ -d ] [ -t ]
29480 @end smallexample
29481
29482 Add a catchpoint for failed Ada assertions.
29483
29484 The possible optional parameters for this command are:
29485
29486 @table @samp
29487 @item -c @var{condition}
29488 Make the catchpoint conditional on @var{condition}.
29489 @item -d
29490 Create a disabled catchpoint.
29491 @item -t
29492 Create a temporary catchpoint.
29493 @end table
29494
29495 @subsubheading @value{GDBN} Command
29496
29497 The corresponding @value{GDBN} command is @samp{catch assert}.
29498
29499 @subsubheading Example
29500
29501 @smallexample
29502 -catch-assert
29503 ^done,bkptno="5",bkpt=@{number="5",type="breakpoint",disp="keep",
29504 enabled="y",addr="0x0000000000404888",what="failed Ada assertions",
29505 thread-groups=["i1"],times="0",
29506 original-location="__gnat_debug_raise_assert_failure"@}
29507 (gdb)
29508 @end smallexample
29509
29510 @subheading The @code{-catch-exception} Command
29511 @findex -catch-exception
29512
29513 @subsubheading Synopsis
29514
29515 @smallexample
29516  -catch-exception [ -c @var{condition}] [ -d ] [ -e @var{exception-name} ]
29517     [ -t ] [ -u ]
29518 @end smallexample
29519
29520 Add a catchpoint stopping when Ada exceptions are raised.
29521 By default, the command stops the program when any Ada exception
29522 gets raised.  But it is also possible, by using some of the
29523 optional parameters described below, to create more selective
29524 catchpoints.
29525
29526 The possible optional parameters for this command are:
29527
29528 @table @samp
29529 @item -c @var{condition}
29530 Make the catchpoint conditional on @var{condition}.
29531 @item -d
29532 Create a disabled catchpoint.
29533 @item -e @var{exception-name}
29534 Only stop when @var{exception-name} is raised.  This option cannot
29535 be used combined with @samp{-u}.
29536 @item -t
29537 Create a temporary catchpoint.
29538 @item -u
29539 Stop only when an unhandled exception gets raised.  This option
29540 cannot be used combined with @samp{-e}.
29541 @end table
29542
29543 @subsubheading @value{GDBN} Command
29544
29545 The corresponding @value{GDBN} commands are @samp{catch exception}
29546 and @samp{catch exception unhandled}.
29547
29548 @subsubheading Example
29549
29550 @smallexample
29551 -catch-exception -e Program_Error
29552 ^done,bkptno="4",bkpt=@{number="4",type="breakpoint",disp="keep",
29553 enabled="y",addr="0x0000000000404874",
29554 what="`Program_Error' Ada exception", thread-groups=["i1"],
29555 times="0",original-location="__gnat_debug_raise_exception"@}
29556 (gdb)
29557 @end smallexample
29558
29559 @subheading The @code{-catch-handlers} Command
29560 @findex -catch-handlers
29561
29562 @subsubheading Synopsis
29563
29564 @smallexample
29565  -catch-handlers [ -c @var{condition}] [ -d ] [ -e @var{exception-name} ]
29566     [ -t ]
29567 @end smallexample
29568
29569 Add a catchpoint stopping when Ada exceptions are handled.
29570 By default, the command stops the program when any Ada exception
29571 gets handled.  But it is also possible, by using some of the
29572 optional parameters described below, to create more selective
29573 catchpoints.
29574
29575 The possible optional parameters for this command are:
29576
29577 @table @samp
29578 @item -c @var{condition}
29579 Make the catchpoint conditional on @var{condition}.
29580 @item -d
29581 Create a disabled catchpoint.
29582 @item -e @var{exception-name}
29583 Only stop when @var{exception-name} is handled.
29584 @item -t
29585 Create a temporary catchpoint.
29586 @end table
29587
29588 @subsubheading @value{GDBN} Command
29589
29590 The corresponding @value{GDBN} command is @samp{catch handlers}.
29591
29592 @subsubheading Example
29593
29594 @smallexample
29595 -catch-handlers -e Constraint_Error
29596 ^done,bkptno="4",bkpt=@{number="4",type="breakpoint",disp="keep",
29597 enabled="y",addr="0x0000000000402f68",
29598 what="`Constraint_Error' Ada exception handlers",thread-groups=["i1"],
29599 times="0",original-location="__gnat_begin_handler"@}
29600 (gdb)
29601 @end smallexample
29602
29603 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
29604 @node GDB/MI Program Context
29605 @section @sc{gdb/mi}  Program Context
29606
29607 @subheading The @code{-exec-arguments} Command
29608 @findex -exec-arguments
29609
29610
29611 @subsubheading Synopsis
29612
29613 @smallexample
29614  -exec-arguments @var{args}
29615 @end smallexample
29616
29617 Set the inferior program arguments, to be used in the next
29618 @samp{-exec-run}.
29619
29620 @subsubheading @value{GDBN} Command
29621
29622 The corresponding @value{GDBN} command is @samp{set args}.
29623
29624 @subsubheading Example
29625
29626 @smallexample
29627 (gdb)
29628 -exec-arguments -v word
29629 ^done
29630 (gdb)
29631 @end smallexample
29632
29633
29634 @ignore
29635 @subheading The @code{-exec-show-arguments} Command
29636 @findex -exec-show-arguments
29637
29638 @subsubheading Synopsis
29639
29640 @smallexample
29641  -exec-show-arguments
29642 @end smallexample
29643
29644 Print the arguments of the program.
29645
29646 @subsubheading @value{GDBN} Command
29647
29648 The corresponding @value{GDBN} command is @samp{show args}.
29649
29650 @subsubheading Example
29651 N.A.
29652 @end ignore
29653
29654
29655 @subheading The @code{-environment-cd} Command
29656 @findex -environment-cd
29657
29658 @subsubheading Synopsis
29659
29660 @smallexample
29661  -environment-cd @var{pathdir}
29662 @end smallexample
29663
29664 Set @value{GDBN}'s working directory.
29665
29666 @subsubheading @value{GDBN} Command
29667
29668 The corresponding @value{GDBN} command is @samp{cd}.
29669
29670 @subsubheading Example
29671
29672 @smallexample
29673 (gdb)
29674 -environment-cd /kwikemart/marge/ezannoni/flathead-dev/devo/gdb
29675 ^done
29676 (gdb)
29677 @end smallexample
29678
29679
29680 @subheading The @code{-environment-directory} Command
29681 @findex -environment-directory
29682
29683 @subsubheading Synopsis
29684
29685 @smallexample
29686  -environment-directory [ -r ] [ @var{pathdir} ]+
29687 @end smallexample
29688
29689 Add directories @var{pathdir} to beginning of search path for source files.
29690 If the @samp{-r} option is used, the search path is reset to the default
29691 search path.  If directories @var{pathdir} are supplied in addition to the
29692 @samp{-r} option, the search path is first reset and then addition
29693 occurs as normal.
29694 Multiple directories may be specified, separated by blanks.  Specifying
29695 multiple directories in a single command
29696 results in the directories added to the beginning of the
29697 search path in the same order they were presented in the command.
29698 If blanks are needed as
29699 part of a directory name, double-quotes should be used around
29700 the name.  In the command output, the path will show up separated
29701 by the system directory-separator character.  The directory-separator
29702 character must not be used
29703 in any directory name.
29704 If no directories are specified, the current search path is displayed.
29705
29706 @subsubheading @value{GDBN} Command
29707
29708 The corresponding @value{GDBN} command is @samp{dir}.
29709
29710 @subsubheading Example
29711
29712 @smallexample
29713 (gdb)
29714 -environment-directory /kwikemart/marge/ezannoni/flathead-dev/devo/gdb
29715 ^done,source-path="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb:$cdir:$cwd"
29716 (gdb)
29717 -environment-directory ""
29718 ^done,source-path="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb:$cdir:$cwd"
29719 (gdb)
29720 -environment-directory -r /home/jjohnstn/src/gdb /usr/src
29721 ^done,source-path="/home/jjohnstn/src/gdb:/usr/src:$cdir:$cwd"
29722 (gdb)
29723 -environment-directory -r
29724 ^done,source-path="$cdir:$cwd"
29725 (gdb)
29726 @end smallexample
29727
29728
29729 @subheading The @code{-environment-path} Command
29730 @findex -environment-path
29731
29732 @subsubheading Synopsis
29733
29734 @smallexample
29735  -environment-path [ -r ] [ @var{pathdir} ]+
29736 @end smallexample
29737
29738 Add directories @var{pathdir} to beginning of search path for object files.
29739 If the @samp{-r} option is used, the search path is reset to the original
29740 search path that existed at gdb start-up.  If directories @var{pathdir} are
29741 supplied in addition to the
29742 @samp{-r} option, the search path is first reset and then addition
29743 occurs as normal.
29744 Multiple directories may be specified, separated by blanks.  Specifying
29745 multiple directories in a single command
29746 results in the directories added to the beginning of the
29747 search path in the same order they were presented in the command.
29748 If blanks are needed as
29749 part of a directory name, double-quotes should be used around
29750 the name.  In the command output, the path will show up separated
29751 by the system directory-separator character.  The directory-separator
29752 character must not be used
29753 in any directory name.
29754 If no directories are specified, the current path is displayed.
29755
29756
29757 @subsubheading @value{GDBN} Command
29758
29759 The corresponding @value{GDBN} command is @samp{path}.
29760
29761 @subsubheading Example
29762
29763 @smallexample
29764 (gdb)
29765 -environment-path
29766 ^done,path="/usr/bin"
29767 (gdb)
29768 -environment-path /kwikemart/marge/ezannoni/flathead-dev/ppc-eabi/gdb /bin
29769 ^done,path="/kwikemart/marge/ezannoni/flathead-dev/ppc-eabi/gdb:/bin:/usr/bin"
29770 (gdb)
29771 -environment-path -r /usr/local/bin
29772 ^done,path="/usr/local/bin:/usr/bin"
29773 (gdb)
29774 @end smallexample
29775
29776
29777 @subheading The @code{-environment-pwd} Command
29778 @findex -environment-pwd
29779
29780 @subsubheading Synopsis
29781
29782 @smallexample
29783  -environment-pwd
29784 @end smallexample
29785
29786 Show the current working directory.
29787
29788 @subsubheading @value{GDBN} Command
29789
29790 The corresponding @value{GDBN} command is @samp{pwd}.
29791
29792 @subsubheading Example
29793
29794 @smallexample
29795 (gdb)
29796 -environment-pwd
29797 ^done,cwd="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb"
29798 (gdb)
29799 @end smallexample
29800
29801 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
29802 @node GDB/MI Thread Commands
29803 @section @sc{gdb/mi} Thread Commands
29804
29805
29806 @subheading The @code{-thread-info} Command
29807 @findex -thread-info
29808
29809 @subsubheading Synopsis
29810
29811 @smallexample
29812  -thread-info [ @var{thread-id} ]
29813 @end smallexample
29814
29815 Reports information about either a specific thread, if the
29816 @var{thread-id} parameter is present, or about all threads.
29817 @var{thread-id} is the thread's global thread ID.  When printing
29818 information about all threads, also reports the global ID of the
29819 current thread.
29820
29821 @subsubheading @value{GDBN} Command
29822
29823 The @samp{info thread} command prints the same information
29824 about all threads.
29825
29826 @subsubheading Result
29827
29828 The result contains the following attributes:
29829
29830 @table @samp
29831 @item threads
29832 A list of threads.  The format of the elements of the list is described in
29833 @ref{GDB/MI Thread Information}.
29834
29835 @item current-thread-id
29836 The global id of the currently selected thread.  This field is omitted if there
29837 is no selected thread (for example, when the selected inferior is not running,
29838 and therefore has no threads) or if a @var{thread-id} argument was passed to
29839 the command.
29840
29841 @end table
29842
29843 @subsubheading Example
29844
29845 @smallexample
29846 -thread-info
29847 ^done,threads=[
29848 @{id="2",target-id="Thread 0xb7e14b90 (LWP 21257)",
29849    frame=@{level="0",addr="0xffffe410",func="__kernel_vsyscall",
29850            args=[]@},state="running"@},
29851 @{id="1",target-id="Thread 0xb7e156b0 (LWP 21254)",
29852    frame=@{level="0",addr="0x0804891f",func="foo",
29853            args=[@{name="i",value="10"@}],
29854            file="/tmp/a.c",fullname="/tmp/a.c",line="158",arch="i386:x86_64"@},
29855            state="running"@}],
29856 current-thread-id="1"
29857 (gdb)
29858 @end smallexample
29859
29860 @subheading The @code{-thread-list-ids} Command
29861 @findex -thread-list-ids
29862
29863 @subsubheading Synopsis
29864
29865 @smallexample
29866  -thread-list-ids
29867 @end smallexample
29868
29869 Produces a list of the currently known global @value{GDBN} thread ids.
29870 At the end of the list it also prints the total number of such
29871 threads.
29872
29873 This command is retained for historical reasons, the
29874 @code{-thread-info} command should be used instead.
29875
29876 @subsubheading @value{GDBN} Command
29877
29878 Part of @samp{info threads} supplies the same information.
29879
29880 @subsubheading Example
29881
29882 @smallexample
29883 (gdb)
29884 -thread-list-ids
29885 ^done,thread-ids=@{thread-id="3",thread-id="2",thread-id="1"@},
29886 current-thread-id="1",number-of-threads="3"
29887 (gdb)
29888 @end smallexample
29889
29890
29891 @subheading The @code{-thread-select} Command
29892 @findex -thread-select
29893
29894 @subsubheading Synopsis
29895
29896 @smallexample
29897  -thread-select @var{thread-id}
29898 @end smallexample
29899
29900 Make thread with global thread number @var{thread-id} the current
29901 thread.  It prints the number of the new current thread, and the
29902 topmost frame for that thread.
29903
29904 This command is deprecated in favor of explicitly using the
29905 @samp{--thread} option to each command.
29906
29907 @subsubheading @value{GDBN} Command
29908
29909 The corresponding @value{GDBN} command is @samp{thread}.
29910
29911 @subsubheading Example
29912
29913 @smallexample
29914 (gdb)
29915 -exec-next
29916 ^running
29917 (gdb)
29918 *stopped,reason="end-stepping-range",thread-id="2",line="187",
29919 file="../../../devo/gdb/testsuite/gdb.threads/linux-dp.c"
29920 (gdb)
29921 -thread-list-ids
29922 ^done,
29923 thread-ids=@{thread-id="3",thread-id="2",thread-id="1"@},
29924 number-of-threads="3"
29925 (gdb)
29926 -thread-select 3
29927 ^done,new-thread-id="3",
29928 frame=@{level="0",func="vprintf",
29929 args=[@{name="format",value="0x8048e9c \"%*s%c %d %c\\n\""@},
29930 @{name="arg",value="0x2"@}],file="vprintf.c",line="31",arch="i386:x86_64"@}
29931 (gdb)
29932 @end smallexample
29933
29934 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
29935 @node GDB/MI Ada Tasking Commands
29936 @section @sc{gdb/mi} Ada Tasking Commands
29937
29938 @subheading The @code{-ada-task-info} Command
29939 @findex -ada-task-info
29940
29941 @subsubheading Synopsis
29942
29943 @smallexample
29944  -ada-task-info [ @var{task-id} ]
29945 @end smallexample
29946
29947 Reports information about either a specific Ada task, if the
29948 @var{task-id} parameter is present, or about all Ada tasks.
29949
29950 @subsubheading @value{GDBN} Command
29951
29952 The @samp{info tasks} command prints the same information
29953 about all Ada tasks (@pxref{Ada Tasks}).
29954
29955 @subsubheading Result
29956
29957 The result is a table of Ada tasks.  The following columns are
29958 defined for each Ada task:
29959
29960 @table @samp
29961 @item current
29962 This field exists only for the current thread.  It has the value @samp{*}.
29963
29964 @item id
29965 The identifier that @value{GDBN} uses to refer to the Ada task.
29966
29967 @item task-id
29968 The identifier that the target uses to refer to the Ada task.
29969
29970 @item thread-id
29971 The global thread identifier of the thread corresponding to the Ada
29972 task.
29973
29974 This field should always exist, as Ada tasks are always implemented
29975 on top of a thread.  But if @value{GDBN} cannot find this corresponding
29976 thread for any reason, the field is omitted.
29977
29978 @item parent-id
29979 This field exists only when the task was created by another task.
29980 In this case, it provides the ID of the parent task.
29981
29982 @item priority
29983 The base priority of the task.
29984
29985 @item state
29986 The current state of the task.  For a detailed description of the
29987 possible states, see @ref{Ada Tasks}.
29988
29989 @item name
29990 The name of the task.
29991
29992 @end table
29993
29994 @subsubheading Example
29995
29996 @smallexample
29997 -ada-task-info
29998 ^done,tasks=@{nr_rows="3",nr_cols="8",
29999 hdr=[@{width="1",alignment="-1",col_name="current",colhdr=""@},
30000 @{width="3",alignment="1",col_name="id",colhdr="ID"@},
30001 @{width="9",alignment="1",col_name="task-id",colhdr="TID"@},
30002 @{width="4",alignment="1",col_name="thread-id",colhdr=""@},
30003 @{width="4",alignment="1",col_name="parent-id",colhdr="P-ID"@},
30004 @{width="3",alignment="1",col_name="priority",colhdr="Pri"@},
30005 @{width="22",alignment="-1",col_name="state",colhdr="State"@},
30006 @{width="1",alignment="2",col_name="name",colhdr="Name"@}],
30007 body=[@{current="*",id="1",task-id="   644010",thread-id="1",priority="48",
30008 state="Child Termination Wait",name="main_task"@}]@}
30009 (gdb)
30010 @end smallexample
30011
30012 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
30013 @node GDB/MI Program Execution
30014 @section @sc{gdb/mi} Program Execution
30015
30016 These are the asynchronous commands which generate the out-of-band
30017 record @samp{*stopped}.  Currently @value{GDBN} only really executes
30018 asynchronously with remote targets and this interaction is mimicked in
30019 other cases.
30020
30021 @subheading The @code{-exec-continue} Command
30022 @findex -exec-continue
30023
30024 @subsubheading Synopsis
30025
30026 @smallexample
30027  -exec-continue [--reverse] [--all|--thread-group N]
30028 @end smallexample
30029
30030 Resumes the execution of the inferior program, which will continue
30031 to execute until it reaches a debugger stop event.  If the 
30032 @samp{--reverse} option is specified, execution resumes in reverse until 
30033 it reaches a stop event.  Stop events may include
30034 @itemize @bullet
30035 @item
30036 breakpoints or watchpoints
30037 @item
30038 signals or exceptions
30039 @item
30040 the end of the process (or its beginning under @samp{--reverse})
30041 @item
30042 the end or beginning of a replay log if one is being used.
30043 @end itemize
30044 In all-stop mode (@pxref{All-Stop
30045 Mode}), may resume only one thread, or all threads, depending on the
30046 value of the @samp{scheduler-locking} variable.  If @samp{--all} is
30047 specified, all threads (in all inferiors) will be resumed.  The @samp{--all} option is
30048 ignored in all-stop mode.  If the @samp{--thread-group} options is
30049 specified, then all threads in that thread group are resumed.
30050
30051 @subsubheading @value{GDBN} Command
30052
30053 The corresponding @value{GDBN} corresponding is @samp{continue}.
30054
30055 @subsubheading Example
30056
30057 @smallexample
30058 -exec-continue
30059 ^running
30060 (gdb)
30061 @@Hello world
30062 *stopped,reason="breakpoint-hit",disp="keep",bkptno="2",frame=@{
30063 func="foo",args=[],file="hello.c",fullname="/home/foo/bar/hello.c",
30064 line="13",arch="i386:x86_64"@}
30065 (gdb)
30066 @end smallexample
30067
30068
30069 @subheading The @code{-exec-finish} Command
30070 @findex -exec-finish
30071
30072 @subsubheading Synopsis
30073
30074 @smallexample
30075  -exec-finish [--reverse]
30076 @end smallexample
30077
30078 Resumes the execution of the inferior program until the current
30079 function is exited.  Displays the results returned by the function.
30080 If the @samp{--reverse} option is specified, resumes the reverse
30081 execution of the inferior program until the point where current
30082 function was called.
30083
30084 @subsubheading @value{GDBN} Command
30085
30086 The corresponding @value{GDBN} command is @samp{finish}.
30087
30088 @subsubheading Example
30089
30090 Function returning @code{void}.
30091
30092 @smallexample
30093 -exec-finish
30094 ^running
30095 (gdb)
30096 @@hello from foo
30097 *stopped,reason="function-finished",frame=@{func="main",args=[],
30098 file="hello.c",fullname="/home/foo/bar/hello.c",line="7",arch="i386:x86_64"@}
30099 (gdb)
30100 @end smallexample
30101
30102 Function returning other than @code{void}.  The name of the internal
30103 @value{GDBN} variable storing the result is printed, together with the
30104 value itself.
30105
30106 @smallexample
30107 -exec-finish
30108 ^running
30109 (gdb)
30110 *stopped,reason="function-finished",frame=@{addr="0x000107b0",func="foo",
30111 args=[@{name="a",value="1"],@{name="b",value="9"@}@},
30112 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14",
30113 arch="i386:x86_64"@},
30114 gdb-result-var="$1",return-value="0"
30115 (gdb)
30116 @end smallexample
30117
30118
30119 @subheading The @code{-exec-interrupt} Command
30120 @findex -exec-interrupt
30121
30122 @subsubheading Synopsis
30123
30124 @smallexample
30125  -exec-interrupt [--all|--thread-group N]
30126 @end smallexample
30127
30128 Interrupts the background execution of the target.  Note how the token
30129 associated with the stop message is the one for the execution command
30130 that has been interrupted.  The token for the interrupt itself only
30131 appears in the @samp{^done} output.  If the user is trying to
30132 interrupt a non-running program, an error message will be printed.
30133
30134 Note that when asynchronous execution is enabled, this command is
30135 asynchronous just like other execution commands.  That is, first the
30136 @samp{^done} response will be printed, and the target stop will be
30137 reported after that using the @samp{*stopped} notification.
30138
30139 In non-stop mode, only the context thread is interrupted by default.
30140 All threads (in all inferiors) will be interrupted if the
30141 @samp{--all}  option is specified.  If the @samp{--thread-group}
30142 option is specified, all threads in that group will be interrupted.
30143
30144 @subsubheading @value{GDBN} Command
30145
30146 The corresponding @value{GDBN} command is @samp{interrupt}.
30147
30148 @subsubheading Example
30149
30150 @smallexample
30151 (gdb)
30152 111-exec-continue
30153 111^running
30154
30155 (gdb)
30156 222-exec-interrupt
30157 222^done
30158 (gdb)
30159 111*stopped,signal-name="SIGINT",signal-meaning="Interrupt",
30160 frame=@{addr="0x00010140",func="foo",args=[],file="try.c",
30161 fullname="/home/foo/bar/try.c",line="13",arch="i386:x86_64"@}
30162 (gdb)
30163
30164 (gdb)
30165 -exec-interrupt
30166 ^error,msg="mi_cmd_exec_interrupt: Inferior not executing."
30167 (gdb)
30168 @end smallexample
30169
30170 @subheading The @code{-exec-jump} Command
30171 @findex -exec-jump
30172
30173 @subsubheading Synopsis
30174
30175 @smallexample
30176  -exec-jump @var{location}
30177 @end smallexample
30178
30179 Resumes execution of the inferior program at the location specified by
30180 parameter.  @xref{Specify Location}, for a description of the
30181 different forms of @var{location}.
30182
30183 @subsubheading @value{GDBN} Command
30184
30185 The corresponding @value{GDBN} command is @samp{jump}.
30186
30187 @subsubheading Example
30188
30189 @smallexample
30190 -exec-jump foo.c:10
30191 *running,thread-id="all"
30192 ^running
30193 @end smallexample
30194
30195
30196 @subheading The @code{-exec-next} Command
30197 @findex -exec-next
30198
30199 @subsubheading Synopsis
30200
30201 @smallexample
30202  -exec-next [--reverse]
30203 @end smallexample
30204
30205 Resumes execution of the inferior program, stopping when the beginning
30206 of the next source line is reached.
30207
30208 If the @samp{--reverse} option is specified, resumes reverse execution
30209 of the inferior program, stopping at the beginning of the previous
30210 source line.  If you issue this command on the first line of a
30211 function, it will take you back to the caller of that function, to the
30212 source line where the function was called.
30213
30214
30215 @subsubheading @value{GDBN} Command
30216
30217 The corresponding @value{GDBN} command is @samp{next}.
30218
30219 @subsubheading Example
30220
30221 @smallexample
30222 -exec-next
30223 ^running
30224 (gdb)
30225 *stopped,reason="end-stepping-range",line="8",file="hello.c"
30226 (gdb)
30227 @end smallexample
30228
30229
30230 @subheading The @code{-exec-next-instruction} Command
30231 @findex -exec-next-instruction
30232
30233 @subsubheading Synopsis
30234
30235 @smallexample
30236  -exec-next-instruction [--reverse]
30237 @end smallexample
30238
30239 Executes one machine instruction.  If the instruction is a function
30240 call, continues until the function returns.  If the program stops at an
30241 instruction in the middle of a source line, the address will be
30242 printed as well.
30243
30244 If the @samp{--reverse} option is specified, resumes reverse execution
30245 of the inferior program, stopping at the previous instruction.  If the
30246 previously executed instruction was a return from another function,
30247 it will continue to execute in reverse until the call to that function
30248 (from the current stack frame) is reached.
30249
30250 @subsubheading @value{GDBN} Command
30251
30252 The corresponding @value{GDBN} command is @samp{nexti}.
30253
30254 @subsubheading Example
30255
30256 @smallexample
30257 (gdb)
30258 -exec-next-instruction
30259 ^running
30260
30261 (gdb)
30262 *stopped,reason="end-stepping-range",
30263 addr="0x000100d4",line="5",file="hello.c"
30264 (gdb)
30265 @end smallexample
30266
30267
30268 @subheading The @code{-exec-return} Command
30269 @findex -exec-return
30270
30271 @subsubheading Synopsis
30272
30273 @smallexample
30274  -exec-return
30275 @end smallexample
30276
30277 Makes current function return immediately.  Doesn't execute the inferior.
30278 Displays the new current frame.
30279
30280 @subsubheading @value{GDBN} Command
30281
30282 The corresponding @value{GDBN} command is @samp{return}.
30283
30284 @subsubheading Example
30285
30286 @smallexample
30287 (gdb)
30288 200-break-insert callee4
30289 200^done,bkpt=@{number="1",addr="0x00010734",
30290 file="../../../devo/gdb/testsuite/gdb.mi/basics.c",line="8"@}
30291 (gdb)
30292 000-exec-run
30293 000^running
30294 (gdb)
30295 000*stopped,reason="breakpoint-hit",disp="keep",bkptno="1",
30296 frame=@{func="callee4",args=[],
30297 file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
30298 fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="8",
30299 arch="i386:x86_64"@}
30300 (gdb)
30301 205-break-delete
30302 205^done
30303 (gdb)
30304 111-exec-return
30305 111^done,frame=@{level="0",func="callee3",
30306 args=[@{name="strarg",
30307 value="0x11940 \"A string argument.\""@}],
30308 file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
30309 fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="18",
30310 arch="i386:x86_64"@}
30311 (gdb)
30312 @end smallexample
30313
30314
30315 @subheading The @code{-exec-run} Command
30316 @findex -exec-run
30317
30318 @subsubheading Synopsis
30319
30320 @smallexample
30321  -exec-run [ --all | --thread-group N ] [ --start ]
30322 @end smallexample
30323
30324 Starts execution of the inferior from the beginning.  The inferior
30325 executes until either a breakpoint is encountered or the program
30326 exits.  In the latter case the output will include an exit code, if
30327 the program has exited exceptionally.
30328
30329 When neither the @samp{--all} nor the @samp{--thread-group} option
30330 is specified, the current inferior is started.  If the
30331 @samp{--thread-group} option is specified, it should refer to a thread
30332 group of type @samp{process}, and that thread group will be started.
30333 If the @samp{--all} option is specified, then all inferiors will be started.
30334
30335 Using the @samp{--start} option instructs the debugger to stop
30336 the execution at the start of the inferior's main subprogram,
30337 following the same behavior as the @code{start} command
30338 (@pxref{Starting}).
30339
30340 @subsubheading @value{GDBN} Command
30341
30342 The corresponding @value{GDBN} command is @samp{run}.
30343
30344 @subsubheading Examples
30345
30346 @smallexample
30347 (gdb)
30348 -break-insert main
30349 ^done,bkpt=@{number="1",addr="0x0001072c",file="recursive2.c",line="4"@}
30350 (gdb)
30351 -exec-run
30352 ^running
30353 (gdb)
30354 *stopped,reason="breakpoint-hit",disp="keep",bkptno="1",
30355 frame=@{func="main",args=[],file="recursive2.c",
30356 fullname="/home/foo/bar/recursive2.c",line="4",arch="i386:x86_64"@}
30357 (gdb)
30358 @end smallexample
30359
30360 @noindent
30361 Program exited normally:
30362
30363 @smallexample
30364 (gdb)
30365 -exec-run
30366 ^running
30367 (gdb)
30368 x = 55
30369 *stopped,reason="exited-normally"
30370 (gdb)
30371 @end smallexample
30372
30373 @noindent
30374 Program exited exceptionally:
30375
30376 @smallexample
30377 (gdb)
30378 -exec-run
30379 ^running
30380 (gdb)
30381 x = 55
30382 *stopped,reason="exited",exit-code="01"
30383 (gdb)
30384 @end smallexample
30385
30386 Another way the program can terminate is if it receives a signal such as
30387 @code{SIGINT}.  In this case, @sc{gdb/mi} displays this:
30388
30389 @smallexample
30390 (gdb)
30391 *stopped,reason="exited-signalled",signal-name="SIGINT",
30392 signal-meaning="Interrupt"
30393 @end smallexample
30394
30395
30396 @c @subheading -exec-signal
30397
30398
30399 @subheading The @code{-exec-step} Command
30400 @findex -exec-step
30401
30402 @subsubheading Synopsis
30403
30404 @smallexample
30405  -exec-step [--reverse]
30406 @end smallexample
30407
30408 Resumes execution of the inferior program, stopping when the beginning
30409 of the next source line is reached, if the next source line is not a
30410 function call.  If it is, stop at the first instruction of the called
30411 function.  If the @samp{--reverse} option is specified, resumes reverse
30412 execution of the inferior program, stopping at the beginning of the
30413 previously executed source line.
30414
30415 @subsubheading @value{GDBN} Command
30416
30417 The corresponding @value{GDBN} command is @samp{step}.
30418
30419 @subsubheading Example
30420
30421 Stepping into a function:
30422
30423 @smallexample
30424 -exec-step
30425 ^running
30426 (gdb)
30427 *stopped,reason="end-stepping-range",
30428 frame=@{func="foo",args=[@{name="a",value="10"@},
30429 @{name="b",value="0"@}],file="recursive2.c",
30430 fullname="/home/foo/bar/recursive2.c",line="11",arch="i386:x86_64"@}
30431 (gdb)
30432 @end smallexample
30433
30434 Regular stepping:
30435
30436 @smallexample
30437 -exec-step
30438 ^running
30439 (gdb)
30440 *stopped,reason="end-stepping-range",line="14",file="recursive2.c"
30441 (gdb)
30442 @end smallexample
30443
30444
30445 @subheading The @code{-exec-step-instruction} Command
30446 @findex -exec-step-instruction
30447
30448 @subsubheading Synopsis
30449
30450 @smallexample
30451  -exec-step-instruction [--reverse]
30452 @end smallexample
30453
30454 Resumes the inferior which executes one machine instruction.  If the
30455 @samp{--reverse} option is specified, resumes reverse execution of the
30456 inferior program, stopping at the previously executed instruction.
30457 The output, once @value{GDBN} has stopped, will vary depending on
30458 whether we have stopped in the middle of a source line or not.  In the
30459 former case, the address at which the program stopped will be printed
30460 as well.
30461
30462 @subsubheading @value{GDBN} Command
30463
30464 The corresponding @value{GDBN} command is @samp{stepi}.
30465
30466 @subsubheading Example
30467
30468 @smallexample
30469 (gdb)
30470 -exec-step-instruction
30471 ^running
30472
30473 (gdb)
30474 *stopped,reason="end-stepping-range",
30475 frame=@{func="foo",args=[],file="try.c",
30476 fullname="/home/foo/bar/try.c",line="10",arch="i386:x86_64"@}
30477 (gdb)
30478 -exec-step-instruction
30479 ^running
30480
30481 (gdb)
30482 *stopped,reason="end-stepping-range",
30483 frame=@{addr="0x000100f4",func="foo",args=[],file="try.c",
30484 fullname="/home/foo/bar/try.c",line="10",arch="i386:x86_64"@}
30485 (gdb)
30486 @end smallexample
30487
30488
30489 @subheading The @code{-exec-until} Command
30490 @findex -exec-until
30491
30492 @subsubheading Synopsis
30493
30494 @smallexample
30495  -exec-until [ @var{location} ]
30496 @end smallexample
30497
30498 Executes the inferior until the @var{location} specified in the
30499 argument is reached.  If there is no argument, the inferior executes
30500 until a source line greater than the current one is reached.  The
30501 reason for stopping in this case will be @samp{location-reached}.
30502
30503 @subsubheading @value{GDBN} Command
30504
30505 The corresponding @value{GDBN} command is @samp{until}.
30506
30507 @subsubheading Example
30508
30509 @smallexample
30510 (gdb)
30511 -exec-until recursive2.c:6
30512 ^running
30513 (gdb)
30514 x = 55
30515 *stopped,reason="location-reached",frame=@{func="main",args=[],
30516 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="6",
30517 arch="i386:x86_64"@}
30518 (gdb)
30519 @end smallexample
30520
30521 @ignore
30522 @subheading -file-clear
30523 Is this going away????
30524 @end ignore
30525
30526 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
30527 @node GDB/MI Stack Manipulation
30528 @section @sc{gdb/mi} Stack Manipulation Commands
30529
30530 @subheading The @code{-enable-frame-filters} Command
30531 @findex -enable-frame-filters
30532
30533 @smallexample
30534 -enable-frame-filters
30535 @end smallexample
30536
30537 @value{GDBN} allows Python-based frame filters to affect the output of
30538 the MI commands relating to stack traces.  As there is no way to
30539 implement this in a fully backward-compatible way, a front end must
30540 request that this functionality be enabled.
30541
30542 Once enabled, this feature cannot be disabled.
30543
30544 Note that if Python support has not been compiled into @value{GDBN},
30545 this command will still succeed (and do nothing).
30546
30547 @subheading The @code{-stack-info-frame} Command
30548 @findex -stack-info-frame
30549
30550 @subsubheading Synopsis
30551
30552 @smallexample
30553  -stack-info-frame
30554 @end smallexample
30555
30556 Get info on the selected frame.
30557
30558 @subsubheading @value{GDBN} Command
30559
30560 The corresponding @value{GDBN} command is @samp{info frame} or @samp{frame}
30561 (without arguments).
30562
30563 @subsubheading Example
30564
30565 @smallexample
30566 (gdb)
30567 -stack-info-frame
30568 ^done,frame=@{level="1",addr="0x0001076c",func="callee3",
30569 file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
30570 fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="17",
30571 arch="i386:x86_64"@}
30572 (gdb)
30573 @end smallexample
30574
30575 @subheading The @code{-stack-info-depth} Command
30576 @findex -stack-info-depth
30577
30578 @subsubheading Synopsis
30579
30580 @smallexample
30581  -stack-info-depth [ @var{max-depth} ]
30582 @end smallexample
30583
30584 Return the depth of the stack.  If the integer argument @var{max-depth}
30585 is specified, do not count beyond @var{max-depth} frames.
30586
30587 @subsubheading @value{GDBN} Command
30588
30589 There's no equivalent @value{GDBN} command.
30590
30591 @subsubheading Example
30592
30593 For a stack with frame levels 0 through 11:
30594
30595 @smallexample
30596 (gdb)
30597 -stack-info-depth
30598 ^done,depth="12"
30599 (gdb)
30600 -stack-info-depth 4
30601 ^done,depth="4"
30602 (gdb)
30603 -stack-info-depth 12
30604 ^done,depth="12"
30605 (gdb)
30606 -stack-info-depth 11
30607 ^done,depth="11"
30608 (gdb)
30609 -stack-info-depth 13
30610 ^done,depth="12"
30611 (gdb)
30612 @end smallexample
30613
30614 @anchor{-stack-list-arguments}
30615 @subheading The @code{-stack-list-arguments} Command
30616 @findex -stack-list-arguments
30617
30618 @subsubheading Synopsis
30619
30620 @smallexample
30621  -stack-list-arguments [ --no-frame-filters ] [ --skip-unavailable ] @var{print-values}
30622     [ @var{low-frame} @var{high-frame} ]
30623 @end smallexample
30624
30625 Display a list of the arguments for the frames between @var{low-frame}
30626 and @var{high-frame} (inclusive).  If @var{low-frame} and
30627 @var{high-frame} are not provided, list the arguments for the whole
30628 call stack.  If the two arguments are equal, show the single frame
30629 at the corresponding level.  It is an error if @var{low-frame} is
30630 larger than the actual number of frames.  On the other hand,
30631 @var{high-frame} may be larger than the actual number of frames, in
30632 which case only existing frames will be returned.
30633
30634 If @var{print-values} is 0 or @code{--no-values}, print only the names of
30635 the variables; if it is 1 or @code{--all-values}, print also their
30636 values; and if it is 2 or @code{--simple-values}, print the name,
30637 type and value for simple data types, and the name and type for arrays,
30638 structures and unions.  If the option @code{--no-frame-filters} is
30639 supplied, then Python frame filters will not be executed.
30640
30641 If the @code{--skip-unavailable} option is specified, arguments that
30642 are not available are not listed.  Partially available arguments
30643 are still displayed, however.
30644
30645 Use of this command to obtain arguments in a single frame is
30646 deprecated in favor of the @samp{-stack-list-variables} command.
30647
30648 @subsubheading @value{GDBN} Command
30649
30650 @value{GDBN} does not have an equivalent command.  @code{gdbtk} has a
30651 @samp{gdb_get_args} command which partially overlaps with the
30652 functionality of @samp{-stack-list-arguments}.
30653
30654 @subsubheading Example
30655
30656 @smallexample
30657 (gdb)
30658 -stack-list-frames
30659 ^done,
30660 stack=[
30661 frame=@{level="0",addr="0x00010734",func="callee4",
30662 file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
30663 fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="8",
30664 arch="i386:x86_64"@},
30665 frame=@{level="1",addr="0x0001076c",func="callee3",
30666 file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
30667 fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="17",
30668 arch="i386:x86_64"@},
30669 frame=@{level="2",addr="0x0001078c",func="callee2",
30670 file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
30671 fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="22",
30672 arch="i386:x86_64"@},
30673 frame=@{level="3",addr="0x000107b4",func="callee1",
30674 file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
30675 fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="27",
30676 arch="i386:x86_64"@},
30677 frame=@{level="4",addr="0x000107e0",func="main",
30678 file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
30679 fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="32",
30680 arch="i386:x86_64"@}]
30681 (gdb)
30682 -stack-list-arguments 0
30683 ^done,
30684 stack-args=[
30685 frame=@{level="0",args=[]@},
30686 frame=@{level="1",args=[name="strarg"]@},
30687 frame=@{level="2",args=[name="intarg",name="strarg"]@},
30688 frame=@{level="3",args=[name="intarg",name="strarg",name="fltarg"]@},
30689 frame=@{level="4",args=[]@}]
30690 (gdb)
30691 -stack-list-arguments 1
30692 ^done,
30693 stack-args=[
30694 frame=@{level="0",args=[]@},
30695 frame=@{level="1",
30696  args=[@{name="strarg",value="0x11940 \"A string argument.\""@}]@},
30697 frame=@{level="2",args=[
30698 @{name="intarg",value="2"@},
30699 @{name="strarg",value="0x11940 \"A string argument.\""@}]@},
30700 @{frame=@{level="3",args=[
30701 @{name="intarg",value="2"@},
30702 @{name="strarg",value="0x11940 \"A string argument.\""@},
30703 @{name="fltarg",value="3.5"@}]@},
30704 frame=@{level="4",args=[]@}]
30705 (gdb)
30706 -stack-list-arguments 0 2 2
30707 ^done,stack-args=[frame=@{level="2",args=[name="intarg",name="strarg"]@}]
30708 (gdb)
30709 -stack-list-arguments 1 2 2
30710 ^done,stack-args=[frame=@{level="2",
30711 args=[@{name="intarg",value="2"@},
30712 @{name="strarg",value="0x11940 \"A string argument.\""@}]@}]
30713 (gdb)
30714 @end smallexample
30715
30716 @c @subheading -stack-list-exception-handlers
30717
30718
30719 @anchor{-stack-list-frames}
30720 @subheading The @code{-stack-list-frames} Command
30721 @findex -stack-list-frames
30722
30723 @subsubheading Synopsis
30724
30725 @smallexample
30726  -stack-list-frames [ --no-frame-filters @var{low-frame} @var{high-frame} ]
30727 @end smallexample
30728
30729 List the frames currently on the stack.  For each frame it displays the
30730 following info:
30731
30732 @table @samp
30733 @item @var{level}
30734 The frame number, 0 being the topmost frame, i.e., the innermost function.
30735 @item @var{addr}
30736 The @code{$pc} value for that frame.
30737 @item @var{func}
30738 Function name.
30739 @item @var{file}
30740 File name of the source file where the function lives.
30741 @item @var{fullname}
30742 The full file name of the source file where the function lives.
30743 @item @var{line}
30744 Line number corresponding to the @code{$pc}.
30745 @item @var{from}
30746 The shared library where this function is defined.  This is only given
30747 if the frame's function is not known.
30748 @item @var{arch}
30749 Frame's architecture.
30750 @end table
30751
30752 If invoked without arguments, this command prints a backtrace for the
30753 whole stack.  If given two integer arguments, it shows the frames whose
30754 levels are between the two arguments (inclusive).  If the two arguments
30755 are equal, it shows the single frame at the corresponding level.  It is
30756 an error if @var{low-frame} is larger than the actual number of
30757 frames.  On the other hand, @var{high-frame} may be larger than the
30758 actual number of frames, in which case only existing frames will be
30759 returned.  If the option @code{--no-frame-filters} is supplied, then
30760 Python frame filters will not be executed.
30761
30762 @subsubheading @value{GDBN} Command
30763
30764 The corresponding @value{GDBN} commands are @samp{backtrace} and @samp{where}.
30765
30766 @subsubheading Example
30767
30768 Full stack backtrace:
30769
30770 @smallexample
30771 (gdb)
30772 -stack-list-frames
30773 ^done,stack=
30774 [frame=@{level="0",addr="0x0001076c",func="foo",
30775   file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="11",
30776   arch="i386:x86_64"@},
30777 frame=@{level="1",addr="0x000107a4",func="foo",
30778   file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14",
30779   arch="i386:x86_64"@},
30780 frame=@{level="2",addr="0x000107a4",func="foo",
30781   file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14",
30782   arch="i386:x86_64"@},
30783 frame=@{level="3",addr="0x000107a4",func="foo",
30784   file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14",
30785   arch="i386:x86_64"@},
30786 frame=@{level="4",addr="0x000107a4",func="foo",
30787   file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14",
30788   arch="i386:x86_64"@},
30789 frame=@{level="5",addr="0x000107a4",func="foo",
30790   file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14",
30791   arch="i386:x86_64"@},
30792 frame=@{level="6",addr="0x000107a4",func="foo",
30793   file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14",
30794   arch="i386:x86_64"@},
30795 frame=@{level="7",addr="0x000107a4",func="foo",
30796   file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14",
30797   arch="i386:x86_64"@},
30798 frame=@{level="8",addr="0x000107a4",func="foo",
30799   file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14",
30800   arch="i386:x86_64"@},
30801 frame=@{level="9",addr="0x000107a4",func="foo",
30802   file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14",
30803   arch="i386:x86_64"@},
30804 frame=@{level="10",addr="0x000107a4",func="foo",
30805   file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14",
30806   arch="i386:x86_64"@},
30807 frame=@{level="11",addr="0x00010738",func="main",
30808   file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="4",
30809   arch="i386:x86_64"@}]
30810 (gdb)
30811 @end smallexample
30812
30813 Show frames between @var{low_frame} and @var{high_frame}:
30814
30815 @smallexample
30816 (gdb)
30817 -stack-list-frames 3 5
30818 ^done,stack=
30819 [frame=@{level="3",addr="0x000107a4",func="foo",
30820   file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14",
30821   arch="i386:x86_64"@},
30822 frame=@{level="4",addr="0x000107a4",func="foo",
30823   file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14",
30824   arch="i386:x86_64"@},
30825 frame=@{level="5",addr="0x000107a4",func="foo",
30826   file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14",
30827   arch="i386:x86_64"@}]
30828 (gdb)
30829 @end smallexample
30830
30831 Show a single frame:
30832
30833 @smallexample
30834 (gdb)
30835 -stack-list-frames 3 3
30836 ^done,stack=
30837 [frame=@{level="3",addr="0x000107a4",func="foo",
30838   file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14",
30839   arch="i386:x86_64"@}]
30840 (gdb)
30841 @end smallexample
30842
30843
30844 @subheading The @code{-stack-list-locals} Command
30845 @findex -stack-list-locals
30846 @anchor{-stack-list-locals}
30847
30848 @subsubheading Synopsis
30849
30850 @smallexample
30851  -stack-list-locals [ --no-frame-filters ] [ --skip-unavailable ] @var{print-values}
30852 @end smallexample
30853
30854 Display the local variable names for the selected frame.  If
30855 @var{print-values} is 0 or @code{--no-values}, print only the names of
30856 the variables; if it is 1 or @code{--all-values}, print also their
30857 values; and if it is 2 or @code{--simple-values}, print the name,
30858 type and value for simple data types, and the name and type for arrays,
30859 structures and unions.  In this last case, a frontend can immediately
30860 display the value of simple data types and create variable objects for
30861 other data types when the user wishes to explore their values in
30862 more detail.  If the option @code{--no-frame-filters} is supplied, then
30863 Python frame filters will not be executed.
30864
30865 If the @code{--skip-unavailable} option is specified, local variables
30866 that are not available are not listed.  Partially available local
30867 variables are still displayed, however.
30868
30869 This command is deprecated in favor of the
30870 @samp{-stack-list-variables} command.
30871
30872 @subsubheading @value{GDBN} Command
30873
30874 @samp{info locals} in @value{GDBN}, @samp{gdb_get_locals} in @code{gdbtk}.
30875
30876 @subsubheading Example
30877
30878 @smallexample
30879 (gdb)
30880 -stack-list-locals 0
30881 ^done,locals=[name="A",name="B",name="C"]
30882 (gdb)
30883 -stack-list-locals --all-values
30884 ^done,locals=[@{name="A",value="1"@},@{name="B",value="2"@},
30885   @{name="C",value="@{1, 2, 3@}"@}]
30886 -stack-list-locals --simple-values
30887 ^done,locals=[@{name="A",type="int",value="1"@},
30888   @{name="B",type="int",value="2"@},@{name="C",type="int [3]"@}]
30889 (gdb)
30890 @end smallexample
30891
30892 @anchor{-stack-list-variables}
30893 @subheading The @code{-stack-list-variables} Command
30894 @findex -stack-list-variables
30895
30896 @subsubheading Synopsis
30897
30898 @smallexample
30899  -stack-list-variables [ --no-frame-filters ] [ --skip-unavailable ] @var{print-values}
30900 @end smallexample
30901
30902 Display the names of local variables and function arguments for the selected frame.  If
30903 @var{print-values} is 0 or @code{--no-values}, print only the names of
30904 the variables; if it is 1 or @code{--all-values}, print also their
30905 values; and if it is 2 or @code{--simple-values}, print the name,
30906 type and value for simple data types, and the name and type for arrays,
30907 structures and unions.  If the option @code{--no-frame-filters} is
30908 supplied, then Python frame filters will not be executed.
30909
30910 If the @code{--skip-unavailable} option is specified, local variables
30911 and arguments that are not available are not listed.  Partially
30912 available arguments and local variables are still displayed, however.
30913
30914 @subsubheading Example
30915
30916 @smallexample
30917 (gdb)
30918 -stack-list-variables --thread 1 --frame 0 --all-values
30919 ^done,variables=[@{name="x",value="11"@},@{name="s",value="@{a = 1, b = 2@}"@}]
30920 (gdb)
30921 @end smallexample
30922
30923
30924 @subheading The @code{-stack-select-frame} Command
30925 @findex -stack-select-frame
30926
30927 @subsubheading Synopsis
30928
30929 @smallexample
30930  -stack-select-frame @var{framenum}
30931 @end smallexample
30932
30933 Change the selected frame.  Select a different frame @var{framenum} on
30934 the stack.
30935
30936 This command in deprecated in favor of passing the @samp{--frame}
30937 option to every command.
30938
30939 @subsubheading @value{GDBN} Command
30940
30941 The corresponding @value{GDBN} commands are @samp{frame}, @samp{up},
30942 @samp{down}, @samp{select-frame}, @samp{up-silent}, and @samp{down-silent}.
30943
30944 @subsubheading Example
30945
30946 @smallexample
30947 (gdb)
30948 -stack-select-frame 2
30949 ^done
30950 (gdb)
30951 @end smallexample
30952
30953 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
30954 @node GDB/MI Variable Objects
30955 @section @sc{gdb/mi} Variable Objects
30956
30957 @ignore
30958
30959 @subheading Motivation for Variable Objects in @sc{gdb/mi}
30960
30961 For the implementation of a variable debugger window (locals, watched
30962 expressions, etc.), we are proposing the adaptation of the existing code
30963 used by @code{Insight}.
30964
30965 The two main reasons for that are:
30966
30967 @enumerate 1
30968 @item
30969 It has been proven in practice (it is already on its second generation).
30970
30971 @item
30972 It will shorten development time (needless to say how important it is
30973 now).
30974 @end enumerate
30975
30976 The original interface was designed to be used by Tcl code, so it was
30977 slightly changed so it could be used through @sc{gdb/mi}.  This section
30978 describes the @sc{gdb/mi} operations that will be available and gives some
30979 hints about their use.
30980
30981 @emph{Note}: In addition to the set of operations described here, we
30982 expect the @sc{gui} implementation of a variable window to require, at
30983 least, the following operations:
30984
30985 @itemize @bullet
30986 @item @code{-gdb-show} @code{output-radix}
30987 @item @code{-stack-list-arguments}
30988 @item @code{-stack-list-locals}
30989 @item @code{-stack-select-frame}
30990 @end itemize
30991
30992 @end ignore
30993
30994 @subheading Introduction to Variable Objects
30995
30996 @cindex variable objects in @sc{gdb/mi}
30997
30998 Variable objects are "object-oriented" MI interface for examining and
30999 changing values of expressions.  Unlike some other MI interfaces that
31000 work with expressions, variable objects are specifically designed for
31001 simple and efficient presentation in the frontend.  A variable object
31002 is identified by string name.  When a variable object is created, the
31003 frontend specifies the expression for that variable object.  The
31004 expression can be a simple variable, or it can be an arbitrary complex
31005 expression, and can even involve CPU registers.  After creating a
31006 variable object, the frontend can invoke other variable object
31007 operations---for example to obtain or change the value of a variable
31008 object, or to change display format.
31009
31010 Variable objects have hierarchical tree structure.  Any variable object
31011 that corresponds to a composite type, such as structure in C, has
31012 a number of child variable objects, for example corresponding to each
31013 element of a structure.  A child variable object can itself have 
31014 children, recursively.  Recursion ends when we reach 
31015 leaf variable objects, which always have built-in types.  Child variable
31016 objects are created only by explicit request, so if a frontend 
31017 is not interested in the children of a particular variable object, no
31018 child will be created.
31019
31020 For a leaf variable object it is possible to obtain its value as a
31021 string, or set the value from a string.  String value can be also
31022 obtained for a non-leaf variable object, but it's generally a string
31023 that only indicates the type of the object, and does not list its
31024 contents.  Assignment to a non-leaf variable object is not allowed.
31025  
31026 A frontend does not need to read the values of all variable objects each time
31027 the program stops.  Instead, MI provides an update command that lists all
31028 variable objects whose values has changed since the last update
31029 operation.  This considerably reduces the amount of data that must
31030 be transferred to the frontend.  As noted above, children variable
31031 objects are created on demand, and only leaf variable objects have a
31032 real value.  As result, gdb will read target memory only for leaf
31033 variables that frontend has created.
31034
31035 The automatic update is not always desirable.  For example, a frontend
31036 might want to keep a value of some expression for future reference,
31037 and never update it.  For another example,  fetching memory is
31038 relatively slow for embedded targets, so a frontend might want
31039 to disable automatic update for the variables that are either not
31040 visible on the screen, or ``closed''.  This is possible using so
31041 called ``frozen variable objects''.  Such variable objects are never
31042 implicitly updated.  
31043
31044 Variable objects can be either @dfn{fixed} or @dfn{floating}.  For the
31045 fixed variable object, the expression is parsed when the variable
31046 object is created, including associating identifiers to specific
31047 variables.  The meaning of expression never changes.  For a floating
31048 variable object the values of variables whose names appear in the
31049 expressions are re-evaluated every time in the context of the current
31050 frame.  Consider this example:
31051
31052 @smallexample
31053 void do_work(...)
31054 @{
31055         struct work_state state;
31056
31057         if (...)
31058            do_work(...);
31059 @}
31060 @end smallexample
31061
31062 If a fixed variable object for the @code{state} variable is created in
31063 this function, and we enter the recursive call, the variable
31064 object will report the value of @code{state} in the top-level
31065 @code{do_work} invocation.  On the other hand, a floating variable
31066 object will report the value of @code{state} in the current frame.
31067
31068 If an expression specified when creating a fixed variable object
31069 refers to a local variable, the variable object becomes bound to the
31070 thread and frame in which the variable object is created.  When such
31071 variable object is updated, @value{GDBN} makes sure that the
31072 thread/frame combination the variable object is bound to still exists,
31073 and re-evaluates the variable object in context of that thread/frame.
31074
31075 The following is the complete set of @sc{gdb/mi} operations defined to
31076 access this functionality:
31077
31078 @multitable @columnfractions .4 .6
31079 @item @strong{Operation}
31080 @tab @strong{Description}
31081
31082 @item @code{-enable-pretty-printing}
31083 @tab enable Python-based pretty-printing
31084 @item @code{-var-create}
31085 @tab create a variable object
31086 @item @code{-var-delete}
31087 @tab delete the variable object and/or its children
31088 @item @code{-var-set-format}
31089 @tab set the display format of this variable
31090 @item @code{-var-show-format}
31091 @tab show the display format of this variable
31092 @item @code{-var-info-num-children}
31093 @tab tells how many children this object has
31094 @item @code{-var-list-children}
31095 @tab return a list of the object's children
31096 @item @code{-var-info-type}
31097 @tab show the type of this variable object
31098 @item @code{-var-info-expression}
31099 @tab print parent-relative expression that this variable object represents
31100 @item @code{-var-info-path-expression}
31101 @tab print full expression that this variable object represents
31102 @item @code{-var-show-attributes}
31103 @tab is this variable editable? does it exist here?
31104 @item @code{-var-evaluate-expression}
31105 @tab get the value of this variable
31106 @item @code{-var-assign}
31107 @tab set the value of this variable
31108 @item @code{-var-update}
31109 @tab update the variable and its children
31110 @item @code{-var-set-frozen}
31111 @tab set frozeness attribute
31112 @item @code{-var-set-update-range}
31113 @tab set range of children to display on update
31114 @end multitable
31115
31116 In the next subsection we describe each operation in detail and suggest
31117 how it can be used.
31118
31119 @subheading Description And Use of Operations on Variable Objects
31120
31121 @subheading The @code{-enable-pretty-printing} Command
31122 @findex -enable-pretty-printing
31123
31124 @smallexample
31125 -enable-pretty-printing
31126 @end smallexample
31127
31128 @value{GDBN} allows Python-based visualizers to affect the output of the
31129 MI variable object commands.  However, because there was no way to
31130 implement this in a fully backward-compatible way, a front end must
31131 request that this functionality be enabled.
31132
31133 Once enabled, this feature cannot be disabled.
31134
31135 Note that if Python support has not been compiled into @value{GDBN},
31136 this command will still succeed (and do nothing).
31137
31138 This feature is currently (as of @value{GDBN} 7.0) experimental, and
31139 may work differently in future versions of @value{GDBN}.
31140
31141 @subheading The @code{-var-create} Command
31142 @findex -var-create
31143
31144 @subsubheading Synopsis
31145
31146 @smallexample
31147  -var-create @{@var{name} | "-"@}
31148     @{@var{frame-addr} | "*" | "@@"@} @var{expression}
31149 @end smallexample
31150
31151 This operation creates a variable object, which allows the monitoring of
31152 a variable, the result of an expression, a memory cell or a CPU
31153 register.
31154
31155 The @var{name} parameter is the string by which the object can be
31156 referenced.  It must be unique.  If @samp{-} is specified, the varobj
31157 system will generate a string ``varNNNNNN'' automatically.  It will be
31158 unique provided that one does not specify @var{name} of that format.
31159 The command fails if a duplicate name is found.
31160
31161 The frame under which the expression should be evaluated can be
31162 specified by @var{frame-addr}.  A @samp{*} indicates that the current
31163 frame should be used.  A @samp{@@} indicates that a floating variable
31164 object must be created.
31165
31166 @var{expression} is any expression valid on the current language set (must not
31167 begin with a @samp{*}), or one of the following:
31168
31169 @itemize @bullet
31170 @item
31171 @samp{*@var{addr}}, where @var{addr} is the address of a memory cell
31172
31173 @item
31174 @samp{*@var{addr}-@var{addr}} --- a memory address range (TBD)
31175
31176 @item
31177 @samp{$@var{regname}} --- a CPU register name
31178 @end itemize
31179
31180 @cindex dynamic varobj
31181 A varobj's contents may be provided by a Python-based pretty-printer.  In this
31182 case the varobj is known as a @dfn{dynamic varobj}.  Dynamic varobjs
31183 have slightly different semantics in some cases.  If the
31184 @code{-enable-pretty-printing} command is not sent, then @value{GDBN}
31185 will never create a dynamic varobj.  This ensures backward
31186 compatibility for existing clients.
31187
31188 @subsubheading Result
31189
31190 This operation returns attributes of the newly-created varobj.  These
31191 are:
31192
31193 @table @samp
31194 @item name
31195 The name of the varobj.
31196
31197 @item numchild
31198 The number of children of the varobj.  This number is not necessarily
31199 reliable for a dynamic varobj.  Instead, you must examine the
31200 @samp{has_more} attribute.
31201
31202 @item value
31203 The varobj's scalar value.  For a varobj whose type is some sort of
31204 aggregate (e.g., a @code{struct}), or for a dynamic varobj, this value
31205 will not be interesting.
31206
31207 @item type
31208 The varobj's type.  This is a string representation of the type, as
31209 would be printed by the @value{GDBN} CLI.  If @samp{print object}
31210 (@pxref{Print Settings, set print object}) is set to @code{on}, the
31211 @emph{actual} (derived) type of the object is shown rather than the
31212 @emph{declared} one.
31213
31214 @item thread-id
31215 If a variable object is bound to a specific thread, then this is the
31216 thread's global identifier.
31217
31218 @item has_more
31219 For a dynamic varobj, this indicates whether there appear to be any
31220 children available.  For a non-dynamic varobj, this will be 0.
31221
31222 @item dynamic
31223 This attribute will be present and have the value @samp{1} if the
31224 varobj is a dynamic varobj.  If the varobj is not a dynamic varobj,
31225 then this attribute will not be present.
31226
31227 @item displayhint
31228 A dynamic varobj can supply a display hint to the front end.  The
31229 value comes directly from the Python pretty-printer object's
31230 @code{display_hint} method.  @xref{Pretty Printing API}.
31231 @end table
31232
31233 Typical output will look like this:
31234
31235 @smallexample
31236  name="@var{name}",numchild="@var{N}",type="@var{type}",thread-id="@var{M}",
31237   has_more="@var{has_more}"
31238 @end smallexample
31239
31240
31241 @subheading The @code{-var-delete} Command
31242 @findex -var-delete
31243
31244 @subsubheading Synopsis
31245
31246 @smallexample
31247  -var-delete [ -c ] @var{name}
31248 @end smallexample
31249
31250 Deletes a previously created variable object and all of its children.
31251 With the @samp{-c} option, just deletes the children.
31252
31253 Returns an error if the object @var{name} is not found.
31254
31255
31256 @subheading The @code{-var-set-format} Command
31257 @findex -var-set-format
31258
31259 @subsubheading Synopsis
31260
31261 @smallexample
31262  -var-set-format @var{name} @var{format-spec}
31263 @end smallexample
31264
31265 Sets the output format for the value of the object @var{name} to be
31266 @var{format-spec}.
31267
31268 @anchor{-var-set-format}
31269 The syntax for the @var{format-spec} is as follows:
31270
31271 @smallexample
31272  @var{format-spec} @expansion{}
31273  @{binary | decimal | hexadecimal | octal | natural | zero-hexadecimal@}
31274 @end smallexample
31275
31276 The natural format is the default format choosen automatically
31277 based on the variable type (like decimal for an @code{int}, hex
31278 for pointers, etc.).
31279
31280 The zero-hexadecimal format has a representation similar to hexadecimal
31281 but with padding zeroes to the left of the value.  For example, a 32-bit
31282 hexadecimal value of 0x1234 would be represented as 0x00001234 in the
31283 zero-hexadecimal format.
31284
31285 For a variable with children, the format is set only on the 
31286 variable itself, and the children are not affected.  
31287
31288 @subheading The @code{-var-show-format} Command
31289 @findex -var-show-format
31290
31291 @subsubheading Synopsis
31292
31293 @smallexample
31294  -var-show-format @var{name}
31295 @end smallexample
31296
31297 Returns the format used to display the value of the object @var{name}.
31298
31299 @smallexample
31300  @var{format} @expansion{}
31301  @var{format-spec}
31302 @end smallexample
31303
31304
31305 @subheading The @code{-var-info-num-children} Command
31306 @findex -var-info-num-children
31307
31308 @subsubheading Synopsis
31309
31310 @smallexample
31311  -var-info-num-children @var{name}
31312 @end smallexample
31313
31314 Returns the number of children of a variable object @var{name}:
31315
31316 @smallexample
31317  numchild=@var{n}
31318 @end smallexample
31319
31320 Note that this number is not completely reliable for a dynamic varobj.
31321 It will return the current number of children, but more children may
31322 be available.
31323
31324
31325 @subheading The @code{-var-list-children} Command
31326 @findex -var-list-children
31327
31328 @subsubheading Synopsis
31329
31330 @smallexample
31331  -var-list-children [@var{print-values}] @var{name} [@var{from} @var{to}]
31332 @end smallexample
31333 @anchor{-var-list-children}
31334
31335 Return a list of the children of the specified variable object and
31336 create variable objects for them, if they do not already exist.  With
31337 a single argument or if @var{print-values} has a value of 0 or
31338 @code{--no-values}, print only the names of the variables; if
31339 @var{print-values} is 1 or @code{--all-values}, also print their
31340 values; and if it is 2 or @code{--simple-values} print the name and
31341 value for simple data types and just the name for arrays, structures
31342 and unions.
31343
31344 @var{from} and @var{to}, if specified, indicate the range of children
31345 to report.  If @var{from} or @var{to} is less than zero, the range is
31346 reset and all children will be reported.  Otherwise, children starting
31347 at @var{from} (zero-based) and up to and excluding @var{to} will be
31348 reported.
31349
31350 If a child range is requested, it will only affect the current call to
31351 @code{-var-list-children}, but not future calls to @code{-var-update}.
31352 For this, you must instead use @code{-var-set-update-range}.  The
31353 intent of this approach is to enable a front end to implement any
31354 update approach it likes; for example, scrolling a view may cause the
31355 front end to request more children with @code{-var-list-children}, and
31356 then the front end could call @code{-var-set-update-range} with a
31357 different range to ensure that future updates are restricted to just
31358 the visible items.
31359
31360 For each child the following results are returned:
31361
31362 @table @var
31363
31364 @item name
31365 Name of the variable object created for this child.
31366
31367 @item exp
31368 The expression to be shown to the user by the front end to designate this child.
31369 For example this may be the name of a structure member.
31370
31371 For a dynamic varobj, this value cannot be used to form an
31372 expression.  There is no way to do this at all with a dynamic varobj.
31373
31374 For C/C@t{++} structures there are several pseudo children returned to
31375 designate access qualifiers.  For these pseudo children @var{exp} is
31376 @samp{public}, @samp{private}, or @samp{protected}.  In this case the
31377 type and value are not present.
31378
31379 A dynamic varobj will not report the access qualifying
31380 pseudo-children, regardless of the language.  This information is not
31381 available at all with a dynamic varobj.
31382
31383 @item numchild
31384 Number of children this child has.  For a dynamic varobj, this will be
31385 0.
31386
31387 @item type
31388 The type of the child.  If @samp{print object}
31389 (@pxref{Print Settings, set print object}) is set to @code{on}, the
31390 @emph{actual} (derived) type of the object is shown rather than the
31391 @emph{declared} one.
31392
31393 @item value
31394 If values were requested, this is the value.
31395
31396 @item thread-id
31397 If this variable object is associated with a thread, this is the
31398 thread's global thread id.  Otherwise this result is not present.
31399
31400 @item frozen
31401 If the variable object is frozen, this variable will be present with a value of 1.
31402
31403 @item displayhint
31404 A dynamic varobj can supply a display hint to the front end.  The
31405 value comes directly from the Python pretty-printer object's
31406 @code{display_hint} method.  @xref{Pretty Printing API}.
31407
31408 @item dynamic
31409 This attribute will be present and have the value @samp{1} if the
31410 varobj is a dynamic varobj.  If the varobj is not a dynamic varobj,
31411 then this attribute will not be present.
31412
31413 @end table
31414
31415 The result may have its own attributes:
31416
31417 @table @samp
31418 @item displayhint
31419 A dynamic varobj can supply a display hint to the front end.  The
31420 value comes directly from the Python pretty-printer object's
31421 @code{display_hint} method.  @xref{Pretty Printing API}.
31422
31423 @item has_more
31424 This is an integer attribute which is nonzero if there are children
31425 remaining after the end of the selected range.
31426 @end table
31427
31428 @subsubheading Example
31429
31430 @smallexample
31431 (gdb)
31432  -var-list-children n
31433  ^done,numchild=@var{n},children=[child=@{name=@var{name},exp=@var{exp},
31434  numchild=@var{n},type=@var{type}@},@r{(repeats N times)}]
31435 (gdb)
31436  -var-list-children --all-values n
31437  ^done,numchild=@var{n},children=[child=@{name=@var{name},exp=@var{exp},
31438  numchild=@var{n},value=@var{value},type=@var{type}@},@r{(repeats N times)}]
31439 @end smallexample
31440
31441
31442 @subheading The @code{-var-info-type} Command
31443 @findex -var-info-type
31444
31445 @subsubheading Synopsis
31446
31447 @smallexample
31448  -var-info-type @var{name}
31449 @end smallexample
31450
31451 Returns the type of the specified variable @var{name}.  The type is
31452 returned as a string in the same format as it is output by the
31453 @value{GDBN} CLI:
31454
31455 @smallexample
31456  type=@var{typename}
31457 @end smallexample
31458
31459
31460 @subheading The @code{-var-info-expression} Command
31461 @findex -var-info-expression
31462
31463 @subsubheading Synopsis
31464
31465 @smallexample
31466  -var-info-expression @var{name}
31467 @end smallexample
31468
31469 Returns a string that is suitable for presenting this
31470 variable object in user interface.  The string is generally
31471 not valid expression in the current language, and cannot be evaluated.
31472
31473 For example, if @code{a} is an array, and variable object
31474 @code{A} was created for @code{a}, then we'll get this output:
31475
31476 @smallexample
31477 (gdb) -var-info-expression A.1
31478 ^done,lang="C",exp="1"
31479 @end smallexample
31480
31481 @noindent
31482 Here, the value of @code{lang} is the language name, which can be
31483 found in @ref{Supported Languages}.
31484
31485 Note that the output of the @code{-var-list-children} command also
31486 includes those expressions, so the @code{-var-info-expression} command
31487 is of limited use.
31488
31489 @subheading The @code{-var-info-path-expression} Command
31490 @findex -var-info-path-expression
31491
31492 @subsubheading Synopsis
31493
31494 @smallexample
31495  -var-info-path-expression @var{name}
31496 @end smallexample
31497
31498 Returns an expression that can be evaluated in the current
31499 context and will yield the same value that a variable object has.
31500 Compare this with the @code{-var-info-expression} command, which
31501 result can be used only for UI presentation.  Typical use of
31502 the @code{-var-info-path-expression} command is creating a 
31503 watchpoint from a variable object.
31504
31505 This command is currently not valid for children of a dynamic varobj,
31506 and will give an error when invoked on one.
31507
31508 For example, suppose @code{C} is a C@t{++} class, derived from class
31509 @code{Base}, and that the @code{Base} class has a member called
31510 @code{m_size}.  Assume a variable @code{c} is has the type of
31511 @code{C} and a variable object @code{C} was created for variable
31512 @code{c}.  Then, we'll get this output:
31513 @smallexample
31514 (gdb) -var-info-path-expression C.Base.public.m_size
31515 ^done,path_expr=((Base)c).m_size)
31516 @end smallexample
31517
31518 @subheading The @code{-var-show-attributes} Command
31519 @findex -var-show-attributes
31520
31521 @subsubheading Synopsis
31522
31523 @smallexample
31524  -var-show-attributes @var{name}
31525 @end smallexample
31526
31527 List attributes of the specified variable object @var{name}:
31528
31529 @smallexample
31530  status=@var{attr} [ ( ,@var{attr} )* ]
31531 @end smallexample
31532
31533 @noindent
31534 where @var{attr} is @code{@{ @{ editable | noneditable @} | TBD @}}.
31535
31536 @subheading The @code{-var-evaluate-expression} Command
31537 @findex -var-evaluate-expression
31538
31539 @subsubheading Synopsis
31540
31541 @smallexample
31542  -var-evaluate-expression [-f @var{format-spec}] @var{name}
31543 @end smallexample
31544
31545 Evaluates the expression that is represented by the specified variable
31546 object and returns its value as a string.  The format of the string
31547 can be specified with the @samp{-f} option.  The possible values of 
31548 this option are the same as for @code{-var-set-format} 
31549 (@pxref{-var-set-format}).  If the @samp{-f} option is not specified,
31550 the current display format will be used.  The current display format 
31551 can be changed using the @code{-var-set-format} command.
31552
31553 @smallexample
31554  value=@var{value}
31555 @end smallexample
31556
31557 Note that one must invoke @code{-var-list-children} for a variable
31558 before the value of a child variable can be evaluated.
31559
31560 @subheading The @code{-var-assign} Command
31561 @findex -var-assign
31562
31563 @subsubheading Synopsis
31564
31565 @smallexample
31566  -var-assign @var{name} @var{expression}
31567 @end smallexample
31568
31569 Assigns the value of @var{expression} to the variable object specified
31570 by @var{name}.  The object must be @samp{editable}.  If the variable's
31571 value is altered by the assign, the variable will show up in any
31572 subsequent @code{-var-update} list.
31573
31574 @subsubheading Example
31575
31576 @smallexample
31577 (gdb)
31578 -var-assign var1 3
31579 ^done,value="3"
31580 (gdb)
31581 -var-update *
31582 ^done,changelist=[@{name="var1",in_scope="true",type_changed="false"@}]
31583 (gdb)
31584 @end smallexample
31585
31586 @subheading The @code{-var-update} Command
31587 @findex -var-update
31588
31589 @subsubheading Synopsis
31590
31591 @smallexample
31592  -var-update [@var{print-values}] @{@var{name} | "*"@}
31593 @end smallexample
31594
31595 Reevaluate the expressions corresponding to the variable object
31596 @var{name} and all its direct and indirect children, and return the
31597 list of variable objects whose values have changed; @var{name} must
31598 be a root variable object.  Here, ``changed'' means that the result of
31599 @code{-var-evaluate-expression} before and after the
31600 @code{-var-update} is different.  If @samp{*} is used as the variable
31601 object names, all existing variable objects are updated, except
31602 for frozen ones (@pxref{-var-set-frozen}).  The option
31603 @var{print-values} determines whether both names and values, or just
31604 names are printed.  The possible values of this option are the same
31605 as for @code{-var-list-children} (@pxref{-var-list-children}).  It is
31606 recommended to use the @samp{--all-values} option, to reduce the
31607 number of MI commands needed on each program stop.
31608
31609 With the @samp{*} parameter, if a variable object is bound to a
31610 currently running thread, it will not be updated, without any
31611 diagnostic.
31612
31613 If @code{-var-set-update-range} was previously used on a varobj, then
31614 only the selected range of children will be reported.
31615
31616 @code{-var-update} reports all the changed varobjs in a tuple named
31617 @samp{changelist}.
31618
31619 Each item in the change list is itself a tuple holding:
31620
31621 @table @samp
31622 @item name
31623 The name of the varobj.
31624
31625 @item value
31626 If values were requested for this update, then this field will be
31627 present and will hold the value of the varobj.
31628
31629 @item in_scope
31630 @anchor{-var-update}
31631 This field is a string which may take one of three values:
31632
31633 @table @code
31634 @item "true"
31635 The variable object's current value is valid.
31636
31637 @item "false"
31638 The variable object does not currently hold a valid value but it may
31639 hold one in the future if its associated expression comes back into
31640 scope.
31641
31642 @item "invalid"
31643 The variable object no longer holds a valid value.
31644 This can occur when the executable file being debugged has changed,
31645 either through recompilation or by using the @value{GDBN} @code{file}
31646 command.  The front end should normally choose to delete these variable
31647 objects.
31648 @end table
31649
31650 In the future new values may be added to this list so the front should
31651 be prepared for this possibility.  @xref{GDB/MI Development and Front Ends, ,@sc{GDB/MI} Development and Front Ends}.
31652
31653 @item type_changed
31654 This is only present if the varobj is still valid.  If the type
31655 changed, then this will be the string @samp{true}; otherwise it will
31656 be @samp{false}.
31657
31658 When a varobj's type changes, its children are also likely to have
31659 become incorrect.  Therefore, the varobj's children are automatically
31660 deleted when this attribute is @samp{true}.  Also, the varobj's update
31661 range, when set using the @code{-var-set-update-range} command, is
31662 unset.
31663
31664 @item new_type
31665 If the varobj's type changed, then this field will be present and will
31666 hold the new type.
31667
31668 @item new_num_children
31669 For a dynamic varobj, if the number of children changed, or if the
31670 type changed, this will be the new number of children.
31671
31672 The @samp{numchild} field in other varobj responses is generally not
31673 valid for a dynamic varobj -- it will show the number of children that
31674 @value{GDBN} knows about, but because dynamic varobjs lazily
31675 instantiate their children, this will not reflect the number of
31676 children which may be available.
31677
31678 The @samp{new_num_children} attribute only reports changes to the
31679 number of children known by @value{GDBN}.  This is the only way to
31680 detect whether an update has removed children (which necessarily can
31681 only happen at the end of the update range).
31682
31683 @item displayhint
31684 The display hint, if any.
31685
31686 @item has_more
31687 This is an integer value, which will be 1 if there are more children
31688 available outside the varobj's update range.
31689
31690 @item dynamic
31691 This attribute will be present and have the value @samp{1} if the
31692 varobj is a dynamic varobj.  If the varobj is not a dynamic varobj,
31693 then this attribute will not be present.
31694
31695 @item new_children
31696 If new children were added to a dynamic varobj within the selected
31697 update range (as set by @code{-var-set-update-range}), then they will
31698 be listed in this attribute.
31699 @end table
31700
31701 @subsubheading Example
31702
31703 @smallexample
31704 (gdb)
31705 -var-assign var1 3
31706 ^done,value="3"
31707 (gdb)
31708 -var-update --all-values var1
31709 ^done,changelist=[@{name="var1",value="3",in_scope="true",
31710 type_changed="false"@}]
31711 (gdb)
31712 @end smallexample
31713
31714 @subheading The @code{-var-set-frozen} Command
31715 @findex -var-set-frozen
31716 @anchor{-var-set-frozen}
31717
31718 @subsubheading Synopsis
31719
31720 @smallexample
31721  -var-set-frozen @var{name} @var{flag}
31722 @end smallexample
31723
31724 Set the frozenness flag on the variable object @var{name}.  The
31725 @var{flag} parameter should be either @samp{1} to make the variable
31726 frozen or @samp{0} to make it unfrozen.  If a variable object is
31727 frozen, then neither itself, nor any of its children, are 
31728 implicitly updated by @code{-var-update} of 
31729 a parent variable or by @code{-var-update *}.  Only
31730 @code{-var-update} of the variable itself will update its value and
31731 values of its children.  After a variable object is unfrozen, it is
31732 implicitly updated by all subsequent @code{-var-update} operations.  
31733 Unfreezing a variable does not update it, only subsequent
31734 @code{-var-update} does.
31735
31736 @subsubheading Example
31737
31738 @smallexample
31739 (gdb)
31740 -var-set-frozen V 1
31741 ^done
31742 (gdb)
31743 @end smallexample
31744
31745 @subheading The @code{-var-set-update-range} command
31746 @findex -var-set-update-range
31747 @anchor{-var-set-update-range}
31748
31749 @subsubheading Synopsis
31750
31751 @smallexample
31752  -var-set-update-range @var{name} @var{from} @var{to}
31753 @end smallexample
31754
31755 Set the range of children to be returned by future invocations of
31756 @code{-var-update}.
31757
31758 @var{from} and @var{to} indicate the range of children to report.  If
31759 @var{from} or @var{to} is less than zero, the range is reset and all
31760 children will be reported.  Otherwise, children starting at @var{from}
31761 (zero-based) and up to and excluding @var{to} will be reported.
31762
31763 @subsubheading Example
31764
31765 @smallexample
31766 (gdb)
31767 -var-set-update-range V 1 2
31768 ^done
31769 @end smallexample
31770
31771 @subheading The @code{-var-set-visualizer} command
31772 @findex -var-set-visualizer
31773 @anchor{-var-set-visualizer}
31774
31775 @subsubheading Synopsis
31776
31777 @smallexample
31778  -var-set-visualizer @var{name} @var{visualizer}
31779 @end smallexample
31780
31781 Set a visualizer for the variable object @var{name}.
31782
31783 @var{visualizer} is the visualizer to use.  The special value
31784 @samp{None} means to disable any visualizer in use.
31785
31786 If not @samp{None}, @var{visualizer} must be a Python expression.
31787 This expression must evaluate to a callable object which accepts a
31788 single argument.  @value{GDBN} will call this object with the value of
31789 the varobj @var{name} as an argument (this is done so that the same
31790 Python pretty-printing code can be used for both the CLI and MI).
31791 When called, this object must return an object which conforms to the
31792 pretty-printing interface (@pxref{Pretty Printing API}).
31793
31794 The pre-defined function @code{gdb.default_visualizer} may be used to
31795 select a visualizer by following the built-in process
31796 (@pxref{Selecting Pretty-Printers}).  This is done automatically when
31797 a varobj is created, and so ordinarily is not needed.
31798
31799 This feature is only available if Python support is enabled.  The MI
31800 command @code{-list-features} (@pxref{GDB/MI Support Commands})
31801 can be used to check this.
31802
31803 @subsubheading Example
31804
31805 Resetting the visualizer:
31806
31807 @smallexample
31808 (gdb)
31809 -var-set-visualizer V None
31810 ^done
31811 @end smallexample
31812
31813 Reselecting the default (type-based) visualizer:
31814
31815 @smallexample
31816 (gdb)
31817 -var-set-visualizer V gdb.default_visualizer
31818 ^done
31819 @end smallexample
31820
31821 Suppose @code{SomeClass} is a visualizer class.  A lambda expression
31822 can be used to instantiate this class for a varobj:
31823
31824 @smallexample
31825 (gdb)
31826 -var-set-visualizer V "lambda val: SomeClass()"
31827 ^done
31828 @end smallexample
31829
31830 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
31831 @node GDB/MI Data Manipulation
31832 @section @sc{gdb/mi} Data Manipulation
31833
31834 @cindex data manipulation, in @sc{gdb/mi}
31835 @cindex @sc{gdb/mi}, data manipulation
31836 This section describes the @sc{gdb/mi} commands that manipulate data:
31837 examine memory and registers, evaluate expressions, etc.
31838
31839 For details about what an addressable memory unit is,
31840 @pxref{addressable memory unit}.
31841
31842 @c REMOVED FROM THE INTERFACE.
31843 @c @subheading -data-assign
31844 @c Change the value of a program variable. Plenty of side effects.
31845 @c @subsubheading GDB Command
31846 @c set variable
31847 @c @subsubheading Example
31848 @c N.A.
31849
31850 @subheading The @code{-data-disassemble} Command
31851 @findex -data-disassemble
31852
31853 @subsubheading Synopsis
31854
31855 @smallexample
31856  -data-disassemble
31857     [ -s @var{start-addr} -e @var{end-addr} ]
31858   | [ -a @var{addr} ]
31859   | [ -f @var{filename} -l @var{linenum} [ -n @var{lines} ] ]
31860   -- @var{mode}
31861 @end smallexample
31862
31863 @noindent
31864 Where:
31865
31866 @table @samp
31867 @item @var{start-addr}
31868 is the beginning address (or @code{$pc})
31869 @item @var{end-addr}
31870 is the end address
31871 @item @var{addr}
31872 is an address anywhere within (or the name of) the function to
31873 disassemble.  If an address is specified, the whole function
31874 surrounding that address will be disassembled.  If a name is
31875 specified, the whole function with that name will be disassembled.
31876 @item @var{filename}
31877 is the name of the file to disassemble
31878 @item @var{linenum}
31879 is the line number to disassemble around
31880 @item @var{lines}
31881 is the number of disassembly lines to be produced.  If it is -1,
31882 the whole function will be disassembled, in case no @var{end-addr} is
31883 specified.  If @var{end-addr} is specified as a non-zero value, and
31884 @var{lines} is lower than the number of disassembly lines between
31885 @var{start-addr} and @var{end-addr}, only @var{lines} lines are
31886 displayed; if @var{lines} is higher than the number of lines between
31887 @var{start-addr} and @var{end-addr}, only the lines up to @var{end-addr}
31888 are displayed.
31889 @item @var{mode}
31890 is one of:
31891 @itemize @bullet
31892 @item 0 disassembly only
31893 @item 1 mixed source and disassembly (deprecated)
31894 @item 2 disassembly with raw opcodes
31895 @item 3 mixed source and disassembly with raw opcodes (deprecated)
31896 @item 4 mixed source and disassembly
31897 @item 5 mixed source and disassembly with raw opcodes
31898 @end itemize
31899
31900 Modes 1 and 3 are deprecated.  The output is ``source centric''
31901 which hasn't proved useful in practice.
31902 @xref{Machine Code}, for a discussion of the difference between
31903 @code{/m} and @code{/s} output of the @code{disassemble} command.
31904 @end table
31905
31906 @subsubheading Result
31907
31908 The result of the @code{-data-disassemble} command will be a list named
31909 @samp{asm_insns}, the contents of this list depend on the @var{mode}
31910 used with the @code{-data-disassemble} command.
31911
31912 For modes 0 and 2 the @samp{asm_insns} list contains tuples with the
31913 following fields:
31914
31915 @table @code
31916 @item address
31917 The address at which this instruction was disassembled.
31918
31919 @item func-name
31920 The name of the function this instruction is within.
31921
31922 @item offset
31923 The decimal offset in bytes from the start of @samp{func-name}.
31924
31925 @item inst
31926 The text disassembly for this @samp{address}.
31927
31928 @item opcodes
31929 This field is only present for modes 2, 3 and 5.  This contains the raw opcode
31930 bytes for the @samp{inst} field.
31931
31932 @end table
31933
31934 For modes 1, 3, 4 and 5 the @samp{asm_insns} list contains tuples named
31935 @samp{src_and_asm_line}, each of which has the following fields:
31936
31937 @table @code
31938 @item line
31939 The line number within @samp{file}.
31940
31941 @item file
31942 The file name from the compilation unit.  This might be an absolute
31943 file name or a relative file name depending on the compile command
31944 used.
31945
31946 @item fullname
31947 Absolute file name of @samp{file}.  It is converted to a canonical form
31948 using the source file search path
31949 (@pxref{Source Path, ,Specifying Source Directories})
31950 and after resolving all the symbolic links.
31951
31952 If the source file is not found this field will contain the path as
31953 present in the debug information.
31954
31955 @item line_asm_insn
31956 This is a list of tuples containing the disassembly for @samp{line} in
31957 @samp{file}.  The fields of each tuple are the same as for
31958 @code{-data-disassemble} in @var{mode} 0 and 2, so @samp{address},
31959 @samp{func-name}, @samp{offset}, @samp{inst}, and optionally
31960 @samp{opcodes}.
31961
31962 @end table
31963
31964 Note that whatever included in the @samp{inst} field, is not
31965 manipulated directly by @sc{gdb/mi}, i.e., it is not possible to
31966 adjust its format.
31967
31968 @subsubheading @value{GDBN} Command
31969
31970 The corresponding @value{GDBN} command is @samp{disassemble}.
31971
31972 @subsubheading Example
31973
31974 Disassemble from the current value of @code{$pc} to @code{$pc + 20}:
31975
31976 @smallexample
31977 (gdb)
31978 -data-disassemble -s $pc -e "$pc + 20" -- 0
31979 ^done,
31980 asm_insns=[
31981 @{address="0x000107c0",func-name="main",offset="4",
31982 inst="mov  2, %o0"@},
31983 @{address="0x000107c4",func-name="main",offset="8",
31984 inst="sethi  %hi(0x11800), %o2"@},
31985 @{address="0x000107c8",func-name="main",offset="12",
31986 inst="or  %o2, 0x140, %o1\t! 0x11940 <_lib_version+8>"@},
31987 @{address="0x000107cc",func-name="main",offset="16",
31988 inst="sethi  %hi(0x11800), %o2"@},
31989 @{address="0x000107d0",func-name="main",offset="20",
31990 inst="or  %o2, 0x168, %o4\t! 0x11968 <_lib_version+48>"@}]
31991 (gdb)
31992 @end smallexample
31993
31994 Disassemble the whole @code{main} function.  Line 32 is part of
31995 @code{main}.
31996
31997 @smallexample
31998 -data-disassemble -f basics.c -l 32 -- 0
31999 ^done,asm_insns=[
32000 @{address="0x000107bc",func-name="main",offset="0",
32001 inst="save  %sp, -112, %sp"@},
32002 @{address="0x000107c0",func-name="main",offset="4",
32003 inst="mov   2, %o0"@},
32004 @{address="0x000107c4",func-name="main",offset="8",
32005 inst="sethi %hi(0x11800), %o2"@},
32006 [@dots{}]
32007 @{address="0x0001081c",func-name="main",offset="96",inst="ret "@},
32008 @{address="0x00010820",func-name="main",offset="100",inst="restore "@}]
32009 (gdb)
32010 @end smallexample
32011
32012 Disassemble 3 instructions from the start of @code{main}:
32013
32014 @smallexample
32015 (gdb)
32016 -data-disassemble -f basics.c -l 32 -n 3 -- 0
32017 ^done,asm_insns=[
32018 @{address="0x000107bc",func-name="main",offset="0",
32019 inst="save  %sp, -112, %sp"@},
32020 @{address="0x000107c0",func-name="main",offset="4",
32021 inst="mov  2, %o0"@},
32022 @{address="0x000107c4",func-name="main",offset="8",
32023 inst="sethi  %hi(0x11800), %o2"@}]
32024 (gdb)
32025 @end smallexample
32026
32027 Disassemble 3 instructions from the start of @code{main} in mixed mode:
32028
32029 @smallexample
32030 (gdb)
32031 -data-disassemble -f basics.c -l 32 -n 3 -- 1
32032 ^done,asm_insns=[
32033 src_and_asm_line=@{line="31",
32034 file="../../../src/gdb/testsuite/gdb.mi/basics.c",
32035 fullname="/absolute/path/to/src/gdb/testsuite/gdb.mi/basics.c",
32036 line_asm_insn=[@{address="0x000107bc",
32037 func-name="main",offset="0",inst="save  %sp, -112, %sp"@}]@},
32038 src_and_asm_line=@{line="32",
32039 file="../../../src/gdb/testsuite/gdb.mi/basics.c",
32040 fullname="/absolute/path/to/src/gdb/testsuite/gdb.mi/basics.c",
32041 line_asm_insn=[@{address="0x000107c0",
32042 func-name="main",offset="4",inst="mov  2, %o0"@},
32043 @{address="0x000107c4",func-name="main",offset="8",
32044 inst="sethi  %hi(0x11800), %o2"@}]@}]
32045 (gdb)
32046 @end smallexample
32047
32048
32049 @subheading The @code{-data-evaluate-expression} Command
32050 @findex -data-evaluate-expression
32051
32052 @subsubheading Synopsis
32053
32054 @smallexample
32055  -data-evaluate-expression @var{expr}
32056 @end smallexample
32057
32058 Evaluate @var{expr} as an expression.  The expression could contain an
32059 inferior function call.  The function call will execute synchronously.
32060 If the expression contains spaces, it must be enclosed in double quotes.
32061
32062 @subsubheading @value{GDBN} Command
32063
32064 The corresponding @value{GDBN} commands are @samp{print}, @samp{output}, and
32065 @samp{call}.  In @code{gdbtk} only, there's a corresponding
32066 @samp{gdb_eval} command.
32067
32068 @subsubheading Example
32069
32070 In the following example, the numbers that precede the commands are the
32071 @dfn{tokens} described in @ref{GDB/MI Command Syntax, ,@sc{gdb/mi}
32072 Command Syntax}.  Notice how @sc{gdb/mi} returns the same tokens in its
32073 output.
32074
32075 @smallexample
32076 211-data-evaluate-expression A
32077 211^done,value="1"
32078 (gdb)
32079 311-data-evaluate-expression &A
32080 311^done,value="0xefffeb7c"
32081 (gdb)
32082 411-data-evaluate-expression A+3
32083 411^done,value="4"
32084 (gdb)
32085 511-data-evaluate-expression "A + 3"
32086 511^done,value="4"
32087 (gdb)
32088 @end smallexample
32089
32090
32091 @subheading The @code{-data-list-changed-registers} Command
32092 @findex -data-list-changed-registers
32093
32094 @subsubheading Synopsis
32095
32096 @smallexample
32097  -data-list-changed-registers
32098 @end smallexample
32099
32100 Display a list of the registers that have changed.
32101
32102 @subsubheading @value{GDBN} Command
32103
32104 @value{GDBN} doesn't have a direct analog for this command; @code{gdbtk}
32105 has the corresponding command @samp{gdb_changed_register_list}.
32106
32107 @subsubheading Example
32108
32109 On a PPC MBX board:
32110
32111 @smallexample
32112 (gdb)
32113 -exec-continue
32114 ^running
32115
32116 (gdb)
32117 *stopped,reason="breakpoint-hit",disp="keep",bkptno="1",frame=@{
32118 func="main",args=[],file="try.c",fullname="/home/foo/bar/try.c",
32119 line="5",arch="powerpc"@}
32120 (gdb)
32121 -data-list-changed-registers
32122 ^done,changed-registers=["0","1","2","4","5","6","7","8","9",
32123 "10","11","13","14","15","16","17","18","19","20","21","22","23",
32124 "24","25","26","27","28","30","31","64","65","66","67","69"]
32125 (gdb)
32126 @end smallexample
32127
32128
32129 @subheading The @code{-data-list-register-names} Command
32130 @findex -data-list-register-names
32131
32132 @subsubheading Synopsis
32133
32134 @smallexample
32135  -data-list-register-names [ ( @var{regno} )+ ]
32136 @end smallexample
32137
32138 Show a list of register names for the current target.  If no arguments
32139 are given, it shows a list of the names of all the registers.  If
32140 integer numbers are given as arguments, it will print a list of the
32141 names of the registers corresponding to the arguments.  To ensure
32142 consistency between a register name and its number, the output list may
32143 include empty register names.
32144
32145 @subsubheading @value{GDBN} Command
32146
32147 @value{GDBN} does not have a command which corresponds to
32148 @samp{-data-list-register-names}.  In @code{gdbtk} there is a
32149 corresponding command @samp{gdb_regnames}.
32150
32151 @subsubheading Example
32152
32153 For the PPC MBX board:
32154 @smallexample
32155 (gdb)
32156 -data-list-register-names
32157 ^done,register-names=["r0","r1","r2","r3","r4","r5","r6","r7",
32158 "r8","r9","r10","r11","r12","r13","r14","r15","r16","r17","r18",
32159 "r19","r20","r21","r22","r23","r24","r25","r26","r27","r28","r29",
32160 "r30","r31","f0","f1","f2","f3","f4","f5","f6","f7","f8","f9",
32161 "f10","f11","f12","f13","f14","f15","f16","f17","f18","f19","f20",
32162 "f21","f22","f23","f24","f25","f26","f27","f28","f29","f30","f31",
32163 "", "pc","ps","cr","lr","ctr","xer"]
32164 (gdb)
32165 -data-list-register-names 1 2 3
32166 ^done,register-names=["r1","r2","r3"]
32167 (gdb)
32168 @end smallexample
32169
32170 @subheading The @code{-data-list-register-values} Command
32171 @findex -data-list-register-values
32172
32173 @subsubheading Synopsis
32174
32175 @smallexample
32176  -data-list-register-values
32177     [ @code{--skip-unavailable} ] @var{fmt} [ ( @var{regno} )*]
32178 @end smallexample
32179
32180 Display the registers' contents.  The format according to which the
32181 registers' contents are to be returned is given by @var{fmt}, followed
32182 by an optional list of numbers specifying the registers to display.  A
32183 missing list of numbers indicates that the contents of all the
32184 registers must be returned.  The @code{--skip-unavailable} option
32185 indicates that only the available registers are to be returned.
32186
32187 Allowed formats for @var{fmt} are:
32188
32189 @table @code
32190 @item x
32191 Hexadecimal
32192 @item o
32193 Octal
32194 @item t
32195 Binary
32196 @item d
32197 Decimal
32198 @item r
32199 Raw
32200 @item N
32201 Natural
32202 @end table
32203
32204 @subsubheading @value{GDBN} Command
32205
32206 The corresponding @value{GDBN} commands are @samp{info reg}, @samp{info
32207 all-reg}, and (in @code{gdbtk}) @samp{gdb_fetch_registers}.
32208
32209 @subsubheading Example
32210
32211 For a PPC MBX board (note: line breaks are for readability only, they
32212 don't appear in the actual output):
32213
32214 @smallexample
32215 (gdb)
32216 -data-list-register-values r 64 65
32217 ^done,register-values=[@{number="64",value="0xfe00a300"@},
32218 @{number="65",value="0x00029002"@}]
32219 (gdb)
32220 -data-list-register-values x
32221 ^done,register-values=[@{number="0",value="0xfe0043c8"@},
32222 @{number="1",value="0x3fff88"@},@{number="2",value="0xfffffffe"@},
32223 @{number="3",value="0x0"@},@{number="4",value="0xa"@},
32224 @{number="5",value="0x3fff68"@},@{number="6",value="0x3fff58"@},
32225 @{number="7",value="0xfe011e98"@},@{number="8",value="0x2"@},
32226 @{number="9",value="0xfa202820"@},@{number="10",value="0xfa202808"@},
32227 @{number="11",value="0x1"@},@{number="12",value="0x0"@},
32228 @{number="13",value="0x4544"@},@{number="14",value="0xffdfffff"@},
32229 @{number="15",value="0xffffffff"@},@{number="16",value="0xfffffeff"@},
32230 @{number="17",value="0xefffffed"@},@{number="18",value="0xfffffffe"@},
32231 @{number="19",value="0xffffffff"@},@{number="20",value="0xffffffff"@},
32232 @{number="21",value="0xffffffff"@},@{number="22",value="0xfffffff7"@},
32233 @{number="23",value="0xffffffff"@},@{number="24",value="0xffffffff"@},
32234 @{number="25",value="0xffffffff"@},@{number="26",value="0xfffffffb"@},
32235 @{number="27",value="0xffffffff"@},@{number="28",value="0xf7bfffff"@},
32236 @{number="29",value="0x0"@},@{number="30",value="0xfe010000"@},
32237 @{number="31",value="0x0"@},@{number="32",value="0x0"@},
32238 @{number="33",value="0x0"@},@{number="34",value="0x0"@},
32239 @{number="35",value="0x0"@},@{number="36",value="0x0"@},
32240 @{number="37",value="0x0"@},@{number="38",value="0x0"@},
32241 @{number="39",value="0x0"@},@{number="40",value="0x0"@},
32242 @{number="41",value="0x0"@},@{number="42",value="0x0"@},
32243 @{number="43",value="0x0"@},@{number="44",value="0x0"@},
32244 @{number="45",value="0x0"@},@{number="46",value="0x0"@},
32245 @{number="47",value="0x0"@},@{number="48",value="0x0"@},
32246 @{number="49",value="0x0"@},@{number="50",value="0x0"@},
32247 @{number="51",value="0x0"@},@{number="52",value="0x0"@},
32248 @{number="53",value="0x0"@},@{number="54",value="0x0"@},
32249 @{number="55",value="0x0"@},@{number="56",value="0x0"@},
32250 @{number="57",value="0x0"@},@{number="58",value="0x0"@},
32251 @{number="59",value="0x0"@},@{number="60",value="0x0"@},
32252 @{number="61",value="0x0"@},@{number="62",value="0x0"@},
32253 @{number="63",value="0x0"@},@{number="64",value="0xfe00a300"@},
32254 @{number="65",value="0x29002"@},@{number="66",value="0x202f04b5"@},
32255 @{number="67",value="0xfe0043b0"@},@{number="68",value="0xfe00b3e4"@},
32256 @{number="69",value="0x20002b03"@}]
32257 (gdb)
32258 @end smallexample
32259
32260
32261 @subheading The @code{-data-read-memory} Command
32262 @findex -data-read-memory
32263
32264 This command is deprecated, use @code{-data-read-memory-bytes} instead.
32265
32266 @subsubheading Synopsis
32267
32268 @smallexample
32269  -data-read-memory [ -o @var{byte-offset} ]
32270    @var{address} @var{word-format} @var{word-size}
32271    @var{nr-rows} @var{nr-cols} [ @var{aschar} ]
32272 @end smallexample
32273
32274 @noindent
32275 where:
32276
32277 @table @samp
32278 @item @var{address}
32279 An expression specifying the address of the first memory word to be
32280 read.  Complex expressions containing embedded white space should be
32281 quoted using the C convention.
32282
32283 @item @var{word-format}
32284 The format to be used to print the memory words.  The notation is the
32285 same as for @value{GDBN}'s @code{print} command (@pxref{Output Formats,
32286 ,Output Formats}).
32287
32288 @item @var{word-size}
32289 The size of each memory word in bytes.
32290
32291 @item @var{nr-rows}
32292 The number of rows in the output table.
32293
32294 @item @var{nr-cols}
32295 The number of columns in the output table.
32296
32297 @item @var{aschar}
32298 If present, indicates that each row should include an @sc{ascii} dump.  The
32299 value of @var{aschar} is used as a padding character when a byte is not a
32300 member of the printable @sc{ascii} character set (printable @sc{ascii}
32301 characters are those whose code is between 32 and 126, inclusively).
32302
32303 @item @var{byte-offset}
32304 An offset to add to the @var{address} before fetching memory.
32305 @end table
32306
32307 This command displays memory contents as a table of @var{nr-rows} by
32308 @var{nr-cols} words, each word being @var{word-size} bytes.  In total,
32309 @code{@var{nr-rows} * @var{nr-cols} * @var{word-size}} bytes are read
32310 (returned as @samp{total-bytes}).  Should less than the requested number
32311 of bytes be returned by the target, the missing words are identified
32312 using @samp{N/A}.  The number of bytes read from the target is returned
32313 in @samp{nr-bytes} and the starting address used to read memory in
32314 @samp{addr}.
32315
32316 The address of the next/previous row or page is available in
32317 @samp{next-row} and @samp{prev-row}, @samp{next-page} and
32318 @samp{prev-page}.
32319
32320 @subsubheading @value{GDBN} Command
32321
32322 The corresponding @value{GDBN} command is @samp{x}.  @code{gdbtk} has
32323 @samp{gdb_get_mem} memory read command.
32324
32325 @subsubheading Example
32326
32327 Read six bytes of memory starting at @code{bytes+6} but then offset by
32328 @code{-6} bytes.  Format as three rows of two columns.  One byte per
32329 word.  Display each word in hex.
32330
32331 @smallexample
32332 (gdb)
32333 9-data-read-memory -o -6 -- bytes+6 x 1 3 2
32334 9^done,addr="0x00001390",nr-bytes="6",total-bytes="6",
32335 next-row="0x00001396",prev-row="0x0000138e",next-page="0x00001396",
32336 prev-page="0x0000138a",memory=[
32337 @{addr="0x00001390",data=["0x00","0x01"]@},
32338 @{addr="0x00001392",data=["0x02","0x03"]@},
32339 @{addr="0x00001394",data=["0x04","0x05"]@}]
32340 (gdb)
32341 @end smallexample
32342
32343 Read two bytes of memory starting at address @code{shorts + 64} and
32344 display as a single word formatted in decimal.
32345
32346 @smallexample
32347 (gdb)
32348 5-data-read-memory shorts+64 d 2 1 1
32349 5^done,addr="0x00001510",nr-bytes="2",total-bytes="2",
32350 next-row="0x00001512",prev-row="0x0000150e",
32351 next-page="0x00001512",prev-page="0x0000150e",memory=[
32352 @{addr="0x00001510",data=["128"]@}]
32353 (gdb)
32354 @end smallexample
32355
32356 Read thirty two bytes of memory starting at @code{bytes+16} and format
32357 as eight rows of four columns.  Include a string encoding with @samp{x}
32358 used as the non-printable character.
32359
32360 @smallexample
32361 (gdb)
32362 4-data-read-memory bytes+16 x 1 8 4 x
32363 4^done,addr="0x000013a0",nr-bytes="32",total-bytes="32",
32364 next-row="0x000013c0",prev-row="0x0000139c",
32365 next-page="0x000013c0",prev-page="0x00001380",memory=[
32366 @{addr="0x000013a0",data=["0x10","0x11","0x12","0x13"],ascii="xxxx"@},
32367 @{addr="0x000013a4",data=["0x14","0x15","0x16","0x17"],ascii="xxxx"@},
32368 @{addr="0x000013a8",data=["0x18","0x19","0x1a","0x1b"],ascii="xxxx"@},
32369 @{addr="0x000013ac",data=["0x1c","0x1d","0x1e","0x1f"],ascii="xxxx"@},
32370 @{addr="0x000013b0",data=["0x20","0x21","0x22","0x23"],ascii=" !\"#"@},
32371 @{addr="0x000013b4",data=["0x24","0x25","0x26","0x27"],ascii="$%&'"@},
32372 @{addr="0x000013b8",data=["0x28","0x29","0x2a","0x2b"],ascii="()*+"@},
32373 @{addr="0x000013bc",data=["0x2c","0x2d","0x2e","0x2f"],ascii=",-./"@}]
32374 (gdb)
32375 @end smallexample
32376
32377 @subheading The @code{-data-read-memory-bytes} Command
32378 @findex -data-read-memory-bytes
32379
32380 @subsubheading Synopsis
32381
32382 @smallexample
32383  -data-read-memory-bytes [ -o @var{offset} ]
32384    @var{address} @var{count}
32385 @end smallexample
32386
32387 @noindent
32388 where:
32389
32390 @table @samp
32391 @item @var{address}
32392 An expression specifying the address of the first addressable memory unit
32393 to be read.  Complex expressions containing embedded white space should be
32394 quoted using the C convention.
32395
32396 @item @var{count}
32397 The number of addressable memory units to read.  This should be an integer
32398 literal.
32399
32400 @item @var{offset}
32401 The offset relative to @var{address} at which to start reading.  This
32402 should be an integer literal.  This option is provided so that a frontend
32403 is not required to first evaluate address and then perform address
32404 arithmetics itself.
32405
32406 @end table
32407
32408 This command attempts to read all accessible memory regions in the
32409 specified range.  First, all regions marked as unreadable in the memory
32410 map (if one is defined) will be skipped.  @xref{Memory Region
32411 Attributes}.  Second, @value{GDBN} will attempt to read the remaining
32412 regions.  For each one, if reading full region results in an errors,
32413 @value{GDBN} will try to read a subset of the region.
32414
32415 In general, every single memory unit in the region may be readable or not,
32416 and the only way to read every readable unit is to try a read at
32417 every address, which is not practical.   Therefore, @value{GDBN} will
32418 attempt to read all accessible memory units at either beginning or the end
32419 of the region, using a binary division scheme.  This heuristic works
32420 well for reading accross a memory map boundary.  Note that if a region
32421 has a readable range that is neither at the beginning or the end,
32422 @value{GDBN} will not read it.
32423
32424 The result record (@pxref{GDB/MI Result Records}) that is output of
32425 the command includes a field named @samp{memory} whose content is a
32426 list of tuples.  Each tuple represent a successfully read memory block
32427 and has the following fields:
32428
32429 @table @code
32430 @item begin
32431 The start address of the memory block, as hexadecimal literal.
32432
32433 @item end
32434 The end address of the memory block, as hexadecimal literal.
32435
32436 @item offset
32437 The offset of the memory block, as hexadecimal literal, relative to
32438 the start address passed to @code{-data-read-memory-bytes}.
32439
32440 @item contents
32441 The contents of the memory block, in hex.
32442
32443 @end table
32444
32445
32446
32447 @subsubheading @value{GDBN} Command
32448
32449 The corresponding @value{GDBN} command is @samp{x}.
32450
32451 @subsubheading Example
32452
32453 @smallexample
32454 (gdb)
32455 -data-read-memory-bytes &a 10
32456 ^done,memory=[@{begin="0xbffff154",offset="0x00000000",
32457               end="0xbffff15e",
32458               contents="01000000020000000300"@}]
32459 (gdb)
32460 @end smallexample
32461
32462
32463 @subheading The @code{-data-write-memory-bytes} Command
32464 @findex -data-write-memory-bytes
32465
32466 @subsubheading Synopsis
32467
32468 @smallexample
32469  -data-write-memory-bytes @var{address} @var{contents}
32470  -data-write-memory-bytes @var{address} @var{contents} @r{[}@var{count}@r{]}
32471 @end smallexample
32472
32473 @noindent
32474 where:
32475
32476 @table @samp
32477 @item @var{address}
32478 An expression specifying the address of the first addressable memory unit
32479 to be written.  Complex expressions containing embedded white space should
32480 be quoted using the C convention.
32481
32482 @item @var{contents}
32483 The hex-encoded data to write.  It is an error if @var{contents} does
32484 not represent an integral number of addressable memory units.
32485
32486 @item @var{count}
32487 Optional argument indicating the number of addressable memory units to be
32488 written.  If @var{count} is greater than @var{contents}' length,
32489 @value{GDBN} will repeatedly write @var{contents} until it fills
32490 @var{count} memory units.
32491
32492 @end table
32493
32494 @subsubheading @value{GDBN} Command
32495
32496 There's no corresponding @value{GDBN} command.
32497
32498 @subsubheading Example
32499
32500 @smallexample
32501 (gdb)
32502 -data-write-memory-bytes &a "aabbccdd"
32503 ^done
32504 (gdb)
32505 @end smallexample
32506
32507 @smallexample
32508 (gdb)
32509 -data-write-memory-bytes &a "aabbccdd" 16e
32510 ^done
32511 (gdb)
32512 @end smallexample
32513
32514 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
32515 @node GDB/MI Tracepoint Commands
32516 @section @sc{gdb/mi} Tracepoint Commands
32517
32518 The commands defined in this section implement MI support for
32519 tracepoints.  For detailed introduction, see @ref{Tracepoints}.
32520
32521 @subheading The @code{-trace-find} Command
32522 @findex -trace-find
32523
32524 @subsubheading Synopsis
32525
32526 @smallexample
32527  -trace-find @var{mode} [@var{parameters}@dots{}]
32528 @end smallexample
32529
32530 Find a trace frame using criteria defined by @var{mode} and
32531 @var{parameters}.  The following table lists permissible
32532 modes and their parameters.  For details of operation, see @ref{tfind}.
32533
32534 @table @samp
32535
32536 @item none
32537 No parameters are required.  Stops examining trace frames.
32538
32539 @item frame-number
32540 An integer is required as parameter.  Selects tracepoint frame with
32541 that index.
32542
32543 @item tracepoint-number
32544 An integer is required as parameter.  Finds next
32545 trace frame that corresponds to tracepoint with the specified number.
32546
32547 @item pc
32548 An address is required as parameter.  Finds
32549 next trace frame that corresponds to any tracepoint at the specified
32550 address.
32551
32552 @item pc-inside-range
32553 Two addresses are required as parameters.  Finds next trace
32554 frame that corresponds to a tracepoint at an address inside the
32555 specified range.  Both bounds are considered to be inside the range.
32556
32557 @item pc-outside-range
32558 Two addresses are required as parameters.  Finds
32559 next trace frame that corresponds to a tracepoint at an address outside
32560 the specified range.  Both bounds are considered to be inside the range.
32561
32562 @item line
32563 Line specification is required as parameter.  @xref{Specify Location}.
32564 Finds next trace frame that corresponds to a tracepoint at
32565 the specified location.
32566
32567 @end table
32568
32569 If @samp{none} was passed as @var{mode}, the response does not
32570 have fields.  Otherwise, the response may have the following fields:
32571
32572 @table @samp
32573 @item found
32574 This field has either @samp{0} or @samp{1} as the value, depending
32575 on whether a matching tracepoint was found.
32576
32577 @item traceframe
32578 The index of the found traceframe.  This field is present iff
32579 the @samp{found} field has value of @samp{1}.
32580
32581 @item tracepoint
32582 The index of the found tracepoint.  This field is present iff
32583 the @samp{found} field has value of @samp{1}.
32584
32585 @item frame
32586 The information about the frame corresponding to the found trace
32587 frame.  This field is present only if a trace frame was found.
32588 @xref{GDB/MI Frame Information}, for description of this field.
32589
32590 @end table
32591
32592 @subsubheading @value{GDBN} Command
32593
32594 The corresponding @value{GDBN} command is @samp{tfind}.
32595
32596 @subheading -trace-define-variable
32597 @findex -trace-define-variable
32598
32599 @subsubheading Synopsis
32600
32601 @smallexample
32602  -trace-define-variable @var{name} [ @var{value} ]
32603 @end smallexample
32604
32605 Create trace variable @var{name} if it does not exist.  If
32606 @var{value} is specified, sets the initial value of the specified
32607 trace variable to that value.  Note that the @var{name} should start
32608 with the @samp{$} character.
32609
32610 @subsubheading @value{GDBN} Command
32611
32612 The corresponding @value{GDBN} command is @samp{tvariable}.
32613
32614 @subheading The @code{-trace-frame-collected} Command
32615 @findex -trace-frame-collected
32616
32617 @subsubheading Synopsis
32618
32619 @smallexample
32620  -trace-frame-collected
32621     [--var-print-values @var{var_pval}]
32622     [--comp-print-values @var{comp_pval}]
32623     [--registers-format @var{regformat}]
32624     [--memory-contents]
32625 @end smallexample
32626
32627 This command returns the set of collected objects, register names,
32628 trace state variable names, memory ranges and computed expressions
32629 that have been collected at a particular trace frame.  The optional
32630 parameters to the command affect the output format in different ways.
32631 See the output description table below for more details.
32632
32633 The reported names can be used in the normal manner to create
32634 varobjs and inspect the objects themselves.  The items returned by
32635 this command are categorized so that it is clear which is a variable,
32636 which is a register, which is a trace state variable, which is a
32637 memory range and which is a computed expression.
32638
32639 For instance, if the actions were
32640 @smallexample
32641 collect myVar, myArray[myIndex], myObj.field, myPtr->field, myCount + 2
32642 collect *(int*)0xaf02bef0@@40
32643 @end smallexample
32644
32645 @noindent
32646 the object collected in its entirety would be @code{myVar}.  The
32647 object @code{myArray} would be partially collected, because only the
32648 element at index @code{myIndex} would be collected.  The remaining
32649 objects would be computed expressions.
32650
32651 An example output would be:
32652
32653 @smallexample
32654 (gdb)
32655 -trace-frame-collected
32656 ^done,
32657   explicit-variables=[@{name="myVar",value="1"@}],
32658   computed-expressions=[@{name="myArray[myIndex]",value="0"@},
32659                         @{name="myObj.field",value="0"@},
32660                         @{name="myPtr->field",value="1"@},
32661                         @{name="myCount + 2",value="3"@},
32662                         @{name="$tvar1 + 1",value="43970027"@}],
32663   registers=[@{number="0",value="0x7fe2c6e79ec8"@},
32664              @{number="1",value="0x0"@},
32665              @{number="2",value="0x4"@},
32666              ...
32667              @{number="125",value="0x0"@}],
32668   tvars=[@{name="$tvar1",current="43970026"@}],
32669   memory=[@{address="0x0000000000602264",length="4"@},
32670           @{address="0x0000000000615bc0",length="4"@}]
32671 (gdb)
32672 @end smallexample
32673
32674 Where:
32675
32676 @table @code
32677 @item explicit-variables
32678 The set of objects that have been collected in their entirety (as
32679 opposed to collecting just a few elements of an array or a few struct
32680 members).  For each object, its name and value are printed.
32681 The @code{--var-print-values} option affects how or whether the value
32682 field is output.  If @var{var_pval} is 0, then print only the names;
32683 if it is 1, print also their values; and if it is 2, print the name,
32684 type and value for simple data types, and the name and type for
32685 arrays, structures and unions.
32686
32687 @item computed-expressions
32688 The set of computed expressions that have been collected at the
32689 current trace frame.  The @code{--comp-print-values} option affects
32690 this set like the @code{--var-print-values} option affects the
32691 @code{explicit-variables} set.  See above.
32692
32693 @item registers
32694 The registers that have been collected at the current trace frame.
32695 For each register collected, the name and current value are returned.
32696 The value is formatted according to the @code{--registers-format}
32697 option.  See the @command{-data-list-register-values} command for a
32698 list of the allowed formats.  The default is @samp{x}.
32699
32700 @item tvars
32701 The trace state variables that have been collected at the current
32702 trace frame.  For each trace state variable collected, the name and
32703 current value are returned.
32704
32705 @item memory
32706 The set of memory ranges that have been collected at the current trace
32707 frame.  Its content is a list of tuples.  Each tuple represents a
32708 collected memory range and has the following fields:
32709
32710 @table @code
32711 @item address
32712 The start address of the memory range, as hexadecimal literal.
32713
32714 @item length
32715 The length of the memory range, as decimal literal.
32716
32717 @item contents
32718 The contents of the memory block, in hex.  This field is only present
32719 if the @code{--memory-contents} option is specified.
32720
32721 @end table
32722
32723 @end table
32724
32725 @subsubheading @value{GDBN} Command
32726
32727 There is no corresponding @value{GDBN} command.
32728
32729 @subsubheading Example
32730
32731 @subheading -trace-list-variables
32732 @findex -trace-list-variables
32733
32734 @subsubheading Synopsis
32735
32736 @smallexample
32737  -trace-list-variables
32738 @end smallexample
32739
32740 Return a table of all defined trace variables.  Each element of the
32741 table has the following fields:
32742
32743 @table @samp
32744 @item name
32745 The name of the trace variable.  This field is always present.
32746
32747 @item initial
32748 The initial value.  This is a 64-bit signed integer.  This
32749 field is always present.
32750
32751 @item current
32752 The value the trace variable has at the moment.  This is a 64-bit
32753 signed integer.  This field is absent iff current value is
32754 not defined, for example if the trace was never run, or is
32755 presently running.
32756
32757 @end table
32758
32759 @subsubheading @value{GDBN} Command
32760
32761 The corresponding @value{GDBN} command is @samp{tvariables}.
32762
32763 @subsubheading Example
32764
32765 @smallexample
32766 (gdb)
32767 -trace-list-variables
32768 ^done,trace-variables=@{nr_rows="1",nr_cols="3",
32769 hdr=[@{width="15",alignment="-1",col_name="name",colhdr="Name"@},
32770      @{width="11",alignment="-1",col_name="initial",colhdr="Initial"@},
32771      @{width="11",alignment="-1",col_name="current",colhdr="Current"@}],
32772 body=[variable=@{name="$trace_timestamp",initial="0"@}
32773       variable=@{name="$foo",initial="10",current="15"@}]@}
32774 (gdb)
32775 @end smallexample
32776
32777 @subheading -trace-save
32778 @findex -trace-save
32779
32780 @subsubheading Synopsis
32781
32782 @smallexample
32783  -trace-save [ -r ] [ -ctf ] @var{filename}
32784 @end smallexample
32785
32786 Saves the collected trace data to @var{filename}.  Without the
32787 @samp{-r} option, the data is downloaded from the target and saved
32788 in a local file.  With the @samp{-r} option the target is asked
32789 to perform the save.
32790
32791 By default, this command will save the trace in the tfile format.  You can
32792 supply the optional @samp{-ctf} argument to save it the CTF format. See
32793 @ref{Trace Files} for more information about CTF.
32794
32795 @subsubheading @value{GDBN} Command
32796
32797 The corresponding @value{GDBN} command is @samp{tsave}.
32798
32799
32800 @subheading -trace-start
32801 @findex -trace-start
32802
32803 @subsubheading Synopsis
32804
32805 @smallexample
32806  -trace-start
32807 @end smallexample
32808
32809 Starts a tracing experiment.  The result of this command does not
32810 have any fields.
32811
32812 @subsubheading @value{GDBN} Command
32813
32814 The corresponding @value{GDBN} command is @samp{tstart}.
32815
32816 @subheading -trace-status
32817 @findex -trace-status
32818
32819 @subsubheading Synopsis
32820
32821 @smallexample
32822  -trace-status
32823 @end smallexample
32824
32825 Obtains the status of a tracing experiment.  The result may include
32826 the following fields:
32827
32828 @table @samp
32829
32830 @item supported
32831 May have a value of either @samp{0}, when no tracing operations are
32832 supported, @samp{1}, when all tracing operations are supported, or
32833 @samp{file} when examining trace file.  In the latter case, examining
32834 of trace frame is possible but new tracing experiement cannot be
32835 started.  This field is always present.
32836
32837 @item running
32838 May have a value of either @samp{0} or @samp{1} depending on whether
32839 tracing experiement is in progress on target.  This field is present
32840 if @samp{supported} field is not @samp{0}.
32841
32842 @item stop-reason
32843 Report the reason why the tracing was stopped last time.  This field
32844 may be absent iff tracing was never stopped on target yet.  The
32845 value of @samp{request} means the tracing was stopped as result of
32846 the @code{-trace-stop} command.  The value of @samp{overflow} means
32847 the tracing buffer is full.  The value of @samp{disconnection} means
32848 tracing was automatically stopped when @value{GDBN} has disconnected.
32849 The value of @samp{passcount} means tracing was stopped when a
32850 tracepoint was passed a maximal number of times for that tracepoint.
32851 This field is present if @samp{supported} field is not @samp{0}.
32852
32853 @item stopping-tracepoint
32854 The number of tracepoint whose passcount as exceeded.  This field is
32855 present iff the @samp{stop-reason} field has the value of
32856 @samp{passcount}.
32857
32858 @item frames
32859 @itemx frames-created
32860 The @samp{frames} field is a count of the total number of trace frames
32861 in the trace buffer, while @samp{frames-created} is the total created
32862 during the run, including ones that were discarded, such as when a
32863 circular trace buffer filled up.  Both fields are optional.
32864
32865 @item buffer-size
32866 @itemx buffer-free
32867 These fields tell the current size of the tracing buffer and the
32868 remaining space.  These fields are optional.
32869
32870 @item circular
32871 The value of the circular trace buffer flag.  @code{1} means that the
32872 trace buffer is circular and old trace frames will be discarded if
32873 necessary to make room, @code{0} means that the trace buffer is linear
32874 and may fill up.
32875
32876 @item disconnected
32877 The value of the disconnected tracing flag.  @code{1} means that
32878 tracing will continue after @value{GDBN} disconnects, @code{0} means
32879 that the trace run will stop.
32880
32881 @item trace-file
32882 The filename of the trace file being examined.  This field is
32883 optional, and only present when examining a trace file.
32884
32885 @end table
32886
32887 @subsubheading @value{GDBN} Command
32888
32889 The corresponding @value{GDBN} command is @samp{tstatus}.
32890
32891 @subheading -trace-stop
32892 @findex -trace-stop
32893
32894 @subsubheading Synopsis
32895
32896 @smallexample
32897  -trace-stop
32898 @end smallexample
32899
32900 Stops a tracing experiment.  The result of this command has the same
32901 fields as @code{-trace-status}, except that the @samp{supported} and
32902 @samp{running} fields are not output.
32903
32904 @subsubheading @value{GDBN} Command
32905
32906 The corresponding @value{GDBN} command is @samp{tstop}.
32907
32908
32909 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
32910 @node GDB/MI Symbol Query
32911 @section @sc{gdb/mi} Symbol Query Commands
32912
32913
32914 @ignore
32915 @subheading The @code{-symbol-info-address} Command
32916 @findex -symbol-info-address
32917
32918 @subsubheading Synopsis
32919
32920 @smallexample
32921  -symbol-info-address @var{symbol}
32922 @end smallexample
32923
32924 Describe where @var{symbol} is stored.
32925
32926 @subsubheading @value{GDBN} Command
32927
32928 The corresponding @value{GDBN} command is @samp{info address}.
32929
32930 @subsubheading Example
32931 N.A.
32932
32933
32934 @subheading The @code{-symbol-info-file} Command
32935 @findex -symbol-info-file
32936
32937 @subsubheading Synopsis
32938
32939 @smallexample
32940  -symbol-info-file
32941 @end smallexample
32942
32943 Show the file for the symbol.
32944
32945 @subsubheading @value{GDBN} Command
32946
32947 There's no equivalent @value{GDBN} command.  @code{gdbtk} has
32948 @samp{gdb_find_file}.
32949
32950 @subsubheading Example
32951 N.A.
32952
32953
32954 @subheading The @code{-symbol-info-function} Command
32955 @findex -symbol-info-function
32956
32957 @subsubheading Synopsis
32958
32959 @smallexample
32960  -symbol-info-function
32961 @end smallexample
32962
32963 Show which function the symbol lives in.
32964
32965 @subsubheading @value{GDBN} Command
32966
32967 @samp{gdb_get_function} in @code{gdbtk}.
32968
32969 @subsubheading Example
32970 N.A.
32971
32972
32973 @subheading The @code{-symbol-info-line} Command
32974 @findex -symbol-info-line
32975
32976 @subsubheading Synopsis
32977
32978 @smallexample
32979  -symbol-info-line
32980 @end smallexample
32981
32982 Show the core addresses of the code for a source line.
32983
32984 @subsubheading @value{GDBN} Command
32985
32986 The corresponding @value{GDBN} command is @samp{info line}.
32987 @code{gdbtk} has the @samp{gdb_get_line} and @samp{gdb_get_file} commands.
32988
32989 @subsubheading Example
32990 N.A.
32991
32992
32993 @subheading The @code{-symbol-info-symbol} Command
32994 @findex -symbol-info-symbol
32995
32996 @subsubheading Synopsis
32997
32998 @smallexample
32999  -symbol-info-symbol @var{addr}
33000 @end smallexample
33001
33002 Describe what symbol is at location @var{addr}.
33003
33004 @subsubheading @value{GDBN} Command
33005
33006 The corresponding @value{GDBN} command is @samp{info symbol}.
33007
33008 @subsubheading Example
33009 N.A.
33010
33011
33012 @subheading The @code{-symbol-list-functions} Command
33013 @findex -symbol-list-functions
33014
33015 @subsubheading Synopsis
33016
33017 @smallexample
33018  -symbol-list-functions
33019 @end smallexample
33020
33021 List the functions in the executable.
33022
33023 @subsubheading @value{GDBN} Command
33024
33025 @samp{info functions} in @value{GDBN}, @samp{gdb_listfunc} and
33026 @samp{gdb_search} in @code{gdbtk}.
33027
33028 @subsubheading Example
33029 N.A.
33030 @end ignore
33031
33032
33033 @subheading The @code{-symbol-list-lines} Command
33034 @findex -symbol-list-lines
33035
33036 @subsubheading Synopsis
33037
33038 @smallexample
33039  -symbol-list-lines @var{filename}
33040 @end smallexample
33041
33042 Print the list of lines that contain code and their associated program
33043 addresses for the given source filename.  The entries are sorted in
33044 ascending PC order.
33045
33046 @subsubheading @value{GDBN} Command
33047
33048 There is no corresponding @value{GDBN} command.
33049
33050 @subsubheading Example
33051 @smallexample
33052 (gdb)
33053 -symbol-list-lines basics.c
33054 ^done,lines=[@{pc="0x08048554",line="7"@},@{pc="0x0804855a",line="8"@}]
33055 (gdb)
33056 @end smallexample
33057
33058
33059 @ignore
33060 @subheading The @code{-symbol-list-types} Command
33061 @findex -symbol-list-types
33062
33063 @subsubheading Synopsis
33064
33065 @smallexample
33066  -symbol-list-types
33067 @end smallexample
33068
33069 List all the type names.
33070
33071 @subsubheading @value{GDBN} Command
33072
33073 The corresponding commands are @samp{info types} in @value{GDBN},
33074 @samp{gdb_search} in @code{gdbtk}.
33075
33076 @subsubheading Example
33077 N.A.
33078
33079
33080 @subheading The @code{-symbol-list-variables} Command
33081 @findex -symbol-list-variables
33082
33083 @subsubheading Synopsis
33084
33085 @smallexample
33086  -symbol-list-variables
33087 @end smallexample
33088
33089 List all the global and static variable names.
33090
33091 @subsubheading @value{GDBN} Command
33092
33093 @samp{info variables} in @value{GDBN}, @samp{gdb_search} in @code{gdbtk}.
33094
33095 @subsubheading Example
33096 N.A.
33097
33098
33099 @subheading The @code{-symbol-locate} Command
33100 @findex -symbol-locate
33101
33102 @subsubheading Synopsis
33103
33104 @smallexample
33105  -symbol-locate
33106 @end smallexample
33107
33108 @subsubheading @value{GDBN} Command
33109
33110 @samp{gdb_loc} in @code{gdbtk}.
33111
33112 @subsubheading Example
33113 N.A.
33114
33115
33116 @subheading The @code{-symbol-type} Command
33117 @findex -symbol-type
33118
33119 @subsubheading Synopsis
33120
33121 @smallexample
33122  -symbol-type @var{variable}
33123 @end smallexample
33124
33125 Show type of @var{variable}.
33126
33127 @subsubheading @value{GDBN} Command
33128
33129 The corresponding @value{GDBN} command is @samp{ptype}, @code{gdbtk} has
33130 @samp{gdb_obj_variable}.
33131
33132 @subsubheading Example
33133 N.A.
33134 @end ignore
33135
33136
33137 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
33138 @node GDB/MI File Commands
33139 @section @sc{gdb/mi} File Commands
33140
33141 This section describes the GDB/MI commands to specify executable file names
33142 and to read in and obtain symbol table information.
33143
33144 @subheading The @code{-file-exec-and-symbols} Command
33145 @findex -file-exec-and-symbols
33146
33147 @subsubheading Synopsis
33148
33149 @smallexample
33150  -file-exec-and-symbols @var{file}
33151 @end smallexample
33152
33153 Specify the executable file to be debugged.  This file is the one from
33154 which the symbol table is also read.  If no file is specified, the
33155 command clears the executable and symbol information.  If breakpoints
33156 are set when using this command with no arguments, @value{GDBN} will produce
33157 error messages.  Otherwise, no output is produced, except a completion
33158 notification.
33159
33160 @subsubheading @value{GDBN} Command
33161
33162 The corresponding @value{GDBN} command is @samp{file}.
33163
33164 @subsubheading Example
33165
33166 @smallexample
33167 (gdb)
33168 -file-exec-and-symbols /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
33169 ^done
33170 (gdb)
33171 @end smallexample
33172
33173
33174 @subheading The @code{-file-exec-file} Command
33175 @findex -file-exec-file
33176
33177 @subsubheading Synopsis
33178
33179 @smallexample
33180  -file-exec-file @var{file}
33181 @end smallexample
33182
33183 Specify the executable file to be debugged.  Unlike
33184 @samp{-file-exec-and-symbols}, the symbol table is @emph{not} read
33185 from this file.  If used without argument, @value{GDBN} clears the information
33186 about the executable file.  No output is produced, except a completion
33187 notification.
33188
33189 @subsubheading @value{GDBN} Command
33190
33191 The corresponding @value{GDBN} command is @samp{exec-file}.
33192
33193 @subsubheading Example
33194
33195 @smallexample
33196 (gdb)
33197 -file-exec-file /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
33198 ^done
33199 (gdb)
33200 @end smallexample
33201
33202
33203 @ignore
33204 @subheading The @code{-file-list-exec-sections} Command
33205 @findex -file-list-exec-sections
33206
33207 @subsubheading Synopsis
33208
33209 @smallexample
33210  -file-list-exec-sections
33211 @end smallexample
33212
33213 List the sections of the current executable file.
33214
33215 @subsubheading @value{GDBN} Command
33216
33217 The @value{GDBN} command @samp{info file} shows, among the rest, the same
33218 information as this command.  @code{gdbtk} has a corresponding command
33219 @samp{gdb_load_info}.
33220
33221 @subsubheading Example
33222 N.A.
33223 @end ignore
33224
33225
33226 @subheading The @code{-file-list-exec-source-file} Command
33227 @findex -file-list-exec-source-file
33228
33229 @subsubheading Synopsis
33230
33231 @smallexample
33232  -file-list-exec-source-file
33233 @end smallexample
33234
33235 List the line number, the current source file, and the absolute path
33236 to the current source file for the current executable.  The macro
33237 information field has a value of @samp{1} or @samp{0} depending on
33238 whether or not the file includes preprocessor macro information.
33239
33240 @subsubheading @value{GDBN} Command
33241
33242 The @value{GDBN} equivalent is @samp{info source}
33243
33244 @subsubheading Example
33245
33246 @smallexample
33247 (gdb)
33248 123-file-list-exec-source-file
33249 123^done,line="1",file="foo.c",fullname="/home/bar/foo.c,macro-info="1"
33250 (gdb)
33251 @end smallexample
33252
33253
33254 @subheading The @code{-file-list-exec-source-files} Command
33255 @findex -file-list-exec-source-files
33256
33257 @subsubheading Synopsis
33258
33259 @smallexample
33260  -file-list-exec-source-files
33261 @end smallexample
33262
33263 List the source files for the current executable.
33264
33265 It will always output both the filename and fullname (absolute file
33266 name) of a source file.
33267
33268 @subsubheading @value{GDBN} Command
33269
33270 The @value{GDBN} equivalent is @samp{info sources}.
33271 @code{gdbtk} has an analogous command @samp{gdb_listfiles}.
33272
33273 @subsubheading Example
33274 @smallexample
33275 (gdb)
33276 -file-list-exec-source-files
33277 ^done,files=[
33278 @{file=foo.c,fullname=/home/foo.c@},
33279 @{file=/home/bar.c,fullname=/home/bar.c@},
33280 @{file=gdb_could_not_find_fullpath.c@}]
33281 (gdb)
33282 @end smallexample
33283
33284 @subheading The @code{-file-list-shared-libraries} Command
33285 @findex -file-list-shared-libraries
33286
33287 @subsubheading Synopsis
33288
33289 @smallexample
33290  -file-list-shared-libraries [ @var{regexp} ]
33291 @end smallexample
33292
33293 List the shared libraries in the program.
33294 With a regular expression @var{regexp}, only those libraries whose
33295 names match @var{regexp} are listed.
33296
33297 @subsubheading @value{GDBN} Command
33298
33299 The corresponding @value{GDBN} command is @samp{info shared}.  The fields
33300 have a similar meaning to the @code{=library-loaded} notification.
33301 The @code{ranges} field specifies the multiple segments belonging to this
33302 library.  Each range has the following fields:
33303
33304 @table @samp
33305 @item from
33306 The address defining the inclusive lower bound of the segment.
33307 @item to
33308 The address defining the exclusive upper bound of the segment.
33309 @end table
33310
33311 @subsubheading Example
33312 @smallexample
33313 (gdb)
33314 -file-list-exec-source-files
33315 ^done,shared-libraries=[
33316 @{id="/lib/libfoo.so",target-name="/lib/libfoo.so",host-name="/lib/libfoo.so",symbols-loaded="1",thread-group="i1",ranges=[@{from="0x72815989",to="0x728162c0"@}]@},
33317 @{id="/lib/libbar.so",target-name="/lib/libbar.so",host-name="/lib/libbar.so",symbols-loaded="1",thread-group="i1",ranges=[@{from="0x76ee48c0",to="0x76ee9160"@}]@}]
33318 (gdb)
33319 @end smallexample
33320
33321
33322 @ignore
33323 @subheading The @code{-file-list-symbol-files} Command
33324 @findex -file-list-symbol-files
33325
33326 @subsubheading Synopsis
33327
33328 @smallexample
33329  -file-list-symbol-files
33330 @end smallexample
33331
33332 List symbol files.
33333
33334 @subsubheading @value{GDBN} Command
33335
33336 The corresponding @value{GDBN} command is @samp{info file} (part of it).
33337
33338 @subsubheading Example
33339 N.A.
33340 @end ignore
33341
33342
33343 @subheading The @code{-file-symbol-file} Command
33344 @findex -file-symbol-file
33345
33346 @subsubheading Synopsis
33347
33348 @smallexample
33349  -file-symbol-file @var{file}
33350 @end smallexample
33351
33352 Read symbol table info from the specified @var{file} argument.  When
33353 used without arguments, clears @value{GDBN}'s symbol table info.  No output is
33354 produced, except for a completion notification.
33355
33356 @subsubheading @value{GDBN} Command
33357
33358 The corresponding @value{GDBN} command is @samp{symbol-file}.
33359
33360 @subsubheading Example
33361
33362 @smallexample
33363 (gdb)
33364 -file-symbol-file /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
33365 ^done
33366 (gdb)
33367 @end smallexample
33368
33369 @ignore
33370 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
33371 @node GDB/MI Memory Overlay Commands
33372 @section @sc{gdb/mi} Memory Overlay Commands
33373
33374 The memory overlay commands are not implemented.
33375
33376 @c @subheading -overlay-auto
33377
33378 @c @subheading -overlay-list-mapping-state
33379
33380 @c @subheading -overlay-list-overlays
33381
33382 @c @subheading -overlay-map
33383
33384 @c @subheading -overlay-off
33385
33386 @c @subheading -overlay-on
33387
33388 @c @subheading -overlay-unmap
33389
33390 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
33391 @node GDB/MI Signal Handling Commands
33392 @section @sc{gdb/mi} Signal Handling Commands
33393
33394 Signal handling commands are not implemented.
33395
33396 @c @subheading -signal-handle
33397
33398 @c @subheading -signal-list-handle-actions
33399
33400 @c @subheading -signal-list-signal-types
33401 @end ignore
33402
33403
33404 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
33405 @node GDB/MI Target Manipulation
33406 @section @sc{gdb/mi} Target Manipulation Commands
33407
33408
33409 @subheading The @code{-target-attach} Command
33410 @findex -target-attach
33411
33412 @subsubheading Synopsis
33413
33414 @smallexample
33415  -target-attach @var{pid} | @var{gid} | @var{file}
33416 @end smallexample
33417
33418 Attach to a process @var{pid} or a file @var{file} outside of
33419 @value{GDBN}, or a thread group @var{gid}.  If attaching to a thread
33420 group, the id previously returned by 
33421 @samp{-list-thread-groups --available} must be used.
33422
33423 @subsubheading @value{GDBN} Command
33424
33425 The corresponding @value{GDBN} command is @samp{attach}.
33426
33427 @subsubheading Example
33428 @smallexample
33429 (gdb)
33430 -target-attach 34
33431 =thread-created,id="1"
33432 *stopped,thread-id="1",frame=@{addr="0xb7f7e410",func="bar",args=[]@}
33433 ^done
33434 (gdb)
33435 @end smallexample
33436
33437 @ignore
33438 @subheading The @code{-target-compare-sections} Command
33439 @findex -target-compare-sections
33440
33441 @subsubheading Synopsis
33442
33443 @smallexample
33444  -target-compare-sections [ @var{section} ]
33445 @end smallexample
33446
33447 Compare data of section @var{section} on target to the exec file.
33448 Without the argument, all sections are compared.
33449
33450 @subsubheading @value{GDBN} Command
33451
33452 The @value{GDBN} equivalent is @samp{compare-sections}.
33453
33454 @subsubheading Example
33455 N.A.
33456 @end ignore
33457
33458
33459 @subheading The @code{-target-detach} Command
33460 @findex -target-detach
33461
33462 @subsubheading Synopsis
33463
33464 @smallexample
33465  -target-detach [ @var{pid} | @var{gid} ]
33466 @end smallexample
33467
33468 Detach from the remote target which normally resumes its execution.
33469 If either @var{pid} or @var{gid} is specified, detaches from either
33470 the specified process, or specified thread group.  There's no output.
33471
33472 @subsubheading @value{GDBN} Command
33473
33474 The corresponding @value{GDBN} command is @samp{detach}.
33475
33476 @subsubheading Example
33477
33478 @smallexample
33479 (gdb)
33480 -target-detach
33481 ^done
33482 (gdb)
33483 @end smallexample
33484
33485
33486 @subheading The @code{-target-disconnect} Command
33487 @findex -target-disconnect
33488
33489 @subsubheading Synopsis
33490
33491 @smallexample
33492  -target-disconnect
33493 @end smallexample
33494
33495 Disconnect from the remote target.  There's no output and the target is
33496 generally not resumed.
33497
33498 @subsubheading @value{GDBN} Command
33499
33500 The corresponding @value{GDBN} command is @samp{disconnect}.
33501
33502 @subsubheading Example
33503
33504 @smallexample
33505 (gdb)
33506 -target-disconnect
33507 ^done
33508 (gdb)
33509 @end smallexample
33510
33511
33512 @subheading The @code{-target-download} Command
33513 @findex -target-download
33514
33515 @subsubheading Synopsis
33516
33517 @smallexample
33518  -target-download
33519 @end smallexample
33520
33521 Loads the executable onto the remote target.
33522 It prints out an update message every half second, which includes the fields:
33523
33524 @table @samp
33525 @item section
33526 The name of the section.
33527 @item section-sent
33528 The size of what has been sent so far for that section.
33529 @item section-size
33530 The size of the section.
33531 @item total-sent
33532 The total size of what was sent so far (the current and the previous sections).
33533 @item total-size
33534 The size of the overall executable to download.
33535 @end table
33536
33537 @noindent
33538 Each message is sent as status record (@pxref{GDB/MI Output Syntax, ,
33539 @sc{gdb/mi} Output Syntax}).
33540
33541 In addition, it prints the name and size of the sections, as they are
33542 downloaded.  These messages include the following fields:
33543
33544 @table @samp
33545 @item section
33546 The name of the section.
33547 @item section-size
33548 The size of the section.
33549 @item total-size
33550 The size of the overall executable to download.
33551 @end table
33552
33553 @noindent
33554 At the end, a summary is printed.
33555
33556 @subsubheading @value{GDBN} Command
33557
33558 The corresponding @value{GDBN} command is @samp{load}.
33559
33560 @subsubheading Example
33561
33562 Note: each status message appears on a single line.  Here the messages
33563 have been broken down so that they can fit onto a page.
33564
33565 @smallexample
33566 (gdb)
33567 -target-download
33568 +download,@{section=".text",section-size="6668",total-size="9880"@}
33569 +download,@{section=".text",section-sent="512",section-size="6668",
33570 total-sent="512",total-size="9880"@}
33571 +download,@{section=".text",section-sent="1024",section-size="6668",
33572 total-sent="1024",total-size="9880"@}
33573 +download,@{section=".text",section-sent="1536",section-size="6668",
33574 total-sent="1536",total-size="9880"@}
33575 +download,@{section=".text",section-sent="2048",section-size="6668",
33576 total-sent="2048",total-size="9880"@}
33577 +download,@{section=".text",section-sent="2560",section-size="6668",
33578 total-sent="2560",total-size="9880"@}
33579 +download,@{section=".text",section-sent="3072",section-size="6668",
33580 total-sent="3072",total-size="9880"@}
33581 +download,@{section=".text",section-sent="3584",section-size="6668",
33582 total-sent="3584",total-size="9880"@}
33583 +download,@{section=".text",section-sent="4096",section-size="6668",
33584 total-sent="4096",total-size="9880"@}
33585 +download,@{section=".text",section-sent="4608",section-size="6668",
33586 total-sent="4608",total-size="9880"@}
33587 +download,@{section=".text",section-sent="5120",section-size="6668",
33588 total-sent="5120",total-size="9880"@}
33589 +download,@{section=".text",section-sent="5632",section-size="6668",
33590 total-sent="5632",total-size="9880"@}
33591 +download,@{section=".text",section-sent="6144",section-size="6668",
33592 total-sent="6144",total-size="9880"@}
33593 +download,@{section=".text",section-sent="6656",section-size="6668",
33594 total-sent="6656",total-size="9880"@}
33595 +download,@{section=".init",section-size="28",total-size="9880"@}
33596 +download,@{section=".fini",section-size="28",total-size="9880"@}
33597 +download,@{section=".data",section-size="3156",total-size="9880"@}
33598 +download,@{section=".data",section-sent="512",section-size="3156",
33599 total-sent="7236",total-size="9880"@}
33600 +download,@{section=".data",section-sent="1024",section-size="3156",
33601 total-sent="7748",total-size="9880"@}
33602 +download,@{section=".data",section-sent="1536",section-size="3156",
33603 total-sent="8260",total-size="9880"@}
33604 +download,@{section=".data",section-sent="2048",section-size="3156",
33605 total-sent="8772",total-size="9880"@}
33606 +download,@{section=".data",section-sent="2560",section-size="3156",
33607 total-sent="9284",total-size="9880"@}
33608 +download,@{section=".data",section-sent="3072",section-size="3156",
33609 total-sent="9796",total-size="9880"@}
33610 ^done,address="0x10004",load-size="9880",transfer-rate="6586",
33611 write-rate="429"
33612 (gdb)
33613 @end smallexample
33614
33615
33616 @ignore
33617 @subheading The @code{-target-exec-status} Command
33618 @findex -target-exec-status
33619
33620 @subsubheading Synopsis
33621
33622 @smallexample
33623  -target-exec-status
33624 @end smallexample
33625
33626 Provide information on the state of the target (whether it is running or
33627 not, for instance).
33628
33629 @subsubheading @value{GDBN} Command
33630
33631 There's no equivalent @value{GDBN} command.
33632
33633 @subsubheading Example
33634 N.A.
33635
33636
33637 @subheading The @code{-target-list-available-targets} Command
33638 @findex -target-list-available-targets
33639
33640 @subsubheading Synopsis
33641
33642 @smallexample
33643  -target-list-available-targets
33644 @end smallexample
33645
33646 List the possible targets to connect to.
33647
33648 @subsubheading @value{GDBN} Command
33649
33650 The corresponding @value{GDBN} command is @samp{help target}.
33651
33652 @subsubheading Example
33653 N.A.
33654
33655
33656 @subheading The @code{-target-list-current-targets} Command
33657 @findex -target-list-current-targets
33658
33659 @subsubheading Synopsis
33660
33661 @smallexample
33662  -target-list-current-targets
33663 @end smallexample
33664
33665 Describe the current target.
33666
33667 @subsubheading @value{GDBN} Command
33668
33669 The corresponding information is printed by @samp{info file} (among
33670 other things).
33671
33672 @subsubheading Example
33673 N.A.
33674
33675
33676 @subheading The @code{-target-list-parameters} Command
33677 @findex -target-list-parameters
33678
33679 @subsubheading Synopsis
33680
33681 @smallexample
33682  -target-list-parameters
33683 @end smallexample
33684
33685 @c ????
33686 @end ignore
33687
33688 @subsubheading @value{GDBN} Command
33689
33690 No equivalent.
33691
33692 @subsubheading Example
33693 N.A.
33694
33695 @subheading The @code{-target-flash-erase} Command
33696 @findex -target-flash-erase
33697
33698 @subsubheading Synopsis
33699
33700 @smallexample
33701  -target-flash-erase
33702 @end smallexample
33703
33704 Erases all known flash memory regions on the target.
33705
33706 The corresponding @value{GDBN} command is @samp{flash-erase}.
33707
33708 The output is a list of flash regions that have been erased, with starting
33709 addresses and memory region sizes.
33710
33711 @smallexample
33712 (gdb)
33713 -target-flash-erase
33714 ^done,erased-regions=@{address="0x0",size="0x40000"@}
33715 (gdb)
33716 @end smallexample
33717
33718 @subheading The @code{-target-select} Command
33719 @findex -target-select
33720
33721 @subsubheading Synopsis
33722
33723 @smallexample
33724  -target-select @var{type} @var{parameters @dots{}}
33725 @end smallexample
33726
33727 Connect @value{GDBN} to the remote target.  This command takes two args:
33728
33729 @table @samp
33730 @item @var{type}
33731 The type of target, for instance @samp{remote}, etc.
33732 @item @var{parameters}
33733 Device names, host names and the like.  @xref{Target Commands, ,
33734 Commands for Managing Targets}, for more details.
33735 @end table
33736
33737 The output is a connection notification, followed by the address at
33738 which the target program is, in the following form:
33739
33740 @smallexample
33741 ^connected,addr="@var{address}",func="@var{function name}",
33742   args=[@var{arg list}]
33743 @end smallexample
33744
33745 @subsubheading @value{GDBN} Command
33746
33747 The corresponding @value{GDBN} command is @samp{target}.
33748
33749 @subsubheading Example
33750
33751 @smallexample
33752 (gdb)
33753 -target-select remote /dev/ttya
33754 ^connected,addr="0xfe00a300",func="??",args=[]
33755 (gdb)
33756 @end smallexample
33757
33758 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
33759 @node GDB/MI File Transfer Commands
33760 @section @sc{gdb/mi} File Transfer Commands
33761
33762
33763 @subheading The @code{-target-file-put} Command
33764 @findex -target-file-put
33765
33766 @subsubheading Synopsis
33767
33768 @smallexample
33769  -target-file-put @var{hostfile} @var{targetfile}
33770 @end smallexample
33771
33772 Copy file @var{hostfile} from the host system (the machine running
33773 @value{GDBN}) to @var{targetfile} on the target system.
33774
33775 @subsubheading @value{GDBN} Command
33776
33777 The corresponding @value{GDBN} command is @samp{remote put}.
33778
33779 @subsubheading Example
33780
33781 @smallexample
33782 (gdb)
33783 -target-file-put localfile remotefile
33784 ^done
33785 (gdb)
33786 @end smallexample
33787
33788
33789 @subheading The @code{-target-file-get} Command
33790 @findex -target-file-get
33791
33792 @subsubheading Synopsis
33793
33794 @smallexample
33795  -target-file-get @var{targetfile} @var{hostfile}
33796 @end smallexample
33797
33798 Copy file @var{targetfile} from the target system to @var{hostfile}
33799 on the host system.
33800
33801 @subsubheading @value{GDBN} Command
33802
33803 The corresponding @value{GDBN} command is @samp{remote get}.
33804
33805 @subsubheading Example
33806
33807 @smallexample
33808 (gdb)
33809 -target-file-get remotefile localfile
33810 ^done
33811 (gdb)
33812 @end smallexample
33813
33814
33815 @subheading The @code{-target-file-delete} Command
33816 @findex -target-file-delete
33817
33818 @subsubheading Synopsis
33819
33820 @smallexample
33821  -target-file-delete @var{targetfile}
33822 @end smallexample
33823
33824 Delete @var{targetfile} from the target system.
33825
33826 @subsubheading @value{GDBN} Command
33827
33828 The corresponding @value{GDBN} command is @samp{remote delete}.
33829
33830 @subsubheading Example
33831
33832 @smallexample
33833 (gdb)
33834 -target-file-delete remotefile
33835 ^done
33836 (gdb)
33837 @end smallexample
33838
33839
33840 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
33841 @node GDB/MI Ada Exceptions Commands
33842 @section Ada Exceptions @sc{gdb/mi} Commands
33843
33844 @subheading The @code{-info-ada-exceptions} Command
33845 @findex -info-ada-exceptions
33846
33847 @subsubheading Synopsis
33848
33849 @smallexample
33850  -info-ada-exceptions [ @var{regexp}]
33851 @end smallexample
33852
33853 List all Ada exceptions defined within the program being debugged.
33854 With a regular expression @var{regexp}, only those exceptions whose
33855 names match @var{regexp} are listed.
33856
33857 @subsubheading @value{GDBN} Command
33858
33859 The corresponding @value{GDBN} command is @samp{info exceptions}.
33860
33861 @subsubheading Result
33862
33863 The result is a table of Ada exceptions.  The following columns are
33864 defined for each exception:
33865
33866 @table @samp
33867 @item name
33868 The name of the exception.
33869
33870 @item address
33871 The address of the exception.
33872
33873 @end table
33874
33875 @subsubheading Example
33876
33877 @smallexample
33878 -info-ada-exceptions aint
33879 ^done,ada-exceptions=@{nr_rows="2",nr_cols="2",
33880 hdr=[@{width="1",alignment="-1",col_name="name",colhdr="Name"@},
33881 @{width="1",alignment="-1",col_name="address",colhdr="Address"@}],
33882 body=[@{name="constraint_error",address="0x0000000000613da0"@},
33883 @{name="const.aint_global_e",address="0x0000000000613b00"@}]@}
33884 @end smallexample
33885
33886 @subheading Catching Ada Exceptions
33887
33888 The commands describing how to ask @value{GDBN} to stop when a program
33889 raises an exception are described at @ref{Ada Exception GDB/MI
33890 Catchpoint Commands}.
33891
33892
33893 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
33894 @node GDB/MI Support Commands
33895 @section @sc{gdb/mi} Support Commands
33896
33897 Since new commands and features get regularly added to @sc{gdb/mi},
33898 some commands are available to help front-ends query the debugger
33899 about support for these capabilities.  Similarly, it is also possible
33900 to query @value{GDBN} about target support of certain features.
33901
33902 @subheading The @code{-info-gdb-mi-command} Command
33903 @cindex @code{-info-gdb-mi-command}
33904 @findex -info-gdb-mi-command
33905
33906 @subsubheading Synopsis
33907
33908 @smallexample
33909  -info-gdb-mi-command @var{cmd_name}
33910 @end smallexample
33911
33912 Query support for the @sc{gdb/mi} command named @var{cmd_name}.
33913
33914 Note that the dash (@code{-}) starting all @sc{gdb/mi} commands
33915 is technically not part of the command name (@pxref{GDB/MI Input
33916 Syntax}), and thus should be omitted in @var{cmd_name}.  However,
33917 for ease of use, this command also accepts the form with the leading
33918 dash.
33919
33920 @subsubheading @value{GDBN} Command
33921
33922 There is no corresponding @value{GDBN} command.
33923
33924 @subsubheading Result
33925
33926 The result is a tuple.  There is currently only one field:
33927
33928 @table @samp
33929 @item exists
33930 This field is equal to @code{"true"} if the @sc{gdb/mi} command exists,
33931 @code{"false"} otherwise.
33932
33933 @end table
33934
33935 @subsubheading Example
33936
33937 Here is an example where the @sc{gdb/mi} command does not exist:
33938
33939 @smallexample
33940 -info-gdb-mi-command unsupported-command
33941 ^done,command=@{exists="false"@}
33942 @end smallexample
33943
33944 @noindent
33945 And here is an example where the @sc{gdb/mi} command is known
33946 to the debugger:
33947
33948 @smallexample
33949 -info-gdb-mi-command symbol-list-lines
33950 ^done,command=@{exists="true"@}
33951 @end smallexample
33952
33953 @subheading The @code{-list-features} Command
33954 @findex -list-features
33955 @cindex supported @sc{gdb/mi} features, list
33956
33957 Returns a list of particular features of the MI protocol that
33958 this version of gdb implements.  A feature can be a command,
33959 or a new field in an output of some command, or even an
33960 important bugfix.  While a frontend can sometimes detect presence
33961 of a feature at runtime, it is easier to perform detection at debugger
33962 startup.
33963
33964 The command returns a list of strings, with each string naming an
33965 available feature.  Each returned string is just a name, it does not
33966 have any internal structure.  The list of possible feature names
33967 is given below.
33968
33969 Example output:
33970
33971 @smallexample
33972 (gdb) -list-features
33973 ^done,result=["feature1","feature2"]
33974 @end smallexample
33975
33976 The current list of features is:
33977
33978 @ftable @samp
33979 @item frozen-varobjs
33980 Indicates support for the @code{-var-set-frozen} command, as well
33981 as possible presense of the @code{frozen} field in the output
33982 of @code{-varobj-create}.
33983 @item pending-breakpoints
33984 Indicates support for the @option{-f} option to the @code{-break-insert}
33985 command.
33986 @item python
33987 Indicates Python scripting support, Python-based
33988 pretty-printing commands, and possible presence of the
33989 @samp{display_hint} field in the output of @code{-var-list-children}
33990 @item thread-info
33991 Indicates support for the @code{-thread-info} command.
33992 @item data-read-memory-bytes
33993 Indicates support for the @code{-data-read-memory-bytes} and the
33994 @code{-data-write-memory-bytes} commands.
33995 @item breakpoint-notifications
33996 Indicates that changes to breakpoints and breakpoints created via the
33997 CLI will be announced via async records.
33998 @item ada-task-info
33999 Indicates support for the @code{-ada-task-info} command.
34000 @item language-option
34001 Indicates that all @sc{gdb/mi} commands accept the @option{--language}
34002 option (@pxref{Context management}).
34003 @item info-gdb-mi-command
34004 Indicates support for the @code{-info-gdb-mi-command} command.
34005 @item undefined-command-error-code
34006 Indicates support for the "undefined-command" error code in error result
34007 records, produced when trying to execute an undefined @sc{gdb/mi} command
34008 (@pxref{GDB/MI Result Records}).
34009 @item exec-run-start-option
34010 Indicates that the @code{-exec-run} command supports the @option{--start}
34011 option (@pxref{GDB/MI Program Execution}).
34012 @item data-disassemble-a-option
34013 Indicates that the @code{-data-disassemble} command supports the @option{-a}
34014 option (@pxref{GDB/MI Data Manipulation}).
34015 @end ftable
34016
34017 @subheading The @code{-list-target-features} Command
34018 @findex -list-target-features
34019
34020 Returns a list of particular features that are supported by the
34021 target.  Those features affect the permitted MI commands, but 
34022 unlike the features reported by the @code{-list-features} command, the
34023 features depend on which target GDB is using at the moment.  Whenever
34024 a target can change, due to commands such as @code{-target-select},
34025 @code{-target-attach} or @code{-exec-run}, the list of target features
34026 may change, and the frontend should obtain it again.
34027 Example output:
34028
34029 @smallexample
34030 (gdb) -list-target-features
34031 ^done,result=["async"]
34032 @end smallexample
34033
34034 The current list of features is:
34035
34036 @table @samp
34037 @item async
34038 Indicates that the target is capable of asynchronous command
34039 execution, which means that @value{GDBN} will accept further commands
34040 while the target is running.
34041
34042 @item reverse
34043 Indicates that the target is capable of reverse execution.
34044 @xref{Reverse Execution}, for more information.
34045
34046 @end table
34047
34048 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
34049 @node GDB/MI Miscellaneous Commands
34050 @section Miscellaneous @sc{gdb/mi} Commands
34051
34052 @c @subheading -gdb-complete
34053
34054 @subheading The @code{-gdb-exit} Command
34055 @findex -gdb-exit
34056
34057 @subsubheading Synopsis
34058
34059 @smallexample
34060  -gdb-exit
34061 @end smallexample
34062
34063 Exit @value{GDBN} immediately.
34064
34065 @subsubheading @value{GDBN} Command
34066
34067 Approximately corresponds to @samp{quit}.
34068
34069 @subsubheading Example
34070
34071 @smallexample
34072 (gdb)
34073 -gdb-exit
34074 ^exit
34075 @end smallexample
34076
34077
34078 @ignore
34079 @subheading The @code{-exec-abort} Command
34080 @findex -exec-abort
34081
34082 @subsubheading Synopsis
34083
34084 @smallexample
34085  -exec-abort
34086 @end smallexample
34087
34088 Kill the inferior running program.
34089
34090 @subsubheading @value{GDBN} Command
34091
34092 The corresponding @value{GDBN} command is @samp{kill}.
34093
34094 @subsubheading Example
34095 N.A.
34096 @end ignore
34097
34098
34099 @subheading The @code{-gdb-set} Command
34100 @findex -gdb-set
34101
34102 @subsubheading Synopsis
34103
34104 @smallexample
34105  -gdb-set
34106 @end smallexample
34107
34108 Set an internal @value{GDBN} variable.
34109 @c IS THIS A DOLLAR VARIABLE? OR SOMETHING LIKE ANNOTATE ?????
34110
34111 @subsubheading @value{GDBN} Command
34112
34113 The corresponding @value{GDBN} command is @samp{set}.
34114
34115 @subsubheading Example
34116
34117 @smallexample
34118 (gdb)
34119 -gdb-set $foo=3
34120 ^done
34121 (gdb)
34122 @end smallexample
34123
34124
34125 @subheading The @code{-gdb-show} Command
34126 @findex -gdb-show
34127
34128 @subsubheading Synopsis
34129
34130 @smallexample
34131  -gdb-show
34132 @end smallexample
34133
34134 Show the current value of a @value{GDBN} variable.
34135
34136 @subsubheading @value{GDBN} Command
34137
34138 The corresponding @value{GDBN} command is @samp{show}.
34139
34140 @subsubheading Example
34141
34142 @smallexample
34143 (gdb)
34144 -gdb-show annotate
34145 ^done,value="0"
34146 (gdb)
34147 @end smallexample
34148
34149 @c @subheading -gdb-source
34150
34151
34152 @subheading The @code{-gdb-version} Command
34153 @findex -gdb-version
34154
34155 @subsubheading Synopsis
34156
34157 @smallexample
34158  -gdb-version
34159 @end smallexample
34160
34161 Show version information for @value{GDBN}.  Used mostly in testing.
34162
34163 @subsubheading @value{GDBN} Command
34164
34165 The @value{GDBN} equivalent is @samp{show version}.  @value{GDBN} by
34166 default shows this information when you start an interactive session.
34167
34168 @subsubheading Example
34169
34170 @c This example modifies the actual output from GDB to avoid overfull
34171 @c box in TeX.
34172 @smallexample
34173 (gdb)
34174 -gdb-version
34175 ~GNU gdb 5.2.1
34176 ~Copyright 2000 Free Software Foundation, Inc.
34177 ~GDB is free software, covered by the GNU General Public License, and
34178 ~you are welcome to change it and/or distribute copies of it under
34179 ~ certain conditions.
34180 ~Type "show copying" to see the conditions.
34181 ~There is absolutely no warranty for GDB.  Type "show warranty" for
34182 ~ details.
34183 ~This GDB was configured as
34184  "--host=sparc-sun-solaris2.5.1 --target=ppc-eabi".
34185 ^done
34186 (gdb)
34187 @end smallexample
34188
34189 @subheading The @code{-list-thread-groups} Command
34190 @findex -list-thread-groups
34191
34192 @subheading Synopsis
34193
34194 @smallexample
34195 -list-thread-groups [ --available ] [ --recurse 1 ] [ @var{group} ... ]
34196 @end smallexample
34197
34198 Lists thread groups (@pxref{Thread groups}).  When a single thread
34199 group is passed as the argument, lists the children of that group.
34200 When several thread group are passed, lists information about those
34201 thread groups.  Without any parameters, lists information about all
34202 top-level thread groups.
34203
34204 Normally, thread groups that are being debugged are reported.
34205 With the @samp{--available} option, @value{GDBN} reports thread groups
34206 available on the target.
34207
34208 The output of this command may have either a @samp{threads} result or
34209 a @samp{groups} result.  The @samp{thread} result has a list of tuples
34210 as value, with each tuple describing a thread (@pxref{GDB/MI Thread
34211 Information}).  The @samp{groups} result has a list of tuples as value,
34212 each tuple describing a thread group.  If top-level groups are
34213 requested (that is, no parameter is passed), or when several groups
34214 are passed, the output always has a @samp{groups} result.  The format
34215 of the @samp{group} result is described below.
34216
34217 To reduce the number of roundtrips it's possible to list thread groups
34218 together with their children, by passing the @samp{--recurse} option
34219 and the recursion depth.  Presently, only recursion depth of 1 is
34220 permitted.  If this option is present, then every reported thread group
34221 will also include its children, either as @samp{group} or
34222 @samp{threads} field.
34223
34224 In general, any combination of option and parameters is permitted, with
34225 the following caveats:
34226
34227 @itemize @bullet
34228 @item
34229 When a single thread group is passed, the output will typically
34230 be the @samp{threads} result.  Because threads may not contain
34231 anything, the @samp{recurse} option will be ignored.
34232
34233 @item
34234 When the @samp{--available} option is passed, limited information may
34235 be available.  In particular, the list of threads of a process might
34236 be inaccessible.  Further, specifying specific thread groups might
34237 not give any performance advantage over listing all thread groups.
34238 The frontend should assume that @samp{-list-thread-groups --available}
34239 is always an expensive operation and cache the results.
34240
34241 @end itemize
34242
34243 The @samp{groups} result is a list of tuples, where each tuple may
34244 have the following fields:
34245
34246 @table @code
34247 @item id
34248 Identifier of the thread group.  This field is always present.
34249 The identifier is an opaque string; frontends should not try to
34250 convert it to an integer, even though it might look like one.
34251
34252 @item type
34253 The type of the thread group.  At present, only @samp{process} is a
34254 valid type.
34255
34256 @item pid
34257 The target-specific process identifier.  This field is only present
34258 for thread groups of type @samp{process} and only if the process exists.
34259
34260 @item exit-code
34261 The exit code of this group's last exited thread, formatted in octal.
34262 This field is only present for thread groups of type @samp{process} and
34263 only if the process is not running.
34264
34265 @item num_children
34266 The number of children this thread group has.  This field may be
34267 absent for an available thread group.
34268
34269 @item threads
34270 This field has a list of tuples as value, each tuple describing a
34271 thread.  It may be present if the @samp{--recurse} option is
34272 specified, and it's actually possible to obtain the threads.
34273
34274 @item cores
34275 This field is a list of integers, each identifying a core that one
34276 thread of the group is running on.  This field may be absent if
34277 such information is not available.
34278
34279 @item executable
34280 The name of the executable file that corresponds to this thread group.
34281 The field is only present for thread groups of type @samp{process},
34282 and only if there is a corresponding executable file.
34283
34284 @end table
34285
34286 @subheading Example
34287
34288 @smallexample
34289 @value{GDBP}
34290 -list-thread-groups
34291 ^done,groups=[@{id="17",type="process",pid="yyy",num_children="2"@}]
34292 -list-thread-groups 17
34293 ^done,threads=[@{id="2",target-id="Thread 0xb7e14b90 (LWP 21257)",
34294    frame=@{level="0",addr="0xffffe410",func="__kernel_vsyscall",args=[]@},state="running"@},
34295 @{id="1",target-id="Thread 0xb7e156b0 (LWP 21254)",
34296    frame=@{level="0",addr="0x0804891f",func="foo",args=[@{name="i",value="10"@}],
34297            file="/tmp/a.c",fullname="/tmp/a.c",line="158",arch="i386:x86_64"@},state="running"@}]]
34298 -list-thread-groups --available
34299 ^done,groups=[@{id="17",type="process",pid="yyy",num_children="2",cores=[1,2]@}]
34300 -list-thread-groups --available --recurse 1
34301  ^done,groups=[@{id="17", types="process",pid="yyy",num_children="2",cores=[1,2],
34302                 threads=[@{id="1",target-id="Thread 0xb7e14b90",cores=[1]@},
34303                          @{id="2",target-id="Thread 0xb7e14b90",cores=[2]@}]@},..]
34304 -list-thread-groups --available --recurse 1 17 18
34305 ^done,groups=[@{id="17", types="process",pid="yyy",num_children="2",cores=[1,2],
34306                threads=[@{id="1",target-id="Thread 0xb7e14b90",cores=[1]@},
34307                         @{id="2",target-id="Thread 0xb7e14b90",cores=[2]@}]@},...]
34308 @end smallexample
34309
34310 @subheading The @code{-info-os} Command
34311 @findex -info-os
34312
34313 @subsubheading Synopsis
34314
34315 @smallexample
34316 -info-os [ @var{type} ]
34317 @end smallexample
34318
34319 If no argument is supplied, the command returns a table of available
34320 operating-system-specific information types.  If one of these types is
34321 supplied as an argument @var{type}, then the command returns a table
34322 of data of that type.
34323
34324 The types of information available depend on the target operating
34325 system.
34326
34327 @subsubheading @value{GDBN} Command
34328
34329 The corresponding @value{GDBN} command is @samp{info os}.
34330
34331 @subsubheading Example
34332
34333 When run on a @sc{gnu}/Linux system, the output will look something
34334 like this:
34335
34336 @smallexample
34337 @value{GDBP}
34338 -info-os
34339 ^done,OSDataTable=@{nr_rows="10",nr_cols="3",
34340 hdr=[@{width="10",alignment="-1",col_name="col0",colhdr="Type"@},
34341      @{width="10",alignment="-1",col_name="col1",colhdr="Description"@},
34342      @{width="10",alignment="-1",col_name="col2",colhdr="Title"@}],
34343 body=[item=@{col0="cpus",col1="Listing of all cpus/cores on the system",
34344             col2="CPUs"@},
34345       item=@{col0="files",col1="Listing of all file descriptors",
34346             col2="File descriptors"@},
34347       item=@{col0="modules",col1="Listing of all loaded kernel modules",
34348             col2="Kernel modules"@},
34349       item=@{col0="msg",col1="Listing of all message queues",
34350             col2="Message queues"@},
34351       item=@{col0="processes",col1="Listing of all processes",
34352             col2="Processes"@},
34353       item=@{col0="procgroups",col1="Listing of all process groups",
34354             col2="Process groups"@},
34355       item=@{col0="semaphores",col1="Listing of all semaphores",
34356             col2="Semaphores"@},
34357       item=@{col0="shm",col1="Listing of all shared-memory regions",
34358             col2="Shared-memory regions"@},
34359       item=@{col0="sockets",col1="Listing of all internet-domain sockets",
34360             col2="Sockets"@},
34361       item=@{col0="threads",col1="Listing of all threads",
34362             col2="Threads"@}]
34363 @value{GDBP}
34364 -info-os processes
34365 ^done,OSDataTable=@{nr_rows="190",nr_cols="4",
34366 hdr=[@{width="10",alignment="-1",col_name="col0",colhdr="pid"@},
34367      @{width="10",alignment="-1",col_name="col1",colhdr="user"@},
34368      @{width="10",alignment="-1",col_name="col2",colhdr="command"@},
34369      @{width="10",alignment="-1",col_name="col3",colhdr="cores"@}],
34370 body=[item=@{col0="1",col1="root",col2="/sbin/init",col3="0"@},
34371       item=@{col0="2",col1="root",col2="[kthreadd]",col3="1"@},
34372       item=@{col0="3",col1="root",col2="[ksoftirqd/0]",col3="0"@},
34373       ...
34374       item=@{col0="26446",col1="stan",col2="bash",col3="0"@},
34375       item=@{col0="28152",col1="stan",col2="bash",col3="1"@}]@}
34376 (gdb)
34377 @end smallexample
34378
34379 (Note that the MI output here includes a @code{"Title"} column that
34380 does not appear in command-line @code{info os}; this column is useful
34381 for MI clients that want to enumerate the types of data, such as in a
34382 popup menu, but is needless clutter on the command line, and
34383 @code{info os} omits it.)
34384
34385 @subheading The @code{-add-inferior} Command
34386 @findex -add-inferior
34387
34388 @subheading Synopsis
34389
34390 @smallexample
34391 -add-inferior
34392 @end smallexample
34393
34394 Creates a new inferior (@pxref{Inferiors and Programs}).  The created
34395 inferior is not associated with any executable.  Such association may
34396 be established with the @samp{-file-exec-and-symbols} command
34397 (@pxref{GDB/MI File Commands}).  The command response has a single
34398 field, @samp{inferior}, whose value is the identifier of the
34399 thread group corresponding to the new inferior.
34400
34401 @subheading Example
34402
34403 @smallexample
34404 @value{GDBP}
34405 -add-inferior
34406 ^done,inferior="i3"
34407 @end smallexample
34408
34409 @subheading The @code{-interpreter-exec} Command
34410 @findex -interpreter-exec
34411
34412 @subheading Synopsis
34413
34414 @smallexample
34415 -interpreter-exec @var{interpreter} @var{command}
34416 @end smallexample
34417 @anchor{-interpreter-exec} 
34418
34419 Execute the specified @var{command} in the given @var{interpreter}.
34420
34421 @subheading @value{GDBN} Command
34422
34423 The corresponding @value{GDBN} command is @samp{interpreter-exec}.
34424
34425 @subheading Example
34426
34427 @smallexample
34428 (gdb)
34429 -interpreter-exec console "break main"
34430 &"During symbol reading, couldn't parse type; debugger out of date?.\n"
34431 &"During symbol reading, bad structure-type format.\n"
34432 ~"Breakpoint 1 at 0x8074fc6: file ../../src/gdb/main.c, line 743.\n"
34433 ^done
34434 (gdb)
34435 @end smallexample
34436
34437 @subheading The @code{-inferior-tty-set} Command
34438 @findex -inferior-tty-set
34439
34440 @subheading Synopsis
34441
34442 @smallexample
34443 -inferior-tty-set /dev/pts/1
34444 @end smallexample
34445
34446 Set terminal for future runs of the program being debugged.
34447
34448 @subheading @value{GDBN} Command
34449
34450 The corresponding @value{GDBN} command is @samp{set inferior-tty} /dev/pts/1.
34451
34452 @subheading Example
34453
34454 @smallexample
34455 (gdb)
34456 -inferior-tty-set /dev/pts/1
34457 ^done
34458 (gdb)
34459 @end smallexample
34460
34461 @subheading The @code{-inferior-tty-show} Command
34462 @findex -inferior-tty-show
34463
34464 @subheading Synopsis
34465
34466 @smallexample
34467 -inferior-tty-show
34468 @end smallexample
34469
34470 Show terminal for future runs of program being debugged.
34471
34472 @subheading @value{GDBN} Command
34473
34474 The corresponding @value{GDBN} command is @samp{show inferior-tty}.
34475
34476 @subheading Example
34477
34478 @smallexample
34479 (gdb)
34480 -inferior-tty-set /dev/pts/1
34481 ^done
34482 (gdb)
34483 -inferior-tty-show
34484 ^done,inferior_tty_terminal="/dev/pts/1"
34485 (gdb)
34486 @end smallexample
34487
34488 @subheading The @code{-enable-timings} Command
34489 @findex -enable-timings
34490
34491 @subheading Synopsis
34492
34493 @smallexample
34494 -enable-timings [yes | no]
34495 @end smallexample
34496
34497 Toggle the printing of the wallclock, user and system times for an MI
34498 command as a field in its output.  This command is to help frontend
34499 developers optimize the performance of their code.  No argument is
34500 equivalent to @samp{yes}.
34501
34502 @subheading @value{GDBN} Command
34503
34504 No equivalent.
34505
34506 @subheading Example
34507
34508 @smallexample
34509 (gdb)
34510 -enable-timings
34511 ^done
34512 (gdb)
34513 -break-insert main
34514 ^done,bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
34515 addr="0x080484ed",func="main",file="myprog.c",
34516 fullname="/home/nickrob/myprog.c",line="73",thread-groups=["i1"],
34517 times="0"@},
34518 time=@{wallclock="0.05185",user="0.00800",system="0.00000"@}
34519 (gdb)
34520 -enable-timings no
34521 ^done
34522 (gdb)
34523 -exec-run
34524 ^running
34525 (gdb)
34526 *stopped,reason="breakpoint-hit",disp="keep",bkptno="1",thread-id="0",
34527 frame=@{addr="0x080484ed",func="main",args=[@{name="argc",value="1"@},
34528 @{name="argv",value="0xbfb60364"@}],file="myprog.c",
34529 fullname="/home/nickrob/myprog.c",line="73",arch="i386:x86_64"@}
34530 (gdb)
34531 @end smallexample
34532
34533 @node Annotations
34534 @chapter @value{GDBN} Annotations
34535
34536 This chapter describes annotations in @value{GDBN}.  Annotations were
34537 designed to interface @value{GDBN} to graphical user interfaces or other
34538 similar programs which want to interact with @value{GDBN} at a
34539 relatively high level.
34540
34541 The annotation mechanism has largely been superseded by @sc{gdb/mi}
34542 (@pxref{GDB/MI}).
34543
34544 @ignore
34545 This is Edition @value{EDITION}, @value{DATE}.
34546 @end ignore
34547
34548 @menu
34549 * Annotations Overview::  What annotations are; the general syntax.
34550 * Server Prefix::       Issuing a command without affecting user state.
34551 * Prompting::           Annotations marking @value{GDBN}'s need for input.
34552 * Errors::              Annotations for error messages.
34553 * Invalidation::        Some annotations describe things now invalid.
34554 * Annotations for Running::
34555                         Whether the program is running, how it stopped, etc.
34556 * Source Annotations::  Annotations describing source code.
34557 @end menu
34558
34559 @node Annotations Overview
34560 @section What is an Annotation?
34561 @cindex annotations
34562
34563 Annotations start with a newline character, two @samp{control-z}
34564 characters, and the name of the annotation.  If there is no additional
34565 information associated with this annotation, the name of the annotation
34566 is followed immediately by a newline.  If there is additional
34567 information, the name of the annotation is followed by a space, the
34568 additional information, and a newline.  The additional information
34569 cannot contain newline characters.
34570
34571 Any output not beginning with a newline and two @samp{control-z}
34572 characters denotes literal output from @value{GDBN}.  Currently there is
34573 no need for @value{GDBN} to output a newline followed by two
34574 @samp{control-z} characters, but if there was such a need, the
34575 annotations could be extended with an @samp{escape} annotation which
34576 means those three characters as output.
34577
34578 The annotation @var{level}, which is specified using the
34579 @option{--annotate} command line option (@pxref{Mode Options}), controls
34580 how much information @value{GDBN} prints together with its prompt,
34581 values of expressions, source lines, and other types of output.  Level 0
34582 is for no annotations, level 1 is for use when @value{GDBN} is run as a
34583 subprocess of @sc{gnu} Emacs, level 3 is the maximum annotation suitable
34584 for programs that control @value{GDBN}, and level 2 annotations have
34585 been made obsolete (@pxref{Limitations, , Limitations of the Annotation
34586 Interface, annotate, GDB's Obsolete Annotations}).
34587
34588 @table @code
34589 @kindex set annotate
34590 @item set annotate @var{level}
34591 The @value{GDBN} command @code{set annotate} sets the level of
34592 annotations to the specified @var{level}.
34593
34594 @item show annotate
34595 @kindex show annotate
34596 Show the current annotation level.
34597 @end table
34598
34599 This chapter describes level 3 annotations.
34600
34601 A simple example of starting up @value{GDBN} with annotations is:
34602
34603 @smallexample
34604 $ @kbd{gdb --annotate=3}
34605 GNU gdb 6.0
34606 Copyright 2003 Free Software Foundation, Inc.
34607 GDB is free software, covered by the GNU General Public License,
34608 and you are welcome to change it and/or distribute copies of it
34609 under certain conditions.
34610 Type "show copying" to see the conditions.
34611 There is absolutely no warranty for GDB.  Type "show warranty"
34612 for details.
34613 This GDB was configured as "i386-pc-linux-gnu"
34614
34615 ^Z^Zpre-prompt
34616 (@value{GDBP})
34617 ^Z^Zprompt
34618 @kbd{quit}
34619
34620 ^Z^Zpost-prompt
34621 $
34622 @end smallexample
34623
34624 Here @samp{quit} is input to @value{GDBN}; the rest is output from
34625 @value{GDBN}.  The three lines beginning @samp{^Z^Z} (where @samp{^Z}
34626 denotes a @samp{control-z} character) are annotations; the rest is
34627 output from @value{GDBN}.
34628
34629 @node Server Prefix
34630 @section The Server Prefix
34631 @cindex server prefix
34632
34633 If you prefix a command with @samp{server } then it will not affect
34634 the command history, nor will it affect @value{GDBN}'s notion of which
34635 command to repeat if @key{RET} is pressed on a line by itself.  This
34636 means that commands can be run behind a user's back by a front-end in
34637 a transparent manner.
34638
34639 The @code{server } prefix does not affect the recording of values into
34640 the value history; to print a value without recording it into the
34641 value history, use the @code{output} command instead of the
34642 @code{print} command.
34643
34644 Using this prefix also disables confirmation requests
34645 (@pxref{confirmation requests}).
34646
34647 @node Prompting
34648 @section Annotation for @value{GDBN} Input
34649
34650 @cindex annotations for prompts
34651 When @value{GDBN} prompts for input, it annotates this fact so it is possible
34652 to know when to send output, when the output from a given command is
34653 over, etc.
34654
34655 Different kinds of input each have a different @dfn{input type}.  Each
34656 input type has three annotations: a @code{pre-} annotation, which
34657 denotes the beginning of any prompt which is being output, a plain
34658 annotation, which denotes the end of the prompt, and then a @code{post-}
34659 annotation which denotes the end of any echo which may (or may not) be
34660 associated with the input.  For example, the @code{prompt} input type
34661 features the following annotations:
34662
34663 @smallexample
34664 ^Z^Zpre-prompt
34665 ^Z^Zprompt
34666 ^Z^Zpost-prompt
34667 @end smallexample
34668
34669 The input types are
34670
34671 @table @code
34672 @findex pre-prompt annotation
34673 @findex prompt annotation
34674 @findex post-prompt annotation
34675 @item prompt
34676 When @value{GDBN} is prompting for a command (the main @value{GDBN} prompt).
34677
34678 @findex pre-commands annotation
34679 @findex commands annotation
34680 @findex post-commands annotation
34681 @item commands
34682 When @value{GDBN} prompts for a set of commands, like in the @code{commands}
34683 command.  The annotations are repeated for each command which is input.
34684
34685 @findex pre-overload-choice annotation
34686 @findex overload-choice annotation
34687 @findex post-overload-choice annotation
34688 @item overload-choice
34689 When @value{GDBN} wants the user to select between various overloaded functions.
34690
34691 @findex pre-query annotation
34692 @findex query annotation
34693 @findex post-query annotation
34694 @item query
34695 When @value{GDBN} wants the user to confirm a potentially dangerous operation.
34696
34697 @findex pre-prompt-for-continue annotation
34698 @findex prompt-for-continue annotation
34699 @findex post-prompt-for-continue annotation
34700 @item prompt-for-continue
34701 When @value{GDBN} is asking the user to press return to continue.  Note: Don't
34702 expect this to work well; instead use @code{set height 0} to disable
34703 prompting.  This is because the counting of lines is buggy in the
34704 presence of annotations.
34705 @end table
34706
34707 @node Errors
34708 @section Errors
34709 @cindex annotations for errors, warnings and interrupts
34710
34711 @findex quit annotation
34712 @smallexample
34713 ^Z^Zquit
34714 @end smallexample
34715
34716 This annotation occurs right before @value{GDBN} responds to an interrupt.
34717
34718 @findex error annotation
34719 @smallexample
34720 ^Z^Zerror
34721 @end smallexample
34722
34723 This annotation occurs right before @value{GDBN} responds to an error.
34724
34725 Quit and error annotations indicate that any annotations which @value{GDBN} was
34726 in the middle of may end abruptly.  For example, if a
34727 @code{value-history-begin} annotation is followed by a @code{error}, one
34728 cannot expect to receive the matching @code{value-history-end}.  One
34729 cannot expect not to receive it either, however; an error annotation
34730 does not necessarily mean that @value{GDBN} is immediately returning all the way
34731 to the top level.
34732
34733 @findex error-begin annotation
34734 A quit or error annotation may be preceded by
34735
34736 @smallexample
34737 ^Z^Zerror-begin
34738 @end smallexample
34739
34740 Any output between that and the quit or error annotation is the error
34741 message.
34742
34743 Warning messages are not yet annotated.
34744 @c If we want to change that, need to fix warning(), type_error(),
34745 @c range_error(), and possibly other places.
34746
34747 @node Invalidation
34748 @section Invalidation Notices
34749
34750 @cindex annotations for invalidation messages
34751 The following annotations say that certain pieces of state may have
34752 changed.
34753
34754 @table @code
34755 @findex frames-invalid annotation
34756 @item ^Z^Zframes-invalid
34757
34758 The frames (for example, output from the @code{backtrace} command) may
34759 have changed.
34760
34761 @findex breakpoints-invalid annotation
34762 @item ^Z^Zbreakpoints-invalid
34763
34764 The breakpoints may have changed.  For example, the user just added or
34765 deleted a breakpoint.
34766 @end table
34767
34768 @node Annotations for Running
34769 @section Running the Program
34770 @cindex annotations for running programs
34771
34772 @findex starting annotation
34773 @findex stopping annotation
34774 When the program starts executing due to a @value{GDBN} command such as
34775 @code{step} or @code{continue},
34776
34777 @smallexample
34778 ^Z^Zstarting
34779 @end smallexample
34780
34781 is output.  When the program stops,
34782
34783 @smallexample
34784 ^Z^Zstopped
34785 @end smallexample
34786
34787 is output.  Before the @code{stopped} annotation, a variety of
34788 annotations describe how the program stopped.
34789
34790 @table @code
34791 @findex exited annotation
34792 @item ^Z^Zexited @var{exit-status}
34793 The program exited, and @var{exit-status} is the exit status (zero for
34794 successful exit, otherwise nonzero).
34795
34796 @findex signalled annotation
34797 @findex signal-name annotation
34798 @findex signal-name-end annotation
34799 @findex signal-string annotation
34800 @findex signal-string-end annotation
34801 @item ^Z^Zsignalled
34802 The program exited with a signal.  After the @code{^Z^Zsignalled}, the
34803 annotation continues:
34804
34805 @smallexample
34806 @var{intro-text}
34807 ^Z^Zsignal-name
34808 @var{name}
34809 ^Z^Zsignal-name-end
34810 @var{middle-text}
34811 ^Z^Zsignal-string
34812 @var{string}
34813 ^Z^Zsignal-string-end
34814 @var{end-text}
34815 @end smallexample
34816
34817 @noindent
34818 where @var{name} is the name of the signal, such as @code{SIGILL} or
34819 @code{SIGSEGV}, and @var{string} is the explanation of the signal, such
34820 as @code{Illegal Instruction} or @code{Segmentation fault}.  The arguments
34821 @var{intro-text}, @var{middle-text}, and @var{end-text} are for the
34822 user's benefit and have no particular format.
34823
34824 @findex signal annotation
34825 @item ^Z^Zsignal
34826 The syntax of this annotation is just like @code{signalled}, but @value{GDBN} is
34827 just saying that the program received the signal, not that it was
34828 terminated with it.
34829
34830 @findex breakpoint annotation
34831 @item ^Z^Zbreakpoint @var{number}
34832 The program hit breakpoint number @var{number}.
34833
34834 @findex watchpoint annotation
34835 @item ^Z^Zwatchpoint @var{number}
34836 The program hit watchpoint number @var{number}.
34837 @end table
34838
34839 @node Source Annotations
34840 @section Displaying Source
34841 @cindex annotations for source display
34842
34843 @findex source annotation
34844 The following annotation is used instead of displaying source code:
34845
34846 @smallexample
34847 ^Z^Zsource @var{filename}:@var{line}:@var{character}:@var{middle}:@var{addr}
34848 @end smallexample
34849
34850 where @var{filename} is an absolute file name indicating which source
34851 file, @var{line} is the line number within that file (where 1 is the
34852 first line in the file), @var{character} is the character position
34853 within the file (where 0 is the first character in the file) (for most
34854 debug formats this will necessarily point to the beginning of a line),
34855 @var{middle} is @samp{middle} if @var{addr} is in the middle of the
34856 line, or @samp{beg} if @var{addr} is at the beginning of the line, and
34857 @var{addr} is the address in the target program associated with the
34858 source which is being displayed.  The @var{addr} is in the form @samp{0x}
34859 followed by one or more lowercase hex digits (note that this does not
34860 depend on the language).
34861
34862 @node JIT Interface
34863 @chapter JIT Compilation Interface
34864 @cindex just-in-time compilation
34865 @cindex JIT compilation interface
34866
34867 This chapter documents @value{GDBN}'s @dfn{just-in-time} (JIT) compilation
34868 interface.  A JIT compiler is a program or library that generates native
34869 executable code at runtime and executes it, usually in order to achieve good
34870 performance while maintaining platform independence. 
34871
34872 Programs that use JIT compilation are normally difficult to debug because
34873 portions of their code are generated at runtime, instead of being loaded from
34874 object files, which is where @value{GDBN} normally finds the program's symbols
34875 and debug information.  In order to debug programs that use JIT compilation,
34876 @value{GDBN} has an interface that allows the program to register in-memory
34877 symbol files with @value{GDBN} at runtime.
34878
34879 If you are using @value{GDBN} to debug a program that uses this interface, then
34880 it should work transparently so long as you have not stripped the binary.  If
34881 you are developing a JIT compiler, then the interface is documented in the rest
34882 of this chapter.  At this time, the only known client of this interface is the
34883 LLVM JIT.
34884
34885 Broadly speaking, the JIT interface mirrors the dynamic loader interface.  The
34886 JIT compiler communicates with @value{GDBN} by writing data into a global
34887 variable and calling a fuction at a well-known symbol.  When @value{GDBN}
34888 attaches, it reads a linked list of symbol files from the global variable to
34889 find existing code, and puts a breakpoint in the function so that it can find
34890 out about additional code.
34891
34892 @menu
34893 * Declarations::                Relevant C struct declarations
34894 * Registering Code::            Steps to register code
34895 * Unregistering Code::          Steps to unregister code
34896 * Custom Debug Info::           Emit debug information in a custom format
34897 @end menu
34898
34899 @node Declarations
34900 @section JIT Declarations
34901
34902 These are the relevant struct declarations that a C program should include to
34903 implement the interface:
34904
34905 @smallexample
34906 typedef enum
34907 @{
34908   JIT_NOACTION = 0,
34909   JIT_REGISTER_FN,
34910   JIT_UNREGISTER_FN
34911 @} jit_actions_t;
34912
34913 struct jit_code_entry
34914 @{
34915   struct jit_code_entry *next_entry;
34916   struct jit_code_entry *prev_entry;
34917   const char *symfile_addr;
34918   uint64_t symfile_size;
34919 @};
34920
34921 struct jit_descriptor
34922 @{
34923   uint32_t version;
34924   /* This type should be jit_actions_t, but we use uint32_t
34925      to be explicit about the bitwidth.  */
34926   uint32_t action_flag;
34927   struct jit_code_entry *relevant_entry;
34928   struct jit_code_entry *first_entry;
34929 @};
34930
34931 /* GDB puts a breakpoint in this function.  */
34932 void __attribute__((noinline)) __jit_debug_register_code() @{ @};
34933
34934 /* Make sure to specify the version statically, because the
34935    debugger may check the version before we can set it.  */
34936 struct jit_descriptor __jit_debug_descriptor = @{ 1, 0, 0, 0 @};
34937 @end smallexample
34938
34939 If the JIT is multi-threaded, then it is important that the JIT synchronize any
34940 modifications to this global data properly, which can easily be done by putting
34941 a global mutex around modifications to these structures.
34942
34943 @node Registering Code
34944 @section Registering Code
34945
34946 To register code with @value{GDBN}, the JIT should follow this protocol:
34947
34948 @itemize @bullet
34949 @item
34950 Generate an object file in memory with symbols and other desired debug
34951 information.  The file must include the virtual addresses of the sections.
34952
34953 @item
34954 Create a code entry for the file, which gives the start and size of the symbol
34955 file.
34956
34957 @item
34958 Add it to the linked list in the JIT descriptor.
34959
34960 @item
34961 Point the relevant_entry field of the descriptor at the entry.
34962
34963 @item
34964 Set @code{action_flag} to @code{JIT_REGISTER} and call
34965 @code{__jit_debug_register_code}.
34966 @end itemize
34967
34968 When @value{GDBN} is attached and the breakpoint fires, @value{GDBN} uses the
34969 @code{relevant_entry} pointer so it doesn't have to walk the list looking for
34970 new code.  However, the linked list must still be maintained in order to allow
34971 @value{GDBN} to attach to a running process and still find the symbol files.
34972
34973 @node Unregistering Code
34974 @section Unregistering Code
34975
34976 If code is freed, then the JIT should use the following protocol:
34977
34978 @itemize @bullet
34979 @item
34980 Remove the code entry corresponding to the code from the linked list.
34981
34982 @item
34983 Point the @code{relevant_entry} field of the descriptor at the code entry.
34984
34985 @item
34986 Set @code{action_flag} to @code{JIT_UNREGISTER} and call
34987 @code{__jit_debug_register_code}.
34988 @end itemize
34989
34990 If the JIT frees or recompiles code without unregistering it, then @value{GDBN}
34991 and the JIT will leak the memory used for the associated symbol files.
34992
34993 @node Custom Debug Info
34994 @section Custom Debug Info
34995 @cindex custom JIT debug info
34996 @cindex JIT debug info reader
34997
34998 Generating debug information in platform-native file formats (like ELF
34999 or COFF) may be an overkill for JIT compilers; especially if all the
35000 debug info is used for is displaying a meaningful backtrace.  The
35001 issue can be resolved by having the JIT writers decide on a debug info
35002 format and also provide a reader that parses the debug info generated
35003 by the JIT compiler.  This section gives a brief overview on writing
35004 such a parser.  More specific details can be found in the source file
35005 @file{gdb/jit-reader.in}, which is also installed as a header at
35006 @file{@var{includedir}/gdb/jit-reader.h} for easy inclusion.
35007
35008 The reader is implemented as a shared object (so this functionality is
35009 not available on platforms which don't allow loading shared objects at
35010 runtime).  Two @value{GDBN} commands, @code{jit-reader-load} and
35011 @code{jit-reader-unload} are provided, to be used to load and unload
35012 the readers from a preconfigured directory.  Once loaded, the shared
35013 object is used the parse the debug information emitted by the JIT
35014 compiler.
35015
35016 @menu
35017 * Using JIT Debug Info Readers::       How to use supplied readers correctly
35018 * Writing JIT Debug Info Readers::     Creating a debug-info reader
35019 @end menu
35020
35021 @node Using JIT Debug Info Readers
35022 @subsection Using JIT Debug Info Readers
35023 @kindex jit-reader-load
35024 @kindex jit-reader-unload
35025
35026 Readers can be loaded and unloaded using the @code{jit-reader-load}
35027 and @code{jit-reader-unload} commands.
35028
35029 @table @code
35030 @item jit-reader-load @var{reader}
35031 Load the JIT reader named @var{reader}, which is a shared
35032 object specified as either an absolute or a relative file name.  In
35033 the latter case, @value{GDBN} will try to load the reader from a
35034 pre-configured directory, usually @file{@var{libdir}/gdb/} on a UNIX
35035 system (here @var{libdir} is the system library directory, often
35036 @file{/usr/local/lib}).
35037
35038 Only one reader can be active at a time; trying to load a second
35039 reader when one is already loaded will result in @value{GDBN}
35040 reporting an error.  A new JIT reader can be loaded by first unloading
35041 the current one using @code{jit-reader-unload} and then invoking
35042 @code{jit-reader-load}.
35043
35044 @item jit-reader-unload
35045 Unload the currently loaded JIT reader.
35046
35047 @end table
35048
35049 @node Writing JIT Debug Info Readers
35050 @subsection Writing JIT Debug Info Readers
35051 @cindex writing JIT debug info readers
35052
35053 As mentioned, a reader is essentially a shared object conforming to a
35054 certain ABI.  This ABI is described in @file{jit-reader.h}.
35055
35056 @file{jit-reader.h} defines the structures, macros and functions
35057 required to write a reader.  It is installed (along with
35058 @value{GDBN}), in @file{@var{includedir}/gdb} where @var{includedir} is
35059 the system include directory.
35060
35061 Readers need to be released under a GPL compatible license.  A reader
35062 can be declared as released under such a license by placing the macro
35063 @code{GDB_DECLARE_GPL_COMPATIBLE_READER} in a source file.
35064
35065 The entry point for readers is the symbol @code{gdb_init_reader},
35066 which is expected to be a function with the prototype
35067
35068 @findex gdb_init_reader
35069 @smallexample
35070 extern struct gdb_reader_funcs *gdb_init_reader (void);
35071 @end smallexample
35072
35073 @cindex @code{struct gdb_reader_funcs}
35074
35075 @code{struct gdb_reader_funcs} contains a set of pointers to callback
35076 functions.  These functions are executed to read the debug info
35077 generated by the JIT compiler (@code{read}), to unwind stack frames
35078 (@code{unwind}) and to create canonical frame IDs
35079 (@code{get_Frame_id}).  It also has a callback that is called when the
35080 reader is being unloaded (@code{destroy}).  The struct looks like this
35081
35082 @smallexample
35083 struct gdb_reader_funcs
35084 @{
35085   /* Must be set to GDB_READER_INTERFACE_VERSION.  */
35086   int reader_version;
35087
35088   /* For use by the reader.  */
35089   void *priv_data;
35090
35091   gdb_read_debug_info *read;
35092   gdb_unwind_frame *unwind;
35093   gdb_get_frame_id *get_frame_id;
35094   gdb_destroy_reader *destroy;
35095 @};
35096 @end smallexample
35097
35098 @cindex @code{struct gdb_symbol_callbacks}
35099 @cindex @code{struct gdb_unwind_callbacks}
35100
35101 The callbacks are provided with another set of callbacks by
35102 @value{GDBN} to do their job.  For @code{read}, these callbacks are
35103 passed in a @code{struct gdb_symbol_callbacks} and for @code{unwind}
35104 and @code{get_frame_id}, in a @code{struct gdb_unwind_callbacks}.
35105 @code{struct gdb_symbol_callbacks} has callbacks to create new object
35106 files and new symbol tables inside those object files.  @code{struct
35107 gdb_unwind_callbacks} has callbacks to read registers off the current
35108 frame and to write out the values of the registers in the previous
35109 frame.  Both have a callback (@code{target_read}) to read bytes off the
35110 target's address space.
35111
35112 @node In-Process Agent
35113 @chapter In-Process Agent
35114 @cindex debugging agent
35115 The traditional debugging model is conceptually low-speed, but works fine,
35116 because most bugs can be reproduced in debugging-mode execution.  However,
35117 as multi-core or many-core processors are becoming mainstream, and
35118 multi-threaded programs become more and more popular, there should be more
35119 and more bugs that only manifest themselves at normal-mode execution, for
35120 example, thread races, because debugger's interference with the program's
35121 timing may conceal the bugs.  On the other hand, in some applications,
35122 it is not feasible for the debugger to interrupt the program's execution
35123 long enough for the developer to learn anything helpful about its behavior.
35124 If the program's correctness depends on its real-time behavior, delays
35125 introduced by a debugger might cause the program to fail, even when the
35126 code itself is correct.  It is useful to be able to observe the program's
35127 behavior without interrupting it.
35128
35129 Therefore, traditional debugging model is too intrusive to reproduce
35130 some bugs.  In order to reduce the interference with the program, we can
35131 reduce the number of operations performed by debugger.  The
35132 @dfn{In-Process Agent}, a shared library, is running within the same
35133 process with inferior, and is able to perform some debugging operations
35134 itself.  As a result, debugger is only involved when necessary, and
35135 performance of debugging can be improved accordingly.  Note that
35136 interference with program can be reduced but can't be removed completely,
35137 because the in-process agent will still stop or slow down the program.
35138
35139 The in-process agent can interpret and execute Agent Expressions
35140 (@pxref{Agent Expressions}) during performing debugging operations.  The
35141 agent expressions can be used for different purposes, such as collecting
35142 data in tracepoints, and condition evaluation in breakpoints.
35143
35144 @anchor{Control Agent}
35145 You can control whether the in-process agent is used as an aid for
35146 debugging with the following commands:
35147
35148 @table @code
35149 @kindex set agent on
35150 @item set agent on
35151 Causes the in-process agent to perform some operations on behalf of the
35152 debugger.  Just which operations requested by the user will be done
35153 by the in-process agent depends on the its capabilities.  For example,
35154 if you request to evaluate breakpoint conditions in the in-process agent,
35155 and the in-process agent has such capability as well, then breakpoint
35156 conditions will be evaluated in the in-process agent.
35157
35158 @kindex set agent off
35159 @item set agent off
35160 Disables execution of debugging operations by the in-process agent.  All
35161 of the operations will be performed by @value{GDBN}.
35162
35163 @kindex show agent
35164 @item show agent
35165 Display the current setting of execution of debugging operations by
35166 the in-process agent.
35167 @end table
35168
35169 @menu
35170 * In-Process Agent Protocol::
35171 @end menu
35172
35173 @node In-Process Agent Protocol
35174 @section In-Process Agent Protocol
35175 @cindex in-process agent protocol
35176
35177 The in-process agent is able to communicate with both @value{GDBN} and
35178 GDBserver (@pxref{In-Process Agent}).  This section documents the protocol
35179 used for communications between @value{GDBN} or GDBserver and the IPA.
35180 In general, @value{GDBN} or GDBserver sends commands
35181 (@pxref{IPA Protocol Commands}) and data to in-process agent, and then
35182 in-process agent replies back with the return result of the command, or
35183 some other information.  The data sent to in-process agent is composed
35184 of primitive data types, such as 4-byte or 8-byte type, and composite
35185 types, which are called objects (@pxref{IPA Protocol Objects}).
35186
35187 @menu
35188 * IPA Protocol Objects::
35189 * IPA Protocol Commands::
35190 @end menu
35191
35192 @node IPA Protocol Objects
35193 @subsection IPA Protocol Objects
35194 @cindex ipa protocol objects
35195
35196 The commands sent to and results received from agent may contain some
35197 complex data types called @dfn{objects}.
35198
35199 The in-process agent is running on the same machine with @value{GDBN}
35200 or GDBserver, so it doesn't have to handle as much differences between
35201 two ends as remote protocol (@pxref{Remote Protocol}) tries to handle.
35202 However, there are still some differences of two ends in two processes:
35203
35204 @enumerate
35205 @item
35206 word size.  On some 64-bit machines, @value{GDBN} or GDBserver can be
35207 compiled as a 64-bit executable, while in-process agent is a 32-bit one.
35208 @item
35209 ABI.  Some machines may have multiple types of ABI, @value{GDBN} or
35210 GDBserver is compiled with one, and in-process agent is compiled with
35211 the other one.
35212 @end enumerate
35213
35214 Here are the IPA Protocol Objects:
35215
35216 @enumerate
35217 @item
35218 agent expression object.  It represents an agent expression
35219 (@pxref{Agent Expressions}).
35220 @anchor{agent expression object}
35221 @item
35222 tracepoint action object.  It represents a tracepoint action
35223 (@pxref{Tracepoint Actions,,Tracepoint Action Lists}) to collect registers,
35224 memory, static trace data and to evaluate expression.
35225 @anchor{tracepoint action object}
35226 @item
35227 tracepoint object.  It represents a tracepoint (@pxref{Tracepoints}).
35228 @anchor{tracepoint object}
35229
35230 @end enumerate
35231
35232 The following table describes important attributes of each IPA protocol
35233 object:
35234
35235 @multitable @columnfractions .30 .20 .50
35236 @headitem Name @tab Size @tab Description
35237 @item @emph{agent expression object} @tab @tab
35238 @item length @tab 4 @tab length of bytes code
35239 @item byte code @tab @var{length} @tab contents of byte code
35240 @item @emph{tracepoint action for collecting memory} @tab @tab
35241 @item 'M' @tab 1 @tab type of tracepoint action
35242 @item addr @tab 8 @tab if @var{basereg} is @samp{-1}, @var{addr} is the
35243 address of the lowest byte to collect, otherwise @var{addr} is the offset
35244 of @var{basereg} for memory collecting.
35245 @item len @tab 8 @tab length of memory for collecting
35246 @item basereg @tab 4 @tab the register number containing the starting
35247 memory address for collecting.
35248 @item @emph{tracepoint action for collecting registers} @tab @tab
35249 @item 'R' @tab 1 @tab type of tracepoint action
35250 @item @emph{tracepoint action for collecting static trace data} @tab @tab
35251 @item 'L' @tab 1 @tab type of tracepoint action
35252 @item @emph{tracepoint action for expression evaluation} @tab @tab
35253 @item 'X' @tab 1 @tab type of tracepoint action
35254 @item agent expression @tab length of @tab @ref{agent expression object}
35255 @item @emph{tracepoint object} @tab @tab
35256 @item number @tab 4 @tab number of tracepoint
35257 @item address @tab 8 @tab address of tracepoint inserted on
35258 @item type @tab 4 @tab type of tracepoint
35259 @item enabled @tab 1 @tab enable or disable of tracepoint
35260 @item step_count @tab 8 @tab step
35261 @item pass_count @tab 8 @tab pass
35262 @item numactions @tab 4 @tab number of tracepoint actions
35263 @item hit count @tab 8 @tab hit count
35264 @item trace frame usage @tab 8 @tab trace frame usage
35265 @item compiled_cond @tab 8 @tab compiled condition
35266 @item orig_size @tab 8 @tab orig size
35267 @item condition @tab 4 if condition is NULL otherwise length of
35268 @ref{agent expression object}
35269 @tab zero if condition is NULL, otherwise is
35270 @ref{agent expression object}
35271 @item actions @tab variable
35272 @tab numactions number of @ref{tracepoint action object}
35273 @end multitable
35274
35275 @node IPA Protocol Commands
35276 @subsection IPA Protocol Commands
35277 @cindex ipa protocol commands
35278
35279 The spaces in each command are delimiters to ease reading this commands
35280 specification.  They don't exist in real commands.
35281
35282 @table @samp
35283
35284 @item FastTrace:@var{tracepoint_object} @var{gdb_jump_pad_head}
35285 Installs a new fast tracepoint described by @var{tracepoint_object}
35286 (@pxref{tracepoint object}).  The @var{gdb_jump_pad_head}, 8-byte long, is the
35287 head of @dfn{jumppad}, which is used to jump to data collection routine
35288 in IPA finally.
35289
35290 Replies:
35291 @table @samp
35292 @item OK @var{target_address} @var{gdb_jump_pad_head} @var{fjump_size} @var{fjump}
35293 @var{target_address} is address of tracepoint in the inferior.
35294 The @var{gdb_jump_pad_head} is updated head of jumppad.  Both of
35295 @var{target_address} and @var{gdb_jump_pad_head} are 8-byte long.
35296 The @var{fjump} contains a sequence of instructions jump to jumppad entry.
35297 The @var{fjump_size}, 4-byte long, is the size of @var{fjump}.
35298 @item E @var{NN}
35299 for an error
35300
35301 @end table
35302
35303 @item close
35304 Closes the in-process agent.  This command is sent when @value{GDBN} or GDBserver
35305 is about to kill inferiors.
35306
35307 @item qTfSTM
35308 @xref{qTfSTM}.
35309 @item qTsSTM
35310 @xref{qTsSTM}.
35311 @item qTSTMat
35312 @xref{qTSTMat}.
35313 @item probe_marker_at:@var{address}
35314 Asks in-process agent to probe the marker at @var{address}.
35315
35316 Replies:
35317 @table @samp
35318 @item E @var{NN}
35319 for an error
35320 @end table
35321 @item unprobe_marker_at:@var{address}
35322 Asks in-process agent to unprobe the marker at @var{address}.
35323 @end table
35324
35325 @node GDB Bugs
35326 @chapter Reporting Bugs in @value{GDBN}
35327 @cindex bugs in @value{GDBN}
35328 @cindex reporting bugs in @value{GDBN}
35329
35330 Your bug reports play an essential role in making @value{GDBN} reliable.
35331
35332 Reporting a bug may help you by bringing a solution to your problem, or it
35333 may not.  But in any case the principal function of a bug report is to help
35334 the entire community by making the next version of @value{GDBN} work better.  Bug
35335 reports are your contribution to the maintenance of @value{GDBN}.
35336
35337 In order for a bug report to serve its purpose, you must include the
35338 information that enables us to fix the bug.
35339
35340 @menu
35341 * Bug Criteria::                Have you found a bug?
35342 * Bug Reporting::               How to report bugs
35343 @end menu
35344
35345 @node Bug Criteria
35346 @section Have You Found a Bug?
35347 @cindex bug criteria
35348
35349 If you are not sure whether you have found a bug, here are some guidelines:
35350
35351 @itemize @bullet
35352 @cindex fatal signal
35353 @cindex debugger crash
35354 @cindex crash of debugger
35355 @item
35356 If the debugger gets a fatal signal, for any input whatever, that is a
35357 @value{GDBN} bug.  Reliable debuggers never crash.
35358
35359 @cindex error on valid input
35360 @item
35361 If @value{GDBN} produces an error message for valid input, that is a
35362 bug.  (Note that if you're cross debugging, the problem may also be
35363 somewhere in the connection to the target.)
35364
35365 @cindex invalid input
35366 @item
35367 If @value{GDBN} does not produce an error message for invalid input,
35368 that is a bug.  However, you should note that your idea of
35369 ``invalid input'' might be our idea of ``an extension'' or ``support
35370 for traditional practice''.
35371
35372 @item
35373 If you are an experienced user of debugging tools, your suggestions
35374 for improvement of @value{GDBN} are welcome in any case.
35375 @end itemize
35376
35377 @node Bug Reporting
35378 @section How to Report Bugs
35379 @cindex bug reports
35380 @cindex @value{GDBN} bugs, reporting
35381
35382 A number of companies and individuals offer support for @sc{gnu} products.
35383 If you obtained @value{GDBN} from a support organization, we recommend you
35384 contact that organization first.
35385
35386 You can find contact information for many support companies and
35387 individuals in the file @file{etc/SERVICE} in the @sc{gnu} Emacs
35388 distribution.
35389 @c should add a web page ref...
35390
35391 @ifset BUGURL
35392 @ifset BUGURL_DEFAULT
35393 In any event, we also recommend that you submit bug reports for
35394 @value{GDBN}.  The preferred method is to submit them directly using
35395 @uref{http://www.gnu.org/software/gdb/bugs/, @value{GDBN}'s Bugs web
35396 page}.  Alternatively, the @email{bug-gdb@@gnu.org, e-mail gateway} can
35397 be used.
35398
35399 @strong{Do not send bug reports to @samp{info-gdb}, or to
35400 @samp{help-gdb}, or to any newsgroups.}  Most users of @value{GDBN} do
35401 not want to receive bug reports.  Those that do have arranged to receive
35402 @samp{bug-gdb}.
35403
35404 The mailing list @samp{bug-gdb} has a newsgroup @samp{gnu.gdb.bug} which
35405 serves as a repeater.  The mailing list and the newsgroup carry exactly
35406 the same messages.  Often people think of posting bug reports to the
35407 newsgroup instead of mailing them.  This appears to work, but it has one
35408 problem which can be crucial: a newsgroup posting often lacks a mail
35409 path back to the sender.  Thus, if we need to ask for more information,
35410 we may be unable to reach you.  For this reason, it is better to send
35411 bug reports to the mailing list.
35412 @end ifset
35413 @ifclear BUGURL_DEFAULT
35414 In any event, we also recommend that you submit bug reports for
35415 @value{GDBN} to @value{BUGURL}.
35416 @end ifclear
35417 @end ifset
35418
35419 The fundamental principle of reporting bugs usefully is this:
35420 @strong{report all the facts}.  If you are not sure whether to state a
35421 fact or leave it out, state it!
35422
35423 Often people omit facts because they think they know what causes the
35424 problem and assume that some details do not matter.  Thus, you might
35425 assume that the name of the variable you use in an example does not matter.
35426 Well, probably it does not, but one cannot be sure.  Perhaps the bug is a
35427 stray memory reference which happens to fetch from the location where that
35428 name is stored in memory; perhaps, if the name were different, the contents
35429 of that location would fool the debugger into doing the right thing despite
35430 the bug.  Play it safe and give a specific, complete example.  That is the
35431 easiest thing for you to do, and the most helpful.
35432
35433 Keep in mind that the purpose of a bug report is to enable us to fix the
35434 bug.  It may be that the bug has been reported previously, but neither
35435 you nor we can know that unless your bug report is complete and
35436 self-contained.
35437
35438 Sometimes people give a few sketchy facts and ask, ``Does this ring a
35439 bell?''  Those bug reports are useless, and we urge everyone to
35440 @emph{refuse to respond to them} except to chide the sender to report
35441 bugs properly.
35442
35443 To enable us to fix the bug, you should include all these things:
35444
35445 @itemize @bullet
35446 @item
35447 The version of @value{GDBN}.  @value{GDBN} announces it if you start
35448 with no arguments; you can also print it at any time using @code{show
35449 version}.
35450
35451 Without this, we will not know whether there is any point in looking for
35452 the bug in the current version of @value{GDBN}.
35453
35454 @item
35455 The type of machine you are using, and the operating system name and
35456 version number.
35457
35458 @item
35459 The details of the @value{GDBN} build-time configuration.
35460 @value{GDBN} shows these details if you invoke it with the
35461 @option{--configuration} command-line option, or if you type
35462 @code{show configuration} at @value{GDBN}'s prompt.
35463
35464 @item
35465 What compiler (and its version) was used to compile @value{GDBN}---e.g.@:
35466 ``@value{GCC}--2.8.1''.
35467
35468 @item
35469 What compiler (and its version) was used to compile the program you are
35470 debugging---e.g.@:  ``@value{GCC}--2.8.1'', or ``HP92453-01 A.10.32.03 HP
35471 C Compiler''.  For @value{NGCC}, you can say @kbd{@value{GCC} --version}
35472 to get this information; for other compilers, see the documentation for
35473 those compilers.
35474
35475 @item
35476 The command arguments you gave the compiler to compile your example and
35477 observe the bug.  For example, did you use @samp{-O}?  To guarantee
35478 you will not omit something important, list them all.  A copy of the
35479 Makefile (or the output from make) is sufficient.
35480
35481 If we were to try to guess the arguments, we would probably guess wrong
35482 and then we might not encounter the bug.
35483
35484 @item
35485 A complete input script, and all necessary source files, that will
35486 reproduce the bug.
35487
35488 @item
35489 A description of what behavior you observe that you believe is
35490 incorrect.  For example, ``It gets a fatal signal.''
35491
35492 Of course, if the bug is that @value{GDBN} gets a fatal signal, then we
35493 will certainly notice it.  But if the bug is incorrect output, we might
35494 not notice unless it is glaringly wrong.  You might as well not give us
35495 a chance to make a mistake.
35496
35497 Even if the problem you experience is a fatal signal, you should still
35498 say so explicitly.  Suppose something strange is going on, such as, your
35499 copy of @value{GDBN} is out of synch, or you have encountered a bug in
35500 the C library on your system.  (This has happened!)  Your copy might
35501 crash and ours would not.  If you told us to expect a crash, then when
35502 ours fails to crash, we would know that the bug was not happening for
35503 us.  If you had not told us to expect a crash, then we would not be able
35504 to draw any conclusion from our observations.
35505
35506 @pindex script
35507 @cindex recording a session script
35508 To collect all this information, you can use a session recording program
35509 such as @command{script}, which is available on many Unix systems.
35510 Just run your @value{GDBN} session inside @command{script} and then
35511 include the @file{typescript} file with your bug report.
35512
35513 Another way to record a @value{GDBN} session is to run @value{GDBN}
35514 inside Emacs and then save the entire buffer to a file.
35515
35516 @item
35517 If you wish to suggest changes to the @value{GDBN} source, send us context
35518 diffs.  If you even discuss something in the @value{GDBN} source, refer to
35519 it by context, not by line number.
35520
35521 The line numbers in our development sources will not match those in your
35522 sources.  Your line numbers would convey no useful information to us.
35523
35524 @end itemize
35525
35526 Here are some things that are not necessary:
35527
35528 @itemize @bullet
35529 @item
35530 A description of the envelope of the bug.
35531
35532 Often people who encounter a bug spend a lot of time investigating
35533 which changes to the input file will make the bug go away and which
35534 changes will not affect it.
35535
35536 This is often time consuming and not very useful, because the way we
35537 will find the bug is by running a single example under the debugger
35538 with breakpoints, not by pure deduction from a series of examples.
35539 We recommend that you save your time for something else.
35540
35541 Of course, if you can find a simpler example to report @emph{instead}
35542 of the original one, that is a convenience for us.  Errors in the
35543 output will be easier to spot, running under the debugger will take
35544 less time, and so on.
35545
35546 However, simplification is not vital; if you do not want to do this,
35547 report the bug anyway and send us the entire test case you used.
35548
35549 @item
35550 A patch for the bug.
35551
35552 A patch for the bug does help us if it is a good one.  But do not omit
35553 the necessary information, such as the test case, on the assumption that
35554 a patch is all we need.  We might see problems with your patch and decide
35555 to fix the problem another way, or we might not understand it at all.
35556
35557 Sometimes with a program as complicated as @value{GDBN} it is very hard to
35558 construct an example that will make the program follow a certain path
35559 through the code.  If you do not send us the example, we will not be able
35560 to construct one, so we will not be able to verify that the bug is fixed.
35561
35562 And if we cannot understand what bug you are trying to fix, or why your
35563 patch should be an improvement, we will not install it.  A test case will
35564 help us to understand.
35565
35566 @item
35567 A guess about what the bug is or what it depends on.
35568
35569 Such guesses are usually wrong.  Even we cannot guess right about such
35570 things without first using the debugger to find the facts.
35571 @end itemize
35572
35573 @c The readline documentation is distributed with the readline code
35574 @c and consists of the two following files:
35575 @c     rluser.texi
35576 @c     hsuser.texi
35577 @c Use -I with makeinfo to point to the appropriate directory,
35578 @c environment var TEXINPUTS with TeX.
35579 @ifclear SYSTEM_READLINE
35580 @include rluser.texi
35581 @include hsuser.texi
35582 @end ifclear
35583
35584 @node In Memoriam
35585 @appendix In Memoriam
35586
35587 The @value{GDBN} project mourns the loss of the following long-time
35588 contributors:
35589
35590 @table @code
35591 @item Fred Fish
35592 Fred was a long-standing contributor to @value{GDBN} (1991-2006), and
35593 to Free Software in general.  Outside of @value{GDBN}, he was known in
35594 the Amiga world for his series of Fish Disks, and the GeekGadget project.
35595
35596 @item Michael Snyder
35597 Michael was one of the Global Maintainers of the @value{GDBN} project,
35598 with contributions recorded as early as 1996, until 2011.  In addition
35599 to his day to day participation, he was a large driving force behind
35600 adding Reverse Debugging to @value{GDBN}.
35601 @end table
35602
35603 Beyond their technical contributions to the project, they were also
35604 enjoyable members of the Free Software Community.  We will miss them.
35605
35606 @node Formatting Documentation
35607 @appendix Formatting Documentation
35608
35609 @cindex @value{GDBN} reference card
35610 @cindex reference card
35611 The @value{GDBN} 4 release includes an already-formatted reference card, ready
35612 for printing with PostScript or Ghostscript, in the @file{gdb}
35613 subdirectory of the main source directory@footnote{In
35614 @file{gdb-@value{GDBVN}/gdb/refcard.ps} of the version @value{GDBVN}
35615 release.}.  If you can use PostScript or Ghostscript with your printer,
35616 you can print the reference card immediately with @file{refcard.ps}.
35617
35618 The release also includes the source for the reference card.  You
35619 can format it, using @TeX{}, by typing:
35620
35621 @smallexample
35622 make refcard.dvi
35623 @end smallexample
35624
35625 The @value{GDBN} reference card is designed to print in @dfn{landscape}
35626 mode on US ``letter'' size paper;
35627 that is, on a sheet 11 inches wide by 8.5 inches
35628 high.  You will need to specify this form of printing as an option to
35629 your @sc{dvi} output program.
35630
35631 @cindex documentation
35632
35633 All the documentation for @value{GDBN} comes as part of the machine-readable
35634 distribution.  The documentation is written in Texinfo format, which is
35635 a documentation system that uses a single source file to produce both
35636 on-line information and a printed manual.  You can use one of the Info
35637 formatting commands to create the on-line version of the documentation
35638 and @TeX{} (or @code{texi2roff}) to typeset the printed version.
35639
35640 @value{GDBN} includes an already formatted copy of the on-line Info
35641 version of this manual in the @file{gdb} subdirectory.  The main Info
35642 file is @file{gdb-@value{GDBVN}/gdb/gdb.info}, and it refers to
35643 subordinate files matching @samp{gdb.info*} in the same directory.  If
35644 necessary, you can print out these files, or read them with any editor;
35645 but they are easier to read using the @code{info} subsystem in @sc{gnu}
35646 Emacs or the standalone @code{info} program, available as part of the
35647 @sc{gnu} Texinfo distribution.
35648
35649 If you want to format these Info files yourself, you need one of the
35650 Info formatting programs, such as @code{texinfo-format-buffer} or
35651 @code{makeinfo}.
35652
35653 If you have @code{makeinfo} installed, and are in the top level
35654 @value{GDBN} source directory (@file{gdb-@value{GDBVN}}, in the case of
35655 version @value{GDBVN}), you can make the Info file by typing:
35656
35657 @smallexample
35658 cd gdb
35659 make gdb.info
35660 @end smallexample
35661
35662 If you want to typeset and print copies of this manual, you need @TeX{},
35663 a program to print its @sc{dvi} output files, and @file{texinfo.tex}, the
35664 Texinfo definitions file.
35665
35666 @TeX{} is a typesetting program; it does not print files directly, but
35667 produces output files called @sc{dvi} files.  To print a typeset
35668 document, you need a program to print @sc{dvi} files.  If your system
35669 has @TeX{} installed, chances are it has such a program.  The precise
35670 command to use depends on your system; @kbd{lpr -d} is common; another
35671 (for PostScript devices) is @kbd{dvips}.  The @sc{dvi} print command may
35672 require a file name without any extension or a @samp{.dvi} extension.
35673
35674 @TeX{} also requires a macro definitions file called
35675 @file{texinfo.tex}.  This file tells @TeX{} how to typeset a document
35676 written in Texinfo format.  On its own, @TeX{} cannot either read or
35677 typeset a Texinfo file.  @file{texinfo.tex} is distributed with GDB
35678 and is located in the @file{gdb-@var{version-number}/texinfo}
35679 directory.
35680
35681 If you have @TeX{} and a @sc{dvi} printer program installed, you can
35682 typeset and print this manual.  First switch to the @file{gdb}
35683 subdirectory of the main source directory (for example, to
35684 @file{gdb-@value{GDBVN}/gdb}) and type:
35685
35686 @smallexample
35687 make gdb.dvi
35688 @end smallexample
35689
35690 Then give @file{gdb.dvi} to your @sc{dvi} printing program.
35691
35692 @node Installing GDB
35693 @appendix Installing @value{GDBN}
35694 @cindex installation
35695
35696 @menu
35697 * Requirements::                Requirements for building @value{GDBN}
35698 * Running Configure::           Invoking the @value{GDBN} @file{configure} script
35699 * Separate Objdir::             Compiling @value{GDBN} in another directory
35700 * Config Names::                Specifying names for hosts and targets
35701 * Configure Options::           Summary of options for configure
35702 * System-wide configuration::   Having a system-wide init file
35703 @end menu
35704
35705 @node Requirements
35706 @section Requirements for Building @value{GDBN}
35707 @cindex building @value{GDBN}, requirements for
35708
35709 Building @value{GDBN} requires various tools and packages to be available.
35710 Other packages will be used only if they are found.
35711
35712 @heading Tools/Packages Necessary for Building @value{GDBN}
35713 @table @asis
35714 @item C@t{++}11 compiler
35715 @value{GDBN} is written in C@t{++}11.  It should be buildable with any
35716 recent C@t{++}11 compiler, e.g.@: GCC.
35717
35718 @item GNU make
35719 @value{GDBN}'s build system relies on features only found in the GNU
35720 make program.  Other variants of @code{make} will not work.
35721 @end table
35722
35723 @heading Tools/Packages Optional for Building @value{GDBN}
35724 @table @asis
35725 @item Expat
35726 @anchor{Expat}
35727 @value{GDBN} can use the Expat XML parsing library.  This library may be
35728 included with your operating system distribution; if it is not, you
35729 can get the latest version from @url{http://expat.sourceforge.net}.
35730 The @file{configure} script will search for this library in several
35731 standard locations; if it is installed in an unusual path, you can
35732 use the @option{--with-libexpat-prefix} option to specify its location.
35733
35734 Expat is used for:
35735
35736 @itemize @bullet
35737 @item
35738 Remote protocol memory maps (@pxref{Memory Map Format})
35739 @item
35740 Target descriptions (@pxref{Target Descriptions})
35741 @item
35742 Remote shared library lists (@xref{Library List Format},
35743 or alternatively @pxref{Library List Format for SVR4 Targets})
35744 @item
35745 MS-Windows shared libraries (@pxref{Shared Libraries})
35746 @item
35747 Traceframe info (@pxref{Traceframe Info Format})
35748 @item
35749 Branch trace (@pxref{Branch Trace Format},
35750 @pxref{Branch Trace Configuration Format})
35751 @end itemize
35752
35753 @item Guile
35754 @value{GDBN} can be scripted using GNU Guile.  @xref{Guile}.  By
35755 default, @value{GDBN} will be compiled if the Guile libraries are
35756 installed and are found by @file{configure}.  You can use the
35757 @code{--with-guile} option to request Guile, and pass either the Guile
35758 version number or the file name of the relevant @code{pkg-config}
35759 program to choose a particular version of Guile.
35760
35761 @item iconv
35762 @value{GDBN}'s features related to character sets (@pxref{Character
35763 Sets}) require a functioning @code{iconv} implementation.  If you are
35764 on a GNU system, then this is provided by the GNU C Library.  Some
35765 other systems also provide a working @code{iconv}.
35766
35767 If @value{GDBN} is using the @code{iconv} program which is installed
35768 in a non-standard place, you will need to tell @value{GDBN} where to
35769 find it.  This is done with @option{--with-iconv-bin} which specifies
35770 the directory that contains the @code{iconv} program.  This program is
35771 run in order to make a list of the available character sets.
35772
35773 On systems without @code{iconv}, you can install GNU Libiconv.  If
35774 Libiconv is installed in a standard place, @value{GDBN} will
35775 automatically use it if it is needed.  If you have previously
35776 installed Libiconv in a non-standard place, you can use the
35777 @option{--with-libiconv-prefix} option to @file{configure}.
35778
35779 @value{GDBN}'s top-level @file{configure} and @file{Makefile} will
35780 arrange to build Libiconv if a directory named @file{libiconv} appears
35781 in the top-most source directory.  If Libiconv is built this way, and
35782 if the operating system does not provide a suitable @code{iconv}
35783 implementation, then the just-built library will automatically be used
35784 by @value{GDBN}.  One easy way to set this up is to download GNU
35785 Libiconv, unpack it inside the top-level directory of the @value{GDBN}
35786 source tree, and then rename the directory holding the Libiconv source
35787 code to @samp{libiconv}.
35788
35789 @item lzma
35790 @value{GDBN} can support debugging sections that are compressed with
35791 the LZMA library.  @xref{MiniDebugInfo}.  If this library is not
35792 included with your operating system, you can find it in the xz package
35793 at @url{http://tukaani.org/xz/}.  If the LZMA library is available in
35794 the usual place, then the @file{configure} script will use it
35795 automatically.  If it is installed in an unusual path, you can use the
35796 @option{--with-lzma-prefix} option to specify its location.
35797
35798 @item MPFR
35799 @anchor{MPFR}
35800 @value{GDBN} can use the GNU MPFR multiple-precision floating-point
35801 library.  This library may be included with your operating system
35802 distribution; if it is not, you can get the latest version from
35803 @url{http://www.mpfr.org}.  The @file{configure} script will search
35804 for this library in several standard locations; if it is installed
35805 in an unusual path, you can use the @option{--with-libmpfr-prefix}
35806 option to specify its location.
35807
35808 GNU MPFR is used to emulate target floating-point arithmetic during
35809 expression evaluation when the target uses different floating-point
35810 formats than the host.  If GNU MPFR it is not available, @value{GDBN}
35811 will fall back to using host floating-point arithmetic.
35812
35813 @item Python
35814 @value{GDBN} can be scripted using Python language.  @xref{Python}.
35815 By default, @value{GDBN} will be compiled if the Python libraries are
35816 installed and are found by @file{configure}.  You can use the
35817 @code{--with-python} option to request Python, and pass either the
35818 file name of the relevant @code{python} executable, or the name of the
35819 directory in which Python is installed, to choose a particular
35820 installation of Python.
35821
35822 @item zlib
35823 @cindex compressed debug sections 
35824 @value{GDBN} will use the @samp{zlib} library, if available, to read
35825 compressed debug sections.  Some linkers, such as GNU gold, are capable
35826 of producing binaries with compressed debug sections.  If @value{GDBN}
35827 is compiled with @samp{zlib}, it will be able to read the debug
35828 information in such binaries.
35829
35830 The @samp{zlib} library is likely included with your operating system
35831 distribution; if it is not, you can get the latest version from
35832 @url{http://zlib.net}.
35833 @end table
35834
35835 @node Running Configure
35836 @section Invoking the @value{GDBN} @file{configure} Script
35837 @cindex configuring @value{GDBN}
35838 @value{GDBN} comes with a @file{configure} script that automates the process
35839 of preparing @value{GDBN} for installation; you can then use @code{make} to
35840 build the @code{gdb} program.
35841 @iftex
35842 @c irrelevant in info file; it's as current as the code it lives with.
35843 @footnote{If you have a more recent version of @value{GDBN} than @value{GDBVN},
35844 look at the @file{README} file in the sources; we may have improved the
35845 installation procedures since publishing this manual.}
35846 @end iftex
35847
35848 The @value{GDBN} distribution includes all the source code you need for
35849 @value{GDBN} in a single directory, whose name is usually composed by
35850 appending the version number to @samp{gdb}.
35851
35852 For example, the @value{GDBN} version @value{GDBVN} distribution is in the
35853 @file{gdb-@value{GDBVN}} directory.  That directory contains:
35854
35855 @table @code
35856 @item gdb-@value{GDBVN}/configure @r{(and supporting files)}
35857 script for configuring @value{GDBN} and all its supporting libraries
35858
35859 @item gdb-@value{GDBVN}/gdb
35860 the source specific to @value{GDBN} itself
35861
35862 @item gdb-@value{GDBVN}/bfd
35863 source for the Binary File Descriptor library
35864
35865 @item gdb-@value{GDBVN}/include
35866 @sc{gnu} include files
35867
35868 @item gdb-@value{GDBVN}/libiberty
35869 source for the @samp{-liberty} free software library
35870
35871 @item gdb-@value{GDBVN}/opcodes
35872 source for the library of opcode tables and disassemblers
35873
35874 @item gdb-@value{GDBVN}/readline
35875 source for the @sc{gnu} command-line interface
35876 @end table
35877
35878 There may be other subdirectories as well.
35879
35880 The simplest way to configure and build @value{GDBN} is to run @file{configure}
35881 from the @file{gdb-@var{version-number}} source directory, which in
35882 this example is the @file{gdb-@value{GDBVN}} directory.
35883
35884 First switch to the @file{gdb-@var{version-number}} source directory
35885 if you are not already in it; then run @file{configure}.  Pass the
35886 identifier for the platform on which @value{GDBN} will run as an
35887 argument.
35888
35889 For example:
35890
35891 @smallexample
35892 cd gdb-@value{GDBVN}
35893 ./configure
35894 make
35895 @end smallexample
35896
35897 Running @samp{configure} and then running @code{make} builds the
35898 included supporting libraries, then @code{gdb} itself.  The configured
35899 source files, and the binaries, are left in the corresponding source
35900 directories.
35901
35902 @need 750
35903 @file{configure} is a Bourne-shell (@code{/bin/sh}) script; if your
35904 system does not recognize this automatically when you run a different
35905 shell, you may need to run @code{sh} on it explicitly:
35906
35907 @smallexample
35908 sh configure
35909 @end smallexample
35910
35911 You should run the @file{configure} script from the top directory in the
35912 source tree, the @file{gdb-@var{version-number}} directory.  If you run
35913 @file{configure} from one of the subdirectories, you will configure only
35914 that subdirectory.  That is usually not what you want.  In particular,
35915 if you run the first @file{configure} from the @file{gdb} subdirectory
35916 of the @file{gdb-@var{version-number}} directory, you will omit the
35917 configuration of @file{bfd}, @file{readline}, and other sibling
35918 directories of the @file{gdb} subdirectory.  This leads to build errors
35919 about missing include files such as @file{bfd/bfd.h}.
35920
35921 You can install @code{@value{GDBN}} anywhere.  The best way to do this
35922 is to pass the @code{--prefix} option to @code{configure}, and then
35923 install it with @code{make install}.
35924
35925 @node Separate Objdir
35926 @section Compiling @value{GDBN} in Another Directory
35927
35928 If you want to run @value{GDBN} versions for several host or target machines,
35929 you need a different @code{gdb} compiled for each combination of
35930 host and target.  @file{configure} is designed to make this easy by
35931 allowing you to generate each configuration in a separate subdirectory,
35932 rather than in the source directory.  If your @code{make} program
35933 handles the @samp{VPATH} feature (@sc{gnu} @code{make} does), running
35934 @code{make} in each of these directories builds the @code{gdb}
35935 program specified there.
35936
35937 To build @code{gdb} in a separate directory, run @file{configure}
35938 with the @samp{--srcdir} option to specify where to find the source.
35939 (You also need to specify a path to find @file{configure}
35940 itself from your working directory.  If the path to @file{configure}
35941 would be the same as the argument to @samp{--srcdir}, you can leave out
35942 the @samp{--srcdir} option; it is assumed.)
35943
35944 For example, with version @value{GDBVN}, you can build @value{GDBN} in a
35945 separate directory for a Sun 4 like this:
35946
35947 @smallexample
35948 @group
35949 cd gdb-@value{GDBVN}
35950 mkdir ../gdb-sun4
35951 cd ../gdb-sun4
35952 ../gdb-@value{GDBVN}/configure
35953 make
35954 @end group
35955 @end smallexample
35956
35957 When @file{configure} builds a configuration using a remote source
35958 directory, it creates a tree for the binaries with the same structure
35959 (and using the same names) as the tree under the source directory.  In
35960 the example, you'd find the Sun 4 library @file{libiberty.a} in the
35961 directory @file{gdb-sun4/libiberty}, and @value{GDBN} itself in
35962 @file{gdb-sun4/gdb}.
35963
35964 Make sure that your path to the @file{configure} script has just one
35965 instance of @file{gdb} in it.  If your path to @file{configure} looks
35966 like @file{../gdb-@value{GDBVN}/gdb/configure}, you are configuring only
35967 one subdirectory of @value{GDBN}, not the whole package.  This leads to
35968 build errors about missing include files such as @file{bfd/bfd.h}.
35969
35970 One popular reason to build several @value{GDBN} configurations in separate
35971 directories is to configure @value{GDBN} for cross-compiling (where
35972 @value{GDBN} runs on one machine---the @dfn{host}---while debugging
35973 programs that run on another machine---the @dfn{target}).
35974 You specify a cross-debugging target by
35975 giving the @samp{--target=@var{target}} option to @file{configure}.
35976
35977 When you run @code{make} to build a program or library, you must run
35978 it in a configured directory---whatever directory you were in when you
35979 called @file{configure} (or one of its subdirectories).
35980
35981 The @code{Makefile} that @file{configure} generates in each source
35982 directory also runs recursively.  If you type @code{make} in a source
35983 directory such as @file{gdb-@value{GDBVN}} (or in a separate configured
35984 directory configured with @samp{--srcdir=@var{dirname}/gdb-@value{GDBVN}}), you
35985 will build all the required libraries, and then build GDB.
35986
35987 When you have multiple hosts or targets configured in separate
35988 directories, you can run @code{make} on them in parallel (for example,
35989 if they are NFS-mounted on each of the hosts); they will not interfere
35990 with each other.
35991
35992 @node Config Names
35993 @section Specifying Names for Hosts and Targets
35994
35995 The specifications used for hosts and targets in the @file{configure}
35996 script are based on a three-part naming scheme, but some short predefined
35997 aliases are also supported.  The full naming scheme encodes three pieces
35998 of information in the following pattern:
35999
36000 @smallexample
36001 @var{architecture}-@var{vendor}-@var{os}
36002 @end smallexample
36003
36004 For example, you can use the alias @code{sun4} as a @var{host} argument,
36005 or as the value for @var{target} in a @code{--target=@var{target}}
36006 option.  The equivalent full name is @samp{sparc-sun-sunos4}.
36007
36008 The @file{configure} script accompanying @value{GDBN} does not provide
36009 any query facility to list all supported host and target names or
36010 aliases.  @file{configure} calls the Bourne shell script
36011 @code{config.sub} to map abbreviations to full names; you can read the
36012 script, if you wish, or you can use it to test your guesses on
36013 abbreviations---for example:
36014
36015 @smallexample
36016 % sh config.sub i386-linux
36017 i386-pc-linux-gnu
36018 % sh config.sub alpha-linux
36019 alpha-unknown-linux-gnu
36020 % sh config.sub hp9k700
36021 hppa1.1-hp-hpux
36022 % sh config.sub sun4
36023 sparc-sun-sunos4.1.1
36024 % sh config.sub sun3
36025 m68k-sun-sunos4.1.1
36026 % sh config.sub i986v
36027 Invalid configuration `i986v': machine `i986v' not recognized
36028 @end smallexample
36029
36030 @noindent
36031 @code{config.sub} is also distributed in the @value{GDBN} source
36032 directory (@file{gdb-@value{GDBVN}}, for version @value{GDBVN}).
36033
36034 @node Configure Options
36035 @section @file{configure} Options
36036
36037 Here is a summary of the @file{configure} options and arguments that
36038 are most often useful for building @value{GDBN}.  @file{configure}
36039 also has several other options not listed here.  @inforef{Running
36040 configure scripts,,autoconf.info}, for a full
36041 explanation of @file{configure}.
36042
36043 @smallexample
36044 configure @r{[}--help@r{]}
36045           @r{[}--prefix=@var{dir}@r{]}
36046           @r{[}--exec-prefix=@var{dir}@r{]}
36047           @r{[}--srcdir=@var{dirname}@r{]}
36048           @r{[}--target=@var{target}@r{]}
36049 @end smallexample
36050
36051 @noindent
36052 You may introduce options with a single @samp{-} rather than
36053 @samp{--} if you prefer; but you may abbreviate option names if you use
36054 @samp{--}.
36055
36056 @table @code
36057 @item --help
36058 Display a quick summary of how to invoke @file{configure}.
36059
36060 @item --prefix=@var{dir}
36061 Configure the source to install programs and files under directory
36062 @file{@var{dir}}.
36063
36064 @item --exec-prefix=@var{dir}
36065 Configure the source to install programs under directory
36066 @file{@var{dir}}.
36067
36068 @c avoid splitting the warning from the explanation:
36069 @need 2000
36070 @item --srcdir=@var{dirname}
36071 Use this option to make configurations in directories separate from the
36072 @value{GDBN} source directories.  Among other things, you can use this to
36073 build (or maintain) several configurations simultaneously, in separate
36074 directories.  @file{configure} writes configuration-specific files in
36075 the current directory, but arranges for them to use the source in the
36076 directory @var{dirname}.  @file{configure} creates directories under
36077 the working directory in parallel to the source directories below
36078 @var{dirname}.
36079
36080 @item --target=@var{target}
36081 Configure @value{GDBN} for cross-debugging programs running on the specified
36082 @var{target}.  Without this option, @value{GDBN} is configured to debug
36083 programs that run on the same machine (@var{host}) as @value{GDBN} itself.
36084
36085 There is no convenient way to generate a list of all available
36086 targets.  Also see the @code{--enable-targets} option, below.
36087 @end table
36088
36089 There are many other options that are specific to @value{GDBN}.  This
36090 lists just the most common ones; there are some very specialized
36091 options not described here.
36092
36093 @table @code
36094 @item --enable-targets=@r{[}@var{target}@r{]}@dots{}
36095 @itemx --enable-targets=all
36096 Configure @value{GDBN} for cross-debugging programs running on the
36097 specified list of targets.  The special value @samp{all} configures
36098 @value{GDBN} for debugging programs running on any target it supports.
36099
36100 @item --with-gdb-datadir=@var{path}
36101 Set the @value{GDBN}-specific data directory.  @value{GDBN} will look
36102 here for certain supporting files or scripts.  This defaults to the
36103 @file{gdb} subdirectory of @samp{datadi} (which can be set using
36104 @code{--datadir}).
36105
36106 @item --with-relocated-sources=@var{dir}
36107 Sets up the default source path substitution rule so that directory
36108 names recorded in debug information will be automatically adjusted for
36109 any directory under @var{dir}.  @var{dir} should be a subdirectory of
36110 @value{GDBN}'s configured prefix, the one mentioned in the
36111 @code{--prefix} or @code{--exec-prefix} options to configure.  This
36112 option is useful if GDB is supposed to be moved to a different place
36113 after it is built.
36114
36115 @item --enable-64-bit-bfd
36116 Enable 64-bit support in BFD on 32-bit hosts.
36117
36118 @item --disable-gdbmi
36119 Build @value{GDBN} without the GDB/MI machine interface
36120 (@pxref{GDB/MI}).
36121
36122 @item --enable-tui
36123 Build @value{GDBN} with the text-mode full-screen user interface
36124 (TUI).  Requires a curses library (ncurses and cursesX are also
36125 supported).
36126
36127 @item --with-curses
36128 Use the curses library instead of the termcap library, for text-mode
36129 terminal operations.
36130
36131 @item --with-libunwind-ia64
36132 Use the libunwind library for unwinding function call stack on ia64
36133 target platforms.  See http://www.nongnu.org/libunwind/index.html for
36134 details.
36135
36136 @item --with-system-readline
36137 Use the readline library installed on the host, rather than the
36138 library supplied as part of @value{GDBN}.
36139
36140 @item --with-system-zlib
36141 Use the zlib library installed on the host, rather than the library
36142 supplied as part of @value{GDBN}.
36143
36144 @item --with-expat
36145 Build @value{GDBN} with Expat, a library for XML parsing.  (Done by
36146 default if libexpat is installed and found at configure time.)  This
36147 library is used to read XML files supplied with @value{GDBN}.  If it
36148 is unavailable, some features, such as remote protocol memory maps,
36149 target descriptions, and shared library lists, that are based on XML
36150 files, will not be available in @value{GDBN}.  If your host does not
36151 have libexpat installed, you can get the latest version from
36152 `http://expat.sourceforge.net'.
36153
36154 @item --with-libiconv-prefix@r{[}=@var{dir}@r{]}
36155
36156 Build @value{GDBN} with GNU libiconv, a character set encoding
36157 conversion library.  This is not done by default, as on GNU systems
36158 the @code{iconv} that is built in to the C library is sufficient.  If
36159 your host does not have a working @code{iconv}, you can get the latest
36160 version of GNU iconv from `https://www.gnu.org/software/libiconv/'.
36161
36162 @value{GDBN}'s build system also supports building GNU libiconv as
36163 part of the overall build.   @xref{Requirements}.
36164
36165 @item --with-lzma
36166 Build @value{GDBN} with LZMA, a compression library.  (Done by default
36167 if liblzma is installed and found at configure time.)  LZMA is used by
36168 @value{GDBN}'s "mini debuginfo" feature, which is only useful on
36169 platforms using the ELF object file format.  If your host does not
36170 have liblzma installed, you can get the latest version from
36171 `https://tukaani.org/xz/'.
36172
36173 @item --with-mpfr
36174 Build @value{GDBN} with GNU MPFR, a library for multiple-precision
36175 floating-point computation with correct rounding.  (Done by default if
36176 GNU MPFR is installed and found at configure time.)  This library is
36177 used to emulate target floating-point arithmetic during expression
36178 evaluation when the target uses different floating-point formats than
36179 the host.  If GNU MPFR is not available, @value{GDBN} will fall back
36180 to using host floating-point arithmetic.  If your host does not have
36181 GNU MPFR installed, you can get the latest version from
36182 `http://www.mpfr.org'.
36183
36184 @item --with-python@r{[}=@var{python}@r{]}
36185 Build @value{GDBN} with Python scripting support.  (Done by default if
36186 libpython is present and found at configure time.)  Python makes
36187 @value{GDBN} scripting much more powerful than the restricted CLI
36188 scripting language.  If your host does not have Python installed, you
36189 can find it on `http://www.python.org/download/'.  The oldest version
36190 of Python supported by GDB is 2.6.  The optional argument @var{python}
36191 is used to find the Python headers and libraries.  It can be either
36192 the name of a Python executable, or the name of the directory in which
36193 Python is installed.
36194
36195 @item --with-guile[=GUILE]'
36196 Build @value{GDBN} with GNU Guile scripting support.  (Done by default
36197 if libguile is present and found at configure time.)  If your host
36198 does not have Guile installed, you can find it at
36199 `https://www.gnu.org/software/guile/'.  The optional argument GUILE
36200 can be a version number, which will cause @code{configure} to try to
36201 use that version of Guile; or the file name of a @code{pkg-config}
36202 executable, which will be queried to find the information needed to
36203 compile and link against Guile.
36204
36205 @item --without-included-regex
36206 Don't use the regex library included with @value{GDBN} (as part of the
36207 libiberty library).  This is the default on hosts with version 2 of
36208 the GNU C library.
36209
36210 @item --with-sysroot=@var{dir}
36211 Use @var{dir} as the default system root directory for libraries whose
36212 file names begin with @file{/lib}' or @file{/usr/lib'}.  (The value of
36213 @var{dir} can be modified at run time by using the @command{set
36214 sysroot} command.)  If @var{dir} is under the @value{GDBN} configured
36215 prefix (set with @code{--prefix} or @code{--exec-prefix options}, the
36216 default system root will be automatically adjusted if and when
36217 @value{GDBN} is moved to a different location.
36218
36219 @item --with-system-gdbinit=@var{file}
36220 Configure @value{GDBN} to automatically load a system-wide init file.
36221 @var{file} should be an absolute file name.  If @var{file} is in a
36222 directory under the configured prefix, and @value{GDBN} is moved to
36223 another location after being built, the location of the system-wide
36224 init file will be adjusted accordingly.
36225
36226 @item --enable-build-warnings
36227 When building the @value{GDBN} sources, ask the compiler to warn about
36228 any code which looks even vaguely suspicious.  It passes many
36229 different warning flags, depending on the exact version of the
36230 compiler you are using.
36231
36232 @item --enable-werror
36233 Treat compiler warnings as werrors.  It adds the @code{-Werror} flag
36234 to the compiler, which will fail the compilation if the compiler
36235 outputs any warning messages.
36236
36237 @item --enable-ubsan
36238 Enable the GCC undefined behavior sanitizer.  This is disabled by
36239 default, but passing @code{--enable-ubsan=yes} or
36240 @code{--enable-ubsan=auto} to @code{configure} will enable it.  The
36241 undefined behavior sanitizer checks for C@t{++} undefined behavior.
36242 It has a performance cost, so if you are looking at @value{GDBN}'s
36243 performance, you should disable it.  The undefined behavior sanitizer
36244 was first introduced in GCC 4.9.
36245 @end table
36246
36247 @node System-wide configuration
36248 @section System-wide configuration and settings
36249 @cindex system-wide init file
36250
36251 @value{GDBN} can be configured to have a system-wide init file;
36252 this file will be read and executed at startup (@pxref{Startup, , What
36253 @value{GDBN} does during startup}).
36254
36255 Here is the corresponding configure option:
36256
36257 @table @code
36258 @item --with-system-gdbinit=@var{file}
36259 Specify that the default location of the system-wide init file is
36260 @var{file}.
36261 @end table
36262
36263 If @value{GDBN} has been configured with the option @option{--prefix=$prefix},
36264 it may be subject to relocation.  Two possible cases:
36265
36266 @itemize @bullet
36267 @item 
36268 If the default location of this init file contains @file{$prefix},
36269 it will be subject to relocation.  Suppose that the configure options
36270 are @option{--prefix=$prefix --with-system-gdbinit=$prefix/etc/gdbinit};
36271 if @value{GDBN} is moved from @file{$prefix} to @file{$install}, the system
36272 init file is looked for as @file{$install/etc/gdbinit} instead of
36273 @file{$prefix/etc/gdbinit}.
36274
36275 @item
36276 By contrast, if the default location does not contain the prefix,
36277 it will not be relocated.  E.g.@: if @value{GDBN} has been configured with
36278 @option{--prefix=/usr/local --with-system-gdbinit=/usr/share/gdb/gdbinit},
36279 then @value{GDBN} will always look for @file{/usr/share/gdb/gdbinit},
36280 wherever @value{GDBN} is installed.
36281 @end itemize
36282
36283 If the configured location of the system-wide init file (as given by the
36284 @option{--with-system-gdbinit} option at configure time) is in the
36285 data-directory (as specified by @option{--with-gdb-datadir} at configure
36286 time) or in one of its subdirectories, then @value{GDBN} will look for the
36287 system-wide init file in the directory specified by the
36288 @option{--data-directory} command-line option.
36289 Note that the system-wide init file is only read once, during @value{GDBN}
36290 initialization.  If the data-directory is changed after @value{GDBN} has
36291 started with the @code{set data-directory} command, the file will not be
36292 reread.
36293
36294 @menu
36295 * System-wide Configuration Scripts::  Installed System-wide Configuration Scripts
36296 @end menu
36297
36298 @node System-wide Configuration Scripts
36299 @subsection Installed System-wide Configuration Scripts
36300 @cindex system-wide configuration scripts
36301
36302 The @file{system-gdbinit} directory, located inside the data-directory
36303 (as specified by @option{--with-gdb-datadir} at configure time) contains
36304 a number of scripts which can be used as system-wide init files.  To
36305 automatically source those scripts at startup, @value{GDBN} should be
36306 configured with @option{--with-system-gdbinit}.  Otherwise, any user
36307 should be able to source them by hand as needed.
36308
36309 The following scripts are currently available:
36310 @itemize @bullet
36311
36312 @item @file{elinos.py}
36313 @pindex elinos.py
36314 @cindex ELinOS system-wide configuration script
36315 This script is useful when debugging a program on an ELinOS target.
36316 It takes advantage of the environment variables defined in a standard
36317 ELinOS environment in order to determine the location of the system
36318 shared libraries, and then sets the @samp{solib-absolute-prefix}
36319 and @samp{solib-search-path} variables appropriately.
36320
36321 @item @file{wrs-linux.py}
36322 @pindex wrs-linux.py
36323 @cindex Wind River Linux system-wide configuration script
36324 This script is useful when debugging a program on a target running
36325 Wind River Linux.  It expects the @env{ENV_PREFIX} to be set to
36326 the host-side sysroot used by the target system.
36327
36328 @end itemize
36329
36330 @node Maintenance Commands
36331 @appendix Maintenance Commands
36332 @cindex maintenance commands
36333 @cindex internal commands
36334
36335 In addition to commands intended for @value{GDBN} users, @value{GDBN}
36336 includes a number of commands intended for @value{GDBN} developers,
36337 that are not documented elsewhere in this manual.  These commands are
36338 provided here for reference.  (For commands that turn on debugging
36339 messages, see @ref{Debugging Output}.)
36340
36341 @table @code
36342 @kindex maint agent
36343 @kindex maint agent-eval
36344 @item maint agent @r{[}-at @var{location}@r{,}@r{]} @var{expression}
36345 @itemx maint agent-eval @r{[}-at @var{location}@r{,}@r{]} @var{expression}
36346 Translate the given @var{expression} into remote agent bytecodes.
36347 This command is useful for debugging the Agent Expression mechanism
36348 (@pxref{Agent Expressions}).  The @samp{agent} version produces an
36349 expression useful for data collection, such as by tracepoints, while
36350 @samp{maint agent-eval} produces an expression that evaluates directly
36351 to a result.  For instance, a collection expression for @code{globa +
36352 globb} will include bytecodes to record four bytes of memory at each
36353 of the addresses of @code{globa} and @code{globb}, while discarding
36354 the result of the addition, while an evaluation expression will do the
36355 addition and return the sum.
36356 If @code{-at} is given, generate remote agent bytecode for @var{location}.
36357 If not, generate remote agent bytecode for current frame PC address.
36358
36359 @kindex maint agent-printf
36360 @item maint agent-printf @var{format},@var{expr},...
36361 Translate the given format string and list of argument expressions
36362 into remote agent bytecodes and display them as a disassembled list.
36363 This command is useful for debugging the agent version of dynamic
36364 printf (@pxref{Dynamic Printf}).
36365
36366 @kindex maint info breakpoints
36367 @item @anchor{maint info breakpoints}maint info breakpoints
36368 Using the same format as @samp{info breakpoints}, display both the
36369 breakpoints you've set explicitly, and those @value{GDBN} is using for
36370 internal purposes.  Internal breakpoints are shown with negative
36371 breakpoint numbers.  The type column identifies what kind of breakpoint
36372 is shown:
36373
36374 @table @code
36375 @item breakpoint
36376 Normal, explicitly set breakpoint.
36377
36378 @item watchpoint
36379 Normal, explicitly set watchpoint.
36380
36381 @item longjmp
36382 Internal breakpoint, used to handle correctly stepping through
36383 @code{longjmp} calls.
36384
36385 @item longjmp resume
36386 Internal breakpoint at the target of a @code{longjmp}.
36387
36388 @item until
36389 Temporary internal breakpoint used by the @value{GDBN} @code{until} command.
36390
36391 @item finish
36392 Temporary internal breakpoint used by the @value{GDBN} @code{finish} command.
36393
36394 @item shlib events
36395 Shared library events.
36396
36397 @end table
36398
36399 @kindex maint info btrace
36400 @item maint info btrace
36401 Pint information about raw branch tracing data.
36402
36403 @kindex maint btrace packet-history
36404 @item maint btrace packet-history
36405 Print the raw branch trace packets that are used to compute the
36406 execution history for the @samp{record btrace} command.  Both the
36407 information and the format in which it is printed depend on the btrace
36408 recording format.
36409
36410 @table @code
36411 @item bts
36412 For the BTS recording format, print a list of blocks of sequential
36413 code.  For each block, the following information is printed:
36414
36415 @table @asis
36416 @item Block number
36417 Newer blocks have higher numbers.  The oldest block has number zero.
36418 @item Lowest @samp{PC}
36419 @item Highest @samp{PC}
36420 @end table
36421
36422 @item pt
36423 For the Intel Processor Trace recording format, print a list of
36424 Intel Processor Trace packets.  For each packet, the following
36425 information is printed:
36426
36427 @table @asis
36428 @item Packet number
36429 Newer packets have higher numbers.  The oldest packet has number zero.
36430 @item Trace offset
36431 The packet's offset in the trace stream.
36432 @item Packet opcode and payload
36433 @end table
36434 @end table
36435
36436 @kindex maint btrace clear-packet-history
36437 @item maint btrace clear-packet-history
36438 Discards the cached packet history printed by the @samp{maint btrace
36439 packet-history} command.  The history will be computed again when
36440 needed.
36441
36442 @kindex maint btrace clear
36443 @item maint btrace clear
36444 Discard the branch trace data.  The data will be fetched anew and the
36445 branch trace will be recomputed when needed.
36446
36447 This implicitly truncates the branch trace to a single branch trace
36448 buffer.  When updating branch trace incrementally, the branch trace
36449 available to @value{GDBN} may be bigger than a single branch trace
36450 buffer.
36451
36452 @kindex maint set btrace pt skip-pad
36453 @item maint set btrace pt skip-pad
36454 @kindex maint show btrace pt skip-pad
36455 @item maint show btrace pt skip-pad
36456 Control whether @value{GDBN} will skip PAD packets when computing the
36457 packet history.
36458
36459 @kindex set displaced-stepping
36460 @kindex show displaced-stepping
36461 @cindex displaced stepping support
36462 @cindex out-of-line single-stepping
36463 @item set displaced-stepping
36464 @itemx show displaced-stepping
36465 Control whether or not @value{GDBN} will do @dfn{displaced stepping}
36466 if the target supports it.  Displaced stepping is a way to single-step
36467 over breakpoints without removing them from the inferior, by executing
36468 an out-of-line copy of the instruction that was originally at the
36469 breakpoint location.  It is also known as out-of-line single-stepping.
36470
36471 @table @code
36472 @item set displaced-stepping on
36473 If the target architecture supports it, @value{GDBN} will use
36474 displaced stepping to step over breakpoints.
36475
36476 @item set displaced-stepping off
36477 @value{GDBN} will not use displaced stepping to step over breakpoints,
36478 even if such is supported by the target architecture.
36479
36480 @cindex non-stop mode, and @samp{set displaced-stepping}
36481 @item set displaced-stepping auto
36482 This is the default mode.  @value{GDBN} will use displaced stepping
36483 only if non-stop mode is active (@pxref{Non-Stop Mode}) and the target
36484 architecture supports displaced stepping.
36485 @end table
36486
36487 @kindex maint check-psymtabs
36488 @item maint check-psymtabs
36489 Check the consistency of currently expanded psymtabs versus symtabs.
36490 Use this to check, for example, whether a symbol is in one but not the other.
36491
36492 @kindex maint check-symtabs
36493 @item maint check-symtabs
36494 Check the consistency of currently expanded symtabs.
36495
36496 @kindex maint expand-symtabs
36497 @item maint expand-symtabs [@var{regexp}]
36498 Expand symbol tables.
36499 If @var{regexp} is specified, only expand symbol tables for file
36500 names matching @var{regexp}.
36501
36502 @kindex maint set catch-demangler-crashes
36503 @kindex maint show catch-demangler-crashes
36504 @cindex demangler crashes
36505 @item maint set catch-demangler-crashes [on|off]
36506 @itemx maint show catch-demangler-crashes
36507 Control whether @value{GDBN} should attempt to catch crashes in the
36508 symbol name demangler.  The default is to attempt to catch crashes.
36509 If enabled, the first time a crash is caught, a core file is created,
36510 the offending symbol is displayed and the user is presented with the
36511 option to terminate the current session.
36512
36513 @kindex maint cplus first_component
36514 @item maint cplus first_component @var{name}
36515 Print the first C@t{++} class/namespace component of @var{name}.
36516
36517 @kindex maint cplus namespace
36518 @item maint cplus namespace
36519 Print the list of possible C@t{++} namespaces.
36520
36521 @kindex maint deprecate
36522 @kindex maint undeprecate
36523 @cindex deprecated commands
36524 @item maint deprecate @var{command} @r{[}@var{replacement}@r{]}
36525 @itemx maint undeprecate @var{command}
36526 Deprecate or undeprecate the named @var{command}.  Deprecated commands
36527 cause @value{GDBN} to issue a warning when you use them.  The optional
36528 argument @var{replacement} says which newer command should be used in
36529 favor of the deprecated one; if it is given, @value{GDBN} will mention
36530 the replacement as part of the warning.
36531
36532 @kindex maint dump-me
36533 @item maint dump-me
36534 @cindex @code{SIGQUIT} signal, dump core of @value{GDBN}
36535 Cause a fatal signal in the debugger and force it to dump its core.
36536 This is supported only on systems which support aborting a program
36537 with the @code{SIGQUIT} signal.
36538
36539 @kindex maint internal-error
36540 @kindex maint internal-warning
36541 @kindex maint demangler-warning
36542 @cindex demangler crashes
36543 @item maint internal-error @r{[}@var{message-text}@r{]}
36544 @itemx maint internal-warning @r{[}@var{message-text}@r{]}
36545 @itemx maint demangler-warning @r{[}@var{message-text}@r{]}
36546
36547 Cause @value{GDBN} to call the internal function @code{internal_error},
36548 @code{internal_warning} or @code{demangler_warning} and hence behave
36549 as though an internal problem has been detected.  In addition to
36550 reporting the internal problem, these functions give the user the
36551 opportunity to either quit @value{GDBN} or (for @code{internal_error}
36552 and @code{internal_warning}) create a core file of the current
36553 @value{GDBN} session.
36554
36555 These commands take an optional parameter @var{message-text} that is
36556 used as the text of the error or warning message.
36557
36558 Here's an example of using @code{internal-error}:
36559
36560 @smallexample
36561 (@value{GDBP}) @kbd{maint internal-error testing, 1, 2}
36562 @dots{}/maint.c:121: internal-error: testing, 1, 2
36563 A problem internal to GDB has been detected.  Further
36564 debugging may prove unreliable.
36565 Quit this debugging session? (y or n) @kbd{n}
36566 Create a core file? (y or n) @kbd{n}
36567 (@value{GDBP})
36568 @end smallexample
36569
36570 @cindex @value{GDBN} internal error
36571 @cindex internal errors, control of @value{GDBN} behavior
36572 @cindex demangler crashes
36573
36574 @kindex maint set internal-error
36575 @kindex maint show internal-error
36576 @kindex maint set internal-warning
36577 @kindex maint show internal-warning
36578 @kindex maint set demangler-warning
36579 @kindex maint show demangler-warning
36580 @item maint set internal-error @var{action} [ask|yes|no]
36581 @itemx maint show internal-error @var{action}
36582 @itemx maint set internal-warning @var{action} [ask|yes|no]
36583 @itemx maint show internal-warning @var{action}
36584 @itemx maint set demangler-warning @var{action} [ask|yes|no]
36585 @itemx maint show demangler-warning @var{action}
36586 When @value{GDBN} reports an internal problem (error or warning) it
36587 gives the user the opportunity to both quit @value{GDBN} and create a
36588 core file of the current @value{GDBN} session.  These commands let you
36589 override the default behaviour for each particular @var{action},
36590 described in the table below.
36591
36592 @table @samp
36593 @item quit
36594 You can specify that @value{GDBN} should always (yes) or never (no)
36595 quit.  The default is to ask the user what to do.
36596
36597 @item corefile
36598 You can specify that @value{GDBN} should always (yes) or never (no)
36599 create a core file.  The default is to ask the user what to do.  Note
36600 that there is no @code{corefile} option for @code{demangler-warning}:
36601 demangler warnings always create a core file and this cannot be
36602 disabled.
36603 @end table
36604
36605 @kindex maint packet
36606 @item maint packet @var{text}
36607 If @value{GDBN} is talking to an inferior via the serial protocol,
36608 then this command sends the string @var{text} to the inferior, and
36609 displays the response packet.  @value{GDBN} supplies the initial
36610 @samp{$} character, the terminating @samp{#} character, and the
36611 checksum.
36612
36613 @kindex maint print architecture
36614 @item maint print architecture @r{[}@var{file}@r{]}
36615 Print the entire architecture configuration.  The optional argument
36616 @var{file} names the file where the output goes.
36617
36618 @kindex maint print c-tdesc @r{[}@var{file}@r{]}
36619 @item maint print c-tdesc
36620 Print the target description (@pxref{Target Descriptions}) as
36621 a C source file.  By default, the target description is for the current
36622 target, but if the optional argument @var{file} is provided, that file
36623 is used to produce the description.  The @var{file} should be an XML
36624 document, of the form described in @ref{Target Description Format}.
36625 The created source file is built into @value{GDBN} when @value{GDBN} is
36626 built again.  This command is used by developers after they add or
36627 modify XML target descriptions.
36628
36629 @kindex maint check xml-descriptions
36630 @item maint check xml-descriptions @var{dir}
36631 Check that the target descriptions dynamically created by @value{GDBN}
36632 equal the descriptions created from XML files found in @var{dir}.
36633
36634 @anchor{maint check libthread-db}
36635 @kindex maint check libthread-db
36636 @item maint check libthread-db
36637 Run integrity checks on the current inferior's thread debugging
36638 library.  This exercises all @code{libthread_db} functionality used by
36639 @value{GDBN} on GNU/Linux systems, and by extension also exercises the
36640 @code{proc_service} functions provided by @value{GDBN} that
36641 @code{libthread_db} uses.  Note that parts of the test may be skipped
36642 on some platforms when debugging core files.
36643
36644 @kindex maint print dummy-frames
36645 @item maint print dummy-frames
36646 Prints the contents of @value{GDBN}'s internal dummy-frame stack.
36647
36648 @smallexample
36649 (@value{GDBP}) @kbd{b add}
36650 @dots{}
36651 (@value{GDBP}) @kbd{print add(2,3)}
36652 Breakpoint 2, add (a=2, b=3) at @dots{}
36653 58        return (a + b);
36654 The program being debugged stopped while in a function called from GDB.
36655 @dots{}
36656 (@value{GDBP}) @kbd{maint print dummy-frames}
36657 0xa8206d8: id=@{stack=0xbfffe734,code=0xbfffe73f,!special@}, ptid=process 9353
36658 (@value{GDBP})
36659 @end smallexample
36660
36661 Takes an optional file parameter.
36662
36663 @kindex maint print registers
36664 @kindex maint print raw-registers
36665 @kindex maint print cooked-registers
36666 @kindex maint print register-groups
36667 @kindex maint print remote-registers
36668 @item maint print registers @r{[}@var{file}@r{]}
36669 @itemx maint print raw-registers @r{[}@var{file}@r{]}
36670 @itemx maint print cooked-registers @r{[}@var{file}@r{]}
36671 @itemx maint print register-groups @r{[}@var{file}@r{]}
36672 @itemx maint print remote-registers @r{[}@var{file}@r{]}
36673 Print @value{GDBN}'s internal register data structures.
36674
36675 The command @code{maint print raw-registers} includes the contents of
36676 the raw register cache; the command @code{maint print
36677 cooked-registers} includes the (cooked) value of all registers,
36678 including registers which aren't available on the target nor visible
36679 to user; the command @code{maint print register-groups} includes the
36680 groups that each register is a member of; and the command @code{maint
36681 print remote-registers} includes the remote target's register numbers
36682 and offsets in the `G' packets.
36683
36684 These commands take an optional parameter, a file name to which to
36685 write the information.
36686
36687 @kindex maint print reggroups
36688 @item maint print reggroups @r{[}@var{file}@r{]}
36689 Print @value{GDBN}'s internal register group data structures.  The
36690 optional argument @var{file} tells to what file to write the
36691 information.
36692
36693 The register groups info looks like this:
36694
36695 @smallexample
36696 (@value{GDBP}) @kbd{maint print reggroups}
36697  Group      Type
36698  general    user
36699  float      user
36700  all        user
36701  vector     user
36702  system     user
36703  save       internal
36704  restore    internal
36705 @end smallexample
36706
36707 @kindex flushregs
36708 @item flushregs
36709 This command forces @value{GDBN} to flush its internal register cache.
36710
36711 @kindex maint print objfiles
36712 @cindex info for known object files
36713 @item maint print objfiles @r{[}@var{regexp}@r{]}
36714 Print a dump of all known object files.
36715 If @var{regexp} is specified, only print object files whose names
36716 match @var{regexp}.  For each object file, this command prints its name,
36717 address in memory, and all of its psymtabs and symtabs.
36718
36719 @kindex maint print user-registers
36720 @cindex user registers
36721 @item maint print user-registers
36722 List all currently available @dfn{user registers}.  User registers
36723 typically provide alternate names for actual hardware registers.  They
36724 include the four ``standard'' registers @code{$fp}, @code{$pc},
36725 @code{$sp}, and @code{$ps}.  @xref{standard registers}.  User
36726 registers can be used in expressions in the same way as the canonical
36727 register names, but only the latter are listed by the @code{info
36728 registers} and @code{maint print registers} commands.
36729
36730 @kindex maint print section-scripts
36731 @cindex info for known .debug_gdb_scripts-loaded scripts
36732 @item maint print section-scripts [@var{regexp}]
36733 Print a dump of scripts specified in the @code{.debug_gdb_section} section.
36734 If @var{regexp} is specified, only print scripts loaded by object files
36735 matching @var{regexp}.
36736 For each script, this command prints its name as specified in the objfile,
36737 and the full path if known.
36738 @xref{dotdebug_gdb_scripts section}.
36739
36740 @kindex maint print statistics
36741 @cindex bcache statistics
36742 @item maint print statistics
36743 This command prints, for each object file in the program, various data
36744 about that object file followed by the byte cache (@dfn{bcache})
36745 statistics for the object file.  The objfile data includes the number
36746 of minimal, partial, full, and stabs symbols, the number of types
36747 defined by the objfile, the number of as yet unexpanded psym tables,
36748 the number of line tables and string tables, and the amount of memory
36749 used by the various tables.  The bcache statistics include the counts,
36750 sizes, and counts of duplicates of all and unique objects, max,
36751 average, and median entry size, total memory used and its overhead and
36752 savings, and various measures of the hash table size and chain
36753 lengths.
36754
36755 @kindex maint print target-stack
36756 @cindex target stack description
36757 @item maint print target-stack
36758 A @dfn{target} is an interface between the debugger and a particular
36759 kind of file or process.  Targets can be stacked in @dfn{strata},
36760 so that more than one target can potentially respond to a request.
36761 In particular, memory accesses will walk down the stack of targets
36762 until they find a target that is interested in handling that particular
36763 address.
36764
36765 This command prints a short description of each layer that was pushed on
36766 the @dfn{target stack}, starting from the top layer down to the bottom one.
36767
36768 @kindex maint print type
36769 @cindex type chain of a data type
36770 @item maint print type @var{expr}
36771 Print the type chain for a type specified by @var{expr}.  The argument
36772 can be either a type name or a symbol.  If it is a symbol, the type of
36773 that symbol is described.  The type chain produced by this command is
36774 a recursive definition of the data type as stored in @value{GDBN}'s
36775 data structures, including its flags and contained types.
36776
36777 @kindex maint selftest
36778 @cindex self tests
36779 @item maint selftest @r{[}@var{filter}@r{]}
36780 Run any self tests that were compiled in to @value{GDBN}.  This will
36781 print a message showing how many tests were run, and how many failed.
36782 If a @var{filter} is passed, only the tests with @var{filter} in their
36783 name will by ran.
36784
36785 @kindex "maint info selftests"
36786 @cindex self tests
36787 @item maint info selftests
36788 List the selftests compiled in to @value{GDBN}.
36789
36790 @kindex maint set dwarf always-disassemble
36791 @kindex maint show dwarf always-disassemble
36792 @item maint set dwarf always-disassemble
36793 @item maint show dwarf always-disassemble
36794 Control the behavior of @code{info address} when using DWARF debugging
36795 information.
36796
36797 The default is @code{off}, which means that @value{GDBN} should try to
36798 describe a variable's location in an easily readable format.  When
36799 @code{on}, @value{GDBN} will instead display the DWARF location
36800 expression in an assembly-like format.  Note that some locations are
36801 too complex for @value{GDBN} to describe simply; in this case you will
36802 always see the disassembly form.
36803
36804 Here is an example of the resulting disassembly:
36805
36806 @smallexample
36807 (gdb) info addr argc
36808 Symbol "argc" is a complex DWARF expression:
36809      1: DW_OP_fbreg 0
36810 @end smallexample
36811
36812 For more information on these expressions, see
36813 @uref{http://www.dwarfstd.org/, the DWARF standard}.
36814
36815 @kindex maint set dwarf max-cache-age
36816 @kindex maint show dwarf max-cache-age
36817 @item maint set dwarf max-cache-age
36818 @itemx maint show dwarf max-cache-age
36819 Control the DWARF compilation unit cache.
36820
36821 @cindex DWARF compilation units cache
36822 In object files with inter-compilation-unit references, such as those
36823 produced by the GCC option @samp{-feliminate-dwarf2-dups}, the DWARF
36824 reader needs to frequently refer to previously read compilation units.
36825 This setting controls how long a compilation unit will remain in the
36826 cache if it is not referenced.  A higher limit means that cached
36827 compilation units will be stored in memory longer, and more total
36828 memory will be used.  Setting it to zero disables caching, which will
36829 slow down @value{GDBN} startup, but reduce memory consumption.
36830
36831 @kindex maint set dwarf unwinders
36832 @kindex maint show dwarf unwinders
36833 @item maint set dwarf unwinders
36834 @itemx maint show dwarf unwinders
36835 Control use of the DWARF frame unwinders.
36836
36837 @cindex DWARF frame unwinders
36838 Many targets that support DWARF debugging use @value{GDBN}'s DWARF
36839 frame unwinders to build the backtrace.  Many of these targets will
36840 also have a second mechanism for building the backtrace for use in
36841 cases where DWARF information is not available, this second mechanism
36842 is often an analysis of a function's prologue.
36843
36844 In order to extend testing coverage of the second level stack
36845 unwinding mechanisms it is helpful to be able to disable the DWARF
36846 stack unwinders, this can be done with this switch.
36847
36848 In normal use of @value{GDBN} disabling the DWARF unwinders is not
36849 advisable, there are cases that are better handled through DWARF than
36850 prologue analysis, and the debug experience is likely to be better
36851 with the DWARF frame unwinders enabled.
36852
36853 If DWARF frame unwinders are not supported for a particular target
36854 architecture, then enabling this flag does not cause them to be used.
36855 @kindex maint set profile
36856 @kindex maint show profile
36857 @cindex profiling GDB
36858 @item maint set profile
36859 @itemx maint show profile
36860 Control profiling of @value{GDBN}.
36861
36862 Profiling will be disabled until you use the @samp{maint set profile}
36863 command to enable it.  When you enable profiling, the system will begin
36864 collecting timing and execution count data; when you disable profiling or
36865 exit @value{GDBN}, the results will be written to a log file.  Remember that
36866 if you use profiling, @value{GDBN} will overwrite the profiling log file
36867 (often called @file{gmon.out}).  If you have a record of important profiling
36868 data in a @file{gmon.out} file, be sure to move it to a safe location.
36869
36870 Configuring with @samp{--enable-profiling} arranges for @value{GDBN} to be
36871 compiled with the @samp{-pg} compiler option.
36872
36873 @kindex maint set show-debug-regs
36874 @kindex maint show show-debug-regs
36875 @cindex hardware debug registers
36876 @item maint set show-debug-regs
36877 @itemx maint show show-debug-regs
36878 Control whether to show variables that mirror the hardware debug
36879 registers.  Use @code{on} to enable, @code{off} to disable.  If
36880 enabled, the debug registers values are shown when @value{GDBN} inserts or
36881 removes a hardware breakpoint or watchpoint, and when the inferior
36882 triggers a hardware-assisted breakpoint or watchpoint.
36883
36884 @kindex maint set show-all-tib
36885 @kindex maint show show-all-tib
36886 @item maint set show-all-tib
36887 @itemx maint show show-all-tib
36888 Control whether to show all non zero areas within a 1k block starting
36889 at thread local base, when using the @samp{info w32 thread-information-block}
36890 command.
36891
36892 @kindex maint set target-async
36893 @kindex maint show target-async
36894 @item maint set target-async
36895 @itemx maint show target-async
36896 This controls whether @value{GDBN} targets operate in synchronous or
36897 asynchronous mode (@pxref{Background Execution}).  Normally the
36898 default is asynchronous, if it is available; but this can be changed
36899 to more easily debug problems occurring only in synchronous mode.
36900
36901 @kindex maint set target-non-stop @var{mode} [on|off|auto]
36902 @kindex maint show target-non-stop
36903 @item maint set target-non-stop
36904 @itemx maint show target-non-stop
36905
36906 This controls whether @value{GDBN} targets always operate in non-stop
36907 mode even if @code{set non-stop} is @code{off} (@pxref{Non-Stop
36908 Mode}).  The default is @code{auto}, meaning non-stop mode is enabled
36909 if supported by the target.
36910
36911 @table @code
36912 @item maint set target-non-stop auto
36913 This is the default mode.  @value{GDBN} controls the target in
36914 non-stop mode if the target supports it.
36915
36916 @item maint set target-non-stop on
36917 @value{GDBN} controls the target in non-stop mode even if the target
36918 does not indicate support.
36919
36920 @item maint set target-non-stop off
36921 @value{GDBN} does not control the target in non-stop mode even if the
36922 target supports it.
36923 @end table
36924
36925 @kindex maint set per-command
36926 @kindex maint show per-command
36927 @item maint set per-command
36928 @itemx maint show per-command
36929 @cindex resources used by commands
36930
36931 @value{GDBN} can display the resources used by each command.
36932 This is useful in debugging performance problems.
36933
36934 @table @code
36935 @item maint set per-command space [on|off]
36936 @itemx maint show per-command space
36937 Enable or disable the printing of the memory used by GDB for each command.
36938 If enabled, @value{GDBN} will display how much memory each command
36939 took, following the command's own output.
36940 This can also be requested by invoking @value{GDBN} with the
36941 @option{--statistics} command-line switch (@pxref{Mode Options}).
36942
36943 @item maint set per-command time [on|off]
36944 @itemx maint show per-command time
36945 Enable or disable the printing of the execution time of @value{GDBN}
36946 for each command.
36947 If enabled, @value{GDBN} will display how much time it
36948 took to execute each command, following the command's own output.
36949 Both CPU time and wallclock time are printed.
36950 Printing both is useful when trying to determine whether the cost is
36951 CPU or, e.g., disk/network latency.
36952 Note that the CPU time printed is for @value{GDBN} only, it does not include
36953 the execution time of the inferior because there's no mechanism currently
36954 to compute how much time was spent by @value{GDBN} and how much time was
36955 spent by the program been debugged.
36956 This can also be requested by invoking @value{GDBN} with the
36957 @option{--statistics} command-line switch (@pxref{Mode Options}).
36958
36959 @item maint set per-command symtab [on|off]
36960 @itemx maint show per-command symtab
36961 Enable or disable the printing of basic symbol table statistics
36962 for each command.
36963 If enabled, @value{GDBN} will display the following information:
36964
36965 @enumerate a
36966 @item
36967 number of symbol tables
36968 @item
36969 number of primary symbol tables
36970 @item
36971 number of blocks in the blockvector
36972 @end enumerate
36973 @end table
36974
36975 @kindex maint set check-libthread-db
36976 @kindex maint show check-libthread-db
36977 @item maint set check-libthread-db [on|off]
36978 @itemx maint show check-libthread-db
36979 Control whether @value{GDBN} should run integrity checks on inferior
36980 specific thread debugging libraries as they are loaded.  The default
36981 is not to perform such checks.  If any check fails @value{GDBN} will
36982 unload the library and continue searching for a suitable candidate as
36983 described in @ref{set libthread-db-search-path}.  For more information
36984 about the tests, see @ref{maint check libthread-db}.
36985
36986 @kindex maint space
36987 @cindex memory used by commands
36988 @item maint space @var{value}
36989 An alias for @code{maint set per-command space}.
36990 A non-zero value enables it, zero disables it.
36991
36992 @kindex maint time
36993 @cindex time of command execution
36994 @item maint time @var{value}
36995 An alias for @code{maint set per-command time}.
36996 A non-zero value enables it, zero disables it.
36997
36998 @kindex maint translate-address
36999 @item maint translate-address @r{[}@var{section}@r{]} @var{addr}
37000 Find the symbol stored at the location specified by the address
37001 @var{addr} and an optional section name @var{section}.  If found,
37002 @value{GDBN} prints the name of the closest symbol and an offset from
37003 the symbol's location to the specified address.  This is similar to
37004 the @code{info address} command (@pxref{Symbols}), except that this
37005 command also allows to find symbols in other sections.
37006
37007 If section was not specified, the section in which the symbol was found
37008 is also printed.  For dynamically linked executables, the name of
37009 executable or shared library containing the symbol is printed as well.
37010
37011 @end table
37012
37013 The following command is useful for non-interactive invocations of
37014 @value{GDBN}, such as in the test suite.
37015
37016 @table @code
37017 @item set watchdog @var{nsec}
37018 @kindex set watchdog
37019 @cindex watchdog timer
37020 @cindex timeout for commands
37021 Set the maximum number of seconds @value{GDBN} will wait for the
37022 target operation to finish.  If this time expires, @value{GDBN}
37023 reports and error and the command is aborted.
37024
37025 @item show watchdog
37026 Show the current setting of the target wait timeout.
37027 @end table
37028
37029 @node Remote Protocol
37030 @appendix @value{GDBN} Remote Serial Protocol
37031
37032 @menu
37033 * Overview::
37034 * Packets::
37035 * Stop Reply Packets::
37036 * General Query Packets::
37037 * Architecture-Specific Protocol Details::
37038 * Tracepoint Packets::
37039 * Host I/O Packets::
37040 * Interrupts::
37041 * Notification Packets::
37042 * Remote Non-Stop::
37043 * Packet Acknowledgment::
37044 * Examples::
37045 * File-I/O Remote Protocol Extension::
37046 * Library List Format::
37047 * Library List Format for SVR4 Targets::
37048 * Memory Map Format::
37049 * Thread List Format::
37050 * Traceframe Info Format::
37051 * Branch Trace Format::
37052 * Branch Trace Configuration Format::
37053 @end menu
37054
37055 @node Overview
37056 @section Overview
37057
37058 There may be occasions when you need to know something about the
37059 protocol---for example, if there is only one serial port to your target
37060 machine, you might want your program to do something special if it
37061 recognizes a packet meant for @value{GDBN}.
37062
37063 In the examples below, @samp{->} and @samp{<-} are used to indicate
37064 transmitted and received data, respectively.
37065
37066 @cindex protocol, @value{GDBN} remote serial
37067 @cindex serial protocol, @value{GDBN} remote
37068 @cindex remote serial protocol
37069 All @value{GDBN} commands and responses (other than acknowledgments
37070 and notifications, see @ref{Notification Packets}) are sent as a
37071 @var{packet}.  A @var{packet} is introduced with the character
37072 @samp{$}, the actual @var{packet-data}, and the terminating character
37073 @samp{#} followed by a two-digit @var{checksum}:
37074
37075 @smallexample
37076 @code{$}@var{packet-data}@code{#}@var{checksum}
37077 @end smallexample
37078 @noindent
37079
37080 @cindex checksum, for @value{GDBN} remote
37081 @noindent
37082 The two-digit @var{checksum} is computed as the modulo 256 sum of all
37083 characters between the leading @samp{$} and the trailing @samp{#} (an
37084 eight bit unsigned checksum).
37085
37086 Implementors should note that prior to @value{GDBN} 5.0 the protocol
37087 specification also included an optional two-digit @var{sequence-id}:
37088
37089 @smallexample
37090 @code{$}@var{sequence-id}@code{:}@var{packet-data}@code{#}@var{checksum}
37091 @end smallexample
37092
37093 @cindex sequence-id, for @value{GDBN} remote
37094 @noindent
37095 That @var{sequence-id} was appended to the acknowledgment.  @value{GDBN}
37096 has never output @var{sequence-id}s.  Stubs that handle packets added
37097 since @value{GDBN} 5.0 must not accept @var{sequence-id}.
37098
37099 When either the host or the target machine receives a packet, the first
37100 response expected is an acknowledgment: either @samp{+} (to indicate
37101 the package was received correctly) or @samp{-} (to request
37102 retransmission):
37103
37104 @smallexample
37105 -> @code{$}@var{packet-data}@code{#}@var{checksum}
37106 <- @code{+}
37107 @end smallexample
37108 @noindent
37109
37110 The @samp{+}/@samp{-} acknowledgments can be disabled
37111 once a connection is established.
37112 @xref{Packet Acknowledgment}, for details.
37113
37114 The host (@value{GDBN}) sends @var{command}s, and the target (the
37115 debugging stub incorporated in your program) sends a @var{response}.  In
37116 the case of step and continue @var{command}s, the response is only sent
37117 when the operation has completed, and the target has again stopped all
37118 threads in all attached processes.  This is the default all-stop mode
37119 behavior, but the remote protocol also supports @value{GDBN}'s non-stop 
37120 execution mode; see @ref{Remote Non-Stop}, for details.
37121
37122 @var{packet-data} consists of a sequence of characters with the
37123 exception of @samp{#} and @samp{$} (see @samp{X} packet for additional
37124 exceptions).
37125
37126 @cindex remote protocol, field separator
37127 Fields within the packet should be separated using @samp{,} @samp{;} or
37128 @samp{:}.  Except where otherwise noted all numbers are represented in
37129 @sc{hex} with leading zeros suppressed.
37130
37131 Implementors should note that prior to @value{GDBN} 5.0, the character
37132 @samp{:} could not appear as the third character in a packet (as it
37133 would potentially conflict with the @var{sequence-id}).
37134
37135 @cindex remote protocol, binary data
37136 @anchor{Binary Data}
37137 Binary data in most packets is encoded either as two hexadecimal
37138 digits per byte of binary data.  This allowed the traditional remote
37139 protocol to work over connections which were only seven-bit clean.
37140 Some packets designed more recently assume an eight-bit clean
37141 connection, and use a more efficient encoding to send and receive
37142 binary data.
37143
37144 The binary data representation uses @code{7d} (@sc{ascii} @samp{@}})
37145 as an escape character.  Any escaped byte is transmitted as the escape
37146 character followed by the original character XORed with @code{0x20}.
37147 For example, the byte @code{0x7d} would be transmitted as the two
37148 bytes @code{0x7d 0x5d}.  The bytes @code{0x23} (@sc{ascii} @samp{#}),
37149 @code{0x24} (@sc{ascii} @samp{$}), and @code{0x7d} (@sc{ascii}
37150 @samp{@}}) must always be escaped.  Responses sent by the stub
37151 must also escape @code{0x2a} (@sc{ascii} @samp{*}), so that it
37152 is not interpreted as the start of a run-length encoded sequence
37153 (described next).
37154
37155 Response @var{data} can be run-length encoded to save space.
37156 Run-length encoding replaces runs of identical characters with one
37157 instance of the repeated character, followed by a @samp{*} and a
37158 repeat count.  The repeat count is itself sent encoded, to avoid
37159 binary characters in @var{data}: a value of @var{n} is sent as
37160 @code{@var{n}+29}.  For a repeat count greater or equal to 3, this
37161 produces a printable @sc{ascii} character, e.g.@: a space (@sc{ascii}
37162 code 32) for a repeat count of 3.  (This is because run-length
37163 encoding starts to win for counts 3 or more.)  Thus, for example,
37164 @samp{0* } is a run-length encoding of ``0000'': the space character
37165 after @samp{*} means repeat the leading @code{0} @w{@code{32 - 29 =
37166 3}} more times.
37167
37168 The printable characters @samp{#} and @samp{$} or with a numeric value
37169 greater than 126 must not be used.  Runs of six repeats (@samp{#}) or
37170 seven repeats (@samp{$}) can be expanded using a repeat count of only
37171 five (@samp{"}).  For example, @samp{00000000} can be encoded as
37172 @samp{0*"00}.
37173
37174 The error response returned for some packets includes a two character
37175 error number.  That number is not well defined.
37176
37177 @cindex empty response, for unsupported packets
37178 For any @var{command} not supported by the stub, an empty response
37179 (@samp{$#00}) should be returned.  That way it is possible to extend the
37180 protocol.  A newer @value{GDBN} can tell if a packet is supported based
37181 on that response.
37182
37183 At a minimum, a stub is required to support the @samp{g} and @samp{G}
37184 commands for register access, and the @samp{m} and @samp{M} commands
37185 for memory access.  Stubs that only control single-threaded targets
37186 can implement run control with the @samp{c} (continue), and @samp{s}
37187 (step) commands.  Stubs that support multi-threading targets should
37188 support the @samp{vCont} command.  All other commands are optional.
37189
37190 @node Packets
37191 @section Packets
37192
37193 The following table provides a complete list of all currently defined
37194 @var{command}s and their corresponding response @var{data}.
37195 @xref{File-I/O Remote Protocol Extension}, for details about the File
37196 I/O extension of the remote protocol.
37197
37198 Each packet's description has a template showing the packet's overall
37199 syntax, followed by an explanation of the packet's meaning.  We
37200 include spaces in some of the templates for clarity; these are not
37201 part of the packet's syntax.  No @value{GDBN} packet uses spaces to
37202 separate its components.  For example, a template like @samp{foo
37203 @var{bar} @var{baz}} describes a packet beginning with the three ASCII
37204 bytes @samp{foo}, followed by a @var{bar}, followed directly by a
37205 @var{baz}.  @value{GDBN} does not transmit a space character between the
37206 @samp{foo} and the @var{bar}, or between the @var{bar} and the
37207 @var{baz}.
37208
37209 @cindex @var{thread-id}, in remote protocol
37210 @anchor{thread-id syntax} 
37211 Several packets and replies include a @var{thread-id} field to identify
37212 a thread.  Normally these are positive numbers with a target-specific
37213 interpretation, formatted as big-endian hex strings.  A @var{thread-id}
37214 can also be a literal @samp{-1} to indicate all threads, or @samp{0} to
37215 pick any thread.
37216
37217 In addition, the remote protocol supports a multiprocess feature in
37218 which the @var{thread-id} syntax is extended to optionally include both
37219 process and thread ID fields, as @samp{p@var{pid}.@var{tid}}.
37220 The @var{pid} (process) and @var{tid} (thread) components each have the
37221 format described above: a positive number with target-specific
37222 interpretation formatted as a big-endian hex string, literal @samp{-1}
37223 to indicate all processes or threads (respectively), or @samp{0} to
37224 indicate an arbitrary process or thread.  Specifying just a process, as
37225 @samp{p@var{pid}}, is equivalent to @samp{p@var{pid}.-1}.  It is an
37226 error to specify all processes but a specific thread, such as
37227 @samp{p-1.@var{tid}}.  Note that the @samp{p} prefix is @emph{not} used
37228 for those packets and replies explicitly documented to include a process
37229 ID, rather than a @var{thread-id}.
37230
37231 The multiprocess @var{thread-id} syntax extensions are only used if both
37232 @value{GDBN} and the stub report support for the @samp{multiprocess}
37233 feature using @samp{qSupported}.  @xref{multiprocess extensions}, for
37234 more information.
37235
37236 Note that all packet forms beginning with an upper- or lower-case
37237 letter, other than those described here, are reserved for future use.
37238
37239 Here are the packet descriptions.
37240
37241 @table @samp
37242
37243 @item !
37244 @cindex @samp{!} packet
37245 @anchor{extended mode}
37246 Enable extended mode.  In extended mode, the remote server is made
37247 persistent.  The @samp{R} packet is used to restart the program being
37248 debugged.
37249
37250 Reply:
37251 @table @samp
37252 @item OK
37253 The remote target both supports and has enabled extended mode.
37254 @end table
37255
37256 @item ?
37257 @cindex @samp{?} packet
37258 @anchor{? packet}
37259 Indicate the reason the target halted.  The reply is the same as for
37260 step and continue.  This packet has a special interpretation when the
37261 target is in non-stop mode; see @ref{Remote Non-Stop}.
37262
37263 Reply:
37264 @xref{Stop Reply Packets}, for the reply specifications.
37265
37266 @item A @var{arglen},@var{argnum},@var{arg},@dots{}
37267 @cindex @samp{A} packet
37268 Initialized @code{argv[]} array passed into program. @var{arglen}
37269 specifies the number of bytes in the hex encoded byte stream
37270 @var{arg}.  See @code{gdbserver} for more details.
37271
37272 Reply:
37273 @table @samp
37274 @item OK
37275 The arguments were set.
37276 @item E @var{NN}
37277 An error occurred.
37278 @end table
37279
37280 @item b @var{baud}
37281 @cindex @samp{b} packet
37282 (Don't use this packet; its behavior is not well-defined.)
37283 Change the serial line speed to @var{baud}.
37284
37285 JTC: @emph{When does the transport layer state change?  When it's
37286 received, or after the ACK is transmitted.  In either case, there are
37287 problems if the command or the acknowledgment packet is dropped.}
37288
37289 Stan: @emph{If people really wanted to add something like this, and get
37290 it working for the first time, they ought to modify ser-unix.c to send
37291 some kind of out-of-band message to a specially-setup stub and have the
37292 switch happen "in between" packets, so that from remote protocol's point
37293 of view, nothing actually happened.}
37294
37295 @item B @var{addr},@var{mode}
37296 @cindex @samp{B} packet
37297 Set (@var{mode} is @samp{S}) or clear (@var{mode} is @samp{C}) a
37298 breakpoint at @var{addr}.
37299
37300 Don't use this packet.  Use the @samp{Z} and @samp{z} packets instead
37301 (@pxref{insert breakpoint or watchpoint packet}).
37302
37303 @cindex @samp{bc} packet
37304 @anchor{bc}
37305 @item bc
37306 Backward continue.  Execute the target system in reverse.  No parameter.
37307 @xref{Reverse Execution}, for more information.
37308
37309 Reply:
37310 @xref{Stop Reply Packets}, for the reply specifications.
37311
37312 @cindex @samp{bs} packet
37313 @anchor{bs}
37314 @item bs
37315 Backward single step.  Execute one instruction in reverse.  No parameter.
37316 @xref{Reverse Execution}, for more information.
37317
37318 Reply:
37319 @xref{Stop Reply Packets}, for the reply specifications.
37320
37321 @item c @r{[}@var{addr}@r{]}
37322 @cindex @samp{c} packet
37323 Continue at @var{addr}, which is the address to resume.  If @var{addr}
37324 is omitted, resume at current address.
37325
37326 This packet is deprecated for multi-threading support.  @xref{vCont
37327 packet}.
37328
37329 Reply:
37330 @xref{Stop Reply Packets}, for the reply specifications.
37331
37332 @item C @var{sig}@r{[};@var{addr}@r{]}
37333 @cindex @samp{C} packet
37334 Continue with signal @var{sig} (hex signal number).  If
37335 @samp{;@var{addr}} is omitted, resume at same address.
37336
37337 This packet is deprecated for multi-threading support.  @xref{vCont
37338 packet}.
37339
37340 Reply:
37341 @xref{Stop Reply Packets}, for the reply specifications.
37342
37343 @item d
37344 @cindex @samp{d} packet
37345 Toggle debug flag.
37346
37347 Don't use this packet; instead, define a general set packet
37348 (@pxref{General Query Packets}).
37349
37350 @item D
37351 @itemx D;@var{pid}
37352 @cindex @samp{D} packet
37353 The first form of the packet is used to detach @value{GDBN} from the 
37354 remote system.  It is sent to the remote target
37355 before @value{GDBN} disconnects via the @code{detach} command.
37356
37357 The second form, including a process ID, is used when multiprocess
37358 protocol extensions are enabled (@pxref{multiprocess extensions}), to
37359 detach only a specific process.  The @var{pid} is specified as a
37360 big-endian hex string.
37361
37362 Reply:
37363 @table @samp
37364 @item OK
37365 for success
37366 @item E @var{NN}
37367 for an error
37368 @end table
37369
37370 @item F @var{RC},@var{EE},@var{CF};@var{XX}
37371 @cindex @samp{F} packet
37372 A reply from @value{GDBN} to an @samp{F} packet sent by the target.
37373 This is part of the File-I/O protocol extension.  @xref{File-I/O
37374 Remote Protocol Extension}, for the specification.
37375
37376 @item g
37377 @anchor{read registers packet}
37378 @cindex @samp{g} packet
37379 Read general registers.
37380
37381 Reply:
37382 @table @samp
37383 @item @var{XX@dots{}}
37384 Each byte of register data is described by two hex digits.  The bytes
37385 with the register are transmitted in target byte order.  The size of
37386 each register and their position within the @samp{g} packet are
37387 determined by the @value{GDBN} internal gdbarch functions
37388 @code{DEPRECATED_REGISTER_RAW_SIZE} and @code{gdbarch_register_name}.
37389
37390 When reading registers from a trace frame (@pxref{Analyze Collected
37391 Data,,Using the Collected Data}), the stub may also return a string of
37392 literal @samp{x}'s in place of the register data digits, to indicate
37393 that the corresponding register has not been collected, thus its value
37394 is unavailable.  For example, for an architecture with 4 registers of
37395 4 bytes each, the following reply indicates to @value{GDBN} that
37396 registers 0 and 2 have not been collected, while registers 1 and 3
37397 have been collected, and both have zero value:
37398
37399 @smallexample
37400 -> @code{g}
37401 <- @code{xxxxxxxx00000000xxxxxxxx00000000}
37402 @end smallexample
37403
37404 @item E @var{NN}
37405 for an error.
37406 @end table
37407
37408 @item G @var{XX@dots{}}
37409 @cindex @samp{G} packet
37410 Write general registers.  @xref{read registers packet}, for a
37411 description of the @var{XX@dots{}} data.
37412
37413 Reply:
37414 @table @samp
37415 @item OK
37416 for success
37417 @item E @var{NN}
37418 for an error
37419 @end table
37420
37421 @item H @var{op} @var{thread-id}
37422 @cindex @samp{H} packet
37423 Set thread for subsequent operations (@samp{m}, @samp{M}, @samp{g},
37424 @samp{G}, et.al.).  Depending on the operation to be performed, @var{op}
37425 should be @samp{c} for step and continue operations (note that this
37426 is deprecated, supporting the @samp{vCont} command is a better
37427 option), and @samp{g} for other operations.  The thread designator
37428 @var{thread-id} has the format and interpretation described in
37429 @ref{thread-id syntax}.
37430
37431 Reply:
37432 @table @samp
37433 @item OK
37434 for success
37435 @item E @var{NN}
37436 for an error
37437 @end table
37438
37439 @c FIXME: JTC:
37440 @c   'H': How restrictive (or permissive) is the thread model.  If a
37441 @c        thread is selected and stopped, are other threads allowed
37442 @c        to continue to execute?  As I mentioned above, I think the
37443 @c        semantics of each command when a thread is selected must be
37444 @c        described.  For example:
37445 @c
37446 @c        'g':    If the stub supports threads and a specific thread is
37447 @c                selected, returns the register block from that thread;
37448 @c                otherwise returns current registers.
37449 @c
37450 @c        'G'     If the stub supports threads and a specific thread is
37451 @c                selected, sets the registers of the register block of
37452 @c                that thread; otherwise sets current registers.
37453
37454 @item i @r{[}@var{addr}@r{[},@var{nnn}@r{]]}
37455 @anchor{cycle step packet}
37456 @cindex @samp{i} packet
37457 Step the remote target by a single clock cycle.  If @samp{,@var{nnn}} is
37458 present, cycle step @var{nnn} cycles.  If @var{addr} is present, cycle
37459 step starting at that address.
37460
37461 @item I
37462 @cindex @samp{I} packet
37463 Signal, then cycle step.  @xref{step with signal packet}.  @xref{cycle
37464 step packet}.
37465
37466 @item k
37467 @cindex @samp{k} packet
37468 Kill request.
37469
37470 The exact effect of this packet is not specified.
37471
37472 For a bare-metal target, it may power cycle or reset the target
37473 system.  For that reason, the @samp{k} packet has no reply.
37474
37475 For a single-process target, it may kill that process if possible.
37476
37477 A multiple-process target may choose to kill just one process, or all
37478 that are under @value{GDBN}'s control.  For more precise control, use
37479 the vKill packet (@pxref{vKill packet}).
37480
37481 If the target system immediately closes the connection in response to
37482 @samp{k}, @value{GDBN} does not consider the lack of packet
37483 acknowledgment to be an error, and assumes the kill was successful.
37484
37485 If connected using @kbd{target extended-remote}, and the target does
37486 not close the connection in response to a kill request, @value{GDBN}
37487 probes the target state as if a new connection was opened
37488 (@pxref{? packet}).
37489
37490 @item m @var{addr},@var{length}
37491 @cindex @samp{m} packet
37492 Read @var{length} addressable memory units starting at address @var{addr}
37493 (@pxref{addressable memory unit}).  Note that @var{addr} may not be aligned to
37494 any particular boundary.
37495
37496 The stub need not use any particular size or alignment when gathering
37497 data from memory for the response; even if @var{addr} is word-aligned
37498 and @var{length} is a multiple of the word size, the stub is free to
37499 use byte accesses, or not.  For this reason, this packet may not be
37500 suitable for accessing memory-mapped I/O devices.
37501 @cindex alignment of remote memory accesses
37502 @cindex size of remote memory accesses
37503 @cindex memory, alignment and size of remote accesses
37504
37505 Reply:
37506 @table @samp
37507 @item @var{XX@dots{}}
37508 Memory contents; each byte is transmitted as a two-digit hexadecimal number.
37509 The reply may contain fewer addressable memory units than requested if the
37510 server was able to read only part of the region of memory.
37511 @item E @var{NN}
37512 @var{NN} is errno
37513 @end table
37514
37515 @item M @var{addr},@var{length}:@var{XX@dots{}}
37516 @cindex @samp{M} packet
37517 Write @var{length} addressable memory units starting at address @var{addr}
37518 (@pxref{addressable memory unit}).  The data is given by @var{XX@dots{}}; each
37519 byte is transmitted as a two-digit hexadecimal number.
37520
37521 Reply:
37522 @table @samp
37523 @item OK
37524 for success
37525 @item E @var{NN}
37526 for an error (this includes the case where only part of the data was
37527 written).
37528 @end table
37529
37530 @item p @var{n}
37531 @cindex @samp{p} packet
37532 Read the value of register @var{n}; @var{n} is in hex.
37533 @xref{read registers packet}, for a description of how the returned
37534 register value is encoded.
37535
37536 Reply:
37537 @table @samp
37538 @item @var{XX@dots{}}
37539 the register's value
37540 @item E @var{NN}
37541 for an error
37542 @item @w{}
37543 Indicating an unrecognized @var{query}.
37544 @end table
37545
37546 @item P @var{n@dots{}}=@var{r@dots{}}
37547 @anchor{write register packet}
37548 @cindex @samp{P} packet
37549 Write register @var{n@dots{}} with value @var{r@dots{}}.  The register
37550 number @var{n} is in hexadecimal, and @var{r@dots{}} contains two hex
37551 digits for each byte in the register (target byte order).
37552
37553 Reply:
37554 @table @samp
37555 @item OK
37556 for success
37557 @item E @var{NN}
37558 for an error
37559 @end table
37560
37561 @item q @var{name} @var{params}@dots{}
37562 @itemx Q @var{name} @var{params}@dots{}
37563 @cindex @samp{q} packet
37564 @cindex @samp{Q} packet
37565 General query (@samp{q}) and set (@samp{Q}).  These packets are
37566 described fully in @ref{General Query Packets}.
37567
37568 @item r
37569 @cindex @samp{r} packet
37570 Reset the entire system.
37571
37572 Don't use this packet; use the @samp{R} packet instead.
37573
37574 @item R @var{XX}
37575 @cindex @samp{R} packet
37576 Restart the program being debugged.  The @var{XX}, while needed, is ignored.
37577 This packet is only available in extended mode (@pxref{extended mode}).
37578
37579 The @samp{R} packet has no reply.
37580
37581 @item s @r{[}@var{addr}@r{]}
37582 @cindex @samp{s} packet
37583 Single step, resuming at @var{addr}.  If
37584 @var{addr} is omitted, resume at same address.
37585
37586 This packet is deprecated for multi-threading support.  @xref{vCont
37587 packet}.
37588
37589 Reply:
37590 @xref{Stop Reply Packets}, for the reply specifications.
37591
37592 @item S @var{sig}@r{[};@var{addr}@r{]}
37593 @anchor{step with signal packet}
37594 @cindex @samp{S} packet
37595 Step with signal.  This is analogous to the @samp{C} packet, but
37596 requests a single-step, rather than a normal resumption of execution.
37597
37598 This packet is deprecated for multi-threading support.  @xref{vCont
37599 packet}.
37600
37601 Reply:
37602 @xref{Stop Reply Packets}, for the reply specifications.
37603
37604 @item t @var{addr}:@var{PP},@var{MM}
37605 @cindex @samp{t} packet
37606 Search backwards starting at address @var{addr} for a match with pattern
37607 @var{PP} and mask @var{MM}, both of which are are 4 byte long.
37608 There must be at least 3 digits in @var{addr}.
37609
37610 @item T @var{thread-id}
37611 @cindex @samp{T} packet
37612 Find out if the thread @var{thread-id} is alive.  @xref{thread-id syntax}.
37613
37614 Reply:
37615 @table @samp
37616 @item OK
37617 thread is still alive
37618 @item E @var{NN}
37619 thread is dead
37620 @end table
37621
37622 @item v
37623 Packets starting with @samp{v} are identified by a multi-letter name,
37624 up to the first @samp{;} or @samp{?} (or the end of the packet).
37625
37626 @item vAttach;@var{pid}
37627 @cindex @samp{vAttach} packet
37628 Attach to a new process with the specified process ID @var{pid}.
37629 The process ID is a
37630 hexadecimal integer identifying the process.  In all-stop mode, all
37631 threads in the attached process are stopped; in non-stop mode, it may be
37632 attached without being stopped if that is supported by the target.
37633
37634 @c In non-stop mode, on a successful vAttach, the stub should set the
37635 @c current thread to a thread of the newly-attached process.  After
37636 @c attaching, GDB queries for the attached process's thread ID with qC.
37637 @c Also note that, from a user perspective, whether or not the 
37638 @c target is stopped on attach in non-stop mode depends on whether you 
37639 @c use the foreground or background version of the attach command, not 
37640 @c on what vAttach does; GDB does the right thing with respect to either 
37641 @c stopping or restarting threads.
37642
37643 This packet is only available in extended mode (@pxref{extended mode}).
37644
37645 Reply:
37646 @table @samp
37647 @item E @var{nn}
37648 for an error
37649 @item @r{Any stop packet}
37650 for success in all-stop mode (@pxref{Stop Reply Packets})
37651 @item OK
37652 for success in non-stop mode (@pxref{Remote Non-Stop})
37653 @end table
37654
37655 @item vCont@r{[};@var{action}@r{[}:@var{thread-id}@r{]]}@dots{}
37656 @cindex @samp{vCont} packet
37657 @anchor{vCont packet}
37658 Resume the inferior, specifying different actions for each thread.
37659
37660 For each inferior thread, the leftmost action with a matching
37661 @var{thread-id} is applied.  Threads that don't match any action
37662 remain in their current state.  Thread IDs are specified using the
37663 syntax described in @ref{thread-id syntax}.  If multiprocess
37664 extensions (@pxref{multiprocess extensions}) are supported, actions
37665 can be specified to match all threads in a process by using the
37666 @samp{p@var{pid}.-1} form of the @var{thread-id}.  An action with no
37667 @var{thread-id} matches all threads.  Specifying no actions is an
37668 error.
37669
37670 Currently supported actions are:
37671
37672 @table @samp
37673 @item c
37674 Continue.
37675 @item C @var{sig}
37676 Continue with signal @var{sig}.  The signal @var{sig} should be two hex digits.
37677 @item s
37678 Step.
37679 @item S @var{sig}
37680 Step with signal @var{sig}.  The signal @var{sig} should be two hex digits.
37681 @item t
37682 Stop.
37683 @item r @var{start},@var{end}
37684 Step once, and then keep stepping as long as the thread stops at
37685 addresses between @var{start} (inclusive) and @var{end} (exclusive).
37686 The remote stub reports a stop reply when either the thread goes out
37687 of the range or is stopped due to an unrelated reason, such as hitting
37688 a breakpoint.  @xref{range stepping}.
37689
37690 If the range is empty (@var{start} == @var{end}), then the action
37691 becomes equivalent to the @samp{s} action.  In other words,
37692 single-step once, and report the stop (even if the stepped instruction
37693 jumps to @var{start}).
37694
37695 (A stop reply may be sent at any point even if the PC is still within
37696 the stepping range; for example, it is valid to implement this packet
37697 in a degenerate way as a single instruction step operation.)
37698
37699 @end table
37700
37701 The optional argument @var{addr} normally associated with the 
37702 @samp{c}, @samp{C}, @samp{s}, and @samp{S} packets is
37703 not supported in @samp{vCont}.
37704
37705 The @samp{t} action is only relevant in non-stop mode
37706 (@pxref{Remote Non-Stop}) and may be ignored by the stub otherwise.
37707 A stop reply should be generated for any affected thread not already stopped.
37708 When a thread is stopped by means of a @samp{t} action,
37709 the corresponding stop reply should indicate that the thread has stopped with
37710 signal @samp{0}, regardless of whether the target uses some other signal
37711 as an implementation detail.
37712
37713 The server must ignore @samp{c}, @samp{C}, @samp{s}, @samp{S}, and
37714 @samp{r} actions for threads that are already running.  Conversely,
37715 the server must ignore @samp{t} actions for threads that are already
37716 stopped.
37717
37718 @emph{Note:} In non-stop mode, a thread is considered running until
37719 @value{GDBN} acknowleges an asynchronous stop notification for it with
37720 the @samp{vStopped} packet (@pxref{Remote Non-Stop}).
37721
37722 The stub must support @samp{vCont} if it reports support for
37723 multiprocess extensions (@pxref{multiprocess extensions}).
37724
37725 Reply:
37726 @xref{Stop Reply Packets}, for the reply specifications.
37727
37728 @item vCont?
37729 @cindex @samp{vCont?} packet
37730 Request a list of actions supported by the @samp{vCont} packet.
37731
37732 Reply:
37733 @table @samp
37734 @item vCont@r{[};@var{action}@dots{}@r{]}
37735 The @samp{vCont} packet is supported.  Each @var{action} is a supported
37736 command in the @samp{vCont} packet.
37737 @item @w{}
37738 The @samp{vCont} packet is not supported.
37739 @end table
37740
37741 @anchor{vCtrlC packet}
37742 @item vCtrlC
37743 @cindex @samp{vCtrlC} packet
37744 Interrupt remote target as if a control-C was pressed on the remote
37745 terminal.  This is the equivalent to reacting to the @code{^C}
37746 (@samp{\003}, the control-C character) character in all-stop mode
37747 while the target is running, except this works in non-stop mode.
37748 @xref{interrupting remote targets}, for more info on the all-stop
37749 variant.
37750
37751 Reply:
37752 @table @samp
37753 @item E @var{nn}
37754 for an error
37755 @item OK
37756 for success
37757 @end table
37758
37759 @item vFile:@var{operation}:@var{parameter}@dots{}
37760 @cindex @samp{vFile} packet
37761 Perform a file operation on the target system.  For details,
37762 see @ref{Host I/O Packets}.
37763
37764 @item vFlashErase:@var{addr},@var{length}
37765 @cindex @samp{vFlashErase} packet
37766 Direct the stub to erase @var{length} bytes of flash starting at
37767 @var{addr}.  The region may enclose any number of flash blocks, but
37768 its start and end must fall on block boundaries, as indicated by the
37769 flash block size appearing in the memory map (@pxref{Memory Map
37770 Format}).  @value{GDBN} groups flash memory programming operations
37771 together, and sends a @samp{vFlashDone} request after each group; the
37772 stub is allowed to delay erase operation until the @samp{vFlashDone}
37773 packet is received.
37774
37775 Reply:
37776 @table @samp
37777 @item OK
37778 for success
37779 @item E @var{NN}
37780 for an error
37781 @end table
37782
37783 @item vFlashWrite:@var{addr}:@var{XX@dots{}}
37784 @cindex @samp{vFlashWrite} packet
37785 Direct the stub to write data to flash address @var{addr}.  The data
37786 is passed in binary form using the same encoding as for the @samp{X}
37787 packet (@pxref{Binary Data}).  The memory ranges specified by
37788 @samp{vFlashWrite} packets preceding a @samp{vFlashDone} packet must
37789 not overlap, and must appear in order of increasing addresses
37790 (although @samp{vFlashErase} packets for higher addresses may already
37791 have been received; the ordering is guaranteed only between
37792 @samp{vFlashWrite} packets).  If a packet writes to an address that was
37793 neither erased by a preceding @samp{vFlashErase} packet nor by some other
37794 target-specific method, the results are unpredictable.
37795
37796
37797 Reply:
37798 @table @samp
37799 @item OK
37800 for success
37801 @item E.memtype
37802 for vFlashWrite addressing non-flash memory
37803 @item E @var{NN}
37804 for an error
37805 @end table
37806
37807 @item vFlashDone
37808 @cindex @samp{vFlashDone} packet
37809 Indicate to the stub that flash programming operation is finished.
37810 The stub is permitted to delay or batch the effects of a group of
37811 @samp{vFlashErase} and @samp{vFlashWrite} packets until a
37812 @samp{vFlashDone} packet is received.  The contents of the affected
37813 regions of flash memory are unpredictable until the @samp{vFlashDone}
37814 request is completed.
37815
37816 @item vKill;@var{pid}
37817 @cindex @samp{vKill} packet
37818 @anchor{vKill packet}
37819 Kill the process with the specified process ID @var{pid}, which is a
37820 hexadecimal integer identifying the process.  This packet is used in
37821 preference to @samp{k} when multiprocess protocol extensions are
37822 supported; see @ref{multiprocess extensions}.
37823
37824 Reply:
37825 @table @samp
37826 @item E @var{nn}
37827 for an error
37828 @item OK
37829 for success
37830 @end table
37831
37832 @item vMustReplyEmpty
37833 @cindex @samp{vMustReplyEmpty} packet
37834 The correct reply to an unknown @samp{v} packet is to return the empty
37835 string, however, some older versions of @command{gdbserver} would
37836 incorrectly return @samp{OK} for unknown @samp{v} packets.
37837
37838 The @samp{vMustReplyEmpty} is used as a feature test to check how
37839 @command{gdbserver} handles unknown packets, it is important that this
37840 packet be handled in the same way as other unknown @samp{v} packets.
37841 If this packet is handled differently to other unknown @samp{v}
37842 packets then it is possile that @value{GDBN} may run into problems in
37843 other areas, specifically around use of @samp{vFile:setfs:}.
37844
37845 @item vRun;@var{filename}@r{[};@var{argument}@r{]}@dots{}
37846 @cindex @samp{vRun} packet
37847 Run the program @var{filename}, passing it each @var{argument} on its
37848 command line.  The file and arguments are hex-encoded strings.  If
37849 @var{filename} is an empty string, the stub may use a default program
37850 (e.g.@: the last program run).  The program is created in the stopped
37851 state.
37852
37853 @c FIXME:  What about non-stop mode?
37854
37855 This packet is only available in extended mode (@pxref{extended mode}).
37856
37857 Reply:
37858 @table @samp
37859 @item E @var{nn}
37860 for an error
37861 @item @r{Any stop packet}
37862 for success (@pxref{Stop Reply Packets})
37863 @end table
37864
37865 @item vStopped
37866 @cindex @samp{vStopped} packet
37867 @xref{Notification Packets}.
37868
37869 @item X @var{addr},@var{length}:@var{XX@dots{}}
37870 @anchor{X packet}
37871 @cindex @samp{X} packet
37872 Write data to memory, where the data is transmitted in binary.
37873 Memory is specified by its address @var{addr} and number of addressable memory
37874 units @var{length} (@pxref{addressable memory unit});
37875 @samp{@var{XX}@dots{}} is binary data (@pxref{Binary Data}).
37876
37877 Reply:
37878 @table @samp
37879 @item OK
37880 for success
37881 @item E @var{NN}
37882 for an error
37883 @end table
37884
37885 @item z @var{type},@var{addr},@var{kind}
37886 @itemx Z @var{type},@var{addr},@var{kind}
37887 @anchor{insert breakpoint or watchpoint packet}
37888 @cindex @samp{z} packet
37889 @cindex @samp{Z} packets
37890 Insert (@samp{Z}) or remove (@samp{z}) a @var{type} breakpoint or
37891 watchpoint starting at address @var{address} of kind @var{kind}.
37892
37893 Each breakpoint and watchpoint packet @var{type} is documented
37894 separately.
37895
37896 @emph{Implementation notes: A remote target shall return an empty string
37897 for an unrecognized breakpoint or watchpoint packet @var{type}.  A
37898 remote target shall support either both or neither of a given
37899 @samp{Z@var{type}@dots{}} and @samp{z@var{type}@dots{}} packet pair.  To
37900 avoid potential problems with duplicate packets, the operations should
37901 be implemented in an idempotent way.}
37902
37903 @item z0,@var{addr},@var{kind}
37904 @itemx Z0,@var{addr},@var{kind}@r{[};@var{cond_list}@dots{}@r{]}@r{[};cmds:@var{persist},@var{cmd_list}@dots{}@r{]}
37905 @cindex @samp{z0} packet
37906 @cindex @samp{Z0} packet
37907 Insert (@samp{Z0}) or remove (@samp{z0}) a software breakpoint at address
37908 @var{addr} of type @var{kind}.
37909
37910 A software breakpoint is implemented by replacing the instruction at
37911 @var{addr} with a software breakpoint or trap instruction.  The
37912 @var{kind} is target-specific and typically indicates the size of the
37913 breakpoint in bytes that should be inserted.  E.g., the @sc{arm} and
37914 @sc{mips} can insert either a 2 or 4 byte breakpoint.  Some
37915 architectures have additional meanings for @var{kind}
37916 (@pxref{Architecture-Specific Protocol Details}); if no
37917 architecture-specific value is being used, it should be @samp{0}.
37918 @var{kind} is hex-encoded.  @var{cond_list} is an optional list of
37919 conditional expressions in bytecode form that should be evaluated on
37920 the target's side.  These are the conditions that should be taken into
37921 consideration when deciding if the breakpoint trigger should be
37922 reported back to @value{GDBN}.
37923
37924 See also the @samp{swbreak} stop reason (@pxref{swbreak stop reason})
37925 for how to best report a software breakpoint event to @value{GDBN}.
37926
37927 The @var{cond_list} parameter is comprised of a series of expressions,
37928 concatenated without separators. Each expression has the following form:
37929
37930 @table @samp
37931
37932 @item X @var{len},@var{expr}
37933 @var{len} is the length of the bytecode expression and @var{expr} is the
37934 actual conditional expression in bytecode form.
37935
37936 @end table
37937
37938 The optional @var{cmd_list} parameter introduces commands that may be
37939 run on the target, rather than being reported back to @value{GDBN}.
37940 The parameter starts with a numeric flag @var{persist}; if the flag is
37941 nonzero, then the breakpoint may remain active and the commands
37942 continue to be run even when @value{GDBN} disconnects from the target.
37943 Following this flag is a series of expressions concatenated with no
37944 separators.  Each expression has the following form:
37945
37946 @table @samp
37947
37948 @item X @var{len},@var{expr}
37949 @var{len} is the length of the bytecode expression and @var{expr} is the
37950 actual commands expression in bytecode form.
37951
37952 @end table
37953
37954 @emph{Implementation note: It is possible for a target to copy or move
37955 code that contains software breakpoints (e.g., when implementing
37956 overlays).  The behavior of this packet, in the presence of such a
37957 target, is not defined.}
37958
37959 Reply:
37960 @table @samp
37961 @item OK
37962 success
37963 @item @w{}
37964 not supported
37965 @item E @var{NN}
37966 for an error
37967 @end table
37968
37969 @item z1,@var{addr},@var{kind}
37970 @itemx Z1,@var{addr},@var{kind}@r{[};@var{cond_list}@dots{}@r{]}@r{[};cmds:@var{persist},@var{cmd_list}@dots{}@r{]}
37971 @cindex @samp{z1} packet
37972 @cindex @samp{Z1} packet
37973 Insert (@samp{Z1}) or remove (@samp{z1}) a hardware breakpoint at
37974 address @var{addr}.
37975
37976 A hardware breakpoint is implemented using a mechanism that is not
37977 dependent on being able to modify the target's memory.  The
37978 @var{kind}, @var{cond_list}, and @var{cmd_list} arguments have the
37979 same meaning as in @samp{Z0} packets.
37980
37981 @emph{Implementation note: A hardware breakpoint is not affected by code
37982 movement.}
37983
37984 Reply:
37985 @table @samp
37986 @item OK
37987 success
37988 @item @w{}
37989 not supported
37990 @item E @var{NN}
37991 for an error
37992 @end table
37993
37994 @item z2,@var{addr},@var{kind}
37995 @itemx Z2,@var{addr},@var{kind}
37996 @cindex @samp{z2} packet
37997 @cindex @samp{Z2} packet
37998 Insert (@samp{Z2}) or remove (@samp{z2}) a write watchpoint at @var{addr}.
37999 The number of bytes to watch is specified by @var{kind}.
38000
38001 Reply:
38002 @table @samp
38003 @item OK
38004 success
38005 @item @w{}
38006 not supported
38007 @item E @var{NN}
38008 for an error
38009 @end table
38010
38011 @item z3,@var{addr},@var{kind}
38012 @itemx Z3,@var{addr},@var{kind}
38013 @cindex @samp{z3} packet
38014 @cindex @samp{Z3} packet
38015 Insert (@samp{Z3}) or remove (@samp{z3}) a read watchpoint at @var{addr}.
38016 The number of bytes to watch is specified by @var{kind}.
38017
38018 Reply:
38019 @table @samp
38020 @item OK
38021 success
38022 @item @w{}
38023 not supported
38024 @item E @var{NN}
38025 for an error
38026 @end table
38027
38028 @item z4,@var{addr},@var{kind}
38029 @itemx Z4,@var{addr},@var{kind}
38030 @cindex @samp{z4} packet
38031 @cindex @samp{Z4} packet
38032 Insert (@samp{Z4}) or remove (@samp{z4}) an access watchpoint at @var{addr}.
38033 The number of bytes to watch is specified by @var{kind}.
38034
38035 Reply:
38036 @table @samp
38037 @item OK
38038 success
38039 @item @w{}
38040 not supported
38041 @item E @var{NN}
38042 for an error
38043 @end table
38044
38045 @end table
38046
38047 @node Stop Reply Packets
38048 @section Stop Reply Packets
38049 @cindex stop reply packets
38050
38051 The @samp{C}, @samp{c}, @samp{S}, @samp{s}, @samp{vCont},
38052 @samp{vAttach}, @samp{vRun}, @samp{vStopped}, and @samp{?} packets can
38053 receive any of the below as a reply.  Except for @samp{?}
38054 and @samp{vStopped}, that reply is only returned
38055 when the target halts.  In the below the exact meaning of @dfn{signal
38056 number} is defined by the header @file{include/gdb/signals.h} in the
38057 @value{GDBN} source code.
38058
38059 In non-stop mode, the server will simply reply @samp{OK} to commands
38060 such as @samp{vCont}; any stop will be the subject of a future
38061 notification.  @xref{Remote Non-Stop}.
38062
38063 As in the description of request packets, we include spaces in the
38064 reply templates for clarity; these are not part of the reply packet's
38065 syntax.  No @value{GDBN} stop reply packet uses spaces to separate its
38066 components.
38067
38068 @table @samp
38069
38070 @item S @var{AA}
38071 The program received signal number @var{AA} (a two-digit hexadecimal
38072 number).  This is equivalent to a @samp{T} response with no
38073 @var{n}:@var{r} pairs.
38074
38075 @item T @var{AA} @var{n1}:@var{r1};@var{n2}:@var{r2};@dots{}
38076 @cindex @samp{T} packet reply
38077 The program received signal number @var{AA} (a two-digit hexadecimal
38078 number).  This is equivalent to an @samp{S} response, except that the
38079 @samp{@var{n}:@var{r}} pairs can carry values of important registers
38080 and other information directly in the stop reply packet, reducing
38081 round-trip latency.  Single-step and breakpoint traps are reported
38082 this way.  Each @samp{@var{n}:@var{r}} pair is interpreted as follows:
38083
38084 @itemize @bullet
38085 @item
38086 If @var{n} is a hexadecimal number, it is a register number, and the
38087 corresponding @var{r} gives that register's value.  The data @var{r} is a
38088 series of bytes in target byte order, with each byte given by a
38089 two-digit hex number.
38090
38091 @item
38092 If @var{n} is @samp{thread}, then @var{r} is the @var{thread-id} of
38093 the stopped thread, as specified in @ref{thread-id syntax}.
38094
38095 @item
38096 If @var{n} is @samp{core}, then @var{r} is the hexadecimal number of
38097 the core on which the stop event was detected.
38098
38099 @item
38100 If @var{n} is a recognized @dfn{stop reason}, it describes a more
38101 specific event that stopped the target.  The currently defined stop
38102 reasons are listed below.  The @var{aa} should be @samp{05}, the trap
38103 signal.  At most one stop reason should be present.
38104
38105 @item
38106 Otherwise, @value{GDBN} should ignore this @samp{@var{n}:@var{r}} pair
38107 and go on to the next; this allows us to extend the protocol in the
38108 future.
38109 @end itemize
38110
38111 The currently defined stop reasons are:
38112
38113 @table @samp
38114 @item watch
38115 @itemx rwatch
38116 @itemx awatch
38117 The packet indicates a watchpoint hit, and @var{r} is the data address, in
38118 hex.
38119
38120 @item syscall_entry
38121 @itemx syscall_return
38122 The packet indicates a syscall entry or return, and @var{r} is the
38123 syscall number, in hex.
38124
38125 @cindex shared library events, remote reply
38126 @item library
38127 The packet indicates that the loaded libraries have changed.
38128 @value{GDBN} should use @samp{qXfer:libraries:read} to fetch a new
38129 list of loaded libraries.  The @var{r} part is ignored.
38130
38131 @cindex replay log events, remote reply
38132 @item replaylog
38133 The packet indicates that the target cannot continue replaying 
38134 logged execution events, because it has reached the end (or the
38135 beginning when executing backward) of the log.  The value of @var{r}
38136 will be either @samp{begin} or @samp{end}.  @xref{Reverse Execution}, 
38137 for more information.
38138
38139 @item swbreak
38140 @anchor{swbreak stop reason}
38141 The packet indicates a software breakpoint instruction was executed,
38142 irrespective of whether it was @value{GDBN} that planted the
38143 breakpoint or the breakpoint is hardcoded in the program.  The @var{r}
38144 part must be left empty.
38145
38146 On some architectures, such as x86, at the architecture level, when a
38147 breakpoint instruction executes the program counter points at the
38148 breakpoint address plus an offset.  On such targets, the stub is
38149 responsible for adjusting the PC to point back at the breakpoint
38150 address.
38151
38152 This packet should not be sent by default; older @value{GDBN} versions
38153 did not support it.  @value{GDBN} requests it, by supplying an
38154 appropriate @samp{qSupported} feature (@pxref{qSupported}).  The
38155 remote stub must also supply the appropriate @samp{qSupported} feature
38156 indicating support.
38157
38158 This packet is required for correct non-stop mode operation.
38159
38160 @item hwbreak
38161 The packet indicates the target stopped for a hardware breakpoint.
38162 The @var{r} part must be left empty.
38163
38164 The same remarks about @samp{qSupported} and non-stop mode above
38165 apply.
38166
38167 @cindex fork events, remote reply
38168 @item fork
38169 The packet indicates that @code{fork} was called, and @var{r}
38170 is the thread ID of the new child process.  Refer to
38171 @ref{thread-id syntax} for the format of the @var{thread-id}
38172 field.  This packet is only applicable to targets that support
38173 fork events.
38174
38175 This packet should not be sent by default; older @value{GDBN} versions
38176 did not support it.  @value{GDBN} requests it, by supplying an
38177 appropriate @samp{qSupported} feature (@pxref{qSupported}).  The
38178 remote stub must also supply the appropriate @samp{qSupported} feature
38179 indicating support.
38180
38181 @cindex vfork events, remote reply
38182 @item vfork
38183 The packet indicates that @code{vfork} was called, and @var{r}
38184 is the thread ID of the new child process. Refer to
38185 @ref{thread-id syntax} for the format of the @var{thread-id}
38186 field.  This packet is only applicable to targets that support
38187 vfork events.
38188
38189 This packet should not be sent by default; older @value{GDBN} versions
38190 did not support it.  @value{GDBN} requests it, by supplying an
38191 appropriate @samp{qSupported} feature (@pxref{qSupported}).  The
38192 remote stub must also supply the appropriate @samp{qSupported} feature
38193 indicating support.
38194
38195 @cindex vforkdone events, remote reply
38196 @item vforkdone
38197 The packet indicates that a child process created by a vfork
38198 has either called @code{exec} or terminated, so that the
38199 address spaces of the parent and child process are no longer
38200 shared. The @var{r} part is ignored.  This packet is only
38201 applicable to targets that support vforkdone events.
38202
38203 This packet should not be sent by default; older @value{GDBN} versions
38204 did not support it.  @value{GDBN} requests it, by supplying an
38205 appropriate @samp{qSupported} feature (@pxref{qSupported}).  The
38206 remote stub must also supply the appropriate @samp{qSupported} feature
38207 indicating support.
38208
38209 @cindex exec events, remote reply
38210 @item exec
38211 The packet indicates that @code{execve} was called, and @var{r}
38212 is the absolute pathname of the file that was executed, in hex.
38213 This packet is only applicable to targets that support exec events.
38214
38215 This packet should not be sent by default; older @value{GDBN} versions
38216 did not support it.  @value{GDBN} requests it, by supplying an
38217 appropriate @samp{qSupported} feature (@pxref{qSupported}).  The
38218 remote stub must also supply the appropriate @samp{qSupported} feature
38219 indicating support.
38220
38221 @cindex thread create event, remote reply
38222 @anchor{thread create event}
38223 @item create
38224 The packet indicates that the thread was just created.  The new thread
38225 is stopped until @value{GDBN} sets it running with a resumption packet
38226 (@pxref{vCont packet}).  This packet should not be sent by default;
38227 @value{GDBN} requests it with the @ref{QThreadEvents} packet.  See
38228 also the @samp{w} (@pxref{thread exit event}) remote reply below.  The
38229 @var{r} part is ignored.
38230
38231 @end table
38232
38233 @item W @var{AA}
38234 @itemx W @var{AA} ; process:@var{pid}
38235 The process exited, and @var{AA} is the exit status.  This is only
38236 applicable to certain targets.
38237
38238 The second form of the response, including the process ID of the
38239 exited process, can be used only when @value{GDBN} has reported
38240 support for multiprocess protocol extensions; see @ref{multiprocess
38241 extensions}.  Both @var{AA} and @var{pid} are formatted as big-endian
38242 hex strings.
38243
38244 @item X @var{AA}
38245 @itemx X @var{AA} ; process:@var{pid}
38246 The process terminated with signal @var{AA}.
38247
38248 The second form of the response, including the process ID of the
38249 terminated process, can be used only when @value{GDBN} has reported
38250 support for multiprocess protocol extensions; see @ref{multiprocess
38251 extensions}.  Both @var{AA} and @var{pid} are formatted as big-endian
38252 hex strings.
38253
38254 @anchor{thread exit event}
38255 @cindex thread exit event, remote reply
38256 @item w @var{AA} ; @var{tid}
38257
38258 The thread exited, and @var{AA} is the exit status.  This response
38259 should not be sent by default; @value{GDBN} requests it with the
38260 @ref{QThreadEvents} packet.  See also @ref{thread create event} above.
38261 @var{AA} is formatted as a big-endian hex string.
38262
38263 @item N
38264 There are no resumed threads left in the target.  In other words, even
38265 though the process is alive, the last resumed thread has exited.  For
38266 example, say the target process has two threads: thread 1 and thread
38267 2.  The client leaves thread 1 stopped, and resumes thread 2, which
38268 subsequently exits.  At this point, even though the process is still
38269 alive, and thus no @samp{W} stop reply is sent, no thread is actually
38270 executing either.  The @samp{N} stop reply thus informs the client
38271 that it can stop waiting for stop replies.  This packet should not be
38272 sent by default; older @value{GDBN} versions did not support it.
38273 @value{GDBN} requests it, by supplying an appropriate
38274 @samp{qSupported} feature (@pxref{qSupported}).  The remote stub must
38275 also supply the appropriate @samp{qSupported} feature indicating
38276 support.
38277
38278 @item O @var{XX}@dots{}
38279 @samp{@var{XX}@dots{}} is hex encoding of @sc{ascii} data, to be
38280 written as the program's console output.  This can happen at any time
38281 while the program is running and the debugger should continue to wait
38282 for @samp{W}, @samp{T}, etc.  This reply is not permitted in non-stop mode.
38283
38284 @item F @var{call-id},@var{parameter}@dots{}
38285 @var{call-id} is the identifier which says which host system call should
38286 be called.  This is just the name of the function.  Translation into the
38287 correct system call is only applicable as it's defined in @value{GDBN}.
38288 @xref{File-I/O Remote Protocol Extension}, for a list of implemented
38289 system calls.
38290
38291 @samp{@var{parameter}@dots{}} is a list of parameters as defined for
38292 this very system call.
38293
38294 The target replies with this packet when it expects @value{GDBN} to
38295 call a host system call on behalf of the target.  @value{GDBN} replies
38296 with an appropriate @samp{F} packet and keeps up waiting for the next
38297 reply packet from the target.  The latest @samp{C}, @samp{c}, @samp{S}
38298 or @samp{s} action is expected to be continued.  @xref{File-I/O Remote
38299 Protocol Extension}, for more details.
38300
38301 @end table
38302
38303 @node General Query Packets
38304 @section General Query Packets
38305 @cindex remote query requests
38306
38307 Packets starting with @samp{q} are @dfn{general query packets};
38308 packets starting with @samp{Q} are @dfn{general set packets}.  General
38309 query and set packets are a semi-unified form for retrieving and
38310 sending information to and from the stub.
38311
38312 The initial letter of a query or set packet is followed by a name
38313 indicating what sort of thing the packet applies to.  For example,
38314 @value{GDBN} may use a @samp{qSymbol} packet to exchange symbol
38315 definitions with the stub.  These packet names follow some
38316 conventions:
38317
38318 @itemize @bullet
38319 @item
38320 The name must not contain commas, colons or semicolons.
38321 @item
38322 Most @value{GDBN} query and set packets have a leading upper case
38323 letter.
38324 @item
38325 The names of custom vendor packets should use a company prefix, in
38326 lower case, followed by a period.  For example, packets designed at
38327 the Acme Corporation might begin with @samp{qacme.foo} (for querying
38328 foos) or @samp{Qacme.bar} (for setting bars).
38329 @end itemize
38330
38331 The name of a query or set packet should be separated from any
38332 parameters by a @samp{:}; the parameters themselves should be
38333 separated by @samp{,} or @samp{;}.  Stubs must be careful to match the
38334 full packet name, and check for a separator or the end of the packet,
38335 in case two packet names share a common prefix.  New packets should not begin
38336 with @samp{qC}, @samp{qP}, or @samp{qL}@footnote{The @samp{qP} and @samp{qL}
38337 packets predate these conventions, and have arguments without any terminator
38338 for the packet name; we suspect they are in widespread use in places that
38339 are difficult to upgrade.  The @samp{qC} packet has no arguments, but some
38340 existing stubs (e.g.@: RedBoot) are known to not check for the end of the
38341 packet.}.
38342
38343 Like the descriptions of the other packets, each description here
38344 has a template showing the packet's overall syntax, followed by an
38345 explanation of the packet's meaning.  We include spaces in some of the
38346 templates for clarity; these are not part of the packet's syntax.  No
38347 @value{GDBN} packet uses spaces to separate its components.
38348
38349 Here are the currently defined query and set packets:
38350
38351 @table @samp
38352
38353 @item QAgent:1
38354 @itemx QAgent:0
38355 Turn on or off the agent as a helper to perform some debugging operations
38356 delegated from @value{GDBN} (@pxref{Control Agent}).
38357
38358 @item QAllow:@var{op}:@var{val}@dots{}
38359 @cindex @samp{QAllow} packet
38360 Specify which operations @value{GDBN} expects to request of the
38361 target, as a semicolon-separated list of operation name and value
38362 pairs.  Possible values for @var{op} include @samp{WriteReg},
38363 @samp{WriteMem}, @samp{InsertBreak}, @samp{InsertTrace},
38364 @samp{InsertFastTrace}, and @samp{Stop}. @var{val} is either 0,
38365 indicating that @value{GDBN} will not request the operation, or 1,
38366 indicating that it may.  (The target can then use this to set up its
38367 own internals optimally, for instance if the debugger never expects to
38368 insert breakpoints, it may not need to install its own trap handler.)
38369
38370 @item qC
38371 @cindex current thread, remote request
38372 @cindex @samp{qC} packet
38373 Return the current thread ID.
38374
38375 Reply:
38376 @table @samp
38377 @item QC @var{thread-id}
38378 Where @var{thread-id} is a thread ID as documented in 
38379 @ref{thread-id syntax}.
38380 @item @r{(anything else)}
38381 Any other reply implies the old thread ID.
38382 @end table
38383
38384 @item qCRC:@var{addr},@var{length}
38385 @cindex CRC of memory block, remote request
38386 @cindex @samp{qCRC} packet
38387 @anchor{qCRC packet}
38388 Compute the CRC checksum of a block of memory using CRC-32 defined in
38389 IEEE 802.3.  The CRC is computed byte at a time, taking the most
38390 significant bit of each byte first.  The initial pattern code
38391 @code{0xffffffff} is used to ensure leading zeros affect the CRC.
38392
38393 @emph{Note:} This is the same CRC used in validating separate debug
38394 files (@pxref{Separate Debug Files, , Debugging Information in Separate
38395 Files}).  However the algorithm is slightly different.  When validating
38396 separate debug files, the CRC is computed taking the @emph{least}
38397 significant bit of each byte first, and the final result is inverted to
38398 detect trailing zeros.
38399
38400 Reply:
38401 @table @samp
38402 @item E @var{NN}
38403 An error (such as memory fault)
38404 @item C @var{crc32}
38405 The specified memory region's checksum is @var{crc32}.
38406 @end table
38407
38408 @item QDisableRandomization:@var{value}
38409 @cindex disable address space randomization, remote request
38410 @cindex @samp{QDisableRandomization} packet
38411 Some target operating systems will randomize the virtual address space
38412 of the inferior process as a security feature, but provide a feature
38413 to disable such randomization, e.g.@: to allow for a more deterministic
38414 debugging experience.  On such systems, this packet with a @var{value}
38415 of 1 directs the target to disable address space randomization for
38416 processes subsequently started via @samp{vRun} packets, while a packet
38417 with a @var{value} of 0 tells the target to enable address space
38418 randomization.
38419
38420 This packet is only available in extended mode (@pxref{extended mode}).
38421
38422 Reply:
38423 @table @samp
38424 @item OK
38425 The request succeeded.
38426
38427 @item E @var{nn}
38428 An error occurred.  The error number @var{nn} is given as hex digits.
38429
38430 @item @w{}
38431 An empty reply indicates that @samp{QDisableRandomization} is not supported
38432 by the stub.
38433 @end table
38434
38435 This packet is not probed by default; the remote stub must request it,
38436 by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
38437 This should only be done on targets that actually support disabling
38438 address space randomization.
38439
38440 @item QStartupWithShell:@var{value}
38441 @cindex startup with shell, remote request
38442 @cindex @samp{QStartupWithShell} packet
38443 On UNIX-like targets, it is possible to start the inferior using a
38444 shell program.  This is the default behavior on both @value{GDBN} and
38445 @command{gdbserver} (@pxref{set startup-with-shell}).  This packet is
38446 used to inform @command{gdbserver} whether it should start the
38447 inferior using a shell or not.
38448
38449 If @var{value} is @samp{0}, @command{gdbserver} will not use a shell
38450 to start the inferior.  If @var{value} is @samp{1},
38451 @command{gdbserver} will use a shell to start the inferior.  All other
38452 values are considered an error.
38453
38454 This packet is only available in extended mode (@pxref{extended
38455 mode}).
38456
38457 Reply:
38458 @table @samp
38459 @item OK
38460 The request succeeded.
38461
38462 @item E @var{nn}
38463 An error occurred.  The error number @var{nn} is given as hex digits.
38464 @end table
38465
38466 This packet is not probed by default; the remote stub must request it,
38467 by supplying an appropriate @samp{qSupported} response
38468 (@pxref{qSupported}).  This should only be done on targets that
38469 actually support starting the inferior using a shell.
38470
38471 Use of this packet is controlled by the @code{set startup-with-shell}
38472 command; @pxref{set startup-with-shell}.
38473
38474 @item QEnvironmentHexEncoded:@var{hex-value}
38475 @anchor{QEnvironmentHexEncoded}
38476 @cindex set environment variable, remote request
38477 @cindex @samp{QEnvironmentHexEncoded} packet
38478 On UNIX-like targets, it is possible to set environment variables that
38479 will be passed to the inferior during the startup process.  This
38480 packet is used to inform @command{gdbserver} of an environment
38481 variable that has been defined by the user on @value{GDBN} (@pxref{set
38482 environment}).
38483
38484 The packet is composed by @var{hex-value}, an hex encoded
38485 representation of the @var{name=value} format representing an
38486 environment variable.  The name of the environment variable is
38487 represented by @var{name}, and the value to be assigned to the
38488 environment variable is represented by @var{value}.  If the variable
38489 has no value (i.e., the value is @code{null}), then @var{value} will
38490 not be present.
38491
38492 This packet is only available in extended mode (@pxref{extended
38493 mode}).
38494
38495 Reply:
38496 @table @samp
38497 @item OK
38498 The request succeeded.
38499 @end table
38500
38501 This packet is not probed by default; the remote stub must request it,
38502 by supplying an appropriate @samp{qSupported} response
38503 (@pxref{qSupported}).  This should only be done on targets that
38504 actually support passing environment variables to the starting
38505 inferior.
38506
38507 This packet is related to the @code{set environment} command;
38508 @pxref{set environment}.
38509
38510 @item QEnvironmentUnset:@var{hex-value}
38511 @anchor{QEnvironmentUnset}
38512 @cindex unset environment variable, remote request
38513 @cindex @samp{QEnvironmentUnset} packet
38514 On UNIX-like targets, it is possible to unset environment variables
38515 before starting the inferior in the remote target.  This packet is
38516 used to inform @command{gdbserver} of an environment variable that has
38517 been unset by the user on @value{GDBN} (@pxref{unset environment}).
38518
38519 The packet is composed by @var{hex-value}, an hex encoded
38520 representation of the name of the environment variable to be unset.
38521
38522 This packet is only available in extended mode (@pxref{extended
38523 mode}).
38524
38525 Reply:
38526 @table @samp
38527 @item OK
38528 The request succeeded.
38529 @end table
38530
38531 This packet is not probed by default; the remote stub must request it,
38532 by supplying an appropriate @samp{qSupported} response
38533 (@pxref{qSupported}).  This should only be done on targets that
38534 actually support passing environment variables to the starting
38535 inferior.
38536
38537 This packet is related to the @code{unset environment} command;
38538 @pxref{unset environment}.
38539
38540 @item QEnvironmentReset
38541 @anchor{QEnvironmentReset}
38542 @cindex reset environment, remote request
38543 @cindex @samp{QEnvironmentReset} packet
38544 On UNIX-like targets, this packet is used to reset the state of
38545 environment variables in the remote target before starting the
38546 inferior.  In this context, reset means unsetting all environment
38547 variables that were previously set by the user (i.e., were not
38548 initially present in the environment).  It is sent to
38549 @command{gdbserver} before the @samp{QEnvironmentHexEncoded}
38550 (@pxref{QEnvironmentHexEncoded}) and the @samp{QEnvironmentUnset}
38551 (@pxref{QEnvironmentUnset}) packets.
38552
38553 This packet is only available in extended mode (@pxref{extended
38554 mode}).
38555
38556 Reply:
38557 @table @samp
38558 @item OK
38559 The request succeeded.
38560 @end table
38561
38562 This packet is not probed by default; the remote stub must request it,
38563 by supplying an appropriate @samp{qSupported} response
38564 (@pxref{qSupported}).  This should only be done on targets that
38565 actually support passing environment variables to the starting
38566 inferior.
38567
38568 @item QSetWorkingDir:@r{[}@var{directory}@r{]}
38569 @anchor{QSetWorkingDir packet}
38570 @cindex set working directory, remote request
38571 @cindex @samp{QSetWorkingDir} packet
38572 This packet is used to inform the remote server of the intended
38573 current working directory for programs that are going to be executed.
38574
38575 The packet is composed by @var{directory}, an hex encoded
38576 representation of the directory that the remote inferior will use as
38577 its current working directory.  If @var{directory} is an empty string,
38578 the remote server should reset the inferior's current working
38579 directory to its original, empty value.
38580
38581 This packet is only available in extended mode (@pxref{extended
38582 mode}).
38583
38584 Reply:
38585 @table @samp
38586 @item OK
38587 The request succeeded.
38588 @end table
38589
38590 @item qfThreadInfo
38591 @itemx qsThreadInfo
38592 @cindex list active threads, remote request
38593 @cindex @samp{qfThreadInfo} packet
38594 @cindex @samp{qsThreadInfo} packet
38595 Obtain a list of all active thread IDs from the target (OS).  Since there
38596 may be too many active threads to fit into one reply packet, this query
38597 works iteratively: it may require more than one query/reply sequence to
38598 obtain the entire list of threads.  The first query of the sequence will
38599 be the @samp{qfThreadInfo} query; subsequent queries in the
38600 sequence will be the @samp{qsThreadInfo} query.
38601
38602 NOTE: This packet replaces the @samp{qL} query (see below).
38603
38604 Reply:
38605 @table @samp
38606 @item m @var{thread-id}
38607 A single thread ID
38608 @item m @var{thread-id},@var{thread-id}@dots{}
38609 a comma-separated list of thread IDs
38610 @item l
38611 (lower case letter @samp{L}) denotes end of list.
38612 @end table
38613
38614 In response to each query, the target will reply with a list of one or
38615 more thread IDs, separated by commas.
38616 @value{GDBN} will respond to each reply with a request for more thread
38617 ids (using the @samp{qs} form of the query), until the target responds
38618 with @samp{l} (lower-case ell, for @dfn{last}).
38619 Refer to @ref{thread-id syntax}, for the format of the @var{thread-id}
38620 fields.
38621
38622 @emph{Note: @value{GDBN} will send the @code{qfThreadInfo} query during the
38623 initial connection with the remote target, and the very first thread ID
38624 mentioned in the reply will be stopped by @value{GDBN} in a subsequent
38625 message.  Therefore, the stub should ensure that the first thread ID in
38626 the @code{qfThreadInfo} reply is suitable for being stopped by @value{GDBN}.}
38627
38628 @item qGetTLSAddr:@var{thread-id},@var{offset},@var{lm}
38629 @cindex get thread-local storage address, remote request
38630 @cindex @samp{qGetTLSAddr} packet
38631 Fetch the address associated with thread local storage specified
38632 by @var{thread-id}, @var{offset}, and @var{lm}.
38633
38634 @var{thread-id} is the thread ID associated with the
38635 thread for which to fetch the TLS address.  @xref{thread-id syntax}.
38636
38637 @var{offset} is the (big endian, hex encoded) offset associated with the
38638 thread local variable.  (This offset is obtained from the debug
38639 information associated with the variable.)
38640
38641 @var{lm} is the (big endian, hex encoded) OS/ABI-specific encoding of the
38642 load module associated with the thread local storage.  For example,
38643 a @sc{gnu}/Linux system will pass the link map address of the shared
38644 object associated with the thread local storage under consideration. 
38645 Other operating environments may choose to represent the load module
38646 differently, so the precise meaning of this parameter will vary.
38647
38648 Reply:
38649 @table @samp
38650 @item @var{XX}@dots{}
38651 Hex encoded (big endian) bytes representing the address of the thread
38652 local storage requested.
38653
38654 @item E @var{nn}
38655 An error occurred.  The error number @var{nn} is given as hex digits.
38656
38657 @item @w{}
38658 An empty reply indicates that @samp{qGetTLSAddr} is not supported by the stub.
38659 @end table
38660
38661 @item qGetTIBAddr:@var{thread-id}
38662 @cindex get thread information block address
38663 @cindex @samp{qGetTIBAddr} packet
38664 Fetch address of the Windows OS specific Thread Information Block.
38665
38666 @var{thread-id} is the thread ID associated with the thread.
38667
38668 Reply:
38669 @table @samp
38670 @item @var{XX}@dots{}
38671 Hex encoded (big endian) bytes representing the linear address of the
38672 thread information block.
38673
38674 @item E @var{nn}
38675 An error occured.  This means that either the thread was not found, or the
38676 address could not be retrieved.
38677
38678 @item @w{}
38679 An empty reply indicates that @samp{qGetTIBAddr} is not supported by the stub.
38680 @end table
38681
38682 @item qL @var{startflag} @var{threadcount} @var{nextthread}
38683 Obtain thread information from RTOS.  Where: @var{startflag} (one hex
38684 digit) is one to indicate the first query and zero to indicate a
38685 subsequent query; @var{threadcount} (two hex digits) is the maximum
38686 number of threads the response packet can contain; and @var{nextthread}
38687 (eight hex digits), for subsequent queries (@var{startflag} is zero), is
38688 returned in the response as @var{argthread}.
38689
38690 Don't use this packet; use the @samp{qfThreadInfo} query instead (see above).
38691
38692 Reply:
38693 @table @samp
38694 @item qM @var{count} @var{done} @var{argthread} @var{thread}@dots{}
38695 Where: @var{count} (two hex digits) is the number of threads being
38696 returned; @var{done} (one hex digit) is zero to indicate more threads
38697 and one indicates no further threads; @var{argthreadid} (eight hex
38698 digits) is @var{nextthread} from the request packet; @var{thread}@dots{}
38699 is a sequence of thread IDs, @var{threadid} (eight hex
38700 digits), from the target.  See @code{remote.c:parse_threadlist_response()}.
38701 @end table
38702
38703 @item qOffsets
38704 @cindex section offsets, remote request
38705 @cindex @samp{qOffsets} packet
38706 Get section offsets that the target used when relocating the downloaded
38707 image.
38708
38709 Reply:
38710 @table @samp
38711 @item Text=@var{xxx};Data=@var{yyy}@r{[};Bss=@var{zzz}@r{]}
38712 Relocate the @code{Text} section by @var{xxx} from its original address.
38713 Relocate the @code{Data} section by @var{yyy} from its original address.
38714 If the object file format provides segment information (e.g.@: @sc{elf}
38715 @samp{PT_LOAD} program headers), @value{GDBN} will relocate entire
38716 segments by the supplied offsets.
38717
38718 @emph{Note: while a @code{Bss} offset may be included in the response,
38719 @value{GDBN} ignores this and instead applies the @code{Data} offset
38720 to the @code{Bss} section.}
38721
38722 @item TextSeg=@var{xxx}@r{[};DataSeg=@var{yyy}@r{]}
38723 Relocate the first segment of the object file, which conventionally
38724 contains program code, to a starting address of @var{xxx}.  If
38725 @samp{DataSeg} is specified, relocate the second segment, which
38726 conventionally contains modifiable data, to a starting address of
38727 @var{yyy}.  @value{GDBN} will report an error if the object file
38728 does not contain segment information, or does not contain at least
38729 as many segments as mentioned in the reply.  Extra segments are
38730 kept at fixed offsets relative to the last relocated segment.
38731 @end table
38732
38733 @item qP @var{mode} @var{thread-id}
38734 @cindex thread information, remote request
38735 @cindex @samp{qP} packet
38736 Returns information on @var{thread-id}.  Where: @var{mode} is a hex
38737 encoded 32 bit mode; @var{thread-id} is a thread ID 
38738 (@pxref{thread-id syntax}).
38739
38740 Don't use this packet; use the @samp{qThreadExtraInfo} query instead
38741 (see below).
38742
38743 Reply: see @code{remote.c:remote_unpack_thread_info_response()}.
38744
38745 @item QNonStop:1
38746 @itemx QNonStop:0
38747 @cindex non-stop mode, remote request
38748 @cindex @samp{QNonStop} packet
38749 @anchor{QNonStop}
38750 Enter non-stop (@samp{QNonStop:1}) or all-stop (@samp{QNonStop:0}) mode.
38751 @xref{Remote Non-Stop}, for more information.
38752
38753 Reply:
38754 @table @samp
38755 @item OK
38756 The request succeeded.
38757
38758 @item E @var{nn}
38759 An error occurred.  The error number @var{nn} is given as hex digits.
38760
38761 @item @w{}
38762 An empty reply indicates that @samp{QNonStop} is not supported by
38763 the stub.
38764 @end table
38765
38766 This packet is not probed by default; the remote stub must request it,
38767 by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
38768 Use of this packet is controlled by the @code{set non-stop} command; 
38769 @pxref{Non-Stop Mode}.
38770
38771 @item QCatchSyscalls:1 @r{[};@var{sysno}@r{]}@dots{}
38772 @itemx QCatchSyscalls:0
38773 @cindex catch syscalls from inferior, remote request
38774 @cindex @samp{QCatchSyscalls} packet
38775 @anchor{QCatchSyscalls}
38776 Enable (@samp{QCatchSyscalls:1}) or disable (@samp{QCatchSyscalls:0})
38777 catching syscalls from the inferior process.
38778
38779 For @samp{QCatchSyscalls:1}, each listed syscall @var{sysno} (encoded
38780 in hex) should be reported to @value{GDBN}.  If no syscall @var{sysno}
38781 is listed, every system call should be reported.
38782
38783 Note that if a syscall not in the list is reported, @value{GDBN} will
38784 still filter the event according to its own list from all corresponding
38785 @code{catch syscall} commands.  However, it is more efficient to only
38786 report the requested syscalls.
38787
38788 Multiple @samp{QCatchSyscalls:1} packets do not combine; any earlier
38789 @samp{QCatchSyscalls:1} list is completely replaced by the new list.
38790
38791 If the inferior process execs, the state of @samp{QCatchSyscalls} is
38792 kept for the new process too.  On targets where exec may affect syscall
38793 numbers, for example with exec between 32 and 64-bit processes, the
38794 client should send a new packet with the new syscall list.
38795
38796 Reply:
38797 @table @samp
38798 @item OK
38799 The request succeeded.
38800
38801 @item E @var{nn}
38802 An error occurred.  @var{nn} are hex digits.
38803
38804 @item @w{}
38805 An empty reply indicates that @samp{QCatchSyscalls} is not supported by
38806 the stub.
38807 @end table
38808
38809 Use of this packet is controlled by the @code{set remote catch-syscalls}
38810 command (@pxref{Remote Configuration, set remote catch-syscalls}).
38811 This packet is not probed by default; the remote stub must request it,
38812 by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
38813
38814 @item QPassSignals: @var{signal} @r{[};@var{signal}@r{]}@dots{}
38815 @cindex pass signals to inferior, remote request
38816 @cindex @samp{QPassSignals} packet
38817 @anchor{QPassSignals}
38818 Each listed @var{signal} should be passed directly to the inferior process. 
38819 Signals are numbered identically to continue packets and stop replies
38820 (@pxref{Stop Reply Packets}).  Each @var{signal} list item should be
38821 strictly greater than the previous item.  These signals do not need to stop
38822 the inferior, or be reported to @value{GDBN}.  All other signals should be
38823 reported to @value{GDBN}.  Multiple @samp{QPassSignals} packets do not
38824 combine; any earlier @samp{QPassSignals} list is completely replaced by the
38825 new list.  This packet improves performance when using @samp{handle
38826 @var{signal} nostop noprint pass}.
38827
38828 Reply:
38829 @table @samp
38830 @item OK
38831 The request succeeded.
38832
38833 @item E @var{nn}
38834 An error occurred.  The error number @var{nn} is given as hex digits.
38835
38836 @item @w{}
38837 An empty reply indicates that @samp{QPassSignals} is not supported by
38838 the stub.
38839 @end table
38840
38841 Use of this packet is controlled by the @code{set remote pass-signals}
38842 command (@pxref{Remote Configuration, set remote pass-signals}).
38843 This packet is not probed by default; the remote stub must request it,
38844 by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
38845
38846 @item QProgramSignals: @var{signal} @r{[};@var{signal}@r{]}@dots{}
38847 @cindex signals the inferior may see, remote request
38848 @cindex @samp{QProgramSignals} packet
38849 @anchor{QProgramSignals}
38850 Each listed @var{signal} may be delivered to the inferior process.
38851 Others should be silently discarded.
38852
38853 In some cases, the remote stub may need to decide whether to deliver a
38854 signal to the program or not without @value{GDBN} involvement.  One
38855 example of that is while detaching --- the program's threads may have
38856 stopped for signals that haven't yet had a chance of being reported to
38857 @value{GDBN}, and so the remote stub can use the signal list specified
38858 by this packet to know whether to deliver or ignore those pending
38859 signals.
38860
38861 This does not influence whether to deliver a signal as requested by a
38862 resumption packet (@pxref{vCont packet}).
38863
38864 Signals are numbered identically to continue packets and stop replies
38865 (@pxref{Stop Reply Packets}).  Each @var{signal} list item should be
38866 strictly greater than the previous item.  Multiple
38867 @samp{QProgramSignals} packets do not combine; any earlier
38868 @samp{QProgramSignals} list is completely replaced by the new list.
38869
38870 Reply:
38871 @table @samp
38872 @item OK
38873 The request succeeded.
38874
38875 @item E @var{nn}
38876 An error occurred.  The error number @var{nn} is given as hex digits.
38877
38878 @item @w{}
38879 An empty reply indicates that @samp{QProgramSignals} is not supported
38880 by the stub.
38881 @end table
38882
38883 Use of this packet is controlled by the @code{set remote program-signals}
38884 command (@pxref{Remote Configuration, set remote program-signals}).
38885 This packet is not probed by default; the remote stub must request it,
38886 by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
38887
38888 @anchor{QThreadEvents}
38889 @item QThreadEvents:1
38890 @itemx QThreadEvents:0
38891 @cindex thread create/exit events, remote request
38892 @cindex @samp{QThreadEvents} packet
38893
38894 Enable (@samp{QThreadEvents:1}) or disable (@samp{QThreadEvents:0})
38895 reporting of thread create and exit events.  @xref{thread create
38896 event}, for the reply specifications.  For example, this is used in
38897 non-stop mode when @value{GDBN} stops a set of threads and
38898 synchronously waits for the their corresponding stop replies.  Without
38899 exit events, if one of the threads exits, @value{GDBN} would hang
38900 forever not knowing that it should no longer expect a stop for that
38901 same thread.  @value{GDBN} does not enable this feature unless the
38902 stub reports that it supports it by including @samp{QThreadEvents+} in
38903 its @samp{qSupported} reply.
38904
38905 Reply:
38906 @table @samp
38907 @item OK
38908 The request succeeded.
38909
38910 @item E @var{nn}
38911 An error occurred.  The error number @var{nn} is given as hex digits.
38912
38913 @item @w{}
38914 An empty reply indicates that @samp{QThreadEvents} is not supported by
38915 the stub.
38916 @end table
38917
38918 Use of this packet is controlled by the @code{set remote thread-events}
38919 command (@pxref{Remote Configuration, set remote thread-events}).
38920
38921 @item qRcmd,@var{command}
38922 @cindex execute remote command, remote request
38923 @cindex @samp{qRcmd} packet
38924 @var{command} (hex encoded) is passed to the local interpreter for
38925 execution.  Invalid commands should be reported using the output
38926 string.  Before the final result packet, the target may also respond
38927 with a number of intermediate @samp{O@var{output}} console output
38928 packets.  @emph{Implementors should note that providing access to a
38929 stubs's interpreter may have security implications}.
38930
38931 Reply:
38932 @table @samp
38933 @item OK
38934 A command response with no output.
38935 @item @var{OUTPUT}
38936 A command response with the hex encoded output string @var{OUTPUT}.
38937 @item E @var{NN}
38938 Indicate a badly formed request.
38939 @item @w{}
38940 An empty reply indicates that @samp{qRcmd} is not recognized.
38941 @end table
38942
38943 (Note that the @code{qRcmd} packet's name is separated from the
38944 command by a @samp{,}, not a @samp{:}, contrary to the naming
38945 conventions above.  Please don't use this packet as a model for new
38946 packets.)
38947
38948 @item qSearch:memory:@var{address};@var{length};@var{search-pattern}
38949 @cindex searching memory, in remote debugging
38950 @ifnotinfo
38951 @cindex @samp{qSearch:memory} packet
38952 @end ifnotinfo
38953 @cindex @samp{qSearch memory} packet
38954 @anchor{qSearch memory}
38955 Search @var{length} bytes at @var{address} for @var{search-pattern}.
38956 Both @var{address} and @var{length} are encoded in hex;
38957 @var{search-pattern} is a sequence of bytes, also hex encoded.
38958
38959 Reply:
38960 @table @samp
38961 @item 0
38962 The pattern was not found.
38963 @item 1,address
38964 The pattern was found at @var{address}.
38965 @item E @var{NN}
38966 A badly formed request or an error was encountered while searching memory.
38967 @item @w{}
38968 An empty reply indicates that @samp{qSearch:memory} is not recognized.
38969 @end table
38970
38971 @item QStartNoAckMode
38972 @cindex @samp{QStartNoAckMode} packet
38973 @anchor{QStartNoAckMode}
38974 Request that the remote stub disable the normal @samp{+}/@samp{-}
38975 protocol acknowledgments (@pxref{Packet Acknowledgment}).
38976
38977 Reply:
38978 @table @samp
38979 @item OK
38980 The stub has switched to no-acknowledgment mode.
38981 @value{GDBN} acknowledges this reponse,
38982 but neither the stub nor @value{GDBN} shall send or expect further
38983 @samp{+}/@samp{-} acknowledgments in the current connection.
38984 @item @w{}
38985 An empty reply indicates that the stub does not support no-acknowledgment mode.
38986 @end table
38987
38988 @item qSupported @r{[}:@var{gdbfeature} @r{[};@var{gdbfeature}@r{]}@dots{} @r{]}
38989 @cindex supported packets, remote query
38990 @cindex features of the remote protocol
38991 @cindex @samp{qSupported} packet
38992 @anchor{qSupported}
38993 Tell the remote stub about features supported by @value{GDBN}, and
38994 query the stub for features it supports.  This packet allows
38995 @value{GDBN} and the remote stub to take advantage of each others'
38996 features.  @samp{qSupported} also consolidates multiple feature probes
38997 at startup, to improve @value{GDBN} performance---a single larger
38998 packet performs better than multiple smaller probe packets on
38999 high-latency links.  Some features may enable behavior which must not
39000 be on by default, e.g.@: because it would confuse older clients or
39001 stubs.  Other features may describe packets which could be
39002 automatically probed for, but are not.  These features must be
39003 reported before @value{GDBN} will use them.  This ``default
39004 unsupported'' behavior is not appropriate for all packets, but it
39005 helps to keep the initial connection time under control with new
39006 versions of @value{GDBN} which support increasing numbers of packets.
39007
39008 Reply:
39009 @table @samp
39010 @item @var{stubfeature} @r{[};@var{stubfeature}@r{]}@dots{}
39011 The stub supports or does not support each returned @var{stubfeature},
39012 depending on the form of each @var{stubfeature} (see below for the
39013 possible forms).
39014 @item @w{}
39015 An empty reply indicates that @samp{qSupported} is not recognized,
39016 or that no features needed to be reported to @value{GDBN}.
39017 @end table
39018
39019 The allowed forms for each feature (either a @var{gdbfeature} in the
39020 @samp{qSupported} packet, or a @var{stubfeature} in the response)
39021 are:
39022
39023 @table @samp
39024 @item @var{name}=@var{value}
39025 The remote protocol feature @var{name} is supported, and associated
39026 with the specified @var{value}.  The format of @var{value} depends
39027 on the feature, but it must not include a semicolon.
39028 @item @var{name}+
39029 The remote protocol feature @var{name} is supported, and does not
39030 need an associated value.
39031 @item @var{name}-
39032 The remote protocol feature @var{name} is not supported.
39033 @item @var{name}?
39034 The remote protocol feature @var{name} may be supported, and
39035 @value{GDBN} should auto-detect support in some other way when it is
39036 needed.  This form will not be used for @var{gdbfeature} notifications,
39037 but may be used for @var{stubfeature} responses.
39038 @end table
39039
39040 Whenever the stub receives a @samp{qSupported} request, the
39041 supplied set of @value{GDBN} features should override any previous
39042 request.  This allows @value{GDBN} to put the stub in a known
39043 state, even if the stub had previously been communicating with
39044 a different version of @value{GDBN}.
39045
39046 The following values of @var{gdbfeature} (for the packet sent by @value{GDBN})
39047 are defined:  
39048
39049 @table @samp
39050 @item multiprocess
39051 This feature indicates whether @value{GDBN} supports multiprocess 
39052 extensions to the remote protocol.  @value{GDBN} does not use such
39053 extensions unless the stub also reports that it supports them by
39054 including @samp{multiprocess+} in its @samp{qSupported} reply.
39055 @xref{multiprocess extensions}, for details.
39056
39057 @item xmlRegisters
39058 This feature indicates that @value{GDBN} supports the XML target
39059 description.  If the stub sees @samp{xmlRegisters=} with target
39060 specific strings separated by a comma, it will report register
39061 description.
39062
39063 @item qRelocInsn
39064 This feature indicates whether @value{GDBN} supports the
39065 @samp{qRelocInsn} packet (@pxref{Tracepoint Packets,,Relocate
39066 instruction reply packet}).
39067
39068 @item swbreak
39069 This feature indicates whether @value{GDBN} supports the swbreak stop
39070 reason in stop replies.  @xref{swbreak stop reason}, for details.
39071
39072 @item hwbreak
39073 This feature indicates whether @value{GDBN} supports the hwbreak stop
39074 reason in stop replies.  @xref{swbreak stop reason}, for details.
39075
39076 @item fork-events
39077 This feature indicates whether @value{GDBN} supports fork event
39078 extensions to the remote protocol.  @value{GDBN} does not use such
39079 extensions unless the stub also reports that it supports them by
39080 including @samp{fork-events+} in its @samp{qSupported} reply.
39081
39082 @item vfork-events
39083 This feature indicates whether @value{GDBN} supports vfork event
39084 extensions to the remote protocol.  @value{GDBN} does not use such
39085 extensions unless the stub also reports that it supports them by
39086 including @samp{vfork-events+} in its @samp{qSupported} reply.
39087
39088 @item exec-events
39089 This feature indicates whether @value{GDBN} supports exec event
39090 extensions to the remote protocol.  @value{GDBN} does not use such
39091 extensions unless the stub also reports that it supports them by
39092 including @samp{exec-events+} in its @samp{qSupported} reply.
39093
39094 @item vContSupported
39095 This feature indicates whether @value{GDBN} wants to know the
39096 supported actions in the reply to @samp{vCont?} packet.
39097 @end table
39098
39099 Stubs should ignore any unknown values for
39100 @var{gdbfeature}.  Any @value{GDBN} which sends a @samp{qSupported}
39101 packet supports receiving packets of unlimited length (earlier
39102 versions of @value{GDBN} may reject overly long responses).  Additional values
39103 for @var{gdbfeature} may be defined in the future to let the stub take
39104 advantage of new features in @value{GDBN}, e.g.@: incompatible
39105 improvements in the remote protocol---the @samp{multiprocess} feature is
39106 an example of such a feature.  The stub's reply should be independent
39107 of the @var{gdbfeature} entries sent by @value{GDBN}; first @value{GDBN}
39108 describes all the features it supports, and then the stub replies with
39109 all the features it supports.
39110
39111 Similarly, @value{GDBN} will silently ignore unrecognized stub feature
39112 responses, as long as each response uses one of the standard forms.
39113
39114 Some features are flags.  A stub which supports a flag feature
39115 should respond with a @samp{+} form response.  Other features
39116 require values, and the stub should respond with an @samp{=}
39117 form response.
39118
39119 Each feature has a default value, which @value{GDBN} will use if
39120 @samp{qSupported} is not available or if the feature is not mentioned
39121 in the @samp{qSupported} response.  The default values are fixed; a
39122 stub is free to omit any feature responses that match the defaults.
39123
39124 Not all features can be probed, but for those which can, the probing
39125 mechanism is useful: in some cases, a stub's internal
39126 architecture may not allow the protocol layer to know some information
39127 about the underlying target in advance.  This is especially common in
39128 stubs which may be configured for multiple targets.
39129
39130 These are the currently defined stub features and their properties:
39131
39132 @multitable @columnfractions 0.35 0.2 0.12 0.2
39133 @c NOTE: The first row should be @headitem, but we do not yet require
39134 @c a new enough version of Texinfo (4.7) to use @headitem.
39135 @item Feature Name
39136 @tab Value Required
39137 @tab Default
39138 @tab Probe Allowed
39139
39140 @item @samp{PacketSize}
39141 @tab Yes
39142 @tab @samp{-}
39143 @tab No
39144
39145 @item @samp{qXfer:auxv:read}
39146 @tab No
39147 @tab @samp{-}
39148 @tab Yes
39149
39150 @item @samp{qXfer:btrace:read}
39151 @tab No
39152 @tab @samp{-}
39153 @tab Yes
39154
39155 @item @samp{qXfer:btrace-conf:read}
39156 @tab No
39157 @tab @samp{-}
39158 @tab Yes
39159
39160 @item @samp{qXfer:exec-file:read}
39161 @tab No
39162 @tab @samp{-}
39163 @tab Yes
39164
39165 @item @samp{qXfer:features:read}
39166 @tab No
39167 @tab @samp{-}
39168 @tab Yes
39169
39170 @item @samp{qXfer:libraries:read}
39171 @tab No
39172 @tab @samp{-}
39173 @tab Yes
39174
39175 @item @samp{qXfer:libraries-svr4:read}
39176 @tab No
39177 @tab @samp{-}
39178 @tab Yes
39179
39180 @item @samp{augmented-libraries-svr4-read}
39181 @tab No
39182 @tab @samp{-}
39183 @tab No
39184
39185 @item @samp{qXfer:memory-map:read}
39186 @tab No
39187 @tab @samp{-}
39188 @tab Yes
39189
39190 @item @samp{qXfer:sdata:read}
39191 @tab No
39192 @tab @samp{-}
39193 @tab Yes
39194
39195 @item @samp{qXfer:spu:read}
39196 @tab No
39197 @tab @samp{-}
39198 @tab Yes
39199
39200 @item @samp{qXfer:spu:write}
39201 @tab No
39202 @tab @samp{-}
39203 @tab Yes
39204
39205 @item @samp{qXfer:siginfo:read}
39206 @tab No
39207 @tab @samp{-}
39208 @tab Yes
39209
39210 @item @samp{qXfer:siginfo:write}
39211 @tab No
39212 @tab @samp{-}
39213 @tab Yes
39214
39215 @item @samp{qXfer:threads:read}
39216 @tab No
39217 @tab @samp{-}
39218 @tab Yes
39219
39220 @item @samp{qXfer:traceframe-info:read}
39221 @tab No
39222 @tab @samp{-}
39223 @tab Yes
39224
39225 @item @samp{qXfer:uib:read}
39226 @tab No
39227 @tab @samp{-}
39228 @tab Yes
39229
39230 @item @samp{qXfer:fdpic:read}
39231 @tab No
39232 @tab @samp{-}
39233 @tab Yes
39234
39235 @item @samp{Qbtrace:off}
39236 @tab Yes
39237 @tab @samp{-}
39238 @tab Yes
39239
39240 @item @samp{Qbtrace:bts}
39241 @tab Yes
39242 @tab @samp{-}
39243 @tab Yes
39244
39245 @item @samp{Qbtrace:pt}
39246 @tab Yes
39247 @tab @samp{-}
39248 @tab Yes
39249
39250 @item @samp{Qbtrace-conf:bts:size}
39251 @tab Yes
39252 @tab @samp{-}
39253 @tab Yes
39254
39255 @item @samp{Qbtrace-conf:pt:size}
39256 @tab Yes
39257 @tab @samp{-}
39258 @tab Yes
39259
39260 @item @samp{QNonStop}
39261 @tab No
39262 @tab @samp{-}
39263 @tab Yes
39264
39265 @item @samp{QCatchSyscalls}
39266 @tab No
39267 @tab @samp{-}
39268 @tab Yes
39269
39270 @item @samp{QPassSignals}
39271 @tab No
39272 @tab @samp{-}
39273 @tab Yes
39274
39275 @item @samp{QStartNoAckMode}
39276 @tab No
39277 @tab @samp{-}
39278 @tab Yes
39279
39280 @item @samp{multiprocess}
39281 @tab No
39282 @tab @samp{-}
39283 @tab No
39284
39285 @item @samp{ConditionalBreakpoints}
39286 @tab No
39287 @tab @samp{-}
39288 @tab No
39289
39290 @item @samp{ConditionalTracepoints}
39291 @tab No
39292 @tab @samp{-}
39293 @tab No
39294
39295 @item @samp{ReverseContinue}
39296 @tab No
39297 @tab @samp{-}
39298 @tab No
39299
39300 @item @samp{ReverseStep}
39301 @tab No
39302 @tab @samp{-}
39303 @tab No
39304
39305 @item @samp{TracepointSource}
39306 @tab No
39307 @tab @samp{-}
39308 @tab No
39309
39310 @item @samp{QAgent}
39311 @tab No
39312 @tab @samp{-}
39313 @tab No
39314
39315 @item @samp{QAllow}
39316 @tab No
39317 @tab @samp{-}
39318 @tab No
39319
39320 @item @samp{QDisableRandomization}
39321 @tab No
39322 @tab @samp{-}
39323 @tab No
39324
39325 @item @samp{EnableDisableTracepoints}
39326 @tab No
39327 @tab @samp{-}
39328 @tab No
39329
39330 @item @samp{QTBuffer:size}
39331 @tab No
39332 @tab @samp{-}
39333 @tab No
39334
39335 @item @samp{tracenz}
39336 @tab No
39337 @tab @samp{-}
39338 @tab No
39339
39340 @item @samp{BreakpointCommands}
39341 @tab No
39342 @tab @samp{-}
39343 @tab No
39344
39345 @item @samp{swbreak}
39346 @tab No
39347 @tab @samp{-}
39348 @tab No
39349
39350 @item @samp{hwbreak}
39351 @tab No
39352 @tab @samp{-}
39353 @tab No
39354
39355 @item @samp{fork-events}
39356 @tab No
39357 @tab @samp{-}
39358 @tab No
39359
39360 @item @samp{vfork-events}
39361 @tab No
39362 @tab @samp{-}
39363 @tab No
39364
39365 @item @samp{exec-events}
39366 @tab No
39367 @tab @samp{-}
39368 @tab No
39369
39370 @item @samp{QThreadEvents}
39371 @tab No
39372 @tab @samp{-}
39373 @tab No
39374
39375 @item @samp{no-resumed}
39376 @tab No
39377 @tab @samp{-}
39378 @tab No
39379
39380 @end multitable
39381
39382 These are the currently defined stub features, in more detail:
39383
39384 @table @samp
39385 @cindex packet size, remote protocol
39386 @item PacketSize=@var{bytes}
39387 The remote stub can accept packets up to at least @var{bytes} in
39388 length.  @value{GDBN} will send packets up to this size for bulk
39389 transfers, and will never send larger packets.  This is a limit on the
39390 data characters in the packet, including the frame and checksum.
39391 There is no trailing NUL byte in a remote protocol packet; if the stub
39392 stores packets in a NUL-terminated format, it should allow an extra
39393 byte in its buffer for the NUL.  If this stub feature is not supported,
39394 @value{GDBN} guesses based on the size of the @samp{g} packet response.
39395
39396 @item qXfer:auxv:read
39397 The remote stub understands the @samp{qXfer:auxv:read} packet
39398 (@pxref{qXfer auxiliary vector read}).
39399
39400 @item qXfer:btrace:read
39401 The remote stub understands the @samp{qXfer:btrace:read}
39402 packet (@pxref{qXfer btrace read}).
39403
39404 @item qXfer:btrace-conf:read
39405 The remote stub understands the @samp{qXfer:btrace-conf:read}
39406 packet (@pxref{qXfer btrace-conf read}).
39407
39408 @item qXfer:exec-file:read
39409 The remote stub understands the @samp{qXfer:exec-file:read} packet
39410 (@pxref{qXfer executable filename read}).
39411
39412 @item qXfer:features:read
39413 The remote stub understands the @samp{qXfer:features:read} packet
39414 (@pxref{qXfer target description read}).
39415
39416 @item qXfer:libraries:read
39417 The remote stub understands the @samp{qXfer:libraries:read} packet
39418 (@pxref{qXfer library list read}).
39419
39420 @item qXfer:libraries-svr4:read
39421 The remote stub understands the @samp{qXfer:libraries-svr4:read} packet
39422 (@pxref{qXfer svr4 library list read}).
39423
39424 @item augmented-libraries-svr4-read
39425 The remote stub understands the augmented form of the
39426 @samp{qXfer:libraries-svr4:read} packet
39427 (@pxref{qXfer svr4 library list read}).
39428
39429 @item qXfer:memory-map:read
39430 The remote stub understands the @samp{qXfer:memory-map:read} packet
39431 (@pxref{qXfer memory map read}).
39432
39433 @item qXfer:sdata:read
39434 The remote stub understands the @samp{qXfer:sdata:read} packet
39435 (@pxref{qXfer sdata read}).
39436
39437 @item qXfer:spu:read
39438 The remote stub understands the @samp{qXfer:spu:read} packet
39439 (@pxref{qXfer spu read}).
39440
39441 @item qXfer:spu:write
39442 The remote stub understands the @samp{qXfer:spu:write} packet
39443 (@pxref{qXfer spu write}).
39444
39445 @item qXfer:siginfo:read
39446 The remote stub understands the @samp{qXfer:siginfo:read} packet
39447 (@pxref{qXfer siginfo read}).
39448
39449 @item qXfer:siginfo:write
39450 The remote stub understands the @samp{qXfer:siginfo:write} packet
39451 (@pxref{qXfer siginfo write}).
39452
39453 @item qXfer:threads:read
39454 The remote stub understands the @samp{qXfer:threads:read} packet
39455 (@pxref{qXfer threads read}).
39456
39457 @item qXfer:traceframe-info:read
39458 The remote stub understands the @samp{qXfer:traceframe-info:read}
39459 packet (@pxref{qXfer traceframe info read}).
39460
39461 @item qXfer:uib:read
39462 The remote stub understands the @samp{qXfer:uib:read}
39463 packet (@pxref{qXfer unwind info block}).
39464
39465 @item qXfer:fdpic:read
39466 The remote stub understands the @samp{qXfer:fdpic:read}
39467 packet (@pxref{qXfer fdpic loadmap read}).
39468
39469 @item QNonStop
39470 The remote stub understands the @samp{QNonStop} packet
39471 (@pxref{QNonStop}).
39472
39473 @item QCatchSyscalls
39474 The remote stub understands the @samp{QCatchSyscalls} packet
39475 (@pxref{QCatchSyscalls}).
39476
39477 @item QPassSignals
39478 The remote stub understands the @samp{QPassSignals} packet
39479 (@pxref{QPassSignals}).
39480
39481 @item QStartNoAckMode
39482 The remote stub understands the @samp{QStartNoAckMode} packet and
39483 prefers to operate in no-acknowledgment mode.  @xref{Packet Acknowledgment}.
39484
39485 @item multiprocess
39486 @anchor{multiprocess extensions}
39487 @cindex multiprocess extensions, in remote protocol
39488 The remote stub understands the multiprocess extensions to the remote
39489 protocol syntax.  The multiprocess extensions affect the syntax of
39490 thread IDs in both packets and replies (@pxref{thread-id syntax}), and
39491 add process IDs to the @samp{D} packet and @samp{W} and @samp{X}
39492 replies.  Note that reporting this feature indicates support for the
39493 syntactic extensions only, not that the stub necessarily supports
39494 debugging of more than one process at a time.  The stub must not use
39495 multiprocess extensions in packet replies unless @value{GDBN} has also
39496 indicated it supports them in its @samp{qSupported} request.
39497
39498 @item qXfer:osdata:read
39499 The remote stub understands the @samp{qXfer:osdata:read} packet
39500 ((@pxref{qXfer osdata read}).
39501
39502 @item ConditionalBreakpoints
39503 The target accepts and implements evaluation of conditional expressions
39504 defined for breakpoints.  The target will only report breakpoint triggers
39505 when such conditions are true (@pxref{Conditions, ,Break Conditions}).
39506
39507 @item ConditionalTracepoints
39508 The remote stub accepts and implements conditional expressions defined
39509 for tracepoints (@pxref{Tracepoint Conditions}).
39510
39511 @item ReverseContinue
39512 The remote stub accepts and implements the reverse continue packet
39513 (@pxref{bc}).
39514
39515 @item ReverseStep
39516 The remote stub accepts and implements the reverse step packet
39517 (@pxref{bs}).
39518
39519 @item TracepointSource
39520 The remote stub understands the @samp{QTDPsrc} packet that supplies
39521 the source form of tracepoint definitions.
39522
39523 @item QAgent
39524 The remote stub understands the @samp{QAgent} packet.
39525
39526 @item QAllow
39527 The remote stub understands the @samp{QAllow} packet.
39528
39529 @item QDisableRandomization
39530 The remote stub understands the @samp{QDisableRandomization} packet.
39531
39532 @item StaticTracepoint
39533 @cindex static tracepoints, in remote protocol
39534 The remote stub supports static tracepoints.
39535
39536 @item InstallInTrace
39537 @anchor{install tracepoint in tracing}
39538 The remote stub supports installing tracepoint in tracing.
39539
39540 @item EnableDisableTracepoints
39541 The remote stub supports the @samp{QTEnable} (@pxref{QTEnable}) and
39542 @samp{QTDisable} (@pxref{QTDisable}) packets that allow tracepoints
39543 to be enabled and disabled while a trace experiment is running.
39544
39545 @item QTBuffer:size
39546 The remote stub supports the @samp{QTBuffer:size} (@pxref{QTBuffer-size})
39547 packet that allows to change the size of the trace buffer.
39548
39549 @item tracenz
39550 @cindex string tracing, in remote protocol
39551 The remote stub supports the @samp{tracenz} bytecode for collecting strings.
39552 See @ref{Bytecode Descriptions} for details about the bytecode.
39553
39554 @item BreakpointCommands
39555 @cindex breakpoint commands, in remote protocol
39556 The remote stub supports running a breakpoint's command list itself,
39557 rather than reporting the hit to @value{GDBN}.
39558
39559 @item Qbtrace:off
39560 The remote stub understands the @samp{Qbtrace:off} packet.
39561
39562 @item Qbtrace:bts
39563 The remote stub understands the @samp{Qbtrace:bts} packet.
39564
39565 @item Qbtrace:pt
39566 The remote stub understands the @samp{Qbtrace:pt} packet.
39567
39568 @item Qbtrace-conf:bts:size
39569 The remote stub understands the @samp{Qbtrace-conf:bts:size} packet.
39570
39571 @item Qbtrace-conf:pt:size
39572 The remote stub understands the @samp{Qbtrace-conf:pt:size} packet.
39573
39574 @item swbreak
39575 The remote stub reports the @samp{swbreak} stop reason for memory
39576 breakpoints.
39577
39578 @item hwbreak
39579 The remote stub reports the @samp{hwbreak} stop reason for hardware
39580 breakpoints.
39581
39582 @item fork-events
39583 The remote stub reports the @samp{fork} stop reason for fork events.
39584
39585 @item vfork-events
39586 The remote stub reports the @samp{vfork} stop reason for vfork events
39587 and vforkdone events.
39588
39589 @item exec-events
39590 The remote stub reports the @samp{exec} stop reason for exec events.
39591
39592 @item vContSupported
39593 The remote stub reports the supported actions in the reply to
39594 @samp{vCont?} packet.
39595
39596 @item QThreadEvents
39597 The remote stub understands the @samp{QThreadEvents} packet.
39598
39599 @item no-resumed
39600 The remote stub reports the @samp{N} stop reply.
39601
39602 @end table
39603
39604 @item qSymbol::
39605 @cindex symbol lookup, remote request
39606 @cindex @samp{qSymbol} packet
39607 Notify the target that @value{GDBN} is prepared to serve symbol lookup
39608 requests.  Accept requests from the target for the values of symbols.
39609
39610 Reply:
39611 @table @samp
39612 @item OK
39613 The target does not need to look up any (more) symbols.
39614 @item qSymbol:@var{sym_name}
39615 The target requests the value of symbol @var{sym_name} (hex encoded).
39616 @value{GDBN} may provide the value by using the
39617 @samp{qSymbol:@var{sym_value}:@var{sym_name}} message, described
39618 below.
39619 @end table
39620
39621 @item qSymbol:@var{sym_value}:@var{sym_name}
39622 Set the value of @var{sym_name} to @var{sym_value}.
39623
39624 @var{sym_name} (hex encoded) is the name of a symbol whose value the
39625 target has previously requested.
39626
39627 @var{sym_value} (hex) is the value for symbol @var{sym_name}.  If
39628 @value{GDBN} cannot supply a value for @var{sym_name}, then this field
39629 will be empty.
39630
39631 Reply:
39632 @table @samp
39633 @item OK
39634 The target does not need to look up any (more) symbols.
39635 @item qSymbol:@var{sym_name}
39636 The target requests the value of a new symbol @var{sym_name} (hex
39637 encoded).  @value{GDBN} will continue to supply the values of symbols
39638 (if available), until the target ceases to request them.
39639 @end table
39640
39641 @item qTBuffer
39642 @itemx QTBuffer
39643 @itemx QTDisconnected
39644 @itemx QTDP
39645 @itemx QTDPsrc
39646 @itemx QTDV
39647 @itemx qTfP
39648 @itemx qTfV
39649 @itemx QTFrame
39650 @itemx qTMinFTPILen
39651
39652 @xref{Tracepoint Packets}.
39653
39654 @item qThreadExtraInfo,@var{thread-id}
39655 @cindex thread attributes info, remote request
39656 @cindex @samp{qThreadExtraInfo} packet
39657 Obtain from the target OS a printable string description of thread
39658 attributes for the thread @var{thread-id}; see @ref{thread-id syntax},
39659 for the forms of @var{thread-id}.  This
39660 string may contain anything that the target OS thinks is interesting
39661 for @value{GDBN} to tell the user about the thread.  The string is
39662 displayed in @value{GDBN}'s @code{info threads} display.  Some
39663 examples of possible thread extra info strings are @samp{Runnable}, or
39664 @samp{Blocked on Mutex}.
39665
39666 Reply:
39667 @table @samp
39668 @item @var{XX}@dots{}
39669 Where @samp{@var{XX}@dots{}} is a hex encoding of @sc{ascii} data,
39670 comprising the printable string containing the extra information about
39671 the thread's attributes.
39672 @end table
39673
39674 (Note that the @code{qThreadExtraInfo} packet's name is separated from
39675 the command by a @samp{,}, not a @samp{:}, contrary to the naming
39676 conventions above.  Please don't use this packet as a model for new
39677 packets.)
39678
39679 @item QTNotes
39680 @itemx qTP
39681 @itemx QTSave
39682 @itemx qTsP
39683 @itemx qTsV
39684 @itemx QTStart    
39685 @itemx QTStop     
39686 @itemx QTEnable
39687 @itemx QTDisable
39688 @itemx QTinit     
39689 @itemx QTro       
39690 @itemx qTStatus   
39691 @itemx qTV
39692 @itemx qTfSTM
39693 @itemx qTsSTM
39694 @itemx qTSTMat
39695 @xref{Tracepoint Packets}.
39696
39697 @item qXfer:@var{object}:read:@var{annex}:@var{offset},@var{length}
39698 @cindex read special object, remote request
39699 @cindex @samp{qXfer} packet
39700 @anchor{qXfer read}
39701 Read uninterpreted bytes from the target's special data area
39702 identified by the keyword @var{object}.  Request @var{length} bytes
39703 starting at @var{offset} bytes into the data.  The content and
39704 encoding of @var{annex} is specific to @var{object}; it can supply
39705 additional details about what data to access.
39706
39707 Reply:
39708 @table @samp
39709 @item m @var{data}
39710 Data @var{data} (@pxref{Binary Data}) has been read from the
39711 target.  There may be more data at a higher address (although
39712 it is permitted to return @samp{m} even for the last valid
39713 block of data, as long as at least one byte of data was read).
39714 It is possible for @var{data} to have fewer bytes than the @var{length} in the
39715 request.
39716
39717 @item l @var{data}
39718 Data @var{data} (@pxref{Binary Data}) has been read from the target.
39719 There is no more data to be read.  It is possible for @var{data} to
39720 have fewer bytes than the @var{length} in the request.
39721
39722 @item l
39723 The @var{offset} in the request is at the end of the data.
39724 There is no more data to be read.
39725
39726 @item E00
39727 The request was malformed, or @var{annex} was invalid.
39728
39729 @item E @var{nn}
39730 The offset was invalid, or there was an error encountered reading the data.
39731 The @var{nn} part is a hex-encoded @code{errno} value.
39732
39733 @item @w{}
39734 An empty reply indicates the @var{object} string was not recognized by
39735 the stub, or that the object does not support reading.
39736 @end table
39737
39738 Here are the specific requests of this form defined so far.  All the
39739 @samp{qXfer:@var{object}:read:@dots{}} requests use the same reply
39740 formats, listed above.
39741
39742 @table @samp
39743 @item qXfer:auxv:read::@var{offset},@var{length}
39744 @anchor{qXfer auxiliary vector read}
39745 Access the target's @dfn{auxiliary vector}.  @xref{OS Information,
39746 auxiliary vector}.  Note @var{annex} must be empty.
39747
39748 This packet is not probed by default; the remote stub must request it,
39749 by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
39750
39751 @item qXfer:btrace:read:@var{annex}:@var{offset},@var{length}
39752 @anchor{qXfer btrace read}
39753
39754 Return a description of the current branch trace.
39755 @xref{Branch Trace Format}.  The annex part of the generic @samp{qXfer}
39756 packet may have one of the following values:
39757
39758 @table @code
39759 @item all
39760 Returns all available branch trace.
39761
39762 @item new
39763 Returns all available branch trace if the branch trace changed since
39764 the last read request.
39765
39766 @item delta
39767 Returns the new branch trace since the last read request.  Adds a new
39768 block to the end of the trace that begins at zero and ends at the source
39769 location of the first branch in the trace buffer.  This extra block is
39770 used to stitch traces together.
39771
39772 If the trace buffer overflowed, returns an error indicating the overflow.
39773 @end table
39774
39775 This packet is not probed by default; the remote stub must request it
39776 by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
39777
39778 @item qXfer:btrace-conf:read::@var{offset},@var{length}
39779 @anchor{qXfer btrace-conf read}
39780
39781 Return a description of the current branch trace configuration.
39782 @xref{Branch Trace Configuration Format}.
39783
39784 This packet is not probed by default; the remote stub must request it
39785 by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
39786
39787 @item qXfer:exec-file:read:@var{annex}:@var{offset},@var{length}
39788 @anchor{qXfer executable filename read}
39789 Return the full absolute name of the file that was executed to create
39790 a process running on the remote system.  The annex specifies the
39791 numeric process ID of the process to query, encoded as a hexadecimal
39792 number.  If the annex part is empty the remote stub should return the
39793 filename corresponding to the currently executing process.
39794
39795 This packet is not probed by default; the remote stub must request it,
39796 by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
39797
39798 @item qXfer:features:read:@var{annex}:@var{offset},@var{length}
39799 @anchor{qXfer target description read}
39800 Access the @dfn{target description}.  @xref{Target Descriptions}.  The
39801 annex specifies which XML document to access.  The main description is
39802 always loaded from the @samp{target.xml} annex.
39803
39804 This packet is not probed by default; the remote stub must request it,
39805 by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
39806
39807 @item qXfer:libraries:read:@var{annex}:@var{offset},@var{length}
39808 @anchor{qXfer library list read}
39809 Access the target's list of loaded libraries.  @xref{Library List Format}.
39810 The annex part of the generic @samp{qXfer} packet must be empty
39811 (@pxref{qXfer read}).
39812
39813 Targets which maintain a list of libraries in the program's memory do
39814 not need to implement this packet; it is designed for platforms where
39815 the operating system manages the list of loaded libraries.
39816
39817 This packet is not probed by default; the remote stub must request it,
39818 by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
39819
39820 @item qXfer:libraries-svr4:read:@var{annex}:@var{offset},@var{length}
39821 @anchor{qXfer svr4 library list read}
39822 Access the target's list of loaded libraries when the target is an SVR4
39823 platform.  @xref{Library List Format for SVR4 Targets}.  The annex part
39824 of the generic @samp{qXfer} packet must be empty unless the remote
39825 stub indicated it supports the augmented form of this packet
39826 by supplying an appropriate @samp{qSupported} response
39827 (@pxref{qXfer read}, @ref{qSupported}).
39828
39829 This packet is optional for better performance on SVR4 targets.  
39830 @value{GDBN} uses memory read packets to read the SVR4 library list otherwise.
39831
39832 This packet is not probed by default; the remote stub must request it,
39833 by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
39834
39835 If the remote stub indicates it supports the augmented form of this
39836 packet then the annex part of the generic @samp{qXfer} packet may
39837 contain a semicolon-separated list of @samp{@var{name}=@var{value}}
39838 arguments.  The currently supported arguments are:
39839
39840 @table @code
39841 @item start=@var{address}
39842 A hexadecimal number specifying the address of the @samp{struct
39843 link_map} to start reading the library list from.  If unset or zero
39844 then the first @samp{struct link_map} in the library list will be
39845 chosen as the starting point.
39846
39847 @item prev=@var{address}
39848 A hexadecimal number specifying the address of the @samp{struct
39849 link_map} immediately preceding the @samp{struct link_map}
39850 specified by the @samp{start} argument.  If unset or zero then
39851 the remote stub will expect that no @samp{struct link_map}
39852 exists prior to the starting point.
39853
39854 @end table
39855
39856 Arguments that are not understood by the remote stub will be silently
39857 ignored.
39858
39859 @item qXfer:memory-map:read::@var{offset},@var{length}
39860 @anchor{qXfer memory map read}
39861 Access the target's @dfn{memory-map}.  @xref{Memory Map Format}.  The
39862 annex part of the generic @samp{qXfer} packet must be empty
39863 (@pxref{qXfer read}).
39864
39865 This packet is not probed by default; the remote stub must request it,
39866 by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
39867
39868 @item qXfer:sdata:read::@var{offset},@var{length}
39869 @anchor{qXfer sdata read}
39870
39871 Read contents of the extra collected static tracepoint marker
39872 information.  The annex part of the generic @samp{qXfer} packet must
39873 be empty (@pxref{qXfer read}).  @xref{Tracepoint Actions,,Tracepoint
39874 Action Lists}.
39875
39876 This packet is not probed by default; the remote stub must request it,
39877 by supplying an appropriate @samp{qSupported} response
39878 (@pxref{qSupported}).
39879
39880 @item qXfer:siginfo:read::@var{offset},@var{length}
39881 @anchor{qXfer siginfo read}
39882 Read contents of the extra signal information on the target
39883 system.  The annex part of the generic @samp{qXfer} packet must be
39884 empty (@pxref{qXfer read}).
39885
39886 This packet is not probed by default; the remote stub must request it,
39887 by supplying an appropriate @samp{qSupported} response
39888 (@pxref{qSupported}).
39889
39890 @item qXfer:spu:read:@var{annex}:@var{offset},@var{length}
39891 @anchor{qXfer spu read}
39892 Read contents of an @code{spufs} file on the target system.  The
39893 annex specifies which file to read; it must be of the form 
39894 @file{@var{id}/@var{name}}, where @var{id} specifies an SPU context ID
39895 in the target process, and @var{name} identifes the @code{spufs} file
39896 in that context to be accessed.
39897
39898 This packet is not probed by default; the remote stub must request it,
39899 by supplying an appropriate @samp{qSupported} response
39900 (@pxref{qSupported}).
39901
39902 @item qXfer:threads:read::@var{offset},@var{length}
39903 @anchor{qXfer threads read}
39904 Access the list of threads on target.  @xref{Thread List Format}.  The
39905 annex part of the generic @samp{qXfer} packet must be empty
39906 (@pxref{qXfer read}).
39907
39908 This packet is not probed by default; the remote stub must request it,
39909 by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
39910
39911 @item qXfer:traceframe-info:read::@var{offset},@var{length}
39912 @anchor{qXfer traceframe info read}
39913
39914 Return a description of the current traceframe's contents.
39915 @xref{Traceframe Info Format}.  The annex part of the generic
39916 @samp{qXfer} packet must be empty (@pxref{qXfer read}).
39917
39918 This packet is not probed by default; the remote stub must request it,
39919 by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
39920
39921 @item qXfer:uib:read:@var{pc}:@var{offset},@var{length}
39922 @anchor{qXfer unwind info block}
39923
39924 Return the unwind information block for @var{pc}.  This packet is used
39925 on OpenVMS/ia64 to ask the kernel unwind information.
39926
39927 This packet is not probed by default.
39928
39929 @item qXfer:fdpic:read:@var{annex}:@var{offset},@var{length}
39930 @anchor{qXfer fdpic loadmap read}
39931 Read contents of @code{loadmap}s on the target system.  The
39932 annex, either @samp{exec} or @samp{interp}, specifies which @code{loadmap},
39933 executable @code{loadmap} or interpreter @code{loadmap} to read.
39934
39935 This packet is not probed by default; the remote stub must request it,
39936 by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
39937
39938 @item qXfer:osdata:read::@var{offset},@var{length}
39939 @anchor{qXfer osdata read}
39940 Access the target's @dfn{operating system information}.
39941 @xref{Operating System Information}.
39942
39943 @end table
39944
39945 @item qXfer:@var{object}:write:@var{annex}:@var{offset}:@var{data}@dots{}
39946 @cindex write data into object, remote request
39947 @anchor{qXfer write}
39948 Write uninterpreted bytes into the target's special data area
39949 identified by the keyword @var{object}, starting at @var{offset} bytes
39950 into the data.  The binary-encoded data (@pxref{Binary Data}) to be
39951 written is given by @var{data}@dots{}.  The content and encoding of @var{annex}
39952 is specific to @var{object}; it can supply additional details about what data
39953 to access.
39954
39955 Reply:
39956 @table @samp
39957 @item @var{nn}
39958 @var{nn} (hex encoded) is the number of bytes written.
39959 This may be fewer bytes than supplied in the request.
39960
39961 @item E00
39962 The request was malformed, or @var{annex} was invalid.
39963
39964 @item E @var{nn}
39965 The offset was invalid, or there was an error encountered writing the data.
39966 The @var{nn} part is a hex-encoded @code{errno} value.
39967
39968 @item @w{}
39969 An empty reply indicates the @var{object} string was not
39970 recognized by the stub, or that the object does not support writing.
39971 @end table
39972
39973 Here are the specific requests of this form defined so far.  All the
39974 @samp{qXfer:@var{object}:write:@dots{}} requests use the same reply
39975 formats, listed above.
39976
39977 @table @samp
39978 @item qXfer:siginfo:write::@var{offset}:@var{data}@dots{}
39979 @anchor{qXfer siginfo write}
39980 Write @var{data} to the extra signal information on the target system.
39981 The annex part of the generic @samp{qXfer} packet must be
39982 empty (@pxref{qXfer write}).
39983
39984 This packet is not probed by default; the remote stub must request it,
39985 by supplying an appropriate @samp{qSupported} response
39986 (@pxref{qSupported}).
39987
39988 @item qXfer:spu:write:@var{annex}:@var{offset}:@var{data}@dots{}
39989 @anchor{qXfer spu write}
39990 Write @var{data} to an @code{spufs} file on the target system.  The
39991 annex specifies which file to write; it must be of the form
39992 @file{@var{id}/@var{name}}, where @var{id} specifies an SPU context ID
39993 in the target process, and @var{name} identifes the @code{spufs} file
39994 in that context to be accessed.
39995
39996 This packet is not probed by default; the remote stub must request it,
39997 by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
39998 @end table
39999
40000 @item qXfer:@var{object}:@var{operation}:@dots{}
40001 Requests of this form may be added in the future.  When a stub does
40002 not recognize the @var{object} keyword, or its support for
40003 @var{object} does not recognize the @var{operation} keyword, the stub
40004 must respond with an empty packet.
40005
40006 @item qAttached:@var{pid}
40007 @cindex query attached, remote request
40008 @cindex @samp{qAttached} packet
40009 Return an indication of whether the remote server attached to an
40010 existing process or created a new process.  When the multiprocess
40011 protocol extensions are supported (@pxref{multiprocess extensions}),
40012 @var{pid} is an integer in hexadecimal format identifying the target
40013 process.  Otherwise, @value{GDBN} will omit the @var{pid} field and
40014 the query packet will be simplified as @samp{qAttached}.
40015
40016 This query is used, for example, to know whether the remote process
40017 should be detached or killed when a @value{GDBN} session is ended with
40018 the @code{quit} command.
40019
40020 Reply:
40021 @table @samp
40022 @item 1
40023 The remote server attached to an existing process.
40024 @item 0
40025 The remote server created a new process.
40026 @item E @var{NN}
40027 A badly formed request or an error was encountered.
40028 @end table
40029
40030 @item Qbtrace:bts
40031 Enable branch tracing for the current thread using Branch Trace Store.
40032
40033 Reply:
40034 @table @samp
40035 @item OK
40036 Branch tracing has been enabled.
40037 @item E.errtext
40038 A badly formed request or an error was encountered.
40039 @end table
40040
40041 @item Qbtrace:pt
40042 Enable branch tracing for the current thread using Intel Processor Trace.
40043
40044 Reply:
40045 @table @samp
40046 @item OK
40047 Branch tracing has been enabled.
40048 @item E.errtext
40049 A badly formed request or an error was encountered.
40050 @end table
40051
40052 @item Qbtrace:off
40053 Disable branch tracing for the current thread.
40054
40055 Reply:
40056 @table @samp
40057 @item OK
40058 Branch tracing has been disabled.
40059 @item E.errtext
40060 A badly formed request or an error was encountered.
40061 @end table
40062
40063 @item Qbtrace-conf:bts:size=@var{value}
40064 Set the requested ring buffer size for new threads that use the
40065 btrace recording method in bts format.
40066
40067 Reply:
40068 @table @samp
40069 @item OK
40070 The ring buffer size has been set.
40071 @item E.errtext
40072 A badly formed request or an error was encountered.
40073 @end table
40074
40075 @item Qbtrace-conf:pt:size=@var{value}
40076 Set the requested ring buffer size for new threads that use the
40077 btrace recording method in pt format.
40078
40079 Reply:
40080 @table @samp
40081 @item OK
40082 The ring buffer size has been set.
40083 @item E.errtext
40084 A badly formed request or an error was encountered.
40085 @end table
40086
40087 @end table
40088
40089 @node Architecture-Specific Protocol Details
40090 @section Architecture-Specific Protocol Details
40091
40092 This section describes how the remote protocol is applied to specific
40093 target architectures.  Also see @ref{Standard Target Features}, for
40094 details of XML target descriptions for each architecture.
40095
40096 @menu
40097 * ARM-Specific Protocol Details::
40098 * MIPS-Specific Protocol Details::
40099 @end menu
40100
40101 @node ARM-Specific Protocol Details
40102 @subsection @acronym{ARM}-specific Protocol Details
40103
40104 @menu
40105 * ARM Breakpoint Kinds::
40106 @end menu
40107
40108 @node ARM Breakpoint Kinds
40109 @subsubsection @acronym{ARM} Breakpoint Kinds
40110 @cindex breakpoint kinds, @acronym{ARM}
40111
40112 These breakpoint kinds are defined for the @samp{Z0} and @samp{Z1} packets.
40113
40114 @table @r
40115
40116 @item 2
40117 16-bit Thumb mode breakpoint.
40118
40119 @item 3
40120 32-bit Thumb mode (Thumb-2) breakpoint.
40121
40122 @item 4
40123 32-bit @acronym{ARM} mode breakpoint.
40124
40125 @end table
40126
40127 @node MIPS-Specific Protocol Details
40128 @subsection @acronym{MIPS}-specific Protocol Details
40129
40130 @menu
40131 * MIPS Register packet Format::
40132 * MIPS Breakpoint Kinds::
40133 @end menu
40134
40135 @node MIPS Register packet Format
40136 @subsubsection @acronym{MIPS} Register Packet Format
40137 @cindex register packet format, @acronym{MIPS}
40138
40139 The following @code{g}/@code{G} packets have previously been defined.
40140 In the below, some thirty-two bit registers are transferred as
40141 sixty-four bits.  Those registers should be zero/sign extended (which?)
40142 to fill the space allocated.  Register bytes are transferred in target
40143 byte order.  The two nibbles within a register byte are transferred
40144 most-significant -- least-significant.
40145
40146 @table @r
40147
40148 @item MIPS32
40149 All registers are transferred as thirty-two bit quantities in the order:
40150 32 general-purpose; sr; lo; hi; bad; cause; pc; 32 floating-point
40151 registers; fsr; fir; fp.
40152
40153 @item MIPS64
40154 All registers are transferred as sixty-four bit quantities (including
40155 thirty-two bit registers such as @code{sr}).  The ordering is the same
40156 as @code{MIPS32}.
40157
40158 @end table
40159
40160 @node MIPS Breakpoint Kinds
40161 @subsubsection @acronym{MIPS} Breakpoint Kinds
40162 @cindex breakpoint kinds, @acronym{MIPS}
40163
40164 These breakpoint kinds are defined for the @samp{Z0} and @samp{Z1} packets.
40165
40166 @table @r
40167
40168 @item 2
40169 16-bit @acronym{MIPS16} mode breakpoint.
40170
40171 @item 3
40172 16-bit @acronym{microMIPS} mode breakpoint.
40173
40174 @item 4
40175 32-bit standard @acronym{MIPS} mode breakpoint.
40176
40177 @item 5
40178 32-bit @acronym{microMIPS} mode breakpoint.
40179
40180 @end table
40181
40182 @node Tracepoint Packets
40183 @section Tracepoint Packets
40184 @cindex tracepoint packets
40185 @cindex packets, tracepoint
40186
40187 Here we describe the packets @value{GDBN} uses to implement
40188 tracepoints (@pxref{Tracepoints}).
40189
40190 @table @samp
40191
40192 @item QTDP:@var{n}:@var{addr}:@var{ena}:@var{step}:@var{pass}[:F@var{flen}][:X@var{len},@var{bytes}]@r{[}-@r{]}
40193 @cindex @samp{QTDP} packet
40194 Create a new tracepoint, number @var{n}, at @var{addr}.  If @var{ena}
40195 is @samp{E}, then the tracepoint is enabled; if it is @samp{D}, then
40196 the tracepoint is disabled.  The @var{step} gives the tracepoint's step
40197 count, and @var{pass} gives its pass count.  If an @samp{F} is present,
40198 then the tracepoint is to be a fast tracepoint, and the @var{flen} is
40199 the number of bytes that the target should copy elsewhere to make room
40200 for the tracepoint.  If an @samp{X} is present, it introduces a
40201 tracepoint condition, which consists of a hexadecimal length, followed
40202 by a comma and hex-encoded bytes, in a manner similar to action
40203 encodings as described below.  If the trailing @samp{-} is present,
40204 further @samp{QTDP} packets will follow to specify this tracepoint's
40205 actions.
40206
40207 Replies:
40208 @table @samp
40209 @item OK
40210 The packet was understood and carried out.
40211 @item qRelocInsn
40212 @xref{Tracepoint Packets,,Relocate instruction reply packet}.
40213 @item  @w{}
40214 The packet was not recognized.
40215 @end table
40216
40217 @item QTDP:-@var{n}:@var{addr}:@r{[}S@r{]}@var{action}@dots{}@r{[}-@r{]}
40218 Define actions to be taken when a tracepoint is hit.  The @var{n} and
40219 @var{addr} must be the same as in the initial @samp{QTDP} packet for
40220 this tracepoint.  This packet may only be sent immediately after
40221 another @samp{QTDP} packet that ended with a @samp{-}.  If the
40222 trailing @samp{-} is present, further @samp{QTDP} packets will follow,
40223 specifying more actions for this tracepoint.
40224
40225 In the series of action packets for a given tracepoint, at most one
40226 can have an @samp{S} before its first @var{action}.  If such a packet
40227 is sent, it and the following packets define ``while-stepping''
40228 actions.  Any prior packets define ordinary actions --- that is, those
40229 taken when the tracepoint is first hit.  If no action packet has an
40230 @samp{S}, then all the packets in the series specify ordinary
40231 tracepoint actions.
40232
40233 The @samp{@var{action}@dots{}} portion of the packet is a series of
40234 actions, concatenated without separators.  Each action has one of the
40235 following forms:
40236
40237 @table @samp
40238
40239 @item R @var{mask}
40240 Collect the registers whose bits are set in @var{mask},
40241 a hexadecimal number whose @var{i}'th bit is set if register number
40242 @var{i} should be collected.  (The least significant bit is numbered
40243 zero.)  Note that @var{mask} may be any number of digits long; it may
40244 not fit in a 32-bit word.
40245
40246 @item M @var{basereg},@var{offset},@var{len}
40247 Collect @var{len} bytes of memory starting at the address in register
40248 number @var{basereg}, plus @var{offset}.  If @var{basereg} is
40249 @samp{-1}, then the range has a fixed address: @var{offset} is the
40250 address of the lowest byte to collect.  The @var{basereg},
40251 @var{offset}, and @var{len} parameters are all unsigned hexadecimal
40252 values (the @samp{-1} value for @var{basereg} is a special case).
40253
40254 @item X @var{len},@var{expr}
40255 Evaluate @var{expr}, whose length is @var{len}, and collect memory as
40256 it directs.  The agent expression @var{expr} is as described in
40257 @ref{Agent Expressions}.  Each byte of the expression is encoded as a
40258 two-digit hex number in the packet; @var{len} is the number of bytes
40259 in the expression (and thus one-half the number of hex digits in the
40260 packet).
40261
40262 @end table
40263
40264 Any number of actions may be packed together in a single @samp{QTDP}
40265 packet, as long as the packet does not exceed the maximum packet
40266 length (400 bytes, for many stubs).  There may be only one @samp{R}
40267 action per tracepoint, and it must precede any @samp{M} or @samp{X}
40268 actions.  Any registers referred to by @samp{M} and @samp{X} actions
40269 must be collected by a preceding @samp{R} action.  (The
40270 ``while-stepping'' actions are treated as if they were attached to a
40271 separate tracepoint, as far as these restrictions are concerned.)
40272
40273 Replies:
40274 @table @samp
40275 @item OK
40276 The packet was understood and carried out.
40277 @item qRelocInsn
40278 @xref{Tracepoint Packets,,Relocate instruction reply packet}.
40279 @item  @w{}
40280 The packet was not recognized.
40281 @end table
40282
40283 @item QTDPsrc:@var{n}:@var{addr}:@var{type}:@var{start}:@var{slen}:@var{bytes}
40284 @cindex @samp{QTDPsrc} packet
40285 Specify a source string of tracepoint @var{n} at address @var{addr}.
40286 This is useful to get accurate reproduction of the tracepoints
40287 originally downloaded at the beginning of the trace run.  The @var{type}
40288 is the name of the tracepoint part, such as @samp{cond} for the
40289 tracepoint's conditional expression (see below for a list of types), while
40290 @var{bytes} is the string, encoded in hexadecimal.
40291
40292 @var{start} is the offset of the @var{bytes} within the overall source
40293 string, while @var{slen} is the total length of the source string.
40294 This is intended for handling source strings that are longer than will
40295 fit in a single packet.
40296 @c Add detailed example when this info is moved into a dedicated
40297 @c tracepoint descriptions section.
40298
40299 The available string types are @samp{at} for the location,
40300 @samp{cond} for the conditional, and @samp{cmd} for an action command.
40301 @value{GDBN} sends a separate packet for each command in the action
40302 list, in the same order in which the commands are stored in the list.
40303
40304 The target does not need to do anything with source strings except
40305 report them back as part of the replies to the @samp{qTfP}/@samp{qTsP}
40306 query packets.
40307
40308 Although this packet is optional, and @value{GDBN} will only send it
40309 if the target replies with @samp{TracepointSource} @xref{General
40310 Query Packets}, it makes both disconnected tracing and trace files
40311 much easier to use.  Otherwise the user must be careful that the
40312 tracepoints in effect while looking at trace frames are identical to
40313 the ones in effect during the trace run; even a small discrepancy
40314 could cause @samp{tdump} not to work, or a particular trace frame not
40315 be found.
40316
40317 @item QTDV:@var{n}:@var{value}:@var{builtin}:@var{name}
40318 @cindex define trace state variable, remote request
40319 @cindex @samp{QTDV} packet
40320 Create a new trace state variable, number @var{n}, with an initial
40321 value of @var{value}, which is a 64-bit signed integer.  Both @var{n}
40322 and @var{value} are encoded as hexadecimal values. @value{GDBN} has
40323 the option of not using this packet for initial values of zero; the
40324 target should simply create the trace state variables as they are
40325 mentioned in expressions.  The value @var{builtin} should be 1 (one)
40326 if the trace state variable is builtin and 0 (zero) if it is not builtin.
40327 @value{GDBN} only sets @var{builtin} to 1 if a previous @samp{qTfV} or
40328 @samp{qTsV} packet had it set.  The contents of @var{name} is the
40329 hex-encoded name (without the leading @samp{$}) of the trace state
40330 variable.
40331
40332 @item QTFrame:@var{n}
40333 @cindex @samp{QTFrame} packet
40334 Select the @var{n}'th tracepoint frame from the buffer, and use the
40335 register and memory contents recorded there to answer subsequent
40336 request packets from @value{GDBN}.
40337
40338 A successful reply from the stub indicates that the stub has found the
40339 requested frame.  The response is a series of parts, concatenated
40340 without separators, describing the frame we selected.  Each part has
40341 one of the following forms:
40342
40343 @table @samp
40344 @item F @var{f}
40345 The selected frame is number @var{n} in the trace frame buffer;
40346 @var{f} is a hexadecimal number.  If @var{f} is @samp{-1}, then there
40347 was no frame matching the criteria in the request packet.
40348
40349 @item T @var{t}
40350 The selected trace frame records a hit of tracepoint number @var{t};
40351 @var{t} is a hexadecimal number.
40352
40353 @end table
40354
40355 @item QTFrame:pc:@var{addr}
40356 Like @samp{QTFrame:@var{n}}, but select the first tracepoint frame after the
40357 currently selected frame whose PC is @var{addr};
40358 @var{addr} is a hexadecimal number.
40359
40360 @item QTFrame:tdp:@var{t}
40361 Like @samp{QTFrame:@var{n}}, but select the first tracepoint frame after the
40362 currently selected frame that is a hit of tracepoint @var{t}; @var{t}
40363 is a hexadecimal number.
40364
40365 @item QTFrame:range:@var{start}:@var{end}
40366 Like @samp{QTFrame:@var{n}}, but select the first tracepoint frame after the
40367 currently selected frame whose PC is between @var{start} (inclusive)
40368 and @var{end} (inclusive); @var{start} and @var{end} are hexadecimal
40369 numbers.
40370
40371 @item QTFrame:outside:@var{start}:@var{end}
40372 Like @samp{QTFrame:range:@var{start}:@var{end}}, but select the first
40373 frame @emph{outside} the given range of addresses (exclusive).
40374
40375 @item qTMinFTPILen
40376 @cindex @samp{qTMinFTPILen} packet
40377 This packet requests the minimum length of instruction at which a fast
40378 tracepoint (@pxref{Set Tracepoints}) may be placed.  For instance, on
40379 the 32-bit x86 architecture, it is possible to use a 4-byte jump, but
40380 it depends on the target system being able to create trampolines in
40381 the first 64K of memory, which might or might not be possible for that
40382 system.  So the reply to this packet will be 4 if it is able to
40383 arrange for that.
40384
40385 Replies:
40386
40387 @table @samp
40388 @item 0
40389 The minimum instruction length is currently unknown.
40390 @item @var{length}
40391 The minimum instruction length is @var{length}, where @var{length}
40392 is a hexadecimal number greater or equal to 1.  A reply
40393 of 1 means that a fast tracepoint may be placed on any instruction
40394 regardless of size.
40395 @item E
40396 An error has occurred.
40397 @item @w{}
40398 An empty reply indicates that the request is not supported by the stub.
40399 @end table
40400
40401 @item QTStart
40402 @cindex @samp{QTStart} packet
40403 Begin the tracepoint experiment.  Begin collecting data from
40404 tracepoint hits in the trace frame buffer.  This packet supports the
40405 @samp{qRelocInsn} reply (@pxref{Tracepoint Packets,,Relocate
40406 instruction reply packet}).
40407
40408 @item QTStop
40409 @cindex @samp{QTStop} packet
40410 End the tracepoint experiment.  Stop collecting trace frames.
40411
40412 @item QTEnable:@var{n}:@var{addr}
40413 @anchor{QTEnable}
40414 @cindex @samp{QTEnable} packet
40415 Enable tracepoint @var{n} at address @var{addr} in a started tracepoint
40416 experiment.  If the tracepoint was previously disabled, then collection
40417 of data from it will resume.
40418
40419 @item QTDisable:@var{n}:@var{addr}
40420 @anchor{QTDisable}
40421 @cindex @samp{QTDisable} packet
40422 Disable tracepoint @var{n} at address @var{addr} in a started tracepoint
40423 experiment.  No more data will be collected from the tracepoint unless
40424 @samp{QTEnable:@var{n}:@var{addr}} is subsequently issued.
40425
40426 @item QTinit
40427 @cindex @samp{QTinit} packet
40428 Clear the table of tracepoints, and empty the trace frame buffer.
40429
40430 @item QTro:@var{start1},@var{end1}:@var{start2},@var{end2}:@dots{}
40431 @cindex @samp{QTro} packet
40432 Establish the given ranges of memory as ``transparent''.  The stub
40433 will answer requests for these ranges from memory's current contents,
40434 if they were not collected as part of the tracepoint hit.
40435
40436 @value{GDBN} uses this to mark read-only regions of memory, like those
40437 containing program code.  Since these areas never change, they should
40438 still have the same contents they did when the tracepoint was hit, so
40439 there's no reason for the stub to refuse to provide their contents.
40440
40441 @item QTDisconnected:@var{value}
40442 @cindex @samp{QTDisconnected} packet
40443 Set the choice to what to do with the tracing run when @value{GDBN}
40444 disconnects from the target.  A @var{value} of 1 directs the target to
40445 continue the tracing run, while 0 tells the target to stop tracing if
40446 @value{GDBN} is no longer in the picture.
40447
40448 @item qTStatus
40449 @cindex @samp{qTStatus} packet
40450 Ask the stub if there is a trace experiment running right now.
40451
40452 The reply has the form:
40453
40454 @table @samp
40455
40456 @item T@var{running}@r{[};@var{field}@r{]}@dots{}
40457 @var{running} is a single digit @code{1} if the trace is presently
40458 running, or @code{0} if not.  It is followed by semicolon-separated
40459 optional fields that an agent may use to report additional status.
40460
40461 @end table
40462
40463 If the trace is not running, the agent may report any of several
40464 explanations as one of the optional fields:
40465
40466 @table @samp
40467
40468 @item tnotrun:0
40469 No trace has been run yet.
40470
40471 @item tstop[:@var{text}]:0
40472 The trace was stopped by a user-originated stop command.  The optional
40473 @var{text} field is a user-supplied string supplied as part of the
40474 stop command (for instance, an explanation of why the trace was
40475 stopped manually).  It is hex-encoded.
40476
40477 @item tfull:0
40478 The trace stopped because the trace buffer filled up.
40479
40480 @item tdisconnected:0
40481 The trace stopped because @value{GDBN} disconnected from the target.
40482
40483 @item tpasscount:@var{tpnum}
40484 The trace stopped because tracepoint @var{tpnum} exceeded its pass count.
40485
40486 @item terror:@var{text}:@var{tpnum}
40487 The trace stopped because tracepoint @var{tpnum} had an error.  The
40488 string @var{text} is available to describe the nature of the error
40489 (for instance, a divide by zero in the condition expression); it
40490 is hex encoded.
40491
40492 @item tunknown:0
40493 The trace stopped for some other reason.
40494
40495 @end table
40496
40497 Additional optional fields supply statistical and other information.
40498 Although not required, they are extremely useful for users monitoring
40499 the progress of a trace run.  If a trace has stopped, and these
40500 numbers are reported, they must reflect the state of the just-stopped
40501 trace.
40502
40503 @table @samp
40504
40505 @item tframes:@var{n}
40506 The number of trace frames in the buffer.
40507
40508 @item tcreated:@var{n}
40509 The total number of trace frames created during the run. This may
40510 be larger than the trace frame count, if the buffer is circular.
40511
40512 @item tsize:@var{n}
40513 The total size of the trace buffer, in bytes.
40514
40515 @item tfree:@var{n}
40516 The number of bytes still unused in the buffer.
40517
40518 @item circular:@var{n}
40519 The value of the circular trace buffer flag.  @code{1} means that the
40520 trace buffer is circular and old trace frames will be discarded if
40521 necessary to make room, @code{0} means that the trace buffer is linear
40522 and may fill up.
40523
40524 @item disconn:@var{n}
40525 The value of the disconnected tracing flag.  @code{1} means that
40526 tracing will continue after @value{GDBN} disconnects, @code{0} means
40527 that the trace run will stop.
40528
40529 @end table
40530
40531 @item qTP:@var{tp}:@var{addr}
40532 @cindex tracepoint status, remote request
40533 @cindex @samp{qTP} packet
40534 Ask the stub for the current state of tracepoint number @var{tp} at
40535 address @var{addr}.
40536
40537 Replies:
40538 @table @samp
40539 @item V@var{hits}:@var{usage}
40540 The tracepoint has been hit @var{hits} times so far during the trace
40541 run, and accounts for @var{usage} in the trace buffer.  Note that
40542 @code{while-stepping} steps are not counted as separate hits, but the
40543 steps' space consumption is added into the usage number.
40544
40545 @end table
40546
40547 @item qTV:@var{var}
40548 @cindex trace state variable value, remote request
40549 @cindex @samp{qTV} packet
40550 Ask the stub for the value of the trace state variable number @var{var}.
40551
40552 Replies:
40553 @table @samp
40554 @item V@var{value}
40555 The value of the variable is @var{value}.  This will be the current
40556 value of the variable if the user is examining a running target, or a
40557 saved value if the variable was collected in the trace frame that the
40558 user is looking at.  Note that multiple requests may result in
40559 different reply values, such as when requesting values while the
40560 program is running.
40561
40562 @item U
40563 The value of the variable is unknown.  This would occur, for example,
40564 if the user is examining a trace frame in which the requested variable
40565 was not collected.
40566 @end table
40567
40568 @item qTfP
40569 @cindex @samp{qTfP} packet
40570 @itemx qTsP
40571 @cindex @samp{qTsP} packet
40572 These packets request data about tracepoints that are being used by
40573 the target.  @value{GDBN} sends @code{qTfP} to get the first piece
40574 of data, and multiple @code{qTsP} to get additional pieces.  Replies
40575 to these packets generally take the form of the @code{QTDP} packets
40576 that define tracepoints. (FIXME add detailed syntax)
40577
40578 @item qTfV
40579 @cindex @samp{qTfV} packet
40580 @itemx qTsV
40581 @cindex @samp{qTsV} packet
40582 These packets request data about trace state variables that are on the
40583 target.  @value{GDBN} sends @code{qTfV} to get the first vari of data,
40584 and multiple @code{qTsV} to get additional variables.  Replies to
40585 these packets follow the syntax of the @code{QTDV} packets that define
40586 trace state variables.
40587
40588 @item qTfSTM
40589 @itemx qTsSTM
40590 @anchor{qTfSTM}
40591 @anchor{qTsSTM}
40592 @cindex @samp{qTfSTM} packet
40593 @cindex @samp{qTsSTM} packet
40594 These packets request data about static tracepoint markers that exist
40595 in the target program.  @value{GDBN} sends @code{qTfSTM} to get the
40596 first piece of data, and multiple @code{qTsSTM} to get additional
40597 pieces.  Replies to these packets take the following form:
40598
40599 Reply:
40600 @table @samp
40601 @item m @var{address}:@var{id}:@var{extra}
40602 A single marker
40603 @item m @var{address}:@var{id}:@var{extra},@var{address}:@var{id}:@var{extra}@dots{}
40604 a comma-separated list of markers
40605 @item l
40606 (lower case letter @samp{L}) denotes end of list.
40607 @item E @var{nn}
40608 An error occurred.  The error number @var{nn} is given as hex digits.
40609 @item @w{}
40610 An empty reply indicates that the request is not supported by the
40611 stub.
40612 @end table
40613
40614 The @var{address} is encoded in hex;
40615 @var{id} and @var{extra} are strings encoded in hex.
40616
40617 In response to each query, the target will reply with a list of one or
40618 more markers, separated by commas.  @value{GDBN} will respond to each
40619 reply with a request for more markers (using the @samp{qs} form of the
40620 query), until the target responds with @samp{l} (lower-case ell, for
40621 @dfn{last}).
40622
40623 @item qTSTMat:@var{address}
40624 @anchor{qTSTMat}
40625 @cindex @samp{qTSTMat} packet
40626 This packets requests data about static tracepoint markers in the
40627 target program at @var{address}.  Replies to this packet follow the
40628 syntax of the @samp{qTfSTM} and @code{qTsSTM} packets that list static
40629 tracepoint markers.
40630
40631 @item QTSave:@var{filename}
40632 @cindex @samp{QTSave} packet
40633 This packet directs the target to save trace data to the file name
40634 @var{filename} in the target's filesystem.  The @var{filename} is encoded
40635 as a hex string; the interpretation of the file name (relative vs
40636 absolute, wild cards, etc) is up to the target.
40637
40638 @item qTBuffer:@var{offset},@var{len}
40639 @cindex @samp{qTBuffer} packet
40640 Return up to @var{len} bytes of the current contents of trace buffer,
40641 starting at @var{offset}.  The trace buffer is treated as if it were
40642 a contiguous collection of traceframes, as per the trace file format.
40643 The reply consists as many hex-encoded bytes as the target can deliver
40644 in a packet; it is not an error to return fewer than were asked for.
40645 A reply consisting of just @code{l} indicates that no bytes are
40646 available.
40647
40648 @item QTBuffer:circular:@var{value}
40649 This packet directs the target to use a circular trace buffer if
40650 @var{value} is 1, or a linear buffer if the value is 0.
40651
40652 @item QTBuffer:size:@var{size}
40653 @anchor{QTBuffer-size}
40654 @cindex @samp{QTBuffer size} packet
40655 This packet directs the target to make the trace buffer be of size
40656 @var{size} if possible.  A value of @code{-1} tells the target to
40657 use whatever size it prefers.
40658
40659 @item QTNotes:@r{[}@var{type}:@var{text}@r{]}@r{[};@var{type}:@var{text}@r{]}@dots{}
40660 @cindex @samp{QTNotes} packet
40661 This packet adds optional textual notes to the trace run.  Allowable
40662 types include @code{user}, @code{notes}, and @code{tstop}, the
40663 @var{text} fields are arbitrary strings, hex-encoded.
40664
40665 @end table
40666
40667 @subsection Relocate instruction reply packet
40668 When installing fast tracepoints in memory, the target may need to
40669 relocate the instruction currently at the tracepoint address to a
40670 different address in memory.  For most instructions, a simple copy is
40671 enough, but, for example, call instructions that implicitly push the
40672 return address on the stack, and relative branches or other
40673 PC-relative instructions require offset adjustment, so that the effect
40674 of executing the instruction at a different address is the same as if
40675 it had executed in the original location.
40676
40677 In response to several of the tracepoint packets, the target may also
40678 respond with a number of intermediate @samp{qRelocInsn} request
40679 packets before the final result packet, to have @value{GDBN} handle
40680 this relocation operation.  If a packet supports this mechanism, its
40681 documentation will explicitly say so.  See for example the above
40682 descriptions for the @samp{QTStart} and @samp{QTDP} packets.  The
40683 format of the request is:
40684
40685 @table @samp
40686 @item qRelocInsn:@var{from};@var{to}
40687
40688 This requests @value{GDBN} to copy instruction at address @var{from}
40689 to address @var{to}, possibly adjusted so that executing the
40690 instruction at @var{to} has the same effect as executing it at
40691 @var{from}.  @value{GDBN} writes the adjusted instruction to target
40692 memory starting at @var{to}.
40693 @end table
40694
40695 Replies:
40696 @table @samp
40697 @item qRelocInsn:@var{adjusted_size}
40698 Informs the stub the relocation is complete.  The @var{adjusted_size} is
40699 the length in bytes of resulting relocated instruction sequence.
40700 @item E @var{NN}
40701 A badly formed request was detected, or an error was encountered while
40702 relocating the instruction.
40703 @end table
40704
40705 @node Host I/O Packets
40706 @section Host I/O Packets
40707 @cindex Host I/O, remote protocol
40708 @cindex file transfer, remote protocol
40709
40710 The @dfn{Host I/O} packets allow @value{GDBN} to perform I/O
40711 operations on the far side of a remote link.  For example, Host I/O is
40712 used to upload and download files to a remote target with its own
40713 filesystem.  Host I/O uses the same constant values and data structure
40714 layout as the target-initiated File-I/O protocol.  However, the
40715 Host I/O packets are structured differently.  The target-initiated
40716 protocol relies on target memory to store parameters and buffers.
40717 Host I/O requests are initiated by @value{GDBN}, and the
40718 target's memory is not involved.  @xref{File-I/O Remote Protocol
40719 Extension}, for more details on the target-initiated protocol.
40720
40721 The Host I/O request packets all encode a single operation along with
40722 its arguments.  They have this format:
40723
40724 @table @samp
40725
40726 @item vFile:@var{operation}: @var{parameter}@dots{}
40727 @var{operation} is the name of the particular request; the target
40728 should compare the entire packet name up to the second colon when checking
40729 for a supported operation.  The format of @var{parameter} depends on
40730 the operation.  Numbers are always passed in hexadecimal.  Negative
40731 numbers have an explicit minus sign (i.e.@: two's complement is not
40732 used).  Strings (e.g.@: filenames) are encoded as a series of
40733 hexadecimal bytes.  The last argument to a system call may be a
40734 buffer of escaped binary data (@pxref{Binary Data}).
40735
40736 @end table
40737
40738 The valid responses to Host I/O packets are:
40739
40740 @table @samp
40741
40742 @item F @var{result} [, @var{errno}] [; @var{attachment}]
40743 @var{result} is the integer value returned by this operation, usually
40744 non-negative for success and -1 for errors.  If an error has occured,
40745 @var{errno} will be included in the result specifying a
40746 value defined by the File-I/O protocol (@pxref{Errno Values}).  For
40747 operations which return data, @var{attachment} supplies the data as a
40748 binary buffer.  Binary buffers in response packets are escaped in the
40749 normal way (@pxref{Binary Data}).  See the individual packet
40750 documentation for the interpretation of @var{result} and
40751 @var{attachment}.
40752
40753 @item @w{}
40754 An empty response indicates that this operation is not recognized.
40755
40756 @end table
40757
40758 These are the supported Host I/O operations:
40759
40760 @table @samp
40761 @item vFile:open: @var{filename}, @var{flags}, @var{mode}
40762 Open a file at @var{filename} and return a file descriptor for it, or
40763 return -1 if an error occurs.  The @var{filename} is a string,
40764 @var{flags} is an integer indicating a mask of open flags
40765 (@pxref{Open Flags}), and @var{mode} is an integer indicating a mask
40766 of mode bits to use if the file is created (@pxref{mode_t Values}).
40767 @xref{open}, for details of the open flags and mode values.
40768
40769 @item vFile:close: @var{fd}
40770 Close the open file corresponding to @var{fd} and return 0, or
40771 -1 if an error occurs.
40772
40773 @item vFile:pread: @var{fd}, @var{count}, @var{offset}
40774 Read data from the open file corresponding to @var{fd}.  Up to
40775 @var{count} bytes will be read from the file, starting at @var{offset}
40776 relative to the start of the file.  The target may read fewer bytes;
40777 common reasons include packet size limits and an end-of-file
40778 condition.  The number of bytes read is returned.  Zero should only be
40779 returned for a successful read at the end of the file, or if
40780 @var{count} was zero.
40781
40782 The data read should be returned as a binary attachment on success.
40783 If zero bytes were read, the response should include an empty binary
40784 attachment (i.e.@: a trailing semicolon).  The return value is the
40785 number of target bytes read; the binary attachment may be longer if
40786 some characters were escaped.
40787
40788 @item vFile:pwrite: @var{fd}, @var{offset}, @var{data}
40789 Write @var{data} (a binary buffer) to the open file corresponding
40790 to @var{fd}.  Start the write at @var{offset} from the start of the
40791 file.  Unlike many @code{write} system calls, there is no
40792 separate @var{count} argument; the length of @var{data} in the
40793 packet is used.  @samp{vFile:write} returns the number of bytes written,
40794 which may be shorter than the length of @var{data}, or -1 if an
40795 error occurred.
40796
40797 @item vFile:fstat: @var{fd}
40798 Get information about the open file corresponding to @var{fd}.
40799 On success the information is returned as a binary attachment
40800 and the return value is the size of this attachment in bytes.
40801 If an error occurs the return value is -1.  The format of the
40802 returned binary attachment is as described in @ref{struct stat}.
40803
40804 @item vFile:unlink: @var{filename}
40805 Delete the file at @var{filename} on the target.  Return 0,
40806 or -1 if an error occurs.  The @var{filename} is a string.
40807
40808 @item vFile:readlink: @var{filename}
40809 Read value of symbolic link @var{filename} on the target.  Return
40810 the number of bytes read, or -1 if an error occurs.
40811
40812 The data read should be returned as a binary attachment on success.
40813 If zero bytes were read, the response should include an empty binary
40814 attachment (i.e.@: a trailing semicolon).  The return value is the
40815 number of target bytes read; the binary attachment may be longer if
40816 some characters were escaped.
40817
40818 @item vFile:setfs: @var{pid}
40819 Select the filesystem on which @code{vFile} operations with
40820 @var{filename} arguments will operate.  This is required for
40821 @value{GDBN} to be able to access files on remote targets where
40822 the remote stub does not share a common filesystem with the
40823 inferior(s).
40824
40825 If @var{pid} is nonzero, select the filesystem as seen by process
40826 @var{pid}.  If @var{pid} is zero, select the filesystem as seen by
40827 the remote stub.  Return 0 on success, or -1 if an error occurs.
40828 If @code{vFile:setfs:} indicates success, the selected filesystem
40829 remains selected until the next successful @code{vFile:setfs:}
40830 operation.
40831
40832 @end table
40833
40834 @node Interrupts
40835 @section Interrupts
40836 @cindex interrupts (remote protocol)
40837 @anchor{interrupting remote targets}
40838
40839 In all-stop mode, when a program on the remote target is running,
40840 @value{GDBN} may attempt to interrupt it by sending a @samp{Ctrl-C},
40841 @code{BREAK} or a @code{BREAK} followed by @code{g}, control of which
40842 is specified via @value{GDBN}'s @samp{interrupt-sequence}.
40843
40844 The precise meaning of @code{BREAK} is defined by the transport
40845 mechanism and may, in fact, be undefined.  @value{GDBN} does not
40846 currently define a @code{BREAK} mechanism for any of the network
40847 interfaces except for TCP, in which case @value{GDBN} sends the
40848 @code{telnet} BREAK sequence.
40849
40850 @samp{Ctrl-C}, on the other hand, is defined and implemented for all
40851 transport mechanisms.  It is represented by sending the single byte
40852 @code{0x03} without any of the usual packet overhead described in
40853 the Overview section (@pxref{Overview}).  When a @code{0x03} byte is
40854 transmitted as part of a packet, it is considered to be packet data
40855 and does @emph{not} represent an interrupt.  E.g., an @samp{X} packet
40856 (@pxref{X packet}), used for binary downloads, may include an unescaped
40857 @code{0x03} as part of its packet.
40858
40859 @code{BREAK} followed by @code{g} is also known as Magic SysRq g.
40860 When Linux kernel receives this sequence from serial port,
40861 it stops execution and connects to gdb.
40862
40863 In non-stop mode, because packet resumptions are asynchronous
40864 (@pxref{vCont packet}), @value{GDBN} is always free to send a remote
40865 command to the remote stub, even when the target is running.  For that
40866 reason, @value{GDBN} instead sends a regular packet (@pxref{vCtrlC
40867 packet}) with the usual packet framing instead of the single byte
40868 @code{0x03}.
40869
40870 Stubs are not required to recognize these interrupt mechanisms and the
40871 precise meaning associated with receipt of the interrupt is
40872 implementation defined.  If the target supports debugging of multiple
40873 threads and/or processes, it should attempt to interrupt all 
40874 currently-executing threads and processes.
40875 If the stub is successful at interrupting the
40876 running program, it should send one of the stop
40877 reply packets (@pxref{Stop Reply Packets}) to @value{GDBN} as a result
40878 of successfully stopping the program in all-stop mode, and a stop reply
40879 for each stopped thread in non-stop mode.
40880 Interrupts received while the
40881 program is stopped are queued and the program will be interrupted when
40882 it is resumed next time.
40883
40884 @node Notification Packets
40885 @section Notification Packets
40886 @cindex notification packets
40887 @cindex packets, notification
40888
40889 The @value{GDBN} remote serial protocol includes @dfn{notifications},
40890 packets that require no acknowledgment.  Both the GDB and the stub
40891 may send notifications (although the only notifications defined at
40892 present are sent by the stub).  Notifications carry information
40893 without incurring the round-trip latency of an acknowledgment, and so
40894 are useful for low-impact communications where occasional packet loss
40895 is not a problem.
40896
40897 A notification packet has the form @samp{% @var{data} #
40898 @var{checksum}}, where @var{data} is the content of the notification,
40899 and @var{checksum} is a checksum of @var{data}, computed and formatted
40900 as for ordinary @value{GDBN} packets.  A notification's @var{data}
40901 never contains @samp{$}, @samp{%} or @samp{#} characters.  Upon
40902 receiving a notification, the recipient sends no @samp{+} or @samp{-}
40903 to acknowledge the notification's receipt or to report its corruption.
40904
40905 Every notification's @var{data} begins with a name, which contains no
40906 colon characters, followed by a colon character.
40907
40908 Recipients should silently ignore corrupted notifications and
40909 notifications they do not understand.  Recipients should restart
40910 timeout periods on receipt of a well-formed notification, whether or
40911 not they understand it.
40912
40913 Senders should only send the notifications described here when this
40914 protocol description specifies that they are permitted.  In the
40915 future, we may extend the protocol to permit existing notifications in
40916 new contexts; this rule helps older senders avoid confusing newer
40917 recipients.
40918
40919 (Older versions of @value{GDBN} ignore bytes received until they see
40920 the @samp{$} byte that begins an ordinary packet, so new stubs may
40921 transmit notifications without fear of confusing older clients.  There
40922 are no notifications defined for @value{GDBN} to send at the moment, but we
40923 assume that most older stubs would ignore them, as well.)
40924
40925 Each notification is comprised of three parts:
40926 @table @samp
40927 @item @var{name}:@var{event}
40928 The notification packet is sent by the side that initiates the
40929 exchange (currently, only the stub does that), with @var{event}
40930 carrying the specific information about the notification, and
40931 @var{name} specifying the name of the notification.
40932 @item @var{ack}
40933 The acknowledge sent by the other side, usually @value{GDBN}, to
40934 acknowledge the exchange and request the event.
40935 @end table
40936
40937 The purpose of an asynchronous notification mechanism is to report to
40938 @value{GDBN} that something interesting happened in the remote stub.
40939
40940 The remote stub may send notification @var{name}:@var{event}
40941 at any time, but @value{GDBN} acknowledges the notification when
40942 appropriate.  The notification event is pending before @value{GDBN}
40943 acknowledges.  Only one notification at a time may be pending; if
40944 additional events occur before @value{GDBN} has acknowledged the
40945 previous notification, they must be queued by the stub for later
40946 synchronous transmission in response to @var{ack} packets from
40947 @value{GDBN}.  Because the notification mechanism is unreliable,
40948 the stub is permitted to resend a notification if it believes
40949 @value{GDBN} may not have received it.
40950
40951 Specifically, notifications may appear when @value{GDBN} is not
40952 otherwise reading input from the stub, or when @value{GDBN} is
40953 expecting to read a normal synchronous response or a
40954 @samp{+}/@samp{-} acknowledgment to a packet it has sent.
40955 Notification packets are distinct from any other communication from
40956 the stub so there is no ambiguity.
40957
40958 After receiving a notification, @value{GDBN} shall acknowledge it by
40959 sending a @var{ack} packet as a regular, synchronous request to the
40960 stub.  Such acknowledgment is not required to happen immediately, as
40961 @value{GDBN} is permitted to send other, unrelated packets to the
40962 stub first, which the stub should process normally.
40963
40964 Upon receiving a @var{ack} packet, if the stub has other queued
40965 events to report to @value{GDBN}, it shall respond by sending a
40966 normal @var{event}.  @value{GDBN} shall then send another @var{ack}
40967 packet to solicit further responses; again, it is permitted to send
40968 other, unrelated packets as well which the stub should process
40969 normally.
40970
40971 If the stub receives a @var{ack} packet and there are no additional
40972 @var{event} to report, the stub shall return an @samp{OK} response.
40973 At this point, @value{GDBN} has finished processing a notification
40974 and the stub has completed sending any queued events.  @value{GDBN}
40975 won't accept any new notifications until the final @samp{OK} is
40976 received .  If further notification events occur, the stub shall send
40977 a new notification, @value{GDBN} shall accept the notification, and
40978 the process shall be repeated.
40979
40980 The process of asynchronous notification can be illustrated by the
40981 following example:
40982 @smallexample
40983 <- @code{%Stop:T0505:98e7ffbf;04:4ce6ffbf;08:b1b6e54c;thread:p7526.7526;core:0;}
40984 @code{...}
40985 -> @code{vStopped}
40986 <- @code{T0505:68f37db7;04:40f37db7;08:63850408;thread:p7526.7528;core:0;}
40987 -> @code{vStopped}
40988 <- @code{T0505:68e3fdb6;04:40e3fdb6;08:63850408;thread:p7526.7529;core:0;}
40989 -> @code{vStopped}
40990 <- @code{OK}
40991 @end smallexample
40992
40993 The following notifications are defined:
40994 @multitable @columnfractions 0.12 0.12 0.38 0.38
40995
40996 @item Notification
40997 @tab Ack
40998 @tab Event
40999 @tab Description
41000
41001 @item Stop
41002 @tab vStopped
41003 @tab @var{reply}.  The @var{reply} has the form of a stop reply, as
41004 described in @ref{Stop Reply Packets}.  Refer to @ref{Remote Non-Stop},
41005 for information on how these notifications are acknowledged by 
41006 @value{GDBN}.
41007 @tab Report an asynchronous stop event in non-stop mode.
41008
41009 @end multitable
41010
41011 @node Remote Non-Stop
41012 @section Remote Protocol Support for Non-Stop Mode
41013
41014 @value{GDBN}'s remote protocol supports non-stop debugging of
41015 multi-threaded programs, as described in @ref{Non-Stop Mode}.  If the stub
41016 supports non-stop mode, it should report that to @value{GDBN} by including
41017 @samp{QNonStop+} in its @samp{qSupported} response (@pxref{qSupported}).
41018
41019 @value{GDBN} typically sends a @samp{QNonStop} packet only when
41020 establishing a new connection with the stub.  Entering non-stop mode
41021 does not alter the state of any currently-running threads, but targets
41022 must stop all threads in any already-attached processes when entering
41023 all-stop mode.  @value{GDBN} uses the @samp{?} packet as necessary to
41024 probe the target state after a mode change.
41025
41026 In non-stop mode, when an attached process encounters an event that
41027 would otherwise be reported with a stop reply, it uses the
41028 asynchronous notification mechanism (@pxref{Notification Packets}) to
41029 inform @value{GDBN}.  In contrast to all-stop mode, where all threads
41030 in all processes are stopped when a stop reply is sent, in non-stop
41031 mode only the thread reporting the stop event is stopped.  That is,
41032 when reporting a @samp{S} or @samp{T} response to indicate completion
41033 of a step operation, hitting a breakpoint, or a fault, only the
41034 affected thread is stopped; any other still-running threads continue
41035 to run.  When reporting a @samp{W} or @samp{X} response, all running
41036 threads belonging to other attached processes continue to run.
41037
41038 In non-stop mode, the target shall respond to the @samp{?} packet as
41039 follows.  First, any incomplete stop reply notification/@samp{vStopped} 
41040 sequence in progress is abandoned.  The target must begin a new
41041 sequence reporting stop events for all stopped threads, whether or not
41042 it has previously reported those events to @value{GDBN}.  The first
41043 stop reply is sent as a synchronous reply to the @samp{?} packet, and
41044 subsequent stop replies are sent as responses to @samp{vStopped} packets
41045 using the mechanism described above.  The target must not send
41046 asynchronous stop reply notifications until the sequence is complete.
41047 If all threads are running when the target receives the @samp{?} packet,
41048 or if the target is not attached to any process, it shall respond
41049 @samp{OK}.
41050
41051 If the stub supports non-stop mode, it should also support the
41052 @samp{swbreak} stop reason if software breakpoints are supported, and
41053 the @samp{hwbreak} stop reason if hardware breakpoints are supported
41054 (@pxref{swbreak stop reason}).  This is because given the asynchronous
41055 nature of non-stop mode, between the time a thread hits a breakpoint
41056 and the time the event is finally processed by @value{GDBN}, the
41057 breakpoint may have already been removed from the target.  Due to
41058 this, @value{GDBN} needs to be able to tell whether a trap stop was
41059 caused by a delayed breakpoint event, which should be ignored, as
41060 opposed to a random trap signal, which should be reported to the user.
41061 Note the @samp{swbreak} feature implies that the target is responsible
41062 for adjusting the PC when a software breakpoint triggers, if
41063 necessary, such as on the x86 architecture.
41064
41065 @node Packet Acknowledgment
41066 @section Packet Acknowledgment
41067
41068 @cindex acknowledgment, for @value{GDBN} remote
41069 @cindex packet acknowledgment, for @value{GDBN} remote
41070 By default, when either the host or the target machine receives a packet,
41071 the first response expected is an acknowledgment: either @samp{+} (to indicate
41072 the package was received correctly) or @samp{-} (to request retransmission).
41073 This mechanism allows the @value{GDBN} remote protocol to operate over
41074 unreliable transport mechanisms, such as a serial line.
41075
41076 In cases where the transport mechanism is itself reliable (such as a pipe or
41077 TCP connection), the @samp{+}/@samp{-} acknowledgments are redundant.
41078 It may be desirable to disable them in that case to reduce communication
41079 overhead, or for other reasons.  This can be accomplished by means of the
41080 @samp{QStartNoAckMode} packet; @pxref{QStartNoAckMode}.
41081
41082 When in no-acknowledgment mode, neither the stub nor @value{GDBN} shall send or
41083 expect @samp{+}/@samp{-} protocol acknowledgments.  The packet
41084 and response format still includes the normal checksum, as described in
41085 @ref{Overview}, but the checksum may be ignored by the receiver.
41086
41087 If the stub supports @samp{QStartNoAckMode} and prefers to operate in
41088 no-acknowledgment mode, it should report that to @value{GDBN}
41089 by including @samp{QStartNoAckMode+} in its response to @samp{qSupported};
41090 @pxref{qSupported}.
41091 If @value{GDBN} also supports @samp{QStartNoAckMode} and it has not been
41092 disabled via the @code{set remote noack-packet off} command
41093 (@pxref{Remote Configuration}),
41094 @value{GDBN} may then send a @samp{QStartNoAckMode} packet to the stub.
41095 Only then may the stub actually turn off packet acknowledgments.
41096 @value{GDBN} sends a final @samp{+} acknowledgment of the stub's @samp{OK}
41097 response, which can be safely ignored by the stub.
41098
41099 Note that @code{set remote noack-packet} command only affects negotiation
41100 between @value{GDBN} and the stub when subsequent connections are made;
41101 it does not affect the protocol acknowledgment state for any current
41102 connection.
41103 Since @samp{+}/@samp{-} acknowledgments are enabled by default when a
41104 new connection is established,
41105 there is also no protocol request to re-enable the acknowledgments
41106 for the current connection, once disabled.
41107
41108 @node Examples
41109 @section Examples
41110
41111 Example sequence of a target being re-started.  Notice how the restart
41112 does not get any direct output:
41113
41114 @smallexample
41115 -> @code{R00}
41116 <- @code{+}
41117 @emph{target restarts}
41118 -> @code{?}
41119 <- @code{+}
41120 <- @code{T001:1234123412341234}
41121 -> @code{+}
41122 @end smallexample
41123
41124 Example sequence of a target being stepped by a single instruction:
41125
41126 @smallexample
41127 -> @code{G1445@dots{}}
41128 <- @code{+}
41129 -> @code{s}
41130 <- @code{+}
41131 @emph{time passes}
41132 <- @code{T001:1234123412341234}
41133 -> @code{+}
41134 -> @code{g}
41135 <- @code{+}
41136 <- @code{1455@dots{}}
41137 -> @code{+}
41138 @end smallexample
41139
41140 @node File-I/O Remote Protocol Extension
41141 @section File-I/O Remote Protocol Extension
41142 @cindex File-I/O remote protocol extension
41143
41144 @menu
41145 * File-I/O Overview::
41146 * Protocol Basics::
41147 * The F Request Packet::
41148 * The F Reply Packet::
41149 * The Ctrl-C Message::
41150 * Console I/O::
41151 * List of Supported Calls::
41152 * Protocol-specific Representation of Datatypes::
41153 * Constants::
41154 * File-I/O Examples::
41155 @end menu
41156
41157 @node File-I/O Overview
41158 @subsection File-I/O Overview
41159 @cindex file-i/o overview
41160
41161 The @dfn{File I/O remote protocol extension} (short: File-I/O) allows the
41162 target to use the host's file system and console I/O to perform various
41163 system calls.  System calls on the target system are translated into a
41164 remote protocol packet to the host system, which then performs the needed
41165 actions and returns a response packet to the target system.
41166 This simulates file system operations even on targets that lack file systems.
41167
41168 The protocol is defined to be independent of both the host and target systems.
41169 It uses its own internal representation of datatypes and values.  Both
41170 @value{GDBN} and the target's @value{GDBN} stub are responsible for
41171 translating the system-dependent value representations into the internal
41172 protocol representations when data is transmitted.
41173
41174 The communication is synchronous.  A system call is possible only when 
41175 @value{GDBN} is waiting for a response from the @samp{C}, @samp{c}, @samp{S} 
41176 or @samp{s} packets.  While @value{GDBN} handles the request for a system call,
41177 the target is stopped to allow deterministic access to the target's
41178 memory.  Therefore File-I/O is not interruptible by target signals.  On
41179 the other hand, it is possible to interrupt File-I/O by a user interrupt 
41180 (@samp{Ctrl-C}) within @value{GDBN}.
41181
41182 The target's request to perform a host system call does not finish
41183 the latest @samp{C}, @samp{c}, @samp{S} or @samp{s} action.  That means,
41184 after finishing the system call, the target returns to continuing the
41185 previous activity (continue, step).  No additional continue or step
41186 request from @value{GDBN} is required.
41187
41188 @smallexample
41189 (@value{GDBP}) continue
41190   <- target requests 'system call X'
41191   target is stopped, @value{GDBN} executes system call
41192   -> @value{GDBN} returns result
41193   ... target continues, @value{GDBN} returns to wait for the target
41194   <- target hits breakpoint and sends a Txx packet
41195 @end smallexample
41196
41197 The protocol only supports I/O on the console and to regular files on 
41198 the host file system.  Character or block special devices, pipes,
41199 named pipes, sockets or any other communication method on the host
41200 system are not supported by this protocol.
41201
41202 File I/O is not supported in non-stop mode.
41203
41204 @node Protocol Basics
41205 @subsection Protocol Basics
41206 @cindex protocol basics, file-i/o
41207
41208 The File-I/O protocol uses the @code{F} packet as the request as well
41209 as reply packet.  Since a File-I/O system call can only occur when
41210 @value{GDBN} is waiting for a response from the continuing or stepping target, 
41211 the File-I/O request is a reply that @value{GDBN} has to expect as a result
41212 of a previous @samp{C}, @samp{c}, @samp{S} or @samp{s} packet.
41213 This @code{F} packet contains all information needed to allow @value{GDBN}
41214 to call the appropriate host system call:
41215
41216 @itemize @bullet
41217 @item
41218 A unique identifier for the requested system call.
41219
41220 @item
41221 All parameters to the system call.  Pointers are given as addresses
41222 in the target memory address space.  Pointers to strings are given as
41223 pointer/length pair.  Numerical values are given as they are.
41224 Numerical control flags are given in a protocol-specific representation.
41225
41226 @end itemize
41227
41228 At this point, @value{GDBN} has to perform the following actions.
41229
41230 @itemize @bullet
41231 @item
41232 If the parameters include pointer values to data needed as input to a 
41233 system call, @value{GDBN} requests this data from the target with a
41234 standard @code{m} packet request.  This additional communication has to be
41235 expected by the target implementation and is handled as any other @code{m}
41236 packet.
41237
41238 @item
41239 @value{GDBN} translates all value from protocol representation to host
41240 representation as needed.  Datatypes are coerced into the host types.
41241
41242 @item
41243 @value{GDBN} calls the system call.
41244
41245 @item
41246 It then coerces datatypes back to protocol representation.
41247
41248 @item
41249 If the system call is expected to return data in buffer space specified
41250 by pointer parameters to the call, the data is transmitted to the
41251 target using a @code{M} or @code{X} packet.  This packet has to be expected
41252 by the target implementation and is handled as any other @code{M} or @code{X}
41253 packet.
41254
41255 @end itemize
41256
41257 Eventually @value{GDBN} replies with another @code{F} packet which contains all
41258 necessary information for the target to continue.  This at least contains
41259
41260 @itemize @bullet
41261 @item
41262 Return value.
41263
41264 @item
41265 @code{errno}, if has been changed by the system call.
41266
41267 @item
41268 ``Ctrl-C'' flag.
41269
41270 @end itemize
41271
41272 After having done the needed type and value coercion, the target continues
41273 the latest continue or step action.
41274
41275 @node The F Request Packet
41276 @subsection The @code{F} Request Packet
41277 @cindex file-i/o request packet
41278 @cindex @code{F} request packet
41279
41280 The @code{F} request packet has the following format:
41281
41282 @table @samp
41283 @item F@var{call-id},@var{parameter@dots{}}
41284
41285 @var{call-id} is the identifier to indicate the host system call to be called.
41286 This is just the name of the function.
41287
41288 @var{parameter@dots{}} are the parameters to the system call.  
41289 Parameters are hexadecimal integer values, either the actual values in case
41290 of scalar datatypes, pointers to target buffer space in case of compound
41291 datatypes and unspecified memory areas, or pointer/length pairs in case
41292 of string parameters.  These are appended to the @var{call-id} as a 
41293 comma-delimited list.  All values are transmitted in ASCII
41294 string representation, pointer/length pairs separated by a slash.
41295
41296 @end table
41297
41298
41299
41300 @node The F Reply Packet
41301 @subsection The @code{F} Reply Packet
41302 @cindex file-i/o reply packet
41303 @cindex @code{F} reply packet
41304
41305 The @code{F} reply packet has the following format:
41306
41307 @table @samp
41308
41309 @item F@var{retcode},@var{errno},@var{Ctrl-C flag};@var{call-specific attachment}
41310
41311 @var{retcode} is the return code of the system call as hexadecimal value.
41312
41313 @var{errno} is the @code{errno} set by the call, in protocol-specific
41314 representation.
41315 This parameter can be omitted if the call was successful.
41316
41317 @var{Ctrl-C flag} is only sent if the user requested a break.  In this
41318 case, @var{errno} must be sent as well, even if the call was successful.
41319 The @var{Ctrl-C flag} itself consists of the character @samp{C}:
41320
41321 @smallexample
41322 F0,0,C
41323 @end smallexample
41324
41325 @noindent
41326 or, if the call was interrupted before the host call has been performed:
41327
41328 @smallexample
41329 F-1,4,C
41330 @end smallexample
41331
41332 @noindent
41333 assuming 4 is the protocol-specific representation of @code{EINTR}.
41334
41335 @end table
41336
41337
41338 @node The Ctrl-C Message
41339 @subsection The @samp{Ctrl-C} Message
41340 @cindex ctrl-c message, in file-i/o protocol
41341
41342 If the @samp{Ctrl-C} flag is set in the @value{GDBN}
41343 reply packet (@pxref{The F Reply Packet}),
41344 the target should behave as if it had
41345 gotten a break message.  The meaning for the target is ``system call
41346 interrupted by @code{SIGINT}''.  Consequentially, the target should actually stop
41347 (as with a break message) and return to @value{GDBN} with a @code{T02}
41348 packet.
41349
41350 It's important for the target to know in which
41351 state the system call was interrupted.  There are two possible cases:
41352
41353 @itemize @bullet
41354 @item
41355 The system call hasn't been performed on the host yet.
41356
41357 @item
41358 The system call on the host has been finished.
41359
41360 @end itemize
41361
41362 These two states can be distinguished by the target by the value of the
41363 returned @code{errno}.  If it's the protocol representation of @code{EINTR}, the system
41364 call hasn't been performed.  This is equivalent to the @code{EINTR} handling
41365 on POSIX systems.  In any other case, the target may presume that the
41366 system call has been finished --- successfully or not --- and should behave
41367 as if the break message arrived right after the system call.
41368
41369 @value{GDBN} must behave reliably.  If the system call has not been called
41370 yet, @value{GDBN} may send the @code{F} reply immediately, setting @code{EINTR} as
41371 @code{errno} in the packet.  If the system call on the host has been finished
41372 before the user requests a break, the full action must be finished by
41373 @value{GDBN}.  This requires sending @code{M} or @code{X} packets as necessary.
41374 The @code{F} packet may only be sent when either nothing has happened
41375 or the full action has been completed.
41376
41377 @node Console I/O
41378 @subsection Console I/O
41379 @cindex console i/o as part of file-i/o
41380
41381 By default and if not explicitly closed by the target system, the file
41382 descriptors 0, 1 and 2 are connected to the @value{GDBN} console.  Output
41383 on the @value{GDBN} console is handled as any other file output operation
41384 (@code{write(1, @dots{})} or @code{write(2, @dots{})}).  Console input is handled
41385 by @value{GDBN} so that after the target read request from file descriptor
41386 0 all following typing is buffered until either one of the following
41387 conditions is met:
41388
41389 @itemize @bullet
41390 @item
41391 The user types @kbd{Ctrl-c}.  The behaviour is as explained above, and the
41392 @code{read}
41393 system call is treated as finished.
41394
41395 @item
41396 The user presses @key{RET}.  This is treated as end of input with a trailing
41397 newline.
41398
41399 @item
41400 The user types @kbd{Ctrl-d}.  This is treated as end of input.  No trailing
41401 character (neither newline nor @samp{Ctrl-D}) is appended to the input.
41402
41403 @end itemize
41404
41405 If the user has typed more characters than fit in the buffer given to
41406 the @code{read} call, the trailing characters are buffered in @value{GDBN} until
41407 either another @code{read(0, @dots{})} is requested by the target, or debugging
41408 is stopped at the user's request.
41409
41410
41411 @node List of Supported Calls
41412 @subsection List of Supported Calls
41413 @cindex list of supported file-i/o calls
41414
41415 @menu
41416 * open::
41417 * close::
41418 * read::
41419 * write::
41420 * lseek::
41421 * rename::
41422 * unlink::
41423 * stat/fstat::
41424 * gettimeofday::
41425 * isatty::
41426 * system::
41427 @end menu
41428
41429 @node open
41430 @unnumberedsubsubsec open
41431 @cindex open, file-i/o system call
41432
41433 @table @asis
41434 @item Synopsis:
41435 @smallexample
41436 int open(const char *pathname, int flags);
41437 int open(const char *pathname, int flags, mode_t mode);
41438 @end smallexample
41439
41440 @item Request:
41441 @samp{Fopen,@var{pathptr}/@var{len},@var{flags},@var{mode}}
41442
41443 @noindent
41444 @var{flags} is the bitwise @code{OR} of the following values:
41445
41446 @table @code
41447 @item O_CREAT
41448 If the file does not exist it will be created.  The host
41449 rules apply as far as file ownership and time stamps
41450 are concerned.
41451
41452 @item O_EXCL
41453 When used with @code{O_CREAT}, if the file already exists it is
41454 an error and open() fails.
41455
41456 @item O_TRUNC
41457 If the file already exists and the open mode allows
41458 writing (@code{O_RDWR} or @code{O_WRONLY} is given) it will be
41459 truncated to zero length.
41460
41461 @item O_APPEND
41462 The file is opened in append mode.
41463
41464 @item O_RDONLY
41465 The file is opened for reading only.
41466
41467 @item O_WRONLY
41468 The file is opened for writing only.
41469
41470 @item O_RDWR
41471 The file is opened for reading and writing.
41472 @end table
41473
41474 @noindent
41475 Other bits are silently ignored.
41476
41477
41478 @noindent
41479 @var{mode} is the bitwise @code{OR} of the following values:
41480
41481 @table @code
41482 @item S_IRUSR
41483 User has read permission.
41484
41485 @item S_IWUSR
41486 User has write permission.
41487
41488 @item S_IRGRP
41489 Group has read permission.
41490
41491 @item S_IWGRP
41492 Group has write permission.
41493
41494 @item S_IROTH
41495 Others have read permission.
41496
41497 @item S_IWOTH
41498 Others have write permission.
41499 @end table
41500
41501 @noindent
41502 Other bits are silently ignored.
41503
41504
41505 @item Return value:
41506 @code{open} returns the new file descriptor or -1 if an error
41507 occurred.
41508
41509 @item Errors:
41510
41511 @table @code
41512 @item EEXIST
41513 @var{pathname} already exists and @code{O_CREAT} and @code{O_EXCL} were used.
41514
41515 @item EISDIR
41516 @var{pathname} refers to a directory.
41517
41518 @item EACCES
41519 The requested access is not allowed.
41520
41521 @item ENAMETOOLONG
41522 @var{pathname} was too long.
41523
41524 @item ENOENT
41525 A directory component in @var{pathname} does not exist.
41526
41527 @item ENODEV
41528 @var{pathname} refers to a device, pipe, named pipe or socket.
41529
41530 @item EROFS
41531 @var{pathname} refers to a file on a read-only filesystem and
41532 write access was requested.
41533
41534 @item EFAULT
41535 @var{pathname} is an invalid pointer value.
41536
41537 @item ENOSPC
41538 No space on device to create the file.
41539
41540 @item EMFILE
41541 The process already has the maximum number of files open.
41542
41543 @item ENFILE
41544 The limit on the total number of files open on the system
41545 has been reached.
41546
41547 @item EINTR
41548 The call was interrupted by the user.
41549 @end table
41550
41551 @end table
41552
41553 @node close
41554 @unnumberedsubsubsec close
41555 @cindex close, file-i/o system call
41556
41557 @table @asis
41558 @item Synopsis:
41559 @smallexample
41560 int close(int fd);
41561 @end smallexample
41562
41563 @item Request:
41564 @samp{Fclose,@var{fd}}
41565
41566 @item Return value:
41567 @code{close} returns zero on success, or -1 if an error occurred.
41568
41569 @item Errors:
41570
41571 @table @code
41572 @item EBADF
41573 @var{fd} isn't a valid open file descriptor.
41574
41575 @item EINTR
41576 The call was interrupted by the user.
41577 @end table
41578
41579 @end table
41580
41581 @node read
41582 @unnumberedsubsubsec read
41583 @cindex read, file-i/o system call
41584
41585 @table @asis
41586 @item Synopsis:
41587 @smallexample
41588 int read(int fd, void *buf, unsigned int count);
41589 @end smallexample
41590
41591 @item Request:
41592 @samp{Fread,@var{fd},@var{bufptr},@var{count}}
41593
41594 @item Return value:
41595 On success, the number of bytes read is returned.
41596 Zero indicates end of file.  If count is zero, read
41597 returns zero as well.  On error, -1 is returned.
41598
41599 @item Errors:
41600
41601 @table @code
41602 @item EBADF
41603 @var{fd} is not a valid file descriptor or is not open for
41604 reading.
41605
41606 @item EFAULT
41607 @var{bufptr} is an invalid pointer value.
41608
41609 @item EINTR
41610 The call was interrupted by the user.
41611 @end table
41612
41613 @end table
41614
41615 @node write
41616 @unnumberedsubsubsec write
41617 @cindex write, file-i/o system call
41618
41619 @table @asis
41620 @item Synopsis:
41621 @smallexample
41622 int write(int fd, const void *buf, unsigned int count);
41623 @end smallexample
41624
41625 @item Request:
41626 @samp{Fwrite,@var{fd},@var{bufptr},@var{count}}
41627
41628 @item Return value:
41629 On success, the number of bytes written are returned.
41630 Zero indicates nothing was written.  On error, -1
41631 is returned.
41632
41633 @item Errors:
41634
41635 @table @code
41636 @item EBADF
41637 @var{fd} is not a valid file descriptor or is not open for
41638 writing.
41639
41640 @item EFAULT
41641 @var{bufptr} is an invalid pointer value.
41642
41643 @item EFBIG
41644 An attempt was made to write a file that exceeds the
41645 host-specific maximum file size allowed.
41646
41647 @item ENOSPC
41648 No space on device to write the data.
41649
41650 @item EINTR
41651 The call was interrupted by the user.
41652 @end table
41653
41654 @end table
41655
41656 @node lseek
41657 @unnumberedsubsubsec lseek
41658 @cindex lseek, file-i/o system call
41659
41660 @table @asis
41661 @item Synopsis:
41662 @smallexample
41663 long lseek (int fd, long offset, int flag);
41664 @end smallexample
41665
41666 @item Request:
41667 @samp{Flseek,@var{fd},@var{offset},@var{flag}}
41668
41669 @var{flag} is one of:
41670
41671 @table @code
41672 @item SEEK_SET
41673 The offset is set to @var{offset} bytes.
41674
41675 @item SEEK_CUR
41676 The offset is set to its current location plus @var{offset}
41677 bytes.
41678
41679 @item SEEK_END
41680 The offset is set to the size of the file plus @var{offset}
41681 bytes.
41682 @end table
41683
41684 @item Return value:
41685 On success, the resulting unsigned offset in bytes from
41686 the beginning of the file is returned.  Otherwise, a
41687 value of -1 is returned.
41688
41689 @item Errors:
41690
41691 @table @code
41692 @item EBADF
41693 @var{fd} is not a valid open file descriptor.
41694
41695 @item ESPIPE
41696 @var{fd} is associated with the @value{GDBN} console.
41697
41698 @item EINVAL
41699 @var{flag} is not a proper value.
41700
41701 @item EINTR
41702 The call was interrupted by the user.
41703 @end table
41704
41705 @end table
41706
41707 @node rename
41708 @unnumberedsubsubsec rename
41709 @cindex rename, file-i/o system call
41710
41711 @table @asis
41712 @item Synopsis:
41713 @smallexample
41714 int rename(const char *oldpath, const char *newpath);
41715 @end smallexample
41716
41717 @item Request:
41718 @samp{Frename,@var{oldpathptr}/@var{len},@var{newpathptr}/@var{len}}
41719
41720 @item Return value:
41721 On success, zero is returned.  On error, -1 is returned.
41722
41723 @item Errors:
41724
41725 @table @code
41726 @item EISDIR
41727 @var{newpath} is an existing directory, but @var{oldpath} is not a
41728 directory.
41729
41730 @item EEXIST
41731 @var{newpath} is a non-empty directory.
41732
41733 @item EBUSY
41734 @var{oldpath} or @var{newpath} is a directory that is in use by some
41735 process.
41736
41737 @item EINVAL
41738 An attempt was made to make a directory a subdirectory
41739 of itself.
41740
41741 @item ENOTDIR
41742 A  component used as a directory in @var{oldpath} or new
41743 path is not a directory.  Or @var{oldpath} is a directory
41744 and @var{newpath} exists but is not a directory.
41745
41746 @item EFAULT
41747 @var{oldpathptr} or @var{newpathptr} are invalid pointer values.
41748
41749 @item EACCES
41750 No access to the file or the path of the file.
41751
41752 @item ENAMETOOLONG
41753
41754 @var{oldpath} or @var{newpath} was too long.
41755
41756 @item ENOENT
41757 A directory component in @var{oldpath} or @var{newpath} does not exist.
41758
41759 @item EROFS
41760 The file is on a read-only filesystem.
41761
41762 @item ENOSPC
41763 The device containing the file has no room for the new
41764 directory entry.
41765
41766 @item EINTR
41767 The call was interrupted by the user.
41768 @end table
41769
41770 @end table
41771
41772 @node unlink
41773 @unnumberedsubsubsec unlink
41774 @cindex unlink, file-i/o system call
41775
41776 @table @asis
41777 @item Synopsis:
41778 @smallexample
41779 int unlink(const char *pathname);
41780 @end smallexample
41781
41782 @item Request:
41783 @samp{Funlink,@var{pathnameptr}/@var{len}}
41784
41785 @item Return value:
41786 On success, zero is returned.  On error, -1 is returned.
41787
41788 @item Errors:
41789
41790 @table @code
41791 @item EACCES
41792 No access to the file or the path of the file.
41793
41794 @item EPERM
41795 The system does not allow unlinking of directories.
41796
41797 @item EBUSY
41798 The file @var{pathname} cannot be unlinked because it's
41799 being used by another process.
41800
41801 @item EFAULT
41802 @var{pathnameptr} is an invalid pointer value.
41803
41804 @item ENAMETOOLONG
41805 @var{pathname} was too long.
41806
41807 @item ENOENT
41808 A directory component in @var{pathname} does not exist.
41809
41810 @item ENOTDIR
41811 A component of the path is not a directory.
41812
41813 @item EROFS
41814 The file is on a read-only filesystem.
41815
41816 @item EINTR
41817 The call was interrupted by the user.
41818 @end table
41819
41820 @end table
41821
41822 @node stat/fstat
41823 @unnumberedsubsubsec stat/fstat
41824 @cindex fstat, file-i/o system call
41825 @cindex stat, file-i/o system call
41826
41827 @table @asis
41828 @item Synopsis:
41829 @smallexample
41830 int stat(const char *pathname, struct stat *buf);
41831 int fstat(int fd, struct stat *buf);
41832 @end smallexample
41833
41834 @item Request:
41835 @samp{Fstat,@var{pathnameptr}/@var{len},@var{bufptr}}@*
41836 @samp{Ffstat,@var{fd},@var{bufptr}}
41837
41838 @item Return value:
41839 On success, zero is returned.  On error, -1 is returned.
41840
41841 @item Errors:
41842
41843 @table @code
41844 @item EBADF
41845 @var{fd} is not a valid open file.
41846
41847 @item ENOENT
41848 A directory component in @var{pathname} does not exist or the
41849 path is an empty string.
41850
41851 @item ENOTDIR
41852 A component of the path is not a directory.
41853
41854 @item EFAULT
41855 @var{pathnameptr} is an invalid pointer value.
41856
41857 @item EACCES
41858 No access to the file or the path of the file.
41859
41860 @item ENAMETOOLONG
41861 @var{pathname} was too long.
41862
41863 @item EINTR
41864 The call was interrupted by the user.
41865 @end table
41866
41867 @end table
41868
41869 @node gettimeofday
41870 @unnumberedsubsubsec gettimeofday
41871 @cindex gettimeofday, file-i/o system call
41872
41873 @table @asis
41874 @item Synopsis:
41875 @smallexample
41876 int gettimeofday(struct timeval *tv, void *tz);
41877 @end smallexample
41878
41879 @item Request:
41880 @samp{Fgettimeofday,@var{tvptr},@var{tzptr}}
41881
41882 @item Return value:
41883 On success, 0 is returned, -1 otherwise.
41884
41885 @item Errors:
41886
41887 @table @code
41888 @item EINVAL
41889 @var{tz} is a non-NULL pointer.
41890
41891 @item EFAULT
41892 @var{tvptr} and/or @var{tzptr} is an invalid pointer value.
41893 @end table
41894
41895 @end table
41896
41897 @node isatty
41898 @unnumberedsubsubsec isatty
41899 @cindex isatty, file-i/o system call
41900
41901 @table @asis
41902 @item Synopsis:
41903 @smallexample
41904 int isatty(int fd);
41905 @end smallexample
41906
41907 @item Request:
41908 @samp{Fisatty,@var{fd}}
41909
41910 @item Return value:
41911 Returns 1 if @var{fd} refers to the @value{GDBN} console, 0 otherwise.
41912
41913 @item Errors:
41914
41915 @table @code
41916 @item EINTR
41917 The call was interrupted by the user.
41918 @end table
41919
41920 @end table
41921
41922 Note that the @code{isatty} call is treated as a special case: it returns
41923 1 to the target if the file descriptor is attached
41924 to the @value{GDBN} console, 0 otherwise.  Implementing through system calls
41925 would require implementing @code{ioctl} and would be more complex than
41926 needed.
41927
41928
41929 @node system
41930 @unnumberedsubsubsec system
41931 @cindex system, file-i/o system call
41932
41933 @table @asis
41934 @item Synopsis:
41935 @smallexample
41936 int system(const char *command);
41937 @end smallexample
41938
41939 @item Request:
41940 @samp{Fsystem,@var{commandptr}/@var{len}}
41941
41942 @item Return value:
41943 If @var{len} is zero, the return value indicates whether a shell is
41944 available.  A zero return value indicates a shell is not available.
41945 For non-zero @var{len}, the value returned is -1 on error and the
41946 return status of the command otherwise.  Only the exit status of the
41947 command is returned, which is extracted from the host's @code{system}
41948 return value by calling @code{WEXITSTATUS(retval)}.  In case
41949 @file{/bin/sh} could not be executed, 127 is returned.
41950
41951 @item Errors:
41952
41953 @table @code
41954 @item EINTR
41955 The call was interrupted by the user.
41956 @end table
41957
41958 @end table
41959
41960 @value{GDBN} takes over the full task of calling the necessary host calls 
41961 to perform the @code{system} call.  The return value of @code{system} on 
41962 the host is simplified before it's returned
41963 to the target.  Any termination signal information from the child process 
41964 is discarded, and the return value consists
41965 entirely of the exit status of the called command.
41966
41967 Due to security concerns, the @code{system} call is by default refused
41968 by @value{GDBN}.  The user has to allow this call explicitly with the
41969 @code{set remote system-call-allowed 1} command.
41970
41971 @table @code
41972 @item set remote system-call-allowed
41973 @kindex set remote system-call-allowed
41974 Control whether to allow the @code{system} calls in the File I/O
41975 protocol for the remote target.  The default is zero (disabled).
41976
41977 @item show remote system-call-allowed
41978 @kindex show remote system-call-allowed
41979 Show whether the @code{system} calls are allowed in the File I/O
41980 protocol.
41981 @end table
41982
41983 @node Protocol-specific Representation of Datatypes
41984 @subsection Protocol-specific Representation of Datatypes
41985 @cindex protocol-specific representation of datatypes, in file-i/o protocol
41986
41987 @menu
41988 * Integral Datatypes::
41989 * Pointer Values::
41990 * Memory Transfer::
41991 * struct stat::
41992 * struct timeval::
41993 @end menu
41994
41995 @node Integral Datatypes
41996 @unnumberedsubsubsec Integral Datatypes
41997 @cindex integral datatypes, in file-i/o protocol
41998
41999 The integral datatypes used in the system calls are @code{int}, 
42000 @code{unsigned int}, @code{long}, @code{unsigned long},
42001 @code{mode_t}, and @code{time_t}.  
42002
42003 @code{int}, @code{unsigned int}, @code{mode_t} and @code{time_t} are
42004 implemented as 32 bit values in this protocol.
42005
42006 @code{long} and @code{unsigned long} are implemented as 64 bit types.
42007
42008 @xref{Limits}, for corresponding MIN and MAX values (similar to those
42009 in @file{limits.h}) to allow range checking on host and target.
42010
42011 @code{time_t} datatypes are defined as seconds since the Epoch.
42012
42013 All integral datatypes transferred as part of a memory read or write of a
42014 structured datatype e.g.@: a @code{struct stat} have to be given in big endian
42015 byte order.
42016
42017 @node Pointer Values
42018 @unnumberedsubsubsec Pointer Values
42019 @cindex pointer values, in file-i/o protocol
42020
42021 Pointers to target data are transmitted as they are.  An exception
42022 is made for pointers to buffers for which the length isn't
42023 transmitted as part of the function call, namely strings.  Strings
42024 are transmitted as a pointer/length pair, both as hex values, e.g.@:
42025
42026 @smallexample
42027 @code{1aaf/12}
42028 @end smallexample
42029
42030 @noindent
42031 which is a pointer to data of length 18 bytes at position 0x1aaf.
42032 The length is defined as the full string length in bytes, including
42033 the trailing null byte.  For example, the string @code{"hello world"}
42034 at address 0x123456 is transmitted as
42035
42036 @smallexample
42037 @code{123456/d}
42038 @end smallexample
42039
42040 @node Memory Transfer
42041 @unnumberedsubsubsec Memory Transfer
42042 @cindex memory transfer, in file-i/o protocol
42043
42044 Structured data which is transferred using a memory read or write (for
42045 example, a @code{struct stat}) is expected to be in a protocol-specific format 
42046 with all scalar multibyte datatypes being big endian.  Translation to
42047 this representation needs to be done both by the target before the @code{F} 
42048 packet is sent, and by @value{GDBN} before 
42049 it transfers memory to the target.  Transferred pointers to structured
42050 data should point to the already-coerced data at any time.
42051
42052
42053 @node struct stat
42054 @unnumberedsubsubsec struct stat
42055 @cindex struct stat, in file-i/o protocol
42056
42057 The buffer of type @code{struct stat} used by the target and @value{GDBN} 
42058 is defined as follows:
42059
42060 @smallexample
42061 struct stat @{
42062     unsigned int  st_dev;      /* device */
42063     unsigned int  st_ino;      /* inode */
42064     mode_t        st_mode;     /* protection */
42065     unsigned int  st_nlink;    /* number of hard links */
42066     unsigned int  st_uid;      /* user ID of owner */
42067     unsigned int  st_gid;      /* group ID of owner */
42068     unsigned int  st_rdev;     /* device type (if inode device) */
42069     unsigned long st_size;     /* total size, in bytes */
42070     unsigned long st_blksize;  /* blocksize for filesystem I/O */
42071     unsigned long st_blocks;   /* number of blocks allocated */
42072     time_t        st_atime;    /* time of last access */
42073     time_t        st_mtime;    /* time of last modification */
42074     time_t        st_ctime;    /* time of last change */
42075 @};
42076 @end smallexample
42077
42078 The integral datatypes conform to the definitions given in the
42079 appropriate section (see @ref{Integral Datatypes}, for details) so this
42080 structure is of size 64 bytes.
42081
42082 The values of several fields have a restricted meaning and/or
42083 range of values.
42084
42085 @table @code
42086
42087 @item st_dev
42088 A value of 0 represents a file, 1 the console.
42089
42090 @item st_ino
42091 No valid meaning for the target.  Transmitted unchanged.
42092
42093 @item st_mode
42094 Valid mode bits are described in @ref{Constants}.  Any other
42095 bits have currently no meaning for the target.
42096
42097 @item st_uid
42098 @itemx st_gid
42099 @itemx st_rdev
42100 No valid meaning for the target.  Transmitted unchanged.
42101
42102 @item st_atime
42103 @itemx st_mtime
42104 @itemx st_ctime
42105 These values have a host and file system dependent
42106 accuracy.  Especially on Windows hosts, the file system may not
42107 support exact timing values.
42108 @end table
42109
42110 The target gets a @code{struct stat} of the above representation and is
42111 responsible for coercing it to the target representation before
42112 continuing.
42113
42114 Note that due to size differences between the host, target, and protocol
42115 representations of @code{struct stat} members, these members could eventually
42116 get truncated on the target.
42117
42118 @node struct timeval
42119 @unnumberedsubsubsec struct timeval
42120 @cindex struct timeval, in file-i/o protocol
42121
42122 The buffer of type @code{struct timeval} used by the File-I/O protocol
42123 is defined as follows:
42124
42125 @smallexample
42126 struct timeval @{
42127     time_t tv_sec;  /* second */
42128     long   tv_usec; /* microsecond */
42129 @};
42130 @end smallexample
42131
42132 The integral datatypes conform to the definitions given in the
42133 appropriate section (see @ref{Integral Datatypes}, for details) so this
42134 structure is of size 8 bytes.
42135
42136 @node Constants
42137 @subsection Constants
42138 @cindex constants, in file-i/o protocol
42139
42140 The following values are used for the constants inside of the
42141 protocol.  @value{GDBN} and target are responsible for translating these
42142 values before and after the call as needed.
42143
42144 @menu
42145 * Open Flags::
42146 * mode_t Values::
42147 * Errno Values::
42148 * Lseek Flags::
42149 * Limits::
42150 @end menu
42151
42152 @node Open Flags
42153 @unnumberedsubsubsec Open Flags
42154 @cindex open flags, in file-i/o protocol
42155
42156 All values are given in hexadecimal representation.
42157
42158 @smallexample
42159   O_RDONLY        0x0
42160   O_WRONLY        0x1
42161   O_RDWR          0x2
42162   O_APPEND        0x8
42163   O_CREAT       0x200
42164   O_TRUNC       0x400
42165   O_EXCL        0x800
42166 @end smallexample
42167
42168 @node mode_t Values
42169 @unnumberedsubsubsec mode_t Values
42170 @cindex mode_t values, in file-i/o protocol
42171
42172 All values are given in octal representation.
42173
42174 @smallexample
42175   S_IFREG       0100000
42176   S_IFDIR        040000
42177   S_IRUSR          0400
42178   S_IWUSR          0200
42179   S_IXUSR          0100
42180   S_IRGRP           040
42181   S_IWGRP           020
42182   S_IXGRP           010
42183   S_IROTH            04
42184   S_IWOTH            02
42185   S_IXOTH            01
42186 @end smallexample
42187
42188 @node Errno Values
42189 @unnumberedsubsubsec Errno Values
42190 @cindex errno values, in file-i/o protocol
42191
42192 All values are given in decimal representation.
42193
42194 @smallexample
42195   EPERM           1
42196   ENOENT          2
42197   EINTR           4
42198   EBADF           9
42199   EACCES         13
42200   EFAULT         14
42201   EBUSY          16
42202   EEXIST         17
42203   ENODEV         19
42204   ENOTDIR        20
42205   EISDIR         21
42206   EINVAL         22
42207   ENFILE         23
42208   EMFILE         24
42209   EFBIG          27
42210   ENOSPC         28
42211   ESPIPE         29
42212   EROFS          30
42213   ENAMETOOLONG   91
42214   EUNKNOWN       9999
42215 @end smallexample
42216
42217   @code{EUNKNOWN} is used as a fallback error value if a host system returns
42218   any error value not in the list of supported error numbers.
42219
42220 @node Lseek Flags
42221 @unnumberedsubsubsec Lseek Flags
42222 @cindex lseek flags, in file-i/o protocol
42223
42224 @smallexample
42225   SEEK_SET      0
42226   SEEK_CUR      1
42227   SEEK_END      2
42228 @end smallexample
42229
42230 @node Limits
42231 @unnumberedsubsubsec Limits
42232 @cindex limits, in file-i/o protocol
42233
42234 All values are given in decimal representation.
42235
42236 @smallexample
42237   INT_MIN       -2147483648
42238   INT_MAX        2147483647
42239   UINT_MAX       4294967295
42240   LONG_MIN      -9223372036854775808
42241   LONG_MAX       9223372036854775807
42242   ULONG_MAX      18446744073709551615
42243 @end smallexample
42244
42245 @node File-I/O Examples
42246 @subsection File-I/O Examples
42247 @cindex file-i/o examples
42248
42249 Example sequence of a write call, file descriptor 3, buffer is at target
42250 address 0x1234, 6 bytes should be written:
42251
42252 @smallexample
42253 <- @code{Fwrite,3,1234,6}
42254 @emph{request memory read from target}
42255 -> @code{m1234,6}
42256 <- XXXXXX
42257 @emph{return "6 bytes written"}
42258 -> @code{F6}
42259 @end smallexample
42260
42261 Example sequence of a read call, file descriptor 3, buffer is at target
42262 address 0x1234, 6 bytes should be read:
42263
42264 @smallexample
42265 <- @code{Fread,3,1234,6}
42266 @emph{request memory write to target}
42267 -> @code{X1234,6:XXXXXX}
42268 @emph{return "6 bytes read"}
42269 -> @code{F6}
42270 @end smallexample
42271
42272 Example sequence of a read call, call fails on the host due to invalid
42273 file descriptor (@code{EBADF}):
42274
42275 @smallexample
42276 <- @code{Fread,3,1234,6}
42277 -> @code{F-1,9}
42278 @end smallexample
42279
42280 Example sequence of a read call, user presses @kbd{Ctrl-c} before syscall on
42281 host is called:
42282
42283 @smallexample
42284 <- @code{Fread,3,1234,6}
42285 -> @code{F-1,4,C}
42286 <- @code{T02}
42287 @end smallexample
42288
42289 Example sequence of a read call, user presses @kbd{Ctrl-c} after syscall on
42290 host is called:
42291
42292 @smallexample
42293 <- @code{Fread,3,1234,6}
42294 -> @code{X1234,6:XXXXXX}
42295 <- @code{T02}
42296 @end smallexample
42297
42298 @node Library List Format
42299 @section Library List Format
42300 @cindex library list format, remote protocol
42301
42302 On some platforms, a dynamic loader (e.g.@: @file{ld.so}) runs in the
42303 same process as your application to manage libraries.  In this case,
42304 @value{GDBN} can use the loader's symbol table and normal memory
42305 operations to maintain a list of shared libraries.  On other
42306 platforms, the operating system manages loaded libraries.
42307 @value{GDBN} can not retrieve the list of currently loaded libraries
42308 through memory operations, so it uses the @samp{qXfer:libraries:read}
42309 packet (@pxref{qXfer library list read}) instead.  The remote stub
42310 queries the target's operating system and reports which libraries
42311 are loaded.
42312
42313 The @samp{qXfer:libraries:read} packet returns an XML document which
42314 lists loaded libraries and their offsets.  Each library has an
42315 associated name and one or more segment or section base addresses,
42316 which report where the library was loaded in memory.
42317
42318 For the common case of libraries that are fully linked binaries, the
42319 library should have a list of segments.  If the target supports
42320 dynamic linking of a relocatable object file, its library XML element
42321 should instead include a list of allocated sections.  The segment or
42322 section bases are start addresses, not relocation offsets; they do not
42323 depend on the library's link-time base addresses.
42324
42325 @value{GDBN} must be linked with the Expat library to support XML
42326 library lists.  @xref{Expat}.
42327
42328 A simple memory map, with one loaded library relocated by a single
42329 offset, looks like this:
42330
42331 @smallexample
42332 <library-list>
42333   <library name="/lib/libc.so.6">
42334     <segment address="0x10000000"/>
42335   </library>
42336 </library-list>
42337 @end smallexample
42338
42339 Another simple memory map, with one loaded library with three
42340 allocated sections (.text, .data, .bss), looks like this:
42341
42342 @smallexample
42343 <library-list>
42344   <library name="sharedlib.o">
42345     <section address="0x10000000"/>
42346     <section address="0x20000000"/>
42347     <section address="0x30000000"/>
42348   </library>
42349 </library-list>
42350 @end smallexample
42351
42352 The format of a library list is described by this DTD:
42353
42354 @smallexample
42355 <!-- library-list: Root element with versioning -->
42356 <!ELEMENT library-list  (library)*>
42357 <!ATTLIST library-list  version CDATA   #FIXED  "1.0">
42358 <!ELEMENT library       (segment*, section*)>
42359 <!ATTLIST library       name    CDATA   #REQUIRED>
42360 <!ELEMENT segment       EMPTY>
42361 <!ATTLIST segment       address CDATA   #REQUIRED>
42362 <!ELEMENT section       EMPTY>
42363 <!ATTLIST section       address CDATA   #REQUIRED>
42364 @end smallexample
42365
42366 In addition, segments and section descriptors cannot be mixed within a
42367 single library element, and you must supply at least one segment or
42368 section for each library.
42369
42370 @node Library List Format for SVR4 Targets
42371 @section Library List Format for SVR4 Targets
42372 @cindex library list format, remote protocol
42373
42374 On SVR4 platforms @value{GDBN} can use the symbol table of a dynamic loader
42375 (e.g.@: @file{ld.so}) and normal memory operations to maintain a list of
42376 shared libraries.  Still a special library list provided by this packet is
42377 more efficient for the @value{GDBN} remote protocol.
42378
42379 The @samp{qXfer:libraries-svr4:read} packet returns an XML document which lists
42380 loaded libraries and their SVR4 linker parameters.  For each library on SVR4
42381 target, the following parameters are reported:
42382
42383 @itemize @minus
42384 @item
42385 @code{name}, the absolute file name from the @code{l_name} field of
42386 @code{struct link_map}.
42387 @item
42388 @code{lm} with address of @code{struct link_map} used for TLS
42389 (Thread Local Storage) access.
42390 @item
42391 @code{l_addr}, the displacement as read from the field @code{l_addr} of
42392 @code{struct link_map}.  For prelinked libraries this is not an absolute
42393 memory address.  It is a displacement of absolute memory address against
42394 address the file was prelinked to during the library load.
42395 @item
42396 @code{l_ld}, which is memory address of the @code{PT_DYNAMIC} segment
42397 @end itemize
42398
42399 Additionally the single @code{main-lm} attribute specifies address of
42400 @code{struct link_map} used for the main executable.  This parameter is used
42401 for TLS access and its presence is optional.
42402
42403 @value{GDBN} must be linked with the Expat library to support XML
42404 SVR4 library lists.  @xref{Expat}.
42405
42406 A simple memory map, with two loaded libraries (which do not use prelink),
42407 looks like this:
42408
42409 @smallexample
42410 <library-list-svr4 version="1.0" main-lm="0xe4f8f8">
42411   <library name="/lib/ld-linux.so.2" lm="0xe4f51c" l_addr="0xe2d000"
42412            l_ld="0xe4eefc"/>
42413   <library name="/lib/libc.so.6" lm="0xe4fbe8" l_addr="0x154000"
42414            l_ld="0x152350"/>
42415 </library-list-svr>
42416 @end smallexample
42417
42418 The format of an SVR4 library list is described by this DTD:
42419
42420 @smallexample
42421 <!-- library-list-svr4: Root element with versioning -->
42422 <!ELEMENT library-list-svr4  (library)*>
42423 <!ATTLIST library-list-svr4  version CDATA   #FIXED  "1.0">
42424 <!ATTLIST library-list-svr4  main-lm CDATA   #IMPLIED>
42425 <!ELEMENT library            EMPTY>
42426 <!ATTLIST library            name    CDATA   #REQUIRED>
42427 <!ATTLIST library            lm      CDATA   #REQUIRED>
42428 <!ATTLIST library            l_addr  CDATA   #REQUIRED>
42429 <!ATTLIST library            l_ld    CDATA   #REQUIRED>
42430 @end smallexample
42431
42432 @node Memory Map Format
42433 @section Memory Map Format
42434 @cindex memory map format
42435
42436 To be able to write into flash memory, @value{GDBN} needs to obtain a
42437 memory map from the target.  This section describes the format of the
42438 memory map.
42439
42440 The memory map is obtained using the @samp{qXfer:memory-map:read}
42441 (@pxref{qXfer memory map read}) packet and is an XML document that
42442 lists memory regions.
42443
42444 @value{GDBN} must be linked with the Expat library to support XML
42445 memory maps.  @xref{Expat}.
42446
42447 The top-level structure of the document is shown below:
42448
42449 @smallexample
42450 <?xml version="1.0"?>
42451 <!DOCTYPE memory-map
42452           PUBLIC "+//IDN gnu.org//DTD GDB Memory Map V1.0//EN"
42453                  "http://sourceware.org/gdb/gdb-memory-map.dtd">
42454 <memory-map>
42455     region...
42456 </memory-map>
42457 @end smallexample
42458
42459 Each region can be either:
42460
42461 @itemize
42462
42463 @item
42464 A region of RAM starting at @var{addr} and extending for @var{length}
42465 bytes from there:
42466
42467 @smallexample
42468 <memory type="ram" start="@var{addr}" length="@var{length}"/>
42469 @end smallexample
42470
42471
42472 @item
42473 A region of read-only memory:
42474
42475 @smallexample
42476 <memory type="rom" start="@var{addr}" length="@var{length}"/>
42477 @end smallexample
42478
42479
42480 @item
42481 A region of flash memory, with erasure blocks @var{blocksize}
42482 bytes in length:
42483
42484 @smallexample
42485 <memory type="flash" start="@var{addr}" length="@var{length}">
42486   <property name="blocksize">@var{blocksize}</property>
42487 </memory>
42488 @end smallexample
42489
42490 @end itemize
42491
42492 Regions must not overlap.  @value{GDBN} assumes that areas of memory not covered
42493 by the memory map are RAM, and uses the ordinary @samp{M} and @samp{X}
42494 packets to write to addresses in such ranges.
42495
42496 The formal DTD for memory map format is given below:
42497
42498 @smallexample
42499 <!-- ................................................... -->
42500 <!-- Memory Map XML DTD ................................ -->
42501 <!-- File: memory-map.dtd .............................. -->
42502 <!-- .................................... .............. -->
42503 <!-- memory-map.dtd -->
42504 <!-- memory-map: Root element with versioning -->
42505 <!ELEMENT memory-map (memory)*>
42506 <!ATTLIST memory-map    version CDATA   #FIXED  "1.0.0">
42507 <!ELEMENT memory (property)*>
42508 <!-- memory: Specifies a memory region,
42509              and its type, or device. -->
42510 <!ATTLIST memory        type    (ram|rom|flash) #REQUIRED
42511                         start   CDATA   #REQUIRED
42512                         length  CDATA   #REQUIRED>
42513 <!-- property: Generic attribute tag -->
42514 <!ELEMENT property (#PCDATA | property)*>
42515 <!ATTLIST property      name    (blocksize) #REQUIRED>
42516 @end smallexample
42517
42518 @node Thread List Format
42519 @section Thread List Format
42520 @cindex thread list format
42521
42522 To efficiently update the list of threads and their attributes,
42523 @value{GDBN} issues the @samp{qXfer:threads:read} packet
42524 (@pxref{qXfer threads read}) and obtains the XML document with
42525 the following structure:
42526
42527 @smallexample
42528 <?xml version="1.0"?>
42529 <threads>
42530     <thread id="id" core="0" name="name">
42531     ... description ...
42532     </thread>
42533 </threads>
42534 @end smallexample
42535
42536 Each @samp{thread} element must have the @samp{id} attribute that
42537 identifies the thread (@pxref{thread-id syntax}).  The
42538 @samp{core} attribute, if present, specifies which processor core
42539 the thread was last executing on.  The @samp{name} attribute, if
42540 present, specifies the human-readable name of the thread.  The content
42541 of the of @samp{thread} element is interpreted as human-readable
42542 auxiliary information.  The @samp{handle} attribute, if present,
42543 is a hex encoded representation of the thread handle.
42544
42545
42546 @node Traceframe Info Format
42547 @section Traceframe Info Format
42548 @cindex traceframe info format
42549
42550 To be able to know which objects in the inferior can be examined when
42551 inspecting a tracepoint hit, @value{GDBN} needs to obtain the list of
42552 memory ranges, registers and trace state variables that have been
42553 collected in a traceframe.
42554
42555 This list is obtained using the @samp{qXfer:traceframe-info:read}
42556 (@pxref{qXfer traceframe info read}) packet and is an XML document.
42557
42558 @value{GDBN} must be linked with the Expat library to support XML
42559 traceframe info discovery.  @xref{Expat}.
42560
42561 The top-level structure of the document is shown below:
42562
42563 @smallexample
42564 <?xml version="1.0"?>
42565 <!DOCTYPE traceframe-info
42566           PUBLIC "+//IDN gnu.org//DTD GDB Memory Map V1.0//EN"
42567                  "http://sourceware.org/gdb/gdb-traceframe-info.dtd">
42568 <traceframe-info>
42569    block...
42570 </traceframe-info>
42571 @end smallexample
42572
42573 Each traceframe block can be either:
42574
42575 @itemize
42576
42577 @item
42578 A region of collected memory starting at @var{addr} and extending for
42579 @var{length} bytes from there:
42580
42581 @smallexample
42582 <memory start="@var{addr}" length="@var{length}"/>
42583 @end smallexample
42584
42585 @item
42586 A block indicating trace state variable numbered @var{number} has been
42587 collected:
42588
42589 @smallexample
42590 <tvar id="@var{number}"/>
42591 @end smallexample
42592
42593 @end itemize
42594
42595 The formal DTD for the traceframe info format is given below:
42596
42597 @smallexample
42598 <!ELEMENT traceframe-info  (memory | tvar)* >
42599 <!ATTLIST traceframe-info  version CDATA   #FIXED  "1.0">
42600
42601 <!ELEMENT memory        EMPTY>
42602 <!ATTLIST memory        start   CDATA   #REQUIRED
42603                         length  CDATA   #REQUIRED>
42604 <!ELEMENT tvar>
42605 <!ATTLIST tvar          id      CDATA   #REQUIRED>
42606 @end smallexample
42607
42608 @node Branch Trace Format
42609 @section Branch Trace Format
42610 @cindex branch trace format
42611
42612 In order to display the branch trace of an inferior thread,
42613 @value{GDBN} needs to obtain the list of branches.  This list is
42614 represented as list of sequential code blocks that are connected via
42615 branches.  The code in each block has been executed sequentially.
42616
42617 This list is obtained using the @samp{qXfer:btrace:read}
42618 (@pxref{qXfer btrace read}) packet and is an XML document.
42619
42620 @value{GDBN} must be linked with the Expat library to support XML
42621 traceframe info discovery.  @xref{Expat}.
42622
42623 The top-level structure of the document is shown below:
42624
42625 @smallexample
42626 <?xml version="1.0"?>
42627 <!DOCTYPE btrace
42628           PUBLIC "+//IDN gnu.org//DTD GDB Branch Trace V1.0//EN"
42629                  "http://sourceware.org/gdb/gdb-btrace.dtd">
42630 <btrace>
42631    block...
42632 </btrace>
42633 @end smallexample
42634
42635 @itemize
42636
42637 @item
42638 A block of sequentially executed instructions starting at @var{begin}
42639 and ending at @var{end}:
42640
42641 @smallexample
42642 <block begin="@var{begin}" end="@var{end}"/>
42643 @end smallexample
42644
42645 @end itemize
42646
42647 The formal DTD for the branch trace format is given below:
42648
42649 @smallexample
42650 <!ELEMENT btrace  (block* | pt) >
42651 <!ATTLIST btrace  version CDATA   #FIXED "1.0">
42652
42653 <!ELEMENT block        EMPTY>
42654 <!ATTLIST block        begin  CDATA   #REQUIRED
42655                        end    CDATA   #REQUIRED>
42656
42657 <!ELEMENT pt (pt-config?, raw?)>
42658
42659 <!ELEMENT pt-config (cpu?)>
42660
42661 <!ELEMENT cpu EMPTY>
42662 <!ATTLIST cpu vendor   CDATA #REQUIRED
42663               family   CDATA #REQUIRED
42664               model    CDATA #REQUIRED
42665               stepping CDATA #REQUIRED>
42666
42667 <!ELEMENT raw (#PCDATA)>
42668 @end smallexample
42669
42670 @node Branch Trace Configuration Format
42671 @section Branch Trace Configuration Format
42672 @cindex branch trace configuration format
42673
42674 For each inferior thread, @value{GDBN} can obtain the branch trace
42675 configuration using the @samp{qXfer:btrace-conf:read}
42676 (@pxref{qXfer btrace-conf read}) packet.
42677
42678 The configuration describes the branch trace format and configuration
42679 settings for that format.  The following information is described:
42680
42681 @table @code
42682 @item bts
42683 This thread uses the @dfn{Branch Trace Store} (@acronym{BTS}) format.
42684 @table @code
42685 @item size
42686 The size of the @acronym{BTS} ring buffer in bytes.
42687 @end table
42688 @item pt
42689 This thread uses the @dfn{Intel Processor Trace} (@acronym{Intel
42690 PT}) format.
42691 @table @code
42692 @item size
42693 The size of the @acronym{Intel PT} ring buffer in bytes.
42694 @end table
42695 @end table
42696
42697 @value{GDBN} must be linked with the Expat library to support XML
42698 branch trace configuration discovery.  @xref{Expat}.
42699
42700 The formal DTD for the branch trace configuration format is given below:
42701
42702 @smallexample
42703 <!ELEMENT btrace-conf   (bts?, pt?)>
42704 <!ATTLIST btrace-conf   version CDATA   #FIXED "1.0">
42705
42706 <!ELEMENT bts   EMPTY>
42707 <!ATTLIST bts   size    CDATA   #IMPLIED>
42708
42709 <!ELEMENT pt    EMPTY>
42710 <!ATTLIST pt    size    CDATA   #IMPLIED>
42711 @end smallexample
42712
42713 @include agentexpr.texi
42714
42715 @node Target Descriptions
42716 @appendix Target Descriptions
42717 @cindex target descriptions
42718
42719 One of the challenges of using @value{GDBN} to debug embedded systems
42720 is that there are so many minor variants of each processor
42721 architecture in use.  It is common practice for vendors to start with
42722 a standard processor core --- ARM, PowerPC, or @acronym{MIPS}, for example ---
42723 and then make changes to adapt it to a particular market niche.  Some
42724 architectures have hundreds of variants, available from dozens of
42725 vendors.  This leads to a number of problems:
42726
42727 @itemize @bullet
42728 @item
42729 With so many different customized processors, it is difficult for
42730 the @value{GDBN} maintainers to keep up with the changes.
42731 @item
42732 Since individual variants may have short lifetimes or limited
42733 audiences, it may not be worthwhile to carry information about every
42734 variant in the @value{GDBN} source tree.
42735 @item
42736 When @value{GDBN} does support the architecture of the embedded system
42737 at hand, the task of finding the correct architecture name to give the
42738 @command{set architecture} command can be error-prone.
42739 @end itemize
42740
42741 To address these problems, the @value{GDBN} remote protocol allows a
42742 target system to not only identify itself to @value{GDBN}, but to
42743 actually describe its own features.  This lets @value{GDBN} support
42744 processor variants it has never seen before --- to the extent that the
42745 descriptions are accurate, and that @value{GDBN} understands them.
42746
42747 @value{GDBN} must be linked with the Expat library to support XML
42748 target descriptions.  @xref{Expat}.
42749
42750 @menu
42751 * Retrieving Descriptions::         How descriptions are fetched from a target.
42752 * Target Description Format::       The contents of a target description.
42753 * Predefined Target Types::         Standard types available for target
42754                                     descriptions.
42755 * Enum Target Types::               How to define enum target types.
42756 * Standard Target Features::        Features @value{GDBN} knows about.
42757 @end menu
42758
42759 @node Retrieving Descriptions
42760 @section Retrieving Descriptions
42761
42762 Target descriptions can be read from the target automatically, or
42763 specified by the user manually.  The default behavior is to read the
42764 description from the target.  @value{GDBN} retrieves it via the remote
42765 protocol using @samp{qXfer} requests (@pxref{General Query Packets,
42766 qXfer}).  The @var{annex} in the @samp{qXfer} packet will be
42767 @samp{target.xml}.  The contents of the @samp{target.xml} annex are an
42768 XML document, of the form described in @ref{Target Description
42769 Format}.
42770
42771 Alternatively, you can specify a file to read for the target description.
42772 If a file is set, the target will not be queried.  The commands to
42773 specify a file are:
42774
42775 @table @code
42776 @cindex set tdesc filename
42777 @item set tdesc filename @var{path}
42778 Read the target description from @var{path}.
42779
42780 @cindex unset tdesc filename
42781 @item unset tdesc filename
42782 Do not read the XML target description from a file.  @value{GDBN}
42783 will use the description supplied by the current target.
42784
42785 @cindex show tdesc filename
42786 @item show tdesc filename
42787 Show the filename to read for a target description, if any.
42788 @end table
42789
42790
42791 @node Target Description Format
42792 @section Target Description Format
42793 @cindex target descriptions, XML format
42794
42795 A target description annex is an @uref{http://www.w3.org/XML/, XML}
42796 document which complies with the Document Type Definition provided in
42797 the @value{GDBN} sources in @file{gdb/features/gdb-target.dtd}.  This
42798 means you can use generally available tools like @command{xmllint} to
42799 check that your feature descriptions are well-formed and valid.
42800 However, to help people unfamiliar with XML write descriptions for
42801 their targets, we also describe the grammar here.
42802
42803 Target descriptions can identify the architecture of the remote target
42804 and (for some architectures) provide information about custom register
42805 sets.  They can also identify the OS ABI of the remote target.
42806 @value{GDBN} can use this information to autoconfigure for your
42807 target, or to warn you if you connect to an unsupported target.
42808
42809 Here is a simple target description:
42810
42811 @smallexample
42812 <target version="1.0">
42813   <architecture>i386:x86-64</architecture>
42814 </target>
42815 @end smallexample
42816
42817 @noindent
42818 This minimal description only says that the target uses
42819 the x86-64 architecture.
42820
42821 A target description has the following overall form, with [ ] marking
42822 optional elements and @dots{} marking repeatable elements.  The elements
42823 are explained further below.
42824
42825 @smallexample
42826 <?xml version="1.0"?>
42827 <!DOCTYPE target SYSTEM "gdb-target.dtd">
42828 <target version="1.0">
42829   @r{[}@var{architecture}@r{]}
42830   @r{[}@var{osabi}@r{]}
42831   @r{[}@var{compatible}@r{]}
42832   @r{[}@var{feature}@dots{}@r{]}
42833 </target>
42834 @end smallexample
42835
42836 @noindent
42837 The description is generally insensitive to whitespace and line
42838 breaks, under the usual common-sense rules.  The XML version
42839 declaration and document type declaration can generally be omitted
42840 (@value{GDBN} does not require them), but specifying them may be
42841 useful for XML validation tools.  The @samp{version} attribute for
42842 @samp{<target>} may also be omitted, but we recommend
42843 including it; if future versions of @value{GDBN} use an incompatible
42844 revision of @file{gdb-target.dtd}, they will detect and report
42845 the version mismatch.
42846
42847 @subsection Inclusion
42848 @cindex target descriptions, inclusion
42849 @cindex XInclude
42850 @ifnotinfo
42851 @cindex <xi:include>
42852 @end ifnotinfo
42853
42854 It can sometimes be valuable to split a target description up into
42855 several different annexes, either for organizational purposes, or to
42856 share files between different possible target descriptions.  You can
42857 divide a description into multiple files by replacing any element of
42858 the target description with an inclusion directive of the form:
42859
42860 @smallexample
42861 <xi:include href="@var{document}"/>
42862 @end smallexample
42863
42864 @noindent
42865 When @value{GDBN} encounters an element of this form, it will retrieve
42866 the named XML @var{document}, and replace the inclusion directive with
42867 the contents of that document.  If the current description was read
42868 using @samp{qXfer}, then so will be the included document;
42869 @var{document} will be interpreted as the name of an annex.  If the
42870 current description was read from a file, @value{GDBN} will look for
42871 @var{document} as a file in the same directory where it found the
42872 original description.
42873
42874 @subsection Architecture
42875 @cindex <architecture>
42876
42877 An @samp{<architecture>} element has this form:
42878
42879 @smallexample
42880   <architecture>@var{arch}</architecture>
42881 @end smallexample
42882
42883 @var{arch} is one of the architectures from the set accepted by
42884 @code{set architecture} (@pxref{Targets, ,Specifying a Debugging Target}).
42885
42886 @subsection OS ABI
42887 @cindex @code{<osabi>}
42888
42889 This optional field was introduced in @value{GDBN} version 7.0.
42890 Previous versions of @value{GDBN} ignore it.
42891
42892 An @samp{<osabi>} element has this form:
42893
42894 @smallexample
42895   <osabi>@var{abi-name}</osabi>
42896 @end smallexample
42897
42898 @var{abi-name} is an OS ABI name from the same selection accepted by
42899 @w{@code{set osabi}} (@pxref{ABI, ,Configuring the Current ABI}).
42900
42901 @subsection Compatible Architecture
42902 @cindex @code{<compatible>}
42903
42904 This optional field was introduced in @value{GDBN} version 7.0.
42905 Previous versions of @value{GDBN} ignore it.
42906
42907 A @samp{<compatible>} element has this form:
42908
42909 @smallexample
42910   <compatible>@var{arch}</compatible>
42911 @end smallexample
42912
42913 @var{arch} is one of the architectures from the set accepted by
42914 @code{set architecture} (@pxref{Targets, ,Specifying a Debugging Target}).
42915
42916 A @samp{<compatible>} element is used to specify that the target
42917 is able to run binaries in some other than the main target architecture
42918 given by the @samp{<architecture>} element.  For example, on the
42919 Cell Broadband Engine, the main architecture is @code{powerpc:common}
42920 or @code{powerpc:common64}, but the system is able to run binaries
42921 in the @code{spu} architecture as well.  The way to describe this
42922 capability with @samp{<compatible>} is as follows:
42923
42924 @smallexample
42925   <architecture>powerpc:common</architecture>
42926   <compatible>spu</compatible>
42927 @end smallexample
42928
42929 @subsection Features
42930 @cindex <feature>
42931
42932 Each @samp{<feature>} describes some logical portion of the target
42933 system.  Features are currently used to describe available CPU
42934 registers and the types of their contents.  A @samp{<feature>} element
42935 has this form:
42936
42937 @smallexample
42938 <feature name="@var{name}">
42939   @r{[}@var{type}@dots{}@r{]}
42940   @var{reg}@dots{}
42941 </feature>
42942 @end smallexample
42943
42944 @noindent
42945 Each feature's name should be unique within the description.  The name
42946 of a feature does not matter unless @value{GDBN} has some special
42947 knowledge of the contents of that feature; if it does, the feature
42948 should have its standard name.  @xref{Standard Target Features}.
42949
42950 @subsection Types
42951
42952 Any register's value is a collection of bits which @value{GDBN} must
42953 interpret.  The default interpretation is a two's complement integer,
42954 but other types can be requested by name in the register description.
42955 Some predefined types are provided by @value{GDBN} (@pxref{Predefined
42956 Target Types}), and the description can define additional composite
42957 and enum types.
42958
42959 Each type element must have an @samp{id} attribute, which gives
42960 a unique (within the containing @samp{<feature>}) name to the type.
42961 Types must be defined before they are used.
42962
42963 @cindex <vector>
42964 Some targets offer vector registers, which can be treated as arrays
42965 of scalar elements.  These types are written as @samp{<vector>} elements,
42966 specifying the array element type, @var{type}, and the number of elements,
42967 @var{count}:
42968
42969 @smallexample
42970 <vector id="@var{id}" type="@var{type}" count="@var{count}"/>
42971 @end smallexample
42972
42973 @cindex <union>
42974 If a register's value is usefully viewed in multiple ways, define it
42975 with a union type containing the useful representations.  The
42976 @samp{<union>} element contains one or more @samp{<field>} elements,
42977 each of which has a @var{name} and a @var{type}:
42978
42979 @smallexample
42980 <union id="@var{id}">
42981   <field name="@var{name}" type="@var{type}"/>
42982   @dots{}
42983 </union>
42984 @end smallexample
42985
42986 @cindex <struct>
42987 @cindex <flags>
42988 If a register's value is composed from several separate values, define
42989 it with either a structure type or a flags type.
42990 A flags type may only contain bitfields.
42991 A structure type may either contain only bitfields or contain no bitfields.
42992 If the value contains only bitfields, its total size in bytes must be
42993 specified.
42994
42995 Non-bitfield values have a @var{name} and @var{type}.
42996
42997 @smallexample
42998 <struct id="@var{id}">
42999   <field name="@var{name}" type="@var{type}"/>
43000   @dots{}
43001 </struct>
43002 @end smallexample
43003
43004 Both @var{name} and @var{type} values are required.
43005 No implicit padding is added.
43006
43007 Bitfield values have a @var{name}, @var{start}, @var{end} and @var{type}.
43008
43009 @smallexample
43010 <struct id="@var{id}" size="@var{size}">
43011   <field name="@var{name}" start="@var{start}" end="@var{end}" type="@var{type}"/>
43012   @dots{}
43013 </struct>
43014 @end smallexample
43015
43016 @smallexample
43017 <flags id="@var{id}" size="@var{size}">
43018   <field name="@var{name}" start="@var{start}" end="@var{end}" type="@var{type}"/>
43019   @dots{}
43020 </flags>
43021 @end smallexample
43022
43023 The @var{name} value is required.
43024 Bitfield values may be named with the empty string, @samp{""},
43025 in which case the field is ``filler'' and its value is not printed.
43026 Not all bits need to be specified, so ``filler'' fields are optional.
43027
43028 The @var{start} and @var{end} values are required, and @var{type}
43029 is optional.
43030 The field's @var{start} must be less than or equal to its @var{end},
43031 and zero represents the least significant bit.
43032
43033 The default value of @var{type} is @code{bool} for single bit fields,
43034 and an unsigned integer otherwise.
43035
43036 Which to choose?  Structures or flags?
43037
43038 Registers defined with @samp{flags} have these advantages over
43039 defining them with @samp{struct}:
43040
43041 @itemize @bullet
43042 @item
43043 Arithmetic may be performed on them as if they were integers.
43044 @item
43045 They are printed in a more readable fashion.
43046 @end itemize
43047
43048 Registers defined with @samp{struct} have one advantage over
43049 defining them with @samp{flags}:
43050
43051 @itemize @bullet
43052 @item
43053 One can fetch individual fields like in @samp{C}.
43054
43055 @smallexample
43056 (gdb) print $my_struct_reg.field3
43057 $1 = 42
43058 @end smallexample
43059
43060 @end itemize
43061
43062 @subsection Registers
43063 @cindex <reg>
43064
43065 Each register is represented as an element with this form:
43066
43067 @smallexample
43068 <reg name="@var{name}"
43069      bitsize="@var{size}"
43070      @r{[}regnum="@var{num}"@r{]}
43071      @r{[}save-restore="@var{save-restore}"@r{]}
43072      @r{[}type="@var{type}"@r{]}
43073      @r{[}group="@var{group}"@r{]}/>
43074 @end smallexample
43075
43076 @noindent
43077 The components are as follows:
43078
43079 @table @var
43080
43081 @item name
43082 The register's name; it must be unique within the target description.
43083
43084 @item bitsize
43085 The register's size, in bits.
43086
43087 @item regnum
43088 The register's number.  If omitted, a register's number is one greater
43089 than that of the previous register (either in the current feature or in
43090 a preceding feature); the first register in the target description
43091 defaults to zero.  This register number is used to read or write
43092 the register; e.g.@: it is used in the remote @code{p} and @code{P}
43093 packets, and registers appear in the @code{g} and @code{G} packets
43094 in order of increasing register number.
43095
43096 @item save-restore
43097 Whether the register should be preserved across inferior function
43098 calls; this must be either @code{yes} or @code{no}.  The default is
43099 @code{yes}, which is appropriate for most registers except for
43100 some system control registers; this is not related to the target's
43101 ABI.
43102
43103 @item type
43104 The type of the register.  It may be a predefined type, a type
43105 defined in the current feature, or one of the special types @code{int}
43106 and @code{float}.  @code{int} is an integer type of the correct size
43107 for @var{bitsize}, and @code{float} is a floating point type (in the
43108 architecture's normal floating point format) of the correct size for
43109 @var{bitsize}.  The default is @code{int}.
43110
43111 @item group
43112 The register group to which this register belongs.  It can be one of the
43113 standard register groups @code{general}, @code{float}, @code{vector} or an
43114 arbitrary string.  Group names should be limited to alphanumeric characters.
43115 If a group name is made up of multiple words the words may be separated by
43116 hyphens; e.g.@: @code{special-group} or @code{ultra-special-group}.  If no
43117 @var{group} is specified, @value{GDBN} will not display the register in
43118 @code{info registers}.
43119
43120 @end table
43121
43122 @node Predefined Target Types
43123 @section Predefined Target Types
43124 @cindex target descriptions, predefined types
43125
43126 Type definitions in the self-description can build up composite types
43127 from basic building blocks, but can not define fundamental types.  Instead,
43128 standard identifiers are provided by @value{GDBN} for the fundamental
43129 types.  The currently supported types are:
43130
43131 @table @code
43132
43133 @item bool
43134 Boolean type, occupying a single bit.
43135
43136 @item int8
43137 @itemx int16
43138 @itemx int24
43139 @itemx int32
43140 @itemx int64
43141 @itemx int128
43142 Signed integer types holding the specified number of bits.
43143
43144 @item uint8
43145 @itemx uint16
43146 @itemx uint24
43147 @itemx uint32
43148 @itemx uint64
43149 @itemx uint128
43150 Unsigned integer types holding the specified number of bits.
43151
43152 @item code_ptr
43153 @itemx data_ptr
43154 Pointers to unspecified code and data.  The program counter and
43155 any dedicated return address register may be marked as code
43156 pointers; printing a code pointer converts it into a symbolic
43157 address.  The stack pointer and any dedicated address registers
43158 may be marked as data pointers.
43159
43160 @item ieee_single
43161 Single precision IEEE floating point.
43162
43163 @item ieee_double
43164 Double precision IEEE floating point.
43165
43166 @item arm_fpa_ext
43167 The 12-byte extended precision format used by ARM FPA registers.
43168
43169 @item i387_ext
43170 The 10-byte extended precision format used by x87 registers.
43171
43172 @item i386_eflags
43173 32bit @sc{eflags} register used by x86.
43174
43175 @item i386_mxcsr
43176 32bit @sc{mxcsr} register used by x86.
43177
43178 @end table
43179
43180 @node Enum Target Types
43181 @section Enum Target Types
43182 @cindex target descriptions, enum types
43183
43184 Enum target types are useful in @samp{struct} and @samp{flags}
43185 register descriptions.  @xref{Target Description Format}.
43186
43187 Enum types have a name, size and a list of name/value pairs.
43188
43189 @smallexample
43190 <enum id="@var{id}" size="@var{size}">
43191   <evalue name="@var{name}" value="@var{value}"/>
43192   @dots{}
43193 </enum>
43194 @end smallexample
43195
43196 Enums must be defined before they are used.
43197
43198 @smallexample
43199 <enum id="levels_type" size="4">
43200   <evalue name="low" value="0"/>
43201   <evalue name="high" value="1"/>
43202 </enum>
43203 <flags id="flags_type" size="4">
43204   <field name="X" start="0"/>
43205   <field name="LEVEL" start="1" end="1" type="levels_type"/>
43206 </flags>
43207 <reg name="flags" bitsize="32" type="flags_type"/>
43208 @end smallexample
43209
43210 Given that description, a value of 3 for the @samp{flags} register
43211 would be printed as:
43212
43213 @smallexample
43214 (gdb) info register flags
43215 flags 0x3 [ X LEVEL=high ]
43216 @end smallexample
43217
43218 @node Standard Target Features
43219 @section Standard Target Features
43220 @cindex target descriptions, standard features
43221
43222 A target description must contain either no registers or all the
43223 target's registers.  If the description contains no registers, then
43224 @value{GDBN} will assume a default register layout, selected based on
43225 the architecture.  If the description contains any registers, the
43226 default layout will not be used; the standard registers must be
43227 described in the target description, in such a way that @value{GDBN}
43228 can recognize them.
43229
43230 This is accomplished by giving specific names to feature elements
43231 which contain standard registers.  @value{GDBN} will look for features
43232 with those names and verify that they contain the expected registers;
43233 if any known feature is missing required registers, or if any required
43234 feature is missing, @value{GDBN} will reject the target
43235 description.  You can add additional registers to any of the
43236 standard features --- @value{GDBN} will display them just as if
43237 they were added to an unrecognized feature.
43238
43239 This section lists the known features and their expected contents.
43240 Sample XML documents for these features are included in the
43241 @value{GDBN} source tree, in the directory @file{gdb/features}.
43242
43243 Names recognized by @value{GDBN} should include the name of the
43244 company or organization which selected the name, and the overall
43245 architecture to which the feature applies; so e.g.@: the feature
43246 containing ARM core registers is named @samp{org.gnu.gdb.arm.core}.
43247
43248 The names of registers are not case sensitive for the purpose
43249 of recognizing standard features, but @value{GDBN} will only display
43250 registers using the capitalization used in the description.
43251
43252 @menu
43253 * AArch64 Features::
43254 * ARC Features::
43255 * ARM Features::
43256 * i386 Features::
43257 * MicroBlaze Features::
43258 * MIPS Features::
43259 * M68K Features::
43260 * NDS32 Features::
43261 * Nios II Features::
43262 * OpenRISC 1000 Features::
43263 * PowerPC Features::
43264 * RISC-V Features::
43265 * S/390 and System z Features::
43266 * Sparc Features::
43267 * TIC6x Features::
43268 @end menu
43269
43270
43271 @node AArch64 Features
43272 @subsection AArch64 Features
43273 @cindex target descriptions, AArch64 features
43274
43275 The @samp{org.gnu.gdb.aarch64.core} feature is required for AArch64
43276 targets.  It should contain registers @samp{x0} through @samp{x30},
43277 @samp{sp}, @samp{pc}, and @samp{cpsr}.
43278
43279 The @samp{org.gnu.gdb.aarch64.fpu} feature is optional.  If present,
43280 it should contain registers @samp{v0} through @samp{v31}, @samp{fpsr},
43281 and @samp{fpcr}.
43282
43283 The @samp{org.gnu.gdb.aarch64.sve} feature is optional.  If present,
43284 it should contain registers @samp{z0} through @samp{z31}, @samp{p0}
43285 through @samp{p15}, @samp{ffr} and @samp{vg}.
43286
43287 The @samp{org.gnu.gdb.aarch64.pauth} feature is optional.  If present,
43288 it should contain registers @samp{pauth_dmask} and @samp{pauth_cmask}.
43289
43290 @node ARC Features
43291 @subsection ARC Features
43292 @cindex target descriptions, ARC Features
43293
43294 ARC processors are highly configurable, so even core registers and their number
43295 are not completely predetermined.  In addition flags and PC registers which are
43296 important to @value{GDBN} are not ``core'' registers in ARC.  It is required
43297 that one of the core registers features is present.
43298 @samp{org.gnu.gdb.arc.aux-minimal} feature is mandatory.
43299
43300 The @samp{org.gnu.gdb.arc.core.v2} feature is required for ARC EM and ARC HS
43301 targets with a normal register file.  It should contain registers @samp{r0}
43302 through @samp{r25}, @samp{gp}, @samp{fp}, @samp{sp}, @samp{r30}, @samp{blink},
43303 @samp{lp_count} and @samp{pcl}.  This feature may contain register @samp{ilink}
43304 and any of extension core registers @samp{r32} through @samp{r59/acch}.
43305 @samp{ilink} and extension core registers are not available to read/write, when
43306 debugging GNU/Linux applications, thus @samp{ilink} is made optional.
43307
43308 The @samp{org.gnu.gdb.arc.core-reduced.v2} feature is required for ARC EM and
43309 ARC HS targets with a reduced register file.  It should contain registers
43310 @samp{r0} through @samp{r3}, @samp{r10} through @samp{r15}, @samp{gp},
43311 @samp{fp}, @samp{sp}, @samp{r30}, @samp{blink}, @samp{lp_count} and @samp{pcl}.
43312 This feature may contain register @samp{ilink} and any of extension core
43313 registers @samp{r32} through @samp{r59/acch}.
43314
43315 The @samp{org.gnu.gdb.arc.core.arcompact} feature is required for ARCompact
43316 targets with a normal register file.  It should contain registers @samp{r0}
43317 through @samp{r25}, @samp{gp}, @samp{fp}, @samp{sp}, @samp{r30}, @samp{blink},
43318 @samp{lp_count} and @samp{pcl}.  This feature may contain registers
43319 @samp{ilink1}, @samp{ilink2} and any of extension core registers @samp{r32}
43320 through @samp{r59/acch}.  @samp{ilink1} and @samp{ilink2} and extension core
43321 registers are not available when debugging GNU/Linux applications.  The only
43322 difference with @samp{org.gnu.gdb.arc.core.v2} feature is in the names of
43323 @samp{ilink1} and @samp{ilink2} registers and that @samp{r30} is mandatory in
43324 ARC v2, but @samp{ilink2} is optional on ARCompact.
43325
43326 The @samp{org.gnu.gdb.arc.aux-minimal} feature is required for all ARC
43327 targets.  It should contain registers @samp{pc} and @samp{status32}.
43328
43329 @node ARM Features
43330 @subsection ARM Features
43331 @cindex target descriptions, ARM features
43332
43333 The @samp{org.gnu.gdb.arm.core} feature is required for non-M-profile
43334 ARM targets.
43335 It should contain registers @samp{r0} through @samp{r13}, @samp{sp},
43336 @samp{lr}, @samp{pc}, and @samp{cpsr}.
43337
43338 For M-profile targets (e.g. Cortex-M3), the @samp{org.gnu.gdb.arm.core}
43339 feature is replaced by @samp{org.gnu.gdb.arm.m-profile}.  It should contain
43340 registers @samp{r0} through @samp{r13}, @samp{sp}, @samp{lr}, @samp{pc},
43341 and @samp{xpsr}.
43342
43343 The @samp{org.gnu.gdb.arm.fpa} feature is optional.  If present, it
43344 should contain registers @samp{f0} through @samp{f7} and @samp{fps}.
43345
43346 The @samp{org.gnu.gdb.xscale.iwmmxt} feature is optional.  If present,
43347 it should contain at least registers @samp{wR0} through @samp{wR15} and
43348 @samp{wCGR0} through @samp{wCGR3}.  The @samp{wCID}, @samp{wCon},
43349 @samp{wCSSF}, and @samp{wCASF} registers are optional.
43350
43351 The @samp{org.gnu.gdb.arm.vfp} feature is optional.  If present, it
43352 should contain at least registers @samp{d0} through @samp{d15}.  If
43353 they are present, @samp{d16} through @samp{d31} should also be included.
43354 @value{GDBN} will synthesize the single-precision registers from
43355 halves of the double-precision registers.
43356
43357 The @samp{org.gnu.gdb.arm.neon} feature is optional.  It does not
43358 need to contain registers; it instructs @value{GDBN} to display the
43359 VFP double-precision registers as vectors and to synthesize the
43360 quad-precision registers from pairs of double-precision registers.
43361 If this feature is present, @samp{org.gnu.gdb.arm.vfp} must also
43362 be present and include 32 double-precision registers.
43363
43364 @node i386 Features
43365 @subsection i386 Features
43366 @cindex target descriptions, i386 features
43367
43368 The @samp{org.gnu.gdb.i386.core} feature is required for i386/amd64
43369 targets.  It should describe the following registers:
43370
43371 @itemize @minus
43372 @item
43373 @samp{eax} through @samp{edi} plus @samp{eip} for i386
43374 @item
43375 @samp{rax} through @samp{r15} plus @samp{rip} for amd64
43376 @item
43377 @samp{eflags}, @samp{cs}, @samp{ss}, @samp{ds}, @samp{es},
43378 @samp{fs}, @samp{gs}
43379 @item 
43380 @samp{st0} through @samp{st7}
43381 @item 
43382 @samp{fctrl}, @samp{fstat}, @samp{ftag}, @samp{fiseg}, @samp{fioff},
43383 @samp{foseg}, @samp{fooff} and @samp{fop}
43384 @end itemize
43385
43386 The register sets may be different, depending on the target.
43387
43388 The @samp{org.gnu.gdb.i386.sse} feature is optional.  It should
43389 describe registers:
43390
43391 @itemize @minus
43392 @item
43393 @samp{xmm0} through @samp{xmm7} for i386
43394 @item
43395 @samp{xmm0} through @samp{xmm15} for amd64
43396 @item 
43397 @samp{mxcsr}
43398 @end itemize
43399
43400 The @samp{org.gnu.gdb.i386.avx} feature is optional and requires the
43401 @samp{org.gnu.gdb.i386.sse} feature.  It should
43402 describe the upper 128 bits of @sc{ymm} registers:
43403
43404 @itemize @minus
43405 @item
43406 @samp{ymm0h} through @samp{ymm7h} for i386
43407 @item
43408 @samp{ymm0h} through @samp{ymm15h} for amd64
43409 @end itemize
43410
43411 The @samp{org.gnu.gdb.i386.mpx} is an optional feature representing Intel
43412 Memory Protection Extension (MPX).  It should describe the following registers:
43413
43414 @itemize @minus
43415 @item
43416 @samp{bnd0raw} through @samp{bnd3raw} for i386 and amd64.
43417 @item
43418 @samp{bndcfgu} and @samp{bndstatus} for i386 and amd64.
43419 @end itemize
43420
43421 The @samp{org.gnu.gdb.i386.linux} feature is optional.  It should
43422 describe a single register, @samp{orig_eax}.
43423
43424 The @samp{org.gnu.gdb.i386.segments} feature is optional.  It should
43425 describe two system registers: @samp{fs_base} and @samp{gs_base}.
43426
43427 The @samp{org.gnu.gdb.i386.avx512} feature is optional and requires the
43428 @samp{org.gnu.gdb.i386.avx} feature.  It should
43429 describe additional @sc{xmm} registers:
43430
43431 @itemize @minus
43432 @item
43433 @samp{xmm16h} through @samp{xmm31h}, only valid for amd64.
43434 @end itemize
43435
43436 It should describe the upper 128 bits of additional @sc{ymm} registers:
43437
43438 @itemize @minus
43439 @item
43440 @samp{ymm16h} through @samp{ymm31h}, only valid for amd64.
43441 @end itemize
43442
43443 It should
43444 describe the upper 256 bits of @sc{zmm} registers:
43445
43446 @itemize @minus
43447 @item
43448 @samp{zmm0h} through @samp{zmm7h} for i386.
43449 @item
43450 @samp{zmm0h} through @samp{zmm15h} for amd64.
43451 @end itemize
43452
43453 It should
43454 describe the additional @sc{zmm} registers:
43455
43456 @itemize @minus
43457 @item
43458 @samp{zmm16h} through @samp{zmm31h}, only valid for amd64.
43459 @end itemize
43460
43461 The @samp{org.gnu.gdb.i386.pkeys} feature is optional.  It should
43462 describe a single register, @samp{pkru}.  It is a 32-bit register
43463 valid for i386 and amd64.
43464
43465 @node MicroBlaze Features
43466 @subsection MicroBlaze Features
43467 @cindex target descriptions, MicroBlaze features
43468
43469 The @samp{org.gnu.gdb.microblaze.core} feature is required for MicroBlaze
43470 targets.  It should contain registers @samp{r0} through @samp{r31},
43471 @samp{rpc}, @samp{rmsr}, @samp{rear}, @samp{resr}, @samp{rfsr}, @samp{rbtr},
43472 @samp{rpvr}, @samp{rpvr1} through @samp{rpvr11}, @samp{redr}, @samp{rpid},
43473 @samp{rzpr}, @samp{rtlbx}, @samp{rtlbsx}, @samp{rtlblo}, and @samp{rtlbhi}.
43474
43475 The @samp{org.gnu.gdb.microblaze.stack-protect} feature is optional.
43476 If present, it should contain registers @samp{rshr} and @samp{rslr}
43477
43478 @node MIPS Features
43479 @subsection @acronym{MIPS} Features
43480 @cindex target descriptions, @acronym{MIPS} features
43481
43482 The @samp{org.gnu.gdb.mips.cpu} feature is required for @acronym{MIPS} targets.
43483 It should contain registers @samp{r0} through @samp{r31}, @samp{lo},
43484 @samp{hi}, and @samp{pc}.  They may be 32-bit or 64-bit depending
43485 on the target.
43486
43487 The @samp{org.gnu.gdb.mips.cp0} feature is also required.  It should
43488 contain at least the @samp{status}, @samp{badvaddr}, and @samp{cause}
43489 registers.  They may be 32-bit or 64-bit depending on the target.
43490
43491 The @samp{org.gnu.gdb.mips.fpu} feature is currently required, though
43492 it may be optional in a future version of @value{GDBN}.  It should
43493 contain registers @samp{f0} through @samp{f31}, @samp{fcsr}, and
43494 @samp{fir}.  They may be 32-bit or 64-bit depending on the target.
43495
43496 The @samp{org.gnu.gdb.mips.dsp} feature is optional.  It should
43497 contain registers @samp{hi1} through @samp{hi3}, @samp{lo1} through
43498 @samp{lo3}, and @samp{dspctl}.  The @samp{dspctl} register should
43499 be 32-bit and the rest may be 32-bit or 64-bit depending on the target.
43500
43501 The @samp{org.gnu.gdb.mips.linux} feature is optional.  It should
43502 contain a single register, @samp{restart}, which is used by the
43503 Linux kernel to control restartable syscalls.
43504
43505 @node M68K Features
43506 @subsection M68K Features
43507 @cindex target descriptions, M68K features
43508
43509 @table @code
43510 @item @samp{org.gnu.gdb.m68k.core}
43511 @itemx @samp{org.gnu.gdb.coldfire.core}
43512 @itemx @samp{org.gnu.gdb.fido.core}
43513 One of those features must be always present. 
43514 The feature that is present determines which flavor of m68k is
43515 used.  The feature that is present should contain registers
43516 @samp{d0} through @samp{d7}, @samp{a0} through @samp{a5}, @samp{fp},
43517 @samp{sp}, @samp{ps} and @samp{pc}.
43518
43519 @item @samp{org.gnu.gdb.coldfire.fp}
43520 This feature is optional.  If present, it should contain registers
43521 @samp{fp0} through @samp{fp7}, @samp{fpcontrol}, @samp{fpstatus} and
43522 @samp{fpiaddr}.
43523 @end table
43524
43525 @node NDS32 Features
43526 @subsection NDS32 Features
43527 @cindex target descriptions, NDS32 features
43528
43529 The @samp{org.gnu.gdb.nds32.core} feature is required for NDS32
43530 targets.  It should contain at least registers @samp{r0} through
43531 @samp{r10}, @samp{r15}, @samp{fp}, @samp{gp}, @samp{lp}, @samp{sp},
43532 and @samp{pc}.
43533
43534 The @samp{org.gnu.gdb.nds32.fpu} feature is optional.  If present,
43535 it should contain 64-bit double-precision floating-point registers
43536 @samp{fd0} through @emph{fdN}, which should be @samp{fd3}, @samp{fd7},
43537 @samp{fd15}, or @samp{fd31} based on the FPU configuration implemented.
43538
43539 @emph{Note:} The first sixteen 64-bit double-precision floating-point
43540 registers are overlapped with the thirty-two 32-bit single-precision
43541 floating-point registers.  The 32-bit single-precision registers, if
43542 not being listed explicitly, will be synthesized from halves of the
43543 overlapping 64-bit double-precision registers.  Listing 32-bit
43544 single-precision registers explicitly is deprecated, and the
43545 support to it could be totally removed some day.
43546
43547 @node Nios II Features
43548 @subsection Nios II Features
43549 @cindex target descriptions, Nios II features
43550
43551 The @samp{org.gnu.gdb.nios2.cpu} feature is required for Nios II
43552 targets.  It should contain the 32 core registers (@samp{zero},
43553 @samp{at}, @samp{r2} through @samp{r23}, @samp{et} through @samp{ra}),
43554 @samp{pc}, and the 16 control registers (@samp{status} through
43555 @samp{mpuacc}).
43556
43557 @node OpenRISC 1000 Features
43558 @subsection Openrisc 1000 Features
43559 @cindex target descriptions, OpenRISC 1000 features
43560
43561 The @samp{org.gnu.gdb.or1k.group0} feature is required for OpenRISC 1000
43562 targets.  It should contain the 32 general purpose registers (@samp{r0}
43563 through @samp{r31}), @samp{ppc}, @samp{npc} and @samp{sr}.
43564
43565 @node PowerPC Features
43566 @subsection PowerPC Features
43567 @cindex target descriptions, PowerPC features
43568
43569 The @samp{org.gnu.gdb.power.core} feature is required for PowerPC
43570 targets.  It should contain registers @samp{r0} through @samp{r31},
43571 @samp{pc}, @samp{msr}, @samp{cr}, @samp{lr}, @samp{ctr}, and
43572 @samp{xer}.  They may be 32-bit or 64-bit depending on the target.
43573
43574 The @samp{org.gnu.gdb.power.fpu} feature is optional.  It should
43575 contain registers @samp{f0} through @samp{f31} and @samp{fpscr}.
43576
43577 The @samp{org.gnu.gdb.power.altivec} feature is optional.  It should
43578 contain registers @samp{vr0} through @samp{vr31}, @samp{vscr}, and
43579 @samp{vrsave}.  @value{GDBN} will define pseudo-registers @samp{v0}
43580 through @samp{v31} as aliases for the corresponding @samp{vrX}
43581 registers.
43582
43583 The @samp{org.gnu.gdb.power.vsx} feature is optional.  It should
43584 contain registers @samp{vs0h} through @samp{vs31h}.  @value{GDBN} will
43585 combine these registers with the floating point registers (@samp{f0}
43586 through @samp{f31}) and the altivec registers (@samp{vr0} through
43587 @samp{vr31}) to present the 128-bit wide registers @samp{vs0} through
43588 @samp{vs63}, the set of vector-scalar registers for POWER7.
43589 Therefore, this feature requires both @samp{org.gnu.gdb.power.fpu} and
43590 @samp{org.gnu.gdb.power.altivec}.
43591
43592 The @samp{org.gnu.gdb.power.spe} feature is optional.  It should
43593 contain registers @samp{ev0h} through @samp{ev31h}, @samp{acc}, and
43594 @samp{spefscr}.  SPE targets should provide 32-bit registers in
43595 @samp{org.gnu.gdb.power.core} and provide the upper halves in
43596 @samp{ev0h} through @samp{ev31h}.  @value{GDBN} will combine
43597 these to present registers @samp{ev0} through @samp{ev31} to the
43598 user.
43599
43600 The @samp{org.gnu.gdb.power.ppr} feature is optional.  It should
43601 contain the 64-bit register @samp{ppr}.
43602
43603 The @samp{org.gnu.gdb.power.dscr} feature is optional.  It should
43604 contain the 64-bit register @samp{dscr}.
43605
43606 The @samp{org.gnu.gdb.power.tar} feature is optional.  It should
43607 contain the 64-bit register @samp{tar}.
43608
43609 The @samp{org.gnu.gdb.power.ebb} feature is optional.  It should
43610 contain registers @samp{bescr}, @samp{ebbhr} and @samp{ebbrr}, all
43611 64-bit wide.
43612
43613 The @samp{org.gnu.gdb.power.linux.pmu} feature is optional.  It should
43614 contain registers @samp{mmcr0}, @samp{mmcr2}, @samp{siar}, @samp{sdar}
43615 and @samp{sier}, all 64-bit wide.  This is the subset of the isa 2.07
43616 server PMU registers provided by @sc{gnu}/Linux.
43617
43618 The @samp{org.gnu.gdb.power.htm.spr} feature is optional.  It should
43619 contain registers @samp{tfhar}, @samp{texasr} and @samp{tfiar}, all
43620 64-bit wide.
43621
43622 The @samp{org.gnu.gdb.power.htm.core} feature is optional.  It should
43623 contain the checkpointed general-purpose registers @samp{cr0} through
43624 @samp{cr31}, as well as the checkpointed registers @samp{clr} and
43625 @samp{cctr}.  These registers may all be either 32-bit or 64-bit
43626 depending on the target.  It should also contain the checkpointed
43627 registers @samp{ccr} and @samp{cxer}, which should both be 32-bit
43628 wide.
43629
43630 The @samp{org.gnu.gdb.power.htm.fpu} feature is optional.  It should
43631 contain the checkpointed 64-bit floating-point registers @samp{cf0}
43632 through @samp{cf31}, as well as the checkpointed 64-bit register
43633 @samp{cfpscr}.
43634
43635 The @samp{org.gnu.gdb.power.htm.altivec} feature is optional.  It
43636 should contain the checkpointed altivec registers @samp{cvr0} through
43637 @samp{cvr31}, all 128-bit wide.  It should also contain the
43638 checkpointed registers @samp{cvscr} and @samp{cvrsave}, both 32-bit
43639 wide.
43640
43641 The @samp{org.gnu.gdb.power.htm.vsx} feature is optional.  It should
43642 contain registers @samp{cvs0h} through @samp{cvs31h}.  @value{GDBN}
43643 will combine these registers with the checkpointed floating point
43644 registers (@samp{cf0} through @samp{cf31}) and the checkpointed
43645 altivec registers (@samp{cvr0} through @samp{cvr31}) to present the
43646 128-bit wide checkpointed vector-scalar registers @samp{cvs0} through
43647 @samp{cvs63}.  Therefore, this feature requires both
43648 @samp{org.gnu.gdb.power.htm.altivec} and
43649 @samp{org.gnu.gdb.power.htm.fpu}.
43650
43651 The @samp{org.gnu.gdb.power.htm.ppr} feature is optional.  It should
43652 contain the 64-bit checkpointed register @samp{cppr}.
43653
43654 The @samp{org.gnu.gdb.power.htm.dscr} feature is optional.  It should
43655 contain the 64-bit checkpointed register @samp{cdscr}.
43656
43657 The @samp{org.gnu.gdb.power.htm.tar} feature is optional.  It should
43658 contain the 64-bit checkpointed register @samp{ctar}.
43659
43660
43661 @node RISC-V Features
43662 @subsection RISC-V Features
43663 @cindex target descriptions, RISC-V Features
43664
43665 The @samp{org.gnu.gdb.riscv.cpu} feature is required for RISC-V
43666 targets.  It should contain the registers @samp{x0} through
43667 @samp{x31}, and @samp{pc}.  Either the architectural names (@samp{x0},
43668 @samp{x1}, etc) can be used, or the ABI names (@samp{zero}, @samp{ra},
43669 etc).
43670
43671 The @samp{org.gnu.gdb.riscv.fpu} feature is optional.  If present, it
43672 should contain registers @samp{f0} through @samp{f31}, @samp{fflags},
43673 @samp{frm}, and @samp{fcsr}.  As with the cpu feature, either the
43674 architectural register names, or the ABI names can be used.
43675
43676 The @samp{org.gnu.gdb.riscv.virtual} feature is optional.  If present,
43677 it should contain registers that are not backed by real registers on
43678 the target, but are instead virtual, where the register value is
43679 derived from other target state.  In many ways these are like
43680 @value{GDBN}s pseudo-registers, except implemented by the target.
43681 Currently the only register expected in this set is the one byte
43682 @samp{priv} register that contains the target's privilege level in the
43683 least significant two bits.
43684
43685 The @samp{org.gnu.gdb.riscv.csr} feature is optional.  If present, it
43686 should contain all of the target's standard CSRs.  Standard CSRs are
43687 those defined in the RISC-V specification documents.  There is some
43688 overlap between this feature and the fpu feature; the @samp{fflags},
43689 @samp{frm}, and @samp{fcsr} registers could be in either feature.  The
43690 expectation is that these registers will be in the fpu feature if the
43691 target has floating point hardware, but can be moved into the csr
43692 feature if the target has the floating point control registers, but no
43693 other floating point hardware.
43694
43695 @node S/390 and System z Features
43696 @subsection S/390 and System z Features
43697 @cindex target descriptions, S/390 features
43698 @cindex target descriptions, System z features
43699
43700 The @samp{org.gnu.gdb.s390.core} feature is required for S/390 and
43701 System z targets.  It should contain the PSW and the 16 general
43702 registers.  In particular, System z targets should provide the 64-bit
43703 registers @samp{pswm}, @samp{pswa}, and @samp{r0} through @samp{r15}.
43704 S/390 targets should provide the 32-bit versions of these registers.
43705 A System z target that runs in 31-bit addressing mode should provide
43706 32-bit versions of @samp{pswm} and @samp{pswa}, as well as the general
43707 register's upper halves @samp{r0h} through @samp{r15h}, and their
43708 lower halves @samp{r0l} through @samp{r15l}.
43709
43710 The @samp{org.gnu.gdb.s390.fpr} feature is required.  It should
43711 contain the 64-bit registers @samp{f0} through @samp{f15}, and
43712 @samp{fpc}.
43713
43714 The @samp{org.gnu.gdb.s390.acr} feature is required.  It should
43715 contain the 32-bit registers @samp{acr0} through @samp{acr15}.
43716
43717 The @samp{org.gnu.gdb.s390.linux} feature is optional.  It should
43718 contain the register @samp{orig_r2}, which is 64-bit wide on System z
43719 targets and 32-bit otherwise.  In addition, the feature may contain
43720 the @samp{last_break} register, whose width depends on the addressing
43721 mode, as well as the @samp{system_call} register, which is always
43722 32-bit wide.
43723
43724 The @samp{org.gnu.gdb.s390.tdb} feature is optional.  It should
43725 contain the 64-bit registers @samp{tdb0}, @samp{tac}, @samp{tct},
43726 @samp{atia}, and @samp{tr0} through @samp{tr15}.
43727
43728 The @samp{org.gnu.gdb.s390.vx} feature is optional.  It should contain
43729 64-bit wide registers @samp{v0l} through @samp{v15l}, which will be
43730 combined by @value{GDBN} with the floating point registers @samp{f0}
43731 through @samp{f15} to present the 128-bit wide vector registers
43732 @samp{v0} through @samp{v15}.  In addition, this feature should
43733 contain the 128-bit wide vector registers @samp{v16} through
43734 @samp{v31}.
43735
43736 The @samp{org.gnu.gdb.s390.gs} feature is optional.  It should contain
43737 the 64-bit wide guarded-storage-control registers @samp{gsd},
43738 @samp{gssm}, and @samp{gsepla}.
43739
43740 The @samp{org.gnu.gdb.s390.gsbc} feature is optional.  It should contain
43741 the 64-bit wide guarded-storage broadcast control registers
43742 @samp{bc_gsd}, @samp{bc_gssm}, and @samp{bc_gsepla}.
43743
43744 @node Sparc Features
43745 @subsection Sparc Features
43746 @cindex target descriptions, sparc32 features
43747 @cindex target descriptions, sparc64 features
43748 The @samp{org.gnu.gdb.sparc.cpu} feature is required for sparc32/sparc64
43749 targets.  It should describe the following registers:
43750
43751 @itemize @minus
43752 @item
43753 @samp{g0} through @samp{g7}
43754 @item
43755 @samp{o0} through @samp{o7}
43756 @item
43757 @samp{l0} through @samp{l7}
43758 @item
43759 @samp{i0} through @samp{i7}
43760 @end itemize
43761
43762 They may be 32-bit or 64-bit depending on the target.
43763
43764 Also the @samp{org.gnu.gdb.sparc.fpu} feature is required for sparc32/sparc64
43765 targets.  It should describe the following registers:
43766
43767 @itemize @minus
43768 @item
43769 @samp{f0} through @samp{f31}
43770 @item
43771 @samp{f32} through @samp{f62} for sparc64
43772 @end itemize
43773
43774 The @samp{org.gnu.gdb.sparc.cp0} feature is required for sparc32/sparc64
43775 targets.  It should describe the following registers:
43776
43777 @itemize @minus
43778 @item
43779 @samp{y}, @samp{psr}, @samp{wim}, @samp{tbr}, @samp{pc}, @samp{npc},
43780 @samp{fsr}, and @samp{csr} for sparc32
43781 @item
43782 @samp{pc}, @samp{npc}, @samp{state}, @samp{fsr}, @samp{fprs}, and @samp{y}
43783 for sparc64
43784 @end itemize
43785
43786 @node TIC6x Features
43787 @subsection TMS320C6x Features
43788 @cindex target descriptions, TIC6x features
43789 @cindex target descriptions, TMS320C6x features
43790 The @samp{org.gnu.gdb.tic6x.core} feature is required for TMS320C6x
43791 targets.  It should contain registers @samp{A0} through @samp{A15},
43792 registers @samp{B0} through @samp{B15}, @samp{CSR} and @samp{PC}.
43793
43794 The @samp{org.gnu.gdb.tic6x.gp} feature is optional.  It should
43795 contain registers @samp{A16} through @samp{A31} and @samp{B16}
43796 through @samp{B31}.
43797
43798 The @samp{org.gnu.gdb.tic6x.c6xp} feature is optional.  It should
43799 contain registers @samp{TSR}, @samp{ILC} and @samp{RILC}.
43800
43801 @node Operating System Information
43802 @appendix Operating System Information
43803 @cindex operating system information
43804
43805 @menu
43806 * Process list::
43807 @end menu
43808
43809 Users of @value{GDBN} often wish to obtain information about the state of
43810 the operating system running on the target---for example the list of
43811 processes, or the list of open files.  This section describes the
43812 mechanism that makes it possible.  This mechanism is similar to the 
43813 target features mechanism (@pxref{Target Descriptions}), but focuses
43814 on a different aspect of target.
43815
43816 Operating system information is retrived from the target via the
43817 remote protocol, using @samp{qXfer} requests (@pxref{qXfer osdata
43818 read}).  The object name in the request should be @samp{osdata}, and
43819 the @var{annex} identifies the data to be fetched.
43820
43821 @node Process list
43822 @appendixsection Process list
43823 @cindex operating system information, process list
43824
43825 When requesting the process list, the @var{annex} field in the
43826 @samp{qXfer} request should be @samp{processes}.  The returned data is
43827 an XML document.  The formal syntax of this document is defined in
43828 @file{gdb/features/osdata.dtd}.
43829
43830 An example document is:
43831
43832 @smallexample
43833 <?xml version="1.0"?>
43834 <!DOCTYPE target SYSTEM "osdata.dtd">
43835 <osdata type="processes">
43836   <item>
43837     <column name="pid">1</column>
43838     <column name="user">root</column>
43839     <column name="command">/sbin/init</column>
43840     <column name="cores">1,2,3</column>
43841   </item>
43842 </osdata>
43843 @end smallexample
43844
43845 Each item should include a column whose name is @samp{pid}.  The value
43846 of that column should identify the process on the target.  The
43847 @samp{user} and @samp{command} columns are optional, and will be
43848 displayed by @value{GDBN}.  The @samp{cores} column, if present,
43849 should contain a comma-separated list of cores that this process
43850 is running on.  Target may provide additional columns,
43851 which @value{GDBN} currently ignores.
43852
43853 @node Trace File Format
43854 @appendix Trace File Format
43855 @cindex trace file format
43856
43857 The trace file comes in three parts: a header, a textual description
43858 section, and a trace frame section with binary data.
43859
43860 The header has the form @code{\x7fTRACE0\n}.  The first byte is
43861 @code{0x7f} so as to indicate that the file contains binary data,
43862 while the @code{0} is a version number that may have different values
43863 in the future.
43864
43865 The description section consists of multiple lines of @sc{ascii} text
43866 separated by newline characters (@code{0xa}).  The lines may include a
43867 variety of optional descriptive or context-setting information, such
43868 as tracepoint definitions or register set size.  @value{GDBN} will
43869 ignore any line that it does not recognize.  An empty line marks the end
43870 of this section.
43871
43872 @table @code
43873 @item R @var{size}
43874 Specifies the size of a register block in bytes.  This is equal to the
43875 size of a @code{g} packet payload in the remote protocol.  @var{size}
43876 is an ascii decimal number.  There should be only one such line in
43877 a single trace file.
43878
43879 @item status @var{status}
43880 Trace status.  @var{status} has the same format as a @code{qTStatus}
43881 remote packet reply.  There should be only one such line in a single trace
43882 file.
43883
43884 @item tp @var{payload}
43885 Tracepoint definition.  The @var{payload} has the same format as
43886 @code{qTfP}/@code{qTsP} remote packet reply payload.  A single tracepoint
43887 may take multiple lines of definition, corresponding to the multiple
43888 reply packets.
43889
43890 @item tsv @var{payload}
43891 Trace state variable definition.  The @var{payload} has the same format as
43892 @code{qTfV}/@code{qTsV} remote packet reply payload.  A single variable
43893 may take multiple lines of definition, corresponding to the multiple
43894 reply packets.
43895
43896 @item tdesc @var{payload}
43897 Target description in XML format.  The @var{payload} is a single line of
43898 the XML file.  All such lines should be concatenated together to get
43899 the original XML file.  This file is in the same format as @code{qXfer}
43900 @code{features} payload, and corresponds to the main @code{target.xml}
43901 file.  Includes are not allowed.
43902
43903 @end table
43904
43905 The trace frame section consists of a number of consecutive frames.
43906 Each frame begins with a two-byte tracepoint number, followed by a
43907 four-byte size giving the amount of data in the frame.  The data in
43908 the frame consists of a number of blocks, each introduced by a
43909 character indicating its type (at least register, memory, and trace
43910 state variable).  The data in this section is raw binary, not a
43911 hexadecimal or other encoding; its endianness matches the target's
43912 endianness.
43913
43914 @c FIXME bi-arch may require endianness/arch info in description section
43915
43916 @table @code
43917 @item R @var{bytes}
43918 Register block.  The number and ordering of bytes matches that of a
43919 @code{g} packet in the remote protocol.  Note that these are the
43920 actual bytes, in target order, not a hexadecimal encoding.
43921
43922 @item M @var{address} @var{length} @var{bytes}...
43923 Memory block.  This is a contiguous block of memory, at the 8-byte
43924 address @var{address}, with a 2-byte length @var{length}, followed by
43925 @var{length} bytes.
43926
43927 @item V @var{number} @var{value}
43928 Trace state variable block.  This records the 8-byte signed value
43929 @var{value} of trace state variable numbered @var{number}.
43930
43931 @end table
43932
43933 Future enhancements of the trace file format may include additional types
43934 of blocks.
43935
43936 @node Index Section Format
43937 @appendix @code{.gdb_index} section format
43938 @cindex .gdb_index section format
43939 @cindex index section format
43940
43941 This section documents the index section that is created by @code{save
43942 gdb-index} (@pxref{Index Files}).  The index section is
43943 DWARF-specific; some knowledge of DWARF is assumed in this
43944 description.
43945
43946 The mapped index file format is designed to be directly
43947 @code{mmap}able on any architecture.  In most cases, a datum is
43948 represented using a little-endian 32-bit integer value, called an
43949 @code{offset_type}.  Big endian machines must byte-swap the values
43950 before using them.  Exceptions to this rule are noted.  The data is
43951 laid out such that alignment is always respected.
43952
43953 A mapped index consists of several areas, laid out in order.
43954
43955 @enumerate
43956 @item
43957 The file header.  This is a sequence of values, of @code{offset_type}
43958 unless otherwise noted:
43959
43960 @enumerate
43961 @item
43962 The version number, currently 8.  Versions 1, 2 and 3 are obsolete.
43963 Version 4 uses a different hashing function from versions 5 and 6.
43964 Version 6 includes symbols for inlined functions, whereas versions 4
43965 and 5 do not.  Version 7 adds attributes to the CU indices in the
43966 symbol table.  Version 8 specifies that symbols from DWARF type units
43967 (@samp{DW_TAG_type_unit}) refer to the type unit's symbol table and not the
43968 compilation unit (@samp{DW_TAG_comp_unit}) using the type.
43969
43970 @value{GDBN} will only read version 4, 5, or 6 indices
43971 by specifying @code{set use-deprecated-index-sections on}.
43972 GDB has a workaround for potentially broken version 7 indices so it is
43973 currently not flagged as deprecated.
43974
43975 @item
43976 The offset, from the start of the file, of the CU list.
43977
43978 @item
43979 The offset, from the start of the file, of the types CU list.  Note
43980 that this area can be empty, in which case this offset will be equal
43981 to the next offset.
43982
43983 @item
43984 The offset, from the start of the file, of the address area.
43985
43986 @item
43987 The offset, from the start of the file, of the symbol table.
43988
43989 @item
43990 The offset, from the start of the file, of the constant pool.
43991 @end enumerate
43992
43993 @item
43994 The CU list.  This is a sequence of pairs of 64-bit little-endian
43995 values, sorted by the CU offset.  The first element in each pair is
43996 the offset of a CU in the @code{.debug_info} section.  The second
43997 element in each pair is the length of that CU.  References to a CU
43998 elsewhere in the map are done using a CU index, which is just the
43999 0-based index into this table.  Note that if there are type CUs, then
44000 conceptually CUs and type CUs form a single list for the purposes of
44001 CU indices.
44002
44003 @item
44004 The types CU list.  This is a sequence of triplets of 64-bit
44005 little-endian values.  In a triplet, the first value is the CU offset,
44006 the second value is the type offset in the CU, and the third value is
44007 the type signature.  The types CU list is not sorted.
44008
44009 @item
44010 The address area.  The address area consists of a sequence of address
44011 entries.  Each address entry has three elements:
44012
44013 @enumerate
44014 @item
44015 The low address.  This is a 64-bit little-endian value.
44016
44017 @item
44018 The high address.  This is a 64-bit little-endian value.  Like
44019 @code{DW_AT_high_pc}, the value is one byte beyond the end.
44020
44021 @item
44022 The CU index.  This is an @code{offset_type} value.
44023 @end enumerate
44024
44025 @item
44026 The symbol table.  This is an open-addressed hash table.  The size of
44027 the hash table is always a power of 2.
44028
44029 Each slot in the hash table consists of a pair of @code{offset_type}
44030 values.  The first value is the offset of the symbol's name in the
44031 constant pool.  The second value is the offset of the CU vector in the
44032 constant pool.
44033
44034 If both values are 0, then this slot in the hash table is empty.  This
44035 is ok because while 0 is a valid constant pool index, it cannot be a
44036 valid index for both a string and a CU vector.
44037
44038 The hash value for a table entry is computed by applying an
44039 iterative hash function to the symbol's name.  Starting with an
44040 initial value of @code{r = 0}, each (unsigned) character @samp{c} in
44041 the string is incorporated into the hash using the formula depending on the
44042 index version:
44043
44044 @table @asis
44045 @item Version 4
44046 The formula is @code{r = r * 67 + c - 113}.
44047
44048 @item Versions 5 to 7
44049 The formula is @code{r = r * 67 + tolower (c) - 113}.
44050 @end table
44051
44052 The terminating @samp{\0} is not incorporated into the hash.
44053
44054 The step size used in the hash table is computed via
44055 @code{((hash * 17) & (size - 1)) | 1}, where @samp{hash} is the hash
44056 value, and @samp{size} is the size of the hash table.  The step size
44057 is used to find the next candidate slot when handling a hash
44058 collision.
44059
44060 The names of C@t{++} symbols in the hash table are canonicalized.  We
44061 don't currently have a simple description of the canonicalization
44062 algorithm; if you intend to create new index sections, you must read
44063 the code.
44064
44065 @item
44066 The constant pool.  This is simply a bunch of bytes.  It is organized
44067 so that alignment is correct: CU vectors are stored first, followed by
44068 strings.
44069
44070 A CU vector in the constant pool is a sequence of @code{offset_type}
44071 values.  The first value is the number of CU indices in the vector.
44072 Each subsequent value is the index and symbol attributes of a CU in
44073 the CU list.  This element in the hash table is used to indicate which
44074 CUs define the symbol and how the symbol is used.
44075 See below for the format of each CU index+attributes entry.
44076
44077 A string in the constant pool is zero-terminated.
44078 @end enumerate
44079
44080 Attributes were added to CU index values in @code{.gdb_index} version 7.
44081 If a symbol has multiple uses within a CU then there is one
44082 CU index+attributes value for each use.
44083
44084 The format of each CU index+attributes entry is as follows
44085 (bit 0 = LSB):
44086
44087 @table @asis
44088
44089 @item Bits 0-23
44090 This is the index of the CU in the CU list.
44091 @item Bits 24-27
44092 These bits are reserved for future purposes and must be zero.
44093 @item Bits 28-30
44094 The kind of the symbol in the CU.
44095
44096 @table @asis
44097 @item 0
44098 This value is reserved and should not be used.
44099 By reserving zero the full @code{offset_type} value is backwards compatible
44100 with previous versions of the index.
44101 @item 1
44102 The symbol is a type.
44103 @item 2
44104 The symbol is a variable or an enum value.
44105 @item 3
44106 The symbol is a function.
44107 @item 4
44108 Any other kind of symbol.
44109 @item 5,6,7
44110 These values are reserved.
44111 @end table
44112
44113 @item Bit 31
44114 This bit is zero if the value is global and one if it is static.
44115
44116 The determination of whether a symbol is global or static is complicated.
44117 The authorative reference is the file @file{dwarf2read.c} in
44118 @value{GDBN} sources.
44119
44120 @end table
44121
44122 This pseudo-code describes the computation of a symbol's kind and
44123 global/static attributes in the index.
44124
44125 @smallexample
44126 is_external = get_attribute (die, DW_AT_external);
44127 language = get_attribute (cu_die, DW_AT_language);
44128 switch (die->tag)
44129   @{
44130   case DW_TAG_typedef:
44131   case DW_TAG_base_type:
44132   case DW_TAG_subrange_type:
44133     kind = TYPE;
44134     is_static = 1;
44135     break;
44136   case DW_TAG_enumerator:
44137     kind = VARIABLE;
44138     is_static = language != CPLUS;
44139     break;
44140   case DW_TAG_subprogram:
44141     kind = FUNCTION;
44142     is_static = ! (is_external || language == ADA);
44143     break;
44144   case DW_TAG_constant:
44145     kind = VARIABLE;
44146     is_static = ! is_external;
44147     break;
44148   case DW_TAG_variable:
44149     kind = VARIABLE;
44150     is_static = ! is_external;
44151     break;
44152   case DW_TAG_namespace:
44153     kind = TYPE;
44154     is_static = 0;
44155     break;
44156   case DW_TAG_class_type:
44157   case DW_TAG_interface_type:
44158   case DW_TAG_structure_type:
44159   case DW_TAG_union_type:
44160   case DW_TAG_enumeration_type:
44161     kind = TYPE;
44162     is_static = language != CPLUS;
44163     break;
44164   default:
44165     assert (0);
44166   @}
44167 @end smallexample
44168
44169 @node Man Pages
44170 @appendix Manual pages
44171 @cindex Man pages
44172
44173 @menu
44174 * gdb man::                     The GNU Debugger man page
44175 * gdbserver man::               Remote Server for the GNU Debugger man page
44176 * gcore man::                   Generate a core file of a running program
44177 * gdbinit man::                 gdbinit scripts
44178 * gdb-add-index man::           Add index files to speed up GDB
44179 @end menu
44180
44181 @node gdb man
44182 @heading gdb man
44183
44184 @c man title gdb The GNU Debugger
44185
44186 @c man begin SYNOPSIS gdb
44187 gdb [@option{-help}] [@option{-nh}] [@option{-nx}] [@option{-q}]
44188 [@option{-batch}] [@option{-cd=}@var{dir}] [@option{-f}]
44189 [@option{-b}@w{ }@var{bps}]
44190     [@option{-tty=}@var{dev}] [@option{-s} @var{symfile}]
44191 [@option{-e}@w{ }@var{prog}] [@option{-se}@w{ }@var{prog}]
44192 [@option{-c}@w{ }@var{core}] [@option{-p}@w{ }@var{procID}]
44193     [@option{-x}@w{ }@var{cmds}] [@option{-d}@w{ }@var{dir}]
44194 [@var{prog}|@var{prog} @var{procID}|@var{prog} @var{core}]
44195 @c man end
44196
44197 @c man begin DESCRIPTION gdb
44198 The purpose of a debugger such as @value{GDBN} is to allow you to see what is
44199 going on ``inside'' another program while it executes -- or what another
44200 program was doing at the moment it crashed.
44201
44202 @value{GDBN} can do four main kinds of things (plus other things in support of
44203 these) to help you catch bugs in the act:
44204
44205 @itemize @bullet
44206 @item
44207 Start your program, specifying anything that might affect its behavior.
44208
44209 @item
44210 Make your program stop on specified conditions.
44211
44212 @item
44213 Examine what has happened, when your program has stopped.
44214
44215 @item
44216 Change things in your program, so you can experiment with correcting the
44217 effects of one bug and go on to learn about another.
44218 @end itemize
44219
44220 You can use @value{GDBN} to debug programs written in C, C@t{++}, Fortran and
44221 Modula-2.
44222
44223 @value{GDBN} is invoked with the shell command @code{gdb}.  Once started, it reads
44224 commands from the terminal until you tell it to exit with the @value{GDBN}
44225 command @code{quit}.  You can get online help from @value{GDBN} itself
44226 by using the command @code{help}.
44227
44228 You can run @code{gdb} with no arguments or options; but the most
44229 usual way to start @value{GDBN} is with one argument or two, specifying an
44230 executable program as the argument:
44231
44232 @smallexample
44233 gdb program
44234 @end smallexample
44235
44236 You can also start with both an executable program and a core file specified:
44237
44238 @smallexample
44239 gdb program core
44240 @end smallexample
44241
44242 You can, instead, specify a process ID as a second argument, if you want
44243 to debug a running process:
44244
44245 @smallexample
44246 gdb program 1234
44247 gdb -p 1234
44248 @end smallexample
44249
44250 @noindent
44251 would attach @value{GDBN} to process @code{1234} (unless you also have a file
44252 named @file{1234}; @value{GDBN} does check for a core file first).
44253 With option @option{-p} you can omit the @var{program} filename.
44254
44255 Here are some of the most frequently needed @value{GDBN} commands:
44256
44257 @c pod2man highlights the right hand side of the @item lines.
44258 @table @env
44259 @item break [@var{file}:]@var{function}
44260 Set a breakpoint at @var{function} (in @var{file}).
44261
44262 @item run [@var{arglist}]
44263 Start your program (with @var{arglist}, if specified).
44264
44265 @item bt
44266 Backtrace: display the program stack.
44267
44268 @item print @var{expr}
44269 Display the value of an expression.
44270
44271 @item c
44272 Continue running your program (after stopping, e.g. at a breakpoint).
44273
44274 @item next
44275 Execute next program line (after stopping); step @emph{over} any
44276 function calls in the line.
44277
44278 @item edit [@var{file}:]@var{function}
44279 look at the program line where it is presently stopped.
44280
44281 @item list [@var{file}:]@var{function}
44282 type the text of the program in the vicinity of where it is presently stopped.
44283
44284 @item step
44285 Execute next program line (after stopping); step @emph{into} any
44286 function calls in the line.
44287
44288 @item help [@var{name}]
44289 Show information about @value{GDBN} command @var{name}, or general information
44290 about using @value{GDBN}.
44291
44292 @item quit
44293 Exit from @value{GDBN}.
44294 @end table
44295
44296 @ifset man
44297 For full details on @value{GDBN},
44298 see @cite{Using GDB: A Guide to the GNU Source-Level Debugger},
44299 by Richard M. Stallman and Roland H. Pesch.  The same text is available online
44300 as the @code{gdb} entry in the @code{info} program.
44301 @end ifset
44302 @c man end
44303
44304 @c man begin OPTIONS gdb
44305 Any arguments other than options specify an executable
44306 file and core file (or process ID); that is, the first argument
44307 encountered with no
44308 associated option flag is equivalent to a @option{-se} option, and the second,
44309 if any, is equivalent to a @option{-c} option if it's the name of a file.
44310 Many options have
44311 both long and short forms; both are shown here.  The long forms are also
44312 recognized if you truncate them, so long as enough of the option is
44313 present to be unambiguous.  (If you prefer, you can flag option
44314 arguments with @option{+} rather than @option{-}, though we illustrate the
44315 more usual convention.)
44316
44317 All the options and command line arguments you give are processed
44318 in sequential order.  The order makes a difference when the @option{-x}
44319 option is used.
44320
44321 @table @env
44322 @item -help
44323 @itemx -h
44324 List all options, with brief explanations.
44325
44326 @item -symbols=@var{file}
44327 @itemx -s @var{file}
44328 Read symbol table from file @var{file}.
44329
44330 @item -write
44331 Enable writing into executable and core files.
44332
44333 @item -exec=@var{file}
44334 @itemx -e @var{file}
44335 Use file @var{file} as the executable file to execute when
44336 appropriate, and for examining pure data in conjunction with a core
44337 dump.
44338
44339 @item -se=@var{file}
44340 Read symbol table from file @var{file} and use it as the executable
44341 file.
44342
44343 @item -core=@var{file}
44344 @itemx -c @var{file}
44345 Use file @var{file} as a core dump to examine.
44346
44347 @item -command=@var{file}
44348 @itemx -x @var{file}
44349 Execute @value{GDBN} commands from file @var{file}.
44350
44351 @item -ex @var{command}
44352 Execute given @value{GDBN} @var{command}.
44353
44354 @item -directory=@var{directory}
44355 @itemx -d @var{directory}
44356 Add @var{directory} to the path to search for source files.
44357
44358 @item -nh
44359 Do not execute commands from @file{~/.gdbinit}.
44360
44361 @item -nx
44362 @itemx -n
44363 Do not execute commands from any @file{.gdbinit} initialization files.
44364
44365 @item -quiet
44366 @itemx -q
44367 ``Quiet''.  Do not print the introductory and copyright messages.  These
44368 messages are also suppressed in batch mode.
44369
44370 @item -batch
44371 Run in batch mode.  Exit with status @code{0} after processing all the command
44372 files specified with @option{-x} (and @file{.gdbinit}, if not inhibited).
44373 Exit with nonzero status if an error occurs in executing the @value{GDBN}
44374 commands in the command files.
44375
44376 Batch mode may be useful for running @value{GDBN} as a filter, for example to
44377 download and run a program on another computer; in order to make this
44378 more useful, the message
44379
44380 @smallexample
44381 Program exited normally.
44382 @end smallexample
44383
44384 @noindent
44385 (which is ordinarily issued whenever a program running under @value{GDBN} control
44386 terminates) is not issued when running in batch mode.
44387
44388 @item -cd=@var{directory}
44389 Run @value{GDBN} using @var{directory} as its working directory,
44390 instead of the current directory.
44391
44392 @item -fullname
44393 @itemx -f
44394 Emacs sets this option when it runs @value{GDBN} as a subprocess.  It tells
44395 @value{GDBN} to output the full file name and line number in a standard,
44396 recognizable fashion each time a stack frame is displayed (which
44397 includes each time the program stops).  This recognizable format looks
44398 like two @samp{\032} characters, followed by the file name, line number
44399 and character position separated by colons, and a newline.  The
44400 Emacs-to-@value{GDBN} interface program uses the two @samp{\032}
44401 characters as a signal to display the source code for the frame.
44402
44403 @item -b @var{bps}
44404 Set the line speed (baud rate or bits per second) of any serial
44405 interface used by @value{GDBN} for remote debugging.
44406
44407 @item -tty=@var{device}
44408 Run using @var{device} for your program's standard input and output.
44409 @end table
44410 @c man end
44411
44412 @c man begin SEEALSO gdb
44413 @ifset man
44414 The full documentation for @value{GDBN} is maintained as a Texinfo manual.
44415 If the @code{info} and @code{gdb} programs and @value{GDBN}'s Texinfo
44416 documentation are properly installed at your site, the command
44417
44418 @smallexample
44419 info gdb
44420 @end smallexample
44421
44422 @noindent
44423 should give you access to the complete manual.
44424
44425 @cite{Using GDB: A Guide to the GNU Source-Level Debugger},
44426 Richard M. Stallman and Roland H. Pesch, July 1991.
44427 @end ifset
44428 @c man end
44429
44430 @node gdbserver man
44431 @heading gdbserver man
44432
44433 @c man title gdbserver Remote Server for the GNU Debugger
44434 @format
44435 @c man begin SYNOPSIS gdbserver
44436 gdbserver @var{comm} @var{prog} [@var{args}@dots{}]
44437
44438 gdbserver --attach @var{comm} @var{pid}
44439
44440 gdbserver --multi @var{comm}
44441 @c man end
44442 @end format
44443
44444 @c man begin DESCRIPTION gdbserver
44445 @command{gdbserver} is a program that allows you to run @value{GDBN} on a different machine
44446 than the one which is running the program being debugged.
44447
44448 @ifclear man
44449 @subheading Usage (server (target) side)
44450 @end ifclear
44451 @ifset man
44452 Usage (server (target) side):
44453 @end ifset
44454
44455 First, you need to have a copy of the program you want to debug put onto
44456 the target system.  The program can be stripped to save space if needed, as
44457 @command{gdbserver} doesn't care about symbols.  All symbol handling is taken care of by
44458 the @value{GDBN} running on the host system.
44459
44460 To use the server, you log on to the target system, and run the @command{gdbserver}
44461 program.  You must tell it (a) how to communicate with @value{GDBN}, (b) the name of
44462 your program, and (c) its arguments.  The general syntax is:
44463
44464 @smallexample
44465 target> gdbserver @var{comm} @var{program} [@var{args} ...]
44466 @end smallexample
44467
44468 For example, using a serial port, you might say:
44469
44470 @smallexample
44471 @ifset man
44472 @c @file would wrap it as F</dev/com1>.
44473 target> gdbserver /dev/com1 emacs foo.txt
44474 @end ifset
44475 @ifclear man
44476 target> gdbserver @file{/dev/com1} emacs foo.txt
44477 @end ifclear
44478 @end smallexample
44479
44480 This tells @command{gdbserver} to debug emacs with an argument of foo.txt, and
44481 to communicate with @value{GDBN} via @file{/dev/com1}.  @command{gdbserver} now
44482 waits patiently for the host @value{GDBN} to communicate with it.
44483
44484 To use a TCP connection, you could say:
44485
44486 @smallexample
44487 target> gdbserver host:2345 emacs foo.txt
44488 @end smallexample
44489
44490 This says pretty much the same thing as the last example, except that we are
44491 going to communicate with the @code{host} @value{GDBN} via TCP.  The @code{host:2345} argument means
44492 that we are expecting to see a TCP connection from @code{host} to local TCP port
44493 2345.  (Currently, the @code{host} part is ignored.)  You can choose any number you
44494 want for the port number as long as it does not conflict with any existing TCP
44495 ports on the target system.  This same port number must be used in the host
44496 @value{GDBN}s @code{target remote} command, which will be described shortly.  Note that if
44497 you chose a port number that conflicts with another service, @command{gdbserver} will
44498 print an error message and exit.
44499
44500 @command{gdbserver} can also attach to running programs.
44501 This is accomplished via the @option{--attach} argument.  The syntax is:
44502
44503 @smallexample
44504 target> gdbserver --attach @var{comm} @var{pid}
44505 @end smallexample
44506
44507 @var{pid} is the process ID of a currently running process.  It isn't
44508 necessary to point @command{gdbserver} at a binary for the running process.
44509
44510 To start @code{gdbserver} without supplying an initial command to run
44511 or process ID to attach, use the @option{--multi} command line option.
44512 In such case you should connect using @kbd{target extended-remote} to start
44513 the program you want to debug.
44514
44515 @smallexample
44516 target> gdbserver --multi @var{comm}
44517 @end smallexample
44518
44519 @ifclear man
44520 @subheading Usage (host side)
44521 @end ifclear
44522 @ifset man
44523 Usage (host side):
44524 @end ifset
44525
44526 You need an unstripped copy of the target program on your host system, since
44527 @value{GDBN} needs to examine its symbol tables and such.  Start up @value{GDBN} as you normally
44528 would, with the target program as the first argument.  (You may need to use the
44529 @option{--baud} option if the serial line is running at anything except 9600 baud.)
44530 That is @code{gdb TARGET-PROG}, or @code{gdb --baud BAUD TARGET-PROG}.  After that, the only
44531 new command you need to know about is @code{target remote}
44532 (or @code{target extended-remote}).  Its argument is either
44533 a device name (usually a serial device, like @file{/dev/ttyb}), or a @code{HOST:PORT}
44534 descriptor.  For example:
44535
44536 @smallexample
44537 @ifset man
44538 @c @file would wrap it as F</dev/ttyb>.
44539 (gdb) target remote /dev/ttyb
44540 @end ifset
44541 @ifclear man
44542 (gdb) target remote @file{/dev/ttyb}
44543 @end ifclear
44544 @end smallexample
44545
44546 @noindent
44547 communicates with the server via serial line @file{/dev/ttyb}, and:
44548
44549 @smallexample
44550 (gdb) target remote the-target:2345
44551 @end smallexample
44552
44553 @noindent
44554 communicates via a TCP connection to port 2345 on host `the-target', where
44555 you previously started up @command{gdbserver} with the same port number.  Note that for
44556 TCP connections, you must start up @command{gdbserver} prior to using the `target remote'
44557 command, otherwise you may get an error that looks something like
44558 `Connection refused'.
44559
44560 @command{gdbserver} can also debug multiple inferiors at once,
44561 described in
44562 @ifset man
44563 the @value{GDBN} manual in node @code{Inferiors and Programs}
44564 -- shell command @code{info -f gdb -n 'Inferiors and Programs'}.
44565 @end ifset
44566 @ifclear man
44567 @ref{Inferiors and Programs}.
44568 @end ifclear
44569 In such case use the @code{extended-remote} @value{GDBN} command variant:
44570
44571 @smallexample
44572 (gdb) target extended-remote the-target:2345
44573 @end smallexample
44574
44575 The @command{gdbserver} option @option{--multi} may or may not be used in such
44576 case.
44577 @c man end
44578
44579 @c man begin OPTIONS gdbserver
44580 There are three different modes for invoking @command{gdbserver}:
44581
44582 @itemize @bullet
44583
44584 @item
44585 Debug a specific program specified by its program name:
44586
44587 @smallexample
44588 gdbserver @var{comm} @var{prog} [@var{args}@dots{}]
44589 @end smallexample
44590
44591 The @var{comm} parameter specifies how should the server communicate
44592 with @value{GDBN}; it is either a device name (to use a serial line),
44593 a TCP port number (@code{:1234}), or @code{-} or @code{stdio} to use
44594 stdin/stdout of @code{gdbserver}.  Specify the name of the program to
44595 debug in @var{prog}.  Any remaining arguments will be passed to the
44596 program verbatim.  When the program exits, @value{GDBN} will close the
44597 connection, and @code{gdbserver} will exit.
44598
44599 @item
44600 Debug a specific program by specifying the process ID of a running
44601 program:
44602
44603 @smallexample
44604 gdbserver --attach @var{comm} @var{pid}
44605 @end smallexample
44606
44607 The @var{comm} parameter is as described above.  Supply the process ID
44608 of a running program in @var{pid}; @value{GDBN} will do everything
44609 else.  Like with the previous mode, when the process @var{pid} exits,
44610 @value{GDBN} will close the connection, and @code{gdbserver} will exit.
44611
44612 @item
44613 Multi-process mode -- debug more than one program/process:
44614
44615 @smallexample
44616 gdbserver --multi @var{comm}
44617 @end smallexample
44618
44619 In this mode, @value{GDBN} can instruct @command{gdbserver} which
44620 command(s) to run.  Unlike the other 2 modes, @value{GDBN} will not
44621 close the connection when a process being debugged exits, so you can
44622 debug several processes in the same session.
44623 @end itemize
44624
44625 In each of the modes you may specify these options:
44626
44627 @table @env
44628
44629 @item --help
44630 List all options, with brief explanations.
44631
44632 @item --version
44633 This option causes @command{gdbserver} to print its version number and exit.
44634
44635 @item --attach
44636 @command{gdbserver} will attach to a running program.  The syntax is:
44637
44638 @smallexample
44639 target> gdbserver --attach @var{comm} @var{pid}
44640 @end smallexample
44641
44642 @var{pid} is the process ID of a currently running process.  It isn't
44643 necessary to point @command{gdbserver} at a binary for the running process.
44644
44645 @item --multi
44646 To start @code{gdbserver} without supplying an initial command to run
44647 or process ID to attach, use this command line option.
44648 Then you can connect using @kbd{target extended-remote} and start
44649 the program you want to debug.  The syntax is:
44650
44651 @smallexample
44652 target> gdbserver --multi @var{comm}
44653 @end smallexample
44654
44655 @item --debug
44656 Instruct @code{gdbserver} to display extra status information about the debugging
44657 process.
44658 This option is intended for @code{gdbserver} development and for bug reports to
44659 the developers.
44660
44661 @item --remote-debug
44662 Instruct @code{gdbserver} to display remote protocol debug output.
44663 This option is intended for @code{gdbserver} development and for bug reports to
44664 the developers.
44665
44666 @item --debug-file=@var{filename}
44667 Instruct @code{gdbserver} to send any debug output to the given @var{filename}.
44668 This option is intended for @code{gdbserver} development and for bug reports to
44669 the developers.
44670
44671 @item --debug-format=option1@r{[},option2,...@r{]}
44672 Instruct @code{gdbserver} to include extra information in each line
44673 of debugging output.
44674 @xref{Other Command-Line Arguments for gdbserver}.
44675
44676 @item --wrapper
44677 Specify a wrapper to launch programs
44678 for debugging.  The option should be followed by the name of the
44679 wrapper, then any command-line arguments to pass to the wrapper, then
44680 @kbd{--} indicating the end of the wrapper arguments.
44681
44682 @item --once
44683 By default, @command{gdbserver} keeps the listening TCP port open, so that
44684 additional connections are possible.  However, if you start @code{gdbserver}
44685 with the @option{--once} option, it will stop listening for any further
44686 connection attempts after connecting to the first @value{GDBN} session.
44687
44688 @c --disable-packet is not documented for users.
44689
44690 @c --disable-randomization and --no-disable-randomization are superseded by
44691 @c QDisableRandomization.
44692
44693 @end table
44694 @c man end
44695
44696 @c man begin SEEALSO gdbserver
44697 @ifset man
44698 The full documentation for @value{GDBN} is maintained as a Texinfo manual.
44699 If the @code{info} and @code{gdb} programs and @value{GDBN}'s Texinfo
44700 documentation are properly installed at your site, the command
44701
44702 @smallexample
44703 info gdb
44704 @end smallexample
44705
44706 should give you access to the complete manual.
44707
44708 @cite{Using GDB: A Guide to the GNU Source-Level Debugger},
44709 Richard M. Stallman and Roland H. Pesch, July 1991.
44710 @end ifset
44711 @c man end
44712
44713 @node gcore man
44714 @heading gcore
44715
44716 @c man title gcore Generate a core file of a running program
44717
44718 @format
44719 @c man begin SYNOPSIS gcore
44720 gcore [-a] [-o @var{prefix}] @var{pid1} [@var{pid2}...@var{pidN}]
44721 @c man end
44722 @end format
44723
44724 @c man begin DESCRIPTION gcore
44725 Generate core dumps of one or more running programs with process IDs
44726 @var{pid1}, @var{pid2}, etc.  A core file produced by @command{gcore}
44727 is equivalent to one produced by the kernel when the process crashes
44728 (and when @kbd{ulimit -c} was used to set up an appropriate core dump
44729 limit).  However, unlike after a crash, after @command{gcore} finishes
44730 its job the program remains running without any change.
44731 @c man end
44732
44733 @c man begin OPTIONS gcore
44734 @table @env
44735 @item -a
44736 Dump all memory mappings.  The actual effect of this option depends on
44737 the Operating System.  On @sc{gnu}/Linux, it will disable
44738 @code{use-coredump-filter} (@pxref{set use-coredump-filter}) and
44739 enable @code{dump-excluded-mappings} (@pxref{set
44740 dump-excluded-mappings}).
44741
44742 @item -o @var{prefix}
44743 The optional argument @var{prefix} specifies the prefix to be used
44744 when composing the file names of the core dumps.  The file name is
44745 composed as @file{@var{prefix}.@var{pid}}, where @var{pid} is the
44746 process ID of the running program being analyzed by @command{gcore}.
44747 If not specified, @var{prefix} defaults to @var{gcore}.
44748 @end table
44749 @c man end
44750
44751 @c man begin SEEALSO gcore
44752 @ifset man
44753 The full documentation for @value{GDBN} is maintained as a Texinfo manual.
44754 If the @code{info} and @code{gdb} programs and @value{GDBN}'s Texinfo
44755 documentation are properly installed at your site, the command
44756
44757 @smallexample
44758 info gdb
44759 @end smallexample
44760
44761 @noindent
44762 should give you access to the complete manual.
44763
44764 @cite{Using GDB: A Guide to the GNU Source-Level Debugger},
44765 Richard M. Stallman and Roland H. Pesch, July 1991.
44766 @end ifset
44767 @c man end
44768
44769 @node gdbinit man
44770 @heading gdbinit
44771
44772 @c man title gdbinit GDB initialization scripts
44773
44774 @format
44775 @c man begin SYNOPSIS gdbinit
44776 @ifset SYSTEM_GDBINIT
44777 @value{SYSTEM_GDBINIT}
44778 @end ifset
44779
44780 ~/.gdbinit
44781
44782 ./.gdbinit
44783 @c man end
44784 @end format
44785
44786 @c man begin DESCRIPTION gdbinit
44787 These files contain @value{GDBN} commands to automatically execute during
44788 @value{GDBN} startup.  The lines of contents are canned sequences of commands,
44789 described in
44790 @ifset man
44791 the @value{GDBN} manual in node @code{Sequences}
44792 -- shell command @code{info -f gdb -n Sequences}.
44793 @end ifset
44794 @ifclear man
44795 @ref{Sequences}.
44796 @end ifclear
44797
44798 Please read more in
44799 @ifset man
44800 the @value{GDBN} manual in node @code{Startup}
44801 -- shell command @code{info -f gdb -n Startup}.
44802 @end ifset
44803 @ifclear man
44804 @ref{Startup}.
44805 @end ifclear
44806
44807 @table @env
44808 @ifset SYSTEM_GDBINIT
44809 @item @value{SYSTEM_GDBINIT}
44810 @end ifset
44811 @ifclear SYSTEM_GDBINIT
44812 @item (not enabled with @code{--with-system-gdbinit} during compilation)
44813 @end ifclear
44814 System-wide initialization file.  It is executed unless user specified
44815 @value{GDBN} option @code{-nx} or @code{-n}.
44816 See more in
44817 @ifset man
44818 the @value{GDBN} manual in node @code{System-wide configuration}
44819 -- shell command @code{info -f gdb -n 'System-wide configuration'}.
44820 @end ifset
44821 @ifclear man
44822 @ref{System-wide configuration}.
44823 @end ifclear
44824
44825 @item ~/.gdbinit
44826 User initialization file.  It is executed unless user specified
44827 @value{GDBN} options @code{-nx}, @code{-n} or @code{-nh}.
44828
44829 @item ./.gdbinit
44830 Initialization file for current directory.  It may need to be enabled with
44831 @value{GDBN} security command @code{set auto-load local-gdbinit}.
44832 See more in
44833 @ifset man
44834 the @value{GDBN} manual in node @code{Init File in the Current Directory}
44835 -- shell command @code{info -f gdb -n 'Init File in the Current Directory'}.
44836 @end ifset
44837 @ifclear man
44838 @ref{Init File in the Current Directory}.
44839 @end ifclear
44840 @end table
44841 @c man end
44842
44843 @c man begin SEEALSO gdbinit
44844 @ifset man
44845 gdb(1), @code{info -f gdb -n Startup}
44846
44847 The full documentation for @value{GDBN} is maintained as a Texinfo manual.
44848 If the @code{info} and @code{gdb} programs and @value{GDBN}'s Texinfo
44849 documentation are properly installed at your site, the command
44850
44851 @smallexample
44852 info gdb
44853 @end smallexample
44854
44855 should give you access to the complete manual.
44856
44857 @cite{Using GDB: A Guide to the GNU Source-Level Debugger},
44858 Richard M. Stallman and Roland H. Pesch, July 1991.
44859 @end ifset
44860 @c man end
44861
44862 @node gdb-add-index man
44863 @heading gdb-add-index
44864 @pindex gdb-add-index
44865 @anchor{gdb-add-index}
44866
44867 @c man title gdb-add-index Add index files to speed up GDB
44868
44869 @c man begin SYNOPSIS gdb-add-index
44870 gdb-add-index @var{filename}
44871 @c man end
44872
44873 @c man begin DESCRIPTION gdb-add-index
44874 When @value{GDBN} finds a symbol file, it scans the symbols in the
44875 file in order to construct an internal symbol table.  This lets most
44876 @value{GDBN} operations work quickly--at the cost of a delay early on.
44877 For large programs, this delay can be quite lengthy, so @value{GDBN}
44878 provides a way to build an index, which speeds up startup.
44879
44880 To determine whether a file contains such an index, use the command
44881 @kbd{readelf -S filename}: the index is stored in a section named
44882 @code{.gdb_index}.  The index file can only be produced on systems
44883 which use ELF binaries and DWARF debug information (i.e., sections
44884 named @code{.debug_*}).
44885
44886 @command{gdb-add-index} uses @value{GDBN} and @command{objdump} found
44887 in the @env{PATH} environment variable.  If you want to use different
44888 versions of these programs, you can specify them through the
44889 @env{GDB} and @env{OBJDUMP} environment variables.
44890
44891 See more in
44892 @ifset man
44893 the @value{GDBN} manual in node @code{Index Files}
44894 -- shell command @kbd{info -f gdb -n "Index Files"}.
44895 @end ifset
44896 @ifclear man
44897 @ref{Index Files}.
44898 @end ifclear
44899 @c man end
44900
44901 @c man begin SEEALSO gdb-add-index
44902 @ifset man
44903 The full documentation for @value{GDBN} is maintained as a Texinfo manual.
44904 If the @code{info} and @code{gdb} programs and @value{GDBN}'s Texinfo
44905 documentation are properly installed at your site, the command
44906
44907 @smallexample
44908 info gdb
44909 @end smallexample
44910
44911 should give you access to the complete manual.
44912
44913 @cite{Using GDB: A Guide to the GNU Source-Level Debugger},
44914 Richard M. Stallman and Roland H. Pesch, July 1991.
44915 @end ifset
44916 @c man end
44917
44918 @include gpl.texi
44919
44920 @node GNU Free Documentation License
44921 @appendix GNU Free Documentation License
44922 @include fdl.texi
44923
44924 @node Concept Index
44925 @unnumbered Concept Index
44926
44927 @printindex cp
44928
44929 @node Command and Variable Index
44930 @unnumbered Command, Variable, and Function Index
44931
44932 @printindex fn
44933
44934 @tex
44935 % I think something like @@colophon should be in texinfo.  In the
44936 % meantime:
44937 \long\def\colophon{\hbox to0pt{}\vfill
44938 \centerline{The body of this manual is set in}
44939 \centerline{\fontname\tenrm,}
44940 \centerline{with headings in {\bf\fontname\tenbf}}
44941 \centerline{and examples in {\tt\fontname\tentt}.}
44942 \centerline{{\it\fontname\tenit\/},}
44943 \centerline{{\bf\fontname\tenbf}, and}
44944 \centerline{{\sl\fontname\tensl\/}}
44945 \centerline{are used for emphasis.}\vfill}
44946 \page\colophon
44947 % Blame: doc@@cygnus.com, 1991.
44948 @end tex
44949
44950 @bye