gdb/
[platform/upstream/binutils.git] / gdb / doc / gdb.texinfo
1 \input texinfo      @c -*-texinfo-*-
2 @c Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
3 @c 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
4 @c 2010, 2011 Free Software Foundation, Inc.
5 @c
6 @c %**start of header
7 @c makeinfo ignores cmds prev to setfilename, so its arg cannot make use
8 @c of @set vars.  However, you can override filename with makeinfo -o.
9 @setfilename gdb.info
10 @c
11 @include gdb-cfg.texi
12 @c
13 @settitle Debugging with @value{GDBN}
14 @setchapternewpage odd
15 @c %**end of header
16
17 @iftex
18 @c @smallbook
19 @c @cropmarks
20 @end iftex
21
22 @finalout
23 @syncodeindex ky cp
24 @syncodeindex tp cp
25
26 @c readline appendices use @vindex, @findex and @ftable,
27 @c annotate.texi and gdbmi use @findex.
28 @syncodeindex vr cp
29 @syncodeindex fn cp
30
31 @c !!set GDB manual's edition---not the same as GDB version!
32 @c This is updated by GNU Press.
33 @set EDITION Tenth
34
35 @c !!set GDB edit command default editor
36 @set EDITOR /bin/ex
37
38 @c THIS MANUAL REQUIRES TEXINFO 4.0 OR LATER.
39
40 @c This is a dir.info fragment to support semi-automated addition of
41 @c manuals to an info tree.
42 @dircategory Software development
43 @direntry
44 * Gdb: (gdb).                     The GNU debugger.
45 @end direntry
46
47 @copying
48 Copyright @copyright{} 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
49 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
50 Free Software Foundation, Inc.
51
52 Permission is granted to copy, distribute and/or modify this document
53 under the terms of the GNU Free Documentation License, Version 1.3 or
54 any later version published by the Free Software Foundation; with the
55 Invariant Sections being ``Free Software'' and ``Free Software Needs
56 Free Documentation'', with the Front-Cover Texts being ``A GNU Manual,''
57 and with the Back-Cover Texts as in (a) below.
58
59 (a) The FSF's Back-Cover Text is: ``You are free to copy and modify
60 this GNU Manual.  Buying copies from GNU Press supports the FSF in
61 developing GNU and promoting software freedom.''
62 @end copying
63
64 @ifnottex
65 This file documents the @sc{gnu} debugger @value{GDBN}.
66
67 This is the @value{EDITION} Edition, of @cite{Debugging with
68 @value{GDBN}: the @sc{gnu} Source-Level Debugger} for @value{GDBN}
69 @ifset VERSION_PACKAGE
70 @value{VERSION_PACKAGE}
71 @end ifset
72 Version @value{GDBVN}.
73
74 @insertcopying
75 @end ifnottex
76
77 @titlepage
78 @title Debugging with @value{GDBN}
79 @subtitle The @sc{gnu} Source-Level Debugger
80 @sp 1
81 @subtitle @value{EDITION} Edition, for @value{GDBN} version @value{GDBVN}
82 @ifset VERSION_PACKAGE
83 @sp 1
84 @subtitle @value{VERSION_PACKAGE}
85 @end ifset
86 @author Richard Stallman, Roland Pesch, Stan Shebs, et al.
87 @page
88 @tex
89 {\parskip=0pt
90 \hfill (Send bugs and comments on @value{GDBN} to @value{BUGURL}.)\par
91 \hfill {\it Debugging with @value{GDBN}}\par
92 \hfill \TeX{}info \texinfoversion\par
93 }
94 @end tex
95
96 @vskip 0pt plus 1filll
97 Published by the Free Software Foundation @*
98 51 Franklin Street, Fifth Floor,
99 Boston, MA 02110-1301, USA@*
100 ISBN 978-0-9831592-3-0 @*
101
102 @insertcopying
103 @end titlepage
104 @page
105
106 @ifnottex
107 @node Top, Summary, (dir), (dir)
108
109 @top Debugging with @value{GDBN}
110
111 This file describes @value{GDBN}, the @sc{gnu} symbolic debugger.
112
113 This is the @value{EDITION} Edition, for @value{GDBN}
114 @ifset VERSION_PACKAGE
115 @value{VERSION_PACKAGE}
116 @end ifset
117 Version @value{GDBVN}.
118
119 Copyright (C) 1988-2010 Free Software Foundation, Inc.
120
121 This edition of the GDB manual is dedicated to the memory of Fred
122 Fish.  Fred was a long-standing contributor to GDB and to Free
123 software in general.  We will miss him.
124
125 @menu
126 * Summary::                     Summary of @value{GDBN}
127 * Sample Session::              A sample @value{GDBN} session
128
129 * Invocation::                  Getting in and out of @value{GDBN}
130 * Commands::                    @value{GDBN} commands
131 * Running::                     Running programs under @value{GDBN}
132 * Stopping::                    Stopping and continuing
133 * Reverse Execution::           Running programs backward
134 * Process Record and Replay::   Recording inferior's execution and replaying it
135 * Stack::                       Examining the stack
136 * Source::                      Examining source files
137 * Data::                        Examining data
138 * Optimized Code::              Debugging optimized code
139 * Macros::                      Preprocessor Macros
140 * Tracepoints::                 Debugging remote targets non-intrusively
141 * Overlays::                    Debugging programs that use overlays
142
143 * Languages::                   Using @value{GDBN} with different languages
144
145 * Symbols::                     Examining the symbol table
146 * Altering::                    Altering execution
147 * GDB Files::                   @value{GDBN} files
148 * Targets::                     Specifying a debugging target
149 * Remote Debugging::            Debugging remote programs
150 * Configurations::              Configuration-specific information
151 * Controlling GDB::             Controlling @value{GDBN}
152 * Extending GDB::               Extending @value{GDBN}
153 * Interpreters::                Command Interpreters
154 * TUI::                         @value{GDBN} Text User Interface
155 * Emacs::                       Using @value{GDBN} under @sc{gnu} Emacs
156 * GDB/MI::                      @value{GDBN}'s Machine Interface.
157 * Annotations::                 @value{GDBN}'s annotation interface.
158 * JIT Interface::               Using the JIT debugging interface.
159
160 * GDB Bugs::                    Reporting bugs in @value{GDBN}
161
162 @ifset SYSTEM_READLINE
163 * Command Line Editing: (rluserman).         Command Line Editing
164 * Using History Interactively: (history).    Using History Interactively
165 @end ifset
166 @ifclear SYSTEM_READLINE
167 * Command Line Editing::        Command Line Editing
168 * Using History Interactively:: Using History Interactively
169 @end ifclear
170 * In Memoriam::                 In Memoriam
171 * Formatting Documentation::    How to format and print @value{GDBN} documentation
172 * Installing GDB::              Installing GDB
173 * Maintenance Commands::        Maintenance Commands
174 * Remote Protocol::             GDB Remote Serial Protocol
175 * Agent Expressions::           The GDB Agent Expression Mechanism
176 * Target Descriptions::         How targets can describe themselves to
177                                 @value{GDBN}
178 * Operating System Information:: Getting additional information from
179                                  the operating system
180 * Trace File Format::           GDB trace file format
181 * Index Section Format::        .gdb_index section format
182 * Copying::                     GNU General Public License says
183                                 how you can copy and share GDB
184 * GNU Free Documentation License::  The license for this documentation
185 * Index::                       Index
186 @end menu
187
188 @end ifnottex
189
190 @contents
191
192 @node Summary
193 @unnumbered Summary of @value{GDBN}
194
195 The purpose of a debugger such as @value{GDBN} is to allow you to see what is
196 going on ``inside'' another program while it executes---or what another
197 program was doing at the moment it crashed.
198
199 @value{GDBN} can do four main kinds of things (plus other things in support of
200 these) to help you catch bugs in the act:
201
202 @itemize @bullet
203 @item
204 Start your program, specifying anything that might affect its behavior.
205
206 @item
207 Make your program stop on specified conditions.
208
209 @item
210 Examine what has happened, when your program has stopped.
211
212 @item
213 Change things in your program, so you can experiment with correcting the
214 effects of one bug and go on to learn about another.
215 @end itemize
216
217 You can use @value{GDBN} to debug programs written in C and C@t{++}.
218 For more information, see @ref{Supported Languages,,Supported Languages}.
219 For more information, see @ref{C,,C and C++}.
220
221 Support for D is partial.  For information on D, see
222 @ref{D,,D}.
223
224 @cindex Modula-2
225 Support for Modula-2 is partial.  For information on Modula-2, see
226 @ref{Modula-2,,Modula-2}.
227
228 Support for OpenCL C is partial.  For information on OpenCL C, see
229 @ref{OpenCL C,,OpenCL C}.
230
231 @cindex Pascal
232 Debugging Pascal programs which use sets, subranges, file variables, or
233 nested functions does not currently work.  @value{GDBN} does not support
234 entering expressions, printing values, or similar features using Pascal
235 syntax.
236
237 @cindex Fortran
238 @value{GDBN} can be used to debug programs written in Fortran, although
239 it may be necessary to refer to some variables with a trailing
240 underscore.
241
242 @value{GDBN} can be used to debug programs written in Objective-C,
243 using either the Apple/NeXT or the GNU Objective-C runtime.
244
245 @menu
246 * Free Software::               Freely redistributable software
247 * Contributors::                Contributors to GDB
248 @end menu
249
250 @node Free Software
251 @unnumberedsec Free Software
252
253 @value{GDBN} is @dfn{free software}, protected by the @sc{gnu}
254 General Public License
255 (GPL).  The GPL gives you the freedom to copy or adapt a licensed
256 program---but every person getting a copy also gets with it the
257 freedom to modify that copy (which means that they must get access to
258 the source code), and the freedom to distribute further copies.
259 Typical software companies use copyrights to limit your freedoms; the
260 Free Software Foundation uses the GPL to preserve these freedoms.
261
262 Fundamentally, the General Public License is a license which says that
263 you have these freedoms and that you cannot take these freedoms away
264 from anyone else.
265
266 @unnumberedsec Free Software Needs Free Documentation
267
268 The biggest deficiency in the free software community today is not in
269 the software---it is the lack of good free documentation that we can
270 include with the free software.  Many of our most important
271 programs do not come with free reference manuals and free introductory
272 texts.  Documentation is an essential part of any software package;
273 when an important free software package does not come with a free
274 manual and a free tutorial, that is a major gap.  We have many such
275 gaps today.
276
277 Consider Perl, for instance.  The tutorial manuals that people
278 normally use are non-free.  How did this come about?  Because the
279 authors of those manuals published them with restrictive terms---no
280 copying, no modification, source files not available---which exclude
281 them from the free software world.
282
283 That wasn't the first time this sort of thing happened, and it was far
284 from the last.  Many times we have heard a GNU user eagerly describe a
285 manual that he is writing, his intended contribution to the community,
286 only to learn that he had ruined everything by signing a publication
287 contract to make it non-free.
288
289 Free documentation, like free software, is a matter of freedom, not
290 price.  The problem with the non-free manual is not that publishers
291 charge a price for printed copies---that in itself is fine.  (The Free
292 Software Foundation sells printed copies of manuals, too.)  The
293 problem is the restrictions on the use of the manual.  Free manuals
294 are available in source code form, and give you permission to copy and
295 modify.  Non-free manuals do not allow this.
296
297 The criteria of freedom for a free manual are roughly the same as for
298 free software.  Redistribution (including the normal kinds of
299 commercial redistribution) must be permitted, so that the manual can
300 accompany every copy of the program, both on-line and on paper.
301
302 Permission for modification of the technical content is crucial too.
303 When people modify the software, adding or changing features, if they
304 are conscientious they will change the manual too---so they can
305 provide accurate and clear documentation for the modified program.  A
306 manual that leaves you no choice but to write a new manual to document
307 a changed version of the program is not really available to our
308 community.
309
310 Some kinds of limits on the way modification is handled are
311 acceptable.  For example, requirements to preserve the original
312 author's copyright notice, the distribution terms, or the list of
313 authors, are ok.  It is also no problem to require modified versions
314 to include notice that they were modified.  Even entire sections that
315 may not be deleted or changed are acceptable, as long as they deal
316 with nontechnical topics (like this one).  These kinds of restrictions
317 are acceptable because they don't obstruct the community's normal use
318 of the manual.
319
320 However, it must be possible to modify all the @emph{technical}
321 content of the manual, and then distribute the result in all the usual
322 media, through all the usual channels.  Otherwise, the restrictions
323 obstruct the use of the manual, it is not free, and we need another
324 manual to replace it.
325
326 Please spread the word about this issue.  Our community continues to
327 lose manuals to proprietary publishing.  If we spread the word that
328 free software needs free reference manuals and free tutorials, perhaps
329 the next person who wants to contribute by writing documentation will
330 realize, before it is too late, that only free manuals contribute to
331 the free software community.
332
333 If you are writing documentation, please insist on publishing it under
334 the GNU Free Documentation License or another free documentation
335 license.  Remember that this decision requires your approval---you
336 don't have to let the publisher decide.  Some commercial publishers
337 will use a free license if you insist, but they will not propose the
338 option; it is up to you to raise the issue and say firmly that this is
339 what you want.  If the publisher you are dealing with refuses, please
340 try other publishers.  If you're not sure whether a proposed license
341 is free, write to @email{licensing@@gnu.org}.
342
343 You can encourage commercial publishers to sell more free, copylefted
344 manuals and tutorials by buying them, and particularly by buying
345 copies from the publishers that paid for their writing or for major
346 improvements.  Meanwhile, try to avoid buying non-free documentation
347 at all.  Check the distribution terms of a manual before you buy it,
348 and insist that whoever seeks your business must respect your freedom.
349 Check the history of the book, and try to reward the publishers that
350 have paid or pay the authors to work on it.
351
352 The Free Software Foundation maintains a list of free documentation
353 published by other publishers, at
354 @url{http://www.fsf.org/doc/other-free-books.html}.
355
356 @node Contributors
357 @unnumberedsec Contributors to @value{GDBN}
358
359 Richard Stallman was the original author of @value{GDBN}, and of many
360 other @sc{gnu} programs.  Many others have contributed to its
361 development.  This section attempts to credit major contributors.  One
362 of the virtues of free software is that everyone is free to contribute
363 to it; with regret, we cannot actually acknowledge everyone here.  The
364 file @file{ChangeLog} in the @value{GDBN} distribution approximates a
365 blow-by-blow account.
366
367 Changes much prior to version 2.0 are lost in the mists of time.
368
369 @quotation
370 @emph{Plea:} Additions to this section are particularly welcome.  If you
371 or your friends (or enemies, to be evenhanded) have been unfairly
372 omitted from this list, we would like to add your names!
373 @end quotation
374
375 So that they may not regard their many labors as thankless, we
376 particularly thank those who shepherded @value{GDBN} through major
377 releases:
378 Andrew Cagney (releases 6.3, 6.2, 6.1, 6.0, 5.3, 5.2, 5.1 and 5.0);
379 Jim Blandy (release 4.18);
380 Jason Molenda (release 4.17);
381 Stan Shebs (release 4.14);
382 Fred Fish (releases 4.16, 4.15, 4.13, 4.12, 4.11, 4.10, and 4.9);
383 Stu Grossman and John Gilmore (releases 4.8, 4.7, 4.6, 4.5, and 4.4);
384 John Gilmore (releases 4.3, 4.2, 4.1, 4.0, and 3.9);
385 Jim Kingdon (releases 3.5, 3.4, and 3.3);
386 and Randy Smith (releases 3.2, 3.1, and 3.0).
387
388 Richard Stallman, assisted at various times by Peter TerMaat, Chris
389 Hanson, and Richard Mlynarik, handled releases through 2.8.
390
391 Michael Tiemann is the author of most of the @sc{gnu} C@t{++} support
392 in @value{GDBN}, with significant additional contributions from Per
393 Bothner and Daniel Berlin.  James Clark wrote the @sc{gnu} C@t{++}
394 demangler.  Early work on C@t{++} was by Peter TerMaat (who also did
395 much general update work leading to release 3.0).
396
397 @value{GDBN} uses the BFD subroutine library to examine multiple
398 object-file formats; BFD was a joint project of David V.
399 Henkel-Wallace, Rich Pixley, Steve Chamberlain, and John Gilmore.
400
401 David Johnson wrote the original COFF support; Pace Willison did
402 the original support for encapsulated COFF.
403
404 Brent Benson of Harris Computer Systems contributed DWARF 2 support.
405
406 Adam de Boor and Bradley Davis contributed the ISI Optimum V support.
407 Per Bothner, Noboyuki Hikichi, and Alessandro Forin contributed MIPS
408 support.
409 Jean-Daniel Fekete contributed Sun 386i support.
410 Chris Hanson improved the HP9000 support.
411 Noboyuki Hikichi and Tomoyuki Hasei contributed Sony/News OS 3 support.
412 David Johnson contributed Encore Umax support.
413 Jyrki Kuoppala contributed Altos 3068 support.
414 Jeff Law contributed HP PA and SOM support.
415 Keith Packard contributed NS32K support.
416 Doug Rabson contributed Acorn Risc Machine support.
417 Bob Rusk contributed Harris Nighthawk CX-UX support.
418 Chris Smith contributed Convex support (and Fortran debugging).
419 Jonathan Stone contributed Pyramid support.
420 Michael Tiemann contributed SPARC support.
421 Tim Tucker contributed support for the Gould NP1 and Gould Powernode.
422 Pace Willison contributed Intel 386 support.
423 Jay Vosburgh contributed Symmetry support.
424 Marko Mlinar contributed OpenRISC 1000 support.
425
426 Andreas Schwab contributed M68K @sc{gnu}/Linux support.
427
428 Rich Schaefer and Peter Schauer helped with support of SunOS shared
429 libraries.
430
431 Jay Fenlason and Roland McGrath ensured that @value{GDBN} and GAS agree
432 about several machine instruction sets.
433
434 Patrick Duval, Ted Goldstein, Vikram Koka and Glenn Engel helped develop
435 remote debugging.  Intel Corporation, Wind River Systems, AMD, and ARM
436 contributed remote debugging modules for the i960, VxWorks, A29K UDI,
437 and RDI targets, respectively.
438
439 Brian Fox is the author of the readline libraries providing
440 command-line editing and command history.
441
442 Andrew Beers of SUNY Buffalo wrote the language-switching code, the
443 Modula-2 support, and contributed the Languages chapter of this manual.
444
445 Fred Fish wrote most of the support for Unix System Vr4.
446 He also enhanced the command-completion support to cover C@t{++} overloaded
447 symbols.
448
449 Hitachi America (now Renesas America), Ltd. sponsored the support for
450 H8/300, H8/500, and Super-H processors.
451
452 NEC sponsored the support for the v850, Vr4xxx, and Vr5xxx processors.
453
454 Mitsubishi (now Renesas) sponsored the support for D10V, D30V, and M32R/D
455 processors.
456
457 Toshiba sponsored the support for the TX39 Mips processor.
458
459 Matsushita sponsored the support for the MN10200 and MN10300 processors.
460
461 Fujitsu sponsored the support for SPARClite and FR30 processors.
462
463 Kung Hsu, Jeff Law, and Rick Sladkey added support for hardware
464 watchpoints.
465
466 Michael Snyder added support for tracepoints.
467
468 Stu Grossman wrote gdbserver.
469
470 Jim Kingdon, Peter Schauer, Ian Taylor, and Stu Grossman made
471 nearly innumerable bug fixes and cleanups throughout @value{GDBN}.
472
473 The following people at the Hewlett-Packard Company contributed
474 support for the PA-RISC 2.0 architecture, HP-UX 10.20, 10.30, and 11.0
475 (narrow mode), HP's implementation of kernel threads, HP's aC@t{++}
476 compiler, and the Text User Interface (nee Terminal User Interface):
477 Ben Krepp, Richard Title, John Bishop, Susan Macchia, Kathy Mann,
478 Satish Pai, India Paul, Steve Rehrauer, and Elena Zannoni.  Kim Haase
479 provided HP-specific information in this manual.
480
481 DJ Delorie ported @value{GDBN} to MS-DOS, for the DJGPP project.
482 Robert Hoehne made significant contributions to the DJGPP port.
483
484 Cygnus Solutions has sponsored @value{GDBN} maintenance and much of its
485 development since 1991.  Cygnus engineers who have worked on @value{GDBN}
486 fulltime include Mark Alexander, Jim Blandy, Per Bothner, Kevin
487 Buettner, Edith Epstein, Chris Faylor, Fred Fish, Martin Hunt, Jim
488 Ingham, John Gilmore, Stu Grossman, Kung Hsu, Jim Kingdon, John Metzler,
489 Fernando Nasser, Geoffrey Noer, Dawn Perchik, Rich Pixley, Zdenek
490 Radouch, Keith Seitz, Stan Shebs, David Taylor, and Elena Zannoni.  In
491 addition, Dave Brolley, Ian Carmichael, Steve Chamberlain, Nick Clifton,
492 JT Conklin, Stan Cox, DJ Delorie, Ulrich Drepper, Frank Eigler, Doug
493 Evans, Sean Fagan, David Henkel-Wallace, Richard Henderson, Jeff
494 Holcomb, Jeff Law, Jim Lemke, Tom Lord, Bob Manson, Michael Meissner,
495 Jason Merrill, Catherine Moore, Drew Moseley, Ken Raeburn, Gavin
496 Romig-Koch, Rob Savoye, Jamie Smith, Mike Stump, Ian Taylor, Angela
497 Thomas, Michael Tiemann, Tom Tromey, Ron Unrau, Jim Wilson, and David
498 Zuhn have made contributions both large and small.
499
500 Andrew Cagney, Fernando Nasser, and Elena Zannoni, while working for
501 Cygnus Solutions, implemented the original @sc{gdb/mi} interface.
502
503 Jim Blandy added support for preprocessor macros, while working for Red
504 Hat.
505
506 Andrew Cagney designed @value{GDBN}'s architecture vector.  Many
507 people including Andrew Cagney, Stephane Carrez, Randolph Chung, Nick
508 Duffek, Richard Henderson, Mark Kettenis, Grace Sainsbury, Kei
509 Sakamoto, Yoshinori Sato, Michael Snyder, Andreas Schwab, Jason
510 Thorpe, Corinna Vinschen, Ulrich Weigand, and Elena Zannoni, helped
511 with the migration of old architectures to this new framework.
512
513 Andrew Cagney completely re-designed and re-implemented @value{GDBN}'s
514 unwinder framework, this consisting of a fresh new design featuring
515 frame IDs, independent frame sniffers, and the sentinel frame.  Mark
516 Kettenis implemented the @sc{dwarf 2} unwinder, Jeff Johnston the
517 libunwind unwinder, and Andrew Cagney the dummy, sentinel, tramp, and
518 trad unwinders.  The architecture-specific changes, each involving a
519 complete rewrite of the architecture's frame code, were carried out by
520 Jim Blandy, Joel Brobecker, Kevin Buettner, Andrew Cagney, Stephane
521 Carrez, Randolph Chung, Orjan Friberg, Richard Henderson, Daniel
522 Jacobowitz, Jeff Johnston, Mark Kettenis, Theodore A. Roth, Kei
523 Sakamoto, Yoshinori Sato, Michael Snyder, Corinna Vinschen, and Ulrich
524 Weigand.
525
526 Christian Zankel, Ross Morley, Bob Wilson, and Maxim Grigoriev from
527 Tensilica, Inc.@: contributed support for Xtensa processors.  Others
528 who have worked on the Xtensa port of @value{GDBN} in the past include
529 Steve Tjiang, John Newlin, and Scott Foehner.
530
531 Michael Eager and staff of Xilinx, Inc., contributed support for the
532 Xilinx MicroBlaze architecture.
533
534 @node Sample Session
535 @chapter A Sample @value{GDBN} Session
536
537 You can use this manual at your leisure to read all about @value{GDBN}.
538 However, a handful of commands are enough to get started using the
539 debugger.  This chapter illustrates those commands.
540
541 @iftex
542 In this sample session, we emphasize user input like this: @b{input},
543 to make it easier to pick out from the surrounding output.
544 @end iftex
545
546 @c FIXME: this example may not be appropriate for some configs, where
547 @c FIXME...primary interest is in remote use.
548
549 One of the preliminary versions of @sc{gnu} @code{m4} (a generic macro
550 processor) exhibits the following bug: sometimes, when we change its
551 quote strings from the default, the commands used to capture one macro
552 definition within another stop working.  In the following short @code{m4}
553 session, we define a macro @code{foo} which expands to @code{0000}; we
554 then use the @code{m4} built-in @code{defn} to define @code{bar} as the
555 same thing.  However, when we change the open quote string to
556 @code{<QUOTE>} and the close quote string to @code{<UNQUOTE>}, the same
557 procedure fails to define a new synonym @code{baz}:
558
559 @smallexample
560 $ @b{cd gnu/m4}
561 $ @b{./m4}
562 @b{define(foo,0000)}
563
564 @b{foo}
565 0000
566 @b{define(bar,defn(`foo'))}
567
568 @b{bar}
569 0000
570 @b{changequote(<QUOTE>,<UNQUOTE>)}
571
572 @b{define(baz,defn(<QUOTE>foo<UNQUOTE>))}
573 @b{baz}
574 @b{Ctrl-d}
575 m4: End of input: 0: fatal error: EOF in string
576 @end smallexample
577
578 @noindent
579 Let us use @value{GDBN} to try to see what is going on.
580
581 @smallexample
582 $ @b{@value{GDBP} m4}
583 @c FIXME: this falsifies the exact text played out, to permit smallbook
584 @c FIXME... format to come out better.
585 @value{GDBN} is free software and you are welcome to distribute copies
586  of it under certain conditions; type "show copying" to see
587  the conditions.
588 There is absolutely no warranty for @value{GDBN}; type "show warranty"
589  for details.
590
591 @value{GDBN} @value{GDBVN}, Copyright 1999 Free Software Foundation, Inc...
592 (@value{GDBP})
593 @end smallexample
594
595 @noindent
596 @value{GDBN} reads only enough symbol data to know where to find the
597 rest when needed; as a result, the first prompt comes up very quickly.
598 We now tell @value{GDBN} to use a narrower display width than usual, so
599 that examples fit in this manual.
600
601 @smallexample
602 (@value{GDBP}) @b{set width 70}
603 @end smallexample
604
605 @noindent
606 We need to see how the @code{m4} built-in @code{changequote} works.
607 Having looked at the source, we know the relevant subroutine is
608 @code{m4_changequote}, so we set a breakpoint there with the @value{GDBN}
609 @code{break} command.
610
611 @smallexample
612 (@value{GDBP}) @b{break m4_changequote}
613 Breakpoint 1 at 0x62f4: file builtin.c, line 879.
614 @end smallexample
615
616 @noindent
617 Using the @code{run} command, we start @code{m4} running under @value{GDBN}
618 control; as long as control does not reach the @code{m4_changequote}
619 subroutine, the program runs as usual:
620
621 @smallexample
622 (@value{GDBP}) @b{run}
623 Starting program: /work/Editorial/gdb/gnu/m4/m4
624 @b{define(foo,0000)}
625
626 @b{foo}
627 0000
628 @end smallexample
629
630 @noindent
631 To trigger the breakpoint, we call @code{changequote}.  @value{GDBN}
632 suspends execution of @code{m4}, displaying information about the
633 context where it stops.
634
635 @smallexample
636 @b{changequote(<QUOTE>,<UNQUOTE>)}
637
638 Breakpoint 1, m4_changequote (argc=3, argv=0x33c70)
639     at builtin.c:879
640 879         if (bad_argc(TOKEN_DATA_TEXT(argv[0]),argc,1,3))
641 @end smallexample
642
643 @noindent
644 Now we use the command @code{n} (@code{next}) to advance execution to
645 the next line of the current function.
646
647 @smallexample
648 (@value{GDBP}) @b{n}
649 882         set_quotes((argc >= 2) ? TOKEN_DATA_TEXT(argv[1])\
650  : nil,
651 @end smallexample
652
653 @noindent
654 @code{set_quotes} looks like a promising subroutine.  We can go into it
655 by using the command @code{s} (@code{step}) instead of @code{next}.
656 @code{step} goes to the next line to be executed in @emph{any}
657 subroutine, so it steps into @code{set_quotes}.
658
659 @smallexample
660 (@value{GDBP}) @b{s}
661 set_quotes (lq=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")
662     at input.c:530
663 530         if (lquote != def_lquote)
664 @end smallexample
665
666 @noindent
667 The display that shows the subroutine where @code{m4} is now
668 suspended (and its arguments) is called a stack frame display.  It
669 shows a summary of the stack.  We can use the @code{backtrace}
670 command (which can also be spelled @code{bt}), to see where we are
671 in the stack as a whole: the @code{backtrace} command displays a
672 stack frame for each active subroutine.
673
674 @smallexample
675 (@value{GDBP}) @b{bt}
676 #0  set_quotes (lq=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")
677     at input.c:530
678 #1  0x6344 in m4_changequote (argc=3, argv=0x33c70)
679     at builtin.c:882
680 #2  0x8174 in expand_macro (sym=0x33320) at macro.c:242
681 #3  0x7a88 in expand_token (obs=0x0, t=209696, td=0xf7fffa30)
682     at macro.c:71
683 #4  0x79dc in expand_input () at macro.c:40
684 #5  0x2930 in main (argc=0, argv=0xf7fffb20) at m4.c:195
685 @end smallexample
686
687 @noindent
688 We step through a few more lines to see what happens.  The first two
689 times, we can use @samp{s}; the next two times we use @code{n} to avoid
690 falling into the @code{xstrdup} subroutine.
691
692 @smallexample
693 (@value{GDBP}) @b{s}
694 0x3b5c  532         if (rquote != def_rquote)
695 (@value{GDBP}) @b{s}
696 0x3b80  535         lquote = (lq == nil || *lq == '\0') ?  \
697 def_lquote : xstrdup(lq);
698 (@value{GDBP}) @b{n}
699 536         rquote = (rq == nil || *rq == '\0') ? def_rquote\
700  : xstrdup(rq);
701 (@value{GDBP}) @b{n}
702 538         len_lquote = strlen(rquote);
703 @end smallexample
704
705 @noindent
706 The last line displayed looks a little odd; we can examine the variables
707 @code{lquote} and @code{rquote} to see if they are in fact the new left
708 and right quotes we specified.  We use the command @code{p}
709 (@code{print}) to see their values.
710
711 @smallexample
712 (@value{GDBP}) @b{p lquote}
713 $1 = 0x35d40 "<QUOTE>"
714 (@value{GDBP}) @b{p rquote}
715 $2 = 0x35d50 "<UNQUOTE>"
716 @end smallexample
717
718 @noindent
719 @code{lquote} and @code{rquote} are indeed the new left and right quotes.
720 To look at some context, we can display ten lines of source
721 surrounding the current line with the @code{l} (@code{list}) command.
722
723 @smallexample
724 (@value{GDBP}) @b{l}
725 533             xfree(rquote);
726 534
727 535         lquote = (lq == nil || *lq == '\0') ? def_lquote\
728  : xstrdup (lq);
729 536         rquote = (rq == nil || *rq == '\0') ? def_rquote\
730  : xstrdup (rq);
731 537
732 538         len_lquote = strlen(rquote);
733 539         len_rquote = strlen(lquote);
734 540     @}
735 541
736 542     void
737 @end smallexample
738
739 @noindent
740 Let us step past the two lines that set @code{len_lquote} and
741 @code{len_rquote}, and then examine the values of those variables.
742
743 @smallexample
744 (@value{GDBP}) @b{n}
745 539         len_rquote = strlen(lquote);
746 (@value{GDBP}) @b{n}
747 540     @}
748 (@value{GDBP}) @b{p len_lquote}
749 $3 = 9
750 (@value{GDBP}) @b{p len_rquote}
751 $4 = 7
752 @end smallexample
753
754 @noindent
755 That certainly looks wrong, assuming @code{len_lquote} and
756 @code{len_rquote} are meant to be the lengths of @code{lquote} and
757 @code{rquote} respectively.  We can set them to better values using
758 the @code{p} command, since it can print the value of
759 any expression---and that expression can include subroutine calls and
760 assignments.
761
762 @smallexample
763 (@value{GDBP}) @b{p len_lquote=strlen(lquote)}
764 $5 = 7
765 (@value{GDBP}) @b{p len_rquote=strlen(rquote)}
766 $6 = 9
767 @end smallexample
768
769 @noindent
770 Is that enough to fix the problem of using the new quotes with the
771 @code{m4} built-in @code{defn}?  We can allow @code{m4} to continue
772 executing with the @code{c} (@code{continue}) command, and then try the
773 example that caused trouble initially:
774
775 @smallexample
776 (@value{GDBP}) @b{c}
777 Continuing.
778
779 @b{define(baz,defn(<QUOTE>foo<UNQUOTE>))}
780
781 baz
782 0000
783 @end smallexample
784
785 @noindent
786 Success!  The new quotes now work just as well as the default ones.  The
787 problem seems to have been just the two typos defining the wrong
788 lengths.  We allow @code{m4} exit by giving it an EOF as input:
789
790 @smallexample
791 @b{Ctrl-d}
792 Program exited normally.
793 @end smallexample
794
795 @noindent
796 The message @samp{Program exited normally.} is from @value{GDBN}; it
797 indicates @code{m4} has finished executing.  We can end our @value{GDBN}
798 session with the @value{GDBN} @code{quit} command.
799
800 @smallexample
801 (@value{GDBP}) @b{quit}
802 @end smallexample
803
804 @node Invocation
805 @chapter Getting In and Out of @value{GDBN}
806
807 This chapter discusses how to start @value{GDBN}, and how to get out of it.
808 The essentials are:
809 @itemize @bullet
810 @item
811 type @samp{@value{GDBP}} to start @value{GDBN}.
812 @item
813 type @kbd{quit} or @kbd{Ctrl-d} to exit.
814 @end itemize
815
816 @menu
817 * Invoking GDB::                How to start @value{GDBN}
818 * Quitting GDB::                How to quit @value{GDBN}
819 * Shell Commands::              How to use shell commands inside @value{GDBN}
820 * Logging Output::              How to log @value{GDBN}'s output to a file
821 @end menu
822
823 @node Invoking GDB
824 @section Invoking @value{GDBN}
825
826 Invoke @value{GDBN} by running the program @code{@value{GDBP}}.  Once started,
827 @value{GDBN} reads commands from the terminal until you tell it to exit.
828
829 You can also run @code{@value{GDBP}} with a variety of arguments and options,
830 to specify more of your debugging environment at the outset.
831
832 The command-line options described here are designed
833 to cover a variety of situations; in some environments, some of these
834 options may effectively be unavailable.
835
836 The most usual way to start @value{GDBN} is with one argument,
837 specifying an executable program:
838
839 @smallexample
840 @value{GDBP} @var{program}
841 @end smallexample
842
843 @noindent
844 You can also start with both an executable program and a core file
845 specified:
846
847 @smallexample
848 @value{GDBP} @var{program} @var{core}
849 @end smallexample
850
851 You can, instead, specify a process ID as a second argument, if you want
852 to debug a running process:
853
854 @smallexample
855 @value{GDBP} @var{program} 1234
856 @end smallexample
857
858 @noindent
859 would attach @value{GDBN} to process @code{1234} (unless you also have a file
860 named @file{1234}; @value{GDBN} does check for a core file first).
861
862 Taking advantage of the second command-line argument requires a fairly
863 complete operating system; when you use @value{GDBN} as a remote
864 debugger attached to a bare board, there may not be any notion of
865 ``process'', and there is often no way to get a core dump.  @value{GDBN}
866 will warn you if it is unable to attach or to read core dumps.
867
868 You can optionally have @code{@value{GDBP}} pass any arguments after the
869 executable file to the inferior using @code{--args}.  This option stops
870 option processing.
871 @smallexample
872 @value{GDBP} --args gcc -O2 -c foo.c
873 @end smallexample
874 This will cause @code{@value{GDBP}} to debug @code{gcc}, and to set
875 @code{gcc}'s command-line arguments (@pxref{Arguments}) to @samp{-O2 -c foo.c}.
876
877 You can run @code{@value{GDBP}} without printing the front material, which describes
878 @value{GDBN}'s non-warranty, by specifying @code{-silent}:
879
880 @smallexample
881 @value{GDBP} -silent
882 @end smallexample
883
884 @noindent
885 You can further control how @value{GDBN} starts up by using command-line
886 options.  @value{GDBN} itself can remind you of the options available.
887
888 @noindent
889 Type
890
891 @smallexample
892 @value{GDBP} -help
893 @end smallexample
894
895 @noindent
896 to display all available options and briefly describe their use
897 (@samp{@value{GDBP} -h} is a shorter equivalent).
898
899 All options and command line arguments you give are processed
900 in sequential order.  The order makes a difference when the
901 @samp{-x} option is used.
902
903
904 @menu
905 * File Options::                Choosing files
906 * Mode Options::                Choosing modes
907 * Startup::                     What @value{GDBN} does during startup
908 @end menu
909
910 @node File Options
911 @subsection Choosing Files
912
913 When @value{GDBN} starts, it reads any arguments other than options as
914 specifying an executable file and core file (or process ID).  This is
915 the same as if the arguments were specified by the @samp{-se} and
916 @samp{-c} (or @samp{-p}) options respectively.  (@value{GDBN} reads the
917 first argument that does not have an associated option flag as
918 equivalent to the @samp{-se} option followed by that argument; and the
919 second argument that does not have an associated option flag, if any, as
920 equivalent to the @samp{-c}/@samp{-p} option followed by that argument.)
921 If the second argument begins with a decimal digit, @value{GDBN} will
922 first attempt to attach to it as a process, and if that fails, attempt
923 to open it as a corefile.  If you have a corefile whose name begins with
924 a digit, you can prevent @value{GDBN} from treating it as a pid by
925 prefixing it with @file{./}, e.g.@: @file{./12345}.
926
927 If @value{GDBN} has not been configured to included core file support,
928 such as for most embedded targets, then it will complain about a second
929 argument and ignore it.
930
931 Many options have both long and short forms; both are shown in the
932 following list.  @value{GDBN} also recognizes the long forms if you truncate
933 them, so long as enough of the option is present to be unambiguous.
934 (If you prefer, you can flag option arguments with @samp{--} rather
935 than @samp{-}, though we illustrate the more usual convention.)
936
937 @c NOTE: the @cindex entries here use double dashes ON PURPOSE.  This
938 @c way, both those who look for -foo and --foo in the index, will find
939 @c it.
940
941 @table @code
942 @item -symbols @var{file}
943 @itemx -s @var{file}
944 @cindex @code{--symbols}
945 @cindex @code{-s}
946 Read symbol table from file @var{file}.
947
948 @item -exec @var{file}
949 @itemx -e @var{file}
950 @cindex @code{--exec}
951 @cindex @code{-e}
952 Use file @var{file} as the executable file to execute when appropriate,
953 and for examining pure data in conjunction with a core dump.
954
955 @item -se @var{file}
956 @cindex @code{--se}
957 Read symbol table from file @var{file} and use it as the executable
958 file.
959
960 @item -core @var{file}
961 @itemx -c @var{file}
962 @cindex @code{--core}
963 @cindex @code{-c}
964 Use file @var{file} as a core dump to examine.
965
966 @item -pid @var{number}
967 @itemx -p @var{number}
968 @cindex @code{--pid}
969 @cindex @code{-p}
970 Connect to process ID @var{number}, as with the @code{attach} command.
971
972 @item -command @var{file}
973 @itemx -x @var{file}
974 @cindex @code{--command}
975 @cindex @code{-x}
976 Execute commands from file @var{file}.  The contents of this file is
977 evaluated exactly as the @code{source} command would.
978 @xref{Command Files,, Command files}.
979
980 @item -eval-command @var{command}
981 @itemx -ex @var{command}
982 @cindex @code{--eval-command}
983 @cindex @code{-ex}
984 Execute a single @value{GDBN} command.
985
986 This option may be used multiple times to call multiple commands.  It may
987 also be interleaved with @samp{-command} as required.
988
989 @smallexample
990 @value{GDBP} -ex 'target sim' -ex 'load' \
991    -x setbreakpoints -ex 'run' a.out
992 @end smallexample
993
994 @item -directory @var{directory}
995 @itemx -d @var{directory}
996 @cindex @code{--directory}
997 @cindex @code{-d}
998 Add @var{directory} to the path to search for source and script files.
999
1000 @item -r
1001 @itemx -readnow
1002 @cindex @code{--readnow}
1003 @cindex @code{-r}
1004 Read each symbol file's entire symbol table immediately, rather than
1005 the default, which is to read it incrementally as it is needed.
1006 This makes startup slower, but makes future operations faster.
1007
1008 @end table
1009
1010 @node Mode Options
1011 @subsection Choosing Modes
1012
1013 You can run @value{GDBN} in various alternative modes---for example, in
1014 batch mode or quiet mode.
1015
1016 @table @code
1017 @item -nx
1018 @itemx -n
1019 @cindex @code{--nx}
1020 @cindex @code{-n}
1021 Do not execute commands found in any initialization files.  Normally,
1022 @value{GDBN} executes the commands in these files after all the command
1023 options and arguments have been processed.  @xref{Command Files,,Command
1024 Files}.
1025
1026 @item -quiet
1027 @itemx -silent
1028 @itemx -q
1029 @cindex @code{--quiet}
1030 @cindex @code{--silent}
1031 @cindex @code{-q}
1032 ``Quiet''.  Do not print the introductory and copyright messages.  These
1033 messages are also suppressed in batch mode.
1034
1035 @item -batch
1036 @cindex @code{--batch}
1037 Run in batch mode.  Exit with status @code{0} after processing all the
1038 command files specified with @samp{-x} (and all commands from
1039 initialization files, if not inhibited with @samp{-n}).  Exit with
1040 nonzero status if an error occurs in executing the @value{GDBN} commands
1041 in the command files.  Batch mode also disables pagination, sets unlimited
1042 terminal width and height @pxref{Screen Size}, and acts as if @kbd{set confirm
1043 off} were in effect (@pxref{Messages/Warnings}).
1044
1045 Batch mode may be useful for running @value{GDBN} as a filter, for
1046 example to download and run a program on another computer; in order to
1047 make this more useful, the message
1048
1049 @smallexample
1050 Program exited normally.
1051 @end smallexample
1052
1053 @noindent
1054 (which is ordinarily issued whenever a program running under
1055 @value{GDBN} control terminates) is not issued when running in batch
1056 mode.
1057
1058 @item -batch-silent
1059 @cindex @code{--batch-silent}
1060 Run in batch mode exactly like @samp{-batch}, but totally silently.  All
1061 @value{GDBN} output to @code{stdout} is prevented (@code{stderr} is
1062 unaffected).  This is much quieter than @samp{-silent} and would be useless
1063 for an interactive session.
1064
1065 This is particularly useful when using targets that give @samp{Loading section}
1066 messages, for example.
1067
1068 Note that targets that give their output via @value{GDBN}, as opposed to
1069 writing directly to @code{stdout}, will also be made silent.
1070
1071 @item -return-child-result
1072 @cindex @code{--return-child-result}
1073 The return code from @value{GDBN} will be the return code from the child
1074 process (the process being debugged), with the following exceptions:
1075
1076 @itemize @bullet
1077 @item
1078 @value{GDBN} exits abnormally.  E.g., due to an incorrect argument or an
1079 internal error.  In this case the exit code is the same as it would have been
1080 without @samp{-return-child-result}.
1081 @item
1082 The user quits with an explicit value.  E.g., @samp{quit 1}.
1083 @item
1084 The child process never runs, or is not allowed to terminate, in which case
1085 the exit code will be -1.
1086 @end itemize
1087
1088 This option is useful in conjunction with @samp{-batch} or @samp{-batch-silent},
1089 when @value{GDBN} is being used as a remote program loader or simulator
1090 interface.
1091
1092 @item -nowindows
1093 @itemx -nw
1094 @cindex @code{--nowindows}
1095 @cindex @code{-nw}
1096 ``No windows''.  If @value{GDBN} comes with a graphical user interface
1097 (GUI) built in, then this option tells @value{GDBN} to only use the command-line
1098 interface.  If no GUI is available, this option has no effect.
1099
1100 @item -windows
1101 @itemx -w
1102 @cindex @code{--windows}
1103 @cindex @code{-w}
1104 If @value{GDBN} includes a GUI, then this option requires it to be
1105 used if possible.
1106
1107 @item -cd @var{directory}
1108 @cindex @code{--cd}
1109 Run @value{GDBN} using @var{directory} as its working directory,
1110 instead of the current directory.
1111
1112 @item -data-directory @var{directory}
1113 @cindex @code{--data-directory}
1114 Run @value{GDBN} using @var{directory} as its data directory.
1115 The data directory is where @value{GDBN} searches for its
1116 auxiliary files.  @xref{Data Files}.
1117
1118 @item -fullname
1119 @itemx -f
1120 @cindex @code{--fullname}
1121 @cindex @code{-f}
1122 @sc{gnu} Emacs sets this option when it runs @value{GDBN} as a
1123 subprocess.  It tells @value{GDBN} to output the full file name and line
1124 number in a standard, recognizable fashion each time a stack frame is
1125 displayed (which includes each time your program stops).  This
1126 recognizable format looks like two @samp{\032} characters, followed by
1127 the file name, line number and character position separated by colons,
1128 and a newline.  The Emacs-to-@value{GDBN} interface program uses the two
1129 @samp{\032} characters as a signal to display the source code for the
1130 frame.
1131
1132 @item -epoch
1133 @cindex @code{--epoch}
1134 The Epoch Emacs-@value{GDBN} interface sets this option when it runs
1135 @value{GDBN} as a subprocess.  It tells @value{GDBN} to modify its print
1136 routines so as to allow Epoch to display values of expressions in a
1137 separate window.
1138
1139 @item -annotate @var{level}
1140 @cindex @code{--annotate}
1141 This option sets the @dfn{annotation level} inside @value{GDBN}.  Its
1142 effect is identical to using @samp{set annotate @var{level}}
1143 (@pxref{Annotations}).  The annotation @var{level} controls how much
1144 information @value{GDBN} prints together with its prompt, values of
1145 expressions, source lines, and other types of output.  Level 0 is the
1146 normal, level 1 is for use when @value{GDBN} is run as a subprocess of
1147 @sc{gnu} Emacs, level 3 is the maximum annotation suitable for programs
1148 that control @value{GDBN}, and level 2 has been deprecated.
1149
1150 The annotation mechanism has largely been superseded by @sc{gdb/mi}
1151 (@pxref{GDB/MI}).
1152
1153 @item --args
1154 @cindex @code{--args}
1155 Change interpretation of command line so that arguments following the
1156 executable file are passed as command line arguments to the inferior.
1157 This option stops option processing.
1158
1159 @item -baud @var{bps}
1160 @itemx -b @var{bps}
1161 @cindex @code{--baud}
1162 @cindex @code{-b}
1163 Set the line speed (baud rate or bits per second) of any serial
1164 interface used by @value{GDBN} for remote debugging.
1165
1166 @item -l @var{timeout}
1167 @cindex @code{-l}
1168 Set the timeout (in seconds) of any communication used by @value{GDBN}
1169 for remote debugging.
1170
1171 @item -tty @var{device}
1172 @itemx -t @var{device}
1173 @cindex @code{--tty}
1174 @cindex @code{-t}
1175 Run using @var{device} for your program's standard input and output.
1176 @c FIXME: kingdon thinks there is more to -tty.  Investigate.
1177
1178 @c resolve the situation of these eventually
1179 @item -tui
1180 @cindex @code{--tui}
1181 Activate the @dfn{Text User Interface} when starting.  The Text User
1182 Interface manages several text windows on the terminal, showing
1183 source, assembly, registers and @value{GDBN} command outputs
1184 (@pxref{TUI, ,@value{GDBN} Text User Interface}).  Alternatively, the
1185 Text User Interface can be enabled by invoking the program
1186 @samp{@value{GDBTUI}}.  Do not use this option if you run @value{GDBN} from
1187 Emacs (@pxref{Emacs, ,Using @value{GDBN} under @sc{gnu} Emacs}).
1188
1189 @c @item -xdb
1190 @c @cindex @code{--xdb}
1191 @c Run in XDB compatibility mode, allowing the use of certain XDB commands.
1192 @c For information, see the file @file{xdb_trans.html}, which is usually
1193 @c installed in the directory @code{/opt/langtools/wdb/doc} on HP-UX
1194 @c systems.
1195
1196 @item -interpreter @var{interp}
1197 @cindex @code{--interpreter}
1198 Use the interpreter @var{interp} for interface with the controlling
1199 program or device.  This option is meant to be set by programs which
1200 communicate with @value{GDBN} using it as a back end.
1201 @xref{Interpreters, , Command Interpreters}.
1202
1203 @samp{--interpreter=mi} (or @samp{--interpreter=mi2}) causes
1204 @value{GDBN} to use the @dfn{@sc{gdb/mi} interface} (@pxref{GDB/MI, ,
1205 The @sc{gdb/mi} Interface}) included since @value{GDBN} version 6.0.  The
1206 previous @sc{gdb/mi} interface, included in @value{GDBN} version 5.3 and
1207 selected with @samp{--interpreter=mi1}, is deprecated.  Earlier
1208 @sc{gdb/mi} interfaces are no longer supported.
1209
1210 @item -write
1211 @cindex @code{--write}
1212 Open the executable and core files for both reading and writing.  This
1213 is equivalent to the @samp{set write on} command inside @value{GDBN}
1214 (@pxref{Patching}).
1215
1216 @item -statistics
1217 @cindex @code{--statistics}
1218 This option causes @value{GDBN} to print statistics about time and
1219 memory usage after it completes each command and returns to the prompt.
1220
1221 @item -version
1222 @cindex @code{--version}
1223 This option causes @value{GDBN} to print its version number and
1224 no-warranty blurb, and exit.
1225
1226 @end table
1227
1228 @node Startup
1229 @subsection What @value{GDBN} Does During Startup
1230 @cindex @value{GDBN} startup
1231
1232 Here's the description of what @value{GDBN} does during session startup:
1233
1234 @enumerate
1235 @item
1236 Sets up the command interpreter as specified by the command line
1237 (@pxref{Mode Options, interpreter}).
1238
1239 @item
1240 @cindex init file
1241 Reads the system-wide @dfn{init file} (if @option{--with-system-gdbinit} was
1242 used when building @value{GDBN}; @pxref{System-wide configuration,
1243  ,System-wide configuration and settings}) and executes all the commands in
1244 that file.
1245
1246 @item
1247 Reads the init file (if any) in your home directory@footnote{On
1248 DOS/Windows systems, the home directory is the one pointed to by the
1249 @code{HOME} environment variable.} and executes all the commands in
1250 that file.
1251
1252 @item
1253 Processes command line options and operands.
1254
1255 @item
1256 Reads and executes the commands from init file (if any) in the current
1257 working directory.  This is only done if the current directory is
1258 different from your home directory.  Thus, you can have more than one
1259 init file, one generic in your home directory, and another, specific
1260 to the program you are debugging, in the directory where you invoke
1261 @value{GDBN}.
1262
1263 @item
1264 If the command line specified a program to debug, or a process to
1265 attach to, or a core file, @value{GDBN} loads any auto-loaded
1266 scripts provided for the program or for its loaded shared libraries.
1267 @xref{Auto-loading}.
1268
1269 If you wish to disable the auto-loading during startup,
1270 you must do something like the following:
1271
1272 @smallexample
1273 $ gdb -ex "set auto-load-scripts off" -ex "file myprogram"
1274 @end smallexample
1275
1276 The following does not work because the auto-loading is turned off too late:
1277
1278 @smallexample
1279 $ gdb -ex "set auto-load-scripts off" myprogram
1280 @end smallexample
1281
1282 @item
1283 Reads command files specified by the @samp{-x} option.  @xref{Command
1284 Files}, for more details about @value{GDBN} command files.
1285
1286 @item
1287 Reads the command history recorded in the @dfn{history file}.
1288 @xref{Command History}, for more details about the command history and the
1289 files where @value{GDBN} records it.
1290 @end enumerate
1291
1292 Init files use the same syntax as @dfn{command files} (@pxref{Command
1293 Files}) and are processed by @value{GDBN} in the same way.  The init
1294 file in your home directory can set options (such as @samp{set
1295 complaints}) that affect subsequent processing of command line options
1296 and operands.  Init files are not executed if you use the @samp{-nx}
1297 option (@pxref{Mode Options, ,Choosing Modes}).
1298
1299 To display the list of init files loaded by gdb at startup, you
1300 can use @kbd{gdb --help}.
1301
1302 @cindex init file name
1303 @cindex @file{.gdbinit}
1304 @cindex @file{gdb.ini}
1305 The @value{GDBN} init files are normally called @file{.gdbinit}.
1306 The DJGPP port of @value{GDBN} uses the name @file{gdb.ini}, due to
1307 the limitations of file names imposed by DOS filesystems.  The Windows
1308 ports of @value{GDBN} use the standard name, but if they find a
1309 @file{gdb.ini} file, they warn you about that and suggest to rename
1310 the file to the standard name.
1311
1312
1313 @node Quitting GDB
1314 @section Quitting @value{GDBN}
1315 @cindex exiting @value{GDBN}
1316 @cindex leaving @value{GDBN}
1317
1318 @table @code
1319 @kindex quit @r{[}@var{expression}@r{]}
1320 @kindex q @r{(@code{quit})}
1321 @item quit @r{[}@var{expression}@r{]}
1322 @itemx q
1323 To exit @value{GDBN}, use the @code{quit} command (abbreviated
1324 @code{q}), or type an end-of-file character (usually @kbd{Ctrl-d}).  If you
1325 do not supply @var{expression}, @value{GDBN} will terminate normally;
1326 otherwise it will terminate using the result of @var{expression} as the
1327 error code.
1328 @end table
1329
1330 @cindex interrupt
1331 An interrupt (often @kbd{Ctrl-c}) does not exit from @value{GDBN}, but rather
1332 terminates the action of any @value{GDBN} command that is in progress and
1333 returns to @value{GDBN} command level.  It is safe to type the interrupt
1334 character at any time because @value{GDBN} does not allow it to take effect
1335 until a time when it is safe.
1336
1337 If you have been using @value{GDBN} to control an attached process or
1338 device, you can release it with the @code{detach} command
1339 (@pxref{Attach, ,Debugging an Already-running Process}).
1340
1341 @node Shell Commands
1342 @section Shell Commands
1343
1344 If you need to execute occasional shell commands during your
1345 debugging session, there is no need to leave or suspend @value{GDBN}; you can
1346 just use the @code{shell} command.
1347
1348 @table @code
1349 @kindex shell
1350 @cindex shell escape
1351 @item shell @var{command string}
1352 Invoke a standard shell to execute @var{command string}.
1353 If it exists, the environment variable @code{SHELL} determines which
1354 shell to run.  Otherwise @value{GDBN} uses the default shell
1355 (@file{/bin/sh} on Unix systems, @file{COMMAND.COM} on MS-DOS, etc.).
1356 @end table
1357
1358 The utility @code{make} is often needed in development environments.
1359 You do not have to use the @code{shell} command for this purpose in
1360 @value{GDBN}:
1361
1362 @table @code
1363 @kindex make
1364 @cindex calling make
1365 @item make @var{make-args}
1366 Execute the @code{make} program with the specified
1367 arguments.  This is equivalent to @samp{shell make @var{make-args}}.
1368 @end table
1369
1370 @node Logging Output
1371 @section Logging Output
1372 @cindex logging @value{GDBN} output
1373 @cindex save @value{GDBN} output to a file
1374
1375 You may want to save the output of @value{GDBN} commands to a file.
1376 There are several commands to control @value{GDBN}'s logging.
1377
1378 @table @code
1379 @kindex set logging
1380 @item set logging on
1381 Enable logging.
1382 @item set logging off
1383 Disable logging.
1384 @cindex logging file name
1385 @item set logging file @var{file}
1386 Change the name of the current logfile.  The default logfile is @file{gdb.txt}.
1387 @item set logging overwrite [on|off]
1388 By default, @value{GDBN} will append to the logfile.  Set @code{overwrite} if
1389 you want @code{set logging on} to overwrite the logfile instead.
1390 @item set logging redirect [on|off]
1391 By default, @value{GDBN} output will go to both the terminal and the logfile.
1392 Set @code{redirect} if you want output to go only to the log file.
1393 @kindex show logging
1394 @item show logging
1395 Show the current values of the logging settings.
1396 @end table
1397
1398 @node Commands
1399 @chapter @value{GDBN} Commands
1400
1401 You can abbreviate a @value{GDBN} command to the first few letters of the command
1402 name, if that abbreviation is unambiguous; and you can repeat certain
1403 @value{GDBN} commands by typing just @key{RET}.  You can also use the @key{TAB}
1404 key to get @value{GDBN} to fill out the rest of a word in a command (or to
1405 show you the alternatives available, if there is more than one possibility).
1406
1407 @menu
1408 * Command Syntax::              How to give commands to @value{GDBN}
1409 * Completion::                  Command completion
1410 * Help::                        How to ask @value{GDBN} for help
1411 @end menu
1412
1413 @node Command Syntax
1414 @section Command Syntax
1415
1416 A @value{GDBN} command is a single line of input.  There is no limit on
1417 how long it can be.  It starts with a command name, which is followed by
1418 arguments whose meaning depends on the command name.  For example, the
1419 command @code{step} accepts an argument which is the number of times to
1420 step, as in @samp{step 5}.  You can also use the @code{step} command
1421 with no arguments.  Some commands do not allow any arguments.
1422
1423 @cindex abbreviation
1424 @value{GDBN} command names may always be truncated if that abbreviation is
1425 unambiguous.  Other possible command abbreviations are listed in the
1426 documentation for individual commands.  In some cases, even ambiguous
1427 abbreviations are allowed; for example, @code{s} is specially defined as
1428 equivalent to @code{step} even though there are other commands whose
1429 names start with @code{s}.  You can test abbreviations by using them as
1430 arguments to the @code{help} command.
1431
1432 @cindex repeating commands
1433 @kindex RET @r{(repeat last command)}
1434 A blank line as input to @value{GDBN} (typing just @key{RET}) means to
1435 repeat the previous command.  Certain commands (for example, @code{run})
1436 will not repeat this way; these are commands whose unintentional
1437 repetition might cause trouble and which you are unlikely to want to
1438 repeat.  User-defined commands can disable this feature; see
1439 @ref{Define, dont-repeat}.
1440
1441 The @code{list} and @code{x} commands, when you repeat them with
1442 @key{RET}, construct new arguments rather than repeating
1443 exactly as typed.  This permits easy scanning of source or memory.
1444
1445 @value{GDBN} can also use @key{RET} in another way: to partition lengthy
1446 output, in a way similar to the common utility @code{more}
1447 (@pxref{Screen Size,,Screen Size}).  Since it is easy to press one
1448 @key{RET} too many in this situation, @value{GDBN} disables command
1449 repetition after any command that generates this sort of display.
1450
1451 @kindex # @r{(a comment)}
1452 @cindex comment
1453 Any text from a @kbd{#} to the end of the line is a comment; it does
1454 nothing.  This is useful mainly in command files (@pxref{Command
1455 Files,,Command Files}).
1456
1457 @cindex repeating command sequences
1458 @kindex Ctrl-o @r{(operate-and-get-next)}
1459 The @kbd{Ctrl-o} binding is useful for repeating a complex sequence of
1460 commands.  This command accepts the current line, like @key{RET}, and
1461 then fetches the next line relative to the current line from the history
1462 for editing.
1463
1464 @node Completion
1465 @section Command Completion
1466
1467 @cindex completion
1468 @cindex word completion
1469 @value{GDBN} can fill in the rest of a word in a command for you, if there is
1470 only one possibility; it can also show you what the valid possibilities
1471 are for the next word in a command, at any time.  This works for @value{GDBN}
1472 commands, @value{GDBN} subcommands, and the names of symbols in your program.
1473
1474 Press the @key{TAB} key whenever you want @value{GDBN} to fill out the rest
1475 of a word.  If there is only one possibility, @value{GDBN} fills in the
1476 word, and waits for you to finish the command (or press @key{RET} to
1477 enter it).  For example, if you type
1478
1479 @c FIXME "@key" does not distinguish its argument sufficiently to permit
1480 @c complete accuracy in these examples; space introduced for clarity.
1481 @c If texinfo enhancements make it unnecessary, it would be nice to
1482 @c replace " @key" by "@key" in the following...
1483 @smallexample
1484 (@value{GDBP}) info bre @key{TAB}
1485 @end smallexample
1486
1487 @noindent
1488 @value{GDBN} fills in the rest of the word @samp{breakpoints}, since that is
1489 the only @code{info} subcommand beginning with @samp{bre}:
1490
1491 @smallexample
1492 (@value{GDBP}) info breakpoints
1493 @end smallexample
1494
1495 @noindent
1496 You can either press @key{RET} at this point, to run the @code{info
1497 breakpoints} command, or backspace and enter something else, if
1498 @samp{breakpoints} does not look like the command you expected.  (If you
1499 were sure you wanted @code{info breakpoints} in the first place, you
1500 might as well just type @key{RET} immediately after @samp{info bre},
1501 to exploit command abbreviations rather than command completion).
1502
1503 If there is more than one possibility for the next word when you press
1504 @key{TAB}, @value{GDBN} sounds a bell.  You can either supply more
1505 characters and try again, or just press @key{TAB} a second time;
1506 @value{GDBN} displays all the possible completions for that word.  For
1507 example, you might want to set a breakpoint on a subroutine whose name
1508 begins with @samp{make_}, but when you type @kbd{b make_@key{TAB}} @value{GDBN}
1509 just sounds the bell.  Typing @key{TAB} again displays all the
1510 function names in your program that begin with those characters, for
1511 example:
1512
1513 @smallexample
1514 (@value{GDBP}) b make_ @key{TAB}
1515 @exdent @value{GDBN} sounds bell; press @key{TAB} again, to see:
1516 make_a_section_from_file     make_environ
1517 make_abs_section             make_function_type
1518 make_blockvector             make_pointer_type
1519 make_cleanup                 make_reference_type
1520 make_command                 make_symbol_completion_list
1521 (@value{GDBP}) b make_
1522 @end smallexample
1523
1524 @noindent
1525 After displaying the available possibilities, @value{GDBN} copies your
1526 partial input (@samp{b make_} in the example) so you can finish the
1527 command.
1528
1529 If you just want to see the list of alternatives in the first place, you
1530 can press @kbd{M-?} rather than pressing @key{TAB} twice.  @kbd{M-?}
1531 means @kbd{@key{META} ?}.  You can type this either by holding down a
1532 key designated as the @key{META} shift on your keyboard (if there is
1533 one) while typing @kbd{?}, or as @key{ESC} followed by @kbd{?}.
1534
1535 @cindex quotes in commands
1536 @cindex completion of quoted strings
1537 Sometimes the string you need, while logically a ``word'', may contain
1538 parentheses or other characters that @value{GDBN} normally excludes from
1539 its notion of a word.  To permit word completion to work in this
1540 situation, you may enclose words in @code{'} (single quote marks) in
1541 @value{GDBN} commands.
1542
1543 The most likely situation where you might need this is in typing the
1544 name of a C@t{++} function.  This is because C@t{++} allows function
1545 overloading (multiple definitions of the same function, distinguished
1546 by argument type).  For example, when you want to set a breakpoint you
1547 may need to distinguish whether you mean the version of @code{name}
1548 that takes an @code{int} parameter, @code{name(int)}, or the version
1549 that takes a @code{float} parameter, @code{name(float)}.  To use the
1550 word-completion facilities in this situation, type a single quote
1551 @code{'} at the beginning of the function name.  This alerts
1552 @value{GDBN} that it may need to consider more information than usual
1553 when you press @key{TAB} or @kbd{M-?} to request word completion:
1554
1555 @smallexample
1556 (@value{GDBP}) b 'bubble( @kbd{M-?}
1557 bubble(double,double)    bubble(int,int)
1558 (@value{GDBP}) b 'bubble(
1559 @end smallexample
1560
1561 In some cases, @value{GDBN} can tell that completing a name requires using
1562 quotes.  When this happens, @value{GDBN} inserts the quote for you (while
1563 completing as much as it can) if you do not type the quote in the first
1564 place:
1565
1566 @smallexample
1567 (@value{GDBP}) b bub @key{TAB}
1568 @exdent @value{GDBN} alters your input line to the following, and rings a bell:
1569 (@value{GDBP}) b 'bubble(
1570 @end smallexample
1571
1572 @noindent
1573 In general, @value{GDBN} can tell that a quote is needed (and inserts it) if
1574 you have not yet started typing the argument list when you ask for
1575 completion on an overloaded symbol.
1576
1577 For more information about overloaded functions, see @ref{C Plus Plus
1578 Expressions, ,C@t{++} Expressions}.  You can use the command @code{set
1579 overload-resolution off} to disable overload resolution;
1580 see @ref{Debugging C Plus Plus, ,@value{GDBN} Features for C@t{++}}.
1581
1582 @cindex completion of structure field names
1583 @cindex structure field name completion
1584 @cindex completion of union field names
1585 @cindex union field name completion
1586 When completing in an expression which looks up a field in a
1587 structure, @value{GDBN} also tries@footnote{The completer can be
1588 confused by certain kinds of invalid expressions.  Also, it only
1589 examines the static type of the expression, not the dynamic type.} to
1590 limit completions to the field names available in the type of the
1591 left-hand-side:
1592
1593 @smallexample
1594 (@value{GDBP}) p gdb_stdout.@kbd{M-?}
1595 magic                to_fputs             to_rewind
1596 to_data              to_isatty            to_write
1597 to_delete            to_put               to_write_async_safe
1598 to_flush             to_read
1599 @end smallexample
1600
1601 @noindent
1602 This is because the @code{gdb_stdout} is a variable of the type
1603 @code{struct ui_file} that is defined in @value{GDBN} sources as
1604 follows:
1605
1606 @smallexample
1607 struct ui_file
1608 @{
1609    int *magic;
1610    ui_file_flush_ftype *to_flush;
1611    ui_file_write_ftype *to_write;
1612    ui_file_write_async_safe_ftype *to_write_async_safe;
1613    ui_file_fputs_ftype *to_fputs;
1614    ui_file_read_ftype *to_read;
1615    ui_file_delete_ftype *to_delete;
1616    ui_file_isatty_ftype *to_isatty;
1617    ui_file_rewind_ftype *to_rewind;
1618    ui_file_put_ftype *to_put;
1619    void *to_data;
1620 @}
1621 @end smallexample
1622
1623
1624 @node Help
1625 @section Getting Help
1626 @cindex online documentation
1627 @kindex help
1628
1629 You can always ask @value{GDBN} itself for information on its commands,
1630 using the command @code{help}.
1631
1632 @table @code
1633 @kindex h @r{(@code{help})}
1634 @item help
1635 @itemx h
1636 You can use @code{help} (abbreviated @code{h}) with no arguments to
1637 display a short list of named classes of commands:
1638
1639 @smallexample
1640 (@value{GDBP}) help
1641 List of classes of commands:
1642
1643 aliases -- Aliases of other commands
1644 breakpoints -- Making program stop at certain points
1645 data -- Examining data
1646 files -- Specifying and examining files
1647 internals -- Maintenance commands
1648 obscure -- Obscure features
1649 running -- Running the program
1650 stack -- Examining the stack
1651 status -- Status inquiries
1652 support -- Support facilities
1653 tracepoints -- Tracing of program execution without
1654                stopping the program
1655 user-defined -- User-defined commands
1656
1657 Type "help" followed by a class name for a list of
1658 commands in that class.
1659 Type "help" followed by command name for full
1660 documentation.
1661 Command name abbreviations are allowed if unambiguous.
1662 (@value{GDBP})
1663 @end smallexample
1664 @c the above line break eliminates huge line overfull...
1665
1666 @item help @var{class}
1667 Using one of the general help classes as an argument, you can get a
1668 list of the individual commands in that class.  For example, here is the
1669 help display for the class @code{status}:
1670
1671 @smallexample
1672 (@value{GDBP}) help status
1673 Status inquiries.
1674
1675 List of commands:
1676
1677 @c Line break in "show" line falsifies real output, but needed
1678 @c to fit in smallbook page size.
1679 info -- Generic command for showing things
1680         about the program being debugged
1681 show -- Generic command for showing things
1682         about the debugger
1683
1684 Type "help" followed by command name for full
1685 documentation.
1686 Command name abbreviations are allowed if unambiguous.
1687 (@value{GDBP})
1688 @end smallexample
1689
1690 @item help @var{command}
1691 With a command name as @code{help} argument, @value{GDBN} displays a
1692 short paragraph on how to use that command.
1693
1694 @kindex apropos
1695 @item apropos @var{args}
1696 The @code{apropos} command searches through all of the @value{GDBN}
1697 commands, and their documentation, for the regular expression specified in
1698 @var{args}.  It prints out all matches found.  For example:
1699
1700 @smallexample
1701 apropos reload
1702 @end smallexample
1703
1704 @noindent
1705 results in:
1706
1707 @smallexample
1708 @c @group
1709 set symbol-reloading -- Set dynamic symbol table reloading
1710                         multiple times in one run
1711 show symbol-reloading -- Show dynamic symbol table reloading
1712                         multiple times in one run
1713 @c @end group
1714 @end smallexample
1715
1716 @kindex complete
1717 @item complete @var{args}
1718 The @code{complete @var{args}} command lists all the possible completions
1719 for the beginning of a command.  Use @var{args} to specify the beginning of the
1720 command you want completed.  For example:
1721
1722 @smallexample
1723 complete i
1724 @end smallexample
1725
1726 @noindent results in:
1727
1728 @smallexample
1729 @group
1730 if
1731 ignore
1732 info
1733 inspect
1734 @end group
1735 @end smallexample
1736
1737 @noindent This is intended for use by @sc{gnu} Emacs.
1738 @end table
1739
1740 In addition to @code{help}, you can use the @value{GDBN} commands @code{info}
1741 and @code{show} to inquire about the state of your program, or the state
1742 of @value{GDBN} itself.  Each command supports many topics of inquiry; this
1743 manual introduces each of them in the appropriate context.  The listings
1744 under @code{info} and under @code{show} in the Index point to
1745 all the sub-commands.  @xref{Index}.
1746
1747 @c @group
1748 @table @code
1749 @kindex info
1750 @kindex i @r{(@code{info})}
1751 @item info
1752 This command (abbreviated @code{i}) is for describing the state of your
1753 program.  For example, you can show the arguments passed to a function
1754 with @code{info args}, list the registers currently in use with @code{info
1755 registers}, or list the breakpoints you have set with @code{info breakpoints}.
1756 You can get a complete list of the @code{info} sub-commands with
1757 @w{@code{help info}}.
1758
1759 @kindex set
1760 @item set
1761 You can assign the result of an expression to an environment variable with
1762 @code{set}.  For example, you can set the @value{GDBN} prompt to a $-sign with
1763 @code{set prompt $}.
1764
1765 @kindex show
1766 @item show
1767 In contrast to @code{info}, @code{show} is for describing the state of
1768 @value{GDBN} itself.
1769 You can change most of the things you can @code{show}, by using the
1770 related command @code{set}; for example, you can control what number
1771 system is used for displays with @code{set radix}, or simply inquire
1772 which is currently in use with @code{show radix}.
1773
1774 @kindex info set
1775 To display all the settable parameters and their current
1776 values, you can use @code{show} with no arguments; you may also use
1777 @code{info set}.  Both commands produce the same display.
1778 @c FIXME: "info set" violates the rule that "info" is for state of
1779 @c FIXME...program.  Ck w/ GNU: "info set" to be called something else,
1780 @c FIXME...or change desc of rule---eg "state of prog and debugging session"?
1781 @end table
1782 @c @end group
1783
1784 Here are three miscellaneous @code{show} subcommands, all of which are
1785 exceptional in lacking corresponding @code{set} commands:
1786
1787 @table @code
1788 @kindex show version
1789 @cindex @value{GDBN} version number
1790 @item show version
1791 Show what version of @value{GDBN} is running.  You should include this
1792 information in @value{GDBN} bug-reports.  If multiple versions of
1793 @value{GDBN} are in use at your site, you may need to determine which
1794 version of @value{GDBN} you are running; as @value{GDBN} evolves, new
1795 commands are introduced, and old ones may wither away.  Also, many
1796 system vendors ship variant versions of @value{GDBN}, and there are
1797 variant versions of @value{GDBN} in @sc{gnu}/Linux distributions as well.
1798 The version number is the same as the one announced when you start
1799 @value{GDBN}.
1800
1801 @kindex show copying
1802 @kindex info copying
1803 @cindex display @value{GDBN} copyright
1804 @item show copying
1805 @itemx info copying
1806 Display information about permission for copying @value{GDBN}.
1807
1808 @kindex show warranty
1809 @kindex info warranty
1810 @item show warranty
1811 @itemx info warranty
1812 Display the @sc{gnu} ``NO WARRANTY'' statement, or a warranty,
1813 if your version of @value{GDBN} comes with one.
1814
1815 @end table
1816
1817 @node Running
1818 @chapter Running Programs Under @value{GDBN}
1819
1820 When you run a program under @value{GDBN}, you must first generate
1821 debugging information when you compile it.
1822
1823 You may start @value{GDBN} with its arguments, if any, in an environment
1824 of your choice.  If you are doing native debugging, you may redirect
1825 your program's input and output, debug an already running process, or
1826 kill a child process.
1827
1828 @menu
1829 * Compilation::                 Compiling for debugging
1830 * Starting::                    Starting your program
1831 * Arguments::                   Your program's arguments
1832 * Environment::                 Your program's environment
1833
1834 * Working Directory::           Your program's working directory
1835 * Input/Output::                Your program's input and output
1836 * Attach::                      Debugging an already-running process
1837 * Kill Process::                Killing the child process
1838
1839 * Inferiors and Programs::      Debugging multiple inferiors and programs
1840 * Threads::                     Debugging programs with multiple threads
1841 * Forks::                       Debugging forks
1842 * Checkpoint/Restart::          Setting a @emph{bookmark} to return to later
1843 @end menu
1844
1845 @node Compilation
1846 @section Compiling for Debugging
1847
1848 In order to debug a program effectively, you need to generate
1849 debugging information when you compile it.  This debugging information
1850 is stored in the object file; it describes the data type of each
1851 variable or function and the correspondence between source line numbers
1852 and addresses in the executable code.
1853
1854 To request debugging information, specify the @samp{-g} option when you run
1855 the compiler.
1856
1857 Programs that are to be shipped to your customers are compiled with
1858 optimizations, using the @samp{-O} compiler option.  However, some
1859 compilers are unable to handle the @samp{-g} and @samp{-O} options
1860 together.  Using those compilers, you cannot generate optimized
1861 executables containing debugging information.
1862
1863 @value{NGCC}, the @sc{gnu} C/C@t{++} compiler, supports @samp{-g} with or
1864 without @samp{-O}, making it possible to debug optimized code.  We
1865 recommend that you @emph{always} use @samp{-g} whenever you compile a
1866 program.  You may think your program is correct, but there is no sense
1867 in pushing your luck.  For more information, see @ref{Optimized Code}.
1868
1869 Older versions of the @sc{gnu} C compiler permitted a variant option
1870 @w{@samp{-gg}} for debugging information.  @value{GDBN} no longer supports this
1871 format; if your @sc{gnu} C compiler has this option, do not use it.
1872
1873 @value{GDBN} knows about preprocessor macros and can show you their
1874 expansion (@pxref{Macros}).  Most compilers do not include information
1875 about preprocessor macros in the debugging information if you specify
1876 the @option{-g} flag alone.  Version 3.1 and later of @value{NGCC},
1877 the @sc{gnu} C compiler, provides macro information if you are using
1878 the DWARF debugging format, and specify the option @option{-g3}.
1879
1880 @xref{Debugging Options,,Options for Debugging Your Program or GCC,
1881 gcc.info, Using the @sc{gnu} Compiler Collection (GCC)}, for more
1882 information on @value{NGCC} options affecting debug information.
1883
1884 You will have the best debugging experience if you use the latest
1885 version of the DWARF debugging format that your compiler supports.
1886 DWARF is currently the most expressive and best supported debugging
1887 format in @value{GDBN}.
1888
1889 @need 2000
1890 @node Starting
1891 @section Starting your Program
1892 @cindex starting
1893 @cindex running
1894
1895 @table @code
1896 @kindex run
1897 @kindex r @r{(@code{run})}
1898 @item run
1899 @itemx r
1900 Use the @code{run} command to start your program under @value{GDBN}.
1901 You must first specify the program name (except on VxWorks) with an
1902 argument to @value{GDBN} (@pxref{Invocation, ,Getting In and Out of
1903 @value{GDBN}}), or by using the @code{file} or @code{exec-file} command
1904 (@pxref{Files, ,Commands to Specify Files}).
1905
1906 @end table
1907
1908 If you are running your program in an execution environment that
1909 supports processes, @code{run} creates an inferior process and makes
1910 that process run your program.  In some environments without processes,
1911 @code{run} jumps to the start of your program.  Other targets,
1912 like @samp{remote}, are always running.  If you get an error
1913 message like this one:
1914
1915 @smallexample
1916 The "remote" target does not support "run".
1917 Try "help target" or "continue".
1918 @end smallexample
1919
1920 @noindent
1921 then use @code{continue} to run your program.  You may need @code{load}
1922 first (@pxref{load}).
1923
1924 The execution of a program is affected by certain information it
1925 receives from its superior.  @value{GDBN} provides ways to specify this
1926 information, which you must do @emph{before} starting your program.  (You
1927 can change it after starting your program, but such changes only affect
1928 your program the next time you start it.)  This information may be
1929 divided into four categories:
1930
1931 @table @asis
1932 @item The @emph{arguments.}
1933 Specify the arguments to give your program as the arguments of the
1934 @code{run} command.  If a shell is available on your target, the shell
1935 is used to pass the arguments, so that you may use normal conventions
1936 (such as wildcard expansion or variable substitution) in describing
1937 the arguments.
1938 In Unix systems, you can control which shell is used with the
1939 @code{SHELL} environment variable.
1940 @xref{Arguments, ,Your Program's Arguments}.
1941
1942 @item The @emph{environment.}
1943 Your program normally inherits its environment from @value{GDBN}, but you can
1944 use the @value{GDBN} commands @code{set environment} and @code{unset
1945 environment} to change parts of the environment that affect
1946 your program.  @xref{Environment, ,Your Program's Environment}.
1947
1948 @item The @emph{working directory.}
1949 Your program inherits its working directory from @value{GDBN}.  You can set
1950 the @value{GDBN} working directory with the @code{cd} command in @value{GDBN}.
1951 @xref{Working Directory, ,Your Program's Working Directory}.
1952
1953 @item The @emph{standard input and output.}
1954 Your program normally uses the same device for standard input and
1955 standard output as @value{GDBN} is using.  You can redirect input and output
1956 in the @code{run} command line, or you can use the @code{tty} command to
1957 set a different device for your program.
1958 @xref{Input/Output, ,Your Program's Input and Output}.
1959
1960 @cindex pipes
1961 @emph{Warning:} While input and output redirection work, you cannot use
1962 pipes to pass the output of the program you are debugging to another
1963 program; if you attempt this, @value{GDBN} is likely to wind up debugging the
1964 wrong program.
1965 @end table
1966
1967 When you issue the @code{run} command, your program begins to execute
1968 immediately.  @xref{Stopping, ,Stopping and Continuing}, for discussion
1969 of how to arrange for your program to stop.  Once your program has
1970 stopped, you may call functions in your program, using the @code{print}
1971 or @code{call} commands.  @xref{Data, ,Examining Data}.
1972
1973 If the modification time of your symbol file has changed since the last
1974 time @value{GDBN} read its symbols, @value{GDBN} discards its symbol
1975 table, and reads it again.  When it does this, @value{GDBN} tries to retain
1976 your current breakpoints.
1977
1978 @table @code
1979 @kindex start
1980 @item start
1981 @cindex run to main procedure
1982 The name of the main procedure can vary from language to language.
1983 With C or C@t{++}, the main procedure name is always @code{main}, but
1984 other languages such as Ada do not require a specific name for their
1985 main procedure.  The debugger provides a convenient way to start the
1986 execution of the program and to stop at the beginning of the main
1987 procedure, depending on the language used.
1988
1989 The @samp{start} command does the equivalent of setting a temporary
1990 breakpoint at the beginning of the main procedure and then invoking
1991 the @samp{run} command.
1992
1993 @cindex elaboration phase
1994 Some programs contain an @dfn{elaboration} phase where some startup code is
1995 executed before the main procedure is called.  This depends on the
1996 languages used to write your program.  In C@t{++}, for instance,
1997 constructors for static and global objects are executed before
1998 @code{main} is called.  It is therefore possible that the debugger stops
1999 before reaching the main procedure.  However, the temporary breakpoint
2000 will remain to halt execution.
2001
2002 Specify the arguments to give to your program as arguments to the
2003 @samp{start} command.  These arguments will be given verbatim to the
2004 underlying @samp{run} command.  Note that the same arguments will be
2005 reused if no argument is provided during subsequent calls to
2006 @samp{start} or @samp{run}.
2007
2008 It is sometimes necessary to debug the program during elaboration.  In
2009 these cases, using the @code{start} command would stop the execution of
2010 your program too late, as the program would have already completed the
2011 elaboration phase.  Under these circumstances, insert breakpoints in your
2012 elaboration code before running your program.
2013
2014 @kindex set exec-wrapper
2015 @item set exec-wrapper @var{wrapper}
2016 @itemx show exec-wrapper
2017 @itemx unset exec-wrapper
2018 When @samp{exec-wrapper} is set, the specified wrapper is used to
2019 launch programs for debugging.  @value{GDBN} starts your program
2020 with a shell command of the form @kbd{exec @var{wrapper}
2021 @var{program}}.  Quoting is added to @var{program} and its
2022 arguments, but not to @var{wrapper}, so you should add quotes if
2023 appropriate for your shell.  The wrapper runs until it executes
2024 your program, and then @value{GDBN} takes control.
2025
2026 You can use any program that eventually calls @code{execve} with
2027 its arguments as a wrapper.  Several standard Unix utilities do
2028 this, e.g.@: @code{env} and @code{nohup}.  Any Unix shell script ending
2029 with @code{exec "$@@"} will also work.
2030
2031 For example, you can use @code{env} to pass an environment variable to
2032 the debugged program, without setting the variable in your shell's
2033 environment:
2034
2035 @smallexample
2036 (@value{GDBP}) set exec-wrapper env 'LD_PRELOAD=libtest.so'
2037 (@value{GDBP}) run
2038 @end smallexample
2039
2040 This command is available when debugging locally on most targets, excluding
2041 @sc{djgpp}, Cygwin, MS Windows, and QNX Neutrino.
2042
2043 @kindex set disable-randomization
2044 @item set disable-randomization
2045 @itemx set disable-randomization on
2046 This option (enabled by default in @value{GDBN}) will turn off the native
2047 randomization of the virtual address space of the started program.  This option
2048 is useful for multiple debugging sessions to make the execution better
2049 reproducible and memory addresses reusable across debugging sessions.
2050
2051 This feature is implemented only on certain targets, including @sc{gnu}/Linux.
2052 On @sc{gnu}/Linux you can get the same behavior using
2053
2054 @smallexample
2055 (@value{GDBP}) set exec-wrapper setarch `uname -m` -R
2056 @end smallexample
2057
2058 @item set disable-randomization off
2059 Leave the behavior of the started executable unchanged.  Some bugs rear their
2060 ugly heads only when the program is loaded at certain addresses.  If your bug
2061 disappears when you run the program under @value{GDBN}, that might be because
2062 @value{GDBN} by default disables the address randomization on platforms, such
2063 as @sc{gnu}/Linux, which do that for stand-alone programs.  Use @kbd{set
2064 disable-randomization off} to try to reproduce such elusive bugs.
2065
2066 On targets where it is available, virtual address space randomization
2067 protects the programs against certain kinds of security attacks.  In these
2068 cases the attacker needs to know the exact location of a concrete executable
2069 code.  Randomizing its location makes it impossible to inject jumps misusing
2070 a code at its expected addresses.
2071
2072 Prelinking shared libraries provides a startup performance advantage but it
2073 makes addresses in these libraries predictable for privileged processes by
2074 having just unprivileged access at the target system.  Reading the shared
2075 library binary gives enough information for assembling the malicious code
2076 misusing it.  Still even a prelinked shared library can get loaded at a new
2077 random address just requiring the regular relocation process during the
2078 startup.  Shared libraries not already prelinked are always loaded at
2079 a randomly chosen address.
2080
2081 Position independent executables (PIE) contain position independent code
2082 similar to the shared libraries and therefore such executables get loaded at
2083 a randomly chosen address upon startup.  PIE executables always load even
2084 already prelinked shared libraries at a random address.  You can build such
2085 executable using @command{gcc -fPIE -pie}.
2086
2087 Heap (malloc storage), stack and custom mmap areas are always placed randomly
2088 (as long as the randomization is enabled).
2089
2090 @item show disable-randomization
2091 Show the current setting of the explicit disable of the native randomization of
2092 the virtual address space of the started program.
2093
2094 @end table
2095
2096 @node Arguments
2097 @section Your Program's Arguments
2098
2099 @cindex arguments (to your program)
2100 The arguments to your program can be specified by the arguments of the
2101 @code{run} command.
2102 They are passed to a shell, which expands wildcard characters and
2103 performs redirection of I/O, and thence to your program.  Your
2104 @code{SHELL} environment variable (if it exists) specifies what shell
2105 @value{GDBN} uses.  If you do not define @code{SHELL}, @value{GDBN} uses
2106 the default shell (@file{/bin/sh} on Unix).
2107
2108 On non-Unix systems, the program is usually invoked directly by
2109 @value{GDBN}, which emulates I/O redirection via the appropriate system
2110 calls, and the wildcard characters are expanded by the startup code of
2111 the program, not by the shell.
2112
2113 @code{run} with no arguments uses the same arguments used by the previous
2114 @code{run}, or those set by the @code{set args} command.
2115
2116 @table @code
2117 @kindex set args
2118 @item set args
2119 Specify the arguments to be used the next time your program is run.  If
2120 @code{set args} has no arguments, @code{run} executes your program
2121 with no arguments.  Once you have run your program with arguments,
2122 using @code{set args} before the next @code{run} is the only way to run
2123 it again without arguments.
2124
2125 @kindex show args
2126 @item show args
2127 Show the arguments to give your program when it is started.
2128 @end table
2129
2130 @node Environment
2131 @section Your Program's Environment
2132
2133 @cindex environment (of your program)
2134 The @dfn{environment} consists of a set of environment variables and
2135 their values.  Environment variables conventionally record such things as
2136 your user name, your home directory, your terminal type, and your search
2137 path for programs to run.  Usually you set up environment variables with
2138 the shell and they are inherited by all the other programs you run.  When
2139 debugging, it can be useful to try running your program with a modified
2140 environment without having to start @value{GDBN} over again.
2141
2142 @table @code
2143 @kindex path
2144 @item path @var{directory}
2145 Add @var{directory} to the front of the @code{PATH} environment variable
2146 (the search path for executables) that will be passed to your program.
2147 The value of @code{PATH} used by @value{GDBN} does not change.
2148 You may specify several directory names, separated by whitespace or by a
2149 system-dependent separator character (@samp{:} on Unix, @samp{;} on
2150 MS-DOS and MS-Windows).  If @var{directory} is already in the path, it
2151 is moved to the front, so it is searched sooner.
2152
2153 You can use the string @samp{$cwd} to refer to whatever is the current
2154 working directory at the time @value{GDBN} searches the path.  If you
2155 use @samp{.} instead, it refers to the directory where you executed the
2156 @code{path} command.  @value{GDBN} replaces @samp{.} in the
2157 @var{directory} argument (with the current path) before adding
2158 @var{directory} to the search path.
2159 @c 'path' is explicitly nonrepeatable, but RMS points out it is silly to
2160 @c document that, since repeating it would be a no-op.
2161
2162 @kindex show paths
2163 @item show paths
2164 Display the list of search paths for executables (the @code{PATH}
2165 environment variable).
2166
2167 @kindex show environment
2168 @item show environment @r{[}@var{varname}@r{]}
2169 Print the value of environment variable @var{varname} to be given to
2170 your program when it starts.  If you do not supply @var{varname},
2171 print the names and values of all environment variables to be given to
2172 your program.  You can abbreviate @code{environment} as @code{env}.
2173
2174 @kindex set environment
2175 @item set environment @var{varname} @r{[}=@var{value}@r{]}
2176 Set environment variable @var{varname} to @var{value}.  The value
2177 changes for your program only, not for @value{GDBN} itself.  @var{value} may
2178 be any string; the values of environment variables are just strings, and
2179 any interpretation is supplied by your program itself.  The @var{value}
2180 parameter is optional; if it is eliminated, the variable is set to a
2181 null value.
2182 @c "any string" here does not include leading, trailing
2183 @c blanks. Gnu asks: does anyone care?
2184
2185 For example, this command:
2186
2187 @smallexample
2188 set env USER = foo
2189 @end smallexample
2190
2191 @noindent
2192 tells the debugged program, when subsequently run, that its user is named
2193 @samp{foo}.  (The spaces around @samp{=} are used for clarity here; they
2194 are not actually required.)
2195
2196 @kindex unset environment
2197 @item unset environment @var{varname}
2198 Remove variable @var{varname} from the environment to be passed to your
2199 program.  This is different from @samp{set env @var{varname} =};
2200 @code{unset environment} removes the variable from the environment,
2201 rather than assigning it an empty value.
2202 @end table
2203
2204 @emph{Warning:} On Unix systems, @value{GDBN} runs your program using
2205 the shell indicated
2206 by your @code{SHELL} environment variable if it exists (or
2207 @code{/bin/sh} if not).  If your @code{SHELL} variable names a shell
2208 that runs an initialization file---such as @file{.cshrc} for C-shell, or
2209 @file{.bashrc} for BASH---any variables you set in that file affect
2210 your program.  You may wish to move setting of environment variables to
2211 files that are only run when you sign on, such as @file{.login} or
2212 @file{.profile}.
2213
2214 @node Working Directory
2215 @section Your Program's Working Directory
2216
2217 @cindex working directory (of your program)
2218 Each time you start your program with @code{run}, it inherits its
2219 working directory from the current working directory of @value{GDBN}.
2220 The @value{GDBN} working directory is initially whatever it inherited
2221 from its parent process (typically the shell), but you can specify a new
2222 working directory in @value{GDBN} with the @code{cd} command.
2223
2224 The @value{GDBN} working directory also serves as a default for the commands
2225 that specify files for @value{GDBN} to operate on.  @xref{Files, ,Commands to
2226 Specify Files}.
2227
2228 @table @code
2229 @kindex cd
2230 @cindex change working directory
2231 @item cd @var{directory}
2232 Set the @value{GDBN} working directory to @var{directory}.
2233
2234 @kindex pwd
2235 @item pwd
2236 Print the @value{GDBN} working directory.
2237 @end table
2238
2239 It is generally impossible to find the current working directory of
2240 the process being debugged (since a program can change its directory
2241 during its run).  If you work on a system where @value{GDBN} is
2242 configured with the @file{/proc} support, you can use the @code{info
2243 proc} command (@pxref{SVR4 Process Information}) to find out the
2244 current working directory of the debuggee.
2245
2246 @node Input/Output
2247 @section Your Program's Input and Output
2248
2249 @cindex redirection
2250 @cindex i/o
2251 @cindex terminal
2252 By default, the program you run under @value{GDBN} does input and output to
2253 the same terminal that @value{GDBN} uses.  @value{GDBN} switches the terminal
2254 to its own terminal modes to interact with you, but it records the terminal
2255 modes your program was using and switches back to them when you continue
2256 running your program.
2257
2258 @table @code
2259 @kindex info terminal
2260 @item info terminal
2261 Displays information recorded by @value{GDBN} about the terminal modes your
2262 program is using.
2263 @end table
2264
2265 You can redirect your program's input and/or output using shell
2266 redirection with the @code{run} command.  For example,
2267
2268 @smallexample
2269 run > outfile
2270 @end smallexample
2271
2272 @noindent
2273 starts your program, diverting its output to the file @file{outfile}.
2274
2275 @kindex tty
2276 @cindex controlling terminal
2277 Another way to specify where your program should do input and output is
2278 with the @code{tty} command.  This command accepts a file name as
2279 argument, and causes this file to be the default for future @code{run}
2280 commands.  It also resets the controlling terminal for the child
2281 process, for future @code{run} commands.  For example,
2282
2283 @smallexample
2284 tty /dev/ttyb
2285 @end smallexample
2286
2287 @noindent
2288 directs that processes started with subsequent @code{run} commands
2289 default to do input and output on the terminal @file{/dev/ttyb} and have
2290 that as their controlling terminal.
2291
2292 An explicit redirection in @code{run} overrides the @code{tty} command's
2293 effect on the input/output device, but not its effect on the controlling
2294 terminal.
2295
2296 When you use the @code{tty} command or redirect input in the @code{run}
2297 command, only the input @emph{for your program} is affected.  The input
2298 for @value{GDBN} still comes from your terminal.  @code{tty} is an alias
2299 for @code{set inferior-tty}.
2300
2301 @cindex inferior tty
2302 @cindex set inferior controlling terminal
2303 You can use the @code{show inferior-tty} command to tell @value{GDBN} to
2304 display the name of the terminal that will be used for future runs of your
2305 program.
2306
2307 @table @code
2308 @item set inferior-tty /dev/ttyb
2309 @kindex set inferior-tty
2310 Set the tty for the program being debugged to /dev/ttyb.
2311
2312 @item show inferior-tty
2313 @kindex show inferior-tty
2314 Show the current tty for the program being debugged.
2315 @end table
2316
2317 @node Attach
2318 @section Debugging an Already-running Process
2319 @kindex attach
2320 @cindex attach
2321
2322 @table @code
2323 @item attach @var{process-id}
2324 This command attaches to a running process---one that was started
2325 outside @value{GDBN}.  (@code{info files} shows your active
2326 targets.)  The command takes as argument a process ID.  The usual way to
2327 find out the @var{process-id} of a Unix process is with the @code{ps} utility,
2328 or with the @samp{jobs -l} shell command.
2329
2330 @code{attach} does not repeat if you press @key{RET} a second time after
2331 executing the command.
2332 @end table
2333
2334 To use @code{attach}, your program must be running in an environment
2335 which supports processes; for example, @code{attach} does not work for
2336 programs on bare-board targets that lack an operating system.  You must
2337 also have permission to send the process a signal.
2338
2339 When you use @code{attach}, the debugger finds the program running in
2340 the process first by looking in the current working directory, then (if
2341 the program is not found) by using the source file search path
2342 (@pxref{Source Path, ,Specifying Source Directories}).  You can also use
2343 the @code{file} command to load the program.  @xref{Files, ,Commands to
2344 Specify Files}.
2345
2346 The first thing @value{GDBN} does after arranging to debug the specified
2347 process is to stop it.  You can examine and modify an attached process
2348 with all the @value{GDBN} commands that are ordinarily available when
2349 you start processes with @code{run}.  You can insert breakpoints; you
2350 can step and continue; you can modify storage.  If you would rather the
2351 process continue running, you may use the @code{continue} command after
2352 attaching @value{GDBN} to the process.
2353
2354 @table @code
2355 @kindex detach
2356 @item detach
2357 When you have finished debugging the attached process, you can use the
2358 @code{detach} command to release it from @value{GDBN} control.  Detaching
2359 the process continues its execution.  After the @code{detach} command,
2360 that process and @value{GDBN} become completely independent once more, and you
2361 are ready to @code{attach} another process or start one with @code{run}.
2362 @code{detach} does not repeat if you press @key{RET} again after
2363 executing the command.
2364 @end table
2365
2366 If you exit @value{GDBN} while you have an attached process, you detach
2367 that process.  If you use the @code{run} command, you kill that process.
2368 By default, @value{GDBN} asks for confirmation if you try to do either of these
2369 things; you can control whether or not you need to confirm by using the
2370 @code{set confirm} command (@pxref{Messages/Warnings, ,Optional Warnings and
2371 Messages}).
2372
2373 @node Kill Process
2374 @section Killing the Child Process
2375
2376 @table @code
2377 @kindex kill
2378 @item kill
2379 Kill the child process in which your program is running under @value{GDBN}.
2380 @end table
2381
2382 This command is useful if you wish to debug a core dump instead of a
2383 running process.  @value{GDBN} ignores any core dump file while your program
2384 is running.
2385
2386 On some operating systems, a program cannot be executed outside @value{GDBN}
2387 while you have breakpoints set on it inside @value{GDBN}.  You can use the
2388 @code{kill} command in this situation to permit running your program
2389 outside the debugger.
2390
2391 The @code{kill} command is also useful if you wish to recompile and
2392 relink your program, since on many systems it is impossible to modify an
2393 executable file while it is running in a process.  In this case, when you
2394 next type @code{run}, @value{GDBN} notices that the file has changed, and
2395 reads the symbol table again (while trying to preserve your current
2396 breakpoint settings).
2397
2398 @node Inferiors and Programs
2399 @section Debugging Multiple Inferiors and Programs
2400
2401 @value{GDBN} lets you run and debug multiple programs in a single
2402 session.  In addition, @value{GDBN} on some systems may let you run
2403 several programs simultaneously (otherwise you have to exit from one
2404 before starting another).  In the most general case, you can have
2405 multiple threads of execution in each of multiple processes, launched
2406 from multiple executables.
2407
2408 @cindex inferior
2409 @value{GDBN} represents the state of each program execution with an
2410 object called an @dfn{inferior}.  An inferior typically corresponds to
2411 a process, but is more general and applies also to targets that do not
2412 have processes.  Inferiors may be created before a process runs, and
2413 may be retained after a process exits.  Inferiors have unique
2414 identifiers that are different from process ids.  Usually each
2415 inferior will also have its own distinct address space, although some
2416 embedded targets may have several inferiors running in different parts
2417 of a single address space.  Each inferior may in turn have multiple
2418 threads running in it.
2419
2420 To find out what inferiors exist at any moment, use @w{@code{info
2421 inferiors}}:
2422
2423 @table @code
2424 @kindex info inferiors
2425 @item info inferiors
2426 Print a list of all inferiors currently being managed by @value{GDBN}.
2427
2428 @value{GDBN} displays for each inferior (in this order):
2429
2430 @enumerate
2431 @item
2432 the inferior number assigned by @value{GDBN}
2433
2434 @item
2435 the target system's inferior identifier
2436
2437 @item
2438 the name of the executable the inferior is running.
2439
2440 @end enumerate
2441
2442 @noindent
2443 An asterisk @samp{*} preceding the @value{GDBN} inferior number
2444 indicates the current inferior.
2445
2446 For example,
2447 @end table
2448 @c end table here to get a little more width for example
2449
2450 @smallexample
2451 (@value{GDBP}) info inferiors
2452   Num  Description       Executable
2453   2    process 2307      hello
2454 * 1    process 3401      goodbye
2455 @end smallexample
2456
2457 To switch focus between inferiors, use the @code{inferior} command:
2458
2459 @table @code
2460 @kindex inferior @var{infno}
2461 @item inferior @var{infno}
2462 Make inferior number @var{infno} the current inferior.  The argument
2463 @var{infno} is the inferior number assigned by @value{GDBN}, as shown
2464 in the first field of the @samp{info inferiors} display.
2465 @end table
2466
2467
2468 You can get multiple executables into a debugging session via the
2469 @code{add-inferior} and @w{@code{clone-inferior}} commands.  On some
2470 systems @value{GDBN} can add inferiors to the debug session
2471 automatically by following calls to @code{fork} and @code{exec}.  To
2472 remove inferiors from the debugging session use the
2473 @w{@code{remove-inferiors}} command.
2474
2475 @table @code
2476 @kindex add-inferior
2477 @item add-inferior [ -copies @var{n} ] [ -exec @var{executable} ]
2478 Adds @var{n} inferiors to be run using @var{executable} as the
2479 executable.  @var{n} defaults to 1.  If no executable is specified,
2480 the inferiors begins empty, with no program.  You can still assign or
2481 change the program assigned to the inferior at any time by using the
2482 @code{file} command with the executable name as its argument.
2483
2484 @kindex clone-inferior
2485 @item clone-inferior [ -copies @var{n} ] [ @var{infno} ]
2486 Adds @var{n} inferiors ready to execute the same program as inferior
2487 @var{infno}.  @var{n} defaults to 1.  @var{infno} defaults to the
2488 number of the current inferior.  This is a convenient command when you
2489 want to run another instance of the inferior you are debugging.
2490
2491 @smallexample
2492 (@value{GDBP}) info inferiors
2493   Num  Description       Executable
2494 * 1    process 29964     helloworld
2495 (@value{GDBP}) clone-inferior
2496 Added inferior 2.
2497 1 inferiors added.
2498 (@value{GDBP}) info inferiors
2499   Num  Description       Executable
2500   2    <null>            helloworld
2501 * 1    process 29964     helloworld
2502 @end smallexample
2503
2504 You can now simply switch focus to inferior 2 and run it.
2505
2506 @kindex remove-inferiors
2507 @item remove-inferiors @var{infno}@dots{}
2508 Removes the inferior or inferiors @var{infno}@dots{}.  It is not
2509 possible to remove an inferior that is running with this command.  For
2510 those, use the @code{kill} or @code{detach} command first.
2511
2512 @end table
2513
2514 To quit debugging one of the running inferiors that is not the current
2515 inferior, you can either detach from it by using the @w{@code{detach
2516 inferior}} command (allowing it to run independently), or kill it
2517 using the @w{@code{kill inferiors}} command:
2518
2519 @table @code
2520 @kindex detach inferiors @var{infno}@dots{}
2521 @item detach inferior @var{infno}@dots{}
2522 Detach from the inferior or inferiors identified by @value{GDBN}
2523 inferior number(s) @var{infno}@dots{}.  Note that the inferior's entry
2524 still stays on the list of inferiors shown by @code{info inferiors},
2525 but its Description will show @samp{<null>}.
2526
2527 @kindex kill inferiors @var{infno}@dots{}
2528 @item kill inferiors @var{infno}@dots{}
2529 Kill the inferior or inferiors identified by @value{GDBN} inferior
2530 number(s) @var{infno}@dots{}.  Note that the inferior's entry still
2531 stays on the list of inferiors shown by @code{info inferiors}, but its
2532 Description will show @samp{<null>}.
2533 @end table
2534
2535 After the successful completion of a command such as @code{detach},
2536 @code{detach inferiors}, @code{kill} or @code{kill inferiors}, or after
2537 a normal process exit, the inferior is still valid and listed with
2538 @code{info inferiors}, ready to be restarted.
2539
2540
2541 To be notified when inferiors are started or exit under @value{GDBN}'s
2542 control use @w{@code{set print inferior-events}}:
2543
2544 @table @code
2545 @kindex set print inferior-events
2546 @cindex print messages on inferior start and exit
2547 @item set print inferior-events
2548 @itemx set print inferior-events on
2549 @itemx set print inferior-events off
2550 The @code{set print inferior-events} command allows you to enable or
2551 disable printing of messages when @value{GDBN} notices that new
2552 inferiors have started or that inferiors have exited or have been
2553 detached.  By default, these messages will not be printed.
2554
2555 @kindex show print inferior-events
2556 @item show print inferior-events
2557 Show whether messages will be printed when @value{GDBN} detects that
2558 inferiors have started, exited or have been detached.
2559 @end table
2560
2561 Many commands will work the same with multiple programs as with a
2562 single program: e.g., @code{print myglobal} will simply display the
2563 value of @code{myglobal} in the current inferior.
2564
2565
2566 Occasionaly, when debugging @value{GDBN} itself, it may be useful to
2567 get more info about the relationship of inferiors, programs, address
2568 spaces in a debug session.  You can do that with the @w{@code{maint
2569 info program-spaces}} command.
2570
2571 @table @code
2572 @kindex maint info program-spaces
2573 @item maint info program-spaces
2574 Print a list of all program spaces currently being managed by
2575 @value{GDBN}.
2576
2577 @value{GDBN} displays for each program space (in this order):
2578
2579 @enumerate
2580 @item
2581 the program space number assigned by @value{GDBN}
2582
2583 @item
2584 the name of the executable loaded into the program space, with e.g.,
2585 the @code{file} command.
2586
2587 @end enumerate
2588
2589 @noindent
2590 An asterisk @samp{*} preceding the @value{GDBN} program space number
2591 indicates the current program space.
2592
2593 In addition, below each program space line, @value{GDBN} prints extra
2594 information that isn't suitable to display in tabular form.  For
2595 example, the list of inferiors bound to the program space.
2596
2597 @smallexample
2598 (@value{GDBP}) maint info program-spaces
2599   Id   Executable
2600   2    goodbye
2601         Bound inferiors: ID 1 (process 21561)
2602 * 1    hello
2603 @end smallexample
2604
2605 Here we can see that no inferior is running the program @code{hello},
2606 while @code{process 21561} is running the program @code{goodbye}.  On
2607 some targets, it is possible that multiple inferiors are bound to the
2608 same program space.  The most common example is that of debugging both
2609 the parent and child processes of a @code{vfork} call.  For example,
2610
2611 @smallexample
2612 (@value{GDBP}) maint info program-spaces
2613   Id   Executable
2614 * 1    vfork-test
2615         Bound inferiors: ID 2 (process 18050), ID 1 (process 18045)
2616 @end smallexample
2617
2618 Here, both inferior 2 and inferior 1 are running in the same program
2619 space as a result of inferior 1 having executed a @code{vfork} call.
2620 @end table
2621
2622 @node Threads
2623 @section Debugging Programs with Multiple Threads
2624
2625 @cindex threads of execution
2626 @cindex multiple threads
2627 @cindex switching threads
2628 In some operating systems, such as HP-UX and Solaris, a single program
2629 may have more than one @dfn{thread} of execution.  The precise semantics
2630 of threads differ from one operating system to another, but in general
2631 the threads of a single program are akin to multiple processes---except
2632 that they share one address space (that is, they can all examine and
2633 modify the same variables).  On the other hand, each thread has its own
2634 registers and execution stack, and perhaps private memory.
2635
2636 @value{GDBN} provides these facilities for debugging multi-thread
2637 programs:
2638
2639 @itemize @bullet
2640 @item automatic notification of new threads
2641 @item @samp{thread @var{threadno}}, a command to switch among threads
2642 @item @samp{info threads}, a command to inquire about existing threads
2643 @item @samp{thread apply [@var{threadno}] [@var{all}] @var{args}},
2644 a command to apply a command to a list of threads
2645 @item thread-specific breakpoints
2646 @item @samp{set print thread-events}, which controls printing of 
2647 messages on thread start and exit.
2648 @item @samp{set libthread-db-search-path @var{path}}, which lets
2649 the user specify which @code{libthread_db} to use if the default choice
2650 isn't compatible with the program.
2651 @end itemize
2652
2653 @quotation
2654 @emph{Warning:} These facilities are not yet available on every
2655 @value{GDBN} configuration where the operating system supports threads.
2656 If your @value{GDBN} does not support threads, these commands have no
2657 effect.  For example, a system without thread support shows no output
2658 from @samp{info threads}, and always rejects the @code{thread} command,
2659 like this:
2660
2661 @smallexample
2662 (@value{GDBP}) info threads
2663 (@value{GDBP}) thread 1
2664 Thread ID 1 not known.  Use the "info threads" command to
2665 see the IDs of currently known threads.
2666 @end smallexample
2667 @c FIXME to implementors: how hard would it be to say "sorry, this GDB
2668 @c                        doesn't support threads"?
2669 @end quotation
2670
2671 @cindex focus of debugging
2672 @cindex current thread
2673 The @value{GDBN} thread debugging facility allows you to observe all
2674 threads while your program runs---but whenever @value{GDBN} takes
2675 control, one thread in particular is always the focus of debugging.
2676 This thread is called the @dfn{current thread}.  Debugging commands show
2677 program information from the perspective of the current thread.
2678
2679 @cindex @code{New} @var{systag} message
2680 @cindex thread identifier (system)
2681 @c FIXME-implementors!! It would be more helpful if the [New...] message
2682 @c included GDB's numeric thread handle, so you could just go to that
2683 @c thread without first checking `info threads'.
2684 Whenever @value{GDBN} detects a new thread in your program, it displays
2685 the target system's identification for the thread with a message in the
2686 form @samp{[New @var{systag}]}.  @var{systag} is a thread identifier
2687 whose form varies depending on the particular system.  For example, on
2688 @sc{gnu}/Linux, you might see
2689
2690 @smallexample
2691 [New Thread 0x41e02940 (LWP 25582)]
2692 @end smallexample
2693
2694 @noindent
2695 when @value{GDBN} notices a new thread.  In contrast, on an SGI system,
2696 the @var{systag} is simply something like @samp{process 368}, with no
2697 further qualifier.
2698
2699 @c FIXME!! (1) Does the [New...] message appear even for the very first
2700 @c         thread of a program, or does it only appear for the
2701 @c         second---i.e.@: when it becomes obvious we have a multithread
2702 @c         program?
2703 @c         (2) *Is* there necessarily a first thread always?  Or do some
2704 @c         multithread systems permit starting a program with multiple
2705 @c         threads ab initio?
2706
2707 @cindex thread number
2708 @cindex thread identifier (GDB)
2709 For debugging purposes, @value{GDBN} associates its own thread
2710 number---always a single integer---with each thread in your program.
2711
2712 @table @code
2713 @kindex info threads
2714 @item info threads @r{[}@var{id}@dots{}@r{]}
2715 Display a summary of all threads currently in your program.  Optional 
2716 argument @var{id}@dots{} is one or more thread ids separated by spaces, and
2717 means to print information only about the specified thread or threads.
2718 @value{GDBN} displays for each thread (in this order):
2719
2720 @enumerate
2721 @item
2722 the thread number assigned by @value{GDBN}
2723
2724 @item
2725 the target system's thread identifier (@var{systag})
2726
2727 @item
2728 the thread's name, if one is known.  A thread can either be named by
2729 the user (see @code{thread name}, below), or, in some cases, by the
2730 program itself.
2731
2732 @item
2733 the current stack frame summary for that thread
2734 @end enumerate
2735
2736 @noindent
2737 An asterisk @samp{*} to the left of the @value{GDBN} thread number
2738 indicates the current thread.
2739
2740 For example,
2741 @end table
2742 @c end table here to get a little more width for example
2743
2744 @smallexample
2745 (@value{GDBP}) info threads
2746   Id   Target Id         Frame
2747   3    process 35 thread 27  0x34e5 in sigpause ()
2748   2    process 35 thread 23  0x34e5 in sigpause ()
2749 * 1    process 35 thread 13  main (argc=1, argv=0x7ffffff8)
2750     at threadtest.c:68
2751 @end smallexample
2752
2753 On Solaris, you can display more information about user threads with a
2754 Solaris-specific command:
2755
2756 @table @code
2757 @item maint info sol-threads
2758 @kindex maint info sol-threads
2759 @cindex thread info (Solaris)
2760 Display info on Solaris user threads.
2761 @end table
2762
2763 @table @code
2764 @kindex thread @var{threadno}
2765 @item thread @var{threadno}
2766 Make thread number @var{threadno} the current thread.  The command
2767 argument @var{threadno} is the internal @value{GDBN} thread number, as
2768 shown in the first field of the @samp{info threads} display.
2769 @value{GDBN} responds by displaying the system identifier of the thread
2770 you selected, and its current stack frame summary:
2771
2772 @smallexample
2773 (@value{GDBP}) thread 2
2774 [Switching to thread 2 (Thread 0xb7fdab70 (LWP 12747))]
2775 #0  some_function (ignore=0x0) at example.c:8
2776 8           printf ("hello\n");
2777 @end smallexample
2778
2779 @noindent
2780 As with the @samp{[New @dots{}]} message, the form of the text after
2781 @samp{Switching to} depends on your system's conventions for identifying
2782 threads.
2783
2784 @vindex $_thread@r{, convenience variable}
2785 The debugger convenience variable @samp{$_thread} contains the number
2786 of the current thread.  You may find this useful in writing breakpoint
2787 conditional expressions, command scripts, and so forth.  See
2788 @xref{Convenience Vars,, Convenience Variables}, for general
2789 information on convenience variables.
2790
2791 @kindex thread apply
2792 @cindex apply command to several threads
2793 @item thread apply [@var{threadno} | all] @var{command}
2794 The @code{thread apply} command allows you to apply the named
2795 @var{command} to one or more threads.  Specify the numbers of the
2796 threads that you want affected with the command argument
2797 @var{threadno}.  It can be a single thread number, one of the numbers
2798 shown in the first field of the @samp{info threads} display; or it
2799 could be a range of thread numbers, as in @code{2-4}.  To apply a
2800 command to all threads, type @kbd{thread apply all @var{command}}.
2801
2802 @kindex thread name
2803 @cindex name a thread
2804 @item thread name [@var{name}]
2805 This command assigns a name to the current thread.  If no argument is
2806 given, any existing user-specified name is removed.  The thread name
2807 appears in the @samp{info threads} display.
2808
2809 On some systems, such as @sc{gnu}/Linux, @value{GDBN} is able to
2810 determine the name of the thread as given by the OS.  On these
2811 systems, a name specified with @samp{thread name} will override the
2812 system-give name, and removing the user-specified name will cause
2813 @value{GDBN} to once again display the system-specified name.
2814
2815 @kindex thread find
2816 @cindex search for a thread
2817 @item thread find [@var{regexp}]
2818 Search for and display thread ids whose name or @var{systag}
2819 matches the supplied regular expression.
2820
2821 As well as being the complement to the @samp{thread name} command, 
2822 this command also allows you to identify a thread by its target 
2823 @var{systag}.  For instance, on @sc{gnu}/Linux, the target @var{systag}
2824 is the LWP id.
2825
2826 @smallexample
2827 (@value{GDBN}) thread find 26688
2828 Thread 4 has target id 'Thread 0x41e02940 (LWP 26688)'
2829 (@value{GDBN}) info thread 4
2830   Id   Target Id         Frame 
2831   4    Thread 0x41e02940 (LWP 26688) 0x00000031ca6cd372 in select ()
2832 @end smallexample
2833
2834 @kindex set print thread-events
2835 @cindex print messages on thread start and exit
2836 @item set print thread-events
2837 @itemx set print thread-events on
2838 @itemx set print thread-events off
2839 The @code{set print thread-events} command allows you to enable or
2840 disable printing of messages when @value{GDBN} notices that new threads have
2841 started or that threads have exited.  By default, these messages will
2842 be printed if detection of these events is supported by the target.
2843 Note that these messages cannot be disabled on all targets.
2844
2845 @kindex show print thread-events
2846 @item show print thread-events
2847 Show whether messages will be printed when @value{GDBN} detects that threads
2848 have started and exited.
2849 @end table
2850
2851 @xref{Thread Stops,,Stopping and Starting Multi-thread Programs}, for
2852 more information about how @value{GDBN} behaves when you stop and start
2853 programs with multiple threads.
2854
2855 @xref{Set Watchpoints,,Setting Watchpoints}, for information about
2856 watchpoints in programs with multiple threads.
2857
2858 @table @code
2859 @kindex set libthread-db-search-path
2860 @cindex search path for @code{libthread_db}
2861 @item set libthread-db-search-path @r{[}@var{path}@r{]}
2862 If this variable is set, @var{path} is a colon-separated list of
2863 directories @value{GDBN} will use to search for @code{libthread_db}.
2864 If you omit @var{path}, @samp{libthread-db-search-path} will be reset to
2865 its default value (@code{$sdir:$pdir} on @sc{gnu}/Linux and Solaris systems).
2866 Internally, the default value comes from the @code{LIBTHREAD_DB_SEARCH_PATH}
2867 macro.
2868
2869 On @sc{gnu}/Linux and Solaris systems, @value{GDBN} uses a ``helper''
2870 @code{libthread_db} library to obtain information about threads in the
2871 inferior process.  @value{GDBN} will use @samp{libthread-db-search-path}
2872 to find @code{libthread_db}.
2873
2874 A special entry @samp{$sdir} for @samp{libthread-db-search-path}
2875 refers to the default system directories that are
2876 normally searched for loading shared libraries.
2877
2878 A special entry @samp{$pdir} for @samp{libthread-db-search-path}
2879 refers to the directory from which @code{libpthread}
2880 was loaded in the inferior process.
2881
2882 For any @code{libthread_db} library @value{GDBN} finds in above directories,
2883 @value{GDBN} attempts to initialize it with the current inferior process.
2884 If this initialization fails (which could happen because of a version
2885 mismatch between @code{libthread_db} and @code{libpthread}), @value{GDBN}
2886 will unload @code{libthread_db}, and continue with the next directory.
2887 If none of @code{libthread_db} libraries initialize successfully,
2888 @value{GDBN} will issue a warning and thread debugging will be disabled.
2889
2890 Setting @code{libthread-db-search-path} is currently implemented
2891 only on some platforms.
2892
2893 @kindex show libthread-db-search-path 
2894 @item show libthread-db-search-path 
2895 Display current libthread_db search path.
2896
2897 @kindex set debug libthread-db
2898 @kindex show debug libthread-db
2899 @cindex debugging @code{libthread_db}
2900 @item set debug libthread-db
2901 @itemx show debug libthread-db
2902 Turns on or off display of @code{libthread_db}-related events.
2903 Use @code{1} to enable, @code{0} to disable.
2904 @end table
2905
2906 @node Forks
2907 @section Debugging Forks
2908
2909 @cindex fork, debugging programs which call
2910 @cindex multiple processes
2911 @cindex processes, multiple
2912 On most systems, @value{GDBN} has no special support for debugging
2913 programs which create additional processes using the @code{fork}
2914 function.  When a program forks, @value{GDBN} will continue to debug the
2915 parent process and the child process will run unimpeded.  If you have
2916 set a breakpoint in any code which the child then executes, the child
2917 will get a @code{SIGTRAP} signal which (unless it catches the signal)
2918 will cause it to terminate.
2919
2920 However, if you want to debug the child process there is a workaround
2921 which isn't too painful.  Put a call to @code{sleep} in the code which
2922 the child process executes after the fork.  It may be useful to sleep
2923 only if a certain environment variable is set, or a certain file exists,
2924 so that the delay need not occur when you don't want to run @value{GDBN}
2925 on the child.  While the child is sleeping, use the @code{ps} program to
2926 get its process ID.  Then tell @value{GDBN} (a new invocation of
2927 @value{GDBN} if you are also debugging the parent process) to attach to
2928 the child process (@pxref{Attach}).  From that point on you can debug
2929 the child process just like any other process which you attached to.
2930
2931 On some systems, @value{GDBN} provides support for debugging programs that
2932 create additional processes using the @code{fork} or @code{vfork} functions.
2933 Currently, the only platforms with this feature are HP-UX (11.x and later
2934 only?) and @sc{gnu}/Linux (kernel version 2.5.60 and later).
2935
2936 By default, when a program forks, @value{GDBN} will continue to debug
2937 the parent process and the child process will run unimpeded.
2938
2939 If you want to follow the child process instead of the parent process,
2940 use the command @w{@code{set follow-fork-mode}}.
2941
2942 @table @code
2943 @kindex set follow-fork-mode
2944 @item set follow-fork-mode @var{mode}
2945 Set the debugger response to a program call of @code{fork} or
2946 @code{vfork}.  A call to @code{fork} or @code{vfork} creates a new
2947 process.  The @var{mode} argument can be:
2948
2949 @table @code
2950 @item parent
2951 The original process is debugged after a fork.  The child process runs
2952 unimpeded.  This is the default.
2953
2954 @item child
2955 The new process is debugged after a fork.  The parent process runs
2956 unimpeded.
2957
2958 @end table
2959
2960 @kindex show follow-fork-mode
2961 @item show follow-fork-mode
2962 Display the current debugger response to a @code{fork} or @code{vfork} call.
2963 @end table
2964
2965 @cindex debugging multiple processes
2966 On Linux, if you want to debug both the parent and child processes, use the
2967 command @w{@code{set detach-on-fork}}.
2968
2969 @table @code
2970 @kindex set detach-on-fork
2971 @item set detach-on-fork @var{mode}
2972 Tells gdb whether to detach one of the processes after a fork, or
2973 retain debugger control over them both.
2974
2975 @table @code
2976 @item on
2977 The child process (or parent process, depending on the value of
2978 @code{follow-fork-mode}) will be detached and allowed to run 
2979 independently.  This is the default.
2980
2981 @item off
2982 Both processes will be held under the control of @value{GDBN}.
2983 One process (child or parent, depending on the value of 
2984 @code{follow-fork-mode}) is debugged as usual, while the other
2985 is held suspended.  
2986
2987 @end table
2988
2989 @kindex show detach-on-fork
2990 @item show detach-on-fork
2991 Show whether detach-on-fork mode is on/off.
2992 @end table
2993
2994 If you choose to set @samp{detach-on-fork} mode off, then @value{GDBN}
2995 will retain control of all forked processes (including nested forks).
2996 You can list the forked processes under the control of @value{GDBN} by
2997 using the @w{@code{info inferiors}} command, and switch from one fork
2998 to another by using the @code{inferior} command (@pxref{Inferiors and
2999 Programs, ,Debugging Multiple Inferiors and Programs}).
3000
3001 To quit debugging one of the forked processes, you can either detach
3002 from it by using the @w{@code{detach inferiors}} command (allowing it
3003 to run independently), or kill it using the @w{@code{kill inferiors}}
3004 command.  @xref{Inferiors and Programs, ,Debugging Multiple Inferiors
3005 and Programs}.
3006
3007 If you ask to debug a child process and a @code{vfork} is followed by an
3008 @code{exec}, @value{GDBN} executes the new target up to the first
3009 breakpoint in the new target.  If you have a breakpoint set on
3010 @code{main} in your original program, the breakpoint will also be set on
3011 the child process's @code{main}.
3012
3013 On some systems, when a child process is spawned by @code{vfork}, you
3014 cannot debug the child or parent until an @code{exec} call completes.
3015
3016 If you issue a @code{run} command to @value{GDBN} after an @code{exec}
3017 call executes, the new target restarts.  To restart the parent
3018 process, use the @code{file} command with the parent executable name
3019 as its argument.  By default, after an @code{exec} call executes,
3020 @value{GDBN} discards the symbols of the previous executable image.
3021 You can change this behaviour with the @w{@code{set follow-exec-mode}}
3022 command.
3023
3024 @table @code
3025 @kindex set follow-exec-mode
3026 @item set follow-exec-mode @var{mode}
3027
3028 Set debugger response to a program call of @code{exec}.  An
3029 @code{exec} call replaces the program image of a process.
3030
3031 @code{follow-exec-mode} can be:
3032
3033 @table @code
3034 @item new
3035 @value{GDBN} creates a new inferior and rebinds the process to this
3036 new inferior.  The program the process was running before the
3037 @code{exec} call can be restarted afterwards by restarting the
3038 original inferior.
3039
3040 For example:
3041
3042 @smallexample
3043 (@value{GDBP}) info inferiors
3044 (gdb) info inferior
3045   Id   Description   Executable
3046 * 1    <null>        prog1
3047 (@value{GDBP}) run
3048 process 12020 is executing new program: prog2
3049 Program exited normally.
3050 (@value{GDBP}) info inferiors
3051   Id   Description   Executable
3052 * 2    <null>        prog2
3053   1    <null>        prog1
3054 @end smallexample
3055
3056 @item same
3057 @value{GDBN} keeps the process bound to the same inferior.  The new
3058 executable image replaces the previous executable loaded in the
3059 inferior.  Restarting the inferior after the @code{exec} call, with
3060 e.g., the @code{run} command, restarts the executable the process was
3061 running after the @code{exec} call.  This is the default mode.
3062
3063 For example:
3064
3065 @smallexample
3066 (@value{GDBP}) info inferiors
3067   Id   Description   Executable
3068 * 1    <null>        prog1
3069 (@value{GDBP}) run
3070 process 12020 is executing new program: prog2
3071 Program exited normally.
3072 (@value{GDBP}) info inferiors
3073   Id   Description   Executable
3074 * 1    <null>        prog2
3075 @end smallexample
3076
3077 @end table
3078 @end table
3079
3080 You can use the @code{catch} command to make @value{GDBN} stop whenever
3081 a @code{fork}, @code{vfork}, or @code{exec} call is made.  @xref{Set
3082 Catchpoints, ,Setting Catchpoints}.
3083
3084 @node Checkpoint/Restart
3085 @section Setting a @emph{Bookmark} to Return to Later
3086
3087 @cindex checkpoint
3088 @cindex restart
3089 @cindex bookmark
3090 @cindex snapshot of a process
3091 @cindex rewind program state
3092
3093 On certain operating systems@footnote{Currently, only
3094 @sc{gnu}/Linux.}, @value{GDBN} is able to save a @dfn{snapshot} of a
3095 program's state, called a @dfn{checkpoint}, and come back to it
3096 later.
3097
3098 Returning to a checkpoint effectively undoes everything that has
3099 happened in the program since the @code{checkpoint} was saved.  This
3100 includes changes in memory, registers, and even (within some limits)
3101 system state.  Effectively, it is like going back in time to the
3102 moment when the checkpoint was saved.
3103
3104 Thus, if you're stepping thru a program and you think you're 
3105 getting close to the point where things go wrong, you can save
3106 a checkpoint.  Then, if you accidentally go too far and miss
3107 the critical statement, instead of having to restart your program
3108 from the beginning, you can just go back to the checkpoint and
3109 start again from there.
3110
3111 This can be especially useful if it takes a lot of time or 
3112 steps to reach the point where you think the bug occurs.  
3113
3114 To use the @code{checkpoint}/@code{restart} method of debugging:
3115
3116 @table @code
3117 @kindex checkpoint
3118 @item checkpoint
3119 Save a snapshot of the debugged program's current execution state.
3120 The @code{checkpoint} command takes no arguments, but each checkpoint
3121 is assigned a small integer id, similar to a breakpoint id.
3122
3123 @kindex info checkpoints
3124 @item info checkpoints
3125 List the checkpoints that have been saved in the current debugging
3126 session.  For each checkpoint, the following information will be
3127 listed:
3128
3129 @table @code
3130 @item Checkpoint ID
3131 @item Process ID
3132 @item Code Address
3133 @item Source line, or label
3134 @end table
3135
3136 @kindex restart @var{checkpoint-id}
3137 @item restart @var{checkpoint-id}
3138 Restore the program state that was saved as checkpoint number
3139 @var{checkpoint-id}.  All program variables, registers, stack frames
3140 etc.@:  will be returned to the values that they had when the checkpoint
3141 was saved.  In essence, gdb will ``wind back the clock'' to the point
3142 in time when the checkpoint was saved.
3143
3144 Note that breakpoints, @value{GDBN} variables, command history etc.
3145 are not affected by restoring a checkpoint.  In general, a checkpoint
3146 only restores things that reside in the program being debugged, not in
3147 the debugger.
3148
3149 @kindex delete checkpoint @var{checkpoint-id}
3150 @item delete checkpoint @var{checkpoint-id}
3151 Delete the previously-saved checkpoint identified by @var{checkpoint-id}.
3152
3153 @end table
3154
3155 Returning to a previously saved checkpoint will restore the user state
3156 of the program being debugged, plus a significant subset of the system
3157 (OS) state, including file pointers.  It won't ``un-write'' data from
3158 a file, but it will rewind the file pointer to the previous location,
3159 so that the previously written data can be overwritten.  For files
3160 opened in read mode, the pointer will also be restored so that the
3161 previously read data can be read again.
3162
3163 Of course, characters that have been sent to a printer (or other
3164 external device) cannot be ``snatched back'', and characters received
3165 from eg.@: a serial device can be removed from internal program buffers,
3166 but they cannot be ``pushed back'' into the serial pipeline, ready to
3167 be received again.  Similarly, the actual contents of files that have
3168 been changed cannot be restored (at this time).
3169
3170 However, within those constraints, you actually can ``rewind'' your
3171 program to a previously saved point in time, and begin debugging it
3172 again --- and you can change the course of events so as to debug a
3173 different execution path this time.
3174
3175 @cindex checkpoints and process id
3176 Finally, there is one bit of internal program state that will be
3177 different when you return to a checkpoint --- the program's process
3178 id.  Each checkpoint will have a unique process id (or @var{pid}), 
3179 and each will be different from the program's original @var{pid}.
3180 If your program has saved a local copy of its process id, this could
3181 potentially pose a problem.
3182
3183 @subsection A Non-obvious Benefit of Using Checkpoints
3184
3185 On some systems such as @sc{gnu}/Linux, address space randomization
3186 is performed on new processes for security reasons.  This makes it 
3187 difficult or impossible to set a breakpoint, or watchpoint, on an
3188 absolute address if you have to restart the program, since the 
3189 absolute location of a symbol will change from one execution to the
3190 next.
3191
3192 A checkpoint, however, is an @emph{identical} copy of a process. 
3193 Therefore if you create a checkpoint at (eg.@:) the start of main, 
3194 and simply return to that checkpoint instead of restarting the 
3195 process, you can avoid the effects of address randomization and
3196 your symbols will all stay in the same place.
3197
3198 @node Stopping
3199 @chapter Stopping and Continuing
3200
3201 The principal purposes of using a debugger are so that you can stop your
3202 program before it terminates; or so that, if your program runs into
3203 trouble, you can investigate and find out why.
3204
3205 Inside @value{GDBN}, your program may stop for any of several reasons,
3206 such as a signal, a breakpoint, or reaching a new line after a
3207 @value{GDBN} command such as @code{step}.  You may then examine and
3208 change variables, set new breakpoints or remove old ones, and then
3209 continue execution.  Usually, the messages shown by @value{GDBN} provide
3210 ample explanation of the status of your program---but you can also
3211 explicitly request this information at any time.
3212
3213 @table @code
3214 @kindex info program
3215 @item info program
3216 Display information about the status of your program: whether it is
3217 running or not, what process it is, and why it stopped.
3218 @end table
3219
3220 @menu
3221 * Breakpoints::                 Breakpoints, watchpoints, and catchpoints
3222 * Continuing and Stepping::     Resuming execution
3223 * Skipping Over Functions and Files::
3224                                 Skipping over functions and files
3225 * Signals::                     Signals
3226 * Thread Stops::                Stopping and starting multi-thread programs
3227 @end menu
3228
3229 @node Breakpoints
3230 @section Breakpoints, Watchpoints, and Catchpoints
3231
3232 @cindex breakpoints
3233 A @dfn{breakpoint} makes your program stop whenever a certain point in
3234 the program is reached.  For each breakpoint, you can add conditions to
3235 control in finer detail whether your program stops.  You can set
3236 breakpoints with the @code{break} command and its variants (@pxref{Set
3237 Breaks, ,Setting Breakpoints}), to specify the place where your program
3238 should stop by line number, function name or exact address in the
3239 program.
3240
3241 On some systems, you can set breakpoints in shared libraries before
3242 the executable is run.  There is a minor limitation on HP-UX systems:
3243 you must wait until the executable is run in order to set breakpoints
3244 in shared library routines that are not called directly by the program
3245 (for example, routines that are arguments in a @code{pthread_create}
3246 call).
3247
3248 @cindex watchpoints
3249 @cindex data breakpoints
3250 @cindex memory tracing
3251 @cindex breakpoint on memory address
3252 @cindex breakpoint on variable modification
3253 A @dfn{watchpoint} is a special breakpoint that stops your program
3254 when the value of an expression changes.  The expression may be a value
3255 of a variable, or it could involve values of one or more variables
3256 combined by operators, such as @samp{a + b}.  This is sometimes called
3257 @dfn{data breakpoints}.  You must use a different command to set
3258 watchpoints (@pxref{Set Watchpoints, ,Setting Watchpoints}), but aside
3259 from that, you can manage a watchpoint like any other breakpoint: you
3260 enable, disable, and delete both breakpoints and watchpoints using the
3261 same commands.
3262
3263 You can arrange to have values from your program displayed automatically
3264 whenever @value{GDBN} stops at a breakpoint.  @xref{Auto Display,,
3265 Automatic Display}.
3266
3267 @cindex catchpoints
3268 @cindex breakpoint on events
3269 A @dfn{catchpoint} is another special breakpoint that stops your program
3270 when a certain kind of event occurs, such as the throwing of a C@t{++}
3271 exception or the loading of a library.  As with watchpoints, you use a
3272 different command to set a catchpoint (@pxref{Set Catchpoints, ,Setting
3273 Catchpoints}), but aside from that, you can manage a catchpoint like any
3274 other breakpoint.  (To stop when your program receives a signal, use the
3275 @code{handle} command; see @ref{Signals, ,Signals}.)
3276
3277 @cindex breakpoint numbers
3278 @cindex numbers for breakpoints
3279 @value{GDBN} assigns a number to each breakpoint, watchpoint, or
3280 catchpoint when you create it; these numbers are successive integers
3281 starting with one.  In many of the commands for controlling various
3282 features of breakpoints you use the breakpoint number to say which
3283 breakpoint you want to change.  Each breakpoint may be @dfn{enabled} or
3284 @dfn{disabled}; if disabled, it has no effect on your program until you
3285 enable it again.
3286
3287 @cindex breakpoint ranges
3288 @cindex ranges of breakpoints
3289 Some @value{GDBN} commands accept a range of breakpoints on which to
3290 operate.  A breakpoint range is either a single breakpoint number, like
3291 @samp{5}, or two such numbers, in increasing order, separated by a
3292 hyphen, like @samp{5-7}.  When a breakpoint range is given to a command,
3293 all breakpoints in that range are operated on.
3294
3295 @menu
3296 * Set Breaks::                  Setting breakpoints
3297 * Set Watchpoints::             Setting watchpoints
3298 * Set Catchpoints::             Setting catchpoints
3299 * Delete Breaks::               Deleting breakpoints
3300 * Disabling::                   Disabling breakpoints
3301 * Conditions::                  Break conditions
3302 * Break Commands::              Breakpoint command lists
3303 * Save Breakpoints::            How to save breakpoints in a file
3304 * Error in Breakpoints::        ``Cannot insert breakpoints''
3305 * Breakpoint-related Warnings:: ``Breakpoint address adjusted...''
3306 @end menu
3307
3308 @node Set Breaks
3309 @subsection Setting Breakpoints
3310
3311 @c FIXME LMB what does GDB do if no code on line of breakpt?
3312 @c       consider in particular declaration with/without initialization.
3313 @c
3314 @c FIXME 2 is there stuff on this already? break at fun start, already init?
3315
3316 @kindex break
3317 @kindex b @r{(@code{break})}
3318 @vindex $bpnum@r{, convenience variable}
3319 @cindex latest breakpoint
3320 Breakpoints are set with the @code{break} command (abbreviated
3321 @code{b}).  The debugger convenience variable @samp{$bpnum} records the
3322 number of the breakpoint you've set most recently; see @ref{Convenience
3323 Vars,, Convenience Variables}, for a discussion of what you can do with
3324 convenience variables.
3325
3326 @table @code
3327 @item break @var{location}
3328 Set a breakpoint at the given @var{location}, which can specify a
3329 function name, a line number, or an address of an instruction.
3330 (@xref{Specify Location}, for a list of all the possible ways to
3331 specify a @var{location}.)  The breakpoint will stop your program just
3332 before it executes any of the code in the specified @var{location}.
3333
3334 When using source languages that permit overloading of symbols, such as
3335 C@t{++}, a function name may refer to more than one possible place to break.
3336 @xref{Ambiguous Expressions,,Ambiguous Expressions}, for a discussion of
3337 that situation.
3338
3339 It is also possible to insert a breakpoint that will stop the program
3340 only if a specific thread (@pxref{Thread-Specific Breakpoints})
3341 or a specific task (@pxref{Ada Tasks}) hits that breakpoint.
3342
3343 @item break
3344 When called without any arguments, @code{break} sets a breakpoint at
3345 the next instruction to be executed in the selected stack frame
3346 (@pxref{Stack, ,Examining the Stack}).  In any selected frame but the
3347 innermost, this makes your program stop as soon as control
3348 returns to that frame.  This is similar to the effect of a
3349 @code{finish} command in the frame inside the selected frame---except
3350 that @code{finish} does not leave an active breakpoint.  If you use
3351 @code{break} without an argument in the innermost frame, @value{GDBN} stops
3352 the next time it reaches the current location; this may be useful
3353 inside loops.
3354
3355 @value{GDBN} normally ignores breakpoints when it resumes execution, until at
3356 least one instruction has been executed.  If it did not do this, you
3357 would be unable to proceed past a breakpoint without first disabling the
3358 breakpoint.  This rule applies whether or not the breakpoint already
3359 existed when your program stopped.
3360
3361 @item break @dots{} if @var{cond}
3362 Set a breakpoint with condition @var{cond}; evaluate the expression
3363 @var{cond} each time the breakpoint is reached, and stop only if the
3364 value is nonzero---that is, if @var{cond} evaluates as true.
3365 @samp{@dots{}} stands for one of the possible arguments described
3366 above (or no argument) specifying where to break.  @xref{Conditions,
3367 ,Break Conditions}, for more information on breakpoint conditions.
3368
3369 @kindex tbreak
3370 @item tbreak @var{args}
3371 Set a breakpoint enabled only for one stop.  @var{args} are the
3372 same as for the @code{break} command, and the breakpoint is set in the same
3373 way, but the breakpoint is automatically deleted after the first time your
3374 program stops there.  @xref{Disabling, ,Disabling Breakpoints}.
3375
3376 @kindex hbreak
3377 @cindex hardware breakpoints
3378 @item hbreak @var{args}
3379 Set a hardware-assisted breakpoint.  @var{args} are the same as for the
3380 @code{break} command and the breakpoint is set in the same way, but the
3381 breakpoint requires hardware support and some target hardware may not
3382 have this support.  The main purpose of this is EPROM/ROM code
3383 debugging, so you can set a breakpoint at an instruction without
3384 changing the instruction.  This can be used with the new trap-generation
3385 provided by SPARClite DSU and most x86-based targets.  These targets
3386 will generate traps when a program accesses some data or instruction
3387 address that is assigned to the debug registers.  However the hardware
3388 breakpoint registers can take a limited number of breakpoints.  For
3389 example, on the DSU, only two data breakpoints can be set at a time, and
3390 @value{GDBN} will reject this command if more than two are used.  Delete
3391 or disable unused hardware breakpoints before setting new ones
3392 (@pxref{Disabling, ,Disabling Breakpoints}).
3393 @xref{Conditions, ,Break Conditions}.
3394 For remote targets, you can restrict the number of hardware
3395 breakpoints @value{GDBN} will use, see @ref{set remote
3396 hardware-breakpoint-limit}.
3397
3398 @kindex thbreak
3399 @item thbreak @var{args}
3400 Set a hardware-assisted breakpoint enabled only for one stop.  @var{args}
3401 are the same as for the @code{hbreak} command and the breakpoint is set in
3402 the same way.  However, like the @code{tbreak} command,
3403 the breakpoint is automatically deleted after the
3404 first time your program stops there.  Also, like the @code{hbreak}
3405 command, the breakpoint requires hardware support and some target hardware
3406 may not have this support.  @xref{Disabling, ,Disabling Breakpoints}.
3407 See also @ref{Conditions, ,Break Conditions}.
3408
3409 @kindex rbreak
3410 @cindex regular expression
3411 @cindex breakpoints at functions matching a regexp
3412 @cindex set breakpoints in many functions
3413 @item rbreak @var{regex}
3414 Set breakpoints on all functions matching the regular expression
3415 @var{regex}.  This command sets an unconditional breakpoint on all
3416 matches, printing a list of all breakpoints it set.  Once these
3417 breakpoints are set, they are treated just like the breakpoints set with
3418 the @code{break} command.  You can delete them, disable them, or make
3419 them conditional the same way as any other breakpoint.
3420
3421 The syntax of the regular expression is the standard one used with tools
3422 like @file{grep}.  Note that this is different from the syntax used by
3423 shells, so for instance @code{foo*} matches all functions that include
3424 an @code{fo} followed by zero or more @code{o}s.  There is an implicit
3425 @code{.*} leading and trailing the regular expression you supply, so to
3426 match only functions that begin with @code{foo}, use @code{^foo}.
3427
3428 @cindex non-member C@t{++} functions, set breakpoint in
3429 When debugging C@t{++} programs, @code{rbreak} is useful for setting
3430 breakpoints on overloaded functions that are not members of any special
3431 classes.
3432
3433 @cindex set breakpoints on all functions
3434 The @code{rbreak} command can be used to set breakpoints in
3435 @strong{all} the functions in a program, like this:
3436
3437 @smallexample
3438 (@value{GDBP}) rbreak .
3439 @end smallexample
3440
3441 @item rbreak @var{file}:@var{regex}
3442 If @code{rbreak} is called with a filename qualification, it limits
3443 the search for functions matching the given regular expression to the
3444 specified @var{file}.  This can be used, for example, to set breakpoints on
3445 every function in a given file:
3446
3447 @smallexample
3448 (@value{GDBP}) rbreak file.c:.
3449 @end smallexample
3450
3451 The colon separating the filename qualifier from the regex may
3452 optionally be surrounded by spaces.
3453
3454 @kindex info breakpoints
3455 @cindex @code{$_} and @code{info breakpoints}
3456 @item info breakpoints @r{[}@var{n}@dots{}@r{]}
3457 @itemx info break @r{[}@var{n}@dots{}@r{]}
3458 Print a table of all breakpoints, watchpoints, and catchpoints set and
3459 not deleted.  Optional argument @var{n} means print information only
3460 about the specified breakpoint(s) (or watchpoint(s) or catchpoint(s)).
3461 For each breakpoint, following columns are printed:
3462
3463 @table @emph
3464 @item Breakpoint Numbers
3465 @item Type
3466 Breakpoint, watchpoint, or catchpoint.
3467 @item Disposition
3468 Whether the breakpoint is marked to be disabled or deleted when hit.
3469 @item Enabled or Disabled
3470 Enabled breakpoints are marked with @samp{y}.  @samp{n} marks breakpoints
3471 that are not enabled.
3472 @item Address
3473 Where the breakpoint is in your program, as a memory address.  For a
3474 pending breakpoint whose address is not yet known, this field will
3475 contain @samp{<PENDING>}.  Such breakpoint won't fire until a shared
3476 library that has the symbol or line referred by breakpoint is loaded.
3477 See below for details.  A breakpoint with several locations will
3478 have @samp{<MULTIPLE>} in this field---see below for details.
3479 @item What
3480 Where the breakpoint is in the source for your program, as a file and
3481 line number.  For a pending breakpoint, the original string passed to
3482 the breakpoint command will be listed as it cannot be resolved until
3483 the appropriate shared library is loaded in the future.
3484 @end table
3485
3486 @noindent
3487 If a breakpoint is conditional, @code{info break} shows the condition on
3488 the line following the affected breakpoint; breakpoint commands, if any,
3489 are listed after that.  A pending breakpoint is allowed to have a condition
3490 specified for it.  The condition is not parsed for validity until a shared
3491 library is loaded that allows the pending breakpoint to resolve to a
3492 valid location.
3493
3494 @noindent
3495 @code{info break} with a breakpoint
3496 number @var{n} as argument lists only that breakpoint.  The
3497 convenience variable @code{$_} and the default examining-address for
3498 the @code{x} command are set to the address of the last breakpoint
3499 listed (@pxref{Memory, ,Examining Memory}).
3500
3501 @noindent
3502 @code{info break} displays a count of the number of times the breakpoint
3503 has been hit.  This is especially useful in conjunction with the
3504 @code{ignore} command.  You can ignore a large number of breakpoint
3505 hits, look at the breakpoint info to see how many times the breakpoint
3506 was hit, and then run again, ignoring one less than that number.  This
3507 will get you quickly to the last hit of that breakpoint.
3508 @end table
3509
3510 @value{GDBN} allows you to set any number of breakpoints at the same place in
3511 your program.  There is nothing silly or meaningless about this.  When
3512 the breakpoints are conditional, this is even useful
3513 (@pxref{Conditions, ,Break Conditions}).
3514
3515 @cindex multiple locations, breakpoints
3516 @cindex breakpoints, multiple locations
3517 It is possible that a breakpoint corresponds to several locations
3518 in your program.  Examples of this situation are:
3519
3520 @itemize @bullet
3521 @item
3522 For a C@t{++} constructor, the @value{NGCC} compiler generates several
3523 instances of the function body, used in different cases.
3524
3525 @item
3526 For a C@t{++} template function, a given line in the function can
3527 correspond to any number of instantiations.
3528
3529 @item
3530 For an inlined function, a given source line can correspond to
3531 several places where that function is inlined.
3532 @end itemize
3533
3534 In all those cases, @value{GDBN} will insert a breakpoint at all
3535 the relevant locations@footnote{
3536 As of this writing, multiple-location breakpoints work only if there's
3537 line number information for all the locations.  This means that they
3538 will generally not work in system libraries, unless you have debug
3539 info with line numbers for them.}.
3540
3541 A breakpoint with multiple locations is displayed in the breakpoint
3542 table using several rows---one header row, followed by one row for
3543 each breakpoint location.  The header row has @samp{<MULTIPLE>} in the
3544 address column.  The rows for individual locations contain the actual
3545 addresses for locations, and show the functions to which those
3546 locations belong.  The number column for a location is of the form
3547 @var{breakpoint-number}.@var{location-number}.
3548
3549 For example:
3550
3551 @smallexample
3552 Num     Type           Disp Enb  Address    What
3553 1       breakpoint     keep y    <MULTIPLE>
3554         stop only if i==1
3555         breakpoint already hit 1 time
3556 1.1                         y    0x080486a2 in void foo<int>() at t.cc:8
3557 1.2                         y    0x080486ca in void foo<double>() at t.cc:8
3558 @end smallexample
3559
3560 Each location can be individually enabled or disabled by passing
3561 @var{breakpoint-number}.@var{location-number} as argument to the
3562 @code{enable} and @code{disable} commands.  Note that you cannot
3563 delete the individual locations from the list, you can only delete the
3564 entire list of locations that belong to their parent breakpoint (with
3565 the @kbd{delete @var{num}} command, where @var{num} is the number of
3566 the parent breakpoint, 1 in the above example).  Disabling or enabling
3567 the parent breakpoint (@pxref{Disabling}) affects all of the locations
3568 that belong to that breakpoint.
3569
3570 @cindex pending breakpoints
3571 It's quite common to have a breakpoint inside a shared library.
3572 Shared libraries can be loaded and unloaded explicitly,
3573 and possibly repeatedly, as the program is executed.  To support
3574 this use case, @value{GDBN} updates breakpoint locations whenever
3575 any shared library is loaded or unloaded.  Typically, you would
3576 set a breakpoint in a shared library at the beginning of your
3577 debugging session, when the library is not loaded, and when the
3578 symbols from the library are not available.  When you try to set
3579 breakpoint, @value{GDBN} will ask you if you want to set
3580 a so called @dfn{pending breakpoint}---breakpoint whose address
3581 is not yet resolved.
3582
3583 After the program is run, whenever a new shared library is loaded,
3584 @value{GDBN} reevaluates all the breakpoints.  When a newly loaded
3585 shared library contains the symbol or line referred to by some
3586 pending breakpoint, that breakpoint is resolved and becomes an
3587 ordinary breakpoint.  When a library is unloaded, all breakpoints
3588 that refer to its symbols or source lines become pending again.
3589
3590 This logic works for breakpoints with multiple locations, too.  For
3591 example, if you have a breakpoint in a C@t{++} template function, and
3592 a newly loaded shared library has an instantiation of that template,
3593 a new location is added to the list of locations for the breakpoint.
3594
3595 Except for having unresolved address, pending breakpoints do not
3596 differ from regular breakpoints.  You can set conditions or commands,
3597 enable and disable them and perform other breakpoint operations.
3598
3599 @value{GDBN} provides some additional commands for controlling what
3600 happens when the @samp{break} command cannot resolve breakpoint
3601 address specification to an address:
3602
3603 @kindex set breakpoint pending
3604 @kindex show breakpoint pending
3605 @table @code
3606 @item set breakpoint pending auto
3607 This is the default behavior.  When @value{GDBN} cannot find the breakpoint
3608 location, it queries you whether a pending breakpoint should be created.
3609
3610 @item set breakpoint pending on
3611 This indicates that an unrecognized breakpoint location should automatically
3612 result in a pending breakpoint being created.
3613
3614 @item set breakpoint pending off
3615 This indicates that pending breakpoints are not to be created.  Any
3616 unrecognized breakpoint location results in an error.  This setting does
3617 not affect any pending breakpoints previously created.
3618
3619 @item show breakpoint pending
3620 Show the current behavior setting for creating pending breakpoints.
3621 @end table
3622
3623 The settings above only affect the @code{break} command and its
3624 variants.  Once breakpoint is set, it will be automatically updated
3625 as shared libraries are loaded and unloaded.
3626
3627 @cindex automatic hardware breakpoints
3628 For some targets, @value{GDBN} can automatically decide if hardware or
3629 software breakpoints should be used, depending on whether the
3630 breakpoint address is read-only or read-write.  This applies to
3631 breakpoints set with the @code{break} command as well as to internal
3632 breakpoints set by commands like @code{next} and @code{finish}.  For
3633 breakpoints set with @code{hbreak}, @value{GDBN} will always use hardware
3634 breakpoints.
3635
3636 You can control this automatic behaviour with the following commands::
3637
3638 @kindex set breakpoint auto-hw
3639 @kindex show breakpoint auto-hw
3640 @table @code
3641 @item set breakpoint auto-hw on
3642 This is the default behavior.  When @value{GDBN} sets a breakpoint, it
3643 will try to use the target memory map to decide if software or hardware
3644 breakpoint must be used.
3645
3646 @item set breakpoint auto-hw off
3647 This indicates @value{GDBN} should not automatically select breakpoint
3648 type.  If the target provides a memory map, @value{GDBN} will warn when
3649 trying to set software breakpoint at a read-only address.
3650 @end table
3651
3652 @value{GDBN} normally implements breakpoints by replacing the program code
3653 at the breakpoint address with a special instruction, which, when
3654 executed, given control to the debugger.  By default, the program
3655 code is so modified only when the program is resumed.  As soon as
3656 the program stops, @value{GDBN} restores the original instructions.  This
3657 behaviour guards against leaving breakpoints inserted in the
3658 target should gdb abrubptly disconnect.  However, with slow remote
3659 targets, inserting and removing breakpoint can reduce the performance.
3660 This behavior can be controlled with the following commands::
3661
3662 @kindex set breakpoint always-inserted
3663 @kindex show breakpoint always-inserted
3664 @table @code
3665 @item set breakpoint always-inserted off
3666 All breakpoints, including newly added by the user, are inserted in
3667 the target only when the target is resumed.  All breakpoints are
3668 removed from the target when it stops.
3669
3670 @item set breakpoint always-inserted on
3671 Causes all breakpoints to be inserted in the target at all times.  If
3672 the user adds a new breakpoint, or changes an existing breakpoint, the
3673 breakpoints in the target are updated immediately.  A breakpoint is
3674 removed from the target only when breakpoint itself is removed.
3675
3676 @cindex non-stop mode, and @code{breakpoint always-inserted}
3677 @item set breakpoint always-inserted auto
3678 This is the default mode.  If @value{GDBN} is controlling the inferior
3679 in non-stop mode (@pxref{Non-Stop Mode}), gdb behaves as if
3680 @code{breakpoint always-inserted} mode is on.  If @value{GDBN} is
3681 controlling the inferior in all-stop mode, @value{GDBN} behaves as if
3682 @code{breakpoint always-inserted} mode is off.
3683 @end table
3684
3685 @cindex negative breakpoint numbers
3686 @cindex internal @value{GDBN} breakpoints
3687 @value{GDBN} itself sometimes sets breakpoints in your program for
3688 special purposes, such as proper handling of @code{longjmp} (in C
3689 programs).  These internal breakpoints are assigned negative numbers,
3690 starting with @code{-1}; @samp{info breakpoints} does not display them.
3691 You can see these breakpoints with the @value{GDBN} maintenance command
3692 @samp{maint info breakpoints} (@pxref{maint info breakpoints}).
3693
3694
3695 @node Set Watchpoints
3696 @subsection Setting Watchpoints
3697
3698 @cindex setting watchpoints
3699 You can use a watchpoint to stop execution whenever the value of an
3700 expression changes, without having to predict a particular place where
3701 this may happen.  (This is sometimes called a @dfn{data breakpoint}.)
3702 The expression may be as simple as the value of a single variable, or
3703 as complex as many variables combined by operators.  Examples include:
3704
3705 @itemize @bullet
3706 @item
3707 A reference to the value of a single variable.
3708
3709 @item
3710 An address cast to an appropriate data type.  For example,
3711 @samp{*(int *)0x12345678} will watch a 4-byte region at the specified
3712 address (assuming an @code{int} occupies 4 bytes).
3713
3714 @item
3715 An arbitrarily complex expression, such as @samp{a*b + c/d}.  The
3716 expression can use any operators valid in the program's native
3717 language (@pxref{Languages}).
3718 @end itemize
3719
3720 You can set a watchpoint on an expression even if the expression can
3721 not be evaluated yet.  For instance, you can set a watchpoint on
3722 @samp{*global_ptr} before @samp{global_ptr} is initialized.
3723 @value{GDBN} will stop when your program sets @samp{global_ptr} and
3724 the expression produces a valid value.  If the expression becomes
3725 valid in some other way than changing a variable (e.g.@: if the memory
3726 pointed to by @samp{*global_ptr} becomes readable as the result of a
3727 @code{malloc} call), @value{GDBN} may not stop until the next time
3728 the expression changes.
3729
3730 @cindex software watchpoints
3731 @cindex hardware watchpoints
3732 Depending on your system, watchpoints may be implemented in software or
3733 hardware.  @value{GDBN} does software watchpointing by single-stepping your
3734 program and testing the variable's value each time, which is hundreds of
3735 times slower than normal execution.  (But this may still be worth it, to
3736 catch errors where you have no clue what part of your program is the
3737 culprit.)
3738
3739 On some systems, such as HP-UX, PowerPC, @sc{gnu}/Linux and most other
3740 x86-based targets, @value{GDBN} includes support for hardware
3741 watchpoints, which do not slow down the running of your program.
3742
3743 @table @code
3744 @kindex watch
3745 @item watch @r{[}-l@r{|}-location@r{]} @var{expr} @r{[}thread @var{threadnum}@r{]} @r{[}mask @var{maskvalue}@r{]}
3746 Set a watchpoint for an expression.  @value{GDBN} will break when the
3747 expression @var{expr} is written into by the program and its value
3748 changes.  The simplest (and the most popular) use of this command is
3749 to watch the value of a single variable:
3750
3751 @smallexample
3752 (@value{GDBP}) watch foo
3753 @end smallexample
3754
3755 If the command includes a @code{@r{[}thread @var{threadnum}@r{]}}
3756 argument, @value{GDBN} breaks only when the thread identified by
3757 @var{threadnum} changes the value of @var{expr}.  If any other threads
3758 change the value of @var{expr}, @value{GDBN} will not break.  Note
3759 that watchpoints restricted to a single thread in this way only work
3760 with Hardware Watchpoints.
3761
3762 Ordinarily a watchpoint respects the scope of variables in @var{expr}
3763 (see below).  The @code{-location} argument tells @value{GDBN} to
3764 instead watch the memory referred to by @var{expr}.  In this case,
3765 @value{GDBN} will evaluate @var{expr}, take the address of the result,
3766 and watch the memory at that address.  The type of the result is used
3767 to determine the size of the watched memory.  If the expression's
3768 result does not have an address, then @value{GDBN} will print an
3769 error.
3770
3771 The @code{@r{[}mask @var{maskvalue}@r{]}} argument allows creation
3772 of masked watchpoints, if the current architecture supports this
3773 feature (e.g., PowerPC Embedded architecture, see @ref{PowerPC
3774 Embedded}.)  A @dfn{masked watchpoint} specifies a mask in addition
3775 to an address to watch.  The mask specifies that some bits of an address
3776 (the bits which are reset in the mask) should be ignored when matching
3777 the address accessed by the inferior against the watchpoint address.
3778 Thus, a masked watchpoint watches many addresses simultaneously---those
3779 addresses whose unmasked bits are identical to the unmasked bits in the
3780 watchpoint address.  The @code{mask} argument implies @code{-location}.
3781 Examples:
3782
3783 @smallexample
3784 (@value{GDBP}) watch foo mask 0xffff00ff
3785 (@value{GDBP}) watch *0xdeadbeef mask 0xffffff00
3786 @end smallexample
3787
3788 @kindex rwatch
3789 @item rwatch @r{[}-l@r{|}-location@r{]} @var{expr} @r{[}thread @var{threadnum}@r{]} @r{[}mask @var{maskvalue}@r{]}
3790 Set a watchpoint that will break when the value of @var{expr} is read
3791 by the program.
3792
3793 @kindex awatch
3794 @item awatch @r{[}-l@r{|}-location@r{]} @var{expr} @r{[}thread @var{threadnum}@r{]} @r{[}mask @var{maskvalue}@r{]}
3795 Set a watchpoint that will break when @var{expr} is either read from
3796 or written into by the program.
3797
3798 @kindex info watchpoints @r{[}@var{n}@dots{}@r{]}
3799 @item info watchpoints @r{[}@var{n}@dots{}@r{]}
3800 This command prints a list of watchpoints, using the same format as
3801 @code{info break} (@pxref{Set Breaks}).
3802 @end table
3803
3804 If you watch for a change in a numerically entered address you need to
3805 dereference it, as the address itself is just a constant number which will
3806 never change.  @value{GDBN} refuses to create a watchpoint that watches
3807 a never-changing value:
3808
3809 @smallexample
3810 (@value{GDBP}) watch 0x600850
3811 Cannot watch constant value 0x600850.
3812 (@value{GDBP}) watch *(int *) 0x600850
3813 Watchpoint 1: *(int *) 6293584
3814 @end smallexample
3815
3816 @value{GDBN} sets a @dfn{hardware watchpoint} if possible.  Hardware
3817 watchpoints execute very quickly, and the debugger reports a change in
3818 value at the exact instruction where the change occurs.  If @value{GDBN}
3819 cannot set a hardware watchpoint, it sets a software watchpoint, which
3820 executes more slowly and reports the change in value at the next
3821 @emph{statement}, not the instruction, after the change occurs.
3822
3823 @cindex use only software watchpoints
3824 You can force @value{GDBN} to use only software watchpoints with the
3825 @kbd{set can-use-hw-watchpoints 0} command.  With this variable set to
3826 zero, @value{GDBN} will never try to use hardware watchpoints, even if
3827 the underlying system supports them.  (Note that hardware-assisted
3828 watchpoints that were set @emph{before} setting
3829 @code{can-use-hw-watchpoints} to zero will still use the hardware
3830 mechanism of watching expression values.)
3831
3832 @table @code
3833 @item set can-use-hw-watchpoints
3834 @kindex set can-use-hw-watchpoints
3835 Set whether or not to use hardware watchpoints.
3836
3837 @item show can-use-hw-watchpoints
3838 @kindex show can-use-hw-watchpoints
3839 Show the current mode of using hardware watchpoints.
3840 @end table
3841
3842 For remote targets, you can restrict the number of hardware
3843 watchpoints @value{GDBN} will use, see @ref{set remote
3844 hardware-breakpoint-limit}.
3845
3846 When you issue the @code{watch} command, @value{GDBN} reports
3847
3848 @smallexample
3849 Hardware watchpoint @var{num}: @var{expr}
3850 @end smallexample
3851
3852 @noindent
3853 if it was able to set a hardware watchpoint.
3854
3855 Currently, the @code{awatch} and @code{rwatch} commands can only set
3856 hardware watchpoints, because accesses to data that don't change the
3857 value of the watched expression cannot be detected without examining
3858 every instruction as it is being executed, and @value{GDBN} does not do
3859 that currently.  If @value{GDBN} finds that it is unable to set a
3860 hardware breakpoint with the @code{awatch} or @code{rwatch} command, it
3861 will print a message like this:
3862
3863 @smallexample
3864 Expression cannot be implemented with read/access watchpoint.
3865 @end smallexample
3866
3867 Sometimes, @value{GDBN} cannot set a hardware watchpoint because the
3868 data type of the watched expression is wider than what a hardware
3869 watchpoint on the target machine can handle.  For example, some systems
3870 can only watch regions that are up to 4 bytes wide; on such systems you
3871 cannot set hardware watchpoints for an expression that yields a
3872 double-precision floating-point number (which is typically 8 bytes
3873 wide).  As a work-around, it might be possible to break the large region
3874 into a series of smaller ones and watch them with separate watchpoints.
3875
3876 If you set too many hardware watchpoints, @value{GDBN} might be unable
3877 to insert all of them when you resume the execution of your program.
3878 Since the precise number of active watchpoints is unknown until such
3879 time as the program is about to be resumed, @value{GDBN} might not be
3880 able to warn you about this when you set the watchpoints, and the
3881 warning will be printed only when the program is resumed:
3882
3883 @smallexample
3884 Hardware watchpoint @var{num}: Could not insert watchpoint
3885 @end smallexample
3886
3887 @noindent
3888 If this happens, delete or disable some of the watchpoints.
3889
3890 Watching complex expressions that reference many variables can also
3891 exhaust the resources available for hardware-assisted watchpoints.
3892 That's because @value{GDBN} needs to watch every variable in the
3893 expression with separately allocated resources.
3894
3895 If you call a function interactively using @code{print} or @code{call},
3896 any watchpoints you have set will be inactive until @value{GDBN} reaches another
3897 kind of breakpoint or the call completes.
3898
3899 @value{GDBN} automatically deletes watchpoints that watch local
3900 (automatic) variables, or expressions that involve such variables, when
3901 they go out of scope, that is, when the execution leaves the block in
3902 which these variables were defined.  In particular, when the program
3903 being debugged terminates, @emph{all} local variables go out of scope,
3904 and so only watchpoints that watch global variables remain set.  If you
3905 rerun the program, you will need to set all such watchpoints again.  One
3906 way of doing that would be to set a code breakpoint at the entry to the
3907 @code{main} function and when it breaks, set all the watchpoints.
3908
3909 @cindex watchpoints and threads
3910 @cindex threads and watchpoints
3911 In multi-threaded programs, watchpoints will detect changes to the
3912 watched expression from every thread.
3913
3914 @quotation
3915 @emph{Warning:} In multi-threaded programs, software watchpoints
3916 have only limited usefulness.  If @value{GDBN} creates a software
3917 watchpoint, it can only watch the value of an expression @emph{in a
3918 single thread}.  If you are confident that the expression can only
3919 change due to the current thread's activity (and if you are also
3920 confident that no other thread can become current), then you can use
3921 software watchpoints as usual.  However, @value{GDBN} may not notice
3922 when a non-current thread's activity changes the expression.  (Hardware
3923 watchpoints, in contrast, watch an expression in all threads.)
3924 @end quotation
3925
3926 @xref{set remote hardware-watchpoint-limit}.
3927
3928 @node Set Catchpoints
3929 @subsection Setting Catchpoints
3930 @cindex catchpoints, setting
3931 @cindex exception handlers
3932 @cindex event handling
3933
3934 You can use @dfn{catchpoints} to cause the debugger to stop for certain
3935 kinds of program events, such as C@t{++} exceptions or the loading of a
3936 shared library.  Use the @code{catch} command to set a catchpoint.
3937
3938 @table @code
3939 @kindex catch
3940 @item catch @var{event}
3941 Stop when @var{event} occurs.  @var{event} can be any of the following:
3942 @table @code
3943 @item throw
3944 @cindex stop on C@t{++} exceptions
3945 The throwing of a C@t{++} exception.
3946
3947 @item catch
3948 The catching of a C@t{++} exception.
3949
3950 @item exception
3951 @cindex Ada exception catching
3952 @cindex catch Ada exceptions
3953 An Ada exception being raised.  If an exception name is specified
3954 at the end of the command (eg @code{catch exception Program_Error}),
3955 the debugger will stop only when this specific exception is raised.
3956 Otherwise, the debugger stops execution when any Ada exception is raised.
3957
3958 When inserting an exception catchpoint on a user-defined exception whose
3959 name is identical to one of the exceptions defined by the language, the
3960 fully qualified name must be used as the exception name.  Otherwise,
3961 @value{GDBN} will assume that it should stop on the pre-defined exception
3962 rather than the user-defined one.  For instance, assuming an exception
3963 called @code{Constraint_Error} is defined in package @code{Pck}, then
3964 the command to use to catch such exceptions is @kbd{catch exception
3965 Pck.Constraint_Error}.
3966
3967 @item exception unhandled
3968 An exception that was raised but is not handled by the program.
3969
3970 @item assert
3971 A failed Ada assertion.
3972
3973 @item exec
3974 @cindex break on fork/exec
3975 A call to @code{exec}.  This is currently only available for HP-UX
3976 and @sc{gnu}/Linux.
3977
3978 @item syscall
3979 @itemx syscall @r{[}@var{name} @r{|} @var{number}@r{]} @dots{} 
3980 @cindex break on a system call.
3981 A call to or return from a system call, a.k.a.@: @dfn{syscall}.  A
3982 syscall is a mechanism for application programs to request a service
3983 from the operating system (OS) or one of the OS system services.
3984 @value{GDBN} can catch some or all of the syscalls issued by the
3985 debuggee, and show the related information for each syscall.  If no
3986 argument is specified, calls to and returns from all system calls
3987 will be caught.
3988
3989 @var{name} can be any system call name that is valid for the
3990 underlying OS.  Just what syscalls are valid depends on the OS.  On
3991 GNU and Unix systems, you can find the full list of valid syscall
3992 names on @file{/usr/include/asm/unistd.h}.
3993
3994 @c For MS-Windows, the syscall names and the corresponding numbers
3995 @c can be found, e.g., on this URL:
3996 @c http://www.metasploit.com/users/opcode/syscalls.html
3997 @c but we don't support Windows syscalls yet.
3998
3999 Normally, @value{GDBN} knows in advance which syscalls are valid for
4000 each OS, so you can use the @value{GDBN} command-line completion
4001 facilities (@pxref{Completion,, command completion}) to list the
4002 available choices.
4003
4004 You may also specify the system call numerically.  A syscall's
4005 number is the value passed to the OS's syscall dispatcher to
4006 identify the requested service.  When you specify the syscall by its
4007 name, @value{GDBN} uses its database of syscalls to convert the name
4008 into the corresponding numeric code, but using the number directly
4009 may be useful if @value{GDBN}'s database does not have the complete
4010 list of syscalls on your system (e.g., because @value{GDBN} lags
4011 behind the OS upgrades).
4012
4013 The example below illustrates how this command works if you don't provide
4014 arguments to it:
4015
4016 @smallexample
4017 (@value{GDBP}) catch syscall
4018 Catchpoint 1 (syscall)
4019 (@value{GDBP}) r
4020 Starting program: /tmp/catch-syscall
4021
4022 Catchpoint 1 (call to syscall 'close'), \
4023            0xffffe424 in __kernel_vsyscall ()
4024 (@value{GDBP}) c
4025 Continuing.
4026
4027 Catchpoint 1 (returned from syscall 'close'), \
4028         0xffffe424 in __kernel_vsyscall ()
4029 (@value{GDBP})
4030 @end smallexample
4031
4032 Here is an example of catching a system call by name:
4033
4034 @smallexample
4035 (@value{GDBP}) catch syscall chroot
4036 Catchpoint 1 (syscall 'chroot' [61])
4037 (@value{GDBP}) r
4038 Starting program: /tmp/catch-syscall
4039
4040 Catchpoint 1 (call to syscall 'chroot'), \
4041                    0xffffe424 in __kernel_vsyscall ()
4042 (@value{GDBP}) c
4043 Continuing.
4044
4045 Catchpoint 1 (returned from syscall 'chroot'), \
4046         0xffffe424 in __kernel_vsyscall ()
4047 (@value{GDBP})
4048 @end smallexample
4049
4050 An example of specifying a system call numerically.  In the case
4051 below, the syscall number has a corresponding entry in the XML
4052 file, so @value{GDBN} finds its name and prints it:
4053
4054 @smallexample
4055 (@value{GDBP}) catch syscall 252
4056 Catchpoint 1 (syscall(s) 'exit_group')
4057 (@value{GDBP}) r
4058 Starting program: /tmp/catch-syscall
4059
4060 Catchpoint 1 (call to syscall 'exit_group'), \
4061                    0xffffe424 in __kernel_vsyscall ()
4062 (@value{GDBP}) c
4063 Continuing.
4064
4065 Program exited normally.
4066 (@value{GDBP})
4067 @end smallexample
4068
4069 However, there can be situations when there is no corresponding name
4070 in XML file for that syscall number.  In this case, @value{GDBN} prints
4071 a warning message saying that it was not able to find the syscall name,
4072 but the catchpoint will be set anyway.  See the example below:
4073
4074 @smallexample
4075 (@value{GDBP}) catch syscall 764
4076 warning: The number '764' does not represent a known syscall.
4077 Catchpoint 2 (syscall 764)
4078 (@value{GDBP})
4079 @end smallexample
4080
4081 If you configure @value{GDBN} using the @samp{--without-expat} option,
4082 it will not be able to display syscall names.  Also, if your
4083 architecture does not have an XML file describing its system calls,
4084 you will not be able to see the syscall names.  It is important to
4085 notice that these two features are used for accessing the syscall
4086 name database.  In either case, you will see a warning like this:
4087
4088 @smallexample
4089 (@value{GDBP}) catch syscall
4090 warning: Could not open "syscalls/i386-linux.xml"
4091 warning: Could not load the syscall XML file 'syscalls/i386-linux.xml'.
4092 GDB will not be able to display syscall names.
4093 Catchpoint 1 (syscall)
4094 (@value{GDBP})
4095 @end smallexample
4096
4097 Of course, the file name will change depending on your architecture and system.
4098
4099 Still using the example above, you can also try to catch a syscall by its
4100 number.  In this case, you would see something like:
4101
4102 @smallexample
4103 (@value{GDBP}) catch syscall 252
4104 Catchpoint 1 (syscall(s) 252)
4105 @end smallexample
4106
4107 Again, in this case @value{GDBN} would not be able to display syscall's names.
4108
4109 @item fork
4110 A call to @code{fork}.  This is currently only available for HP-UX
4111 and @sc{gnu}/Linux.
4112
4113 @item vfork
4114 A call to @code{vfork}.  This is currently only available for HP-UX
4115 and @sc{gnu}/Linux.
4116
4117 @end table
4118
4119 @item tcatch @var{event}
4120 Set a catchpoint that is enabled only for one stop.  The catchpoint is
4121 automatically deleted after the first time the event is caught.
4122
4123 @end table
4124
4125 Use the @code{info break} command to list the current catchpoints.
4126
4127 There are currently some limitations to C@t{++} exception handling
4128 (@code{catch throw} and @code{catch catch}) in @value{GDBN}:
4129
4130 @itemize @bullet
4131 @item
4132 If you call a function interactively, @value{GDBN} normally returns
4133 control to you when the function has finished executing.  If the call
4134 raises an exception, however, the call may bypass the mechanism that
4135 returns control to you and cause your program either to abort or to
4136 simply continue running until it hits a breakpoint, catches a signal
4137 that @value{GDBN} is listening for, or exits.  This is the case even if
4138 you set a catchpoint for the exception; catchpoints on exceptions are
4139 disabled within interactive calls.
4140
4141 @item
4142 You cannot raise an exception interactively.
4143
4144 @item
4145 You cannot install an exception handler interactively.
4146 @end itemize
4147
4148 @cindex raise exceptions
4149 Sometimes @code{catch} is not the best way to debug exception handling:
4150 if you need to know exactly where an exception is raised, it is better to
4151 stop @emph{before} the exception handler is called, since that way you
4152 can see the stack before any unwinding takes place.  If you set a
4153 breakpoint in an exception handler instead, it may not be easy to find
4154 out where the exception was raised.
4155
4156 To stop just before an exception handler is called, you need some
4157 knowledge of the implementation.  In the case of @sc{gnu} C@t{++}, exceptions are
4158 raised by calling a library function named @code{__raise_exception}
4159 which has the following ANSI C interface:
4160
4161 @smallexample
4162     /* @var{addr} is where the exception identifier is stored.
4163        @var{id} is the exception identifier.  */
4164     void __raise_exception (void **addr, void *id);
4165 @end smallexample
4166
4167 @noindent
4168 To make the debugger catch all exceptions before any stack
4169 unwinding takes place, set a breakpoint on @code{__raise_exception}
4170 (@pxref{Breakpoints, ,Breakpoints; Watchpoints; and Exceptions}).
4171
4172 With a conditional breakpoint (@pxref{Conditions, ,Break Conditions})
4173 that depends on the value of @var{id}, you can stop your program when
4174 a specific exception is raised.  You can use multiple conditional
4175 breakpoints to stop your program when any of a number of exceptions are
4176 raised.
4177
4178
4179 @node Delete Breaks
4180 @subsection Deleting Breakpoints
4181
4182 @cindex clearing breakpoints, watchpoints, catchpoints
4183 @cindex deleting breakpoints, watchpoints, catchpoints
4184 It is often necessary to eliminate a breakpoint, watchpoint, or
4185 catchpoint once it has done its job and you no longer want your program
4186 to stop there.  This is called @dfn{deleting} the breakpoint.  A
4187 breakpoint that has been deleted no longer exists; it is forgotten.
4188
4189 With the @code{clear} command you can delete breakpoints according to
4190 where they are in your program.  With the @code{delete} command you can
4191 delete individual breakpoints, watchpoints, or catchpoints by specifying
4192 their breakpoint numbers.
4193
4194 It is not necessary to delete a breakpoint to proceed past it.  @value{GDBN}
4195 automatically ignores breakpoints on the first instruction to be executed
4196 when you continue execution without changing the execution address.
4197
4198 @table @code
4199 @kindex clear
4200 @item clear
4201 Delete any breakpoints at the next instruction to be executed in the
4202 selected stack frame (@pxref{Selection, ,Selecting a Frame}).  When
4203 the innermost frame is selected, this is a good way to delete a
4204 breakpoint where your program just stopped.
4205
4206 @item clear @var{location}
4207 Delete any breakpoints set at the specified @var{location}.
4208 @xref{Specify Location}, for the various forms of @var{location}; the
4209 most useful ones are listed below:
4210
4211 @table @code
4212 @item clear @var{function}
4213 @itemx clear @var{filename}:@var{function}
4214 Delete any breakpoints set at entry to the named @var{function}.
4215
4216 @item clear @var{linenum}
4217 @itemx clear @var{filename}:@var{linenum}
4218 Delete any breakpoints set at or within the code of the specified
4219 @var{linenum} of the specified @var{filename}.
4220 @end table
4221
4222 @cindex delete breakpoints
4223 @kindex delete
4224 @kindex d @r{(@code{delete})}
4225 @item delete @r{[}breakpoints@r{]} @r{[}@var{range}@dots{}@r{]}
4226 Delete the breakpoints, watchpoints, or catchpoints of the breakpoint
4227 ranges specified as arguments.  If no argument is specified, delete all
4228 breakpoints (@value{GDBN} asks confirmation, unless you have @code{set
4229 confirm off}).  You can abbreviate this command as @code{d}.
4230 @end table
4231
4232 @node Disabling
4233 @subsection Disabling Breakpoints
4234
4235 @cindex enable/disable a breakpoint
4236 Rather than deleting a breakpoint, watchpoint, or catchpoint, you might
4237 prefer to @dfn{disable} it.  This makes the breakpoint inoperative as if
4238 it had been deleted, but remembers the information on the breakpoint so
4239 that you can @dfn{enable} it again later.
4240
4241 You disable and enable breakpoints, watchpoints, and catchpoints with
4242 the @code{enable} and @code{disable} commands, optionally specifying
4243 one or more breakpoint numbers as arguments.  Use @code{info break} to
4244 print a list of all breakpoints, watchpoints, and catchpoints if you
4245 do not know which numbers to use.
4246
4247 Disabling and enabling a breakpoint that has multiple locations
4248 affects all of its locations.
4249
4250 A breakpoint, watchpoint, or catchpoint can have any of four different
4251 states of enablement:
4252
4253 @itemize @bullet
4254 @item
4255 Enabled.  The breakpoint stops your program.  A breakpoint set
4256 with the @code{break} command starts out in this state.
4257 @item
4258 Disabled.  The breakpoint has no effect on your program.
4259 @item
4260 Enabled once.  The breakpoint stops your program, but then becomes
4261 disabled.
4262 @item
4263 Enabled for deletion.  The breakpoint stops your program, but
4264 immediately after it does so it is deleted permanently.  A breakpoint
4265 set with the @code{tbreak} command starts out in this state.
4266 @end itemize
4267
4268 You can use the following commands to enable or disable breakpoints,
4269 watchpoints, and catchpoints:
4270
4271 @table @code
4272 @kindex disable
4273 @kindex dis @r{(@code{disable})}
4274 @item disable @r{[}breakpoints@r{]} @r{[}@var{range}@dots{}@r{]}
4275 Disable the specified breakpoints---or all breakpoints, if none are
4276 listed.  A disabled breakpoint has no effect but is not forgotten.  All
4277 options such as ignore-counts, conditions and commands are remembered in
4278 case the breakpoint is enabled again later.  You may abbreviate
4279 @code{disable} as @code{dis}.
4280
4281 @kindex enable
4282 @item enable @r{[}breakpoints@r{]} @r{[}@var{range}@dots{}@r{]}
4283 Enable the specified breakpoints (or all defined breakpoints).  They
4284 become effective once again in stopping your program.
4285
4286 @item enable @r{[}breakpoints@r{]} once @var{range}@dots{}
4287 Enable the specified breakpoints temporarily.  @value{GDBN} disables any
4288 of these breakpoints immediately after stopping your program.
4289
4290 @item enable @r{[}breakpoints@r{]} delete @var{range}@dots{}
4291 Enable the specified breakpoints to work once, then die.  @value{GDBN}
4292 deletes any of these breakpoints as soon as your program stops there.
4293 Breakpoints set by the @code{tbreak} command start out in this state.
4294 @end table
4295
4296 @c FIXME: I think the following ``Except for [...] @code{tbreak}'' is
4297 @c confusing: tbreak is also initially enabled.
4298 Except for a breakpoint set with @code{tbreak} (@pxref{Set Breaks,
4299 ,Setting Breakpoints}), breakpoints that you set are initially enabled;
4300 subsequently, they become disabled or enabled only when you use one of
4301 the commands above.  (The command @code{until} can set and delete a
4302 breakpoint of its own, but it does not change the state of your other
4303 breakpoints; see @ref{Continuing and Stepping, ,Continuing and
4304 Stepping}.)
4305
4306 @node Conditions
4307 @subsection Break Conditions
4308 @cindex conditional breakpoints
4309 @cindex breakpoint conditions
4310
4311 @c FIXME what is scope of break condition expr?  Context where wanted?
4312 @c      in particular for a watchpoint?
4313 The simplest sort of breakpoint breaks every time your program reaches a
4314 specified place.  You can also specify a @dfn{condition} for a
4315 breakpoint.  A condition is just a Boolean expression in your
4316 programming language (@pxref{Expressions, ,Expressions}).  A breakpoint with
4317 a condition evaluates the expression each time your program reaches it,
4318 and your program stops only if the condition is @emph{true}.
4319
4320 This is the converse of using assertions for program validation; in that
4321 situation, you want to stop when the assertion is violated---that is,
4322 when the condition is false.  In C, if you want to test an assertion expressed
4323 by the condition @var{assert}, you should set the condition
4324 @samp{! @var{assert}} on the appropriate breakpoint.
4325
4326 Conditions are also accepted for watchpoints; you may not need them,
4327 since a watchpoint is inspecting the value of an expression anyhow---but
4328 it might be simpler, say, to just set a watchpoint on a variable name,
4329 and specify a condition that tests whether the new value is an interesting
4330 one.
4331
4332 Break conditions can have side effects, and may even call functions in
4333 your program.  This can be useful, for example, to activate functions
4334 that log program progress, or to use your own print functions to
4335 format special data structures.  The effects are completely predictable
4336 unless there is another enabled breakpoint at the same address.  (In
4337 that case, @value{GDBN} might see the other breakpoint first and stop your
4338 program without checking the condition of this one.)  Note that
4339 breakpoint commands are usually more convenient and flexible than break
4340 conditions for the
4341 purpose of performing side effects when a breakpoint is reached
4342 (@pxref{Break Commands, ,Breakpoint Command Lists}).
4343
4344 Break conditions can be specified when a breakpoint is set, by using
4345 @samp{if} in the arguments to the @code{break} command.  @xref{Set
4346 Breaks, ,Setting Breakpoints}.  They can also be changed at any time
4347 with the @code{condition} command.
4348
4349 You can also use the @code{if} keyword with the @code{watch} command.
4350 The @code{catch} command does not recognize the @code{if} keyword;
4351 @code{condition} is the only way to impose a further condition on a
4352 catchpoint.
4353
4354 @table @code
4355 @kindex condition
4356 @item condition @var{bnum} @var{expression}
4357 Specify @var{expression} as the break condition for breakpoint,
4358 watchpoint, or catchpoint number @var{bnum}.  After you set a condition,
4359 breakpoint @var{bnum} stops your program only if the value of
4360 @var{expression} is true (nonzero, in C).  When you use
4361 @code{condition}, @value{GDBN} checks @var{expression} immediately for
4362 syntactic correctness, and to determine whether symbols in it have
4363 referents in the context of your breakpoint.  If @var{expression} uses
4364 symbols not referenced in the context of the breakpoint, @value{GDBN}
4365 prints an error message:
4366
4367 @smallexample
4368 No symbol "foo" in current context.
4369 @end smallexample
4370
4371 @noindent
4372 @value{GDBN} does
4373 not actually evaluate @var{expression} at the time the @code{condition}
4374 command (or a command that sets a breakpoint with a condition, like
4375 @code{break if @dots{}}) is given, however.  @xref{Expressions, ,Expressions}.
4376
4377 @item condition @var{bnum}
4378 Remove the condition from breakpoint number @var{bnum}.  It becomes
4379 an ordinary unconditional breakpoint.
4380 @end table
4381
4382 @cindex ignore count (of breakpoint)
4383 A special case of a breakpoint condition is to stop only when the
4384 breakpoint has been reached a certain number of times.  This is so
4385 useful that there is a special way to do it, using the @dfn{ignore
4386 count} of the breakpoint.  Every breakpoint has an ignore count, which
4387 is an integer.  Most of the time, the ignore count is zero, and
4388 therefore has no effect.  But if your program reaches a breakpoint whose
4389 ignore count is positive, then instead of stopping, it just decrements
4390 the ignore count by one and continues.  As a result, if the ignore count
4391 value is @var{n}, the breakpoint does not stop the next @var{n} times
4392 your program reaches it.
4393
4394 @table @code
4395 @kindex ignore
4396 @item ignore @var{bnum} @var{count}
4397 Set the ignore count of breakpoint number @var{bnum} to @var{count}.
4398 The next @var{count} times the breakpoint is reached, your program's
4399 execution does not stop; other than to decrement the ignore count, @value{GDBN}
4400 takes no action.
4401
4402 To make the breakpoint stop the next time it is reached, specify
4403 a count of zero.
4404
4405 When you use @code{continue} to resume execution of your program from a
4406 breakpoint, you can specify an ignore count directly as an argument to
4407 @code{continue}, rather than using @code{ignore}.  @xref{Continuing and
4408 Stepping,,Continuing and Stepping}.
4409
4410 If a breakpoint has a positive ignore count and a condition, the
4411 condition is not checked.  Once the ignore count reaches zero,
4412 @value{GDBN} resumes checking the condition.
4413
4414 You could achieve the effect of the ignore count with a condition such
4415 as @w{@samp{$foo-- <= 0}} using a debugger convenience variable that
4416 is decremented each time.  @xref{Convenience Vars, ,Convenience
4417 Variables}.
4418 @end table
4419
4420 Ignore counts apply to breakpoints, watchpoints, and catchpoints.
4421
4422
4423 @node Break Commands
4424 @subsection Breakpoint Command Lists
4425
4426 @cindex breakpoint commands
4427 You can give any breakpoint (or watchpoint or catchpoint) a series of
4428 commands to execute when your program stops due to that breakpoint.  For
4429 example, you might want to print the values of certain expressions, or
4430 enable other breakpoints.
4431
4432 @table @code
4433 @kindex commands
4434 @kindex end@r{ (breakpoint commands)}
4435 @item commands @r{[}@var{range}@dots{}@r{]}
4436 @itemx @dots{} @var{command-list} @dots{}
4437 @itemx end
4438 Specify a list of commands for the given breakpoints.  The commands
4439 themselves appear on the following lines.  Type a line containing just
4440 @code{end} to terminate the commands.
4441
4442 To remove all commands from a breakpoint, type @code{commands} and
4443 follow it immediately with @code{end}; that is, give no commands.
4444
4445 With no argument, @code{commands} refers to the last breakpoint,
4446 watchpoint, or catchpoint set (not to the breakpoint most recently
4447 encountered).  If the most recent breakpoints were set with a single
4448 command, then the @code{commands} will apply to all the breakpoints
4449 set by that command.  This applies to breakpoints set by
4450 @code{rbreak}, and also applies when a single @code{break} command
4451 creates multiple breakpoints (@pxref{Ambiguous Expressions,,Ambiguous
4452 Expressions}).
4453 @end table
4454
4455 Pressing @key{RET} as a means of repeating the last @value{GDBN} command is
4456 disabled within a @var{command-list}.
4457
4458 You can use breakpoint commands to start your program up again.  Simply
4459 use the @code{continue} command, or @code{step}, or any other command
4460 that resumes execution.
4461
4462 Any other commands in the command list, after a command that resumes
4463 execution, are ignored.  This is because any time you resume execution
4464 (even with a simple @code{next} or @code{step}), you may encounter
4465 another breakpoint---which could have its own command list, leading to
4466 ambiguities about which list to execute.
4467
4468 @kindex silent
4469 If the first command you specify in a command list is @code{silent}, the
4470 usual message about stopping at a breakpoint is not printed.  This may
4471 be desirable for breakpoints that are to print a specific message and
4472 then continue.  If none of the remaining commands print anything, you
4473 see no sign that the breakpoint was reached.  @code{silent} is
4474 meaningful only at the beginning of a breakpoint command list.
4475
4476 The commands @code{echo}, @code{output}, and @code{printf} allow you to
4477 print precisely controlled output, and are often useful in silent
4478 breakpoints.  @xref{Output, ,Commands for Controlled Output}.
4479
4480 For example, here is how you could use breakpoint commands to print the
4481 value of @code{x} at entry to @code{foo} whenever @code{x} is positive.
4482
4483 @smallexample
4484 break foo if x>0
4485 commands
4486 silent
4487 printf "x is %d\n",x
4488 cont
4489 end
4490 @end smallexample
4491
4492 One application for breakpoint commands is to compensate for one bug so
4493 you can test for another.  Put a breakpoint just after the erroneous line
4494 of code, give it a condition to detect the case in which something
4495 erroneous has been done, and give it commands to assign correct values
4496 to any variables that need them.  End with the @code{continue} command
4497 so that your program does not stop, and start with the @code{silent}
4498 command so that no output is produced.  Here is an example:
4499
4500 @smallexample
4501 break 403
4502 commands
4503 silent
4504 set x = y + 4
4505 cont
4506 end
4507 @end smallexample
4508
4509 @node Save Breakpoints
4510 @subsection How to save breakpoints to a file
4511
4512 To save breakpoint definitions to a file use the @w{@code{save
4513 breakpoints}} command.
4514
4515 @table @code
4516 @kindex save breakpoints
4517 @cindex save breakpoints to a file for future sessions
4518 @item save breakpoints [@var{filename}]
4519 This command saves all current breakpoint definitions together with
4520 their commands and ignore counts, into a file @file{@var{filename}}
4521 suitable for use in a later debugging session.  This includes all
4522 types of breakpoints (breakpoints, watchpoints, catchpoints,
4523 tracepoints).  To read the saved breakpoint definitions, use the
4524 @code{source} command (@pxref{Command Files}).  Note that watchpoints
4525 with expressions involving local variables may fail to be recreated
4526 because it may not be possible to access the context where the
4527 watchpoint is valid anymore.  Because the saved breakpoint definitions
4528 are simply a sequence of @value{GDBN} commands that recreate the
4529 breakpoints, you can edit the file in your favorite editing program,
4530 and remove the breakpoint definitions you're not interested in, or
4531 that can no longer be recreated.
4532 @end table
4533
4534 @c  @ifclear BARETARGET
4535 @node Error in Breakpoints
4536 @subsection ``Cannot insert breakpoints''
4537
4538 If you request too many active hardware-assisted breakpoints and
4539 watchpoints, you will see this error message:
4540
4541 @c FIXME: the precise wording of this message may change; the relevant
4542 @c source change is not committed yet (Sep 3, 1999).
4543 @smallexample
4544 Stopped; cannot insert breakpoints.
4545 You may have requested too many hardware breakpoints and watchpoints.
4546 @end smallexample
4547
4548 @noindent
4549 This message is printed when you attempt to resume the program, since
4550 only then @value{GDBN} knows exactly how many hardware breakpoints and
4551 watchpoints it needs to insert.
4552
4553 When this message is printed, you need to disable or remove some of the
4554 hardware-assisted breakpoints and watchpoints, and then continue.
4555
4556 @node Breakpoint-related Warnings
4557 @subsection ``Breakpoint address adjusted...''
4558 @cindex breakpoint address adjusted
4559
4560 Some processor architectures place constraints on the addresses at
4561 which breakpoints may be placed.  For architectures thus constrained,
4562 @value{GDBN} will attempt to adjust the breakpoint's address to comply
4563 with the constraints dictated by the architecture.
4564
4565 One example of such an architecture is the Fujitsu FR-V.  The FR-V is
4566 a VLIW architecture in which a number of RISC-like instructions may be
4567 bundled together for parallel execution.  The FR-V architecture
4568 constrains the location of a breakpoint instruction within such a
4569 bundle to the instruction with the lowest address.  @value{GDBN}
4570 honors this constraint by adjusting a breakpoint's address to the
4571 first in the bundle.
4572
4573 It is not uncommon for optimized code to have bundles which contain
4574 instructions from different source statements, thus it may happen that
4575 a breakpoint's address will be adjusted from one source statement to
4576 another.  Since this adjustment may significantly alter @value{GDBN}'s
4577 breakpoint related behavior from what the user expects, a warning is
4578 printed when the breakpoint is first set and also when the breakpoint
4579 is hit.
4580
4581 A warning like the one below is printed when setting a breakpoint
4582 that's been subject to address adjustment:
4583
4584 @smallexample
4585 warning: Breakpoint address adjusted from 0x00010414 to 0x00010410.
4586 @end smallexample
4587
4588 Such warnings are printed both for user settable and @value{GDBN}'s
4589 internal breakpoints.  If you see one of these warnings, you should
4590 verify that a breakpoint set at the adjusted address will have the
4591 desired affect.  If not, the breakpoint in question may be removed and
4592 other breakpoints may be set which will have the desired behavior.
4593 E.g., it may be sufficient to place the breakpoint at a later
4594 instruction.  A conditional breakpoint may also be useful in some
4595 cases to prevent the breakpoint from triggering too often.
4596
4597 @value{GDBN} will also issue a warning when stopping at one of these
4598 adjusted breakpoints:
4599
4600 @smallexample
4601 warning: Breakpoint 1 address previously adjusted from 0x00010414
4602 to 0x00010410.
4603 @end smallexample
4604
4605 When this warning is encountered, it may be too late to take remedial
4606 action except in cases where the breakpoint is hit earlier or more
4607 frequently than expected.
4608
4609 @node Continuing and Stepping
4610 @section Continuing and Stepping
4611
4612 @cindex stepping
4613 @cindex continuing
4614 @cindex resuming execution
4615 @dfn{Continuing} means resuming program execution until your program
4616 completes normally.  In contrast, @dfn{stepping} means executing just
4617 one more ``step'' of your program, where ``step'' may mean either one
4618 line of source code, or one machine instruction (depending on what
4619 particular command you use).  Either when continuing or when stepping,
4620 your program may stop even sooner, due to a breakpoint or a signal.  (If
4621 it stops due to a signal, you may want to use @code{handle}, or use
4622 @samp{signal 0} to resume execution.  @xref{Signals, ,Signals}.)
4623
4624 @table @code
4625 @kindex continue
4626 @kindex c @r{(@code{continue})}
4627 @kindex fg @r{(resume foreground execution)}
4628 @item continue @r{[}@var{ignore-count}@r{]}
4629 @itemx c @r{[}@var{ignore-count}@r{]}
4630 @itemx fg @r{[}@var{ignore-count}@r{]}
4631 Resume program execution, at the address where your program last stopped;
4632 any breakpoints set at that address are bypassed.  The optional argument
4633 @var{ignore-count} allows you to specify a further number of times to
4634 ignore a breakpoint at this location; its effect is like that of
4635 @code{ignore} (@pxref{Conditions, ,Break Conditions}).
4636
4637 The argument @var{ignore-count} is meaningful only when your program
4638 stopped due to a breakpoint.  At other times, the argument to
4639 @code{continue} is ignored.
4640
4641 The synonyms @code{c} and @code{fg} (for @dfn{foreground}, as the
4642 debugged program is deemed to be the foreground program) are provided
4643 purely for convenience, and have exactly the same behavior as
4644 @code{continue}.
4645 @end table
4646
4647 To resume execution at a different place, you can use @code{return}
4648 (@pxref{Returning, ,Returning from a Function}) to go back to the
4649 calling function; or @code{jump} (@pxref{Jumping, ,Continuing at a
4650 Different Address}) to go to an arbitrary location in your program.
4651
4652 A typical technique for using stepping is to set a breakpoint
4653 (@pxref{Breakpoints, ,Breakpoints; Watchpoints; and Catchpoints}) at the
4654 beginning of the function or the section of your program where a problem
4655 is believed to lie, run your program until it stops at that breakpoint,
4656 and then step through the suspect area, examining the variables that are
4657 interesting, until you see the problem happen.
4658
4659 @table @code
4660 @kindex step
4661 @kindex s @r{(@code{step})}
4662 @item step
4663 Continue running your program until control reaches a different source
4664 line, then stop it and return control to @value{GDBN}.  This command is
4665 abbreviated @code{s}.
4666
4667 @quotation
4668 @c "without debugging information" is imprecise; actually "without line
4669 @c numbers in the debugging information".  (gcc -g1 has debugging info but
4670 @c not line numbers).  But it seems complex to try to make that
4671 @c distinction here.
4672 @emph{Warning:} If you use the @code{step} command while control is
4673 within a function that was compiled without debugging information,
4674 execution proceeds until control reaches a function that does have
4675 debugging information.  Likewise, it will not step into a function which
4676 is compiled without debugging information.  To step through functions
4677 without debugging information, use the @code{stepi} command, described
4678 below.
4679 @end quotation
4680
4681 The @code{step} command only stops at the first instruction of a source
4682 line.  This prevents the multiple stops that could otherwise occur in
4683 @code{switch} statements, @code{for} loops, etc.  @code{step} continues
4684 to stop if a function that has debugging information is called within
4685 the line.  In other words, @code{step} @emph{steps inside} any functions
4686 called within the line.
4687
4688 Also, the @code{step} command only enters a function if there is line
4689 number information for the function.  Otherwise it acts like the
4690 @code{next} command.  This avoids problems when using @code{cc -gl}
4691 on MIPS machines.  Previously, @code{step} entered subroutines if there
4692 was any debugging information about the routine.
4693
4694 @item step @var{count}
4695 Continue running as in @code{step}, but do so @var{count} times.  If a
4696 breakpoint is reached, or a signal not related to stepping occurs before
4697 @var{count} steps, stepping stops right away.
4698
4699 @kindex next
4700 @kindex n @r{(@code{next})}
4701 @item next @r{[}@var{count}@r{]}
4702 Continue to the next source line in the current (innermost) stack frame.
4703 This is similar to @code{step}, but function calls that appear within
4704 the line of code are executed without stopping.  Execution stops when
4705 control reaches a different line of code at the original stack level
4706 that was executing when you gave the @code{next} command.  This command
4707 is abbreviated @code{n}.
4708
4709 An argument @var{count} is a repeat count, as for @code{step}.
4710
4711
4712 @c  FIX ME!!  Do we delete this, or is there a way it fits in with
4713 @c  the following paragraph?   ---  Vctoria
4714 @c
4715 @c  @code{next} within a function that lacks debugging information acts like
4716 @c  @code{step}, but any function calls appearing within the code of the
4717 @c  function are executed without stopping.
4718
4719 The @code{next} command only stops at the first instruction of a
4720 source line.  This prevents multiple stops that could otherwise occur in
4721 @code{switch} statements, @code{for} loops, etc.
4722
4723 @kindex set step-mode
4724 @item set step-mode
4725 @cindex functions without line info, and stepping
4726 @cindex stepping into functions with no line info
4727 @itemx set step-mode on
4728 The @code{set step-mode on} command causes the @code{step} command to
4729 stop at the first instruction of a function which contains no debug line
4730 information rather than stepping over it.
4731
4732 This is useful in cases where you may be interested in inspecting the
4733 machine instructions of a function which has no symbolic info and do not
4734 want @value{GDBN} to automatically skip over this function.
4735
4736 @item set step-mode off
4737 Causes the @code{step} command to step over any functions which contains no
4738 debug information.  This is the default.
4739
4740 @item show step-mode
4741 Show whether @value{GDBN} will stop in or step over functions without
4742 source line debug information.
4743
4744 @kindex finish
4745 @kindex fin @r{(@code{finish})}
4746 @item finish
4747 Continue running until just after function in the selected stack frame
4748 returns.  Print the returned value (if any).  This command can be
4749 abbreviated as @code{fin}.
4750
4751 Contrast this with the @code{return} command (@pxref{Returning,
4752 ,Returning from a Function}).
4753
4754 @kindex until
4755 @kindex u @r{(@code{until})}
4756 @cindex run until specified location
4757 @item until
4758 @itemx u
4759 Continue running until a source line past the current line, in the
4760 current stack frame, is reached.  This command is used to avoid single
4761 stepping through a loop more than once.  It is like the @code{next}
4762 command, except that when @code{until} encounters a jump, it
4763 automatically continues execution until the program counter is greater
4764 than the address of the jump.
4765
4766 This means that when you reach the end of a loop after single stepping
4767 though it, @code{until} makes your program continue execution until it
4768 exits the loop.  In contrast, a @code{next} command at the end of a loop
4769 simply steps back to the beginning of the loop, which forces you to step
4770 through the next iteration.
4771
4772 @code{until} always stops your program if it attempts to exit the current
4773 stack frame.
4774
4775 @code{until} may produce somewhat counterintuitive results if the order
4776 of machine code does not match the order of the source lines.  For
4777 example, in the following excerpt from a debugging session, the @code{f}
4778 (@code{frame}) command shows that execution is stopped at line
4779 @code{206}; yet when we use @code{until}, we get to line @code{195}:
4780
4781 @smallexample
4782 (@value{GDBP}) f
4783 #0  main (argc=4, argv=0xf7fffae8) at m4.c:206
4784 206                 expand_input();
4785 (@value{GDBP}) until
4786 195             for ( ; argc > 0; NEXTARG) @{
4787 @end smallexample
4788
4789 This happened because, for execution efficiency, the compiler had
4790 generated code for the loop closure test at the end, rather than the
4791 start, of the loop---even though the test in a C @code{for}-loop is
4792 written before the body of the loop.  The @code{until} command appeared
4793 to step back to the beginning of the loop when it advanced to this
4794 expression; however, it has not really gone to an earlier
4795 statement---not in terms of the actual machine code.
4796
4797 @code{until} with no argument works by means of single
4798 instruction stepping, and hence is slower than @code{until} with an
4799 argument.
4800
4801 @item until @var{location}
4802 @itemx u @var{location}
4803 Continue running your program until either the specified location is
4804 reached, or the current stack frame returns.  @var{location} is any of
4805 the forms described in @ref{Specify Location}.
4806 This form of the command uses temporary breakpoints, and
4807 hence is quicker than @code{until} without an argument.  The specified
4808 location is actually reached only if it is in the current frame.  This
4809 implies that @code{until} can be used to skip over recursive function
4810 invocations.  For instance in the code below, if the current location is
4811 line @code{96}, issuing @code{until 99} will execute the program up to
4812 line @code{99} in the same invocation of factorial, i.e., after the inner
4813 invocations have returned.
4814
4815 @smallexample
4816 94      int factorial (int value)
4817 95      @{
4818 96          if (value > 1) @{
4819 97            value *= factorial (value - 1);
4820 98          @}
4821 99          return (value);
4822 100     @}
4823 @end smallexample
4824
4825
4826 @kindex advance @var{location}
4827 @itemx advance @var{location}
4828 Continue running the program up to the given @var{location}.  An argument is
4829 required, which should be of one of the forms described in
4830 @ref{Specify Location}.
4831 Execution will also stop upon exit from the current stack
4832 frame.  This command is similar to @code{until}, but @code{advance} will
4833 not skip over recursive function calls, and the target location doesn't
4834 have to be in the same frame as the current one.
4835
4836
4837 @kindex stepi
4838 @kindex si @r{(@code{stepi})}
4839 @item stepi
4840 @itemx stepi @var{arg}
4841 @itemx si
4842 Execute one machine instruction, then stop and return to the debugger.
4843
4844 It is often useful to do @samp{display/i $pc} when stepping by machine
4845 instructions.  This makes @value{GDBN} automatically display the next
4846 instruction to be executed, each time your program stops.  @xref{Auto
4847 Display,, Automatic Display}.
4848
4849 An argument is a repeat count, as in @code{step}.
4850
4851 @need 750
4852 @kindex nexti
4853 @kindex ni @r{(@code{nexti})}
4854 @item nexti
4855 @itemx nexti @var{arg}
4856 @itemx ni
4857 Execute one machine instruction, but if it is a function call,
4858 proceed until the function returns.
4859
4860 An argument is a repeat count, as in @code{next}.
4861 @end table
4862
4863 @node Skipping Over Functions and Files
4864 @section Skipping Over Functions and Files
4865 @cindex skipping over functions and files
4866
4867 The program you are debugging may contain some functions which are
4868 uninteresting to debug.  The @code{skip} comand lets you tell @value{GDBN} to
4869 skip a function or all functions in a file when stepping.
4870
4871 For example, consider the following C function:
4872
4873 @smallexample
4874 101     int func()
4875 102     @{
4876 103         foo(boring());
4877 104         bar(boring());
4878 105     @}
4879 @end smallexample
4880
4881 @noindent
4882 Suppose you wish to step into the functions @code{foo} and @code{bar}, but you
4883 are not interested in stepping through @code{boring}.  If you run @code{step}
4884 at line 103, you'll enter @code{boring()}, but if you run @code{next}, you'll
4885 step over both @code{foo} and @code{boring}!
4886
4887 One solution is to @code{step} into @code{boring} and use the @code{finish}
4888 command to immediately exit it.  But this can become tedious if @code{boring}
4889 is called from many places.
4890
4891 A more flexible solution is to execute @kbd{skip boring}.  This instructs
4892 @value{GDBN} never to step into @code{boring}.  Now when you execute
4893 @code{step} at line 103, you'll step over @code{boring} and directly into
4894 @code{foo}.
4895
4896 You can also instruct @value{GDBN} to skip all functions in a file, with, for
4897 example, @code{skip file boring.c}.
4898
4899 @table @code
4900 @kindex skip function
4901 @item skip @r{[}@var{linespec}@r{]}
4902 @itemx skip function @r{[}@var{linespec}@r{]}
4903 After running this command, the function named by @var{linespec} or the
4904 function containing the line named by @var{linespec} will be skipped over when
4905 stepping.  @xref{Specify Location}.
4906
4907 If you do not specify @var{linespec}, the function you're currently debugging
4908 will be skipped.
4909
4910 (If you have a function called @code{file} that you want to skip, use
4911 @kbd{skip function file}.)
4912
4913 @kindex skip file
4914 @item skip file @r{[}@var{filename}@r{]}
4915 After running this command, any function whose source lives in @var{filename}
4916 will be skipped over when stepping.
4917
4918 If you do not specify @var{filename}, functions whose source lives in the file
4919 you're currently debugging will be skipped.
4920 @end table
4921
4922 Skips can be listed, deleted, disabled, and enabled, much like breakpoints.
4923 These are the commands for managing your list of skips:
4924
4925 @table @code
4926 @kindex info skip
4927 @item info skip @r{[}@var{range}@r{]}
4928 Print details about the specified skip(s).  If @var{range} is not specified,
4929 print a table with details about all functions and files marked for skipping.
4930 @code{info skip} prints the following information about each skip:
4931
4932 @table @emph
4933 @item Identifier
4934 A number identifying this skip.
4935 @item Type
4936 The type of this skip, either @samp{function} or @samp{file}.
4937 @item Enabled or Disabled
4938 Enabled skips are marked with @samp{y}.  Disabled skips are marked with @samp{n}.
4939 @item Address
4940 For function skips, this column indicates the address in memory of the function
4941 being skipped.  If you've set a function skip on a function which has not yet
4942 been loaded, this field will contain @samp{<PENDING>}.  Once a shared library
4943 which has the function is loaded, @code{info skip} will show the function's
4944 address here.
4945 @item What
4946 For file skips, this field contains the filename being skipped.  For functions
4947 skips, this field contains the function name and its line number in the file
4948 where it is defined.
4949 @end table
4950
4951 @kindex skip delete
4952 @item skip delete @r{[}@var{range}@r{]}
4953 Delete the specified skip(s).  If @var{range} is not specified, delete all
4954 skips.
4955
4956 @kindex skip enable
4957 @item skip enable @r{[}@var{range}@r{]}
4958 Enable the specified skip(s).  If @var{range} is not specified, enable all
4959 skips.
4960
4961 @kindex skip disable
4962 @item skip disable @r{[}@var{range}@r{]}
4963 Disable the specified skip(s).  If @var{range} is not specified, disable all
4964 skips.
4965
4966 @end table
4967
4968 @node Signals
4969 @section Signals
4970 @cindex signals
4971
4972 A signal is an asynchronous event that can happen in a program.  The
4973 operating system defines the possible kinds of signals, and gives each
4974 kind a name and a number.  For example, in Unix @code{SIGINT} is the
4975 signal a program gets when you type an interrupt character (often @kbd{Ctrl-c});
4976 @code{SIGSEGV} is the signal a program gets from referencing a place in
4977 memory far away from all the areas in use; @code{SIGALRM} occurs when
4978 the alarm clock timer goes off (which happens only if your program has
4979 requested an alarm).
4980
4981 @cindex fatal signals
4982 Some signals, including @code{SIGALRM}, are a normal part of the
4983 functioning of your program.  Others, such as @code{SIGSEGV}, indicate
4984 errors; these signals are @dfn{fatal} (they kill your program immediately) if the
4985 program has not specified in advance some other way to handle the signal.
4986 @code{SIGINT} does not indicate an error in your program, but it is normally
4987 fatal so it can carry out the purpose of the interrupt: to kill the program.
4988
4989 @value{GDBN} has the ability to detect any occurrence of a signal in your
4990 program.  You can tell @value{GDBN} in advance what to do for each kind of
4991 signal.
4992
4993 @cindex handling signals
4994 Normally, @value{GDBN} is set up to let the non-erroneous signals like
4995 @code{SIGALRM} be silently passed to your program
4996 (so as not to interfere with their role in the program's functioning)
4997 but to stop your program immediately whenever an error signal happens.
4998 You can change these settings with the @code{handle} command.
4999
5000 @table @code
5001 @kindex info signals
5002 @kindex info handle
5003 @item info signals
5004 @itemx info handle
5005 Print a table of all the kinds of signals and how @value{GDBN} has been told to
5006 handle each one.  You can use this to see the signal numbers of all
5007 the defined types of signals.
5008
5009 @item info signals @var{sig}
5010 Similar, but print information only about the specified signal number.
5011
5012 @code{info handle} is an alias for @code{info signals}.
5013
5014 @kindex handle
5015 @item handle @var{signal} @r{[}@var{keywords}@dots{}@r{]}
5016 Change the way @value{GDBN} handles signal @var{signal}.  @var{signal}
5017 can be the number of a signal or its name (with or without the
5018 @samp{SIG} at the beginning); a list of signal numbers of the form
5019 @samp{@var{low}-@var{high}}; or the word @samp{all}, meaning all the
5020 known signals.  Optional arguments @var{keywords}, described below,
5021 say what change to make.
5022 @end table
5023
5024 @c @group
5025 The keywords allowed by the @code{handle} command can be abbreviated.
5026 Their full names are:
5027
5028 @table @code
5029 @item nostop
5030 @value{GDBN} should not stop your program when this signal happens.  It may
5031 still print a message telling you that the signal has come in.
5032
5033 @item stop
5034 @value{GDBN} should stop your program when this signal happens.  This implies
5035 the @code{print} keyword as well.
5036
5037 @item print
5038 @value{GDBN} should print a message when this signal happens.
5039
5040 @item noprint
5041 @value{GDBN} should not mention the occurrence of the signal at all.  This
5042 implies the @code{nostop} keyword as well.
5043
5044 @item pass
5045 @itemx noignore
5046 @value{GDBN} should allow your program to see this signal; your program
5047 can handle the signal, or else it may terminate if the signal is fatal
5048 and not handled.  @code{pass} and @code{noignore} are synonyms.
5049
5050 @item nopass
5051 @itemx ignore
5052 @value{GDBN} should not allow your program to see this signal.
5053 @code{nopass} and @code{ignore} are synonyms.
5054 @end table
5055 @c @end group
5056
5057 When a signal stops your program, the signal is not visible to the
5058 program until you
5059 continue.  Your program sees the signal then, if @code{pass} is in
5060 effect for the signal in question @emph{at that time}.  In other words,
5061 after @value{GDBN} reports a signal, you can use the @code{handle}
5062 command with @code{pass} or @code{nopass} to control whether your
5063 program sees that signal when you continue.
5064
5065 The default is set to @code{nostop}, @code{noprint}, @code{pass} for
5066 non-erroneous signals such as @code{SIGALRM}, @code{SIGWINCH} and
5067 @code{SIGCHLD}, and to @code{stop}, @code{print}, @code{pass} for the
5068 erroneous signals.
5069
5070 You can also use the @code{signal} command to prevent your program from
5071 seeing a signal, or cause it to see a signal it normally would not see,
5072 or to give it any signal at any time.  For example, if your program stopped
5073 due to some sort of memory reference error, you might store correct
5074 values into the erroneous variables and continue, hoping to see more
5075 execution; but your program would probably terminate immediately as
5076 a result of the fatal signal once it saw the signal.  To prevent this,
5077 you can continue with @samp{signal 0}.  @xref{Signaling, ,Giving your
5078 Program a Signal}.
5079
5080 @cindex extra signal information
5081 @anchor{extra signal information}
5082
5083 On some targets, @value{GDBN} can inspect extra signal information
5084 associated with the intercepted signal, before it is actually
5085 delivered to the program being debugged.  This information is exported
5086 by the convenience variable @code{$_siginfo}, and consists of data
5087 that is passed by the kernel to the signal handler at the time of the
5088 receipt of a signal.  The data type of the information itself is
5089 target dependent.  You can see the data type using the @code{ptype
5090 $_siginfo} command.  On Unix systems, it typically corresponds to the
5091 standard @code{siginfo_t} type, as defined in the @file{signal.h}
5092 system header.
5093
5094 Here's an example, on a @sc{gnu}/Linux system, printing the stray
5095 referenced address that raised a segmentation fault.
5096
5097 @smallexample
5098 @group
5099 (@value{GDBP}) continue
5100 Program received signal SIGSEGV, Segmentation fault.
5101 0x0000000000400766 in main ()
5102 69        *(int *)p = 0;
5103 (@value{GDBP}) ptype $_siginfo
5104 type = struct @{
5105     int si_signo;
5106     int si_errno;
5107     int si_code;
5108     union @{
5109         int _pad[28];
5110         struct @{...@} _kill;
5111         struct @{...@} _timer;
5112         struct @{...@} _rt;
5113         struct @{...@} _sigchld;
5114         struct @{...@} _sigfault;
5115         struct @{...@} _sigpoll;
5116     @} _sifields;
5117 @}
5118 (@value{GDBP}) ptype $_siginfo._sifields._sigfault
5119 type = struct @{
5120     void *si_addr;
5121 @}
5122 (@value{GDBP}) p $_siginfo._sifields._sigfault.si_addr
5123 $1 = (void *) 0x7ffff7ff7000
5124 @end group
5125 @end smallexample
5126
5127 Depending on target support, @code{$_siginfo} may also be writable.
5128
5129 @node Thread Stops
5130 @section Stopping and Starting Multi-thread Programs
5131
5132 @cindex stopped threads
5133 @cindex threads, stopped
5134
5135 @cindex continuing threads
5136 @cindex threads, continuing
5137
5138 @value{GDBN} supports debugging programs with multiple threads
5139 (@pxref{Threads,, Debugging Programs with Multiple Threads}).  There
5140 are two modes of controlling execution of your program within the
5141 debugger.  In the default mode, referred to as @dfn{all-stop mode},
5142 when any thread in your program stops (for example, at a breakpoint 
5143 or while being stepped), all other threads in the program are also stopped by 
5144 @value{GDBN}.  On some targets, @value{GDBN} also supports 
5145 @dfn{non-stop mode}, in which other threads can continue to run freely while
5146 you examine the stopped thread in the debugger.
5147
5148 @menu
5149 * All-Stop Mode::               All threads stop when GDB takes control
5150 * Non-Stop Mode::               Other threads continue to execute
5151 * Background Execution::        Running your program asynchronously
5152 * Thread-Specific Breakpoints:: Controlling breakpoints
5153 * Interrupted System Calls::    GDB may interfere with system calls
5154 * Observer Mode::               GDB does not alter program behavior
5155 @end menu
5156
5157 @node All-Stop Mode
5158 @subsection All-Stop Mode
5159
5160 @cindex all-stop mode
5161
5162 In all-stop mode, whenever your program stops under @value{GDBN} for any reason,
5163 @emph{all} threads of execution stop, not just the current thread.  This
5164 allows you to examine the overall state of the program, including
5165 switching between threads, without worrying that things may change
5166 underfoot.
5167
5168 Conversely, whenever you restart the program, @emph{all} threads start
5169 executing.  @emph{This is true even when single-stepping} with commands
5170 like @code{step} or @code{next}.
5171
5172 In particular, @value{GDBN} cannot single-step all threads in lockstep.
5173 Since thread scheduling is up to your debugging target's operating
5174 system (not controlled by @value{GDBN}), other threads may
5175 execute more than one statement while the current thread completes a
5176 single step.  Moreover, in general other threads stop in the middle of a
5177 statement, rather than at a clean statement boundary, when the program
5178 stops.
5179
5180 You might even find your program stopped in another thread after
5181 continuing or even single-stepping.  This happens whenever some other
5182 thread runs into a breakpoint, a signal, or an exception before the
5183 first thread completes whatever you requested.
5184
5185 @cindex automatic thread selection
5186 @cindex switching threads automatically
5187 @cindex threads, automatic switching
5188 Whenever @value{GDBN} stops your program, due to a breakpoint or a
5189 signal, it automatically selects the thread where that breakpoint or
5190 signal happened.  @value{GDBN} alerts you to the context switch with a
5191 message such as @samp{[Switching to Thread @var{n}]} to identify the
5192 thread.  
5193
5194 On some OSes, you can modify @value{GDBN}'s default behavior by
5195 locking the OS scheduler to allow only a single thread to run.
5196
5197 @table @code
5198 @item set scheduler-locking @var{mode}
5199 @cindex scheduler locking mode
5200 @cindex lock scheduler
5201 Set the scheduler locking mode.  If it is @code{off}, then there is no
5202 locking and any thread may run at any time.  If @code{on}, then only the
5203 current thread may run when the inferior is resumed.  The @code{step}
5204 mode optimizes for single-stepping; it prevents other threads 
5205 from preempting the current thread while you are stepping, so that 
5206 the focus of debugging does not change unexpectedly.
5207 Other threads only rarely (or never) get a chance to run
5208 when you step.  They are more likely to run when you @samp{next} over a
5209 function call, and they are completely free to run when you use commands
5210 like @samp{continue}, @samp{until}, or @samp{finish}.  However, unless another
5211 thread hits a breakpoint during its timeslice, @value{GDBN} does not change
5212 the current thread away from the thread that you are debugging.
5213
5214 @item show scheduler-locking
5215 Display the current scheduler locking mode.
5216 @end table
5217
5218 @cindex resume threads of multiple processes simultaneously
5219 By default, when you issue one of the execution commands such as
5220 @code{continue}, @code{next} or @code{step}, @value{GDBN} allows only
5221 threads of the current inferior to run.  For example, if @value{GDBN}
5222 is attached to two inferiors, each with two threads, the
5223 @code{continue} command resumes only the two threads of the current
5224 inferior.  This is useful, for example, when you debug a program that
5225 forks and you want to hold the parent stopped (so that, for instance,
5226 it doesn't run to exit), while you debug the child.  In other
5227 situations, you may not be interested in inspecting the current state
5228 of any of the processes @value{GDBN} is attached to, and you may want
5229 to resume them all until some breakpoint is hit.  In the latter case,
5230 you can instruct @value{GDBN} to allow all threads of all the
5231 inferiors to run with the @w{@code{set schedule-multiple}} command.
5232
5233 @table @code
5234 @kindex set schedule-multiple
5235 @item set schedule-multiple
5236 Set the mode for allowing threads of multiple processes to be resumed
5237 when an execution command is issued.  When @code{on}, all threads of
5238 all processes are allowed to run.  When @code{off}, only the threads
5239 of the current process are resumed.  The default is @code{off}.  The
5240 @code{scheduler-locking} mode takes precedence when set to @code{on},
5241 or while you are stepping and set to @code{step}.
5242
5243 @item show schedule-multiple
5244 Display the current mode for resuming the execution of threads of
5245 multiple processes.
5246 @end table
5247
5248 @node Non-Stop Mode
5249 @subsection Non-Stop Mode
5250
5251 @cindex non-stop mode
5252
5253 @c This section is really only a place-holder, and needs to be expanded
5254 @c with more details.  
5255
5256 For some multi-threaded targets, @value{GDBN} supports an optional
5257 mode of operation in which you can examine stopped program threads in
5258 the debugger while other threads continue to execute freely.  This
5259 minimizes intrusion when debugging live systems, such as programs 
5260 where some threads have real-time constraints or must continue to 
5261 respond to external events.  This is referred to as @dfn{non-stop} mode.
5262
5263 In non-stop mode, when a thread stops to report a debugging event,
5264 @emph{only} that thread is stopped; @value{GDBN} does not stop other
5265 threads as well, in contrast to the all-stop mode behavior.  Additionally,
5266 execution commands such as @code{continue} and @code{step} apply by default
5267 only to the current thread in non-stop mode, rather than all threads as
5268 in all-stop mode.  This allows you to control threads explicitly in
5269 ways that are not possible in all-stop mode --- for example, stepping 
5270 one thread while allowing others to run freely, stepping
5271 one thread while holding all others stopped, or stepping several threads 
5272 independently and simultaneously.
5273
5274 To enter non-stop mode, use this sequence of commands before you run
5275 or attach to your program:
5276
5277 @smallexample
5278 # Enable the async interface.  
5279 set target-async 1
5280
5281 # If using the CLI, pagination breaks non-stop.
5282 set pagination off
5283
5284 # Finally, turn it on!
5285 set non-stop on
5286 @end smallexample
5287
5288 You can use these commands to manipulate the non-stop mode setting:
5289
5290 @table @code
5291 @kindex set non-stop
5292 @item set non-stop on
5293 Enable selection of non-stop mode.
5294 @item set non-stop off
5295 Disable selection of non-stop mode.
5296 @kindex show non-stop
5297 @item show non-stop
5298 Show the current non-stop enablement setting.
5299 @end table
5300
5301 Note these commands only reflect whether non-stop mode is enabled,
5302 not whether the currently-executing program is being run in non-stop mode.  
5303 In particular, the @code{set non-stop} preference is only consulted when
5304 @value{GDBN} starts or connects to the target program, and it is generally 
5305 not possible to switch modes once debugging has started.  Furthermore,
5306 since not all targets support non-stop mode, even when you have enabled
5307 non-stop mode, @value{GDBN} may still fall back to all-stop operation by
5308 default.
5309
5310 In non-stop mode, all execution commands apply only to the current thread
5311 by default.  That is, @code{continue} only continues one thread.  
5312 To continue all threads, issue @code{continue -a} or @code{c -a}.
5313
5314 You can use @value{GDBN}'s background execution commands 
5315 (@pxref{Background Execution}) to run some threads in the background
5316 while you continue to examine or step others from @value{GDBN}.  
5317 The MI execution commands (@pxref{GDB/MI Program Execution}) are
5318 always executed asynchronously in non-stop mode.
5319
5320 Suspending execution is done with the @code{interrupt} command when
5321 running in the background, or @kbd{Ctrl-c} during foreground execution.  
5322 In all-stop mode, this stops the whole process; 
5323 but in non-stop mode the interrupt applies only to the current thread.  
5324 To stop the whole program, use @code{interrupt -a}.
5325
5326 Other execution commands do not currently support the @code{-a} option.
5327
5328 In non-stop mode, when a thread stops, @value{GDBN} doesn't automatically make
5329 that thread current, as it does in all-stop mode.  This is because the
5330 thread stop notifications are asynchronous with respect to @value{GDBN}'s 
5331 command interpreter, and it would be confusing if @value{GDBN} unexpectedly
5332 changed to a different thread just as you entered a command to operate on the
5333 previously current thread.
5334
5335 @node Background Execution
5336 @subsection Background Execution
5337
5338 @cindex foreground execution
5339 @cindex background execution
5340 @cindex asynchronous execution
5341 @cindex execution, foreground, background and asynchronous
5342
5343 @value{GDBN}'s execution commands have two variants:  the normal
5344 foreground (synchronous) behavior, and a background
5345 (asynchronous) behavior.  In foreground execution, @value{GDBN} waits for 
5346 the program to report that some thread has stopped before prompting for
5347 another command.  In background execution, @value{GDBN} immediately gives
5348 a command prompt so that you can issue other commands while your program runs.
5349
5350 You need to explicitly enable asynchronous mode before you can use
5351 background execution commands.  You can use these commands to
5352 manipulate the asynchronous mode setting:
5353
5354 @table @code
5355 @kindex set target-async
5356 @item set target-async on
5357 Enable asynchronous mode.
5358 @item set target-async off
5359 Disable asynchronous mode.
5360 @kindex show target-async
5361 @item show target-async
5362 Show the current target-async setting.
5363 @end table
5364
5365 If the target doesn't support async mode, @value{GDBN} issues an error
5366 message if you attempt to use the background execution commands.
5367
5368 To specify background execution, add a @code{&} to the command.  For example,
5369 the background form of the @code{continue} command is @code{continue&}, or
5370 just @code{c&}.  The execution commands that accept background execution
5371 are:
5372
5373 @table @code
5374 @kindex run&
5375 @item run
5376 @xref{Starting, , Starting your Program}.
5377
5378 @item attach
5379 @kindex attach&
5380 @xref{Attach, , Debugging an Already-running Process}.
5381
5382 @item step
5383 @kindex step&
5384 @xref{Continuing and Stepping, step}.
5385
5386 @item stepi
5387 @kindex stepi&
5388 @xref{Continuing and Stepping, stepi}.
5389
5390 @item next
5391 @kindex next&
5392 @xref{Continuing and Stepping, next}.
5393
5394 @item nexti
5395 @kindex nexti&
5396 @xref{Continuing and Stepping, nexti}.
5397
5398 @item continue
5399 @kindex continue&
5400 @xref{Continuing and Stepping, continue}.
5401
5402 @item finish
5403 @kindex finish&
5404 @xref{Continuing and Stepping, finish}.
5405
5406 @item until
5407 @kindex until&
5408 @xref{Continuing and Stepping, until}.
5409
5410 @end table
5411
5412 Background execution is especially useful in conjunction with non-stop
5413 mode for debugging programs with multiple threads; see @ref{Non-Stop Mode}.
5414 However, you can also use these commands in the normal all-stop mode with
5415 the restriction that you cannot issue another execution command until the
5416 previous one finishes.  Examples of commands that are valid in all-stop
5417 mode while the program is running include @code{help} and @code{info break}.
5418
5419 You can interrupt your program while it is running in the background by
5420 using the @code{interrupt} command.
5421
5422 @table @code
5423 @kindex interrupt
5424 @item interrupt
5425 @itemx interrupt -a
5426
5427 Suspend execution of the running program.  In all-stop mode, 
5428 @code{interrupt} stops the whole process, but in non-stop mode, it stops
5429 only the current thread.  To stop the whole program in non-stop mode, 
5430 use @code{interrupt -a}.
5431 @end table
5432
5433 @node Thread-Specific Breakpoints
5434 @subsection Thread-Specific Breakpoints
5435
5436 When your program has multiple threads (@pxref{Threads,, Debugging
5437 Programs with Multiple Threads}), you can choose whether to set
5438 breakpoints on all threads, or on a particular thread.
5439
5440 @table @code
5441 @cindex breakpoints and threads
5442 @cindex thread breakpoints
5443 @kindex break @dots{} thread @var{threadno}
5444 @item break @var{linespec} thread @var{threadno}
5445 @itemx break @var{linespec} thread @var{threadno} if @dots{}
5446 @var{linespec} specifies source lines; there are several ways of
5447 writing them (@pxref{Specify Location}), but the effect is always to
5448 specify some source line.
5449
5450 Use the qualifier @samp{thread @var{threadno}} with a breakpoint command
5451 to specify that you only want @value{GDBN} to stop the program when a
5452 particular thread reaches this breakpoint.  @var{threadno} is one of the
5453 numeric thread identifiers assigned by @value{GDBN}, shown in the first
5454 column of the @samp{info threads} display.
5455
5456 If you do not specify @samp{thread @var{threadno}} when you set a
5457 breakpoint, the breakpoint applies to @emph{all} threads of your
5458 program.
5459
5460 You can use the @code{thread} qualifier on conditional breakpoints as
5461 well; in this case, place @samp{thread @var{threadno}} before or
5462 after the breakpoint condition, like this:
5463
5464 @smallexample
5465 (@value{GDBP}) break frik.c:13 thread 28 if bartab > lim
5466 @end smallexample
5467
5468 @end table
5469
5470 @node Interrupted System Calls
5471 @subsection Interrupted System Calls 
5472
5473 @cindex thread breakpoints and system calls
5474 @cindex system calls and thread breakpoints
5475 @cindex premature return from system calls
5476 There is an unfortunate side effect when using @value{GDBN} to debug
5477 multi-threaded programs.  If one thread stops for a
5478 breakpoint, or for some other reason, and another thread is blocked in a
5479 system call, then the system call may return prematurely.  This is a
5480 consequence of the interaction between multiple threads and the signals
5481 that @value{GDBN} uses to implement breakpoints and other events that
5482 stop execution.
5483
5484 To handle this problem, your program should check the return value of
5485 each system call and react appropriately.  This is good programming
5486 style anyways.
5487
5488 For example, do not write code like this:
5489
5490 @smallexample
5491   sleep (10);
5492 @end smallexample
5493
5494 The call to @code{sleep} will return early if a different thread stops
5495 at a breakpoint or for some other reason.
5496
5497 Instead, write this:
5498
5499 @smallexample
5500   int unslept = 10;
5501   while (unslept > 0)
5502     unslept = sleep (unslept);
5503 @end smallexample
5504
5505 A system call is allowed to return early, so the system is still
5506 conforming to its specification.  But @value{GDBN} does cause your
5507 multi-threaded program to behave differently than it would without
5508 @value{GDBN}.
5509
5510 Also, @value{GDBN} uses internal breakpoints in the thread library to
5511 monitor certain events such as thread creation and thread destruction.
5512 When such an event happens, a system call in another thread may return
5513 prematurely, even though your program does not appear to stop.
5514
5515 @node Observer Mode
5516 @subsection Observer Mode
5517
5518 If you want to build on non-stop mode and observe program behavior
5519 without any chance of disruption by @value{GDBN}, you can set
5520 variables to disable all of the debugger's attempts to modify state,
5521 whether by writing memory, inserting breakpoints, etc.  These operate
5522 at a low level, intercepting operations from all commands.
5523
5524 When all of these are set to @code{off}, then @value{GDBN} is said to
5525 be @dfn{observer mode}.  As a convenience, the variable
5526 @code{observer} can be set to disable these, plus enable non-stop
5527 mode.
5528
5529 Note that @value{GDBN} will not prevent you from making nonsensical
5530 combinations of these settings. For instance, if you have enabled
5531 @code{may-insert-breakpoints} but disabled @code{may-write-memory},
5532 then breakpoints that work by writing trap instructions into the code
5533 stream will still not be able to be placed.
5534
5535 @table @code
5536
5537 @kindex observer
5538 @item set observer on
5539 @itemx set observer off
5540 When set to @code{on}, this disables all the permission variables
5541 below (except for @code{insert-fast-tracepoints}), plus enables
5542 non-stop debugging.  Setting this to @code{off} switches back to
5543 normal debugging, though remaining in non-stop mode.
5544
5545 @item show observer
5546 Show whether observer mode is on or off.
5547
5548 @kindex may-write-registers
5549 @item set may-write-registers on
5550 @itemx set may-write-registers off
5551 This controls whether @value{GDBN} will attempt to alter the values of
5552 registers, such as with assignment expressions in @code{print}, or the
5553 @code{jump} command.  It defaults to @code{on}.
5554
5555 @item show may-write-registers
5556 Show the current permission to write registers.
5557
5558 @kindex may-write-memory
5559 @item set may-write-memory on
5560 @itemx set may-write-memory off
5561 This controls whether @value{GDBN} will attempt to alter the contents
5562 of memory, such as with assignment expressions in @code{print}.  It
5563 defaults to @code{on}.
5564
5565 @item show may-write-memory
5566 Show the current permission to write memory.
5567
5568 @kindex may-insert-breakpoints
5569 @item set may-insert-breakpoints on
5570 @itemx set may-insert-breakpoints off
5571 This controls whether @value{GDBN} will attempt to insert breakpoints.
5572 This affects all breakpoints, including internal breakpoints defined
5573 by @value{GDBN}.  It defaults to @code{on}.
5574
5575 @item show may-insert-breakpoints
5576 Show the current permission to insert breakpoints.
5577
5578 @kindex may-insert-tracepoints
5579 @item set may-insert-tracepoints on
5580 @itemx set may-insert-tracepoints off
5581 This controls whether @value{GDBN} will attempt to insert (regular)
5582 tracepoints at the beginning of a tracing experiment.  It affects only
5583 non-fast tracepoints, fast tracepoints being under the control of
5584 @code{may-insert-fast-tracepoints}.  It defaults to @code{on}.
5585
5586 @item show may-insert-tracepoints
5587 Show the current permission to insert tracepoints.
5588
5589 @kindex may-insert-fast-tracepoints
5590 @item set may-insert-fast-tracepoints on
5591 @itemx set may-insert-fast-tracepoints off
5592 This controls whether @value{GDBN} will attempt to insert fast
5593 tracepoints at the beginning of a tracing experiment.  It affects only
5594 fast tracepoints, regular (non-fast) tracepoints being under the
5595 control of @code{may-insert-tracepoints}.  It defaults to @code{on}.
5596
5597 @item show may-insert-fast-tracepoints
5598 Show the current permission to insert fast tracepoints.
5599
5600 @kindex may-interrupt
5601 @item set may-interrupt on
5602 @itemx set may-interrupt off
5603 This controls whether @value{GDBN} will attempt to interrupt or stop
5604 program execution.  When this variable is @code{off}, the
5605 @code{interrupt} command will have no effect, nor will
5606 @kbd{Ctrl-c}. It defaults to @code{on}.
5607
5608 @item show may-interrupt
5609 Show the current permission to interrupt or stop the program.
5610
5611 @end table
5612
5613 @node Reverse Execution
5614 @chapter Running programs backward
5615 @cindex reverse execution
5616 @cindex running programs backward
5617
5618 When you are debugging a program, it is not unusual to realize that
5619 you have gone too far, and some event of interest has already happened.
5620 If the target environment supports it, @value{GDBN} can allow you to
5621 ``rewind'' the program by running it backward.
5622
5623 A target environment that supports reverse execution should be able
5624 to ``undo'' the changes in machine state that have taken place as the
5625 program was executing normally.  Variables, registers etc.@: should
5626 revert to their previous values.  Obviously this requires a great
5627 deal of sophistication on the part of the target environment; not
5628 all target environments can support reverse execution.
5629
5630 When a program is executed in reverse, the instructions that
5631 have most recently been executed are ``un-executed'', in reverse
5632 order.  The program counter runs backward, following the previous
5633 thread of execution in reverse.  As each instruction is ``un-executed'',
5634 the values of memory and/or registers that were changed by that
5635 instruction are reverted to their previous states.  After executing
5636 a piece of source code in reverse, all side effects of that code
5637 should be ``undone'', and all variables should be returned to their
5638 prior values@footnote{
5639 Note that some side effects are easier to undo than others.  For instance,
5640 memory and registers are relatively easy, but device I/O is hard.  Some
5641 targets may be able undo things like device I/O, and some may not.
5642
5643 The contract between @value{GDBN} and the reverse executing target
5644 requires only that the target do something reasonable when
5645 @value{GDBN} tells it to execute backwards, and then report the 
5646 results back to @value{GDBN}.  Whatever the target reports back to
5647 @value{GDBN}, @value{GDBN} will report back to the user.  @value{GDBN}
5648 assumes that the memory and registers that the target reports are in a
5649 consistant state, but @value{GDBN} accepts whatever it is given.
5650 }.
5651
5652 If you are debugging in a target environment that supports
5653 reverse execution, @value{GDBN} provides the following commands.
5654
5655 @table @code
5656 @kindex reverse-continue
5657 @kindex rc @r{(@code{reverse-continue})}
5658 @item reverse-continue @r{[}@var{ignore-count}@r{]}
5659 @itemx rc @r{[}@var{ignore-count}@r{]}
5660 Beginning at the point where your program last stopped, start executing
5661 in reverse.  Reverse execution will stop for breakpoints and synchronous
5662 exceptions (signals), just like normal execution.  Behavior of
5663 asynchronous signals depends on the target environment.
5664
5665 @kindex reverse-step
5666 @kindex rs @r{(@code{step})}
5667 @item reverse-step @r{[}@var{count}@r{]}
5668 Run the program backward until control reaches the start of a
5669 different source line; then stop it, and return control to @value{GDBN}.
5670
5671 Like the @code{step} command, @code{reverse-step} will only stop
5672 at the beginning of a source line.  It ``un-executes'' the previously
5673 executed source line.  If the previous source line included calls to
5674 debuggable functions, @code{reverse-step} will step (backward) into
5675 the called function, stopping at the beginning of the @emph{last}
5676 statement in the called function (typically a return statement).
5677
5678 Also, as with the @code{step} command, if non-debuggable functions are
5679 called, @code{reverse-step} will run thru them backward without stopping.
5680
5681 @kindex reverse-stepi
5682 @kindex rsi @r{(@code{reverse-stepi})}
5683 @item reverse-stepi @r{[}@var{count}@r{]}
5684 Reverse-execute one machine instruction.  Note that the instruction
5685 to be reverse-executed is @emph{not} the one pointed to by the program
5686 counter, but the instruction executed prior to that one.  For instance,
5687 if the last instruction was a jump, @code{reverse-stepi} will take you
5688 back from the destination of the jump to the jump instruction itself.
5689
5690 @kindex reverse-next
5691 @kindex rn @r{(@code{reverse-next})}
5692 @item reverse-next @r{[}@var{count}@r{]}
5693 Run backward to the beginning of the previous line executed in
5694 the current (innermost) stack frame.  If the line contains function
5695 calls, they will be ``un-executed'' without stopping.  Starting from
5696 the first line of a function, @code{reverse-next} will take you back
5697 to the caller of that function, @emph{before} the function was called,
5698 just as the normal @code{next} command would take you from the last 
5699 line of a function back to its return to its caller
5700 @footnote{Unless the code is too heavily optimized.}.
5701
5702 @kindex reverse-nexti
5703 @kindex rni @r{(@code{reverse-nexti})}
5704 @item reverse-nexti @r{[}@var{count}@r{]}
5705 Like @code{nexti}, @code{reverse-nexti} executes a single instruction
5706 in reverse, except that called functions are ``un-executed'' atomically.
5707 That is, if the previously executed instruction was a return from
5708 another function, @code{reverse-nexti} will continue to execute
5709 in reverse until the call to that function (from the current stack
5710 frame) is reached.
5711
5712 @kindex reverse-finish
5713 @item reverse-finish
5714 Just as the @code{finish} command takes you to the point where the
5715 current function returns, @code{reverse-finish} takes you to the point
5716 where it was called.  Instead of ending up at the end of the current
5717 function invocation, you end up at the beginning.
5718
5719 @kindex set exec-direction
5720 @item set exec-direction
5721 Set the direction of target execution.
5722 @itemx set exec-direction reverse
5723 @cindex execute forward or backward in time
5724 @value{GDBN} will perform all execution commands in reverse, until the
5725 exec-direction mode is changed to ``forward''.  Affected commands include
5726 @code{step, stepi, next, nexti, continue, and finish}.  The @code{return}
5727 command cannot be used in reverse mode.
5728 @item set exec-direction forward
5729 @value{GDBN} will perform all execution commands in the normal fashion.
5730 This is the default.
5731 @end table
5732
5733
5734 @node Process Record and Replay
5735 @chapter Recording Inferior's Execution and Replaying It
5736 @cindex process record and replay
5737 @cindex recording inferior's execution and replaying it
5738
5739 On some platforms, @value{GDBN} provides a special @dfn{process record
5740 and replay} target that can record a log of the process execution, and
5741 replay it later with both forward and reverse execution commands.
5742
5743 @cindex replay mode
5744 When this target is in use, if the execution log includes the record
5745 for the next instruction, @value{GDBN} will debug in @dfn{replay
5746 mode}.  In the replay mode, the inferior does not really execute code
5747 instructions.  Instead, all the events that normally happen during
5748 code execution are taken from the execution log.  While code is not
5749 really executed in replay mode, the values of registers (including the
5750 program counter register) and the memory of the inferior are still
5751 changed as they normally would.  Their contents are taken from the
5752 execution log.
5753
5754 @cindex record mode
5755 If the record for the next instruction is not in the execution log,
5756 @value{GDBN} will debug in @dfn{record mode}.  In this mode, the
5757 inferior executes normally, and @value{GDBN} records the execution log
5758 for future replay.
5759
5760 The process record and replay target supports reverse execution
5761 (@pxref{Reverse Execution}), even if the platform on which the
5762 inferior runs does not.  However, the reverse execution is limited in
5763 this case by the range of the instructions recorded in the execution
5764 log.  In other words, reverse execution on platforms that don't
5765 support it directly can only be done in the replay mode.
5766
5767 When debugging in the reverse direction, @value{GDBN} will work in
5768 replay mode as long as the execution log includes the record for the
5769 previous instruction; otherwise, it will work in record mode, if the
5770 platform supports reverse execution, or stop if not.
5771
5772 For architecture environments that support process record and replay,
5773 @value{GDBN} provides the following commands:
5774
5775 @table @code
5776 @kindex target record
5777 @kindex record
5778 @kindex rec
5779 @item target record
5780 This command starts the process record and replay target.  The process
5781 record and replay target can only debug a process that is already
5782 running.  Therefore, you need first to start the process with the
5783 @kbd{run} or @kbd{start} commands, and then start the recording with
5784 the @kbd{target record} command.
5785
5786 Both @code{record} and @code{rec} are aliases of @code{target record}.
5787
5788 @cindex displaced stepping, and process record and replay
5789 Displaced stepping (@pxref{Maintenance Commands,, displaced stepping})
5790 will be automatically disabled when process record and replay target
5791 is started.  That's because the process record and replay target
5792 doesn't support displaced stepping.
5793
5794 @cindex non-stop mode, and process record and replay
5795 @cindex asynchronous execution, and process record and replay
5796 If the inferior is in the non-stop mode (@pxref{Non-Stop Mode}) or in
5797 the asynchronous execution mode (@pxref{Background Execution}), the
5798 process record and replay target cannot be started because it doesn't
5799 support these two modes.
5800
5801 @kindex record stop
5802 @kindex rec s
5803 @item record stop
5804 Stop the process record and replay target.  When process record and
5805 replay target stops, the entire execution log will be deleted and the
5806 inferior will either be terminated, or will remain in its final state.
5807
5808 When you stop the process record and replay target in record mode (at
5809 the end of the execution log), the inferior will be stopped at the
5810 next instruction that would have been recorded.  In other words, if
5811 you record for a while and then stop recording, the inferior process
5812 will be left in the same state as if the recording never happened.
5813
5814 On the other hand, if the process record and replay target is stopped
5815 while in replay mode (that is, not at the end of the execution log,
5816 but at some earlier point), the inferior process will become ``live''
5817 at that earlier state, and it will then be possible to continue the
5818 usual ``live'' debugging of the process from that state.
5819
5820 When the inferior process exits, or @value{GDBN} detaches from it,
5821 process record and replay target will automatically stop itself.
5822
5823 @kindex record save
5824 @item record save @var{filename}
5825 Save the execution log to a file @file{@var{filename}}.
5826 Default filename is @file{gdb_record.@var{process_id}}, where
5827 @var{process_id} is the process ID of the inferior.
5828
5829 @kindex record restore
5830 @item record restore @var{filename}
5831 Restore the execution log from a file @file{@var{filename}}.
5832 File must have been created with @code{record save}.
5833
5834 @kindex set record insn-number-max
5835 @item set record insn-number-max @var{limit}
5836 Set the limit of instructions to be recorded.  Default value is 200000.
5837
5838 If @var{limit} is a positive number, then @value{GDBN} will start
5839 deleting instructions from the log once the number of the record
5840 instructions becomes greater than @var{limit}.  For every new recorded
5841 instruction, @value{GDBN} will delete the earliest recorded
5842 instruction to keep the number of recorded instructions at the limit.
5843 (Since deleting recorded instructions loses information, @value{GDBN}
5844 lets you control what happens when the limit is reached, by means of
5845 the @code{stop-at-limit} option, described below.)
5846
5847 If @var{limit} is zero, @value{GDBN} will never delete recorded
5848 instructions from the execution log.  The number of recorded
5849 instructions is unlimited in this case.
5850
5851 @kindex show record insn-number-max
5852 @item show record insn-number-max
5853 Show the limit of instructions to be recorded.
5854
5855 @kindex set record stop-at-limit
5856 @item set record stop-at-limit
5857 Control the behavior when the number of recorded instructions reaches
5858 the limit.  If ON (the default), @value{GDBN} will stop when the limit
5859 is reached for the first time and ask you whether you want to stop the
5860 inferior or continue running it and recording the execution log.  If
5861 you decide to continue recording, each new recorded instruction will
5862 cause the oldest one to be deleted.
5863
5864 If this option is OFF, @value{GDBN} will automatically delete the
5865 oldest record to make room for each new one, without asking.
5866
5867 @kindex show record stop-at-limit
5868 @item show record stop-at-limit
5869 Show the current setting of @code{stop-at-limit}.
5870
5871 @kindex set record memory-query
5872 @item set record memory-query
5873 Control the behavior when @value{GDBN} is unable to record memory
5874 changes caused by an instruction.  If ON, @value{GDBN} will query
5875 whether to stop the inferior in that case.
5876
5877 If this option is OFF (the default), @value{GDBN} will automatically
5878 ignore the effect of such instructions on memory.  Later, when
5879 @value{GDBN} replays this execution log, it will mark the log of this
5880 instruction as not accessible, and it will not affect the replay
5881 results.
5882
5883 @kindex show record memory-query
5884 @item show record memory-query
5885 Show the current setting of @code{memory-query}.
5886
5887 @kindex info record
5888 @item info record
5889 Show various statistics about the state of process record and its
5890 in-memory execution log buffer, including:
5891
5892 @itemize @bullet
5893 @item
5894 Whether in record mode or replay mode.
5895 @item
5896 Lowest recorded instruction number (counting from when the current execution log started recording instructions).
5897 @item
5898 Highest recorded instruction number.
5899 @item
5900 Current instruction about to be replayed (if in replay mode).
5901 @item
5902 Number of instructions contained in the execution log.
5903 @item
5904 Maximum number of instructions that may be contained in the execution log.
5905 @end itemize
5906
5907 @kindex record delete
5908 @kindex rec del
5909 @item record delete
5910 When record target runs in replay mode (``in the past''), delete the
5911 subsequent execution log and begin to record a new execution log starting
5912 from the current address.  This means you will abandon the previously
5913 recorded ``future'' and begin recording a new ``future''.
5914 @end table
5915
5916
5917 @node Stack
5918 @chapter Examining the Stack
5919
5920 When your program has stopped, the first thing you need to know is where it
5921 stopped and how it got there.
5922
5923 @cindex call stack
5924 Each time your program performs a function call, information about the call
5925 is generated.
5926 That information includes the location of the call in your program,
5927 the arguments of the call,
5928 and the local variables of the function being called.
5929 The information is saved in a block of data called a @dfn{stack frame}.
5930 The stack frames are allocated in a region of memory called the @dfn{call
5931 stack}.
5932
5933 When your program stops, the @value{GDBN} commands for examining the
5934 stack allow you to see all of this information.
5935
5936 @cindex selected frame
5937 One of the stack frames is @dfn{selected} by @value{GDBN} and many
5938 @value{GDBN} commands refer implicitly to the selected frame.  In
5939 particular, whenever you ask @value{GDBN} for the value of a variable in
5940 your program, the value is found in the selected frame.  There are
5941 special @value{GDBN} commands to select whichever frame you are
5942 interested in.  @xref{Selection, ,Selecting a Frame}.
5943
5944 When your program stops, @value{GDBN} automatically selects the
5945 currently executing frame and describes it briefly, similar to the
5946 @code{frame} command (@pxref{Frame Info, ,Information about a Frame}).
5947
5948 @menu
5949 * Frames::                      Stack frames
5950 * Backtrace::                   Backtraces
5951 * Selection::                   Selecting a frame
5952 * Frame Info::                  Information on a frame
5953
5954 @end menu
5955
5956 @node Frames
5957 @section Stack Frames
5958
5959 @cindex frame, definition
5960 @cindex stack frame
5961 The call stack is divided up into contiguous pieces called @dfn{stack
5962 frames}, or @dfn{frames} for short; each frame is the data associated
5963 with one call to one function.  The frame contains the arguments given
5964 to the function, the function's local variables, and the address at
5965 which the function is executing.
5966
5967 @cindex initial frame
5968 @cindex outermost frame
5969 @cindex innermost frame
5970 When your program is started, the stack has only one frame, that of the
5971 function @code{main}.  This is called the @dfn{initial} frame or the
5972 @dfn{outermost} frame.  Each time a function is called, a new frame is
5973 made.  Each time a function returns, the frame for that function invocation
5974 is eliminated.  If a function is recursive, there can be many frames for
5975 the same function.  The frame for the function in which execution is
5976 actually occurring is called the @dfn{innermost} frame.  This is the most
5977 recently created of all the stack frames that still exist.
5978
5979 @cindex frame pointer
5980 Inside your program, stack frames are identified by their addresses.  A
5981 stack frame consists of many bytes, each of which has its own address; each
5982 kind of computer has a convention for choosing one byte whose
5983 address serves as the address of the frame.  Usually this address is kept
5984 in a register called the @dfn{frame pointer register}
5985 (@pxref{Registers, $fp}) while execution is going on in that frame.
5986
5987 @cindex frame number
5988 @value{GDBN} assigns numbers to all existing stack frames, starting with
5989 zero for the innermost frame, one for the frame that called it,
5990 and so on upward.  These numbers do not really exist in your program;
5991 they are assigned by @value{GDBN} to give you a way of designating stack
5992 frames in @value{GDBN} commands.
5993
5994 @c The -fomit-frame-pointer below perennially causes hbox overflow
5995 @c underflow problems.
5996 @cindex frameless execution
5997 Some compilers provide a way to compile functions so that they operate
5998 without stack frames.  (For example, the @value{NGCC} option
5999 @smallexample
6000 @samp{-fomit-frame-pointer}
6001 @end smallexample
6002 generates functions without a frame.)
6003 This is occasionally done with heavily used library functions to save
6004 the frame setup time.  @value{GDBN} has limited facilities for dealing
6005 with these function invocations.  If the innermost function invocation
6006 has no stack frame, @value{GDBN} nevertheless regards it as though
6007 it had a separate frame, which is numbered zero as usual, allowing
6008 correct tracing of the function call chain.  However, @value{GDBN} has
6009 no provision for frameless functions elsewhere in the stack.
6010
6011 @table @code
6012 @kindex frame@r{, command}
6013 @cindex current stack frame
6014 @item frame @var{args}
6015 The @code{frame} command allows you to move from one stack frame to another,
6016 and to print the stack frame you select.  @var{args} may be either the
6017 address of the frame or the stack frame number.  Without an argument,
6018 @code{frame} prints the current stack frame.
6019
6020 @kindex select-frame
6021 @cindex selecting frame silently
6022 @item select-frame
6023 The @code{select-frame} command allows you to move from one stack frame
6024 to another without printing the frame.  This is the silent version of
6025 @code{frame}.
6026 @end table
6027
6028 @node Backtrace
6029 @section Backtraces
6030
6031 @cindex traceback
6032 @cindex call stack traces
6033 A backtrace is a summary of how your program got where it is.  It shows one
6034 line per frame, for many frames, starting with the currently executing
6035 frame (frame zero), followed by its caller (frame one), and on up the
6036 stack.
6037
6038 @table @code
6039 @kindex backtrace
6040 @kindex bt @r{(@code{backtrace})}
6041 @item backtrace
6042 @itemx bt
6043 Print a backtrace of the entire stack: one line per frame for all
6044 frames in the stack.
6045
6046 You can stop the backtrace at any time by typing the system interrupt
6047 character, normally @kbd{Ctrl-c}.
6048
6049 @item backtrace @var{n}
6050 @itemx bt @var{n}
6051 Similar, but print only the innermost @var{n} frames.
6052
6053 @item backtrace -@var{n}
6054 @itemx bt -@var{n}
6055 Similar, but print only the outermost @var{n} frames.
6056
6057 @item backtrace full
6058 @itemx bt full
6059 @itemx bt full @var{n}
6060 @itemx bt full -@var{n}
6061 Print the values of the local variables also.  @var{n} specifies the
6062 number of frames to print, as described above.
6063 @end table
6064
6065 @kindex where
6066 @kindex info stack
6067 The names @code{where} and @code{info stack} (abbreviated @code{info s})
6068 are additional aliases for @code{backtrace}.
6069
6070 @cindex multiple threads, backtrace
6071 In a multi-threaded program, @value{GDBN} by default shows the
6072 backtrace only for the current thread.  To display the backtrace for
6073 several or all of the threads, use the command @code{thread apply}
6074 (@pxref{Threads, thread apply}).  For example, if you type @kbd{thread
6075 apply all backtrace}, @value{GDBN} will display the backtrace for all
6076 the threads; this is handy when you debug a core dump of a
6077 multi-threaded program.
6078
6079 Each line in the backtrace shows the frame number and the function name.
6080 The program counter value is also shown---unless you use @code{set
6081 print address off}.  The backtrace also shows the source file name and
6082 line number, as well as the arguments to the function.  The program
6083 counter value is omitted if it is at the beginning of the code for that
6084 line number.
6085
6086 Here is an example of a backtrace.  It was made with the command
6087 @samp{bt 3}, so it shows the innermost three frames.
6088
6089 @smallexample
6090 @group
6091 #0  m4_traceon (obs=0x24eb0, argc=1, argv=0x2b8c8)
6092     at builtin.c:993
6093 #1  0x6e38 in expand_macro (sym=0x2b600, data=...) at macro.c:242
6094 #2  0x6840 in expand_token (obs=0x0, t=177664, td=0xf7fffb08)
6095     at macro.c:71
6096 (More stack frames follow...)
6097 @end group
6098 @end smallexample
6099
6100 @noindent
6101 The display for frame zero does not begin with a program counter
6102 value, indicating that your program has stopped at the beginning of the
6103 code for line @code{993} of @code{builtin.c}.
6104
6105 @noindent
6106 The value of parameter @code{data} in frame 1 has been replaced by
6107 @code{@dots{}}.  By default, @value{GDBN} prints the value of a parameter
6108 only if it is a scalar (integer, pointer, enumeration, etc).  See command
6109 @kbd{set print frame-arguments} in @ref{Print Settings} for more details
6110 on how to configure the way function parameter values are printed.
6111
6112 @cindex optimized out, in backtrace
6113 @cindex function call arguments, optimized out
6114 If your program was compiled with optimizations, some compilers will
6115 optimize away arguments passed to functions if those arguments are
6116 never used after the call.  Such optimizations generate code that
6117 passes arguments through registers, but doesn't store those arguments
6118 in the stack frame.  @value{GDBN} has no way of displaying such
6119 arguments in stack frames other than the innermost one.  Here's what
6120 such a backtrace might look like:
6121
6122 @smallexample
6123 @group
6124 #0  m4_traceon (obs=0x24eb0, argc=1, argv=0x2b8c8)
6125     at builtin.c:993
6126 #1  0x6e38 in expand_macro (sym=<optimized out>) at macro.c:242
6127 #2  0x6840 in expand_token (obs=0x0, t=<optimized out>, td=0xf7fffb08)
6128     at macro.c:71
6129 (More stack frames follow...)
6130 @end group
6131 @end smallexample
6132
6133 @noindent
6134 The values of arguments that were not saved in their stack frames are
6135 shown as @samp{<optimized out>}.
6136
6137 If you need to display the values of such optimized-out arguments,
6138 either deduce that from other variables whose values depend on the one
6139 you are interested in, or recompile without optimizations.
6140
6141 @cindex backtrace beyond @code{main} function
6142 @cindex program entry point
6143 @cindex startup code, and backtrace
6144 Most programs have a standard user entry point---a place where system
6145 libraries and startup code transition into user code.  For C this is
6146 @code{main}@footnote{
6147 Note that embedded programs (the so-called ``free-standing''
6148 environment) are not required to have a @code{main} function as the
6149 entry point.  They could even have multiple entry points.}.
6150 When @value{GDBN} finds the entry function in a backtrace
6151 it will terminate the backtrace, to avoid tracing into highly
6152 system-specific (and generally uninteresting) code.
6153
6154 If you need to examine the startup code, or limit the number of levels
6155 in a backtrace, you can change this behavior:
6156
6157 @table @code
6158 @item set backtrace past-main
6159 @itemx set backtrace past-main on
6160 @kindex set backtrace
6161 Backtraces will continue past the user entry point.
6162
6163 @item set backtrace past-main off
6164 Backtraces will stop when they encounter the user entry point.  This is the
6165 default.
6166
6167 @item show backtrace past-main
6168 @kindex show backtrace
6169 Display the current user entry point backtrace policy.
6170
6171 @item set backtrace past-entry
6172 @itemx set backtrace past-entry on
6173 Backtraces will continue past the internal entry point of an application.
6174 This entry point is encoded by the linker when the application is built,
6175 and is likely before the user entry point @code{main} (or equivalent) is called.
6176
6177 @item set backtrace past-entry off
6178 Backtraces will stop when they encounter the internal entry point of an
6179 application.  This is the default.
6180
6181 @item show backtrace past-entry
6182 Display the current internal entry point backtrace policy.
6183
6184 @item set backtrace limit @var{n}
6185 @itemx set backtrace limit 0
6186 @cindex backtrace limit
6187 Limit the backtrace to @var{n} levels.  A value of zero means
6188 unlimited.
6189
6190 @item show backtrace limit
6191 Display the current limit on backtrace levels.
6192 @end table
6193
6194 @node Selection
6195 @section Selecting a Frame
6196
6197 Most commands for examining the stack and other data in your program work on
6198 whichever stack frame is selected at the moment.  Here are the commands for
6199 selecting a stack frame; all of them finish by printing a brief description
6200 of the stack frame just selected.
6201
6202 @table @code
6203 @kindex frame@r{, selecting}
6204 @kindex f @r{(@code{frame})}
6205 @item frame @var{n}
6206 @itemx f @var{n}
6207 Select frame number @var{n}.  Recall that frame zero is the innermost
6208 (currently executing) frame, frame one is the frame that called the
6209 innermost one, and so on.  The highest-numbered frame is the one for
6210 @code{main}.
6211
6212 @item frame @var{addr}
6213 @itemx f @var{addr}
6214 Select the frame at address @var{addr}.  This is useful mainly if the
6215 chaining of stack frames has been damaged by a bug, making it
6216 impossible for @value{GDBN} to assign numbers properly to all frames.  In
6217 addition, this can be useful when your program has multiple stacks and
6218 switches between them.
6219
6220 On the SPARC architecture, @code{frame} needs two addresses to
6221 select an arbitrary frame: a frame pointer and a stack pointer.
6222
6223 On the MIPS and Alpha architecture, it needs two addresses: a stack
6224 pointer and a program counter.
6225
6226 On the 29k architecture, it needs three addresses: a register stack
6227 pointer, a program counter, and a memory stack pointer.
6228
6229 @kindex up
6230 @item up @var{n}
6231 Move @var{n} frames up the stack.  For positive numbers @var{n}, this
6232 advances toward the outermost frame, to higher frame numbers, to frames
6233 that have existed longer.  @var{n} defaults to one.
6234
6235 @kindex down
6236 @kindex do @r{(@code{down})}
6237 @item down @var{n}
6238 Move @var{n} frames down the stack.  For positive numbers @var{n}, this
6239 advances toward the innermost frame, to lower frame numbers, to frames
6240 that were created more recently.  @var{n} defaults to one.  You may
6241 abbreviate @code{down} as @code{do}.
6242 @end table
6243
6244 All of these commands end by printing two lines of output describing the
6245 frame.  The first line shows the frame number, the function name, the
6246 arguments, and the source file and line number of execution in that
6247 frame.  The second line shows the text of that source line.
6248
6249 @need 1000
6250 For example:
6251
6252 @smallexample
6253 @group
6254 (@value{GDBP}) up
6255 #1  0x22f0 in main (argc=1, argv=0xf7fffbf4, env=0xf7fffbfc)
6256     at env.c:10
6257 10              read_input_file (argv[i]);
6258 @end group
6259 @end smallexample
6260
6261 After such a printout, the @code{list} command with no arguments
6262 prints ten lines centered on the point of execution in the frame.
6263 You can also edit the program at the point of execution with your favorite
6264 editing program by typing @code{edit}.
6265 @xref{List, ,Printing Source Lines},
6266 for details.
6267
6268 @table @code
6269 @kindex down-silently
6270 @kindex up-silently
6271 @item up-silently @var{n}
6272 @itemx down-silently @var{n}
6273 These two commands are variants of @code{up} and @code{down},
6274 respectively; they differ in that they do their work silently, without
6275 causing display of the new frame.  They are intended primarily for use
6276 in @value{GDBN} command scripts, where the output might be unnecessary and
6277 distracting.
6278 @end table
6279
6280 @node Frame Info
6281 @section Information About a Frame
6282
6283 There are several other commands to print information about the selected
6284 stack frame.
6285
6286 @table @code
6287 @item frame
6288 @itemx f
6289 When used without any argument, this command does not change which
6290 frame is selected, but prints a brief description of the currently
6291 selected stack frame.  It can be abbreviated @code{f}.  With an
6292 argument, this command is used to select a stack frame.
6293 @xref{Selection, ,Selecting a Frame}.
6294
6295 @kindex info frame
6296 @kindex info f @r{(@code{info frame})}
6297 @item info frame
6298 @itemx info f
6299 This command prints a verbose description of the selected stack frame,
6300 including:
6301
6302 @itemize @bullet
6303 @item
6304 the address of the frame
6305 @item
6306 the address of the next frame down (called by this frame)
6307 @item
6308 the address of the next frame up (caller of this frame)
6309 @item
6310 the language in which the source code corresponding to this frame is written
6311 @item
6312 the address of the frame's arguments
6313 @item
6314 the address of the frame's local variables
6315 @item
6316 the program counter saved in it (the address of execution in the caller frame)
6317 @item
6318 which registers were saved in the frame
6319 @end itemize
6320
6321 @noindent The verbose description is useful when
6322 something has gone wrong that has made the stack format fail to fit
6323 the usual conventions.
6324
6325 @item info frame @var{addr}
6326 @itemx info f @var{addr}
6327 Print a verbose description of the frame at address @var{addr}, without
6328 selecting that frame.  The selected frame remains unchanged by this
6329 command.  This requires the same kind of address (more than one for some
6330 architectures) that you specify in the @code{frame} command.
6331 @xref{Selection, ,Selecting a Frame}.
6332
6333 @kindex info args
6334 @item info args
6335 Print the arguments of the selected frame, each on a separate line.
6336
6337 @item info locals
6338 @kindex info locals
6339 Print the local variables of the selected frame, each on a separate
6340 line.  These are all variables (declared either static or automatic)
6341 accessible at the point of execution of the selected frame.
6342
6343 @kindex info catch
6344 @cindex catch exceptions, list active handlers
6345 @cindex exception handlers, how to list
6346 @item info catch
6347 Print a list of all the exception handlers that are active in the
6348 current stack frame at the current point of execution.  To see other
6349 exception handlers, visit the associated frame (using the @code{up},
6350 @code{down}, or @code{frame} commands); then type @code{info catch}.
6351 @xref{Set Catchpoints, , Setting Catchpoints}.
6352
6353 @end table
6354
6355
6356 @node Source
6357 @chapter Examining Source Files
6358
6359 @value{GDBN} can print parts of your program's source, since the debugging
6360 information recorded in the program tells @value{GDBN} what source files were
6361 used to build it.  When your program stops, @value{GDBN} spontaneously prints
6362 the line where it stopped.  Likewise, when you select a stack frame
6363 (@pxref{Selection, ,Selecting a Frame}), @value{GDBN} prints the line where
6364 execution in that frame has stopped.  You can print other portions of
6365 source files by explicit command.
6366
6367 If you use @value{GDBN} through its @sc{gnu} Emacs interface, you may
6368 prefer to use Emacs facilities to view source; see @ref{Emacs, ,Using
6369 @value{GDBN} under @sc{gnu} Emacs}.
6370
6371 @menu
6372 * List::                        Printing source lines
6373 * Specify Location::            How to specify code locations
6374 * Edit::                        Editing source files
6375 * Search::                      Searching source files
6376 * Source Path::                 Specifying source directories
6377 * Machine Code::                Source and machine code
6378 @end menu
6379
6380 @node List
6381 @section Printing Source Lines
6382
6383 @kindex list
6384 @kindex l @r{(@code{list})}
6385 To print lines from a source file, use the @code{list} command
6386 (abbreviated @code{l}).  By default, ten lines are printed.
6387 There are several ways to specify what part of the file you want to
6388 print; see @ref{Specify Location}, for the full list.
6389
6390 Here are the forms of the @code{list} command most commonly used:
6391
6392 @table @code
6393 @item list @var{linenum}
6394 Print lines centered around line number @var{linenum} in the
6395 current source file.
6396
6397 @item list @var{function}
6398 Print lines centered around the beginning of function
6399 @var{function}.
6400
6401 @item list
6402 Print more lines.  If the last lines printed were printed with a
6403 @code{list} command, this prints lines following the last lines
6404 printed; however, if the last line printed was a solitary line printed
6405 as part of displaying a stack frame (@pxref{Stack, ,Examining the
6406 Stack}), this prints lines centered around that line.
6407
6408 @item list -
6409 Print lines just before the lines last printed.
6410 @end table
6411
6412 @cindex @code{list}, how many lines to display
6413 By default, @value{GDBN} prints ten source lines with any of these forms of
6414 the @code{list} command.  You can change this using @code{set listsize}:
6415
6416 @table @code
6417 @kindex set listsize
6418 @item set listsize @var{count}
6419 Make the @code{list} command display @var{count} source lines (unless
6420 the @code{list} argument explicitly specifies some other number).
6421
6422 @kindex show listsize
6423 @item show listsize
6424 Display the number of lines that @code{list} prints.
6425 @end table
6426
6427 Repeating a @code{list} command with @key{RET} discards the argument,
6428 so it is equivalent to typing just @code{list}.  This is more useful
6429 than listing the same lines again.  An exception is made for an
6430 argument of @samp{-}; that argument is preserved in repetition so that
6431 each repetition moves up in the source file.
6432
6433 In general, the @code{list} command expects you to supply zero, one or two
6434 @dfn{linespecs}.  Linespecs specify source lines; there are several ways
6435 of writing them (@pxref{Specify Location}), but the effect is always
6436 to specify some source line.
6437
6438 Here is a complete description of the possible arguments for @code{list}:
6439
6440 @table @code
6441 @item list @var{linespec}
6442 Print lines centered around the line specified by @var{linespec}.
6443
6444 @item list @var{first},@var{last}
6445 Print lines from @var{first} to @var{last}.  Both arguments are
6446 linespecs.  When a @code{list} command has two linespecs, and the
6447 source file of the second linespec is omitted, this refers to
6448 the same source file as the first linespec.
6449
6450 @item list ,@var{last}
6451 Print lines ending with @var{last}.
6452
6453 @item list @var{first},
6454 Print lines starting with @var{first}.
6455
6456 @item list +
6457 Print lines just after the lines last printed.
6458
6459 @item list -
6460 Print lines just before the lines last printed.
6461
6462 @item list
6463 As described in the preceding table.
6464 @end table
6465
6466 @node Specify Location
6467 @section Specifying a Location
6468 @cindex specifying location
6469 @cindex linespec
6470
6471 Several @value{GDBN} commands accept arguments that specify a location
6472 of your program's code.  Since @value{GDBN} is a source-level
6473 debugger, a location usually specifies some line in the source code;
6474 for that reason, locations are also known as @dfn{linespecs}.
6475
6476 Here are all the different ways of specifying a code location that
6477 @value{GDBN} understands:
6478
6479 @table @code
6480 @item @var{linenum}
6481 Specifies the line number @var{linenum} of the current source file.
6482
6483 @item -@var{offset}
6484 @itemx +@var{offset}
6485 Specifies the line @var{offset} lines before or after the @dfn{current
6486 line}.  For the @code{list} command, the current line is the last one
6487 printed; for the breakpoint commands, this is the line at which
6488 execution stopped in the currently selected @dfn{stack frame}
6489 (@pxref{Frames, ,Frames}, for a description of stack frames.)  When
6490 used as the second of the two linespecs in a @code{list} command,
6491 this specifies the line @var{offset} lines up or down from the first
6492 linespec.
6493
6494 @item @var{filename}:@var{linenum}
6495 Specifies the line @var{linenum} in the source file @var{filename}.
6496
6497 @item @var{function}
6498 Specifies the line that begins the body of the function @var{function}.
6499 For example, in C, this is the line with the open brace.
6500
6501 @item @var{function}:@var{label}
6502 Specifies the line where @var{label} appears in @var{function}.
6503
6504 @item @var{filename}:@var{function}
6505 Specifies the line that begins the body of the function @var{function}
6506 in the file @var{filename}.  You only need the file name with a
6507 function name to avoid ambiguity when there are identically named
6508 functions in different source files.
6509
6510 @item @var{label}
6511 Specifies the line at which the label named @var{label} appears.
6512 @value{GDBN} searches for the label in the function corresponding to
6513 the currently selected stack frame.  If there is no current selected
6514 stack frame (for instance, if the inferior is not running), then
6515 @value{GDBN} will not search for a label.
6516
6517 @item *@var{address}
6518 Specifies the program address @var{address}.  For line-oriented
6519 commands, such as @code{list} and @code{edit}, this specifies a source
6520 line that contains @var{address}.  For @code{break} and other
6521 breakpoint oriented commands, this can be used to set breakpoints in
6522 parts of your program which do not have debugging information or
6523 source files.
6524
6525 Here @var{address} may be any expression valid in the current working
6526 language (@pxref{Languages, working language}) that specifies a code
6527 address.  In addition, as a convenience, @value{GDBN} extends the
6528 semantics of expressions used in locations to cover the situations
6529 that frequently happen during debugging.  Here are the various forms
6530 of @var{address}:
6531
6532 @table @code
6533 @item @var{expression}
6534 Any expression valid in the current working language.
6535
6536 @item @var{funcaddr}
6537 An address of a function or procedure derived from its name.  In C,
6538 C@t{++}, Java, Objective-C, Fortran, minimal, and assembly, this is
6539 simply the function's name @var{function} (and actually a special case
6540 of a valid expression).  In Pascal and Modula-2, this is
6541 @code{&@var{function}}.  In Ada, this is @code{@var{function}'Address}
6542 (although the Pascal form also works).
6543
6544 This form specifies the address of the function's first instruction,
6545 before the stack frame and arguments have been set up.
6546
6547 @item '@var{filename}'::@var{funcaddr}
6548 Like @var{funcaddr} above, but also specifies the name of the source
6549 file explicitly.  This is useful if the name of the function does not
6550 specify the function unambiguously, e.g., if there are several
6551 functions with identical names in different source files.
6552 @end table
6553
6554 @end table
6555
6556
6557 @node Edit
6558 @section Editing Source Files
6559 @cindex editing source files
6560
6561 @kindex edit
6562 @kindex e @r{(@code{edit})}
6563 To edit the lines in a source file, use the @code{edit} command.
6564 The editing program of your choice
6565 is invoked with the current line set to
6566 the active line in the program.
6567 Alternatively, there are several ways to specify what part of the file you
6568 want to print if you want to see other parts of the program:
6569
6570 @table @code
6571 @item edit @var{location}
6572 Edit the source file specified by @code{location}.  Editing starts at
6573 that @var{location}, e.g., at the specified source line of the
6574 specified file.  @xref{Specify Location}, for all the possible forms
6575 of the @var{location} argument; here are the forms of the @code{edit}
6576 command most commonly used:
6577
6578 @table @code
6579 @item edit @var{number}
6580 Edit the current source file with @var{number} as the active line number.
6581
6582 @item edit @var{function}
6583 Edit the file containing @var{function} at the beginning of its definition.
6584 @end table
6585
6586 @end table
6587
6588 @subsection Choosing your Editor
6589 You can customize @value{GDBN} to use any editor you want
6590 @footnote{
6591 The only restriction is that your editor (say @code{ex}), recognizes the
6592 following command-line syntax:
6593 @smallexample
6594 ex +@var{number} file
6595 @end smallexample
6596 The optional numeric value +@var{number} specifies the number of the line in
6597 the file where to start editing.}.
6598 By default, it is @file{@value{EDITOR}}, but you can change this
6599 by setting the environment variable @code{EDITOR} before using
6600 @value{GDBN}.  For example, to configure @value{GDBN} to use the
6601 @code{vi} editor, you could use these commands with the @code{sh} shell:
6602 @smallexample
6603 EDITOR=/usr/bin/vi
6604 export EDITOR
6605 gdb @dots{}
6606 @end smallexample
6607 or in the @code{csh} shell,
6608 @smallexample
6609 setenv EDITOR /usr/bin/vi
6610 gdb @dots{}
6611 @end smallexample
6612
6613 @node Search
6614 @section Searching Source Files
6615 @cindex searching source files
6616
6617 There are two commands for searching through the current source file for a
6618 regular expression.
6619
6620 @table @code
6621 @kindex search
6622 @kindex forward-search
6623 @item forward-search @var{regexp}
6624 @itemx search @var{regexp}
6625 The command @samp{forward-search @var{regexp}} checks each line,
6626 starting with the one following the last line listed, for a match for
6627 @var{regexp}.  It lists the line that is found.  You can use the
6628 synonym @samp{search @var{regexp}} or abbreviate the command name as
6629 @code{fo}.
6630
6631 @kindex reverse-search
6632 @item reverse-search @var{regexp}
6633 The command @samp{reverse-search @var{regexp}} checks each line, starting
6634 with the one before the last line listed and going backward, for a match
6635 for @var{regexp}.  It lists the line that is found.  You can abbreviate
6636 this command as @code{rev}.
6637 @end table
6638
6639 @node Source Path
6640 @section Specifying Source Directories
6641
6642 @cindex source path
6643 @cindex directories for source files
6644 Executable programs sometimes do not record the directories of the source
6645 files from which they were compiled, just the names.  Even when they do,
6646 the directories could be moved between the compilation and your debugging
6647 session.  @value{GDBN} has a list of directories to search for source files;
6648 this is called the @dfn{source path}.  Each time @value{GDBN} wants a source file,
6649 it tries all the directories in the list, in the order they are present
6650 in the list, until it finds a file with the desired name.
6651
6652 For example, suppose an executable references the file
6653 @file{/usr/src/foo-1.0/lib/foo.c}, and our source path is
6654 @file{/mnt/cross}.  The file is first looked up literally; if this
6655 fails, @file{/mnt/cross/usr/src/foo-1.0/lib/foo.c} is tried; if this
6656 fails, @file{/mnt/cross/foo.c} is opened; if this fails, an error
6657 message is printed.  @value{GDBN} does not look up the parts of the
6658 source file name, such as @file{/mnt/cross/src/foo-1.0/lib/foo.c}.
6659 Likewise, the subdirectories of the source path are not searched: if
6660 the source path is @file{/mnt/cross}, and the binary refers to
6661 @file{foo.c}, @value{GDBN} would not find it under
6662 @file{/mnt/cross/usr/src/foo-1.0/lib}.
6663
6664 Plain file names, relative file names with leading directories, file
6665 names containing dots, etc.@: are all treated as described above; for
6666 instance, if the source path is @file{/mnt/cross}, and the source file
6667 is recorded as @file{../lib/foo.c}, @value{GDBN} would first try
6668 @file{../lib/foo.c}, then @file{/mnt/cross/../lib/foo.c}, and after
6669 that---@file{/mnt/cross/foo.c}.
6670
6671 Note that the executable search path is @emph{not} used to locate the
6672 source files.
6673
6674 Whenever you reset or rearrange the source path, @value{GDBN} clears out
6675 any information it has cached about where source files are found and where
6676 each line is in the file.
6677
6678 @kindex directory
6679 @kindex dir
6680 When you start @value{GDBN}, its source path includes only @samp{cdir}
6681 and @samp{cwd}, in that order.
6682 To add other directories, use the @code{directory} command.
6683
6684 The search path is used to find both program source files and @value{GDBN}
6685 script files (read using the @samp{-command} option and @samp{source} command).
6686
6687 In addition to the source path, @value{GDBN} provides a set of commands
6688 that manage a list of source path substitution rules.  A @dfn{substitution
6689 rule} specifies how to rewrite source directories stored in the program's
6690 debug information in case the sources were moved to a different
6691 directory between compilation and debugging.  A rule is made of
6692 two strings, the first specifying what needs to be rewritten in
6693 the path, and the second specifying how it should be rewritten.
6694 In @ref{set substitute-path}, we name these two parts @var{from} and
6695 @var{to} respectively.  @value{GDBN} does a simple string replacement
6696 of @var{from} with @var{to} at the start of the directory part of the
6697 source file name, and uses that result instead of the original file
6698 name to look up the sources.
6699
6700 Using the previous example, suppose the @file{foo-1.0} tree has been
6701 moved from @file{/usr/src} to @file{/mnt/cross}, then you can tell
6702 @value{GDBN} to replace @file{/usr/src} in all source path names with
6703 @file{/mnt/cross}.  The first lookup will then be
6704 @file{/mnt/cross/foo-1.0/lib/foo.c} in place of the original location
6705 of @file{/usr/src/foo-1.0/lib/foo.c}.  To define a source path
6706 substitution rule, use the @code{set substitute-path} command
6707 (@pxref{set substitute-path}).
6708
6709 To avoid unexpected substitution results, a rule is applied only if the
6710 @var{from} part of the directory name ends at a directory separator.
6711 For instance, a rule substituting  @file{/usr/source} into
6712 @file{/mnt/cross} will be applied to @file{/usr/source/foo-1.0} but
6713 not to @file{/usr/sourceware/foo-2.0}.  And because the substitution
6714 is applied only at the beginning of the directory name, this rule will
6715 not be applied to @file{/root/usr/source/baz.c} either.
6716
6717 In many cases, you can achieve the same result using the @code{directory}
6718 command.  However, @code{set substitute-path} can be more efficient in
6719 the case where the sources are organized in a complex tree with multiple
6720 subdirectories.  With the @code{directory} command, you need to add each
6721 subdirectory of your project.  If you moved the entire tree while
6722 preserving its internal organization, then @code{set substitute-path}
6723 allows you to direct the debugger to all the sources with one single
6724 command.
6725
6726 @code{set substitute-path} is also more than just a shortcut command.
6727 The source path is only used if the file at the original location no
6728 longer exists.  On the other hand, @code{set substitute-path} modifies
6729 the debugger behavior to look at the rewritten location instead.  So, if
6730 for any reason a source file that is not relevant to your executable is
6731 located at the original location, a substitution rule is the only
6732 method available to point @value{GDBN} at the new location.
6733
6734 @cindex @samp{--with-relocated-sources}
6735 @cindex default source path substitution
6736 You can configure a default source path substitution rule by
6737 configuring @value{GDBN} with the
6738 @samp{--with-relocated-sources=@var{dir}} option.  The @var{dir}
6739 should be the name of a directory under @value{GDBN}'s configured
6740 prefix (set with @samp{--prefix} or @samp{--exec-prefix}), and
6741 directory names in debug information under @var{dir} will be adjusted
6742 automatically if the installed @value{GDBN} is moved to a new
6743 location.  This is useful if @value{GDBN}, libraries or executables
6744 with debug information and corresponding source code are being moved
6745 together.
6746
6747 @table @code
6748 @item directory @var{dirname} @dots{}
6749 @item dir @var{dirname} @dots{}
6750 Add directory @var{dirname} to the front of the source path.  Several
6751 directory names may be given to this command, separated by @samp{:}
6752 (@samp{;} on MS-DOS and MS-Windows, where @samp{:} usually appears as
6753 part of absolute file names) or
6754 whitespace.  You may specify a directory that is already in the source
6755 path; this moves it forward, so @value{GDBN} searches it sooner.
6756
6757 @kindex cdir
6758 @kindex cwd
6759 @vindex $cdir@r{, convenience variable}
6760 @vindex $cwd@r{, convenience variable}
6761 @cindex compilation directory
6762 @cindex current directory
6763 @cindex working directory
6764 @cindex directory, current
6765 @cindex directory, compilation
6766 You can use the string @samp{$cdir} to refer to the compilation
6767 directory (if one is recorded), and @samp{$cwd} to refer to the current
6768 working directory.  @samp{$cwd} is not the same as @samp{.}---the former
6769 tracks the current working directory as it changes during your @value{GDBN}
6770 session, while the latter is immediately expanded to the current
6771 directory at the time you add an entry to the source path.
6772
6773 @item directory
6774 Reset the source path to its default value (@samp{$cdir:$cwd} on Unix systems).  This requires confirmation.
6775
6776 @c RET-repeat for @code{directory} is explicitly disabled, but since
6777 @c repeating it would be a no-op we do not say that.  (thanks to RMS)
6778
6779 @item set directories @var{path-list}
6780 @kindex set directories
6781 Set the source path to @var{path-list}.
6782 @samp{$cdir:$cwd} are added if missing.
6783
6784 @item show directories
6785 @kindex show directories
6786 Print the source path: show which directories it contains.
6787
6788 @anchor{set substitute-path}
6789 @item set substitute-path @var{from} @var{to}
6790 @kindex set substitute-path
6791 Define a source path substitution rule, and add it at the end of the
6792 current list of existing substitution rules.  If a rule with the same
6793 @var{from} was already defined, then the old rule is also deleted.
6794
6795 For example, if the file @file{/foo/bar/baz.c} was moved to
6796 @file{/mnt/cross/baz.c}, then the command
6797
6798 @smallexample
6799 (@value{GDBP}) set substitute-path /usr/src /mnt/cross
6800 @end smallexample
6801
6802 @noindent
6803 will tell @value{GDBN} to replace @samp{/usr/src} with
6804 @samp{/mnt/cross}, which will allow @value{GDBN} to find the file
6805 @file{baz.c} even though it was moved.
6806
6807 In the case when more than one substitution rule have been defined,
6808 the rules are evaluated one by one in the order where they have been
6809 defined.  The first one matching, if any, is selected to perform
6810 the substitution.
6811
6812 For instance, if we had entered the following commands:
6813
6814 @smallexample
6815 (@value{GDBP}) set substitute-path /usr/src/include /mnt/include
6816 (@value{GDBP}) set substitute-path /usr/src /mnt/src
6817 @end smallexample
6818
6819 @noindent
6820 @value{GDBN} would then rewrite @file{/usr/src/include/defs.h} into
6821 @file{/mnt/include/defs.h} by using the first rule.  However, it would
6822 use the second rule to rewrite @file{/usr/src/lib/foo.c} into
6823 @file{/mnt/src/lib/foo.c}.
6824
6825
6826 @item unset substitute-path [path]
6827 @kindex unset substitute-path
6828 If a path is specified, search the current list of substitution rules
6829 for a rule that would rewrite that path.  Delete that rule if found.
6830 A warning is emitted by the debugger if no rule could be found.
6831
6832 If no path is specified, then all substitution rules are deleted.
6833
6834 @item show substitute-path [path]
6835 @kindex show substitute-path
6836 If a path is specified, then print the source path substitution rule
6837 which would rewrite that path, if any.
6838
6839 If no path is specified, then print all existing source path substitution
6840 rules.
6841
6842 @end table
6843
6844 If your source path is cluttered with directories that are no longer of
6845 interest, @value{GDBN} may sometimes cause confusion by finding the wrong
6846 versions of source.  You can correct the situation as follows:
6847
6848 @enumerate
6849 @item
6850 Use @code{directory} with no argument to reset the source path to its default value.
6851
6852 @item
6853 Use @code{directory} with suitable arguments to reinstall the
6854 directories you want in the source path.  You can add all the
6855 directories in one command.
6856 @end enumerate
6857
6858 @node Machine Code
6859 @section Source and Machine Code
6860 @cindex source line and its code address
6861
6862 You can use the command @code{info line} to map source lines to program
6863 addresses (and vice versa), and the command @code{disassemble} to display
6864 a range of addresses as machine instructions.  You can use the command
6865 @code{set disassemble-next-line} to set whether to disassemble next
6866 source line when execution stops.  When run under @sc{gnu} Emacs
6867 mode, the @code{info line} command causes the arrow to point to the
6868 line specified.  Also, @code{info line} prints addresses in symbolic form as
6869 well as hex.
6870
6871 @table @code
6872 @kindex info line
6873 @item info line @var{linespec}
6874 Print the starting and ending addresses of the compiled code for
6875 source line @var{linespec}.  You can specify source lines in any of
6876 the ways documented in @ref{Specify Location}.
6877 @end table
6878
6879 For example, we can use @code{info line} to discover the location of
6880 the object code for the first line of function
6881 @code{m4_changequote}:
6882
6883 @c FIXME: I think this example should also show the addresses in
6884 @c symbolic form, as they usually would be displayed.
6885 @smallexample
6886 (@value{GDBP}) info line m4_changequote
6887 Line 895 of "builtin.c" starts at pc 0x634c and ends at 0x6350.
6888 @end smallexample
6889
6890 @noindent
6891 @cindex code address and its source line
6892 We can also inquire (using @code{*@var{addr}} as the form for
6893 @var{linespec}) what source line covers a particular address:
6894 @smallexample
6895 (@value{GDBP}) info line *0x63ff
6896 Line 926 of "builtin.c" starts at pc 0x63e4 and ends at 0x6404.
6897 @end smallexample
6898
6899 @cindex @code{$_} and @code{info line}
6900 @cindex @code{x} command, default address
6901 @kindex x@r{(examine), and} info line
6902 After @code{info line}, the default address for the @code{x} command
6903 is changed to the starting address of the line, so that @samp{x/i} is
6904 sufficient to begin examining the machine code (@pxref{Memory,
6905 ,Examining Memory}).  Also, this address is saved as the value of the
6906 convenience variable @code{$_} (@pxref{Convenience Vars, ,Convenience
6907 Variables}).
6908
6909 @table @code
6910 @kindex disassemble
6911 @cindex assembly instructions
6912 @cindex instructions, assembly
6913 @cindex machine instructions
6914 @cindex listing machine instructions
6915 @item disassemble
6916 @itemx disassemble /m
6917 @itemx disassemble /r
6918 This specialized command dumps a range of memory as machine
6919 instructions.  It can also print mixed source+disassembly by specifying
6920 the @code{/m} modifier and print the raw instructions in hex as well as
6921 in symbolic form by specifying the @code{/r}.
6922 The default memory range is the function surrounding the
6923 program counter of the selected frame.  A single argument to this
6924 command is a program counter value; @value{GDBN} dumps the function
6925 surrounding this value.  When two arguments are given, they should
6926 be separated by a comma, possibly surrounded by whitespace.  The
6927 arguments specify a range of addresses to dump, in one of two forms:
6928
6929 @table @code
6930 @item @var{start},@var{end}
6931 the addresses from @var{start} (inclusive) to @var{end} (exclusive)
6932 @item @var{start},+@var{length}
6933 the addresses from @var{start} (inclusive) to
6934 @code{@var{start}+@var{length}} (exclusive).
6935 @end table
6936
6937 @noindent
6938 When 2 arguments are specified, the name of the function is also
6939 printed (since there could be several functions in the given range).
6940
6941 The argument(s) can be any expression yielding a numeric value, such as
6942 @samp{0x32c4}, @samp{&main+10} or @samp{$pc - 8}.
6943
6944 If the range of memory being disassembled contains current program counter,
6945 the instruction at that location is shown with a @code{=>} marker.
6946 @end table
6947
6948 The following example shows the disassembly of a range of addresses of
6949 HP PA-RISC 2.0 code:
6950
6951 @smallexample
6952 (@value{GDBP}) disas 0x32c4, 0x32e4
6953 Dump of assembler code from 0x32c4 to 0x32e4:
6954    0x32c4 <main+204>:      addil 0,dp
6955    0x32c8 <main+208>:      ldw 0x22c(sr0,r1),r26
6956    0x32cc <main+212>:      ldil 0x3000,r31
6957    0x32d0 <main+216>:      ble 0x3f8(sr4,r31)
6958    0x32d4 <main+220>:      ldo 0(r31),rp
6959    0x32d8 <main+224>:      addil -0x800,dp
6960    0x32dc <main+228>:      ldo 0x588(r1),r26
6961    0x32e0 <main+232>:      ldil 0x3000,r31
6962 End of assembler dump.
6963 @end smallexample
6964
6965 Here is an example showing mixed source+assembly for Intel x86, when the
6966 program is stopped just after function prologue:
6967
6968 @smallexample
6969 (@value{GDBP}) disas /m main
6970 Dump of assembler code for function main:
6971 5       @{
6972    0x08048330 <+0>:    push   %ebp
6973    0x08048331 <+1>:    mov    %esp,%ebp
6974    0x08048333 <+3>:    sub    $0x8,%esp
6975    0x08048336 <+6>:    and    $0xfffffff0,%esp
6976    0x08048339 <+9>:    sub    $0x10,%esp
6977
6978 6         printf ("Hello.\n");
6979 => 0x0804833c <+12>:   movl   $0x8048440,(%esp)
6980    0x08048343 <+19>:   call   0x8048284 <puts@@plt>
6981
6982 7         return 0;
6983 8       @}
6984    0x08048348 <+24>:   mov    $0x0,%eax
6985    0x0804834d <+29>:   leave
6986    0x0804834e <+30>:   ret
6987
6988 End of assembler dump.
6989 @end smallexample
6990
6991 Here is another example showing raw instructions in hex for AMD x86-64,
6992
6993 @smallexample
6994 (gdb) disas /r 0x400281,+10
6995 Dump of assembler code from 0x400281 to 0x40028b:
6996    0x0000000000400281:  38 36  cmp    %dh,(%rsi)
6997    0x0000000000400283:  2d 36 34 2e 73 sub    $0x732e3436,%eax
6998    0x0000000000400288:  6f     outsl  %ds:(%rsi),(%dx)
6999    0x0000000000400289:  2e 32 00       xor    %cs:(%rax),%al
7000 End of assembler dump.
7001 @end smallexample
7002
7003 Some architectures have more than one commonly-used set of instruction
7004 mnemonics or other syntax.
7005
7006 For programs that were dynamically linked and use shared libraries,
7007 instructions that call functions or branch to locations in the shared
7008 libraries might show a seemingly bogus location---it's actually a
7009 location of the relocation table.  On some architectures, @value{GDBN}
7010 might be able to resolve these to actual function names.
7011
7012 @table @code
7013 @kindex set disassembly-flavor
7014 @cindex Intel disassembly flavor
7015 @cindex AT&T disassembly flavor
7016 @item set disassembly-flavor @var{instruction-set}
7017 Select the instruction set to use when disassembling the
7018 program via the @code{disassemble} or @code{x/i} commands.
7019
7020 Currently this command is only defined for the Intel x86 family.  You
7021 can set @var{instruction-set} to either @code{intel} or @code{att}.
7022 The default is @code{att}, the AT&T flavor used by default by Unix
7023 assemblers for x86-based targets.
7024
7025 @kindex show disassembly-flavor
7026 @item show disassembly-flavor
7027 Show the current setting of the disassembly flavor.
7028 @end table
7029
7030 @table @code
7031 @kindex set disassemble-next-line
7032 @kindex show disassemble-next-line
7033 @item set disassemble-next-line
7034 @itemx show disassemble-next-line
7035 Control whether or not @value{GDBN} will disassemble the next source
7036 line or instruction when execution stops.  If ON, @value{GDBN} will
7037 display disassembly of the next source line when execution of the
7038 program being debugged stops.  This is @emph{in addition} to
7039 displaying the source line itself, which @value{GDBN} always does if
7040 possible.  If the next source line cannot be displayed for some reason
7041 (e.g., if @value{GDBN} cannot find the source file, or there's no line
7042 info in the debug info), @value{GDBN} will display disassembly of the
7043 next @emph{instruction} instead of showing the next source line.  If
7044 AUTO, @value{GDBN} will display disassembly of next instruction only
7045 if the source line cannot be displayed.  This setting causes
7046 @value{GDBN} to display some feedback when you step through a function
7047 with no line info or whose source file is unavailable.  The default is
7048 OFF, which means never display the disassembly of the next line or
7049 instruction.
7050 @end table
7051
7052
7053 @node Data
7054 @chapter Examining Data
7055
7056 @cindex printing data
7057 @cindex examining data
7058 @kindex print
7059 @kindex inspect
7060 @c "inspect" is not quite a synonym if you are using Epoch, which we do not
7061 @c document because it is nonstandard...  Under Epoch it displays in a
7062 @c different window or something like that.
7063 The usual way to examine data in your program is with the @code{print}
7064 command (abbreviated @code{p}), or its synonym @code{inspect}.  It
7065 evaluates and prints the value of an expression of the language your
7066 program is written in (@pxref{Languages, ,Using @value{GDBN} with
7067 Different Languages}).  It may also print the expression using a
7068 Python-based pretty-printer (@pxref{Pretty Printing}).
7069
7070 @table @code
7071 @item print @var{expr}
7072 @itemx print /@var{f} @var{expr}
7073 @var{expr} is an expression (in the source language).  By default the
7074 value of @var{expr} is printed in a format appropriate to its data type;
7075 you can choose a different format by specifying @samp{/@var{f}}, where
7076 @var{f} is a letter specifying the format; see @ref{Output Formats,,Output
7077 Formats}.
7078
7079 @item print
7080 @itemx print /@var{f}
7081 @cindex reprint the last value
7082 If you omit @var{expr}, @value{GDBN} displays the last value again (from the
7083 @dfn{value history}; @pxref{Value History, ,Value History}).  This allows you to
7084 conveniently inspect the same value in an alternative format.
7085 @end table
7086
7087 A more low-level way of examining data is with the @code{x} command.
7088 It examines data in memory at a specified address and prints it in a
7089 specified format.  @xref{Memory, ,Examining Memory}.
7090
7091 If you are interested in information about types, or about how the
7092 fields of a struct or a class are declared, use the @code{ptype @var{exp}}
7093 command rather than @code{print}.  @xref{Symbols, ,Examining the Symbol
7094 Table}.
7095
7096 @menu
7097 * Expressions::                 Expressions
7098 * Ambiguous Expressions::       Ambiguous Expressions
7099 * Variables::                   Program variables
7100 * Arrays::                      Artificial arrays
7101 * Output Formats::              Output formats
7102 * Memory::                      Examining memory
7103 * Auto Display::                Automatic display
7104 * Print Settings::              Print settings
7105 * Pretty Printing::             Python pretty printing
7106 * Value History::               Value history
7107 * Convenience Vars::            Convenience variables
7108 * Registers::                   Registers
7109 * Floating Point Hardware::     Floating point hardware
7110 * Vector Unit::                 Vector Unit
7111 * OS Information::              Auxiliary data provided by operating system
7112 * Memory Region Attributes::    Memory region attributes
7113 * Dump/Restore Files::          Copy between memory and a file
7114 * Core File Generation::        Cause a program dump its core
7115 * Character Sets::              Debugging programs that use a different
7116                                 character set than GDB does
7117 * Caching Remote Data::         Data caching for remote targets
7118 * Searching Memory::            Searching memory for a sequence of bytes
7119 @end menu
7120
7121 @node Expressions
7122 @section Expressions
7123
7124 @cindex expressions
7125 @code{print} and many other @value{GDBN} commands accept an expression and
7126 compute its value.  Any kind of constant, variable or operator defined
7127 by the programming language you are using is valid in an expression in
7128 @value{GDBN}.  This includes conditional expressions, function calls,
7129 casts, and string constants.  It also includes preprocessor macros, if
7130 you compiled your program to include this information; see
7131 @ref{Compilation}.
7132
7133 @cindex arrays in expressions
7134 @value{GDBN} supports array constants in expressions input by
7135 the user.  The syntax is @{@var{element}, @var{element}@dots{}@}.  For example,
7136 you can use the command @code{print @{1, 2, 3@}} to create an array
7137 of three integers.  If you pass an array to a function or assign it
7138 to a program variable, @value{GDBN} copies the array to memory that
7139 is @code{malloc}ed in the target program.
7140
7141 Because C is so widespread, most of the expressions shown in examples in
7142 this manual are in C.  @xref{Languages, , Using @value{GDBN} with Different
7143 Languages}, for information on how to use expressions in other
7144 languages.
7145
7146 In this section, we discuss operators that you can use in @value{GDBN}
7147 expressions regardless of your programming language.
7148
7149 @cindex casts, in expressions
7150 Casts are supported in all languages, not just in C, because it is so
7151 useful to cast a number into a pointer in order to examine a structure
7152 at that address in memory.
7153 @c FIXME: casts supported---Mod2 true?
7154
7155 @value{GDBN} supports these operators, in addition to those common
7156 to programming languages:
7157
7158 @table @code
7159 @item @@
7160 @samp{@@} is a binary operator for treating parts of memory as arrays.
7161 @xref{Arrays, ,Artificial Arrays}, for more information.
7162
7163 @item ::
7164 @samp{::} allows you to specify a variable in terms of the file or
7165 function where it is defined.  @xref{Variables, ,Program Variables}.
7166
7167 @cindex @{@var{type}@}
7168 @cindex type casting memory
7169 @cindex memory, viewing as typed object
7170 @cindex casts, to view memory
7171 @item @{@var{type}@} @var{addr}
7172 Refers to an object of type @var{type} stored at address @var{addr} in
7173 memory.  @var{addr} may be any expression whose value is an integer or
7174 pointer (but parentheses are required around binary operators, just as in
7175 a cast).  This construct is allowed regardless of what kind of data is
7176 normally supposed to reside at @var{addr}.
7177 @end table
7178
7179 @node Ambiguous Expressions
7180 @section Ambiguous Expressions
7181 @cindex ambiguous expressions
7182
7183 Expressions can sometimes contain some ambiguous elements.  For instance,
7184 some programming languages (notably Ada, C@t{++} and Objective-C) permit
7185 a single function name to be defined several times, for application in
7186 different contexts.  This is called @dfn{overloading}.  Another example
7187 involving Ada is generics.  A @dfn{generic package} is similar to C@t{++}
7188 templates and is typically instantiated several times, resulting in
7189 the same function name being defined in different contexts.
7190
7191 In some cases and depending on the language, it is possible to adjust
7192 the expression to remove the ambiguity.  For instance in C@t{++}, you
7193 can specify the signature of the function you want to break on, as in
7194 @kbd{break @var{function}(@var{types})}.  In Ada, using the fully
7195 qualified name of your function often makes the expression unambiguous
7196 as well.
7197
7198 When an ambiguity that needs to be resolved is detected, the debugger
7199 has the capability to display a menu of numbered choices for each
7200 possibility, and then waits for the selection with the prompt @samp{>}.
7201 The first option is always @samp{[0] cancel}, and typing @kbd{0 @key{RET}}
7202 aborts the current command.  If the command in which the expression was
7203 used allows more than one choice to be selected, the next option in the
7204 menu is @samp{[1] all}, and typing @kbd{1 @key{RET}} selects all possible
7205 choices.
7206
7207 For example, the following session excerpt shows an attempt to set a
7208 breakpoint at the overloaded symbol @code{String::after}.
7209 We choose three particular definitions of that function name:
7210
7211 @c FIXME! This is likely to change to show arg type lists, at least
7212 @smallexample
7213 @group
7214 (@value{GDBP}) b String::after
7215 [0] cancel
7216 [1] all
7217 [2] file:String.cc; line number:867
7218 [3] file:String.cc; line number:860
7219 [4] file:String.cc; line number:875
7220 [5] file:String.cc; line number:853
7221 [6] file:String.cc; line number:846
7222 [7] file:String.cc; line number:735
7223 > 2 4 6
7224 Breakpoint 1 at 0xb26c: file String.cc, line 867.
7225 Breakpoint 2 at 0xb344: file String.cc, line 875.
7226 Breakpoint 3 at 0xafcc: file String.cc, line 846.
7227 Multiple breakpoints were set.
7228 Use the "delete" command to delete unwanted
7229  breakpoints.
7230 (@value{GDBP})
7231 @end group
7232 @end smallexample
7233
7234 @table @code
7235 @kindex set multiple-symbols
7236 @item set multiple-symbols @var{mode}
7237 @cindex multiple-symbols menu
7238
7239 This option allows you to adjust the debugger behavior when an expression
7240 is ambiguous.
7241
7242 By default, @var{mode} is set to @code{all}.  If the command with which
7243 the expression is used allows more than one choice, then @value{GDBN}
7244 automatically selects all possible choices.  For instance, inserting
7245 a breakpoint on a function using an ambiguous name results in a breakpoint
7246 inserted on each possible match.  However, if a unique choice must be made,
7247 then @value{GDBN} uses the menu to help you disambiguate the expression.
7248 For instance, printing the address of an overloaded function will result
7249 in the use of the menu.
7250
7251 When @var{mode} is set to @code{ask}, the debugger always uses the menu
7252 when an ambiguity is detected.
7253
7254 Finally, when @var{mode} is set to @code{cancel}, the debugger reports
7255 an error due to the ambiguity and the command is aborted.
7256
7257 @kindex show multiple-symbols
7258 @item show multiple-symbols
7259 Show the current value of the @code{multiple-symbols} setting.
7260 @end table
7261
7262 @node Variables
7263 @section Program Variables
7264
7265 The most common kind of expression to use is the name of a variable
7266 in your program.
7267
7268 Variables in expressions are understood in the selected stack frame
7269 (@pxref{Selection, ,Selecting a Frame}); they must be either:
7270
7271 @itemize @bullet
7272 @item
7273 global (or file-static)
7274 @end itemize
7275
7276 @noindent or
7277
7278 @itemize @bullet
7279 @item
7280 visible according to the scope rules of the
7281 programming language from the point of execution in that frame
7282 @end itemize
7283
7284 @noindent This means that in the function
7285
7286 @smallexample
7287 foo (a)
7288      int a;
7289 @{
7290   bar (a);
7291   @{
7292     int b = test ();
7293     bar (b);
7294   @}
7295 @}
7296 @end smallexample
7297
7298 @noindent
7299 you can examine and use the variable @code{a} whenever your program is
7300 executing within the function @code{foo}, but you can only use or
7301 examine the variable @code{b} while your program is executing inside
7302 the block where @code{b} is declared.
7303
7304 @cindex variable name conflict
7305 There is an exception: you can refer to a variable or function whose
7306 scope is a single source file even if the current execution point is not
7307 in this file.  But it is possible to have more than one such variable or
7308 function with the same name (in different source files).  If that
7309 happens, referring to that name has unpredictable effects.  If you wish,
7310 you can specify a static variable in a particular function or file,
7311 using the colon-colon (@code{::}) notation:
7312
7313 @cindex colon-colon, context for variables/functions
7314 @ifnotinfo
7315 @c info cannot cope with a :: index entry, but why deprive hard copy readers?
7316 @cindex @code{::}, context for variables/functions
7317 @end ifnotinfo
7318 @smallexample
7319 @var{file}::@var{variable}
7320 @var{function}::@var{variable}
7321 @end smallexample
7322
7323 @noindent
7324 Here @var{file} or @var{function} is the name of the context for the
7325 static @var{variable}.  In the case of file names, you can use quotes to
7326 make sure @value{GDBN} parses the file name as a single word---for example,
7327 to print a global value of @code{x} defined in @file{f2.c}:
7328
7329 @smallexample
7330 (@value{GDBP}) p 'f2.c'::x
7331 @end smallexample
7332
7333 @cindex C@t{++} scope resolution
7334 This use of @samp{::} is very rarely in conflict with the very similar
7335 use of the same notation in C@t{++}.  @value{GDBN} also supports use of the C@t{++}
7336 scope resolution operator in @value{GDBN} expressions.
7337 @c FIXME: Um, so what happens in one of those rare cases where it's in
7338 @c conflict??  --mew
7339
7340 @cindex wrong values
7341 @cindex variable values, wrong
7342 @cindex function entry/exit, wrong values of variables
7343 @cindex optimized code, wrong values of variables
7344 @quotation
7345 @emph{Warning:} Occasionally, a local variable may appear to have the
7346 wrong value at certain points in a function---just after entry to a new
7347 scope, and just before exit.
7348 @end quotation
7349 You may see this problem when you are stepping by machine instructions.
7350 This is because, on most machines, it takes more than one instruction to
7351 set up a stack frame (including local variable definitions); if you are
7352 stepping by machine instructions, variables may appear to have the wrong
7353 values until the stack frame is completely built.  On exit, it usually
7354 also takes more than one machine instruction to destroy a stack frame;
7355 after you begin stepping through that group of instructions, local
7356 variable definitions may be gone.
7357
7358 This may also happen when the compiler does significant optimizations.
7359 To be sure of always seeing accurate values, turn off all optimization
7360 when compiling.
7361
7362 @cindex ``No symbol "foo" in current context''
7363 Another possible effect of compiler optimizations is to optimize
7364 unused variables out of existence, or assign variables to registers (as
7365 opposed to memory addresses).  Depending on the support for such cases
7366 offered by the debug info format used by the compiler, @value{GDBN}
7367 might not be able to display values for such local variables.  If that
7368 happens, @value{GDBN} will print a message like this:
7369
7370 @smallexample
7371 No symbol "foo" in current context.
7372 @end smallexample
7373
7374 To solve such problems, either recompile without optimizations, or use a
7375 different debug info format, if the compiler supports several such
7376 formats.  @xref{Compilation}, for more information on choosing compiler
7377 options.  @xref{C, ,C and C@t{++}}, for more information about debug
7378 info formats that are best suited to C@t{++} programs.
7379
7380 If you ask to print an object whose contents are unknown to
7381 @value{GDBN}, e.g., because its data type is not completely specified
7382 by the debug information, @value{GDBN} will say @samp{<incomplete
7383 type>}.  @xref{Symbols, incomplete type}, for more about this.
7384
7385 If you append @kbd{@@entry} string to a function parameter name you get its
7386 value at the time the function got called.  If the value is not available an
7387 error message is printed.  Entry values are available only with some compilers.
7388 Entry values are normally also printed at the function parameter list according
7389 to @ref{set print entry-values}.
7390
7391 @smallexample
7392 Breakpoint 1, d (i=30) at gdb.base/entry-value.c:29
7393 29        i++;
7394 (gdb) next
7395 30        e (i);
7396 (gdb) print i
7397 $1 = 31
7398 (gdb) print i@@entry
7399 $2 = 30
7400 @end smallexample
7401
7402 Strings are identified as arrays of @code{char} values without specified
7403 signedness.  Arrays of either @code{signed char} or @code{unsigned char} get
7404 printed as arrays of 1 byte sized integers.  @code{-fsigned-char} or
7405 @code{-funsigned-char} @value{NGCC} options have no effect as @value{GDBN}
7406 defines literal string type @code{"char"} as @code{char} without a sign.
7407 For program code
7408
7409 @smallexample
7410 char var0[] = "A";
7411 signed char var1[] = "A";
7412 @end smallexample
7413
7414 You get during debugging
7415 @smallexample
7416 (gdb) print var0
7417 $1 = "A"
7418 (gdb) print var1
7419 $2 = @{65 'A', 0 '\0'@}
7420 @end smallexample
7421
7422 @node Arrays
7423 @section Artificial Arrays
7424
7425 @cindex artificial array
7426 @cindex arrays
7427 @kindex @@@r{, referencing memory as an array}
7428 It is often useful to print out several successive objects of the
7429 same type in memory; a section of an array, or an array of
7430 dynamically determined size for which only a pointer exists in the
7431 program.
7432
7433 You can do this by referring to a contiguous span of memory as an
7434 @dfn{artificial array}, using the binary operator @samp{@@}.  The left
7435 operand of @samp{@@} should be the first element of the desired array
7436 and be an individual object.  The right operand should be the desired length
7437 of the array.  The result is an array value whose elements are all of
7438 the type of the left argument.  The first element is actually the left
7439 argument; the second element comes from bytes of memory immediately
7440 following those that hold the first element, and so on.  Here is an
7441 example.  If a program says
7442
7443 @smallexample
7444 int *array = (int *) malloc (len * sizeof (int));
7445 @end smallexample
7446
7447 @noindent
7448 you can print the contents of @code{array} with
7449
7450 @smallexample
7451 p *array@@len
7452 @end smallexample
7453
7454 The left operand of @samp{@@} must reside in memory.  Array values made
7455 with @samp{@@} in this way behave just like other arrays in terms of
7456 subscripting, and are coerced to pointers when used in expressions.
7457 Artificial arrays most often appear in expressions via the value history
7458 (@pxref{Value History, ,Value History}), after printing one out.
7459
7460 Another way to create an artificial array is to use a cast.
7461 This re-interprets a value as if it were an array.
7462 The value need not be in memory:
7463 @smallexample
7464 (@value{GDBP}) p/x (short[2])0x12345678
7465 $1 = @{0x1234, 0x5678@}
7466 @end smallexample
7467
7468 As a convenience, if you leave the array length out (as in
7469 @samp{(@var{type}[])@var{value}}) @value{GDBN} calculates the size to fill
7470 the value (as @samp{sizeof(@var{value})/sizeof(@var{type})}:
7471 @smallexample
7472 (@value{GDBP}) p/x (short[])0x12345678
7473 $2 = @{0x1234, 0x5678@}
7474 @end smallexample
7475
7476 Sometimes the artificial array mechanism is not quite enough; in
7477 moderately complex data structures, the elements of interest may not
7478 actually be adjacent---for example, if you are interested in the values
7479 of pointers in an array.  One useful work-around in this situation is
7480 to use a convenience variable (@pxref{Convenience Vars, ,Convenience
7481 Variables}) as a counter in an expression that prints the first
7482 interesting value, and then repeat that expression via @key{RET}.  For
7483 instance, suppose you have an array @code{dtab} of pointers to
7484 structures, and you are interested in the values of a field @code{fv}
7485 in each structure.  Here is an example of what you might type:
7486
7487 @smallexample
7488 set $i = 0
7489 p dtab[$i++]->fv
7490 @key{RET}
7491 @key{RET}
7492 @dots{}
7493 @end smallexample
7494
7495 @node Output Formats
7496 @section Output Formats
7497
7498 @cindex formatted output
7499 @cindex output formats
7500 By default, @value{GDBN} prints a value according to its data type.  Sometimes
7501 this is not what you want.  For example, you might want to print a number
7502 in hex, or a pointer in decimal.  Or you might want to view data in memory
7503 at a certain address as a character string or as an instruction.  To do
7504 these things, specify an @dfn{output format} when you print a value.
7505
7506 The simplest use of output formats is to say how to print a value
7507 already computed.  This is done by starting the arguments of the
7508 @code{print} command with a slash and a format letter.  The format
7509 letters supported are:
7510
7511 @table @code
7512 @item x
7513 Regard the bits of the value as an integer, and print the integer in
7514 hexadecimal.
7515
7516 @item d
7517 Print as integer in signed decimal.
7518
7519 @item u
7520 Print as integer in unsigned decimal.
7521
7522 @item o
7523 Print as integer in octal.
7524
7525 @item t
7526 Print as integer in binary.  The letter @samp{t} stands for ``two''.
7527 @footnote{@samp{b} cannot be used because these format letters are also
7528 used with the @code{x} command, where @samp{b} stands for ``byte'';
7529 see @ref{Memory,,Examining Memory}.}
7530
7531 @item a
7532 @cindex unknown address, locating
7533 @cindex locate address
7534 Print as an address, both absolute in hexadecimal and as an offset from
7535 the nearest preceding symbol.  You can use this format used to discover
7536 where (in what function) an unknown address is located:
7537
7538 @smallexample
7539 (@value{GDBP}) p/a 0x54320
7540 $3 = 0x54320 <_initialize_vx+396>
7541 @end smallexample
7542
7543 @noindent
7544 The command @code{info symbol 0x54320} yields similar results.
7545 @xref{Symbols, info symbol}.
7546
7547 @item c
7548 Regard as an integer and print it as a character constant.  This
7549 prints both the numerical value and its character representation.  The
7550 character representation is replaced with the octal escape @samp{\nnn}
7551 for characters outside the 7-bit @sc{ascii} range.
7552
7553 Without this format, @value{GDBN} displays @code{char},
7554 @w{@code{unsigned char}}, and @w{@code{signed char}} data as character
7555 constants.  Single-byte members of vectors are displayed as integer
7556 data.
7557
7558 @item f
7559 Regard the bits of the value as a floating point number and print
7560 using typical floating point syntax.
7561
7562 @item s
7563 @cindex printing strings
7564 @cindex printing byte arrays
7565 Regard as a string, if possible.  With this format, pointers to single-byte
7566 data are displayed as null-terminated strings and arrays of single-byte data
7567 are displayed as fixed-length strings.  Other values are displayed in their
7568 natural types.
7569
7570 Without this format, @value{GDBN} displays pointers to and arrays of
7571 @code{char}, @w{@code{unsigned char}}, and @w{@code{signed char}} as
7572 strings.  Single-byte members of a vector are displayed as an integer
7573 array.
7574
7575 @item r
7576 @cindex raw printing
7577 Print using the @samp{raw} formatting.  By default, @value{GDBN} will
7578 use a Python-based pretty-printer, if one is available (@pxref{Pretty
7579 Printing}).  This typically results in a higher-level display of the
7580 value's contents.  The @samp{r} format bypasses any Python
7581 pretty-printer which might exist.
7582 @end table
7583
7584 For example, to print the program counter in hex (@pxref{Registers}), type
7585
7586 @smallexample
7587 p/x $pc
7588 @end smallexample
7589
7590 @noindent
7591 Note that no space is required before the slash; this is because command
7592 names in @value{GDBN} cannot contain a slash.
7593
7594 To reprint the last value in the value history with a different format,
7595 you can use the @code{print} command with just a format and no
7596 expression.  For example, @samp{p/x} reprints the last value in hex.
7597
7598 @node Memory
7599 @section Examining Memory
7600
7601 You can use the command @code{x} (for ``examine'') to examine memory in
7602 any of several formats, independently of your program's data types.
7603
7604 @cindex examining memory
7605 @table @code
7606 @kindex x @r{(examine memory)}
7607 @item x/@var{nfu} @var{addr}
7608 @itemx x @var{addr}
7609 @itemx x
7610 Use the @code{x} command to examine memory.
7611 @end table
7612
7613 @var{n}, @var{f}, and @var{u} are all optional parameters that specify how
7614 much memory to display and how to format it; @var{addr} is an
7615 expression giving the address where you want to start displaying memory.
7616 If you use defaults for @var{nfu}, you need not type the slash @samp{/}.
7617 Several commands set convenient defaults for @var{addr}.
7618
7619 @table @r
7620 @item @var{n}, the repeat count
7621 The repeat count is a decimal integer; the default is 1.  It specifies
7622 how much memory (counting by units @var{u}) to display.
7623 @c This really is **decimal**; unaffected by 'set radix' as of GDB
7624 @c 4.1.2.
7625
7626 @item @var{f}, the display format
7627 The display format is one of the formats used by @code{print}
7628 (@samp{x}, @samp{d}, @samp{u}, @samp{o}, @samp{t}, @samp{a}, @samp{c},
7629 @samp{f}, @samp{s}), and in addition @samp{i} (for machine instructions).
7630 The default is @samp{x} (hexadecimal) initially.  The default changes
7631 each time you use either @code{x} or @code{print}.
7632
7633 @item @var{u}, the unit size
7634 The unit size is any of
7635
7636 @table @code
7637 @item b
7638 Bytes.
7639 @item h
7640 Halfwords (two bytes).
7641 @item w
7642 Words (four bytes).  This is the initial default.
7643 @item g
7644 Giant words (eight bytes).
7645 @end table
7646
7647 Each time you specify a unit size with @code{x}, that size becomes the
7648 default unit the next time you use @code{x}.  For the @samp{i} format,
7649 the unit size is ignored and is normally not written.  For the @samp{s} format,
7650 the unit size defaults to @samp{b}, unless it is explicitly given.
7651 Use @kbd{x /hs} to display 16-bit char strings and @kbd{x /ws} to display
7652 32-bit strings.  The next use of @kbd{x /s} will again display 8-bit strings.
7653 Note that the results depend on the programming language of the
7654 current compilation unit.  If the language is C, the @samp{s}
7655 modifier will use the UTF-16 encoding while @samp{w} will use
7656 UTF-32.  The encoding is set by the programming language and cannot
7657 be altered.
7658
7659 @item @var{addr}, starting display address
7660 @var{addr} is the address where you want @value{GDBN} to begin displaying
7661 memory.  The expression need not have a pointer value (though it may);
7662 it is always interpreted as an integer address of a byte of memory.
7663 @xref{Expressions, ,Expressions}, for more information on expressions.  The default for
7664 @var{addr} is usually just after the last address examined---but several
7665 other commands also set the default address: @code{info breakpoints} (to
7666 the address of the last breakpoint listed), @code{info line} (to the
7667 starting address of a line), and @code{print} (if you use it to display
7668 a value from memory).
7669 @end table
7670
7671 For example, @samp{x/3uh 0x54320} is a request to display three halfwords
7672 (@code{h}) of memory, formatted as unsigned decimal integers (@samp{u}),
7673 starting at address @code{0x54320}.  @samp{x/4xw $sp} prints the four
7674 words (@samp{w}) of memory above the stack pointer (here, @samp{$sp};
7675 @pxref{Registers, ,Registers}) in hexadecimal (@samp{x}).
7676
7677 Since the letters indicating unit sizes are all distinct from the
7678 letters specifying output formats, you do not have to remember whether
7679 unit size or format comes first; either order works.  The output
7680 specifications @samp{4xw} and @samp{4wx} mean exactly the same thing.
7681 (However, the count @var{n} must come first; @samp{wx4} does not work.)
7682
7683 Even though the unit size @var{u} is ignored for the formats @samp{s}
7684 and @samp{i}, you might still want to use a count @var{n}; for example,
7685 @samp{3i} specifies that you want to see three machine instructions,
7686 including any operands.  For convenience, especially when used with
7687 the @code{display} command, the @samp{i} format also prints branch delay
7688 slot instructions, if any, beyond the count specified, which immediately
7689 follow the last instruction that is within the count.  The command
7690 @code{disassemble} gives an alternative way of inspecting machine
7691 instructions; see @ref{Machine Code,,Source and Machine Code}.
7692
7693 All the defaults for the arguments to @code{x} are designed to make it
7694 easy to continue scanning memory with minimal specifications each time
7695 you use @code{x}.  For example, after you have inspected three machine
7696 instructions with @samp{x/3i @var{addr}}, you can inspect the next seven
7697 with just @samp{x/7}.  If you use @key{RET} to repeat the @code{x} command,
7698 the repeat count @var{n} is used again; the other arguments default as
7699 for successive uses of @code{x}.
7700
7701 When examining machine instructions, the instruction at current program
7702 counter is shown with a @code{=>} marker. For example:
7703
7704 @smallexample
7705 (@value{GDBP}) x/5i $pc-6
7706    0x804837f <main+11>: mov    %esp,%ebp
7707    0x8048381 <main+13>: push   %ecx
7708    0x8048382 <main+14>: sub    $0x4,%esp
7709 => 0x8048385 <main+17>: movl   $0x8048460,(%esp)
7710    0x804838c <main+24>: call   0x80482d4 <puts@@plt>
7711 @end smallexample
7712
7713 @cindex @code{$_}, @code{$__}, and value history
7714 The addresses and contents printed by the @code{x} command are not saved
7715 in the value history because there is often too much of them and they
7716 would get in the way.  Instead, @value{GDBN} makes these values available for
7717 subsequent use in expressions as values of the convenience variables
7718 @code{$_} and @code{$__}.  After an @code{x} command, the last address
7719 examined is available for use in expressions in the convenience variable
7720 @code{$_}.  The contents of that address, as examined, are available in
7721 the convenience variable @code{$__}.
7722
7723 If the @code{x} command has a repeat count, the address and contents saved
7724 are from the last memory unit printed; this is not the same as the last
7725 address printed if several units were printed on the last line of output.
7726
7727 @cindex remote memory comparison
7728 @cindex verify remote memory image
7729 When you are debugging a program running on a remote target machine
7730 (@pxref{Remote Debugging}), you may wish to verify the program's image in the
7731 remote machine's memory against the executable file you downloaded to
7732 the target.  The @code{compare-sections} command is provided for such
7733 situations.
7734
7735 @table @code
7736 @kindex compare-sections
7737 @item compare-sections @r{[}@var{section-name}@r{]}
7738 Compare the data of a loadable section @var{section-name} in the
7739 executable file of the program being debugged with the same section in
7740 the remote machine's memory, and report any mismatches.  With no
7741 arguments, compares all loadable sections.  This command's
7742 availability depends on the target's support for the @code{"qCRC"}
7743 remote request.
7744 @end table
7745
7746 @node Auto Display
7747 @section Automatic Display
7748 @cindex automatic display
7749 @cindex display of expressions
7750
7751 If you find that you want to print the value of an expression frequently
7752 (to see how it changes), you might want to add it to the @dfn{automatic
7753 display list} so that @value{GDBN} prints its value each time your program stops.
7754 Each expression added to the list is given a number to identify it;
7755 to remove an expression from the list, you specify that number.
7756 The automatic display looks like this:
7757
7758 @smallexample
7759 2: foo = 38
7760 3: bar[5] = (struct hack *) 0x3804
7761 @end smallexample
7762
7763 @noindent
7764 This display shows item numbers, expressions and their current values.  As with
7765 displays you request manually using @code{x} or @code{print}, you can
7766 specify the output format you prefer; in fact, @code{display} decides
7767 whether to use @code{print} or @code{x} depending your format
7768 specification---it uses @code{x} if you specify either the @samp{i}
7769 or @samp{s} format, or a unit size; otherwise it uses @code{print}.
7770
7771 @table @code
7772 @kindex display
7773 @item display @var{expr}
7774 Add the expression @var{expr} to the list of expressions to display
7775 each time your program stops.  @xref{Expressions, ,Expressions}.
7776
7777 @code{display} does not repeat if you press @key{RET} again after using it.
7778
7779 @item display/@var{fmt} @var{expr}
7780 For @var{fmt} specifying only a display format and not a size or
7781 count, add the expression @var{expr} to the auto-display list but
7782 arrange to display it each time in the specified format @var{fmt}.
7783 @xref{Output Formats,,Output Formats}.
7784
7785 @item display/@var{fmt} @var{addr}
7786 For @var{fmt} @samp{i} or @samp{s}, or including a unit-size or a
7787 number of units, add the expression @var{addr} as a memory address to
7788 be examined each time your program stops.  Examining means in effect
7789 doing @samp{x/@var{fmt} @var{addr}}.  @xref{Memory, ,Examining Memory}.
7790 @end table
7791
7792 For example, @samp{display/i $pc} can be helpful, to see the machine
7793 instruction about to be executed each time execution stops (@samp{$pc}
7794 is a common name for the program counter; @pxref{Registers, ,Registers}).
7795
7796 @table @code
7797 @kindex delete display
7798 @kindex undisplay
7799 @item undisplay @var{dnums}@dots{}
7800 @itemx delete display @var{dnums}@dots{}
7801 Remove items from the list of expressions to display.  Specify the
7802 numbers of the displays that you want affected with the command
7803 argument @var{dnums}.  It can be a single display number, one of the
7804 numbers shown in the first field of the @samp{info display} display;
7805 or it could be a range of display numbers, as in @code{2-4}.
7806
7807 @code{undisplay} does not repeat if you press @key{RET} after using it.
7808 (Otherwise you would just get the error @samp{No display number @dots{}}.)
7809
7810 @kindex disable display
7811 @item disable display @var{dnums}@dots{}
7812 Disable the display of item numbers @var{dnums}.  A disabled display
7813 item is not printed automatically, but is not forgotten.  It may be
7814 enabled again later.  Specify the numbers of the displays that you
7815 want affected with the command argument @var{dnums}.  It can be a
7816 single display number, one of the numbers shown in the first field of
7817 the @samp{info display} display; or it could be a range of display
7818 numbers, as in @code{2-4}.
7819
7820 @kindex enable display
7821 @item enable display @var{dnums}@dots{}
7822 Enable display of item numbers @var{dnums}.  It becomes effective once
7823 again in auto display of its expression, until you specify otherwise.
7824 Specify the numbers of the displays that you want affected with the
7825 command argument @var{dnums}.  It can be a single display number, one
7826 of the numbers shown in the first field of the @samp{info display}
7827 display; or it could be a range of display numbers, as in @code{2-4}.
7828
7829 @item display
7830 Display the current values of the expressions on the list, just as is
7831 done when your program stops.
7832
7833 @kindex info display
7834 @item info display
7835 Print the list of expressions previously set up to display
7836 automatically, each one with its item number, but without showing the
7837 values.  This includes disabled expressions, which are marked as such.
7838 It also includes expressions which would not be displayed right now
7839 because they refer to automatic variables not currently available.
7840 @end table
7841
7842 @cindex display disabled out of scope
7843 If a display expression refers to local variables, then it does not make
7844 sense outside the lexical context for which it was set up.  Such an
7845 expression is disabled when execution enters a context where one of its
7846 variables is not defined.  For example, if you give the command
7847 @code{display last_char} while inside a function with an argument
7848 @code{last_char}, @value{GDBN} displays this argument while your program
7849 continues to stop inside that function.  When it stops elsewhere---where
7850 there is no variable @code{last_char}---the display is disabled
7851 automatically.  The next time your program stops where @code{last_char}
7852 is meaningful, you can enable the display expression once again.
7853
7854 @node Print Settings
7855 @section Print Settings
7856
7857 @cindex format options
7858 @cindex print settings
7859 @value{GDBN} provides the following ways to control how arrays, structures,
7860 and symbols are printed.
7861
7862 @noindent
7863 These settings are useful for debugging programs in any language:
7864
7865 @table @code
7866 @kindex set print
7867 @item set print address
7868 @itemx set print address on
7869 @cindex print/don't print memory addresses
7870 @value{GDBN} prints memory addresses showing the location of stack
7871 traces, structure values, pointer values, breakpoints, and so forth,
7872 even when it also displays the contents of those addresses.  The default
7873 is @code{on}.  For example, this is what a stack frame display looks like with
7874 @code{set print address on}:
7875
7876 @smallexample
7877 @group
7878 (@value{GDBP}) f
7879 #0  set_quotes (lq=0x34c78 "<<", rq=0x34c88 ">>")
7880     at input.c:530
7881 530         if (lquote != def_lquote)
7882 @end group
7883 @end smallexample
7884
7885 @item set print address off
7886 Do not print addresses when displaying their contents.  For example,
7887 this is the same stack frame displayed with @code{set print address off}:
7888
7889 @smallexample
7890 @group
7891 (@value{GDBP}) set print addr off
7892 (@value{GDBP}) f
7893 #0  set_quotes (lq="<<", rq=">>") at input.c:530
7894 530         if (lquote != def_lquote)
7895 @end group
7896 @end smallexample
7897
7898 You can use @samp{set print address off} to eliminate all machine
7899 dependent displays from the @value{GDBN} interface.  For example, with
7900 @code{print address off}, you should get the same text for backtraces on
7901 all machines---whether or not they involve pointer arguments.
7902
7903 @kindex show print
7904 @item show print address
7905 Show whether or not addresses are to be printed.
7906 @end table
7907
7908 When @value{GDBN} prints a symbolic address, it normally prints the
7909 closest earlier symbol plus an offset.  If that symbol does not uniquely
7910 identify the address (for example, it is a name whose scope is a single
7911 source file), you may need to clarify.  One way to do this is with
7912 @code{info line}, for example @samp{info line *0x4537}.  Alternately,
7913 you can set @value{GDBN} to print the source file and line number when
7914 it prints a symbolic address:
7915
7916 @table @code
7917 @item set print symbol-filename on
7918 @cindex source file and line of a symbol
7919 @cindex symbol, source file and line
7920 Tell @value{GDBN} to print the source file name and line number of a
7921 symbol in the symbolic form of an address.
7922
7923 @item set print symbol-filename off
7924 Do not print source file name and line number of a symbol.  This is the
7925 default.
7926
7927 @item show print symbol-filename
7928 Show whether or not @value{GDBN} will print the source file name and
7929 line number of a symbol in the symbolic form of an address.
7930 @end table
7931
7932 Another situation where it is helpful to show symbol filenames and line
7933 numbers is when disassembling code; @value{GDBN} shows you the line
7934 number and source file that corresponds to each instruction.
7935
7936 Also, you may wish to see the symbolic form only if the address being
7937 printed is reasonably close to the closest earlier symbol:
7938
7939 @table @code
7940 @item set print max-symbolic-offset @var{max-offset}
7941 @cindex maximum value for offset of closest symbol
7942 Tell @value{GDBN} to only display the symbolic form of an address if the
7943 offset between the closest earlier symbol and the address is less than
7944 @var{max-offset}.  The default is 0, which tells @value{GDBN}
7945 to always print the symbolic form of an address if any symbol precedes it.
7946
7947 @item show print max-symbolic-offset
7948 Ask how large the maximum offset is that @value{GDBN} prints in a
7949 symbolic address.
7950 @end table
7951
7952 @cindex wild pointer, interpreting
7953 @cindex pointer, finding referent
7954 If you have a pointer and you are not sure where it points, try
7955 @samp{set print symbol-filename on}.  Then you can determine the name
7956 and source file location of the variable where it points, using
7957 @samp{p/a @var{pointer}}.  This interprets the address in symbolic form.
7958 For example, here @value{GDBN} shows that a variable @code{ptt} points
7959 at another variable @code{t}, defined in @file{hi2.c}:
7960
7961 @smallexample
7962 (@value{GDBP}) set print symbol-filename on
7963 (@value{GDBP}) p/a ptt
7964 $4 = 0xe008 <t in hi2.c>
7965 @end smallexample
7966
7967 @quotation
7968 @emph{Warning:} For pointers that point to a local variable, @samp{p/a}
7969 does not show the symbol name and filename of the referent, even with
7970 the appropriate @code{set print} options turned on.
7971 @end quotation
7972
7973 Other settings control how different kinds of objects are printed:
7974
7975 @table @code
7976 @item set print array
7977 @itemx set print array on
7978 @cindex pretty print arrays
7979 Pretty print arrays.  This format is more convenient to read,
7980 but uses more space.  The default is off.
7981
7982 @item set print array off
7983 Return to compressed format for arrays.
7984
7985 @item show print array
7986 Show whether compressed or pretty format is selected for displaying
7987 arrays.
7988
7989 @cindex print array indexes
7990 @item set print array-indexes
7991 @itemx set print array-indexes on
7992 Print the index of each element when displaying arrays.  May be more
7993 convenient to locate a given element in the array or quickly find the
7994 index of a given element in that printed array.  The default is off.
7995
7996 @item set print array-indexes off
7997 Stop printing element indexes when displaying arrays.
7998
7999 @item show print array-indexes
8000 Show whether the index of each element is printed when displaying
8001 arrays.
8002
8003 @item set print elements @var{number-of-elements}
8004 @cindex number of array elements to print
8005 @cindex limit on number of printed array elements
8006 Set a limit on how many elements of an array @value{GDBN} will print.
8007 If @value{GDBN} is printing a large array, it stops printing after it has
8008 printed the number of elements set by the @code{set print elements} command.
8009 This limit also applies to the display of strings.
8010 When @value{GDBN} starts, this limit is set to 200.
8011 Setting  @var{number-of-elements} to zero means that the printing is unlimited.
8012
8013 @item show print elements
8014 Display the number of elements of a large array that @value{GDBN} will print.
8015 If the number is 0, then the printing is unlimited.
8016
8017 @item set print frame-arguments @var{value}
8018 @kindex set print frame-arguments
8019 @cindex printing frame argument values
8020 @cindex print all frame argument values
8021 @cindex print frame argument values for scalars only
8022 @cindex do not print frame argument values
8023 This command allows to control how the values of arguments are printed
8024 when the debugger prints a frame (@pxref{Frames}).  The possible
8025 values are:
8026
8027 @table @code
8028 @item all
8029 The values of all arguments are printed.
8030
8031 @item scalars
8032 Print the value of an argument only if it is a scalar.  The value of more
8033 complex arguments such as arrays, structures, unions, etc, is replaced
8034 by @code{@dots{}}.  This is the default.  Here is an example where
8035 only scalar arguments are shown:
8036
8037 @smallexample
8038 #1  0x08048361 in call_me (i=3, s=@dots{}, ss=0xbf8d508c, u=@dots{}, e=green)
8039   at frame-args.c:23
8040 @end smallexample
8041
8042 @item none
8043 None of the argument values are printed.  Instead, the value of each argument
8044 is replaced by @code{@dots{}}.  In this case, the example above now becomes:
8045
8046 @smallexample
8047 #1  0x08048361 in call_me (i=@dots{}, s=@dots{}, ss=@dots{}, u=@dots{}, e=@dots{})
8048   at frame-args.c:23
8049 @end smallexample
8050 @end table
8051
8052 By default, only scalar arguments are printed.  This command can be used
8053 to configure the debugger to print the value of all arguments, regardless
8054 of their type.  However, it is often advantageous to not print the value
8055 of more complex parameters.  For instance, it reduces the amount of
8056 information printed in each frame, making the backtrace more readable.
8057 Also, it improves performance when displaying Ada frames, because
8058 the computation of large arguments can sometimes be CPU-intensive,
8059 especially in large applications.  Setting @code{print frame-arguments}
8060 to @code{scalars} (the default) or @code{none} avoids this computation,
8061 thus speeding up the display of each Ada frame.
8062
8063 @item show print frame-arguments
8064 Show how the value of arguments should be displayed when printing a frame.
8065
8066 @anchor{set print entry-values}
8067 @item set print entry-values @var{value}
8068 @kindex set print entry-values
8069 Set printing of frame argument values at function entry.  In some cases
8070 @value{GDBN} can determine the value of function argument which was passed by
8071 the function caller, even if the value was modified inside the called function
8072 and therefore is different.  With optimized code, the current value could be
8073 unavailable, but the entry value may still be known.
8074
8075 The default value is @code{default} (see below for its description).  Older
8076 @value{GDBN} behaved as with the setting @code{no}.  Compilers not supporting
8077 this feature will behave in the @code{default} setting the same way as with the
8078 @code{no} setting.
8079
8080 This functionality is currently supported only by DWARF 2 debugging format and
8081 the compiler has to produce @samp{DW_TAG_GNU_call_site} tags.  With
8082 @value{NGCC}, you need to specify @option{-O -g} during compilation, to get
8083 this information.
8084
8085 The @var{value} parameter can be one of the following:
8086
8087 @table @code
8088 @item no
8089 Print only actual parameter values, never print values from function entry
8090 point.
8091 @smallexample
8092 #0  equal (val=5)
8093 #0  different (val=6)
8094 #0  lost (val=<optimized out>)
8095 #0  born (val=10)
8096 #0  invalid (val=<optimized out>)
8097 @end smallexample
8098
8099 @item only
8100 Print only parameter values from function entry point.  The actual parameter
8101 values are never printed.
8102 @smallexample
8103 #0  equal (val@@entry=5)
8104 #0  different (val@@entry=5)
8105 #0  lost (val@@entry=5)
8106 #0  born (val@@entry=<optimized out>)
8107 #0  invalid (val@@entry=<optimized out>)
8108 @end smallexample
8109
8110 @item preferred
8111 Print only parameter values from function entry point.  If value from function
8112 entry point is not known while the actual value is known, print the actual
8113 value for such parameter.
8114 @smallexample
8115 #0  equal (val@@entry=5)
8116 #0  different (val@@entry=5)
8117 #0  lost (val@@entry=5)
8118 #0  born (val=10)
8119 #0  invalid (val@@entry=<optimized out>)
8120 @end smallexample
8121
8122 @item if-needed
8123 Print actual parameter values.  If actual parameter value is not known while
8124 value from function entry point is known, print the entry point value for such
8125 parameter.
8126 @smallexample
8127 #0  equal (val=5)
8128 #0  different (val=6)
8129 #0  lost (val@@entry=5)
8130 #0  born (val=10)
8131 #0  invalid (val=<optimized out>)
8132 @end smallexample
8133
8134 @item both
8135 Always print both the actual parameter value and its value from function entry
8136 point, even if values of one or both are not available due to compiler
8137 optimizations.
8138 @smallexample
8139 #0  equal (val=5, val@@entry=5)
8140 #0  different (val=6, val@@entry=5)
8141 #0  lost (val=<optimized out>, val@@entry=5)
8142 #0  born (val=10, val@@entry=<optimized out>)
8143 #0  invalid (val=<optimized out>, val@@entry=<optimized out>)
8144 @end smallexample
8145
8146 @item compact
8147 Print the actual parameter value if it is known and also its value from
8148 function entry point if it is known.  If neither is known, print for the actual
8149 value @code{<optimized out>}.  If not in MI mode (@pxref{GDB/MI}) and if both
8150 values are known and identical, print the shortened
8151 @code{param=param@@entry=VALUE} notation.
8152 @smallexample
8153 #0  equal (val=val@@entry=5)
8154 #0  different (val=6, val@@entry=5)
8155 #0  lost (val@@entry=5)
8156 #0  born (val=10)
8157 #0  invalid (val=<optimized out>)
8158 @end smallexample
8159
8160 @item default
8161 Always print the actual parameter value.  Print also its value from function
8162 entry point, but only if it is known.  If not in MI mode (@pxref{GDB/MI}) and
8163 if both values are known and identical, print the shortened
8164 @code{param=param@@entry=VALUE} notation.
8165 @smallexample
8166 #0  equal (val=val@@entry=5)
8167 #0  different (val=6, val@@entry=5)
8168 #0  lost (val=<optimized out>, val@@entry=5)
8169 #0  born (val=10)
8170 #0  invalid (val=<optimized out>)
8171 @end smallexample
8172 @end table
8173
8174 For analysis messages on possible failures of frame argument values at function
8175 entry resolution see @ref{set debug entry-values}.
8176
8177 @item show print entry-values
8178 Show the method being used for printing of frame argument values at function
8179 entry.
8180
8181 @item set print repeats
8182 @cindex repeated array elements
8183 Set the threshold for suppressing display of repeated array
8184 elements.  When the number of consecutive identical elements of an
8185 array exceeds the threshold, @value{GDBN} prints the string
8186 @code{"<repeats @var{n} times>"}, where @var{n} is the number of
8187 identical repetitions, instead of displaying the identical elements
8188 themselves.  Setting the threshold to zero will cause all elements to
8189 be individually printed.  The default threshold is 10.
8190
8191 @item show print repeats
8192 Display the current threshold for printing repeated identical
8193 elements.
8194
8195 @item set print null-stop
8196 @cindex @sc{null} elements in arrays
8197 Cause @value{GDBN} to stop printing the characters of an array when the first
8198 @sc{null} is encountered.  This is useful when large arrays actually
8199 contain only short strings.
8200 The default is off.
8201
8202 @item show print null-stop
8203 Show whether @value{GDBN} stops printing an array on the first
8204 @sc{null} character.
8205
8206 @item set print pretty on
8207 @cindex print structures in indented form
8208 @cindex indentation in structure display
8209 Cause @value{GDBN} to print structures in an indented format with one member
8210 per line, like this:
8211
8212 @smallexample
8213 @group
8214 $1 = @{
8215   next = 0x0,
8216   flags = @{
8217     sweet = 1,
8218     sour = 1
8219   @},
8220   meat = 0x54 "Pork"
8221 @}
8222 @end group
8223 @end smallexample
8224
8225 @item set print pretty off
8226 Cause @value{GDBN} to print structures in a compact format, like this:
8227
8228 @smallexample
8229 @group
8230 $1 = @{next = 0x0, flags = @{sweet = 1, sour = 1@}, \
8231 meat = 0x54 "Pork"@}
8232 @end group
8233 @end smallexample
8234
8235 @noindent
8236 This is the default format.
8237
8238 @item show print pretty
8239 Show which format @value{GDBN} is using to print structures.
8240
8241 @item set print sevenbit-strings on
8242 @cindex eight-bit characters in strings
8243 @cindex octal escapes in strings
8244 Print using only seven-bit characters; if this option is set,
8245 @value{GDBN} displays any eight-bit characters (in strings or
8246 character values) using the notation @code{\}@var{nnn}.  This setting is
8247 best if you are working in English (@sc{ascii}) and you use the
8248 high-order bit of characters as a marker or ``meta'' bit.
8249
8250 @item set print sevenbit-strings off
8251 Print full eight-bit characters.  This allows the use of more
8252 international character sets, and is the default.
8253
8254 @item show print sevenbit-strings
8255 Show whether or not @value{GDBN} is printing only seven-bit characters.
8256
8257 @item set print union on
8258 @cindex unions in structures, printing
8259 Tell @value{GDBN} to print unions which are contained in structures
8260 and other unions.  This is the default setting.
8261
8262 @item set print union off
8263 Tell @value{GDBN} not to print unions which are contained in
8264 structures and other unions.  @value{GDBN} will print @code{"@{...@}"}
8265 instead.
8266
8267 @item show print union
8268 Ask @value{GDBN} whether or not it will print unions which are contained in
8269 structures and other unions.
8270
8271 For example, given the declarations
8272
8273 @smallexample
8274 typedef enum @{Tree, Bug@} Species;
8275 typedef enum @{Big_tree, Acorn, Seedling@} Tree_forms;
8276 typedef enum @{Caterpillar, Cocoon, Butterfly@}
8277               Bug_forms;
8278
8279 struct thing @{
8280   Species it;
8281   union @{
8282     Tree_forms tree;
8283     Bug_forms bug;
8284   @} form;
8285 @};
8286
8287 struct thing foo = @{Tree, @{Acorn@}@};
8288 @end smallexample
8289
8290 @noindent
8291 with @code{set print union on} in effect @samp{p foo} would print
8292
8293 @smallexample
8294 $1 = @{it = Tree, form = @{tree = Acorn, bug = Cocoon@}@}
8295 @end smallexample
8296
8297 @noindent
8298 and with @code{set print union off} in effect it would print
8299
8300 @smallexample
8301 $1 = @{it = Tree, form = @{...@}@}
8302 @end smallexample
8303
8304 @noindent
8305 @code{set print union} affects programs written in C-like languages
8306 and in Pascal.
8307 @end table
8308
8309 @need 1000
8310 @noindent
8311 These settings are of interest when debugging C@t{++} programs:
8312
8313 @table @code
8314 @cindex demangling C@t{++} names
8315 @item set print demangle
8316 @itemx set print demangle on
8317 Print C@t{++} names in their source form rather than in the encoded
8318 (``mangled'') form passed to the assembler and linker for type-safe
8319 linkage.  The default is on.
8320
8321 @item show print demangle
8322 Show whether C@t{++} names are printed in mangled or demangled form.
8323
8324 @item set print asm-demangle
8325 @itemx set print asm-demangle on
8326 Print C@t{++} names in their source form rather than their mangled form, even
8327 in assembler code printouts such as instruction disassemblies.
8328 The default is off.
8329
8330 @item show print asm-demangle
8331 Show whether C@t{++} names in assembly listings are printed in mangled
8332 or demangled form.
8333
8334 @cindex C@t{++} symbol decoding style
8335 @cindex symbol decoding style, C@t{++}
8336 @kindex set demangle-style
8337 @item set demangle-style @var{style}
8338 Choose among several encoding schemes used by different compilers to
8339 represent C@t{++} names.  The choices for @var{style} are currently:
8340
8341 @table @code
8342 @item auto
8343 Allow @value{GDBN} to choose a decoding style by inspecting your program.
8344
8345 @item gnu
8346 Decode based on the @sc{gnu} C@t{++} compiler (@code{g++}) encoding algorithm.
8347 This is the default.
8348
8349 @item hp
8350 Decode based on the HP ANSI C@t{++} (@code{aCC}) encoding algorithm.
8351
8352 @item lucid
8353 Decode based on the Lucid C@t{++} compiler (@code{lcc}) encoding algorithm.
8354
8355 @item arm
8356 Decode using the algorithm in the @cite{C@t{++} Annotated Reference Manual}.
8357 @strong{Warning:} this setting alone is not sufficient to allow
8358 debugging @code{cfront}-generated executables.  @value{GDBN} would
8359 require further enhancement to permit that.
8360
8361 @end table
8362 If you omit @var{style}, you will see a list of possible formats.
8363
8364 @item show demangle-style
8365 Display the encoding style currently in use for decoding C@t{++} symbols.
8366
8367 @item set print object
8368 @itemx set print object on
8369 @cindex derived type of an object, printing
8370 @cindex display derived types
8371 When displaying a pointer to an object, identify the @emph{actual}
8372 (derived) type of the object rather than the @emph{declared} type, using
8373 the virtual function table.  Note that the virtual function table is
8374 required---this feature can only work for objects that have run-time
8375 type identification; a single virtual method in the object's declared
8376 type is sufficient.
8377
8378 @item set print object off
8379 Display only the declared type of objects, without reference to the
8380 virtual function table.  This is the default setting.
8381
8382 @item show print object
8383 Show whether actual, or declared, object types are displayed.
8384
8385 @item set print static-members
8386 @itemx set print static-members on
8387 @cindex static members of C@t{++} objects
8388 Print static members when displaying a C@t{++} object.  The default is on.
8389
8390 @item set print static-members off
8391 Do not print static members when displaying a C@t{++} object.
8392
8393 @item show print static-members
8394 Show whether C@t{++} static members are printed or not.
8395
8396 @item set print pascal_static-members
8397 @itemx set print pascal_static-members on
8398 @cindex static members of Pascal objects
8399 @cindex Pascal objects, static members display
8400 Print static members when displaying a Pascal object.  The default is on.
8401
8402 @item set print pascal_static-members off
8403 Do not print static members when displaying a Pascal object.
8404
8405 @item show print pascal_static-members
8406 Show whether Pascal static members are printed or not.
8407
8408 @c These don't work with HP ANSI C++ yet.
8409 @item set print vtbl
8410 @itemx set print vtbl on
8411 @cindex pretty print C@t{++} virtual function tables
8412 @cindex virtual functions (C@t{++}) display
8413 @cindex VTBL display
8414 Pretty print C@t{++} virtual function tables.  The default is off.
8415 (The @code{vtbl} commands do not work on programs compiled with the HP
8416 ANSI C@t{++} compiler (@code{aCC}).)
8417
8418 @item set print vtbl off
8419 Do not pretty print C@t{++} virtual function tables.
8420
8421 @item show print vtbl
8422 Show whether C@t{++} virtual function tables are pretty printed, or not.
8423 @end table
8424
8425 @node Pretty Printing
8426 @section Pretty Printing
8427
8428 @value{GDBN} provides a mechanism to allow pretty-printing of values using
8429 Python code.  It greatly simplifies the display of complex objects.  This
8430 mechanism works for both MI and the CLI.
8431
8432 @menu
8433 * Pretty-Printer Introduction::  Introduction to pretty-printers
8434 * Pretty-Printer Example::       An example pretty-printer
8435 * Pretty-Printer Commands::      Pretty-printer commands
8436 @end menu
8437
8438 @node Pretty-Printer Introduction
8439 @subsection Pretty-Printer Introduction
8440
8441 When @value{GDBN} prints a value, it first sees if there is a pretty-printer
8442 registered for the value.  If there is then @value{GDBN} invokes the
8443 pretty-printer to print the value.  Otherwise the value is printed normally.
8444
8445 Pretty-printers are normally named.  This makes them easy to manage.
8446 The @samp{info pretty-printer} command will list all the installed
8447 pretty-printers with their names.
8448 If a pretty-printer can handle multiple data types, then its
8449 @dfn{subprinters} are the printers for the individual data types.
8450 Each such subprinter has its own name.
8451 The format of the name is @var{printer-name};@var{subprinter-name}.
8452
8453 Pretty-printers are installed by @dfn{registering} them with @value{GDBN}.
8454 Typically they are automatically loaded and registered when the corresponding
8455 debug information is loaded, thus making them available without having to
8456 do anything special.
8457
8458 There are three places where a pretty-printer can be registered.
8459
8460 @itemize @bullet
8461 @item
8462 Pretty-printers registered globally are available when debugging
8463 all inferiors.
8464
8465 @item
8466 Pretty-printers registered with a program space are available only
8467 when debugging that program.
8468 @xref{Progspaces In Python}, for more details on program spaces in Python.
8469
8470 @item
8471 Pretty-printers registered with an objfile are loaded and unloaded
8472 with the corresponding objfile (e.g., shared library).
8473 @xref{Objfiles In Python}, for more details on objfiles in Python.
8474 @end itemize
8475
8476 @xref{Selecting Pretty-Printers}, for further information on how 
8477 pretty-printers are selected,
8478
8479 @xref{Writing a Pretty-Printer}, for implementing pretty printers
8480 for new types.
8481
8482 @node Pretty-Printer Example
8483 @subsection Pretty-Printer Example
8484
8485 Here is how a C@t{++} @code{std::string} looks without a pretty-printer:
8486
8487 @smallexample
8488 (@value{GDBP}) print s
8489 $1 = @{
8490   static npos = 4294967295, 
8491   _M_dataplus = @{
8492     <std::allocator<char>> = @{
8493       <__gnu_cxx::new_allocator<char>> = @{
8494         <No data fields>@}, <No data fields>
8495       @},
8496     members of std::basic_string<char, std::char_traits<char>,
8497       std::allocator<char> >::_Alloc_hider:
8498     _M_p = 0x804a014 "abcd"
8499   @}
8500 @}
8501 @end smallexample
8502
8503 With a pretty-printer for @code{std::string} only the contents are printed:
8504
8505 @smallexample
8506 (@value{GDBP}) print s
8507 $2 = "abcd"
8508 @end smallexample
8509
8510 @node Pretty-Printer Commands
8511 @subsection Pretty-Printer Commands
8512 @cindex pretty-printer commands
8513
8514 @table @code
8515 @kindex info pretty-printer
8516 @item info pretty-printer [@var{object-regexp} [@var{name-regexp}]]
8517 Print the list of installed pretty-printers.
8518 This includes disabled pretty-printers, which are marked as such.
8519
8520 @var{object-regexp} is a regular expression matching the objects
8521 whose pretty-printers to list.
8522 Objects can be @code{global}, the program space's file
8523 (@pxref{Progspaces In Python}),
8524 and the object files within that program space (@pxref{Objfiles In Python}).
8525 @xref{Selecting Pretty-Printers}, for details on how @value{GDBN}
8526 looks up a printer from these three objects.
8527
8528 @var{name-regexp} is a regular expression matching the name of the printers
8529 to list.
8530
8531 @kindex disable pretty-printer
8532 @item disable pretty-printer [@var{object-regexp} [@var{name-regexp}]]
8533 Disable pretty-printers matching @var{object-regexp} and @var{name-regexp}.
8534 A disabled pretty-printer is not forgotten, it may be enabled again later.
8535
8536 @kindex enable pretty-printer
8537 @item enable pretty-printer [@var{object-regexp} [@var{name-regexp}]]
8538 Enable pretty-printers matching @var{object-regexp} and @var{name-regexp}.
8539 @end table
8540
8541 Example:
8542
8543 Suppose we have three pretty-printers installed: one from library1.so
8544 named @code{foo} that prints objects of type @code{foo}, and
8545 another from library2.so named @code{bar} that prints two types of objects,
8546 @code{bar1} and @code{bar2}.
8547
8548 @smallexample
8549 (gdb) info pretty-printer
8550 library1.so:
8551   foo
8552 library2.so:
8553   bar
8554     bar1
8555     bar2
8556 (gdb) info pretty-printer library2
8557 library2.so:
8558   bar
8559     bar1
8560     bar2
8561 (gdb) disable pretty-printer library1
8562 1 printer disabled
8563 2 of 3 printers enabled
8564 (gdb) info pretty-printer
8565 library1.so:
8566   foo [disabled]
8567 library2.so:
8568   bar
8569     bar1
8570     bar2
8571 (gdb) disable pretty-printer library2 bar:bar1
8572 1 printer disabled
8573 1 of 3 printers enabled
8574 (gdb) info pretty-printer library2
8575 library1.so:
8576   foo [disabled]
8577 library2.so:
8578   bar
8579     bar1 [disabled]
8580     bar2
8581 (gdb) disable pretty-printer library2 bar
8582 1 printer disabled
8583 0 of 3 printers enabled
8584 (gdb) info pretty-printer library2
8585 library1.so:
8586   foo [disabled]
8587 library2.so:
8588   bar [disabled]
8589     bar1 [disabled]
8590     bar2
8591 @end smallexample
8592
8593 Note that for @code{bar} the entire printer can be disabled,
8594 as can each individual subprinter.
8595
8596 @node Value History
8597 @section Value History
8598
8599 @cindex value history
8600 @cindex history of values printed by @value{GDBN}
8601 Values printed by the @code{print} command are saved in the @value{GDBN}
8602 @dfn{value history}.  This allows you to refer to them in other expressions.
8603 Values are kept until the symbol table is re-read or discarded
8604 (for example with the @code{file} or @code{symbol-file} commands).
8605 When the symbol table changes, the value history is discarded,
8606 since the values may contain pointers back to the types defined in the
8607 symbol table.
8608
8609 @cindex @code{$}
8610 @cindex @code{$$}
8611 @cindex history number
8612 The values printed are given @dfn{history numbers} by which you can
8613 refer to them.  These are successive integers starting with one.
8614 @code{print} shows you the history number assigned to a value by
8615 printing @samp{$@var{num} = } before the value; here @var{num} is the
8616 history number.
8617
8618 To refer to any previous value, use @samp{$} followed by the value's
8619 history number.  The way @code{print} labels its output is designed to
8620 remind you of this.  Just @code{$} refers to the most recent value in
8621 the history, and @code{$$} refers to the value before that.
8622 @code{$$@var{n}} refers to the @var{n}th value from the end; @code{$$2}
8623 is the value just prior to @code{$$}, @code{$$1} is equivalent to
8624 @code{$$}, and @code{$$0} is equivalent to @code{$}.
8625
8626 For example, suppose you have just printed a pointer to a structure and
8627 want to see the contents of the structure.  It suffices to type
8628
8629 @smallexample
8630 p *$
8631 @end smallexample
8632
8633 If you have a chain of structures where the component @code{next} points
8634 to the next one, you can print the contents of the next one with this:
8635
8636 @smallexample
8637 p *$.next
8638 @end smallexample
8639
8640 @noindent
8641 You can print successive links in the chain by repeating this
8642 command---which you can do by just typing @key{RET}.
8643
8644 Note that the history records values, not expressions.  If the value of
8645 @code{x} is 4 and you type these commands:
8646
8647 @smallexample
8648 print x
8649 set x=5
8650 @end smallexample
8651
8652 @noindent
8653 then the value recorded in the value history by the @code{print} command
8654 remains 4 even though the value of @code{x} has changed.
8655
8656 @table @code
8657 @kindex show values
8658 @item show values
8659 Print the last ten values in the value history, with their item numbers.
8660 This is like @samp{p@ $$9} repeated ten times, except that @code{show
8661 values} does not change the history.
8662
8663 @item show values @var{n}
8664 Print ten history values centered on history item number @var{n}.
8665
8666 @item show values +
8667 Print ten history values just after the values last printed.  If no more
8668 values are available, @code{show values +} produces no display.
8669 @end table
8670
8671 Pressing @key{RET} to repeat @code{show values @var{n}} has exactly the
8672 same effect as @samp{show values +}.
8673
8674 @node Convenience Vars
8675 @section Convenience Variables
8676
8677 @cindex convenience variables
8678 @cindex user-defined variables
8679 @value{GDBN} provides @dfn{convenience variables} that you can use within
8680 @value{GDBN} to hold on to a value and refer to it later.  These variables
8681 exist entirely within @value{GDBN}; they are not part of your program, and
8682 setting a convenience variable has no direct effect on further execution
8683 of your program.  That is why you can use them freely.
8684
8685 Convenience variables are prefixed with @samp{$}.  Any name preceded by
8686 @samp{$} can be used for a convenience variable, unless it is one of
8687 the predefined machine-specific register names (@pxref{Registers, ,Registers}).
8688 (Value history references, in contrast, are @emph{numbers} preceded
8689 by @samp{$}.  @xref{Value History, ,Value History}.)
8690
8691 You can save a value in a convenience variable with an assignment
8692 expression, just as you would set a variable in your program.
8693 For example:
8694
8695 @smallexample
8696 set $foo = *object_ptr
8697 @end smallexample
8698
8699 @noindent
8700 would save in @code{$foo} the value contained in the object pointed to by
8701 @code{object_ptr}.
8702
8703 Using a convenience variable for the first time creates it, but its
8704 value is @code{void} until you assign a new value.  You can alter the
8705 value with another assignment at any time.
8706
8707 Convenience variables have no fixed types.  You can assign a convenience
8708 variable any type of value, including structures and arrays, even if
8709 that variable already has a value of a different type.  The convenience
8710 variable, when used as an expression, has the type of its current value.
8711
8712 @table @code
8713 @kindex show convenience
8714 @cindex show all user variables
8715 @item show convenience
8716 Print a list of convenience variables used so far, and their values.
8717 Abbreviated @code{show conv}.
8718
8719 @kindex init-if-undefined
8720 @cindex convenience variables, initializing
8721 @item init-if-undefined $@var{variable} = @var{expression}
8722 Set a convenience variable if it has not already been set.  This is useful
8723 for user-defined commands that keep some state.  It is similar, in concept,
8724 to using local static variables with initializers in C (except that
8725 convenience variables are global).  It can also be used to allow users to
8726 override default values used in a command script.
8727
8728 If the variable is already defined then the expression is not evaluated so
8729 any side-effects do not occur.
8730 @end table
8731
8732 One of the ways to use a convenience variable is as a counter to be
8733 incremented or a pointer to be advanced.  For example, to print
8734 a field from successive elements of an array of structures:
8735
8736 @smallexample
8737 set $i = 0
8738 print bar[$i++]->contents
8739 @end smallexample
8740
8741 @noindent
8742 Repeat that command by typing @key{RET}.
8743
8744 Some convenience variables are created automatically by @value{GDBN} and given
8745 values likely to be useful.
8746
8747 @table @code
8748 @vindex $_@r{, convenience variable}
8749 @item $_
8750 The variable @code{$_} is automatically set by the @code{x} command to
8751 the last address examined (@pxref{Memory, ,Examining Memory}).  Other
8752 commands which provide a default address for @code{x} to examine also
8753 set @code{$_} to that address; these commands include @code{info line}
8754 and @code{info breakpoint}.  The type of @code{$_} is @code{void *}
8755 except when set by the @code{x} command, in which case it is a pointer
8756 to the type of @code{$__}.
8757
8758 @vindex $__@r{, convenience variable}
8759 @item $__
8760 The variable @code{$__} is automatically set by the @code{x} command
8761 to the value found in the last address examined.  Its type is chosen
8762 to match the format in which the data was printed.
8763
8764 @item $_exitcode
8765 @vindex $_exitcode@r{, convenience variable}
8766 The variable @code{$_exitcode} is automatically set to the exit code when
8767 the program being debugged terminates.
8768
8769 @item $_sdata
8770 @vindex $_sdata@r{, inspect, convenience variable}
8771 The variable @code{$_sdata} contains extra collected static tracepoint
8772 data.  @xref{Tracepoint Actions,,Tracepoint Action Lists}.  Note that
8773 @code{$_sdata} could be empty, if not inspecting a trace buffer, or
8774 if extra static tracepoint data has not been collected.
8775
8776 @item $_siginfo
8777 @vindex $_siginfo@r{, convenience variable}
8778 The variable @code{$_siginfo} contains extra signal information
8779 (@pxref{extra signal information}).  Note that @code{$_siginfo}
8780 could be empty, if the application has not yet received any signals.
8781 For example, it will be empty before you execute the @code{run} command.
8782
8783 @item $_tlb
8784 @vindex $_tlb@r{, convenience variable}
8785 The variable @code{$_tlb} is automatically set when debugging
8786 applications running on MS-Windows in native mode or connected to
8787 gdbserver that supports the @code{qGetTIBAddr} request. 
8788 @xref{General Query Packets}.
8789 This variable contains the address of the thread information block.
8790
8791 @end table
8792
8793 On HP-UX systems, if you refer to a function or variable name that
8794 begins with a dollar sign, @value{GDBN} searches for a user or system
8795 name first, before it searches for a convenience variable.
8796
8797 @cindex convenience functions
8798 @value{GDBN} also supplies some @dfn{convenience functions}.  These
8799 have a syntax similar to convenience variables.  A convenience
8800 function can be used in an expression just like an ordinary function;
8801 however, a convenience function is implemented internally to
8802 @value{GDBN}.
8803
8804 @table @code
8805 @item help function
8806 @kindex help function
8807 @cindex show all convenience functions
8808 Print a list of all convenience functions.
8809 @end table
8810
8811 @node Registers
8812 @section Registers
8813
8814 @cindex registers
8815 You can refer to machine register contents, in expressions, as variables
8816 with names starting with @samp{$}.  The names of registers are different
8817 for each machine; use @code{info registers} to see the names used on
8818 your machine.
8819
8820 @table @code
8821 @kindex info registers
8822 @item info registers
8823 Print the names and values of all registers except floating-point
8824 and vector registers (in the selected stack frame).
8825
8826 @kindex info all-registers
8827 @cindex floating point registers
8828 @item info all-registers
8829 Print the names and values of all registers, including floating-point
8830 and vector registers (in the selected stack frame).
8831
8832 @item info registers @var{regname} @dots{}
8833 Print the @dfn{relativized} value of each specified register @var{regname}.
8834 As discussed in detail below, register values are normally relative to
8835 the selected stack frame.  @var{regname} may be any register name valid on
8836 the machine you are using, with or without the initial @samp{$}.
8837 @end table
8838
8839 @cindex stack pointer register
8840 @cindex program counter register
8841 @cindex process status register
8842 @cindex frame pointer register
8843 @cindex standard registers
8844 @value{GDBN} has four ``standard'' register names that are available (in
8845 expressions) on most machines---whenever they do not conflict with an
8846 architecture's canonical mnemonics for registers.  The register names
8847 @code{$pc} and @code{$sp} are used for the program counter register and
8848 the stack pointer.  @code{$fp} is used for a register that contains a
8849 pointer to the current stack frame, and @code{$ps} is used for a
8850 register that contains the processor status.  For example,
8851 you could print the program counter in hex with
8852
8853 @smallexample
8854 p/x $pc
8855 @end smallexample
8856
8857 @noindent
8858 or print the instruction to be executed next with
8859
8860 @smallexample
8861 x/i $pc
8862 @end smallexample
8863
8864 @noindent
8865 or add four to the stack pointer@footnote{This is a way of removing
8866 one word from the stack, on machines where stacks grow downward in
8867 memory (most machines, nowadays).  This assumes that the innermost
8868 stack frame is selected; setting @code{$sp} is not allowed when other
8869 stack frames are selected.  To pop entire frames off the stack,
8870 regardless of machine architecture, use @code{return};
8871 see @ref{Returning, ,Returning from a Function}.} with
8872
8873 @smallexample
8874 set $sp += 4
8875 @end smallexample
8876
8877 Whenever possible, these four standard register names are available on
8878 your machine even though the machine has different canonical mnemonics,
8879 so long as there is no conflict.  The @code{info registers} command
8880 shows the canonical names.  For example, on the SPARC, @code{info
8881 registers} displays the processor status register as @code{$psr} but you
8882 can also refer to it as @code{$ps}; and on x86-based machines @code{$ps}
8883 is an alias for the @sc{eflags} register.
8884
8885 @value{GDBN} always considers the contents of an ordinary register as an
8886 integer when the register is examined in this way.  Some machines have
8887 special registers which can hold nothing but floating point; these
8888 registers are considered to have floating point values.  There is no way
8889 to refer to the contents of an ordinary register as floating point value
8890 (although you can @emph{print} it as a floating point value with
8891 @samp{print/f $@var{regname}}).
8892
8893 Some registers have distinct ``raw'' and ``virtual'' data formats.  This
8894 means that the data format in which the register contents are saved by
8895 the operating system is not the same one that your program normally
8896 sees.  For example, the registers of the 68881 floating point
8897 coprocessor are always saved in ``extended'' (raw) format, but all C
8898 programs expect to work with ``double'' (virtual) format.  In such
8899 cases, @value{GDBN} normally works with the virtual format only (the format
8900 that makes sense for your program), but the @code{info registers} command
8901 prints the data in both formats.
8902
8903 @cindex SSE registers (x86)
8904 @cindex MMX registers (x86)
8905 Some machines have special registers whose contents can be interpreted
8906 in several different ways.  For example, modern x86-based machines
8907 have SSE and MMX registers that can hold several values packed
8908 together in several different formats.  @value{GDBN} refers to such
8909 registers in @code{struct} notation:
8910
8911 @smallexample
8912 (@value{GDBP}) print $xmm1
8913 $1 = @{
8914   v4_float = @{0, 3.43859137e-038, 1.54142831e-044, 1.821688e-044@},
8915   v2_double = @{9.92129282474342e-303, 2.7585945287983262e-313@},
8916   v16_int8 = "\000\000\000\000\3706;\001\v\000\000\000\r\000\000",
8917   v8_int16 = @{0, 0, 14072, 315, 11, 0, 13, 0@},
8918   v4_int32 = @{0, 20657912, 11, 13@},
8919   v2_int64 = @{88725056443645952, 55834574859@},
8920   uint128 = 0x0000000d0000000b013b36f800000000
8921 @}
8922 @end smallexample
8923
8924 @noindent
8925 To set values of such registers, you need to tell @value{GDBN} which
8926 view of the register you wish to change, as if you were assigning
8927 value to a @code{struct} member:
8928
8929 @smallexample
8930  (@value{GDBP}) set $xmm1.uint128 = 0x000000000000000000000000FFFFFFFF
8931 @end smallexample
8932
8933 Normally, register values are relative to the selected stack frame
8934 (@pxref{Selection, ,Selecting a Frame}).  This means that you get the
8935 value that the register would contain if all stack frames farther in
8936 were exited and their saved registers restored.  In order to see the
8937 true contents of hardware registers, you must select the innermost
8938 frame (with @samp{frame 0}).
8939
8940 However, @value{GDBN} must deduce where registers are saved, from the machine
8941 code generated by your compiler.  If some registers are not saved, or if
8942 @value{GDBN} is unable to locate the saved registers, the selected stack
8943 frame makes no difference.
8944
8945 @node Floating Point Hardware
8946 @section Floating Point Hardware
8947 @cindex floating point
8948
8949 Depending on the configuration, @value{GDBN} may be able to give
8950 you more information about the status of the floating point hardware.
8951
8952 @table @code
8953 @kindex info float
8954 @item info float
8955 Display hardware-dependent information about the floating
8956 point unit.  The exact contents and layout vary depending on the
8957 floating point chip.  Currently, @samp{info float} is supported on
8958 the ARM and x86 machines.
8959 @end table
8960
8961 @node Vector Unit
8962 @section Vector Unit
8963 @cindex vector unit
8964
8965 Depending on the configuration, @value{GDBN} may be able to give you
8966 more information about the status of the vector unit.
8967
8968 @table @code
8969 @kindex info vector
8970 @item info vector
8971 Display information about the vector unit.  The exact contents and
8972 layout vary depending on the hardware.
8973 @end table
8974
8975 @node OS Information
8976 @section Operating System Auxiliary Information
8977 @cindex OS information
8978
8979 @value{GDBN} provides interfaces to useful OS facilities that can help
8980 you debug your program.
8981
8982 @cindex @code{ptrace} system call
8983 @cindex @code{struct user} contents
8984 When @value{GDBN} runs on a @dfn{Posix system} (such as GNU or Unix
8985 machines), it interfaces with the inferior via the @code{ptrace}
8986 system call.  The operating system creates a special sata structure,
8987 called @code{struct user}, for this interface.  You can use the
8988 command @code{info udot} to display the contents of this data
8989 structure.
8990
8991 @table @code
8992 @item info udot
8993 @kindex info udot
8994 Display the contents of the @code{struct user} maintained by the OS
8995 kernel for the program being debugged.  @value{GDBN} displays the
8996 contents of @code{struct user} as a list of hex numbers, similar to
8997 the @code{examine} command.
8998 @end table
8999
9000 @cindex auxiliary vector
9001 @cindex vector, auxiliary
9002 Some operating systems supply an @dfn{auxiliary vector} to programs at
9003 startup.  This is akin to the arguments and environment that you
9004 specify for a program, but contains a system-dependent variety of
9005 binary values that tell system libraries important details about the
9006 hardware, operating system, and process.  Each value's purpose is
9007 identified by an integer tag; the meanings are well-known but system-specific.
9008 Depending on the configuration and operating system facilities,
9009 @value{GDBN} may be able to show you this information.  For remote
9010 targets, this functionality may further depend on the remote stub's
9011 support of the @samp{qXfer:auxv:read} packet, see
9012 @ref{qXfer auxiliary vector read}.
9013
9014 @table @code
9015 @kindex info auxv
9016 @item info auxv
9017 Display the auxiliary vector of the inferior, which can be either a
9018 live process or a core dump file.  @value{GDBN} prints each tag value
9019 numerically, and also shows names and text descriptions for recognized
9020 tags.  Some values in the vector are numbers, some bit masks, and some
9021 pointers to strings or other data.  @value{GDBN} displays each value in the
9022 most appropriate form for a recognized tag, and in hexadecimal for
9023 an unrecognized tag.
9024 @end table
9025
9026 On some targets, @value{GDBN} can access operating-system-specific information
9027 and display it to user, without interpretation.  For remote targets,
9028 this functionality depends on the remote stub's support of the 
9029 @samp{qXfer:osdata:read} packet, see @ref{qXfer osdata read}.
9030
9031 @table @code
9032 @kindex info os
9033 @item info os
9034 List the types of OS information available for the target.  If the
9035 target does not return a list of possible types, this command will
9036 report an error.
9037
9038 @kindex info os processes
9039 @item info os processes
9040 Display the list of processes on the target.  For each process,
9041 @value{GDBN} prints the process identifier, the name of the user, and
9042 the command corresponding to the process.
9043 @end table
9044
9045 @node Memory Region Attributes
9046 @section Memory Region Attributes
9047 @cindex memory region attributes
9048
9049 @dfn{Memory region attributes} allow you to describe special handling
9050 required by regions of your target's memory.  @value{GDBN} uses
9051 attributes to determine whether to allow certain types of memory
9052 accesses; whether to use specific width accesses; and whether to cache
9053 target memory.  By default the description of memory regions is
9054 fetched from the target (if the current target supports this), but the
9055 user can override the fetched regions.
9056
9057 Defined memory regions can be individually enabled and disabled.  When a
9058 memory region is disabled, @value{GDBN} uses the default attributes when
9059 accessing memory in that region.  Similarly, if no memory regions have
9060 been defined, @value{GDBN} uses the default attributes when accessing
9061 all memory.
9062
9063 When a memory region is defined, it is given a number to identify it;
9064 to enable, disable, or remove a memory region, you specify that number.
9065
9066 @table @code
9067 @kindex mem
9068 @item mem @var{lower} @var{upper} @var{attributes}@dots{}
9069 Define a memory region bounded by @var{lower} and @var{upper} with
9070 attributes @var{attributes}@dots{}, and add it to the list of regions
9071 monitored by @value{GDBN}.  Note that @var{upper} == 0 is a special
9072 case: it is treated as the target's maximum memory address.
9073 (0xffff on 16 bit targets, 0xffffffff on 32 bit targets, etc.)
9074
9075 @item mem auto
9076 Discard any user changes to the memory regions and use target-supplied
9077 regions, if available, or no regions if the target does not support.
9078
9079 @kindex delete mem
9080 @item delete mem @var{nums}@dots{}
9081 Remove memory regions @var{nums}@dots{} from the list of regions
9082 monitored by @value{GDBN}.
9083
9084 @kindex disable mem
9085 @item disable mem @var{nums}@dots{}
9086 Disable monitoring of memory regions @var{nums}@dots{}.
9087 A disabled memory region is not forgotten.
9088 It may be enabled again later.
9089
9090 @kindex enable mem
9091 @item enable mem @var{nums}@dots{}
9092 Enable monitoring of memory regions @var{nums}@dots{}.
9093
9094 @kindex info mem
9095 @item info mem
9096 Print a table of all defined memory regions, with the following columns
9097 for each region:
9098
9099 @table @emph
9100 @item Memory Region Number
9101 @item Enabled or Disabled.
9102 Enabled memory regions are marked with @samp{y}.
9103 Disabled memory regions are marked with @samp{n}.
9104
9105 @item Lo Address
9106 The address defining the inclusive lower bound of the memory region.
9107
9108 @item Hi Address
9109 The address defining the exclusive upper bound of the memory region.
9110
9111 @item Attributes
9112 The list of attributes set for this memory region.
9113 @end table
9114 @end table
9115
9116
9117 @subsection Attributes
9118
9119 @subsubsection Memory Access Mode
9120 The access mode attributes set whether @value{GDBN} may make read or
9121 write accesses to a memory region.
9122
9123 While these attributes prevent @value{GDBN} from performing invalid
9124 memory accesses, they do nothing to prevent the target system, I/O DMA,
9125 etc.@: from accessing memory.
9126
9127 @table @code
9128 @item ro
9129 Memory is read only.
9130 @item wo
9131 Memory is write only.
9132 @item rw
9133 Memory is read/write.  This is the default.
9134 @end table
9135
9136 @subsubsection Memory Access Size
9137 The access size attribute tells @value{GDBN} to use specific sized
9138 accesses in the memory region.  Often memory mapped device registers
9139 require specific sized accesses.  If no access size attribute is
9140 specified, @value{GDBN} may use accesses of any size.
9141
9142 @table @code
9143 @item 8
9144 Use 8 bit memory accesses.
9145 @item 16
9146 Use 16 bit memory accesses.
9147 @item 32
9148 Use 32 bit memory accesses.
9149 @item 64
9150 Use 64 bit memory accesses.
9151 @end table
9152
9153 @c @subsubsection Hardware/Software Breakpoints
9154 @c The hardware/software breakpoint attributes set whether @value{GDBN}
9155 @c will use hardware or software breakpoints for the internal breakpoints
9156 @c used by the step, next, finish, until, etc. commands.
9157 @c
9158 @c @table @code
9159 @c @item hwbreak
9160 @c Always use hardware breakpoints
9161 @c @item swbreak (default)
9162 @c @end table
9163
9164 @subsubsection Data Cache
9165 The data cache attributes set whether @value{GDBN} will cache target
9166 memory.  While this generally improves performance by reducing debug
9167 protocol overhead, it can lead to incorrect results because @value{GDBN}
9168 does not know about volatile variables or memory mapped device
9169 registers.
9170
9171 @table @code
9172 @item cache
9173 Enable @value{GDBN} to cache target memory.
9174 @item nocache
9175 Disable @value{GDBN} from caching target memory.  This is the default.
9176 @end table
9177
9178 @subsection Memory Access Checking
9179 @value{GDBN} can be instructed to refuse accesses to memory that is
9180 not explicitly described.  This can be useful if accessing such
9181 regions has undesired effects for a specific target, or to provide
9182 better error checking.  The following commands control this behaviour.
9183
9184 @table @code
9185 @kindex set mem inaccessible-by-default
9186 @item set mem inaccessible-by-default [on|off]
9187 If @code{on} is specified, make  @value{GDBN} treat memory not
9188 explicitly described by the memory ranges as non-existent and refuse accesses
9189 to such memory.  The checks are only performed if there's at least one
9190 memory range defined.  If @code{off} is specified, make @value{GDBN}
9191 treat the memory not explicitly described by the memory ranges as RAM.
9192 The default value is @code{on}.
9193 @kindex show mem inaccessible-by-default
9194 @item show mem inaccessible-by-default
9195 Show the current handling of accesses to unknown memory.
9196 @end table
9197
9198
9199 @c @subsubsection Memory Write Verification
9200 @c The memory write verification attributes set whether @value{GDBN}
9201 @c will re-reads data after each write to verify the write was successful.
9202 @c
9203 @c @table @code
9204 @c @item verify
9205 @c @item noverify (default)
9206 @c @end table
9207
9208 @node Dump/Restore Files
9209 @section Copy Between Memory and a File
9210 @cindex dump/restore files
9211 @cindex append data to a file
9212 @cindex dump data to a file
9213 @cindex restore data from a file
9214
9215 You can use the commands @code{dump}, @code{append}, and
9216 @code{restore} to copy data between target memory and a file.  The
9217 @code{dump} and @code{append} commands write data to a file, and the
9218 @code{restore} command reads data from a file back into the inferior's
9219 memory.  Files may be in binary, Motorola S-record, Intel hex, or
9220 Tektronix Hex format; however, @value{GDBN} can only append to binary
9221 files.
9222
9223 @table @code
9224
9225 @kindex dump
9226 @item dump @r{[}@var{format}@r{]} memory @var{filename} @var{start_addr} @var{end_addr}
9227 @itemx dump @r{[}@var{format}@r{]} value @var{filename} @var{expr}
9228 Dump the contents of memory from @var{start_addr} to @var{end_addr},
9229 or the value of @var{expr}, to @var{filename} in the given format.
9230
9231 The @var{format} parameter may be any one of:
9232 @table @code
9233 @item binary
9234 Raw binary form.
9235 @item ihex
9236 Intel hex format.
9237 @item srec
9238 Motorola S-record format.
9239 @item tekhex
9240 Tektronix Hex format.
9241 @end table
9242
9243 @value{GDBN} uses the same definitions of these formats as the
9244 @sc{gnu} binary utilities, like @samp{objdump} and @samp{objcopy}.  If
9245 @var{format} is omitted, @value{GDBN} dumps the data in raw binary
9246 form.
9247
9248 @kindex append
9249 @item append @r{[}binary@r{]} memory @var{filename} @var{start_addr} @var{end_addr}
9250 @itemx append @r{[}binary@r{]} value @var{filename} @var{expr}
9251 Append the contents of memory from @var{start_addr} to @var{end_addr},
9252 or the value of @var{expr}, to the file @var{filename}, in raw binary form.
9253 (@value{GDBN} can only append data to files in raw binary form.)
9254
9255 @kindex restore
9256 @item restore @var{filename} @r{[}binary@r{]} @var{bias} @var{start} @var{end}
9257 Restore the contents of file @var{filename} into memory.  The
9258 @code{restore} command can automatically recognize any known @sc{bfd}
9259 file format, except for raw binary.  To restore a raw binary file you
9260 must specify the optional keyword @code{binary} after the filename.
9261
9262 If @var{bias} is non-zero, its value will be added to the addresses
9263 contained in the file.  Binary files always start at address zero, so
9264 they will be restored at address @var{bias}.  Other bfd files have
9265 a built-in location; they will be restored at offset @var{bias}
9266 from that location.
9267
9268 If @var{start} and/or @var{end} are non-zero, then only data between
9269 file offset @var{start} and file offset @var{end} will be restored.
9270 These offsets are relative to the addresses in the file, before
9271 the @var{bias} argument is applied.
9272
9273 @end table
9274
9275 @node Core File Generation
9276 @section How to Produce a Core File from Your Program
9277 @cindex dump core from inferior
9278
9279 A @dfn{core file} or @dfn{core dump} is a file that records the memory
9280 image of a running process and its process status (register values
9281 etc.).  Its primary use is post-mortem debugging of a program that
9282 crashed while it ran outside a debugger.  A program that crashes
9283 automatically produces a core file, unless this feature is disabled by
9284 the user.  @xref{Files}, for information on invoking @value{GDBN} in
9285 the post-mortem debugging mode.
9286
9287 Occasionally, you may wish to produce a core file of the program you
9288 are debugging in order to preserve a snapshot of its state.
9289 @value{GDBN} has a special command for that.
9290
9291 @table @code
9292 @kindex gcore
9293 @kindex generate-core-file
9294 @item generate-core-file [@var{file}]
9295 @itemx gcore [@var{file}]
9296 Produce a core dump of the inferior process.  The optional argument
9297 @var{file} specifies the file name where to put the core dump.  If not
9298 specified, the file name defaults to @file{core.@var{pid}}, where
9299 @var{pid} is the inferior process ID.
9300
9301 Note that this command is implemented only for some systems (as of
9302 this writing, @sc{gnu}/Linux, FreeBSD, Solaris, Unixware, and S390).
9303 @end table
9304
9305 @node Character Sets
9306 @section Character Sets
9307 @cindex character sets
9308 @cindex charset
9309 @cindex translating between character sets
9310 @cindex host character set
9311 @cindex target character set
9312
9313 If the program you are debugging uses a different character set to
9314 represent characters and strings than the one @value{GDBN} uses itself,
9315 @value{GDBN} can automatically translate between the character sets for
9316 you.  The character set @value{GDBN} uses we call the @dfn{host
9317 character set}; the one the inferior program uses we call the
9318 @dfn{target character set}.
9319
9320 For example, if you are running @value{GDBN} on a @sc{gnu}/Linux system, which
9321 uses the ISO Latin 1 character set, but you are using @value{GDBN}'s
9322 remote protocol (@pxref{Remote Debugging}) to debug a program
9323 running on an IBM mainframe, which uses the @sc{ebcdic} character set,
9324 then the host character set is Latin-1, and the target character set is
9325 @sc{ebcdic}.  If you give @value{GDBN} the command @code{set
9326 target-charset EBCDIC-US}, then @value{GDBN} translates between
9327 @sc{ebcdic} and Latin 1 as you print character or string values, or use
9328 character and string literals in expressions.
9329
9330 @value{GDBN} has no way to automatically recognize which character set
9331 the inferior program uses; you must tell it, using the @code{set
9332 target-charset} command, described below.
9333
9334 Here are the commands for controlling @value{GDBN}'s character set
9335 support:
9336
9337 @table @code
9338 @item set target-charset @var{charset}
9339 @kindex set target-charset
9340 Set the current target character set to @var{charset}.  To display the
9341 list of supported target character sets, type
9342 @kbd{@w{set target-charset @key{TAB}@key{TAB}}}.
9343
9344 @item set host-charset @var{charset}
9345 @kindex set host-charset
9346 Set the current host character set to @var{charset}.
9347
9348 By default, @value{GDBN} uses a host character set appropriate to the
9349 system it is running on; you can override that default using the
9350 @code{set host-charset} command.  On some systems, @value{GDBN} cannot
9351 automatically determine the appropriate host character set.  In this
9352 case, @value{GDBN} uses @samp{UTF-8}.
9353
9354 @value{GDBN} can only use certain character sets as its host character
9355 set.  If you type @kbd{@w{set host-charset @key{TAB}@key{TAB}}},
9356 @value{GDBN} will list the host character sets it supports.
9357
9358 @item set charset @var{charset}
9359 @kindex set charset
9360 Set the current host and target character sets to @var{charset}.  As
9361 above, if you type @kbd{@w{set charset @key{TAB}@key{TAB}}},
9362 @value{GDBN} will list the names of the character sets that can be used
9363 for both host and target.
9364
9365 @item show charset
9366 @kindex show charset
9367 Show the names of the current host and target character sets.
9368
9369 @item show host-charset
9370 @kindex show host-charset
9371 Show the name of the current host character set.
9372
9373 @item show target-charset
9374 @kindex show target-charset
9375 Show the name of the current target character set.
9376
9377 @item set target-wide-charset @var{charset}
9378 @kindex set target-wide-charset
9379 Set the current target's wide character set to @var{charset}.  This is
9380 the character set used by the target's @code{wchar_t} type.  To
9381 display the list of supported wide character sets, type
9382 @kbd{@w{set target-wide-charset @key{TAB}@key{TAB}}}.
9383
9384 @item show target-wide-charset
9385 @kindex show target-wide-charset
9386 Show the name of the current target's wide character set.
9387 @end table
9388
9389 Here is an example of @value{GDBN}'s character set support in action.
9390 Assume that the following source code has been placed in the file
9391 @file{charset-test.c}:
9392
9393 @smallexample
9394 #include <stdio.h>
9395
9396 char ascii_hello[]
9397   = @{72, 101, 108, 108, 111, 44, 32, 119,
9398      111, 114, 108, 100, 33, 10, 0@};
9399 char ibm1047_hello[]
9400   = @{200, 133, 147, 147, 150, 107, 64, 166,
9401      150, 153, 147, 132, 90, 37, 0@};
9402
9403 main ()
9404 @{
9405   printf ("Hello, world!\n");
9406 @}
9407 @end smallexample
9408
9409 In this program, @code{ascii_hello} and @code{ibm1047_hello} are arrays
9410 containing the string @samp{Hello, world!} followed by a newline,
9411 encoded in the @sc{ascii} and @sc{ibm1047} character sets.
9412
9413 We compile the program, and invoke the debugger on it:
9414
9415 @smallexample
9416 $ gcc -g charset-test.c -o charset-test
9417 $ gdb -nw charset-test
9418 GNU gdb 2001-12-19-cvs
9419 Copyright 2001 Free Software Foundation, Inc.
9420 @dots{}
9421 (@value{GDBP})
9422 @end smallexample
9423
9424 We can use the @code{show charset} command to see what character sets
9425 @value{GDBN} is currently using to interpret and display characters and
9426 strings:
9427
9428 @smallexample
9429 (@value{GDBP}) show charset
9430 The current host and target character set is `ISO-8859-1'.
9431 (@value{GDBP})
9432 @end smallexample
9433
9434 For the sake of printing this manual, let's use @sc{ascii} as our
9435 initial character set:
9436 @smallexample
9437 (@value{GDBP}) set charset ASCII
9438 (@value{GDBP}) show charset
9439 The current host and target character set is `ASCII'.
9440 (@value{GDBP})
9441 @end smallexample
9442
9443 Let's assume that @sc{ascii} is indeed the correct character set for our
9444 host system --- in other words, let's assume that if @value{GDBN} prints
9445 characters using the @sc{ascii} character set, our terminal will display
9446 them properly.  Since our current target character set is also
9447 @sc{ascii}, the contents of @code{ascii_hello} print legibly:
9448
9449 @smallexample
9450 (@value{GDBP}) print ascii_hello
9451 $1 = 0x401698 "Hello, world!\n"
9452 (@value{GDBP}) print ascii_hello[0]
9453 $2 = 72 'H'
9454 (@value{GDBP})
9455 @end smallexample
9456
9457 @value{GDBN} uses the target character set for character and string
9458 literals you use in expressions:
9459
9460 @smallexample
9461 (@value{GDBP}) print '+'
9462 $3 = 43 '+'
9463 (@value{GDBP})
9464 @end smallexample
9465
9466 The @sc{ascii} character set uses the number 43 to encode the @samp{+}
9467 character.
9468
9469 @value{GDBN} relies on the user to tell it which character set the
9470 target program uses.  If we print @code{ibm1047_hello} while our target
9471 character set is still @sc{ascii}, we get jibberish:
9472
9473 @smallexample
9474 (@value{GDBP}) print ibm1047_hello
9475 $4 = 0x4016a8 "\310\205\223\223\226k@@\246\226\231\223\204Z%"
9476 (@value{GDBP}) print ibm1047_hello[0]
9477 $5 = 200 '\310'
9478 (@value{GDBP})
9479 @end smallexample
9480
9481 If we invoke the @code{set target-charset} followed by @key{TAB}@key{TAB},
9482 @value{GDBN} tells us the character sets it supports:
9483
9484 @smallexample
9485 (@value{GDBP}) set target-charset
9486 ASCII       EBCDIC-US   IBM1047     ISO-8859-1
9487 (@value{GDBP}) set target-charset
9488 @end smallexample
9489
9490 We can select @sc{ibm1047} as our target character set, and examine the
9491 program's strings again.  Now the @sc{ascii} string is wrong, but
9492 @value{GDBN} translates the contents of @code{ibm1047_hello} from the
9493 target character set, @sc{ibm1047}, to the host character set,
9494 @sc{ascii}, and they display correctly:
9495
9496 @smallexample
9497 (@value{GDBP}) set target-charset IBM1047
9498 (@value{GDBP}) show charset
9499 The current host character set is `ASCII'.
9500 The current target character set is `IBM1047'.
9501 (@value{GDBP}) print ascii_hello
9502 $6 = 0x401698 "\110\145%%?\054\040\167?\162%\144\041\012"
9503 (@value{GDBP}) print ascii_hello[0]
9504 $7 = 72 '\110'
9505 (@value{GDBP}) print ibm1047_hello
9506 $8 = 0x4016a8 "Hello, world!\n"
9507 (@value{GDBP}) print ibm1047_hello[0]
9508 $9 = 200 'H'
9509 (@value{GDBP})
9510 @end smallexample
9511
9512 As above, @value{GDBN} uses the target character set for character and
9513 string literals you use in expressions:
9514
9515 @smallexample
9516 (@value{GDBP}) print '+'
9517 $10 = 78 '+'
9518 (@value{GDBP})
9519 @end smallexample
9520
9521 The @sc{ibm1047} character set uses the number 78 to encode the @samp{+}
9522 character.
9523
9524 @node Caching Remote Data
9525 @section Caching Data of Remote Targets
9526 @cindex caching data of remote targets
9527
9528 @value{GDBN} caches data exchanged between the debugger and a
9529 remote target (@pxref{Remote Debugging}).  Such caching generally improves
9530 performance, because it reduces the overhead of the remote protocol by
9531 bundling memory reads and writes into large chunks.  Unfortunately, simply
9532 caching everything would lead to incorrect results, since @value{GDBN} 
9533 does not necessarily know anything about volatile values, memory-mapped I/O
9534 addresses, etc.  Furthermore, in non-stop mode (@pxref{Non-Stop Mode})
9535 memory can be changed @emph{while} a gdb command is executing.
9536 Therefore, by default, @value{GDBN} only caches data
9537 known to be on the stack@footnote{In non-stop mode, it is moderately
9538 rare for a running thread to modify the stack of a stopped thread
9539 in a way that would interfere with a backtrace, and caching of
9540 stack reads provides a significant speed up of remote backtraces.}.
9541 Other regions of memory can be explicitly marked as
9542 cacheable; see @pxref{Memory Region Attributes}.
9543
9544 @table @code
9545 @kindex set remotecache
9546 @item set remotecache on
9547 @itemx set remotecache off
9548 This option no longer does anything; it exists for compatibility
9549 with old scripts.
9550
9551 @kindex show remotecache
9552 @item show remotecache
9553 Show the current state of the obsolete remotecache flag.
9554
9555 @kindex set stack-cache
9556 @item set stack-cache on
9557 @itemx set stack-cache off
9558 Enable or disable caching of stack accesses.  When @code{ON}, use
9559 caching.  By default, this option is @code{ON}.
9560
9561 @kindex show stack-cache
9562 @item show stack-cache
9563 Show the current state of data caching for memory accesses.
9564
9565 @kindex info dcache
9566 @item info dcache @r{[}line@r{]}
9567 Print the information about the data cache performance.  The
9568 information displayed includes the dcache width and depth, and for
9569 each cache line, its number, address, and how many times it was
9570 referenced.  This command is useful for debugging the data cache
9571 operation.
9572
9573 If a line number is specified, the contents of that line will be
9574 printed in hex.
9575
9576 @item set dcache size @var{size}
9577 @cindex dcache size
9578 @kindex set dcache size
9579 Set maximum number of entries in dcache (dcache depth above).
9580
9581 @item set dcache line-size @var{line-size}
9582 @cindex dcache line-size
9583 @kindex set dcache line-size
9584 Set number of bytes each dcache entry caches (dcache width above).
9585 Must be a power of 2.
9586
9587 @item show dcache size
9588 @kindex show dcache size
9589 Show maximum number of dcache entries.  See also @ref{Caching Remote Data, info dcache}.
9590
9591 @item show dcache line-size
9592 @kindex show dcache line-size
9593 Show default size of dcache lines.  See also @ref{Caching Remote Data, info dcache}.
9594
9595 @end table
9596
9597 @node Searching Memory
9598 @section Search Memory
9599 @cindex searching memory
9600
9601 Memory can be searched for a particular sequence of bytes with the
9602 @code{find} command.
9603
9604 @table @code
9605 @kindex find
9606 @item find @r{[}/@var{sn}@r{]} @var{start_addr}, +@var{len}, @var{val1} @r{[}, @var{val2}, @dots{}@r{]}
9607 @itemx find @r{[}/@var{sn}@r{]} @var{start_addr}, @var{end_addr}, @var{val1} @r{[}, @var{val2}, @dots{}@r{]}
9608 Search memory for the sequence of bytes specified by @var{val1}, @var{val2},
9609 etc.  The search begins at address @var{start_addr} and continues for either
9610 @var{len} bytes or through to @var{end_addr} inclusive.
9611 @end table
9612
9613 @var{s} and @var{n} are optional parameters.
9614 They may be specified in either order, apart or together.
9615
9616 @table @r
9617 @item @var{s}, search query size
9618 The size of each search query value.
9619
9620 @table @code
9621 @item b
9622 bytes
9623 @item h
9624 halfwords (two bytes)
9625 @item w
9626 words (four bytes)
9627 @item g
9628 giant words (eight bytes)
9629 @end table
9630
9631 All values are interpreted in the current language.
9632 This means, for example, that if the current source language is C/C@t{++}
9633 then searching for the string ``hello'' includes the trailing '\0'.
9634
9635 If the value size is not specified, it is taken from the
9636 value's type in the current language.
9637 This is useful when one wants to specify the search
9638 pattern as a mixture of types.
9639 Note that this means, for example, that in the case of C-like languages
9640 a search for an untyped 0x42 will search for @samp{(int) 0x42}
9641 which is typically four bytes.
9642
9643 @item @var{n}, maximum number of finds
9644 The maximum number of matches to print.  The default is to print all finds.
9645 @end table
9646
9647 You can use strings as search values.  Quote them with double-quotes
9648  (@code{"}).
9649 The string value is copied into the search pattern byte by byte,
9650 regardless of the endianness of the target and the size specification.
9651
9652 The address of each match found is printed as well as a count of the
9653 number of matches found.
9654
9655 The address of the last value found is stored in convenience variable
9656 @samp{$_}.
9657 A count of the number of matches is stored in @samp{$numfound}.
9658
9659 For example, if stopped at the @code{printf} in this function:
9660
9661 @smallexample
9662 void
9663 hello ()
9664 @{
9665   static char hello[] = "hello-hello";
9666   static struct @{ char c; short s; int i; @}
9667     __attribute__ ((packed)) mixed
9668     = @{ 'c', 0x1234, 0x87654321 @};
9669   printf ("%s\n", hello);
9670 @}
9671 @end smallexample
9672
9673 @noindent
9674 you get during debugging:
9675
9676 @smallexample
9677 (gdb) find &hello[0], +sizeof(hello), "hello"
9678 0x804956d <hello.1620+6>
9679 1 pattern found
9680 (gdb) find &hello[0], +sizeof(hello), 'h', 'e', 'l', 'l', 'o'
9681 0x8049567 <hello.1620>
9682 0x804956d <hello.1620+6>
9683 2 patterns found
9684 (gdb) find /b1 &hello[0], +sizeof(hello), 'h', 0x65, 'l'
9685 0x8049567 <hello.1620>
9686 1 pattern found
9687 (gdb) find &mixed, +sizeof(mixed), (char) 'c', (short) 0x1234, (int) 0x87654321
9688 0x8049560 <mixed.1625>
9689 1 pattern found
9690 (gdb) print $numfound
9691 $1 = 1
9692 (gdb) print $_
9693 $2 = (void *) 0x8049560
9694 @end smallexample
9695
9696 @node Optimized Code
9697 @chapter Debugging Optimized Code
9698 @cindex optimized code, debugging
9699 @cindex debugging optimized code
9700
9701 Almost all compilers support optimization.  With optimization
9702 disabled, the compiler generates assembly code that corresponds
9703 directly to your source code, in a simplistic way.  As the compiler
9704 applies more powerful optimizations, the generated assembly code
9705 diverges from your original source code.  With help from debugging
9706 information generated by the compiler, @value{GDBN} can map from
9707 the running program back to constructs from your original source.
9708
9709 @value{GDBN} is more accurate with optimization disabled.  If you
9710 can recompile without optimization, it is easier to follow the
9711 progress of your program during debugging.  But, there are many cases
9712 where you may need to debug an optimized version.
9713
9714 When you debug a program compiled with @samp{-g -O}, remember that the
9715 optimizer has rearranged your code; the debugger shows you what is
9716 really there.  Do not be too surprised when the execution path does not
9717 exactly match your source file!  An extreme example: if you define a
9718 variable, but never use it, @value{GDBN} never sees that
9719 variable---because the compiler optimizes it out of existence.
9720
9721 Some things do not work as well with @samp{-g -O} as with just
9722 @samp{-g}, particularly on machines with instruction scheduling.  If in
9723 doubt, recompile with @samp{-g} alone, and if this fixes the problem,
9724 please report it to us as a bug (including a test case!).
9725 @xref{Variables}, for more information about debugging optimized code.
9726
9727 @menu
9728 * Inline Functions::            How @value{GDBN} presents inlining
9729 * Tail Call Frames::            @value{GDBN} analysis of jumps to functions
9730 @end menu
9731
9732 @node Inline Functions
9733 @section Inline Functions
9734 @cindex inline functions, debugging
9735
9736 @dfn{Inlining} is an optimization that inserts a copy of the function
9737 body directly at each call site, instead of jumping to a shared
9738 routine.  @value{GDBN} displays inlined functions just like
9739 non-inlined functions.  They appear in backtraces.  You can view their
9740 arguments and local variables, step into them with @code{step}, skip
9741 them with @code{next}, and escape from them with @code{finish}.
9742 You can check whether a function was inlined by using the
9743 @code{info frame} command.
9744
9745 For @value{GDBN} to support inlined functions, the compiler must
9746 record information about inlining in the debug information ---
9747 @value{NGCC} using the @sc{dwarf 2} format does this, and several
9748 other compilers do also.  @value{GDBN} only supports inlined functions
9749 when using @sc{dwarf 2}.  Versions of @value{NGCC} before 4.1
9750 do not emit two required attributes (@samp{DW_AT_call_file} and
9751 @samp{DW_AT_call_line}); @value{GDBN} does not display inlined
9752 function calls with earlier versions of @value{NGCC}.  It instead
9753 displays the arguments and local variables of inlined functions as
9754 local variables in the caller.
9755
9756 The body of an inlined function is directly included at its call site;
9757 unlike a non-inlined function, there are no instructions devoted to
9758 the call.  @value{GDBN} still pretends that the call site and the
9759 start of the inlined function are different instructions.  Stepping to
9760 the call site shows the call site, and then stepping again shows
9761 the first line of the inlined function, even though no additional
9762 instructions are executed.
9763
9764 This makes source-level debugging much clearer; you can see both the
9765 context of the call and then the effect of the call.  Only stepping by
9766 a single instruction using @code{stepi} or @code{nexti} does not do
9767 this; single instruction steps always show the inlined body.
9768
9769 There are some ways that @value{GDBN} does not pretend that inlined
9770 function calls are the same as normal calls:
9771
9772 @itemize @bullet
9773 @item
9774 You cannot set breakpoints on inlined functions.  @value{GDBN}
9775 either reports that there is no symbol with that name, or else sets the
9776 breakpoint only on non-inlined copies of the function.  This limitation
9777 will be removed in a future version of @value{GDBN}; until then,
9778 set a breakpoint by line number on the first line of the inlined
9779 function instead.
9780
9781 @item
9782 Setting breakpoints at the call site of an inlined function may not
9783 work, because the call site does not contain any code.  @value{GDBN}
9784 may incorrectly move the breakpoint to the next line of the enclosing
9785 function, after the call.  This limitation will be removed in a future
9786 version of @value{GDBN}; until then, set a breakpoint on an earlier line
9787 or inside the inlined function instead.
9788
9789 @item
9790 @value{GDBN} cannot locate the return value of inlined calls after
9791 using the @code{finish} command.  This is a limitation of compiler-generated
9792 debugging information; after @code{finish}, you can step to the next line
9793 and print a variable where your program stored the return value.
9794
9795 @end itemize
9796
9797 @node Tail Call Frames
9798 @section Tail Call Frames
9799 @cindex tail call frames, debugging
9800
9801 Function @code{B} can call function @code{C} in its very last statement.  In
9802 unoptimized compilation the call of @code{C} is immediately followed by return
9803 instruction at the end of @code{B} code.  Optimizing compiler may replace the
9804 call and return in function @code{B} into one jump to function @code{C}
9805 instead.  Such use of a jump instruction is called @dfn{tail call}.
9806
9807 During execution of function @code{C}, there will be no indication in the
9808 function call stack frames that it was tail-called from @code{B}.  If function
9809 @code{A} regularly calls function @code{B} which tail-calls function @code{C},
9810 then @value{GDBN} will see @code{A} as the caller of @code{C}.  However, in
9811 some cases @value{GDBN} can determine that @code{C} was tail-called from
9812 @code{B}, and it will then create fictitious call frame for that, with the
9813 return address set up as if @code{B} called @code{C} normally.
9814
9815 This functionality is currently supported only by DWARF 2 debugging format and
9816 the compiler has to produce @samp{DW_TAG_GNU_call_site} tags.  With
9817 @value{NGCC}, you need to specify @option{-O -g} during compilation, to get
9818 this information.
9819
9820 @kbd{info frame} command (@pxref{Frame Info}) will indicate the tail call frame
9821 kind by text @code{tail call frame} such as in this sample @value{GDBN} output:
9822
9823 @smallexample
9824 (gdb) x/i $pc - 2
9825    0x40066b <b(int, double)+11>: jmp 0x400640 <c(int, double)>
9826 (gdb) info frame
9827 Stack level 1, frame at 0x7fffffffda30:
9828  rip = 0x40066d in b (amd64-entry-value.cc:59); saved rip 0x4004c5
9829  tail call frame, caller of frame at 0x7fffffffda30
9830  source language c++.
9831  Arglist at unknown address.
9832  Locals at unknown address, Previous frame's sp is 0x7fffffffda30
9833 @end smallexample
9834
9835 The detection of all the possible code path executions can find them ambiguous.
9836 There is no execution history stored (possible @ref{Reverse Execution} is never
9837 used for this purpose) and the last known caller could have reached the known
9838 callee by multiple different jump sequences.  In such case @value{GDBN} still
9839 tries to show at least all the unambiguous top tail callers and all the
9840 unambiguous bottom tail calees, if any.
9841
9842 @table @code
9843 @anchor{set debug entry-values}
9844 @item set debug entry-values
9845 @kindex set debug entry-values
9846 When set to on, enables printing of analysis messages for both frame argument
9847 values at function entry and tail calls.  It will show all the possible valid
9848 tail calls code paths it has considered.  It will also print the intersection
9849 of them with the final unambiguous (possibly partial or even empty) code path
9850 result.
9851
9852 @item show debug entry-values
9853 @kindex show debug entry-values
9854 Show the current state of analysis messages printing for both frame argument
9855 values at function entry and tail calls.
9856 @end table
9857
9858 The analysis messages for tail calls can for example show why the virtual tail
9859 call frame for function @code{c} has not been recognized (due to the indirect
9860 reference by variable @code{x}):
9861
9862 @smallexample
9863 static void __attribute__((noinline, noclone)) c (void);
9864 void (*x) (void) = c;
9865 static void __attribute__((noinline, noclone)) a (void) @{ x++; @}
9866 static void __attribute__((noinline, noclone)) c (void) @{ a (); @}
9867 int main (void) @{ x (); return 0; @}
9868
9869 Breakpoint 1, DW_OP_GNU_entry_value resolving cannot find
9870 DW_TAG_GNU_call_site 0x40039a in main
9871 a () at t.c:3
9872 3       static void __attribute__((noinline, noclone)) a (void) @{ x++; @}
9873 (gdb) bt
9874 #0  a () at t.c:3
9875 #1  0x000000000040039a in main () at t.c:5
9876 @end smallexample
9877
9878 Another possibility is an ambiguous virtual tail call frames resolution:
9879
9880 @smallexample
9881 int i;
9882 static void __attribute__((noinline, noclone)) f (void) @{ i++; @}
9883 static void __attribute__((noinline, noclone)) e (void) @{ f (); @}
9884 static void __attribute__((noinline, noclone)) d (void) @{ f (); @}
9885 static void __attribute__((noinline, noclone)) c (void) @{ d (); @}
9886 static void __attribute__((noinline, noclone)) b (void)
9887 @{ if (i) c (); else e (); @}
9888 static void __attribute__((noinline, noclone)) a (void) @{ b (); @}
9889 int main (void) @{ a (); return 0; @}
9890
9891 tailcall: initial: 0x4004d2(a) 0x4004ce(b) 0x4004b2(c) 0x4004a2(d)
9892 tailcall: compare: 0x4004d2(a) 0x4004cc(b) 0x400492(e)
9893 tailcall: reduced: 0x4004d2(a) |
9894 (gdb) bt
9895 #0  f () at t.c:2
9896 #1  0x00000000004004d2 in a () at t.c:8
9897 #2  0x0000000000400395 in main () at t.c:9
9898 @end smallexample
9899
9900 @set CALLSEQ1A @code{main@value{ARROW}a@value{ARROW}b@value{ARROW}c@value{ARROW}d@value{ARROW}f}
9901 @set CALLSEQ2A @code{main@value{ARROW}a@value{ARROW}b@value{ARROW}e@value{ARROW}f}
9902
9903 @c Convert CALLSEQ#A to CALLSEQ#B depending on HAVE_MAKEINFO_CLICK.
9904 @ifset HAVE_MAKEINFO_CLICK
9905 @set ARROW @click{}
9906 @set CALLSEQ1B @clicksequence{@value{CALLSEQ1A}}
9907 @set CALLSEQ2B @clicksequence{@value{CALLSEQ2A}}
9908 @end ifset
9909 @ifclear HAVE_MAKEINFO_CLICK
9910 @set ARROW ->
9911 @set CALLSEQ1B @value{CALLSEQ1A}
9912 @set CALLSEQ2B @value{CALLSEQ2A}
9913 @end ifclear
9914
9915 Frames #0 and #2 are real, #1 is a virtual tail call frame.
9916 The code can have possible execution paths @value{CALLSEQ1B} or
9917 @value{CALLSEQ2B}, @value{GDBN} cannot find which one from the inferior state.
9918
9919 @code{initial:} state shows some random possible calling sequence @value{GDBN}
9920 has found.  It then finds another possible calling sequcen - that one is
9921 prefixed by @code{compare:}.  The non-ambiguous intersection of these two is
9922 printed as the @code{reduced:} calling sequence.  That one could have many
9923 futher @code{compare:} and @code{reduced:} statements as long as there remain
9924 any non-ambiguous sequence entries.
9925
9926 For the frame of function @code{b} in both cases there are different possible
9927 @code{$pc} values (@code{0x4004cc} or @code{0x4004ce}), therefore this frame is
9928 also ambigous.  The only non-ambiguous frame is the one for function @code{a},
9929 therefore this one is displayed to the user while the ambiguous frames are
9930 omitted.
9931
9932 There can be also reasons why printing of frame argument values at function
9933 entry may fail:
9934
9935 @smallexample
9936 int v;
9937 static void __attribute__((noinline, noclone)) c (int i) @{ v++; @}
9938 static void __attribute__((noinline, noclone)) a (int i);
9939 static void __attribute__((noinline, noclone)) b (int i) @{ a (i); @}
9940 static void __attribute__((noinline, noclone)) a (int i)
9941 @{ if (i) b (i - 1); else c (0); @}
9942 int main (void) @{ a (5); return 0; @}
9943
9944 (gdb) bt
9945 #0  c (i=i@@entry=0) at t.c:2
9946 #1  0x0000000000400428 in a (DW_OP_GNU_entry_value resolving has found
9947 function "a" at 0x400420 can call itself via tail calls
9948 i=<optimized out>) at t.c:6
9949 #2  0x000000000040036e in main () at t.c:7
9950 @end smallexample
9951
9952 @value{GDBN} cannot find out from the inferior state if and how many times did
9953 function @code{a} call itself (via function @code{b}) as these calls would be
9954 tail calls.  Such tail calls would modify thue @code{i} variable, therefore
9955 @value{GDBN} cannot be sure the value it knows would be right - @value{GDBN}
9956 prints @code{<optimized out>} instead.
9957
9958 @node Macros
9959 @chapter C Preprocessor Macros
9960
9961 Some languages, such as C and C@t{++}, provide a way to define and invoke
9962 ``preprocessor macros'' which expand into strings of tokens.
9963 @value{GDBN} can evaluate expressions containing macro invocations, show
9964 the result of macro expansion, and show a macro's definition, including
9965 where it was defined.
9966
9967 You may need to compile your program specially to provide @value{GDBN}
9968 with information about preprocessor macros.  Most compilers do not
9969 include macros in their debugging information, even when you compile
9970 with the @option{-g} flag.  @xref{Compilation}.
9971
9972 A program may define a macro at one point, remove that definition later,
9973 and then provide a different definition after that.  Thus, at different
9974 points in the program, a macro may have different definitions, or have
9975 no definition at all.  If there is a current stack frame, @value{GDBN}
9976 uses the macros in scope at that frame's source code line.  Otherwise,
9977 @value{GDBN} uses the macros in scope at the current listing location;
9978 see @ref{List}.
9979
9980 Whenever @value{GDBN} evaluates an expression, it always expands any
9981 macro invocations present in the expression.  @value{GDBN} also provides
9982 the following commands for working with macros explicitly.
9983
9984 @table @code
9985
9986 @kindex macro expand
9987 @cindex macro expansion, showing the results of preprocessor
9988 @cindex preprocessor macro expansion, showing the results of
9989 @cindex expanding preprocessor macros
9990 @item macro expand @var{expression}
9991 @itemx macro exp @var{expression}
9992 Show the results of expanding all preprocessor macro invocations in
9993 @var{expression}.  Since @value{GDBN} simply expands macros, but does
9994 not parse the result, @var{expression} need not be a valid expression;
9995 it can be any string of tokens.
9996
9997 @kindex macro exp1
9998 @item macro expand-once @var{expression}
9999 @itemx macro exp1 @var{expression}
10000 @cindex expand macro once
10001 @i{(This command is not yet implemented.)}  Show the results of
10002 expanding those preprocessor macro invocations that appear explicitly in
10003 @var{expression}.  Macro invocations appearing in that expansion are
10004 left unchanged.  This command allows you to see the effect of a
10005 particular macro more clearly, without being confused by further
10006 expansions.  Since @value{GDBN} simply expands macros, but does not
10007 parse the result, @var{expression} need not be a valid expression; it
10008 can be any string of tokens.
10009
10010 @kindex info macro
10011 @cindex macro definition, showing
10012 @cindex definition of a macro, showing
10013 @cindex macros, from debug info
10014 @item info macro [-a|-all] [--] @var{macro}
10015 Show the current definition or all definitions of the named @var{macro},
10016 and describe the source location or compiler command-line where that
10017 definition was established.  The optional double dash is to signify the end of
10018 argument processing and the beginning of @var{macro} for non C-like macros where
10019 the macro may begin with a hyphen.
10020
10021 @kindex info macros
10022 @item info macros @var{linespec}
10023 Show all macro definitions that are in effect at the location specified
10024 by @var{linespec},  and describe the source location or compiler
10025 command-line where those definitions were established.
10026
10027 @kindex macro define
10028 @cindex user-defined macros
10029 @cindex defining macros interactively
10030 @cindex macros, user-defined
10031 @item macro define @var{macro} @var{replacement-list}
10032 @itemx macro define @var{macro}(@var{arglist}) @var{replacement-list}
10033 Introduce a definition for a preprocessor macro named @var{macro},
10034 invocations of which are replaced by the tokens given in
10035 @var{replacement-list}.  The first form of this command defines an
10036 ``object-like'' macro, which takes no arguments; the second form
10037 defines a ``function-like'' macro, which takes the arguments given in
10038 @var{arglist}.
10039
10040 A definition introduced by this command is in scope in every
10041 expression evaluated in @value{GDBN}, until it is removed with the
10042 @code{macro undef} command, described below.  The definition overrides
10043 all definitions for @var{macro} present in the program being debugged,
10044 as well as any previous user-supplied definition.
10045
10046 @kindex macro undef
10047 @item macro undef @var{macro}
10048 Remove any user-supplied definition for the macro named @var{macro}.
10049 This command only affects definitions provided with the @code{macro
10050 define} command, described above; it cannot remove definitions present
10051 in the program being debugged.
10052
10053 @kindex macro list
10054 @item macro list
10055 List all the macros defined using the @code{macro define} command.
10056 @end table
10057
10058 @cindex macros, example of debugging with
10059 Here is a transcript showing the above commands in action.  First, we
10060 show our source files:
10061
10062 @smallexample
10063 $ cat sample.c
10064 #include <stdio.h>
10065 #include "sample.h"
10066
10067 #define M 42
10068 #define ADD(x) (M + x)
10069
10070 main ()
10071 @{
10072 #define N 28
10073   printf ("Hello, world!\n");
10074 #undef N
10075   printf ("We're so creative.\n");
10076 #define N 1729
10077   printf ("Goodbye, world!\n");
10078 @}
10079 $ cat sample.h
10080 #define Q <
10081 $
10082 @end smallexample
10083
10084 Now, we compile the program using the @sc{gnu} C compiler,
10085 @value{NGCC}.  We pass the @option{-gdwarf-2}@footnote{This is the
10086 minimum.  Recent versions of @value{NGCC} support @option{-gdwarf-3}
10087 and @option{-gdwarf-4}; we recommend always choosing the most recent
10088 version of DWARF.} @emph{and} @option{-g3} flags to ensure the compiler
10089 includes information about preprocessor macros in the debugging
10090 information.
10091
10092 @smallexample
10093 $ gcc -gdwarf-2 -g3 sample.c -o sample
10094 $
10095 @end smallexample
10096
10097 Now, we start @value{GDBN} on our sample program:
10098
10099 @smallexample
10100 $ gdb -nw sample
10101 GNU gdb 2002-05-06-cvs
10102 Copyright 2002 Free Software Foundation, Inc.
10103 GDB is free software, @dots{}
10104 (@value{GDBP})
10105 @end smallexample
10106
10107 We can expand macros and examine their definitions, even when the
10108 program is not running.  @value{GDBN} uses the current listing position
10109 to decide which macro definitions are in scope:
10110
10111 @smallexample
10112 (@value{GDBP}) list main
10113 3
10114 4       #define M 42
10115 5       #define ADD(x) (M + x)
10116 6
10117 7       main ()
10118 8       @{
10119 9       #define N 28
10120 10        printf ("Hello, world!\n");
10121 11      #undef N
10122 12        printf ("We're so creative.\n");
10123 (@value{GDBP}) info macro ADD
10124 Defined at /home/jimb/gdb/macros/play/sample.c:5
10125 #define ADD(x) (M + x)
10126 (@value{GDBP}) info macro Q
10127 Defined at /home/jimb/gdb/macros/play/sample.h:1
10128   included at /home/jimb/gdb/macros/play/sample.c:2
10129 #define Q <
10130 (@value{GDBP}) macro expand ADD(1)
10131 expands to: (42 + 1)
10132 (@value{GDBP}) macro expand-once ADD(1)
10133 expands to: once (M + 1)
10134 (@value{GDBP})
10135 @end smallexample
10136
10137 In the example above, note that @code{macro expand-once} expands only
10138 the macro invocation explicit in the original text --- the invocation of
10139 @code{ADD} --- but does not expand the invocation of the macro @code{M},
10140 which was introduced by @code{ADD}.
10141
10142 Once the program is running, @value{GDBN} uses the macro definitions in
10143 force at the source line of the current stack frame:
10144
10145 @smallexample
10146 (@value{GDBP}) break main
10147 Breakpoint 1 at 0x8048370: file sample.c, line 10.
10148 (@value{GDBP}) run
10149 Starting program: /home/jimb/gdb/macros/play/sample
10150
10151 Breakpoint 1, main () at sample.c:10
10152 10        printf ("Hello, world!\n");
10153 (@value{GDBP})
10154 @end smallexample
10155
10156 At line 10, the definition of the macro @code{N} at line 9 is in force:
10157
10158 @smallexample
10159 (@value{GDBP}) info macro N
10160 Defined at /home/jimb/gdb/macros/play/sample.c:9
10161 #define N 28
10162 (@value{GDBP}) macro expand N Q M
10163 expands to: 28 < 42
10164 (@value{GDBP}) print N Q M
10165 $1 = 1
10166 (@value{GDBP})
10167 @end smallexample
10168
10169 As we step over directives that remove @code{N}'s definition, and then
10170 give it a new definition, @value{GDBN} finds the definition (or lack
10171 thereof) in force at each point:
10172
10173 @smallexample
10174 (@value{GDBP}) next
10175 Hello, world!
10176 12        printf ("We're so creative.\n");
10177 (@value{GDBP}) info macro N
10178 The symbol `N' has no definition as a C/C++ preprocessor macro
10179 at /home/jimb/gdb/macros/play/sample.c:12
10180 (@value{GDBP}) next
10181 We're so creative.
10182 14        printf ("Goodbye, world!\n");
10183 (@value{GDBP}) info macro N
10184 Defined at /home/jimb/gdb/macros/play/sample.c:13
10185 #define N 1729
10186 (@value{GDBP}) macro expand N Q M
10187 expands to: 1729 < 42
10188 (@value{GDBP}) print N Q M
10189 $2 = 0
10190 (@value{GDBP})
10191 @end smallexample
10192
10193 In addition to source files, macros can be defined on the compilation command
10194 line using the @option{-D@var{name}=@var{value}} syntax.  For macros defined in
10195 such a way, @value{GDBN} displays the location of their definition as line zero
10196 of the source file submitted to the compiler.
10197
10198 @smallexample
10199 (@value{GDBP}) info macro __STDC__
10200 Defined at /home/jimb/gdb/macros/play/sample.c:0
10201 -D__STDC__=1
10202 (@value{GDBP})
10203 @end smallexample
10204
10205
10206 @node Tracepoints
10207 @chapter Tracepoints
10208 @c This chapter is based on the documentation written by Michael
10209 @c Snyder, David Taylor, Jim Blandy, and Elena Zannoni.
10210
10211 @cindex tracepoints
10212 In some applications, it is not feasible for the debugger to interrupt
10213 the program's execution long enough for the developer to learn
10214 anything helpful about its behavior.  If the program's correctness
10215 depends on its real-time behavior, delays introduced by a debugger
10216 might cause the program to change its behavior drastically, or perhaps
10217 fail, even when the code itself is correct.  It is useful to be able
10218 to observe the program's behavior without interrupting it.
10219
10220 Using @value{GDBN}'s @code{trace} and @code{collect} commands, you can
10221 specify locations in the program, called @dfn{tracepoints}, and
10222 arbitrary expressions to evaluate when those tracepoints are reached.
10223 Later, using the @code{tfind} command, you can examine the values
10224 those expressions had when the program hit the tracepoints.  The
10225 expressions may also denote objects in memory---structures or arrays,
10226 for example---whose values @value{GDBN} should record; while visiting
10227 a particular tracepoint, you may inspect those objects as if they were
10228 in memory at that moment.  However, because @value{GDBN} records these
10229 values without interacting with you, it can do so quickly and
10230 unobtrusively, hopefully not disturbing the program's behavior.
10231
10232 The tracepoint facility is currently available only for remote
10233 targets.  @xref{Targets}.  In addition, your remote target must know
10234 how to collect trace data.  This functionality is implemented in the
10235 remote stub; however, none of the stubs distributed with @value{GDBN}
10236 support tracepoints as of this writing.  The format of the remote
10237 packets used to implement tracepoints are described in @ref{Tracepoint
10238 Packets}.
10239
10240 It is also possible to get trace data from a file, in a manner reminiscent
10241 of corefiles; you specify the filename, and use @code{tfind} to search
10242 through the file.  @xref{Trace Files}, for more details.
10243
10244 This chapter describes the tracepoint commands and features.
10245
10246 @menu
10247 * Set Tracepoints::
10248 * Analyze Collected Data::
10249 * Tracepoint Variables::
10250 * Trace Files::
10251 @end menu
10252
10253 @node Set Tracepoints
10254 @section Commands to Set Tracepoints
10255
10256 Before running such a @dfn{trace experiment}, an arbitrary number of
10257 tracepoints can be set.  A tracepoint is actually a special type of
10258 breakpoint (@pxref{Set Breaks}), so you can manipulate it using
10259 standard breakpoint commands.  For instance, as with breakpoints,
10260 tracepoint numbers are successive integers starting from one, and many
10261 of the commands associated with tracepoints take the tracepoint number
10262 as their argument, to identify which tracepoint to work on.
10263
10264 For each tracepoint, you can specify, in advance, some arbitrary set
10265 of data that you want the target to collect in the trace buffer when
10266 it hits that tracepoint.  The collected data can include registers,
10267 local variables, or global data.  Later, you can use @value{GDBN}
10268 commands to examine the values these data had at the time the
10269 tracepoint was hit.
10270
10271 Tracepoints do not support every breakpoint feature.  Ignore counts on
10272 tracepoints have no effect, and tracepoints cannot run @value{GDBN}
10273 commands when they are hit.  Tracepoints may not be thread-specific
10274 either.
10275
10276 @cindex fast tracepoints
10277 Some targets may support @dfn{fast tracepoints}, which are inserted in
10278 a different way (such as with a jump instead of a trap), that is
10279 faster but possibly restricted in where they may be installed.
10280
10281 @cindex static tracepoints
10282 @cindex markers, static tracepoints
10283 @cindex probing markers, static tracepoints
10284 Regular and fast tracepoints are dynamic tracing facilities, meaning
10285 that they can be used to insert tracepoints at (almost) any location
10286 in the target.  Some targets may also support controlling @dfn{static
10287 tracepoints} from @value{GDBN}.  With static tracing, a set of
10288 instrumentation points, also known as @dfn{markers}, are embedded in
10289 the target program, and can be activated or deactivated by name or
10290 address.  These are usually placed at locations which facilitate
10291 investigating what the target is actually doing.  @value{GDBN}'s
10292 support for static tracing includes being able to list instrumentation
10293 points, and attach them with @value{GDBN} defined high level
10294 tracepoints that expose the whole range of convenience of
10295 @value{GDBN}'s tracepoints support.  Namely, support for collecting
10296 registers values and values of global or local (to the instrumentation
10297 point) variables; tracepoint conditions and trace state variables.
10298 The act of installing a @value{GDBN} static tracepoint on an
10299 instrumentation point, or marker, is referred to as @dfn{probing} a
10300 static tracepoint marker.
10301
10302 @code{gdbserver} supports tracepoints on some target systems.
10303 @xref{Server,,Tracepoints support in @code{gdbserver}}.
10304
10305 This section describes commands to set tracepoints and associated
10306 conditions and actions.
10307
10308 @menu
10309 * Create and Delete Tracepoints::
10310 * Enable and Disable Tracepoints::
10311 * Tracepoint Passcounts::
10312 * Tracepoint Conditions::
10313 * Trace State Variables::
10314 * Tracepoint Actions::
10315 * Listing Tracepoints::
10316 * Listing Static Tracepoint Markers::
10317 * Starting and Stopping Trace Experiments::
10318 * Tracepoint Restrictions::
10319 @end menu
10320
10321 @node Create and Delete Tracepoints
10322 @subsection Create and Delete Tracepoints
10323
10324 @table @code
10325 @cindex set tracepoint
10326 @kindex trace
10327 @item trace @var{location}
10328 The @code{trace} command is very similar to the @code{break} command.
10329 Its argument @var{location} can be a source line, a function name, or
10330 an address in the target program.  @xref{Specify Location}.  The
10331 @code{trace} command defines a tracepoint, which is a point in the
10332 target program where the debugger will briefly stop, collect some
10333 data, and then allow the program to continue.  Setting a tracepoint or
10334 changing its actions takes effect immediately if the remote stub
10335 supports the @samp{InstallInTrace} feature (@pxref{install tracepoint
10336 in tracing}).
10337 If remote stub doesn't support the @samp{InstallInTrace} feature, all
10338 these changes don't take effect until the next @code{tstart}
10339 command, and once a trace experiment is running, further changes will
10340 not have any effect until the next trace experiment starts.
10341
10342 Here are some examples of using the @code{trace} command:
10343
10344 @smallexample
10345 (@value{GDBP}) @b{trace foo.c:121}    // a source file and line number
10346
10347 (@value{GDBP}) @b{trace +2}           // 2 lines forward
10348
10349 (@value{GDBP}) @b{trace my_function}  // first source line of function
10350
10351 (@value{GDBP}) @b{trace *my_function} // EXACT start address of function
10352
10353 (@value{GDBP}) @b{trace *0x2117c4}    // an address
10354 @end smallexample
10355
10356 @noindent
10357 You can abbreviate @code{trace} as @code{tr}.
10358
10359 @item trace @var{location} if @var{cond}
10360 Set a tracepoint with condition @var{cond}; evaluate the expression
10361 @var{cond} each time the tracepoint is reached, and collect data only
10362 if the value is nonzero---that is, if @var{cond} evaluates as true.
10363 @xref{Tracepoint Conditions, ,Tracepoint Conditions}, for more
10364 information on tracepoint conditions.
10365
10366 @item ftrace @var{location} [ if @var{cond} ]
10367 @cindex set fast tracepoint
10368 @cindex fast tracepoints, setting
10369 @kindex ftrace
10370 The @code{ftrace} command sets a fast tracepoint.  For targets that
10371 support them, fast tracepoints will use a more efficient but possibly
10372 less general technique to trigger data collection, such as a jump
10373 instruction instead of a trap, or some sort of hardware support.  It
10374 may not be possible to create a fast tracepoint at the desired
10375 location, in which case the command will exit with an explanatory
10376 message.
10377
10378 @value{GDBN} handles arguments to @code{ftrace} exactly as for
10379 @code{trace}.
10380
10381 @item strace @var{location} [ if @var{cond} ]
10382 @cindex set static tracepoint
10383 @cindex static tracepoints, setting
10384 @cindex probe static tracepoint marker
10385 @kindex strace
10386 The @code{strace} command sets a static tracepoint.  For targets that
10387 support it, setting a static tracepoint probes a static
10388 instrumentation point, or marker, found at @var{location}.  It may not
10389 be possible to set a static tracepoint at the desired location, in
10390 which case the command will exit with an explanatory message.
10391
10392 @value{GDBN} handles arguments to @code{strace} exactly as for
10393 @code{trace}, with the addition that the user can also specify
10394 @code{-m @var{marker}} as @var{location}.  This probes the marker
10395 identified by the @var{marker} string identifier.  This identifier
10396 depends on the static tracepoint backend library your program is
10397 using.  You can find all the marker identifiers in the @samp{ID} field
10398 of the @code{info static-tracepoint-markers} command output.
10399 @xref{Listing Static Tracepoint Markers,,Listing Static Tracepoint
10400 Markers}.  For example, in the following small program using the UST
10401 tracing engine:
10402
10403 @smallexample
10404 main ()
10405 @{
10406   trace_mark(ust, bar33, "str %s", "FOOBAZ");
10407 @}
10408 @end smallexample
10409
10410 @noindent
10411 the marker id is composed of joining the first two arguments to the
10412 @code{trace_mark} call with a slash, which translates to:
10413
10414 @smallexample
10415 (@value{GDBP}) info static-tracepoint-markers
10416 Cnt Enb ID         Address            What
10417 1   n   ust/bar33  0x0000000000400ddc in main at stexample.c:22
10418          Data: "str %s"
10419 [etc...]
10420 @end smallexample
10421
10422 @noindent
10423 so you may probe the marker above with:
10424
10425 @smallexample
10426 (@value{GDBP}) strace -m ust/bar33
10427 @end smallexample
10428
10429 Static tracepoints accept an extra collect action --- @code{collect
10430 $_sdata}.  This collects arbitrary user data passed in the probe point
10431 call to the tracing library.  In the UST example above, you'll see
10432 that the third argument to @code{trace_mark} is a printf-like format
10433 string.  The user data is then the result of running that formating
10434 string against the following arguments.  Note that @code{info
10435 static-tracepoint-markers} command output lists that format string in
10436 the @samp{Data:} field.
10437
10438 You can inspect this data when analyzing the trace buffer, by printing
10439 the $_sdata variable like any other variable available to
10440 @value{GDBN}.  @xref{Tracepoint Actions,,Tracepoint Action Lists}.
10441
10442 @vindex $tpnum
10443 @cindex last tracepoint number
10444 @cindex recent tracepoint number
10445 @cindex tracepoint number
10446 The convenience variable @code{$tpnum} records the tracepoint number
10447 of the most recently set tracepoint.
10448
10449 @kindex delete tracepoint
10450 @cindex tracepoint deletion
10451 @item delete tracepoint @r{[}@var{num}@r{]}
10452 Permanently delete one or more tracepoints.  With no argument, the
10453 default is to delete all tracepoints.  Note that the regular
10454 @code{delete} command can remove tracepoints also.
10455
10456 Examples:
10457
10458 @smallexample
10459 (@value{GDBP}) @b{delete trace 1 2 3} // remove three tracepoints
10460
10461 (@value{GDBP}) @b{delete trace}       // remove all tracepoints
10462 @end smallexample
10463
10464 @noindent
10465 You can abbreviate this command as @code{del tr}.
10466 @end table
10467
10468 @node Enable and Disable Tracepoints
10469 @subsection Enable and Disable Tracepoints
10470
10471 These commands are deprecated; they are equivalent to plain @code{disable} and @code{enable}.
10472
10473 @table @code
10474 @kindex disable tracepoint
10475 @item disable tracepoint @r{[}@var{num}@r{]}
10476 Disable tracepoint @var{num}, or all tracepoints if no argument
10477 @var{num} is given.  A disabled tracepoint will have no effect during
10478 a trace experiment, but it is not forgotten.  You can re-enable
10479 a disabled tracepoint using the @code{enable tracepoint} command.
10480 If the command is issued during a trace experiment and the debug target
10481 has support for disabling tracepoints during a trace experiment, then the
10482 change will be effective immediately.  Otherwise, it will be applied to the
10483 next trace experiment.
10484
10485 @kindex enable tracepoint
10486 @item enable tracepoint @r{[}@var{num}@r{]}
10487 Enable tracepoint @var{num}, or all tracepoints.  If this command is
10488 issued during a trace experiment and the debug target supports enabling
10489 tracepoints during a trace experiment, then the enabled tracepoints will
10490 become effective immediately.  Otherwise, they will become effective the
10491 next time a trace experiment is run.
10492 @end table
10493
10494 @node Tracepoint Passcounts
10495 @subsection Tracepoint Passcounts
10496
10497 @table @code
10498 @kindex passcount
10499 @cindex tracepoint pass count
10500 @item passcount @r{[}@var{n} @r{[}@var{num}@r{]]}
10501 Set the @dfn{passcount} of a tracepoint.  The passcount is a way to
10502 automatically stop a trace experiment.  If a tracepoint's passcount is
10503 @var{n}, then the trace experiment will be automatically stopped on
10504 the @var{n}'th time that tracepoint is hit.  If the tracepoint number
10505 @var{num} is not specified, the @code{passcount} command sets the
10506 passcount of the most recently defined tracepoint.  If no passcount is
10507 given, the trace experiment will run until stopped explicitly by the
10508 user.
10509
10510 Examples:
10511
10512 @smallexample
10513 (@value{GDBP}) @b{passcount 5 2} // Stop on the 5th execution of
10514 @exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// tracepoint 2}
10515
10516 (@value{GDBP}) @b{passcount 12}  // Stop on the 12th execution of the
10517 @exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// most recently defined tracepoint.}
10518 (@value{GDBP}) @b{trace foo}
10519 (@value{GDBP}) @b{pass 3}
10520 (@value{GDBP}) @b{trace bar}
10521 (@value{GDBP}) @b{pass 2}
10522 (@value{GDBP}) @b{trace baz}
10523 (@value{GDBP}) @b{pass 1}        // Stop tracing when foo has been
10524 @exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// executed 3 times OR when bar has}
10525 @exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// been executed 2 times}
10526 @exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// OR when baz has been executed 1 time.}
10527 @end smallexample
10528 @end table
10529
10530 @node Tracepoint Conditions
10531 @subsection Tracepoint Conditions
10532 @cindex conditional tracepoints
10533 @cindex tracepoint conditions
10534
10535 The simplest sort of tracepoint collects data every time your program
10536 reaches a specified place.  You can also specify a @dfn{condition} for
10537 a tracepoint.  A condition is just a Boolean expression in your
10538 programming language (@pxref{Expressions, ,Expressions}).  A
10539 tracepoint with a condition evaluates the expression each time your
10540 program reaches it, and data collection happens only if the condition
10541 is true.
10542
10543 Tracepoint conditions can be specified when a tracepoint is set, by
10544 using @samp{if} in the arguments to the @code{trace} command.
10545 @xref{Create and Delete Tracepoints, ,Setting Tracepoints}.  They can
10546 also be set or changed at any time with the @code{condition} command,
10547 just as with breakpoints.
10548
10549 Unlike breakpoint conditions, @value{GDBN} does not actually evaluate
10550 the conditional expression itself.  Instead, @value{GDBN} encodes the
10551 expression into an agent expression (@pxref{Agent Expressions})
10552 suitable for execution on the target, independently of @value{GDBN}.
10553 Global variables become raw memory locations, locals become stack
10554 accesses, and so forth.
10555
10556 For instance, suppose you have a function that is usually called
10557 frequently, but should not be called after an error has occurred.  You
10558 could use the following tracepoint command to collect data about calls
10559 of that function that happen while the error code is propagating
10560 through the program; an unconditional tracepoint could end up
10561 collecting thousands of useless trace frames that you would have to
10562 search through.
10563
10564 @smallexample
10565 (@value{GDBP}) @kbd{trace normal_operation if errcode > 0}
10566 @end smallexample
10567
10568 @node Trace State Variables
10569 @subsection Trace State Variables
10570 @cindex trace state variables
10571
10572 A @dfn{trace state variable} is a special type of variable that is
10573 created and managed by target-side code.  The syntax is the same as
10574 that for GDB's convenience variables (a string prefixed with ``$''),
10575 but they are stored on the target.  They must be created explicitly,
10576 using a @code{tvariable} command.  They are always 64-bit signed
10577 integers.
10578
10579 Trace state variables are remembered by @value{GDBN}, and downloaded
10580 to the target along with tracepoint information when the trace
10581 experiment starts.  There are no intrinsic limits on the number of
10582 trace state variables, beyond memory limitations of the target.
10583
10584 @cindex convenience variables, and trace state variables
10585 Although trace state variables are managed by the target, you can use
10586 them in print commands and expressions as if they were convenience
10587 variables; @value{GDBN} will get the current value from the target
10588 while the trace experiment is running.  Trace state variables share
10589 the same namespace as other ``$'' variables, which means that you
10590 cannot have trace state variables with names like @code{$23} or
10591 @code{$pc}, nor can you have a trace state variable and a convenience
10592 variable with the same name.
10593
10594 @table @code
10595
10596 @item tvariable $@var{name} [ = @var{expression} ]
10597 @kindex tvariable
10598 The @code{tvariable} command creates a new trace state variable named
10599 @code{$@var{name}}, and optionally gives it an initial value of
10600 @var{expression}.  @var{expression} is evaluated when this command is
10601 entered; the result will be converted to an integer if possible,
10602 otherwise @value{GDBN} will report an error. A subsequent
10603 @code{tvariable} command specifying the same name does not create a
10604 variable, but instead assigns the supplied initial value to the
10605 existing variable of that name, overwriting any previous initial
10606 value. The default initial value is 0.
10607
10608 @item info tvariables
10609 @kindex info tvariables
10610 List all the trace state variables along with their initial values.
10611 Their current values may also be displayed, if the trace experiment is
10612 currently running.
10613
10614 @item delete tvariable @r{[} $@var{name} @dots{} @r{]}
10615 @kindex delete tvariable
10616 Delete the given trace state variables, or all of them if no arguments
10617 are specified.
10618
10619 @end table
10620
10621 @node Tracepoint Actions
10622 @subsection Tracepoint Action Lists
10623
10624 @table @code
10625 @kindex actions
10626 @cindex tracepoint actions
10627 @item actions @r{[}@var{num}@r{]}
10628 This command will prompt for a list of actions to be taken when the
10629 tracepoint is hit.  If the tracepoint number @var{num} is not
10630 specified, this command sets the actions for the one that was most
10631 recently defined (so that you can define a tracepoint and then say
10632 @code{actions} without bothering about its number).  You specify the
10633 actions themselves on the following lines, one action at a time, and
10634 terminate the actions list with a line containing just @code{end}.  So
10635 far, the only defined actions are @code{collect}, @code{teval}, and
10636 @code{while-stepping}.
10637
10638 @code{actions} is actually equivalent to @code{commands} (@pxref{Break
10639 Commands, ,Breakpoint Command Lists}), except that only the defined
10640 actions are allowed; any other @value{GDBN} command is rejected.
10641
10642 @cindex remove actions from a tracepoint
10643 To remove all actions from a tracepoint, type @samp{actions @var{num}}
10644 and follow it immediately with @samp{end}.
10645
10646 @smallexample
10647 (@value{GDBP}) @b{collect @var{data}} // collect some data
10648
10649 (@value{GDBP}) @b{while-stepping 5} // single-step 5 times, collect data
10650
10651 (@value{GDBP}) @b{end}              // signals the end of actions.
10652 @end smallexample
10653
10654 In the following example, the action list begins with @code{collect}
10655 commands indicating the things to be collected when the tracepoint is
10656 hit.  Then, in order to single-step and collect additional data
10657 following the tracepoint, a @code{while-stepping} command is used,
10658 followed by the list of things to be collected after each step in a
10659 sequence of single steps.  The @code{while-stepping} command is
10660 terminated by its own separate @code{end} command.  Lastly, the action
10661 list is terminated by an @code{end} command.
10662
10663 @smallexample
10664 (@value{GDBP}) @b{trace foo}
10665 (@value{GDBP}) @b{actions}
10666 Enter actions for tracepoint 1, one per line:
10667 > collect bar,baz
10668 > collect $regs
10669 > while-stepping 12
10670   > collect $pc, arr[i]
10671   > end
10672 end
10673 @end smallexample
10674
10675 @kindex collect @r{(tracepoints)}
10676 @item collect@r{[}/@var{mods}@r{]} @var{expr1}, @var{expr2}, @dots{}
10677 Collect values of the given expressions when the tracepoint is hit.
10678 This command accepts a comma-separated list of any valid expressions.
10679 In addition to global, static, or local variables, the following
10680 special arguments are supported:
10681
10682 @table @code
10683 @item $regs
10684 Collect all registers.
10685
10686 @item $args
10687 Collect all function arguments.
10688
10689 @item $locals
10690 Collect all local variables.
10691
10692 @item $_ret
10693 Collect the return address.  This is helpful if you want to see more
10694 of a backtrace.
10695
10696 @item $_sdata
10697 @vindex $_sdata@r{, collect}
10698 Collect static tracepoint marker specific data.  Only available for
10699 static tracepoints.  @xref{Tracepoint Actions,,Tracepoint Action
10700 Lists}.  On the UST static tracepoints library backend, an
10701 instrumentation point resembles a @code{printf} function call.  The
10702 tracing library is able to collect user specified data formatted to a
10703 character string using the format provided by the programmer that
10704 instrumented the program.  Other backends have similar mechanisms.
10705 Here's an example of a UST marker call:
10706
10707 @smallexample
10708  const char master_name[] = "$your_name";
10709  trace_mark(channel1, marker1, "hello %s", master_name)
10710 @end smallexample
10711
10712 In this case, collecting @code{$_sdata} collects the string
10713 @samp{hello $yourname}.  When analyzing the trace buffer, you can
10714 inspect @samp{$_sdata} like any other variable available to
10715 @value{GDBN}.
10716 @end table
10717
10718 You can give several consecutive @code{collect} commands, each one
10719 with a single argument, or one @code{collect} command with several
10720 arguments separated by commas; the effect is the same.
10721
10722 The optional @var{mods} changes the usual handling of the arguments.
10723 @code{s} requests that pointers to chars be handled as strings, in
10724 particular collecting the contents of the memory being pointed at, up
10725 to the first zero.  The upper bound is by default the value of the
10726 @code{print elements} variable; if @code{s} is followed by a decimal
10727 number, that is the upper bound instead.  So for instance
10728 @samp{collect/s25 mystr} collects as many as 25 characters at
10729 @samp{mystr}.
10730
10731 The command @code{info scope} (@pxref{Symbols, info scope}) is
10732 particularly useful for figuring out what data to collect.
10733
10734 @kindex teval @r{(tracepoints)}
10735 @item teval @var{expr1}, @var{expr2}, @dots{}
10736 Evaluate the given expressions when the tracepoint is hit.  This
10737 command accepts a comma-separated list of expressions.  The results
10738 are discarded, so this is mainly useful for assigning values to trace
10739 state variables (@pxref{Trace State Variables}) without adding those
10740 values to the trace buffer, as would be the case if the @code{collect}
10741 action were used.
10742
10743 @kindex while-stepping @r{(tracepoints)}
10744 @item while-stepping @var{n}
10745 Perform @var{n} single-step instruction traces after the tracepoint,
10746 collecting new data after each step.  The @code{while-stepping}
10747 command is followed by the list of what to collect while stepping
10748 (followed by its own @code{end} command):
10749
10750 @smallexample
10751 > while-stepping 12
10752   > collect $regs, myglobal
10753   > end
10754 >
10755 @end smallexample
10756
10757 @noindent
10758 Note that @code{$pc} is not automatically collected by
10759 @code{while-stepping}; you need to explicitly collect that register if
10760 you need it.  You may abbreviate @code{while-stepping} as @code{ws} or
10761 @code{stepping}.
10762
10763 @item set default-collect @var{expr1}, @var{expr2}, @dots{}
10764 @kindex set default-collect
10765 @cindex default collection action
10766 This variable is a list of expressions to collect at each tracepoint
10767 hit.  It is effectively an additional @code{collect} action prepended
10768 to every tracepoint action list.  The expressions are parsed
10769 individually for each tracepoint, so for instance a variable named
10770 @code{xyz} may be interpreted as a global for one tracepoint, and a
10771 local for another, as appropriate to the tracepoint's location.
10772
10773 @item show default-collect
10774 @kindex show default-collect
10775 Show the list of expressions that are collected by default at each
10776 tracepoint hit.
10777
10778 @end table
10779
10780 @node Listing Tracepoints
10781 @subsection Listing Tracepoints
10782
10783 @table @code
10784 @kindex info tracepoints @r{[}@var{n}@dots{}@r{]}
10785 @kindex info tp @r{[}@var{n}@dots{}@r{]}
10786 @cindex information about tracepoints
10787 @item info tracepoints @r{[}@var{num}@dots{}@r{]}
10788 Display information about the tracepoint @var{num}.  If you don't
10789 specify a tracepoint number, displays information about all the
10790 tracepoints defined so far.  The format is similar to that used for
10791 @code{info breakpoints}; in fact, @code{info tracepoints} is the same
10792 command, simply restricting itself to tracepoints.
10793
10794 A tracepoint's listing may include additional information specific to
10795 tracing:
10796
10797 @itemize @bullet
10798 @item
10799 its passcount as given by the @code{passcount @var{n}} command
10800 @end itemize
10801
10802 @smallexample
10803 (@value{GDBP}) @b{info trace}
10804 Num     Type           Disp Enb Address    What
10805 1       tracepoint     keep y   0x0804ab57 in foo() at main.cxx:7
10806         while-stepping 20
10807           collect globfoo, $regs
10808         end
10809         collect globfoo2
10810         end
10811         pass count 1200 
10812 (@value{GDBP})
10813 @end smallexample
10814
10815 @noindent
10816 This command can be abbreviated @code{info tp}.
10817 @end table
10818
10819 @node Listing Static Tracepoint Markers
10820 @subsection Listing Static Tracepoint Markers
10821
10822 @table @code
10823 @kindex info static-tracepoint-markers
10824 @cindex information about static tracepoint markers
10825 @item info static-tracepoint-markers
10826 Display information about all static tracepoint markers defined in the
10827 program.
10828
10829 For each marker, the following columns are printed:
10830
10831 @table @emph
10832 @item Count
10833 An incrementing counter, output to help readability.  This is not a
10834 stable identifier.
10835 @item ID
10836 The marker ID, as reported by the target.
10837 @item Enabled or Disabled
10838 Probed markers are tagged with @samp{y}.  @samp{n} identifies marks
10839 that are not enabled.
10840 @item Address
10841 Where the marker is in your program, as a memory address.
10842 @item What
10843 Where the marker is in the source for your program, as a file and line
10844 number.  If the debug information included in the program does not
10845 allow @value{GDBN} to locate the source of the marker, this column
10846 will be left blank.
10847 @end table
10848
10849 @noindent
10850 In addition, the following information may be printed for each marker:
10851
10852 @table @emph
10853 @item Data
10854 User data passed to the tracing library by the marker call.  In the
10855 UST backend, this is the format string passed as argument to the
10856 marker call.
10857 @item Static tracepoints probing the marker
10858 The list of static tracepoints attached to the marker.
10859 @end table
10860
10861 @smallexample
10862 (@value{GDBP}) info static-tracepoint-markers
10863 Cnt ID         Enb Address            What
10864 1   ust/bar2   y   0x0000000000400e1a in main at stexample.c:25
10865      Data: number1 %d number2 %d
10866      Probed by static tracepoints: #2
10867 2   ust/bar33  n   0x0000000000400c87 in main at stexample.c:24
10868      Data: str %s
10869 (@value{GDBP})
10870 @end smallexample
10871 @end table
10872
10873 @node Starting and Stopping Trace Experiments
10874 @subsection Starting and Stopping Trace Experiments
10875
10876 @table @code
10877 @kindex tstart
10878 @cindex start a new trace experiment
10879 @cindex collected data discarded
10880 @item tstart
10881 This command takes no arguments.  It starts the trace experiment, and
10882 begins collecting data.  This has the side effect of discarding all
10883 the data collected in the trace buffer during the previous trace
10884 experiment.
10885
10886 @kindex tstop
10887 @cindex stop a running trace experiment
10888 @item tstop
10889 This command takes no arguments.  It ends the trace experiment, and
10890 stops collecting data.
10891
10892 @strong{Note}: a trace experiment and data collection may stop
10893 automatically if any tracepoint's passcount is reached
10894 (@pxref{Tracepoint Passcounts}), or if the trace buffer becomes full.
10895
10896 @kindex tstatus
10897 @cindex status of trace data collection
10898 @cindex trace experiment, status of
10899 @item tstatus
10900 This command displays the status of the current trace data
10901 collection.
10902 @end table
10903
10904 Here is an example of the commands we described so far:
10905
10906 @smallexample
10907 (@value{GDBP}) @b{trace gdb_c_test}
10908 (@value{GDBP}) @b{actions}
10909 Enter actions for tracepoint #1, one per line.
10910 > collect $regs,$locals,$args
10911 > while-stepping 11
10912   > collect $regs
10913   > end
10914 > end
10915 (@value{GDBP}) @b{tstart}
10916         [time passes @dots{}]
10917 (@value{GDBP}) @b{tstop}
10918 @end smallexample
10919
10920 @anchor{disconnected tracing}
10921 @cindex disconnected tracing
10922 You can choose to continue running the trace experiment even if
10923 @value{GDBN} disconnects from the target, voluntarily or
10924 involuntarily.  For commands such as @code{detach}, the debugger will
10925 ask what you want to do with the trace.  But for unexpected
10926 terminations (@value{GDBN} crash, network outage), it would be
10927 unfortunate to lose hard-won trace data, so the variable
10928 @code{disconnected-tracing} lets you decide whether the trace should
10929 continue running without @value{GDBN}.
10930
10931 @table @code
10932 @item set disconnected-tracing on
10933 @itemx set disconnected-tracing off
10934 @kindex set disconnected-tracing
10935 Choose whether a tracing run should continue to run if @value{GDBN}
10936 has disconnected from the target.  Note that @code{detach} or
10937 @code{quit} will ask you directly what to do about a running trace no
10938 matter what this variable's setting, so the variable is mainly useful
10939 for handling unexpected situations, such as loss of the network.
10940
10941 @item show disconnected-tracing
10942 @kindex show disconnected-tracing
10943 Show the current choice for disconnected tracing.
10944
10945 @end table
10946
10947 When you reconnect to the target, the trace experiment may or may not
10948 still be running; it might have filled the trace buffer in the
10949 meantime, or stopped for one of the other reasons.  If it is running,
10950 it will continue after reconnection.
10951
10952 Upon reconnection, the target will upload information about the
10953 tracepoints in effect.  @value{GDBN} will then compare that
10954 information to the set of tracepoints currently defined, and attempt
10955 to match them up, allowing for the possibility that the numbers may
10956 have changed due to creation and deletion in the meantime.  If one of
10957 the target's tracepoints does not match any in @value{GDBN}, the
10958 debugger will create a new tracepoint, so that you have a number with
10959 which to specify that tracepoint.  This matching-up process is
10960 necessarily heuristic, and it may result in useless tracepoints being
10961 created; you may simply delete them if they are of no use.
10962
10963 @cindex circular trace buffer
10964 If your target agent supports a @dfn{circular trace buffer}, then you
10965 can run a trace experiment indefinitely without filling the trace
10966 buffer; when space runs out, the agent deletes already-collected trace
10967 frames, oldest first, until there is enough room to continue
10968 collecting.  This is especially useful if your tracepoints are being
10969 hit too often, and your trace gets terminated prematurely because the
10970 buffer is full.  To ask for a circular trace buffer, simply set
10971 @samp{circular-trace-buffer} to on.  You can set this at any time,
10972 including during tracing; if the agent can do it, it will change
10973 buffer handling on the fly, otherwise it will not take effect until
10974 the next run.
10975
10976 @table @code
10977 @item set circular-trace-buffer on
10978 @itemx set circular-trace-buffer off
10979 @kindex set circular-trace-buffer
10980 Choose whether a tracing run should use a linear or circular buffer
10981 for trace data.  A linear buffer will not lose any trace data, but may
10982 fill up prematurely, while a circular buffer will discard old trace
10983 data, but it will have always room for the latest tracepoint hits.
10984
10985 @item show circular-trace-buffer
10986 @kindex show circular-trace-buffer
10987 Show the current choice for the trace buffer.  Note that this may not
10988 match the agent's current buffer handling, nor is it guaranteed to
10989 match the setting that might have been in effect during a past run,
10990 for instance if you are looking at frames from a trace file.
10991
10992 @end table
10993
10994 @node Tracepoint Restrictions
10995 @subsection Tracepoint Restrictions
10996
10997 @cindex tracepoint restrictions
10998 There are a number of restrictions on the use of tracepoints.  As
10999 described above, tracepoint data gathering occurs on the target
11000 without interaction from @value{GDBN}.  Thus the full capabilities of
11001 the debugger are not available during data gathering, and then at data
11002 examination time, you will be limited by only having what was
11003 collected.  The following items describe some common problems, but it
11004 is not exhaustive, and you may run into additional difficulties not
11005 mentioned here.
11006
11007 @itemize @bullet
11008
11009 @item
11010 Tracepoint expressions are intended to gather objects (lvalues).  Thus
11011 the full flexibility of GDB's expression evaluator is not available.
11012 You cannot call functions, cast objects to aggregate types, access
11013 convenience variables or modify values (except by assignment to trace
11014 state variables).  Some language features may implicitly call
11015 functions (for instance Objective-C fields with accessors), and therefore
11016 cannot be collected either.
11017
11018 @item
11019 Collection of local variables, either individually or in bulk with
11020 @code{$locals} or @code{$args}, during @code{while-stepping} may
11021 behave erratically.  The stepping action may enter a new scope (for
11022 instance by stepping into a function), or the location of the variable
11023 may change (for instance it is loaded into a register).  The
11024 tracepoint data recorded uses the location information for the
11025 variables that is correct for the tracepoint location.  When the
11026 tracepoint is created, it is not possible, in general, to determine
11027 where the steps of a @code{while-stepping} sequence will advance the
11028 program---particularly if a conditional branch is stepped.
11029
11030 @item
11031 Collection of an incompletely-initialized or partially-destroyed object
11032 may result in something that @value{GDBN} cannot display, or displays
11033 in a misleading way.
11034
11035 @item
11036 When @value{GDBN} displays a pointer to character it automatically
11037 dereferences the pointer to also display characters of the string
11038 being pointed to.  However, collecting the pointer during tracing does
11039 not automatically collect the string.  You need to explicitly
11040 dereference the pointer and provide size information if you want to
11041 collect not only the pointer, but the memory pointed to.  For example,
11042 @code{*ptr@@50} can be used to collect the 50 element array pointed to
11043 by @code{ptr}.
11044
11045 @item
11046 It is not possible to collect a complete stack backtrace at a
11047 tracepoint.  Instead, you may collect the registers and a few hundred
11048 bytes from the stack pointer with something like @code{*(unsigned char *)$esp@@300}
11049 (adjust to use the name of the actual stack pointer register on your
11050 target architecture, and the amount of stack you wish to capture).
11051 Then the @code{backtrace} command will show a partial backtrace when
11052 using a trace frame.  The number of stack frames that can be examined
11053 depends on the sizes of the frames in the collected stack.  Note that
11054 if you ask for a block so large that it goes past the bottom of the
11055 stack, the target agent may report an error trying to read from an
11056 invalid address.
11057
11058 @item
11059 If you do not collect registers at a tracepoint, @value{GDBN} can
11060 infer that the value of @code{$pc} must be the same as the address of
11061 the tracepoint and use that when you are looking at a trace frame
11062 for that tracepoint.  However, this cannot work if the tracepoint has
11063 multiple locations (for instance if it was set in a function that was
11064 inlined), or if it has a @code{while-stepping} loop.  In those cases
11065 @value{GDBN} will warn you that it can't infer @code{$pc}, and default
11066 it to zero.
11067
11068 @end itemize
11069
11070 @node Analyze Collected Data
11071 @section Using the Collected Data
11072
11073 After the tracepoint experiment ends, you use @value{GDBN} commands
11074 for examining the trace data.  The basic idea is that each tracepoint
11075 collects a trace @dfn{snapshot} every time it is hit and another
11076 snapshot every time it single-steps.  All these snapshots are
11077 consecutively numbered from zero and go into a buffer, and you can
11078 examine them later.  The way you examine them is to @dfn{focus} on a
11079 specific trace snapshot.  When the remote stub is focused on a trace
11080 snapshot, it will respond to all @value{GDBN} requests for memory and
11081 registers by reading from the buffer which belongs to that snapshot,
11082 rather than from @emph{real} memory or registers of the program being
11083 debugged.  This means that @strong{all} @value{GDBN} commands
11084 (@code{print}, @code{info registers}, @code{backtrace}, etc.) will
11085 behave as if we were currently debugging the program state as it was
11086 when the tracepoint occurred.  Any requests for data that are not in
11087 the buffer will fail.
11088
11089 @menu
11090 * tfind::                       How to select a trace snapshot
11091 * tdump::                       How to display all data for a snapshot
11092 * save tracepoints::            How to save tracepoints for a future run
11093 @end menu
11094
11095 @node tfind
11096 @subsection @code{tfind @var{n}}
11097
11098 @kindex tfind
11099 @cindex select trace snapshot
11100 @cindex find trace snapshot
11101 The basic command for selecting a trace snapshot from the buffer is
11102 @code{tfind @var{n}}, which finds trace snapshot number @var{n},
11103 counting from zero.  If no argument @var{n} is given, the next
11104 snapshot is selected.
11105
11106 Here are the various forms of using the @code{tfind} command.
11107
11108 @table @code
11109 @item tfind start
11110 Find the first snapshot in the buffer.  This is a synonym for
11111 @code{tfind 0} (since 0 is the number of the first snapshot).
11112
11113 @item tfind none
11114 Stop debugging trace snapshots, resume @emph{live} debugging.
11115
11116 @item tfind end
11117 Same as @samp{tfind none}.
11118
11119 @item tfind
11120 No argument means find the next trace snapshot.
11121
11122 @item tfind -
11123 Find the previous trace snapshot before the current one.  This permits
11124 retracing earlier steps.
11125
11126 @item tfind tracepoint @var{num}
11127 Find the next snapshot associated with tracepoint @var{num}.  Search
11128 proceeds forward from the last examined trace snapshot.  If no
11129 argument @var{num} is given, it means find the next snapshot collected
11130 for the same tracepoint as the current snapshot.
11131
11132 @item tfind pc @var{addr}
11133 Find the next snapshot associated with the value @var{addr} of the
11134 program counter.  Search proceeds forward from the last examined trace
11135 snapshot.  If no argument @var{addr} is given, it means find the next
11136 snapshot with the same value of PC as the current snapshot.
11137
11138 @item tfind outside @var{addr1}, @var{addr2}
11139 Find the next snapshot whose PC is outside the given range of
11140 addresses (exclusive).
11141
11142 @item tfind range @var{addr1}, @var{addr2}
11143 Find the next snapshot whose PC is between @var{addr1} and
11144 @var{addr2} (inclusive).
11145
11146 @item tfind line @r{[}@var{file}:@r{]}@var{n}
11147 Find the next snapshot associated with the source line @var{n}.  If
11148 the optional argument @var{file} is given, refer to line @var{n} in
11149 that source file.  Search proceeds forward from the last examined
11150 trace snapshot.  If no argument @var{n} is given, it means find the
11151 next line other than the one currently being examined; thus saying
11152 @code{tfind line} repeatedly can appear to have the same effect as
11153 stepping from line to line in a @emph{live} debugging session.
11154 @end table
11155
11156 The default arguments for the @code{tfind} commands are specifically
11157 designed to make it easy to scan through the trace buffer.  For
11158 instance, @code{tfind} with no argument selects the next trace
11159 snapshot, and @code{tfind -} with no argument selects the previous
11160 trace snapshot.  So, by giving one @code{tfind} command, and then
11161 simply hitting @key{RET} repeatedly you can examine all the trace
11162 snapshots in order.  Or, by saying @code{tfind -} and then hitting
11163 @key{RET} repeatedly you can examine the snapshots in reverse order.
11164 The @code{tfind line} command with no argument selects the snapshot
11165 for the next source line executed.  The @code{tfind pc} command with
11166 no argument selects the next snapshot with the same program counter
11167 (PC) as the current frame.  The @code{tfind tracepoint} command with
11168 no argument selects the next trace snapshot collected by the same
11169 tracepoint as the current one.
11170
11171 In addition to letting you scan through the trace buffer manually,
11172 these commands make it easy to construct @value{GDBN} scripts that
11173 scan through the trace buffer and print out whatever collected data
11174 you are interested in.  Thus, if we want to examine the PC, FP, and SP
11175 registers from each trace frame in the buffer, we can say this:
11176
11177 @smallexample
11178 (@value{GDBP}) @b{tfind start}
11179 (@value{GDBP}) @b{while ($trace_frame != -1)}
11180 > printf "Frame %d, PC = %08X, SP = %08X, FP = %08X\n", \
11181           $trace_frame, $pc, $sp, $fp
11182 > tfind
11183 > end
11184
11185 Frame 0, PC = 0020DC64, SP = 0030BF3C, FP = 0030BF44
11186 Frame 1, PC = 0020DC6C, SP = 0030BF38, FP = 0030BF44
11187 Frame 2, PC = 0020DC70, SP = 0030BF34, FP = 0030BF44
11188 Frame 3, PC = 0020DC74, SP = 0030BF30, FP = 0030BF44
11189 Frame 4, PC = 0020DC78, SP = 0030BF2C, FP = 0030BF44
11190 Frame 5, PC = 0020DC7C, SP = 0030BF28, FP = 0030BF44
11191 Frame 6, PC = 0020DC80, SP = 0030BF24, FP = 0030BF44
11192 Frame 7, PC = 0020DC84, SP = 0030BF20, FP = 0030BF44
11193 Frame 8, PC = 0020DC88, SP = 0030BF1C, FP = 0030BF44
11194 Frame 9, PC = 0020DC8E, SP = 0030BF18, FP = 0030BF44
11195 Frame 10, PC = 00203F6C, SP = 0030BE3C, FP = 0030BF14
11196 @end smallexample
11197
11198 Or, if we want to examine the variable @code{X} at each source line in
11199 the buffer:
11200
11201 @smallexample
11202 (@value{GDBP}) @b{tfind start}
11203 (@value{GDBP}) @b{while ($trace_frame != -1)}
11204 > printf "Frame %d, X == %d\n", $trace_frame, X
11205 > tfind line
11206 > end
11207
11208 Frame 0, X = 1
11209 Frame 7, X = 2
11210 Frame 13, X = 255
11211 @end smallexample
11212
11213 @node tdump
11214 @subsection @code{tdump}
11215 @kindex tdump
11216 @cindex dump all data collected at tracepoint
11217 @cindex tracepoint data, display
11218
11219 This command takes no arguments.  It prints all the data collected at
11220 the current trace snapshot.
11221
11222 @smallexample
11223 (@value{GDBP}) @b{trace 444}
11224 (@value{GDBP}) @b{actions}
11225 Enter actions for tracepoint #2, one per line:
11226 > collect $regs, $locals, $args, gdb_long_test
11227 > end
11228
11229 (@value{GDBP}) @b{tstart}
11230
11231 (@value{GDBP}) @b{tfind line 444}
11232 #0  gdb_test (p1=0x11, p2=0x22, p3=0x33, p4=0x44, p5=0x55, p6=0x66)
11233 at gdb_test.c:444
11234 444        printp( "%s: arguments = 0x%X 0x%X 0x%X 0x%X 0x%X 0x%X\n", )
11235
11236 (@value{GDBP}) @b{tdump}
11237 Data collected at tracepoint 2, trace frame 1:
11238 d0             0xc4aa0085       -995491707
11239 d1             0x18     24
11240 d2             0x80     128
11241 d3             0x33     51
11242 d4             0x71aea3d        119204413
11243 d5             0x22     34
11244 d6             0xe0     224
11245 d7             0x380035 3670069
11246 a0             0x19e24a 1696330
11247 a1             0x3000668        50333288
11248 a2             0x100    256
11249 a3             0x322000 3284992
11250 a4             0x3000698        50333336
11251 a5             0x1ad3cc 1758156
11252 fp             0x30bf3c 0x30bf3c
11253 sp             0x30bf34 0x30bf34
11254 ps             0x0      0
11255 pc             0x20b2c8 0x20b2c8
11256 fpcontrol      0x0      0
11257 fpstatus       0x0      0
11258 fpiaddr        0x0      0
11259 p = 0x20e5b4 "gdb-test"
11260 p1 = (void *) 0x11
11261 p2 = (void *) 0x22
11262 p3 = (void *) 0x33
11263 p4 = (void *) 0x44
11264 p5 = (void *) 0x55
11265 p6 = (void *) 0x66
11266 gdb_long_test = 17 '\021'
11267
11268 (@value{GDBP})
11269 @end smallexample
11270
11271 @code{tdump} works by scanning the tracepoint's current collection
11272 actions and printing the value of each expression listed.  So
11273 @code{tdump} can fail, if after a run, you change the tracepoint's
11274 actions to mention variables that were not collected during the run.
11275
11276 Also, for tracepoints with @code{while-stepping} loops, @code{tdump}
11277 uses the collected value of @code{$pc} to distinguish between trace
11278 frames that were collected at the tracepoint hit, and frames that were
11279 collected while stepping.  This allows it to correctly choose whether
11280 to display the basic list of collections, or the collections from the
11281 body of the while-stepping loop.  However, if @code{$pc} was not collected,
11282 then @code{tdump} will always attempt to dump using the basic collection
11283 list, and may fail if a while-stepping frame does not include all the
11284 same data that is collected at the tracepoint hit.
11285 @c This is getting pretty arcane, example would be good.
11286
11287 @node save tracepoints
11288 @subsection @code{save tracepoints @var{filename}}
11289 @kindex save tracepoints
11290 @kindex save-tracepoints
11291 @cindex save tracepoints for future sessions
11292
11293 This command saves all current tracepoint definitions together with
11294 their actions and passcounts, into a file @file{@var{filename}}
11295 suitable for use in a later debugging session.  To read the saved
11296 tracepoint definitions, use the @code{source} command (@pxref{Command
11297 Files}).  The @w{@code{save-tracepoints}} command is a deprecated
11298 alias for @w{@code{save tracepoints}}
11299
11300 @node Tracepoint Variables
11301 @section Convenience Variables for Tracepoints
11302 @cindex tracepoint variables
11303 @cindex convenience variables for tracepoints
11304
11305 @table @code
11306 @vindex $trace_frame
11307 @item (int) $trace_frame
11308 The current trace snapshot (a.k.a.@: @dfn{frame}) number, or -1 if no
11309 snapshot is selected.
11310
11311 @vindex $tracepoint
11312 @item (int) $tracepoint
11313 The tracepoint for the current trace snapshot.
11314
11315 @vindex $trace_line
11316 @item (int) $trace_line
11317 The line number for the current trace snapshot.
11318
11319 @vindex $trace_file
11320 @item (char []) $trace_file
11321 The source file for the current trace snapshot.
11322
11323 @vindex $trace_func
11324 @item (char []) $trace_func
11325 The name of the function containing @code{$tracepoint}.
11326 @end table
11327
11328 Note: @code{$trace_file} is not suitable for use in @code{printf},
11329 use @code{output} instead.
11330
11331 Here's a simple example of using these convenience variables for
11332 stepping through all the trace snapshots and printing some of their
11333 data.  Note that these are not the same as trace state variables,
11334 which are managed by the target.
11335
11336 @smallexample
11337 (@value{GDBP}) @b{tfind start}
11338
11339 (@value{GDBP}) @b{while $trace_frame != -1}
11340 > output $trace_file
11341 > printf ", line %d (tracepoint #%d)\n", $trace_line, $tracepoint
11342 > tfind
11343 > end
11344 @end smallexample
11345
11346 @node Trace Files
11347 @section Using Trace Files
11348 @cindex trace files
11349
11350 In some situations, the target running a trace experiment may no
11351 longer be available; perhaps it crashed, or the hardware was needed
11352 for a different activity.  To handle these cases, you can arrange to
11353 dump the trace data into a file, and later use that file as a source
11354 of trace data, via the @code{target tfile} command.
11355
11356 @table @code
11357
11358 @kindex tsave
11359 @item tsave [ -r ] @var{filename}
11360 Save the trace data to @var{filename}.  By default, this command
11361 assumes that @var{filename} refers to the host filesystem, so if
11362 necessary @value{GDBN} will copy raw trace data up from the target and
11363 then save it.  If the target supports it, you can also supply the
11364 optional argument @code{-r} (``remote'') to direct the target to save
11365 the data directly into @var{filename} in its own filesystem, which may be
11366 more efficient if the trace buffer is very large.  (Note, however, that
11367 @code{target tfile} can only read from files accessible to the host.)
11368
11369 @kindex target tfile
11370 @kindex tfile
11371 @item target tfile @var{filename}
11372 Use the file named @var{filename} as a source of trace data.  Commands
11373 that examine data work as they do with a live target, but it is not
11374 possible to run any new trace experiments.  @code{tstatus} will report
11375 the state of the trace run at the moment the data was saved, as well
11376 as the current trace frame you are examining.  @var{filename} must be
11377 on a filesystem accessible to the host.
11378
11379 @end table
11380
11381 @node Overlays
11382 @chapter Debugging Programs That Use Overlays
11383 @cindex overlays
11384
11385 If your program is too large to fit completely in your target system's
11386 memory, you can sometimes use @dfn{overlays} to work around this
11387 problem.  @value{GDBN} provides some support for debugging programs that
11388 use overlays.
11389
11390 @menu
11391 * How Overlays Work::              A general explanation of overlays.
11392 * Overlay Commands::               Managing overlays in @value{GDBN}.
11393 * Automatic Overlay Debugging::    @value{GDBN} can find out which overlays are
11394                                    mapped by asking the inferior.
11395 * Overlay Sample Program::         A sample program using overlays.
11396 @end menu
11397
11398 @node How Overlays Work
11399 @section How Overlays Work
11400 @cindex mapped overlays
11401 @cindex unmapped overlays
11402 @cindex load address, overlay's
11403 @cindex mapped address
11404 @cindex overlay area
11405
11406 Suppose you have a computer whose instruction address space is only 64
11407 kilobytes long, but which has much more memory which can be accessed by
11408 other means: special instructions, segment registers, or memory
11409 management hardware, for example.  Suppose further that you want to
11410 adapt a program which is larger than 64 kilobytes to run on this system.
11411
11412 One solution is to identify modules of your program which are relatively
11413 independent, and need not call each other directly; call these modules
11414 @dfn{overlays}.  Separate the overlays from the main program, and place
11415 their machine code in the larger memory.  Place your main program in
11416 instruction memory, but leave at least enough space there to hold the
11417 largest overlay as well.
11418
11419 Now, to call a function located in an overlay, you must first copy that
11420 overlay's machine code from the large memory into the space set aside
11421 for it in the instruction memory, and then jump to its entry point
11422 there.
11423
11424 @c NB:  In the below the mapped area's size is greater or equal to the
11425 @c size of all overlays.  This is intentional to remind the developer
11426 @c that overlays don't necessarily need to be the same size.
11427
11428 @smallexample
11429 @group
11430     Data             Instruction            Larger
11431 Address Space       Address Space        Address Space
11432 +-----------+       +-----------+        +-----------+
11433 |           |       |           |        |           |
11434 +-----------+       +-----------+        +-----------+<-- overlay 1
11435 | program   |       |   main    |   .----| overlay 1 | load address
11436 | variables |       |  program  |   |    +-----------+
11437 | and heap  |       |           |   |    |           |
11438 +-----------+       |           |   |    +-----------+<-- overlay 2
11439 |           |       +-----------+   |    |           | load address
11440 +-----------+       |           |   |  .-| overlay 2 |
11441                     |           |   |  | |           |
11442          mapped --->+-----------+   |  | +-----------+
11443          address    |           |   |  | |           |
11444                     |  overlay  | <-'  | |           |
11445                     |   area    |  <---' +-----------+<-- overlay 3
11446                     |           | <---.  |           | load address
11447                     +-----------+     `--| overlay 3 |
11448                     |           |        |           |
11449                     +-----------+        |           |
11450                                          +-----------+
11451                                          |           |
11452                                          +-----------+
11453
11454                     @anchor{A code overlay}A code overlay
11455 @end group
11456 @end smallexample
11457
11458 The diagram (@pxref{A code overlay}) shows a system with separate data
11459 and instruction address spaces.  To map an overlay, the program copies
11460 its code from the larger address space to the instruction address space.
11461 Since the overlays shown here all use the same mapped address, only one
11462 may be mapped at a time.  For a system with a single address space for
11463 data and instructions, the diagram would be similar, except that the
11464 program variables and heap would share an address space with the main
11465 program and the overlay area.
11466
11467 An overlay loaded into instruction memory and ready for use is called a
11468 @dfn{mapped} overlay; its @dfn{mapped address} is its address in the
11469 instruction memory.  An overlay not present (or only partially present)
11470 in instruction memory is called @dfn{unmapped}; its @dfn{load address}
11471 is its address in the larger memory.  The mapped address is also called
11472 the @dfn{virtual memory address}, or @dfn{VMA}; the load address is also
11473 called the @dfn{load memory address}, or @dfn{LMA}.
11474
11475 Unfortunately, overlays are not a completely transparent way to adapt a
11476 program to limited instruction memory.  They introduce a new set of
11477 global constraints you must keep in mind as you design your program:
11478
11479 @itemize @bullet
11480
11481 @item
11482 Before calling or returning to a function in an overlay, your program
11483 must make sure that overlay is actually mapped.  Otherwise, the call or
11484 return will transfer control to the right address, but in the wrong
11485 overlay, and your program will probably crash.
11486
11487 @item
11488 If the process of mapping an overlay is expensive on your system, you
11489 will need to choose your overlays carefully to minimize their effect on
11490 your program's performance.
11491
11492 @item
11493 The executable file you load onto your system must contain each
11494 overlay's instructions, appearing at the overlay's load address, not its
11495 mapped address.  However, each overlay's instructions must be relocated
11496 and its symbols defined as if the overlay were at its mapped address.
11497 You can use GNU linker scripts to specify different load and relocation
11498 addresses for pieces of your program; see @ref{Overlay Description,,,
11499 ld.info, Using ld: the GNU linker}.
11500
11501 @item
11502 The procedure for loading executable files onto your system must be able
11503 to load their contents into the larger address space as well as the
11504 instruction and data spaces.
11505
11506 @end itemize
11507
11508 The overlay system described above is rather simple, and could be
11509 improved in many ways:
11510
11511 @itemize @bullet
11512
11513 @item
11514 If your system has suitable bank switch registers or memory management
11515 hardware, you could use those facilities to make an overlay's load area
11516 contents simply appear at their mapped address in instruction space.
11517 This would probably be faster than copying the overlay to its mapped
11518 area in the usual way.
11519
11520 @item
11521 If your overlays are small enough, you could set aside more than one
11522 overlay area, and have more than one overlay mapped at a time.
11523
11524 @item
11525 You can use overlays to manage data, as well as instructions.  In
11526 general, data overlays are even less transparent to your design than
11527 code overlays: whereas code overlays only require care when you call or
11528 return to functions, data overlays require care every time you access
11529 the data.  Also, if you change the contents of a data overlay, you
11530 must copy its contents back out to its load address before you can copy a
11531 different data overlay into the same mapped area.
11532
11533 @end itemize
11534
11535
11536 @node Overlay Commands
11537 @section Overlay Commands
11538
11539 To use @value{GDBN}'s overlay support, each overlay in your program must
11540 correspond to a separate section of the executable file.  The section's
11541 virtual memory address and load memory address must be the overlay's
11542 mapped and load addresses.  Identifying overlays with sections allows
11543 @value{GDBN} to determine the appropriate address of a function or
11544 variable, depending on whether the overlay is mapped or not.
11545
11546 @value{GDBN}'s overlay commands all start with the word @code{overlay};
11547 you can abbreviate this as @code{ov} or @code{ovly}.  The commands are:
11548
11549 @table @code
11550 @item overlay off
11551 @kindex overlay
11552 Disable @value{GDBN}'s overlay support.  When overlay support is
11553 disabled, @value{GDBN} assumes that all functions and variables are
11554 always present at their mapped addresses.  By default, @value{GDBN}'s
11555 overlay support is disabled.
11556
11557 @item overlay manual
11558 @cindex manual overlay debugging
11559 Enable @dfn{manual} overlay debugging.  In this mode, @value{GDBN}
11560 relies on you to tell it which overlays are mapped, and which are not,
11561 using the @code{overlay map-overlay} and @code{overlay unmap-overlay}
11562 commands described below.
11563
11564 @item overlay map-overlay @var{overlay}
11565 @itemx overlay map @var{overlay}
11566 @cindex map an overlay
11567 Tell @value{GDBN} that @var{overlay} is now mapped; @var{overlay} must
11568 be the name of the object file section containing the overlay.  When an
11569 overlay is mapped, @value{GDBN} assumes it can find the overlay's
11570 functions and variables at their mapped addresses.  @value{GDBN} assumes
11571 that any other overlays whose mapped ranges overlap that of
11572 @var{overlay} are now unmapped.
11573
11574 @item overlay unmap-overlay @var{overlay}
11575 @itemx overlay unmap @var{overlay}
11576 @cindex unmap an overlay
11577 Tell @value{GDBN} that @var{overlay} is no longer mapped; @var{overlay}
11578 must be the name of the object file section containing the overlay.
11579 When an overlay is unmapped, @value{GDBN} assumes it can find the
11580 overlay's functions and variables at their load addresses.
11581
11582 @item overlay auto
11583 Enable @dfn{automatic} overlay debugging.  In this mode, @value{GDBN}
11584 consults a data structure the overlay manager maintains in the inferior
11585 to see which overlays are mapped.  For details, see @ref{Automatic
11586 Overlay Debugging}.
11587
11588 @item overlay load-target
11589 @itemx overlay load
11590 @cindex reloading the overlay table
11591 Re-read the overlay table from the inferior.  Normally, @value{GDBN}
11592 re-reads the table @value{GDBN} automatically each time the inferior
11593 stops, so this command should only be necessary if you have changed the
11594 overlay mapping yourself using @value{GDBN}.  This command is only
11595 useful when using automatic overlay debugging.
11596
11597 @item overlay list-overlays
11598 @itemx overlay list
11599 @cindex listing mapped overlays
11600 Display a list of the overlays currently mapped, along with their mapped
11601 addresses, load addresses, and sizes.
11602
11603 @end table
11604
11605 Normally, when @value{GDBN} prints a code address, it includes the name
11606 of the function the address falls in:
11607
11608 @smallexample
11609 (@value{GDBP}) print main
11610 $3 = @{int ()@} 0x11a0 <main>
11611 @end smallexample
11612 @noindent
11613 When overlay debugging is enabled, @value{GDBN} recognizes code in
11614 unmapped overlays, and prints the names of unmapped functions with
11615 asterisks around them.  For example, if @code{foo} is a function in an
11616 unmapped overlay, @value{GDBN} prints it this way:
11617
11618 @smallexample
11619 (@value{GDBP}) overlay list
11620 No sections are mapped.
11621 (@value{GDBP}) print foo
11622 $5 = @{int (int)@} 0x100000 <*foo*>
11623 @end smallexample
11624 @noindent
11625 When @code{foo}'s overlay is mapped, @value{GDBN} prints the function's
11626 name normally:
11627
11628 @smallexample
11629 (@value{GDBP}) overlay list
11630 Section .ov.foo.text, loaded at 0x100000 - 0x100034,
11631         mapped at 0x1016 - 0x104a
11632 (@value{GDBP}) print foo
11633 $6 = @{int (int)@} 0x1016 <foo>
11634 @end smallexample
11635
11636 When overlay debugging is enabled, @value{GDBN} can find the correct
11637 address for functions and variables in an overlay, whether or not the
11638 overlay is mapped.  This allows most @value{GDBN} commands, like
11639 @code{break} and @code{disassemble}, to work normally, even on unmapped
11640 code.  However, @value{GDBN}'s breakpoint support has some limitations:
11641
11642 @itemize @bullet
11643 @item
11644 @cindex breakpoints in overlays
11645 @cindex overlays, setting breakpoints in
11646 You can set breakpoints in functions in unmapped overlays, as long as
11647 @value{GDBN} can write to the overlay at its load address.
11648 @item
11649 @value{GDBN} can not set hardware or simulator-based breakpoints in
11650 unmapped overlays.  However, if you set a breakpoint at the end of your
11651 overlay manager (and tell @value{GDBN} which overlays are now mapped, if
11652 you are using manual overlay management), @value{GDBN} will re-set its
11653 breakpoints properly.
11654 @end itemize
11655
11656
11657 @node Automatic Overlay Debugging
11658 @section Automatic Overlay Debugging
11659 @cindex automatic overlay debugging
11660
11661 @value{GDBN} can automatically track which overlays are mapped and which
11662 are not, given some simple co-operation from the overlay manager in the
11663 inferior.  If you enable automatic overlay debugging with the
11664 @code{overlay auto} command (@pxref{Overlay Commands}), @value{GDBN}
11665 looks in the inferior's memory for certain variables describing the
11666 current state of the overlays.
11667
11668 Here are the variables your overlay manager must define to support
11669 @value{GDBN}'s automatic overlay debugging:
11670
11671 @table @asis
11672
11673 @item @code{_ovly_table}:
11674 This variable must be an array of the following structures:
11675
11676 @smallexample
11677 struct
11678 @{
11679   /* The overlay's mapped address.  */
11680   unsigned long vma;
11681
11682   /* The size of the overlay, in bytes.  */
11683   unsigned long size;
11684
11685   /* The overlay's load address.  */
11686   unsigned long lma;
11687
11688   /* Non-zero if the overlay is currently mapped;
11689      zero otherwise.  */
11690   unsigned long mapped;
11691 @}
11692 @end smallexample
11693
11694 @item @code{_novlys}:
11695 This variable must be a four-byte signed integer, holding the total
11696 number of elements in @code{_ovly_table}.
11697
11698 @end table
11699
11700 To decide whether a particular overlay is mapped or not, @value{GDBN}
11701 looks for an entry in @w{@code{_ovly_table}} whose @code{vma} and
11702 @code{lma} members equal the VMA and LMA of the overlay's section in the
11703 executable file.  When @value{GDBN} finds a matching entry, it consults
11704 the entry's @code{mapped} member to determine whether the overlay is
11705 currently mapped.
11706
11707 In addition, your overlay manager may define a function called
11708 @code{_ovly_debug_event}.  If this function is defined, @value{GDBN}
11709 will silently set a breakpoint there.  If the overlay manager then
11710 calls this function whenever it has changed the overlay table, this
11711 will enable @value{GDBN} to accurately keep track of which overlays
11712 are in program memory, and update any breakpoints that may be set
11713 in overlays.  This will allow breakpoints to work even if the
11714 overlays are kept in ROM or other non-writable memory while they
11715 are not being executed.
11716
11717 @node Overlay Sample Program
11718 @section Overlay Sample Program
11719 @cindex overlay example program
11720
11721 When linking a program which uses overlays, you must place the overlays
11722 at their load addresses, while relocating them to run at their mapped
11723 addresses.  To do this, you must write a linker script (@pxref{Overlay
11724 Description,,, ld.info, Using ld: the GNU linker}).  Unfortunately,
11725 since linker scripts are specific to a particular host system, target
11726 architecture, and target memory layout, this manual cannot provide
11727 portable sample code demonstrating @value{GDBN}'s overlay support.
11728
11729 However, the @value{GDBN} source distribution does contain an overlaid
11730 program, with linker scripts for a few systems, as part of its test
11731 suite.  The program consists of the following files from
11732 @file{gdb/testsuite/gdb.base}:
11733
11734 @table @file
11735 @item overlays.c
11736 The main program file.
11737 @item ovlymgr.c
11738 A simple overlay manager, used by @file{overlays.c}.
11739 @item foo.c
11740 @itemx bar.c
11741 @itemx baz.c
11742 @itemx grbx.c
11743 Overlay modules, loaded and used by @file{overlays.c}.
11744 @item d10v.ld
11745 @itemx m32r.ld
11746 Linker scripts for linking the test program on the @code{d10v-elf}
11747 and @code{m32r-elf} targets.
11748 @end table
11749
11750 You can build the test program using the @code{d10v-elf} GCC
11751 cross-compiler like this:
11752
11753 @smallexample
11754 $ d10v-elf-gcc -g -c overlays.c
11755 $ d10v-elf-gcc -g -c ovlymgr.c
11756 $ d10v-elf-gcc -g -c foo.c
11757 $ d10v-elf-gcc -g -c bar.c
11758 $ d10v-elf-gcc -g -c baz.c
11759 $ d10v-elf-gcc -g -c grbx.c
11760 $ d10v-elf-gcc -g overlays.o ovlymgr.o foo.o bar.o \
11761                   baz.o grbx.o -Wl,-Td10v.ld -o overlays
11762 @end smallexample
11763
11764 The build process is identical for any other architecture, except that
11765 you must substitute the appropriate compiler and linker script for the
11766 target system for @code{d10v-elf-gcc} and @code{d10v.ld}.
11767
11768
11769 @node Languages
11770 @chapter Using @value{GDBN} with Different Languages
11771 @cindex languages
11772
11773 Although programming languages generally have common aspects, they are
11774 rarely expressed in the same manner.  For instance, in ANSI C,
11775 dereferencing a pointer @code{p} is accomplished by @code{*p}, but in
11776 Modula-2, it is accomplished by @code{p^}.  Values can also be
11777 represented (and displayed) differently.  Hex numbers in C appear as
11778 @samp{0x1ae}, while in Modula-2 they appear as @samp{1AEH}.
11779
11780 @cindex working language
11781 Language-specific information is built into @value{GDBN} for some languages,
11782 allowing you to express operations like the above in your program's
11783 native language, and allowing @value{GDBN} to output values in a manner
11784 consistent with the syntax of your program's native language.  The
11785 language you use to build expressions is called the @dfn{working
11786 language}.
11787
11788 @menu
11789 * Setting::                     Switching between source languages
11790 * Show::                        Displaying the language
11791 * Checks::                      Type and range checks
11792 * Supported Languages::         Supported languages
11793 * Unsupported Languages::       Unsupported languages
11794 @end menu
11795
11796 @node Setting
11797 @section Switching Between Source Languages
11798
11799 There are two ways to control the working language---either have @value{GDBN}
11800 set it automatically, or select it manually yourself.  You can use the
11801 @code{set language} command for either purpose.  On startup, @value{GDBN}
11802 defaults to setting the language automatically.  The working language is
11803 used to determine how expressions you type are interpreted, how values
11804 are printed, etc.
11805
11806 In addition to the working language, every source file that
11807 @value{GDBN} knows about has its own working language.  For some object
11808 file formats, the compiler might indicate which language a particular
11809 source file is in.  However, most of the time @value{GDBN} infers the
11810 language from the name of the file.  The language of a source file
11811 controls whether C@t{++} names are demangled---this way @code{backtrace} can
11812 show each frame appropriately for its own language.  There is no way to
11813 set the language of a source file from within @value{GDBN}, but you can
11814 set the language associated with a filename extension.  @xref{Show, ,
11815 Displaying the Language}.
11816
11817 This is most commonly a problem when you use a program, such
11818 as @code{cfront} or @code{f2c}, that generates C but is written in
11819 another language.  In that case, make the
11820 program use @code{#line} directives in its C output; that way
11821 @value{GDBN} will know the correct language of the source code of the original
11822 program, and will display that source code, not the generated C code.
11823
11824 @menu
11825 * Filenames::                   Filename extensions and languages.
11826 * Manually::                    Setting the working language manually
11827 * Automatically::               Having @value{GDBN} infer the source language
11828 @end menu
11829
11830 @node Filenames
11831 @subsection List of Filename Extensions and Languages
11832
11833 If a source file name ends in one of the following extensions, then
11834 @value{GDBN} infers that its language is the one indicated.
11835
11836 @table @file
11837 @item .ada
11838 @itemx .ads
11839 @itemx .adb
11840 @itemx .a
11841 Ada source file.
11842
11843 @item .c
11844 C source file
11845
11846 @item .C
11847 @itemx .cc
11848 @itemx .cp
11849 @itemx .cpp
11850 @itemx .cxx
11851 @itemx .c++
11852 C@t{++} source file
11853
11854 @item .d
11855 D source file
11856
11857 @item .m
11858 Objective-C source file
11859
11860 @item .f
11861 @itemx .F
11862 Fortran source file
11863
11864 @item .mod
11865 Modula-2 source file
11866
11867 @item .s
11868 @itemx .S
11869 Assembler source file.  This actually behaves almost like C, but
11870 @value{GDBN} does not skip over function prologues when stepping.
11871 @end table
11872
11873 In addition, you may set the language associated with a filename
11874 extension.  @xref{Show, , Displaying the Language}.
11875
11876 @node Manually
11877 @subsection Setting the Working Language
11878
11879 If you allow @value{GDBN} to set the language automatically,
11880 expressions are interpreted the same way in your debugging session and
11881 your program.
11882
11883 @kindex set language
11884 If you wish, you may set the language manually.  To do this, issue the
11885 command @samp{set language @var{lang}}, where @var{lang} is the name of
11886 a language, such as
11887 @code{c} or @code{modula-2}.
11888 For a list of the supported languages, type @samp{set language}.
11889
11890 Setting the language manually prevents @value{GDBN} from updating the working
11891 language automatically.  This can lead to confusion if you try
11892 to debug a program when the working language is not the same as the
11893 source language, when an expression is acceptable to both
11894 languages---but means different things.  For instance, if the current
11895 source file were written in C, and @value{GDBN} was parsing Modula-2, a
11896 command such as:
11897
11898 @smallexample
11899 print a = b + c
11900 @end smallexample
11901
11902 @noindent
11903 might not have the effect you intended.  In C, this means to add
11904 @code{b} and @code{c} and place the result in @code{a}.  The result
11905 printed would be the value of @code{a}.  In Modula-2, this means to compare
11906 @code{a} to the result of @code{b+c}, yielding a @code{BOOLEAN} value.
11907
11908 @node Automatically
11909 @subsection Having @value{GDBN} Infer the Source Language
11910
11911 To have @value{GDBN} set the working language automatically, use
11912 @samp{set language local} or @samp{set language auto}.  @value{GDBN}
11913 then infers the working language.  That is, when your program stops in a
11914 frame (usually by encountering a breakpoint), @value{GDBN} sets the
11915 working language to the language recorded for the function in that
11916 frame.  If the language for a frame is unknown (that is, if the function
11917 or block corresponding to the frame was defined in a source file that
11918 does not have a recognized extension), the current working language is
11919 not changed, and @value{GDBN} issues a warning.
11920
11921 This may not seem necessary for most programs, which are written
11922 entirely in one source language.  However, program modules and libraries
11923 written in one source language can be used by a main program written in
11924 a different source language.  Using @samp{set language auto} in this
11925 case frees you from having to set the working language manually.
11926
11927 @node Show
11928 @section Displaying the Language
11929
11930 The following commands help you find out which language is the
11931 working language, and also what language source files were written in.
11932
11933 @table @code
11934 @item show language
11935 @kindex show language
11936 Display the current working language.  This is the
11937 language you can use with commands such as @code{print} to
11938 build and compute expressions that may involve variables in your program.
11939
11940 @item info frame
11941 @kindex info frame@r{, show the source language}
11942 Display the source language for this frame.  This language becomes the
11943 working language if you use an identifier from this frame.
11944 @xref{Frame Info, ,Information about a Frame}, to identify the other
11945 information listed here.
11946
11947 @item info source
11948 @kindex info source@r{, show the source language}
11949 Display the source language of this source file.
11950 @xref{Symbols, ,Examining the Symbol Table}, to identify the other
11951 information listed here.
11952 @end table
11953
11954 In unusual circumstances, you may have source files with extensions
11955 not in the standard list.  You can then set the extension associated
11956 with a language explicitly:
11957
11958 @table @code
11959 @item set extension-language @var{ext} @var{language}
11960 @kindex set extension-language
11961 Tell @value{GDBN} that source files with extension @var{ext} are to be
11962 assumed as written in the source language @var{language}.
11963
11964 @item info extensions
11965 @kindex info extensions
11966 List all the filename extensions and the associated languages.
11967 @end table
11968
11969 @node Checks
11970 @section Type and Range Checking
11971
11972 @quotation
11973 @emph{Warning:} In this release, the @value{GDBN} commands for type and range
11974 checking are included, but they do not yet have any effect.  This
11975 section documents the intended facilities.
11976 @end quotation
11977 @c FIXME remove warning when type/range code added
11978
11979 Some languages are designed to guard you against making seemingly common
11980 errors through a series of compile- and run-time checks.  These include
11981 checking the type of arguments to functions and operators, and making
11982 sure mathematical overflows are caught at run time.  Checks such as
11983 these help to ensure a program's correctness once it has been compiled
11984 by eliminating type mismatches, and providing active checks for range
11985 errors when your program is running.
11986
11987 @value{GDBN} can check for conditions like the above if you wish.
11988 Although @value{GDBN} does not check the statements in your program,
11989 it can check expressions entered directly into @value{GDBN} for
11990 evaluation via the @code{print} command, for example.  As with the
11991 working language, @value{GDBN} can also decide whether or not to check
11992 automatically based on your program's source language.
11993 @xref{Supported Languages, ,Supported Languages}, for the default
11994 settings of supported languages.
11995
11996 @menu
11997 * Type Checking::               An overview of type checking
11998 * Range Checking::              An overview of range checking
11999 @end menu
12000
12001 @cindex type checking
12002 @cindex checks, type
12003 @node Type Checking
12004 @subsection An Overview of Type Checking
12005
12006 Some languages, such as Modula-2, are strongly typed, meaning that the
12007 arguments to operators and functions have to be of the correct type,
12008 otherwise an error occurs.  These checks prevent type mismatch
12009 errors from ever causing any run-time problems.  For example,
12010
12011 @smallexample
12012 1 + 2 @result{} 3
12013 @exdent but
12014 @error{} 1 + 2.3
12015 @end smallexample
12016
12017 The second example fails because the @code{CARDINAL} 1 is not
12018 type-compatible with the @code{REAL} 2.3.
12019
12020 For the expressions you use in @value{GDBN} commands, you can tell the
12021 @value{GDBN} type checker to skip checking;
12022 to treat any mismatches as errors and abandon the expression;
12023 or to only issue warnings when type mismatches occur,
12024 but evaluate the expression anyway.  When you choose the last of
12025 these, @value{GDBN} evaluates expressions like the second example above, but
12026 also issues a warning.
12027
12028 Even if you turn type checking off, there may be other reasons
12029 related to type that prevent @value{GDBN} from evaluating an expression.
12030 For instance, @value{GDBN} does not know how to add an @code{int} and
12031 a @code{struct foo}.  These particular type errors have nothing to do
12032 with the language in use, and usually arise from expressions, such as
12033 the one described above, which make little sense to evaluate anyway.
12034
12035 Each language defines to what degree it is strict about type.  For
12036 instance, both Modula-2 and C require the arguments to arithmetical
12037 operators to be numbers.  In C, enumerated types and pointers can be
12038 represented as numbers, so that they are valid arguments to mathematical
12039 operators.  @xref{Supported Languages, ,Supported Languages}, for further
12040 details on specific languages.
12041
12042 @value{GDBN} provides some additional commands for controlling the type checker:
12043
12044 @kindex set check type
12045 @kindex show check type
12046 @table @code
12047 @item set check type auto
12048 Set type checking on or off based on the current working language.
12049 @xref{Supported Languages, ,Supported Languages}, for the default settings for
12050 each language.
12051
12052 @item set check type on
12053 @itemx set check type off
12054 Set type checking on or off, overriding the default setting for the
12055 current working language.  Issue a warning if the setting does not
12056 match the language default.  If any type mismatches occur in
12057 evaluating an expression while type checking is on, @value{GDBN} prints a
12058 message and aborts evaluation of the expression.
12059
12060 @item set check type warn
12061 Cause the type checker to issue warnings, but to always attempt to
12062 evaluate the expression.  Evaluating the expression may still
12063 be impossible for other reasons.  For example, @value{GDBN} cannot add
12064 numbers and structures.
12065
12066 @item show type
12067 Show the current setting of the type checker, and whether or not @value{GDBN}
12068 is setting it automatically.
12069 @end table
12070
12071 @cindex range checking
12072 @cindex checks, range
12073 @node Range Checking
12074 @subsection An Overview of Range Checking
12075
12076 In some languages (such as Modula-2), it is an error to exceed the
12077 bounds of a type; this is enforced with run-time checks.  Such range
12078 checking is meant to ensure program correctness by making sure
12079 computations do not overflow, or indices on an array element access do
12080 not exceed the bounds of the array.
12081
12082 For expressions you use in @value{GDBN} commands, you can tell
12083 @value{GDBN} to treat range errors in one of three ways: ignore them,
12084 always treat them as errors and abandon the expression, or issue
12085 warnings but evaluate the expression anyway.
12086
12087 A range error can result from numerical overflow, from exceeding an
12088 array index bound, or when you type a constant that is not a member
12089 of any type.  Some languages, however, do not treat overflows as an
12090 error.  In many implementations of C, mathematical overflow causes the
12091 result to ``wrap around'' to lower values---for example, if @var{m} is
12092 the largest integer value, and @var{s} is the smallest, then
12093
12094 @smallexample
12095 @var{m} + 1 @result{} @var{s}
12096 @end smallexample
12097
12098 This, too, is specific to individual languages, and in some cases
12099 specific to individual compilers or machines.  @xref{Supported Languages, ,
12100 Supported Languages}, for further details on specific languages.
12101
12102 @value{GDBN} provides some additional commands for controlling the range checker:
12103
12104 @kindex set check range
12105 @kindex show check range
12106 @table @code
12107 @item set check range auto
12108 Set range checking on or off based on the current working language.
12109 @xref{Supported Languages, ,Supported Languages}, for the default settings for
12110 each language.
12111
12112 @item set check range on
12113 @itemx set check range off
12114 Set range checking on or off, overriding the default setting for the
12115 current working language.  A warning is issued if the setting does not
12116 match the language default.  If a range error occurs and range checking is on,
12117 then a message is printed and evaluation of the expression is aborted.
12118
12119 @item set check range warn
12120 Output messages when the @value{GDBN} range checker detects a range error,
12121 but attempt to evaluate the expression anyway.  Evaluating the
12122 expression may still be impossible for other reasons, such as accessing
12123 memory that the process does not own (a typical example from many Unix
12124 systems).
12125
12126 @item show range
12127 Show the current setting of the range checker, and whether or not it is
12128 being set automatically by @value{GDBN}.
12129 @end table
12130
12131 @node Supported Languages
12132 @section Supported Languages
12133
12134 @value{GDBN} supports C, C@t{++}, D, Objective-C, Fortran, Java, OpenCL C, Pascal,
12135 assembly, Modula-2, and Ada.
12136 @c This is false ...
12137 Some @value{GDBN} features may be used in expressions regardless of the
12138 language you use: the @value{GDBN} @code{@@} and @code{::} operators,
12139 and the @samp{@{type@}addr} construct (@pxref{Expressions,
12140 ,Expressions}) can be used with the constructs of any supported
12141 language.
12142
12143 The following sections detail to what degree each source language is
12144 supported by @value{GDBN}.  These sections are not meant to be language
12145 tutorials or references, but serve only as a reference guide to what the
12146 @value{GDBN} expression parser accepts, and what input and output
12147 formats should look like for different languages.  There are many good
12148 books written on each of these languages; please look to these for a
12149 language reference or tutorial.
12150
12151 @menu
12152 * C::                           C and C@t{++}
12153 * D::                           D
12154 * Objective-C::                 Objective-C
12155 * OpenCL C::                    OpenCL C
12156 * Fortran::                     Fortran
12157 * Pascal::                      Pascal
12158 * Modula-2::                    Modula-2
12159 * Ada::                         Ada
12160 @end menu
12161
12162 @node C
12163 @subsection C and C@t{++}
12164
12165 @cindex C and C@t{++}
12166 @cindex expressions in C or C@t{++}
12167
12168 Since C and C@t{++} are so closely related, many features of @value{GDBN} apply
12169 to both languages.  Whenever this is the case, we discuss those languages
12170 together.
12171
12172 @cindex C@t{++}
12173 @cindex @code{g++}, @sc{gnu} C@t{++} compiler
12174 @cindex @sc{gnu} C@t{++}
12175 The C@t{++} debugging facilities are jointly implemented by the C@t{++}
12176 compiler and @value{GDBN}.  Therefore, to debug your C@t{++} code
12177 effectively, you must compile your C@t{++} programs with a supported
12178 C@t{++} compiler, such as @sc{gnu} @code{g++}, or the HP ANSI C@t{++}
12179 compiler (@code{aCC}).
12180
12181 @menu
12182 * C Operators::                 C and C@t{++} operators
12183 * C Constants::                 C and C@t{++} constants
12184 * C Plus Plus Expressions::     C@t{++} expressions
12185 * C Defaults::                  Default settings for C and C@t{++}
12186 * C Checks::                    C and C@t{++} type and range checks
12187 * Debugging C::                 @value{GDBN} and C
12188 * Debugging C Plus Plus::       @value{GDBN} features for C@t{++}
12189 * Decimal Floating Point::      Numbers in Decimal Floating Point format
12190 @end menu
12191
12192 @node C Operators
12193 @subsubsection C and C@t{++} Operators
12194
12195 @cindex C and C@t{++} operators
12196
12197 Operators must be defined on values of specific types.  For instance,
12198 @code{+} is defined on numbers, but not on structures.  Operators are
12199 often defined on groups of types.
12200
12201 For the purposes of C and C@t{++}, the following definitions hold:
12202
12203 @itemize @bullet
12204
12205 @item
12206 @emph{Integral types} include @code{int} with any of its storage-class
12207 specifiers; @code{char}; @code{enum}; and, for C@t{++}, @code{bool}.
12208
12209 @item
12210 @emph{Floating-point types} include @code{float}, @code{double}, and
12211 @code{long double} (if supported by the target platform).
12212
12213 @item
12214 @emph{Pointer types} include all types defined as @code{(@var{type} *)}.
12215
12216 @item
12217 @emph{Scalar types} include all of the above.
12218
12219 @end itemize
12220
12221 @noindent
12222 The following operators are supported.  They are listed here
12223 in order of increasing precedence:
12224
12225 @table @code
12226 @item ,
12227 The comma or sequencing operator.  Expressions in a comma-separated list
12228 are evaluated from left to right, with the result of the entire
12229 expression being the last expression evaluated.
12230
12231 @item =
12232 Assignment.  The value of an assignment expression is the value
12233 assigned.  Defined on scalar types.
12234
12235 @item @var{op}=
12236 Used in an expression of the form @w{@code{@var{a} @var{op}= @var{b}}},
12237 and translated to @w{@code{@var{a} = @var{a op b}}}.
12238 @w{@code{@var{op}=}} and @code{=} have the same precedence.
12239 @var{op} is any one of the operators @code{|}, @code{^}, @code{&},
12240 @code{<<}, @code{>>}, @code{+}, @code{-}, @code{*}, @code{/}, @code{%}.
12241
12242 @item ?:
12243 The ternary operator.  @code{@var{a} ? @var{b} : @var{c}} can be thought
12244 of as:  if @var{a} then @var{b} else @var{c}.  @var{a} should be of an
12245 integral type.
12246
12247 @item ||
12248 Logical @sc{or}.  Defined on integral types.
12249
12250 @item &&
12251 Logical @sc{and}.  Defined on integral types.
12252
12253 @item |
12254 Bitwise @sc{or}.  Defined on integral types.
12255
12256 @item ^
12257 Bitwise exclusive-@sc{or}.  Defined on integral types.
12258
12259 @item &
12260 Bitwise @sc{and}.  Defined on integral types.
12261
12262 @item ==@r{, }!=
12263 Equality and inequality.  Defined on scalar types.  The value of these
12264 expressions is 0 for false and non-zero for true.
12265
12266 @item <@r{, }>@r{, }<=@r{, }>=
12267 Less than, greater than, less than or equal, greater than or equal.
12268 Defined on scalar types.  The value of these expressions is 0 for false
12269 and non-zero for true.
12270
12271 @item <<@r{, }>>
12272 left shift, and right shift.  Defined on integral types.
12273
12274 @item @@
12275 The @value{GDBN} ``artificial array'' operator (@pxref{Expressions, ,Expressions}).
12276
12277 @item +@r{, }-
12278 Addition and subtraction.  Defined on integral types, floating-point types and
12279 pointer types.
12280
12281 @item *@r{, }/@r{, }%
12282 Multiplication, division, and modulus.  Multiplication and division are
12283 defined on integral and floating-point types.  Modulus is defined on
12284 integral types.
12285
12286 @item ++@r{, }--
12287 Increment and decrement.  When appearing before a variable, the
12288 operation is performed before the variable is used in an expression;
12289 when appearing after it, the variable's value is used before the
12290 operation takes place.
12291
12292 @item *
12293 Pointer dereferencing.  Defined on pointer types.  Same precedence as
12294 @code{++}.
12295
12296 @item &
12297 Address operator.  Defined on variables.  Same precedence as @code{++}.
12298
12299 For debugging C@t{++}, @value{GDBN} implements a use of @samp{&} beyond what is
12300 allowed in the C@t{++} language itself: you can use @samp{&(&@var{ref})}
12301 to examine the address
12302 where a C@t{++} reference variable (declared with @samp{&@var{ref}}) is
12303 stored.
12304
12305 @item -
12306 Negative.  Defined on integral and floating-point types.  Same
12307 precedence as @code{++}.
12308
12309 @item !
12310 Logical negation.  Defined on integral types.  Same precedence as
12311 @code{++}.
12312
12313 @item ~
12314 Bitwise complement operator.  Defined on integral types.  Same precedence as
12315 @code{++}.
12316
12317
12318 @item .@r{, }->
12319 Structure member, and pointer-to-structure member.  For convenience,
12320 @value{GDBN} regards the two as equivalent, choosing whether to dereference a
12321 pointer based on the stored type information.
12322 Defined on @code{struct} and @code{union} data.
12323
12324 @item .*@r{, }->*
12325 Dereferences of pointers to members.
12326
12327 @item []
12328 Array indexing.  @code{@var{a}[@var{i}]} is defined as
12329 @code{*(@var{a}+@var{i})}.  Same precedence as @code{->}.
12330
12331 @item ()
12332 Function parameter list.  Same precedence as @code{->}.
12333
12334 @item ::
12335 C@t{++} scope resolution operator.  Defined on @code{struct}, @code{union},
12336 and @code{class} types.
12337
12338 @item ::
12339 Doubled colons also represent the @value{GDBN} scope operator
12340 (@pxref{Expressions, ,Expressions}).  Same precedence as @code{::},
12341 above.
12342 @end table
12343
12344 If an operator is redefined in the user code, @value{GDBN} usually
12345 attempts to invoke the redefined version instead of using the operator's
12346 predefined meaning.
12347
12348 @node C Constants
12349 @subsubsection C and C@t{++} Constants
12350
12351 @cindex C and C@t{++} constants
12352
12353 @value{GDBN} allows you to express the constants of C and C@t{++} in the
12354 following ways:
12355
12356 @itemize @bullet
12357 @item
12358 Integer constants are a sequence of digits.  Octal constants are
12359 specified by a leading @samp{0} (i.e.@: zero), and hexadecimal constants
12360 by a leading @samp{0x} or @samp{0X}.  Constants may also end with a letter
12361 @samp{l}, specifying that the constant should be treated as a
12362 @code{long} value.
12363
12364 @item
12365 Floating point constants are a sequence of digits, followed by a decimal
12366 point, followed by a sequence of digits, and optionally followed by an
12367 exponent.  An exponent is of the form:
12368 @samp{@w{e@r{[[}+@r{]|}-@r{]}@var{nnn}}}, where @var{nnn} is another
12369 sequence of digits.  The @samp{+} is optional for positive exponents.
12370 A floating-point constant may also end with a letter @samp{f} or
12371 @samp{F}, specifying that the constant should be treated as being of
12372 the @code{float} (as opposed to the default @code{double}) type; or with
12373 a letter @samp{l} or @samp{L}, which specifies a @code{long double}
12374 constant.
12375
12376 @item
12377 Enumerated constants consist of enumerated identifiers, or their
12378 integral equivalents.
12379
12380 @item
12381 Character constants are a single character surrounded by single quotes
12382 (@code{'}), or a number---the ordinal value of the corresponding character
12383 (usually its @sc{ascii} value).  Within quotes, the single character may
12384 be represented by a letter or by @dfn{escape sequences}, which are of
12385 the form @samp{\@var{nnn}}, where @var{nnn} is the octal representation
12386 of the character's ordinal value; or of the form @samp{\@var{x}}, where
12387 @samp{@var{x}} is a predefined special character---for example,
12388 @samp{\n} for newline.
12389
12390 Wide character constants can be written by prefixing a character
12391 constant with @samp{L}, as in C.  For example, @samp{L'x'} is the wide
12392 form of @samp{x}.  The target wide character set is used when
12393 computing the value of this constant (@pxref{Character Sets}).
12394
12395 @item
12396 String constants are a sequence of character constants surrounded by
12397 double quotes (@code{"}).  Any valid character constant (as described
12398 above) may appear.  Double quotes within the string must be preceded by
12399 a backslash, so for instance @samp{"a\"b'c"} is a string of five
12400 characters.
12401
12402 Wide string constants can be written by prefixing a string constant
12403 with @samp{L}, as in C.  The target wide character set is used when
12404 computing the value of this constant (@pxref{Character Sets}).
12405
12406 @item
12407 Pointer constants are an integral value.  You can also write pointers
12408 to constants using the C operator @samp{&}.
12409
12410 @item
12411 Array constants are comma-separated lists surrounded by braces @samp{@{}
12412 and @samp{@}}; for example, @samp{@{1,2,3@}} is a three-element array of
12413 integers, @samp{@{@{1,2@}, @{3,4@}, @{5,6@}@}} is a three-by-two array,
12414 and @samp{@{&"hi", &"there", &"fred"@}} is a three-element array of pointers.
12415 @end itemize
12416
12417 @node C Plus Plus Expressions
12418 @subsubsection C@t{++} Expressions
12419
12420 @cindex expressions in C@t{++}
12421 @value{GDBN} expression handling can interpret most C@t{++} expressions.
12422
12423 @cindex debugging C@t{++} programs
12424 @cindex C@t{++} compilers
12425 @cindex debug formats and C@t{++}
12426 @cindex @value{NGCC} and C@t{++}
12427 @quotation
12428 @emph{Warning:} @value{GDBN} can only debug C@t{++} code if you use
12429 the proper compiler and the proper debug format.  Currently,
12430 @value{GDBN} works best when debugging C@t{++} code that is compiled
12431 with the most recent version of @value{NGCC} possible.  The DWARF
12432 debugging format is preferred; @value{NGCC} defaults to this on most
12433 popular platforms.  Other compilers and/or debug formats are likely to
12434 work badly or not at all when using @value{GDBN} to debug C@t{++}
12435 code.  @xref{Compilation}.
12436 @end quotation
12437
12438 @enumerate
12439
12440 @cindex member functions
12441 @item
12442 Member function calls are allowed; you can use expressions like
12443
12444 @smallexample
12445 count = aml->GetOriginal(x, y)
12446 @end smallexample
12447
12448 @vindex this@r{, inside C@t{++} member functions}
12449 @cindex namespace in C@t{++}
12450 @item
12451 While a member function is active (in the selected stack frame), your
12452 expressions have the same namespace available as the member function;
12453 that is, @value{GDBN} allows implicit references to the class instance
12454 pointer @code{this} following the same rules as C@t{++}.  @code{using}
12455 declarations in the current scope are also respected by @value{GDBN}.
12456
12457 @cindex call overloaded functions
12458 @cindex overloaded functions, calling
12459 @cindex type conversions in C@t{++}
12460 @item
12461 You can call overloaded functions; @value{GDBN} resolves the function
12462 call to the right definition, with some restrictions.  @value{GDBN} does not
12463 perform overload resolution involving user-defined type conversions,
12464 calls to constructors, or instantiations of templates that do not exist
12465 in the program.  It also cannot handle ellipsis argument lists or
12466 default arguments.
12467
12468 It does perform integral conversions and promotions, floating-point
12469 promotions, arithmetic conversions, pointer conversions, conversions of
12470 class objects to base classes, and standard conversions such as those of
12471 functions or arrays to pointers; it requires an exact match on the
12472 number of function arguments.
12473
12474 Overload resolution is always performed, unless you have specified
12475 @code{set overload-resolution off}.  @xref{Debugging C Plus Plus,
12476 ,@value{GDBN} Features for C@t{++}}.
12477
12478 You must specify @code{set overload-resolution off} in order to use an
12479 explicit function signature to call an overloaded function, as in
12480 @smallexample
12481 p 'foo(char,int)'('x', 13)
12482 @end smallexample
12483
12484 The @value{GDBN} command-completion facility can simplify this;
12485 see @ref{Completion, ,Command Completion}.
12486
12487 @cindex reference declarations
12488 @item
12489 @value{GDBN} understands variables declared as C@t{++} references; you can use
12490 them in expressions just as you do in C@t{++} source---they are automatically
12491 dereferenced.
12492
12493 In the parameter list shown when @value{GDBN} displays a frame, the values of
12494 reference variables are not displayed (unlike other variables); this
12495 avoids clutter, since references are often used for large structures.
12496 The @emph{address} of a reference variable is always shown, unless
12497 you have specified @samp{set print address off}.
12498
12499 @item
12500 @value{GDBN} supports the C@t{++} name resolution operator @code{::}---your
12501 expressions can use it just as expressions in your program do.  Since
12502 one scope may be defined in another, you can use @code{::} repeatedly if
12503 necessary, for example in an expression like
12504 @samp{@var{scope1}::@var{scope2}::@var{name}}.  @value{GDBN} also allows
12505 resolving name scope by reference to source files, in both C and C@t{++}
12506 debugging (@pxref{Variables, ,Program Variables}).
12507
12508 @item
12509 @value{GDBN} performs argument-dependent lookup, following the C@t{++}
12510 specification.
12511 @end enumerate
12512
12513 @node C Defaults
12514 @subsubsection C and C@t{++} Defaults
12515
12516 @cindex C and C@t{++} defaults
12517
12518 If you allow @value{GDBN} to set type and range checking automatically, they
12519 both default to @code{off} whenever the working language changes to
12520 C or C@t{++}.  This happens regardless of whether you or @value{GDBN}
12521 selects the working language.
12522
12523 If you allow @value{GDBN} to set the language automatically, it
12524 recognizes source files whose names end with @file{.c}, @file{.C}, or
12525 @file{.cc}, etc, and when @value{GDBN} enters code compiled from one of
12526 these files, it sets the working language to C or C@t{++}.
12527 @xref{Automatically, ,Having @value{GDBN} Infer the Source Language},
12528 for further details.
12529
12530 @c Type checking is (a) primarily motivated by Modula-2, and (b)
12531 @c unimplemented.  If (b) changes, it might make sense to let this node
12532 @c appear even if Mod-2 does not, but meanwhile ignore it. roland 16jul93.
12533
12534 @node C Checks
12535 @subsubsection C and C@t{++} Type and Range Checks
12536
12537 @cindex C and C@t{++} checks
12538
12539 By default, when @value{GDBN} parses C or C@t{++} expressions, type checking
12540 is not used.  However, if you turn type checking on, @value{GDBN}
12541 considers two variables type equivalent if:
12542
12543 @itemize @bullet
12544 @item
12545 The two variables are structured and have the same structure, union, or
12546 enumerated tag.
12547
12548 @item
12549 The two variables have the same type name, or types that have been
12550 declared equivalent through @code{typedef}.
12551
12552 @ignore
12553 @c leaving this out because neither J Gilmore nor R Pesch understand it.
12554 @c FIXME--beers?
12555 @item
12556 The two @code{struct}, @code{union}, or @code{enum} variables are
12557 declared in the same declaration.  (Note: this may not be true for all C
12558 compilers.)
12559 @end ignore
12560 @end itemize
12561
12562 Range checking, if turned on, is done on mathematical operations.  Array
12563 indices are not checked, since they are often used to index a pointer
12564 that is not itself an array.
12565
12566 @node Debugging C
12567 @subsubsection @value{GDBN} and C
12568
12569 The @code{set print union} and @code{show print union} commands apply to
12570 the @code{union} type.  When set to @samp{on}, any @code{union} that is
12571 inside a @code{struct} or @code{class} is also printed.  Otherwise, it
12572 appears as @samp{@{...@}}.
12573
12574 The @code{@@} operator aids in the debugging of dynamic arrays, formed
12575 with pointers and a memory allocation function.  @xref{Expressions,
12576 ,Expressions}.
12577
12578 @node Debugging C Plus Plus
12579 @subsubsection @value{GDBN} Features for C@t{++}
12580
12581 @cindex commands for C@t{++}
12582
12583 Some @value{GDBN} commands are particularly useful with C@t{++}, and some are
12584 designed specifically for use with C@t{++}.  Here is a summary:
12585
12586 @table @code
12587 @cindex break in overloaded functions
12588 @item @r{breakpoint menus}
12589 When you want a breakpoint in a function whose name is overloaded,
12590 @value{GDBN} has the capability to display a menu of possible breakpoint
12591 locations to help you specify which function definition you want.
12592 @xref{Ambiguous Expressions,,Ambiguous Expressions}.
12593
12594 @cindex overloading in C@t{++}
12595 @item rbreak @var{regex}
12596 Setting breakpoints using regular expressions is helpful for setting
12597 breakpoints on overloaded functions that are not members of any special
12598 classes.
12599 @xref{Set Breaks, ,Setting Breakpoints}.
12600
12601 @cindex C@t{++} exception handling
12602 @item catch throw
12603 @itemx catch catch
12604 Debug C@t{++} exception handling using these commands.  @xref{Set
12605 Catchpoints, , Setting Catchpoints}.
12606
12607 @cindex inheritance
12608 @item ptype @var{typename}
12609 Print inheritance relationships as well as other information for type
12610 @var{typename}.
12611 @xref{Symbols, ,Examining the Symbol Table}.
12612
12613 @cindex C@t{++} symbol display
12614 @item set print demangle
12615 @itemx show print demangle
12616 @itemx set print asm-demangle
12617 @itemx show print asm-demangle
12618 Control whether C@t{++} symbols display in their source form, both when
12619 displaying code as C@t{++} source and when displaying disassemblies.
12620 @xref{Print Settings, ,Print Settings}.
12621
12622 @item set print object
12623 @itemx show print object
12624 Choose whether to print derived (actual) or declared types of objects.
12625 @xref{Print Settings, ,Print Settings}.
12626
12627 @item set print vtbl
12628 @itemx show print vtbl
12629 Control the format for printing virtual function tables.
12630 @xref{Print Settings, ,Print Settings}.
12631 (The @code{vtbl} commands do not work on programs compiled with the HP
12632 ANSI C@t{++} compiler (@code{aCC}).)
12633
12634 @kindex set overload-resolution
12635 @cindex overloaded functions, overload resolution
12636 @item set overload-resolution on
12637 Enable overload resolution for C@t{++} expression evaluation.  The default
12638 is on.  For overloaded functions, @value{GDBN} evaluates the arguments
12639 and searches for a function whose signature matches the argument types,
12640 using the standard C@t{++} conversion rules (see @ref{C Plus Plus
12641 Expressions, ,C@t{++} Expressions}, for details).
12642 If it cannot find a match, it emits a message.
12643
12644 @item set overload-resolution off
12645 Disable overload resolution for C@t{++} expression evaluation.  For
12646 overloaded functions that are not class member functions, @value{GDBN}
12647 chooses the first function of the specified name that it finds in the
12648 symbol table, whether or not its arguments are of the correct type.  For
12649 overloaded functions that are class member functions, @value{GDBN}
12650 searches for a function whose signature @emph{exactly} matches the
12651 argument types.
12652
12653 @kindex show overload-resolution
12654 @item show overload-resolution
12655 Show the current setting of overload resolution.
12656
12657 @item @r{Overloaded symbol names}
12658 You can specify a particular definition of an overloaded symbol, using
12659 the same notation that is used to declare such symbols in C@t{++}: type
12660 @code{@var{symbol}(@var{types})} rather than just @var{symbol}.  You can
12661 also use the @value{GDBN} command-line word completion facilities to list the
12662 available choices, or to finish the type list for you.
12663 @xref{Completion,, Command Completion}, for details on how to do this.
12664 @end table
12665
12666 @node Decimal Floating Point
12667 @subsubsection Decimal Floating Point format
12668 @cindex decimal floating point format
12669
12670 @value{GDBN} can examine, set and perform computations with numbers in
12671 decimal floating point format, which in the C language correspond to the
12672 @code{_Decimal32}, @code{_Decimal64} and @code{_Decimal128} types as
12673 specified by the extension to support decimal floating-point arithmetic.
12674
12675 There are two encodings in use, depending on the architecture: BID (Binary
12676 Integer Decimal) for x86 and x86-64, and DPD (Densely Packed Decimal) for
12677 PowerPC.  @value{GDBN} will use the appropriate encoding for the configured
12678 target.
12679
12680 Because of a limitation in @file{libdecnumber}, the library used by @value{GDBN}
12681 to manipulate decimal floating point numbers, it is not possible to convert
12682 (using a cast, for example) integers wider than 32-bit to decimal float.
12683
12684 In addition, in order to imitate @value{GDBN}'s behaviour with binary floating
12685 point computations, error checking in decimal float operations ignores
12686 underflow, overflow and divide by zero exceptions.
12687
12688 In the PowerPC architecture, @value{GDBN} provides a set of pseudo-registers
12689 to inspect @code{_Decimal128} values stored in floating point registers.
12690 See @ref{PowerPC,,PowerPC} for more details.
12691
12692 @node D
12693 @subsection D
12694
12695 @cindex D
12696 @value{GDBN} can be used to debug programs written in D and compiled with
12697 GDC, LDC or DMD compilers. Currently @value{GDBN} supports only one D
12698 specific feature --- dynamic arrays.
12699
12700 @node Objective-C
12701 @subsection Objective-C
12702
12703 @cindex Objective-C
12704 This section provides information about some commands and command
12705 options that are useful for debugging Objective-C code.  See also
12706 @ref{Symbols, info classes}, and @ref{Symbols, info selectors}, for a
12707 few more commands specific to Objective-C support.
12708
12709 @menu
12710 * Method Names in Commands::
12711 * The Print Command with Objective-C::
12712 @end menu
12713
12714 @node Method Names in Commands
12715 @subsubsection Method Names in Commands
12716
12717 The following commands have been extended to accept Objective-C method
12718 names as line specifications:
12719
12720 @kindex clear@r{, and Objective-C}
12721 @kindex break@r{, and Objective-C}
12722 @kindex info line@r{, and Objective-C}
12723 @kindex jump@r{, and Objective-C}
12724 @kindex list@r{, and Objective-C}
12725 @itemize
12726 @item @code{clear}
12727 @item @code{break}
12728 @item @code{info line}
12729 @item @code{jump}
12730 @item @code{list}
12731 @end itemize
12732
12733 A fully qualified Objective-C method name is specified as
12734
12735 @smallexample
12736 -[@var{Class} @var{methodName}]
12737 @end smallexample
12738
12739 where the minus sign is used to indicate an instance method and a
12740 plus sign (not shown) is used to indicate a class method.  The class
12741 name @var{Class} and method name @var{methodName} are enclosed in
12742 brackets, similar to the way messages are specified in Objective-C
12743 source code.  For example, to set a breakpoint at the @code{create}
12744 instance method of class @code{Fruit} in the program currently being
12745 debugged, enter:
12746
12747 @smallexample
12748 break -[Fruit create]
12749 @end smallexample
12750
12751 To list ten program lines around the @code{initialize} class method,
12752 enter:
12753
12754 @smallexample
12755 list +[NSText initialize]
12756 @end smallexample
12757
12758 In the current version of @value{GDBN}, the plus or minus sign is
12759 required.  In future versions of @value{GDBN}, the plus or minus
12760 sign will be optional, but you can use it to narrow the search.  It
12761 is also possible to specify just a method name:
12762
12763 @smallexample
12764 break create
12765 @end smallexample
12766
12767 You must specify the complete method name, including any colons.  If
12768 your program's source files contain more than one @code{create} method,
12769 you'll be presented with a numbered list of classes that implement that
12770 method.  Indicate your choice by number, or type @samp{0} to exit if
12771 none apply.
12772
12773 As another example, to clear a breakpoint established at the
12774 @code{makeKeyAndOrderFront:} method of the @code{NSWindow} class, enter:
12775
12776 @smallexample
12777 clear -[NSWindow makeKeyAndOrderFront:]
12778 @end smallexample
12779
12780 @node The Print Command with Objective-C
12781 @subsubsection The Print Command With Objective-C
12782 @cindex Objective-C, print objects
12783 @kindex print-object
12784 @kindex po @r{(@code{print-object})}
12785
12786 The print command has also been extended to accept methods.  For example:
12787
12788 @smallexample
12789 print -[@var{object} hash]
12790 @end smallexample
12791
12792 @cindex print an Objective-C object description
12793 @cindex @code{_NSPrintForDebugger}, and printing Objective-C objects
12794 @noindent
12795 will tell @value{GDBN} to send the @code{hash} message to @var{object}
12796 and print the result.  Also, an additional command has been added,
12797 @code{print-object} or @code{po} for short, which is meant to print
12798 the description of an object.  However, this command may only work
12799 with certain Objective-C libraries that have a particular hook
12800 function, @code{_NSPrintForDebugger}, defined.
12801
12802 @node OpenCL C
12803 @subsection OpenCL C
12804
12805 @cindex OpenCL C
12806 This section provides information about @value{GDBN}s OpenCL C support.
12807
12808 @menu
12809 * OpenCL C Datatypes::
12810 * OpenCL C Expressions::
12811 * OpenCL C Operators::
12812 @end menu
12813
12814 @node OpenCL C Datatypes
12815 @subsubsection OpenCL C Datatypes
12816
12817 @cindex OpenCL C Datatypes
12818 @value{GDBN} supports the builtin scalar and vector datatypes specified
12819 by OpenCL 1.1.  In addition the half- and double-precision floating point
12820 data types of the @code{cl_khr_fp16} and @code{cl_khr_fp64} OpenCL
12821 extensions are also known to @value{GDBN}.
12822
12823 @node OpenCL C Expressions
12824 @subsubsection OpenCL C Expressions
12825
12826 @cindex OpenCL C Expressions
12827 @value{GDBN} supports accesses to vector components including the access as
12828 lvalue where possible.  Since OpenCL C is based on C99 most C expressions
12829 supported by @value{GDBN} can be used as well.
12830
12831 @node OpenCL C Operators
12832 @subsubsection OpenCL C Operators
12833
12834 @cindex OpenCL C Operators
12835 @value{GDBN} supports the operators specified by OpenCL 1.1 for scalar and
12836 vector data types.
12837
12838 @node Fortran
12839 @subsection Fortran
12840 @cindex Fortran-specific support in @value{GDBN}
12841
12842 @value{GDBN} can be used to debug programs written in Fortran, but it
12843 currently supports only the features of Fortran 77 language.
12844
12845 @cindex trailing underscore, in Fortran symbols
12846 Some Fortran compilers (@sc{gnu} Fortran 77 and Fortran 95 compilers
12847 among them) append an underscore to the names of variables and
12848 functions.  When you debug programs compiled by those compilers, you
12849 will need to refer to variables and functions with a trailing
12850 underscore.
12851
12852 @menu
12853 * Fortran Operators::           Fortran operators and expressions
12854 * Fortran Defaults::            Default settings for Fortran
12855 * Special Fortran Commands::    Special @value{GDBN} commands for Fortran
12856 @end menu
12857
12858 @node Fortran Operators
12859 @subsubsection Fortran Operators and Expressions
12860
12861 @cindex Fortran operators and expressions
12862
12863 Operators must be defined on values of specific types.  For instance,
12864 @code{+} is defined on numbers, but not on characters or other non-
12865 arithmetic types.  Operators are often defined on groups of types.
12866
12867 @table @code
12868 @item **
12869 The exponentiation operator.  It raises the first operand to the power
12870 of the second one.
12871
12872 @item :
12873 The range operator.  Normally used in the form of array(low:high) to
12874 represent a section of array.
12875
12876 @item %
12877 The access component operator.  Normally used to access elements in derived
12878 types.  Also suitable for unions.  As unions aren't part of regular Fortran,
12879 this can only happen when accessing a register that uses a gdbarch-defined
12880 union type.
12881 @end table
12882
12883 @node Fortran Defaults
12884 @subsubsection Fortran Defaults
12885
12886 @cindex Fortran Defaults
12887
12888 Fortran symbols are usually case-insensitive, so @value{GDBN} by
12889 default uses case-insensitive matches for Fortran symbols.  You can
12890 change that with the @samp{set case-insensitive} command, see
12891 @ref{Symbols}, for the details.
12892
12893 @node Special Fortran Commands
12894 @subsubsection Special Fortran Commands
12895
12896 @cindex Special Fortran commands
12897
12898 @value{GDBN} has some commands to support Fortran-specific features,
12899 such as displaying common blocks.
12900
12901 @table @code
12902 @cindex @code{COMMON} blocks, Fortran
12903 @kindex info common
12904 @item info common @r{[}@var{common-name}@r{]}
12905 This command prints the values contained in the Fortran @code{COMMON}
12906 block whose name is @var{common-name}.  With no argument, the names of
12907 all @code{COMMON} blocks visible at the current program location are
12908 printed.
12909 @end table
12910
12911 @node Pascal
12912 @subsection Pascal
12913
12914 @cindex Pascal support in @value{GDBN}, limitations
12915 Debugging Pascal programs which use sets, subranges, file variables, or
12916 nested functions does not currently work.  @value{GDBN} does not support
12917 entering expressions, printing values, or similar features using Pascal
12918 syntax.
12919
12920 The Pascal-specific command @code{set print pascal_static-members}
12921 controls whether static members of Pascal objects are displayed.
12922 @xref{Print Settings, pascal_static-members}.
12923
12924 @node Modula-2
12925 @subsection Modula-2
12926
12927 @cindex Modula-2, @value{GDBN} support
12928
12929 The extensions made to @value{GDBN} to support Modula-2 only support
12930 output from the @sc{gnu} Modula-2 compiler (which is currently being
12931 developed).  Other Modula-2 compilers are not currently supported, and
12932 attempting to debug executables produced by them is most likely
12933 to give an error as @value{GDBN} reads in the executable's symbol
12934 table.
12935
12936 @cindex expressions in Modula-2
12937 @menu
12938 * M2 Operators::                Built-in operators
12939 * Built-In Func/Proc::          Built-in functions and procedures
12940 * M2 Constants::                Modula-2 constants
12941 * M2 Types::                    Modula-2 types
12942 * M2 Defaults::                 Default settings for Modula-2
12943 * Deviations::                  Deviations from standard Modula-2
12944 * M2 Checks::                   Modula-2 type and range checks
12945 * M2 Scope::                    The scope operators @code{::} and @code{.}
12946 * GDB/M2::                      @value{GDBN} and Modula-2
12947 @end menu
12948
12949 @node M2 Operators
12950 @subsubsection Operators
12951 @cindex Modula-2 operators
12952
12953 Operators must be defined on values of specific types.  For instance,
12954 @code{+} is defined on numbers, but not on structures.  Operators are
12955 often defined on groups of types.  For the purposes of Modula-2, the
12956 following definitions hold:
12957
12958 @itemize @bullet
12959
12960 @item
12961 @emph{Integral types} consist of @code{INTEGER}, @code{CARDINAL}, and
12962 their subranges.
12963
12964 @item
12965 @emph{Character types} consist of @code{CHAR} and its subranges.
12966
12967 @item
12968 @emph{Floating-point types} consist of @code{REAL}.
12969
12970 @item
12971 @emph{Pointer types} consist of anything declared as @code{POINTER TO
12972 @var{type}}.
12973
12974 @item
12975 @emph{Scalar types} consist of all of the above.
12976
12977 @item
12978 @emph{Set types} consist of @code{SET} and @code{BITSET} types.
12979
12980 @item
12981 @emph{Boolean types} consist of @code{BOOLEAN}.
12982 @end itemize
12983
12984 @noindent
12985 The following operators are supported, and appear in order of
12986 increasing precedence:
12987
12988 @table @code
12989 @item ,
12990 Function argument or array index separator.
12991
12992 @item :=
12993 Assignment.  The value of @var{var} @code{:=} @var{value} is
12994 @var{value}.
12995
12996 @item <@r{, }>
12997 Less than, greater than on integral, floating-point, or enumerated
12998 types.
12999
13000 @item <=@r{, }>=
13001 Less than or equal to, greater than or equal to
13002 on integral, floating-point and enumerated types, or set inclusion on
13003 set types.  Same precedence as @code{<}.
13004
13005 @item =@r{, }<>@r{, }#
13006 Equality and two ways of expressing inequality, valid on scalar types.
13007 Same precedence as @code{<}.  In @value{GDBN} scripts, only @code{<>} is
13008 available for inequality, since @code{#} conflicts with the script
13009 comment character.
13010
13011 @item IN
13012 Set membership.  Defined on set types and the types of their members.
13013 Same precedence as @code{<}.
13014
13015 @item OR
13016 Boolean disjunction.  Defined on boolean types.
13017
13018 @item AND@r{, }&
13019 Boolean conjunction.  Defined on boolean types.
13020
13021 @item @@
13022 The @value{GDBN} ``artificial array'' operator (@pxref{Expressions, ,Expressions}).
13023
13024 @item +@r{, }-
13025 Addition and subtraction on integral and floating-point types, or union
13026 and difference on set types.
13027
13028 @item *
13029 Multiplication on integral and floating-point types, or set intersection
13030 on set types.
13031
13032 @item /
13033 Division on floating-point types, or symmetric set difference on set
13034 types.  Same precedence as @code{*}.
13035
13036 @item DIV@r{, }MOD
13037 Integer division and remainder.  Defined on integral types.  Same
13038 precedence as @code{*}.
13039
13040 @item -
13041 Negative.  Defined on @code{INTEGER} and @code{REAL} data.
13042
13043 @item ^
13044 Pointer dereferencing.  Defined on pointer types.
13045
13046 @item NOT
13047 Boolean negation.  Defined on boolean types.  Same precedence as
13048 @code{^}.
13049
13050 @item .
13051 @code{RECORD} field selector.  Defined on @code{RECORD} data.  Same
13052 precedence as @code{^}.
13053
13054 @item []
13055 Array indexing.  Defined on @code{ARRAY} data.  Same precedence as @code{^}.
13056
13057 @item ()
13058 Procedure argument list.  Defined on @code{PROCEDURE} objects.  Same precedence
13059 as @code{^}.
13060
13061 @item ::@r{, }.
13062 @value{GDBN} and Modula-2 scope operators.
13063 @end table
13064
13065 @quotation
13066 @emph{Warning:} Set expressions and their operations are not yet supported, so @value{GDBN}
13067 treats the use of the operator @code{IN}, or the use of operators
13068 @code{+}, @code{-}, @code{*}, @code{/}, @code{=}, , @code{<>}, @code{#},
13069 @code{<=}, and @code{>=} on sets as an error.
13070 @end quotation
13071
13072
13073 @node Built-In Func/Proc
13074 @subsubsection Built-in Functions and Procedures
13075 @cindex Modula-2 built-ins
13076
13077 Modula-2 also makes available several built-in procedures and functions.
13078 In describing these, the following metavariables are used:
13079
13080 @table @var
13081
13082 @item a
13083 represents an @code{ARRAY} variable.
13084
13085 @item c
13086 represents a @code{CHAR} constant or variable.
13087
13088 @item i
13089 represents a variable or constant of integral type.
13090
13091 @item m
13092 represents an identifier that belongs to a set.  Generally used in the
13093 same function with the metavariable @var{s}.  The type of @var{s} should
13094 be @code{SET OF @var{mtype}} (where @var{mtype} is the type of @var{m}).
13095
13096 @item n
13097 represents a variable or constant of integral or floating-point type.
13098
13099 @item r
13100 represents a variable or constant of floating-point type.
13101
13102 @item t
13103 represents a type.
13104
13105 @item v
13106 represents a variable.
13107
13108 @item x
13109 represents a variable or constant of one of many types.  See the
13110 explanation of the function for details.
13111 @end table
13112
13113 All Modula-2 built-in procedures also return a result, described below.
13114
13115 @table @code
13116 @item ABS(@var{n})
13117 Returns the absolute value of @var{n}.
13118
13119 @item CAP(@var{c})
13120 If @var{c} is a lower case letter, it returns its upper case
13121 equivalent, otherwise it returns its argument.
13122
13123 @item CHR(@var{i})
13124 Returns the character whose ordinal value is @var{i}.
13125
13126 @item DEC(@var{v})
13127 Decrements the value in the variable @var{v} by one.  Returns the new value.
13128
13129 @item DEC(@var{v},@var{i})
13130 Decrements the value in the variable @var{v} by @var{i}.  Returns the
13131 new value.
13132
13133 @item EXCL(@var{m},@var{s})
13134 Removes the element @var{m} from the set @var{s}.  Returns the new
13135 set.
13136
13137 @item FLOAT(@var{i})
13138 Returns the floating point equivalent of the integer @var{i}.
13139
13140 @item HIGH(@var{a})
13141 Returns the index of the last member of @var{a}.
13142
13143 @item INC(@var{v})
13144 Increments the value in the variable @var{v} by one.  Returns the new value.
13145
13146 @item INC(@var{v},@var{i})
13147 Increments the value in the variable @var{v} by @var{i}.  Returns the
13148 new value.
13149
13150 @item INCL(@var{m},@var{s})
13151 Adds the element @var{m} to the set @var{s} if it is not already
13152 there.  Returns the new set.
13153
13154 @item MAX(@var{t})
13155 Returns the maximum value of the type @var{t}.
13156
13157 @item MIN(@var{t})
13158 Returns the minimum value of the type @var{t}.
13159
13160 @item ODD(@var{i})
13161 Returns boolean TRUE if @var{i} is an odd number.
13162
13163 @item ORD(@var{x})
13164 Returns the ordinal value of its argument.  For example, the ordinal
13165 value of a character is its @sc{ascii} value (on machines supporting the
13166 @sc{ascii} character set).  @var{x} must be of an ordered type, which include
13167 integral, character and enumerated types.
13168
13169 @item SIZE(@var{x})
13170 Returns the size of its argument.  @var{x} can be a variable or a type.
13171
13172 @item TRUNC(@var{r})
13173 Returns the integral part of @var{r}.
13174
13175 @item TSIZE(@var{x})
13176 Returns the size of its argument.  @var{x} can be a variable or a type.
13177
13178 @item VAL(@var{t},@var{i})
13179 Returns the member of the type @var{t} whose ordinal value is @var{i}.
13180 @end table
13181
13182 @quotation
13183 @emph{Warning:}  Sets and their operations are not yet supported, so
13184 @value{GDBN} treats the use of procedures @code{INCL} and @code{EXCL} as
13185 an error.
13186 @end quotation
13187
13188 @cindex Modula-2 constants
13189 @node M2 Constants
13190 @subsubsection Constants
13191
13192 @value{GDBN} allows you to express the constants of Modula-2 in the following
13193 ways:
13194
13195 @itemize @bullet
13196
13197 @item
13198 Integer constants are simply a sequence of digits.  When used in an
13199 expression, a constant is interpreted to be type-compatible with the
13200 rest of the expression.  Hexadecimal integers are specified by a
13201 trailing @samp{H}, and octal integers by a trailing @samp{B}.
13202
13203 @item
13204 Floating point constants appear as a sequence of digits, followed by a
13205 decimal point and another sequence of digits.  An optional exponent can
13206 then be specified, in the form @samp{E@r{[}+@r{|}-@r{]}@var{nnn}}, where
13207 @samp{@r{[}+@r{|}-@r{]}@var{nnn}} is the desired exponent.  All of the
13208 digits of the floating point constant must be valid decimal (base 10)
13209 digits.
13210
13211 @item
13212 Character constants consist of a single character enclosed by a pair of
13213 like quotes, either single (@code{'}) or double (@code{"}).  They may
13214 also be expressed by their ordinal value (their @sc{ascii} value, usually)
13215 followed by a @samp{C}.
13216
13217 @item
13218 String constants consist of a sequence of characters enclosed by a
13219 pair of like quotes, either single (@code{'}) or double (@code{"}).
13220 Escape sequences in the style of C are also allowed.  @xref{C
13221 Constants, ,C and C@t{++} Constants}, for a brief explanation of escape
13222 sequences.
13223
13224 @item
13225 Enumerated constants consist of an enumerated identifier.
13226
13227 @item
13228 Boolean constants consist of the identifiers @code{TRUE} and
13229 @code{FALSE}.
13230
13231 @item
13232 Pointer constants consist of integral values only.
13233
13234 @item
13235 Set constants are not yet supported.
13236 @end itemize
13237
13238 @node M2 Types
13239 @subsubsection Modula-2 Types
13240 @cindex Modula-2 types
13241
13242 Currently @value{GDBN} can print the following data types in Modula-2
13243 syntax: array types, record types, set types, pointer types, procedure
13244 types, enumerated types, subrange types and base types.  You can also
13245 print the contents of variables declared using these type.
13246 This section gives a number of simple source code examples together with
13247 sample @value{GDBN} sessions.
13248
13249 The first example contains the following section of code:
13250
13251 @smallexample
13252 VAR
13253    s: SET OF CHAR ;
13254    r: [20..40] ;
13255 @end smallexample
13256
13257 @noindent
13258 and you can request @value{GDBN} to interrogate the type and value of
13259 @code{r} and @code{s}.
13260
13261 @smallexample
13262 (@value{GDBP}) print s
13263 @{'A'..'C', 'Z'@}
13264 (@value{GDBP}) ptype s
13265 SET OF CHAR
13266 (@value{GDBP}) print r
13267 21
13268 (@value{GDBP}) ptype r
13269 [20..40]
13270 @end smallexample
13271
13272 @noindent
13273 Likewise if your source code declares @code{s} as:
13274
13275 @smallexample
13276 VAR
13277    s: SET ['A'..'Z'] ;
13278 @end smallexample
13279
13280 @noindent
13281 then you may query the type of @code{s} by:
13282
13283 @smallexample
13284 (@value{GDBP}) ptype s
13285 type = SET ['A'..'Z']
13286 @end smallexample
13287
13288 @noindent
13289 Note that at present you cannot interactively manipulate set
13290 expressions using the debugger.
13291
13292 The following example shows how you might declare an array in Modula-2
13293 and how you can interact with @value{GDBN} to print its type and contents:
13294
13295 @smallexample
13296 VAR
13297    s: ARRAY [-10..10] OF CHAR ;
13298 @end smallexample
13299
13300 @smallexample
13301 (@value{GDBP}) ptype s
13302 ARRAY [-10..10] OF CHAR
13303 @end smallexample
13304
13305 Note that the array handling is not yet complete and although the type
13306 is printed correctly, expression handling still assumes that all
13307 arrays have a lower bound of zero and not @code{-10} as in the example
13308 above.
13309
13310 Here are some more type related Modula-2 examples:
13311
13312 @smallexample
13313 TYPE
13314    colour = (blue, red, yellow, green) ;
13315    t = [blue..yellow] ;
13316 VAR
13317    s: t ;
13318 BEGIN
13319    s := blue ;
13320 @end smallexample
13321
13322 @noindent
13323 The @value{GDBN} interaction shows how you can query the data type
13324 and value of a variable.
13325
13326 @smallexample
13327 (@value{GDBP}) print s
13328 $1 = blue
13329 (@value{GDBP}) ptype t
13330 type = [blue..yellow]
13331 @end smallexample
13332
13333 @noindent
13334 In this example a Modula-2 array is declared and its contents
13335 displayed.  Observe that the contents are written in the same way as
13336 their @code{C} counterparts.
13337
13338 @smallexample
13339 VAR
13340    s: ARRAY [1..5] OF CARDINAL ;
13341 BEGIN
13342    s[1] := 1 ;
13343 @end smallexample
13344
13345 @smallexample
13346 (@value{GDBP}) print s
13347 $1 = @{1, 0, 0, 0, 0@}
13348 (@value{GDBP}) ptype s
13349 type = ARRAY [1..5] OF CARDINAL
13350 @end smallexample
13351
13352 The Modula-2 language interface to @value{GDBN} also understands
13353 pointer types as shown in this example:
13354
13355 @smallexample
13356 VAR
13357    s: POINTER TO ARRAY [1..5] OF CARDINAL ;
13358 BEGIN
13359    NEW(s) ;
13360    s^[1] := 1 ;
13361 @end smallexample
13362
13363 @noindent
13364 and you can request that @value{GDBN} describes the type of @code{s}.
13365
13366 @smallexample
13367 (@value{GDBP}) ptype s
13368 type = POINTER TO ARRAY [1..5] OF CARDINAL
13369 @end smallexample
13370
13371 @value{GDBN} handles compound types as we can see in this example.
13372 Here we combine array types, record types, pointer types and subrange
13373 types:
13374
13375 @smallexample
13376 TYPE
13377    foo = RECORD
13378             f1: CARDINAL ;
13379             f2: CHAR ;
13380             f3: myarray ;
13381          END ;
13382
13383    myarray = ARRAY myrange OF CARDINAL ;
13384    myrange = [-2..2] ;
13385 VAR
13386    s: POINTER TO ARRAY myrange OF foo ;
13387 @end smallexample
13388
13389 @noindent
13390 and you can ask @value{GDBN} to describe the type of @code{s} as shown
13391 below.
13392
13393 @smallexample
13394 (@value{GDBP}) ptype s
13395 type = POINTER TO ARRAY [-2..2] OF foo = RECORD
13396     f1 : CARDINAL;
13397     f2 : CHAR;
13398     f3 : ARRAY [-2..2] OF CARDINAL;
13399 END 
13400 @end smallexample
13401
13402 @node M2 Defaults
13403 @subsubsection Modula-2 Defaults
13404 @cindex Modula-2 defaults
13405
13406 If type and range checking are set automatically by @value{GDBN}, they
13407 both default to @code{on} whenever the working language changes to
13408 Modula-2.  This happens regardless of whether you or @value{GDBN}
13409 selected the working language.
13410
13411 If you allow @value{GDBN} to set the language automatically, then entering
13412 code compiled from a file whose name ends with @file{.mod} sets the
13413 working language to Modula-2.  @xref{Automatically, ,Having @value{GDBN}
13414 Infer the Source Language}, for further details.
13415
13416 @node Deviations
13417 @subsubsection Deviations from Standard Modula-2
13418 @cindex Modula-2, deviations from
13419
13420 A few changes have been made to make Modula-2 programs easier to debug.
13421 This is done primarily via loosening its type strictness:
13422
13423 @itemize @bullet
13424 @item
13425 Unlike in standard Modula-2, pointer constants can be formed by
13426 integers.  This allows you to modify pointer variables during
13427 debugging.  (In standard Modula-2, the actual address contained in a
13428 pointer variable is hidden from you; it can only be modified
13429 through direct assignment to another pointer variable or expression that
13430 returned a pointer.)
13431
13432 @item
13433 C escape sequences can be used in strings and characters to represent
13434 non-printable characters.  @value{GDBN} prints out strings with these
13435 escape sequences embedded.  Single non-printable characters are
13436 printed using the @samp{CHR(@var{nnn})} format.
13437
13438 @item
13439 The assignment operator (@code{:=}) returns the value of its right-hand
13440 argument.
13441
13442 @item
13443 All built-in procedures both modify @emph{and} return their argument.
13444 @end itemize
13445
13446 @node M2 Checks
13447 @subsubsection Modula-2 Type and Range Checks
13448 @cindex Modula-2 checks
13449
13450 @quotation
13451 @emph{Warning:} in this release, @value{GDBN} does not yet perform type or
13452 range checking.
13453 @end quotation
13454 @c FIXME remove warning when type/range checks added
13455
13456 @value{GDBN} considers two Modula-2 variables type equivalent if:
13457
13458 @itemize @bullet
13459 @item
13460 They are of types that have been declared equivalent via a @code{TYPE
13461 @var{t1} = @var{t2}} statement
13462
13463 @item
13464 They have been declared on the same line.  (Note:  This is true of the
13465 @sc{gnu} Modula-2 compiler, but it may not be true of other compilers.)
13466 @end itemize
13467
13468 As long as type checking is enabled, any attempt to combine variables
13469 whose types are not equivalent is an error.
13470
13471 Range checking is done on all mathematical operations, assignment, array
13472 index bounds, and all built-in functions and procedures.
13473
13474 @node M2 Scope
13475 @subsubsection The Scope Operators @code{::} and @code{.}
13476 @cindex scope
13477 @cindex @code{.}, Modula-2 scope operator
13478 @cindex colon, doubled as scope operator
13479 @ifinfo
13480 @vindex colon-colon@r{, in Modula-2}
13481 @c Info cannot handle :: but TeX can.
13482 @end ifinfo
13483 @ifnotinfo
13484 @vindex ::@r{, in Modula-2}
13485 @end ifnotinfo
13486
13487 There are a few subtle differences between the Modula-2 scope operator
13488 (@code{.}) and the @value{GDBN} scope operator (@code{::}).  The two have
13489 similar syntax:
13490
13491 @smallexample
13492
13493 @var{module} . @var{id}
13494 @var{scope} :: @var{id}
13495 @end smallexample
13496
13497 @noindent
13498 where @var{scope} is the name of a module or a procedure,
13499 @var{module} the name of a module, and @var{id} is any declared
13500 identifier within your program, except another module.
13501
13502 Using the @code{::} operator makes @value{GDBN} search the scope
13503 specified by @var{scope} for the identifier @var{id}.  If it is not
13504 found in the specified scope, then @value{GDBN} searches all scopes
13505 enclosing the one specified by @var{scope}.
13506
13507 Using the @code{.} operator makes @value{GDBN} search the current scope for
13508 the identifier specified by @var{id} that was imported from the
13509 definition module specified by @var{module}.  With this operator, it is
13510 an error if the identifier @var{id} was not imported from definition
13511 module @var{module}, or if @var{id} is not an identifier in
13512 @var{module}.
13513
13514 @node GDB/M2
13515 @subsubsection @value{GDBN} and Modula-2
13516
13517 Some @value{GDBN} commands have little use when debugging Modula-2 programs.
13518 Five subcommands of @code{set print} and @code{show print} apply
13519 specifically to C and C@t{++}: @samp{vtbl}, @samp{demangle},
13520 @samp{asm-demangle}, @samp{object}, and @samp{union}.  The first four
13521 apply to C@t{++}, and the last to the C @code{union} type, which has no direct
13522 analogue in Modula-2.
13523
13524 The @code{@@} operator (@pxref{Expressions, ,Expressions}), while available
13525 with any language, is not useful with Modula-2.  Its
13526 intent is to aid the debugging of @dfn{dynamic arrays}, which cannot be
13527 created in Modula-2 as they can in C or C@t{++}.  However, because an
13528 address can be specified by an integral constant, the construct
13529 @samp{@{@var{type}@}@var{adrexp}} is still useful.
13530
13531 @cindex @code{#} in Modula-2
13532 In @value{GDBN} scripts, the Modula-2 inequality operator @code{#} is
13533 interpreted as the beginning of a comment.  Use @code{<>} instead.
13534
13535 @node Ada
13536 @subsection Ada
13537 @cindex Ada
13538
13539 The extensions made to @value{GDBN} for Ada only support
13540 output from the @sc{gnu} Ada (GNAT) compiler.
13541 Other Ada compilers are not currently supported, and
13542 attempting to debug executables produced by them is most likely
13543 to be difficult.
13544
13545
13546 @cindex expressions in Ada
13547 @menu
13548 * Ada Mode Intro::              General remarks on the Ada syntax 
13549                                    and semantics supported by Ada mode 
13550                                    in @value{GDBN}.
13551 * Omissions from Ada::          Restrictions on the Ada expression syntax.
13552 * Additions to Ada::            Extensions of the Ada expression syntax.
13553 * Stopping Before Main Program:: Debugging the program during elaboration.
13554 * Ada Tasks::                   Listing and setting breakpoints in tasks.
13555 * Ada Tasks and Core Files::    Tasking Support when Debugging Core Files
13556 * Ravenscar Profile::           Tasking Support when using the Ravenscar
13557                                    Profile
13558 * Ada Glitches::                Known peculiarities of Ada mode.
13559 @end menu
13560
13561 @node Ada Mode Intro
13562 @subsubsection Introduction
13563 @cindex Ada mode, general
13564
13565 The Ada mode of @value{GDBN} supports a fairly large subset of Ada expression 
13566 syntax, with some extensions.
13567 The philosophy behind the design of this subset is 
13568
13569 @itemize @bullet
13570 @item
13571 That @value{GDBN} should provide basic literals and access to operations for 
13572 arithmetic, dereferencing, field selection, indexing, and subprogram calls, 
13573 leaving more sophisticated computations to subprograms written into the
13574 program (which therefore may be called from @value{GDBN}).
13575
13576 @item 
13577 That type safety and strict adherence to Ada language restrictions
13578 are not particularly important to the @value{GDBN} user.
13579
13580 @item 
13581 That brevity is important to the @value{GDBN} user.
13582 @end itemize
13583
13584 Thus, for brevity, the debugger acts as if all names declared in
13585 user-written packages are directly visible, even if they are not visible
13586 according to Ada rules, thus making it unnecessary to fully qualify most
13587 names with their packages, regardless of context.  Where this causes
13588 ambiguity, @value{GDBN} asks the user's intent.
13589
13590 The debugger will start in Ada mode if it detects an Ada main program. 
13591 As for other languages, it will enter Ada mode when stopped in a program that
13592 was translated from an Ada source file.
13593
13594 While in Ada mode, you may use `@t{--}' for comments.  This is useful 
13595 mostly for documenting command files.  The standard @value{GDBN} comment 
13596 (@samp{#}) still works at the beginning of a line in Ada mode, but not in the 
13597 middle (to allow based literals).
13598
13599 The debugger supports limited overloading.  Given a subprogram call in which
13600 the function symbol has multiple definitions, it will use the number of 
13601 actual parameters and some information about their types to attempt to narrow
13602 the set of definitions.  It also makes very limited use of context, preferring
13603 procedures to functions in the context of the @code{call} command, and
13604 functions to procedures elsewhere. 
13605
13606 @node Omissions from Ada
13607 @subsubsection Omissions from Ada
13608 @cindex Ada, omissions from
13609
13610 Here are the notable omissions from the subset:
13611
13612 @itemize @bullet
13613 @item
13614 Only a subset of the attributes are supported:
13615
13616 @itemize @minus
13617 @item
13618 @t{'First}, @t{'Last}, and @t{'Length}
13619  on array objects (not on types and subtypes).
13620
13621 @item
13622 @t{'Min} and @t{'Max}.  
13623
13624 @item 
13625 @t{'Pos} and @t{'Val}. 
13626
13627 @item
13628 @t{'Tag}.
13629
13630 @item
13631 @t{'Range} on array objects (not subtypes), but only as the right
13632 operand of the membership (@code{in}) operator.
13633
13634 @item 
13635 @t{'Access}, @t{'Unchecked_Access}, and 
13636 @t{'Unrestricted_Access} (a GNAT extension).
13637
13638 @item
13639 @t{'Address}.
13640 @end itemize
13641
13642 @item
13643 The names in
13644 @code{Characters.Latin_1} are not available and
13645 concatenation is not implemented.  Thus, escape characters in strings are 
13646 not currently available.
13647
13648 @item
13649 Equality tests (@samp{=} and @samp{/=}) on arrays test for bitwise
13650 equality of representations.  They will generally work correctly
13651 for strings and arrays whose elements have integer or enumeration types.
13652 They may not work correctly for arrays whose element
13653 types have user-defined equality, for arrays of real values 
13654 (in particular, IEEE-conformant floating point, because of negative
13655 zeroes and NaNs), and for arrays whose elements contain unused bits with
13656 indeterminate values.  
13657
13658 @item
13659 The other component-by-component array operations (@code{and}, @code{or}, 
13660 @code{xor}, @code{not}, and relational tests other than equality)
13661 are not implemented. 
13662
13663 @item 
13664 @cindex array aggregates (Ada)
13665 @cindex record aggregates (Ada)
13666 @cindex aggregates (Ada) 
13667 There is limited support for array and record aggregates.  They are
13668 permitted only on the right sides of assignments, as in these examples:
13669
13670 @smallexample
13671 (@value{GDBP}) set An_Array := (1, 2, 3, 4, 5, 6)
13672 (@value{GDBP}) set An_Array := (1, others => 0)
13673 (@value{GDBP}) set An_Array := (0|4 => 1, 1..3 => 2, 5 => 6)
13674 (@value{GDBP}) set A_2D_Array := ((1, 2, 3), (4, 5, 6), (7, 8, 9))
13675 (@value{GDBP}) set A_Record := (1, "Peter", True);
13676 (@value{GDBP}) set A_Record := (Name => "Peter", Id => 1, Alive => True)
13677 @end smallexample
13678
13679 Changing a
13680 discriminant's value by assigning an aggregate has an
13681 undefined effect if that discriminant is used within the record.
13682 However, you can first modify discriminants by directly assigning to
13683 them (which normally would not be allowed in Ada), and then performing an
13684 aggregate assignment.  For example, given a variable @code{A_Rec} 
13685 declared to have a type such as:
13686
13687 @smallexample
13688 type Rec (Len : Small_Integer := 0) is record
13689     Id : Integer;
13690     Vals : IntArray (1 .. Len);
13691 end record;
13692 @end smallexample
13693
13694 you can assign a value with a different size of @code{Vals} with two
13695 assignments:
13696
13697 @smallexample
13698 (@value{GDBP}) set A_Rec.Len := 4
13699 (@value{GDBP}) set A_Rec := (Id => 42, Vals => (1, 2, 3, 4))
13700 @end smallexample
13701
13702 As this example also illustrates, @value{GDBN} is very loose about the usual
13703 rules concerning aggregates.  You may leave out some of the
13704 components of an array or record aggregate (such as the @code{Len} 
13705 component in the assignment to @code{A_Rec} above); they will retain their
13706 original values upon assignment.  You may freely use dynamic values as
13707 indices in component associations.  You may even use overlapping or
13708 redundant component associations, although which component values are
13709 assigned in such cases is not defined.
13710
13711 @item
13712 Calls to dispatching subprograms are not implemented.
13713
13714 @item
13715 The overloading algorithm is much more limited (i.e., less selective)
13716 than that of real Ada.  It makes only limited use of the context in
13717 which a subexpression appears to resolve its meaning, and it is much
13718 looser in its rules for allowing type matches.  As a result, some
13719 function calls will be ambiguous, and the user will be asked to choose
13720 the proper resolution.
13721
13722 @item
13723 The @code{new} operator is not implemented.
13724
13725 @item
13726 Entry calls are not implemented.
13727
13728 @item 
13729 Aside from printing, arithmetic operations on the native VAX floating-point 
13730 formats are not supported.
13731
13732 @item
13733 It is not possible to slice a packed array.
13734
13735 @item
13736 The names @code{True} and @code{False}, when not part of a qualified name, 
13737 are interpreted as if implicitly prefixed by @code{Standard}, regardless of 
13738 context.
13739 Should your program
13740 redefine these names in a package or procedure (at best a dubious practice),
13741 you will have to use fully qualified names to access their new definitions.
13742 @end itemize
13743
13744 @node Additions to Ada
13745 @subsubsection Additions to Ada
13746 @cindex Ada, deviations from 
13747
13748 As it does for other languages, @value{GDBN} makes certain generic
13749 extensions to Ada (@pxref{Expressions}):
13750
13751 @itemize @bullet
13752 @item
13753 If the expression @var{E} is a variable residing in memory (typically
13754 a local variable or array element) and @var{N} is a positive integer,
13755 then @code{@var{E}@@@var{N}} displays the values of @var{E} and the
13756 @var{N}-1 adjacent variables following it in memory as an array.  In
13757 Ada, this operator is generally not necessary, since its prime use is
13758 in displaying parts of an array, and slicing will usually do this in
13759 Ada.  However, there are occasional uses when debugging programs in
13760 which certain debugging information has been optimized away.
13761
13762 @item
13763 @code{@var{B}::@var{var}} means ``the variable named @var{var} that
13764 appears in function or file @var{B}.''  When @var{B} is a file name,
13765 you must typically surround it in single quotes.
13766
13767 @item 
13768 The expression @code{@{@var{type}@} @var{addr}} means ``the variable of type
13769 @var{type} that appears at address @var{addr}.''
13770
13771 @item
13772 A name starting with @samp{$} is a convenience variable 
13773 (@pxref{Convenience Vars}) or a machine register (@pxref{Registers}).
13774 @end itemize
13775
13776 In addition, @value{GDBN} provides a few other shortcuts and outright
13777 additions specific to Ada:
13778
13779 @itemize @bullet
13780 @item 
13781 The assignment statement is allowed as an expression, returning
13782 its right-hand operand as its value.  Thus, you may enter
13783
13784 @smallexample
13785 (@value{GDBP}) set x := y + 3
13786 (@value{GDBP}) print A(tmp := y + 1)
13787 @end smallexample
13788
13789 @item 
13790 The semicolon is allowed as an ``operator,''  returning as its value 
13791 the value of its right-hand operand.
13792 This allows, for example,
13793 complex conditional breaks:
13794
13795 @smallexample
13796 (@value{GDBP}) break f
13797 (@value{GDBP}) condition 1 (report(i); k += 1; A(k) > 100)
13798 @end smallexample
13799
13800 @item 
13801 Rather than use catenation and symbolic character names to introduce special 
13802 characters into strings, one may instead use a special bracket notation, 
13803 which is also used to print strings.  A sequence of characters of the form 
13804 @samp{["@var{XX}"]} within a string or character literal denotes the 
13805 (single) character whose numeric encoding is @var{XX} in hexadecimal.  The
13806 sequence of characters @samp{["""]} also denotes a single quotation mark 
13807 in strings.   For example,
13808 @smallexample
13809    "One line.["0a"]Next line.["0a"]"
13810 @end smallexample
13811 @noindent
13812 contains an ASCII newline character (@code{Ada.Characters.Latin_1.LF})
13813 after each period.
13814
13815 @item
13816 The subtype used as a prefix for the attributes @t{'Pos}, @t{'Min}, and
13817 @t{'Max} is optional (and is ignored in any case).  For example, it is valid
13818 to write
13819
13820 @smallexample
13821 (@value{GDBP}) print 'max(x, y)
13822 @end smallexample
13823
13824 @item
13825 When printing arrays, @value{GDBN} uses positional notation when the 
13826 array has a lower bound of 1, and uses a modified named notation otherwise.
13827 For example, a one-dimensional array of three integers with a lower bound
13828 of 3 might print as
13829
13830 @smallexample
13831 (3 => 10, 17, 1)
13832 @end smallexample
13833
13834 @noindent
13835 That is, in contrast to valid Ada, only the first component has a @code{=>} 
13836 clause.
13837
13838 @item
13839 You may abbreviate attributes in expressions with any unique,
13840 multi-character subsequence of 
13841 their names (an exact match gets preference).
13842 For example, you may use @t{a'len}, @t{a'gth}, or @t{a'lh}
13843 in place of  @t{a'length}.
13844
13845 @item
13846 @cindex quoting Ada internal identifiers
13847 Since Ada is case-insensitive, the debugger normally maps identifiers you type 
13848 to lower case.  The GNAT compiler uses upper-case characters for 
13849 some of its internal identifiers, which are normally of no interest to users.
13850 For the rare occasions when you actually have to look at them,
13851 enclose them in angle brackets to avoid the lower-case mapping. 
13852 For example,
13853 @smallexample
13854 (@value{GDBP}) print <JMPBUF_SAVE>[0]
13855 @end smallexample
13856
13857 @item
13858 Printing an object of class-wide type or dereferencing an 
13859 access-to-class-wide value will display all the components of the object's
13860 specific type (as indicated by its run-time tag).  Likewise, component
13861 selection on such a value will operate on the specific type of the
13862 object.
13863
13864 @end itemize
13865
13866 @node Stopping Before Main Program
13867 @subsubsection Stopping at the Very Beginning
13868
13869 @cindex breakpointing Ada elaboration code
13870 It is sometimes necessary to debug the program during elaboration, and
13871 before reaching the main procedure.
13872 As defined in the Ada Reference
13873 Manual, the elaboration code is invoked from a procedure called
13874 @code{adainit}.  To run your program up to the beginning of
13875 elaboration, simply use the following two commands:
13876 @code{tbreak adainit} and @code{run}.
13877
13878 @node Ada Tasks
13879 @subsubsection Extensions for Ada Tasks
13880 @cindex Ada, tasking
13881
13882 Support for Ada tasks is analogous to that for threads (@pxref{Threads}).
13883 @value{GDBN} provides the following task-related commands:
13884
13885 @table @code
13886 @kindex info tasks
13887 @item info tasks
13888 This command shows a list of current Ada tasks, as in the following example:
13889
13890
13891 @smallexample
13892 @iftex
13893 @leftskip=0.5cm
13894 @end iftex
13895 (@value{GDBP}) info tasks
13896   ID       TID P-ID Pri State                 Name
13897    1   8088000   0   15 Child Activation Wait main_task
13898    2   80a4000   1   15 Accept Statement      b
13899    3   809a800   1   15 Child Activation Wait a
13900 *  4   80ae800   3   15 Runnable              c
13901
13902 @end smallexample
13903
13904 @noindent
13905 In this listing, the asterisk before the last task indicates it to be the
13906 task currently being inspected.
13907
13908 @table @asis
13909 @item ID
13910 Represents @value{GDBN}'s internal task number.
13911
13912 @item TID
13913 The Ada task ID.
13914
13915 @item P-ID
13916 The parent's task ID (@value{GDBN}'s internal task number).
13917
13918 @item Pri
13919 The base priority of the task.
13920
13921 @item State
13922 Current state of the task.
13923
13924 @table @code
13925 @item Unactivated
13926 The task has been created but has not been activated.  It cannot be
13927 executing.
13928
13929 @item Runnable
13930 The task is not blocked for any reason known to Ada.  (It may be waiting
13931 for a mutex, though.) It is conceptually "executing" in normal mode.
13932
13933 @item Terminated
13934 The task is terminated, in the sense of ARM 9.3 (5).  Any dependents
13935 that were waiting on terminate alternatives have been awakened and have
13936 terminated themselves.
13937
13938 @item Child Activation Wait
13939 The task is waiting for created tasks to complete activation.
13940
13941 @item Accept Statement
13942 The task is waiting on an accept or selective wait statement.
13943
13944 @item Waiting on entry call
13945 The task is waiting on an entry call.
13946
13947 @item Async Select Wait
13948 The task is waiting to start the abortable part of an asynchronous
13949 select statement.
13950
13951 @item Delay Sleep
13952 The task is waiting on a select statement with only a delay
13953 alternative open.
13954
13955 @item Child Termination Wait
13956 The task is sleeping having completed a master within itself, and is
13957 waiting for the tasks dependent on that master to become terminated or
13958 waiting on a terminate Phase.
13959
13960 @item Wait Child in Term Alt
13961 The task is sleeping waiting for tasks on terminate alternatives to
13962 finish terminating.
13963
13964 @item Accepting RV with @var{taskno}
13965 The task is accepting a rendez-vous with the task @var{taskno}.
13966 @end table
13967
13968 @item Name
13969 Name of the task in the program.
13970
13971 @end table
13972
13973 @kindex info task @var{taskno}
13974 @item info task @var{taskno}
13975 This command shows detailled informations on the specified task, as in
13976 the following example:
13977 @smallexample
13978 @iftex
13979 @leftskip=0.5cm
13980 @end iftex
13981 (@value{GDBP}) info tasks
13982   ID       TID P-ID Pri State                  Name
13983    1   8077880    0  15 Child Activation Wait  main_task
13984 *  2   807c468    1  15 Runnable               task_1
13985 (@value{GDBP}) info task 2
13986 Ada Task: 0x807c468
13987 Name: task_1
13988 Thread: 0x807f378
13989 Parent: 1 (main_task)
13990 Base Priority: 15
13991 State: Runnable
13992 @end smallexample
13993
13994 @item task
13995 @kindex task@r{ (Ada)}
13996 @cindex current Ada task ID
13997 This command prints the ID of the current task.
13998
13999 @smallexample
14000 @iftex
14001 @leftskip=0.5cm
14002 @end iftex
14003 (@value{GDBP}) info tasks
14004   ID       TID P-ID Pri State                  Name
14005    1   8077870    0  15 Child Activation Wait  main_task
14006 *  2   807c458    1  15 Runnable               t
14007 (@value{GDBP}) task
14008 [Current task is 2]
14009 @end smallexample
14010
14011 @item task @var{taskno}
14012 @cindex Ada task switching
14013 This command is like the @code{thread @var{threadno}}
14014 command (@pxref{Threads}).  It switches the context of debugging
14015 from the current task to the given task.
14016
14017 @smallexample
14018 @iftex
14019 @leftskip=0.5cm
14020 @end iftex
14021 (@value{GDBP}) info tasks
14022   ID       TID P-ID Pri State                  Name
14023    1   8077870    0  15 Child Activation Wait  main_task
14024 *  2   807c458    1  15 Runnable               t
14025 (@value{GDBP}) task 1
14026 [Switching to task 1]
14027 #0  0x8067726 in pthread_cond_wait ()
14028 (@value{GDBP}) bt
14029 #0  0x8067726 in pthread_cond_wait ()
14030 #1  0x8056714 in system.os_interface.pthread_cond_wait ()
14031 #2  0x805cb63 in system.task_primitives.operations.sleep ()
14032 #3  0x806153e in system.tasking.stages.activate_tasks ()
14033 #4  0x804aacc in un () at un.adb:5
14034 @end smallexample
14035
14036 @item break @var{linespec} task @var{taskno}
14037 @itemx break @var{linespec} task @var{taskno} if @dots{}
14038 @cindex breakpoints and tasks, in Ada
14039 @cindex task breakpoints, in Ada
14040 @kindex break @dots{} task @var{taskno}@r{ (Ada)}
14041 These commands are like the @code{break @dots{} thread @dots{}}
14042 command (@pxref{Thread Stops}).
14043 @var{linespec} specifies source lines, as described
14044 in @ref{Specify Location}.
14045
14046 Use the qualifier @samp{task @var{taskno}} with a breakpoint command
14047 to specify that you only want @value{GDBN} to stop the program when a
14048 particular Ada task reaches this breakpoint.  @var{taskno} is one of the
14049 numeric task identifiers assigned by @value{GDBN}, shown in the first
14050 column of the @samp{info tasks} display.
14051
14052 If you do not specify @samp{task @var{taskno}} when you set a
14053 breakpoint, the breakpoint applies to @emph{all} tasks of your
14054 program.
14055
14056 You can use the @code{task} qualifier on conditional breakpoints as
14057 well; in this case, place @samp{task @var{taskno}} before the
14058 breakpoint condition (before the @code{if}).
14059
14060 For example,
14061
14062 @smallexample
14063 @iftex
14064 @leftskip=0.5cm
14065 @end iftex
14066 (@value{GDBP}) info tasks
14067   ID       TID P-ID Pri State                 Name
14068    1 140022020   0   15 Child Activation Wait main_task
14069    2 140045060   1   15 Accept/Select Wait    t2
14070    3 140044840   1   15 Runnable              t1
14071 *  4 140056040   1   15 Runnable              t3
14072 (@value{GDBP}) b 15 task 2
14073 Breakpoint 5 at 0x120044cb0: file test_task_debug.adb, line 15.
14074 (@value{GDBP}) cont
14075 Continuing.
14076 task # 1 running
14077 task # 2 running
14078
14079 Breakpoint 5, test_task_debug () at test_task_debug.adb:15
14080 15               flush;
14081 (@value{GDBP}) info tasks
14082   ID       TID P-ID Pri State                 Name
14083    1 140022020   0   15 Child Activation Wait main_task
14084 *  2 140045060   1   15 Runnable              t2
14085    3 140044840   1   15 Runnable              t1
14086    4 140056040   1   15 Delay Sleep           t3
14087 @end smallexample
14088 @end table
14089
14090 @node Ada Tasks and Core Files
14091 @subsubsection Tasking Support when Debugging Core Files
14092 @cindex Ada tasking and core file debugging
14093
14094 When inspecting a core file, as opposed to debugging a live program,
14095 tasking support may be limited or even unavailable, depending on
14096 the platform being used.
14097 For instance, on x86-linux, the list of tasks is available, but task
14098 switching is not supported.  On Tru64, however, task switching will work
14099 as usual.
14100
14101 On certain platforms, including Tru64, the debugger needs to perform some
14102 memory writes in order to provide Ada tasking support.  When inspecting
14103 a core file, this means that the core file must be opened with read-write
14104 privileges, using the command @samp{"set write on"} (@pxref{Patching}).
14105 Under these circumstances, you should make a backup copy of the core
14106 file before inspecting it with @value{GDBN}.
14107
14108 @node Ravenscar Profile
14109 @subsubsection Tasking Support when using the Ravenscar Profile
14110 @cindex Ravenscar Profile
14111
14112 The @dfn{Ravenscar Profile} is a subset of the Ada tasking features,
14113 specifically designed for systems with safety-critical real-time
14114 requirements.
14115
14116 @table @code
14117 @kindex set ravenscar task-switching on
14118 @cindex task switching with program using Ravenscar Profile
14119 @item set ravenscar task-switching on
14120 Allows task switching when debugging a program that uses the Ravenscar
14121 Profile.  This is the default.
14122
14123 @kindex set ravenscar task-switching off
14124 @item set ravenscar task-switching off
14125 Turn off task switching when debugging a program that uses the Ravenscar
14126 Profile.  This is mostly intended to disable the code that adds support
14127 for the Ravenscar Profile, in case a bug in either @value{GDBN} or in
14128 the Ravenscar runtime is preventing @value{GDBN} from working properly.
14129 To be effective, this command should be run before the program is started.
14130
14131 @kindex show ravenscar task-switching
14132 @item show ravenscar task-switching
14133 Show whether it is possible to switch from task to task in a program
14134 using the Ravenscar Profile.
14135
14136 @end table
14137
14138 @node Ada Glitches
14139 @subsubsection Known Peculiarities of Ada Mode
14140 @cindex Ada, problems
14141
14142 Besides the omissions listed previously (@pxref{Omissions from Ada}),
14143 we know of several problems with and limitations of Ada mode in
14144 @value{GDBN},
14145 some of which will be fixed with planned future releases of the debugger 
14146 and the GNU Ada compiler.
14147
14148 @itemize @bullet
14149 @item 
14150 Static constants that the compiler chooses not to materialize as objects in 
14151 storage are invisible to the debugger.
14152
14153 @item
14154 Named parameter associations in function argument lists are ignored (the
14155 argument lists are treated as positional).
14156
14157 @item
14158 Many useful library packages are currently invisible to the debugger.
14159
14160 @item
14161 Fixed-point arithmetic, conversions, input, and output is carried out using 
14162 floating-point arithmetic, and may give results that only approximate those on 
14163 the host machine.
14164
14165 @item
14166 The GNAT compiler never generates the prefix @code{Standard} for any of 
14167 the standard symbols defined by the Ada language.  @value{GDBN} knows about 
14168 this: it will strip the prefix from names when you use it, and will never
14169 look for a name you have so qualified among local symbols, nor match against
14170 symbols in other packages or subprograms.  If you have 
14171 defined entities anywhere in your program other than parameters and 
14172 local variables whose simple names match names in @code{Standard}, 
14173 GNAT's lack of qualification here can cause confusion.  When this happens,
14174 you can usually resolve the confusion 
14175 by qualifying the problematic names with package
14176 @code{Standard} explicitly.  
14177 @end itemize
14178
14179 Older versions of the compiler sometimes generate erroneous debugging
14180 information, resulting in the debugger incorrectly printing the value
14181 of affected entities.  In some cases, the debugger is able to work
14182 around an issue automatically. In other cases, the debugger is able
14183 to work around the issue, but the work-around has to be specifically
14184 enabled.
14185
14186 @kindex set ada trust-PAD-over-XVS
14187 @kindex show ada trust-PAD-over-XVS
14188 @table @code
14189
14190 @item set ada trust-PAD-over-XVS on
14191 Configure GDB to strictly follow the GNAT encoding when computing the
14192 value of Ada entities, particularly when @code{PAD} and @code{PAD___XVS}
14193 types are involved (see @code{ada/exp_dbug.ads} in the GCC sources for
14194 a complete description of the encoding used by the GNAT compiler).
14195 This is the default.
14196
14197 @item set ada trust-PAD-over-XVS off
14198 This is related to the encoding using by the GNAT compiler.  If @value{GDBN}
14199 sometimes prints the wrong value for certain entities, changing @code{ada
14200 trust-PAD-over-XVS} to @code{off} activates a work-around which may fix
14201 the issue.  It is always safe to set @code{ada trust-PAD-over-XVS} to
14202 @code{off}, but this incurs a slight performance penalty, so it is
14203 recommended to leave this setting to @code{on} unless necessary.
14204
14205 @end table
14206
14207 @node Unsupported Languages
14208 @section Unsupported Languages
14209
14210 @cindex unsupported languages
14211 @cindex minimal language
14212 In addition to the other fully-supported programming languages,
14213 @value{GDBN} also provides a pseudo-language, called @code{minimal}.
14214 It does not represent a real programming language, but provides a set
14215 of capabilities close to what the C or assembly languages provide.
14216 This should allow most simple operations to be performed while debugging
14217 an application that uses a language currently not supported by @value{GDBN}.
14218
14219 If the language is set to @code{auto}, @value{GDBN} will automatically
14220 select this language if the current frame corresponds to an unsupported
14221 language.
14222
14223 @node Symbols
14224 @chapter Examining the Symbol Table
14225
14226 The commands described in this chapter allow you to inquire about the
14227 symbols (names of variables, functions and types) defined in your
14228 program.  This information is inherent in the text of your program and
14229 does not change as your program executes.  @value{GDBN} finds it in your
14230 program's symbol table, in the file indicated when you started @value{GDBN}
14231 (@pxref{File Options, ,Choosing Files}), or by one of the
14232 file-management commands (@pxref{Files, ,Commands to Specify Files}).
14233
14234 @cindex symbol names
14235 @cindex names of symbols
14236 @cindex quoting names
14237 Occasionally, you may need to refer to symbols that contain unusual
14238 characters, which @value{GDBN} ordinarily treats as word delimiters.  The
14239 most frequent case is in referring to static variables in other
14240 source files (@pxref{Variables,,Program Variables}).  File names
14241 are recorded in object files as debugging symbols, but @value{GDBN} would
14242 ordinarily parse a typical file name, like @file{foo.c}, as the three words
14243 @samp{foo} @samp{.} @samp{c}.  To allow @value{GDBN} to recognize
14244 @samp{foo.c} as a single symbol, enclose it in single quotes; for example,
14245
14246 @smallexample
14247 p 'foo.c'::x
14248 @end smallexample
14249
14250 @noindent
14251 looks up the value of @code{x} in the scope of the file @file{foo.c}.
14252
14253 @table @code
14254 @cindex case-insensitive symbol names
14255 @cindex case sensitivity in symbol names
14256 @kindex set case-sensitive
14257 @item set case-sensitive on
14258 @itemx set case-sensitive off
14259 @itemx set case-sensitive auto
14260 Normally, when @value{GDBN} looks up symbols, it matches their names
14261 with case sensitivity determined by the current source language.
14262 Occasionally, you may wish to control that.  The command @code{set
14263 case-sensitive} lets you do that by specifying @code{on} for
14264 case-sensitive matches or @code{off} for case-insensitive ones.  If
14265 you specify @code{auto}, case sensitivity is reset to the default
14266 suitable for the source language.  The default is case-sensitive
14267 matches for all languages except for Fortran, for which the default is
14268 case-insensitive matches.
14269
14270 @kindex show case-sensitive
14271 @item show case-sensitive
14272 This command shows the current setting of case sensitivity for symbols
14273 lookups.
14274
14275 @kindex info address
14276 @cindex address of a symbol
14277 @item info address @var{symbol}
14278 Describe where the data for @var{symbol} is stored.  For a register
14279 variable, this says which register it is kept in.  For a non-register
14280 local variable, this prints the stack-frame offset at which the variable
14281 is always stored.
14282
14283 Note the contrast with @samp{print &@var{symbol}}, which does not work
14284 at all for a register variable, and for a stack local variable prints
14285 the exact address of the current instantiation of the variable.
14286
14287 @kindex info symbol
14288 @cindex symbol from address
14289 @cindex closest symbol and offset for an address
14290 @item info symbol @var{addr}
14291 Print the name of a symbol which is stored at the address @var{addr}.
14292 If no symbol is stored exactly at @var{addr}, @value{GDBN} prints the
14293 nearest symbol and an offset from it:
14294
14295 @smallexample
14296 (@value{GDBP}) info symbol 0x54320
14297 _initialize_vx + 396 in section .text
14298 @end smallexample
14299
14300 @noindent
14301 This is the opposite of the @code{info address} command.  You can use
14302 it to find out the name of a variable or a function given its address.
14303
14304 For dynamically linked executables, the name of executable or shared
14305 library containing the symbol is also printed:
14306
14307 @smallexample
14308 (@value{GDBP}) info symbol 0x400225
14309 _start + 5 in section .text of /tmp/a.out
14310 (@value{GDBP}) info symbol 0x2aaaac2811cf
14311 __read_nocancel + 6 in section .text of /usr/lib64/libc.so.6
14312 @end smallexample
14313
14314 @kindex whatis
14315 @item whatis [@var{arg}]
14316 Print the data type of @var{arg}, which can be either an expression
14317 or a name of a data type.  With no argument, print the data type of
14318 @code{$}, the last value in the value history.
14319
14320 If @var{arg} is an expression (@pxref{Expressions, ,Expressions}), it
14321 is not actually evaluated, and any side-effecting operations (such as
14322 assignments or function calls) inside it do not take place.
14323
14324 If @var{arg} is a variable or an expression, @code{whatis} prints its
14325 literal type as it is used in the source code.  If the type was
14326 defined using a @code{typedef}, @code{whatis} will @emph{not} print
14327 the data type underlying the @code{typedef}.  If the type of the
14328 variable or the expression is a compound data type, such as
14329 @code{struct} or  @code{class}, @code{whatis} never prints their
14330 fields or methods.  It just prints the @code{struct}/@code{class}
14331 name (a.k.a.@: its @dfn{tag}).  If you want to see the members of
14332 such a compound data type, use @code{ptype}.
14333
14334 If @var{arg} is a type name that was defined using @code{typedef},
14335 @code{whatis} @dfn{unrolls} only one level of that @code{typedef}.
14336 Unrolling means that @code{whatis} will show the underlying type used
14337 in the @code{typedef} declaration of @var{arg}.  However, if that
14338 underlying type is also a @code{typedef}, @code{whatis} will not
14339 unroll it.
14340
14341 For C code, the type names may also have the form @samp{class
14342 @var{class-name}}, @samp{struct @var{struct-tag}}, @samp{union
14343 @var{union-tag}} or @samp{enum @var{enum-tag}}.
14344
14345 @kindex ptype
14346 @item ptype [@var{arg}]
14347 @code{ptype} accepts the same arguments as @code{whatis}, but prints a
14348 detailed description of the type, instead of just the name of the type.
14349 @xref{Expressions, ,Expressions}.
14350
14351 Contrary to @code{whatis}, @code{ptype} always unrolls any
14352 @code{typedef}s in its argument declaration, whether the argument is
14353 a variable, expression, or a data type.  This means that @code{ptype}
14354 of a variable or an expression will not print literally its type as
14355 present in the source code---use @code{whatis} for that.  @code{typedef}s at
14356 the pointer or reference targets are also unrolled.  Only @code{typedef}s of
14357 fields, methods and inner @code{class typedef}s of @code{struct}s,
14358 @code{class}es and @code{union}s are not unrolled even with @code{ptype}.
14359
14360 For example, for this variable declaration:
14361
14362 @smallexample
14363 typedef double real_t;
14364 struct complex @{ real_t real; double imag; @};
14365 typedef struct complex complex_t;
14366 complex_t var;
14367 real_t *real_pointer_var;
14368 @end smallexample
14369
14370 @noindent
14371 the two commands give this output:
14372
14373 @smallexample
14374 @group
14375 (@value{GDBP}) whatis var
14376 type = complex_t
14377 (@value{GDBP}) ptype var
14378 type = struct complex @{
14379     real_t real;
14380     double imag;
14381 @}
14382 (@value{GDBP}) whatis complex_t
14383 type = struct complex
14384 (@value{GDBP}) whatis struct complex
14385 type = struct complex
14386 (@value{GDBP}) ptype struct complex
14387 type = struct complex @{
14388     real_t real;
14389     double imag;
14390 @}
14391 (@value{GDBP}) whatis real_pointer_var
14392 type = real_t *
14393 (@value{GDBP}) ptype real_pointer_var
14394 type = double *
14395 @end group
14396 @end smallexample
14397
14398 @noindent
14399 As with @code{whatis}, using @code{ptype} without an argument refers to
14400 the type of @code{$}, the last value in the value history.
14401
14402 @cindex incomplete type
14403 Sometimes, programs use opaque data types or incomplete specifications
14404 of complex data structure.  If the debug information included in the
14405 program does not allow @value{GDBN} to display a full declaration of
14406 the data type, it will say @samp{<incomplete type>}.  For example,
14407 given these declarations:
14408
14409 @smallexample
14410     struct foo;
14411     struct foo *fooptr;
14412 @end smallexample
14413
14414 @noindent
14415 but no definition for @code{struct foo} itself, @value{GDBN} will say:
14416
14417 @smallexample
14418   (@value{GDBP}) ptype foo
14419   $1 = <incomplete type>
14420 @end smallexample
14421
14422 @noindent
14423 ``Incomplete type'' is C terminology for data types that are not
14424 completely specified.
14425
14426 @kindex info types
14427 @item info types @var{regexp}
14428 @itemx info types
14429 Print a brief description of all types whose names match the regular
14430 expression @var{regexp} (or all types in your program, if you supply
14431 no argument).  Each complete typename is matched as though it were a
14432 complete line; thus, @samp{i type value} gives information on all
14433 types in your program whose names include the string @code{value}, but
14434 @samp{i type ^value$} gives information only on types whose complete
14435 name is @code{value}.
14436
14437 This command differs from @code{ptype} in two ways: first, like
14438 @code{whatis}, it does not print a detailed description; second, it
14439 lists all source files where a type is defined.
14440
14441 @kindex info scope
14442 @cindex local variables
14443 @item info scope @var{location}
14444 List all the variables local to a particular scope.  This command
14445 accepts a @var{location} argument---a function name, a source line, or
14446 an address preceded by a @samp{*}, and prints all the variables local
14447 to the scope defined by that location.  (@xref{Specify Location}, for
14448 details about supported forms of @var{location}.)  For example:
14449
14450 @smallexample
14451 (@value{GDBP}) @b{info scope command_line_handler}
14452 Scope for command_line_handler:
14453 Symbol rl is an argument at stack/frame offset 8, length 4.
14454 Symbol linebuffer is in static storage at address 0x150a18, length 4.
14455 Symbol linelength is in static storage at address 0x150a1c, length 4.
14456 Symbol p is a local variable in register $esi, length 4.
14457 Symbol p1 is a local variable in register $ebx, length 4.
14458 Symbol nline is a local variable in register $edx, length 4.
14459 Symbol repeat is a local variable at frame offset -8, length 4.
14460 @end smallexample
14461
14462 @noindent
14463 This command is especially useful for determining what data to collect
14464 during a @dfn{trace experiment}, see @ref{Tracepoint Actions,
14465 collect}.
14466
14467 @kindex info source
14468 @item info source
14469 Show information about the current source file---that is, the source file for
14470 the function containing the current point of execution:
14471 @itemize @bullet
14472 @item
14473 the name of the source file, and the directory containing it,
14474 @item
14475 the directory it was compiled in,
14476 @item
14477 its length, in lines,
14478 @item
14479 which programming language it is written in,
14480 @item
14481 whether the executable includes debugging information for that file, and
14482 if so, what format the information is in (e.g., STABS, Dwarf 2, etc.), and
14483 @item
14484 whether the debugging information includes information about
14485 preprocessor macros.
14486 @end itemize
14487
14488
14489 @kindex info sources
14490 @item info sources
14491 Print the names of all source files in your program for which there is
14492 debugging information, organized into two lists: files whose symbols
14493 have already been read, and files whose symbols will be read when needed.
14494
14495 @kindex info functions
14496 @item info functions
14497 Print the names and data types of all defined functions.
14498
14499 @item info functions @var{regexp}
14500 Print the names and data types of all defined functions
14501 whose names contain a match for regular expression @var{regexp}.
14502 Thus, @samp{info fun step} finds all functions whose names
14503 include @code{step}; @samp{info fun ^step} finds those whose names
14504 start with @code{step}.  If a function name contains characters
14505 that conflict with the regular expression language (e.g.@:
14506 @samp{operator*()}), they may be quoted with a backslash.
14507
14508 @kindex info variables
14509 @item info variables
14510 Print the names and data types of all variables that are defined
14511 outside of functions (i.e.@: excluding local variables).
14512
14513 @item info variables @var{regexp}
14514 Print the names and data types of all variables (except for local
14515 variables) whose names contain a match for regular expression
14516 @var{regexp}.
14517
14518 @kindex info classes
14519 @cindex Objective-C, classes and selectors
14520 @item info classes
14521 @itemx info classes @var{regexp}
14522 Display all Objective-C classes in your program, or
14523 (with the @var{regexp} argument) all those matching a particular regular
14524 expression.
14525
14526 @kindex info selectors
14527 @item info selectors
14528 @itemx info selectors @var{regexp}
14529 Display all Objective-C selectors in your program, or
14530 (with the @var{regexp} argument) all those matching a particular regular
14531 expression.
14532
14533 @ignore
14534 This was never implemented.
14535 @kindex info methods
14536 @item info methods
14537 @itemx info methods @var{regexp}
14538 The @code{info methods} command permits the user to examine all defined
14539 methods within C@t{++} program, or (with the @var{regexp} argument) a
14540 specific set of methods found in the various C@t{++} classes.  Many
14541 C@t{++} classes provide a large number of methods.  Thus, the output
14542 from the @code{ptype} command can be overwhelming and hard to use.  The
14543 @code{info-methods} command filters the methods, printing only those
14544 which match the regular-expression @var{regexp}.
14545 @end ignore
14546
14547 @cindex reloading symbols
14548 Some systems allow individual object files that make up your program to
14549 be replaced without stopping and restarting your program.  For example,
14550 in VxWorks you can simply recompile a defective object file and keep on
14551 running.  If you are running on one of these systems, you can allow
14552 @value{GDBN} to reload the symbols for automatically relinked modules:
14553
14554 @table @code
14555 @kindex set symbol-reloading
14556 @item set symbol-reloading on
14557 Replace symbol definitions for the corresponding source file when an
14558 object file with a particular name is seen again.
14559
14560 @item set symbol-reloading off
14561 Do not replace symbol definitions when encountering object files of the
14562 same name more than once.  This is the default state; if you are not
14563 running on a system that permits automatic relinking of modules, you
14564 should leave @code{symbol-reloading} off, since otherwise @value{GDBN}
14565 may discard symbols when linking large programs, that may contain
14566 several modules (from different directories or libraries) with the same
14567 name.
14568
14569 @kindex show symbol-reloading
14570 @item show symbol-reloading
14571 Show the current @code{on} or @code{off} setting.
14572 @end table
14573
14574 @cindex opaque data types
14575 @kindex set opaque-type-resolution
14576 @item set opaque-type-resolution on
14577 Tell @value{GDBN} to resolve opaque types.  An opaque type is a type
14578 declared as a pointer to a @code{struct}, @code{class}, or
14579 @code{union}---for example, @code{struct MyType *}---that is used in one
14580 source file although the full declaration of @code{struct MyType} is in
14581 another source file.  The default is on.
14582
14583 A change in the setting of this subcommand will not take effect until
14584 the next time symbols for a file are loaded.
14585
14586 @item set opaque-type-resolution off
14587 Tell @value{GDBN} not to resolve opaque types.  In this case, the type
14588 is printed as follows:
14589 @smallexample
14590 @{<no data fields>@}
14591 @end smallexample
14592
14593 @kindex show opaque-type-resolution
14594 @item show opaque-type-resolution
14595 Show whether opaque types are resolved or not.
14596
14597 @kindex maint print symbols
14598 @cindex symbol dump
14599 @kindex maint print psymbols
14600 @cindex partial symbol dump
14601 @item maint print symbols @var{filename}
14602 @itemx maint print psymbols @var{filename}
14603 @itemx maint print msymbols @var{filename}
14604 Write a dump of debugging symbol data into the file @var{filename}.
14605 These commands are used to debug the @value{GDBN} symbol-reading code.  Only
14606 symbols with debugging data are included.  If you use @samp{maint print
14607 symbols}, @value{GDBN} includes all the symbols for which it has already
14608 collected full details: that is, @var{filename} reflects symbols for
14609 only those files whose symbols @value{GDBN} has read.  You can use the
14610 command @code{info sources} to find out which files these are.  If you
14611 use @samp{maint print psymbols} instead, the dump shows information about
14612 symbols that @value{GDBN} only knows partially---that is, symbols defined in
14613 files that @value{GDBN} has skimmed, but not yet read completely.  Finally,
14614 @samp{maint print msymbols} dumps just the minimal symbol information
14615 required for each object file from which @value{GDBN} has read some symbols.
14616 @xref{Files, ,Commands to Specify Files}, for a discussion of how
14617 @value{GDBN} reads symbols (in the description of @code{symbol-file}).
14618
14619 @kindex maint info symtabs
14620 @kindex maint info psymtabs
14621 @cindex listing @value{GDBN}'s internal symbol tables
14622 @cindex symbol tables, listing @value{GDBN}'s internal
14623 @cindex full symbol tables, listing @value{GDBN}'s internal
14624 @cindex partial symbol tables, listing @value{GDBN}'s internal
14625 @item maint info symtabs @r{[} @var{regexp} @r{]}
14626 @itemx maint info psymtabs @r{[} @var{regexp} @r{]}
14627
14628 List the @code{struct symtab} or @code{struct partial_symtab}
14629 structures whose names match @var{regexp}.  If @var{regexp} is not
14630 given, list them all.  The output includes expressions which you can
14631 copy into a @value{GDBN} debugging this one to examine a particular
14632 structure in more detail.  For example:
14633
14634 @smallexample
14635 (@value{GDBP}) maint info psymtabs dwarf2read
14636 @{ objfile /home/gnu/build/gdb/gdb
14637   ((struct objfile *) 0x82e69d0)
14638   @{ psymtab /home/gnu/src/gdb/dwarf2read.c
14639     ((struct partial_symtab *) 0x8474b10)
14640     readin no
14641     fullname (null)
14642     text addresses 0x814d3c8 -- 0x8158074
14643     globals (* (struct partial_symbol **) 0x8507a08 @@ 9)
14644     statics (* (struct partial_symbol **) 0x40e95b78 @@ 2882)
14645     dependencies (none)
14646   @}
14647 @}
14648 (@value{GDBP}) maint info symtabs
14649 (@value{GDBP})
14650 @end smallexample
14651 @noindent
14652 We see that there is one partial symbol table whose filename contains
14653 the string @samp{dwarf2read}, belonging to the @samp{gdb} executable;
14654 and we see that @value{GDBN} has not read in any symtabs yet at all.
14655 If we set a breakpoint on a function, that will cause @value{GDBN} to
14656 read the symtab for the compilation unit containing that function:
14657
14658 @smallexample
14659 (@value{GDBP}) break dwarf2_psymtab_to_symtab
14660 Breakpoint 1 at 0x814e5da: file /home/gnu/src/gdb/dwarf2read.c,
14661 line 1574.
14662 (@value{GDBP}) maint info symtabs
14663 @{ objfile /home/gnu/build/gdb/gdb
14664   ((struct objfile *) 0x82e69d0)
14665   @{ symtab /home/gnu/src/gdb/dwarf2read.c
14666     ((struct symtab *) 0x86c1f38)
14667     dirname (null)
14668     fullname (null)
14669     blockvector ((struct blockvector *) 0x86c1bd0) (primary)
14670     linetable ((struct linetable *) 0x8370fa0)
14671     debugformat DWARF 2
14672   @}
14673 @}
14674 (@value{GDBP})
14675 @end smallexample
14676 @end table
14677
14678
14679 @node Altering
14680 @chapter Altering Execution
14681
14682 Once you think you have found an error in your program, you might want to
14683 find out for certain whether correcting the apparent error would lead to
14684 correct results in the rest of the run.  You can find the answer by
14685 experiment, using the @value{GDBN} features for altering execution of the
14686 program.
14687
14688 For example, you can store new values into variables or memory
14689 locations, give your program a signal, restart it at a different
14690 address, or even return prematurely from a function.
14691
14692 @menu
14693 * Assignment::                  Assignment to variables
14694 * Jumping::                     Continuing at a different address
14695 * Signaling::                   Giving your program a signal
14696 * Returning::                   Returning from a function
14697 * Calling::                     Calling your program's functions
14698 * Patching::                    Patching your program
14699 @end menu
14700
14701 @node Assignment
14702 @section Assignment to Variables
14703
14704 @cindex assignment
14705 @cindex setting variables
14706 To alter the value of a variable, evaluate an assignment expression.
14707 @xref{Expressions, ,Expressions}.  For example,
14708
14709 @smallexample
14710 print x=4
14711 @end smallexample
14712
14713 @noindent
14714 stores the value 4 into the variable @code{x}, and then prints the
14715 value of the assignment expression (which is 4).
14716 @xref{Languages, ,Using @value{GDBN} with Different Languages}, for more
14717 information on operators in supported languages.
14718
14719 @kindex set variable
14720 @cindex variables, setting
14721 If you are not interested in seeing the value of the assignment, use the
14722 @code{set} command instead of the @code{print} command.  @code{set} is
14723 really the same as @code{print} except that the expression's value is
14724 not printed and is not put in the value history (@pxref{Value History,
14725 ,Value History}).  The expression is evaluated only for its effects.
14726
14727 If the beginning of the argument string of the @code{set} command
14728 appears identical to a @code{set} subcommand, use the @code{set
14729 variable} command instead of just @code{set}.  This command is identical
14730 to @code{set} except for its lack of subcommands.  For example, if your
14731 program has a variable @code{width}, you get an error if you try to set
14732 a new value with just @samp{set width=13}, because @value{GDBN} has the
14733 command @code{set width}:
14734
14735 @smallexample
14736 (@value{GDBP}) whatis width
14737 type = double
14738 (@value{GDBP}) p width
14739 $4 = 13
14740 (@value{GDBP}) set width=47
14741 Invalid syntax in expression.
14742 @end smallexample
14743
14744 @noindent
14745 The invalid expression, of course, is @samp{=47}.  In
14746 order to actually set the program's variable @code{width}, use
14747
14748 @smallexample
14749 (@value{GDBP}) set var width=47
14750 @end smallexample
14751
14752 Because the @code{set} command has many subcommands that can conflict
14753 with the names of program variables, it is a good idea to use the
14754 @code{set variable} command instead of just @code{set}.  For example, if
14755 your program has a variable @code{g}, you run into problems if you try
14756 to set a new value with just @samp{set g=4}, because @value{GDBN} has
14757 the command @code{set gnutarget}, abbreviated @code{set g}:
14758
14759 @smallexample
14760 @group
14761 (@value{GDBP}) whatis g
14762 type = double
14763 (@value{GDBP}) p g
14764 $1 = 1
14765 (@value{GDBP}) set g=4
14766 (@value{GDBP}) p g
14767 $2 = 1
14768 (@value{GDBP}) r
14769 The program being debugged has been started already.
14770 Start it from the beginning? (y or n) y
14771 Starting program: /home/smith/cc_progs/a.out
14772 "/home/smith/cc_progs/a.out": can't open to read symbols:
14773                                  Invalid bfd target.
14774 (@value{GDBP}) show g
14775 The current BFD target is "=4".
14776 @end group
14777 @end smallexample
14778
14779 @noindent
14780 The program variable @code{g} did not change, and you silently set the
14781 @code{gnutarget} to an invalid value.  In order to set the variable
14782 @code{g}, use
14783
14784 @smallexample
14785 (@value{GDBP}) set var g=4
14786 @end smallexample
14787
14788 @value{GDBN} allows more implicit conversions in assignments than C; you can
14789 freely store an integer value into a pointer variable or vice versa,
14790 and you can convert any structure to any other structure that is the
14791 same length or shorter.
14792 @comment FIXME: how do structs align/pad in these conversions?
14793 @comment        /doc@cygnus.com 18dec1990
14794
14795 To store values into arbitrary places in memory, use the @samp{@{@dots{}@}}
14796 construct to generate a value of specified type at a specified address
14797 (@pxref{Expressions, ,Expressions}).  For example, @code{@{int@}0x83040} refers
14798 to memory location @code{0x83040} as an integer (which implies a certain size
14799 and representation in memory), and
14800
14801 @smallexample
14802 set @{int@}0x83040 = 4
14803 @end smallexample
14804
14805 @noindent
14806 stores the value 4 into that memory location.
14807
14808 @node Jumping
14809 @section Continuing at a Different Address
14810
14811 Ordinarily, when you continue your program, you do so at the place where
14812 it stopped, with the @code{continue} command.  You can instead continue at
14813 an address of your own choosing, with the following commands:
14814
14815 @table @code
14816 @kindex jump
14817 @item jump @var{linespec}
14818 @itemx jump @var{location}
14819 Resume execution at line @var{linespec} or at address given by
14820 @var{location}.  Execution stops again immediately if there is a
14821 breakpoint there.  @xref{Specify Location}, for a description of the
14822 different forms of @var{linespec} and @var{location}.  It is common
14823 practice to use the @code{tbreak} command in conjunction with
14824 @code{jump}.  @xref{Set Breaks, ,Setting Breakpoints}.
14825
14826 The @code{jump} command does not change the current stack frame, or
14827 the stack pointer, or the contents of any memory location or any
14828 register other than the program counter.  If line @var{linespec} is in
14829 a different function from the one currently executing, the results may
14830 be bizarre if the two functions expect different patterns of arguments or
14831 of local variables.  For this reason, the @code{jump} command requests
14832 confirmation if the specified line is not in the function currently
14833 executing.  However, even bizarre results are predictable if you are
14834 well acquainted with the machine-language code of your program.
14835 @end table
14836
14837 @c Doesn't work on HP-UX; have to set $pcoqh and $pcoqt.
14838 On many systems, you can get much the same effect as the @code{jump}
14839 command by storing a new value into the register @code{$pc}.  The
14840 difference is that this does not start your program running; it only
14841 changes the address of where it @emph{will} run when you continue.  For
14842 example,
14843
14844 @smallexample
14845 set $pc = 0x485
14846 @end smallexample
14847
14848 @noindent
14849 makes the next @code{continue} command or stepping command execute at
14850 address @code{0x485}, rather than at the address where your program stopped.
14851 @xref{Continuing and Stepping, ,Continuing and Stepping}.
14852
14853 The most common occasion to use the @code{jump} command is to back
14854 up---perhaps with more breakpoints set---over a portion of a program
14855 that has already executed, in order to examine its execution in more
14856 detail.
14857
14858 @c @group
14859 @node Signaling
14860 @section Giving your Program a Signal
14861 @cindex deliver a signal to a program
14862
14863 @table @code
14864 @kindex signal
14865 @item signal @var{signal}
14866 Resume execution where your program stopped, but immediately give it the
14867 signal @var{signal}.  @var{signal} can be the name or the number of a
14868 signal.  For example, on many systems @code{signal 2} and @code{signal
14869 SIGINT} are both ways of sending an interrupt signal.
14870
14871 Alternatively, if @var{signal} is zero, continue execution without
14872 giving a signal.  This is useful when your program stopped on account of
14873 a signal and would ordinary see the signal when resumed with the
14874 @code{continue} command; @samp{signal 0} causes it to resume without a
14875 signal.
14876
14877 @code{signal} does not repeat when you press @key{RET} a second time
14878 after executing the command.
14879 @end table
14880 @c @end group
14881
14882 Invoking the @code{signal} command is not the same as invoking the
14883 @code{kill} utility from the shell.  Sending a signal with @code{kill}
14884 causes @value{GDBN} to decide what to do with the signal depending on
14885 the signal handling tables (@pxref{Signals}).  The @code{signal} command
14886 passes the signal directly to your program.
14887
14888
14889 @node Returning
14890 @section Returning from a Function
14891
14892 @table @code
14893 @cindex returning from a function
14894 @kindex return
14895 @item return
14896 @itemx return @var{expression}
14897 You can cancel execution of a function call with the @code{return}
14898 command.  If you give an
14899 @var{expression} argument, its value is used as the function's return
14900 value.
14901 @end table
14902
14903 When you use @code{return}, @value{GDBN} discards the selected stack frame
14904 (and all frames within it).  You can think of this as making the
14905 discarded frame return prematurely.  If you wish to specify a value to
14906 be returned, give that value as the argument to @code{return}.
14907
14908 This pops the selected stack frame (@pxref{Selection, ,Selecting a
14909 Frame}), and any other frames inside of it, leaving its caller as the
14910 innermost remaining frame.  That frame becomes selected.  The
14911 specified value is stored in the registers used for returning values
14912 of functions.
14913
14914 The @code{return} command does not resume execution; it leaves the
14915 program stopped in the state that would exist if the function had just
14916 returned.  In contrast, the @code{finish} command (@pxref{Continuing
14917 and Stepping, ,Continuing and Stepping}) resumes execution until the
14918 selected stack frame returns naturally.
14919
14920 @value{GDBN} needs to know how the @var{expression} argument should be set for
14921 the inferior.  The concrete registers assignment depends on the OS ABI and the
14922 type being returned by the selected stack frame.  For example it is common for
14923 OS ABI to return floating point values in FPU registers while integer values in
14924 CPU registers.  Still some ABIs return even floating point values in CPU
14925 registers.  Larger integer widths (such as @code{long long int}) also have
14926 specific placement rules.  @value{GDBN} already knows the OS ABI from its
14927 current target so it needs to find out also the type being returned to make the
14928 assignment into the right register(s).
14929
14930 Normally, the selected stack frame has debug info.  @value{GDBN} will always
14931 use the debug info instead of the implicit type of @var{expression} when the
14932 debug info is available.  For example, if you type @kbd{return -1}, and the
14933 function in the current stack frame is declared to return a @code{long long
14934 int}, @value{GDBN} transparently converts the implicit @code{int} value of -1
14935 into a @code{long long int}:
14936
14937 @smallexample
14938 Breakpoint 1, func () at gdb.base/return-nodebug.c:29
14939 29        return 31;
14940 (@value{GDBP}) return -1
14941 Make func return now? (y or n) y
14942 #0  0x004004f6 in main () at gdb.base/return-nodebug.c:43
14943 43        printf ("result=%lld\n", func ());
14944 (@value{GDBP})
14945 @end smallexample
14946
14947 However, if the selected stack frame does not have a debug info, e.g., if the
14948 function was compiled without debug info, @value{GDBN} has to find out the type
14949 to return from user.  Specifying a different type by mistake may set the value
14950 in different inferior registers than the caller code expects.  For example,
14951 typing @kbd{return -1} with its implicit type @code{int} would set only a part
14952 of a @code{long long int} result for a debug info less function (on 32-bit
14953 architectures).  Therefore the user is required to specify the return type by
14954 an appropriate cast explicitly:
14955
14956 @smallexample
14957 Breakpoint 2, 0x0040050b in func ()
14958 (@value{GDBP}) return -1
14959 Return value type not available for selected stack frame.
14960 Please use an explicit cast of the value to return.
14961 (@value{GDBP}) return (long long int) -1
14962 Make selected stack frame return now? (y or n) y
14963 #0  0x00400526 in main ()
14964 (@value{GDBP})
14965 @end smallexample
14966
14967 @node Calling
14968 @section Calling Program Functions
14969
14970 @table @code
14971 @cindex calling functions
14972 @cindex inferior functions, calling
14973 @item print @var{expr}
14974 Evaluate the expression @var{expr} and display the resulting value.
14975 @var{expr} may include calls to functions in the program being
14976 debugged.
14977
14978 @kindex call
14979 @item call @var{expr}
14980 Evaluate the expression @var{expr} without displaying @code{void}
14981 returned values.
14982
14983 You can use this variant of the @code{print} command if you want to
14984 execute a function from your program that does not return anything
14985 (a.k.a.@: @dfn{a void function}), but without cluttering the output
14986 with @code{void} returned values that @value{GDBN} will otherwise
14987 print.  If the result is not void, it is printed and saved in the
14988 value history.
14989 @end table
14990
14991 It is possible for the function you call via the @code{print} or
14992 @code{call} command to generate a signal (e.g., if there's a bug in
14993 the function, or if you passed it incorrect arguments).  What happens
14994 in that case is controlled by the @code{set unwindonsignal} command.
14995
14996 Similarly, with a C@t{++} program it is possible for the function you
14997 call via the @code{print} or @code{call} command to generate an
14998 exception that is not handled due to the constraints of the dummy
14999 frame.  In this case, any exception that is raised in the frame, but has
15000 an out-of-frame exception handler will not be found.  GDB builds a
15001 dummy-frame for the inferior function call, and the unwinder cannot
15002 seek for exception handlers outside of this dummy-frame.  What happens
15003 in that case is controlled by the
15004 @code{set unwind-on-terminating-exception} command.
15005
15006 @table @code
15007 @item set unwindonsignal
15008 @kindex set unwindonsignal
15009 @cindex unwind stack in called functions
15010 @cindex call dummy stack unwinding
15011 Set unwinding of the stack if a signal is received while in a function
15012 that @value{GDBN} called in the program being debugged.  If set to on,
15013 @value{GDBN} unwinds the stack it created for the call and restores
15014 the context to what it was before the call.  If set to off (the
15015 default), @value{GDBN} stops in the frame where the signal was
15016 received.
15017
15018 @item show unwindonsignal
15019 @kindex show unwindonsignal
15020 Show the current setting of stack unwinding in the functions called by
15021 @value{GDBN}.
15022
15023 @item set unwind-on-terminating-exception
15024 @kindex set unwind-on-terminating-exception
15025 @cindex unwind stack in called functions with unhandled exceptions
15026 @cindex call dummy stack unwinding on unhandled exception.
15027 Set unwinding of the stack if a C@t{++} exception is raised, but left
15028 unhandled while in a function that @value{GDBN} called in the program being
15029 debugged.  If set to on (the default), @value{GDBN} unwinds the stack
15030 it created for the call and restores the context to what it was before
15031 the call.  If set to off, @value{GDBN} the exception is delivered to
15032 the default C@t{++} exception handler and the inferior terminated.
15033
15034 @item show unwind-on-terminating-exception
15035 @kindex show unwind-on-terminating-exception
15036 Show the current setting of stack unwinding in the functions called by
15037 @value{GDBN}.
15038
15039 @end table
15040
15041 @cindex weak alias functions
15042 Sometimes, a function you wish to call is actually a @dfn{weak alias}
15043 for another function.  In such case, @value{GDBN} might not pick up
15044 the type information, including the types of the function arguments,
15045 which causes @value{GDBN} to call the inferior function incorrectly.
15046 As a result, the called function will function erroneously and may
15047 even crash.  A solution to that is to use the name of the aliased
15048 function instead.
15049
15050 @node Patching
15051 @section Patching Programs
15052
15053 @cindex patching binaries
15054 @cindex writing into executables
15055 @cindex writing into corefiles
15056
15057 By default, @value{GDBN} opens the file containing your program's
15058 executable code (or the corefile) read-only.  This prevents accidental
15059 alterations to machine code; but it also prevents you from intentionally
15060 patching your program's binary.
15061
15062 If you'd like to be able to patch the binary, you can specify that
15063 explicitly with the @code{set write} command.  For example, you might
15064 want to turn on internal debugging flags, or even to make emergency
15065 repairs.
15066
15067 @table @code
15068 @kindex set write
15069 @item set write on
15070 @itemx set write off
15071 If you specify @samp{set write on}, @value{GDBN} opens executable and
15072 core files for both reading and writing; if you specify @kbd{set write
15073 off} (the default), @value{GDBN} opens them read-only.
15074
15075 If you have already loaded a file, you must load it again (using the
15076 @code{exec-file} or @code{core-file} command) after changing @code{set
15077 write}, for your new setting to take effect.
15078
15079 @item show write
15080 @kindex show write
15081 Display whether executable files and core files are opened for writing
15082 as well as reading.
15083 @end table
15084
15085 @node GDB Files
15086 @chapter @value{GDBN} Files
15087
15088 @value{GDBN} needs to know the file name of the program to be debugged,
15089 both in order to read its symbol table and in order to start your
15090 program.  To debug a core dump of a previous run, you must also tell
15091 @value{GDBN} the name of the core dump file.
15092
15093 @menu
15094 * Files::                       Commands to specify files
15095 * Separate Debug Files::        Debugging information in separate files
15096 * Index Files::                 Index files speed up GDB
15097 * Symbol Errors::               Errors reading symbol files
15098 * Data Files::                  GDB data files
15099 @end menu
15100
15101 @node Files
15102 @section Commands to Specify Files
15103
15104 @cindex symbol table
15105 @cindex core dump file
15106
15107 You may want to specify executable and core dump file names.  The usual
15108 way to do this is at start-up time, using the arguments to
15109 @value{GDBN}'s start-up commands (@pxref{Invocation, , Getting In and
15110 Out of @value{GDBN}}).
15111
15112 Occasionally it is necessary to change to a different file during a
15113 @value{GDBN} session.  Or you may run @value{GDBN} and forget to
15114 specify a file you want to use.  Or you are debugging a remote target
15115 via @code{gdbserver} (@pxref{Server, file, Using the @code{gdbserver}
15116 Program}).  In these situations the @value{GDBN} commands to specify
15117 new files are useful.
15118
15119 @table @code
15120 @cindex executable file
15121 @kindex file
15122 @item file @var{filename}
15123 Use @var{filename} as the program to be debugged.  It is read for its
15124 symbols and for the contents of pure memory.  It is also the program
15125 executed when you use the @code{run} command.  If you do not specify a
15126 directory and the file is not found in the @value{GDBN} working directory,
15127 @value{GDBN} uses the environment variable @code{PATH} as a list of
15128 directories to search, just as the shell does when looking for a program
15129 to run.  You can change the value of this variable, for both @value{GDBN}
15130 and your program, using the @code{path} command.
15131
15132 @cindex unlinked object files
15133 @cindex patching object files
15134 You can load unlinked object @file{.o} files into @value{GDBN} using
15135 the @code{file} command.  You will not be able to ``run'' an object
15136 file, but you can disassemble functions and inspect variables.  Also,
15137 if the underlying BFD functionality supports it, you could use
15138 @kbd{gdb -write} to patch object files using this technique.  Note
15139 that @value{GDBN} can neither interpret nor modify relocations in this
15140 case, so branches and some initialized variables will appear to go to
15141 the wrong place.  But this feature is still handy from time to time.
15142
15143 @item file
15144 @code{file} with no argument makes @value{GDBN} discard any information it
15145 has on both executable file and the symbol table.
15146
15147 @kindex exec-file
15148 @item exec-file @r{[} @var{filename} @r{]}
15149 Specify that the program to be run (but not the symbol table) is found
15150 in @var{filename}.  @value{GDBN} searches the environment variable @code{PATH}
15151 if necessary to locate your program.  Omitting @var{filename} means to
15152 discard information on the executable file.
15153
15154 @kindex symbol-file
15155 @item symbol-file @r{[} @var{filename} @r{]}
15156 Read symbol table information from file @var{filename}.  @code{PATH} is
15157 searched when necessary.  Use the @code{file} command to get both symbol
15158 table and program to run from the same file.
15159
15160 @code{symbol-file} with no argument clears out @value{GDBN} information on your
15161 program's symbol table.
15162
15163 The @code{symbol-file} command causes @value{GDBN} to forget the contents of
15164 some breakpoints and auto-display expressions.  This is because they may
15165 contain pointers to the internal data recording symbols and data types,
15166 which are part of the old symbol table data being discarded inside
15167 @value{GDBN}.
15168
15169 @code{symbol-file} does not repeat if you press @key{RET} again after
15170 executing it once.
15171
15172 When @value{GDBN} is configured for a particular environment, it
15173 understands debugging information in whatever format is the standard
15174 generated for that environment; you may use either a @sc{gnu} compiler, or
15175 other compilers that adhere to the local conventions.
15176 Best results are usually obtained from @sc{gnu} compilers; for example,
15177 using @code{@value{NGCC}} you can generate debugging information for
15178 optimized code.
15179
15180 For most kinds of object files, with the exception of old SVR3 systems
15181 using COFF, the @code{symbol-file} command does not normally read the
15182 symbol table in full right away.  Instead, it scans the symbol table
15183 quickly to find which source files and which symbols are present.  The
15184 details are read later, one source file at a time, as they are needed.
15185
15186 The purpose of this two-stage reading strategy is to make @value{GDBN}
15187 start up faster.  For the most part, it is invisible except for
15188 occasional pauses while the symbol table details for a particular source
15189 file are being read.  (The @code{set verbose} command can turn these
15190 pauses into messages if desired.  @xref{Messages/Warnings, ,Optional
15191 Warnings and Messages}.)
15192
15193 We have not implemented the two-stage strategy for COFF yet.  When the
15194 symbol table is stored in COFF format, @code{symbol-file} reads the
15195 symbol table data in full right away.  Note that ``stabs-in-COFF''
15196 still does the two-stage strategy, since the debug info is actually
15197 in stabs format.
15198
15199 @kindex readnow
15200 @cindex reading symbols immediately
15201 @cindex symbols, reading immediately
15202 @item symbol-file @r{[} -readnow @r{]} @var{filename}
15203 @itemx file @r{[} -readnow @r{]} @var{filename}
15204 You can override the @value{GDBN} two-stage strategy for reading symbol
15205 tables by using the @samp{-readnow} option with any of the commands that
15206 load symbol table information, if you want to be sure @value{GDBN} has the
15207 entire symbol table available.
15208
15209 @c FIXME: for now no mention of directories, since this seems to be in
15210 @c flux.  13mar1992 status is that in theory GDB would look either in
15211 @c current dir or in same dir as myprog; but issues like competing
15212 @c GDB's, or clutter in system dirs, mean that in practice right now
15213 @c only current dir is used.  FFish says maybe a special GDB hierarchy
15214 @c (eg rooted in val of env var GDBSYMS) could exist for mappable symbol
15215 @c files.
15216
15217 @kindex core-file
15218 @item core-file @r{[}@var{filename}@r{]}
15219 @itemx core
15220 Specify the whereabouts of a core dump file to be used as the ``contents
15221 of memory''.  Traditionally, core files contain only some parts of the
15222 address space of the process that generated them; @value{GDBN} can access the
15223 executable file itself for other parts.
15224
15225 @code{core-file} with no argument specifies that no core file is
15226 to be used.
15227
15228 Note that the core file is ignored when your program is actually running
15229 under @value{GDBN}.  So, if you have been running your program and you
15230 wish to debug a core file instead, you must kill the subprocess in which
15231 the program is running.  To do this, use the @code{kill} command
15232 (@pxref{Kill Process, ,Killing the Child Process}).
15233
15234 @kindex add-symbol-file
15235 @cindex dynamic linking
15236 @item add-symbol-file @var{filename} @var{address}
15237 @itemx add-symbol-file @var{filename} @var{address} @r{[} -readnow @r{]}
15238 @itemx add-symbol-file @var{filename} @var{address} -s @var{section} @var{address} @dots{}
15239 The @code{add-symbol-file} command reads additional symbol table
15240 information from the file @var{filename}.  You would use this command
15241 when @var{filename} has been dynamically loaded (by some other means)
15242 into the program that is running.  @var{address} should be the memory
15243 address at which the file has been loaded; @value{GDBN} cannot figure
15244 this out for itself.  You can additionally specify an arbitrary number
15245 of @samp{-s @var{section} @var{address}} pairs, to give an explicit
15246 section name and base address for that section.  You can specify any
15247 @var{address} as an expression.
15248
15249 The symbol table of the file @var{filename} is added to the symbol table
15250 originally read with the @code{symbol-file} command.  You can use the
15251 @code{add-symbol-file} command any number of times; the new symbol data
15252 thus read keeps adding to the old.  To discard all old symbol data
15253 instead, use the @code{symbol-file} command without any arguments.
15254
15255 @cindex relocatable object files, reading symbols from
15256 @cindex object files, relocatable, reading symbols from
15257 @cindex reading symbols from relocatable object files
15258 @cindex symbols, reading from relocatable object files
15259 @cindex @file{.o} files, reading symbols from
15260 Although @var{filename} is typically a shared library file, an
15261 executable file, or some other object file which has been fully
15262 relocated for loading into a process, you can also load symbolic
15263 information from relocatable @file{.o} files, as long as:
15264
15265 @itemize @bullet
15266 @item
15267 the file's symbolic information refers only to linker symbols defined in
15268 that file, not to symbols defined by other object files,
15269 @item
15270 every section the file's symbolic information refers to has actually
15271 been loaded into the inferior, as it appears in the file, and
15272 @item
15273 you can determine the address at which every section was loaded, and
15274 provide these to the @code{add-symbol-file} command.
15275 @end itemize
15276
15277 @noindent
15278 Some embedded operating systems, like Sun Chorus and VxWorks, can load
15279 relocatable files into an already running program; such systems
15280 typically make the requirements above easy to meet.  However, it's
15281 important to recognize that many native systems use complex link
15282 procedures (@code{.linkonce} section factoring and C@t{++} constructor table
15283 assembly, for example) that make the requirements difficult to meet.  In
15284 general, one cannot assume that using @code{add-symbol-file} to read a
15285 relocatable object file's symbolic information will have the same effect
15286 as linking the relocatable object file into the program in the normal
15287 way.
15288
15289 @code{add-symbol-file} does not repeat if you press @key{RET} after using it.
15290
15291 @kindex add-symbol-file-from-memory
15292 @cindex @code{syscall DSO}
15293 @cindex load symbols from memory
15294 @item add-symbol-file-from-memory @var{address}
15295 Load symbols from the given @var{address} in a dynamically loaded
15296 object file whose image is mapped directly into the inferior's memory.
15297 For example, the Linux kernel maps a @code{syscall DSO} into each
15298 process's address space; this DSO provides kernel-specific code for
15299 some system calls.  The argument can be any expression whose
15300 evaluation yields the address of the file's shared object file header.
15301 For this command to work, you must have used @code{symbol-file} or
15302 @code{exec-file} commands in advance.
15303
15304 @kindex add-shared-symbol-files
15305 @kindex assf
15306 @item add-shared-symbol-files @var{library-file}
15307 @itemx assf @var{library-file}
15308 The @code{add-shared-symbol-files} command can currently be used only
15309 in the Cygwin build of @value{GDBN} on MS-Windows OS, where it is an
15310 alias for the @code{dll-symbols} command (@pxref{Cygwin Native}).
15311 @value{GDBN} automatically looks for shared libraries, however if
15312 @value{GDBN} does not find yours, you can invoke
15313 @code{add-shared-symbol-files}.  It takes one argument: the shared
15314 library's file name.  @code{assf} is a shorthand alias for
15315 @code{add-shared-symbol-files}.
15316
15317 @kindex section
15318 @item section @var{section} @var{addr}
15319 The @code{section} command changes the base address of the named
15320 @var{section} of the exec file to @var{addr}.  This can be used if the
15321 exec file does not contain section addresses, (such as in the
15322 @code{a.out} format), or when the addresses specified in the file
15323 itself are wrong.  Each section must be changed separately.  The
15324 @code{info files} command, described below, lists all the sections and
15325 their addresses.
15326
15327 @kindex info files
15328 @kindex info target
15329 @item info files
15330 @itemx info target
15331 @code{info files} and @code{info target} are synonymous; both print the
15332 current target (@pxref{Targets, ,Specifying a Debugging Target}),
15333 including the names of the executable and core dump files currently in
15334 use by @value{GDBN}, and the files from which symbols were loaded.  The
15335 command @code{help target} lists all possible targets rather than
15336 current ones.
15337
15338 @kindex maint info sections
15339 @item maint info sections
15340 Another command that can give you extra information about program sections
15341 is @code{maint info sections}.  In addition to the section information
15342 displayed by @code{info files}, this command displays the flags and file
15343 offset of each section in the executable and core dump files.  In addition,
15344 @code{maint info sections} provides the following command options (which
15345 may be arbitrarily combined):
15346
15347 @table @code
15348 @item ALLOBJ
15349 Display sections for all loaded object files, including shared libraries.
15350 @item @var{sections}
15351 Display info only for named @var{sections}.
15352 @item @var{section-flags}
15353 Display info only for sections for which @var{section-flags} are true.
15354 The section flags that @value{GDBN} currently knows about are:
15355 @table @code
15356 @item ALLOC
15357 Section will have space allocated in the process when loaded.
15358 Set for all sections except those containing debug information.
15359 @item LOAD
15360 Section will be loaded from the file into the child process memory.
15361 Set for pre-initialized code and data, clear for @code{.bss} sections.
15362 @item RELOC
15363 Section needs to be relocated before loading.
15364 @item READONLY
15365 Section cannot be modified by the child process.
15366 @item CODE
15367 Section contains executable code only.
15368 @item DATA
15369 Section contains data only (no executable code).
15370 @item ROM
15371 Section will reside in ROM.
15372 @item CONSTRUCTOR
15373 Section contains data for constructor/destructor lists.
15374 @item HAS_CONTENTS
15375 Section is not empty.
15376 @item NEVER_LOAD
15377 An instruction to the linker to not output the section.
15378 @item COFF_SHARED_LIBRARY
15379 A notification to the linker that the section contains
15380 COFF shared library information.
15381 @item IS_COMMON
15382 Section contains common symbols.
15383 @end table
15384 @end table
15385 @kindex set trust-readonly-sections
15386 @cindex read-only sections
15387 @item set trust-readonly-sections on
15388 Tell @value{GDBN} that readonly sections in your object file
15389 really are read-only (i.e.@: that their contents will not change).
15390 In that case, @value{GDBN} can fetch values from these sections
15391 out of the object file, rather than from the target program.
15392 For some targets (notably embedded ones), this can be a significant
15393 enhancement to debugging performance.
15394
15395 The default is off.
15396
15397 @item set trust-readonly-sections off
15398 Tell @value{GDBN} not to trust readonly sections.  This means that
15399 the contents of the section might change while the program is running,
15400 and must therefore be fetched from the target when needed.
15401
15402 @item show trust-readonly-sections
15403 Show the current setting of trusting readonly sections.
15404 @end table
15405
15406 All file-specifying commands allow both absolute and relative file names
15407 as arguments.  @value{GDBN} always converts the file name to an absolute file
15408 name and remembers it that way.
15409
15410 @cindex shared libraries
15411 @anchor{Shared Libraries}
15412 @value{GDBN} supports @sc{gnu}/Linux, MS-Windows, HP-UX, SunOS, SVr4, Irix,
15413 and IBM RS/6000 AIX shared libraries.
15414
15415 On MS-Windows @value{GDBN} must be linked with the Expat library to support
15416 shared libraries.  @xref{Expat}.
15417
15418 @value{GDBN} automatically loads symbol definitions from shared libraries
15419 when you use the @code{run} command, or when you examine a core file.
15420 (Before you issue the @code{run} command, @value{GDBN} does not understand
15421 references to a function in a shared library, however---unless you are
15422 debugging a core file).
15423
15424 On HP-UX, if the program loads a library explicitly, @value{GDBN}
15425 automatically loads the symbols at the time of the @code{shl_load} call.
15426
15427 @c FIXME: some @value{GDBN} release may permit some refs to undef
15428 @c FIXME...symbols---eg in a break cmd---assuming they are from a shared
15429 @c FIXME...lib; check this from time to time when updating manual
15430
15431 There are times, however, when you may wish to not automatically load
15432 symbol definitions from shared libraries, such as when they are
15433 particularly large or there are many of them.
15434
15435 To control the automatic loading of shared library symbols, use the
15436 commands:
15437
15438 @table @code
15439 @kindex set auto-solib-add
15440 @item set auto-solib-add @var{mode}
15441 If @var{mode} is @code{on}, symbols from all shared object libraries
15442 will be loaded automatically when the inferior begins execution, you
15443 attach to an independently started inferior, or when the dynamic linker
15444 informs @value{GDBN} that a new library has been loaded.  If @var{mode}
15445 is @code{off}, symbols must be loaded manually, using the
15446 @code{sharedlibrary} command.  The default value is @code{on}.
15447
15448 @cindex memory used for symbol tables
15449 If your program uses lots of shared libraries with debug info that
15450 takes large amounts of memory, you can decrease the @value{GDBN}
15451 memory footprint by preventing it from automatically loading the
15452 symbols from shared libraries.  To that end, type @kbd{set
15453 auto-solib-add off} before running the inferior, then load each
15454 library whose debug symbols you do need with @kbd{sharedlibrary
15455 @var{regexp}}, where @var{regexp} is a regular expression that matches
15456 the libraries whose symbols you want to be loaded.
15457
15458 @kindex show auto-solib-add
15459 @item show auto-solib-add
15460 Display the current autoloading mode.
15461 @end table
15462
15463 @cindex load shared library
15464 To explicitly load shared library symbols, use the @code{sharedlibrary}
15465 command:
15466
15467 @table @code
15468 @kindex info sharedlibrary
15469 @kindex info share
15470 @item info share @var{regex}
15471 @itemx info sharedlibrary @var{regex}
15472 Print the names of the shared libraries which are currently loaded
15473 that match @var{regex}.  If @var{regex} is omitted then print
15474 all shared libraries that are loaded.
15475
15476 @kindex sharedlibrary
15477 @kindex share
15478 @item sharedlibrary @var{regex}
15479 @itemx share @var{regex}
15480 Load shared object library symbols for files matching a
15481 Unix regular expression.
15482 As with files loaded automatically, it only loads shared libraries
15483 required by your program for a core file or after typing @code{run}.  If
15484 @var{regex} is omitted all shared libraries required by your program are
15485 loaded.
15486
15487 @item nosharedlibrary
15488 @kindex nosharedlibrary
15489 @cindex unload symbols from shared libraries
15490 Unload all shared object library symbols.  This discards all symbols
15491 that have been loaded from all shared libraries.  Symbols from shared
15492 libraries that were loaded by explicit user requests are not
15493 discarded.
15494 @end table
15495
15496 Sometimes you may wish that @value{GDBN} stops and gives you control
15497 when any of shared library events happen.  Use the @code{set
15498 stop-on-solib-events} command for this:
15499
15500 @table @code
15501 @item set stop-on-solib-events
15502 @kindex set stop-on-solib-events
15503 This command controls whether @value{GDBN} should give you control
15504 when the dynamic linker notifies it about some shared library event.
15505 The most common event of interest is loading or unloading of a new
15506 shared library.
15507
15508 @item show stop-on-solib-events
15509 @kindex show stop-on-solib-events
15510 Show whether @value{GDBN} stops and gives you control when shared
15511 library events happen.
15512 @end table
15513
15514 Shared libraries are also supported in many cross or remote debugging
15515 configurations.  @value{GDBN} needs to have access to the target's libraries;
15516 this can be accomplished either by providing copies of the libraries
15517 on the host system, or by asking @value{GDBN} to automatically retrieve the
15518 libraries from the target.  If copies of the target libraries are
15519 provided, they need to be the same as the target libraries, although the
15520 copies on the target can be stripped as long as the copies on the host are
15521 not.
15522
15523 @cindex where to look for shared libraries
15524 For remote debugging, you need to tell @value{GDBN} where the target
15525 libraries are, so that it can load the correct copies---otherwise, it
15526 may try to load the host's libraries.  @value{GDBN} has two variables
15527 to specify the search directories for target libraries.
15528
15529 @table @code
15530 @cindex prefix for shared library file names
15531 @cindex system root, alternate
15532 @kindex set solib-absolute-prefix
15533 @kindex set sysroot
15534 @item set sysroot @var{path}
15535 Use @var{path} as the system root for the program being debugged.  Any
15536 absolute shared library paths will be prefixed with @var{path}; many
15537 runtime loaders store the absolute paths to the shared library in the
15538 target program's memory.  If you use @code{set sysroot} to find shared
15539 libraries, they need to be laid out in the same way that they are on
15540 the target, with e.g.@: a @file{/lib} and @file{/usr/lib} hierarchy
15541 under @var{path}.
15542
15543 If @var{path} starts with the sequence @file{remote:}, @value{GDBN} will 
15544 retrieve the target libraries from the remote system.  This is only
15545 supported when using a remote target that supports the @code{remote get}
15546 command (@pxref{File Transfer,,Sending files to a remote system}).
15547 The part of @var{path} following the initial @file{remote:}
15548 (if present) is used as system root prefix on the remote file system.
15549 @footnote{If you want to specify a local system root using a directory
15550 that happens to be named @file{remote:}, you need to use some equivalent
15551 variant of the name like @file{./remote:}.}
15552
15553 For targets with an MS-DOS based filesystem, such as MS-Windows and
15554 SymbianOS, @value{GDBN} tries prefixing a few variants of the target
15555 absolute file name with @var{path}.  But first, on Unix hosts,
15556 @value{GDBN} converts all backslash directory separators into forward
15557 slashes, because the backslash is not a directory separator on Unix:
15558
15559 @smallexample
15560   c:\foo\bar.dll @result{} c:/foo/bar.dll
15561 @end smallexample
15562
15563 Then, @value{GDBN} attempts prefixing the target file name with
15564 @var{path}, and looks for the resulting file name in the host file
15565 system:
15566
15567 @smallexample
15568   c:/foo/bar.dll @result{} /path/to/sysroot/c:/foo/bar.dll
15569 @end smallexample
15570
15571 If that does not find the shared library, @value{GDBN} tries removing
15572 the @samp{:} character from the drive spec, both for convenience, and,
15573 for the case of the host file system not supporting file names with
15574 colons:
15575
15576 @smallexample
15577   c:/foo/bar.dll @result{} /path/to/sysroot/c/foo/bar.dll
15578 @end smallexample
15579
15580 This makes it possible to have a system root that mirrors a target
15581 with more than one drive.  E.g., you may want to setup your local
15582 copies of the target system shared libraries like so (note @samp{c} vs
15583 @samp{z}):
15584
15585 @smallexample
15586  @file{/path/to/sysroot/c/sys/bin/foo.dll}
15587  @file{/path/to/sysroot/c/sys/bin/bar.dll}
15588  @file{/path/to/sysroot/z/sys/bin/bar.dll}
15589 @end smallexample
15590
15591 @noindent
15592 and point the system root at @file{/path/to/sysroot}, so that
15593 @value{GDBN} can find the correct copies of both
15594 @file{c:\sys\bin\foo.dll}, and @file{z:\sys\bin\bar.dll}.
15595
15596 If that still does not find the shared library, @value{GDBN} tries
15597 removing the whole drive spec from the target file name:
15598
15599 @smallexample
15600   c:/foo/bar.dll @result{} /path/to/sysroot/foo/bar.dll
15601 @end smallexample
15602
15603 This last lookup makes it possible to not care about the drive name,
15604 if you don't want or need to.
15605
15606 The @code{set solib-absolute-prefix} command is an alias for @code{set
15607 sysroot}.
15608
15609 @cindex default system root
15610 @cindex @samp{--with-sysroot}
15611 You can set the default system root by using the configure-time
15612 @samp{--with-sysroot} option.  If the system root is inside
15613 @value{GDBN}'s configured binary prefix (set with @samp{--prefix} or
15614 @samp{--exec-prefix}), then the default system root will be updated
15615 automatically if the installed @value{GDBN} is moved to a new
15616 location.
15617
15618 @kindex show sysroot
15619 @item show sysroot
15620 Display the current shared library prefix.
15621
15622 @kindex set solib-search-path
15623 @item set solib-search-path @var{path}
15624 If this variable is set, @var{path} is a colon-separated list of
15625 directories to search for shared libraries.  @samp{solib-search-path}
15626 is used after @samp{sysroot} fails to locate the library, or if the
15627 path to the library is relative instead of absolute.  If you want to
15628 use @samp{solib-search-path} instead of @samp{sysroot}, be sure to set
15629 @samp{sysroot} to a nonexistent directory to prevent @value{GDBN} from
15630 finding your host's libraries.  @samp{sysroot} is preferred; setting
15631 it to a nonexistent directory may interfere with automatic loading
15632 of shared library symbols.
15633
15634 @kindex show solib-search-path
15635 @item show solib-search-path
15636 Display the current shared library search path.
15637
15638 @cindex DOS file-name semantics of file names.
15639 @kindex set target-file-system-kind (unix|dos-based|auto)
15640 @kindex show target-file-system-kind
15641 @item set target-file-system-kind @var{kind}
15642 Set assumed file system kind for target reported file names.
15643
15644 Shared library file names as reported by the target system may not
15645 make sense as is on the system @value{GDBN} is running on.  For
15646 example, when remote debugging a target that has MS-DOS based file
15647 system semantics, from a Unix host, the target may be reporting to
15648 @value{GDBN} a list of loaded shared libraries with file names such as
15649 @file{c:\Windows\kernel32.dll}.  On Unix hosts, there's no concept of
15650 drive letters, so the @samp{c:\} prefix is not normally understood as
15651 indicating an absolute file name, and neither is the backslash
15652 normally considered a directory separator character.  In that case,
15653 the native file system would interpret this whole absolute file name
15654 as a relative file name with no directory components.  This would make
15655 it impossible to point @value{GDBN} at a copy of the remote target's
15656 shared libraries on the host using @code{set sysroot}, and impractical
15657 with @code{set solib-search-path}.  Setting
15658 @code{target-file-system-kind} to @code{dos-based} tells @value{GDBN}
15659 to interpret such file names similarly to how the target would, and to
15660 map them to file names valid on @value{GDBN}'s native file system
15661 semantics.  The value of @var{kind} can be @code{"auto"}, in addition
15662 to one of the supported file system kinds.  In that case, @value{GDBN}
15663 tries to determine the appropriate file system variant based on the
15664 current target's operating system (@pxref{ABI, ,Configuring the
15665 Current ABI}).  The supported file system settings are:
15666
15667 @table @code
15668 @item unix
15669 Instruct @value{GDBN} to assume the target file system is of Unix
15670 kind.  Only file names starting the forward slash (@samp{/}) character
15671 are considered absolute, and the directory separator character is also
15672 the forward slash.
15673
15674 @item dos-based
15675 Instruct @value{GDBN} to assume the target file system is DOS based.
15676 File names starting with either a forward slash, or a drive letter
15677 followed by a colon (e.g., @samp{c:}), are considered absolute, and
15678 both the slash (@samp{/}) and the backslash (@samp{\\}) characters are
15679 considered directory separators.
15680
15681 @item auto
15682 Instruct @value{GDBN} to use the file system kind associated with the
15683 target operating system (@pxref{ABI, ,Configuring the Current ABI}).
15684 This is the default.
15685 @end table
15686 @end table
15687
15688
15689 @node Separate Debug Files
15690 @section Debugging Information in Separate Files
15691 @cindex separate debugging information files
15692 @cindex debugging information in separate files
15693 @cindex @file{.debug} subdirectories
15694 @cindex debugging information directory, global
15695 @cindex global debugging information directory
15696 @cindex build ID, and separate debugging files
15697 @cindex @file{.build-id} directory
15698
15699 @value{GDBN} allows you to put a program's debugging information in a
15700 file separate from the executable itself, in a way that allows
15701 @value{GDBN} to find and load the debugging information automatically.
15702 Since debugging information can be very large---sometimes larger
15703 than the executable code itself---some systems distribute debugging
15704 information for their executables in separate files, which users can
15705 install only when they need to debug a problem.
15706
15707 @value{GDBN} supports two ways of specifying the separate debug info
15708 file:
15709
15710 @itemize @bullet
15711 @item
15712 The executable contains a @dfn{debug link} that specifies the name of
15713 the separate debug info file.  The separate debug file's name is
15714 usually @file{@var{executable}.debug}, where @var{executable} is the
15715 name of the corresponding executable file without leading directories
15716 (e.g., @file{ls.debug} for @file{/usr/bin/ls}).  In addition, the
15717 debug link specifies a 32-bit @dfn{Cyclic Redundancy Check} (CRC)
15718 checksum for the debug file, which @value{GDBN} uses to validate that
15719 the executable and the debug file came from the same build.
15720
15721 @item
15722 The executable contains a @dfn{build ID}, a unique bit string that is
15723 also present in the corresponding debug info file.  (This is supported
15724 only on some operating systems, notably those which use the ELF format
15725 for binary files and the @sc{gnu} Binutils.)  For more details about
15726 this feature, see the description of the @option{--build-id}
15727 command-line option in @ref{Options, , Command Line Options, ld.info,
15728 The GNU Linker}.  The debug info file's name is not specified
15729 explicitly by the build ID, but can be computed from the build ID, see
15730 below.
15731 @end itemize
15732
15733 Depending on the way the debug info file is specified, @value{GDBN}
15734 uses two different methods of looking for the debug file:
15735
15736 @itemize @bullet
15737 @item
15738 For the ``debug link'' method, @value{GDBN} looks up the named file in
15739 the directory of the executable file, then in a subdirectory of that
15740 directory named @file{.debug}, and finally under the global debug
15741 directory, in a subdirectory whose name is identical to the leading
15742 directories of the executable's absolute file name.
15743
15744 @item
15745 For the ``build ID'' method, @value{GDBN} looks in the
15746 @file{.build-id} subdirectory of the global debug directory for a file
15747 named @file{@var{nn}/@var{nnnnnnnn}.debug}, where @var{nn} are the
15748 first 2 hex characters of the build ID bit string, and @var{nnnnnnnn}
15749 are the rest of the bit string.  (Real build ID strings are 32 or more
15750 hex characters, not 10.)
15751 @end itemize
15752
15753 So, for example, suppose you ask @value{GDBN} to debug
15754 @file{/usr/bin/ls}, which has a debug link that specifies the
15755 file @file{ls.debug}, and a build ID whose value in hex is
15756 @code{abcdef1234}.  If the global debug directory is
15757 @file{/usr/lib/debug}, then @value{GDBN} will look for the following
15758 debug information files, in the indicated order:
15759
15760 @itemize @minus
15761 @item
15762 @file{/usr/lib/debug/.build-id/ab/cdef1234.debug}
15763 @item
15764 @file{/usr/bin/ls.debug}
15765 @item
15766 @file{/usr/bin/.debug/ls.debug}
15767 @item
15768 @file{/usr/lib/debug/usr/bin/ls.debug}.
15769 @end itemize
15770
15771 You can set the global debugging info directory's name, and view the
15772 name @value{GDBN} is currently using.
15773
15774 @table @code
15775
15776 @kindex set debug-file-directory
15777 @item set debug-file-directory @var{directories}
15778 Set the directories which @value{GDBN} searches for separate debugging
15779 information files to @var{directory}.  Multiple directory components can be set
15780 concatenating them by a directory separator.
15781
15782 @kindex show debug-file-directory
15783 @item show debug-file-directory
15784 Show the directories @value{GDBN} searches for separate debugging
15785 information files.
15786
15787 @end table
15788
15789 @cindex @code{.gnu_debuglink} sections
15790 @cindex debug link sections
15791 A debug link is a special section of the executable file named
15792 @code{.gnu_debuglink}.  The section must contain:
15793
15794 @itemize
15795 @item
15796 A filename, with any leading directory components removed, followed by
15797 a zero byte,
15798 @item
15799 zero to three bytes of padding, as needed to reach the next four-byte
15800 boundary within the section, and
15801 @item
15802 a four-byte CRC checksum, stored in the same endianness used for the
15803 executable file itself.  The checksum is computed on the debugging
15804 information file's full contents by the function given below, passing
15805 zero as the @var{crc} argument.
15806 @end itemize
15807
15808 Any executable file format can carry a debug link, as long as it can
15809 contain a section named @code{.gnu_debuglink} with the contents
15810 described above.
15811
15812 @cindex @code{.note.gnu.build-id} sections
15813 @cindex build ID sections
15814 The build ID is a special section in the executable file (and in other
15815 ELF binary files that @value{GDBN} may consider).  This section is
15816 often named @code{.note.gnu.build-id}, but that name is not mandatory.
15817 It contains unique identification for the built files---the ID remains
15818 the same across multiple builds of the same build tree.  The default
15819 algorithm SHA1 produces 160 bits (40 hexadecimal characters) of the
15820 content for the build ID string.  The same section with an identical
15821 value is present in the original built binary with symbols, in its
15822 stripped variant, and in the separate debugging information file.
15823
15824 The debugging information file itself should be an ordinary
15825 executable, containing a full set of linker symbols, sections, and
15826 debugging information.  The sections of the debugging information file
15827 should have the same names, addresses, and sizes as the original file,
15828 but they need not contain any data---much like a @code{.bss} section
15829 in an ordinary executable.
15830
15831 The @sc{gnu} binary utilities (Binutils) package includes the
15832 @samp{objcopy} utility that can produce
15833 the separated executable / debugging information file pairs using the
15834 following commands:
15835
15836 @smallexample
15837 @kbd{objcopy --only-keep-debug foo foo.debug}
15838 @kbd{strip -g foo}
15839 @end smallexample
15840
15841 @noindent
15842 These commands remove the debugging
15843 information from the executable file @file{foo} and place it in the file
15844 @file{foo.debug}.  You can use the first, second or both methods to link the
15845 two files:
15846
15847 @itemize @bullet
15848 @item
15849 The debug link method needs the following additional command to also leave
15850 behind a debug link in @file{foo}:
15851
15852 @smallexample
15853 @kbd{objcopy --add-gnu-debuglink=foo.debug foo}
15854 @end smallexample
15855
15856 Ulrich Drepper's @file{elfutils} package, starting with version 0.53, contains
15857 a version of the @code{strip} command such that the command @kbd{strip foo -f
15858 foo.debug} has the same functionality as the two @code{objcopy} commands and
15859 the @code{ln -s} command above, together.
15860
15861 @item
15862 Build ID gets embedded into the main executable using @code{ld --build-id} or
15863 the @value{NGCC} counterpart @code{gcc -Wl,--build-id}.  Build ID support plus
15864 compatibility fixes for debug files separation are present in @sc{gnu} binary
15865 utilities (Binutils) package since version 2.18.
15866 @end itemize
15867
15868 @noindent
15869
15870 @cindex CRC algorithm definition
15871 The CRC used in @code{.gnu_debuglink} is the CRC-32 defined in
15872 IEEE 802.3 using the polynomial:
15873
15874 @c TexInfo requires naked braces for multi-digit exponents for Tex
15875 @c output, but this causes HTML output to barf. HTML has to be set using
15876 @c raw commands. So we end up having to specify this equation in 2
15877 @c different ways!
15878 @ifhtml
15879 @display
15880 @html
15881  <em>x</em><sup>32</sup> + <em>x</em><sup>26</sup> + <em>x</em><sup>23</sup> + <em>x</em><sup>22</sup> + <em>x</em><sup>16</sup> + <em>x</em><sup>12</sup> + <em>x</em><sup>11</sup>
15882  + <em>x</em><sup>10</sup> + <em>x</em><sup>8</sup> + <em>x</em><sup>7</sup> + <em>x</em><sup>5</sup> + <em>x</em><sup>4</sup> + <em>x</em><sup>2</sup> + <em>x</em> + 1
15883 @end html
15884 @end display
15885 @end ifhtml
15886 @ifnothtml
15887 @display
15888  @math{x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11}}
15889  @math{+ x^{10} + x^8 + x^7 + x^5 + x^4 + x^2 + x + 1}
15890 @end display
15891 @end ifnothtml
15892
15893 The function is computed byte at a time, taking the least
15894 significant bit of each byte first.  The initial pattern
15895 @code{0xffffffff} is used, to ensure leading zeros affect the CRC and
15896 the final result is inverted to ensure trailing zeros also affect the
15897 CRC.
15898
15899 @emph{Note:} This is the same CRC polynomial as used in handling the
15900 @dfn{Remote Serial Protocol} @code{qCRC} packet (@pxref{Remote Protocol,
15901 , @value{GDBN} Remote Serial Protocol}).  However in the
15902 case of the Remote Serial Protocol, the CRC is computed @emph{most}
15903 significant bit first, and the result is not inverted, so trailing
15904 zeros have no effect on the CRC value.
15905
15906 To complete the description, we show below the code of the function
15907 which produces the CRC used in @code{.gnu_debuglink}.  Inverting the
15908 initially supplied @code{crc} argument means that an initial call to
15909 this function passing in zero will start computing the CRC using
15910 @code{0xffffffff}.
15911
15912 @kindex gnu_debuglink_crc32
15913 @smallexample
15914 unsigned long
15915 gnu_debuglink_crc32 (unsigned long crc,
15916                      unsigned char *buf, size_t len)
15917 @{
15918   static const unsigned long crc32_table[256] =
15919     @{
15920       0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419,
15921       0x706af48f, 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4,
15922       0xe0d5e91e, 0x97d2d988, 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07,
15923       0x90bf1d91, 0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de,
15924       0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 0x136c9856,
15925       0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,
15926       0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4,
15927       0xa2677172, 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b,
15928       0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3,
15929       0x45df5c75, 0xdcd60dcf, 0xabd13d59, 0x26d930ac, 0x51de003a,
15930       0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 0xcfba9599,
15931       0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
15932       0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190,
15933       0x01db7106, 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f,
15934       0x9fbfe4a5, 0xe8b8d433, 0x7807c9a2, 0x0f00f934, 0x9609a88e,
15935       0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01,
15936       0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 0x6c0695ed,
15937       0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,
15938       0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3,
15939       0xfbd44c65, 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2,
15940       0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a,
15941       0x346ed9fc, 0xad678846, 0xda60b8d0, 0x44042d73, 0x33031de5,
15942       0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 0xbe0b1010,
15943       0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
15944       0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17,
15945       0x2eb40d81, 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6,
15946       0x03b6e20c, 0x74b1d29a, 0xead54739, 0x9dd277af, 0x04db2615,
15947       0x73dc1683, 0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8,
15948       0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 0xf00f9344,
15949       0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
15950       0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a,
15951       0x67dd4acc, 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5,
15952       0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1,
15953       0xa6bc5767, 0x3fb506dd, 0x48b2364b, 0xd80d2bda, 0xaf0a1b4c,
15954       0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 0x316e8eef,
15955       0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
15956       0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe,
15957       0xb2bd0b28, 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31,
15958       0x2cd99e8b, 0x5bdeae1d, 0x9b64c2b0, 0xec63f226, 0x756aa39c,
15959       0x026d930a, 0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713,
15960       0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 0x92d28e9b,
15961       0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,
15962       0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1,
15963       0x18b74777, 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c,
15964       0x8f659eff, 0xf862ae69, 0x616bffd3, 0x166ccf45, 0xa00ae278,
15965       0xd70dd2ee, 0x4e048354, 0x3903b3c2, 0xa7672661, 0xd06016f7,
15966       0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 0x40df0b66,
15967       0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
15968       0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605,
15969       0xcdd70693, 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8,
15970       0x5d681b02, 0x2a6f2b94, 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b,
15971       0x2d02ef8d
15972     @};
15973   unsigned char *end;
15974
15975   crc = ~crc & 0xffffffff;
15976   for (end = buf + len; buf < end; ++buf)
15977     crc = crc32_table[(crc ^ *buf) & 0xff] ^ (crc >> 8);
15978   return ~crc & 0xffffffff;
15979 @}
15980 @end smallexample
15981
15982 @noindent
15983 This computation does not apply to the ``build ID'' method.
15984
15985
15986 @node Index Files
15987 @section Index Files Speed Up @value{GDBN}
15988 @cindex index files
15989 @cindex @samp{.gdb_index} section
15990
15991 When @value{GDBN} finds a symbol file, it scans the symbols in the
15992 file in order to construct an internal symbol table.  This lets most
15993 @value{GDBN} operations work quickly---at the cost of a delay early
15994 on.  For large programs, this delay can be quite lengthy, so
15995 @value{GDBN} provides a way to build an index, which speeds up
15996 startup.
15997
15998 The index is stored as a section in the symbol file.  @value{GDBN} can
15999 write the index to a file, then you can put it into the symbol file
16000 using @command{objcopy}.
16001
16002 To create an index file, use the @code{save gdb-index} command:
16003
16004 @table @code
16005 @item save gdb-index @var{directory}
16006 @kindex save gdb-index
16007 Create an index file for each symbol file currently known by
16008 @value{GDBN}.  Each file is named after its corresponding symbol file,
16009 with @samp{.gdb-index} appended, and is written into the given
16010 @var{directory}.
16011 @end table
16012
16013 Once you have created an index file you can merge it into your symbol
16014 file, here named @file{symfile}, using @command{objcopy}:
16015
16016 @smallexample
16017 $ objcopy --add-section .gdb_index=symfile.gdb-index \
16018     --set-section-flags .gdb_index=readonly symfile symfile
16019 @end smallexample
16020
16021 There are currently some limitation on indices.  They only work when
16022 for DWARF debugging information, not stabs.  And, they do not
16023 currently work for programs using Ada.
16024
16025 @node Symbol Errors
16026 @section Errors Reading Symbol Files
16027
16028 While reading a symbol file, @value{GDBN} occasionally encounters problems,
16029 such as symbol types it does not recognize, or known bugs in compiler
16030 output.  By default, @value{GDBN} does not notify you of such problems, since
16031 they are relatively common and primarily of interest to people
16032 debugging compilers.  If you are interested in seeing information
16033 about ill-constructed symbol tables, you can either ask @value{GDBN} to print
16034 only one message about each such type of problem, no matter how many
16035 times the problem occurs; or you can ask @value{GDBN} to print more messages,
16036 to see how many times the problems occur, with the @code{set
16037 complaints} command (@pxref{Messages/Warnings, ,Optional Warnings and
16038 Messages}).
16039
16040 The messages currently printed, and their meanings, include:
16041
16042 @table @code
16043 @item inner block not inside outer block in @var{symbol}
16044
16045 The symbol information shows where symbol scopes begin and end
16046 (such as at the start of a function or a block of statements).  This
16047 error indicates that an inner scope block is not fully contained
16048 in its outer scope blocks.
16049
16050 @value{GDBN} circumvents the problem by treating the inner block as if it had
16051 the same scope as the outer block.  In the error message, @var{symbol}
16052 may be shown as ``@code{(don't know)}'' if the outer block is not a
16053 function.
16054
16055 @item block at @var{address} out of order
16056
16057 The symbol information for symbol scope blocks should occur in
16058 order of increasing addresses.  This error indicates that it does not
16059 do so.
16060
16061 @value{GDBN} does not circumvent this problem, and has trouble
16062 locating symbols in the source file whose symbols it is reading.  (You
16063 can often determine what source file is affected by specifying
16064 @code{set verbose on}.  @xref{Messages/Warnings, ,Optional Warnings and
16065 Messages}.)
16066
16067 @item bad block start address patched
16068
16069 The symbol information for a symbol scope block has a start address
16070 smaller than the address of the preceding source line.  This is known
16071 to occur in the SunOS 4.1.1 (and earlier) C compiler.
16072
16073 @value{GDBN} circumvents the problem by treating the symbol scope block as
16074 starting on the previous source line.
16075
16076 @item bad string table offset in symbol @var{n}
16077
16078 @cindex foo
16079 Symbol number @var{n} contains a pointer into the string table which is
16080 larger than the size of the string table.
16081
16082 @value{GDBN} circumvents the problem by considering the symbol to have the
16083 name @code{foo}, which may cause other problems if many symbols end up
16084 with this name.
16085
16086 @item unknown symbol type @code{0x@var{nn}}
16087
16088 The symbol information contains new data types that @value{GDBN} does
16089 not yet know how to read.  @code{0x@var{nn}} is the symbol type of the
16090 uncomprehended information, in hexadecimal.
16091
16092 @value{GDBN} circumvents the error by ignoring this symbol information.
16093 This usually allows you to debug your program, though certain symbols
16094 are not accessible.  If you encounter such a problem and feel like
16095 debugging it, you can debug @code{@value{GDBP}} with itself, breakpoint
16096 on @code{complain}, then go up to the function @code{read_dbx_symtab}
16097 and examine @code{*bufp} to see the symbol.
16098
16099 @item stub type has NULL name
16100
16101 @value{GDBN} could not find the full definition for a struct or class.
16102
16103 @item const/volatile indicator missing (ok if using g++ v1.x), got@dots{}
16104 The symbol information for a C@t{++} member function is missing some
16105 information that recent versions of the compiler should have output for
16106 it.
16107
16108 @item info mismatch between compiler and debugger
16109
16110 @value{GDBN} could not parse a type specification output by the compiler.
16111
16112 @end table
16113
16114 @node Data Files
16115 @section GDB Data Files
16116
16117 @cindex prefix for data files
16118 @value{GDBN} will sometimes read an auxiliary data file.  These files
16119 are kept in a directory known as the @dfn{data directory}.
16120
16121 You can set the data directory's name, and view the name @value{GDBN}
16122 is currently using.
16123
16124 @table @code
16125 @kindex set data-directory
16126 @item set data-directory @var{directory}
16127 Set the directory which @value{GDBN} searches for auxiliary data files
16128 to @var{directory}.
16129
16130 @kindex show data-directory
16131 @item show data-directory
16132 Show the directory @value{GDBN} searches for auxiliary data files.
16133 @end table
16134
16135 @cindex default data directory
16136 @cindex @samp{--with-gdb-datadir}
16137 You can set the default data directory by using the configure-time
16138 @samp{--with-gdb-datadir} option.  If the data directory is inside
16139 @value{GDBN}'s configured binary prefix (set with @samp{--prefix} or
16140 @samp{--exec-prefix}), then the default data directory will be updated
16141 automatically if the installed @value{GDBN} is moved to a new
16142 location.
16143
16144 The data directory may also be specified with the
16145 @code{--data-directory} command line option.
16146 @xref{Mode Options}.
16147
16148 @node Targets
16149 @chapter Specifying a Debugging Target
16150
16151 @cindex debugging target
16152 A @dfn{target} is the execution environment occupied by your program.
16153
16154 Often, @value{GDBN} runs in the same host environment as your program;
16155 in that case, the debugging target is specified as a side effect when
16156 you use the @code{file} or @code{core} commands.  When you need more
16157 flexibility---for example, running @value{GDBN} on a physically separate
16158 host, or controlling a standalone system over a serial port or a
16159 realtime system over a TCP/IP connection---you can use the @code{target}
16160 command to specify one of the target types configured for @value{GDBN}
16161 (@pxref{Target Commands, ,Commands for Managing Targets}).
16162
16163 @cindex target architecture
16164 It is possible to build @value{GDBN} for several different @dfn{target
16165 architectures}.  When @value{GDBN} is built like that, you can choose
16166 one of the available architectures with the @kbd{set architecture}
16167 command.
16168
16169 @table @code
16170 @kindex set architecture
16171 @kindex show architecture
16172 @item set architecture @var{arch}
16173 This command sets the current target architecture to @var{arch}.  The
16174 value of @var{arch} can be @code{"auto"}, in addition to one of the
16175 supported architectures.
16176
16177 @item show architecture
16178 Show the current target architecture.
16179
16180 @item set processor
16181 @itemx processor
16182 @kindex set processor
16183 @kindex show processor
16184 These are alias commands for, respectively, @code{set architecture}
16185 and @code{show architecture}.
16186 @end table
16187
16188 @menu
16189 * Active Targets::              Active targets
16190 * Target Commands::             Commands for managing targets
16191 * Byte Order::                  Choosing target byte order
16192 @end menu
16193
16194 @node Active Targets
16195 @section Active Targets
16196
16197 @cindex stacking targets
16198 @cindex active targets
16199 @cindex multiple targets
16200
16201 There are multiple classes of targets such as: processes, executable files or
16202 recording sessions.  Core files belong to the process class, making core file
16203 and process mutually exclusive.  Otherwise, @value{GDBN} can work concurrently
16204 on multiple active targets, one in each class.  This allows you to (for
16205 example) start a process and inspect its activity, while still having access to
16206 the executable file after the process finishes.  Or if you start process
16207 recording (@pxref{Reverse Execution}) and @code{reverse-step} there, you are
16208 presented a virtual layer of the recording target, while the process target
16209 remains stopped at the chronologically last point of the process execution.
16210
16211 Use the @code{core-file} and @code{exec-file} commands to select a new core
16212 file or executable target (@pxref{Files, ,Commands to Specify Files}).  To
16213 specify as a target a process that is already running, use the @code{attach}
16214 command (@pxref{Attach, ,Debugging an Already-running Process}).
16215
16216 @node Target Commands
16217 @section Commands for Managing Targets
16218
16219 @table @code
16220 @item target @var{type} @var{parameters}
16221 Connects the @value{GDBN} host environment to a target machine or
16222 process.  A target is typically a protocol for talking to debugging
16223 facilities.  You use the argument @var{type} to specify the type or
16224 protocol of the target machine.
16225
16226 Further @var{parameters} are interpreted by the target protocol, but
16227 typically include things like device names or host names to connect
16228 with, process numbers, and baud rates.
16229
16230 The @code{target} command does not repeat if you press @key{RET} again
16231 after executing the command.
16232
16233 @kindex help target
16234 @item help target
16235 Displays the names of all targets available.  To display targets
16236 currently selected, use either @code{info target} or @code{info files}
16237 (@pxref{Files, ,Commands to Specify Files}).
16238
16239 @item help target @var{name}
16240 Describe a particular target, including any parameters necessary to
16241 select it.
16242
16243 @kindex set gnutarget
16244 @item set gnutarget @var{args}
16245 @value{GDBN} uses its own library BFD to read your files.  @value{GDBN}
16246 knows whether it is reading an @dfn{executable},
16247 a @dfn{core}, or a @dfn{.o} file; however, you can specify the file format
16248 with the @code{set gnutarget} command.  Unlike most @code{target} commands,
16249 with @code{gnutarget} the @code{target} refers to a program, not a machine.
16250
16251 @quotation
16252 @emph{Warning:} To specify a file format with @code{set gnutarget},
16253 you must know the actual BFD name.
16254 @end quotation
16255
16256 @noindent
16257 @xref{Files, , Commands to Specify Files}.
16258
16259 @kindex show gnutarget
16260 @item show gnutarget
16261 Use the @code{show gnutarget} command to display what file format
16262 @code{gnutarget} is set to read.  If you have not set @code{gnutarget},
16263 @value{GDBN} will determine the file format for each file automatically,
16264 and @code{show gnutarget} displays @samp{The current BDF target is "auto"}.
16265 @end table
16266
16267 @cindex common targets
16268 Here are some common targets (available, or not, depending on the GDB
16269 configuration):
16270
16271 @table @code
16272 @kindex target
16273 @item target exec @var{program}
16274 @cindex executable file target
16275 An executable file.  @samp{target exec @var{program}} is the same as
16276 @samp{exec-file @var{program}}.
16277
16278 @item target core @var{filename}
16279 @cindex core dump file target
16280 A core dump file.  @samp{target core @var{filename}} is the same as
16281 @samp{core-file @var{filename}}.
16282
16283 @item target remote @var{medium}
16284 @cindex remote target
16285 A remote system connected to @value{GDBN} via a serial line or network
16286 connection.  This command tells @value{GDBN} to use its own remote
16287 protocol over @var{medium} for debugging.  @xref{Remote Debugging}.
16288
16289 For example, if you have a board connected to @file{/dev/ttya} on the
16290 machine running @value{GDBN}, you could say:
16291
16292 @smallexample
16293 target remote /dev/ttya
16294 @end smallexample
16295
16296 @code{target remote} supports the @code{load} command.  This is only
16297 useful if you have some other way of getting the stub to the target
16298 system, and you can put it somewhere in memory where it won't get
16299 clobbered by the download.
16300
16301 @item target sim @r{[}@var{simargs}@r{]} @dots{}
16302 @cindex built-in simulator target
16303 Builtin CPU simulator.  @value{GDBN} includes simulators for most architectures.
16304 In general,
16305 @smallexample
16306         target sim
16307         load
16308         run
16309 @end smallexample
16310 @noindent
16311 works; however, you cannot assume that a specific memory map, device
16312 drivers, or even basic I/O is available, although some simulators do
16313 provide these.  For info about any processor-specific simulator details,
16314 see the appropriate section in @ref{Embedded Processors, ,Embedded
16315 Processors}.
16316
16317 @end table
16318
16319 Some configurations may include these targets as well:
16320
16321 @table @code
16322
16323 @item target nrom @var{dev}
16324 @cindex NetROM ROM emulator target
16325 NetROM ROM emulator.  This target only supports downloading.
16326
16327 @end table
16328
16329 Different targets are available on different configurations of @value{GDBN};
16330 your configuration may have more or fewer targets.
16331
16332 Many remote targets require you to download the executable's code once
16333 you've successfully established a connection.  You may wish to control
16334 various aspects of this process.
16335
16336 @table @code
16337
16338 @item set hash
16339 @kindex set hash@r{, for remote monitors}
16340 @cindex hash mark while downloading
16341 This command controls whether a hash mark @samp{#} is displayed while
16342 downloading a file to the remote monitor.  If on, a hash mark is
16343 displayed after each S-record is successfully downloaded to the
16344 monitor.
16345
16346 @item show hash
16347 @kindex show hash@r{, for remote monitors}
16348 Show the current status of displaying the hash mark.
16349
16350 @item set debug monitor
16351 @kindex set debug monitor
16352 @cindex display remote monitor communications
16353 Enable or disable display of communications messages between
16354 @value{GDBN} and the remote monitor.
16355
16356 @item show debug monitor
16357 @kindex show debug monitor
16358 Show the current status of displaying communications between
16359 @value{GDBN} and the remote monitor.
16360 @end table
16361
16362 @table @code
16363
16364 @kindex load @var{filename}
16365 @item load @var{filename}
16366 @anchor{load}
16367 Depending on what remote debugging facilities are configured into
16368 @value{GDBN}, the @code{load} command may be available.  Where it exists, it
16369 is meant to make @var{filename} (an executable) available for debugging
16370 on the remote system---by downloading, or dynamic linking, for example.
16371 @code{load} also records the @var{filename} symbol table in @value{GDBN}, like
16372 the @code{add-symbol-file} command.
16373
16374 If your @value{GDBN} does not have a @code{load} command, attempting to
16375 execute it gets the error message ``@code{You can't do that when your
16376 target is @dots{}}''
16377
16378 The file is loaded at whatever address is specified in the executable.
16379 For some object file formats, you can specify the load address when you
16380 link the program; for other formats, like a.out, the object file format
16381 specifies a fixed address.
16382 @c FIXME! This would be a good place for an xref to the GNU linker doc.
16383
16384 Depending on the remote side capabilities, @value{GDBN} may be able to
16385 load programs into flash memory.
16386
16387 @code{load} does not repeat if you press @key{RET} again after using it.
16388 @end table
16389
16390 @node Byte Order
16391 @section Choosing Target Byte Order
16392
16393 @cindex choosing target byte order
16394 @cindex target byte order
16395
16396 Some types of processors, such as the MIPS, PowerPC, and Renesas SH,
16397 offer the ability to run either big-endian or little-endian byte
16398 orders.  Usually the executable or symbol will include a bit to
16399 designate the endian-ness, and you will not need to worry about
16400 which to use.  However, you may still find it useful to adjust
16401 @value{GDBN}'s idea of processor endian-ness manually.
16402
16403 @table @code
16404 @kindex set endian
16405 @item set endian big
16406 Instruct @value{GDBN} to assume the target is big-endian.
16407
16408 @item set endian little
16409 Instruct @value{GDBN} to assume the target is little-endian.
16410
16411 @item set endian auto
16412 Instruct @value{GDBN} to use the byte order associated with the
16413 executable.
16414
16415 @item show endian
16416 Display @value{GDBN}'s current idea of the target byte order.
16417
16418 @end table
16419
16420 Note that these commands merely adjust interpretation of symbolic
16421 data on the host, and that they have absolutely no effect on the
16422 target system.
16423
16424
16425 @node Remote Debugging
16426 @chapter Debugging Remote Programs
16427 @cindex remote debugging
16428
16429 If you are trying to debug a program running on a machine that cannot run
16430 @value{GDBN} in the usual way, it is often useful to use remote debugging.
16431 For example, you might use remote debugging on an operating system kernel,
16432 or on a small system which does not have a general purpose operating system
16433 powerful enough to run a full-featured debugger.
16434
16435 Some configurations of @value{GDBN} have special serial or TCP/IP interfaces
16436 to make this work with particular debugging targets.  In addition,
16437 @value{GDBN} comes with a generic serial protocol (specific to @value{GDBN},
16438 but not specific to any particular target system) which you can use if you
16439 write the remote stubs---the code that runs on the remote system to
16440 communicate with @value{GDBN}.
16441
16442 Other remote targets may be available in your
16443 configuration of @value{GDBN}; use @code{help target} to list them.
16444
16445 @menu
16446 * Connecting::                  Connecting to a remote target
16447 * File Transfer::               Sending files to a remote system
16448 * Server::                      Using the gdbserver program
16449 * Remote Configuration::        Remote configuration
16450 * Remote Stub::                 Implementing a remote stub
16451 @end menu
16452
16453 @node Connecting
16454 @section Connecting to a Remote Target
16455
16456 On the @value{GDBN} host machine, you will need an unstripped copy of
16457 your program, since @value{GDBN} needs symbol and debugging information.
16458 Start up @value{GDBN} as usual, using the name of the local copy of your
16459 program as the first argument.
16460
16461 @cindex @code{target remote}
16462 @value{GDBN} can communicate with the target over a serial line, or
16463 over an @acronym{IP} network using @acronym{TCP} or @acronym{UDP}.  In
16464 each case, @value{GDBN} uses the same protocol for debugging your
16465 program; only the medium carrying the debugging packets varies.  The
16466 @code{target remote} command establishes a connection to the target.
16467 Its arguments indicate which medium to use:
16468
16469 @table @code
16470
16471 @item target remote @var{serial-device}
16472 @cindex serial line, @code{target remote}
16473 Use @var{serial-device} to communicate with the target.  For example,
16474 to use a serial line connected to the device named @file{/dev/ttyb}:
16475
16476 @smallexample
16477 target remote /dev/ttyb
16478 @end smallexample
16479
16480 If you're using a serial line, you may want to give @value{GDBN} the
16481 @w{@samp{--baud}} option, or use the @code{set remotebaud} command
16482 (@pxref{Remote Configuration, set remotebaud}) before the
16483 @code{target} command.
16484
16485 @item target remote @code{@var{host}:@var{port}}
16486 @itemx target remote @code{tcp:@var{host}:@var{port}}
16487 @cindex @acronym{TCP} port, @code{target remote}
16488 Debug using a @acronym{TCP} connection to @var{port} on @var{host}.
16489 The @var{host} may be either a host name or a numeric @acronym{IP}
16490 address; @var{port} must be a decimal number.  The @var{host} could be
16491 the target machine itself, if it is directly connected to the net, or
16492 it might be a terminal server which in turn has a serial line to the
16493 target.
16494
16495 For example, to connect to port 2828 on a terminal server named
16496 @code{manyfarms}:
16497
16498 @smallexample
16499 target remote manyfarms:2828
16500 @end smallexample
16501
16502 If your remote target is actually running on the same machine as your
16503 debugger session (e.g.@: a simulator for your target running on the
16504 same host), you can omit the hostname.  For example, to connect to
16505 port 1234 on your local machine:
16506
16507 @smallexample
16508 target remote :1234
16509 @end smallexample
16510 @noindent
16511
16512 Note that the colon is still required here.
16513
16514 @item target remote @code{udp:@var{host}:@var{port}}
16515 @cindex @acronym{UDP} port, @code{target remote}
16516 Debug using @acronym{UDP} packets to @var{port} on @var{host}.  For example, to
16517 connect to @acronym{UDP} port 2828 on a terminal server named @code{manyfarms}:
16518
16519 @smallexample
16520 target remote udp:manyfarms:2828
16521 @end smallexample
16522
16523 When using a @acronym{UDP} connection for remote debugging, you should
16524 keep in mind that the `U' stands for ``Unreliable''.  @acronym{UDP}
16525 can silently drop packets on busy or unreliable networks, which will
16526 cause havoc with your debugging session.
16527
16528 @item target remote | @var{command}
16529 @cindex pipe, @code{target remote} to
16530 Run @var{command} in the background and communicate with it using a
16531 pipe.  The @var{command} is a shell command, to be parsed and expanded
16532 by the system's command shell, @code{/bin/sh}; it should expect remote
16533 protocol packets on its standard input, and send replies on its
16534 standard output.  You could use this to run a stand-alone simulator
16535 that speaks the remote debugging protocol, to make net connections
16536 using programs like @code{ssh}, or for other similar tricks.
16537
16538 If @var{command} closes its standard output (perhaps by exiting),
16539 @value{GDBN} will try to send it a @code{SIGTERM} signal.  (If the
16540 program has already exited, this will have no effect.)
16541
16542 @end table
16543
16544 Once the connection has been established, you can use all the usual
16545 commands to examine and change data.  The remote program is already
16546 running; you can use @kbd{step} and @kbd{continue}, and you do not
16547 need to use @kbd{run}.
16548
16549 @cindex interrupting remote programs
16550 @cindex remote programs, interrupting
16551 Whenever @value{GDBN} is waiting for the remote program, if you type the
16552 interrupt character (often @kbd{Ctrl-c}), @value{GDBN} attempts to stop the
16553 program.  This may or may not succeed, depending in part on the hardware
16554 and the serial drivers the remote system uses.  If you type the
16555 interrupt character once again, @value{GDBN} displays this prompt:
16556
16557 @smallexample
16558 Interrupted while waiting for the program.
16559 Give up (and stop debugging it)?  (y or n)
16560 @end smallexample
16561
16562 If you type @kbd{y}, @value{GDBN} abandons the remote debugging session.
16563 (If you decide you want to try again later, you can use @samp{target
16564 remote} again to connect once more.)  If you type @kbd{n}, @value{GDBN}
16565 goes back to waiting.
16566
16567 @table @code
16568 @kindex detach (remote)
16569 @item detach
16570 When you have finished debugging the remote program, you can use the
16571 @code{detach} command to release it from @value{GDBN} control.
16572 Detaching from the target normally resumes its execution, but the results
16573 will depend on your particular remote stub.  After the @code{detach}
16574 command, @value{GDBN} is free to connect to another target.
16575
16576 @kindex disconnect
16577 @item disconnect
16578 The @code{disconnect} command behaves like @code{detach}, except that
16579 the target is generally not resumed.  It will wait for @value{GDBN}
16580 (this instance or another one) to connect and continue debugging.  After
16581 the @code{disconnect} command, @value{GDBN} is again free to connect to
16582 another target.
16583
16584 @cindex send command to remote monitor
16585 @cindex extend @value{GDBN} for remote targets
16586 @cindex add new commands for external monitor
16587 @kindex monitor
16588 @item monitor @var{cmd}
16589 This command allows you to send arbitrary commands directly to the
16590 remote monitor.  Since @value{GDBN} doesn't care about the commands it
16591 sends like this, this command is the way to extend @value{GDBN}---you
16592 can add new commands that only the external monitor will understand
16593 and implement.
16594 @end table
16595
16596 @node File Transfer
16597 @section Sending files to a remote system
16598 @cindex remote target, file transfer
16599 @cindex file transfer
16600 @cindex sending files to remote systems
16601
16602 Some remote targets offer the ability to transfer files over the same
16603 connection used to communicate with @value{GDBN}.  This is convenient
16604 for targets accessible through other means, e.g.@: @sc{gnu}/Linux systems
16605 running @code{gdbserver} over a network interface.  For other targets,
16606 e.g.@: embedded devices with only a single serial port, this may be
16607 the only way to upload or download files.
16608
16609 Not all remote targets support these commands.
16610
16611 @table @code
16612 @kindex remote put
16613 @item remote put @var{hostfile} @var{targetfile}
16614 Copy file @var{hostfile} from the host system (the machine running
16615 @value{GDBN}) to @var{targetfile} on the target system.
16616
16617 @kindex remote get
16618 @item remote get @var{targetfile} @var{hostfile}
16619 Copy file @var{targetfile} from the target system to @var{hostfile}
16620 on the host system.
16621
16622 @kindex remote delete
16623 @item remote delete @var{targetfile}
16624 Delete @var{targetfile} from the target system.
16625
16626 @end table
16627
16628 @node Server
16629 @section Using the @code{gdbserver} Program
16630
16631 @kindex gdbserver
16632 @cindex remote connection without stubs
16633 @code{gdbserver} is a control program for Unix-like systems, which
16634 allows you to connect your program with a remote @value{GDBN} via
16635 @code{target remote}---but without linking in the usual debugging stub.
16636
16637 @code{gdbserver} is not a complete replacement for the debugging stubs,
16638 because it requires essentially the same operating-system facilities
16639 that @value{GDBN} itself does.  In fact, a system that can run
16640 @code{gdbserver} to connect to a remote @value{GDBN} could also run
16641 @value{GDBN} locally!  @code{gdbserver} is sometimes useful nevertheless,
16642 because it is a much smaller program than @value{GDBN} itself.  It is
16643 also easier to port than all of @value{GDBN}, so you may be able to get
16644 started more quickly on a new system by using @code{gdbserver}.
16645 Finally, if you develop code for real-time systems, you may find that
16646 the tradeoffs involved in real-time operation make it more convenient to
16647 do as much development work as possible on another system, for example
16648 by cross-compiling.  You can use @code{gdbserver} to make a similar
16649 choice for debugging.
16650
16651 @value{GDBN} and @code{gdbserver} communicate via either a serial line
16652 or a TCP connection, using the standard @value{GDBN} remote serial
16653 protocol.
16654
16655 @quotation
16656 @emph{Warning:} @code{gdbserver} does not have any built-in security.
16657 Do not run @code{gdbserver} connected to any public network; a
16658 @value{GDBN} connection to @code{gdbserver} provides access to the
16659 target system with the same privileges as the user running
16660 @code{gdbserver}.
16661 @end quotation
16662
16663 @subsection Running @code{gdbserver}
16664 @cindex arguments, to @code{gdbserver}
16665 @cindex @code{gdbserver}, command-line arguments
16666
16667 Run @code{gdbserver} on the target system.  You need a copy of the
16668 program you want to debug, including any libraries it requires.
16669 @code{gdbserver} does not need your program's symbol table, so you can
16670 strip the program if necessary to save space.  @value{GDBN} on the host
16671 system does all the symbol handling.
16672
16673 To use the server, you must tell it how to communicate with @value{GDBN};
16674 the name of your program; and the arguments for your program.  The usual
16675 syntax is:
16676
16677 @smallexample
16678 target> gdbserver @var{comm} @var{program} [ @var{args} @dots{} ]
16679 @end smallexample
16680
16681 @var{comm} is either a device name (to use a serial line) or a TCP
16682 hostname and portnumber.  For example, to debug Emacs with the argument
16683 @samp{foo.txt} and communicate with @value{GDBN} over the serial port
16684 @file{/dev/com1}:
16685
16686 @smallexample
16687 target> gdbserver /dev/com1 emacs foo.txt
16688 @end smallexample
16689
16690 @code{gdbserver} waits passively for the host @value{GDBN} to communicate
16691 with it.
16692
16693 To use a TCP connection instead of a serial line:
16694
16695 @smallexample
16696 target> gdbserver host:2345 emacs foo.txt
16697 @end smallexample
16698
16699 The only difference from the previous example is the first argument,
16700 specifying that you are communicating with the host @value{GDBN} via
16701 TCP.  The @samp{host:2345} argument means that @code{gdbserver} is to
16702 expect a TCP connection from machine @samp{host} to local TCP port 2345.
16703 (Currently, the @samp{host} part is ignored.)  You can choose any number
16704 you want for the port number as long as it does not conflict with any
16705 TCP ports already in use on the target system (for example, @code{23} is
16706 reserved for @code{telnet}).@footnote{If you choose a port number that
16707 conflicts with another service, @code{gdbserver} prints an error message
16708 and exits.}  You must use the same port number with the host @value{GDBN}
16709 @code{target remote} command.
16710
16711 @subsubsection Attaching to a Running Program
16712 @cindex attach to a program, @code{gdbserver}
16713 @cindex @option{--attach}, @code{gdbserver} option
16714
16715 On some targets, @code{gdbserver} can also attach to running programs.
16716 This is accomplished via the @code{--attach} argument.  The syntax is:
16717
16718 @smallexample
16719 target> gdbserver --attach @var{comm} @var{pid}
16720 @end smallexample
16721
16722 @var{pid} is the process ID of a currently running process.  It isn't necessary
16723 to point @code{gdbserver} at a binary for the running process.
16724
16725 @pindex pidof
16726 You can debug processes by name instead of process ID if your target has the
16727 @code{pidof} utility:
16728
16729 @smallexample
16730 target> gdbserver --attach @var{comm} `pidof @var{program}`
16731 @end smallexample
16732
16733 In case more than one copy of @var{program} is running, or @var{program}
16734 has multiple threads, most versions of @code{pidof} support the
16735 @code{-s} option to only return the first process ID.
16736
16737 @subsubsection Multi-Process Mode for @code{gdbserver}
16738 @cindex @code{gdbserver}, multiple processes
16739 @cindex multiple processes with @code{gdbserver}
16740
16741 When you connect to @code{gdbserver} using @code{target remote},
16742 @code{gdbserver} debugs the specified program only once.  When the
16743 program exits, or you detach from it, @value{GDBN} closes the connection
16744 and @code{gdbserver} exits.
16745
16746 If you connect using @kbd{target extended-remote}, @code{gdbserver}
16747 enters multi-process mode.  When the debugged program exits, or you
16748 detach from it, @value{GDBN} stays connected to @code{gdbserver} even
16749 though no program is running.  The @code{run} and @code{attach}
16750 commands instruct @code{gdbserver} to run or attach to a new program.
16751 The @code{run} command uses @code{set remote exec-file} (@pxref{set
16752 remote exec-file}) to select the program to run.  Command line
16753 arguments are supported, except for wildcard expansion and I/O
16754 redirection (@pxref{Arguments}).
16755
16756 @cindex @option{--multi}, @code{gdbserver} option
16757 To start @code{gdbserver} without supplying an initial command to run
16758 or process ID to attach, use the @option{--multi} command line option.
16759 Then you can connect using @kbd{target extended-remote} and start
16760 the program you want to debug.
16761
16762 In multi-process mode @code{gdbserver} does not automatically exit unless you
16763 use the option @option{--once}.  You can terminate it by using
16764 @code{monitor exit} (@pxref{Monitor Commands for gdbserver}).  Note that the
16765 conditions under which @code{gdbserver} terminates depend on how @value{GDBN}
16766 connects to it (@kbd{target remote} or @kbd{target extended-remote}).  The
16767 @option{--multi} option to @code{gdbserver} has no influence on that.
16768
16769 @subsubsection TCP port allocation lifecycle of @code{gdbserver}
16770
16771 This section applies only when @code{gdbserver} is run to listen on a TCP port.
16772
16773 @code{gdbserver} normally terminates after all of its debugged processes have
16774 terminated in @kbd{target remote} mode.  On the other hand, for @kbd{target
16775 extended-remote}, @code{gdbserver} stays running even with no processes left.
16776 @value{GDBN} normally terminates the spawned debugged process on its exit,
16777 which normally also terminates @code{gdbserver} in the @kbd{target remote}
16778 mode.  Therefore, when the connection drops unexpectedly, and @value{GDBN}
16779 cannot ask @code{gdbserver} to kill its debugged processes, @code{gdbserver}
16780 stays running even in the @kbd{target remote} mode.
16781
16782 When @code{gdbserver} stays running, @value{GDBN} can connect to it again later.
16783 Such reconnecting is useful for features like @ref{disconnected tracing}.  For
16784 completeness, at most one @value{GDBN} can be connected at a time.
16785
16786 @cindex @option{--once}, @code{gdbserver} option
16787 By default, @code{gdbserver} keeps the listening TCP port open, so that
16788 additional connections are possible.  However, if you start @code{gdbserver}
16789 with the @option{--once} option, it will stop listening for any further
16790 connection attempts after connecting to the first @value{GDBN} session.  This
16791 means no further connections to @code{gdbserver} will be possible after the
16792 first one.  It also means @code{gdbserver} will terminate after the first
16793 connection with remote @value{GDBN} has closed, even for unexpectedly closed
16794 connections and even in the @kbd{target extended-remote} mode.  The
16795 @option{--once} option allows reusing the same port number for connecting to
16796 multiple instances of @code{gdbserver} running on the same host, since each
16797 instance closes its port after the first connection.
16798
16799 @subsubsection Other Command-Line Arguments for @code{gdbserver}
16800
16801 @cindex @option{--debug}, @code{gdbserver} option
16802 The @option{--debug} option tells @code{gdbserver} to display extra
16803 status information about the debugging process.
16804 @cindex @option{--remote-debug}, @code{gdbserver} option
16805 The @option{--remote-debug} option tells @code{gdbserver} to display
16806 remote protocol debug output.  These options are intended for
16807 @code{gdbserver} development and for bug reports to the developers.
16808
16809 @cindex @option{--wrapper}, @code{gdbserver} option
16810 The @option{--wrapper} option specifies a wrapper to launch programs
16811 for debugging.  The option should be followed by the name of the
16812 wrapper, then any command-line arguments to pass to the wrapper, then
16813 @kbd{--} indicating the end of the wrapper arguments.
16814
16815 @code{gdbserver} runs the specified wrapper program with a combined
16816 command line including the wrapper arguments, then the name of the
16817 program to debug, then any arguments to the program.  The wrapper
16818 runs until it executes your program, and then @value{GDBN} gains control.
16819
16820 You can use any program that eventually calls @code{execve} with
16821 its arguments as a wrapper.  Several standard Unix utilities do
16822 this, e.g.@: @code{env} and @code{nohup}.  Any Unix shell script ending
16823 with @code{exec "$@@"} will also work.
16824
16825 For example, you can use @code{env} to pass an environment variable to
16826 the debugged program, without setting the variable in @code{gdbserver}'s
16827 environment:
16828
16829 @smallexample
16830 $ gdbserver --wrapper env LD_PRELOAD=libtest.so -- :2222 ./testprog
16831 @end smallexample
16832
16833 @subsection Connecting to @code{gdbserver}
16834
16835 Run @value{GDBN} on the host system.
16836
16837 First make sure you have the necessary symbol files.  Load symbols for
16838 your application using the @code{file} command before you connect.  Use
16839 @code{set sysroot} to locate target libraries (unless your @value{GDBN}
16840 was compiled with the correct sysroot using @code{--with-sysroot}).
16841
16842 The symbol file and target libraries must exactly match the executable
16843 and libraries on the target, with one exception: the files on the host
16844 system should not be stripped, even if the files on the target system
16845 are.  Mismatched or missing files will lead to confusing results
16846 during debugging.  On @sc{gnu}/Linux targets, mismatched or missing
16847 files may also prevent @code{gdbserver} from debugging multi-threaded
16848 programs.
16849
16850 Connect to your target (@pxref{Connecting,,Connecting to a Remote Target}).
16851 For TCP connections, you must start up @code{gdbserver} prior to using
16852 the @code{target remote} command.  Otherwise you may get an error whose
16853 text depends on the host system, but which usually looks something like
16854 @samp{Connection refused}.  Don't use the @code{load}
16855 command in @value{GDBN} when using @code{gdbserver}, since the program is
16856 already on the target.
16857
16858 @subsection Monitor Commands for @code{gdbserver}
16859 @cindex monitor commands, for @code{gdbserver}
16860 @anchor{Monitor Commands for gdbserver}
16861
16862 During a @value{GDBN} session using @code{gdbserver}, you can use the
16863 @code{monitor} command to send special requests to @code{gdbserver}.
16864 Here are the available commands.
16865
16866 @table @code
16867 @item monitor help
16868 List the available monitor commands.
16869
16870 @item monitor set debug 0
16871 @itemx monitor set debug 1
16872 Disable or enable general debugging messages.
16873
16874 @item monitor set remote-debug 0
16875 @itemx monitor set remote-debug 1
16876 Disable or enable specific debugging messages associated with the remote
16877 protocol (@pxref{Remote Protocol}).
16878
16879 @item monitor set libthread-db-search-path [PATH]
16880 @cindex gdbserver, search path for @code{libthread_db}
16881 When this command is issued, @var{path} is a colon-separated list of
16882 directories to search for @code{libthread_db} (@pxref{Threads,,set
16883 libthread-db-search-path}).  If you omit @var{path},
16884 @samp{libthread-db-search-path} will be reset to its default value.
16885
16886 The special entry @samp{$pdir} for @samp{libthread-db-search-path} is
16887 not supported in @code{gdbserver}.
16888
16889 @item monitor exit
16890 Tell gdbserver to exit immediately.  This command should be followed by
16891 @code{disconnect} to close the debugging session.  @code{gdbserver} will
16892 detach from any attached processes and kill any processes it created.
16893 Use @code{monitor exit} to terminate @code{gdbserver} at the end
16894 of a multi-process mode debug session.
16895
16896 @end table
16897
16898 @subsection Tracepoints support in @code{gdbserver}
16899 @cindex tracepoints support in @code{gdbserver}
16900
16901 On some targets, @code{gdbserver} supports tracepoints, fast
16902 tracepoints and static tracepoints.
16903
16904 For fast or static tracepoints to work, a special library called the
16905 @dfn{in-process agent} (IPA), must be loaded in the inferior process.
16906 This library is built and distributed as an integral part of
16907 @code{gdbserver}.  In addition, support for static tracepoints
16908 requires building the in-process agent library with static tracepoints
16909 support.  At present, the UST (LTTng Userspace Tracer,
16910 @url{http://lttng.org/ust}) tracing engine is supported.  This support
16911 is automatically available if UST development headers are found in the
16912 standard include path when @code{gdbserver} is built, or if
16913 @code{gdbserver} was explicitly configured using @option{--with-ust}
16914 to point at such headers.  You can explicitly disable the support
16915 using @option{--with-ust=no}.
16916
16917 There are several ways to load the in-process agent in your program:
16918
16919 @table @code
16920 @item Specifying it as dependency at link time
16921
16922 You can link your program dynamically with the in-process agent
16923 library.  On most systems, this is accomplished by adding
16924 @code{-linproctrace} to the link command.
16925
16926 @item Using the system's preloading mechanisms
16927
16928 You can force loading the in-process agent at startup time by using
16929 your system's support for preloading shared libraries.  Many Unixes
16930 support the concept of preloading user defined libraries.  In most
16931 cases, you do that by specifying @code{LD_PRELOAD=libinproctrace.so}
16932 in the environment.  See also the description of @code{gdbserver}'s
16933 @option{--wrapper} command line option.
16934
16935 @item Using @value{GDBN} to force loading the agent at run time
16936
16937 On some systems, you can force the inferior to load a shared library,
16938 by calling a dynamic loader function in the inferior that takes care
16939 of dynamically looking up and loading a shared library.  On most Unix
16940 systems, the function is @code{dlopen}.  You'll use the @code{call}
16941 command for that.  For example:
16942
16943 @smallexample
16944 (@value{GDBP}) call dlopen ("libinproctrace.so", ...)
16945 @end smallexample
16946
16947 Note that on most Unix systems, for the @code{dlopen} function to be
16948 available, the program needs to be linked with @code{-ldl}.
16949 @end table
16950
16951 On systems that have a userspace dynamic loader, like most Unix
16952 systems, when you connect to @code{gdbserver} using @code{target
16953 remote}, you'll find that the program is stopped at the dynamic
16954 loader's entry point, and no shared library has been loaded in the
16955 program's address space yet, including the in-process agent.  In that
16956 case, before being able to use any of the fast or static tracepoints
16957 features, you need to let the loader run and load the shared
16958 libraries.  The simplest way to do that is to run the program to the
16959 main procedure.  E.g., if debugging a C or C@t{++} program, start
16960 @code{gdbserver} like so:
16961
16962 @smallexample
16963 $ gdbserver :9999 myprogram
16964 @end smallexample
16965
16966 Start GDB and connect to @code{gdbserver} like so, and run to main:
16967
16968 @smallexample
16969 $ gdb myprogram
16970 (@value{GDBP}) target remote myhost:9999
16971 0x00007f215893ba60 in ?? () from /lib64/ld-linux-x86-64.so.2
16972 (@value{GDBP}) b main
16973 (@value{GDBP}) continue
16974 @end smallexample
16975
16976 The in-process tracing agent library should now be loaded into the
16977 process; you can confirm it with the @code{info sharedlibrary}
16978 command, which will list @file{libinproctrace.so} as loaded in the
16979 process.  You are now ready to install fast tracepoints, list static
16980 tracepoint markers, probe static tracepoints markers, and start
16981 tracing.
16982
16983 @node Remote Configuration
16984 @section Remote Configuration
16985
16986 @kindex set remote
16987 @kindex show remote
16988 This section documents the configuration options available when
16989 debugging remote programs.  For the options related to the File I/O
16990 extensions of the remote protocol, see @ref{system,
16991 system-call-allowed}.
16992
16993 @table @code
16994 @item set remoteaddresssize @var{bits}
16995 @cindex address size for remote targets
16996 @cindex bits in remote address
16997 Set the maximum size of address in a memory packet to the specified
16998 number of bits.  @value{GDBN} will mask off the address bits above
16999 that number, when it passes addresses to the remote target.  The
17000 default value is the number of bits in the target's address.
17001
17002 @item show remoteaddresssize
17003 Show the current value of remote address size in bits.
17004
17005 @item set remotebaud @var{n}
17006 @cindex baud rate for remote targets
17007 Set the baud rate for the remote serial I/O to @var{n} baud.  The
17008 value is used to set the speed of the serial port used for debugging
17009 remote targets.
17010
17011 @item show remotebaud
17012 Show the current speed of the remote connection.
17013
17014 @item set remotebreak
17015 @cindex interrupt remote programs
17016 @cindex BREAK signal instead of Ctrl-C
17017 @anchor{set remotebreak}
17018 If set to on, @value{GDBN} sends a @code{BREAK} signal to the remote
17019 when you type @kbd{Ctrl-c} to interrupt the program running
17020 on the remote.  If set to off, @value{GDBN} sends the @samp{Ctrl-C}
17021 character instead.  The default is off, since most remote systems
17022 expect to see @samp{Ctrl-C} as the interrupt signal.
17023
17024 @item show remotebreak
17025 Show whether @value{GDBN} sends @code{BREAK} or @samp{Ctrl-C} to
17026 interrupt the remote program.
17027
17028 @item set remoteflow on
17029 @itemx set remoteflow off
17030 @kindex set remoteflow
17031 Enable or disable hardware flow control (@code{RTS}/@code{CTS})
17032 on the serial port used to communicate to the remote target.
17033
17034 @item show remoteflow
17035 @kindex show remoteflow
17036 Show the current setting of hardware flow control.
17037
17038 @item set remotelogbase @var{base}
17039 Set the base (a.k.a.@: radix) of logging serial protocol
17040 communications to @var{base}.  Supported values of @var{base} are:
17041 @code{ascii}, @code{octal}, and @code{hex}.  The default is
17042 @code{ascii}.
17043
17044 @item show remotelogbase
17045 Show the current setting of the radix for logging remote serial
17046 protocol.
17047
17048 @item set remotelogfile @var{file}
17049 @cindex record serial communications on file
17050 Record remote serial communications on the named @var{file}.  The
17051 default is not to record at all.
17052
17053 @item show remotelogfile.
17054 Show the current setting  of the file name on which to record the
17055 serial communications.
17056
17057 @item set remotetimeout @var{num}
17058 @cindex timeout for serial communications
17059 @cindex remote timeout
17060 Set the timeout limit to wait for the remote target to respond to
17061 @var{num} seconds.  The default is 2 seconds.
17062
17063 @item show remotetimeout
17064 Show the current number of seconds to wait for the remote target
17065 responses.
17066
17067 @cindex limit hardware breakpoints and watchpoints
17068 @cindex remote target, limit break- and watchpoints
17069 @anchor{set remote hardware-watchpoint-limit}
17070 @anchor{set remote hardware-breakpoint-limit}
17071 @item set remote hardware-watchpoint-limit @var{limit}
17072 @itemx set remote hardware-breakpoint-limit @var{limit}
17073 Restrict @value{GDBN} to using @var{limit} remote hardware breakpoint or
17074 watchpoints.  A limit of -1, the default, is treated as unlimited.
17075
17076 @cindex limit hardware watchpoints length
17077 @cindex remote target, limit watchpoints length
17078 @anchor{set remote hardware-watchpoint-length-limit}
17079 @item set remote hardware-watchpoint-length-limit @var{limit}
17080 Restrict @value{GDBN} to using @var{limit} bytes for the maximum length of
17081 a remote hardware watchpoint.  A limit of -1, the default, is treated
17082 as unlimited.
17083
17084 @item show remote hardware-watchpoint-length-limit
17085 Show the current limit (in bytes) of the maximum length of
17086 a remote hardware watchpoint.
17087
17088 @item set remote exec-file @var{filename}
17089 @itemx show remote exec-file
17090 @anchor{set remote exec-file}
17091 @cindex executable file, for remote target
17092 Select the file used for @code{run} with @code{target
17093 extended-remote}.  This should be set to a filename valid on the
17094 target system.  If it is not set, the target will use a default
17095 filename (e.g.@: the last program run).
17096
17097 @item set remote interrupt-sequence
17098 @cindex interrupt remote programs
17099 @cindex select Ctrl-C, BREAK or BREAK-g
17100 Allow the user to select one of @samp{Ctrl-C}, a @code{BREAK} or
17101 @samp{BREAK-g} as the
17102 sequence to the remote target in order to interrupt the execution.
17103 @samp{Ctrl-C} is a default.  Some system prefers @code{BREAK} which
17104 is high level of serial line for some certain time.
17105 Linux kernel prefers @samp{BREAK-g}, a.k.a Magic SysRq g.
17106 It is @code{BREAK} signal followed by character @code{g}.
17107
17108 @item show interrupt-sequence
17109 Show which of @samp{Ctrl-C}, @code{BREAK} or @code{BREAK-g}
17110 is sent by @value{GDBN} to interrupt the remote program.
17111 @code{BREAK-g} is BREAK signal followed by @code{g} and
17112 also known as Magic SysRq g.
17113
17114 @item set remote interrupt-on-connect
17115 @cindex send interrupt-sequence on start
17116 Specify whether interrupt-sequence is sent to remote target when
17117 @value{GDBN} connects to it.  This is mostly needed when you debug
17118 Linux kernel.  Linux kernel expects @code{BREAK} followed by @code{g}
17119 which is known as Magic SysRq g in order to connect @value{GDBN}.
17120
17121 @item show interrupt-on-connect
17122 Show whether interrupt-sequence is sent
17123 to remote target when @value{GDBN} connects to it.
17124
17125 @kindex set tcp
17126 @kindex show tcp
17127 @item set tcp auto-retry on
17128 @cindex auto-retry, for remote TCP target
17129 Enable auto-retry for remote TCP connections.  This is useful if the remote
17130 debugging agent is launched in parallel with @value{GDBN}; there is a race
17131 condition because the agent may not become ready to accept the connection
17132 before @value{GDBN} attempts to connect.  When auto-retry is
17133 enabled, if the initial attempt to connect fails, @value{GDBN} reattempts
17134 to establish the connection using the timeout specified by 
17135 @code{set tcp connect-timeout}.
17136
17137 @item set tcp auto-retry off
17138 Do not auto-retry failed TCP connections.
17139
17140 @item show tcp auto-retry
17141 Show the current auto-retry setting.
17142
17143 @item set tcp connect-timeout @var{seconds}
17144 @cindex connection timeout, for remote TCP target
17145 @cindex timeout, for remote target connection
17146 Set the timeout for establishing a TCP connection to the remote target to
17147 @var{seconds}.  The timeout affects both polling to retry failed connections 
17148 (enabled by @code{set tcp auto-retry on}) and waiting for connections
17149 that are merely slow to complete, and represents an approximate cumulative
17150 value.
17151
17152 @item show tcp connect-timeout
17153 Show the current connection timeout setting.
17154 @end table
17155
17156 @cindex remote packets, enabling and disabling
17157 The @value{GDBN} remote protocol autodetects the packets supported by
17158 your debugging stub.  If you need to override the autodetection, you
17159 can use these commands to enable or disable individual packets.  Each
17160 packet can be set to @samp{on} (the remote target supports this
17161 packet), @samp{off} (the remote target does not support this packet),
17162 or @samp{auto} (detect remote target support for this packet).  They
17163 all default to @samp{auto}.  For more information about each packet,
17164 see @ref{Remote Protocol}.
17165
17166 During normal use, you should not have to use any of these commands.
17167 If you do, that may be a bug in your remote debugging stub, or a bug
17168 in @value{GDBN}.  You may want to report the problem to the
17169 @value{GDBN} developers.
17170
17171 For each packet @var{name}, the command to enable or disable the
17172 packet is @code{set remote @var{name}-packet}.  The available settings
17173 are:
17174
17175 @multitable @columnfractions 0.28 0.32 0.25
17176 @item Command Name
17177 @tab Remote Packet
17178 @tab Related Features
17179
17180 @item @code{fetch-register}
17181 @tab @code{p}
17182 @tab @code{info registers}
17183
17184 @item @code{set-register}
17185 @tab @code{P}
17186 @tab @code{set}
17187
17188 @item @code{binary-download}
17189 @tab @code{X}
17190 @tab @code{load}, @code{set}
17191
17192 @item @code{read-aux-vector}
17193 @tab @code{qXfer:auxv:read}
17194 @tab @code{info auxv}
17195
17196 @item @code{symbol-lookup}
17197 @tab @code{qSymbol}
17198 @tab Detecting multiple threads
17199
17200 @item @code{attach}
17201 @tab @code{vAttach}
17202 @tab @code{attach}
17203
17204 @item @code{verbose-resume}
17205 @tab @code{vCont}
17206 @tab Stepping or resuming multiple threads
17207
17208 @item @code{run}
17209 @tab @code{vRun}
17210 @tab @code{run}
17211
17212 @item @code{software-breakpoint}
17213 @tab @code{Z0}
17214 @tab @code{break}
17215
17216 @item @code{hardware-breakpoint}
17217 @tab @code{Z1}
17218 @tab @code{hbreak}
17219
17220 @item @code{write-watchpoint}
17221 @tab @code{Z2}
17222 @tab @code{watch}
17223
17224 @item @code{read-watchpoint}
17225 @tab @code{Z3}
17226 @tab @code{rwatch}
17227
17228 @item @code{access-watchpoint}
17229 @tab @code{Z4}
17230 @tab @code{awatch}
17231
17232 @item @code{target-features}
17233 @tab @code{qXfer:features:read}
17234 @tab @code{set architecture}
17235
17236 @item @code{library-info}
17237 @tab @code{qXfer:libraries:read}
17238 @tab @code{info sharedlibrary}
17239
17240 @item @code{memory-map}
17241 @tab @code{qXfer:memory-map:read}
17242 @tab @code{info mem}
17243
17244 @item @code{read-sdata-object}
17245 @tab @code{qXfer:sdata:read}
17246 @tab @code{print $_sdata}
17247
17248 @item @code{read-spu-object}
17249 @tab @code{qXfer:spu:read}
17250 @tab @code{info spu}
17251
17252 @item @code{write-spu-object}
17253 @tab @code{qXfer:spu:write}
17254 @tab @code{info spu}
17255
17256 @item @code{read-siginfo-object}
17257 @tab @code{qXfer:siginfo:read}
17258 @tab @code{print $_siginfo}
17259
17260 @item @code{write-siginfo-object}
17261 @tab @code{qXfer:siginfo:write}
17262 @tab @code{set $_siginfo}
17263
17264 @item @code{threads}
17265 @tab @code{qXfer:threads:read}
17266 @tab @code{info threads}
17267
17268 @item @code{get-thread-local-@*storage-address}
17269 @tab @code{qGetTLSAddr}
17270 @tab Displaying @code{__thread} variables
17271
17272 @item @code{get-thread-information-block-address}
17273 @tab @code{qGetTIBAddr}
17274 @tab Display MS-Windows Thread Information Block.
17275
17276 @item @code{search-memory}
17277 @tab @code{qSearch:memory}
17278 @tab @code{find}
17279
17280 @item @code{supported-packets}
17281 @tab @code{qSupported}
17282 @tab Remote communications parameters
17283
17284 @item @code{pass-signals}
17285 @tab @code{QPassSignals}
17286 @tab @code{handle @var{signal}}
17287
17288 @item @code{hostio-close-packet}
17289 @tab @code{vFile:close}
17290 @tab @code{remote get}, @code{remote put}
17291
17292 @item @code{hostio-open-packet}
17293 @tab @code{vFile:open}
17294 @tab @code{remote get}, @code{remote put}
17295
17296 @item @code{hostio-pread-packet}
17297 @tab @code{vFile:pread}
17298 @tab @code{remote get}, @code{remote put}
17299
17300 @item @code{hostio-pwrite-packet}
17301 @tab @code{vFile:pwrite}
17302 @tab @code{remote get}, @code{remote put}
17303
17304 @item @code{hostio-unlink-packet}
17305 @tab @code{vFile:unlink}
17306 @tab @code{remote delete}
17307
17308 @item @code{noack-packet}
17309 @tab @code{QStartNoAckMode}
17310 @tab Packet acknowledgment
17311
17312 @item @code{osdata}
17313 @tab @code{qXfer:osdata:read}
17314 @tab @code{info os}
17315
17316 @item @code{query-attached}
17317 @tab @code{qAttached}
17318 @tab Querying remote process attach state.
17319
17320 @item @code{traceframe-info}
17321 @tab @code{qXfer:traceframe-info:read}
17322 @tab Traceframe info
17323
17324 @item @code{install-in-trace}
17325 @tab @code{InstallInTrace}
17326 @tab Install tracepoint in tracing
17327
17328 @item @code{disable-randomization}
17329 @tab @code{QDisableRandomization}
17330 @tab @code{set disable-randomization}
17331 @end multitable
17332
17333 @node Remote Stub
17334 @section Implementing a Remote Stub
17335
17336 @cindex debugging stub, example
17337 @cindex remote stub, example
17338 @cindex stub example, remote debugging
17339 The stub files provided with @value{GDBN} implement the target side of the
17340 communication protocol, and the @value{GDBN} side is implemented in the
17341 @value{GDBN} source file @file{remote.c}.  Normally, you can simply allow
17342 these subroutines to communicate, and ignore the details.  (If you're
17343 implementing your own stub file, you can still ignore the details: start
17344 with one of the existing stub files.  @file{sparc-stub.c} is the best
17345 organized, and therefore the easiest to read.)
17346
17347 @cindex remote serial debugging, overview
17348 To debug a program running on another machine (the debugging
17349 @dfn{target} machine), you must first arrange for all the usual
17350 prerequisites for the program to run by itself.  For example, for a C
17351 program, you need:
17352
17353 @enumerate
17354 @item
17355 A startup routine to set up the C runtime environment; these usually
17356 have a name like @file{crt0}.  The startup routine may be supplied by
17357 your hardware supplier, or you may have to write your own.
17358
17359 @item
17360 A C subroutine library to support your program's
17361 subroutine calls, notably managing input and output.
17362
17363 @item
17364 A way of getting your program to the other machine---for example, a
17365 download program.  These are often supplied by the hardware
17366 manufacturer, but you may have to write your own from hardware
17367 documentation.
17368 @end enumerate
17369
17370 The next step is to arrange for your program to use a serial port to
17371 communicate with the machine where @value{GDBN} is running (the @dfn{host}
17372 machine).  In general terms, the scheme looks like this:
17373
17374 @table @emph
17375 @item On the host,
17376 @value{GDBN} already understands how to use this protocol; when everything
17377 else is set up, you can simply use the @samp{target remote} command
17378 (@pxref{Targets,,Specifying a Debugging Target}).
17379
17380 @item On the target,
17381 you must link with your program a few special-purpose subroutines that
17382 implement the @value{GDBN} remote serial protocol.  The file containing these
17383 subroutines is called  a @dfn{debugging stub}.
17384
17385 On certain remote targets, you can use an auxiliary program
17386 @code{gdbserver} instead of linking a stub into your program.
17387 @xref{Server,,Using the @code{gdbserver} Program}, for details.
17388 @end table
17389
17390 The debugging stub is specific to the architecture of the remote
17391 machine; for example, use @file{sparc-stub.c} to debug programs on
17392 @sc{sparc} boards.
17393
17394 @cindex remote serial stub list
17395 These working remote stubs are distributed with @value{GDBN}:
17396
17397 @table @code
17398
17399 @item i386-stub.c
17400 @cindex @file{i386-stub.c}
17401 @cindex Intel
17402 @cindex i386
17403 For Intel 386 and compatible architectures.
17404
17405 @item m68k-stub.c
17406 @cindex @file{m68k-stub.c}
17407 @cindex Motorola 680x0
17408 @cindex m680x0
17409 For Motorola 680x0 architectures.
17410
17411 @item sh-stub.c
17412 @cindex @file{sh-stub.c}
17413 @cindex Renesas
17414 @cindex SH
17415 For Renesas SH architectures.
17416
17417 @item sparc-stub.c
17418 @cindex @file{sparc-stub.c}
17419 @cindex Sparc
17420 For @sc{sparc} architectures.
17421
17422 @item sparcl-stub.c
17423 @cindex @file{sparcl-stub.c}
17424 @cindex Fujitsu
17425 @cindex SparcLite
17426 For Fujitsu @sc{sparclite} architectures.
17427
17428 @end table
17429
17430 The @file{README} file in the @value{GDBN} distribution may list other
17431 recently added stubs.
17432
17433 @menu
17434 * Stub Contents::       What the stub can do for you
17435 * Bootstrapping::       What you must do for the stub
17436 * Debug Session::       Putting it all together
17437 @end menu
17438
17439 @node Stub Contents
17440 @subsection What the Stub Can Do for You
17441
17442 @cindex remote serial stub
17443 The debugging stub for your architecture supplies these three
17444 subroutines:
17445
17446 @table @code
17447 @item set_debug_traps
17448 @findex set_debug_traps
17449 @cindex remote serial stub, initialization
17450 This routine arranges for @code{handle_exception} to run when your
17451 program stops.  You must call this subroutine explicitly near the
17452 beginning of your program.
17453
17454 @item handle_exception
17455 @findex handle_exception
17456 @cindex remote serial stub, main routine
17457 This is the central workhorse, but your program never calls it
17458 explicitly---the setup code arranges for @code{handle_exception} to
17459 run when a trap is triggered.
17460
17461 @code{handle_exception} takes control when your program stops during
17462 execution (for example, on a breakpoint), and mediates communications
17463 with @value{GDBN} on the host machine.  This is where the communications
17464 protocol is implemented; @code{handle_exception} acts as the @value{GDBN}
17465 representative on the target machine.  It begins by sending summary
17466 information on the state of your program, then continues to execute,
17467 retrieving and transmitting any information @value{GDBN} needs, until you
17468 execute a @value{GDBN} command that makes your program resume; at that point,
17469 @code{handle_exception} returns control to your own code on the target
17470 machine.
17471
17472 @item breakpoint
17473 @cindex @code{breakpoint} subroutine, remote
17474 Use this auxiliary subroutine to make your program contain a
17475 breakpoint.  Depending on the particular situation, this may be the only
17476 way for @value{GDBN} to get control.  For instance, if your target
17477 machine has some sort of interrupt button, you won't need to call this;
17478 pressing the interrupt button transfers control to
17479 @code{handle_exception}---in effect, to @value{GDBN}.  On some machines,
17480 simply receiving characters on the serial port may also trigger a trap;
17481 again, in that situation, you don't need to call @code{breakpoint} from
17482 your own program---simply running @samp{target remote} from the host
17483 @value{GDBN} session gets control.
17484
17485 Call @code{breakpoint} if none of these is true, or if you simply want
17486 to make certain your program stops at a predetermined point for the
17487 start of your debugging session.
17488 @end table
17489
17490 @node Bootstrapping
17491 @subsection What You Must Do for the Stub
17492
17493 @cindex remote stub, support routines
17494 The debugging stubs that come with @value{GDBN} are set up for a particular
17495 chip architecture, but they have no information about the rest of your
17496 debugging target machine.
17497
17498 First of all you need to tell the stub how to communicate with the
17499 serial port.
17500
17501 @table @code
17502 @item int getDebugChar()
17503 @findex getDebugChar
17504 Write this subroutine to read a single character from the serial port.
17505 It may be identical to @code{getchar} for your target system; a
17506 different name is used to allow you to distinguish the two if you wish.
17507
17508 @item void putDebugChar(int)
17509 @findex putDebugChar
17510 Write this subroutine to write a single character to the serial port.
17511 It may be identical to @code{putchar} for your target system; a
17512 different name is used to allow you to distinguish the two if you wish.
17513 @end table
17514
17515 @cindex control C, and remote debugging
17516 @cindex interrupting remote targets
17517 If you want @value{GDBN} to be able to stop your program while it is
17518 running, you need to use an interrupt-driven serial driver, and arrange
17519 for it to stop when it receives a @code{^C} (@samp{\003}, the control-C
17520 character).  That is the character which @value{GDBN} uses to tell the
17521 remote system to stop.
17522
17523 Getting the debugging target to return the proper status to @value{GDBN}
17524 probably requires changes to the standard stub; one quick and dirty way
17525 is to just execute a breakpoint instruction (the ``dirty'' part is that
17526 @value{GDBN} reports a @code{SIGTRAP} instead of a @code{SIGINT}).
17527
17528 Other routines you need to supply are:
17529
17530 @table @code
17531 @item void exceptionHandler (int @var{exception_number}, void *@var{exception_address})
17532 @findex exceptionHandler
17533 Write this function to install @var{exception_address} in the exception
17534 handling tables.  You need to do this because the stub does not have any
17535 way of knowing what the exception handling tables on your target system
17536 are like (for example, the processor's table might be in @sc{rom},
17537 containing entries which point to a table in @sc{ram}).
17538 @var{exception_number} is the exception number which should be changed;
17539 its meaning is architecture-dependent (for example, different numbers
17540 might represent divide by zero, misaligned access, etc).  When this
17541 exception occurs, control should be transferred directly to
17542 @var{exception_address}, and the processor state (stack, registers,
17543 and so on) should be just as it is when a processor exception occurs.  So if
17544 you want to use a jump instruction to reach @var{exception_address}, it
17545 should be a simple jump, not a jump to subroutine.
17546
17547 For the 386, @var{exception_address} should be installed as an interrupt
17548 gate so that interrupts are masked while the handler runs.  The gate
17549 should be at privilege level 0 (the most privileged level).  The
17550 @sc{sparc} and 68k stubs are able to mask interrupts themselves without
17551 help from @code{exceptionHandler}.
17552
17553 @item void flush_i_cache()
17554 @findex flush_i_cache
17555 On @sc{sparc} and @sc{sparclite} only, write this subroutine to flush the
17556 instruction cache, if any, on your target machine.  If there is no
17557 instruction cache, this subroutine may be a no-op.
17558
17559 On target machines that have instruction caches, @value{GDBN} requires this
17560 function to make certain that the state of your program is stable.
17561 @end table
17562
17563 @noindent
17564 You must also make sure this library routine is available:
17565
17566 @table @code
17567 @item void *memset(void *, int, int)
17568 @findex memset
17569 This is the standard library function @code{memset} that sets an area of
17570 memory to a known value.  If you have one of the free versions of
17571 @code{libc.a}, @code{memset} can be found there; otherwise, you must
17572 either obtain it from your hardware manufacturer, or write your own.
17573 @end table
17574
17575 If you do not use the GNU C compiler, you may need other standard
17576 library subroutines as well; this varies from one stub to another,
17577 but in general the stubs are likely to use any of the common library
17578 subroutines which @code{@value{NGCC}} generates as inline code.
17579
17580
17581 @node Debug Session
17582 @subsection Putting it All Together
17583
17584 @cindex remote serial debugging summary
17585 In summary, when your program is ready to debug, you must follow these
17586 steps.
17587
17588 @enumerate
17589 @item
17590 Make sure you have defined the supporting low-level routines
17591 (@pxref{Bootstrapping,,What You Must Do for the Stub}):
17592 @display
17593 @code{getDebugChar}, @code{putDebugChar},
17594 @code{flush_i_cache}, @code{memset}, @code{exceptionHandler}.
17595 @end display
17596
17597 @item
17598 Insert these lines near the top of your program:
17599
17600 @smallexample
17601 set_debug_traps();
17602 breakpoint();
17603 @end smallexample
17604
17605 @item
17606 For the 680x0 stub only, you need to provide a variable called
17607 @code{exceptionHook}.  Normally you just use:
17608
17609 @smallexample
17610 void (*exceptionHook)() = 0;
17611 @end smallexample
17612
17613 @noindent
17614 but if before calling @code{set_debug_traps}, you set it to point to a
17615 function in your program, that function is called when
17616 @code{@value{GDBN}} continues after stopping on a trap (for example, bus
17617 error).  The function indicated by @code{exceptionHook} is called with
17618 one parameter: an @code{int} which is the exception number.
17619
17620 @item
17621 Compile and link together: your program, the @value{GDBN} debugging stub for
17622 your target architecture, and the supporting subroutines.
17623
17624 @item
17625 Make sure you have a serial connection between your target machine and
17626 the @value{GDBN} host, and identify the serial port on the host.
17627
17628 @item
17629 @c The "remote" target now provides a `load' command, so we should
17630 @c document that.  FIXME.
17631 Download your program to your target machine (or get it there by
17632 whatever means the manufacturer provides), and start it.
17633
17634 @item
17635 Start @value{GDBN} on the host, and connect to the target
17636 (@pxref{Connecting,,Connecting to a Remote Target}).
17637
17638 @end enumerate
17639
17640 @node Configurations
17641 @chapter Configuration-Specific Information
17642
17643 While nearly all @value{GDBN} commands are available for all native and
17644 cross versions of the debugger, there are some exceptions.  This chapter
17645 describes things that are only available in certain configurations.
17646
17647 There are three major categories of configurations: native
17648 configurations, where the host and target are the same, embedded
17649 operating system configurations, which are usually the same for several
17650 different processor architectures, and bare embedded processors, which
17651 are quite different from each other.
17652
17653 @menu
17654 * Native::
17655 * Embedded OS::
17656 * Embedded Processors::
17657 * Architectures::
17658 @end menu
17659
17660 @node Native
17661 @section Native
17662
17663 This section describes details specific to particular native
17664 configurations.
17665
17666 @menu
17667 * HP-UX::                       HP-UX
17668 * BSD libkvm Interface::        Debugging BSD kernel memory images
17669 * SVR4 Process Information::    SVR4 process information
17670 * DJGPP Native::                Features specific to the DJGPP port
17671 * Cygwin Native::               Features specific to the Cygwin port
17672 * Hurd Native::                 Features specific to @sc{gnu} Hurd
17673 * Neutrino::                    Features specific to QNX Neutrino
17674 * Darwin::                      Features specific to Darwin
17675 @end menu
17676
17677 @node HP-UX
17678 @subsection HP-UX
17679
17680 On HP-UX systems, if you refer to a function or variable name that
17681 begins with a dollar sign, @value{GDBN} searches for a user or system
17682 name first, before it searches for a convenience variable.
17683
17684
17685 @node BSD libkvm Interface
17686 @subsection BSD libkvm Interface
17687
17688 @cindex libkvm
17689 @cindex kernel memory image
17690 @cindex kernel crash dump
17691
17692 BSD-derived systems (FreeBSD/NetBSD/OpenBSD) have a kernel memory
17693 interface that provides a uniform interface for accessing kernel virtual
17694 memory images, including live systems and crash dumps.  @value{GDBN}
17695 uses this interface to allow you to debug live kernels and kernel crash
17696 dumps on many native BSD configurations.  This is implemented as a
17697 special @code{kvm} debugging target.  For debugging a live system, load
17698 the currently running kernel into @value{GDBN} and connect to the
17699 @code{kvm} target:
17700
17701 @smallexample
17702 (@value{GDBP}) @b{target kvm}
17703 @end smallexample
17704
17705 For debugging crash dumps, provide the file name of the crash dump as an
17706 argument:
17707
17708 @smallexample
17709 (@value{GDBP}) @b{target kvm /var/crash/bsd.0}
17710 @end smallexample
17711
17712 Once connected to the @code{kvm} target, the following commands are
17713 available:
17714
17715 @table @code
17716 @kindex kvm
17717 @item kvm pcb
17718 Set current context from the @dfn{Process Control Block} (PCB) address.
17719
17720 @item kvm proc
17721 Set current context from proc address.  This command isn't available on
17722 modern FreeBSD systems.
17723 @end table
17724
17725 @node SVR4 Process Information
17726 @subsection SVR4 Process Information
17727 @cindex /proc
17728 @cindex examine process image
17729 @cindex process info via @file{/proc}
17730
17731 Many versions of SVR4 and compatible systems provide a facility called
17732 @samp{/proc} that can be used to examine the image of a running
17733 process using file-system subroutines.  If @value{GDBN} is configured
17734 for an operating system with this facility, the command @code{info
17735 proc} is available to report information about the process running
17736 your program, or about any process running on your system.  @code{info
17737 proc} works only on SVR4 systems that include the @code{procfs} code.
17738 This includes, as of this writing, @sc{gnu}/Linux, OSF/1 (Digital
17739 Unix), Solaris, Irix, and Unixware, but not HP-UX, for example.
17740
17741 @table @code
17742 @kindex info proc
17743 @cindex process ID
17744 @item info proc
17745 @itemx info proc @var{process-id}
17746 Summarize available information about any running process.  If a
17747 process ID is specified by @var{process-id}, display information about
17748 that process; otherwise display information about the program being
17749 debugged.  The summary includes the debugged process ID, the command
17750 line used to invoke it, its current working directory, and its
17751 executable file's absolute file name.
17752
17753 On some systems, @var{process-id} can be of the form
17754 @samp{[@var{pid}]/@var{tid}} which specifies a certain thread ID
17755 within a process.  If the optional @var{pid} part is missing, it means
17756 a thread from the process being debugged (the leading @samp{/} still
17757 needs to be present, or else @value{GDBN} will interpret the number as
17758 a process ID rather than a thread ID).
17759
17760 @item info proc mappings
17761 @cindex memory address space mappings
17762 Report the memory address space ranges accessible in the program, with
17763 information on whether the process has read, write, or execute access
17764 rights to each range.  On @sc{gnu}/Linux systems, each memory range
17765 includes the object file which is mapped to that range, instead of the
17766 memory access rights to that range.
17767
17768 @item info proc stat
17769 @itemx info proc status
17770 @cindex process detailed status information
17771 These subcommands are specific to @sc{gnu}/Linux systems.  They show
17772 the process-related information, including the user ID and group ID;
17773 how many threads are there in the process; its virtual memory usage;
17774 the signals that are pending, blocked, and ignored; its TTY; its
17775 consumption of system and user time; its stack size; its @samp{nice}
17776 value; etc.  For more information, see the @samp{proc} man page
17777 (type @kbd{man 5 proc} from your shell prompt).
17778
17779 @item info proc all
17780 Show all the information about the process described under all of the
17781 above @code{info proc} subcommands.
17782
17783 @ignore
17784 @comment These sub-options of 'info proc' were not included when
17785 @comment procfs.c was re-written.  Keep their descriptions around
17786 @comment against the day when someone finds the time to put them back in.
17787 @kindex info proc times
17788 @item info proc times
17789 Starting time, user CPU time, and system CPU time for your program and
17790 its children.
17791
17792 @kindex info proc id
17793 @item info proc id
17794 Report on the process IDs related to your program: its own process ID,
17795 the ID of its parent, the process group ID, and the session ID.
17796 @end ignore
17797
17798 @item set procfs-trace
17799 @kindex set procfs-trace
17800 @cindex @code{procfs} API calls
17801 This command enables and disables tracing of @code{procfs} API calls.
17802
17803 @item show procfs-trace
17804 @kindex show procfs-trace
17805 Show the current state of @code{procfs} API call tracing.
17806
17807 @item set procfs-file @var{file}
17808 @kindex set procfs-file
17809 Tell @value{GDBN} to write @code{procfs} API trace to the named
17810 @var{file}.  @value{GDBN} appends the trace info to the previous
17811 contents of the file.  The default is to display the trace on the
17812 standard output.
17813
17814 @item show procfs-file
17815 @kindex show procfs-file
17816 Show the file to which @code{procfs} API trace is written.
17817
17818 @item proc-trace-entry
17819 @itemx proc-trace-exit
17820 @itemx proc-untrace-entry
17821 @itemx proc-untrace-exit
17822 @kindex proc-trace-entry
17823 @kindex proc-trace-exit
17824 @kindex proc-untrace-entry
17825 @kindex proc-untrace-exit
17826 These commands enable and disable tracing of entries into and exits
17827 from the @code{syscall} interface.
17828
17829 @item info pidlist
17830 @kindex info pidlist
17831 @cindex process list, QNX Neutrino
17832 For QNX Neutrino only, this command displays the list of all the
17833 processes and all the threads within each process.
17834
17835 @item info meminfo
17836 @kindex info meminfo
17837 @cindex mapinfo list, QNX Neutrino
17838 For QNX Neutrino only, this command displays the list of all mapinfos.
17839 @end table
17840
17841 @node DJGPP Native
17842 @subsection Features for Debugging @sc{djgpp} Programs
17843 @cindex @sc{djgpp} debugging
17844 @cindex native @sc{djgpp} debugging
17845 @cindex MS-DOS-specific commands
17846
17847 @cindex DPMI
17848 @sc{djgpp} is a port of the @sc{gnu} development tools to MS-DOS and
17849 MS-Windows.  @sc{djgpp} programs are 32-bit protected-mode programs
17850 that use the @dfn{DPMI} (DOS Protected-Mode Interface) API to run on
17851 top of real-mode DOS systems and their emulations.
17852
17853 @value{GDBN} supports native debugging of @sc{djgpp} programs, and
17854 defines a few commands specific to the @sc{djgpp} port.  This
17855 subsection describes those commands.
17856
17857 @table @code
17858 @kindex info dos
17859 @item info dos
17860 This is a prefix of @sc{djgpp}-specific commands which print
17861 information about the target system and important OS structures.
17862
17863 @kindex sysinfo
17864 @cindex MS-DOS system info
17865 @cindex free memory information (MS-DOS)
17866 @item info dos sysinfo
17867 This command displays assorted information about the underlying
17868 platform: the CPU type and features, the OS version and flavor, the
17869 DPMI version, and the available conventional and DPMI memory.
17870
17871 @cindex GDT
17872 @cindex LDT
17873 @cindex IDT
17874 @cindex segment descriptor tables
17875 @cindex descriptor tables display
17876 @item info dos gdt
17877 @itemx info dos ldt
17878 @itemx info dos idt
17879 These 3 commands display entries from, respectively, Global, Local,
17880 and Interrupt Descriptor Tables (GDT, LDT, and IDT).  The descriptor
17881 tables are data structures which store a descriptor for each segment
17882 that is currently in use.  The segment's selector is an index into a
17883 descriptor table; the table entry for that index holds the
17884 descriptor's base address and limit, and its attributes and access
17885 rights.
17886
17887 A typical @sc{djgpp} program uses 3 segments: a code segment, a data
17888 segment (used for both data and the stack), and a DOS segment (which
17889 allows access to DOS/BIOS data structures and absolute addresses in
17890 conventional memory).  However, the DPMI host will usually define
17891 additional segments in order to support the DPMI environment.
17892
17893 @cindex garbled pointers
17894 These commands allow to display entries from the descriptor tables.
17895 Without an argument, all entries from the specified table are
17896 displayed.  An argument, which should be an integer expression, means
17897 display a single entry whose index is given by the argument.  For
17898 example, here's a convenient way to display information about the
17899 debugged program's data segment:
17900
17901 @smallexample
17902 @exdent @code{(@value{GDBP}) info dos ldt $ds}
17903 @exdent @code{0x13f: base=0x11970000 limit=0x0009ffff 32-Bit Data (Read/Write, Exp-up)}
17904 @end smallexample
17905
17906 @noindent
17907 This comes in handy when you want to see whether a pointer is outside
17908 the data segment's limit (i.e.@: @dfn{garbled}).
17909
17910 @cindex page tables display (MS-DOS)
17911 @item info dos pde
17912 @itemx info dos pte
17913 These two commands display entries from, respectively, the Page
17914 Directory and the Page Tables.  Page Directories and Page Tables are
17915 data structures which control how virtual memory addresses are mapped
17916 into physical addresses.  A Page Table includes an entry for every
17917 page of memory that is mapped into the program's address space; there
17918 may be several Page Tables, each one holding up to 4096 entries.  A
17919 Page Directory has up to 4096 entries, one each for every Page Table
17920 that is currently in use.
17921
17922 Without an argument, @kbd{info dos pde} displays the entire Page
17923 Directory, and @kbd{info dos pte} displays all the entries in all of
17924 the Page Tables.  An argument, an integer expression, given to the
17925 @kbd{info dos pde} command means display only that entry from the Page
17926 Directory table.  An argument given to the @kbd{info dos pte} command
17927 means display entries from a single Page Table, the one pointed to by
17928 the specified entry in the Page Directory.
17929
17930 @cindex direct memory access (DMA) on MS-DOS
17931 These commands are useful when your program uses @dfn{DMA} (Direct
17932 Memory Access), which needs physical addresses to program the DMA
17933 controller.
17934
17935 These commands are supported only with some DPMI servers.
17936
17937 @cindex physical address from linear address
17938 @item info dos address-pte @var{addr}
17939 This command displays the Page Table entry for a specified linear
17940 address.  The argument @var{addr} is a linear address which should
17941 already have the appropriate segment's base address added to it,
17942 because this command accepts addresses which may belong to @emph{any}
17943 segment.  For example, here's how to display the Page Table entry for
17944 the page where a variable @code{i} is stored:
17945
17946 @smallexample
17947 @exdent @code{(@value{GDBP}) info dos address-pte __djgpp_base_address + (char *)&i}
17948 @exdent @code{Page Table entry for address 0x11a00d30:}
17949 @exdent @code{Base=0x02698000 Dirty Acc. Not-Cached Write-Back Usr Read-Write +0xd30}
17950 @end smallexample
17951
17952 @noindent
17953 This says that @code{i} is stored at offset @code{0xd30} from the page
17954 whose physical base address is @code{0x02698000}, and shows all the
17955 attributes of that page.
17956
17957 Note that you must cast the addresses of variables to a @code{char *},
17958 since otherwise the value of @code{__djgpp_base_address}, the base
17959 address of all variables and functions in a @sc{djgpp} program, will
17960 be added using the rules of C pointer arithmetics: if @code{i} is
17961 declared an @code{int}, @value{GDBN} will add 4 times the value of
17962 @code{__djgpp_base_address} to the address of @code{i}.
17963
17964 Here's another example, it displays the Page Table entry for the
17965 transfer buffer:
17966
17967 @smallexample
17968 @exdent @code{(@value{GDBP}) info dos address-pte *((unsigned *)&_go32_info_block + 3)}
17969 @exdent @code{Page Table entry for address 0x29110:}
17970 @exdent @code{Base=0x00029000 Dirty Acc. Not-Cached Write-Back Usr Read-Write +0x110}
17971 @end smallexample
17972
17973 @noindent
17974 (The @code{+ 3} offset is because the transfer buffer's address is the
17975 3rd member of the @code{_go32_info_block} structure.)  The output
17976 clearly shows that this DPMI server maps the addresses in conventional
17977 memory 1:1, i.e.@: the physical (@code{0x00029000} + @code{0x110}) and
17978 linear (@code{0x29110}) addresses are identical.
17979
17980 This command is supported only with some DPMI servers.
17981 @end table
17982
17983 @cindex DOS serial data link, remote debugging
17984 In addition to native debugging, the DJGPP port supports remote
17985 debugging via a serial data link.  The following commands are specific
17986 to remote serial debugging in the DJGPP port of @value{GDBN}.
17987
17988 @table @code
17989 @kindex set com1base
17990 @kindex set com1irq
17991 @kindex set com2base
17992 @kindex set com2irq
17993 @kindex set com3base
17994 @kindex set com3irq
17995 @kindex set com4base
17996 @kindex set com4irq
17997 @item set com1base @var{addr}
17998 This command sets the base I/O port address of the @file{COM1} serial
17999 port.
18000
18001 @item set com1irq @var{irq}
18002 This command sets the @dfn{Interrupt Request} (@code{IRQ}) line to use
18003 for the @file{COM1} serial port.
18004
18005 There are similar commands @samp{set com2base}, @samp{set com3irq},
18006 etc.@: for setting the port address and the @code{IRQ} lines for the
18007 other 3 COM ports.
18008
18009 @kindex show com1base
18010 @kindex show com1irq
18011 @kindex show com2base
18012 @kindex show com2irq
18013 @kindex show com3base
18014 @kindex show com3irq
18015 @kindex show com4base
18016 @kindex show com4irq
18017 The related commands @samp{show com1base}, @samp{show com1irq} etc.@:
18018 display the current settings of the base address and the @code{IRQ}
18019 lines used by the COM ports.
18020
18021 @item info serial
18022 @kindex info serial
18023 @cindex DOS serial port status
18024 This command prints the status of the 4 DOS serial ports.  For each
18025 port, it prints whether it's active or not, its I/O base address and
18026 IRQ number, whether it uses a 16550-style FIFO, its baudrate, and the
18027 counts of various errors encountered so far.
18028 @end table
18029
18030
18031 @node Cygwin Native
18032 @subsection Features for Debugging MS Windows PE Executables
18033 @cindex MS Windows debugging
18034 @cindex native Cygwin debugging
18035 @cindex Cygwin-specific commands
18036
18037 @value{GDBN} supports native debugging of MS Windows programs, including
18038 DLLs with and without symbolic debugging information.
18039
18040 @cindex Ctrl-BREAK, MS-Windows
18041 @cindex interrupt debuggee on MS-Windows
18042 MS-Windows programs that call @code{SetConsoleMode} to switch off the
18043 special meaning of the @samp{Ctrl-C} keystroke cannot be interrupted
18044 by typing @kbd{C-c}.  For this reason, @value{GDBN} on MS-Windows
18045 supports @kbd{C-@key{BREAK}} as an alternative interrupt key
18046 sequence, which can be used to interrupt the debuggee even if it
18047 ignores @kbd{C-c}.
18048
18049 There are various additional Cygwin-specific commands, described in
18050 this section.  Working with DLLs that have no debugging symbols is
18051 described in @ref{Non-debug DLL Symbols}.
18052
18053 @table @code
18054 @kindex info w32
18055 @item info w32
18056 This is a prefix of MS Windows-specific commands which print
18057 information about the target system and important OS structures.
18058
18059 @item info w32 selector
18060 This command displays information returned by
18061 the Win32 API @code{GetThreadSelectorEntry} function.
18062 It takes an optional argument that is evaluated to
18063 a long value to give the information about this given selector.
18064 Without argument, this command displays information
18065 about the six segment registers.
18066
18067 @item info w32 thread-information-block
18068 This command displays thread specific information stored in the
18069 Thread Information Block (readable on the X86 CPU family using @code{$fs}
18070 selector for 32-bit programs and @code{$gs} for 64-bit programs).
18071
18072 @kindex info dll
18073 @item info dll
18074 This is a Cygwin-specific alias of @code{info shared}.
18075
18076 @kindex dll-symbols
18077 @item dll-symbols
18078 This command loads symbols from a dll similarly to
18079 add-sym command but without the need to specify a base address.
18080
18081 @kindex set cygwin-exceptions
18082 @cindex debugging the Cygwin DLL
18083 @cindex Cygwin DLL, debugging
18084 @item set cygwin-exceptions @var{mode}
18085 If @var{mode} is @code{on}, @value{GDBN} will break on exceptions that
18086 happen inside the Cygwin DLL.  If @var{mode} is @code{off},
18087 @value{GDBN} will delay recognition of exceptions, and may ignore some
18088 exceptions which seem to be caused by internal Cygwin DLL
18089 ``bookkeeping''.  This option is meant primarily for debugging the
18090 Cygwin DLL itself; the default value is @code{off} to avoid annoying
18091 @value{GDBN} users with false @code{SIGSEGV} signals.
18092
18093 @kindex show cygwin-exceptions
18094 @item show cygwin-exceptions
18095 Displays whether @value{GDBN} will break on exceptions that happen
18096 inside the Cygwin DLL itself.
18097
18098 @kindex set new-console
18099 @item set new-console @var{mode}
18100 If @var{mode} is @code{on} the debuggee will
18101 be started in a new console on next start.
18102 If @var{mode} is @code{off}, the debuggee will
18103 be started in the same console as the debugger.
18104
18105 @kindex show new-console
18106 @item show new-console
18107 Displays whether a new console is used
18108 when the debuggee is started.
18109
18110 @kindex set new-group
18111 @item set new-group @var{mode}
18112 This boolean value controls whether the debuggee should
18113 start a new group or stay in the same group as the debugger.
18114 This affects the way the Windows OS handles
18115 @samp{Ctrl-C}.
18116
18117 @kindex show new-group
18118 @item show new-group
18119 Displays current value of new-group boolean.
18120
18121 @kindex set debugevents
18122 @item set debugevents
18123 This boolean value adds debug output concerning kernel events related
18124 to the debuggee seen by the debugger.  This includes events that
18125 signal thread and process creation and exit, DLL loading and
18126 unloading, console interrupts, and debugging messages produced by the
18127 Windows @code{OutputDebugString} API call.
18128
18129 @kindex set debugexec
18130 @item set debugexec
18131 This boolean value adds debug output concerning execute events
18132 (such as resume thread) seen by the debugger.
18133
18134 @kindex set debugexceptions
18135 @item set debugexceptions
18136 This boolean value adds debug output concerning exceptions in the
18137 debuggee seen by the debugger.
18138
18139 @kindex set debugmemory
18140 @item set debugmemory
18141 This boolean value adds debug output concerning debuggee memory reads
18142 and writes by the debugger.
18143
18144 @kindex set shell
18145 @item set shell
18146 This boolean values specifies whether the debuggee is called
18147 via a shell or directly (default value is on).
18148
18149 @kindex show shell
18150 @item show shell
18151 Displays if the debuggee will be started with a shell.
18152
18153 @end table
18154
18155 @menu
18156 * Non-debug DLL Symbols::  Support for DLLs without debugging symbols
18157 @end menu
18158
18159 @node Non-debug DLL Symbols
18160 @subsubsection Support for DLLs without Debugging Symbols
18161 @cindex DLLs with no debugging symbols
18162 @cindex Minimal symbols and DLLs
18163
18164 Very often on windows, some of the DLLs that your program relies on do
18165 not include symbolic debugging information (for example,
18166 @file{kernel32.dll}).  When @value{GDBN} doesn't recognize any debugging
18167 symbols in a DLL, it relies on the minimal amount of symbolic
18168 information contained in the DLL's export table.  This section
18169 describes working with such symbols, known internally to @value{GDBN} as
18170 ``minimal symbols''.
18171
18172 Note that before the debugged program has started execution, no DLLs
18173 will have been loaded.  The easiest way around this problem is simply to
18174 start the program --- either by setting a breakpoint or letting the
18175 program run once to completion.  It is also possible to force
18176 @value{GDBN} to load a particular DLL before starting the executable ---
18177 see the shared library information in @ref{Files}, or the
18178 @code{dll-symbols} command in @ref{Cygwin Native}.  Currently,
18179 explicitly loading symbols from a DLL with no debugging information will
18180 cause the symbol names to be duplicated in @value{GDBN}'s lookup table,
18181 which may adversely affect symbol lookup performance.
18182
18183 @subsubsection DLL Name Prefixes
18184
18185 In keeping with the naming conventions used by the Microsoft debugging
18186 tools, DLL export symbols are made available with a prefix based on the
18187 DLL name, for instance @code{KERNEL32!CreateFileA}.  The plain name is
18188 also entered into the symbol table, so @code{CreateFileA} is often
18189 sufficient.  In some cases there will be name clashes within a program
18190 (particularly if the executable itself includes full debugging symbols)
18191 necessitating the use of the fully qualified name when referring to the
18192 contents of the DLL.  Use single-quotes around the name to avoid the
18193 exclamation mark (``!'')  being interpreted as a language operator.
18194
18195 Note that the internal name of the DLL may be all upper-case, even
18196 though the file name of the DLL is lower-case, or vice-versa.  Since
18197 symbols within @value{GDBN} are @emph{case-sensitive} this may cause
18198 some confusion. If in doubt, try the @code{info functions} and
18199 @code{info variables} commands or even @code{maint print msymbols}
18200 (@pxref{Symbols}). Here's an example:
18201
18202 @smallexample
18203 (@value{GDBP}) info function CreateFileA
18204 All functions matching regular expression "CreateFileA":
18205
18206 Non-debugging symbols:
18207 0x77e885f4  CreateFileA
18208 0x77e885f4  KERNEL32!CreateFileA
18209 @end smallexample
18210
18211 @smallexample
18212 (@value{GDBP}) info function !
18213 All functions matching regular expression "!":
18214
18215 Non-debugging symbols:
18216 0x6100114c  cygwin1!__assert
18217 0x61004034  cygwin1!_dll_crt0@@0
18218 0x61004240  cygwin1!dll_crt0(per_process *)
18219 [etc...]
18220 @end smallexample
18221
18222 @subsubsection Working with Minimal Symbols
18223
18224 Symbols extracted from a DLL's export table do not contain very much
18225 type information. All that @value{GDBN} can do is guess whether a symbol
18226 refers to a function or variable depending on the linker section that
18227 contains the symbol. Also note that the actual contents of the memory
18228 contained in a DLL are not available unless the program is running. This
18229 means that you cannot examine the contents of a variable or disassemble
18230 a function within a DLL without a running program.
18231
18232 Variables are generally treated as pointers and dereferenced
18233 automatically. For this reason, it is often necessary to prefix a
18234 variable name with the address-of operator (``&'') and provide explicit
18235 type information in the command. Here's an example of the type of
18236 problem:
18237
18238 @smallexample
18239 (@value{GDBP}) print 'cygwin1!__argv'
18240 $1 = 268572168
18241 @end smallexample
18242
18243 @smallexample
18244 (@value{GDBP}) x 'cygwin1!__argv'
18245 0x10021610:      "\230y\""
18246 @end smallexample
18247
18248 And two possible solutions:
18249
18250 @smallexample
18251 (@value{GDBP}) print ((char **)'cygwin1!__argv')[0]
18252 $2 = 0x22fd98 "/cygdrive/c/mydirectory/myprogram"
18253 @end smallexample
18254
18255 @smallexample
18256 (@value{GDBP}) x/2x &'cygwin1!__argv'
18257 0x610c0aa8 <cygwin1!__argv>:    0x10021608      0x00000000
18258 (@value{GDBP}) x/x 0x10021608
18259 0x10021608:     0x0022fd98
18260 (@value{GDBP}) x/s 0x0022fd98
18261 0x22fd98:        "/cygdrive/c/mydirectory/myprogram"
18262 @end smallexample
18263
18264 Setting a break point within a DLL is possible even before the program
18265 starts execution. However, under these circumstances, @value{GDBN} can't
18266 examine the initial instructions of the function in order to skip the
18267 function's frame set-up code. You can work around this by using ``*&''
18268 to set the breakpoint at a raw memory address:
18269
18270 @smallexample
18271 (@value{GDBP}) break *&'python22!PyOS_Readline'
18272 Breakpoint 1 at 0x1e04eff0
18273 @end smallexample
18274
18275 The author of these extensions is not entirely convinced that setting a
18276 break point within a shared DLL like @file{kernel32.dll} is completely
18277 safe.
18278
18279 @node Hurd Native
18280 @subsection Commands Specific to @sc{gnu} Hurd Systems
18281 @cindex @sc{gnu} Hurd debugging
18282
18283 This subsection describes @value{GDBN} commands specific to the
18284 @sc{gnu} Hurd native debugging.
18285
18286 @table @code
18287 @item set signals
18288 @itemx set sigs
18289 @kindex set signals@r{, Hurd command}
18290 @kindex set sigs@r{, Hurd command}
18291 This command toggles the state of inferior signal interception by
18292 @value{GDBN}.  Mach exceptions, such as breakpoint traps, are not
18293 affected by this command.  @code{sigs} is a shorthand alias for
18294 @code{signals}.
18295
18296 @item show signals
18297 @itemx show sigs
18298 @kindex show signals@r{, Hurd command}
18299 @kindex show sigs@r{, Hurd command}
18300 Show the current state of intercepting inferior's signals.
18301
18302 @item set signal-thread
18303 @itemx set sigthread
18304 @kindex set signal-thread
18305 @kindex set sigthread
18306 This command tells @value{GDBN} which thread is the @code{libc} signal
18307 thread.  That thread is run when a signal is delivered to a running
18308 process.  @code{set sigthread} is the shorthand alias of @code{set
18309 signal-thread}.
18310
18311 @item show signal-thread
18312 @itemx show sigthread
18313 @kindex show signal-thread
18314 @kindex show sigthread
18315 These two commands show which thread will run when the inferior is
18316 delivered a signal.
18317
18318 @item set stopped
18319 @kindex set stopped@r{, Hurd command}
18320 This commands tells @value{GDBN} that the inferior process is stopped,
18321 as with the @code{SIGSTOP} signal.  The stopped process can be
18322 continued by delivering a signal to it.
18323
18324 @item show stopped
18325 @kindex show stopped@r{, Hurd command}
18326 This command shows whether @value{GDBN} thinks the debuggee is
18327 stopped.
18328
18329 @item set exceptions
18330 @kindex set exceptions@r{, Hurd command}
18331 Use this command to turn off trapping of exceptions in the inferior.
18332 When exception trapping is off, neither breakpoints nor
18333 single-stepping will work.  To restore the default, set exception
18334 trapping on.
18335
18336 @item show exceptions
18337 @kindex show exceptions@r{, Hurd command}
18338 Show the current state of trapping exceptions in the inferior.
18339
18340 @item set task pause
18341 @kindex set task@r{, Hurd commands}
18342 @cindex task attributes (@sc{gnu} Hurd)
18343 @cindex pause current task (@sc{gnu} Hurd)
18344 This command toggles task suspension when @value{GDBN} has control.
18345 Setting it to on takes effect immediately, and the task is suspended
18346 whenever @value{GDBN} gets control.  Setting it to off will take
18347 effect the next time the inferior is continued.  If this option is set
18348 to off, you can use @code{set thread default pause on} or @code{set
18349 thread pause on} (see below) to pause individual threads.
18350
18351 @item show task pause
18352 @kindex show task@r{, Hurd commands}
18353 Show the current state of task suspension.
18354
18355 @item set task detach-suspend-count
18356 @cindex task suspend count
18357 @cindex detach from task, @sc{gnu} Hurd
18358 This command sets the suspend count the task will be left with when
18359 @value{GDBN} detaches from it.
18360
18361 @item show task detach-suspend-count
18362 Show the suspend count the task will be left with when detaching.
18363
18364 @item set task exception-port
18365 @itemx set task excp
18366 @cindex task exception port, @sc{gnu} Hurd
18367 This command sets the task exception port to which @value{GDBN} will
18368 forward exceptions.  The argument should be the value of the @dfn{send
18369 rights} of the task.  @code{set task excp} is a shorthand alias.
18370
18371 @item set noninvasive
18372 @cindex noninvasive task options
18373 This command switches @value{GDBN} to a mode that is the least
18374 invasive as far as interfering with the inferior is concerned.  This
18375 is the same as using @code{set task pause}, @code{set exceptions}, and
18376 @code{set signals} to values opposite to the defaults.
18377
18378 @item info send-rights
18379 @itemx info receive-rights
18380 @itemx info port-rights
18381 @itemx info port-sets
18382 @itemx info dead-names
18383 @itemx info ports
18384 @itemx info psets
18385 @cindex send rights, @sc{gnu} Hurd
18386 @cindex receive rights, @sc{gnu} Hurd
18387 @cindex port rights, @sc{gnu} Hurd
18388 @cindex port sets, @sc{gnu} Hurd
18389 @cindex dead names, @sc{gnu} Hurd
18390 These commands display information about, respectively, send rights,
18391 receive rights, port rights, port sets, and dead names of a task.
18392 There are also shorthand aliases: @code{info ports} for @code{info
18393 port-rights} and @code{info psets} for @code{info port-sets}.
18394
18395 @item set thread pause
18396 @kindex set thread@r{, Hurd command}
18397 @cindex thread properties, @sc{gnu} Hurd
18398 @cindex pause current thread (@sc{gnu} Hurd)
18399 This command toggles current thread suspension when @value{GDBN} has
18400 control.  Setting it to on takes effect immediately, and the current
18401 thread is suspended whenever @value{GDBN} gets control.  Setting it to
18402 off will take effect the next time the inferior is continued.
18403 Normally, this command has no effect, since when @value{GDBN} has
18404 control, the whole task is suspended.  However, if you used @code{set
18405 task pause off} (see above), this command comes in handy to suspend
18406 only the current thread.
18407
18408 @item show thread pause
18409 @kindex show thread@r{, Hurd command}
18410 This command shows the state of current thread suspension.
18411
18412 @item set thread run
18413 This command sets whether the current thread is allowed to run.
18414
18415 @item show thread run
18416 Show whether the current thread is allowed to run.
18417
18418 @item set thread detach-suspend-count
18419 @cindex thread suspend count, @sc{gnu} Hurd
18420 @cindex detach from thread, @sc{gnu} Hurd
18421 This command sets the suspend count @value{GDBN} will leave on a
18422 thread when detaching.  This number is relative to the suspend count
18423 found by @value{GDBN} when it notices the thread; use @code{set thread
18424 takeover-suspend-count} to force it to an absolute value.
18425
18426 @item show thread detach-suspend-count
18427 Show the suspend count @value{GDBN} will leave on the thread when
18428 detaching.
18429
18430 @item set thread exception-port
18431 @itemx set thread excp
18432 Set the thread exception port to which to forward exceptions.  This
18433 overrides the port set by @code{set task exception-port} (see above).
18434 @code{set thread excp} is the shorthand alias.
18435
18436 @item set thread takeover-suspend-count
18437 Normally, @value{GDBN}'s thread suspend counts are relative to the
18438 value @value{GDBN} finds when it notices each thread.  This command
18439 changes the suspend counts to be absolute instead.
18440
18441 @item set thread default
18442 @itemx show thread default
18443 @cindex thread default settings, @sc{gnu} Hurd
18444 Each of the above @code{set thread} commands has a @code{set thread
18445 default} counterpart (e.g., @code{set thread default pause}, @code{set
18446 thread default exception-port}, etc.).  The @code{thread default}
18447 variety of commands sets the default thread properties for all
18448 threads; you can then change the properties of individual threads with
18449 the non-default commands.
18450 @end table
18451
18452
18453 @node Neutrino
18454 @subsection QNX Neutrino
18455 @cindex QNX Neutrino
18456
18457 @value{GDBN} provides the following commands specific to the QNX
18458 Neutrino target:
18459
18460 @table @code
18461 @item set debug nto-debug
18462 @kindex set debug nto-debug
18463 When set to on, enables debugging messages specific to the QNX
18464 Neutrino support.
18465
18466 @item show debug nto-debug
18467 @kindex show debug nto-debug
18468 Show the current state of QNX Neutrino messages.
18469 @end table
18470
18471 @node Darwin
18472 @subsection Darwin
18473 @cindex Darwin
18474
18475 @value{GDBN} provides the following commands specific to the Darwin target:
18476
18477 @table @code
18478 @item set debug darwin @var{num}
18479 @kindex set debug darwin
18480 When set to a non zero value, enables debugging messages specific to
18481 the Darwin support.  Higher values produce more verbose output.
18482
18483 @item show debug darwin
18484 @kindex show debug darwin
18485 Show the current state of Darwin messages.
18486
18487 @item set debug mach-o @var{num}
18488 @kindex set debug mach-o
18489 When set to a non zero value, enables debugging messages while
18490 @value{GDBN} is reading Darwin object files.  (@dfn{Mach-O} is the
18491 file format used on Darwin for object and executable files.)  Higher
18492 values produce more verbose output.  This is a command to diagnose
18493 problems internal to @value{GDBN} and should not be needed in normal
18494 usage.
18495
18496 @item show debug mach-o
18497 @kindex show debug mach-o
18498 Show the current state of Mach-O file messages.
18499
18500 @item set mach-exceptions on
18501 @itemx set mach-exceptions off
18502 @kindex set mach-exceptions
18503 On Darwin, faults are first reported as a Mach exception and are then
18504 mapped to a Posix signal.  Use this command to turn on trapping of
18505 Mach exceptions in the inferior.  This might be sometimes useful to
18506 better understand the cause of a fault.  The default is off.
18507
18508 @item show mach-exceptions
18509 @kindex show mach-exceptions
18510 Show the current state of exceptions trapping.
18511 @end table
18512
18513
18514 @node Embedded OS
18515 @section Embedded Operating Systems
18516
18517 This section describes configurations involving the debugging of
18518 embedded operating systems that are available for several different
18519 architectures.
18520
18521 @menu
18522 * VxWorks::                     Using @value{GDBN} with VxWorks
18523 @end menu
18524
18525 @value{GDBN} includes the ability to debug programs running on
18526 various real-time operating systems.
18527
18528 @node VxWorks
18529 @subsection Using @value{GDBN} with VxWorks
18530
18531 @cindex VxWorks
18532
18533 @table @code
18534
18535 @kindex target vxworks
18536 @item target vxworks @var{machinename}
18537 A VxWorks system, attached via TCP/IP.  The argument @var{machinename}
18538 is the target system's machine name or IP address.
18539
18540 @end table
18541
18542 On VxWorks, @code{load} links @var{filename} dynamically on the
18543 current target system as well as adding its symbols in @value{GDBN}.
18544
18545 @value{GDBN} enables developers to spawn and debug tasks running on networked
18546 VxWorks targets from a Unix host.  Already-running tasks spawned from
18547 the VxWorks shell can also be debugged.  @value{GDBN} uses code that runs on
18548 both the Unix host and on the VxWorks target.  The program
18549 @code{@value{GDBP}} is installed and executed on the Unix host.  (It may be
18550 installed with the name @code{vxgdb}, to distinguish it from a
18551 @value{GDBN} for debugging programs on the host itself.)
18552
18553 @table @code
18554 @item VxWorks-timeout @var{args}
18555 @kindex vxworks-timeout
18556 All VxWorks-based targets now support the option @code{vxworks-timeout}.
18557 This option is set by the user, and  @var{args} represents the number of
18558 seconds @value{GDBN} waits for responses to rpc's.  You might use this if
18559 your VxWorks target is a slow software simulator or is on the far side
18560 of a thin network line.
18561 @end table
18562
18563 The following information on connecting to VxWorks was current when
18564 this manual was produced; newer releases of VxWorks may use revised
18565 procedures.
18566
18567 @findex INCLUDE_RDB
18568 To use @value{GDBN} with VxWorks, you must rebuild your VxWorks kernel
18569 to include the remote debugging interface routines in the VxWorks
18570 library @file{rdb.a}.  To do this, define @code{INCLUDE_RDB} in the
18571 VxWorks configuration file @file{configAll.h} and rebuild your VxWorks
18572 kernel.  The resulting kernel contains @file{rdb.a}, and spawns the
18573 source debugging task @code{tRdbTask} when VxWorks is booted.  For more
18574 information on configuring and remaking VxWorks, see the manufacturer's
18575 manual.
18576 @c VxWorks, see the @cite{VxWorks Programmer's Guide}.
18577
18578 Once you have included @file{rdb.a} in your VxWorks system image and set
18579 your Unix execution search path to find @value{GDBN}, you are ready to
18580 run @value{GDBN}.  From your Unix host, run @code{@value{GDBP}} (or
18581 @code{vxgdb}, depending on your installation).
18582
18583 @value{GDBN} comes up showing the prompt:
18584
18585 @smallexample
18586 (vxgdb)
18587 @end smallexample
18588
18589 @menu
18590 * VxWorks Connection::          Connecting to VxWorks
18591 * VxWorks Download::            VxWorks download
18592 * VxWorks Attach::              Running tasks
18593 @end menu
18594
18595 @node VxWorks Connection
18596 @subsubsection Connecting to VxWorks
18597
18598 The @value{GDBN} command @code{target} lets you connect to a VxWorks target on the
18599 network.  To connect to a target whose host name is ``@code{tt}'', type:
18600
18601 @smallexample
18602 (vxgdb) target vxworks tt
18603 @end smallexample
18604
18605 @need 750
18606 @value{GDBN} displays messages like these:
18607
18608 @smallexample
18609 Attaching remote machine across net...
18610 Connected to tt.
18611 @end smallexample
18612
18613 @need 1000
18614 @value{GDBN} then attempts to read the symbol tables of any object modules
18615 loaded into the VxWorks target since it was last booted.  @value{GDBN} locates
18616 these files by searching the directories listed in the command search
18617 path (@pxref{Environment, ,Your Program's Environment}); if it fails
18618 to find an object file, it displays a message such as:
18619
18620 @smallexample
18621 prog.o: No such file or directory.
18622 @end smallexample
18623
18624 When this happens, add the appropriate directory to the search path with
18625 the @value{GDBN} command @code{path}, and execute the @code{target}
18626 command again.
18627
18628 @node VxWorks Download
18629 @subsubsection VxWorks Download
18630
18631 @cindex download to VxWorks
18632 If you have connected to the VxWorks target and you want to debug an
18633 object that has not yet been loaded, you can use the @value{GDBN}
18634 @code{load} command to download a file from Unix to VxWorks
18635 incrementally.  The object file given as an argument to the @code{load}
18636 command is actually opened twice: first by the VxWorks target in order
18637 to download the code, then by @value{GDBN} in order to read the symbol
18638 table.  This can lead to problems if the current working directories on
18639 the two systems differ.  If both systems have NFS mounted the same
18640 filesystems, you can avoid these problems by using absolute paths.
18641 Otherwise, it is simplest to set the working directory on both systems
18642 to the directory in which the object file resides, and then to reference
18643 the file by its name, without any path.  For instance, a program
18644 @file{prog.o} may reside in @file{@var{vxpath}/vw/demo/rdb} in VxWorks
18645 and in @file{@var{hostpath}/vw/demo/rdb} on the host.  To load this
18646 program, type this on VxWorks:
18647
18648 @smallexample
18649 -> cd "@var{vxpath}/vw/demo/rdb"
18650 @end smallexample
18651
18652 @noindent
18653 Then, in @value{GDBN}, type:
18654
18655 @smallexample
18656 (vxgdb) cd @var{hostpath}/vw/demo/rdb
18657 (vxgdb) load prog.o
18658 @end smallexample
18659
18660 @value{GDBN} displays a response similar to this:
18661
18662 @smallexample
18663 Reading symbol data from wherever/vw/demo/rdb/prog.o... done.
18664 @end smallexample
18665
18666 You can also use the @code{load} command to reload an object module
18667 after editing and recompiling the corresponding source file.  Note that
18668 this makes @value{GDBN} delete all currently-defined breakpoints,
18669 auto-displays, and convenience variables, and to clear the value
18670 history.  (This is necessary in order to preserve the integrity of
18671 debugger's data structures that reference the target system's symbol
18672 table.)
18673
18674 @node VxWorks Attach
18675 @subsubsection Running Tasks
18676
18677 @cindex running VxWorks tasks
18678 You can also attach to an existing task using the @code{attach} command as
18679 follows:
18680
18681 @smallexample
18682 (vxgdb) attach @var{task}
18683 @end smallexample
18684
18685 @noindent
18686 where @var{task} is the VxWorks hexadecimal task ID.  The task can be running
18687 or suspended when you attach to it.  Running tasks are suspended at
18688 the time of attachment.
18689
18690 @node Embedded Processors
18691 @section Embedded Processors
18692
18693 This section goes into details specific to particular embedded
18694 configurations.
18695
18696 @cindex send command to simulator
18697 Whenever a specific embedded processor has a simulator, @value{GDBN}
18698 allows to send an arbitrary command to the simulator.
18699
18700 @table @code
18701 @item sim @var{command}
18702 @kindex sim@r{, a command}
18703 Send an arbitrary @var{command} string to the simulator.  Consult the
18704 documentation for the specific simulator in use for information about
18705 acceptable commands.
18706 @end table
18707
18708
18709 @menu
18710 * ARM::                         ARM RDI
18711 * M32R/D::                      Renesas M32R/D
18712 * M68K::                        Motorola M68K
18713 * MicroBlaze::                  Xilinx MicroBlaze
18714 * MIPS Embedded::               MIPS Embedded
18715 * OpenRISC 1000::               OpenRisc 1000
18716 * PA::                          HP PA Embedded
18717 * PowerPC Embedded::            PowerPC Embedded
18718 * Sparclet::                    Tsqware Sparclet
18719 * Sparclite::                   Fujitsu Sparclite
18720 * Z8000::                       Zilog Z8000
18721 * AVR::                         Atmel AVR
18722 * CRIS::                        CRIS
18723 * Super-H::                     Renesas Super-H
18724 @end menu
18725
18726 @node ARM
18727 @subsection ARM
18728 @cindex ARM RDI
18729
18730 @table @code
18731 @kindex target rdi
18732 @item target rdi @var{dev}
18733 ARM Angel monitor, via RDI library interface to ADP protocol.  You may
18734 use this target to communicate with both boards running the Angel
18735 monitor, or with the EmbeddedICE JTAG debug device.
18736
18737 @kindex target rdp
18738 @item target rdp @var{dev}
18739 ARM Demon monitor.
18740
18741 @end table
18742
18743 @value{GDBN} provides the following ARM-specific commands:
18744
18745 @table @code
18746 @item set arm disassembler
18747 @kindex set arm
18748 This commands selects from a list of disassembly styles.  The
18749 @code{"std"} style is the standard style.
18750
18751 @item show arm disassembler
18752 @kindex show arm
18753 Show the current disassembly style.
18754
18755 @item set arm apcs32
18756 @cindex ARM 32-bit mode
18757 This command toggles ARM operation mode between 32-bit and 26-bit.
18758
18759 @item show arm apcs32
18760 Display the current usage of the ARM 32-bit mode.
18761
18762 @item set arm fpu @var{fputype}
18763 This command sets the ARM floating-point unit (FPU) type.  The
18764 argument @var{fputype} can be one of these:
18765
18766 @table @code
18767 @item auto
18768 Determine the FPU type by querying the OS ABI.
18769 @item softfpa
18770 Software FPU, with mixed-endian doubles on little-endian ARM
18771 processors.
18772 @item fpa
18773 GCC-compiled FPA co-processor.
18774 @item softvfp
18775 Software FPU with pure-endian doubles.
18776 @item vfp
18777 VFP co-processor.
18778 @end table
18779
18780 @item show arm fpu
18781 Show the current type of the FPU.
18782
18783 @item set arm abi
18784 This command forces @value{GDBN} to use the specified ABI.
18785
18786 @item show arm abi
18787 Show the currently used ABI.
18788
18789 @item set arm fallback-mode (arm|thumb|auto)
18790 @value{GDBN} uses the symbol table, when available, to determine
18791 whether instructions are ARM or Thumb.  This command controls
18792 @value{GDBN}'s default behavior when the symbol table is not
18793 available.  The default is @samp{auto}, which causes @value{GDBN} to
18794 use the current execution mode (from the @code{T} bit in the @code{CPSR}
18795 register).
18796
18797 @item show arm fallback-mode
18798 Show the current fallback instruction mode.
18799
18800 @item set arm force-mode (arm|thumb|auto)
18801 This command overrides use of the symbol table to determine whether
18802 instructions are ARM or Thumb.  The default is @samp{auto}, which
18803 causes @value{GDBN} to use the symbol table and then the setting
18804 of @samp{set arm fallback-mode}.
18805
18806 @item show arm force-mode
18807 Show the current forced instruction mode.
18808
18809 @item set debug arm
18810 Toggle whether to display ARM-specific debugging messages from the ARM
18811 target support subsystem.
18812
18813 @item show debug arm
18814 Show whether ARM-specific debugging messages are enabled.
18815 @end table
18816
18817 The following commands are available when an ARM target is debugged
18818 using the RDI interface:
18819
18820 @table @code
18821 @item rdilogfile @r{[}@var{file}@r{]}
18822 @kindex rdilogfile
18823 @cindex ADP (Angel Debugger Protocol) logging
18824 Set the filename for the ADP (Angel Debugger Protocol) packet log.
18825 With an argument, sets the log file to the specified @var{file}.  With
18826 no argument, show the current log file name.  The default log file is
18827 @file{rdi.log}.
18828
18829 @item rdilogenable @r{[}@var{arg}@r{]}
18830 @kindex rdilogenable
18831 Control logging of ADP packets.  With an argument of 1 or @code{"yes"}
18832 enables logging, with an argument 0 or @code{"no"} disables it.  With
18833 no arguments displays the current setting.  When logging is enabled,
18834 ADP packets exchanged between @value{GDBN} and the RDI target device
18835 are logged to a file.
18836
18837 @item set rdiromatzero
18838 @kindex set rdiromatzero
18839 @cindex ROM at zero address, RDI
18840 Tell @value{GDBN} whether the target has ROM at address 0.  If on,
18841 vector catching is disabled, so that zero address can be used.  If off
18842 (the default), vector catching is enabled.  For this command to take
18843 effect, it needs to be invoked prior to the @code{target rdi} command.
18844
18845 @item show rdiromatzero
18846 @kindex show rdiromatzero
18847 Show the current setting of ROM at zero address.
18848
18849 @item set rdiheartbeat
18850 @kindex set rdiheartbeat
18851 @cindex RDI heartbeat
18852 Enable or disable RDI heartbeat packets.  It is not recommended to
18853 turn on this option, since it confuses ARM and EPI JTAG interface, as
18854 well as the Angel monitor.
18855
18856 @item show rdiheartbeat
18857 @kindex show rdiheartbeat
18858 Show the setting of RDI heartbeat packets.
18859 @end table
18860
18861 @table @code
18862 @item target sim @r{[}@var{simargs}@r{]} @dots{} 
18863 The @value{GDBN} ARM simulator accepts the following optional arguments.
18864
18865 @table @code
18866 @item --swi-support=@var{type}
18867 Tell the simulator which SWI interfaces to support.
18868 @var{type} may be a comma separated list of the following values.
18869 The default value is @code{all}.
18870
18871 @table @code
18872 @item none
18873 @item demon
18874 @item angel
18875 @item redboot
18876 @item all
18877 @end table
18878 @end table
18879 @end table
18880
18881 @node M32R/D
18882 @subsection Renesas M32R/D and M32R/SDI
18883
18884 @table @code
18885 @kindex target m32r
18886 @item target m32r @var{dev}
18887 Renesas M32R/D ROM monitor.
18888
18889 @kindex target m32rsdi
18890 @item target m32rsdi @var{dev}
18891 Renesas M32R SDI server, connected via parallel port to the board.
18892 @end table
18893
18894 The following @value{GDBN} commands are specific to the M32R monitor:
18895
18896 @table @code
18897 @item set download-path @var{path}
18898 @kindex set download-path
18899 @cindex find downloadable @sc{srec} files (M32R)
18900 Set the default path for finding downloadable @sc{srec} files.
18901
18902 @item show download-path
18903 @kindex show download-path
18904 Show the default path for downloadable @sc{srec} files.
18905
18906 @item set board-address @var{addr}
18907 @kindex set board-address
18908 @cindex M32-EVA target board address
18909 Set the IP address for the M32R-EVA target board.
18910
18911 @item show board-address
18912 @kindex show board-address
18913 Show the current IP address of the target board.
18914
18915 @item set server-address @var{addr}
18916 @kindex set server-address
18917 @cindex download server address (M32R)
18918 Set the IP address for the download server, which is the @value{GDBN}'s
18919 host machine.
18920
18921 @item show server-address
18922 @kindex show server-address
18923 Display the IP address of the download server.
18924
18925 @item upload @r{[}@var{file}@r{]}
18926 @kindex upload@r{, M32R}
18927 Upload the specified @sc{srec} @var{file} via the monitor's Ethernet
18928 upload capability.  If no @var{file} argument is given, the current
18929 executable file is uploaded.
18930
18931 @item tload @r{[}@var{file}@r{]}
18932 @kindex tload@r{, M32R}
18933 Test the @code{upload} command.
18934 @end table
18935
18936 The following commands are available for M32R/SDI:
18937
18938 @table @code
18939 @item sdireset
18940 @kindex sdireset
18941 @cindex reset SDI connection, M32R
18942 This command resets the SDI connection.
18943
18944 @item sdistatus
18945 @kindex sdistatus
18946 This command shows the SDI connection status.
18947
18948 @item debug_chaos
18949 @kindex debug_chaos
18950 @cindex M32R/Chaos debugging
18951 Instructs the remote that M32R/Chaos debugging is to be used.
18952
18953 @item use_debug_dma
18954 @kindex use_debug_dma
18955 Instructs the remote to use the DEBUG_DMA method of accessing memory.
18956
18957 @item use_mon_code
18958 @kindex use_mon_code
18959 Instructs the remote to use the MON_CODE method of accessing memory.
18960
18961 @item use_ib_break
18962 @kindex use_ib_break
18963 Instructs the remote to set breakpoints by IB break.
18964
18965 @item use_dbt_break
18966 @kindex use_dbt_break
18967 Instructs the remote to set breakpoints by DBT.
18968 @end table
18969
18970 @node M68K
18971 @subsection M68k
18972
18973 The Motorola m68k configuration includes ColdFire support, and a
18974 target command for the following ROM monitor.
18975
18976 @table @code
18977
18978 @kindex target dbug
18979 @item target dbug @var{dev}
18980 dBUG ROM monitor for Motorola ColdFire.
18981
18982 @end table
18983
18984 @node MicroBlaze
18985 @subsection MicroBlaze
18986 @cindex Xilinx MicroBlaze
18987 @cindex XMD, Xilinx Microprocessor Debugger
18988
18989 The MicroBlaze is a soft-core processor supported on various Xilinx
18990 FPGAs, such as Spartan or Virtex series.  Boards with these processors
18991 usually have JTAG ports which connect to a host system running the Xilinx
18992 Embedded Development Kit (EDK) or Software Development Kit (SDK).
18993 This host system is used to download the configuration bitstream to
18994 the target FPGA.  The Xilinx Microprocessor Debugger (XMD) program
18995 communicates with the target board using the JTAG interface and
18996 presents a @code{gdbserver} interface to the board.  By default
18997 @code{xmd} uses port @code{1234}.  (While it is possible to change 
18998 this default port, it requires the use of undocumented @code{xmd} 
18999 commands.  Contact Xilinx support if you need to do this.)
19000
19001 Use these GDB commands to connect to the MicroBlaze target processor.
19002
19003 @table @code
19004 @item target remote :1234
19005 Use this command to connect to the target if you are running @value{GDBN}
19006 on the same system as @code{xmd}.
19007
19008 @item target remote @var{xmd-host}:1234
19009 Use this command to connect to the target if it is connected to @code{xmd}
19010 running on a different system named @var{xmd-host}.
19011
19012 @item load
19013 Use this command to download a program to the MicroBlaze target.
19014
19015 @item set debug microblaze @var{n}
19016 Enable MicroBlaze-specific debugging messages if non-zero.
19017
19018 @item show debug microblaze @var{n}
19019 Show MicroBlaze-specific debugging level.
19020 @end table
19021
19022 @node MIPS Embedded
19023 @subsection MIPS Embedded
19024
19025 @cindex MIPS boards
19026 @value{GDBN} can use the MIPS remote debugging protocol to talk to a
19027 MIPS board attached to a serial line.  This is available when
19028 you configure @value{GDBN} with @samp{--target=mips-idt-ecoff}.
19029
19030 @need 1000
19031 Use these @value{GDBN} commands to specify the connection to your target board:
19032
19033 @table @code
19034 @item target mips @var{port}
19035 @kindex target mips @var{port}
19036 To run a program on the board, start up @code{@value{GDBP}} with the
19037 name of your program as the argument.  To connect to the board, use the
19038 command @samp{target mips @var{port}}, where @var{port} is the name of
19039 the serial port connected to the board.  If the program has not already
19040 been downloaded to the board, you may use the @code{load} command to
19041 download it.  You can then use all the usual @value{GDBN} commands.
19042
19043 For example, this sequence connects to the target board through a serial
19044 port, and loads and runs a program called @var{prog} through the
19045 debugger:
19046
19047 @smallexample
19048 host$ @value{GDBP} @var{prog}
19049 @value{GDBN} is free software and @dots{}
19050 (@value{GDBP}) target mips /dev/ttyb
19051 (@value{GDBP}) load @var{prog}
19052 (@value{GDBP}) run
19053 @end smallexample
19054
19055 @item target mips @var{hostname}:@var{portnumber}
19056 On some @value{GDBN} host configurations, you can specify a TCP
19057 connection (for instance, to a serial line managed by a terminal
19058 concentrator) instead of a serial port, using the syntax
19059 @samp{@var{hostname}:@var{portnumber}}.
19060
19061 @item target pmon @var{port}
19062 @kindex target pmon @var{port}
19063 PMON ROM monitor.
19064
19065 @item target ddb @var{port}
19066 @kindex target ddb @var{port}
19067 NEC's DDB variant of PMON for Vr4300.
19068
19069 @item target lsi @var{port}
19070 @kindex target lsi @var{port}
19071 LSI variant of PMON.
19072
19073 @kindex target r3900
19074 @item target r3900 @var{dev}
19075 Densan DVE-R3900 ROM monitor for Toshiba R3900 Mips.
19076
19077 @kindex target array
19078 @item target array @var{dev}
19079 Array Tech LSI33K RAID controller board.
19080
19081 @end table
19082
19083
19084 @noindent
19085 @value{GDBN} also supports these special commands for MIPS targets:
19086
19087 @table @code
19088 @item set mipsfpu double
19089 @itemx set mipsfpu single
19090 @itemx set mipsfpu none
19091 @itemx set mipsfpu auto
19092 @itemx show mipsfpu
19093 @kindex set mipsfpu
19094 @kindex show mipsfpu
19095 @cindex MIPS remote floating point
19096 @cindex floating point, MIPS remote
19097 If your target board does not support the MIPS floating point
19098 coprocessor, you should use the command @samp{set mipsfpu none} (if you
19099 need this, you may wish to put the command in your @value{GDBN} init
19100 file).  This tells @value{GDBN} how to find the return value of
19101 functions which return floating point values.  It also allows
19102 @value{GDBN} to avoid saving the floating point registers when calling
19103 functions on the board.  If you are using a floating point coprocessor
19104 with only single precision floating point support, as on the @sc{r4650}
19105 processor, use the command @samp{set mipsfpu single}.  The default
19106 double precision floating point coprocessor may be selected using
19107 @samp{set mipsfpu double}.
19108
19109 In previous versions the only choices were double precision or no
19110 floating point, so @samp{set mipsfpu on} will select double precision
19111 and @samp{set mipsfpu off} will select no floating point.
19112
19113 As usual, you can inquire about the @code{mipsfpu} variable with
19114 @samp{show mipsfpu}.
19115
19116 @item set timeout @var{seconds}
19117 @itemx set retransmit-timeout @var{seconds}
19118 @itemx show timeout
19119 @itemx show retransmit-timeout
19120 @cindex @code{timeout}, MIPS protocol
19121 @cindex @code{retransmit-timeout}, MIPS protocol
19122 @kindex set timeout
19123 @kindex show timeout
19124 @kindex set retransmit-timeout
19125 @kindex show retransmit-timeout
19126 You can control the timeout used while waiting for a packet, in the MIPS
19127 remote protocol, with the @code{set timeout @var{seconds}} command.  The
19128 default is 5 seconds.  Similarly, you can control the timeout used while
19129 waiting for an acknowledgment of a packet with the @code{set
19130 retransmit-timeout @var{seconds}} command.  The default is 3 seconds.
19131 You can inspect both values with @code{show timeout} and @code{show
19132 retransmit-timeout}.  (These commands are @emph{only} available when
19133 @value{GDBN} is configured for @samp{--target=mips-idt-ecoff}.)
19134
19135 The timeout set by @code{set timeout} does not apply when @value{GDBN}
19136 is waiting for your program to stop.  In that case, @value{GDBN} waits
19137 forever because it has no way of knowing how long the program is going
19138 to run before stopping.
19139
19140 @item set syn-garbage-limit @var{num}
19141 @kindex set syn-garbage-limit@r{, MIPS remote}
19142 @cindex synchronize with remote MIPS target
19143 Limit the maximum number of characters @value{GDBN} should ignore when
19144 it tries to synchronize with the remote target.  The default is 10
19145 characters.  Setting the limit to -1 means there's no limit.
19146
19147 @item show syn-garbage-limit
19148 @kindex show syn-garbage-limit@r{, MIPS remote}
19149 Show the current limit on the number of characters to ignore when
19150 trying to synchronize with the remote system.
19151
19152 @item set monitor-prompt @var{prompt}
19153 @kindex set monitor-prompt@r{, MIPS remote}
19154 @cindex remote monitor prompt
19155 Tell @value{GDBN} to expect the specified @var{prompt} string from the
19156 remote monitor.  The default depends on the target:
19157 @table @asis
19158 @item pmon target
19159 @samp{PMON}
19160 @item ddb target
19161 @samp{NEC010}
19162 @item lsi target
19163 @samp{PMON>}
19164 @end table
19165
19166 @item show monitor-prompt
19167 @kindex show monitor-prompt@r{, MIPS remote}
19168 Show the current strings @value{GDBN} expects as the prompt from the
19169 remote monitor.
19170
19171 @item set monitor-warnings
19172 @kindex set monitor-warnings@r{, MIPS remote}
19173 Enable or disable monitor warnings about hardware breakpoints.  This
19174 has effect only for the @code{lsi} target.  When on, @value{GDBN} will
19175 display warning messages whose codes are returned by the @code{lsi}
19176 PMON monitor for breakpoint commands.
19177
19178 @item show monitor-warnings
19179 @kindex show monitor-warnings@r{, MIPS remote}
19180 Show the current setting of printing monitor warnings.
19181
19182 @item pmon @var{command}
19183 @kindex pmon@r{, MIPS remote}
19184 @cindex send PMON command
19185 This command allows sending an arbitrary @var{command} string to the
19186 monitor.  The monitor must be in debug mode for this to work.
19187 @end table
19188
19189 @node OpenRISC 1000
19190 @subsection OpenRISC 1000
19191 @cindex OpenRISC 1000
19192
19193 @cindex or1k boards
19194 See OR1k Architecture document (@uref{www.opencores.org}) for more information
19195 about platform and commands.
19196
19197 @table @code
19198
19199 @kindex target jtag
19200 @item target jtag jtag://@var{host}:@var{port}
19201
19202 Connects to remote JTAG server.
19203 JTAG remote server can be either an or1ksim or JTAG server,
19204 connected via parallel port to the board.
19205
19206 Example: @code{target jtag jtag://localhost:9999}
19207
19208 @kindex or1ksim
19209 @item or1ksim @var{command}
19210 If connected to @code{or1ksim} OpenRISC 1000 Architectural
19211 Simulator, proprietary commands can be executed.
19212
19213 @kindex info or1k spr
19214 @item info or1k spr
19215 Displays spr groups.
19216
19217 @item info or1k spr @var{group}
19218 @itemx info or1k spr @var{groupno}
19219 Displays register names in selected group.
19220
19221 @item info or1k spr @var{group} @var{register}
19222 @itemx info or1k spr @var{register}
19223 @itemx info or1k spr @var{groupno} @var{registerno}
19224 @itemx info or1k spr @var{registerno}
19225 Shows information about specified spr register.
19226
19227 @kindex spr
19228 @item spr @var{group} @var{register} @var{value}
19229 @itemx spr @var{register @var{value}}
19230 @itemx spr @var{groupno} @var{registerno @var{value}}
19231 @itemx spr @var{registerno @var{value}}
19232 Writes @var{value} to specified spr register.
19233 @end table
19234
19235 Some implementations of OpenRISC 1000 Architecture also have hardware trace.
19236 It is very similar to @value{GDBN} trace, except it does not interfere with normal
19237 program execution and is thus much faster.  Hardware breakpoints/watchpoint
19238 triggers can be set using:
19239 @table @code
19240 @item $LEA/$LDATA
19241 Load effective address/data
19242 @item $SEA/$SDATA
19243 Store effective address/data
19244 @item $AEA/$ADATA
19245 Access effective address ($SEA or $LEA) or data ($SDATA/$LDATA)
19246 @item $FETCH
19247 Fetch data
19248 @end table
19249
19250 When triggered, it can capture low level data, like: @code{PC}, @code{LSEA},
19251 @code{LDATA}, @code{SDATA}, @code{READSPR}, @code{WRITESPR}, @code{INSTR}.
19252
19253 @code{htrace} commands:
19254 @cindex OpenRISC 1000 htrace
19255 @table @code
19256 @kindex hwatch
19257 @item hwatch @var{conditional}
19258 Set hardware watchpoint on combination of Load/Store Effective Address(es)
19259 or Data.  For example:
19260
19261 @code{hwatch ($LEA == my_var) && ($LDATA < 50) || ($SEA == my_var) && ($SDATA >= 50)}
19262
19263 @code{hwatch ($LEA == my_var) && ($LDATA < 50) || ($SEA == my_var) && ($SDATA >= 50)}
19264
19265 @kindex htrace
19266 @item htrace info
19267 Display information about current HW trace configuration.
19268
19269 @item htrace trigger @var{conditional}
19270 Set starting criteria for HW trace.
19271
19272 @item htrace qualifier @var{conditional}
19273 Set acquisition qualifier for HW trace.
19274
19275 @item htrace stop @var{conditional}
19276 Set HW trace stopping criteria.
19277
19278 @item htrace record [@var{data}]*
19279 Selects the data to be recorded, when qualifier is met and HW trace was
19280 triggered.
19281
19282 @item htrace enable
19283 @itemx htrace disable
19284 Enables/disables the HW trace.
19285
19286 @item htrace rewind [@var{filename}]
19287 Clears currently recorded trace data.
19288
19289 If filename is specified, new trace file is made and any newly collected data
19290 will be written there.
19291
19292 @item htrace print [@var{start} [@var{len}]]
19293 Prints trace buffer, using current record configuration.
19294
19295 @item htrace mode continuous
19296 Set continuous trace mode.
19297
19298 @item htrace mode suspend
19299 Set suspend trace mode.
19300
19301 @end table
19302
19303 @node PowerPC Embedded
19304 @subsection PowerPC Embedded
19305
19306 @cindex DVC register
19307 @value{GDBN} supports using the DVC (Data Value Compare) register to
19308 implement in hardware simple hardware watchpoint conditions of the form:
19309
19310 @smallexample
19311 (@value{GDBP}) watch @var{ADDRESS|VARIABLE} \
19312   if  @var{ADDRESS|VARIABLE} == @var{CONSTANT EXPRESSION}
19313 @end smallexample
19314
19315 The DVC register will be automatically used when @value{GDBN} detects
19316 such pattern in a condition expression, and the created watchpoint uses one
19317 debug register (either the @code{exact-watchpoints} option is on and the
19318 variable is scalar, or the variable has a length of one byte).  This feature
19319 is available in native @value{GDBN} running on a Linux kernel version 2.6.34
19320 or newer.
19321
19322 When running on PowerPC embedded processors, @value{GDBN} automatically uses
19323 ranged hardware watchpoints, unless the @code{exact-watchpoints} option is on,
19324 in which case watchpoints using only one debug register are created when
19325 watching variables of scalar types.
19326
19327 You can create an artificial array to watch an arbitrary memory
19328 region using one of the following commands (@pxref{Expressions}):
19329
19330 @smallexample
19331 (@value{GDBP}) watch *((char *) @var{address})@@@var{length}
19332 (@value{GDBP}) watch @{char[@var{length}]@} @var{address}
19333 @end smallexample
19334
19335 PowerPC embedded processors support masked watchpoints.  See the discussion
19336 about the @code{mask} argument in @ref{Set Watchpoints}.
19337
19338 @cindex ranged breakpoint
19339 PowerPC embedded processors support hardware accelerated
19340 @dfn{ranged breakpoints}.  A ranged breakpoint stops execution of
19341 the inferior whenever it executes an instruction at any address within
19342 the range it specifies.  To set a ranged breakpoint in @value{GDBN},
19343 use the @code{break-range} command.
19344
19345 @value{GDBN} provides the following PowerPC-specific commands:
19346
19347 @table @code
19348 @kindex break-range
19349 @item break-range @var{start-location}, @var{end-location}
19350 Set a breakpoint for an address range.
19351 @var{start-location} and @var{end-location} can specify a function name,
19352 a line number, an offset of lines from the current line or from the start
19353 location, or an address of an instruction (see @ref{Specify Location},
19354 for a list of all the possible ways to specify a @var{location}.)
19355 The breakpoint will stop execution of the inferior whenever it
19356 executes an instruction at any address within the specified range,
19357 (including @var{start-location} and @var{end-location}.)
19358
19359 @kindex set powerpc
19360 @item set powerpc soft-float
19361 @itemx show powerpc soft-float
19362 Force @value{GDBN} to use (or not use) a software floating point calling
19363 convention.  By default, @value{GDBN} selects the calling convention based
19364 on the selected architecture and the provided executable file.
19365
19366 @item set powerpc vector-abi
19367 @itemx show powerpc vector-abi
19368 Force @value{GDBN} to use the specified calling convention for vector
19369 arguments and return values.  The valid options are @samp{auto};
19370 @samp{generic}, to avoid vector registers even if they are present;
19371 @samp{altivec}, to use AltiVec registers; and @samp{spe} to use SPE
19372 registers.  By default, @value{GDBN} selects the calling convention
19373 based on the selected architecture and the provided executable file.
19374
19375 @item set powerpc exact-watchpoints
19376 @itemx show powerpc exact-watchpoints
19377 Allow @value{GDBN} to use only one debug register when watching a variable
19378 of scalar type, thus assuming that the variable is accessed through the
19379 address of its first byte.
19380
19381 @kindex target dink32
19382 @item target dink32 @var{dev}
19383 DINK32 ROM monitor.
19384
19385 @kindex target ppcbug
19386 @item target ppcbug @var{dev}
19387 @kindex target ppcbug1
19388 @item target ppcbug1 @var{dev}
19389 PPCBUG ROM monitor for PowerPC.
19390
19391 @kindex target sds
19392 @item target sds @var{dev}
19393 SDS monitor, running on a PowerPC board (such as Motorola's ADS).
19394 @end table
19395
19396 @cindex SDS protocol
19397 The following commands specific to the SDS protocol are supported
19398 by @value{GDBN}:
19399
19400 @table @code
19401 @item set sdstimeout @var{nsec}
19402 @kindex set sdstimeout
19403 Set the timeout for SDS protocol reads to be @var{nsec} seconds.  The
19404 default is 2 seconds.
19405
19406 @item show sdstimeout
19407 @kindex show sdstimeout
19408 Show the current value of the SDS timeout.
19409
19410 @item sds @var{command}
19411 @kindex sds@r{, a command}
19412 Send the specified @var{command} string to the SDS monitor.
19413 @end table
19414
19415
19416 @node PA
19417 @subsection HP PA Embedded
19418
19419 @table @code
19420
19421 @kindex target op50n
19422 @item target op50n @var{dev}
19423 OP50N monitor, running on an OKI HPPA board.
19424
19425 @kindex target w89k
19426 @item target w89k @var{dev}
19427 W89K monitor, running on a Winbond HPPA board.
19428
19429 @end table
19430
19431 @node Sparclet
19432 @subsection Tsqware Sparclet
19433
19434 @cindex Sparclet
19435
19436 @value{GDBN} enables developers to debug tasks running on
19437 Sparclet targets from a Unix host.
19438 @value{GDBN} uses code that runs on
19439 both the Unix host and on the Sparclet target.  The program
19440 @code{@value{GDBP}} is installed and executed on the Unix host.
19441
19442 @table @code
19443 @item remotetimeout @var{args}
19444 @kindex remotetimeout
19445 @value{GDBN} supports the option @code{remotetimeout}.
19446 This option is set by the user, and  @var{args} represents the number of
19447 seconds @value{GDBN} waits for responses.
19448 @end table
19449
19450 @cindex compiling, on Sparclet
19451 When compiling for debugging, include the options @samp{-g} to get debug
19452 information and @samp{-Ttext} to relocate the program to where you wish to
19453 load it on the target.  You may also want to add the options @samp{-n} or
19454 @samp{-N} in order to reduce the size of the sections.  Example:
19455
19456 @smallexample
19457 sparclet-aout-gcc prog.c -Ttext 0x12010000 -g -o prog -N
19458 @end smallexample
19459
19460 You can use @code{objdump} to verify that the addresses are what you intended:
19461
19462 @smallexample
19463 sparclet-aout-objdump --headers --syms prog
19464 @end smallexample
19465
19466 @cindex running, on Sparclet
19467 Once you have set
19468 your Unix execution search path to find @value{GDBN}, you are ready to
19469 run @value{GDBN}.  From your Unix host, run @code{@value{GDBP}}
19470 (or @code{sparclet-aout-gdb}, depending on your installation).
19471
19472 @value{GDBN} comes up showing the prompt:
19473
19474 @smallexample
19475 (gdbslet)
19476 @end smallexample
19477
19478 @menu
19479 * Sparclet File::                Setting the file to debug
19480 * Sparclet Connection::          Connecting to Sparclet
19481 * Sparclet Download::            Sparclet download
19482 * Sparclet Execution::           Running and debugging
19483 @end menu
19484
19485 @node Sparclet File
19486 @subsubsection Setting File to Debug
19487
19488 The @value{GDBN} command @code{file} lets you choose with program to debug.
19489
19490 @smallexample
19491 (gdbslet) file prog
19492 @end smallexample
19493
19494 @need 1000
19495 @value{GDBN} then attempts to read the symbol table of @file{prog}.
19496 @value{GDBN} locates
19497 the file by searching the directories listed in the command search
19498 path.
19499 If the file was compiled with debug information (option @samp{-g}), source
19500 files will be searched as well.
19501 @value{GDBN} locates
19502 the source files by searching the directories listed in the directory search
19503 path (@pxref{Environment, ,Your Program's Environment}).
19504 If it fails
19505 to find a file, it displays a message such as:
19506
19507 @smallexample
19508 prog: No such file or directory.
19509 @end smallexample
19510
19511 When this happens, add the appropriate directories to the search paths with
19512 the @value{GDBN} commands @code{path} and @code{dir}, and execute the
19513 @code{target} command again.
19514
19515 @node Sparclet Connection
19516 @subsubsection Connecting to Sparclet
19517
19518 The @value{GDBN} command @code{target} lets you connect to a Sparclet target.
19519 To connect to a target on serial port ``@code{ttya}'', type:
19520
19521 @smallexample
19522 (gdbslet) target sparclet /dev/ttya
19523 Remote target sparclet connected to /dev/ttya
19524 main () at ../prog.c:3
19525 @end smallexample
19526
19527 @need 750
19528 @value{GDBN} displays messages like these:
19529
19530 @smallexample
19531 Connected to ttya.
19532 @end smallexample
19533
19534 @node Sparclet Download
19535 @subsubsection Sparclet Download
19536
19537 @cindex download to Sparclet
19538 Once connected to the Sparclet target,
19539 you can use the @value{GDBN}
19540 @code{load} command to download the file from the host to the target.
19541 The file name and load offset should be given as arguments to the @code{load}
19542 command.
19543 Since the file format is aout, the program must be loaded to the starting
19544 address.  You can use @code{objdump} to find out what this value is.  The load
19545 offset is an offset which is added to the VMA (virtual memory address)
19546 of each of the file's sections.
19547 For instance, if the program
19548 @file{prog} was linked to text address 0x1201000, with data at 0x12010160
19549 and bss at 0x12010170, in @value{GDBN}, type:
19550
19551 @smallexample
19552 (gdbslet) load prog 0x12010000
19553 Loading section .text, size 0xdb0 vma 0x12010000
19554 @end smallexample
19555
19556 If the code is loaded at a different address then what the program was linked
19557 to, you may need to use the @code{section} and @code{add-symbol-file} commands
19558 to tell @value{GDBN} where to map the symbol table.
19559
19560 @node Sparclet Execution
19561 @subsubsection Running and Debugging
19562
19563 @cindex running and debugging Sparclet programs
19564 You can now begin debugging the task using @value{GDBN}'s execution control
19565 commands, @code{b}, @code{step}, @code{run}, etc.  See the @value{GDBN}
19566 manual for the list of commands.
19567
19568 @smallexample
19569 (gdbslet) b main
19570 Breakpoint 1 at 0x12010000: file prog.c, line 3.
19571 (gdbslet) run
19572 Starting program: prog
19573 Breakpoint 1, main (argc=1, argv=0xeffff21c) at prog.c:3
19574 3        char *symarg = 0;
19575 (gdbslet) step
19576 4        char *execarg = "hello!";
19577 (gdbslet)
19578 @end smallexample
19579
19580 @node Sparclite
19581 @subsection Fujitsu Sparclite
19582
19583 @table @code
19584
19585 @kindex target sparclite
19586 @item target sparclite @var{dev}
19587 Fujitsu sparclite boards, used only for the purpose of loading.
19588 You must use an additional command to debug the program.
19589 For example: target remote @var{dev} using @value{GDBN} standard
19590 remote protocol.
19591
19592 @end table
19593
19594 @node Z8000
19595 @subsection Zilog Z8000
19596
19597 @cindex Z8000
19598 @cindex simulator, Z8000
19599 @cindex Zilog Z8000 simulator
19600
19601 When configured for debugging Zilog Z8000 targets, @value{GDBN} includes
19602 a Z8000 simulator.
19603
19604 For the Z8000 family, @samp{target sim} simulates either the Z8002 (the
19605 unsegmented variant of the Z8000 architecture) or the Z8001 (the
19606 segmented variant).  The simulator recognizes which architecture is
19607 appropriate by inspecting the object code.
19608
19609 @table @code
19610 @item target sim @var{args}
19611 @kindex sim
19612 @kindex target sim@r{, with Z8000}
19613 Debug programs on a simulated CPU.  If the simulator supports setup
19614 options, specify them via @var{args}.
19615 @end table
19616
19617 @noindent
19618 After specifying this target, you can debug programs for the simulated
19619 CPU in the same style as programs for your host computer; use the
19620 @code{file} command to load a new program image, the @code{run} command
19621 to run your program, and so on.
19622
19623 As well as making available all the usual machine registers
19624 (@pxref{Registers, ,Registers}), the Z8000 simulator provides three
19625 additional items of information as specially named registers:
19626
19627 @table @code
19628
19629 @item cycles
19630 Counts clock-ticks in the simulator.
19631
19632 @item insts
19633 Counts instructions run in the simulator.
19634
19635 @item time
19636 Execution time in 60ths of a second.
19637
19638 @end table
19639
19640 You can refer to these values in @value{GDBN} expressions with the usual
19641 conventions; for example, @w{@samp{b fputc if $cycles>5000}} sets a
19642 conditional breakpoint that suspends only after at least 5000
19643 simulated clock ticks.
19644
19645 @node AVR
19646 @subsection Atmel AVR
19647 @cindex AVR
19648
19649 When configured for debugging the Atmel AVR, @value{GDBN} supports the
19650 following AVR-specific commands:
19651
19652 @table @code
19653 @item info io_registers
19654 @kindex info io_registers@r{, AVR}
19655 @cindex I/O registers (Atmel AVR)
19656 This command displays information about the AVR I/O registers.  For
19657 each register, @value{GDBN} prints its number and value.
19658 @end table
19659
19660 @node CRIS
19661 @subsection CRIS
19662 @cindex CRIS
19663
19664 When configured for debugging CRIS, @value{GDBN} provides the
19665 following CRIS-specific commands:
19666
19667 @table @code
19668 @item set cris-version @var{ver}
19669 @cindex CRIS version
19670 Set the current CRIS version to @var{ver}, either @samp{10} or @samp{32}.
19671 The CRIS version affects register names and sizes.  This command is useful in
19672 case autodetection of the CRIS version fails.
19673
19674 @item show cris-version
19675 Show the current CRIS version.
19676
19677 @item set cris-dwarf2-cfi
19678 @cindex DWARF-2 CFI and CRIS
19679 Set the usage of DWARF-2 CFI for CRIS debugging.  The default is @samp{on}.
19680 Change to @samp{off} when using @code{gcc-cris} whose version is below 
19681 @code{R59}.
19682
19683 @item show cris-dwarf2-cfi
19684 Show the current state of using DWARF-2 CFI.
19685
19686 @item set cris-mode @var{mode}
19687 @cindex CRIS mode
19688 Set the current CRIS mode to @var{mode}.  It should only be changed when
19689 debugging in guru mode, in which case it should be set to 
19690 @samp{guru} (the default is @samp{normal}).
19691
19692 @item show cris-mode
19693 Show the current CRIS mode.
19694 @end table
19695
19696 @node Super-H
19697 @subsection Renesas Super-H
19698 @cindex Super-H
19699
19700 For the Renesas Super-H processor, @value{GDBN} provides these
19701 commands:
19702
19703 @table @code
19704 @item regs
19705 @kindex regs@r{, Super-H}
19706 Show the values of all Super-H registers.
19707
19708 @item set sh calling-convention @var{convention}
19709 @kindex set sh calling-convention
19710 Set the calling-convention used when calling functions from @value{GDBN}.
19711 Allowed values are @samp{gcc}, which is the default setting, and @samp{renesas}.
19712 With the @samp{gcc} setting, functions are called using the @value{NGCC} calling
19713 convention.  If the DWARF-2 information of the called function specifies
19714 that the function follows the Renesas calling convention, the function
19715 is called using the Renesas calling convention.  If the calling convention
19716 is set to @samp{renesas}, the Renesas calling convention is always used,
19717 regardless of the DWARF-2 information.  This can be used to override the
19718 default of @samp{gcc} if debug information is missing, or the compiler
19719 does not emit the DWARF-2 calling convention entry for a function.
19720
19721 @item show sh calling-convention
19722 @kindex show sh calling-convention
19723 Show the current calling convention setting.
19724
19725 @end table
19726
19727
19728 @node Architectures
19729 @section Architectures
19730
19731 This section describes characteristics of architectures that affect
19732 all uses of @value{GDBN} with the architecture, both native and cross.
19733
19734 @menu
19735 * i386::
19736 * A29K::
19737 * Alpha::
19738 * MIPS::
19739 * HPPA::               HP PA architecture
19740 * SPU::                Cell Broadband Engine SPU architecture
19741 * PowerPC::
19742 @end menu
19743
19744 @node i386
19745 @subsection x86 Architecture-specific Issues
19746
19747 @table @code
19748 @item set struct-convention @var{mode}
19749 @kindex set struct-convention
19750 @cindex struct return convention
19751 @cindex struct/union returned in registers
19752 Set the convention used by the inferior to return @code{struct}s and
19753 @code{union}s from functions to @var{mode}.  Possible values of
19754 @var{mode} are @code{"pcc"}, @code{"reg"}, and @code{"default"} (the
19755 default).  @code{"default"} or @code{"pcc"} means that @code{struct}s
19756 are returned on the stack, while @code{"reg"} means that a
19757 @code{struct} or a @code{union} whose size is 1, 2, 4, or 8 bytes will
19758 be returned in a register.
19759
19760 @item show struct-convention
19761 @kindex show struct-convention
19762 Show the current setting of the convention to return @code{struct}s
19763 from functions.
19764 @end table
19765
19766 @node A29K
19767 @subsection A29K
19768
19769 @table @code
19770
19771 @kindex set rstack_high_address
19772 @cindex AMD 29K register stack
19773 @cindex register stack, AMD29K
19774 @item set rstack_high_address @var{address}
19775 On AMD 29000 family processors, registers are saved in a separate
19776 @dfn{register stack}.  There is no way for @value{GDBN} to determine the
19777 extent of this stack.  Normally, @value{GDBN} just assumes that the
19778 stack is ``large enough''.  This may result in @value{GDBN} referencing
19779 memory locations that do not exist.  If necessary, you can get around
19780 this problem by specifying the ending address of the register stack with
19781 the @code{set rstack_high_address} command.  The argument should be an
19782 address, which you probably want to precede with @samp{0x} to specify in
19783 hexadecimal.
19784
19785 @kindex show rstack_high_address
19786 @item show rstack_high_address
19787 Display the current limit of the register stack, on AMD 29000 family
19788 processors.
19789
19790 @end table
19791
19792 @node Alpha
19793 @subsection Alpha
19794
19795 See the following section.
19796
19797 @node MIPS
19798 @subsection MIPS
19799
19800 @cindex stack on Alpha
19801 @cindex stack on MIPS
19802 @cindex Alpha stack
19803 @cindex MIPS stack
19804 Alpha- and MIPS-based computers use an unusual stack frame, which
19805 sometimes requires @value{GDBN} to search backward in the object code to
19806 find the beginning of a function.
19807
19808 @cindex response time, MIPS debugging
19809 To improve response time (especially for embedded applications, where
19810 @value{GDBN} may be restricted to a slow serial line for this search)
19811 you may want to limit the size of this search, using one of these
19812 commands:
19813
19814 @table @code
19815 @cindex @code{heuristic-fence-post} (Alpha, MIPS)
19816 @item set heuristic-fence-post @var{limit}
19817 Restrict @value{GDBN} to examining at most @var{limit} bytes in its
19818 search for the beginning of a function.  A value of @var{0} (the
19819 default) means there is no limit.  However, except for @var{0}, the
19820 larger the limit the more bytes @code{heuristic-fence-post} must search
19821 and therefore the longer it takes to run.  You should only need to use
19822 this command when debugging a stripped executable.
19823
19824 @item show heuristic-fence-post
19825 Display the current limit.
19826 @end table
19827
19828 @noindent
19829 These commands are available @emph{only} when @value{GDBN} is configured
19830 for debugging programs on Alpha or MIPS processors.
19831
19832 Several MIPS-specific commands are available when debugging MIPS
19833 programs:
19834
19835 @table @code
19836 @item set mips abi @var{arg}
19837 @kindex set mips abi
19838 @cindex set ABI for MIPS
19839 Tell @value{GDBN} which MIPS ABI is used by the inferior.  Possible
19840 values of @var{arg} are:
19841
19842 @table @samp
19843 @item auto
19844 The default ABI associated with the current binary (this is the
19845 default).
19846 @item o32
19847 @item o64
19848 @item n32
19849 @item n64
19850 @item eabi32
19851 @item eabi64
19852 @end table
19853
19854 @item show mips abi
19855 @kindex show mips abi
19856 Show the MIPS ABI used by @value{GDBN} to debug the inferior.
19857
19858 @item set mipsfpu
19859 @itemx show mipsfpu
19860 @xref{MIPS Embedded, set mipsfpu}.
19861
19862 @item set mips mask-address @var{arg}
19863 @kindex set mips mask-address
19864 @cindex MIPS addresses, masking
19865 This command determines whether the most-significant 32 bits of 64-bit
19866 MIPS addresses are masked off.  The argument @var{arg} can be
19867 @samp{on}, @samp{off}, or @samp{auto}.  The latter is the default
19868 setting, which lets @value{GDBN} determine the correct value.
19869
19870 @item show mips mask-address
19871 @kindex show mips mask-address
19872 Show whether the upper 32 bits of MIPS addresses are masked off or
19873 not.
19874
19875 @item set remote-mips64-transfers-32bit-regs
19876 @kindex set remote-mips64-transfers-32bit-regs
19877 This command controls compatibility with 64-bit MIPS targets that
19878 transfer data in 32-bit quantities.  If you have an old MIPS 64 target
19879 that transfers 32 bits for some registers, like @sc{sr} and @sc{fsr},
19880 and 64 bits for other registers, set this option to @samp{on}.
19881
19882 @item show remote-mips64-transfers-32bit-regs
19883 @kindex show remote-mips64-transfers-32bit-regs
19884 Show the current setting of compatibility with older MIPS 64 targets.
19885
19886 @item set debug mips
19887 @kindex set debug mips
19888 This command turns on and off debugging messages for the MIPS-specific
19889 target code in @value{GDBN}.
19890
19891 @item show debug mips
19892 @kindex show debug mips
19893 Show the current setting of MIPS debugging messages.
19894 @end table
19895
19896
19897 @node HPPA
19898 @subsection HPPA
19899 @cindex HPPA support
19900
19901 When @value{GDBN} is debugging the HP PA architecture, it provides the
19902 following special commands:
19903
19904 @table @code
19905 @item set debug hppa
19906 @kindex set debug hppa
19907 This command determines whether HPPA architecture-specific debugging
19908 messages are to be displayed.
19909
19910 @item show debug hppa
19911 Show whether HPPA debugging messages are displayed.
19912
19913 @item maint print unwind @var{address}
19914 @kindex maint print unwind@r{, HPPA}
19915 This command displays the contents of the unwind table entry at the
19916 given @var{address}.
19917
19918 @end table
19919
19920
19921 @node SPU
19922 @subsection Cell Broadband Engine SPU architecture
19923 @cindex Cell Broadband Engine
19924 @cindex SPU
19925
19926 When @value{GDBN} is debugging the Cell Broadband Engine SPU architecture,
19927 it provides the following special commands:
19928
19929 @table @code
19930 @item info spu event
19931 @kindex info spu
19932 Display SPU event facility status.  Shows current event mask
19933 and pending event status.
19934
19935 @item info spu signal
19936 Display SPU signal notification facility status.  Shows pending
19937 signal-control word and signal notification mode of both signal
19938 notification channels.
19939
19940 @item info spu mailbox
19941 Display SPU mailbox facility status.  Shows all pending entries,
19942 in order of processing, in each of the SPU Write Outbound,
19943 SPU Write Outbound Interrupt, and SPU Read Inbound mailboxes.
19944
19945 @item info spu dma
19946 Display MFC DMA status.  Shows all pending commands in the MFC
19947 DMA queue.  For each entry, opcode, tag, class IDs, effective
19948 and local store addresses and transfer size are shown.
19949
19950 @item info spu proxydma
19951 Display MFC Proxy-DMA status.  Shows all pending commands in the MFC
19952 Proxy-DMA queue.  For each entry, opcode, tag, class IDs, effective
19953 and local store addresses and transfer size are shown.
19954
19955 @end table
19956  
19957 When @value{GDBN} is debugging a combined PowerPC/SPU application
19958 on the Cell Broadband Engine, it provides in addition the following
19959 special commands:
19960
19961 @table @code
19962 @item set spu stop-on-load @var{arg}
19963 @kindex set spu
19964 Set whether to stop for new SPE threads.  When set to @code{on}, @value{GDBN}
19965 will give control to the user when a new SPE thread enters its @code{main}
19966 function.  The default is @code{off}.
19967
19968 @item show spu stop-on-load
19969 @kindex show spu
19970 Show whether to stop for new SPE threads.
19971
19972 @item set spu auto-flush-cache @var{arg}
19973 Set whether to automatically flush the software-managed cache.  When set to
19974 @code{on}, @value{GDBN} will automatically cause the SPE software-managed
19975 cache to be flushed whenever SPE execution stops.  This provides a consistent
19976 view of PowerPC memory that is accessed via the cache.  If an application
19977 does not use the software-managed cache, this option has no effect.
19978
19979 @item show spu auto-flush-cache
19980 Show whether to automatically flush the software-managed cache.
19981
19982 @end table
19983
19984 @node PowerPC
19985 @subsection PowerPC
19986 @cindex PowerPC architecture
19987
19988 When @value{GDBN} is debugging the PowerPC architecture, it provides a set of 
19989 pseudo-registers to enable inspection of 128-bit wide Decimal Floating Point
19990 numbers stored in the floating point registers. These values must be stored
19991 in two consecutive registers, always starting at an even register like
19992 @code{f0} or @code{f2}.
19993
19994 The pseudo-registers go from @code{$dl0} through @code{$dl15}, and are formed
19995 by joining the even/odd register pairs @code{f0} and @code{f1} for @code{$dl0},
19996 @code{f2} and @code{f3} for @code{$dl1} and so on.
19997
19998 For POWER7 processors, @value{GDBN} provides a set of pseudo-registers, the 64-bit
19999 wide Extended Floating Point Registers (@samp{f32} through @samp{f63}).
20000
20001
20002 @node Controlling GDB
20003 @chapter Controlling @value{GDBN}
20004
20005 You can alter the way @value{GDBN} interacts with you by using the
20006 @code{set} command.  For commands controlling how @value{GDBN} displays
20007 data, see @ref{Print Settings, ,Print Settings}.  Other settings are
20008 described here.
20009
20010 @menu
20011 * Prompt::                      Prompt
20012 * Editing::                     Command editing
20013 * Command History::             Command history
20014 * Screen Size::                 Screen size
20015 * Numbers::                     Numbers
20016 * ABI::                         Configuring the current ABI
20017 * Messages/Warnings::           Optional warnings and messages
20018 * Debugging Output::            Optional messages about internal happenings
20019 * Other Misc Settings::         Other Miscellaneous Settings
20020 @end menu
20021
20022 @node Prompt
20023 @section Prompt
20024
20025 @cindex prompt
20026
20027 @value{GDBN} indicates its readiness to read a command by printing a string
20028 called the @dfn{prompt}.  This string is normally @samp{(@value{GDBP})}.  You
20029 can change the prompt string with the @code{set prompt} command.  For
20030 instance, when debugging @value{GDBN} with @value{GDBN}, it is useful to change
20031 the prompt in one of the @value{GDBN} sessions so that you can always tell
20032 which one you are talking to.
20033
20034 @emph{Note:}  @code{set prompt} does not add a space for you after the
20035 prompt you set.  This allows you to set a prompt which ends in a space
20036 or a prompt that does not.
20037
20038 @table @code
20039 @kindex set prompt
20040 @item set prompt @var{newprompt}
20041 Directs @value{GDBN} to use @var{newprompt} as its prompt string henceforth.
20042
20043 @kindex show prompt
20044 @item show prompt
20045 Prints a line of the form: @samp{Gdb's prompt is: @var{your-prompt}}
20046 @end table
20047
20048 Versions of @value{GDBN} that ship with Python scripting enabled have
20049 prompt extensions.  The commands for interacting with these extensions
20050 are:
20051
20052 @table @code
20053 @kindex set extended-prompt
20054 @item set extended-prompt @var{prompt}
20055 Set an extended prompt that allows for substitutions.
20056 @xref{gdb.prompt}, for a list of escape sequences that can be used for
20057 substitution.  Any escape sequences specified as part of the prompt
20058 string are replaced with the corresponding strings each time the prompt
20059 is displayed.
20060
20061 For example:
20062
20063 @smallexample
20064 set extended-prompt Current working directory: \w (gdb)
20065 @end smallexample
20066
20067 Note that when an extended-prompt is set, it takes control of the
20068 @var{prompt_hook} hook.  @xref{prompt_hook}, for further information.
20069
20070 @kindex show extended-prompt
20071 @item show extended-prompt
20072 Prints the extended prompt.  Any escape sequences specified as part of
20073 the prompt string with @code{set extended-prompt}, are replaced with the
20074 corresponding strings each time the prompt is displayed.
20075 @end table
20076
20077 @node Editing
20078 @section Command Editing
20079 @cindex readline
20080 @cindex command line editing
20081
20082 @value{GDBN} reads its input commands via the @dfn{Readline} interface.  This
20083 @sc{gnu} library provides consistent behavior for programs which provide a
20084 command line interface to the user.  Advantages are @sc{gnu} Emacs-style
20085 or @dfn{vi}-style inline editing of commands, @code{csh}-like history
20086 substitution, and a storage and recall of command history across
20087 debugging sessions.
20088
20089 You may control the behavior of command line editing in @value{GDBN} with the
20090 command @code{set}.
20091
20092 @table @code
20093 @kindex set editing
20094 @cindex editing
20095 @item set editing
20096 @itemx set editing on
20097 Enable command line editing (enabled by default).
20098
20099 @item set editing off
20100 Disable command line editing.
20101
20102 @kindex show editing
20103 @item show editing
20104 Show whether command line editing is enabled.
20105 @end table
20106
20107 @ifset SYSTEM_READLINE
20108 @xref{Command Line Editing, , , rluserman, GNU Readline Library},
20109 @end ifset
20110 @ifclear SYSTEM_READLINE
20111 @xref{Command Line Editing},
20112 @end ifclear
20113 for more details about the Readline
20114 interface.  Users unfamiliar with @sc{gnu} Emacs or @code{vi} are
20115 encouraged to read that chapter.
20116
20117 @node Command History
20118 @section Command History
20119 @cindex command history
20120
20121 @value{GDBN} can keep track of the commands you type during your
20122 debugging sessions, so that you can be certain of precisely what
20123 happened.  Use these commands to manage the @value{GDBN} command
20124 history facility.
20125
20126 @value{GDBN} uses the @sc{gnu} History library, a part of the Readline
20127 package, to provide the history facility.
20128 @ifset SYSTEM_READLINE
20129 @xref{Using History Interactively, , , history, GNU History Library},
20130 @end ifset
20131 @ifclear SYSTEM_READLINE
20132 @xref{Using History Interactively},
20133 @end ifclear
20134 for the detailed description of the History library.
20135
20136 To issue a command to @value{GDBN} without affecting certain aspects of
20137 the state which is seen by users, prefix it with @samp{server }
20138 (@pxref{Server Prefix}).  This
20139 means that this command will not affect the command history, nor will it
20140 affect @value{GDBN}'s notion of which command to repeat if @key{RET} is
20141 pressed on a line by itself.
20142
20143 @cindex @code{server}, command prefix
20144 The server prefix does not affect the recording of values into the value
20145 history; to print a value without recording it into the value history,
20146 use the @code{output} command instead of the @code{print} command.
20147
20148 Here is the description of @value{GDBN} commands related to command
20149 history.
20150
20151 @table @code
20152 @cindex history substitution
20153 @cindex history file
20154 @kindex set history filename
20155 @cindex @env{GDBHISTFILE}, environment variable
20156 @item set history filename @var{fname}
20157 Set the name of the @value{GDBN} command history file to @var{fname}.
20158 This is the file where @value{GDBN} reads an initial command history
20159 list, and where it writes the command history from this session when it
20160 exits.  You can access this list through history expansion or through
20161 the history command editing characters listed below.  This file defaults
20162 to the value of the environment variable @code{GDBHISTFILE}, or to
20163 @file{./.gdb_history} (@file{./_gdb_history} on MS-DOS) if this variable
20164 is not set.
20165
20166 @cindex save command history
20167 @kindex set history save
20168 @item set history save
20169 @itemx set history save on
20170 Record command history in a file, whose name may be specified with the
20171 @code{set history filename} command.  By default, this option is disabled.
20172
20173 @item set history save off
20174 Stop recording command history in a file.
20175
20176 @cindex history size
20177 @kindex set history size
20178 @cindex @env{HISTSIZE}, environment variable
20179 @item set history size @var{size}
20180 Set the number of commands which @value{GDBN} keeps in its history list.
20181 This defaults to the value of the environment variable
20182 @code{HISTSIZE}, or to 256 if this variable is not set.
20183 @end table
20184
20185 History expansion assigns special meaning to the character @kbd{!}.
20186 @ifset SYSTEM_READLINE
20187 @xref{Event Designators, , , history, GNU History Library},
20188 @end ifset
20189 @ifclear SYSTEM_READLINE
20190 @xref{Event Designators},
20191 @end ifclear
20192 for more details.
20193
20194 @cindex history expansion, turn on/off
20195 Since @kbd{!} is also the logical not operator in C, history expansion
20196 is off by default. If you decide to enable history expansion with the
20197 @code{set history expansion on} command, you may sometimes need to
20198 follow @kbd{!} (when it is used as logical not, in an expression) with
20199 a space or a tab to prevent it from being expanded.  The readline
20200 history facilities do not attempt substitution on the strings
20201 @kbd{!=} and @kbd{!(}, even when history expansion is enabled.
20202
20203 The commands to control history expansion are:
20204
20205 @table @code
20206 @item set history expansion on
20207 @itemx set history expansion
20208 @kindex set history expansion
20209 Enable history expansion.  History expansion is off by default.
20210
20211 @item set history expansion off
20212 Disable history expansion.
20213
20214 @c @group
20215 @kindex show history
20216 @item show history
20217 @itemx show history filename
20218 @itemx show history save
20219 @itemx show history size
20220 @itemx show history expansion
20221 These commands display the state of the @value{GDBN} history parameters.
20222 @code{show history} by itself displays all four states.
20223 @c @end group
20224 @end table
20225
20226 @table @code
20227 @kindex show commands
20228 @cindex show last commands
20229 @cindex display command history
20230 @item show commands
20231 Display the last ten commands in the command history.
20232
20233 @item show commands @var{n}
20234 Print ten commands centered on command number @var{n}.
20235
20236 @item show commands +
20237 Print ten commands just after the commands last printed.
20238 @end table
20239
20240 @node Screen Size
20241 @section Screen Size
20242 @cindex size of screen
20243 @cindex pauses in output
20244
20245 Certain commands to @value{GDBN} may produce large amounts of
20246 information output to the screen.  To help you read all of it,
20247 @value{GDBN} pauses and asks you for input at the end of each page of
20248 output.  Type @key{RET} when you want to continue the output, or @kbd{q}
20249 to discard the remaining output.  Also, the screen width setting
20250 determines when to wrap lines of output.  Depending on what is being
20251 printed, @value{GDBN} tries to break the line at a readable place,
20252 rather than simply letting it overflow onto the following line.
20253
20254 Normally @value{GDBN} knows the size of the screen from the terminal
20255 driver software.  For example, on Unix @value{GDBN} uses the termcap data base
20256 together with the value of the @code{TERM} environment variable and the
20257 @code{stty rows} and @code{stty cols} settings.  If this is not correct,
20258 you can override it with the @code{set height} and @code{set
20259 width} commands:
20260
20261 @table @code
20262 @kindex set height
20263 @kindex set width
20264 @kindex show width
20265 @kindex show height
20266 @item set height @var{lpp}
20267 @itemx show height
20268 @itemx set width @var{cpl}
20269 @itemx show width
20270 These @code{set} commands specify a screen height of @var{lpp} lines and
20271 a screen width of @var{cpl} characters.  The associated @code{show}
20272 commands display the current settings.
20273
20274 If you specify a height of zero lines, @value{GDBN} does not pause during
20275 output no matter how long the output is.  This is useful if output is to a
20276 file or to an editor buffer.
20277
20278 Likewise, you can specify @samp{set width 0} to prevent @value{GDBN}
20279 from wrapping its output.
20280
20281 @item set pagination on
20282 @itemx set pagination off
20283 @kindex set pagination
20284 Turn the output pagination on or off; the default is on.  Turning
20285 pagination off is the alternative to @code{set height 0}.  Note that
20286 running @value{GDBN} with the @option{--batch} option (@pxref{Mode
20287 Options, -batch}) also automatically disables pagination.
20288
20289 @item show pagination
20290 @kindex show pagination
20291 Show the current pagination mode.
20292 @end table
20293
20294 @node Numbers
20295 @section Numbers
20296 @cindex number representation
20297 @cindex entering numbers
20298
20299 You can always enter numbers in octal, decimal, or hexadecimal in
20300 @value{GDBN} by the usual conventions: octal numbers begin with
20301 @samp{0}, decimal numbers end with @samp{.}, and hexadecimal numbers
20302 begin with @samp{0x}.  Numbers that neither begin with @samp{0} or
20303 @samp{0x}, nor end with a @samp{.} are, by default, entered in base
20304 10; likewise, the default display for numbers---when no particular
20305 format is specified---is base 10.  You can change the default base for
20306 both input and output with the commands described below.
20307
20308 @table @code
20309 @kindex set input-radix
20310 @item set input-radix @var{base}
20311 Set the default base for numeric input.  Supported choices
20312 for @var{base} are decimal 8, 10, or 16.  @var{base} must itself be
20313 specified either unambiguously or using the current input radix; for
20314 example, any of
20315
20316 @smallexample
20317 set input-radix 012
20318 set input-radix 10.
20319 set input-radix 0xa
20320 @end smallexample
20321
20322 @noindent
20323 sets the input base to decimal.  On the other hand, @samp{set input-radix 10}
20324 leaves the input radix unchanged, no matter what it was, since
20325 @samp{10}, being without any leading or trailing signs of its base, is
20326 interpreted in the current radix.  Thus, if the current radix is 16,
20327 @samp{10} is interpreted in hex, i.e.@: as 16 decimal, which doesn't
20328 change the radix.
20329
20330 @kindex set output-radix
20331 @item set output-radix @var{base}
20332 Set the default base for numeric display.  Supported choices
20333 for @var{base} are decimal 8, 10, or 16.  @var{base} must itself be
20334 specified either unambiguously or using the current input radix.
20335
20336 @kindex show input-radix
20337 @item show input-radix
20338 Display the current default base for numeric input.
20339
20340 @kindex show output-radix
20341 @item show output-radix
20342 Display the current default base for numeric display.
20343
20344 @item set radix @r{[}@var{base}@r{]}
20345 @itemx show radix
20346 @kindex set radix
20347 @kindex show radix
20348 These commands set and show the default base for both input and output
20349 of numbers.  @code{set radix} sets the radix of input and output to
20350 the same base; without an argument, it resets the radix back to its
20351 default value of 10.
20352
20353 @end table
20354
20355 @node ABI
20356 @section Configuring the Current ABI
20357
20358 @value{GDBN} can determine the @dfn{ABI} (Application Binary Interface) of your
20359 application automatically.  However, sometimes you need to override its
20360 conclusions.  Use these commands to manage @value{GDBN}'s view of the
20361 current ABI.
20362
20363 @cindex OS ABI
20364 @kindex set osabi
20365 @kindex show osabi
20366
20367 One @value{GDBN} configuration can debug binaries for multiple operating
20368 system targets, either via remote debugging or native emulation.
20369 @value{GDBN} will autodetect the @dfn{OS ABI} (Operating System ABI) in use,
20370 but you can override its conclusion using the @code{set osabi} command.
20371 One example where this is useful is in debugging of binaries which use
20372 an alternate C library (e.g.@: @sc{uClibc} for @sc{gnu}/Linux) which does
20373 not have the same identifying marks that the standard C library for your
20374 platform provides.
20375
20376 @table @code
20377 @item show osabi
20378 Show the OS ABI currently in use.
20379
20380 @item set osabi
20381 With no argument, show the list of registered available OS ABI's.
20382
20383 @item set osabi @var{abi}
20384 Set the current OS ABI to @var{abi}.
20385 @end table
20386
20387 @cindex float promotion
20388
20389 Generally, the way that an argument of type @code{float} is passed to a
20390 function depends on whether the function is prototyped.  For a prototyped
20391 (i.e.@: ANSI/ISO style) function, @code{float} arguments are passed unchanged,
20392 according to the architecture's convention for @code{float}.  For unprototyped
20393 (i.e.@: K&R style) functions, @code{float} arguments are first promoted to type
20394 @code{double} and then passed.
20395
20396 Unfortunately, some forms of debug information do not reliably indicate whether
20397 a function is prototyped.  If @value{GDBN} calls a function that is not marked
20398 as prototyped, it consults @kbd{set coerce-float-to-double}.
20399
20400 @table @code
20401 @kindex set coerce-float-to-double
20402 @item set coerce-float-to-double
20403 @itemx set coerce-float-to-double on
20404 Arguments of type @code{float} will be promoted to @code{double} when passed
20405 to an unprototyped function.  This is the default setting.
20406
20407 @item set coerce-float-to-double off
20408 Arguments of type @code{float} will be passed directly to unprototyped
20409 functions.
20410
20411 @kindex show coerce-float-to-double
20412 @item show coerce-float-to-double
20413 Show the current setting of promoting @code{float} to @code{double}.
20414 @end table
20415
20416 @kindex set cp-abi
20417 @kindex show cp-abi
20418 @value{GDBN} needs to know the ABI used for your program's C@t{++}
20419 objects.  The correct C@t{++} ABI depends on which C@t{++} compiler was
20420 used to build your application.  @value{GDBN} only fully supports
20421 programs with a single C@t{++} ABI; if your program contains code using
20422 multiple C@t{++} ABI's or if @value{GDBN} can not identify your
20423 program's ABI correctly, you can tell @value{GDBN} which ABI to use.
20424 Currently supported ABI's include ``gnu-v2'', for @code{g++} versions
20425 before 3.0, ``gnu-v3'', for @code{g++} versions 3.0 and later, and
20426 ``hpaCC'' for the HP ANSI C@t{++} compiler.  Other C@t{++} compilers may
20427 use the ``gnu-v2'' or ``gnu-v3'' ABI's as well.  The default setting is
20428 ``auto''.
20429
20430 @table @code
20431 @item show cp-abi
20432 Show the C@t{++} ABI currently in use.
20433
20434 @item set cp-abi
20435 With no argument, show the list of supported C@t{++} ABI's.
20436
20437 @item set cp-abi @var{abi}
20438 @itemx set cp-abi auto
20439 Set the current C@t{++} ABI to @var{abi}, or return to automatic detection.
20440 @end table
20441
20442 @node Messages/Warnings
20443 @section Optional Warnings and Messages
20444
20445 @cindex verbose operation
20446 @cindex optional warnings
20447 By default, @value{GDBN} is silent about its inner workings.  If you are
20448 running on a slow machine, you may want to use the @code{set verbose}
20449 command.  This makes @value{GDBN} tell you when it does a lengthy
20450 internal operation, so you will not think it has crashed.
20451
20452 Currently, the messages controlled by @code{set verbose} are those
20453 which announce that the symbol table for a source file is being read;
20454 see @code{symbol-file} in @ref{Files, ,Commands to Specify Files}.
20455
20456 @table @code
20457 @kindex set verbose
20458 @item set verbose on
20459 Enables @value{GDBN} output of certain informational messages.
20460
20461 @item set verbose off
20462 Disables @value{GDBN} output of certain informational messages.
20463
20464 @kindex show verbose
20465 @item show verbose
20466 Displays whether @code{set verbose} is on or off.
20467 @end table
20468
20469 By default, if @value{GDBN} encounters bugs in the symbol table of an
20470 object file, it is silent; but if you are debugging a compiler, you may
20471 find this information useful (@pxref{Symbol Errors, ,Errors Reading
20472 Symbol Files}).
20473
20474 @table @code
20475
20476 @kindex set complaints
20477 @item set complaints @var{limit}
20478 Permits @value{GDBN} to output @var{limit} complaints about each type of
20479 unusual symbols before becoming silent about the problem.  Set
20480 @var{limit} to zero to suppress all complaints; set it to a large number
20481 to prevent complaints from being suppressed.
20482
20483 @kindex show complaints
20484 @item show complaints
20485 Displays how many symbol complaints @value{GDBN} is permitted to produce.
20486
20487 @end table
20488
20489 @anchor{confirmation requests}
20490 By default, @value{GDBN} is cautious, and asks what sometimes seems to be a
20491 lot of stupid questions to confirm certain commands.  For example, if
20492 you try to run a program which is already running:
20493
20494 @smallexample
20495 (@value{GDBP}) run
20496 The program being debugged has been started already.
20497 Start it from the beginning? (y or n)
20498 @end smallexample
20499
20500 If you are willing to unflinchingly face the consequences of your own
20501 commands, you can disable this ``feature'':
20502
20503 @table @code
20504
20505 @kindex set confirm
20506 @cindex flinching
20507 @cindex confirmation
20508 @cindex stupid questions
20509 @item set confirm off
20510 Disables confirmation requests.  Note that running @value{GDBN} with
20511 the @option{--batch} option (@pxref{Mode Options, -batch}) also
20512 automatically disables confirmation requests.
20513
20514 @item set confirm on
20515 Enables confirmation requests (the default).
20516
20517 @kindex show confirm
20518 @item show confirm
20519 Displays state of confirmation requests.
20520
20521 @end table
20522
20523 @cindex command tracing
20524 If you need to debug user-defined commands or sourced files you may find it
20525 useful to enable @dfn{command tracing}.  In this mode each command will be
20526 printed as it is executed, prefixed with one or more @samp{+} symbols, the
20527 quantity denoting the call depth of each command.
20528
20529 @table @code
20530 @kindex set trace-commands
20531 @cindex command scripts, debugging
20532 @item set trace-commands on
20533 Enable command tracing.
20534 @item set trace-commands off
20535 Disable command tracing.
20536 @item show trace-commands
20537 Display the current state of command tracing.
20538 @end table
20539
20540 @node Debugging Output
20541 @section Optional Messages about Internal Happenings
20542 @cindex optional debugging messages
20543
20544 @value{GDBN} has commands that enable optional debugging messages from
20545 various @value{GDBN} subsystems; normally these commands are of
20546 interest to @value{GDBN} maintainers, or when reporting a bug.  This
20547 section documents those commands.
20548
20549 @table @code
20550 @kindex set exec-done-display
20551 @item set exec-done-display
20552 Turns on or off the notification of asynchronous commands'
20553 completion.  When on, @value{GDBN} will print a message when an
20554 asynchronous command finishes its execution.  The default is off.
20555 @kindex show exec-done-display
20556 @item show exec-done-display
20557 Displays the current setting of asynchronous command completion
20558 notification.
20559 @kindex set debug
20560 @cindex gdbarch debugging info
20561 @cindex architecture debugging info
20562 @item set debug arch
20563 Turns on or off display of gdbarch debugging info.  The default is off
20564 @kindex show debug
20565 @item show debug arch
20566 Displays the current state of displaying gdbarch debugging info.
20567 @item set debug aix-thread
20568 @cindex AIX threads
20569 Display debugging messages about inner workings of the AIX thread
20570 module.
20571 @item show debug aix-thread
20572 Show the current state of AIX thread debugging info display.
20573 @item set debug check-physname
20574 @cindex physname
20575 Check the results of the ``physname'' computation.  When reading DWARF
20576 debugging information for C@t{++}, @value{GDBN} attempts to compute
20577 each entity's name.  @value{GDBN} can do this computation in two
20578 different ways, depending on exactly what information is present.
20579 When enabled, this setting causes @value{GDBN} to compute the names
20580 both ways and display any discrepancies.
20581 @item show debug check-physname
20582 Show the current state of ``physname'' checking.
20583 @item set debug dwarf2-die
20584 @cindex DWARF2 DIEs
20585 Dump DWARF2 DIEs after they are read in.
20586 The value is the number of nesting levels to print.
20587 A value of zero turns off the display.
20588 @item show debug dwarf2-die
20589 Show the current state of DWARF2 DIE debugging.
20590 @item set debug displaced
20591 @cindex displaced stepping debugging info
20592 Turns on or off display of @value{GDBN} debugging info for the
20593 displaced stepping support.  The default is off.
20594 @item show debug displaced
20595 Displays the current state of displaying @value{GDBN} debugging info
20596 related to displaced stepping.
20597 @item set debug event
20598 @cindex event debugging info
20599 Turns on or off display of @value{GDBN} event debugging info.  The
20600 default is off.
20601 @item show debug event
20602 Displays the current state of displaying @value{GDBN} event debugging
20603 info.
20604 @item set debug expression
20605 @cindex expression debugging info
20606 Turns on or off display of debugging info about @value{GDBN}
20607 expression parsing.  The default is off.
20608 @item show debug expression
20609 Displays the current state of displaying debugging info about
20610 @value{GDBN} expression parsing.
20611 @item set debug frame
20612 @cindex frame debugging info
20613 Turns on or off display of @value{GDBN} frame debugging info.  The
20614 default is off.
20615 @item show debug frame
20616 Displays the current state of displaying @value{GDBN} frame debugging
20617 info.
20618 @item set debug gnu-nat
20619 @cindex @sc{gnu}/Hurd debug messages
20620 Turns on or off debugging messages from the @sc{gnu}/Hurd debug support.
20621 @item show debug gnu-nat
20622 Show the current state of @sc{gnu}/Hurd debugging messages.
20623 @item set debug infrun
20624 @cindex inferior debugging info
20625 Turns on or off display of @value{GDBN} debugging info for running the inferior.
20626 The default is off.  @file{infrun.c} contains GDB's runtime state machine used 
20627 for implementing operations such as single-stepping the inferior.
20628 @item show debug infrun
20629 Displays the current state of @value{GDBN} inferior debugging.
20630 @item set debug jit
20631 @cindex just-in-time compilation, debugging messages
20632 Turns on or off debugging messages from JIT debug support.
20633 @item show debug jit
20634 Displays the current state of @value{GDBN} JIT debugging.
20635 @item set debug lin-lwp
20636 @cindex @sc{gnu}/Linux LWP debug messages
20637 @cindex Linux lightweight processes
20638 Turns on or off debugging messages from the Linux LWP debug support.
20639 @item show debug lin-lwp
20640 Show the current state of Linux LWP debugging messages.
20641 @item set debug observer
20642 @cindex observer debugging info
20643 Turns on or off display of @value{GDBN} observer debugging.  This
20644 includes info such as the notification of observable events.
20645 @item show debug observer
20646 Displays the current state of observer debugging.
20647 @item set debug overload
20648 @cindex C@t{++} overload debugging info
20649 Turns on or off display of @value{GDBN} C@t{++} overload debugging
20650 info. This includes info such as ranking of functions, etc.  The default
20651 is off.
20652 @item show debug overload
20653 Displays the current state of displaying @value{GDBN} C@t{++} overload
20654 debugging info.
20655 @cindex expression parser, debugging info
20656 @cindex debug expression parser
20657 @item set debug parser
20658 Turns on or off the display of expression parser debugging output.
20659 Internally, this sets the @code{yydebug} variable in the expression
20660 parser.  @xref{Tracing, , Tracing Your Parser, bison, Bison}, for
20661 details.  The default is off.
20662 @item show debug parser
20663 Show the current state of expression parser debugging.
20664 @cindex packets, reporting on stdout
20665 @cindex serial connections, debugging
20666 @cindex debug remote protocol
20667 @cindex remote protocol debugging
20668 @cindex display remote packets
20669 @item set debug remote
20670 Turns on or off display of reports on all packets sent back and forth across
20671 the serial line to the remote machine.  The info is printed on the
20672 @value{GDBN} standard output stream. The default is off.
20673 @item show debug remote
20674 Displays the state of display of remote packets.
20675 @item set debug serial
20676 Turns on or off display of @value{GDBN} serial debugging info. The
20677 default is off.
20678 @item show debug serial
20679 Displays the current state of displaying @value{GDBN} serial debugging
20680 info.
20681 @item set debug solib-frv
20682 @cindex FR-V shared-library debugging
20683 Turns on or off debugging messages for FR-V shared-library code.
20684 @item show debug solib-frv
20685 Display the current state of FR-V shared-library code debugging
20686 messages.
20687 @item set debug target
20688 @cindex target debugging info
20689 Turns on or off display of @value{GDBN} target debugging info. This info
20690 includes what is going on at the target level of GDB, as it happens. The
20691 default is 0.  Set it to 1 to track events, and to 2 to also track the
20692 value of large memory transfers.  Changes to this flag do not take effect
20693 until the next time you connect to a target or use the @code{run} command.
20694 @item show debug target
20695 Displays the current state of displaying @value{GDBN} target debugging
20696 info.
20697 @item set debug timestamp
20698 @cindex timestampping debugging info
20699 Turns on or off display of timestamps with @value{GDBN} debugging info.
20700 When enabled, seconds and microseconds are displayed before each debugging
20701 message.
20702 @item show debug timestamp
20703 Displays the current state of displaying timestamps with @value{GDBN}
20704 debugging info.
20705 @item set debugvarobj
20706 @cindex variable object debugging info
20707 Turns on or off display of @value{GDBN} variable object debugging
20708 info. The default is off.
20709 @item show debugvarobj
20710 Displays the current state of displaying @value{GDBN} variable object
20711 debugging info.
20712 @item set debug xml
20713 @cindex XML parser debugging
20714 Turns on or off debugging messages for built-in XML parsers.
20715 @item show debug xml
20716 Displays the current state of XML debugging messages.
20717 @end table
20718
20719 @node Other Misc Settings
20720 @section Other Miscellaneous Settings
20721 @cindex miscellaneous settings
20722
20723 @table @code
20724 @kindex set interactive-mode
20725 @item set interactive-mode
20726 If @code{on}, forces @value{GDBN} to assume that GDB was started
20727 in a terminal.  In practice, this means that @value{GDBN} should wait
20728 for the user to answer queries generated by commands entered at
20729 the command prompt.  If @code{off}, forces @value{GDBN} to operate
20730 in the opposite mode, and it uses the default answers to all queries.
20731 If @code{auto} (the default), @value{GDBN} tries to determine whether
20732 its standard input is a terminal, and works in interactive-mode if it
20733 is, non-interactively otherwise.
20734
20735 In the vast majority of cases, the debugger should be able to guess
20736 correctly which mode should be used.  But this setting can be useful
20737 in certain specific cases, such as running a MinGW @value{GDBN}
20738 inside a cygwin window.
20739
20740 @kindex show interactive-mode
20741 @item show interactive-mode
20742 Displays whether the debugger is operating in interactive mode or not.
20743 @end table
20744
20745 @node Extending GDB
20746 @chapter Extending @value{GDBN}
20747 @cindex extending GDB
20748
20749 @value{GDBN} provides three mechanisms for extension.  The first is based
20750 on composition of @value{GDBN} commands, the second is based on the
20751 Python scripting language, and the third is for defining new aliases of
20752 existing commands.
20753
20754 To facilitate the use of the first two extensions, @value{GDBN} is capable
20755 of evaluating the contents of a file.  When doing so, @value{GDBN}
20756 can recognize which scripting language is being used by looking at
20757 the filename extension.  Files with an unrecognized filename extension
20758 are always treated as a @value{GDBN} Command Files.
20759 @xref{Command Files,, Command files}.
20760
20761 You can control how @value{GDBN} evaluates these files with the following
20762 setting:
20763
20764 @table @code
20765 @kindex set script-extension
20766 @kindex show script-extension
20767 @item set script-extension off
20768 All scripts are always evaluated as @value{GDBN} Command Files.
20769
20770 @item set script-extension soft
20771 The debugger determines the scripting language based on filename
20772 extension.  If this scripting language is supported, @value{GDBN}
20773 evaluates the script using that language.  Otherwise, it evaluates
20774 the file as a @value{GDBN} Command File.
20775
20776 @item set script-extension strict
20777 The debugger determines the scripting language based on filename
20778 extension, and evaluates the script using that language.  If the
20779 language is not supported, then the evaluation fails.
20780
20781 @item show script-extension
20782 Display the current value of the @code{script-extension} option.
20783
20784 @end table
20785
20786 @menu
20787 * Sequences::          Canned Sequences of Commands
20788 * Python::             Scripting @value{GDBN} using Python
20789 * Aliases::            Creating new spellings of existing commands
20790 @end menu
20791
20792 @node Sequences
20793 @section Canned Sequences of Commands
20794
20795 Aside from breakpoint commands (@pxref{Break Commands, ,Breakpoint
20796 Command Lists}), @value{GDBN} provides two ways to store sequences of
20797 commands for execution as a unit: user-defined commands and command
20798 files.
20799
20800 @menu
20801 * Define::             How to define your own commands
20802 * Hooks::              Hooks for user-defined commands
20803 * Command Files::      How to write scripts of commands to be stored in a file
20804 * Output::             Commands for controlled output
20805 @end menu
20806
20807 @node Define
20808 @subsection User-defined Commands
20809
20810 @cindex user-defined command
20811 @cindex arguments, to user-defined commands
20812 A @dfn{user-defined command} is a sequence of @value{GDBN} commands to
20813 which you assign a new name as a command.  This is done with the
20814 @code{define} command.  User commands may accept up to 10 arguments
20815 separated by whitespace.  Arguments are accessed within the user command
20816 via @code{$arg0@dots{}$arg9}.  A trivial example:
20817
20818 @smallexample
20819 define adder
20820   print $arg0 + $arg1 + $arg2
20821 end
20822 @end smallexample
20823
20824 @noindent
20825 To execute the command use:
20826
20827 @smallexample
20828 adder 1 2 3
20829 @end smallexample
20830
20831 @noindent
20832 This defines the command @code{adder}, which prints the sum of
20833 its three arguments.  Note the arguments are text substitutions, so they may
20834 reference variables, use complex expressions, or even perform inferior
20835 functions calls.
20836
20837 @cindex argument count in user-defined commands
20838 @cindex how many arguments (user-defined commands)
20839 In addition, @code{$argc} may be used to find out how many arguments have
20840 been passed.  This expands to a number in the range 0@dots{}10.
20841
20842 @smallexample
20843 define adder
20844   if $argc == 2
20845     print $arg0 + $arg1
20846   end
20847   if $argc == 3
20848     print $arg0 + $arg1 + $arg2
20849   end
20850 end
20851 @end smallexample
20852
20853 @table @code
20854
20855 @kindex define
20856 @item define @var{commandname}
20857 Define a command named @var{commandname}.  If there is already a command
20858 by that name, you are asked to confirm that you want to redefine it.
20859 @var{commandname} may be a bare command name consisting of letters,
20860 numbers, dashes, and underscores.  It may also start with any predefined
20861 prefix command.  For example, @samp{define target my-target} creates
20862 a user-defined @samp{target my-target} command.
20863
20864 The definition of the command is made up of other @value{GDBN} command lines,
20865 which are given following the @code{define} command.  The end of these
20866 commands is marked by a line containing @code{end}.
20867
20868 @kindex document
20869 @kindex end@r{ (user-defined commands)}
20870 @item document @var{commandname}
20871 Document the user-defined command @var{commandname}, so that it can be
20872 accessed by @code{help}.  The command @var{commandname} must already be
20873 defined.  This command reads lines of documentation just as @code{define}
20874 reads the lines of the command definition, ending with @code{end}.
20875 After the @code{document} command is finished, @code{help} on command
20876 @var{commandname} displays the documentation you have written.
20877
20878 You may use the @code{document} command again to change the
20879 documentation of a command.  Redefining the command with @code{define}
20880 does not change the documentation.
20881
20882 @kindex dont-repeat
20883 @cindex don't repeat command
20884 @item dont-repeat
20885 Used inside a user-defined command, this tells @value{GDBN} that this
20886 command should not be repeated when the user hits @key{RET}
20887 (@pxref{Command Syntax, repeat last command}).
20888
20889 @kindex help user-defined
20890 @item help user-defined
20891 List all user-defined commands, with the first line of the documentation
20892 (if any) for each.
20893
20894 @kindex show user
20895 @item show user
20896 @itemx show user @var{commandname}
20897 Display the @value{GDBN} commands used to define @var{commandname} (but
20898 not its documentation).  If no @var{commandname} is given, display the
20899 definitions for all user-defined commands.
20900
20901 @cindex infinite recursion in user-defined commands
20902 @kindex show max-user-call-depth
20903 @kindex set max-user-call-depth
20904 @item show max-user-call-depth
20905 @itemx set max-user-call-depth
20906 The value of @code{max-user-call-depth} controls how many recursion
20907 levels are allowed in user-defined commands before @value{GDBN} suspects an
20908 infinite recursion and aborts the command.
20909 @end table
20910
20911 In addition to the above commands, user-defined commands frequently
20912 use control flow commands, described in @ref{Command Files}.
20913
20914 When user-defined commands are executed, the
20915 commands of the definition are not printed.  An error in any command
20916 stops execution of the user-defined command.
20917
20918 If used interactively, commands that would ask for confirmation proceed
20919 without asking when used inside a user-defined command.  Many @value{GDBN}
20920 commands that normally print messages to say what they are doing omit the
20921 messages when used in a user-defined command.
20922
20923 @node Hooks
20924 @subsection User-defined Command Hooks
20925 @cindex command hooks
20926 @cindex hooks, for commands
20927 @cindex hooks, pre-command
20928
20929 @kindex hook
20930 You may define @dfn{hooks}, which are a special kind of user-defined
20931 command.  Whenever you run the command @samp{foo}, if the user-defined
20932 command @samp{hook-foo} exists, it is executed (with no arguments)
20933 before that command.
20934
20935 @cindex hooks, post-command
20936 @kindex hookpost
20937 A hook may also be defined which is run after the command you executed.
20938 Whenever you run the command @samp{foo}, if the user-defined command
20939 @samp{hookpost-foo} exists, it is executed (with no arguments) after
20940 that command.  Post-execution hooks may exist simultaneously with
20941 pre-execution hooks, for the same command.
20942
20943 It is valid for a hook to call the command which it hooks.  If this
20944 occurs, the hook is not re-executed, thereby avoiding infinite recursion.
20945
20946 @c It would be nice if hookpost could be passed a parameter indicating
20947 @c if the command it hooks executed properly or not.  FIXME!
20948
20949 @kindex stop@r{, a pseudo-command}
20950 In addition, a pseudo-command, @samp{stop} exists.  Defining
20951 (@samp{hook-stop}) makes the associated commands execute every time
20952 execution stops in your program: before breakpoint commands are run,
20953 displays are printed, or the stack frame is printed.
20954
20955 For example, to ignore @code{SIGALRM} signals while
20956 single-stepping, but treat them normally during normal execution,
20957 you could define:
20958
20959 @smallexample
20960 define hook-stop
20961 handle SIGALRM nopass
20962 end
20963
20964 define hook-run
20965 handle SIGALRM pass
20966 end
20967
20968 define hook-continue
20969 handle SIGALRM pass
20970 end
20971 @end smallexample
20972
20973 As a further example, to hook at the beginning and end of the @code{echo}
20974 command, and to add extra text to the beginning and end of the message,
20975 you could define:
20976
20977 @smallexample
20978 define hook-echo
20979 echo <<<---
20980 end
20981
20982 define hookpost-echo
20983 echo --->>>\n
20984 end
20985
20986 (@value{GDBP}) echo Hello World
20987 <<<---Hello World--->>>
20988 (@value{GDBP})
20989
20990 @end smallexample
20991
20992 You can define a hook for any single-word command in @value{GDBN}, but
20993 not for command aliases; you should define a hook for the basic command
20994 name, e.g.@:  @code{backtrace} rather than @code{bt}.
20995 @c FIXME!  So how does Joe User discover whether a command is an alias
20996 @c or not?
20997 You can hook a multi-word command by adding @code{hook-} or
20998 @code{hookpost-} to the last word of the command, e.g.@:
20999 @samp{define target hook-remote} to add a hook to @samp{target remote}.
21000
21001 If an error occurs during the execution of your hook, execution of
21002 @value{GDBN} commands stops and @value{GDBN} issues a prompt
21003 (before the command that you actually typed had a chance to run).
21004
21005 If you try to define a hook which does not match any known command, you
21006 get a warning from the @code{define} command.
21007
21008 @node Command Files
21009 @subsection Command Files
21010
21011 @cindex command files
21012 @cindex scripting commands
21013 A command file for @value{GDBN} is a text file made of lines that are
21014 @value{GDBN} commands.  Comments (lines starting with @kbd{#}) may
21015 also be included.  An empty line in a command file does nothing; it
21016 does not mean to repeat the last command, as it would from the
21017 terminal.
21018
21019 You can request the execution of a command file with the @code{source}
21020 command.  Note that the @code{source} command is also used to evaluate
21021 scripts that are not Command Files.  The exact behavior can be configured
21022 using the @code{script-extension} setting.
21023 @xref{Extending GDB,, Extending GDB}.
21024
21025 @table @code
21026 @kindex source
21027 @cindex execute commands from a file
21028 @item source [-s] [-v] @var{filename}
21029 Execute the command file @var{filename}.
21030 @end table
21031
21032 The lines in a command file are generally executed sequentially,
21033 unless the order of execution is changed by one of the
21034 @emph{flow-control commands} described below.  The commands are not
21035 printed as they are executed.  An error in any command terminates
21036 execution of the command file and control is returned to the console.
21037
21038 @value{GDBN} first searches for @var{filename} in the current directory.
21039 If the file is not found there, and @var{filename} does not specify a
21040 directory, then @value{GDBN} also looks for the file on the source search path
21041 (specified with the @samp{directory} command);
21042 except that @file{$cdir} is not searched because the compilation directory
21043 is not relevant to scripts.
21044
21045 If @code{-s} is specified, then @value{GDBN} searches for @var{filename}
21046 on the search path even if @var{filename} specifies a directory.
21047 The search is done by appending @var{filename} to each element of the
21048 search path.  So, for example, if @var{filename} is @file{mylib/myscript}
21049 and the search path contains @file{/home/user} then @value{GDBN} will
21050 look for the script @file{/home/user/mylib/myscript}.
21051 The search is also done if @var{filename} is an absolute path.
21052 For example, if @var{filename} is @file{/tmp/myscript} and
21053 the search path contains @file{/home/user} then @value{GDBN} will
21054 look for the script @file{/home/user/tmp/myscript}.
21055 For DOS-like systems, if @var{filename} contains a drive specification,
21056 it is stripped before concatenation.  For example, if @var{filename} is
21057 @file{d:myscript} and the search path contains @file{c:/tmp} then @value{GDBN}
21058 will look for the script @file{c:/tmp/myscript}.
21059
21060 If @code{-v}, for verbose mode, is given then @value{GDBN} displays
21061 each command as it is executed.  The option must be given before
21062 @var{filename}, and is interpreted as part of the filename anywhere else.
21063
21064 Commands that would ask for confirmation if used interactively proceed
21065 without asking when used in a command file.  Many @value{GDBN} commands that
21066 normally print messages to say what they are doing omit the messages
21067 when called from command files.
21068
21069 @value{GDBN} also accepts command input from standard input.  In this
21070 mode, normal output goes to standard output and error output goes to
21071 standard error.  Errors in a command file supplied on standard input do
21072 not terminate execution of the command file---execution continues with
21073 the next command.
21074
21075 @smallexample
21076 gdb < cmds > log 2>&1
21077 @end smallexample
21078
21079 (The syntax above will vary depending on the shell used.) This example
21080 will execute commands from the file @file{cmds}. All output and errors
21081 would be directed to @file{log}.
21082
21083 Since commands stored on command files tend to be more general than
21084 commands typed interactively, they frequently need to deal with
21085 complicated situations, such as different or unexpected values of
21086 variables and symbols, changes in how the program being debugged is
21087 built, etc.  @value{GDBN} provides a set of flow-control commands to
21088 deal with these complexities.  Using these commands, you can write
21089 complex scripts that loop over data structures, execute commands
21090 conditionally, etc.
21091
21092 @table @code
21093 @kindex if
21094 @kindex else
21095 @item if
21096 @itemx else
21097 This command allows to include in your script conditionally executed
21098 commands. The @code{if} command takes a single argument, which is an
21099 expression to evaluate.  It is followed by a series of commands that
21100 are executed only if the expression is true (its value is nonzero).
21101 There can then optionally be an @code{else} line, followed by a series
21102 of commands that are only executed if the expression was false.  The
21103 end of the list is marked by a line containing @code{end}.
21104
21105 @kindex while
21106 @item while
21107 This command allows to write loops.  Its syntax is similar to
21108 @code{if}: the command takes a single argument, which is an expression
21109 to evaluate, and must be followed by the commands to execute, one per
21110 line, terminated by an @code{end}.  These commands are called the
21111 @dfn{body} of the loop.  The commands in the body of @code{while} are
21112 executed repeatedly as long as the expression evaluates to true.
21113
21114 @kindex loop_break
21115 @item loop_break
21116 This command exits the @code{while} loop in whose body it is included.
21117 Execution of the script continues after that @code{while}s @code{end}
21118 line.
21119
21120 @kindex loop_continue
21121 @item loop_continue
21122 This command skips the execution of the rest of the body of commands
21123 in the @code{while} loop in whose body it is included.  Execution
21124 branches to the beginning of the @code{while} loop, where it evaluates
21125 the controlling expression.
21126
21127 @kindex end@r{ (if/else/while commands)}
21128 @item end
21129 Terminate the block of commands that are the body of @code{if},
21130 @code{else}, or @code{while} flow-control commands.
21131 @end table
21132
21133
21134 @node Output
21135 @subsection Commands for Controlled Output
21136
21137 During the execution of a command file or a user-defined command, normal
21138 @value{GDBN} output is suppressed; the only output that appears is what is
21139 explicitly printed by the commands in the definition.  This section
21140 describes three commands useful for generating exactly the output you
21141 want.
21142
21143 @table @code
21144 @kindex echo
21145 @item echo @var{text}
21146 @c I do not consider backslash-space a standard C escape sequence
21147 @c because it is not in ANSI.
21148 Print @var{text}.  Nonprinting characters can be included in
21149 @var{text} using C escape sequences, such as @samp{\n} to print a
21150 newline.  @strong{No newline is printed unless you specify one.}
21151 In addition to the standard C escape sequences, a backslash followed
21152 by a space stands for a space.  This is useful for displaying a
21153 string with spaces at the beginning or the end, since leading and
21154 trailing spaces are otherwise trimmed from all arguments.
21155 To print @samp{@w{ }and foo =@w{ }}, use the command
21156 @samp{echo \@w{ }and foo = \@w{ }}.
21157
21158 A backslash at the end of @var{text} can be used, as in C, to continue
21159 the command onto subsequent lines.  For example,
21160
21161 @smallexample
21162 echo This is some text\n\
21163 which is continued\n\
21164 onto several lines.\n
21165 @end smallexample
21166
21167 produces the same output as
21168
21169 @smallexample
21170 echo This is some text\n
21171 echo which is continued\n
21172 echo onto several lines.\n
21173 @end smallexample
21174
21175 @kindex output
21176 @item output @var{expression}
21177 Print the value of @var{expression} and nothing but that value: no
21178 newlines, no @samp{$@var{nn} = }.  The value is not entered in the
21179 value history either.  @xref{Expressions, ,Expressions}, for more information
21180 on expressions.
21181
21182 @item output/@var{fmt} @var{expression}
21183 Print the value of @var{expression} in format @var{fmt}.  You can use
21184 the same formats as for @code{print}.  @xref{Output Formats,,Output
21185 Formats}, for more information.
21186
21187 @kindex printf
21188 @item printf @var{template}, @var{expressions}@dots{}
21189 Print the values of one or more @var{expressions} under the control of
21190 the string @var{template}.  To print several values, make
21191 @var{expressions} be a comma-separated list of individual expressions,
21192 which may be either numbers or pointers.  Their values are printed as
21193 specified by @var{template}, exactly as a C program would do by
21194 executing the code below:
21195
21196 @smallexample
21197 printf (@var{template}, @var{expressions}@dots{});
21198 @end smallexample
21199
21200 As in @code{C} @code{printf}, ordinary characters in @var{template}
21201 are printed verbatim, while @dfn{conversion specification} introduced
21202 by the @samp{%} character cause subsequent @var{expressions} to be
21203 evaluated, their values converted and formatted according to type and
21204 style information encoded in the conversion specifications, and then
21205 printed.
21206
21207 For example, you can print two values in hex like this:
21208
21209 @smallexample
21210 printf "foo, bar-foo = 0x%x, 0x%x\n", foo, bar-foo
21211 @end smallexample
21212
21213 @code{printf} supports all the standard @code{C} conversion
21214 specifications, including the flags and modifiers between the @samp{%}
21215 character and the conversion letter, with the following exceptions:
21216
21217 @itemize @bullet
21218 @item
21219 The argument-ordering modifiers, such as @samp{2$}, are not supported.
21220
21221 @item
21222 The modifier @samp{*} is not supported for specifying precision or
21223 width.
21224
21225 @item
21226 The @samp{'} flag (for separation of digits into groups according to
21227 @code{LC_NUMERIC'}) is not supported.
21228
21229 @item
21230 The type modifiers @samp{hh}, @samp{j}, @samp{t}, and @samp{z} are not
21231 supported.
21232
21233 @item
21234 The conversion letter @samp{n} (as in @samp{%n}) is not supported.
21235
21236 @item
21237 The conversion letters @samp{a} and @samp{A} are not supported.
21238 @end itemize
21239
21240 @noindent
21241 Note that the @samp{ll} type modifier is supported only if the
21242 underlying @code{C} implementation used to build @value{GDBN} supports
21243 the @code{long long int} type, and the @samp{L} type modifier is
21244 supported only if @code{long double} type is available.
21245
21246 As in @code{C}, @code{printf} supports simple backslash-escape
21247 sequences, such as @code{\n}, @samp{\t}, @samp{\\}, @samp{\"},
21248 @samp{\a}, and @samp{\f}, that consist of backslash followed by a
21249 single character.  Octal and hexadecimal escape sequences are not
21250 supported.
21251
21252 Additionally, @code{printf} supports conversion specifications for DFP
21253 (@dfn{Decimal Floating Point}) types using the following length modifiers
21254 together with a floating point specifier.
21255 letters:
21256
21257 @itemize @bullet
21258 @item
21259 @samp{H} for printing @code{Decimal32} types.
21260
21261 @item
21262 @samp{D} for printing @code{Decimal64} types.
21263
21264 @item
21265 @samp{DD} for printing @code{Decimal128} types.
21266 @end itemize
21267
21268 If the underlying @code{C} implementation used to build @value{GDBN} has
21269 support for the three length modifiers for DFP types, other modifiers
21270 such as width and precision will also be available for @value{GDBN} to use.
21271
21272 In case there is no such @code{C} support, no additional modifiers will be
21273 available and the value will be printed in the standard way.
21274
21275 Here's an example of printing DFP types using the above conversion letters:
21276 @smallexample
21277 printf "D32: %Hf - D64: %Df - D128: %DDf\n",1.2345df,1.2E10dd,1.2E1dl
21278 @end smallexample
21279
21280 @kindex eval
21281 @item eval @var{template}, @var{expressions}@dots{}
21282 Convert the values of one or more @var{expressions} under the control of
21283 the string @var{template} to a command line, and call it.
21284
21285 @end table
21286
21287 @node Python
21288 @section Scripting @value{GDBN} using Python
21289 @cindex python scripting
21290 @cindex scripting with python
21291
21292 You can script @value{GDBN} using the @uref{http://www.python.org/,
21293 Python programming language}.  This feature is available only if
21294 @value{GDBN} was configured using @option{--with-python}.
21295
21296 @cindex python directory
21297 Python scripts used by @value{GDBN} should be installed in
21298 @file{@var{data-directory}/python}, where @var{data-directory} is
21299 the data directory as determined at @value{GDBN} startup (@pxref{Data Files}).
21300 This directory, known as the @dfn{python directory},
21301 is automatically added to the Python Search Path in order to allow
21302 the Python interpreter to locate all scripts installed at this location.
21303
21304 Additionally, @value{GDBN} commands and convenience functions which
21305 are written in Python and are located in the
21306 @file{@var{data-directory}/python/gdb/command} or
21307 @file{@var{data-directory}/python/gdb/function} directories are
21308 automatically imported when @value{GDBN} starts.
21309
21310 @menu
21311 * Python Commands::             Accessing Python from @value{GDBN}.
21312 * Python API::                  Accessing @value{GDBN} from Python.
21313 * Auto-loading::                Automatically loading Python code.
21314 * Python modules::              Python modules provided by @value{GDBN}.
21315 @end menu
21316
21317 @node Python Commands
21318 @subsection Python Commands
21319 @cindex python commands
21320 @cindex commands to access python
21321
21322 @value{GDBN} provides one command for accessing the Python interpreter,
21323 and one related setting:
21324
21325 @table @code
21326 @kindex python
21327 @item python @r{[}@var{code}@r{]}
21328 The @code{python} command can be used to evaluate Python code.
21329
21330 If given an argument, the @code{python} command will evaluate the
21331 argument as a Python command.  For example:
21332
21333 @smallexample
21334 (@value{GDBP}) python print 23
21335 23
21336 @end smallexample
21337
21338 If you do not provide an argument to @code{python}, it will act as a
21339 multi-line command, like @code{define}.  In this case, the Python
21340 script is made up of subsequent command lines, given after the
21341 @code{python} command.  This command list is terminated using a line
21342 containing @code{end}.  For example:
21343
21344 @smallexample
21345 (@value{GDBP}) python
21346 Type python script
21347 End with a line saying just "end".
21348 >print 23
21349 >end
21350 23
21351 @end smallexample
21352
21353 @kindex maint set python print-stack
21354 @item maint set python print-stack
21355 This command is now deprecated.  Instead use @code{set python
21356 print-stack} 
21357
21358 @kindex set python print-stack
21359 @item set python print-stack
21360 By default, @value{GDBN} will not print a stack trace when an error
21361 occurs in a Python script.  This can be controlled using @code{set
21362 python print-stack}: if @code{on}, then Python stack printing is
21363 enabled; if @code{off}, the default, then Python stack printing is
21364 disabled.
21365 @end table
21366
21367 It is also possible to execute a Python script from the @value{GDBN}
21368 interpreter:
21369
21370 @table @code
21371 @item source @file{script-name}
21372 The script name must end with @samp{.py} and @value{GDBN} must be configured
21373 to recognize the script language based on filename extension using
21374 the @code{script-extension} setting.  @xref{Extending GDB, ,Extending GDB}.
21375
21376 @item python execfile ("script-name")
21377 This method is based on the @code{execfile} Python built-in function,
21378 and thus is always available.
21379 @end table
21380
21381 @node Python API
21382 @subsection Python API
21383 @cindex python api
21384 @cindex programming in python
21385
21386 @cindex python stdout
21387 @cindex python pagination
21388 At startup, @value{GDBN} overrides Python's @code{sys.stdout} and
21389 @code{sys.stderr} to print using @value{GDBN}'s output-paging streams.
21390 A Python program which outputs to one of these streams may have its
21391 output interrupted by the user (@pxref{Screen Size}).  In this
21392 situation, a Python @code{KeyboardInterrupt} exception is thrown.
21393
21394 @menu
21395 * Basic Python::                Basic Python Functions.
21396 * Exception Handling::          How Python exceptions are translated.
21397 * Values From Inferior::        Python representation of values.
21398 * Types In Python::             Python representation of types.
21399 * Pretty Printing API::         Pretty-printing values.
21400 * Selecting Pretty-Printers::   How GDB chooses a pretty-printer.
21401 * Writing a Pretty-Printer::    Writing a Pretty-Printer.
21402 * Inferiors In Python::         Python representation of inferiors (processes)
21403 * Events In Python::            Listening for events from @value{GDBN}.
21404 * Threads In Python::           Accessing inferior threads from Python.
21405 * Commands In Python::          Implementing new commands in Python.
21406 * Parameters In Python::        Adding new @value{GDBN} parameters.
21407 * Functions In Python::         Writing new convenience functions.
21408 * Progspaces In Python::        Program spaces.
21409 * Objfiles In Python::          Object files.
21410 * Frames In Python::            Accessing inferior stack frames from Python.
21411 * Blocks In Python::            Accessing frame blocks from Python.
21412 * Symbols In Python::           Python representation of symbols.
21413 * Symbol Tables In Python::     Python representation of symbol tables.
21414 * Lazy Strings In Python::      Python representation of lazy strings.
21415 * Breakpoints In Python::       Manipulating breakpoints using Python.
21416 @end menu
21417
21418 @node Basic Python
21419 @subsubsection Basic Python
21420
21421 @cindex python functions
21422 @cindex python module
21423 @cindex gdb module
21424 @value{GDBN} introduces a new Python module, named @code{gdb}.  All
21425 methods and classes added by @value{GDBN} are placed in this module.
21426 @value{GDBN} automatically @code{import}s the @code{gdb} module for
21427 use in all scripts evaluated by the @code{python} command.
21428
21429 @findex gdb.PYTHONDIR
21430 @defvar gdb.PYTHONDIR
21431 A string containing the python directory (@pxref{Python}).
21432 @end defvar
21433
21434 @findex gdb.execute
21435 @defun gdb.execute (command @r{[}, from_tty @r{[}, to_string@r{]]})
21436 Evaluate @var{command}, a string, as a @value{GDBN} CLI command.
21437 If a GDB exception happens while @var{command} runs, it is
21438 translated as described in @ref{Exception Handling,,Exception Handling}.
21439
21440 @var{from_tty} specifies whether @value{GDBN} ought to consider this
21441 command as having originated from the user invoking it interactively.
21442 It must be a boolean value.  If omitted, it defaults to @code{False}.
21443
21444 By default, any output produced by @var{command} is sent to
21445 @value{GDBN}'s standard output.  If the @var{to_string} parameter is
21446 @code{True}, then output will be collected by @code{gdb.execute} and
21447 returned as a string.  The default is @code{False}, in which case the
21448 return value is @code{None}.  If @var{to_string} is @code{True}, the
21449 @value{GDBN} virtual terminal will be temporarily set to unlimited width
21450 and height, and its pagination will be disabled; @pxref{Screen Size}.
21451 @end defun
21452
21453 @findex gdb.breakpoints
21454 @defun gdb.breakpoints ()
21455 Return a sequence holding all of @value{GDBN}'s breakpoints.
21456 @xref{Breakpoints In Python}, for more information.
21457 @end defun
21458
21459 @findex gdb.parameter
21460 @defun gdb.parameter (parameter)
21461 Return the value of a @value{GDBN} parameter.  @var{parameter} is a
21462 string naming the parameter to look up; @var{parameter} may contain
21463 spaces if the parameter has a multi-part name.  For example,
21464 @samp{print object} is a valid parameter name.
21465
21466 If the named parameter does not exist, this function throws a
21467 @code{gdb.error} (@pxref{Exception Handling}).  Otherwise, the
21468 parameter's value is converted to a Python value of the appropriate
21469 type, and returned.
21470 @end defun
21471
21472 @findex gdb.history
21473 @defun gdb.history (number)
21474 Return a value from @value{GDBN}'s value history (@pxref{Value
21475 History}).  @var{number} indicates which history element to return.
21476 If @var{number} is negative, then @value{GDBN} will take its absolute value
21477 and count backward from the last element (i.e., the most recent element) to
21478 find the value to return.  If @var{number} is zero, then @value{GDBN} will
21479 return the most recent element.  If the element specified by @var{number}
21480 doesn't exist in the value history, a @code{gdb.error} exception will be
21481 raised.
21482
21483 If no exception is raised, the return value is always an instance of
21484 @code{gdb.Value} (@pxref{Values From Inferior}).
21485 @end defun
21486
21487 @findex gdb.parse_and_eval
21488 @defun gdb.parse_and_eval (expression)
21489 Parse @var{expression} as an expression in the current language,
21490 evaluate it, and return the result as a @code{gdb.Value}.
21491 @var{expression} must be a string.
21492
21493 This function can be useful when implementing a new command
21494 (@pxref{Commands In Python}), as it provides a way to parse the
21495 command's argument as an expression.  It is also useful simply to
21496 compute values, for example, it is the only way to get the value of a
21497 convenience variable (@pxref{Convenience Vars}) as a @code{gdb.Value}.
21498 @end defun
21499
21500 @findex gdb.post_event
21501 @defun gdb.post_event (event)
21502 Put @var{event}, a callable object taking no arguments, into
21503 @value{GDBN}'s internal event queue.  This callable will be invoked at
21504 some later point, during @value{GDBN}'s event processing.  Events
21505 posted using @code{post_event} will be run in the order in which they
21506 were posted; however, there is no way to know when they will be
21507 processed relative to other events inside @value{GDBN}.
21508
21509 @value{GDBN} is not thread-safe.  If your Python program uses multiple
21510 threads, you must be careful to only call @value{GDBN}-specific
21511 functions in the main @value{GDBN} thread.  @code{post_event} ensures
21512 this.  For example:
21513
21514 @smallexample
21515 (@value{GDBP}) python
21516 >import threading
21517 >
21518 >class Writer():
21519 > def __init__(self, message):
21520 >        self.message = message;
21521 > def __call__(self):
21522 >        gdb.write(self.message)
21523 >
21524 >class MyThread1 (threading.Thread):
21525 > def run (self):
21526 >        gdb.post_event(Writer("Hello "))
21527 >
21528 >class MyThread2 (threading.Thread):
21529 > def run (self):
21530 >        gdb.post_event(Writer("World\n"))
21531 >
21532 >MyThread1().start()
21533 >MyThread2().start()
21534 >end
21535 (@value{GDBP}) Hello World
21536 @end smallexample
21537 @end defun
21538
21539 @findex gdb.write 
21540 @defun gdb.write (string @r{[}, stream{]})
21541 Print a string to @value{GDBN}'s paginated output stream.  The
21542 optional @var{stream} determines the stream to print to.  The default
21543 stream is @value{GDBN}'s standard output stream.  Possible stream
21544 values are:
21545
21546 @table @code
21547 @findex STDOUT
21548 @findex gdb.STDOUT
21549 @item gdb.STDOUT
21550 @value{GDBN}'s standard output stream.
21551
21552 @findex STDERR
21553 @findex gdb.STDERR
21554 @item gdb.STDERR
21555 @value{GDBN}'s standard error stream.
21556
21557 @findex STDLOG
21558 @findex gdb.STDLOG
21559 @item gdb.STDLOG
21560 @value{GDBN}'s log stream (@pxref{Logging Output}).
21561 @end table
21562
21563 Writing to @code{sys.stdout} or @code{sys.stderr} will automatically
21564 call this function and will automatically direct the output to the
21565 relevant stream.
21566 @end defun
21567
21568 @findex gdb.flush
21569 @defun gdb.flush ()
21570 Flush the buffer of a @value{GDBN} paginated stream so that the
21571 contents are displayed immediately.  @value{GDBN} will flush the
21572 contents of a stream automatically when it encounters a newline in the
21573 buffer.  The optional @var{stream} determines the stream to flush.  The
21574 default stream is @value{GDBN}'s standard output stream.  Possible
21575 stream values are: 
21576
21577 @table @code
21578 @findex STDOUT
21579 @findex gdb.STDOUT
21580 @item gdb.STDOUT
21581 @value{GDBN}'s standard output stream.
21582
21583 @findex STDERR
21584 @findex gdb.STDERR
21585 @item gdb.STDERR
21586 @value{GDBN}'s standard error stream.
21587
21588 @findex STDLOG
21589 @findex gdb.STDLOG
21590 @item gdb.STDLOG
21591 @value{GDBN}'s log stream (@pxref{Logging Output}).
21592
21593 @end table
21594
21595 Flushing @code{sys.stdout} or @code{sys.stderr} will automatically
21596 call this function for the relevant stream.
21597 @end defun
21598
21599 @findex gdb.target_charset
21600 @defun gdb.target_charset ()
21601 Return the name of the current target character set (@pxref{Character
21602 Sets}).  This differs from @code{gdb.parameter('target-charset')} in
21603 that @samp{auto} is never returned.
21604 @end defun
21605
21606 @findex gdb.target_wide_charset
21607 @defun gdb.target_wide_charset ()
21608 Return the name of the current target wide character set
21609 (@pxref{Character Sets}).  This differs from
21610 @code{gdb.parameter('target-wide-charset')} in that @samp{auto} is
21611 never returned.
21612 @end defun
21613
21614 @findex gdb.solib_name
21615 @defun gdb.solib_name (address)
21616 Return the name of the shared library holding the given @var{address}
21617 as a string, or @code{None}.
21618 @end defun
21619
21620 @findex gdb.decode_line 
21621 @defun gdb.decode_line @r{[}expression@r{]}
21622 Return locations of the line specified by @var{expression}, or of the
21623 current line if no argument was given.  This function returns a Python
21624 tuple containing two elements.  The first element contains a string
21625 holding any unparsed section of @var{expression} (or @code{None} if
21626 the expression has been fully parsed).  The second element contains
21627 either @code{None} or another tuple that contains all the locations
21628 that match the expression represented as @code{gdb.Symtab_and_line}
21629 objects (@pxref{Symbol Tables In Python}).  If @var{expression} is
21630 provided, it is decoded the way that @value{GDBN}'s inbuilt
21631 @code{break} or @code{edit} commands do (@pxref{Specify Location}).
21632 @end defun
21633
21634 @defun gdb.prompt_hook (current_prompt)
21635 @anchor{prompt_hook}
21636
21637 If @var{prompt_hook} is callable, @value{GDBN} will call the method
21638 assigned to this operation before a prompt is displayed by
21639 @value{GDBN}.
21640
21641 The parameter @code{current_prompt} contains the current @value{GDBN} 
21642 prompt.  This method must return a Python string, or @code{None}.  If
21643 a string is returned, the @value{GDBN} prompt will be set to that
21644 string.  If @code{None} is returned, @value{GDBN} will continue to use
21645 the current prompt.
21646
21647 Some prompts cannot be substituted in @value{GDBN}.  Secondary prompts
21648 such as those used by readline for command input, and annotation
21649 related prompts are prohibited from being changed.
21650 @end defun
21651
21652 @node Exception Handling
21653 @subsubsection Exception Handling
21654 @cindex python exceptions
21655 @cindex exceptions, python
21656
21657 When executing the @code{python} command, Python exceptions
21658 uncaught within the Python code are translated to calls to
21659 @value{GDBN} error-reporting mechanism.  If the command that called
21660 @code{python} does not handle the error, @value{GDBN} will
21661 terminate it and print an error message containing the Python
21662 exception name, the associated value, and the Python call stack
21663 backtrace at the point where the exception was raised.  Example:
21664
21665 @smallexample
21666 (@value{GDBP}) python print foo
21667 Traceback (most recent call last):
21668   File "<string>", line 1, in <module>
21669 NameError: name 'foo' is not defined
21670 @end smallexample
21671
21672 @value{GDBN} errors that happen in @value{GDBN} commands invoked by
21673 Python code are converted to Python exceptions.  The type of the
21674 Python exception depends on the error.
21675
21676 @ftable @code
21677 @item gdb.error
21678 This is the base class for most exceptions generated by @value{GDBN}.
21679 It is derived from @code{RuntimeError}, for compatibility with earlier
21680 versions of @value{GDBN}.
21681
21682 If an error occurring in @value{GDBN} does not fit into some more
21683 specific category, then the generated exception will have this type.
21684
21685 @item gdb.MemoryError
21686 This is a subclass of @code{gdb.error} which is thrown when an
21687 operation tried to access invalid memory in the inferior.
21688
21689 @item KeyboardInterrupt
21690 User interrupt (via @kbd{C-c} or by typing @kbd{q} at a pagination
21691 prompt) is translated to a Python @code{KeyboardInterrupt} exception.
21692 @end ftable
21693
21694 In all cases, your exception handler will see the @value{GDBN} error
21695 message as its value and the Python call stack backtrace at the Python
21696 statement closest to where the @value{GDBN} error occured as the
21697 traceback.
21698
21699 @findex gdb.GdbError
21700 When implementing @value{GDBN} commands in Python via @code{gdb.Command},
21701 it is useful to be able to throw an exception that doesn't cause a
21702 traceback to be printed.  For example, the user may have invoked the
21703 command incorrectly.  Use the @code{gdb.GdbError} exception
21704 to handle this case.  Example:
21705
21706 @smallexample
21707 (gdb) python
21708 >class HelloWorld (gdb.Command):
21709 >  """Greet the whole world."""
21710 >  def __init__ (self):
21711 >    super (HelloWorld, self).__init__ ("hello-world", gdb.COMMAND_OBSCURE)
21712 >  def invoke (self, args, from_tty):
21713 >    argv = gdb.string_to_argv (args)
21714 >    if len (argv) != 0:
21715 >      raise gdb.GdbError ("hello-world takes no arguments")
21716 >    print "Hello, World!"
21717 >HelloWorld ()
21718 >end
21719 (gdb) hello-world 42
21720 hello-world takes no arguments
21721 @end smallexample
21722
21723 @node Values From Inferior
21724 @subsubsection Values From Inferior
21725 @cindex values from inferior, with Python
21726 @cindex python, working with values from inferior
21727
21728 @cindex @code{gdb.Value}
21729 @value{GDBN} provides values it obtains from the inferior program in
21730 an object of type @code{gdb.Value}.  @value{GDBN} uses this object
21731 for its internal bookkeeping of the inferior's values, and for
21732 fetching values when necessary.
21733
21734 Inferior values that are simple scalars can be used directly in
21735 Python expressions that are valid for the value's data type.  Here's
21736 an example for an integer or floating-point value @code{some_val}:
21737
21738 @smallexample
21739 bar = some_val + 2
21740 @end smallexample
21741
21742 @noindent
21743 As result of this, @code{bar} will also be a @code{gdb.Value} object
21744 whose values are of the same type as those of @code{some_val}.
21745
21746 Inferior values that are structures or instances of some class can
21747 be accessed using the Python @dfn{dictionary syntax}.  For example, if
21748 @code{some_val} is a @code{gdb.Value} instance holding a structure, you
21749 can access its @code{foo} element with:
21750
21751 @smallexample
21752 bar = some_val['foo']
21753 @end smallexample
21754
21755 Again, @code{bar} will also be a @code{gdb.Value} object.
21756
21757 A @code{gdb.Value} that represents a function can be executed via
21758 inferior function call.  Any arguments provided to the call must match
21759 the function's prototype, and must be provided in the order specified
21760 by that prototype.
21761
21762 For example, @code{some_val} is a @code{gdb.Value} instance
21763 representing a function that takes two integers as arguments.  To
21764 execute this function, call it like so:
21765
21766 @smallexample
21767 result = some_val (10,20)
21768 @end smallexample
21769
21770 Any values returned from a function call will be stored as a
21771 @code{gdb.Value}.
21772
21773 The following attributes are provided:
21774
21775 @table @code
21776 @defvar Value.address
21777 If this object is addressable, this read-only attribute holds a
21778 @code{gdb.Value} object representing the address.  Otherwise,
21779 this attribute holds @code{None}.
21780 @end defvar
21781
21782 @cindex optimized out value in Python
21783 @defvar Value.is_optimized_out
21784 This read-only boolean attribute is true if the compiler optimized out
21785 this value, thus it is not available for fetching from the inferior.
21786 @end defvar
21787
21788 @defvar Value.type
21789 The type of this @code{gdb.Value}.  The value of this attribute is a
21790 @code{gdb.Type} object (@pxref{Types In Python}).
21791 @end defvar
21792
21793 @defvar Value.dynamic_type
21794 The dynamic type of this @code{gdb.Value}.  This uses C@t{++} run-time
21795 type information (@acronym{RTTI}) to determine the dynamic type of the
21796 value.  If this value is of class type, it will return the class in
21797 which the value is embedded, if any.  If this value is of pointer or
21798 reference to a class type, it will compute the dynamic type of the
21799 referenced object, and return a pointer or reference to that type,
21800 respectively.  In all other cases, it will return the value's static
21801 type.
21802
21803 Note that this feature will only work when debugging a C@t{++} program
21804 that includes @acronym{RTTI} for the object in question.  Otherwise,
21805 it will just return the static type of the value as in @kbd{ptype foo}
21806 (@pxref{Symbols, ptype}).
21807 @end defvar
21808
21809 @defvar Value.is_lazy
21810 The value of this read-only boolean attribute is @code{True} if this
21811 @code{gdb.Value} has not yet been fetched from the inferior.  
21812 @value{GDBN} does not fetch values until necessary, for efficiency.  
21813 For example:
21814
21815 @smallexample
21816 myval = gdb.parse_and_eval ('somevar')
21817 @end smallexample
21818
21819 The value of @code{somevar} is not fetched at this time.  It will be 
21820 fetched when the value is needed, or when the @code{fetch_lazy}
21821 method is invoked.  
21822 @end defvar
21823 @end table
21824
21825 The following methods are provided:
21826
21827 @table @code
21828 @defun Value.__init__ (@var{val})
21829 Many Python values can be converted directly to a @code{gdb.Value} via
21830 this object initializer.  Specifically:
21831
21832 @table @asis
21833 @item Python boolean
21834 A Python boolean is converted to the boolean type from the current
21835 language.
21836
21837 @item Python integer
21838 A Python integer is converted to the C @code{long} type for the
21839 current architecture.
21840
21841 @item Python long
21842 A Python long is converted to the C @code{long long} type for the
21843 current architecture.
21844
21845 @item Python float
21846 A Python float is converted to the C @code{double} type for the
21847 current architecture.
21848
21849 @item Python string
21850 A Python string is converted to a target string, using the current
21851 target encoding.
21852
21853 @item @code{gdb.Value}
21854 If @code{val} is a @code{gdb.Value}, then a copy of the value is made.
21855
21856 @item @code{gdb.LazyString}
21857 If @code{val} is a @code{gdb.LazyString} (@pxref{Lazy Strings In
21858 Python}), then the lazy string's @code{value} method is called, and
21859 its result is used.
21860 @end table
21861 @end defun
21862
21863 @defun Value.cast (type)
21864 Return a new instance of @code{gdb.Value} that is the result of
21865 casting this instance to the type described by @var{type}, which must
21866 be a @code{gdb.Type} object.  If the cast cannot be performed for some
21867 reason, this method throws an exception.
21868 @end defun
21869
21870 @defun Value.dereference ()
21871 For pointer data types, this method returns a new @code{gdb.Value} object
21872 whose contents is the object pointed to by the pointer.  For example, if
21873 @code{foo} is a C pointer to an @code{int}, declared in your C program as
21874
21875 @smallexample
21876 int *foo;
21877 @end smallexample
21878
21879 @noindent
21880 then you can use the corresponding @code{gdb.Value} to access what
21881 @code{foo} points to like this:
21882
21883 @smallexample
21884 bar = foo.dereference ()
21885 @end smallexample
21886
21887 The result @code{bar} will be a @code{gdb.Value} object holding the
21888 value pointed to by @code{foo}.
21889 @end defun
21890
21891 @defun Value.dynamic_cast (type)
21892 Like @code{Value.cast}, but works as if the C@t{++} @code{dynamic_cast}
21893 operator were used.  Consult a C@t{++} reference for details.
21894 @end defun
21895
21896 @defun Value.reinterpret_cast (type)
21897 Like @code{Value.cast}, but works as if the C@t{++} @code{reinterpret_cast}
21898 operator were used.  Consult a C@t{++} reference for details.
21899 @end defun
21900
21901 @defun Value.string (@r{[}encoding@r{[}, errors@r{[}, length@r{]]]})
21902 If this @code{gdb.Value} represents a string, then this method
21903 converts the contents to a Python string.  Otherwise, this method will
21904 throw an exception.
21905
21906 Strings are recognized in a language-specific way; whether a given
21907 @code{gdb.Value} represents a string is determined by the current
21908 language.
21909
21910 For C-like languages, a value is a string if it is a pointer to or an
21911 array of characters or ints.  The string is assumed to be terminated
21912 by a zero of the appropriate width.  However if the optional length
21913 argument is given, the string will be converted to that given length,
21914 ignoring any embedded zeros that the string may contain.
21915
21916 If the optional @var{encoding} argument is given, it must be a string
21917 naming the encoding of the string in the @code{gdb.Value}, such as
21918 @code{"ascii"}, @code{"iso-8859-6"} or @code{"utf-8"}.  It accepts
21919 the same encodings as the corresponding argument to Python's
21920 @code{string.decode} method, and the Python codec machinery will be used
21921 to convert the string.  If @var{encoding} is not given, or if
21922 @var{encoding} is the empty string, then either the @code{target-charset}
21923 (@pxref{Character Sets}) will be used, or a language-specific encoding
21924 will be used, if the current language is able to supply one.
21925
21926 The optional @var{errors} argument is the same as the corresponding
21927 argument to Python's @code{string.decode} method.
21928
21929 If the optional @var{length} argument is given, the string will be
21930 fetched and converted to the given length.
21931 @end defun
21932
21933 @defun Value.lazy_string (@r{[}encoding @r{[}, length@r{]]})
21934 If this @code{gdb.Value} represents a string, then this method
21935 converts the contents to a @code{gdb.LazyString} (@pxref{Lazy Strings
21936 In Python}).  Otherwise, this method will throw an exception.
21937
21938 If the optional @var{encoding} argument is given, it must be a string
21939 naming the encoding of the @code{gdb.LazyString}.  Some examples are:
21940 @samp{ascii}, @samp{iso-8859-6} or @samp{utf-8}.  If the
21941 @var{encoding} argument is an encoding that @value{GDBN} does
21942 recognize, @value{GDBN} will raise an error.
21943
21944 When a lazy string is printed, the @value{GDBN} encoding machinery is
21945 used to convert the string during printing.  If the optional
21946 @var{encoding} argument is not provided, or is an empty string,
21947 @value{GDBN} will automatically select the encoding most suitable for
21948 the string type.  For further information on encoding in @value{GDBN}
21949 please see @ref{Character Sets}.
21950
21951 If the optional @var{length} argument is given, the string will be
21952 fetched and encoded to the length of characters specified.  If
21953 the @var{length} argument is not provided, the string will be fetched
21954 and encoded until a null of appropriate width is found.
21955 @end defun
21956
21957 @defun Value.fetch_lazy ()
21958 If the @code{gdb.Value} object is currently a lazy value 
21959 (@code{gdb.Value.is_lazy} is @code{True}), then the value is
21960 fetched from the inferior.  Any errors that occur in the process
21961 will produce a Python exception.
21962
21963 If the @code{gdb.Value} object is not a lazy value, this method
21964 has no effect.
21965
21966 This method does not return a value.
21967 @end defun
21968
21969 @end table
21970
21971 @node Types In Python
21972 @subsubsection Types In Python
21973 @cindex types in Python
21974 @cindex Python, working with types
21975
21976 @tindex gdb.Type
21977 @value{GDBN} represents types from the inferior using the class
21978 @code{gdb.Type}.
21979
21980 The following type-related functions are available in the @code{gdb}
21981 module:
21982
21983 @findex gdb.lookup_type
21984 @defun gdb.lookup_type (name @r{[}, block@r{]})
21985 This function looks up a type by name.  @var{name} is the name of the
21986 type to look up.  It must be a string.
21987
21988 If @var{block} is given, then @var{name} is looked up in that scope.
21989 Otherwise, it is searched for globally.
21990
21991 Ordinarily, this function will return an instance of @code{gdb.Type}.
21992 If the named type cannot be found, it will throw an exception.
21993 @end defun
21994
21995 If the type is a structure or class type, or an enum type, the fields
21996 of that type can be accessed using the Python @dfn{dictionary syntax}.
21997 For example, if @code{some_type} is a @code{gdb.Type} instance holding
21998 a structure type, you can access its @code{foo} field with:
21999
22000 @smallexample
22001 bar = some_type['foo']
22002 @end smallexample
22003
22004 @code{bar} will be a @code{gdb.Field} object; see below under the
22005 description of the @code{Type.fields} method for a description of the
22006 @code{gdb.Field} class.
22007
22008 An instance of @code{Type} has the following attributes:
22009
22010 @table @code
22011 @defvar Type.code
22012 The type code for this type.  The type code will be one of the
22013 @code{TYPE_CODE_} constants defined below.
22014 @end defvar
22015
22016 @defvar Type.sizeof
22017 The size of this type, in target @code{char} units.  Usually, a
22018 target's @code{char} type will be an 8-bit byte.  However, on some
22019 unusual platforms, this type may have a different size.
22020 @end defvar
22021
22022 @defvar Type.tag
22023 The tag name for this type.  The tag name is the name after
22024 @code{struct}, @code{union}, or @code{enum} in C and C@t{++}; not all
22025 languages have this concept.  If this type has no tag name, then
22026 @code{None} is returned.
22027 @end defvar
22028 @end table
22029
22030 The following methods are provided:
22031
22032 @table @code
22033 @defun Type.fields ()
22034 For structure and union types, this method returns the fields.  Range
22035 types have two fields, the minimum and maximum values.  Enum types
22036 have one field per enum constant.  Function and method types have one
22037 field per parameter.  The base types of C@t{++} classes are also
22038 represented as fields.  If the type has no fields, or does not fit
22039 into one of these categories, an empty sequence will be returned.
22040
22041 Each field is a @code{gdb.Field} object, with some pre-defined attributes:
22042 @table @code
22043 @item bitpos
22044 This attribute is not available for @code{static} fields (as in
22045 C@t{++} or Java).  For non-@code{static} fields, the value is the bit
22046 position of the field.  For @code{enum} fields, the value is the
22047 enumeration member's integer representation.
22048
22049 @item name
22050 The name of the field, or @code{None} for anonymous fields.
22051
22052 @item artificial
22053 This is @code{True} if the field is artificial, usually meaning that
22054 it was provided by the compiler and not the user.  This attribute is
22055 always provided, and is @code{False} if the field is not artificial.
22056
22057 @item is_base_class
22058 This is @code{True} if the field represents a base class of a C@t{++}
22059 structure.  This attribute is always provided, and is @code{False}
22060 if the field is not a base class of the type that is the argument of
22061 @code{fields}, or if that type was not a C@t{++} class.
22062
22063 @item bitsize
22064 If the field is packed, or is a bitfield, then this will have a
22065 non-zero value, which is the size of the field in bits.  Otherwise,
22066 this will be zero; in this case the field's size is given by its type.
22067
22068 @item type
22069 The type of the field.  This is usually an instance of @code{Type},
22070 but it can be @code{None} in some situations.
22071 @end table
22072 @end defun
22073
22074 @defun Type.array (@var{n1} @r{[}, @var{n2}@r{]})
22075 Return a new @code{gdb.Type} object which represents an array of this
22076 type.  If one argument is given, it is the inclusive upper bound of
22077 the array; in this case the lower bound is zero.  If two arguments are
22078 given, the first argument is the lower bound of the array, and the
22079 second argument is the upper bound of the array.  An array's length
22080 must not be negative, but the bounds can be.
22081 @end defun
22082
22083 @defun Type.const ()
22084 Return a new @code{gdb.Type} object which represents a
22085 @code{const}-qualified variant of this type.
22086 @end defun
22087
22088 @defun Type.volatile ()
22089 Return a new @code{gdb.Type} object which represents a
22090 @code{volatile}-qualified variant of this type.
22091 @end defun
22092
22093 @defun Type.unqualified ()
22094 Return a new @code{gdb.Type} object which represents an unqualified
22095 variant of this type.  That is, the result is neither @code{const} nor
22096 @code{volatile}.
22097 @end defun
22098
22099 @defun Type.range ()
22100 Return a Python @code{Tuple} object that contains two elements: the
22101 low bound of the argument type and the high bound of that type.  If
22102 the type does not have a range, @value{GDBN} will raise a
22103 @code{gdb.error} exception (@pxref{Exception Handling}).
22104 @end defun
22105
22106 @defun Type.reference ()
22107 Return a new @code{gdb.Type} object which represents a reference to this
22108 type.
22109 @end defun
22110
22111 @defun Type.pointer ()
22112 Return a new @code{gdb.Type} object which represents a pointer to this
22113 type.
22114 @end defun
22115
22116 @defun Type.strip_typedefs ()
22117 Return a new @code{gdb.Type} that represents the real type,
22118 after removing all layers of typedefs.
22119 @end defun
22120
22121 @defun Type.target ()
22122 Return a new @code{gdb.Type} object which represents the target type
22123 of this type.
22124
22125 For a pointer type, the target type is the type of the pointed-to
22126 object.  For an array type (meaning C-like arrays), the target type is
22127 the type of the elements of the array.  For a function or method type,
22128 the target type is the type of the return value.  For a complex type,
22129 the target type is the type of the elements.  For a typedef, the
22130 target type is the aliased type.
22131
22132 If the type does not have a target, this method will throw an
22133 exception.
22134 @end defun
22135
22136 @defun Type.template_argument (n @r{[}, block@r{]})
22137 If this @code{gdb.Type} is an instantiation of a template, this will
22138 return a new @code{gdb.Type} which represents the type of the
22139 @var{n}th template argument.
22140
22141 If this @code{gdb.Type} is not a template type, this will throw an
22142 exception.  Ordinarily, only C@t{++} code will have template types.
22143
22144 If @var{block} is given, then @var{name} is looked up in that scope.
22145 Otherwise, it is searched for globally.
22146 @end defun
22147 @end table
22148
22149
22150 Each type has a code, which indicates what category this type falls
22151 into.  The available type categories are represented by constants
22152 defined in the @code{gdb} module:
22153
22154 @table @code
22155 @findex TYPE_CODE_PTR
22156 @findex gdb.TYPE_CODE_PTR
22157 @item gdb.TYPE_CODE_PTR
22158 The type is a pointer.
22159
22160 @findex TYPE_CODE_ARRAY
22161 @findex gdb.TYPE_CODE_ARRAY
22162 @item gdb.TYPE_CODE_ARRAY
22163 The type is an array.
22164
22165 @findex TYPE_CODE_STRUCT
22166 @findex gdb.TYPE_CODE_STRUCT
22167 @item gdb.TYPE_CODE_STRUCT
22168 The type is a structure.
22169
22170 @findex TYPE_CODE_UNION
22171 @findex gdb.TYPE_CODE_UNION
22172 @item gdb.TYPE_CODE_UNION
22173 The type is a union.
22174
22175 @findex TYPE_CODE_ENUM
22176 @findex gdb.TYPE_CODE_ENUM
22177 @item gdb.TYPE_CODE_ENUM
22178 The type is an enum.
22179
22180 @findex TYPE_CODE_FLAGS
22181 @findex gdb.TYPE_CODE_FLAGS
22182 @item gdb.TYPE_CODE_FLAGS
22183 A bit flags type, used for things such as status registers.
22184
22185 @findex TYPE_CODE_FUNC
22186 @findex gdb.TYPE_CODE_FUNC
22187 @item gdb.TYPE_CODE_FUNC
22188 The type is a function.
22189
22190 @findex TYPE_CODE_INT
22191 @findex gdb.TYPE_CODE_INT
22192 @item gdb.TYPE_CODE_INT
22193 The type is an integer type.
22194
22195 @findex TYPE_CODE_FLT
22196 @findex gdb.TYPE_CODE_FLT
22197 @item gdb.TYPE_CODE_FLT
22198 A floating point type.
22199
22200 @findex TYPE_CODE_VOID
22201 @findex gdb.TYPE_CODE_VOID
22202 @item gdb.TYPE_CODE_VOID
22203 The special type @code{void}.
22204
22205 @findex TYPE_CODE_SET
22206 @findex gdb.TYPE_CODE_SET
22207 @item gdb.TYPE_CODE_SET
22208 A Pascal set type.
22209
22210 @findex TYPE_CODE_RANGE
22211 @findex gdb.TYPE_CODE_RANGE
22212 @item gdb.TYPE_CODE_RANGE
22213 A range type, that is, an integer type with bounds.
22214
22215 @findex TYPE_CODE_STRING
22216 @findex gdb.TYPE_CODE_STRING
22217 @item gdb.TYPE_CODE_STRING
22218 A string type.  Note that this is only used for certain languages with
22219 language-defined string types; C strings are not represented this way.
22220
22221 @findex TYPE_CODE_BITSTRING
22222 @findex gdb.TYPE_CODE_BITSTRING
22223 @item gdb.TYPE_CODE_BITSTRING
22224 A string of bits.
22225
22226 @findex TYPE_CODE_ERROR
22227 @findex gdb.TYPE_CODE_ERROR
22228 @item gdb.TYPE_CODE_ERROR
22229 An unknown or erroneous type.
22230
22231 @findex TYPE_CODE_METHOD
22232 @findex gdb.TYPE_CODE_METHOD
22233 @item gdb.TYPE_CODE_METHOD
22234 A method type, as found in C@t{++} or Java.
22235
22236 @findex TYPE_CODE_METHODPTR
22237 @findex gdb.TYPE_CODE_METHODPTR
22238 @item gdb.TYPE_CODE_METHODPTR
22239 A pointer-to-member-function.
22240
22241 @findex TYPE_CODE_MEMBERPTR
22242 @findex gdb.TYPE_CODE_MEMBERPTR
22243 @item gdb.TYPE_CODE_MEMBERPTR
22244 A pointer-to-member.
22245
22246 @findex TYPE_CODE_REF
22247 @findex gdb.TYPE_CODE_REF
22248 @item gdb.TYPE_CODE_REF
22249 A reference type.
22250
22251 @findex TYPE_CODE_CHAR
22252 @findex gdb.TYPE_CODE_CHAR
22253 @item gdb.TYPE_CODE_CHAR
22254 A character type.
22255
22256 @findex TYPE_CODE_BOOL
22257 @findex gdb.TYPE_CODE_BOOL
22258 @item gdb.TYPE_CODE_BOOL
22259 A boolean type.
22260
22261 @findex TYPE_CODE_COMPLEX
22262 @findex gdb.TYPE_CODE_COMPLEX
22263 @item gdb.TYPE_CODE_COMPLEX
22264 A complex float type.
22265
22266 @findex TYPE_CODE_TYPEDEF
22267 @findex gdb.TYPE_CODE_TYPEDEF
22268 @item gdb.TYPE_CODE_TYPEDEF
22269 A typedef to some other type.
22270
22271 @findex TYPE_CODE_NAMESPACE
22272 @findex gdb.TYPE_CODE_NAMESPACE
22273 @item gdb.TYPE_CODE_NAMESPACE
22274 A C@t{++} namespace.
22275
22276 @findex TYPE_CODE_DECFLOAT
22277 @findex gdb.TYPE_CODE_DECFLOAT
22278 @item gdb.TYPE_CODE_DECFLOAT
22279 A decimal floating point type.
22280
22281 @findex TYPE_CODE_INTERNAL_FUNCTION
22282 @findex gdb.TYPE_CODE_INTERNAL_FUNCTION
22283 @item gdb.TYPE_CODE_INTERNAL_FUNCTION
22284 A function internal to @value{GDBN}.  This is the type used to represent
22285 convenience functions.
22286 @end table
22287
22288 Further support for types is provided in the @code{gdb.types}
22289 Python module (@pxref{gdb.types}).
22290
22291 @node Pretty Printing API
22292 @subsubsection Pretty Printing API
22293
22294 An example output is provided (@pxref{Pretty Printing}).
22295
22296 A pretty-printer is just an object that holds a value and implements a
22297 specific interface, defined here.
22298
22299 @defun pretty_printer.children (self)
22300 @value{GDBN} will call this method on a pretty-printer to compute the
22301 children of the pretty-printer's value.
22302
22303 This method must return an object conforming to the Python iterator
22304 protocol.  Each item returned by the iterator must be a tuple holding
22305 two elements.  The first element is the ``name'' of the child; the
22306 second element is the child's value.  The value can be any Python
22307 object which is convertible to a @value{GDBN} value.
22308
22309 This method is optional.  If it does not exist, @value{GDBN} will act
22310 as though the value has no children.
22311 @end defun
22312
22313 @defun pretty_printer.display_hint (self)
22314 The CLI may call this method and use its result to change the
22315 formatting of a value.  The result will also be supplied to an MI
22316 consumer as a @samp{displayhint} attribute of the variable being
22317 printed.
22318
22319 This method is optional.  If it does exist, this method must return a
22320 string.
22321
22322 Some display hints are predefined by @value{GDBN}:
22323
22324 @table @samp
22325 @item array
22326 Indicate that the object being printed is ``array-like''.  The CLI
22327 uses this to respect parameters such as @code{set print elements} and
22328 @code{set print array}.
22329
22330 @item map
22331 Indicate that the object being printed is ``map-like'', and that the
22332 children of this value can be assumed to alternate between keys and
22333 values.
22334
22335 @item string
22336 Indicate that the object being printed is ``string-like''.  If the
22337 printer's @code{to_string} method returns a Python string of some
22338 kind, then @value{GDBN} will call its internal language-specific
22339 string-printing function to format the string.  For the CLI this means
22340 adding quotation marks, possibly escaping some characters, respecting
22341 @code{set print elements}, and the like.
22342 @end table
22343 @end defun
22344
22345 @defun pretty_printer.to_string (self)
22346 @value{GDBN} will call this method to display the string
22347 representation of the value passed to the object's constructor.
22348
22349 When printing from the CLI, if the @code{to_string} method exists,
22350 then @value{GDBN} will prepend its result to the values returned by
22351 @code{children}.  Exactly how this formatting is done is dependent on
22352 the display hint, and may change as more hints are added.  Also,
22353 depending on the print settings (@pxref{Print Settings}), the CLI may
22354 print just the result of @code{to_string} in a stack trace, omitting
22355 the result of @code{children}.
22356
22357 If this method returns a string, it is printed verbatim.
22358
22359 Otherwise, if this method returns an instance of @code{gdb.Value},
22360 then @value{GDBN} prints this value.  This may result in a call to
22361 another pretty-printer.
22362
22363 If instead the method returns a Python value which is convertible to a
22364 @code{gdb.Value}, then @value{GDBN} performs the conversion and prints
22365 the resulting value.  Again, this may result in a call to another
22366 pretty-printer.  Python scalars (integers, floats, and booleans) and
22367 strings are convertible to @code{gdb.Value}; other types are not.
22368
22369 Finally, if this method returns @code{None} then no further operations
22370 are peformed in this method and nothing is printed.
22371
22372 If the result is not one of these types, an exception is raised.
22373 @end defun
22374
22375 @value{GDBN} provides a function which can be used to look up the
22376 default pretty-printer for a @code{gdb.Value}:
22377
22378 @findex gdb.default_visualizer
22379 @defun gdb.default_visualizer (value)
22380 This function takes a @code{gdb.Value} object as an argument.  If a
22381 pretty-printer for this value exists, then it is returned.  If no such
22382 printer exists, then this returns @code{None}.
22383 @end defun
22384
22385 @node Selecting Pretty-Printers
22386 @subsubsection Selecting Pretty-Printers
22387
22388 The Python list @code{gdb.pretty_printers} contains an array of
22389 functions or callable objects that have been registered via addition
22390 as a pretty-printer.  Printers in this list are called @code{global}
22391 printers, they're available when debugging all inferiors.
22392 Each @code{gdb.Progspace} contains a @code{pretty_printers} attribute.
22393 Each @code{gdb.Objfile} also contains a @code{pretty_printers}
22394 attribute.
22395
22396 Each function on these lists is passed a single @code{gdb.Value}
22397 argument and should return a pretty-printer object conforming to the
22398 interface definition above (@pxref{Pretty Printing API}).  If a function
22399 cannot create a pretty-printer for the value, it should return
22400 @code{None}.
22401
22402 @value{GDBN} first checks the @code{pretty_printers} attribute of each
22403 @code{gdb.Objfile} in the current program space and iteratively calls
22404 each enabled lookup routine in the list for that @code{gdb.Objfile}
22405 until it receives a pretty-printer object.
22406 If no pretty-printer is found in the objfile lists, @value{GDBN} then
22407 searches the pretty-printer list of the current program space,
22408 calling each enabled function until an object is returned.
22409 After these lists have been exhausted, it tries the global
22410 @code{gdb.pretty_printers} list, again calling each enabled function until an
22411 object is returned.
22412
22413 The order in which the objfiles are searched is not specified.  For a
22414 given list, functions are always invoked from the head of the list,
22415 and iterated over sequentially until the end of the list, or a printer
22416 object is returned.
22417
22418 For various reasons a pretty-printer may not work.
22419 For example, the underlying data structure may have changed and
22420 the pretty-printer is out of date.
22421
22422 The consequences of a broken pretty-printer are severe enough that
22423 @value{GDBN} provides support for enabling and disabling individual
22424 printers.  For example, if @code{print frame-arguments} is on,
22425 a backtrace can become highly illegible if any argument is printed
22426 with a broken printer.
22427
22428 Pretty-printers are enabled and disabled by attaching an @code{enabled}
22429 attribute to the registered function or callable object.  If this attribute
22430 is present and its value is @code{False}, the printer is disabled, otherwise
22431 the printer is enabled.
22432
22433 @node Writing a Pretty-Printer
22434 @subsubsection Writing a Pretty-Printer
22435 @cindex writing a pretty-printer
22436
22437 A pretty-printer consists of two parts: a lookup function to detect
22438 if the type is supported, and the printer itself.
22439
22440 Here is an example showing how a @code{std::string} printer might be
22441 written.  @xref{Pretty Printing API}, for details on the API this class
22442 must provide.
22443
22444 @smallexample
22445 class StdStringPrinter(object):
22446     "Print a std::string"
22447
22448     def __init__(self, val):
22449         self.val = val
22450
22451     def to_string(self):
22452         return self.val['_M_dataplus']['_M_p']
22453
22454     def display_hint(self):
22455         return 'string'
22456 @end smallexample
22457
22458 And here is an example showing how a lookup function for the printer
22459 example above might be written.
22460
22461 @smallexample
22462 def str_lookup_function(val):
22463     lookup_tag = val.type.tag
22464     if lookup_tag == None:
22465         return None
22466     regex = re.compile("^std::basic_string<char,.*>$")
22467     if regex.match(lookup_tag):
22468         return StdStringPrinter(val)
22469     return None
22470 @end smallexample
22471
22472 The example lookup function extracts the value's type, and attempts to
22473 match it to a type that it can pretty-print.  If it is a type the
22474 printer can pretty-print, it will return a printer object.  If not, it
22475 returns @code{None}.
22476
22477 We recommend that you put your core pretty-printers into a Python
22478 package.  If your pretty-printers are for use with a library, we
22479 further recommend embedding a version number into the package name.
22480 This practice will enable @value{GDBN} to load multiple versions of
22481 your pretty-printers at the same time, because they will have
22482 different names.
22483
22484 You should write auto-loaded code (@pxref{Auto-loading}) such that it
22485 can be evaluated multiple times without changing its meaning.  An
22486 ideal auto-load file will consist solely of @code{import}s of your
22487 printer modules, followed by a call to a register pretty-printers with
22488 the current objfile.
22489
22490 Taken as a whole, this approach will scale nicely to multiple
22491 inferiors, each potentially using a different library version.
22492 Embedding a version number in the Python package name will ensure that
22493 @value{GDBN} is able to load both sets of printers simultaneously.
22494 Then, because the search for pretty-printers is done by objfile, and
22495 because your auto-loaded code took care to register your library's
22496 printers with a specific objfile, @value{GDBN} will find the correct
22497 printers for the specific version of the library used by each
22498 inferior.
22499
22500 To continue the @code{std::string} example (@pxref{Pretty Printing API}),
22501 this code might appear in @code{gdb.libstdcxx.v6}:
22502
22503 @smallexample
22504 def register_printers(objfile):
22505     objfile.pretty_printers.add(str_lookup_function)
22506 @end smallexample
22507
22508 @noindent
22509 And then the corresponding contents of the auto-load file would be:
22510
22511 @smallexample
22512 import gdb.libstdcxx.v6
22513 gdb.libstdcxx.v6.register_printers(gdb.current_objfile())
22514 @end smallexample
22515
22516 The previous example illustrates a basic pretty-printer.
22517 There are a few things that can be improved on.
22518 The printer doesn't have a name, making it hard to identify in a
22519 list of installed printers.  The lookup function has a name, but
22520 lookup functions can have arbitrary, even identical, names.
22521
22522 Second, the printer only handles one type, whereas a library typically has
22523 several types.  One could install a lookup function for each desired type
22524 in the library, but one could also have a single lookup function recognize
22525 several types.  The latter is the conventional way this is handled.
22526 If a pretty-printer can handle multiple data types, then its
22527 @dfn{subprinters} are the printers for the individual data types.
22528
22529 The @code{gdb.printing} module provides a formal way of solving these
22530 problems (@pxref{gdb.printing}).
22531 Here is another example that handles multiple types.
22532
22533 These are the types we are going to pretty-print:
22534
22535 @smallexample
22536 struct foo @{ int a, b; @};
22537 struct bar @{ struct foo x, y; @};
22538 @end smallexample
22539
22540 Here are the printers:
22541
22542 @smallexample
22543 class fooPrinter:
22544     """Print a foo object."""
22545
22546     def __init__(self, val):
22547         self.val = val
22548
22549     def to_string(self):
22550         return ("a=<" + str(self.val["a"]) +
22551                 "> b=<" + str(self.val["b"]) + ">")
22552
22553 class barPrinter:
22554     """Print a bar object."""
22555
22556     def __init__(self, val):
22557         self.val = val
22558
22559     def to_string(self):
22560         return ("x=<" + str(self.val["x"]) +
22561                 "> y=<" + str(self.val["y"]) + ">")
22562 @end smallexample
22563
22564 This example doesn't need a lookup function, that is handled by the
22565 @code{gdb.printing} module.  Instead a function is provided to build up
22566 the object that handles the lookup.
22567
22568 @smallexample
22569 import gdb.printing
22570
22571 def build_pretty_printer():
22572     pp = gdb.printing.RegexpCollectionPrettyPrinter(
22573         "my_library")
22574     pp.add_printer('foo', '^foo$', fooPrinter)
22575     pp.add_printer('bar', '^bar$', barPrinter)
22576     return pp
22577 @end smallexample
22578
22579 And here is the autoload support:
22580
22581 @smallexample
22582 import gdb.printing
22583 import my_library
22584 gdb.printing.register_pretty_printer(
22585     gdb.current_objfile(),
22586     my_library.build_pretty_printer())
22587 @end smallexample
22588
22589 Finally, when this printer is loaded into @value{GDBN}, here is the
22590 corresponding output of @samp{info pretty-printer}:
22591
22592 @smallexample
22593 (gdb) info pretty-printer
22594 my_library.so:
22595   my_library
22596     foo
22597     bar
22598 @end smallexample
22599
22600 @node Inferiors In Python
22601 @subsubsection Inferiors In Python
22602 @cindex inferiors in Python
22603
22604 @findex gdb.Inferior
22605 Programs which are being run under @value{GDBN} are called inferiors
22606 (@pxref{Inferiors and Programs}).  Python scripts can access
22607 information about and manipulate inferiors controlled by @value{GDBN}
22608 via objects of the @code{gdb.Inferior} class.
22609
22610 The following inferior-related functions are available in the @code{gdb}
22611 module:
22612
22613 @defun gdb.inferiors ()
22614 Return a tuple containing all inferior objects.
22615 @end defun
22616
22617 @defun gdb.selected_inferior ()
22618 Return an object representing the current inferior.
22619 @end defun
22620
22621 A @code{gdb.Inferior} object has the following attributes:
22622
22623 @table @code
22624 @defvar Inferior.num
22625 ID of inferior, as assigned by GDB.
22626 @end defvar
22627
22628 @defvar Inferior.pid
22629 Process ID of the inferior, as assigned by the underlying operating
22630 system.
22631 @end defvar
22632
22633 @defvar Inferior.was_attached
22634 Boolean signaling whether the inferior was created using `attach', or
22635 started by @value{GDBN} itself.
22636 @end defvar
22637 @end table
22638
22639 A @code{gdb.Inferior} object has the following methods:
22640
22641 @table @code
22642 @defun Inferior.is_valid ()
22643 Returns @code{True} if the @code{gdb.Inferior} object is valid,
22644 @code{False} if not.  A @code{gdb.Inferior} object will become invalid
22645 if the inferior no longer exists within @value{GDBN}.  All other
22646 @code{gdb.Inferior} methods will throw an exception if it is invalid
22647 at the time the method is called.
22648 @end defun
22649
22650 @defun Inferior.threads ()
22651 This method returns a tuple holding all the threads which are valid
22652 when it is called.  If there are no valid threads, the method will
22653 return an empty tuple.
22654 @end defun
22655
22656 @findex gdb.read_memory
22657 @defun Inferior.read_memory (address, length)
22658 Read @var{length} bytes of memory from the inferior, starting at
22659 @var{address}.  Returns a buffer object, which behaves much like an array
22660 or a string.  It can be modified and given to the @code{gdb.write_memory}
22661 function.
22662 @end defun
22663
22664 @findex gdb.write_memory
22665 @defun Inferior.write_memory (address, buffer @r{[}, length@r{]})
22666 Write the contents of @var{buffer} to the inferior, starting at
22667 @var{address}.  The @var{buffer} parameter must be a Python object
22668 which supports the buffer protocol, i.e., a string, an array or the
22669 object returned from @code{gdb.read_memory}.  If given, @var{length}
22670 determines the number of bytes from @var{buffer} to be written.
22671 @end defun
22672
22673 @findex gdb.search_memory
22674 @defun Inferior.search_memory (address, length, pattern)
22675 Search a region of the inferior memory starting at @var{address} with
22676 the given @var{length} using the search pattern supplied in
22677 @var{pattern}.  The @var{pattern} parameter must be a Python object
22678 which supports the buffer protocol, i.e., a string, an array or the
22679 object returned from @code{gdb.read_memory}.  Returns a Python @code{Long}
22680 containing the address where the pattern was found, or @code{None} if
22681 the pattern could not be found.
22682 @end defun
22683 @end table
22684
22685 @node Events In Python
22686 @subsubsection Events In Python
22687 @cindex inferior events in Python
22688
22689 @value{GDBN} provides a general event facility so that Python code can be
22690 notified of various state changes, particularly changes that occur in
22691 the inferior.
22692
22693 An @dfn{event} is just an object that describes some state change.  The
22694 type of the object and its attributes will vary depending on the details
22695 of the change.  All the existing events are described below.
22696
22697 In order to be notified of an event, you must register an event handler
22698 with an @dfn{event registry}.  An event registry is an object in the
22699 @code{gdb.events} module which dispatches particular events.  A registry
22700 provides methods to register and unregister event handlers:
22701
22702 @table @code
22703 @defun EventRegistry.connect (object)
22704 Add the given callable @var{object} to the registry.  This object will be
22705 called when an event corresponding to this registry occurs.
22706 @end defun
22707
22708 @defun EventRegistry.disconnect (object)
22709 Remove the given @var{object} from the registry.  Once removed, the object
22710 will no longer receive notifications of events.
22711 @end defun
22712 @end table
22713
22714 Here is an example:
22715
22716 @smallexample
22717 def exit_handler (event):
22718     print "event type: exit"
22719     print "exit code: %d" % (event.exit_code)
22720
22721 gdb.events.exited.connect (exit_handler)
22722 @end smallexample
22723
22724 In the above example we connect our handler @code{exit_handler} to the
22725 registry @code{events.exited}.  Once connected, @code{exit_handler} gets
22726 called when the inferior exits.  The argument @dfn{event} in this example is
22727 of type @code{gdb.ExitedEvent}.  As you can see in the example the
22728 @code{ExitedEvent} object has an attribute which indicates the exit code of
22729 the inferior.
22730
22731 The following is a listing of the event registries that are available and
22732 details of the events they emit:
22733
22734 @table @code
22735
22736 @item events.cont
22737 Emits @code{gdb.ThreadEvent}.
22738
22739 Some events can be thread specific when @value{GDBN} is running in non-stop
22740 mode.  When represented in Python, these events all extend
22741 @code{gdb.ThreadEvent}.  Note, this event is not emitted directly; instead,
22742 events which are emitted by this or other modules might extend this event.
22743 Examples of these events are @code{gdb.BreakpointEvent} and
22744 @code{gdb.ContinueEvent}.
22745
22746 @table @code
22747 @defvar ThreadEvent.inferior_thread
22748 In non-stop mode this attribute will be set to the specific thread which was
22749 involved in the emitted event. Otherwise, it will be set to @code{None}.
22750 @end defvar
22751 @end table
22752
22753 Emits @code{gdb.ContinueEvent} which extends @code{gdb.ThreadEvent}.
22754
22755 This event indicates that the inferior has been continued after a stop. For
22756 inherited attribute refer to @code{gdb.ThreadEvent} above.
22757
22758 @item events.exited
22759 Emits @code{events.ExitedEvent} which indicates that the inferior has exited.
22760 @code{events.ExitedEvent} has two attributes:
22761 @table @code
22762 @defvar ExitedEvent.exit_code
22763 An integer representing the exit code, if available, which the inferior 
22764 has returned.  (The exit code could be unavailable if, for example,
22765 @value{GDBN} detaches from the inferior.) If the exit code is unavailable,
22766 the attribute does not exist.
22767 @end defvar
22768 @defvar ExitedEvent inferior
22769 A reference to the inferior which triggered the @code{exited} event.
22770 @end defvar
22771 @end table
22772
22773 @item events.stop
22774 Emits @code{gdb.StopEvent} which extends @code{gdb.ThreadEvent}.
22775
22776 Indicates that the inferior has stopped.  All events emitted by this registry
22777 extend StopEvent.  As a child of @code{gdb.ThreadEvent}, @code{gdb.StopEvent}
22778 will indicate the stopped thread when @value{GDBN} is running in non-stop
22779 mode.  Refer to @code{gdb.ThreadEvent} above for more details.
22780
22781 Emits @code{gdb.SignalEvent} which extends @code{gdb.StopEvent}.
22782
22783 This event indicates that the inferior or one of its threads has received as
22784 signal.  @code{gdb.SignalEvent} has the following attributes:
22785
22786 @table @code
22787 @defvar SignalEvent.stop_signal
22788 A string representing the signal received by the inferior.  A list of possible
22789 signal values can be obtained by running the command @code{info signals} in
22790 the @value{GDBN} command prompt.
22791 @end defvar
22792 @end table
22793
22794 Also emits  @code{gdb.BreakpointEvent} which extends @code{gdb.StopEvent}.
22795
22796 @code{gdb.BreakpointEvent} event indicates that one or more breakpoints have
22797 been hit, and has the following attributes:
22798
22799 @table @code
22800 @defvar BreakpointEvent.breakpoints
22801 A sequence containing references to all the breakpoints (type 
22802 @code{gdb.Breakpoint}) that were hit.
22803 @xref{Breakpoints In Python}, for details of the @code{gdb.Breakpoint} object.
22804 @end defvar
22805 @defvar BreakpointEvent.breakpoint
22806 A reference to the first breakpoint that was hit.
22807 This function is maintained for backward compatibility and is now deprecated 
22808 in favor of the @code{gdb.BreakpointEvent.breakpoints} attribute.
22809 @end defvar
22810 @end table
22811
22812 @item events.new_objfile
22813 Emits @code{gdb.NewObjFileEvent} which indicates that a new object file has
22814 been loaded by @value{GDBN}.  @code{gdb.NewObjFileEvent} has one attribute:
22815
22816 @table @code
22817 @defvar NewObjFileEvent.new_objfile
22818 A reference to the object file (@code{gdb.Objfile}) which has been loaded.
22819 @xref{Objfiles In Python}, for details of the @code{gdb.Objfile} object.
22820 @end defvar
22821 @end table
22822
22823 @end table
22824
22825 @node Threads In Python
22826 @subsubsection Threads In Python
22827 @cindex threads in python
22828
22829 @findex gdb.InferiorThread
22830 Python scripts can access information about, and manipulate inferior threads
22831 controlled by @value{GDBN}, via objects of the @code{gdb.InferiorThread} class.
22832
22833 The following thread-related functions are available in the @code{gdb}
22834 module:
22835
22836 @findex gdb.selected_thread
22837 @defun gdb.selected_thread ()
22838 This function returns the thread object for the selected thread.  If there
22839 is no selected thread, this will return @code{None}.
22840 @end defun
22841
22842 A @code{gdb.InferiorThread} object has the following attributes:
22843
22844 @table @code
22845 @defvar InferiorThread.name
22846 The name of the thread.  If the user specified a name using
22847 @code{thread name}, then this returns that name.  Otherwise, if an
22848 OS-supplied name is available, then it is returned.  Otherwise, this
22849 returns @code{None}.
22850
22851 This attribute can be assigned to.  The new value must be a string
22852 object, which sets the new name, or @code{None}, which removes any
22853 user-specified thread name.
22854 @end defvar
22855
22856 @defvar InferiorThread.num
22857 ID of the thread, as assigned by GDB.
22858 @end defvar
22859
22860 @defvar InferiorThread.ptid
22861 ID of the thread, as assigned by the operating system.  This attribute is a
22862 tuple containing three integers.  The first is the Process ID (PID); the second
22863 is the Lightweight Process ID (LWPID), and the third is the Thread ID (TID).
22864 Either the LWPID or TID may be 0, which indicates that the operating system
22865 does not  use that identifier.
22866 @end defvar
22867 @end table
22868
22869 A @code{gdb.InferiorThread} object has the following methods:
22870
22871 @table @code
22872 @defun InferiorThread.is_valid ()
22873 Returns @code{True} if the @code{gdb.InferiorThread} object is valid,
22874 @code{False} if not.  A @code{gdb.InferiorThread} object will become
22875 invalid if the thread exits, or the inferior that the thread belongs
22876 is deleted.  All other @code{gdb.InferiorThread} methods will throw an
22877 exception if it is invalid at the time the method is called.
22878 @end defun
22879
22880 @defun InferiorThread.switch ()
22881 This changes @value{GDBN}'s currently selected thread to the one represented
22882 by this object.
22883 @end defun
22884
22885 @defun InferiorThread.is_stopped ()
22886 Return a Boolean indicating whether the thread is stopped.
22887 @end defun
22888
22889 @defun InferiorThread.is_running ()
22890 Return a Boolean indicating whether the thread is running.
22891 @end defun
22892
22893 @defun InferiorThread.is_exited ()
22894 Return a Boolean indicating whether the thread is exited.
22895 @end defun
22896 @end table
22897
22898 @node Commands In Python
22899 @subsubsection Commands In Python
22900
22901 @cindex commands in python
22902 @cindex python commands
22903 You can implement new @value{GDBN} CLI commands in Python.  A CLI
22904 command is implemented using an instance of the @code{gdb.Command}
22905 class, most commonly using a subclass.
22906
22907 @defun Command.__init__ (name, @var{command_class} @r{[}, @var{completer_class} @r{[}, @var{prefix}@r{]]})
22908 The object initializer for @code{Command} registers the new command
22909 with @value{GDBN}.  This initializer is normally invoked from the
22910 subclass' own @code{__init__} method.
22911
22912 @var{name} is the name of the command.  If @var{name} consists of
22913 multiple words, then the initial words are looked for as prefix
22914 commands.  In this case, if one of the prefix commands does not exist,
22915 an exception is raised.
22916
22917 There is no support for multi-line commands.
22918
22919 @var{command_class} should be one of the @samp{COMMAND_} constants
22920 defined below.  This argument tells @value{GDBN} how to categorize the
22921 new command in the help system.
22922
22923 @var{completer_class} is an optional argument.  If given, it should be
22924 one of the @samp{COMPLETE_} constants defined below.  This argument
22925 tells @value{GDBN} how to perform completion for this command.  If not
22926 given, @value{GDBN} will attempt to complete using the object's
22927 @code{complete} method (see below); if no such method is found, an
22928 error will occur when completion is attempted.
22929
22930 @var{prefix} is an optional argument.  If @code{True}, then the new
22931 command is a prefix command; sub-commands of this command may be
22932 registered.
22933
22934 The help text for the new command is taken from the Python
22935 documentation string for the command's class, if there is one.  If no
22936 documentation string is provided, the default value ``This command is
22937 not documented.'' is used.
22938 @end defun
22939
22940 @cindex don't repeat Python command
22941 @defun Command.dont_repeat ()
22942 By default, a @value{GDBN} command is repeated when the user enters a
22943 blank line at the command prompt.  A command can suppress this
22944 behavior by invoking the @code{dont_repeat} method.  This is similar
22945 to the user command @code{dont-repeat}, see @ref{Define, dont-repeat}.
22946 @end defun
22947
22948 @defun Command.invoke (argument, from_tty)
22949 This method is called by @value{GDBN} when this command is invoked.
22950
22951 @var{argument} is a string.  It is the argument to the command, after
22952 leading and trailing whitespace has been stripped.
22953
22954 @var{from_tty} is a boolean argument.  When true, this means that the
22955 command was entered by the user at the terminal; when false it means
22956 that the command came from elsewhere.
22957
22958 If this method throws an exception, it is turned into a @value{GDBN}
22959 @code{error} call.  Otherwise, the return value is ignored.
22960
22961 @findex gdb.string_to_argv
22962 To break @var{argument} up into an argv-like string use
22963 @code{gdb.string_to_argv}.  This function behaves identically to
22964 @value{GDBN}'s internal argument lexer @code{buildargv}.
22965 It is recommended to use this for consistency.
22966 Arguments are separated by spaces and may be quoted.
22967 Example:
22968
22969 @smallexample
22970 print gdb.string_to_argv ("1 2\ \\\"3 '4 \"5' \"6 '7\"")
22971 ['1', '2 "3', '4 "5', "6 '7"]
22972 @end smallexample
22973
22974 @end defun
22975
22976 @cindex completion of Python commands
22977 @defun Command.complete (text, word)
22978 This method is called by @value{GDBN} when the user attempts
22979 completion on this command.  All forms of completion are handled by
22980 this method, that is, the @key{TAB} and @key{M-?} key bindings
22981 (@pxref{Completion}), and the @code{complete} command (@pxref{Help,
22982 complete}).
22983
22984 The arguments @var{text} and @var{word} are both strings.  @var{text}
22985 holds the complete command line up to the cursor's location.
22986 @var{word} holds the last word of the command line; this is computed
22987 using a word-breaking heuristic.
22988
22989 The @code{complete} method can return several values:
22990 @itemize @bullet
22991 @item
22992 If the return value is a sequence, the contents of the sequence are
22993 used as the completions.  It is up to @code{complete} to ensure that the
22994 contents actually do complete the word.  A zero-length sequence is
22995 allowed, it means that there were no completions available.  Only
22996 string elements of the sequence are used; other elements in the
22997 sequence are ignored.
22998
22999 @item
23000 If the return value is one of the @samp{COMPLETE_} constants defined
23001 below, then the corresponding @value{GDBN}-internal completion
23002 function is invoked, and its result is used.
23003
23004 @item
23005 All other results are treated as though there were no available
23006 completions.
23007 @end itemize
23008 @end defun
23009
23010 When a new command is registered, it must be declared as a member of
23011 some general class of commands.  This is used to classify top-level
23012 commands in the on-line help system; note that prefix commands are not
23013 listed under their own category but rather that of their top-level
23014 command.  The available classifications are represented by constants
23015 defined in the @code{gdb} module:
23016
23017 @table @code
23018 @findex COMMAND_NONE
23019 @findex gdb.COMMAND_NONE
23020 @item gdb.COMMAND_NONE
23021 The command does not belong to any particular class.  A command in
23022 this category will not be displayed in any of the help categories.
23023
23024 @findex COMMAND_RUNNING
23025 @findex gdb.COMMAND_RUNNING
23026 @item gdb.COMMAND_RUNNING
23027 The command is related to running the inferior.  For example,
23028 @code{start}, @code{step}, and @code{continue} are in this category.
23029 Type @kbd{help running} at the @value{GDBN} prompt to see a list of
23030 commands in this category.
23031
23032 @findex COMMAND_DATA
23033 @findex gdb.COMMAND_DATA
23034 @item gdb.COMMAND_DATA
23035 The command is related to data or variables.  For example,
23036 @code{call}, @code{find}, and @code{print} are in this category.  Type
23037 @kbd{help data} at the @value{GDBN} prompt to see a list of commands
23038 in this category.
23039
23040 @findex COMMAND_STACK
23041 @findex gdb.COMMAND_STACK
23042 @item gdb.COMMAND_STACK
23043 The command has to do with manipulation of the stack.  For example,
23044 @code{backtrace}, @code{frame}, and @code{return} are in this
23045 category.  Type @kbd{help stack} at the @value{GDBN} prompt to see a
23046 list of commands in this category.
23047
23048 @findex COMMAND_FILES
23049 @findex gdb.COMMAND_FILES
23050 @item gdb.COMMAND_FILES
23051 This class is used for file-related commands.  For example,
23052 @code{file}, @code{list} and @code{section} are in this category.
23053 Type @kbd{help files} at the @value{GDBN} prompt to see a list of
23054 commands in this category.
23055
23056 @findex COMMAND_SUPPORT
23057 @findex gdb.COMMAND_SUPPORT
23058 @item gdb.COMMAND_SUPPORT
23059 This should be used for ``support facilities'', generally meaning
23060 things that are useful to the user when interacting with @value{GDBN},
23061 but not related to the state of the inferior.  For example,
23062 @code{help}, @code{make}, and @code{shell} are in this category.  Type
23063 @kbd{help support} at the @value{GDBN} prompt to see a list of
23064 commands in this category.
23065
23066 @findex COMMAND_STATUS
23067 @findex gdb.COMMAND_STATUS
23068 @item gdb.COMMAND_STATUS
23069 The command is an @samp{info}-related command, that is, related to the
23070 state of @value{GDBN} itself.  For example, @code{info}, @code{macro},
23071 and @code{show} are in this category.  Type @kbd{help status} at the
23072 @value{GDBN} prompt to see a list of commands in this category.
23073
23074 @findex COMMAND_BREAKPOINTS
23075 @findex gdb.COMMAND_BREAKPOINTS
23076 @item gdb.COMMAND_BREAKPOINTS
23077 The command has to do with breakpoints.  For example, @code{break},
23078 @code{clear}, and @code{delete} are in this category.  Type @kbd{help
23079 breakpoints} at the @value{GDBN} prompt to see a list of commands in
23080 this category.
23081
23082 @findex COMMAND_TRACEPOINTS
23083 @findex gdb.COMMAND_TRACEPOINTS
23084 @item gdb.COMMAND_TRACEPOINTS
23085 The command has to do with tracepoints.  For example, @code{trace},
23086 @code{actions}, and @code{tfind} are in this category.  Type
23087 @kbd{help tracepoints} at the @value{GDBN} prompt to see a list of
23088 commands in this category.
23089
23090 @findex COMMAND_OBSCURE
23091 @findex gdb.COMMAND_OBSCURE
23092 @item gdb.COMMAND_OBSCURE
23093 The command is only used in unusual circumstances, or is not of
23094 general interest to users.  For example, @code{checkpoint},
23095 @code{fork}, and @code{stop} are in this category.  Type @kbd{help
23096 obscure} at the @value{GDBN} prompt to see a list of commands in this
23097 category.
23098
23099 @findex COMMAND_MAINTENANCE
23100 @findex gdb.COMMAND_MAINTENANCE
23101 @item gdb.COMMAND_MAINTENANCE
23102 The command is only useful to @value{GDBN} maintainers.  The
23103 @code{maintenance} and @code{flushregs} commands are in this category.
23104 Type @kbd{help internals} at the @value{GDBN} prompt to see a list of
23105 commands in this category.
23106 @end table
23107
23108 A new command can use a predefined completion function, either by
23109 specifying it via an argument at initialization, or by returning it
23110 from the @code{complete} method.  These predefined completion
23111 constants are all defined in the @code{gdb} module:
23112
23113 @table @code
23114 @findex COMPLETE_NONE
23115 @findex gdb.COMPLETE_NONE
23116 @item gdb.COMPLETE_NONE
23117 This constant means that no completion should be done.
23118
23119 @findex COMPLETE_FILENAME
23120 @findex gdb.COMPLETE_FILENAME
23121 @item gdb.COMPLETE_FILENAME
23122 This constant means that filename completion should be performed.
23123
23124 @findex COMPLETE_LOCATION
23125 @findex gdb.COMPLETE_LOCATION
23126 @item gdb.COMPLETE_LOCATION
23127 This constant means that location completion should be done.
23128 @xref{Specify Location}.
23129
23130 @findex COMPLETE_COMMAND
23131 @findex gdb.COMPLETE_COMMAND
23132 @item gdb.COMPLETE_COMMAND
23133 This constant means that completion should examine @value{GDBN}
23134 command names.
23135
23136 @findex COMPLETE_SYMBOL
23137 @findex gdb.COMPLETE_SYMBOL
23138 @item gdb.COMPLETE_SYMBOL
23139 This constant means that completion should be done using symbol names
23140 as the source.
23141 @end table
23142
23143 The following code snippet shows how a trivial CLI command can be
23144 implemented in Python:
23145
23146 @smallexample
23147 class HelloWorld (gdb.Command):
23148   """Greet the whole world."""
23149
23150   def __init__ (self):
23151     super (HelloWorld, self).__init__ ("hello-world", gdb.COMMAND_OBSCURE)
23152
23153   def invoke (self, arg, from_tty):
23154     print "Hello, World!"
23155
23156 HelloWorld ()
23157 @end smallexample
23158
23159 The last line instantiates the class, and is necessary to trigger the
23160 registration of the command with @value{GDBN}.  Depending on how the
23161 Python code is read into @value{GDBN}, you may need to import the
23162 @code{gdb} module explicitly.
23163
23164 @node Parameters In Python
23165 @subsubsection Parameters In Python
23166
23167 @cindex parameters in python
23168 @cindex python parameters
23169 @tindex gdb.Parameter
23170 @tindex Parameter
23171 You can implement new @value{GDBN} parameters using Python.  A new
23172 parameter is implemented as an instance of the @code{gdb.Parameter}
23173 class.
23174
23175 Parameters are exposed to the user via the @code{set} and
23176 @code{show} commands.  @xref{Help}.
23177
23178 There are many parameters that already exist and can be set in
23179 @value{GDBN}.  Two examples are: @code{set follow fork} and
23180 @code{set charset}.  Setting these parameters influences certain
23181 behavior in @value{GDBN}.  Similarly, you can define parameters that
23182 can be used to influence behavior in custom Python scripts and commands.
23183
23184 @defun Parameter.__init__ (name, @var{command-class}, @var{parameter-class} @r{[}, @var{enum-sequence}@r{]})
23185 The object initializer for @code{Parameter} registers the new
23186 parameter with @value{GDBN}.  This initializer is normally invoked
23187 from the subclass' own @code{__init__} method.
23188
23189 @var{name} is the name of the new parameter.  If @var{name} consists
23190 of multiple words, then the initial words are looked for as prefix
23191 parameters.  An example of this can be illustrated with the
23192 @code{set print} set of parameters.  If @var{name} is
23193 @code{print foo}, then @code{print} will be searched as the prefix
23194 parameter.  In this case the parameter can subsequently be accessed in
23195 @value{GDBN} as @code{set print foo}.
23196
23197 If @var{name} consists of multiple words, and no prefix parameter group
23198 can be found, an exception is raised.
23199
23200 @var{command-class} should be one of the @samp{COMMAND_} constants
23201 (@pxref{Commands In Python}).  This argument tells @value{GDBN} how to
23202 categorize the new parameter in the help system.
23203
23204 @var{parameter-class} should be one of the @samp{PARAM_} constants
23205 defined below.  This argument tells @value{GDBN} the type of the new
23206 parameter; this information is used for input validation and
23207 completion.
23208
23209 If @var{parameter-class} is @code{PARAM_ENUM}, then
23210 @var{enum-sequence} must be a sequence of strings.  These strings
23211 represent the possible values for the parameter.
23212
23213 If @var{parameter-class} is not @code{PARAM_ENUM}, then the presence
23214 of a fourth argument will cause an exception to be thrown.
23215
23216 The help text for the new parameter is taken from the Python
23217 documentation string for the parameter's class, if there is one.  If
23218 there is no documentation string, a default value is used.
23219 @end defun
23220
23221 @defvar Parameter.set_doc
23222 If this attribute exists, and is a string, then its value is used as
23223 the help text for this parameter's @code{set} command.  The value is
23224 examined when @code{Parameter.__init__} is invoked; subsequent changes
23225 have no effect.
23226 @end defvar
23227
23228 @defvar Parameter.show_doc
23229 If this attribute exists, and is a string, then its value is used as
23230 the help text for this parameter's @code{show} command.  The value is
23231 examined when @code{Parameter.__init__} is invoked; subsequent changes
23232 have no effect.
23233 @end defvar
23234
23235 @defvar Parameter.value
23236 The @code{value} attribute holds the underlying value of the
23237 parameter.  It can be read and assigned to just as any other
23238 attribute.  @value{GDBN} does validation when assignments are made.
23239 @end defvar
23240
23241 There are two methods that should be implemented in any
23242 @code{Parameter} class.  These are:
23243
23244 @defun Parameter.get_set_string (self)
23245 @value{GDBN} will call this method when a @var{parameter}'s value has
23246 been changed via the @code{set} API (for example, @kbd{set foo off}).
23247 The @code{value} attribute has already been populated with the new
23248 value and may be used in output.  This method must return a string.
23249 @end defun
23250
23251 @defun Parameter.get_show_string (self, svalue)
23252 @value{GDBN} will call this method when a @var{parameter}'s
23253 @code{show} API has been invoked (for example, @kbd{show foo}).  The
23254 argument @code{svalue} receives the string representation of the
23255 current value.  This method must return a string.
23256 @end defun
23257
23258 When a new parameter is defined, its type must be specified.  The
23259 available types are represented by constants defined in the @code{gdb}
23260 module:
23261
23262 @table @code
23263 @findex PARAM_BOOLEAN
23264 @findex gdb.PARAM_BOOLEAN
23265 @item gdb.PARAM_BOOLEAN
23266 The value is a plain boolean.  The Python boolean values, @code{True}
23267 and @code{False} are the only valid values.
23268
23269 @findex PARAM_AUTO_BOOLEAN
23270 @findex gdb.PARAM_AUTO_BOOLEAN
23271 @item gdb.PARAM_AUTO_BOOLEAN
23272 The value has three possible states: true, false, and @samp{auto}.  In
23273 Python, true and false are represented using boolean constants, and
23274 @samp{auto} is represented using @code{None}.
23275
23276 @findex PARAM_UINTEGER
23277 @findex gdb.PARAM_UINTEGER
23278 @item gdb.PARAM_UINTEGER
23279 The value is an unsigned integer.  The value of 0 should be
23280 interpreted to mean ``unlimited''.
23281
23282 @findex PARAM_INTEGER
23283 @findex gdb.PARAM_INTEGER
23284 @item gdb.PARAM_INTEGER
23285 The value is a signed integer.  The value of 0 should be interpreted
23286 to mean ``unlimited''.
23287
23288 @findex PARAM_STRING
23289 @findex gdb.PARAM_STRING
23290 @item gdb.PARAM_STRING
23291 The value is a string.  When the user modifies the string, any escape
23292 sequences, such as @samp{\t}, @samp{\f}, and octal escapes, are
23293 translated into corresponding characters and encoded into the current
23294 host charset.
23295
23296 @findex PARAM_STRING_NOESCAPE
23297 @findex gdb.PARAM_STRING_NOESCAPE
23298 @item gdb.PARAM_STRING_NOESCAPE
23299 The value is a string.  When the user modifies the string, escapes are
23300 passed through untranslated.
23301
23302 @findex PARAM_OPTIONAL_FILENAME
23303 @findex gdb.PARAM_OPTIONAL_FILENAME
23304 @item gdb.PARAM_OPTIONAL_FILENAME
23305 The value is a either a filename (a string), or @code{None}.
23306
23307 @findex PARAM_FILENAME
23308 @findex gdb.PARAM_FILENAME
23309 @item gdb.PARAM_FILENAME
23310 The value is a filename.  This is just like
23311 @code{PARAM_STRING_NOESCAPE}, but uses file names for completion.
23312
23313 @findex PARAM_ZINTEGER
23314 @findex gdb.PARAM_ZINTEGER
23315 @item gdb.PARAM_ZINTEGER
23316 The value is an integer.  This is like @code{PARAM_INTEGER}, except 0
23317 is interpreted as itself.
23318
23319 @findex PARAM_ENUM
23320 @findex gdb.PARAM_ENUM
23321 @item gdb.PARAM_ENUM
23322 The value is a string, which must be one of a collection string
23323 constants provided when the parameter is created.
23324 @end table
23325
23326 @node Functions In Python
23327 @subsubsection Writing new convenience functions
23328
23329 @cindex writing convenience functions
23330 @cindex convenience functions in python
23331 @cindex python convenience functions
23332 @tindex gdb.Function
23333 @tindex Function
23334 You can implement new convenience functions (@pxref{Convenience Vars})
23335 in Python.  A convenience function is an instance of a subclass of the
23336 class @code{gdb.Function}.
23337
23338 @defun Function.__init__ (name)
23339 The initializer for @code{Function} registers the new function with
23340 @value{GDBN}.  The argument @var{name} is the name of the function,
23341 a string.  The function will be visible to the user as a convenience
23342 variable of type @code{internal function}, whose name is the same as
23343 the given @var{name}.
23344
23345 The documentation for the new function is taken from the documentation
23346 string for the new class.
23347 @end defun
23348
23349 @defun Function.invoke (@var{*args})
23350 When a convenience function is evaluated, its arguments are converted
23351 to instances of @code{gdb.Value}, and then the function's
23352 @code{invoke} method is called.  Note that @value{GDBN} does not
23353 predetermine the arity of convenience functions.  Instead, all
23354 available arguments are passed to @code{invoke}, following the
23355 standard Python calling convention.  In particular, a convenience
23356 function can have default values for parameters without ill effect.
23357
23358 The return value of this method is used as its value in the enclosing
23359 expression.  If an ordinary Python value is returned, it is converted
23360 to a @code{gdb.Value} following the usual rules.
23361 @end defun
23362
23363 The following code snippet shows how a trivial convenience function can
23364 be implemented in Python:
23365
23366 @smallexample
23367 class Greet (gdb.Function):
23368   """Return string to greet someone.
23369 Takes a name as argument."""
23370
23371   def __init__ (self):
23372     super (Greet, self).__init__ ("greet")
23373
23374   def invoke (self, name):
23375     return "Hello, %s!" % name.string ()
23376
23377 Greet ()
23378 @end smallexample
23379
23380 The last line instantiates the class, and is necessary to trigger the
23381 registration of the function with @value{GDBN}.  Depending on how the
23382 Python code is read into @value{GDBN}, you may need to import the
23383 @code{gdb} module explicitly.
23384
23385 @node Progspaces In Python
23386 @subsubsection Program Spaces In Python
23387
23388 @cindex progspaces in python
23389 @tindex gdb.Progspace
23390 @tindex Progspace
23391 A program space, or @dfn{progspace}, represents a symbolic view
23392 of an address space.
23393 It consists of all of the objfiles of the program.
23394 @xref{Objfiles In Python}.
23395 @xref{Inferiors and Programs, program spaces}, for more details
23396 about program spaces.
23397
23398 The following progspace-related functions are available in the
23399 @code{gdb} module:
23400
23401 @findex gdb.current_progspace
23402 @defun gdb.current_progspace ()
23403 This function returns the program space of the currently selected inferior.
23404 @xref{Inferiors and Programs}.
23405 @end defun
23406
23407 @findex gdb.progspaces
23408 @defun gdb.progspaces ()
23409 Return a sequence of all the progspaces currently known to @value{GDBN}.
23410 @end defun
23411
23412 Each progspace is represented by an instance of the @code{gdb.Progspace}
23413 class.
23414
23415 @defvar Progspace.filename
23416 The file name of the progspace as a string.
23417 @end defvar
23418
23419 @defvar Progspace.pretty_printers
23420 The @code{pretty_printers} attribute is a list of functions.  It is
23421 used to look up pretty-printers.  A @code{Value} is passed to each
23422 function in order; if the function returns @code{None}, then the
23423 search continues.  Otherwise, the return value should be an object
23424 which is used to format the value.  @xref{Pretty Printing API}, for more
23425 information.
23426 @end defvar
23427
23428 @node Objfiles In Python
23429 @subsubsection Objfiles In Python
23430
23431 @cindex objfiles in python
23432 @tindex gdb.Objfile
23433 @tindex Objfile
23434 @value{GDBN} loads symbols for an inferior from various
23435 symbol-containing files (@pxref{Files}).  These include the primary
23436 executable file, any shared libraries used by the inferior, and any
23437 separate debug info files (@pxref{Separate Debug Files}).
23438 @value{GDBN} calls these symbol-containing files @dfn{objfiles}.
23439
23440 The following objfile-related functions are available in the
23441 @code{gdb} module:
23442
23443 @findex gdb.current_objfile
23444 @defun gdb.current_objfile ()
23445 When auto-loading a Python script (@pxref{Auto-loading}), @value{GDBN}
23446 sets the ``current objfile'' to the corresponding objfile.  This
23447 function returns the current objfile.  If there is no current objfile,
23448 this function returns @code{None}.
23449 @end defun
23450
23451 @findex gdb.objfiles
23452 @defun gdb.objfiles ()
23453 Return a sequence of all the objfiles current known to @value{GDBN}.
23454 @xref{Objfiles In Python}.
23455 @end defun
23456
23457 Each objfile is represented by an instance of the @code{gdb.Objfile}
23458 class.
23459
23460 @defvar Objfile.filename
23461 The file name of the objfile as a string.
23462 @end defvar
23463
23464 @defvar Objfile.pretty_printers
23465 The @code{pretty_printers} attribute is a list of functions.  It is
23466 used to look up pretty-printers.  A @code{Value} is passed to each
23467 function in order; if the function returns @code{None}, then the
23468 search continues.  Otherwise, the return value should be an object
23469 which is used to format the value.  @xref{Pretty Printing API}, for more
23470 information.
23471 @end defvar
23472
23473 A @code{gdb.Objfile} object has the following methods:
23474
23475 @defun Objfile.is_valid ()
23476 Returns @code{True} if the @code{gdb.Objfile} object is valid,
23477 @code{False} if not.  A @code{gdb.Objfile} object can become invalid
23478 if the object file it refers to is not loaded in @value{GDBN} any
23479 longer.  All other @code{gdb.Objfile} methods will throw an exception
23480 if it is invalid at the time the method is called.
23481 @end defun
23482
23483 @node Frames In Python
23484 @subsubsection Accessing inferior stack frames from Python.
23485
23486 @cindex frames in python
23487 When the debugged program stops, @value{GDBN} is able to analyze its call
23488 stack (@pxref{Frames,,Stack frames}).  The @code{gdb.Frame} class
23489 represents a frame in the stack.  A @code{gdb.Frame} object is only valid
23490 while its corresponding frame exists in the inferior's stack.  If you try
23491 to use an invalid frame object, @value{GDBN} will throw a @code{gdb.error}
23492 exception (@pxref{Exception Handling}).
23493
23494 Two @code{gdb.Frame} objects can be compared for equality with the @code{==}
23495 operator, like:
23496
23497 @smallexample
23498 (@value{GDBP}) python print gdb.newest_frame() == gdb.selected_frame ()
23499 True
23500 @end smallexample
23501
23502 The following frame-related functions are available in the @code{gdb} module:
23503
23504 @findex gdb.selected_frame
23505 @defun gdb.selected_frame ()
23506 Return the selected frame object.  (@pxref{Selection,,Selecting a Frame}).
23507 @end defun
23508
23509 @findex gdb.newest_frame
23510 @defun gdb.newest_frame ()
23511 Return the newest frame object for the selected thread.
23512 @end defun
23513
23514 @defun gdb.frame_stop_reason_string (reason)
23515 Return a string explaining the reason why @value{GDBN} stopped unwinding
23516 frames, as expressed by the given @var{reason} code (an integer, see the
23517 @code{unwind_stop_reason} method further down in this section).
23518 @end defun
23519
23520 A @code{gdb.Frame} object has the following methods:
23521
23522 @table @code
23523 @defun Frame.is_valid ()
23524 Returns true if the @code{gdb.Frame} object is valid, false if not.
23525 A frame object can become invalid if the frame it refers to doesn't
23526 exist anymore in the inferior.  All @code{gdb.Frame} methods will throw
23527 an exception if it is invalid at the time the method is called.
23528 @end defun
23529
23530 @defun Frame.name ()
23531 Returns the function name of the frame, or @code{None} if it can't be
23532 obtained.
23533 @end defun
23534
23535 @defun Frame.type ()
23536 Returns the type of the frame.  The value can be one of:
23537 @table @code
23538 @item gdb.NORMAL_FRAME
23539 An ordinary stack frame.
23540
23541 @item gdb.DUMMY_FRAME
23542 A fake stack frame that was created by @value{GDBN} when performing an
23543 inferior function call.
23544
23545 @item gdb.INLINE_FRAME
23546 A frame representing an inlined function.  The function was inlined
23547 into a @code{gdb.NORMAL_FRAME} that is older than this one.
23548
23549 @item gdb.TAILCALL_FRAME
23550 A frame representing a tail call.  @xref{Tail Call Frames}.
23551
23552 @item gdb.SIGTRAMP_FRAME
23553 A signal trampoline frame.  This is the frame created by the OS when
23554 it calls into a signal handler.
23555
23556 @item gdb.ARCH_FRAME
23557 A fake stack frame representing a cross-architecture call.
23558
23559 @item gdb.SENTINEL_FRAME
23560 This is like @code{gdb.NORMAL_FRAME}, but it is only used for the
23561 newest frame.
23562 @end table
23563 @end defun
23564
23565 @defun Frame.unwind_stop_reason ()
23566 Return an integer representing the reason why it's not possible to find
23567 more frames toward the outermost frame.  Use
23568 @code{gdb.frame_stop_reason_string} to convert the value returned by this
23569 function to a string. The value can be one of:
23570
23571 @table @code
23572 @item gdb.FRAME_UNWIND_NO_REASON
23573 No particular reason (older frames should be available).
23574
23575 @item gdb.FRAME_UNWIND_NULL_ID
23576 The previous frame's analyzer returns an invalid result.
23577
23578 @item gdb.FRAME_UNWIND_OUTERMOST
23579 This frame is the outermost.
23580
23581 @item gdb.FRAME_UNWIND_UNAVAILABLE
23582 Cannot unwind further, because that would require knowing the 
23583 values of registers or memory that have not been collected.
23584
23585 @item gdb.FRAME_UNWIND_INNER_ID
23586 This frame ID looks like it ought to belong to a NEXT frame,
23587 but we got it for a PREV frame.  Normally, this is a sign of
23588 unwinder failure.  It could also indicate stack corruption.
23589
23590 @item gdb.FRAME_UNWIND_SAME_ID
23591 This frame has the same ID as the previous one.  That means
23592 that unwinding further would almost certainly give us another
23593 frame with exactly the same ID, so break the chain.  Normally,
23594 this is a sign of unwinder failure.  It could also indicate
23595 stack corruption.
23596
23597 @item gdb.FRAME_UNWIND_NO_SAVED_PC
23598 The frame unwinder did not find any saved PC, but we needed
23599 one to unwind further.
23600
23601 @item gdb.FRAME_UNWIND_FIRST_ERROR
23602 Any stop reason greater or equal to this value indicates some kind
23603 of error.  This special value facilitates writing code that tests
23604 for errors in unwinding in a way that will work correctly even if
23605 the list of the other values is modified in future @value{GDBN}
23606 versions.  Using it, you could write:
23607 @smallexample
23608 reason = gdb.selected_frame().unwind_stop_reason ()
23609 reason_str =  gdb.frame_stop_reason_string (reason)
23610 if reason >=  gdb.FRAME_UNWIND_FIRST_ERROR:
23611     print "An error occured: %s" % reason_str
23612 @end smallexample
23613 @end table
23614
23615 @end defun
23616
23617 @defun Frame.pc ()
23618 Returns the frame's resume address.
23619 @end defun
23620
23621 @defun Frame.block ()
23622 Return the frame's code block.  @xref{Blocks In Python}.
23623 @end defun
23624
23625 @defun Frame.function ()
23626 Return the symbol for the function corresponding to this frame.
23627 @xref{Symbols In Python}.
23628 @end defun
23629
23630 @defun Frame.older ()
23631 Return the frame that called this frame.
23632 @end defun
23633
23634 @defun Frame.newer ()
23635 Return the frame called by this frame.
23636 @end defun
23637
23638 @defun Frame.find_sal ()
23639 Return the frame's symtab and line object.
23640 @xref{Symbol Tables In Python}.
23641 @end defun
23642
23643 @defun Frame.read_var (variable @r{[}, block@r{]})
23644 Return the value of @var{variable} in this frame.  If the optional
23645 argument @var{block} is provided, search for the variable from that
23646 block; otherwise start at the frame's current block (which is
23647 determined by the frame's current program counter).  @var{variable}
23648 must be a string or a @code{gdb.Symbol} object.  @var{block} must be a
23649 @code{gdb.Block} object.
23650 @end defun
23651
23652 @defun Frame.select ()
23653 Set this frame to be the selected frame.  @xref{Stack, ,Examining the
23654 Stack}.
23655 @end defun
23656 @end table
23657
23658 @node Blocks In Python
23659 @subsubsection Accessing frame blocks from Python.
23660
23661 @cindex blocks in python
23662 @tindex gdb.Block
23663
23664 Within each frame, @value{GDBN} maintains information on each block
23665 stored in that frame.  These blocks are organized hierarchically, and
23666 are represented individually in Python as a @code{gdb.Block}.
23667 Please see @ref{Frames In Python}, for a more in-depth discussion on
23668 frames.  Furthermore, see @ref{Stack, ,Examining the Stack}, for more
23669 detailed technical information on @value{GDBN}'s book-keeping of the
23670 stack.
23671
23672 The following block-related functions are available in the @code{gdb}
23673 module:
23674
23675 @findex gdb.block_for_pc
23676 @defun gdb.block_for_pc (pc)
23677 Return the @code{gdb.Block} containing the given @var{pc} value.  If the
23678 block cannot be found for the @var{pc} value specified, the function
23679 will return @code{None}.
23680 @end defun
23681
23682 A @code{gdb.Block} object has the following methods:
23683
23684 @table @code
23685 @defun Block.is_valid ()
23686 Returns @code{True} if the @code{gdb.Block} object is valid,
23687 @code{False} if not.  A block object can become invalid if the block it
23688 refers to doesn't exist anymore in the inferior.  All other
23689 @code{gdb.Block} methods will throw an exception if it is invalid at
23690 the time the method is called.  This method is also made available to
23691 the Python iterator object that @code{gdb.Block} provides in an iteration
23692 context and via the Python @code{iter} built-in function.
23693 @end defun
23694 @end table
23695
23696 A @code{gdb.Block} object has the following attributes:
23697
23698 @table @code
23699 @defvar Block.start
23700 The start address of the block.  This attribute is not writable.
23701 @end defvar
23702
23703 @defvar Block.end
23704 The end address of the block.  This attribute is not writable.
23705 @end defvar
23706
23707 @defvar Block.function
23708 The name of the block represented as a @code{gdb.Symbol}.  If the
23709 block is not named, then this attribute holds @code{None}.  This
23710 attribute is not writable.
23711 @end defvar
23712
23713 @defvar Block.superblock
23714 The block containing this block.  If this parent block does not exist,
23715 this attribute holds @code{None}.  This attribute is not writable.
23716 @end defvar
23717
23718 @defvar Block.global_block
23719 The global block associated with this block.  This attribute is not
23720 writable.
23721 @end defvar
23722
23723 @defvar Block.static_block
23724 The static block associated with this block.  This attribute is not
23725 writable.
23726 @end defvar
23727
23728 @defvar Block.is_global
23729 @code{True} if the @code{gdb.Block} object is a global block,
23730 @code{False} if not.  This attribute is not
23731 writable.
23732 @end defvar
23733
23734 @defvar Block.is_static
23735 @code{True} if the @code{gdb.Block} object is a static block,
23736 @code{False} if not.  This attribute is not writable.
23737 @end defvar
23738 @end table
23739
23740 @node Symbols In Python
23741 @subsubsection Python representation of Symbols.
23742
23743 @cindex symbols in python
23744 @tindex gdb.Symbol
23745
23746 @value{GDBN} represents every variable, function and type as an
23747 entry in a symbol table.  @xref{Symbols, ,Examining the Symbol Table}.
23748 Similarly, Python represents these symbols in @value{GDBN} with the
23749 @code{gdb.Symbol} object.
23750
23751 The following symbol-related functions are available in the @code{gdb}
23752 module:
23753
23754 @findex gdb.lookup_symbol
23755 @defun gdb.lookup_symbol (name @r{[}, block @r{[}, domain@r{]]})
23756 This function searches for a symbol by name.  The search scope can be
23757 restricted to the parameters defined in the optional domain and block
23758 arguments.
23759
23760 @var{name} is the name of the symbol.  It must be a string.  The
23761 optional @var{block} argument restricts the search to symbols visible
23762 in that @var{block}.  The @var{block} argument must be a
23763 @code{gdb.Block} object.  If omitted, the block for the current frame
23764 is used.  The optional @var{domain} argument restricts
23765 the search to the domain type.  The @var{domain} argument must be a
23766 domain constant defined in the @code{gdb} module and described later
23767 in this chapter.
23768
23769 The result is a tuple of two elements.
23770 The first element is a @code{gdb.Symbol} object or @code{None} if the symbol
23771 is not found.
23772 If the symbol is found, the second element is @code{True} if the symbol
23773 is a field of a method's object (e.g., @code{this} in C@t{++}),
23774 otherwise it is @code{False}.
23775 If the symbol is not found, the second element is @code{False}.
23776 @end defun
23777
23778 @findex gdb.lookup_global_symbol
23779 @defun gdb.lookup_global_symbol (name @r{[}, domain@r{]})
23780 This function searches for a global symbol by name.
23781 The search scope can be restricted to by the domain argument.
23782
23783 @var{name} is the name of the symbol.  It must be a string.
23784 The optional @var{domain} argument restricts the search to the domain type.
23785 The @var{domain} argument must be a domain constant defined in the @code{gdb}
23786 module and described later in this chapter.
23787
23788 The result is a @code{gdb.Symbol} object or @code{None} if the symbol
23789 is not found.
23790 @end defun
23791
23792 A @code{gdb.Symbol} object has the following attributes:
23793
23794 @table @code
23795 @defvar Symbol.type
23796 The type of the symbol or @code{None} if no type is recorded.
23797 This attribute is represented as a @code{gdb.Type} object.
23798 @xref{Types In Python}.  This attribute is not writable.
23799 @end defvar
23800
23801 @defvar Symbol.symtab
23802 The symbol table in which the symbol appears.  This attribute is
23803 represented as a @code{gdb.Symtab} object.  @xref{Symbol Tables In
23804 Python}.  This attribute is not writable.
23805 @end defvar
23806
23807 @defvar Symbol.name
23808 The name of the symbol as a string.  This attribute is not writable.
23809 @end defvar
23810
23811 @defvar Symbol.linkage_name
23812 The name of the symbol, as used by the linker (i.e., may be mangled).
23813 This attribute is not writable.
23814 @end defvar
23815
23816 @defvar Symbol.print_name
23817 The name of the symbol in a form suitable for output.  This is either
23818 @code{name} or @code{linkage_name}, depending on whether the user
23819 asked @value{GDBN} to display demangled or mangled names.
23820 @end defvar
23821
23822 @defvar Symbol.addr_class
23823 The address class of the symbol.  This classifies how to find the value
23824 of a symbol.  Each address class is a constant defined in the
23825 @code{gdb} module and described later in this chapter.
23826 @end defvar
23827
23828 @defvar Symbol.is_argument
23829 @code{True} if the symbol is an argument of a function.
23830 @end defvar
23831
23832 @defvar Symbol.is_constant
23833 @code{True} if the symbol is a constant.
23834 @end defvar
23835
23836 @defvar Symbol.is_function
23837 @code{True} if the symbol is a function or a method.
23838 @end defvar
23839
23840 @defvar Symbol.is_variable
23841 @code{True} if the symbol is a variable.
23842 @end defvar
23843 @end table
23844
23845 A @code{gdb.Symbol} object has the following methods:
23846
23847 @table @code
23848 @defun Symbol.is_valid ()
23849 Returns @code{True} if the @code{gdb.Symbol} object is valid,
23850 @code{False} if not.  A @code{gdb.Symbol} object can become invalid if
23851 the symbol it refers to does not exist in @value{GDBN} any longer.
23852 All other @code{gdb.Symbol} methods will throw an exception if it is
23853 invalid at the time the method is called.
23854 @end defun
23855 @end table
23856
23857 The available domain categories in @code{gdb.Symbol} are represented
23858 as constants in the @code{gdb} module:
23859
23860 @table @code
23861 @findex SYMBOL_UNDEF_DOMAIN
23862 @findex gdb.SYMBOL_UNDEF_DOMAIN
23863 @item gdb.SYMBOL_UNDEF_DOMAIN
23864 This is used when a domain has not been discovered or none of the
23865 following domains apply.  This usually indicates an error either
23866 in the symbol information or in @value{GDBN}'s handling of symbols.
23867 @findex SYMBOL_VAR_DOMAIN
23868 @findex gdb.SYMBOL_VAR_DOMAIN
23869 @item gdb.SYMBOL_VAR_DOMAIN
23870 This domain contains variables, function names, typedef names and enum
23871 type values.
23872 @findex SYMBOL_STRUCT_DOMAIN
23873 @findex gdb.SYMBOL_STRUCT_DOMAIN
23874 @item gdb.SYMBOL_STRUCT_DOMAIN
23875 This domain holds struct, union and enum type names.
23876 @findex SYMBOL_LABEL_DOMAIN
23877 @findex gdb.SYMBOL_LABEL_DOMAIN
23878 @item gdb.SYMBOL_LABEL_DOMAIN
23879 This domain contains names of labels (for gotos).
23880 @findex SYMBOL_VARIABLES_DOMAIN
23881 @findex gdb.SYMBOL_VARIABLES_DOMAIN
23882 @item gdb.SYMBOL_VARIABLES_DOMAIN
23883 This domain holds a subset of the @code{SYMBOLS_VAR_DOMAIN}; it
23884 contains everything minus functions and types.
23885 @findex SYMBOL_FUNCTIONS_DOMAIN
23886 @findex gdb.SYMBOL_FUNCTIONS_DOMAIN
23887 @item gdb.SYMBOL_FUNCTION_DOMAIN
23888 This domain contains all functions.
23889 @findex SYMBOL_TYPES_DOMAIN
23890 @findex gdb.SYMBOL_TYPES_DOMAIN
23891 @item gdb.SYMBOL_TYPES_DOMAIN
23892 This domain contains all types.
23893 @end table
23894
23895 The available address class categories in @code{gdb.Symbol} are represented
23896 as constants in the @code{gdb} module:
23897
23898 @table @code
23899 @findex SYMBOL_LOC_UNDEF
23900 @findex gdb.SYMBOL_LOC_UNDEF
23901 @item gdb.SYMBOL_LOC_UNDEF
23902 If this is returned by address class, it indicates an error either in
23903 the symbol information or in @value{GDBN}'s handling of symbols.
23904 @findex SYMBOL_LOC_CONST
23905 @findex gdb.SYMBOL_LOC_CONST
23906 @item gdb.SYMBOL_LOC_CONST
23907 Value is constant int.
23908 @findex SYMBOL_LOC_STATIC
23909 @findex gdb.SYMBOL_LOC_STATIC
23910 @item gdb.SYMBOL_LOC_STATIC
23911 Value is at a fixed address.
23912 @findex SYMBOL_LOC_REGISTER
23913 @findex gdb.SYMBOL_LOC_REGISTER
23914 @item gdb.SYMBOL_LOC_REGISTER
23915 Value is in a register.
23916 @findex SYMBOL_LOC_ARG
23917 @findex gdb.SYMBOL_LOC_ARG
23918 @item gdb.SYMBOL_LOC_ARG
23919 Value is an argument.  This value is at the offset stored within the
23920 symbol inside the frame's argument list.
23921 @findex SYMBOL_LOC_REF_ARG
23922 @findex gdb.SYMBOL_LOC_REF_ARG
23923 @item gdb.SYMBOL_LOC_REF_ARG
23924 Value address is stored in the frame's argument list.  Just like
23925 @code{LOC_ARG} except that the value's address is stored at the
23926 offset, not the value itself.
23927 @findex SYMBOL_LOC_REGPARM_ADDR
23928 @findex gdb.SYMBOL_LOC_REGPARM_ADDR
23929 @item gdb.SYMBOL_LOC_REGPARM_ADDR
23930 Value is a specified register.  Just like @code{LOC_REGISTER} except
23931 the register holds the address of the argument instead of the argument
23932 itself.
23933 @findex SYMBOL_LOC_LOCAL
23934 @findex gdb.SYMBOL_LOC_LOCAL
23935 @item gdb.SYMBOL_LOC_LOCAL
23936 Value is a local variable.
23937 @findex SYMBOL_LOC_TYPEDEF
23938 @findex gdb.SYMBOL_LOC_TYPEDEF
23939 @item gdb.SYMBOL_LOC_TYPEDEF
23940 Value not used.  Symbols in the domain @code{SYMBOL_STRUCT_DOMAIN} all
23941 have this class.
23942 @findex SYMBOL_LOC_BLOCK
23943 @findex gdb.SYMBOL_LOC_BLOCK
23944 @item gdb.SYMBOL_LOC_BLOCK
23945 Value is a block.
23946 @findex SYMBOL_LOC_CONST_BYTES
23947 @findex gdb.SYMBOL_LOC_CONST_BYTES
23948 @item gdb.SYMBOL_LOC_CONST_BYTES
23949 Value is a byte-sequence.
23950 @findex SYMBOL_LOC_UNRESOLVED
23951 @findex gdb.SYMBOL_LOC_UNRESOLVED
23952 @item gdb.SYMBOL_LOC_UNRESOLVED
23953 Value is at a fixed address, but the address of the variable has to be
23954 determined from the minimal symbol table whenever the variable is
23955 referenced.
23956 @findex SYMBOL_LOC_OPTIMIZED_OUT
23957 @findex gdb.SYMBOL_LOC_OPTIMIZED_OUT
23958 @item gdb.SYMBOL_LOC_OPTIMIZED_OUT
23959 The value does not actually exist in the program.
23960 @findex SYMBOL_LOC_COMPUTED
23961 @findex gdb.SYMBOL_LOC_COMPUTED
23962 @item gdb.SYMBOL_LOC_COMPUTED
23963 The value's address is a computed location.
23964 @end table
23965
23966 @node Symbol Tables In Python
23967 @subsubsection Symbol table representation in Python.
23968
23969 @cindex symbol tables in python
23970 @tindex gdb.Symtab
23971 @tindex gdb.Symtab_and_line
23972
23973 Access to symbol table data maintained by @value{GDBN} on the inferior
23974 is exposed to Python via two objects: @code{gdb.Symtab_and_line} and
23975 @code{gdb.Symtab}.  Symbol table and line data for a frame is returned
23976 from the @code{find_sal} method in @code{gdb.Frame} object.
23977 @xref{Frames In Python}.
23978
23979 For more information on @value{GDBN}'s symbol table management, see
23980 @ref{Symbols, ,Examining the Symbol Table}, for more information.
23981
23982 A @code{gdb.Symtab_and_line} object has the following attributes:
23983
23984 @table @code
23985 @defvar Symtab_and_line.symtab
23986 The symbol table object (@code{gdb.Symtab}) for this frame.
23987 This attribute is not writable.
23988 @end defvar
23989
23990 @defvar Symtab_and_line.pc
23991 Indicates the current program counter address.  This attribute is not
23992 writable.
23993 @end defvar
23994
23995 @defvar Symtab_and_line.line
23996 Indicates the current line number for this object.  This
23997 attribute is not writable.
23998 @end defvar
23999 @end table
24000
24001 A @code{gdb.Symtab_and_line} object has the following methods:
24002
24003 @table @code
24004 @defun Symtab_and_line.is_valid ()
24005 Returns @code{True} if the @code{gdb.Symtab_and_line} object is valid,
24006 @code{False} if not.  A @code{gdb.Symtab_and_line} object can become
24007 invalid if the Symbol table and line object it refers to does not
24008 exist in @value{GDBN} any longer.  All other
24009 @code{gdb.Symtab_and_line} methods will throw an exception if it is
24010 invalid at the time the method is called.
24011 @end defun
24012 @end table
24013
24014 A @code{gdb.Symtab} object has the following attributes:
24015
24016 @table @code
24017 @defvar Symtab.filename
24018 The symbol table's source filename.  This attribute is not writable.
24019 @end defvar
24020
24021 @defvar Symtab.objfile
24022 The symbol table's backing object file.  @xref{Objfiles In Python}.
24023 This attribute is not writable.
24024 @end defvar
24025 @end table
24026
24027 A @code{gdb.Symtab} object has the following methods:
24028
24029 @table @code
24030 @defun Symtab.is_valid ()
24031 Returns @code{True} if the @code{gdb.Symtab} object is valid,
24032 @code{False} if not.  A @code{gdb.Symtab} object can become invalid if
24033 the symbol table it refers to does not exist in @value{GDBN} any
24034 longer.  All other @code{gdb.Symtab} methods will throw an exception
24035 if it is invalid at the time the method is called.
24036 @end defun
24037
24038 @defun Symtab.fullname ()
24039 Return the symbol table's source absolute file name.
24040 @end defun
24041 @end table
24042
24043 @node Breakpoints In Python
24044 @subsubsection Manipulating breakpoints using Python
24045
24046 @cindex breakpoints in python
24047 @tindex gdb.Breakpoint
24048
24049 Python code can manipulate breakpoints via the @code{gdb.Breakpoint}
24050 class.
24051
24052 @defun Breakpoint.__init__ (spec @r{[}, type @r{[}, wp_class @r{[},internal@r{]]]})
24053 Create a new breakpoint.  @var{spec} is a string naming the
24054 location of the breakpoint, or an expression that defines a
24055 watchpoint.  The contents can be any location recognized by the
24056 @code{break} command, or in the case of a watchpoint, by the @code{watch}
24057 command.  The optional @var{type} denotes the breakpoint to create
24058 from the types defined later in this chapter.  This argument can be
24059 either: @code{gdb.BP_BREAKPOINT} or @code{gdb.BP_WATCHPOINT}.  @var{type}
24060 defaults to @code{gdb.BP_BREAKPOINT}.  The optional @var{internal} argument
24061 allows the breakpoint to become invisible to the user.  The breakpoint
24062 will neither be reported when created, nor will it be listed in the
24063 output from @code{info breakpoints} (but will be listed with the
24064 @code{maint info breakpoints} command).  The optional @var{wp_class}
24065 argument defines the class of watchpoint to create, if @var{type} is
24066 @code{gdb.BP_WATCHPOINT}.  If a watchpoint class is not provided, it is
24067 assumed to be a @code{gdb.WP_WRITE} class.
24068 @end defun
24069
24070 @defun Breakpoint.stop (self)
24071 The @code{gdb.Breakpoint} class can be sub-classed and, in
24072 particular, you may choose to implement the @code{stop} method.
24073 If this method is defined as a sub-class of @code{gdb.Breakpoint},
24074 it will be called when the inferior reaches any location of a
24075 breakpoint which instantiates that sub-class.  If the method returns
24076 @code{True}, the inferior will be stopped at the location of the
24077 breakpoint, otherwise the inferior will continue.
24078
24079 If there are multiple breakpoints at the same location with a
24080 @code{stop} method, each one will be called regardless of the
24081 return status of the previous.  This ensures that all @code{stop}
24082 methods have a chance to execute at that location.  In this scenario
24083 if one of the methods returns @code{True} but the others return
24084 @code{False}, the inferior will still be stopped.
24085
24086 You should not alter the execution state of the inferior (i.e.@:, step,
24087 next, etc.), alter the current frame context (i.e.@:, change the current
24088 active frame), or alter, add or delete any breakpoint.  As a general
24089 rule, you should not alter any data within @value{GDBN} or the inferior
24090 at this time.
24091
24092 Example @code{stop} implementation:
24093
24094 @smallexample
24095 class MyBreakpoint (gdb.Breakpoint):
24096       def stop (self):
24097         inf_val = gdb.parse_and_eval("foo")
24098         if inf_val == 3:
24099           return True
24100         return False
24101 @end smallexample
24102 @end defun
24103
24104 The available watchpoint types represented by constants are defined in the
24105 @code{gdb} module:
24106
24107 @table @code
24108 @findex WP_READ
24109 @findex gdb.WP_READ
24110 @item gdb.WP_READ
24111 Read only watchpoint.
24112
24113 @findex WP_WRITE
24114 @findex gdb.WP_WRITE
24115 @item gdb.WP_WRITE
24116 Write only watchpoint.
24117
24118 @findex WP_ACCESS
24119 @findex gdb.WP_ACCESS
24120 @item gdb.WP_ACCESS
24121 Read/Write watchpoint.
24122 @end table
24123
24124 @defun Breakpoint.is_valid ()
24125 Return @code{True} if this @code{Breakpoint} object is valid,
24126 @code{False} otherwise.  A @code{Breakpoint} object can become invalid
24127 if the user deletes the breakpoint.  In this case, the object still
24128 exists, but the underlying breakpoint does not.  In the cases of
24129 watchpoint scope, the watchpoint remains valid even if execution of the
24130 inferior leaves the scope of that watchpoint.
24131 @end defun
24132
24133 @defun Breakpoint.delete
24134 Permanently deletes the @value{GDBN} breakpoint.  This also
24135 invalidates the Python @code{Breakpoint} object.  Any further access
24136 to this object's attributes or methods will raise an error.
24137 @end defun
24138
24139 @defvar Breakpoint.enabled
24140 This attribute is @code{True} if the breakpoint is enabled, and
24141 @code{False} otherwise.  This attribute is writable.
24142 @end defvar
24143
24144 @defvar Breakpoint.silent
24145 This attribute is @code{True} if the breakpoint is silent, and
24146 @code{False} otherwise.  This attribute is writable.
24147
24148 Note that a breakpoint can also be silent if it has commands and the
24149 first command is @code{silent}.  This is not reported by the
24150 @code{silent} attribute.
24151 @end defvar
24152
24153 @defvar Breakpoint.thread
24154 If the breakpoint is thread-specific, this attribute holds the thread
24155 id.  If the breakpoint is not thread-specific, this attribute is
24156 @code{None}.  This attribute is writable.
24157 @end defvar
24158
24159 @defvar Breakpoint.task
24160 If the breakpoint is Ada task-specific, this attribute holds the Ada task
24161 id.  If the breakpoint is not task-specific (or the underlying
24162 language is not Ada), this attribute is @code{None}.  This attribute
24163 is writable.
24164 @end defvar
24165
24166 @defvar Breakpoint.ignore_count
24167 This attribute holds the ignore count for the breakpoint, an integer.
24168 This attribute is writable.
24169 @end defvar
24170
24171 @defvar Breakpoint.number
24172 This attribute holds the breakpoint's number --- the identifier used by
24173 the user to manipulate the breakpoint.  This attribute is not writable.
24174 @end defvar
24175
24176 @defvar Breakpoint.type
24177 This attribute holds the breakpoint's type --- the identifier used to
24178 determine the actual breakpoint type or use-case.  This attribute is not
24179 writable.
24180 @end defvar
24181
24182 @defvar Breakpoint.visible
24183 This attribute tells whether the breakpoint is visible to the user
24184 when set, or when the @samp{info breakpoints} command is run.  This
24185 attribute is not writable.
24186 @end defvar
24187
24188 The available types are represented by constants defined in the @code{gdb}
24189 module:
24190
24191 @table @code
24192 @findex BP_BREAKPOINT
24193 @findex gdb.BP_BREAKPOINT
24194 @item gdb.BP_BREAKPOINT
24195 Normal code breakpoint.
24196
24197 @findex BP_WATCHPOINT
24198 @findex gdb.BP_WATCHPOINT
24199 @item gdb.BP_WATCHPOINT
24200 Watchpoint breakpoint.
24201
24202 @findex BP_HARDWARE_WATCHPOINT
24203 @findex gdb.BP_HARDWARE_WATCHPOINT
24204 @item gdb.BP_HARDWARE_WATCHPOINT
24205 Hardware assisted watchpoint.
24206
24207 @findex BP_READ_WATCHPOINT
24208 @findex gdb.BP_READ_WATCHPOINT
24209 @item gdb.BP_READ_WATCHPOINT
24210 Hardware assisted read watchpoint.
24211
24212 @findex BP_ACCESS_WATCHPOINT
24213 @findex gdb.BP_ACCESS_WATCHPOINT
24214 @item gdb.BP_ACCESS_WATCHPOINT
24215 Hardware assisted access watchpoint.
24216 @end table
24217
24218 @defvar Breakpoint.hit_count
24219 This attribute holds the hit count for the breakpoint, an integer.
24220 This attribute is writable, but currently it can only be set to zero.
24221 @end defvar
24222
24223 @defvar Breakpoint.location
24224 This attribute holds the location of the breakpoint, as specified by
24225 the user.  It is a string.  If the breakpoint does not have a location
24226 (that is, it is a watchpoint) the attribute's value is @code{None}.  This
24227 attribute is not writable.
24228 @end defvar
24229
24230 @defvar Breakpoint.expression
24231 This attribute holds a breakpoint expression, as specified by
24232 the user.  It is a string.  If the breakpoint does not have an
24233 expression (the breakpoint is not a watchpoint) the attribute's value
24234 is @code{None}.  This attribute is not writable.
24235 @end defvar
24236
24237 @defvar Breakpoint.condition
24238 This attribute holds the condition of the breakpoint, as specified by
24239 the user.  It is a string.  If there is no condition, this attribute's
24240 value is @code{None}.  This attribute is writable.
24241 @end defvar
24242
24243 @defvar Breakpoint.commands
24244 This attribute holds the commands attached to the breakpoint.  If
24245 there are commands, this attribute's value is a string holding all the
24246 commands, separated by newlines.  If there are no commands, this
24247 attribute is @code{None}.  This attribute is not writable.
24248 @end defvar
24249
24250 @node Lazy Strings In Python
24251 @subsubsection Python representation of lazy strings.
24252
24253 @cindex lazy strings in python
24254 @tindex gdb.LazyString
24255
24256 A @dfn{lazy string} is a string whose contents is not retrieved or
24257 encoded until it is needed.
24258
24259 A @code{gdb.LazyString} is represented in @value{GDBN} as an
24260 @code{address} that points to a region of memory, an @code{encoding}
24261 that will be used to encode that region of memory, and a @code{length}
24262 to delimit the region of memory that represents the string.  The
24263 difference between a @code{gdb.LazyString} and a string wrapped within
24264 a @code{gdb.Value} is that a @code{gdb.LazyString} will be treated
24265 differently by @value{GDBN} when printing.  A @code{gdb.LazyString} is
24266 retrieved and encoded during printing, while a @code{gdb.Value}
24267 wrapping a string is immediately retrieved and encoded on creation.
24268
24269 A @code{gdb.LazyString} object has the following functions:
24270
24271 @defun LazyString.value ()
24272 Convert the @code{gdb.LazyString} to a @code{gdb.Value}.  This value
24273 will point to the string in memory, but will lose all the delayed
24274 retrieval, encoding and handling that @value{GDBN} applies to a
24275 @code{gdb.LazyString}.
24276 @end defun
24277
24278 @defvar LazyString.address
24279 This attribute holds the address of the string.  This attribute is not
24280 writable.
24281 @end defvar
24282
24283 @defvar LazyString.length
24284 This attribute holds the length of the string in characters.  If the
24285 length is -1, then the string will be fetched and encoded up to the
24286 first null of appropriate width.  This attribute is not writable.
24287 @end defvar
24288
24289 @defvar LazyString.encoding
24290 This attribute holds the encoding that will be applied to the string
24291 when the string is printed by @value{GDBN}.  If the encoding is not
24292 set, or contains an empty string,  then @value{GDBN} will select the
24293 most appropriate encoding when the string is printed.  This attribute
24294 is not writable.
24295 @end defvar
24296
24297 @defvar LazyString.type
24298 This attribute holds the type that is represented by the lazy string's
24299 type.  For a lazy string this will always be a pointer type.  To
24300 resolve this to the lazy string's character type, use the type's
24301 @code{target} method.  @xref{Types In Python}.  This attribute is not
24302 writable.
24303 @end defvar
24304
24305 @node Auto-loading
24306 @subsection Auto-loading
24307 @cindex auto-loading, Python
24308
24309 When a new object file is read (for example, due to the @code{file}
24310 command, or because the inferior has loaded a shared library),
24311 @value{GDBN} will look for Python support scripts in several ways:
24312 @file{@var{objfile}-gdb.py} and @code{.debug_gdb_scripts} section.
24313
24314 @menu
24315 * objfile-gdb.py file::         The @file{@var{objfile}-gdb.py} file
24316 * .debug_gdb_scripts section::  The @code{.debug_gdb_scripts} section
24317 * Which flavor to choose?::
24318 @end menu
24319
24320 The auto-loading feature is useful for supplying application-specific
24321 debugging commands and scripts.
24322
24323 Auto-loading can be enabled or disabled,
24324 and the list of auto-loaded scripts can be printed.
24325
24326 @table @code
24327 @kindex set auto-load-scripts
24328 @item set auto-load-scripts [yes|no]
24329 Enable or disable the auto-loading of Python scripts.
24330
24331 @kindex show auto-load-scripts
24332 @item show auto-load-scripts
24333 Show whether auto-loading of Python scripts is enabled or disabled.
24334
24335 @kindex info auto-load-scripts
24336 @cindex print list of auto-loaded scripts
24337 @item info auto-load-scripts [@var{regexp}]
24338 Print the list of all scripts that @value{GDBN} auto-loaded.
24339
24340 Also printed is the list of scripts that were mentioned in
24341 the @code{.debug_gdb_scripts} section and were not found
24342 (@pxref{.debug_gdb_scripts section}).
24343 This is useful because their names are not printed when @value{GDBN}
24344 tries to load them and fails.  There may be many of them, and printing
24345 an error message for each one is problematic.
24346
24347 If @var{regexp} is supplied only scripts with matching names are printed.
24348
24349 Example:
24350
24351 @smallexample
24352 (gdb) info auto-load-scripts
24353 Loaded  Script
24354 Yes     py-section-script.py
24355         full name: /tmp/py-section-script.py
24356 Missing my-foo-pretty-printers.py
24357 @end smallexample
24358 @end table
24359
24360 When reading an auto-loaded file, @value{GDBN} sets the
24361 @dfn{current objfile}.  This is available via the @code{gdb.current_objfile}
24362 function (@pxref{Objfiles In Python}).  This can be useful for
24363 registering objfile-specific pretty-printers.
24364
24365 @node objfile-gdb.py file
24366 @subsubsection The @file{@var{objfile}-gdb.py} file
24367 @cindex @file{@var{objfile}-gdb.py}
24368
24369 When a new object file is read, @value{GDBN} looks for
24370 a file named @file{@var{objfile}-gdb.py},
24371 where @var{objfile} is the object file's real name, formed by ensuring
24372 that the file name is absolute, following all symlinks, and resolving
24373 @code{.} and @code{..} components.  If this file exists and is
24374 readable, @value{GDBN} will evaluate it as a Python script.
24375
24376 If this file does not exist, and if the parameter
24377 @code{debug-file-directory} is set (@pxref{Separate Debug Files}),
24378 then @value{GDBN} will look for @var{real-name} in all of the
24379 directories mentioned in the value of @code{debug-file-directory}.
24380
24381 Finally, if this file does not exist, then @value{GDBN} will look for
24382 a file named @file{@var{data-directory}/python/auto-load/@var{real-name}}, where
24383 @var{data-directory} is @value{GDBN}'s data directory (available via
24384 @code{show data-directory}, @pxref{Data Files}), and @var{real-name}
24385 is the object file's real name, as described above.
24386
24387 @value{GDBN} does not track which files it has already auto-loaded this way.
24388 @value{GDBN} will load the associated script every time the corresponding
24389 @var{objfile} is opened.
24390 So your @file{-gdb.py} file should be careful to avoid errors if it
24391 is evaluated more than once.
24392
24393 @node .debug_gdb_scripts section
24394 @subsubsection The @code{.debug_gdb_scripts} section
24395 @cindex @code{.debug_gdb_scripts} section
24396
24397 For systems using file formats like ELF and COFF,
24398 when @value{GDBN} loads a new object file
24399 it will look for a special section named @samp{.debug_gdb_scripts}.
24400 If this section exists, its contents is a list of names of scripts to load.
24401
24402 @value{GDBN} will look for each specified script file first in the
24403 current directory and then along the source search path
24404 (@pxref{Source Path, ,Specifying Source Directories}),
24405 except that @file{$cdir} is not searched, since the compilation
24406 directory is not relevant to scripts.
24407
24408 Entries can be placed in section @code{.debug_gdb_scripts} with,
24409 for example, this GCC macro:
24410
24411 @example
24412 /* Note: The "MS" section flags are to remove duplicates.  */
24413 #define DEFINE_GDB_SCRIPT(script_name) \
24414   asm("\
24415 .pushsection \".debug_gdb_scripts\", \"MS\",@@progbits,1\n\
24416 .byte 1\n\
24417 .asciz \"" script_name "\"\n\
24418 .popsection \n\
24419 ");
24420 @end example
24421
24422 @noindent
24423 Then one can reference the macro in a header or source file like this:
24424
24425 @example
24426 DEFINE_GDB_SCRIPT ("my-app-scripts.py")
24427 @end example
24428
24429 The script name may include directories if desired.
24430
24431 If the macro is put in a header, any application or library
24432 using this header will get a reference to the specified script.
24433
24434 @node Which flavor to choose?
24435 @subsubsection Which flavor to choose?
24436
24437 Given the multiple ways of auto-loading Python scripts, it might not always
24438 be clear which one to choose.  This section provides some guidance.
24439
24440 Benefits of the @file{-gdb.py} way:
24441
24442 @itemize @bullet
24443 @item
24444 Can be used with file formats that don't support multiple sections.
24445
24446 @item
24447 Ease of finding scripts for public libraries.
24448
24449 Scripts specified in the @code{.debug_gdb_scripts} section are searched for
24450 in the source search path.
24451 For publicly installed libraries, e.g., @file{libstdc++}, there typically
24452 isn't a source directory in which to find the script.
24453
24454 @item
24455 Doesn't require source code additions.
24456 @end itemize
24457
24458 Benefits of the @code{.debug_gdb_scripts} way:
24459
24460 @itemize @bullet
24461 @item
24462 Works with static linking.
24463
24464 Scripts for libraries done the @file{-gdb.py} way require an objfile to
24465 trigger their loading.  When an application is statically linked the only
24466 objfile available is the executable, and it is cumbersome to attach all the
24467 scripts from all the input libraries to the executable's @file{-gdb.py} script.
24468
24469 @item
24470 Works with classes that are entirely inlined.
24471
24472 Some classes can be entirely inlined, and thus there may not be an associated
24473 shared library to attach a @file{-gdb.py} script to.
24474
24475 @item
24476 Scripts needn't be copied out of the source tree.
24477
24478 In some circumstances, apps can be built out of large collections of internal
24479 libraries, and the build infrastructure necessary to install the
24480 @file{-gdb.py} scripts in a place where @value{GDBN} can find them is
24481 cumbersome.  It may be easier to specify the scripts in the
24482 @code{.debug_gdb_scripts} section as relative paths, and add a path to the
24483 top of the source tree to the source search path.
24484 @end itemize
24485
24486 @node Python modules
24487 @subsection Python modules
24488 @cindex python modules
24489
24490 @value{GDBN} comes with several modules to assist writing Python code.
24491
24492 @menu
24493 * gdb.printing::       Building and registering pretty-printers.
24494 * gdb.types::          Utilities for working with types.
24495 * gdb.prompt::         Utilities for prompt value substitution.
24496 @end menu
24497
24498 @node gdb.printing
24499 @subsubsection gdb.printing
24500 @cindex gdb.printing
24501
24502 This module provides a collection of utilities for working with
24503 pretty-printers.
24504
24505 @table @code
24506 @item PrettyPrinter (@var{name}, @var{subprinters}=None)
24507 This class specifies the API that makes @samp{info pretty-printer},
24508 @samp{enable pretty-printer} and @samp{disable pretty-printer} work.
24509 Pretty-printers should generally inherit from this class.
24510
24511 @item SubPrettyPrinter (@var{name})
24512 For printers that handle multiple types, this class specifies the
24513 corresponding API for the subprinters.
24514
24515 @item RegexpCollectionPrettyPrinter (@var{name})
24516 Utility class for handling multiple printers, all recognized via
24517 regular expressions.
24518 @xref{Writing a Pretty-Printer}, for an example.
24519
24520 @item register_pretty_printer (@var{obj}, @var{printer}, @var{replace}=False)
24521 Register @var{printer} with the pretty-printer list of @var{obj}.
24522 If @var{replace} is @code{True} then any existing copy of the printer
24523 is replaced.  Otherwise a @code{RuntimeError} exception is raised
24524 if a printer with the same name already exists.
24525 @end table
24526
24527 @node gdb.types
24528 @subsubsection gdb.types
24529 @cindex gdb.types
24530
24531 This module provides a collection of utilities for working with
24532 @code{gdb.Types} objects.
24533
24534 @table @code
24535 @item get_basic_type (@var{type})
24536 Return @var{type} with const and volatile qualifiers stripped,
24537 and with typedefs and C@t{++} references converted to the underlying type.
24538
24539 C@t{++} example:
24540
24541 @smallexample
24542 typedef const int const_int;
24543 const_int foo (3);
24544 const_int& foo_ref (foo);
24545 int main () @{ return 0; @}
24546 @end smallexample
24547
24548 Then in gdb:
24549
24550 @smallexample
24551 (gdb) start
24552 (gdb) python import gdb.types
24553 (gdb) python foo_ref = gdb.parse_and_eval("foo_ref")
24554 (gdb) python print gdb.types.get_basic_type(foo_ref.type)
24555 int
24556 @end smallexample
24557
24558 @item has_field (@var{type}, @var{field})
24559 Return @code{True} if @var{type}, assumed to be a type with fields
24560 (e.g., a structure or union), has field @var{field}.
24561
24562 @item make_enum_dict (@var{enum_type})
24563 Return a Python @code{dictionary} type produced from @var{enum_type}.
24564
24565 @item deep_items (@var{type})
24566 Returns a Python iterator similar to the standard
24567 @code{gdb.Type.iteritems} method, except that the iterator returned
24568 by @code{deep_items} will recursively traverse anonymous struct or
24569 union fields.  For example:
24570
24571 @smallexample
24572 struct A
24573 @{
24574     int a;
24575     union @{
24576         int b0;
24577         int b1;
24578     @};
24579 @};
24580 @end smallexample
24581
24582 @noindent
24583 Then in @value{GDBN}:
24584 @smallexample
24585 (@value{GDBP}) python import gdb.types
24586 (@value{GDBP}) python struct_a = gdb.lookup_type("struct A")
24587 (@value{GDBP}) python print struct_a.keys ()
24588 @{['a', '']@}
24589 (@value{GDBP}) python print [k for k,v in gdb.types.deep_items(struct_a)]
24590 @{['a', 'b0', 'b1']@}
24591 @end smallexample
24592
24593 @end table
24594
24595 @node gdb.prompt
24596 @subsubsection gdb.prompt
24597 @cindex gdb.prompt
24598
24599 This module provides a method for prompt value-substitution.
24600
24601 @table @code
24602 @item substitute_prompt (@var{string})
24603 Return @var{string} with escape sequences substituted by values.  Some
24604 escape sequences take arguments.  You can specify arguments inside
24605 ``@{@}'' immediately following the escape sequence.
24606
24607 The escape sequences you can pass to this function are:
24608
24609 @table @code
24610 @item \\
24611 Substitute a backslash.
24612 @item \e
24613 Substitute an ESC character.
24614 @item \f
24615 Substitute the selected frame; an argument names a frame parameter.
24616 @item \n
24617 Substitute a newline.
24618 @item \p
24619 Substitute a parameter's value; the argument names the parameter.
24620 @item \r
24621 Substitute a carriage return.
24622 @item \t
24623 Substitute the selected thread; an argument names a thread parameter.
24624 @item \v
24625 Substitute the version of GDB.
24626 @item \w
24627 Substitute the current working directory.
24628 @item \[
24629 Begin a sequence of non-printing characters.  These sequences are
24630 typically used with the ESC character, and are not counted in the string
24631 length.  Example: ``\[\e[0;34m\](gdb)\[\e[0m\]'' will return a
24632 blue-colored ``(gdb)'' prompt where the length is five.
24633 @item \]
24634 End a sequence of non-printing characters.
24635 @end table
24636
24637 For example:
24638
24639 @smallexample
24640 substitute_prompt (``frame: \f,
24641                    print arguments: \p@{print frame-arguments@}'')
24642 @end smallexample
24643
24644 @exdent will return the string:
24645
24646 @smallexample
24647 "frame: main, print arguments: scalars"
24648 @end smallexample
24649 @end table
24650
24651 @node Aliases
24652 @section Creating new spellings of existing commands
24653 @cindex aliases for commands
24654
24655 It is often useful to define alternate spellings of existing commands.
24656 For example, if a new @value{GDBN} command defined in Python has
24657 a long name to type, it is handy to have an abbreviated version of it
24658 that involves less typing.
24659
24660 @value{GDBN} itself uses aliases.  For example @samp{s} is an alias
24661 of the @samp{step} command even though it is otherwise an ambiguous
24662 abbreviation of other commands like @samp{set} and @samp{show}.
24663
24664 Aliases are also used to provide shortened or more common versions
24665 of multi-word commands.  For example, @value{GDBN} provides the
24666 @samp{tty} alias of the @samp{set inferior-tty} command.
24667
24668 You can define a new alias with the @samp{alias} command.
24669
24670 @table @code
24671
24672 @kindex alias
24673 @item alias [-a] [--] @var{ALIAS} = @var{COMMAND}
24674
24675 @end table
24676
24677 @var{ALIAS} specifies the name of the new alias.
24678 Each word of @var{ALIAS} must consist of letters, numbers, dashes and
24679 underscores.
24680
24681 @var{COMMAND} specifies the name of an existing command
24682 that is being aliased.
24683
24684 The @samp{-a} option specifies that the new alias is an abbreviation
24685 of the command.  Abbreviations are not shown in command
24686 lists displayed by the @samp{help} command.
24687
24688 The @samp{--} option specifies the end of options,
24689 and is useful when @var{ALIAS} begins with a dash.
24690
24691 Here is a simple example showing how to make an abbreviation
24692 of a command so that there is less to type.
24693 Suppose you were tired of typing @samp{disas}, the current
24694 shortest unambiguous abbreviation of the @samp{disassemble} command
24695 and you wanted an even shorter version named @samp{di}.
24696 The following will accomplish this.
24697
24698 @smallexample
24699 (gdb) alias -a di = disas
24700 @end smallexample
24701
24702 Note that aliases are different from user-defined commands.
24703 With a user-defined command, you also need to write documentation
24704 for it with the @samp{document} command.
24705 An alias automatically picks up the documentation of the existing command.
24706
24707 Here is an example where we make @samp{elms} an abbreviation of
24708 @samp{elements} in the @samp{set print elements} command.
24709 This is to show that you can make an abbreviation of any part
24710 of a command.
24711
24712 @smallexample
24713 (gdb) alias -a set print elms = set print elements
24714 (gdb) alias -a show print elms = show print elements
24715 (gdb) set p elms 20
24716 (gdb) show p elms
24717 Limit on string chars or array elements to print is 200.
24718 @end smallexample
24719
24720 Note that if you are defining an alias of a @samp{set} command,
24721 and you want to have an alias for the corresponding @samp{show}
24722 command, then you need to define the latter separately.
24723
24724 Unambiguously abbreviated commands are allowed in @var{COMMAND} and
24725 @var{ALIAS}, just as they are normally.
24726
24727 @smallexample
24728 (gdb) alias -a set pr elms = set p ele
24729 @end smallexample
24730
24731 Finally, here is an example showing the creation of a one word
24732 alias for a more complex command.
24733 This creates alias @samp{spe} of the command @samp{set print elements}.
24734
24735 @smallexample
24736 (gdb) alias spe = set print elements
24737 (gdb) spe 20
24738 @end smallexample
24739
24740 @node Interpreters
24741 @chapter Command Interpreters
24742 @cindex command interpreters
24743
24744 @value{GDBN} supports multiple command interpreters, and some command
24745 infrastructure to allow users or user interface writers to switch
24746 between interpreters or run commands in other interpreters.
24747
24748 @value{GDBN} currently supports two command interpreters, the console
24749 interpreter (sometimes called the command-line interpreter or @sc{cli})
24750 and the machine interface interpreter (or @sc{gdb/mi}).  This manual
24751 describes both of these interfaces in great detail.
24752
24753 By default, @value{GDBN} will start with the console interpreter.
24754 However, the user may choose to start @value{GDBN} with another
24755 interpreter by specifying the @option{-i} or @option{--interpreter}
24756 startup options.  Defined interpreters include:
24757
24758 @table @code
24759 @item console
24760 @cindex console interpreter
24761 The traditional console or command-line interpreter.  This is the most often
24762 used interpreter with @value{GDBN}. With no interpreter specified at runtime,
24763 @value{GDBN} will use this interpreter.
24764
24765 @item mi
24766 @cindex mi interpreter
24767 The newest @sc{gdb/mi} interface (currently @code{mi2}).  Used primarily
24768 by programs wishing to use @value{GDBN} as a backend for a debugger GUI
24769 or an IDE.  For more information, see @ref{GDB/MI, ,The @sc{gdb/mi}
24770 Interface}.
24771
24772 @item mi2
24773 @cindex mi2 interpreter
24774 The current @sc{gdb/mi} interface.
24775
24776 @item mi1
24777 @cindex mi1 interpreter
24778 The @sc{gdb/mi} interface included in @value{GDBN} 5.1, 5.2, and 5.3.
24779
24780 @end table
24781
24782 @cindex invoke another interpreter
24783 The interpreter being used by @value{GDBN} may not be dynamically
24784 switched at runtime.  Although possible, this could lead to a very
24785 precarious situation.  Consider an IDE using @sc{gdb/mi}.  If a user
24786 enters the command "interpreter-set console" in a console view,
24787 @value{GDBN} would switch to using the console interpreter, rendering
24788 the IDE inoperable!
24789
24790 @kindex interpreter-exec
24791 Although you may only choose a single interpreter at startup, you may execute
24792 commands in any interpreter from the current interpreter using the appropriate
24793 command.  If you are running the console interpreter, simply use the
24794 @code{interpreter-exec} command:
24795
24796 @smallexample
24797 interpreter-exec mi "-data-list-register-names"
24798 @end smallexample
24799
24800 @sc{gdb/mi} has a similar command, although it is only available in versions of
24801 @value{GDBN} which support @sc{gdb/mi} version 2 (or greater).
24802
24803 @node TUI
24804 @chapter @value{GDBN} Text User Interface
24805 @cindex TUI
24806 @cindex Text User Interface
24807
24808 @menu
24809 * TUI Overview::                TUI overview
24810 * TUI Keys::                    TUI key bindings
24811 * TUI Single Key Mode::         TUI single key mode
24812 * TUI Commands::                TUI-specific commands
24813 * TUI Configuration::           TUI configuration variables
24814 @end menu
24815
24816 The @value{GDBN} Text User Interface (TUI) is a terminal
24817 interface which uses the @code{curses} library to show the source
24818 file, the assembly output, the program registers and @value{GDBN}
24819 commands in separate text windows.  The TUI mode is supported only
24820 on platforms where a suitable version of the @code{curses} library
24821 is available.
24822
24823 @pindex @value{GDBTUI}
24824 The TUI mode is enabled by default when you invoke @value{GDBN} as
24825 either @samp{@value{GDBTUI}} or @samp{@value{GDBP} -tui}.
24826 You can also switch in and out of TUI mode while @value{GDBN} runs by
24827 using various TUI commands and key bindings, such as @kbd{C-x C-a}. 
24828 @xref{TUI Keys, ,TUI Key Bindings}.
24829
24830 @node TUI Overview
24831 @section TUI Overview
24832
24833 In TUI mode, @value{GDBN} can display several text windows:
24834
24835 @table @emph
24836 @item command
24837 This window is the @value{GDBN} command window with the @value{GDBN}
24838 prompt and the @value{GDBN} output.  The @value{GDBN} input is still
24839 managed using readline.
24840
24841 @item source
24842 The source window shows the source file of the program.  The current
24843 line and active breakpoints are displayed in this window.
24844
24845 @item assembly
24846 The assembly window shows the disassembly output of the program.
24847
24848 @item register
24849 This window shows the processor registers.  Registers are highlighted
24850 when their values change.
24851 @end table
24852
24853 The source and assembly windows show the current program position
24854 by highlighting the current line and marking it with a @samp{>} marker.
24855 Breakpoints are indicated with two markers.  The first marker
24856 indicates the breakpoint type:
24857
24858 @table @code
24859 @item B
24860 Breakpoint which was hit at least once.
24861
24862 @item b
24863 Breakpoint which was never hit.
24864
24865 @item H
24866 Hardware breakpoint which was hit at least once.
24867
24868 @item h
24869 Hardware breakpoint which was never hit.
24870 @end table
24871
24872 The second marker indicates whether the breakpoint is enabled or not:
24873
24874 @table @code
24875 @item +
24876 Breakpoint is enabled.
24877
24878 @item -
24879 Breakpoint is disabled.
24880 @end table
24881
24882 The source, assembly and register windows are updated when the current
24883 thread changes, when the frame changes, or when the program counter
24884 changes.
24885
24886 These windows are not all visible at the same time.  The command
24887 window is always visible.  The others can be arranged in several
24888 layouts:
24889
24890 @itemize @bullet
24891 @item
24892 source only,
24893
24894 @item
24895 assembly only,
24896
24897 @item
24898 source and assembly,
24899
24900 @item
24901 source and registers, or
24902
24903 @item
24904 assembly and registers.
24905 @end itemize
24906
24907 A status line above the command window shows the following information:
24908
24909 @table @emph
24910 @item target
24911 Indicates the current @value{GDBN} target.
24912 (@pxref{Targets, ,Specifying a Debugging Target}).
24913
24914 @item process
24915 Gives the current process or thread number.
24916 When no process is being debugged, this field is set to @code{No process}.
24917
24918 @item function
24919 Gives the current function name for the selected frame.
24920 The name is demangled if demangling is turned on (@pxref{Print Settings}).
24921 When there is no symbol corresponding to the current program counter,
24922 the string @code{??} is displayed.
24923
24924 @item line
24925 Indicates the current line number for the selected frame.
24926 When the current line number is not known, the string @code{??} is displayed.
24927
24928 @item pc
24929 Indicates the current program counter address.
24930 @end table
24931
24932 @node TUI Keys
24933 @section TUI Key Bindings
24934 @cindex TUI key bindings
24935
24936 The TUI installs several key bindings in the readline keymaps
24937 @ifset SYSTEM_READLINE
24938 (@pxref{Command Line Editing, , , rluserman, GNU Readline Library}).
24939 @end ifset
24940 @ifclear SYSTEM_READLINE
24941 (@pxref{Command Line Editing}).
24942 @end ifclear
24943 The following key bindings are installed for both TUI mode and the
24944 @value{GDBN} standard mode.
24945
24946 @table @kbd
24947 @kindex C-x C-a
24948 @item C-x C-a
24949 @kindex C-x a
24950 @itemx C-x a
24951 @kindex C-x A
24952 @itemx C-x A
24953 Enter or leave the TUI mode.  When leaving the TUI mode,
24954 the curses window management stops and @value{GDBN} operates using
24955 its standard mode, writing on the terminal directly.  When reentering
24956 the TUI mode, control is given back to the curses windows.
24957 The screen is then refreshed.
24958
24959 @kindex C-x 1
24960 @item C-x 1
24961 Use a TUI layout with only one window.  The layout will
24962 either be @samp{source} or @samp{assembly}.  When the TUI mode
24963 is not active, it will switch to the TUI mode.
24964
24965 Think of this key binding as the Emacs @kbd{C-x 1} binding.
24966
24967 @kindex C-x 2
24968 @item C-x 2
24969 Use a TUI layout with at least two windows.  When the current
24970 layout already has two windows, the next layout with two windows is used.
24971 When a new layout is chosen, one window will always be common to the
24972 previous layout and the new one.
24973
24974 Think of it as the Emacs @kbd{C-x 2} binding.
24975
24976 @kindex C-x o
24977 @item C-x o
24978 Change the active window.  The TUI associates several key bindings
24979 (like scrolling and arrow keys) with the active window.  This command
24980 gives the focus to the next TUI window.
24981
24982 Think of it as the Emacs @kbd{C-x o} binding.
24983
24984 @kindex C-x s
24985 @item C-x s
24986 Switch in and out of the TUI SingleKey mode that binds single
24987 keys to @value{GDBN} commands (@pxref{TUI Single Key Mode}).
24988 @end table
24989
24990 The following key bindings only work in the TUI mode:
24991
24992 @table @asis
24993 @kindex PgUp
24994 @item @key{PgUp}
24995 Scroll the active window one page up.
24996
24997 @kindex PgDn
24998 @item @key{PgDn}
24999 Scroll the active window one page down.
25000
25001 @kindex Up
25002 @item @key{Up}
25003 Scroll the active window one line up.
25004
25005 @kindex Down
25006 @item @key{Down}
25007 Scroll the active window one line down.
25008
25009 @kindex Left
25010 @item @key{Left}
25011 Scroll the active window one column left.
25012
25013 @kindex Right
25014 @item @key{Right}
25015 Scroll the active window one column right.
25016
25017 @kindex C-L
25018 @item @kbd{C-L}
25019 Refresh the screen.
25020 @end table
25021
25022 Because the arrow keys scroll the active window in the TUI mode, they
25023 are not available for their normal use by readline unless the command
25024 window has the focus.  When another window is active, you must use
25025 other readline key bindings such as @kbd{C-p}, @kbd{C-n}, @kbd{C-b}
25026 and @kbd{C-f} to control the command window.
25027
25028 @node TUI Single Key Mode
25029 @section TUI Single Key Mode
25030 @cindex TUI single key mode
25031
25032 The TUI also provides a @dfn{SingleKey} mode, which binds several
25033 frequently used @value{GDBN} commands to single keys.  Type @kbd{C-x s} to
25034 switch into this mode, where the following key bindings are used:
25035
25036 @table @kbd
25037 @kindex c @r{(SingleKey TUI key)}
25038 @item c
25039 continue
25040
25041 @kindex d @r{(SingleKey TUI key)}
25042 @item d
25043 down
25044
25045 @kindex f @r{(SingleKey TUI key)}
25046 @item f
25047 finish
25048
25049 @kindex n @r{(SingleKey TUI key)}
25050 @item n
25051 next
25052
25053 @kindex q @r{(SingleKey TUI key)}
25054 @item q
25055 exit the SingleKey mode.
25056
25057 @kindex r @r{(SingleKey TUI key)}
25058 @item r
25059 run
25060
25061 @kindex s @r{(SingleKey TUI key)}
25062 @item s
25063 step
25064
25065 @kindex u @r{(SingleKey TUI key)}
25066 @item u
25067 up
25068
25069 @kindex v @r{(SingleKey TUI key)}
25070 @item v
25071 info locals
25072
25073 @kindex w @r{(SingleKey TUI key)}
25074 @item w
25075 where
25076 @end table
25077
25078 Other keys temporarily switch to the @value{GDBN} command prompt.
25079 The key that was pressed is inserted in the editing buffer so that
25080 it is possible to type most @value{GDBN} commands without interaction
25081 with the TUI SingleKey mode.  Once the command is entered the TUI
25082 SingleKey mode is restored.  The only way to permanently leave
25083 this mode is by typing @kbd{q} or @kbd{C-x s}.
25084
25085
25086 @node TUI Commands
25087 @section TUI-specific Commands
25088 @cindex TUI commands
25089
25090 The TUI has specific commands to control the text windows.
25091 These commands are always available, even when @value{GDBN} is not in
25092 the TUI mode.  When @value{GDBN} is in the standard mode, most
25093 of these commands will automatically switch to the TUI mode.
25094
25095 Note that if @value{GDBN}'s @code{stdout} is not connected to a
25096 terminal, or @value{GDBN} has been started with the machine interface
25097 interpreter (@pxref{GDB/MI, ,The @sc{gdb/mi} Interface}), most of
25098 these commands will fail with an error, because it would not be
25099 possible or desirable to enable curses window management.
25100
25101 @table @code
25102 @item info win
25103 @kindex info win
25104 List and give the size of all displayed windows.
25105
25106 @item layout next
25107 @kindex layout
25108 Display the next layout.
25109
25110 @item layout prev
25111 Display the previous layout.
25112
25113 @item layout src
25114 Display the source window only.
25115
25116 @item layout asm
25117 Display the assembly window only.
25118
25119 @item layout split
25120 Display the source and assembly window.
25121
25122 @item layout regs
25123 Display the register window together with the source or assembly window.
25124
25125 @item focus next
25126 @kindex focus
25127 Make the next window active for scrolling.
25128
25129 @item focus prev
25130 Make the previous window active for scrolling.
25131
25132 @item focus src
25133 Make the source window active for scrolling.
25134
25135 @item focus asm
25136 Make the assembly window active for scrolling.
25137
25138 @item focus regs
25139 Make the register window active for scrolling.
25140
25141 @item focus cmd
25142 Make the command window active for scrolling.
25143
25144 @item refresh
25145 @kindex refresh
25146 Refresh the screen.  This is similar to typing @kbd{C-L}.
25147
25148 @item tui reg float
25149 @kindex tui reg
25150 Show the floating point registers in the register window.
25151
25152 @item tui reg general
25153 Show the general registers in the register window.
25154
25155 @item tui reg next
25156 Show the next register group.  The list of register groups as well as
25157 their order is target specific.  The predefined register groups are the
25158 following: @code{general}, @code{float}, @code{system}, @code{vector},
25159 @code{all}, @code{save}, @code{restore}.
25160
25161 @item tui reg system
25162 Show the system registers in the register window.
25163
25164 @item update
25165 @kindex update
25166 Update the source window and the current execution point.
25167
25168 @item winheight @var{name} +@var{count}
25169 @itemx winheight @var{name} -@var{count}
25170 @kindex winheight
25171 Change the height of the window @var{name} by @var{count}
25172 lines.  Positive counts increase the height, while negative counts
25173 decrease it.
25174
25175 @item tabset @var{nchars}
25176 @kindex tabset
25177 Set the width of tab stops to be @var{nchars} characters.
25178 @end table
25179
25180 @node TUI Configuration
25181 @section TUI Configuration Variables
25182 @cindex TUI configuration variables
25183
25184 Several configuration variables control the appearance of TUI windows.
25185
25186 @table @code
25187 @item set tui border-kind @var{kind}
25188 @kindex set tui border-kind
25189 Select the border appearance for the source, assembly and register windows.
25190 The possible values are the following:
25191 @table @code
25192 @item space
25193 Use a space character to draw the border.
25194
25195 @item ascii
25196 Use @sc{ascii} characters @samp{+}, @samp{-} and @samp{|} to draw the border.
25197
25198 @item acs
25199 Use the Alternate Character Set to draw the border.  The border is
25200 drawn using character line graphics if the terminal supports them.
25201 @end table
25202
25203 @item set tui border-mode @var{mode}
25204 @kindex set tui border-mode
25205 @itemx set tui active-border-mode @var{mode}
25206 @kindex set tui active-border-mode
25207 Select the display attributes for the borders of the inactive windows
25208 or the active window.  The @var{mode} can be one of the following:
25209 @table @code
25210 @item normal
25211 Use normal attributes to display the border.
25212
25213 @item standout
25214 Use standout mode.
25215
25216 @item reverse
25217 Use reverse video mode.
25218
25219 @item half
25220 Use half bright mode.
25221
25222 @item half-standout
25223 Use half bright and standout mode.
25224
25225 @item bold
25226 Use extra bright or bold mode.
25227
25228 @item bold-standout
25229 Use extra bright or bold and standout mode.
25230 @end table
25231 @end table
25232
25233 @node Emacs
25234 @chapter Using @value{GDBN} under @sc{gnu} Emacs
25235
25236 @cindex Emacs
25237 @cindex @sc{gnu} Emacs
25238 A special interface allows you to use @sc{gnu} Emacs to view (and
25239 edit) the source files for the program you are debugging with
25240 @value{GDBN}.
25241
25242 To use this interface, use the command @kbd{M-x gdb} in Emacs.  Give the
25243 executable file you want to debug as an argument.  This command starts
25244 @value{GDBN} as a subprocess of Emacs, with input and output through a newly
25245 created Emacs buffer.
25246 @c (Do not use the @code{-tui} option to run @value{GDBN} from Emacs.)
25247
25248 Running @value{GDBN} under Emacs can be just like running @value{GDBN} normally except for two
25249 things:
25250
25251 @itemize @bullet
25252 @item
25253 All ``terminal'' input and output goes through an Emacs buffer, called
25254 the GUD buffer.
25255
25256 This applies both to @value{GDBN} commands and their output, and to the input
25257 and output done by the program you are debugging.
25258
25259 This is useful because it means that you can copy the text of previous
25260 commands and input them again; you can even use parts of the output
25261 in this way.
25262
25263 All the facilities of Emacs' Shell mode are available for interacting
25264 with your program.  In particular, you can send signals the usual
25265 way---for example, @kbd{C-c C-c} for an interrupt, @kbd{C-c C-z} for a
25266 stop.
25267
25268 @item
25269 @value{GDBN} displays source code through Emacs.
25270
25271 Each time @value{GDBN} displays a stack frame, Emacs automatically finds the
25272 source file for that frame and puts an arrow (@samp{=>}) at the
25273 left margin of the current line.  Emacs uses a separate buffer for
25274 source display, and splits the screen to show both your @value{GDBN} session
25275 and the source.
25276
25277 Explicit @value{GDBN} @code{list} or search commands still produce output as
25278 usual, but you probably have no reason to use them from Emacs.
25279 @end itemize
25280
25281 We call this @dfn{text command mode}.  Emacs 22.1, and later, also uses
25282 a graphical mode, enabled by default, which provides further buffers
25283 that can control the execution and describe the state of your program.
25284 @xref{GDB Graphical Interface,,, Emacs, The @sc{gnu} Emacs Manual}.
25285
25286 If you specify an absolute file name when prompted for the @kbd{M-x
25287 gdb} argument, then Emacs sets your current working directory to where
25288 your program resides.  If you only specify the file name, then Emacs
25289 sets your current working directory to the directory associated
25290 with the previous buffer.  In this case, @value{GDBN} may find your
25291 program by searching your environment's @code{PATH} variable, but on
25292 some operating systems it might not find the source.  So, although the
25293 @value{GDBN} input and output session proceeds normally, the auxiliary
25294 buffer does not display the current source and line of execution.
25295
25296 The initial working directory of @value{GDBN} is printed on the top
25297 line of the GUD buffer and this serves as a default for the commands
25298 that specify files for @value{GDBN} to operate on.  @xref{Files,
25299 ,Commands to Specify Files}.
25300
25301 By default, @kbd{M-x gdb} calls the program called @file{gdb}.  If you
25302 need to call @value{GDBN} by a different name (for example, if you
25303 keep several configurations around, with different names) you can
25304 customize the Emacs variable @code{gud-gdb-command-name} to run the
25305 one you want.
25306
25307 In the GUD buffer, you can use these special Emacs commands in
25308 addition to the standard Shell mode commands:
25309
25310 @table @kbd
25311 @item C-h m
25312 Describe the features of Emacs' GUD Mode.
25313
25314 @item C-c C-s
25315 Execute to another source line, like the @value{GDBN} @code{step} command; also
25316 update the display window to show the current file and location.
25317
25318 @item C-c C-n
25319 Execute to next source line in this function, skipping all function
25320 calls, like the @value{GDBN} @code{next} command.  Then update the display window
25321 to show the current file and location.
25322
25323 @item C-c C-i
25324 Execute one instruction, like the @value{GDBN} @code{stepi} command; update
25325 display window accordingly.
25326
25327 @item C-c C-f
25328 Execute until exit from the selected stack frame, like the @value{GDBN}
25329 @code{finish} command.
25330
25331 @item C-c C-r
25332 Continue execution of your program, like the @value{GDBN} @code{continue}
25333 command.
25334
25335 @item C-c <
25336 Go up the number of frames indicated by the numeric argument
25337 (@pxref{Arguments, , Numeric Arguments, Emacs, The @sc{gnu} Emacs Manual}),
25338 like the @value{GDBN} @code{up} command.
25339
25340 @item C-c >
25341 Go down the number of frames indicated by the numeric argument, like the
25342 @value{GDBN} @code{down} command.
25343 @end table
25344
25345 In any source file, the Emacs command @kbd{C-x @key{SPC}} (@code{gud-break})
25346 tells @value{GDBN} to set a breakpoint on the source line point is on.
25347
25348 In text command mode, if you type @kbd{M-x speedbar}, Emacs displays a
25349 separate frame which shows a backtrace when the GUD buffer is current.
25350 Move point to any frame in the stack and type @key{RET} to make it
25351 become the current frame and display the associated source in the
25352 source buffer.  Alternatively, click @kbd{Mouse-2} to make the
25353 selected frame become the current one.  In graphical mode, the
25354 speedbar displays watch expressions.
25355
25356 If you accidentally delete the source-display buffer, an easy way to get
25357 it back is to type the command @code{f} in the @value{GDBN} buffer, to
25358 request a frame display; when you run under Emacs, this recreates
25359 the source buffer if necessary to show you the context of the current
25360 frame.
25361
25362 The source files displayed in Emacs are in ordinary Emacs buffers
25363 which are visiting the source files in the usual way.  You can edit
25364 the files with these buffers if you wish; but keep in mind that @value{GDBN}
25365 communicates with Emacs in terms of line numbers.  If you add or
25366 delete lines from the text, the line numbers that @value{GDBN} knows cease
25367 to correspond properly with the code.
25368
25369 A more detailed description of Emacs' interaction with @value{GDBN} is
25370 given in the Emacs manual (@pxref{Debuggers,,, Emacs, The @sc{gnu}
25371 Emacs Manual}).
25372
25373 @c The following dropped because Epoch is nonstandard.  Reactivate
25374 @c if/when v19 does something similar. ---doc@cygnus.com 19dec1990
25375 @ignore
25376 @kindex Emacs Epoch environment
25377 @kindex Epoch
25378 @kindex inspect
25379
25380 Version 18 of @sc{gnu} Emacs has a built-in window system
25381 called the @code{epoch}
25382 environment.  Users of this environment can use a new command,
25383 @code{inspect} which performs identically to @code{print} except that
25384 each value is printed in its own window.
25385 @end ignore
25386
25387
25388 @node GDB/MI
25389 @chapter The @sc{gdb/mi} Interface
25390
25391 @unnumberedsec Function and Purpose
25392
25393 @cindex @sc{gdb/mi}, its purpose
25394 @sc{gdb/mi} is a line based machine oriented text interface to
25395 @value{GDBN} and is activated by specifying using the
25396 @option{--interpreter} command line option (@pxref{Mode Options}).  It
25397 is specifically intended to support the development of systems which
25398 use the debugger as just one small component of a larger system.
25399
25400 This chapter is a specification of the @sc{gdb/mi} interface.  It is written
25401 in the form of a reference manual.
25402
25403 Note that @sc{gdb/mi} is still under construction, so some of the
25404 features described below are incomplete and subject to change
25405 (@pxref{GDB/MI Development and Front Ends, , @sc{gdb/mi} Development and Front Ends}).  
25406
25407 @unnumberedsec Notation and Terminology
25408
25409 @cindex notational conventions, for @sc{gdb/mi}
25410 This chapter uses the following notation:
25411
25412 @itemize @bullet
25413 @item
25414 @code{|} separates two alternatives.
25415
25416 @item
25417 @code{[ @var{something} ]} indicates that @var{something} is optional:
25418 it may or may not be given.
25419
25420 @item
25421 @code{( @var{group} )*} means that @var{group} inside the parentheses
25422 may repeat zero or more times.
25423
25424 @item
25425 @code{( @var{group} )+} means that @var{group} inside the parentheses
25426 may repeat one or more times.
25427
25428 @item
25429 @code{"@var{string}"} means a literal @var{string}.
25430 @end itemize
25431
25432 @ignore
25433 @heading Dependencies
25434 @end ignore
25435
25436 @menu
25437 * GDB/MI General Design::
25438 * GDB/MI Command Syntax::
25439 * GDB/MI Compatibility with CLI::
25440 * GDB/MI Development and Front Ends::
25441 * GDB/MI Output Records::
25442 * GDB/MI Simple Examples::
25443 * GDB/MI Command Description Format::
25444 * GDB/MI Breakpoint Commands::
25445 * GDB/MI Program Context::
25446 * GDB/MI Thread Commands::
25447 * GDB/MI Ada Tasking Commands::
25448 * GDB/MI Program Execution::
25449 * GDB/MI Stack Manipulation::
25450 * GDB/MI Variable Objects::
25451 * GDB/MI Data Manipulation::
25452 * GDB/MI Tracepoint Commands::
25453 * GDB/MI Symbol Query::
25454 * GDB/MI File Commands::
25455 @ignore
25456 * GDB/MI Kod Commands::
25457 * GDB/MI Memory Overlay Commands::
25458 * GDB/MI Signal Handling Commands::
25459 @end ignore
25460 * GDB/MI Target Manipulation::
25461 * GDB/MI File Transfer Commands::
25462 * GDB/MI Miscellaneous Commands::
25463 @end menu
25464
25465 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
25466 @node GDB/MI General Design
25467 @section @sc{gdb/mi} General Design
25468 @cindex GDB/MI General Design
25469
25470 Interaction of a @sc{GDB/MI} frontend with @value{GDBN} involves three
25471 parts---commands sent to @value{GDBN}, responses to those commands
25472 and notifications.  Each command results in exactly one response,
25473 indicating either successful completion of the command, or an error.
25474 For the commands that do not resume the target, the response contains the
25475 requested information.  For the commands that resume the target, the
25476 response only indicates whether the target was successfully resumed.
25477 Notifications is the mechanism for reporting changes in the state of the
25478 target, or in @value{GDBN} state, that cannot conveniently be associated with
25479 a command and reported as part of that command response.
25480
25481 The important examples of notifications are:
25482 @itemize @bullet
25483
25484 @item 
25485 Exec notifications.  These are used to report changes in
25486 target state---when a target is resumed, or stopped.  It would not
25487 be feasible to include this information in response of resuming
25488 commands, because one resume commands can result in multiple events in
25489 different threads.  Also, quite some time may pass before any event
25490 happens in the target, while a frontend needs to know whether the resuming
25491 command itself was successfully executed.
25492
25493 @item 
25494 Console output, and status notifications.  Console output
25495 notifications are used to report output of CLI commands, as well as
25496 diagnostics for other commands.  Status notifications are used to
25497 report the progress of a long-running operation.  Naturally, including
25498 this information in command response would mean no output is produced
25499 until the command is finished, which is undesirable.
25500
25501 @item
25502 General notifications.  Commands may have various side effects on
25503 the @value{GDBN} or target state beyond their official purpose.  For example,
25504 a command may change the selected thread.  Although such changes can
25505 be included in command response, using notification allows for more
25506 orthogonal frontend design.
25507
25508 @end itemize
25509
25510 There's no guarantee that whenever an MI command reports an error,
25511 @value{GDBN} or the target are in any specific state, and especially,
25512 the state is not reverted to the state before the MI command was
25513 processed.  Therefore, whenever an MI command results in an error, 
25514 we recommend that the frontend refreshes all the information shown in 
25515 the user interface.
25516
25517
25518 @menu
25519 * Context management::
25520 * Asynchronous and non-stop modes::
25521 * Thread groups::
25522 @end menu
25523
25524 @node Context management
25525 @subsection Context management
25526
25527 In most cases when @value{GDBN} accesses the target, this access is
25528 done in context of a specific thread and frame (@pxref{Frames}).
25529 Often, even when accessing global data, the target requires that a thread
25530 be specified.  The CLI interface maintains the selected thread and frame,
25531 and supplies them to target on each command.  This is convenient,
25532 because a command line user would not want to specify that information
25533 explicitly on each command, and because user interacts with
25534 @value{GDBN} via a single terminal, so no confusion is possible as 
25535 to what thread and frame are the current ones.
25536
25537 In the case of MI, the concept of selected thread and frame is less
25538 useful.  First, a frontend can easily remember this information
25539 itself.  Second, a graphical frontend can have more than one window,
25540 each one used for debugging a different thread, and the frontend might
25541 want to access additional threads for internal purposes.  This
25542 increases the risk that by relying on implicitly selected thread, the
25543 frontend may be operating on a wrong one.  Therefore, each MI command
25544 should explicitly specify which thread and frame to operate on.  To
25545 make it possible, each MI command accepts the @samp{--thread} and
25546 @samp{--frame} options, the value to each is @value{GDBN} identifier
25547 for thread and frame to operate on.
25548
25549 Usually, each top-level window in a frontend allows the user to select
25550 a thread and a frame, and remembers the user selection for further
25551 operations.  However, in some cases @value{GDBN} may suggest that the
25552 current thread be changed.  For example, when stopping on a breakpoint
25553 it is reasonable to switch to the thread where breakpoint is hit.  For
25554 another example, if the user issues the CLI @samp{thread} command via
25555 the frontend, it is desirable to change the frontend's selected thread to the
25556 one specified by user.  @value{GDBN} communicates the suggestion to
25557 change current thread using the @samp{=thread-selected} notification.
25558 No such notification is available for the selected frame at the moment.
25559
25560 Note that historically, MI shares the selected thread with CLI, so 
25561 frontends used the @code{-thread-select} to execute commands in the
25562 right context.  However, getting this to work right is cumbersome.  The
25563 simplest way is for frontend to emit @code{-thread-select} command
25564 before every command.  This doubles the number of commands that need
25565 to be sent.  The alternative approach is to suppress @code{-thread-select}
25566 if the selected thread in @value{GDBN} is supposed to be identical to the
25567 thread the frontend wants to operate on.  However, getting this
25568 optimization right can be tricky.  In particular, if the frontend
25569 sends several commands to @value{GDBN}, and one of the commands changes the
25570 selected thread, then the behaviour of subsequent commands will
25571 change.  So, a frontend should either wait for response from such
25572 problematic commands, or explicitly add @code{-thread-select} for
25573 all subsequent commands.  No frontend is known to do this exactly
25574 right, so it is suggested to just always pass the @samp{--thread} and
25575 @samp{--frame} options.
25576
25577 @node Asynchronous and non-stop modes
25578 @subsection Asynchronous command execution and non-stop mode
25579
25580 On some targets, @value{GDBN} is capable of processing MI commands
25581 even while the target is running.  This is called @dfn{asynchronous
25582 command execution} (@pxref{Background Execution}).  The frontend may
25583 specify a preferrence for asynchronous execution using the
25584 @code{-gdb-set target-async 1} command, which should be emitted before
25585 either running the executable or attaching to the target.  After the
25586 frontend has started the executable or attached to the target, it can
25587 find if asynchronous execution is enabled using the
25588 @code{-list-target-features} command.
25589
25590 Even if @value{GDBN} can accept a command while target is running,
25591 many commands that access the target do not work when the target is
25592 running.  Therefore, asynchronous command execution is most useful
25593 when combined with non-stop mode (@pxref{Non-Stop Mode}).  Then,
25594 it is possible to examine the state of one thread, while other threads
25595 are running.
25596
25597 When a given thread is running, MI commands that try to access the
25598 target in the context of that thread may not work, or may work only on
25599 some targets.  In particular, commands that try to operate on thread's
25600 stack will not work, on any target.  Commands that read memory, or
25601 modify breakpoints, may work or not work, depending on the target.  Note
25602 that even commands that operate on global state, such as @code{print},
25603 @code{set}, and breakpoint commands, still access the target in the
25604 context of a specific thread,  so frontend should try to find a
25605 stopped thread and perform the operation on that thread (using the
25606 @samp{--thread} option).
25607
25608 Which commands will work in the context of a running thread is
25609 highly target dependent.  However, the two commands
25610 @code{-exec-interrupt}, to stop a thread, and @code{-thread-info},
25611 to find the state of a thread, will always work.
25612
25613 @node Thread groups
25614 @subsection Thread groups
25615 @value{GDBN} may be used to debug several processes at the same time.
25616 On some platfroms, @value{GDBN} may support debugging of several
25617 hardware systems, each one having several cores with several different
25618 processes running on each core.  This section describes the MI
25619 mechanism to support such debugging scenarios.
25620
25621 The key observation is that regardless of the structure of the 
25622 target, MI can have a global list of threads, because most commands that 
25623 accept the @samp{--thread} option do not need to know what process that
25624 thread belongs to.  Therefore, it is not necessary to introduce
25625 neither additional @samp{--process} option, nor an notion of the
25626 current process in the MI interface.  The only strictly new feature
25627 that is required is the ability to find how the threads are grouped
25628 into processes.
25629
25630 To allow the user to discover such grouping, and to support arbitrary
25631 hierarchy of machines/cores/processes, MI introduces the concept of a
25632 @dfn{thread group}.  Thread group is a collection of threads and other
25633 thread groups.  A thread group always has a string identifier, a type,
25634 and may have additional attributes specific to the type.  A new
25635 command, @code{-list-thread-groups}, returns the list of top-level
25636 thread groups, which correspond to processes that @value{GDBN} is
25637 debugging at the moment.  By passing an identifier of a thread group
25638 to the @code{-list-thread-groups} command, it is possible to obtain
25639 the members of specific thread group.
25640
25641 To allow the user to easily discover processes, and other objects, he
25642 wishes to debug, a concept of @dfn{available thread group} is
25643 introduced.  Available thread group is an thread group that
25644 @value{GDBN} is not debugging, but that can be attached to, using the
25645 @code{-target-attach} command.  The list of available top-level thread
25646 groups can be obtained using @samp{-list-thread-groups --available}.
25647 In general, the content of a thread group may be only retrieved only
25648 after attaching to that thread group.
25649
25650 Thread groups are related to inferiors (@pxref{Inferiors and
25651 Programs}).  Each inferior corresponds to a thread group of a special
25652 type @samp{process}, and some additional operations are permitted on
25653 such thread groups.
25654
25655 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
25656 @node GDB/MI Command Syntax
25657 @section @sc{gdb/mi} Command Syntax
25658
25659 @menu
25660 * GDB/MI Input Syntax::
25661 * GDB/MI Output Syntax::
25662 @end menu
25663
25664 @node GDB/MI Input Syntax
25665 @subsection @sc{gdb/mi} Input Syntax
25666
25667 @cindex input syntax for @sc{gdb/mi}
25668 @cindex @sc{gdb/mi}, input syntax
25669 @table @code
25670 @item @var{command} @expansion{}
25671 @code{@var{cli-command} | @var{mi-command}}
25672
25673 @item @var{cli-command} @expansion{}
25674 @code{[ @var{token} ] @var{cli-command} @var{nl}}, where
25675 @var{cli-command} is any existing @value{GDBN} CLI command.
25676
25677 @item @var{mi-command} @expansion{}
25678 @code{[ @var{token} ] "-" @var{operation} ( " " @var{option} )*
25679 @code{[} " --" @code{]} ( " " @var{parameter} )* @var{nl}}
25680
25681 @item @var{token} @expansion{}
25682 "any sequence of digits"
25683
25684 @item @var{option} @expansion{}
25685 @code{"-" @var{parameter} [ " " @var{parameter} ]}
25686
25687 @item @var{parameter} @expansion{}
25688 @code{@var{non-blank-sequence} | @var{c-string}}
25689
25690 @item @var{operation} @expansion{}
25691 @emph{any of the operations described in this chapter}
25692
25693 @item @var{non-blank-sequence} @expansion{}
25694 @emph{anything, provided it doesn't contain special characters such as
25695 "-", @var{nl}, """ and of course " "}
25696
25697 @item @var{c-string} @expansion{}
25698 @code{""" @var{seven-bit-iso-c-string-content} """}
25699
25700 @item @var{nl} @expansion{}
25701 @code{CR | CR-LF}
25702 @end table
25703
25704 @noindent
25705 Notes:
25706
25707 @itemize @bullet
25708 @item
25709 The CLI commands are still handled by the @sc{mi} interpreter; their
25710 output is described below.
25711
25712 @item
25713 The @code{@var{token}}, when present, is passed back when the command
25714 finishes.
25715
25716 @item
25717 Some @sc{mi} commands accept optional arguments as part of the parameter
25718 list.  Each option is identified by a leading @samp{-} (dash) and may be
25719 followed by an optional argument parameter.  Options occur first in the
25720 parameter list and can be delimited from normal parameters using
25721 @samp{--} (this is useful when some parameters begin with a dash).
25722 @end itemize
25723
25724 Pragmatics:
25725
25726 @itemize @bullet
25727 @item
25728 We want easy access to the existing CLI syntax (for debugging).
25729
25730 @item
25731 We want it to be easy to spot a @sc{mi} operation.
25732 @end itemize
25733
25734 @node GDB/MI Output Syntax
25735 @subsection @sc{gdb/mi} Output Syntax
25736
25737 @cindex output syntax of @sc{gdb/mi}
25738 @cindex @sc{gdb/mi}, output syntax
25739 The output from @sc{gdb/mi} consists of zero or more out-of-band records
25740 followed, optionally, by a single result record.  This result record
25741 is for the most recent command.  The sequence of output records is
25742 terminated by @samp{(gdb)}.
25743
25744 If an input command was prefixed with a @code{@var{token}} then the
25745 corresponding output for that command will also be prefixed by that same
25746 @var{token}.
25747
25748 @table @code
25749 @item @var{output} @expansion{}
25750 @code{( @var{out-of-band-record} )* [ @var{result-record} ] "(gdb)" @var{nl}}
25751
25752 @item @var{result-record} @expansion{}
25753 @code{ [ @var{token} ] "^" @var{result-class} ( "," @var{result} )* @var{nl}}
25754
25755 @item @var{out-of-band-record} @expansion{}
25756 @code{@var{async-record} | @var{stream-record}}
25757
25758 @item @var{async-record} @expansion{}
25759 @code{@var{exec-async-output} | @var{status-async-output} | @var{notify-async-output}}
25760
25761 @item @var{exec-async-output} @expansion{}
25762 @code{[ @var{token} ] "*" @var{async-output}}
25763
25764 @item @var{status-async-output} @expansion{}
25765 @code{[ @var{token} ] "+" @var{async-output}}
25766
25767 @item @var{notify-async-output} @expansion{}
25768 @code{[ @var{token} ] "=" @var{async-output}}
25769
25770 @item @var{async-output} @expansion{}
25771 @code{@var{async-class} ( "," @var{result} )* @var{nl}}
25772
25773 @item @var{result-class} @expansion{}
25774 @code{"done" | "running" | "connected" | "error" | "exit"}
25775
25776 @item @var{async-class} @expansion{}
25777 @code{"stopped" | @var{others}} (where @var{others} will be added
25778 depending on the needs---this is still in development).
25779
25780 @item @var{result} @expansion{}
25781 @code{ @var{variable} "=" @var{value}}
25782
25783 @item @var{variable} @expansion{}
25784 @code{ @var{string} }
25785
25786 @item @var{value} @expansion{}
25787 @code{ @var{const} | @var{tuple} | @var{list} }
25788
25789 @item @var{const} @expansion{}
25790 @code{@var{c-string}}
25791
25792 @item @var{tuple} @expansion{}
25793 @code{ "@{@}" | "@{" @var{result} ( "," @var{result} )* "@}" }
25794
25795 @item @var{list} @expansion{}
25796 @code{ "[]" | "[" @var{value} ( "," @var{value} )* "]" | "["
25797 @var{result} ( "," @var{result} )* "]" }
25798
25799 @item @var{stream-record} @expansion{}
25800 @code{@var{console-stream-output} | @var{target-stream-output} | @var{log-stream-output}}
25801
25802 @item @var{console-stream-output} @expansion{}
25803 @code{"~" @var{c-string}}
25804
25805 @item @var{target-stream-output} @expansion{}
25806 @code{"@@" @var{c-string}}
25807
25808 @item @var{log-stream-output} @expansion{}
25809 @code{"&" @var{c-string}}
25810
25811 @item @var{nl} @expansion{}
25812 @code{CR | CR-LF}
25813
25814 @item @var{token} @expansion{}
25815 @emph{any sequence of digits}.
25816 @end table
25817
25818 @noindent
25819 Notes:
25820
25821 @itemize @bullet
25822 @item
25823 All output sequences end in a single line containing a period.
25824
25825 @item
25826 The @code{@var{token}} is from the corresponding request.  Note that
25827 for all async output, while the token is allowed by the grammar and
25828 may be output by future versions of @value{GDBN} for select async
25829 output messages, it is generally omitted.  Frontends should treat
25830 all async output as reporting general changes in the state of the
25831 target and there should be no need to associate async output to any
25832 prior command.
25833
25834 @item
25835 @cindex status output in @sc{gdb/mi}
25836 @var{status-async-output} contains on-going status information about the
25837 progress of a slow operation.  It can be discarded.  All status output is
25838 prefixed by @samp{+}.
25839
25840 @item
25841 @cindex async output in @sc{gdb/mi}
25842 @var{exec-async-output} contains asynchronous state change on the target
25843 (stopped, started, disappeared).  All async output is prefixed by
25844 @samp{*}.
25845
25846 @item
25847 @cindex notify output in @sc{gdb/mi}
25848 @var{notify-async-output} contains supplementary information that the
25849 client should handle (e.g., a new breakpoint information).  All notify
25850 output is prefixed by @samp{=}.
25851
25852 @item
25853 @cindex console output in @sc{gdb/mi}
25854 @var{console-stream-output} is output that should be displayed as is in the
25855 console.  It is the textual response to a CLI command.  All the console
25856 output is prefixed by @samp{~}.
25857
25858 @item
25859 @cindex target output in @sc{gdb/mi}
25860 @var{target-stream-output} is the output produced by the target program.
25861 All the target output is prefixed by @samp{@@}.
25862
25863 @item
25864 @cindex log output in @sc{gdb/mi}
25865 @var{log-stream-output} is output text coming from @value{GDBN}'s internals, for
25866 instance messages that should be displayed as part of an error log.  All
25867 the log output is prefixed by @samp{&}.
25868
25869 @item
25870 @cindex list output in @sc{gdb/mi}
25871 New @sc{gdb/mi} commands should only output @var{lists} containing
25872 @var{values}.
25873
25874
25875 @end itemize
25876
25877 @xref{GDB/MI Stream Records, , @sc{gdb/mi} Stream Records}, for more
25878 details about the various output records.
25879
25880 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
25881 @node GDB/MI Compatibility with CLI
25882 @section @sc{gdb/mi} Compatibility with CLI
25883
25884 @cindex compatibility, @sc{gdb/mi} and CLI
25885 @cindex @sc{gdb/mi}, compatibility with CLI
25886
25887 For the developers convenience CLI commands can be entered directly,
25888 but there may be some unexpected behaviour.  For example, commands
25889 that query the user will behave as if the user replied yes, breakpoint
25890 command lists are not executed and some CLI commands, such as
25891 @code{if}, @code{when} and @code{define}, prompt for further input with
25892 @samp{>}, which is not valid MI output.
25893
25894 This feature may be removed at some stage in the future and it is
25895 recommended that front ends use the @code{-interpreter-exec} command
25896 (@pxref{-interpreter-exec}).
25897
25898 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
25899 @node GDB/MI Development and Front Ends
25900 @section @sc{gdb/mi} Development and Front Ends
25901 @cindex @sc{gdb/mi} development
25902
25903 The application which takes the MI output and presents the state of the
25904 program being debugged to the user is called a @dfn{front end}.
25905
25906 Although @sc{gdb/mi} is still incomplete, it is currently being used
25907 by a variety of front ends to @value{GDBN}.  This makes it difficult
25908 to introduce new functionality without breaking existing usage.  This
25909 section tries to minimize the problems by describing how the protocol
25910 might change.
25911
25912 Some changes in MI need not break a carefully designed front end, and
25913 for these the MI version will remain unchanged.  The following is a
25914 list of changes that may occur within one level, so front ends should
25915 parse MI output in a way that can handle them:
25916
25917 @itemize @bullet
25918 @item
25919 New MI commands may be added.
25920
25921 @item
25922 New fields may be added to the output of any MI command.
25923
25924 @item
25925 The range of values for fields with specified values, e.g.,
25926 @code{in_scope} (@pxref{-var-update}) may be extended.
25927
25928 @c The format of field's content e.g type prefix, may change so parse it
25929 @c   at your own risk.  Yes, in general?
25930
25931 @c The order of fields may change?  Shouldn't really matter but it might
25932 @c resolve inconsistencies.
25933 @end itemize
25934
25935 If the changes are likely to break front ends, the MI version level
25936 will be increased by one.  This will allow the front end to parse the
25937 output according to the MI version.  Apart from mi0, new versions of
25938 @value{GDBN} will not support old versions of MI and it will be the
25939 responsibility of the front end to work with the new one.
25940
25941 @c Starting with mi3, add a new command -mi-version that prints the MI
25942 @c version?
25943
25944 The best way to avoid unexpected changes in MI that might break your front
25945 end is to make your project known to @value{GDBN} developers and
25946 follow development on @email{gdb@@sourceware.org} and
25947 @email{gdb-patches@@sourceware.org}.
25948 @cindex mailing lists
25949
25950 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
25951 @node GDB/MI Output Records
25952 @section @sc{gdb/mi} Output Records
25953
25954 @menu
25955 * GDB/MI Result Records::
25956 * GDB/MI Stream Records::
25957 * GDB/MI Async Records::
25958 * GDB/MI Frame Information::
25959 * GDB/MI Thread Information::
25960 * GDB/MI Ada Exception Information::
25961 @end menu
25962
25963 @node GDB/MI Result Records
25964 @subsection @sc{gdb/mi} Result Records
25965
25966 @cindex result records in @sc{gdb/mi}
25967 @cindex @sc{gdb/mi}, result records
25968 In addition to a number of out-of-band notifications, the response to a
25969 @sc{gdb/mi} command includes one of the following result indications:
25970
25971 @table @code
25972 @findex ^done
25973 @item "^done" [ "," @var{results} ]
25974 The synchronous operation was successful, @code{@var{results}} are the return
25975 values.
25976
25977 @item "^running"
25978 @findex ^running
25979 This result record is equivalent to @samp{^done}.  Historically, it
25980 was output instead of @samp{^done} if the command has resumed the
25981 target.  This behaviour is maintained for backward compatibility, but
25982 all frontends should treat @samp{^done} and @samp{^running}
25983 identically and rely on the @samp{*running} output record to determine
25984 which threads are resumed.
25985
25986 @item "^connected"
25987 @findex ^connected
25988 @value{GDBN} has connected to a remote target.
25989
25990 @item "^error" "," @var{c-string}
25991 @findex ^error
25992 The operation failed.  The @code{@var{c-string}} contains the corresponding
25993 error message.
25994
25995 @item "^exit"
25996 @findex ^exit
25997 @value{GDBN} has terminated.
25998
25999 @end table
26000
26001 @node GDB/MI Stream Records
26002 @subsection @sc{gdb/mi} Stream Records
26003
26004 @cindex @sc{gdb/mi}, stream records
26005 @cindex stream records in @sc{gdb/mi}
26006 @value{GDBN} internally maintains a number of output streams: the console, the
26007 target, and the log.  The output intended for each of these streams is
26008 funneled through the @sc{gdb/mi} interface using @dfn{stream records}.
26009
26010 Each stream record begins with a unique @dfn{prefix character} which
26011 identifies its stream (@pxref{GDB/MI Output Syntax, , @sc{gdb/mi} Output
26012 Syntax}).  In addition to the prefix, each stream record contains a
26013 @code{@var{string-output}}.  This is either raw text (with an implicit new
26014 line) or a quoted C string (which does not contain an implicit newline).
26015
26016 @table @code
26017 @item "~" @var{string-output}
26018 The console output stream contains text that should be displayed in the
26019 CLI console window.  It contains the textual responses to CLI commands.
26020
26021 @item "@@" @var{string-output}
26022 The target output stream contains any textual output from the running
26023 target.  This is only present when GDB's event loop is truly
26024 asynchronous, which is currently only the case for remote targets.
26025
26026 @item "&" @var{string-output}
26027 The log stream contains debugging messages being produced by @value{GDBN}'s
26028 internals.
26029 @end table
26030
26031 @node GDB/MI Async Records
26032 @subsection @sc{gdb/mi} Async Records
26033
26034 @cindex async records in @sc{gdb/mi}
26035 @cindex @sc{gdb/mi}, async records
26036 @dfn{Async} records are used to notify the @sc{gdb/mi} client of
26037 additional changes that have occurred.  Those changes can either be a
26038 consequence of @sc{gdb/mi} commands (e.g., a breakpoint modified) or a result of
26039 target activity (e.g., target stopped).
26040
26041 The following is the list of possible async records:
26042
26043 @table @code
26044
26045 @item *running,thread-id="@var{thread}"
26046 The target is now running.  The @var{thread} field tells which
26047 specific thread is now running, and can be @samp{all} if all threads
26048 are running.  The frontend should assume that no interaction with a 
26049 running thread is possible after this notification is produced.
26050 The frontend should not assume that this notification is output
26051 only once for any command.  @value{GDBN} may emit this notification 
26052 several times, either for different threads, because it cannot resume
26053 all threads together, or even for a single thread, if the thread must
26054 be stepped though some code before letting it run freely.
26055
26056 @item *stopped,reason="@var{reason}",thread-id="@var{id}",stopped-threads="@var{stopped}",core="@var{core}"
26057 The target has stopped.  The @var{reason} field can have one of the
26058 following values:
26059
26060 @table @code
26061 @item breakpoint-hit
26062 A breakpoint was reached.
26063 @item watchpoint-trigger
26064 A watchpoint was triggered.
26065 @item read-watchpoint-trigger
26066 A read watchpoint was triggered.
26067 @item access-watchpoint-trigger 
26068 An access watchpoint was triggered.
26069 @item function-finished
26070 An -exec-finish or similar CLI command was accomplished.
26071 @item location-reached
26072 An -exec-until or similar CLI command was accomplished.
26073 @item watchpoint-scope
26074 A watchpoint has gone out of scope.
26075 @item end-stepping-range
26076 An -exec-next, -exec-next-instruction, -exec-step, -exec-step-instruction or 
26077 similar CLI command was accomplished.
26078 @item exited-signalled 
26079 The inferior exited because of a signal.
26080 @item exited 
26081 The inferior exited.
26082 @item exited-normally 
26083 The inferior exited normally.
26084 @item signal-received 
26085 A signal was received by the inferior.
26086 @end table
26087
26088 The @var{id} field identifies the thread that directly caused the stop
26089 -- for example by hitting a breakpoint.  Depending on whether all-stop
26090 mode is in effect (@pxref{All-Stop Mode}), @value{GDBN} may either
26091 stop all threads, or only the thread that directly triggered the stop.
26092 If all threads are stopped, the @var{stopped} field will have the
26093 value of @code{"all"}.  Otherwise, the value of the @var{stopped}
26094 field will be a list of thread identifiers.  Presently, this list will
26095 always include a single thread, but frontend should be prepared to see
26096 several threads in the list.  The @var{core} field reports the
26097 processor core on which the stop event has happened.  This field may be absent
26098 if such information is not available.
26099
26100 @item =thread-group-added,id="@var{id}"
26101 @itemx =thread-group-removed,id="@var{id}"
26102 A thread group was either added or removed.  The @var{id} field
26103 contains the @value{GDBN} identifier of the thread group.  When a thread
26104 group is added, it generally might not be associated with a running
26105 process.  When a thread group is removed, its id becomes invalid and
26106 cannot be used in any way.
26107
26108 @item =thread-group-started,id="@var{id}",pid="@var{pid}"
26109 A thread group became associated with a running program,
26110 either because the program was just started or the thread group
26111 was attached to a program.  The @var{id} field contains the
26112 @value{GDBN} identifier of the thread group.  The @var{pid} field
26113 contains process identifier, specific to the operating system.
26114
26115 @item =thread-group-exited,id="@var{id}"[,exit-code="@var{code}"]
26116 A thread group is no longer associated with a running program,
26117 either because the program has exited, or because it was detached
26118 from.  The @var{id} field contains the @value{GDBN} identifier of the
26119 thread group.  @var{code} is the exit code of the inferior; it exists
26120 only when the inferior exited with some code.
26121
26122 @item =thread-created,id="@var{id}",group-id="@var{gid}"
26123 @itemx =thread-exited,id="@var{id}",group-id="@var{gid}"
26124 A thread either was created, or has exited.  The @var{id} field
26125 contains the @value{GDBN} identifier of the thread.  The @var{gid}
26126 field identifies the thread group this thread belongs to.
26127
26128 @item =thread-selected,id="@var{id}"
26129 Informs that the selected thread was changed as result of the last
26130 command.  This notification is not emitted as result of @code{-thread-select}
26131 command but is emitted whenever an MI command that is not documented
26132 to change the selected thread actually changes it.  In particular,
26133 invoking, directly or indirectly (via user-defined command), the CLI
26134 @code{thread} command, will generate this notification.
26135
26136 We suggest that in response to this notification, front ends
26137 highlight the selected thread and cause subsequent commands to apply to
26138 that thread.
26139
26140 @item =library-loaded,...
26141 Reports that a new library file was loaded by the program.  This
26142 notification has 4 fields---@var{id}, @var{target-name},
26143 @var{host-name}, and @var{symbols-loaded}.  The @var{id} field is an
26144 opaque identifier of the library.  For remote debugging case,
26145 @var{target-name} and @var{host-name} fields give the name of the
26146 library file on the target, and on the host respectively.  For native
26147 debugging, both those fields have the same value.  The
26148 @var{symbols-loaded} field is emitted only for backward compatibility
26149 and should not be relied on to convey any useful information.  The
26150 @var{thread-group} field, if present, specifies the id of the thread
26151 group in whose context the library was loaded.  If the field is
26152 absent, it means the library was loaded in the context of all present
26153 thread groups.
26154
26155 @item =library-unloaded,...
26156 Reports that a library was unloaded by the program.  This notification
26157 has 3 fields---@var{id}, @var{target-name} and @var{host-name} with
26158 the same meaning as for the @code{=library-loaded} notification.
26159 The @var{thread-group} field, if present, specifies the id of the
26160 thread group in whose context the library was unloaded.  If the field is
26161 absent, it means the library was unloaded in the context of all present
26162 thread groups.
26163
26164 @item =breakpoint-created,bkpt=@{...@}
26165 @itemx =breakpoint-modified,bkpt=@{...@}
26166 @itemx =breakpoint-deleted,bkpt=@{...@}
26167 Reports that a breakpoint was created, modified, or deleted,
26168 respectively.  Only user-visible breakpoints are reported to the MI
26169 user.
26170
26171 The @var{bkpt} argument is of the same form as returned by the various
26172 breakpoint commands; @xref{GDB/MI Breakpoint Commands}.
26173
26174 Note that if a breakpoint is emitted in the result record of a
26175 command, then it will not also be emitted in an async record.
26176
26177 @end table
26178
26179 @node GDB/MI Frame Information
26180 @subsection @sc{gdb/mi} Frame Information
26181
26182 Response from many MI commands includes an information about stack
26183 frame.  This information is a tuple that may have the following
26184 fields:
26185
26186 @table @code
26187 @item level
26188 The level of the stack frame.  The innermost frame has the level of
26189 zero.  This field is always present.
26190
26191 @item func
26192 The name of the function corresponding to the frame.  This field may
26193 be absent if @value{GDBN} is unable to determine the function name.
26194
26195 @item addr
26196 The code address for the frame.  This field is always present.
26197
26198 @item file
26199 The name of the source files that correspond to the frame's code
26200 address.  This field may be absent.
26201
26202 @item line
26203 The source line corresponding to the frames' code address.  This field
26204 may be absent.
26205
26206 @item from
26207 The name of the binary file (either executable or shared library) the
26208 corresponds to the frame's code address.  This field may be absent.
26209
26210 @end table
26211
26212 @node GDB/MI Thread Information
26213 @subsection @sc{gdb/mi} Thread Information
26214
26215 Whenever @value{GDBN} has to report an information about a thread, it
26216 uses a tuple with the following fields:
26217
26218 @table @code
26219 @item id
26220 The numeric id assigned to the thread by @value{GDBN}.  This field is
26221 always present.
26222
26223 @item target-id
26224 Target-specific string identifying the thread.  This field is always present.
26225
26226 @item details
26227 Additional information about the thread provided by the target.
26228 It is supposed to be human-readable and not interpreted by the
26229 frontend.  This field is optional.
26230
26231 @item state
26232 Either @samp{stopped} or @samp{running}, depending on whether the
26233 thread is presently running.  This field is always present.
26234
26235 @item core
26236 The value of this field is an integer number of the processor core the
26237 thread was last seen on.  This field is optional.
26238 @end table
26239
26240 @node GDB/MI Ada Exception Information
26241 @subsection @sc{gdb/mi} Ada Exception Information
26242
26243 Whenever a @code{*stopped} record is emitted because the program
26244 stopped after hitting an exception catchpoint (@pxref{Set Catchpoints}),
26245 @value{GDBN} provides the name of the exception that was raised via
26246 the @code{exception-name} field.
26247
26248 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
26249 @node GDB/MI Simple Examples
26250 @section Simple Examples of @sc{gdb/mi} Interaction
26251 @cindex @sc{gdb/mi}, simple examples
26252
26253 This subsection presents several simple examples of interaction using
26254 the @sc{gdb/mi} interface.  In these examples, @samp{->} means that the
26255 following line is passed to @sc{gdb/mi} as input, while @samp{<-} means
26256 the output received from @sc{gdb/mi}.
26257
26258 Note the line breaks shown in the examples are here only for
26259 readability, they don't appear in the real output.
26260
26261 @subheading Setting a Breakpoint
26262
26263 Setting a breakpoint generates synchronous output which contains detailed
26264 information of the breakpoint.
26265
26266 @smallexample
26267 -> -break-insert main
26268 <- ^done,bkpt=@{number="1",type="breakpoint",disp="keep",
26269     enabled="y",addr="0x08048564",func="main",file="myprog.c",
26270     fullname="/home/nickrob/myprog.c",line="68",times="0"@}
26271 <- (gdb)
26272 @end smallexample
26273
26274 @subheading Program Execution
26275
26276 Program execution generates asynchronous records and MI gives the
26277 reason that execution stopped.
26278
26279 @smallexample
26280 -> -exec-run
26281 <- ^running
26282 <- (gdb)
26283 <- *stopped,reason="breakpoint-hit",disp="keep",bkptno="1",thread-id="0",
26284    frame=@{addr="0x08048564",func="main",
26285    args=[@{name="argc",value="1"@},@{name="argv",value="0xbfc4d4d4"@}],
26286    file="myprog.c",fullname="/home/nickrob/myprog.c",line="68"@}
26287 <- (gdb)
26288 -> -exec-continue
26289 <- ^running
26290 <- (gdb)
26291 <- *stopped,reason="exited-normally"
26292 <- (gdb)
26293 @end smallexample
26294
26295 @subheading Quitting @value{GDBN}
26296
26297 Quitting @value{GDBN} just prints the result class @samp{^exit}.
26298
26299 @smallexample
26300 -> (gdb)
26301 <- -gdb-exit
26302 <- ^exit
26303 @end smallexample
26304
26305 Please note that @samp{^exit} is printed immediately, but it might
26306 take some time for @value{GDBN} to actually exit.  During that time, @value{GDBN}
26307 performs necessary cleanups, including killing programs being debugged
26308 or disconnecting from debug hardware, so the frontend should wait till
26309 @value{GDBN} exits and should only forcibly kill @value{GDBN} if it
26310 fails to exit in reasonable time.
26311
26312 @subheading A Bad Command
26313
26314 Here's what happens if you pass a non-existent command:
26315
26316 @smallexample
26317 -> -rubbish
26318 <- ^error,msg="Undefined MI command: rubbish"
26319 <- (gdb)
26320 @end smallexample
26321
26322
26323 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
26324 @node GDB/MI Command Description Format
26325 @section @sc{gdb/mi} Command Description Format
26326
26327 The remaining sections describe blocks of commands.  Each block of
26328 commands is laid out in a fashion similar to this section.
26329
26330 @subheading Motivation
26331
26332 The motivation for this collection of commands.
26333
26334 @subheading Introduction
26335
26336 A brief introduction to this collection of commands as a whole.
26337
26338 @subheading Commands
26339
26340 For each command in the block, the following is described:
26341
26342 @subsubheading Synopsis
26343
26344 @smallexample
26345  -command @var{args}@dots{}
26346 @end smallexample
26347
26348 @subsubheading Result
26349
26350 @subsubheading @value{GDBN} Command
26351
26352 The corresponding @value{GDBN} CLI command(s), if any.
26353
26354 @subsubheading Example
26355
26356 Example(s) formatted for readability.  Some of the described commands  have
26357 not been implemented yet and these are labeled N.A.@: (not available).
26358
26359
26360 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
26361 @node GDB/MI Breakpoint Commands
26362 @section @sc{gdb/mi} Breakpoint Commands
26363
26364 @cindex breakpoint commands for @sc{gdb/mi}
26365 @cindex @sc{gdb/mi}, breakpoint commands
26366 This section documents @sc{gdb/mi} commands for manipulating
26367 breakpoints.
26368
26369 @subheading The @code{-break-after} Command
26370 @findex -break-after
26371
26372 @subsubheading Synopsis
26373
26374 @smallexample
26375  -break-after @var{number} @var{count}
26376 @end smallexample
26377
26378 The breakpoint number @var{number} is not in effect until it has been
26379 hit @var{count} times.  To see how this is reflected in the output of
26380 the @samp{-break-list} command, see the description of the
26381 @samp{-break-list} command below.
26382
26383 @subsubheading @value{GDBN} Command
26384
26385 The corresponding @value{GDBN} command is @samp{ignore}.
26386
26387 @subsubheading Example
26388
26389 @smallexample
26390 (gdb)
26391 -break-insert main
26392 ^done,bkpt=@{number="1",type="breakpoint",disp="keep",
26393 enabled="y",addr="0x000100d0",func="main",file="hello.c",
26394 fullname="/home/foo/hello.c",line="5",times="0"@}
26395 (gdb)
26396 -break-after 1 3
26397 ~
26398 ^done
26399 (gdb)
26400 -break-list
26401 ^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
26402 hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
26403 @{width="14",alignment="-1",col_name="type",colhdr="Type"@},
26404 @{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
26405 @{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
26406 @{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
26407 @{width="40",alignment="2",col_name="what",colhdr="What"@}],
26408 body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
26409 addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
26410 line="5",times="0",ignore="3"@}]@}
26411 (gdb)
26412 @end smallexample
26413
26414 @ignore
26415 @subheading The @code{-break-catch} Command
26416 @findex -break-catch
26417 @end ignore
26418
26419 @subheading The @code{-break-commands} Command
26420 @findex -break-commands
26421
26422 @subsubheading Synopsis
26423
26424 @smallexample
26425  -break-commands @var{number} [ @var{command1} ... @var{commandN} ]
26426 @end smallexample
26427
26428 Specifies the CLI commands that should be executed when breakpoint
26429 @var{number} is hit.  The parameters @var{command1} to @var{commandN}
26430 are the commands.  If no command is specified, any previously-set
26431 commands are cleared.  @xref{Break Commands}.  Typical use of this
26432 functionality is tracing a program, that is, printing of values of
26433 some variables whenever breakpoint is hit and then continuing.
26434
26435 @subsubheading @value{GDBN} Command
26436
26437 The corresponding @value{GDBN} command is @samp{commands}.
26438
26439 @subsubheading Example
26440
26441 @smallexample
26442 (gdb)
26443 -break-insert main
26444 ^done,bkpt=@{number="1",type="breakpoint",disp="keep",
26445 enabled="y",addr="0x000100d0",func="main",file="hello.c",
26446 fullname="/home/foo/hello.c",line="5",times="0"@}
26447 (gdb)
26448 -break-commands 1 "print v" "continue"
26449 ^done
26450 (gdb)
26451 @end smallexample
26452
26453 @subheading The @code{-break-condition} Command
26454 @findex -break-condition
26455
26456 @subsubheading Synopsis
26457
26458 @smallexample
26459  -break-condition @var{number} @var{expr}
26460 @end smallexample
26461
26462 Breakpoint @var{number} will stop the program only if the condition in
26463 @var{expr} is true.  The condition becomes part of the
26464 @samp{-break-list} output (see the description of the @samp{-break-list}
26465 command below).
26466
26467 @subsubheading @value{GDBN} Command
26468
26469 The corresponding @value{GDBN} command is @samp{condition}.
26470
26471 @subsubheading Example
26472
26473 @smallexample
26474 (gdb)
26475 -break-condition 1 1
26476 ^done
26477 (gdb)
26478 -break-list
26479 ^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
26480 hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
26481 @{width="14",alignment="-1",col_name="type",colhdr="Type"@},
26482 @{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
26483 @{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
26484 @{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
26485 @{width="40",alignment="2",col_name="what",colhdr="What"@}],
26486 body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
26487 addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
26488 line="5",cond="1",times="0",ignore="3"@}]@}
26489 (gdb)
26490 @end smallexample
26491
26492 @subheading The @code{-break-delete} Command
26493 @findex -break-delete
26494
26495 @subsubheading Synopsis
26496
26497 @smallexample
26498  -break-delete ( @var{breakpoint} )+
26499 @end smallexample
26500
26501 Delete the breakpoint(s) whose number(s) are specified in the argument
26502 list.  This is obviously reflected in the breakpoint list.
26503
26504 @subsubheading @value{GDBN} Command
26505
26506 The corresponding @value{GDBN} command is @samp{delete}.
26507
26508 @subsubheading Example
26509
26510 @smallexample
26511 (gdb)
26512 -break-delete 1
26513 ^done
26514 (gdb)
26515 -break-list
26516 ^done,BreakpointTable=@{nr_rows="0",nr_cols="6",
26517 hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
26518 @{width="14",alignment="-1",col_name="type",colhdr="Type"@},
26519 @{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
26520 @{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
26521 @{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
26522 @{width="40",alignment="2",col_name="what",colhdr="What"@}],
26523 body=[]@}
26524 (gdb)
26525 @end smallexample
26526
26527 @subheading The @code{-break-disable} Command
26528 @findex -break-disable
26529
26530 @subsubheading Synopsis
26531
26532 @smallexample
26533  -break-disable ( @var{breakpoint} )+
26534 @end smallexample
26535
26536 Disable the named @var{breakpoint}(s).  The field @samp{enabled} in the
26537 break list is now set to @samp{n} for the named @var{breakpoint}(s).
26538
26539 @subsubheading @value{GDBN} Command
26540
26541 The corresponding @value{GDBN} command is @samp{disable}.
26542
26543 @subsubheading Example
26544
26545 @smallexample
26546 (gdb)
26547 -break-disable 2
26548 ^done
26549 (gdb)
26550 -break-list
26551 ^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
26552 hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
26553 @{width="14",alignment="-1",col_name="type",colhdr="Type"@},
26554 @{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
26555 @{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
26556 @{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
26557 @{width="40",alignment="2",col_name="what",colhdr="What"@}],
26558 body=[bkpt=@{number="2",type="breakpoint",disp="keep",enabled="n",
26559 addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
26560 line="5",times="0"@}]@}
26561 (gdb)
26562 @end smallexample
26563
26564 @subheading The @code{-break-enable} Command
26565 @findex -break-enable
26566
26567 @subsubheading Synopsis
26568
26569 @smallexample
26570  -break-enable ( @var{breakpoint} )+
26571 @end smallexample
26572
26573 Enable (previously disabled) @var{breakpoint}(s).
26574
26575 @subsubheading @value{GDBN} Command
26576
26577 The corresponding @value{GDBN} command is @samp{enable}.
26578
26579 @subsubheading Example
26580
26581 @smallexample
26582 (gdb)
26583 -break-enable 2
26584 ^done
26585 (gdb)
26586 -break-list
26587 ^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
26588 hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
26589 @{width="14",alignment="-1",col_name="type",colhdr="Type"@},
26590 @{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
26591 @{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
26592 @{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
26593 @{width="40",alignment="2",col_name="what",colhdr="What"@}],
26594 body=[bkpt=@{number="2",type="breakpoint",disp="keep",enabled="y",
26595 addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
26596 line="5",times="0"@}]@}
26597 (gdb)
26598 @end smallexample
26599
26600 @subheading The @code{-break-info} Command
26601 @findex -break-info
26602
26603 @subsubheading Synopsis
26604
26605 @smallexample
26606  -break-info @var{breakpoint}
26607 @end smallexample
26608
26609 @c REDUNDANT???
26610 Get information about a single breakpoint.
26611
26612 @subsubheading @value{GDBN} Command
26613
26614 The corresponding @value{GDBN} command is @samp{info break @var{breakpoint}}.
26615
26616 @subsubheading Example
26617 N.A.
26618
26619 @subheading The @code{-break-insert} Command
26620 @findex -break-insert
26621
26622 @subsubheading Synopsis
26623
26624 @smallexample
26625  -break-insert [ -t ] [ -h ] [ -f ] [ -d ] [ -a ]
26626     [ -c @var{condition} ] [ -i @var{ignore-count} ]
26627     [ -p @var{thread} ] [ @var{location} ]
26628 @end smallexample
26629
26630 @noindent
26631 If specified, @var{location}, can be one of:
26632
26633 @itemize @bullet
26634 @item function
26635 @c @item +offset
26636 @c @item -offset
26637 @c @item linenum
26638 @item filename:linenum
26639 @item filename:function
26640 @item *address
26641 @end itemize
26642
26643 The possible optional parameters of this command are:
26644
26645 @table @samp
26646 @item -t
26647 Insert a temporary breakpoint.
26648 @item -h
26649 Insert a hardware breakpoint.
26650 @item -c @var{condition}
26651 Make the breakpoint conditional on @var{condition}.
26652 @item -i @var{ignore-count}
26653 Initialize the @var{ignore-count}.
26654 @item -f
26655 If @var{location} cannot be parsed (for example if it
26656 refers to unknown files or functions), create a pending
26657 breakpoint. Without this flag, @value{GDBN} will report
26658 an error, and won't create a breakpoint, if @var{location}
26659 cannot be parsed.
26660 @item -d
26661 Create a disabled breakpoint.
26662 @item -a
26663 Create a tracepoint.  @xref{Tracepoints}.  When this parameter
26664 is used together with @samp{-h}, a fast tracepoint is created.
26665 @end table
26666
26667 @subsubheading Result
26668
26669 The result is in the form:
26670
26671 @smallexample
26672 ^done,bkpt=@{number="@var{number}",type="@var{type}",disp="del"|"keep",
26673 enabled="y"|"n",addr="@var{hex}",func="@var{funcname}",file="@var{filename}",
26674 fullname="@var{full_filename}",line="@var{lineno}",[thread="@var{threadno},]
26675 times="@var{times}"@}
26676 @end smallexample
26677
26678 @noindent
26679 where @var{number} is the @value{GDBN} number for this breakpoint,
26680 @var{funcname} is the name of the function where the breakpoint was
26681 inserted, @var{filename} is the name of the source file which contains
26682 this function, @var{lineno} is the source line number within that file
26683 and @var{times} the number of times that the breakpoint has been hit
26684 (always 0 for -break-insert but may be greater for -break-info or -break-list
26685 which use the same output).
26686
26687 Note: this format is open to change.
26688 @c An out-of-band breakpoint instead of part of the result?
26689
26690 @subsubheading @value{GDBN} Command
26691
26692 The corresponding @value{GDBN} commands are @samp{break}, @samp{tbreak},
26693 @samp{hbreak}, @samp{thbreak}, and @samp{rbreak}.
26694
26695 @subsubheading Example
26696
26697 @smallexample
26698 (gdb)
26699 -break-insert main
26700 ^done,bkpt=@{number="1",addr="0x0001072c",file="recursive2.c",
26701 fullname="/home/foo/recursive2.c,line="4",times="0"@}
26702 (gdb)
26703 -break-insert -t foo
26704 ^done,bkpt=@{number="2",addr="0x00010774",file="recursive2.c",
26705 fullname="/home/foo/recursive2.c,line="11",times="0"@}
26706 (gdb)
26707 -break-list
26708 ^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
26709 hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
26710 @{width="14",alignment="-1",col_name="type",colhdr="Type"@},
26711 @{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
26712 @{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
26713 @{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
26714 @{width="40",alignment="2",col_name="what",colhdr="What"@}],
26715 body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
26716 addr="0x0001072c", func="main",file="recursive2.c",
26717 fullname="/home/foo/recursive2.c,"line="4",times="0"@},
26718 bkpt=@{number="2",type="breakpoint",disp="del",enabled="y",
26719 addr="0x00010774",func="foo",file="recursive2.c",
26720 fullname="/home/foo/recursive2.c",line="11",times="0"@}]@}
26721 (gdb)
26722 -break-insert -r foo.*
26723 ~int foo(int, int);
26724 ^done,bkpt=@{number="3",addr="0x00010774",file="recursive2.c,
26725 "fullname="/home/foo/recursive2.c",line="11",times="0"@}
26726 (gdb)
26727 @end smallexample
26728
26729 @subheading The @code{-break-list} Command
26730 @findex -break-list
26731
26732 @subsubheading Synopsis
26733
26734 @smallexample
26735  -break-list
26736 @end smallexample
26737
26738 Displays the list of inserted breakpoints, showing the following fields:
26739
26740 @table @samp
26741 @item Number
26742 number of the breakpoint
26743 @item Type
26744 type of the breakpoint: @samp{breakpoint} or @samp{watchpoint}
26745 @item Disposition
26746 should the breakpoint be deleted or disabled when it is hit: @samp{keep}
26747 or @samp{nokeep}
26748 @item Enabled
26749 is the breakpoint enabled or no: @samp{y} or @samp{n}
26750 @item Address
26751 memory location at which the breakpoint is set
26752 @item What
26753 logical location of the breakpoint, expressed by function name, file
26754 name, line number
26755 @item Times
26756 number of times the breakpoint has been hit
26757 @end table
26758
26759 If there are no breakpoints or watchpoints, the @code{BreakpointTable}
26760 @code{body} field is an empty list.
26761
26762 @subsubheading @value{GDBN} Command
26763
26764 The corresponding @value{GDBN} command is @samp{info break}.
26765
26766 @subsubheading Example
26767
26768 @smallexample
26769 (gdb)
26770 -break-list
26771 ^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
26772 hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
26773 @{width="14",alignment="-1",col_name="type",colhdr="Type"@},
26774 @{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
26775 @{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
26776 @{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
26777 @{width="40",alignment="2",col_name="what",colhdr="What"@}],
26778 body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
26779 addr="0x000100d0",func="main",file="hello.c",line="5",times="0"@},
26780 bkpt=@{number="2",type="breakpoint",disp="keep",enabled="y",
26781 addr="0x00010114",func="foo",file="hello.c",fullname="/home/foo/hello.c",
26782 line="13",times="0"@}]@}
26783 (gdb)
26784 @end smallexample
26785
26786 Here's an example of the result when there are no breakpoints:
26787
26788 @smallexample
26789 (gdb)
26790 -break-list
26791 ^done,BreakpointTable=@{nr_rows="0",nr_cols="6",
26792 hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
26793 @{width="14",alignment="-1",col_name="type",colhdr="Type"@},
26794 @{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
26795 @{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
26796 @{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
26797 @{width="40",alignment="2",col_name="what",colhdr="What"@}],
26798 body=[]@}
26799 (gdb)
26800 @end smallexample
26801
26802 @subheading The @code{-break-passcount} Command
26803 @findex -break-passcount
26804
26805 @subsubheading Synopsis
26806
26807 @smallexample
26808  -break-passcount @var{tracepoint-number} @var{passcount}
26809 @end smallexample
26810
26811 Set the passcount for tracepoint @var{tracepoint-number} to
26812 @var{passcount}.  If the breakpoint referred to by @var{tracepoint-number}
26813 is not a tracepoint, error is emitted.  This corresponds to CLI
26814 command @samp{passcount}.
26815
26816 @subheading The @code{-break-watch} Command
26817 @findex -break-watch
26818
26819 @subsubheading Synopsis
26820
26821 @smallexample
26822  -break-watch [ -a | -r ]
26823 @end smallexample
26824
26825 Create a watchpoint.  With the @samp{-a} option it will create an
26826 @dfn{access} watchpoint, i.e., a watchpoint that triggers either on a
26827 read from or on a write to the memory location.  With the @samp{-r}
26828 option, the watchpoint created is a @dfn{read} watchpoint, i.e., it will
26829 trigger only when the memory location is accessed for reading.  Without
26830 either of the options, the watchpoint created is a regular watchpoint,
26831 i.e., it will trigger when the memory location is accessed for writing.
26832 @xref{Set Watchpoints, , Setting Watchpoints}.
26833
26834 Note that @samp{-break-list} will report a single list of watchpoints and
26835 breakpoints inserted.
26836
26837 @subsubheading @value{GDBN} Command
26838
26839 The corresponding @value{GDBN} commands are @samp{watch}, @samp{awatch}, and
26840 @samp{rwatch}.
26841
26842 @subsubheading Example
26843
26844 Setting a watchpoint on a variable in the @code{main} function:
26845
26846 @smallexample
26847 (gdb)
26848 -break-watch x
26849 ^done,wpt=@{number="2",exp="x"@}
26850 (gdb)
26851 -exec-continue
26852 ^running
26853 (gdb)
26854 *stopped,reason="watchpoint-trigger",wpt=@{number="2",exp="x"@},
26855 value=@{old="-268439212",new="55"@},
26856 frame=@{func="main",args=[],file="recursive2.c",
26857 fullname="/home/foo/bar/recursive2.c",line="5"@}
26858 (gdb)
26859 @end smallexample
26860
26861 Setting a watchpoint on a variable local to a function.  @value{GDBN} will stop
26862 the program execution twice: first for the variable changing value, then
26863 for the watchpoint going out of scope.
26864
26865 @smallexample
26866 (gdb)
26867 -break-watch C
26868 ^done,wpt=@{number="5",exp="C"@}
26869 (gdb)
26870 -exec-continue
26871 ^running
26872 (gdb)
26873 *stopped,reason="watchpoint-trigger",
26874 wpt=@{number="5",exp="C"@},value=@{old="-276895068",new="3"@},
26875 frame=@{func="callee4",args=[],
26876 file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
26877 fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="13"@}
26878 (gdb)
26879 -exec-continue
26880 ^running
26881 (gdb)
26882 *stopped,reason="watchpoint-scope",wpnum="5",
26883 frame=@{func="callee3",args=[@{name="strarg",
26884 value="0x11940 \"A string argument.\""@}],
26885 file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
26886 fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="18"@}
26887 (gdb)
26888 @end smallexample
26889
26890 Listing breakpoints and watchpoints, at different points in the program
26891 execution.  Note that once the watchpoint goes out of scope, it is
26892 deleted.
26893
26894 @smallexample
26895 (gdb)
26896 -break-watch C
26897 ^done,wpt=@{number="2",exp="C"@}
26898 (gdb)
26899 -break-list
26900 ^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
26901 hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
26902 @{width="14",alignment="-1",col_name="type",colhdr="Type"@},
26903 @{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
26904 @{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
26905 @{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
26906 @{width="40",alignment="2",col_name="what",colhdr="What"@}],
26907 body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
26908 addr="0x00010734",func="callee4",
26909 file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
26910 fullname="/home/foo/devo/gdb/testsuite/gdb.mi/basics.c"line="8",times="1"@},
26911 bkpt=@{number="2",type="watchpoint",disp="keep",
26912 enabled="y",addr="",what="C",times="0"@}]@}
26913 (gdb)
26914 -exec-continue
26915 ^running
26916 (gdb)
26917 *stopped,reason="watchpoint-trigger",wpt=@{number="2",exp="C"@},
26918 value=@{old="-276895068",new="3"@},
26919 frame=@{func="callee4",args=[],
26920 file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
26921 fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="13"@}
26922 (gdb)
26923 -break-list
26924 ^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
26925 hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
26926 @{width="14",alignment="-1",col_name="type",colhdr="Type"@},
26927 @{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
26928 @{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
26929 @{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
26930 @{width="40",alignment="2",col_name="what",colhdr="What"@}],
26931 body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
26932 addr="0x00010734",func="callee4",
26933 file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
26934 fullname="/home/foo/devo/gdb/testsuite/gdb.mi/basics.c",line="8",times="1"@},
26935 bkpt=@{number="2",type="watchpoint",disp="keep",
26936 enabled="y",addr="",what="C",times="-5"@}]@}
26937 (gdb)
26938 -exec-continue
26939 ^running
26940 ^done,reason="watchpoint-scope",wpnum="2",
26941 frame=@{func="callee3",args=[@{name="strarg",
26942 value="0x11940 \"A string argument.\""@}],
26943 file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
26944 fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="18"@}
26945 (gdb)
26946 -break-list
26947 ^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
26948 hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
26949 @{width="14",alignment="-1",col_name="type",colhdr="Type"@},
26950 @{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
26951 @{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
26952 @{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
26953 @{width="40",alignment="2",col_name="what",colhdr="What"@}],
26954 body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
26955 addr="0x00010734",func="callee4",
26956 file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
26957 fullname="/home/foo/devo/gdb/testsuite/gdb.mi/basics.c",line="8",
26958 times="1"@}]@}
26959 (gdb)
26960 @end smallexample
26961
26962 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
26963 @node GDB/MI Program Context
26964 @section @sc{gdb/mi}  Program Context
26965
26966 @subheading The @code{-exec-arguments} Command
26967 @findex -exec-arguments
26968
26969
26970 @subsubheading Synopsis
26971
26972 @smallexample
26973  -exec-arguments @var{args}
26974 @end smallexample
26975
26976 Set the inferior program arguments, to be used in the next
26977 @samp{-exec-run}.
26978
26979 @subsubheading @value{GDBN} Command
26980
26981 The corresponding @value{GDBN} command is @samp{set args}.
26982
26983 @subsubheading Example
26984
26985 @smallexample
26986 (gdb)
26987 -exec-arguments -v word
26988 ^done
26989 (gdb)
26990 @end smallexample
26991
26992
26993 @ignore
26994 @subheading The @code{-exec-show-arguments} Command
26995 @findex -exec-show-arguments
26996
26997 @subsubheading Synopsis
26998
26999 @smallexample
27000  -exec-show-arguments
27001 @end smallexample
27002
27003 Print the arguments of the program.
27004
27005 @subsubheading @value{GDBN} Command
27006
27007 The corresponding @value{GDBN} command is @samp{show args}.
27008
27009 @subsubheading Example
27010 N.A.
27011 @end ignore
27012
27013
27014 @subheading The @code{-environment-cd} Command
27015 @findex -environment-cd
27016
27017 @subsubheading Synopsis
27018
27019 @smallexample
27020  -environment-cd @var{pathdir}
27021 @end smallexample
27022
27023 Set @value{GDBN}'s working directory.
27024
27025 @subsubheading @value{GDBN} Command
27026
27027 The corresponding @value{GDBN} command is @samp{cd}.
27028
27029 @subsubheading Example
27030
27031 @smallexample
27032 (gdb)
27033 -environment-cd /kwikemart/marge/ezannoni/flathead-dev/devo/gdb
27034 ^done
27035 (gdb)
27036 @end smallexample
27037
27038
27039 @subheading The @code{-environment-directory} Command
27040 @findex -environment-directory
27041
27042 @subsubheading Synopsis
27043
27044 @smallexample
27045  -environment-directory [ -r ] [ @var{pathdir} ]+
27046 @end smallexample
27047
27048 Add directories @var{pathdir} to beginning of search path for source files.
27049 If the @samp{-r} option is used, the search path is reset to the default
27050 search path.  If directories @var{pathdir} are supplied in addition to the
27051 @samp{-r} option, the search path is first reset and then addition
27052 occurs as normal.
27053 Multiple directories may be specified, separated by blanks.  Specifying
27054 multiple directories in a single command
27055 results in the directories added to the beginning of the
27056 search path in the same order they were presented in the command.
27057 If blanks are needed as
27058 part of a directory name, double-quotes should be used around
27059 the name.  In the command output, the path will show up separated
27060 by the system directory-separator character.  The directory-separator
27061 character must not be used
27062 in any directory name.
27063 If no directories are specified, the current search path is displayed.
27064
27065 @subsubheading @value{GDBN} Command
27066
27067 The corresponding @value{GDBN} command is @samp{dir}.
27068
27069 @subsubheading Example
27070
27071 @smallexample
27072 (gdb)
27073 -environment-directory /kwikemart/marge/ezannoni/flathead-dev/devo/gdb
27074 ^done,source-path="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb:$cdir:$cwd"
27075 (gdb)
27076 -environment-directory ""
27077 ^done,source-path="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb:$cdir:$cwd"
27078 (gdb)
27079 -environment-directory -r /home/jjohnstn/src/gdb /usr/src
27080 ^done,source-path="/home/jjohnstn/src/gdb:/usr/src:$cdir:$cwd"
27081 (gdb)
27082 -environment-directory -r
27083 ^done,source-path="$cdir:$cwd"
27084 (gdb)
27085 @end smallexample
27086
27087
27088 @subheading The @code{-environment-path} Command
27089 @findex -environment-path
27090
27091 @subsubheading Synopsis
27092
27093 @smallexample
27094  -environment-path [ -r ] [ @var{pathdir} ]+
27095 @end smallexample
27096
27097 Add directories @var{pathdir} to beginning of search path for object files.
27098 If the @samp{-r} option is used, the search path is reset to the original
27099 search path that existed at gdb start-up.  If directories @var{pathdir} are
27100 supplied in addition to the
27101 @samp{-r} option, the search path is first reset and then addition
27102 occurs as normal.
27103 Multiple directories may be specified, separated by blanks.  Specifying
27104 multiple directories in a single command
27105 results in the directories added to the beginning of the
27106 search path in the same order they were presented in the command.
27107 If blanks are needed as
27108 part of a directory name, double-quotes should be used around
27109 the name.  In the command output, the path will show up separated
27110 by the system directory-separator character.  The directory-separator
27111 character must not be used
27112 in any directory name.
27113 If no directories are specified, the current path is displayed.
27114
27115
27116 @subsubheading @value{GDBN} Command
27117
27118 The corresponding @value{GDBN} command is @samp{path}.
27119
27120 @subsubheading Example
27121
27122 @smallexample
27123 (gdb)
27124 -environment-path
27125 ^done,path="/usr/bin"
27126 (gdb)
27127 -environment-path /kwikemart/marge/ezannoni/flathead-dev/ppc-eabi/gdb /bin
27128 ^done,path="/kwikemart/marge/ezannoni/flathead-dev/ppc-eabi/gdb:/bin:/usr/bin"
27129 (gdb)
27130 -environment-path -r /usr/local/bin
27131 ^done,path="/usr/local/bin:/usr/bin"
27132 (gdb)
27133 @end smallexample
27134
27135
27136 @subheading The @code{-environment-pwd} Command
27137 @findex -environment-pwd
27138
27139 @subsubheading Synopsis
27140
27141 @smallexample
27142  -environment-pwd
27143 @end smallexample
27144
27145 Show the current working directory.
27146
27147 @subsubheading @value{GDBN} Command
27148
27149 The corresponding @value{GDBN} command is @samp{pwd}.
27150
27151 @subsubheading Example
27152
27153 @smallexample
27154 (gdb)
27155 -environment-pwd
27156 ^done,cwd="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb"
27157 (gdb)
27158 @end smallexample
27159
27160 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
27161 @node GDB/MI Thread Commands
27162 @section @sc{gdb/mi} Thread Commands
27163
27164
27165 @subheading The @code{-thread-info} Command
27166 @findex -thread-info
27167
27168 @subsubheading Synopsis
27169
27170 @smallexample
27171  -thread-info [ @var{thread-id} ]
27172 @end smallexample
27173
27174 Reports information about either a specific thread, if 
27175 the @var{thread-id} parameter is present, or about all
27176 threads.  When printing information about all threads,
27177 also reports the current thread.
27178
27179 @subsubheading @value{GDBN} Command
27180
27181 The @samp{info thread} command prints the same information
27182 about all threads.
27183
27184 @subsubheading Result
27185
27186 The result is a list of threads.  The following attributes are
27187 defined for a given thread:
27188
27189 @table @samp
27190 @item current
27191 This field exists only for the current thread.  It has the value @samp{*}.
27192
27193 @item id
27194 The identifier that @value{GDBN} uses to refer to the thread.
27195
27196 @item target-id
27197 The identifier that the target uses to refer to the thread.
27198
27199 @item details
27200 Extra information about the thread, in a target-specific format.  This
27201 field is optional.
27202
27203 @item name
27204 The name of the thread.  If the user specified a name using the
27205 @code{thread name} command, then this name is given.  Otherwise, if
27206 @value{GDBN} can extract the thread name from the target, then that
27207 name is given.  If @value{GDBN} cannot find the thread name, then this
27208 field is omitted.
27209
27210 @item frame
27211 The stack frame currently executing in the thread.
27212
27213 @item state
27214 The thread's state.  The @samp{state} field may have the following
27215 values:
27216
27217 @table @code
27218 @item stopped
27219 The thread is stopped.  Frame information is available for stopped
27220 threads.
27221
27222 @item running
27223 The thread is running.  There's no frame information for running
27224 threads.
27225
27226 @end table
27227
27228 @item core
27229 If @value{GDBN} can find the CPU core on which this thread is running,
27230 then this field is the core identifier.  This field is optional.
27231
27232 @end table
27233
27234 @subsubheading Example
27235
27236 @smallexample
27237 -thread-info
27238 ^done,threads=[
27239 @{id="2",target-id="Thread 0xb7e14b90 (LWP 21257)",
27240    frame=@{level="0",addr="0xffffe410",func="__kernel_vsyscall",
27241            args=[]@},state="running"@},
27242 @{id="1",target-id="Thread 0xb7e156b0 (LWP 21254)",
27243    frame=@{level="0",addr="0x0804891f",func="foo",
27244            args=[@{name="i",value="10"@}],
27245            file="/tmp/a.c",fullname="/tmp/a.c",line="158"@},
27246            state="running"@}],
27247 current-thread-id="1"
27248 (gdb)
27249 @end smallexample
27250
27251 @subheading The @code{-thread-list-ids} Command
27252 @findex -thread-list-ids
27253
27254 @subsubheading Synopsis
27255
27256 @smallexample
27257  -thread-list-ids
27258 @end smallexample
27259
27260 Produces a list of the currently known @value{GDBN} thread ids.  At the
27261 end of the list it also prints the total number of such threads.
27262
27263 This command is retained for historical reasons, the
27264 @code{-thread-info} command should be used instead.
27265
27266 @subsubheading @value{GDBN} Command
27267
27268 Part of @samp{info threads} supplies the same information.
27269
27270 @subsubheading Example
27271
27272 @smallexample
27273 (gdb)
27274 -thread-list-ids
27275 ^done,thread-ids=@{thread-id="3",thread-id="2",thread-id="1"@},
27276 current-thread-id="1",number-of-threads="3"
27277 (gdb)
27278 @end smallexample
27279
27280
27281 @subheading The @code{-thread-select} Command
27282 @findex -thread-select
27283
27284 @subsubheading Synopsis
27285
27286 @smallexample
27287  -thread-select @var{threadnum}
27288 @end smallexample
27289
27290 Make @var{threadnum} the current thread.  It prints the number of the new
27291 current thread, and the topmost frame for that thread.
27292
27293 This command is deprecated in favor of explicitly using the
27294 @samp{--thread} option to each command.
27295
27296 @subsubheading @value{GDBN} Command
27297
27298 The corresponding @value{GDBN} command is @samp{thread}.
27299
27300 @subsubheading Example
27301
27302 @smallexample
27303 (gdb)
27304 -exec-next
27305 ^running
27306 (gdb)
27307 *stopped,reason="end-stepping-range",thread-id="2",line="187",
27308 file="../../../devo/gdb/testsuite/gdb.threads/linux-dp.c"
27309 (gdb)
27310 -thread-list-ids
27311 ^done,
27312 thread-ids=@{thread-id="3",thread-id="2",thread-id="1"@},
27313 number-of-threads="3"
27314 (gdb)
27315 -thread-select 3
27316 ^done,new-thread-id="3",
27317 frame=@{level="0",func="vprintf",
27318 args=[@{name="format",value="0x8048e9c \"%*s%c %d %c\\n\""@},
27319 @{name="arg",value="0x2"@}],file="vprintf.c",line="31"@}
27320 (gdb)
27321 @end smallexample
27322
27323 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
27324 @node GDB/MI Ada Tasking Commands
27325 @section @sc{gdb/mi} Ada Tasking Commands
27326
27327 @subheading The @code{-ada-task-info} Command
27328 @findex -ada-task-info
27329
27330 @subsubheading Synopsis
27331
27332 @smallexample
27333  -ada-task-info [ @var{task-id} ]
27334 @end smallexample
27335
27336 Reports information about either a specific Ada task, if the
27337 @var{task-id} parameter is present, or about all Ada tasks.
27338
27339 @subsubheading @value{GDBN} Command
27340
27341 The @samp{info tasks} command prints the same information
27342 about all Ada tasks (@pxref{Ada Tasks}).
27343
27344 @subsubheading Result
27345
27346 The result is a table of Ada tasks.  The following columns are
27347 defined for each Ada task:
27348
27349 @table @samp
27350 @item current
27351 This field exists only for the current thread.  It has the value @samp{*}.
27352
27353 @item id
27354 The identifier that @value{GDBN} uses to refer to the Ada task.
27355
27356 @item task-id
27357 The identifier that the target uses to refer to the Ada task.
27358
27359 @item thread-id
27360 The identifier of the thread corresponding to the Ada task.
27361
27362 This field should always exist, as Ada tasks are always implemented
27363 on top of a thread.  But if @value{GDBN} cannot find this corresponding
27364 thread for any reason, the field is omitted.
27365
27366 @item parent-id
27367 This field exists only when the task was created by another task.
27368 In this case, it provides the ID of the parent task.
27369
27370 @item priority
27371 The base priority of the task.
27372
27373 @item state
27374 The current state of the task.  For a detailed description of the
27375 possible states, see @ref{Ada Tasks}.
27376
27377 @item name
27378 The name of the task.
27379
27380 @end table
27381
27382 @subsubheading Example
27383
27384 @smallexample
27385 -ada-task-info
27386 ^done,tasks=@{nr_rows="3",nr_cols="8",
27387 hdr=[@{width="1",alignment="-1",col_name="current",colhdr=""@},
27388 @{width="3",alignment="1",col_name="id",colhdr="ID"@},
27389 @{width="9",alignment="1",col_name="task-id",colhdr="TID"@},
27390 @{width="4",alignment="1",col_name="thread-id",colhdr=""@},
27391 @{width="4",alignment="1",col_name="parent-id",colhdr="P-ID"@},
27392 @{width="3",alignment="1",col_name="priority",colhdr="Pri"@},
27393 @{width="22",alignment="-1",col_name="state",colhdr="State"@},
27394 @{width="1",alignment="2",col_name="name",colhdr="Name"@}],
27395 body=[@{current="*",id="1",task-id="   644010",thread-id="1",priority="48",
27396 state="Child Termination Wait",name="main_task"@}]@}
27397 (gdb)
27398 @end smallexample
27399
27400 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
27401 @node GDB/MI Program Execution
27402 @section @sc{gdb/mi} Program Execution
27403
27404 These are the asynchronous commands which generate the out-of-band
27405 record @samp{*stopped}.  Currently @value{GDBN} only really executes
27406 asynchronously with remote targets and this interaction is mimicked in
27407 other cases.
27408
27409 @subheading The @code{-exec-continue} Command
27410 @findex -exec-continue
27411
27412 @subsubheading Synopsis
27413
27414 @smallexample
27415  -exec-continue [--reverse] [--all|--thread-group N]
27416 @end smallexample
27417
27418 Resumes the execution of the inferior program, which will continue
27419 to execute until it reaches a debugger stop event.  If the 
27420 @samp{--reverse} option is specified, execution resumes in reverse until 
27421 it reaches a stop event.  Stop events may include
27422 @itemize @bullet
27423 @item
27424 breakpoints or watchpoints
27425 @item
27426 signals or exceptions
27427 @item
27428 the end of the process (or its beginning under @samp{--reverse})
27429 @item
27430 the end or beginning of a replay log if one is being used.
27431 @end itemize
27432 In all-stop mode (@pxref{All-Stop
27433 Mode}), may resume only one thread, or all threads, depending on the
27434 value of the @samp{scheduler-locking} variable.  If @samp{--all} is
27435 specified, all threads (in all inferiors) will be resumed.  The @samp{--all} option is
27436 ignored in all-stop mode.  If the @samp{--thread-group} options is
27437 specified, then all threads in that thread group are resumed.
27438
27439 @subsubheading @value{GDBN} Command
27440
27441 The corresponding @value{GDBN} corresponding is @samp{continue}.
27442
27443 @subsubheading Example
27444
27445 @smallexample
27446 -exec-continue
27447 ^running
27448 (gdb)
27449 @@Hello world
27450 *stopped,reason="breakpoint-hit",disp="keep",bkptno="2",frame=@{
27451 func="foo",args=[],file="hello.c",fullname="/home/foo/bar/hello.c",
27452 line="13"@}
27453 (gdb)
27454 @end smallexample
27455
27456
27457 @subheading The @code{-exec-finish} Command
27458 @findex -exec-finish
27459
27460 @subsubheading Synopsis
27461
27462 @smallexample
27463  -exec-finish [--reverse]
27464 @end smallexample
27465
27466 Resumes the execution of the inferior program until the current
27467 function is exited.  Displays the results returned by the function.
27468 If the @samp{--reverse} option is specified, resumes the reverse
27469 execution of the inferior program until the point where current
27470 function was called.
27471
27472 @subsubheading @value{GDBN} Command
27473
27474 The corresponding @value{GDBN} command is @samp{finish}.
27475
27476 @subsubheading Example
27477
27478 Function returning @code{void}.
27479
27480 @smallexample
27481 -exec-finish
27482 ^running
27483 (gdb)
27484 @@hello from foo
27485 *stopped,reason="function-finished",frame=@{func="main",args=[],
27486 file="hello.c",fullname="/home/foo/bar/hello.c",line="7"@}
27487 (gdb)
27488 @end smallexample
27489
27490 Function returning other than @code{void}.  The name of the internal
27491 @value{GDBN} variable storing the result is printed, together with the
27492 value itself.
27493
27494 @smallexample
27495 -exec-finish
27496 ^running
27497 (gdb)
27498 *stopped,reason="function-finished",frame=@{addr="0x000107b0",func="foo",
27499 args=[@{name="a",value="1"],@{name="b",value="9"@}@},
27500 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
27501 gdb-result-var="$1",return-value="0"
27502 (gdb)
27503 @end smallexample
27504
27505
27506 @subheading The @code{-exec-interrupt} Command
27507 @findex -exec-interrupt
27508
27509 @subsubheading Synopsis
27510
27511 @smallexample
27512  -exec-interrupt [--all|--thread-group N]
27513 @end smallexample
27514
27515 Interrupts the background execution of the target.  Note how the token
27516 associated with the stop message is the one for the execution command
27517 that has been interrupted.  The token for the interrupt itself only
27518 appears in the @samp{^done} output.  If the user is trying to
27519 interrupt a non-running program, an error message will be printed.
27520
27521 Note that when asynchronous execution is enabled, this command is
27522 asynchronous just like other execution commands.  That is, first the
27523 @samp{^done} response will be printed, and the target stop will be
27524 reported after that using the @samp{*stopped} notification.
27525
27526 In non-stop mode, only the context thread is interrupted by default.
27527 All threads (in all inferiors) will be interrupted if the
27528 @samp{--all}  option is specified.  If the @samp{--thread-group}
27529 option is specified, all threads in that group will be interrupted.
27530
27531 @subsubheading @value{GDBN} Command
27532
27533 The corresponding @value{GDBN} command is @samp{interrupt}.
27534
27535 @subsubheading Example
27536
27537 @smallexample
27538 (gdb)
27539 111-exec-continue
27540 111^running
27541
27542 (gdb)
27543 222-exec-interrupt
27544 222^done
27545 (gdb)
27546 111*stopped,signal-name="SIGINT",signal-meaning="Interrupt",
27547 frame=@{addr="0x00010140",func="foo",args=[],file="try.c",
27548 fullname="/home/foo/bar/try.c",line="13"@}
27549 (gdb)
27550
27551 (gdb)
27552 -exec-interrupt
27553 ^error,msg="mi_cmd_exec_interrupt: Inferior not executing."
27554 (gdb)
27555 @end smallexample
27556
27557 @subheading The @code{-exec-jump} Command
27558 @findex -exec-jump
27559
27560 @subsubheading Synopsis
27561
27562 @smallexample
27563  -exec-jump @var{location}
27564 @end smallexample
27565
27566 Resumes execution of the inferior program at the location specified by
27567 parameter.  @xref{Specify Location}, for a description of the
27568 different forms of @var{location}.
27569
27570 @subsubheading @value{GDBN} Command
27571
27572 The corresponding @value{GDBN} command is @samp{jump}.
27573
27574 @subsubheading Example
27575
27576 @smallexample
27577 -exec-jump foo.c:10
27578 *running,thread-id="all"
27579 ^running
27580 @end smallexample
27581
27582
27583 @subheading The @code{-exec-next} Command
27584 @findex -exec-next
27585
27586 @subsubheading Synopsis
27587
27588 @smallexample
27589  -exec-next [--reverse]
27590 @end smallexample
27591
27592 Resumes execution of the inferior program, stopping when the beginning
27593 of the next source line is reached.
27594
27595 If the @samp{--reverse} option is specified, resumes reverse execution
27596 of the inferior program, stopping at the beginning of the previous
27597 source line.  If you issue this command on the first line of a
27598 function, it will take you back to the caller of that function, to the
27599 source line where the function was called.
27600
27601
27602 @subsubheading @value{GDBN} Command
27603
27604 The corresponding @value{GDBN} command is @samp{next}.
27605
27606 @subsubheading Example
27607
27608 @smallexample
27609 -exec-next
27610 ^running
27611 (gdb)
27612 *stopped,reason="end-stepping-range",line="8",file="hello.c"
27613 (gdb)
27614 @end smallexample
27615
27616
27617 @subheading The @code{-exec-next-instruction} Command
27618 @findex -exec-next-instruction
27619
27620 @subsubheading Synopsis
27621
27622 @smallexample
27623  -exec-next-instruction [--reverse]
27624 @end smallexample
27625
27626 Executes one machine instruction.  If the instruction is a function
27627 call, continues until the function returns.  If the program stops at an
27628 instruction in the middle of a source line, the address will be
27629 printed as well.
27630
27631 If the @samp{--reverse} option is specified, resumes reverse execution
27632 of the inferior program, stopping at the previous instruction.  If the
27633 previously executed instruction was a return from another function,
27634 it will continue to execute in reverse until the call to that function
27635 (from the current stack frame) is reached.
27636
27637 @subsubheading @value{GDBN} Command
27638
27639 The corresponding @value{GDBN} command is @samp{nexti}.
27640
27641 @subsubheading Example
27642
27643 @smallexample
27644 (gdb)
27645 -exec-next-instruction
27646 ^running
27647
27648 (gdb)
27649 *stopped,reason="end-stepping-range",
27650 addr="0x000100d4",line="5",file="hello.c"
27651 (gdb)
27652 @end smallexample
27653
27654
27655 @subheading The @code{-exec-return} Command
27656 @findex -exec-return
27657
27658 @subsubheading Synopsis
27659
27660 @smallexample
27661  -exec-return
27662 @end smallexample
27663
27664 Makes current function return immediately.  Doesn't execute the inferior.
27665 Displays the new current frame.
27666
27667 @subsubheading @value{GDBN} Command
27668
27669 The corresponding @value{GDBN} command is @samp{return}.
27670
27671 @subsubheading Example
27672
27673 @smallexample
27674 (gdb)
27675 200-break-insert callee4
27676 200^done,bkpt=@{number="1",addr="0x00010734",
27677 file="../../../devo/gdb/testsuite/gdb.mi/basics.c",line="8"@}
27678 (gdb)
27679 000-exec-run
27680 000^running
27681 (gdb)
27682 000*stopped,reason="breakpoint-hit",disp="keep",bkptno="1",
27683 frame=@{func="callee4",args=[],
27684 file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
27685 fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="8"@}
27686 (gdb)
27687 205-break-delete
27688 205^done
27689 (gdb)
27690 111-exec-return
27691 111^done,frame=@{level="0",func="callee3",
27692 args=[@{name="strarg",
27693 value="0x11940 \"A string argument.\""@}],
27694 file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
27695 fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="18"@}
27696 (gdb)
27697 @end smallexample
27698
27699
27700 @subheading The @code{-exec-run} Command
27701 @findex -exec-run
27702
27703 @subsubheading Synopsis
27704
27705 @smallexample
27706  -exec-run [--all | --thread-group N]
27707 @end smallexample
27708
27709 Starts execution of the inferior from the beginning.  The inferior
27710 executes until either a breakpoint is encountered or the program
27711 exits.  In the latter case the output will include an exit code, if
27712 the program has exited exceptionally.
27713
27714 When no option is specified, the current inferior is started.  If the
27715 @samp{--thread-group} option is specified, it should refer to a thread
27716 group of type @samp{process}, and that thread group will be started.
27717 If the @samp{--all} option is specified, then all inferiors will be started.
27718
27719 @subsubheading @value{GDBN} Command
27720
27721 The corresponding @value{GDBN} command is @samp{run}.
27722
27723 @subsubheading Examples
27724
27725 @smallexample
27726 (gdb)
27727 -break-insert main
27728 ^done,bkpt=@{number="1",addr="0x0001072c",file="recursive2.c",line="4"@}
27729 (gdb)
27730 -exec-run
27731 ^running
27732 (gdb)
27733 *stopped,reason="breakpoint-hit",disp="keep",bkptno="1",
27734 frame=@{func="main",args=[],file="recursive2.c",
27735 fullname="/home/foo/bar/recursive2.c",line="4"@}
27736 (gdb)
27737 @end smallexample
27738
27739 @noindent
27740 Program exited normally:
27741
27742 @smallexample
27743 (gdb)
27744 -exec-run
27745 ^running
27746 (gdb)
27747 x = 55
27748 *stopped,reason="exited-normally"
27749 (gdb)
27750 @end smallexample
27751
27752 @noindent
27753 Program exited exceptionally:
27754
27755 @smallexample
27756 (gdb)
27757 -exec-run
27758 ^running
27759 (gdb)
27760 x = 55
27761 *stopped,reason="exited",exit-code="01"
27762 (gdb)
27763 @end smallexample
27764
27765 Another way the program can terminate is if it receives a signal such as
27766 @code{SIGINT}.  In this case, @sc{gdb/mi} displays this:
27767
27768 @smallexample
27769 (gdb)
27770 *stopped,reason="exited-signalled",signal-name="SIGINT",
27771 signal-meaning="Interrupt"
27772 @end smallexample
27773
27774
27775 @c @subheading -exec-signal
27776
27777
27778 @subheading The @code{-exec-step} Command
27779 @findex -exec-step
27780
27781 @subsubheading Synopsis
27782
27783 @smallexample
27784  -exec-step [--reverse]
27785 @end smallexample
27786
27787 Resumes execution of the inferior program, stopping when the beginning
27788 of the next source line is reached, if the next source line is not a
27789 function call.  If it is, stop at the first instruction of the called
27790 function.  If the @samp{--reverse} option is specified, resumes reverse
27791 execution of the inferior program, stopping at the beginning of the
27792 previously executed source line.
27793
27794 @subsubheading @value{GDBN} Command
27795
27796 The corresponding @value{GDBN} command is @samp{step}.
27797
27798 @subsubheading Example
27799
27800 Stepping into a function:
27801
27802 @smallexample
27803 -exec-step
27804 ^running
27805 (gdb)
27806 *stopped,reason="end-stepping-range",
27807 frame=@{func="foo",args=[@{name="a",value="10"@},
27808 @{name="b",value="0"@}],file="recursive2.c",
27809 fullname="/home/foo/bar/recursive2.c",line="11"@}
27810 (gdb)
27811 @end smallexample
27812
27813 Regular stepping:
27814
27815 @smallexample
27816 -exec-step
27817 ^running
27818 (gdb)
27819 *stopped,reason="end-stepping-range",line="14",file="recursive2.c"
27820 (gdb)
27821 @end smallexample
27822
27823
27824 @subheading The @code{-exec-step-instruction} Command
27825 @findex -exec-step-instruction
27826
27827 @subsubheading Synopsis
27828
27829 @smallexample
27830  -exec-step-instruction [--reverse]
27831 @end smallexample
27832
27833 Resumes the inferior which executes one machine instruction.  If the
27834 @samp{--reverse} option is specified, resumes reverse execution of the
27835 inferior program, stopping at the previously executed instruction.
27836 The output, once @value{GDBN} has stopped, will vary depending on
27837 whether we have stopped in the middle of a source line or not.  In the
27838 former case, the address at which the program stopped will be printed
27839 as well.
27840
27841 @subsubheading @value{GDBN} Command
27842
27843 The corresponding @value{GDBN} command is @samp{stepi}.
27844
27845 @subsubheading Example
27846
27847 @smallexample
27848 (gdb)
27849 -exec-step-instruction
27850 ^running
27851
27852 (gdb)
27853 *stopped,reason="end-stepping-range",
27854 frame=@{func="foo",args=[],file="try.c",
27855 fullname="/home/foo/bar/try.c",line="10"@}
27856 (gdb)
27857 -exec-step-instruction
27858 ^running
27859
27860 (gdb)
27861 *stopped,reason="end-stepping-range",
27862 frame=@{addr="0x000100f4",func="foo",args=[],file="try.c",
27863 fullname="/home/foo/bar/try.c",line="10"@}
27864 (gdb)
27865 @end smallexample
27866
27867
27868 @subheading The @code{-exec-until} Command
27869 @findex -exec-until
27870
27871 @subsubheading Synopsis
27872
27873 @smallexample
27874  -exec-until [ @var{location} ]
27875 @end smallexample
27876
27877 Executes the inferior until the @var{location} specified in the
27878 argument is reached.  If there is no argument, the inferior executes
27879 until a source line greater than the current one is reached.  The
27880 reason for stopping in this case will be @samp{location-reached}.
27881
27882 @subsubheading @value{GDBN} Command
27883
27884 The corresponding @value{GDBN} command is @samp{until}.
27885
27886 @subsubheading Example
27887
27888 @smallexample
27889 (gdb)
27890 -exec-until recursive2.c:6
27891 ^running
27892 (gdb)
27893 x = 55
27894 *stopped,reason="location-reached",frame=@{func="main",args=[],
27895 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="6"@}
27896 (gdb)
27897 @end smallexample
27898
27899 @ignore
27900 @subheading -file-clear
27901 Is this going away????
27902 @end ignore
27903
27904 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
27905 @node GDB/MI Stack Manipulation
27906 @section @sc{gdb/mi} Stack Manipulation Commands
27907
27908
27909 @subheading The @code{-stack-info-frame} Command
27910 @findex -stack-info-frame
27911
27912 @subsubheading Synopsis
27913
27914 @smallexample
27915  -stack-info-frame
27916 @end smallexample
27917
27918 Get info on the selected frame.
27919
27920 @subsubheading @value{GDBN} Command
27921
27922 The corresponding @value{GDBN} command is @samp{info frame} or @samp{frame}
27923 (without arguments).
27924
27925 @subsubheading Example
27926
27927 @smallexample
27928 (gdb)
27929 -stack-info-frame
27930 ^done,frame=@{level="1",addr="0x0001076c",func="callee3",
27931 file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
27932 fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="17"@}
27933 (gdb)
27934 @end smallexample
27935
27936 @subheading The @code{-stack-info-depth} Command
27937 @findex -stack-info-depth
27938
27939 @subsubheading Synopsis
27940
27941 @smallexample
27942  -stack-info-depth [ @var{max-depth} ]
27943 @end smallexample
27944
27945 Return the depth of the stack.  If the integer argument @var{max-depth}
27946 is specified, do not count beyond @var{max-depth} frames.
27947
27948 @subsubheading @value{GDBN} Command
27949
27950 There's no equivalent @value{GDBN} command.
27951
27952 @subsubheading Example
27953
27954 For a stack with frame levels 0 through 11:
27955
27956 @smallexample
27957 (gdb)
27958 -stack-info-depth
27959 ^done,depth="12"
27960 (gdb)
27961 -stack-info-depth 4
27962 ^done,depth="4"
27963 (gdb)
27964 -stack-info-depth 12
27965 ^done,depth="12"
27966 (gdb)
27967 -stack-info-depth 11
27968 ^done,depth="11"
27969 (gdb)
27970 -stack-info-depth 13
27971 ^done,depth="12"
27972 (gdb)
27973 @end smallexample
27974
27975 @subheading The @code{-stack-list-arguments} Command
27976 @findex -stack-list-arguments
27977
27978 @subsubheading Synopsis
27979
27980 @smallexample
27981  -stack-list-arguments @var{print-values}
27982     [ @var{low-frame} @var{high-frame} ]
27983 @end smallexample
27984
27985 Display a list of the arguments for the frames between @var{low-frame}
27986 and @var{high-frame} (inclusive).  If @var{low-frame} and
27987 @var{high-frame} are not provided, list the arguments for the whole
27988 call stack.  If the two arguments are equal, show the single frame
27989 at the corresponding level.  It is an error if @var{low-frame} is
27990 larger than the actual number of frames.  On the other hand,
27991 @var{high-frame} may be larger than the actual number of frames, in
27992 which case only existing frames will be returned.
27993
27994 If @var{print-values} is 0 or @code{--no-values}, print only the names of
27995 the variables; if it is 1 or @code{--all-values}, print also their
27996 values; and if it is 2 or @code{--simple-values}, print the name,
27997 type and value for simple data types, and the name and type for arrays,
27998 structures and unions.
27999
28000 Use of this command to obtain arguments in a single frame is
28001 deprecated in favor of the @samp{-stack-list-variables} command.
28002
28003 @subsubheading @value{GDBN} Command
28004
28005 @value{GDBN} does not have an equivalent command.  @code{gdbtk} has a
28006 @samp{gdb_get_args} command which partially overlaps with the
28007 functionality of @samp{-stack-list-arguments}.
28008
28009 @subsubheading Example
28010
28011 @smallexample
28012 (gdb)
28013 -stack-list-frames
28014 ^done,
28015 stack=[
28016 frame=@{level="0",addr="0x00010734",func="callee4",
28017 file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
28018 fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="8"@},
28019 frame=@{level="1",addr="0x0001076c",func="callee3",
28020 file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
28021 fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="17"@},
28022 frame=@{level="2",addr="0x0001078c",func="callee2",
28023 file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
28024 fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="22"@},
28025 frame=@{level="3",addr="0x000107b4",func="callee1",
28026 file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
28027 fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="27"@},
28028 frame=@{level="4",addr="0x000107e0",func="main",
28029 file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
28030 fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="32"@}]
28031 (gdb)
28032 -stack-list-arguments 0
28033 ^done,
28034 stack-args=[
28035 frame=@{level="0",args=[]@},
28036 frame=@{level="1",args=[name="strarg"]@},
28037 frame=@{level="2",args=[name="intarg",name="strarg"]@},
28038 frame=@{level="3",args=[name="intarg",name="strarg",name="fltarg"]@},
28039 frame=@{level="4",args=[]@}]
28040 (gdb)
28041 -stack-list-arguments 1
28042 ^done,
28043 stack-args=[
28044 frame=@{level="0",args=[]@},
28045 frame=@{level="1",
28046  args=[@{name="strarg",value="0x11940 \"A string argument.\""@}]@},
28047 frame=@{level="2",args=[
28048 @{name="intarg",value="2"@},
28049 @{name="strarg",value="0x11940 \"A string argument.\""@}]@},
28050 @{frame=@{level="3",args=[
28051 @{name="intarg",value="2"@},
28052 @{name="strarg",value="0x11940 \"A string argument.\""@},
28053 @{name="fltarg",value="3.5"@}]@},
28054 frame=@{level="4",args=[]@}]
28055 (gdb)
28056 -stack-list-arguments 0 2 2
28057 ^done,stack-args=[frame=@{level="2",args=[name="intarg",name="strarg"]@}]
28058 (gdb)
28059 -stack-list-arguments 1 2 2
28060 ^done,stack-args=[frame=@{level="2",
28061 args=[@{name="intarg",value="2"@},
28062 @{name="strarg",value="0x11940 \"A string argument.\""@}]@}]
28063 (gdb)
28064 @end smallexample
28065
28066 @c @subheading -stack-list-exception-handlers
28067
28068
28069 @subheading The @code{-stack-list-frames} Command
28070 @findex -stack-list-frames
28071
28072 @subsubheading Synopsis
28073
28074 @smallexample
28075  -stack-list-frames [ @var{low-frame} @var{high-frame} ]
28076 @end smallexample
28077
28078 List the frames currently on the stack.  For each frame it displays the
28079 following info:
28080
28081 @table @samp
28082 @item @var{level}
28083 The frame number, 0 being the topmost frame, i.e., the innermost function.
28084 @item @var{addr}
28085 The @code{$pc} value for that frame.
28086 @item @var{func}
28087 Function name.
28088 @item @var{file}
28089 File name of the source file where the function lives.
28090 @item @var{fullname}
28091 The full file name of the source file where the function lives.
28092 @item @var{line}
28093 Line number corresponding to the @code{$pc}.
28094 @item @var{from}
28095 The shared library where this function is defined.  This is only given
28096 if the frame's function is not known.
28097 @end table
28098
28099 If invoked without arguments, this command prints a backtrace for the
28100 whole stack.  If given two integer arguments, it shows the frames whose
28101 levels are between the two arguments (inclusive).  If the two arguments
28102 are equal, it shows the single frame at the corresponding level.  It is
28103 an error if @var{low-frame} is larger than the actual number of
28104 frames.  On the other hand, @var{high-frame} may be larger than the
28105 actual number of frames, in which case only existing frames will be returned.
28106
28107 @subsubheading @value{GDBN} Command
28108
28109 The corresponding @value{GDBN} commands are @samp{backtrace} and @samp{where}.
28110
28111 @subsubheading Example
28112
28113 Full stack backtrace:
28114
28115 @smallexample
28116 (gdb)
28117 -stack-list-frames
28118 ^done,stack=
28119 [frame=@{level="0",addr="0x0001076c",func="foo",
28120   file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="11"@},
28121 frame=@{level="1",addr="0x000107a4",func="foo",
28122   file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
28123 frame=@{level="2",addr="0x000107a4",func="foo",
28124   file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
28125 frame=@{level="3",addr="0x000107a4",func="foo",
28126   file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
28127 frame=@{level="4",addr="0x000107a4",func="foo",
28128   file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
28129 frame=@{level="5",addr="0x000107a4",func="foo",
28130   file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
28131 frame=@{level="6",addr="0x000107a4",func="foo",
28132   file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
28133 frame=@{level="7",addr="0x000107a4",func="foo",
28134   file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
28135 frame=@{level="8",addr="0x000107a4",func="foo",
28136   file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
28137 frame=@{level="9",addr="0x000107a4",func="foo",
28138   file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
28139 frame=@{level="10",addr="0x000107a4",func="foo",
28140   file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
28141 frame=@{level="11",addr="0x00010738",func="main",
28142   file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="4"@}]
28143 (gdb)
28144 @end smallexample
28145
28146 Show frames between @var{low_frame} and @var{high_frame}:
28147
28148 @smallexample
28149 (gdb)
28150 -stack-list-frames 3 5
28151 ^done,stack=
28152 [frame=@{level="3",addr="0x000107a4",func="foo",
28153   file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
28154 frame=@{level="4",addr="0x000107a4",func="foo",
28155   file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
28156 frame=@{level="5",addr="0x000107a4",func="foo",
28157   file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@}]
28158 (gdb)
28159 @end smallexample
28160
28161 Show a single frame:
28162
28163 @smallexample
28164 (gdb)
28165 -stack-list-frames 3 3
28166 ^done,stack=
28167 [frame=@{level="3",addr="0x000107a4",func="foo",
28168   file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@}]
28169 (gdb)
28170 @end smallexample
28171
28172
28173 @subheading The @code{-stack-list-locals} Command
28174 @findex -stack-list-locals
28175
28176 @subsubheading Synopsis
28177
28178 @smallexample
28179  -stack-list-locals @var{print-values}
28180 @end smallexample
28181
28182 Display the local variable names for the selected frame.  If
28183 @var{print-values} is 0 or @code{--no-values}, print only the names of
28184 the variables; if it is 1 or @code{--all-values}, print also their
28185 values; and if it is 2 or @code{--simple-values}, print the name,
28186 type and value for simple data types, and the name and type for arrays,
28187 structures and unions.  In this last case, a frontend can immediately
28188 display the value of simple data types and create variable objects for
28189 other data types when the user wishes to explore their values in
28190 more detail.
28191
28192 This command is deprecated in favor of the
28193 @samp{-stack-list-variables} command.
28194
28195 @subsubheading @value{GDBN} Command
28196
28197 @samp{info locals} in @value{GDBN}, @samp{gdb_get_locals} in @code{gdbtk}.
28198
28199 @subsubheading Example
28200
28201 @smallexample
28202 (gdb)
28203 -stack-list-locals 0
28204 ^done,locals=[name="A",name="B",name="C"]
28205 (gdb)
28206 -stack-list-locals --all-values
28207 ^done,locals=[@{name="A",value="1"@},@{name="B",value="2"@},
28208   @{name="C",value="@{1, 2, 3@}"@}]
28209 -stack-list-locals --simple-values
28210 ^done,locals=[@{name="A",type="int",value="1"@},
28211   @{name="B",type="int",value="2"@},@{name="C",type="int [3]"@}]
28212 (gdb)
28213 @end smallexample
28214
28215 @subheading The @code{-stack-list-variables} Command
28216 @findex -stack-list-variables
28217
28218 @subsubheading Synopsis
28219
28220 @smallexample
28221  -stack-list-variables @var{print-values}
28222 @end smallexample
28223
28224 Display the names of local variables and function arguments for the selected frame.  If
28225 @var{print-values} is 0 or @code{--no-values}, print only the names of
28226 the variables; if it is 1 or @code{--all-values}, print also their
28227 values; and if it is 2 or @code{--simple-values}, print the name,
28228 type and value for simple data types, and the name and type for arrays,
28229 structures and unions.  
28230
28231 @subsubheading Example
28232
28233 @smallexample
28234 (gdb)
28235 -stack-list-variables --thread 1 --frame 0 --all-values
28236 ^done,variables=[@{name="x",value="11"@},@{name="s",value="@{a = 1, b = 2@}"@}]
28237 (gdb)
28238 @end smallexample
28239
28240
28241 @subheading The @code{-stack-select-frame} Command
28242 @findex -stack-select-frame
28243
28244 @subsubheading Synopsis
28245
28246 @smallexample
28247  -stack-select-frame @var{framenum}
28248 @end smallexample
28249
28250 Change the selected frame.  Select a different frame @var{framenum} on
28251 the stack.
28252
28253 This command in deprecated in favor of passing the @samp{--frame}
28254 option to every command.
28255
28256 @subsubheading @value{GDBN} Command
28257
28258 The corresponding @value{GDBN} commands are @samp{frame}, @samp{up},
28259 @samp{down}, @samp{select-frame}, @samp{up-silent}, and @samp{down-silent}.
28260
28261 @subsubheading Example
28262
28263 @smallexample
28264 (gdb)
28265 -stack-select-frame 2
28266 ^done
28267 (gdb)
28268 @end smallexample
28269
28270 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
28271 @node GDB/MI Variable Objects
28272 @section @sc{gdb/mi} Variable Objects
28273
28274 @ignore
28275
28276 @subheading Motivation for Variable Objects in @sc{gdb/mi}
28277
28278 For the implementation of a variable debugger window (locals, watched
28279 expressions, etc.), we are proposing the adaptation of the existing code
28280 used by @code{Insight}.
28281
28282 The two main reasons for that are:
28283
28284 @enumerate 1
28285 @item
28286 It has been proven in practice (it is already on its second generation).
28287
28288 @item
28289 It will shorten development time (needless to say how important it is
28290 now).
28291 @end enumerate
28292
28293 The original interface was designed to be used by Tcl code, so it was
28294 slightly changed so it could be used through @sc{gdb/mi}.  This section
28295 describes the @sc{gdb/mi} operations that will be available and gives some
28296 hints about their use.
28297
28298 @emph{Note}: In addition to the set of operations described here, we
28299 expect the @sc{gui} implementation of a variable window to require, at
28300 least, the following operations:
28301
28302 @itemize @bullet
28303 @item @code{-gdb-show} @code{output-radix}
28304 @item @code{-stack-list-arguments}
28305 @item @code{-stack-list-locals}
28306 @item @code{-stack-select-frame}
28307 @end itemize
28308
28309 @end ignore
28310
28311 @subheading Introduction to Variable Objects
28312
28313 @cindex variable objects in @sc{gdb/mi}
28314
28315 Variable objects are "object-oriented" MI interface for examining and
28316 changing values of expressions.  Unlike some other MI interfaces that
28317 work with expressions, variable objects are specifically designed for
28318 simple and efficient presentation in the frontend.  A variable object
28319 is identified by string name.  When a variable object is created, the
28320 frontend specifies the expression for that variable object.  The
28321 expression can be a simple variable, or it can be an arbitrary complex
28322 expression, and can even involve CPU registers.  After creating a
28323 variable object, the frontend can invoke other variable object
28324 operations---for example to obtain or change the value of a variable
28325 object, or to change display format.
28326
28327 Variable objects have hierarchical tree structure.  Any variable object
28328 that corresponds to a composite type, such as structure in C, has
28329 a number of child variable objects, for example corresponding to each
28330 element of a structure.  A child variable object can itself have 
28331 children, recursively.  Recursion ends when we reach 
28332 leaf variable objects, which always have built-in types.  Child variable
28333 objects are created only by explicit request, so if a frontend 
28334 is not interested in the children of a particular variable object, no
28335 child will be created.
28336
28337 For a leaf variable object it is possible to obtain its value as a
28338 string, or set the value from a string.  String value can be also
28339 obtained for a non-leaf variable object, but it's generally a string
28340 that only indicates the type of the object, and does not list its
28341 contents.  Assignment to a non-leaf variable object is not allowed.
28342  
28343 A frontend does not need to read the values of all variable objects each time
28344 the program stops.  Instead, MI provides an update command that lists all
28345 variable objects whose values has changed since the last update
28346 operation.  This considerably reduces the amount of data that must
28347 be transferred to the frontend.  As noted above, children variable
28348 objects are created on demand, and only leaf variable objects have a
28349 real value.  As result, gdb will read target memory only for leaf
28350 variables that frontend has created.
28351
28352 The automatic update is not always desirable.  For example, a frontend
28353 might want to keep a value of some expression for future reference,
28354 and never update it.  For another example,  fetching memory is
28355 relatively slow for embedded targets, so a frontend might want
28356 to disable automatic update for the variables that are either not
28357 visible on the screen, or ``closed''.  This is possible using so
28358 called ``frozen variable objects''.  Such variable objects are never
28359 implicitly updated.  
28360
28361 Variable objects can be either @dfn{fixed} or @dfn{floating}.  For the
28362 fixed variable object, the expression is parsed when the variable
28363 object is created, including associating identifiers to specific
28364 variables.  The meaning of expression never changes.  For a floating
28365 variable object the values of variables whose names appear in the
28366 expressions are re-evaluated every time in the context of the current
28367 frame.  Consider this example:
28368
28369 @smallexample
28370 void do_work(...)
28371 @{
28372         struct work_state state;
28373
28374         if (...)
28375            do_work(...);
28376 @}
28377 @end smallexample
28378
28379 If a fixed variable object for the @code{state} variable is created in
28380 this function, and we enter the recursive call, the variable
28381 object will report the value of @code{state} in the top-level
28382 @code{do_work} invocation.  On the other hand, a floating variable
28383 object will report the value of @code{state} in the current frame.
28384
28385 If an expression specified when creating a fixed variable object
28386 refers to a local variable, the variable object becomes bound to the
28387 thread and frame in which the variable object is created.  When such
28388 variable object is updated, @value{GDBN} makes sure that the
28389 thread/frame combination the variable object is bound to still exists,
28390 and re-evaluates the variable object in context of that thread/frame.
28391
28392 The following is the complete set of @sc{gdb/mi} operations defined to
28393 access this functionality:
28394
28395 @multitable @columnfractions .4 .6
28396 @item @strong{Operation}
28397 @tab @strong{Description}
28398
28399 @item @code{-enable-pretty-printing}
28400 @tab enable Python-based pretty-printing
28401 @item @code{-var-create}
28402 @tab create a variable object
28403 @item @code{-var-delete}
28404 @tab delete the variable object and/or its children
28405 @item @code{-var-set-format}
28406 @tab set the display format of this variable
28407 @item @code{-var-show-format}
28408 @tab show the display format of this variable
28409 @item @code{-var-info-num-children}
28410 @tab tells how many children this object has
28411 @item @code{-var-list-children}
28412 @tab return a list of the object's children
28413 @item @code{-var-info-type}
28414 @tab show the type of this variable object
28415 @item @code{-var-info-expression}
28416 @tab print parent-relative expression that this variable object represents
28417 @item @code{-var-info-path-expression}
28418 @tab print full expression that this variable object represents
28419 @item @code{-var-show-attributes}
28420 @tab is this variable editable? does it exist here?
28421 @item @code{-var-evaluate-expression}
28422 @tab get the value of this variable
28423 @item @code{-var-assign}
28424 @tab set the value of this variable
28425 @item @code{-var-update}
28426 @tab update the variable and its children
28427 @item @code{-var-set-frozen}
28428 @tab set frozeness attribute
28429 @item @code{-var-set-update-range}
28430 @tab set range of children to display on update
28431 @end multitable
28432
28433 In the next subsection we describe each operation in detail and suggest
28434 how it can be used.
28435
28436 @subheading Description And Use of Operations on Variable Objects
28437
28438 @subheading The @code{-enable-pretty-printing} Command
28439 @findex -enable-pretty-printing
28440
28441 @smallexample
28442 -enable-pretty-printing
28443 @end smallexample
28444
28445 @value{GDBN} allows Python-based visualizers to affect the output of the
28446 MI variable object commands.  However, because there was no way to
28447 implement this in a fully backward-compatible way, a front end must
28448 request that this functionality be enabled.
28449
28450 Once enabled, this feature cannot be disabled.
28451
28452 Note that if Python support has not been compiled into @value{GDBN},
28453 this command will still succeed (and do nothing).
28454
28455 This feature is currently (as of @value{GDBN} 7.0) experimental, and
28456 may work differently in future versions of @value{GDBN}.
28457
28458 @subheading The @code{-var-create} Command
28459 @findex -var-create
28460
28461 @subsubheading Synopsis
28462
28463 @smallexample
28464  -var-create @{@var{name} | "-"@}
28465     @{@var{frame-addr} | "*" | "@@"@} @var{expression}
28466 @end smallexample
28467
28468 This operation creates a variable object, which allows the monitoring of
28469 a variable, the result of an expression, a memory cell or a CPU
28470 register.
28471
28472 The @var{name} parameter is the string by which the object can be
28473 referenced.  It must be unique.  If @samp{-} is specified, the varobj
28474 system will generate a string ``varNNNNNN'' automatically.  It will be
28475 unique provided that one does not specify @var{name} of that format.
28476 The command fails if a duplicate name is found.
28477
28478 The frame under which the expression should be evaluated can be
28479 specified by @var{frame-addr}.  A @samp{*} indicates that the current
28480 frame should be used.  A @samp{@@} indicates that a floating variable
28481 object must be created.
28482
28483 @var{expression} is any expression valid on the current language set (must not
28484 begin with a @samp{*}), or one of the following:
28485
28486 @itemize @bullet
28487 @item
28488 @samp{*@var{addr}}, where @var{addr} is the address of a memory cell
28489
28490 @item
28491 @samp{*@var{addr}-@var{addr}} --- a memory address range (TBD)
28492
28493 @item
28494 @samp{$@var{regname}} --- a CPU register name
28495 @end itemize
28496
28497 @cindex dynamic varobj
28498 A varobj's contents may be provided by a Python-based pretty-printer.  In this
28499 case the varobj is known as a @dfn{dynamic varobj}.  Dynamic varobjs
28500 have slightly different semantics in some cases.  If the
28501 @code{-enable-pretty-printing} command is not sent, then @value{GDBN}
28502 will never create a dynamic varobj.  This ensures backward
28503 compatibility for existing clients.
28504
28505 @subsubheading Result
28506
28507 This operation returns attributes of the newly-created varobj.  These
28508 are:
28509
28510 @table @samp
28511 @item name
28512 The name of the varobj.
28513
28514 @item numchild
28515 The number of children of the varobj.  This number is not necessarily
28516 reliable for a dynamic varobj.  Instead, you must examine the
28517 @samp{has_more} attribute.
28518
28519 @item value
28520 The varobj's scalar value.  For a varobj whose type is some sort of
28521 aggregate (e.g., a @code{struct}), or for a dynamic varobj, this value
28522 will not be interesting.
28523
28524 @item type
28525 The varobj's type.  This is a string representation of the type, as
28526 would be printed by the @value{GDBN} CLI.
28527
28528 @item thread-id
28529 If a variable object is bound to a specific thread, then this is the
28530 thread's identifier.
28531
28532 @item has_more
28533 For a dynamic varobj, this indicates whether there appear to be any
28534 children available.  For a non-dynamic varobj, this will be 0.
28535
28536 @item dynamic
28537 This attribute will be present and have the value @samp{1} if the
28538 varobj is a dynamic varobj.  If the varobj is not a dynamic varobj,
28539 then this attribute will not be present.
28540
28541 @item displayhint
28542 A dynamic varobj can supply a display hint to the front end.  The
28543 value comes directly from the Python pretty-printer object's
28544 @code{display_hint} method.  @xref{Pretty Printing API}.
28545 @end table
28546
28547 Typical output will look like this:
28548
28549 @smallexample
28550  name="@var{name}",numchild="@var{N}",type="@var{type}",thread-id="@var{M}",
28551   has_more="@var{has_more}"
28552 @end smallexample
28553
28554
28555 @subheading The @code{-var-delete} Command
28556 @findex -var-delete
28557
28558 @subsubheading Synopsis
28559
28560 @smallexample
28561  -var-delete [ -c ] @var{name}
28562 @end smallexample
28563
28564 Deletes a previously created variable object and all of its children.
28565 With the @samp{-c} option, just deletes the children.
28566
28567 Returns an error if the object @var{name} is not found.
28568
28569
28570 @subheading The @code{-var-set-format} Command
28571 @findex -var-set-format
28572
28573 @subsubheading Synopsis
28574
28575 @smallexample
28576  -var-set-format @var{name} @var{format-spec}
28577 @end smallexample
28578
28579 Sets the output format for the value of the object @var{name} to be
28580 @var{format-spec}.
28581
28582 @anchor{-var-set-format}
28583 The syntax for the @var{format-spec} is as follows:
28584
28585 @smallexample
28586  @var{format-spec} @expansion{}
28587  @{binary | decimal | hexadecimal | octal | natural@}
28588 @end smallexample
28589
28590 The natural format is the default format choosen automatically
28591 based on the variable type (like decimal for an @code{int}, hex
28592 for pointers, etc.).
28593
28594 For a variable with children, the format is set only on the 
28595 variable itself, and the children are not affected.  
28596
28597 @subheading The @code{-var-show-format} Command
28598 @findex -var-show-format
28599
28600 @subsubheading Synopsis
28601
28602 @smallexample
28603  -var-show-format @var{name}
28604 @end smallexample
28605
28606 Returns the format used to display the value of the object @var{name}.
28607
28608 @smallexample
28609  @var{format} @expansion{}
28610  @var{format-spec}
28611 @end smallexample
28612
28613
28614 @subheading The @code{-var-info-num-children} Command
28615 @findex -var-info-num-children
28616
28617 @subsubheading Synopsis
28618
28619 @smallexample
28620  -var-info-num-children @var{name}
28621 @end smallexample
28622
28623 Returns the number of children of a variable object @var{name}:
28624
28625 @smallexample
28626  numchild=@var{n}
28627 @end smallexample
28628
28629 Note that this number is not completely reliable for a dynamic varobj.
28630 It will return the current number of children, but more children may
28631 be available.
28632
28633
28634 @subheading The @code{-var-list-children} Command
28635 @findex -var-list-children
28636
28637 @subsubheading Synopsis
28638
28639 @smallexample
28640  -var-list-children [@var{print-values}] @var{name} [@var{from} @var{to}]
28641 @end smallexample
28642 @anchor{-var-list-children}
28643
28644 Return a list of the children of the specified variable object and
28645 create variable objects for them, if they do not already exist.  With
28646 a single argument or if @var{print-values} has a value of 0 or
28647 @code{--no-values}, print only the names of the variables; if
28648 @var{print-values} is 1 or @code{--all-values}, also print their
28649 values; and if it is 2 or @code{--simple-values} print the name and
28650 value for simple data types and just the name for arrays, structures
28651 and unions.
28652
28653 @var{from} and @var{to}, if specified, indicate the range of children
28654 to report.  If @var{from} or @var{to} is less than zero, the range is
28655 reset and all children will be reported.  Otherwise, children starting
28656 at @var{from} (zero-based) and up to and excluding @var{to} will be
28657 reported.
28658
28659 If a child range is requested, it will only affect the current call to
28660 @code{-var-list-children}, but not future calls to @code{-var-update}.
28661 For this, you must instead use @code{-var-set-update-range}.  The
28662 intent of this approach is to enable a front end to implement any
28663 update approach it likes; for example, scrolling a view may cause the
28664 front end to request more children with @code{-var-list-children}, and
28665 then the front end could call @code{-var-set-update-range} with a
28666 different range to ensure that future updates are restricted to just
28667 the visible items.
28668
28669 For each child the following results are returned:
28670
28671 @table @var
28672
28673 @item name
28674 Name of the variable object created for this child.
28675
28676 @item exp
28677 The expression to be shown to the user by the front end to designate this child.
28678 For example this may be the name of a structure member.
28679
28680 For a dynamic varobj, this value cannot be used to form an
28681 expression.  There is no way to do this at all with a dynamic varobj.
28682
28683 For C/C@t{++} structures there are several pseudo children returned to
28684 designate access qualifiers.  For these pseudo children @var{exp} is
28685 @samp{public}, @samp{private}, or @samp{protected}.  In this case the
28686 type and value are not present.
28687
28688 A dynamic varobj will not report the access qualifying
28689 pseudo-children, regardless of the language.  This information is not
28690 available at all with a dynamic varobj.
28691
28692 @item numchild
28693 Number of children this child has.  For a dynamic varobj, this will be
28694 0.
28695
28696 @item type
28697 The type of the child.
28698
28699 @item value
28700 If values were requested, this is the value.
28701
28702 @item thread-id
28703 If this variable object is associated with a thread, this is the thread id.  
28704 Otherwise this result is not present.
28705
28706 @item frozen
28707 If the variable object is frozen, this variable will be present with a value of 1.
28708 @end table
28709
28710 The result may have its own attributes:
28711
28712 @table @samp
28713 @item displayhint
28714 A dynamic varobj can supply a display hint to the front end.  The
28715 value comes directly from the Python pretty-printer object's
28716 @code{display_hint} method.  @xref{Pretty Printing API}.
28717
28718 @item has_more
28719 This is an integer attribute which is nonzero if there are children
28720 remaining after the end of the selected range.
28721 @end table
28722
28723 @subsubheading Example
28724
28725 @smallexample
28726 (gdb)
28727  -var-list-children n
28728  ^done,numchild=@var{n},children=[child=@{name=@var{name},exp=@var{exp},
28729  numchild=@var{n},type=@var{type}@},@r{(repeats N times)}]
28730 (gdb)
28731  -var-list-children --all-values n
28732  ^done,numchild=@var{n},children=[child=@{name=@var{name},exp=@var{exp},
28733  numchild=@var{n},value=@var{value},type=@var{type}@},@r{(repeats N times)}]
28734 @end smallexample
28735
28736
28737 @subheading The @code{-var-info-type} Command
28738 @findex -var-info-type
28739
28740 @subsubheading Synopsis
28741
28742 @smallexample
28743  -var-info-type @var{name}
28744 @end smallexample
28745
28746 Returns the type of the specified variable @var{name}.  The type is
28747 returned as a string in the same format as it is output by the
28748 @value{GDBN} CLI:
28749
28750 @smallexample
28751  type=@var{typename}
28752 @end smallexample
28753
28754
28755 @subheading The @code{-var-info-expression} Command
28756 @findex -var-info-expression
28757
28758 @subsubheading Synopsis
28759
28760 @smallexample
28761  -var-info-expression @var{name}
28762 @end smallexample
28763
28764 Returns a string that is suitable for presenting this
28765 variable object in user interface.  The string is generally
28766 not valid expression in the current language, and cannot be evaluated.
28767
28768 For example, if @code{a} is an array, and variable object
28769 @code{A} was created for @code{a}, then we'll get this output:
28770
28771 @smallexample
28772 (gdb) -var-info-expression A.1
28773 ^done,lang="C",exp="1"
28774 @end smallexample
28775
28776 @noindent
28777 Here, the values of @code{lang} can be @code{@{"C" | "C++" | "Java"@}}.
28778
28779 Note that the output of the @code{-var-list-children} command also
28780 includes those expressions, so the @code{-var-info-expression} command
28781 is of limited use.
28782
28783 @subheading The @code{-var-info-path-expression} Command
28784 @findex -var-info-path-expression
28785
28786 @subsubheading Synopsis
28787
28788 @smallexample
28789  -var-info-path-expression @var{name}
28790 @end smallexample
28791
28792 Returns an expression that can be evaluated in the current
28793 context and will yield the same value that a variable object has.
28794 Compare this with the @code{-var-info-expression} command, which
28795 result can be used only for UI presentation.  Typical use of
28796 the @code{-var-info-path-expression} command is creating a 
28797 watchpoint from a variable object.
28798
28799 This command is currently not valid for children of a dynamic varobj,
28800 and will give an error when invoked on one.
28801
28802 For example, suppose @code{C} is a C@t{++} class, derived from class
28803 @code{Base}, and that the @code{Base} class has a member called
28804 @code{m_size}.  Assume a variable @code{c} is has the type of
28805 @code{C} and a variable object @code{C} was created for variable
28806 @code{c}.  Then, we'll get this output:
28807 @smallexample
28808 (gdb) -var-info-path-expression C.Base.public.m_size
28809 ^done,path_expr=((Base)c).m_size)
28810 @end smallexample
28811
28812 @subheading The @code{-var-show-attributes} Command
28813 @findex -var-show-attributes
28814
28815 @subsubheading Synopsis
28816
28817 @smallexample
28818  -var-show-attributes @var{name}
28819 @end smallexample
28820
28821 List attributes of the specified variable object @var{name}:
28822
28823 @smallexample
28824  status=@var{attr} [ ( ,@var{attr} )* ]
28825 @end smallexample
28826
28827 @noindent
28828 where @var{attr} is @code{@{ @{ editable | noneditable @} | TBD @}}.
28829
28830 @subheading The @code{-var-evaluate-expression} Command
28831 @findex -var-evaluate-expression
28832
28833 @subsubheading Synopsis
28834
28835 @smallexample
28836  -var-evaluate-expression [-f @var{format-spec}] @var{name}
28837 @end smallexample
28838
28839 Evaluates the expression that is represented by the specified variable
28840 object and returns its value as a string.  The format of the string
28841 can be specified with the @samp{-f} option.  The possible values of 
28842 this option are the same as for @code{-var-set-format} 
28843 (@pxref{-var-set-format}).  If the @samp{-f} option is not specified,
28844 the current display format will be used.  The current display format 
28845 can be changed using the @code{-var-set-format} command.
28846
28847 @smallexample
28848  value=@var{value}
28849 @end smallexample
28850
28851 Note that one must invoke @code{-var-list-children} for a variable
28852 before the value of a child variable can be evaluated.
28853
28854 @subheading The @code{-var-assign} Command
28855 @findex -var-assign
28856
28857 @subsubheading Synopsis
28858
28859 @smallexample
28860  -var-assign @var{name} @var{expression}
28861 @end smallexample
28862
28863 Assigns the value of @var{expression} to the variable object specified
28864 by @var{name}.  The object must be @samp{editable}.  If the variable's
28865 value is altered by the assign, the variable will show up in any
28866 subsequent @code{-var-update} list.
28867
28868 @subsubheading Example
28869
28870 @smallexample
28871 (gdb)
28872 -var-assign var1 3
28873 ^done,value="3"
28874 (gdb)
28875 -var-update *
28876 ^done,changelist=[@{name="var1",in_scope="true",type_changed="false"@}]
28877 (gdb)
28878 @end smallexample
28879
28880 @subheading The @code{-var-update} Command
28881 @findex -var-update
28882
28883 @subsubheading Synopsis
28884
28885 @smallexample
28886  -var-update [@var{print-values}] @{@var{name} | "*"@}
28887 @end smallexample
28888
28889 Reevaluate the expressions corresponding to the variable object
28890 @var{name} and all its direct and indirect children, and return the
28891 list of variable objects whose values have changed; @var{name} must
28892 be a root variable object.  Here, ``changed'' means that the result of
28893 @code{-var-evaluate-expression} before and after the
28894 @code{-var-update} is different.  If @samp{*} is used as the variable
28895 object names, all existing variable objects are updated, except
28896 for frozen ones (@pxref{-var-set-frozen}).  The option
28897 @var{print-values} determines whether both names and values, or just
28898 names are printed.  The possible values of this option are the same
28899 as for @code{-var-list-children} (@pxref{-var-list-children}).  It is
28900 recommended to use the @samp{--all-values} option, to reduce the
28901 number of MI commands needed on each program stop.
28902
28903 With the @samp{*} parameter, if a variable object is bound to a
28904 currently running thread, it will not be updated, without any
28905 diagnostic.
28906
28907 If @code{-var-set-update-range} was previously used on a varobj, then
28908 only the selected range of children will be reported.
28909
28910 @code{-var-update} reports all the changed varobjs in a tuple named
28911 @samp{changelist}.
28912
28913 Each item in the change list is itself a tuple holding:
28914
28915 @table @samp
28916 @item name
28917 The name of the varobj.
28918
28919 @item value
28920 If values were requested for this update, then this field will be
28921 present and will hold the value of the varobj.
28922
28923 @item in_scope
28924 @anchor{-var-update}
28925 This field is a string which may take one of three values:
28926
28927 @table @code
28928 @item "true"
28929 The variable object's current value is valid.
28930
28931 @item "false"
28932 The variable object does not currently hold a valid value but it may
28933 hold one in the future if its associated expression comes back into
28934 scope.
28935
28936 @item "invalid"
28937 The variable object no longer holds a valid value.
28938 This can occur when the executable file being debugged has changed,
28939 either through recompilation or by using the @value{GDBN} @code{file}
28940 command.  The front end should normally choose to delete these variable
28941 objects.
28942 @end table
28943
28944 In the future new values may be added to this list so the front should
28945 be prepared for this possibility.  @xref{GDB/MI Development and Front Ends, ,@sc{GDB/MI} Development and Front Ends}.
28946
28947 @item type_changed
28948 This is only present if the varobj is still valid.  If the type
28949 changed, then this will be the string @samp{true}; otherwise it will
28950 be @samp{false}.
28951
28952 @item new_type
28953 If the varobj's type changed, then this field will be present and will
28954 hold the new type.
28955
28956 @item new_num_children
28957 For a dynamic varobj, if the number of children changed, or if the
28958 type changed, this will be the new number of children.
28959
28960 The @samp{numchild} field in other varobj responses is generally not
28961 valid for a dynamic varobj -- it will show the number of children that
28962 @value{GDBN} knows about, but because dynamic varobjs lazily
28963 instantiate their children, this will not reflect the number of
28964 children which may be available.
28965
28966 The @samp{new_num_children} attribute only reports changes to the
28967 number of children known by @value{GDBN}.  This is the only way to
28968 detect whether an update has removed children (which necessarily can
28969 only happen at the end of the update range).
28970
28971 @item displayhint
28972 The display hint, if any.
28973
28974 @item has_more
28975 This is an integer value, which will be 1 if there are more children
28976 available outside the varobj's update range.
28977
28978 @item dynamic
28979 This attribute will be present and have the value @samp{1} if the
28980 varobj is a dynamic varobj.  If the varobj is not a dynamic varobj,
28981 then this attribute will not be present.
28982
28983 @item new_children
28984 If new children were added to a dynamic varobj within the selected
28985 update range (as set by @code{-var-set-update-range}), then they will
28986 be listed in this attribute.
28987 @end table
28988
28989 @subsubheading Example
28990
28991 @smallexample
28992 (gdb)
28993 -var-assign var1 3
28994 ^done,value="3"
28995 (gdb)
28996 -var-update --all-values var1
28997 ^done,changelist=[@{name="var1",value="3",in_scope="true",
28998 type_changed="false"@}]
28999 (gdb)
29000 @end smallexample
29001
29002 @subheading The @code{-var-set-frozen} Command
29003 @findex -var-set-frozen
29004 @anchor{-var-set-frozen}
29005
29006 @subsubheading Synopsis
29007
29008 @smallexample
29009  -var-set-frozen @var{name} @var{flag}
29010 @end smallexample
29011
29012 Set the frozenness flag on the variable object @var{name}.  The
29013 @var{flag} parameter should be either @samp{1} to make the variable
29014 frozen or @samp{0} to make it unfrozen.  If a variable object is
29015 frozen, then neither itself, nor any of its children, are 
29016 implicitly updated by @code{-var-update} of 
29017 a parent variable or by @code{-var-update *}.  Only
29018 @code{-var-update} of the variable itself will update its value and
29019 values of its children.  After a variable object is unfrozen, it is
29020 implicitly updated by all subsequent @code{-var-update} operations.  
29021 Unfreezing a variable does not update it, only subsequent
29022 @code{-var-update} does.
29023
29024 @subsubheading Example
29025
29026 @smallexample
29027 (gdb)
29028 -var-set-frozen V 1
29029 ^done
29030 (gdb)
29031 @end smallexample
29032
29033 @subheading The @code{-var-set-update-range} command
29034 @findex -var-set-update-range
29035 @anchor{-var-set-update-range}
29036
29037 @subsubheading Synopsis
29038
29039 @smallexample
29040  -var-set-update-range @var{name} @var{from} @var{to}
29041 @end smallexample
29042
29043 Set the range of children to be returned by future invocations of
29044 @code{-var-update}.
29045
29046 @var{from} and @var{to} indicate the range of children to report.  If
29047 @var{from} or @var{to} is less than zero, the range is reset and all
29048 children will be reported.  Otherwise, children starting at @var{from}
29049 (zero-based) and up to and excluding @var{to} will be reported.
29050
29051 @subsubheading Example
29052
29053 @smallexample
29054 (gdb)
29055 -var-set-update-range V 1 2
29056 ^done
29057 @end smallexample
29058
29059 @subheading The @code{-var-set-visualizer} command
29060 @findex -var-set-visualizer
29061 @anchor{-var-set-visualizer}
29062
29063 @subsubheading Synopsis
29064
29065 @smallexample
29066  -var-set-visualizer @var{name} @var{visualizer}
29067 @end smallexample
29068
29069 Set a visualizer for the variable object @var{name}.
29070
29071 @var{visualizer} is the visualizer to use.  The special value
29072 @samp{None} means to disable any visualizer in use.
29073
29074 If not @samp{None}, @var{visualizer} must be a Python expression.
29075 This expression must evaluate to a callable object which accepts a
29076 single argument.  @value{GDBN} will call this object with the value of
29077 the varobj @var{name} as an argument (this is done so that the same
29078 Python pretty-printing code can be used for both the CLI and MI).
29079 When called, this object must return an object which conforms to the
29080 pretty-printing interface (@pxref{Pretty Printing API}).
29081
29082 The pre-defined function @code{gdb.default_visualizer} may be used to
29083 select a visualizer by following the built-in process
29084 (@pxref{Selecting Pretty-Printers}).  This is done automatically when
29085 a varobj is created, and so ordinarily is not needed.
29086
29087 This feature is only available if Python support is enabled.  The MI
29088 command @code{-list-features} (@pxref{GDB/MI Miscellaneous Commands})
29089 can be used to check this.
29090
29091 @subsubheading Example
29092
29093 Resetting the visualizer:
29094
29095 @smallexample
29096 (gdb)
29097 -var-set-visualizer V None
29098 ^done
29099 @end smallexample
29100
29101 Reselecting the default (type-based) visualizer:
29102
29103 @smallexample
29104 (gdb)
29105 -var-set-visualizer V gdb.default_visualizer
29106 ^done
29107 @end smallexample
29108
29109 Suppose @code{SomeClass} is a visualizer class.  A lambda expression
29110 can be used to instantiate this class for a varobj:
29111
29112 @smallexample
29113 (gdb)
29114 -var-set-visualizer V "lambda val: SomeClass()"
29115 ^done
29116 @end smallexample
29117
29118 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
29119 @node GDB/MI Data Manipulation
29120 @section @sc{gdb/mi} Data Manipulation
29121
29122 @cindex data manipulation, in @sc{gdb/mi}
29123 @cindex @sc{gdb/mi}, data manipulation
29124 This section describes the @sc{gdb/mi} commands that manipulate data:
29125 examine memory and registers, evaluate expressions, etc.
29126
29127 @c REMOVED FROM THE INTERFACE.
29128 @c @subheading -data-assign
29129 @c Change the value of a program variable. Plenty of side effects.
29130 @c @subsubheading GDB Command
29131 @c set variable
29132 @c @subsubheading Example
29133 @c N.A.
29134
29135 @subheading The @code{-data-disassemble} Command
29136 @findex -data-disassemble
29137
29138 @subsubheading Synopsis
29139
29140 @smallexample
29141  -data-disassemble
29142     [ -s @var{start-addr} -e @var{end-addr} ]
29143   | [ -f @var{filename} -l @var{linenum} [ -n @var{lines} ] ]
29144   -- @var{mode}
29145 @end smallexample
29146
29147 @noindent
29148 Where:
29149
29150 @table @samp
29151 @item @var{start-addr}
29152 is the beginning address (or @code{$pc})
29153 @item @var{end-addr}
29154 is the end address
29155 @item @var{filename}
29156 is the name of the file to disassemble
29157 @item @var{linenum}
29158 is the line number to disassemble around
29159 @item @var{lines}
29160 is the number of disassembly lines to be produced.  If it is -1,
29161 the whole function will be disassembled, in case no @var{end-addr} is
29162 specified.  If @var{end-addr} is specified as a non-zero value, and
29163 @var{lines} is lower than the number of disassembly lines between
29164 @var{start-addr} and @var{end-addr}, only @var{lines} lines are
29165 displayed; if @var{lines} is higher than the number of lines between
29166 @var{start-addr} and @var{end-addr}, only the lines up to @var{end-addr}
29167 are displayed.
29168 @item @var{mode}
29169 is either 0 (meaning only disassembly), 1 (meaning mixed source and
29170 disassembly), 2 (meaning disassembly with raw opcodes), or 3 (meaning
29171 mixed source and disassembly with raw opcodes).
29172 @end table
29173
29174 @subsubheading Result
29175
29176 The output for each instruction is composed of four fields:
29177
29178 @itemize @bullet
29179 @item Address
29180 @item Func-name
29181 @item Offset
29182 @item Instruction
29183 @end itemize
29184
29185 Note that whatever included in the instruction field, is not manipulated
29186 directly by @sc{gdb/mi}, i.e., it is not possible to adjust its format.
29187
29188 @subsubheading @value{GDBN} Command
29189
29190 There's no direct mapping from this command to the CLI.
29191
29192 @subsubheading Example
29193
29194 Disassemble from the current value of @code{$pc} to @code{$pc + 20}:
29195
29196 @smallexample
29197 (gdb)
29198 -data-disassemble -s $pc -e "$pc + 20" -- 0
29199 ^done,
29200 asm_insns=[
29201 @{address="0x000107c0",func-name="main",offset="4",
29202 inst="mov  2, %o0"@},
29203 @{address="0x000107c4",func-name="main",offset="8",
29204 inst="sethi  %hi(0x11800), %o2"@},
29205 @{address="0x000107c8",func-name="main",offset="12",
29206 inst="or  %o2, 0x140, %o1\t! 0x11940 <_lib_version+8>"@},
29207 @{address="0x000107cc",func-name="main",offset="16",
29208 inst="sethi  %hi(0x11800), %o2"@},
29209 @{address="0x000107d0",func-name="main",offset="20",
29210 inst="or  %o2, 0x168, %o4\t! 0x11968 <_lib_version+48>"@}]
29211 (gdb)
29212 @end smallexample
29213
29214 Disassemble the whole @code{main} function.  Line 32 is part of
29215 @code{main}.
29216
29217 @smallexample
29218 -data-disassemble -f basics.c -l 32 -- 0
29219 ^done,asm_insns=[
29220 @{address="0x000107bc",func-name="main",offset="0",
29221 inst="save  %sp, -112, %sp"@},
29222 @{address="0x000107c0",func-name="main",offset="4",
29223 inst="mov   2, %o0"@},
29224 @{address="0x000107c4",func-name="main",offset="8",
29225 inst="sethi %hi(0x11800), %o2"@},
29226 [@dots{}]
29227 @{address="0x0001081c",func-name="main",offset="96",inst="ret "@},
29228 @{address="0x00010820",func-name="main",offset="100",inst="restore "@}]
29229 (gdb)
29230 @end smallexample
29231
29232 Disassemble 3 instructions from the start of @code{main}:
29233
29234 @smallexample
29235 (gdb)
29236 -data-disassemble -f basics.c -l 32 -n 3 -- 0
29237 ^done,asm_insns=[
29238 @{address="0x000107bc",func-name="main",offset="0",
29239 inst="save  %sp, -112, %sp"@},
29240 @{address="0x000107c0",func-name="main",offset="4",
29241 inst="mov  2, %o0"@},
29242 @{address="0x000107c4",func-name="main",offset="8",
29243 inst="sethi  %hi(0x11800), %o2"@}]
29244 (gdb)
29245 @end smallexample
29246
29247 Disassemble 3 instructions from the start of @code{main} in mixed mode:
29248
29249 @smallexample
29250 (gdb)
29251 -data-disassemble -f basics.c -l 32 -n 3 -- 1
29252 ^done,asm_insns=[
29253 src_and_asm_line=@{line="31",
29254 file="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb/ \
29255   testsuite/gdb.mi/basics.c",line_asm_insn=[
29256 @{address="0x000107bc",func-name="main",offset="0",
29257 inst="save  %sp, -112, %sp"@}]@},
29258 src_and_asm_line=@{line="32",
29259 file="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb/ \
29260   testsuite/gdb.mi/basics.c",line_asm_insn=[
29261 @{address="0x000107c0",func-name="main",offset="4",
29262 inst="mov  2, %o0"@},
29263 @{address="0x000107c4",func-name="main",offset="8",
29264 inst="sethi  %hi(0x11800), %o2"@}]@}]
29265 (gdb)
29266 @end smallexample
29267
29268
29269 @subheading The @code{-data-evaluate-expression} Command
29270 @findex -data-evaluate-expression
29271
29272 @subsubheading Synopsis
29273
29274 @smallexample
29275  -data-evaluate-expression @var{expr}
29276 @end smallexample
29277
29278 Evaluate @var{expr} as an expression.  The expression could contain an
29279 inferior function call.  The function call will execute synchronously.
29280 If the expression contains spaces, it must be enclosed in double quotes.
29281
29282 @subsubheading @value{GDBN} Command
29283
29284 The corresponding @value{GDBN} commands are @samp{print}, @samp{output}, and
29285 @samp{call}.  In @code{gdbtk} only, there's a corresponding
29286 @samp{gdb_eval} command.
29287
29288 @subsubheading Example
29289
29290 In the following example, the numbers that precede the commands are the
29291 @dfn{tokens} described in @ref{GDB/MI Command Syntax, ,@sc{gdb/mi}
29292 Command Syntax}.  Notice how @sc{gdb/mi} returns the same tokens in its
29293 output.
29294
29295 @smallexample
29296 211-data-evaluate-expression A
29297 211^done,value="1"
29298 (gdb)
29299 311-data-evaluate-expression &A
29300 311^done,value="0xefffeb7c"
29301 (gdb)
29302 411-data-evaluate-expression A+3
29303 411^done,value="4"
29304 (gdb)
29305 511-data-evaluate-expression "A + 3"
29306 511^done,value="4"
29307 (gdb)
29308 @end smallexample
29309
29310
29311 @subheading The @code{-data-list-changed-registers} Command
29312 @findex -data-list-changed-registers
29313
29314 @subsubheading Synopsis
29315
29316 @smallexample
29317  -data-list-changed-registers
29318 @end smallexample
29319
29320 Display a list of the registers that have changed.
29321
29322 @subsubheading @value{GDBN} Command
29323
29324 @value{GDBN} doesn't have a direct analog for this command; @code{gdbtk}
29325 has the corresponding command @samp{gdb_changed_register_list}.
29326
29327 @subsubheading Example
29328
29329 On a PPC MBX board:
29330
29331 @smallexample
29332 (gdb)
29333 -exec-continue
29334 ^running
29335
29336 (gdb)
29337 *stopped,reason="breakpoint-hit",disp="keep",bkptno="1",frame=@{
29338 func="main",args=[],file="try.c",fullname="/home/foo/bar/try.c",
29339 line="5"@}
29340 (gdb)
29341 -data-list-changed-registers
29342 ^done,changed-registers=["0","1","2","4","5","6","7","8","9",
29343 "10","11","13","14","15","16","17","18","19","20","21","22","23",
29344 "24","25","26","27","28","30","31","64","65","66","67","69"]
29345 (gdb)
29346 @end smallexample
29347
29348
29349 @subheading The @code{-data-list-register-names} Command
29350 @findex -data-list-register-names
29351
29352 @subsubheading Synopsis
29353
29354 @smallexample
29355  -data-list-register-names [ ( @var{regno} )+ ]
29356 @end smallexample
29357
29358 Show a list of register names for the current target.  If no arguments
29359 are given, it shows a list of the names of all the registers.  If
29360 integer numbers are given as arguments, it will print a list of the
29361 names of the registers corresponding to the arguments.  To ensure
29362 consistency between a register name and its number, the output list may
29363 include empty register names.
29364
29365 @subsubheading @value{GDBN} Command
29366
29367 @value{GDBN} does not have a command which corresponds to
29368 @samp{-data-list-register-names}.  In @code{gdbtk} there is a
29369 corresponding command @samp{gdb_regnames}.
29370
29371 @subsubheading Example
29372
29373 For the PPC MBX board:
29374 @smallexample
29375 (gdb)
29376 -data-list-register-names
29377 ^done,register-names=["r0","r1","r2","r3","r4","r5","r6","r7",
29378 "r8","r9","r10","r11","r12","r13","r14","r15","r16","r17","r18",
29379 "r19","r20","r21","r22","r23","r24","r25","r26","r27","r28","r29",
29380 "r30","r31","f0","f1","f2","f3","f4","f5","f6","f7","f8","f9",
29381 "f10","f11","f12","f13","f14","f15","f16","f17","f18","f19","f20",
29382 "f21","f22","f23","f24","f25","f26","f27","f28","f29","f30","f31",
29383 "", "pc","ps","cr","lr","ctr","xer"]
29384 (gdb)
29385 -data-list-register-names 1 2 3
29386 ^done,register-names=["r1","r2","r3"]
29387 (gdb)
29388 @end smallexample
29389
29390 @subheading The @code{-data-list-register-values} Command
29391 @findex -data-list-register-values
29392
29393 @subsubheading Synopsis
29394
29395 @smallexample
29396  -data-list-register-values @var{fmt} [ ( @var{regno} )*]
29397 @end smallexample
29398
29399 Display the registers' contents.  @var{fmt} is the format according to
29400 which the registers' contents are to be returned, followed by an optional
29401 list of numbers specifying the registers to display.  A missing list of
29402 numbers indicates that the contents of all the registers must be returned.
29403
29404 Allowed formats for @var{fmt} are:
29405
29406 @table @code
29407 @item x
29408 Hexadecimal
29409 @item o
29410 Octal
29411 @item t
29412 Binary
29413 @item d
29414 Decimal
29415 @item r
29416 Raw
29417 @item N
29418 Natural
29419 @end table
29420
29421 @subsubheading @value{GDBN} Command
29422
29423 The corresponding @value{GDBN} commands are @samp{info reg}, @samp{info
29424 all-reg}, and (in @code{gdbtk}) @samp{gdb_fetch_registers}.
29425
29426 @subsubheading Example
29427
29428 For a PPC MBX board (note: line breaks are for readability only, they
29429 don't appear in the actual output):
29430
29431 @smallexample
29432 (gdb)
29433 -data-list-register-values r 64 65
29434 ^done,register-values=[@{number="64",value="0xfe00a300"@},
29435 @{number="65",value="0x00029002"@}]
29436 (gdb)
29437 -data-list-register-values x
29438 ^done,register-values=[@{number="0",value="0xfe0043c8"@},
29439 @{number="1",value="0x3fff88"@},@{number="2",value="0xfffffffe"@},
29440 @{number="3",value="0x0"@},@{number="4",value="0xa"@},
29441 @{number="5",value="0x3fff68"@},@{number="6",value="0x3fff58"@},
29442 @{number="7",value="0xfe011e98"@},@{number="8",value="0x2"@},
29443 @{number="9",value="0xfa202820"@},@{number="10",value="0xfa202808"@},
29444 @{number="11",value="0x1"@},@{number="12",value="0x0"@},
29445 @{number="13",value="0x4544"@},@{number="14",value="0xffdfffff"@},
29446 @{number="15",value="0xffffffff"@},@{number="16",value="0xfffffeff"@},
29447 @{number="17",value="0xefffffed"@},@{number="18",value="0xfffffffe"@},
29448 @{number="19",value="0xffffffff"@},@{number="20",value="0xffffffff"@},
29449 @{number="21",value="0xffffffff"@},@{number="22",value="0xfffffff7"@},
29450 @{number="23",value="0xffffffff"@},@{number="24",value="0xffffffff"@},
29451 @{number="25",value="0xffffffff"@},@{number="26",value="0xfffffffb"@},
29452 @{number="27",value="0xffffffff"@},@{number="28",value="0xf7bfffff"@},
29453 @{number="29",value="0x0"@},@{number="30",value="0xfe010000"@},
29454 @{number="31",value="0x0"@},@{number="32",value="0x0"@},
29455 @{number="33",value="0x0"@},@{number="34",value="0x0"@},
29456 @{number="35",value="0x0"@},@{number="36",value="0x0"@},
29457 @{number="37",value="0x0"@},@{number="38",value="0x0"@},
29458 @{number="39",value="0x0"@},@{number="40",value="0x0"@},
29459 @{number="41",value="0x0"@},@{number="42",value="0x0"@},
29460 @{number="43",value="0x0"@},@{number="44",value="0x0"@},
29461 @{number="45",value="0x0"@},@{number="46",value="0x0"@},
29462 @{number="47",value="0x0"@},@{number="48",value="0x0"@},
29463 @{number="49",value="0x0"@},@{number="50",value="0x0"@},
29464 @{number="51",value="0x0"@},@{number="52",value="0x0"@},
29465 @{number="53",value="0x0"@},@{number="54",value="0x0"@},
29466 @{number="55",value="0x0"@},@{number="56",value="0x0"@},
29467 @{number="57",value="0x0"@},@{number="58",value="0x0"@},
29468 @{number="59",value="0x0"@},@{number="60",value="0x0"@},
29469 @{number="61",value="0x0"@},@{number="62",value="0x0"@},
29470 @{number="63",value="0x0"@},@{number="64",value="0xfe00a300"@},
29471 @{number="65",value="0x29002"@},@{number="66",value="0x202f04b5"@},
29472 @{number="67",value="0xfe0043b0"@},@{number="68",value="0xfe00b3e4"@},
29473 @{number="69",value="0x20002b03"@}]
29474 (gdb)
29475 @end smallexample
29476
29477
29478 @subheading The @code{-data-read-memory} Command
29479 @findex -data-read-memory
29480
29481 This command is deprecated, use @code{-data-read-memory-bytes} instead.
29482
29483 @subsubheading Synopsis
29484
29485 @smallexample
29486  -data-read-memory [ -o @var{byte-offset} ]
29487    @var{address} @var{word-format} @var{word-size}
29488    @var{nr-rows} @var{nr-cols} [ @var{aschar} ]
29489 @end smallexample
29490
29491 @noindent
29492 where:
29493
29494 @table @samp
29495 @item @var{address}
29496 An expression specifying the address of the first memory word to be
29497 read.  Complex expressions containing embedded white space should be
29498 quoted using the C convention.
29499
29500 @item @var{word-format}
29501 The format to be used to print the memory words.  The notation is the
29502 same as for @value{GDBN}'s @code{print} command (@pxref{Output Formats,
29503 ,Output Formats}).
29504
29505 @item @var{word-size}
29506 The size of each memory word in bytes.
29507
29508 @item @var{nr-rows}
29509 The number of rows in the output table.
29510
29511 @item @var{nr-cols}
29512 The number of columns in the output table.
29513
29514 @item @var{aschar}
29515 If present, indicates that each row should include an @sc{ascii} dump.  The
29516 value of @var{aschar} is used as a padding character when a byte is not a
29517 member of the printable @sc{ascii} character set (printable @sc{ascii}
29518 characters are those whose code is between 32 and 126, inclusively).
29519
29520 @item @var{byte-offset}
29521 An offset to add to the @var{address} before fetching memory.
29522 @end table
29523
29524 This command displays memory contents as a table of @var{nr-rows} by
29525 @var{nr-cols} words, each word being @var{word-size} bytes.  In total,
29526 @code{@var{nr-rows} * @var{nr-cols} * @var{word-size}} bytes are read
29527 (returned as @samp{total-bytes}).  Should less than the requested number
29528 of bytes be returned by the target, the missing words are identified
29529 using @samp{N/A}.  The number of bytes read from the target is returned
29530 in @samp{nr-bytes} and the starting address used to read memory in
29531 @samp{addr}.
29532
29533 The address of the next/previous row or page is available in
29534 @samp{next-row} and @samp{prev-row}, @samp{next-page} and
29535 @samp{prev-page}.
29536
29537 @subsubheading @value{GDBN} Command
29538
29539 The corresponding @value{GDBN} command is @samp{x}.  @code{gdbtk} has
29540 @samp{gdb_get_mem} memory read command.
29541
29542 @subsubheading Example
29543
29544 Read six bytes of memory starting at @code{bytes+6} but then offset by
29545 @code{-6} bytes.  Format as three rows of two columns.  One byte per
29546 word.  Display each word in hex.
29547
29548 @smallexample
29549 (gdb)
29550 9-data-read-memory -o -6 -- bytes+6 x 1 3 2
29551 9^done,addr="0x00001390",nr-bytes="6",total-bytes="6",
29552 next-row="0x00001396",prev-row="0x0000138e",next-page="0x00001396",
29553 prev-page="0x0000138a",memory=[
29554 @{addr="0x00001390",data=["0x00","0x01"]@},
29555 @{addr="0x00001392",data=["0x02","0x03"]@},
29556 @{addr="0x00001394",data=["0x04","0x05"]@}]
29557 (gdb)
29558 @end smallexample
29559
29560 Read two bytes of memory starting at address @code{shorts + 64} and
29561 display as a single word formatted in decimal.
29562
29563 @smallexample
29564 (gdb)
29565 5-data-read-memory shorts+64 d 2 1 1
29566 5^done,addr="0x00001510",nr-bytes="2",total-bytes="2",
29567 next-row="0x00001512",prev-row="0x0000150e",
29568 next-page="0x00001512",prev-page="0x0000150e",memory=[
29569 @{addr="0x00001510",data=["128"]@}]
29570 (gdb)
29571 @end smallexample
29572
29573 Read thirty two bytes of memory starting at @code{bytes+16} and format
29574 as eight rows of four columns.  Include a string encoding with @samp{x}
29575 used as the non-printable character.
29576
29577 @smallexample
29578 (gdb)
29579 4-data-read-memory bytes+16 x 1 8 4 x
29580 4^done,addr="0x000013a0",nr-bytes="32",total-bytes="32",
29581 next-row="0x000013c0",prev-row="0x0000139c",
29582 next-page="0x000013c0",prev-page="0x00001380",memory=[
29583 @{addr="0x000013a0",data=["0x10","0x11","0x12","0x13"],ascii="xxxx"@},
29584 @{addr="0x000013a4",data=["0x14","0x15","0x16","0x17"],ascii="xxxx"@},
29585 @{addr="0x000013a8",data=["0x18","0x19","0x1a","0x1b"],ascii="xxxx"@},
29586 @{addr="0x000013ac",data=["0x1c","0x1d","0x1e","0x1f"],ascii="xxxx"@},
29587 @{addr="0x000013b0",data=["0x20","0x21","0x22","0x23"],ascii=" !\"#"@},
29588 @{addr="0x000013b4",data=["0x24","0x25","0x26","0x27"],ascii="$%&'"@},
29589 @{addr="0x000013b8",data=["0x28","0x29","0x2a","0x2b"],ascii="()*+"@},
29590 @{addr="0x000013bc",data=["0x2c","0x2d","0x2e","0x2f"],ascii=",-./"@}]
29591 (gdb)
29592 @end smallexample
29593
29594 @subheading The @code{-data-read-memory-bytes} Command
29595 @findex -data-read-memory-bytes
29596
29597 @subsubheading Synopsis
29598
29599 @smallexample
29600  -data-read-memory-bytes [ -o @var{byte-offset} ]
29601    @var{address} @var{count}
29602 @end smallexample
29603
29604 @noindent
29605 where:
29606
29607 @table @samp
29608 @item @var{address}
29609 An expression specifying the address of the first memory word to be
29610 read.  Complex expressions containing embedded white space should be
29611 quoted using the C convention.
29612
29613 @item @var{count}
29614 The number of bytes to read.  This should be an integer literal.
29615
29616 @item @var{byte-offset}
29617 The offsets in bytes relative to @var{address} at which to start
29618 reading.  This should be an integer literal.  This option is provided
29619 so that a frontend is not required to first evaluate address and then
29620 perform address arithmetics itself.
29621
29622 @end table
29623
29624 This command attempts to read all accessible memory regions in the
29625 specified range.  First, all regions marked as unreadable in the memory
29626 map (if one is defined) will be skipped.  @xref{Memory Region
29627 Attributes}.  Second, @value{GDBN} will attempt to read the remaining
29628 regions.  For each one, if reading full region results in an errors,
29629 @value{GDBN} will try to read a subset of the region.
29630
29631 In general, every single byte in the region may be readable or not,
29632 and the only way to read every readable byte is to try a read at
29633 every address, which is not practical.   Therefore, @value{GDBN} will
29634 attempt to read all accessible bytes at either beginning or the end
29635 of the region, using a binary division scheme.  This heuristic works
29636 well for reading accross a memory map boundary.  Note that if a region
29637 has a readable range that is neither at the beginning or the end,
29638 @value{GDBN} will not read it.
29639
29640 The result record (@pxref{GDB/MI Result Records}) that is output of
29641 the command includes a field named @samp{memory} whose content is a
29642 list of tuples.  Each tuple represent a successfully read memory block
29643 and has the following fields:
29644
29645 @table @code
29646 @item begin
29647 The start address of the memory block, as hexadecimal literal.
29648
29649 @item end
29650 The end address of the memory block, as hexadecimal literal.
29651
29652 @item offset
29653 The offset of the memory block, as hexadecimal literal, relative to
29654 the start address passed to @code{-data-read-memory-bytes}.
29655
29656 @item contents
29657 The contents of the memory block, in hex.
29658
29659 @end table
29660
29661
29662
29663 @subsubheading @value{GDBN} Command
29664
29665 The corresponding @value{GDBN} command is @samp{x}.
29666
29667 @subsubheading Example
29668
29669 @smallexample
29670 (gdb)
29671 -data-read-memory-bytes &a 10
29672 ^done,memory=[@{begin="0xbffff154",offset="0x00000000",
29673               end="0xbffff15e",
29674               contents="01000000020000000300"@}]
29675 (gdb)
29676 @end smallexample
29677
29678
29679 @subheading The @code{-data-write-memory-bytes} Command
29680 @findex -data-write-memory-bytes
29681
29682 @subsubheading Synopsis
29683
29684 @smallexample
29685  -data-write-memory-bytes @var{address} @var{contents}
29686 @end smallexample
29687
29688 @noindent
29689 where:
29690
29691 @table @samp
29692 @item @var{address}
29693 An expression specifying the address of the first memory word to be
29694 read.  Complex expressions containing embedded white space should be
29695 quoted using the C convention.
29696
29697 @item @var{contents}
29698 The hex-encoded bytes to write.
29699
29700 @end table
29701
29702 @subsubheading @value{GDBN} Command
29703
29704 There's no corresponding @value{GDBN} command.
29705
29706 @subsubheading Example
29707
29708 @smallexample
29709 (gdb)
29710 -data-write-memory-bytes &a "aabbccdd"
29711 ^done
29712 (gdb)
29713 @end smallexample
29714
29715
29716 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
29717 @node GDB/MI Tracepoint Commands
29718 @section @sc{gdb/mi} Tracepoint Commands
29719
29720 The commands defined in this section implement MI support for
29721 tracepoints.  For detailed introduction, see @ref{Tracepoints}.
29722
29723 @subheading The @code{-trace-find} Command
29724 @findex -trace-find
29725
29726 @subsubheading Synopsis
29727
29728 @smallexample
29729  -trace-find @var{mode} [@var{parameters}@dots{}]
29730 @end smallexample
29731
29732 Find a trace frame using criteria defined by @var{mode} and
29733 @var{parameters}.  The following table lists permissible
29734 modes and their parameters.  For details of operation, see @ref{tfind}.
29735
29736 @table @samp
29737
29738 @item none
29739 No parameters are required.  Stops examining trace frames.
29740
29741 @item frame-number
29742 An integer is required as parameter.  Selects tracepoint frame with
29743 that index.
29744
29745 @item tracepoint-number
29746 An integer is required as parameter.  Finds next
29747 trace frame that corresponds to tracepoint with the specified number.
29748
29749 @item pc
29750 An address is required as parameter.  Finds
29751 next trace frame that corresponds to any tracepoint at the specified
29752 address.
29753
29754 @item pc-inside-range
29755 Two addresses are required as parameters.  Finds next trace
29756 frame that corresponds to a tracepoint at an address inside the
29757 specified range.  Both bounds are considered to be inside the range.
29758
29759 @item pc-outside-range
29760 Two addresses are required as parameters.  Finds
29761 next trace frame that corresponds to a tracepoint at an address outside
29762 the specified range.  Both bounds are considered to be inside the range.
29763
29764 @item line
29765 Line specification is required as parameter.  @xref{Specify Location}.
29766 Finds next trace frame that corresponds to a tracepoint at
29767 the specified location.
29768
29769 @end table
29770
29771 If @samp{none} was passed as @var{mode}, the response does not
29772 have fields.  Otherwise, the response may have the following fields:
29773
29774 @table @samp
29775 @item found
29776 This field has either @samp{0} or @samp{1} as the value, depending
29777 on whether a matching tracepoint was found.
29778
29779 @item traceframe
29780 The index of the found traceframe.  This field is present iff
29781 the @samp{found} field has value of @samp{1}.
29782
29783 @item tracepoint
29784 The index of the found tracepoint.  This field is present iff
29785 the @samp{found} field has value of @samp{1}.
29786
29787 @item frame
29788 The information about the frame corresponding to the found trace
29789 frame.  This field is present only if a trace frame was found.
29790 @xref{GDB/MI Frame Information}, for description of this field.
29791
29792 @end table
29793
29794 @subsubheading @value{GDBN} Command
29795
29796 The corresponding @value{GDBN} command is @samp{tfind}.
29797
29798 @subheading -trace-define-variable
29799 @findex -trace-define-variable
29800
29801 @subsubheading Synopsis
29802
29803 @smallexample
29804  -trace-define-variable @var{name} [ @var{value} ]
29805 @end smallexample
29806
29807 Create trace variable @var{name} if it does not exist.  If
29808 @var{value} is specified, sets the initial value of the specified
29809 trace variable to that value.  Note that the @var{name} should start
29810 with the @samp{$} character.
29811
29812 @subsubheading @value{GDBN} Command
29813
29814 The corresponding @value{GDBN} command is @samp{tvariable}.
29815
29816 @subheading -trace-list-variables
29817 @findex -trace-list-variables
29818
29819 @subsubheading Synopsis
29820
29821 @smallexample
29822  -trace-list-variables
29823 @end smallexample
29824
29825 Return a table of all defined trace variables.  Each element of the
29826 table has the following fields:
29827
29828 @table @samp
29829 @item name
29830 The name of the trace variable.  This field is always present.
29831
29832 @item initial
29833 The initial value.  This is a 64-bit signed integer.  This
29834 field is always present.
29835
29836 @item current
29837 The value the trace variable has at the moment.  This is a 64-bit
29838 signed integer.  This field is absent iff current value is
29839 not defined, for example if the trace was never run, or is
29840 presently running.
29841
29842 @end table
29843
29844 @subsubheading @value{GDBN} Command
29845
29846 The corresponding @value{GDBN} command is @samp{tvariables}.
29847
29848 @subsubheading Example
29849
29850 @smallexample
29851 (gdb)
29852 -trace-list-variables
29853 ^done,trace-variables=@{nr_rows="1",nr_cols="3",
29854 hdr=[@{width="15",alignment="-1",col_name="name",colhdr="Name"@},
29855      @{width="11",alignment="-1",col_name="initial",colhdr="Initial"@},
29856      @{width="11",alignment="-1",col_name="current",colhdr="Current"@}],
29857 body=[variable=@{name="$trace_timestamp",initial="0"@}
29858       variable=@{name="$foo",initial="10",current="15"@}]@}
29859 (gdb)
29860 @end smallexample
29861
29862 @subheading -trace-save
29863 @findex -trace-save
29864
29865 @subsubheading Synopsis
29866
29867 @smallexample
29868  -trace-save [-r ] @var{filename}
29869 @end smallexample
29870
29871 Saves the collected trace data to @var{filename}.  Without the
29872 @samp{-r} option, the data is downloaded from the target and saved
29873 in a local file.  With the @samp{-r} option the target is asked
29874 to perform the save.
29875
29876 @subsubheading @value{GDBN} Command
29877
29878 The corresponding @value{GDBN} command is @samp{tsave}.
29879
29880
29881 @subheading -trace-start
29882 @findex -trace-start
29883
29884 @subsubheading Synopsis
29885
29886 @smallexample
29887  -trace-start
29888 @end smallexample
29889
29890 Starts a tracing experiments.  The result of this command does not
29891 have any fields.
29892
29893 @subsubheading @value{GDBN} Command
29894
29895 The corresponding @value{GDBN} command is @samp{tstart}.
29896
29897 @subheading -trace-status
29898 @findex -trace-status
29899
29900 @subsubheading Synopsis
29901
29902 @smallexample
29903  -trace-status
29904 @end smallexample
29905
29906 Obtains the status of a tracing experiment.  The result may include
29907 the following fields:
29908
29909 @table @samp
29910
29911 @item supported
29912 May have a value of either @samp{0}, when no tracing operations are
29913 supported, @samp{1}, when all tracing operations are supported, or
29914 @samp{file} when examining trace file.  In the latter case, examining
29915 of trace frame is possible but new tracing experiement cannot be
29916 started.  This field is always present.
29917
29918 @item running
29919 May have a value of either @samp{0} or @samp{1} depending on whether
29920 tracing experiement is in progress on target.  This field is present
29921 if @samp{supported} field is not @samp{0}.
29922
29923 @item stop-reason
29924 Report the reason why the tracing was stopped last time.  This field
29925 may be absent iff tracing was never stopped on target yet.  The
29926 value of @samp{request} means the tracing was stopped as result of
29927 the @code{-trace-stop} command.  The value of @samp{overflow} means
29928 the tracing buffer is full.  The value of @samp{disconnection} means
29929 tracing was automatically stopped when @value{GDBN} has disconnected.
29930 The value of @samp{passcount} means tracing was stopped when a
29931 tracepoint was passed a maximal number of times for that tracepoint.
29932 This field is present if @samp{supported} field is not @samp{0}.
29933
29934 @item stopping-tracepoint
29935 The number of tracepoint whose passcount as exceeded.  This field is
29936 present iff the @samp{stop-reason} field has the value of
29937 @samp{passcount}.
29938
29939 @item frames
29940 @itemx frames-created
29941 The @samp{frames} field is a count of the total number of trace frames
29942 in the trace buffer, while @samp{frames-created} is the total created
29943 during the run, including ones that were discarded, such as when a
29944 circular trace buffer filled up.  Both fields are optional.
29945
29946 @item buffer-size
29947 @itemx buffer-free
29948 These fields tell the current size of the tracing buffer and the
29949 remaining space.  These fields are optional.
29950
29951 @item circular
29952 The value of the circular trace buffer flag.  @code{1} means that the
29953 trace buffer is circular and old trace frames will be discarded if
29954 necessary to make room, @code{0} means that the trace buffer is linear
29955 and may fill up.
29956
29957 @item disconnected
29958 The value of the disconnected tracing flag.  @code{1} means that
29959 tracing will continue after @value{GDBN} disconnects, @code{0} means
29960 that the trace run will stop.
29961
29962 @end table
29963
29964 @subsubheading @value{GDBN} Command
29965
29966 The corresponding @value{GDBN} command is @samp{tstatus}.
29967
29968 @subheading -trace-stop
29969 @findex -trace-stop
29970
29971 @subsubheading Synopsis
29972
29973 @smallexample
29974  -trace-stop
29975 @end smallexample
29976
29977 Stops a tracing experiment.  The result of this command has the same
29978 fields as @code{-trace-status}, except that the @samp{supported} and
29979 @samp{running} fields are not output.
29980
29981 @subsubheading @value{GDBN} Command
29982
29983 The corresponding @value{GDBN} command is @samp{tstop}.
29984
29985
29986 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
29987 @node GDB/MI Symbol Query
29988 @section @sc{gdb/mi} Symbol Query Commands
29989
29990
29991 @ignore
29992 @subheading The @code{-symbol-info-address} Command
29993 @findex -symbol-info-address
29994
29995 @subsubheading Synopsis
29996
29997 @smallexample
29998  -symbol-info-address @var{symbol}
29999 @end smallexample
30000
30001 Describe where @var{symbol} is stored.
30002
30003 @subsubheading @value{GDBN} Command
30004
30005 The corresponding @value{GDBN} command is @samp{info address}.
30006
30007 @subsubheading Example
30008 N.A.
30009
30010
30011 @subheading The @code{-symbol-info-file} Command
30012 @findex -symbol-info-file
30013
30014 @subsubheading Synopsis
30015
30016 @smallexample
30017  -symbol-info-file
30018 @end smallexample
30019
30020 Show the file for the symbol.
30021
30022 @subsubheading @value{GDBN} Command
30023
30024 There's no equivalent @value{GDBN} command.  @code{gdbtk} has
30025 @samp{gdb_find_file}.
30026
30027 @subsubheading Example
30028 N.A.
30029
30030
30031 @subheading The @code{-symbol-info-function} Command
30032 @findex -symbol-info-function
30033
30034 @subsubheading Synopsis
30035
30036 @smallexample
30037  -symbol-info-function
30038 @end smallexample
30039
30040 Show which function the symbol lives in.
30041
30042 @subsubheading @value{GDBN} Command
30043
30044 @samp{gdb_get_function} in @code{gdbtk}.
30045
30046 @subsubheading Example
30047 N.A.
30048
30049
30050 @subheading The @code{-symbol-info-line} Command
30051 @findex -symbol-info-line
30052
30053 @subsubheading Synopsis
30054
30055 @smallexample
30056  -symbol-info-line
30057 @end smallexample
30058
30059 Show the core addresses of the code for a source line.
30060
30061 @subsubheading @value{GDBN} Command
30062
30063 The corresponding @value{GDBN} command is @samp{info line}.
30064 @code{gdbtk} has the @samp{gdb_get_line} and @samp{gdb_get_file} commands.
30065
30066 @subsubheading Example
30067 N.A.
30068
30069
30070 @subheading The @code{-symbol-info-symbol} Command
30071 @findex -symbol-info-symbol
30072
30073 @subsubheading Synopsis
30074
30075 @smallexample
30076  -symbol-info-symbol @var{addr}
30077 @end smallexample
30078
30079 Describe what symbol is at location @var{addr}.
30080
30081 @subsubheading @value{GDBN} Command
30082
30083 The corresponding @value{GDBN} command is @samp{info symbol}.
30084
30085 @subsubheading Example
30086 N.A.
30087
30088
30089 @subheading The @code{-symbol-list-functions} Command
30090 @findex -symbol-list-functions
30091
30092 @subsubheading Synopsis
30093
30094 @smallexample
30095  -symbol-list-functions
30096 @end smallexample
30097
30098 List the functions in the executable.
30099
30100 @subsubheading @value{GDBN} Command
30101
30102 @samp{info functions} in @value{GDBN}, @samp{gdb_listfunc} and
30103 @samp{gdb_search} in @code{gdbtk}.
30104
30105 @subsubheading Example
30106 N.A.
30107 @end ignore
30108
30109
30110 @subheading The @code{-symbol-list-lines} Command
30111 @findex -symbol-list-lines
30112
30113 @subsubheading Synopsis
30114
30115 @smallexample
30116  -symbol-list-lines @var{filename}
30117 @end smallexample
30118
30119 Print the list of lines that contain code and their associated program
30120 addresses for the given source filename.  The entries are sorted in
30121 ascending PC order.
30122
30123 @subsubheading @value{GDBN} Command
30124
30125 There is no corresponding @value{GDBN} command.
30126
30127 @subsubheading Example
30128 @smallexample
30129 (gdb)
30130 -symbol-list-lines basics.c
30131 ^done,lines=[@{pc="0x08048554",line="7"@},@{pc="0x0804855a",line="8"@}]
30132 (gdb)
30133 @end smallexample
30134
30135
30136 @ignore
30137 @subheading The @code{-symbol-list-types} Command
30138 @findex -symbol-list-types
30139
30140 @subsubheading Synopsis
30141
30142 @smallexample
30143  -symbol-list-types
30144 @end smallexample
30145
30146 List all the type names.
30147
30148 @subsubheading @value{GDBN} Command
30149
30150 The corresponding commands are @samp{info types} in @value{GDBN},
30151 @samp{gdb_search} in @code{gdbtk}.
30152
30153 @subsubheading Example
30154 N.A.
30155
30156
30157 @subheading The @code{-symbol-list-variables} Command
30158 @findex -symbol-list-variables
30159
30160 @subsubheading Synopsis
30161
30162 @smallexample
30163  -symbol-list-variables
30164 @end smallexample
30165
30166 List all the global and static variable names.
30167
30168 @subsubheading @value{GDBN} Command
30169
30170 @samp{info variables} in @value{GDBN}, @samp{gdb_search} in @code{gdbtk}.
30171
30172 @subsubheading Example
30173 N.A.
30174
30175
30176 @subheading The @code{-symbol-locate} Command
30177 @findex -symbol-locate
30178
30179 @subsubheading Synopsis
30180
30181 @smallexample
30182  -symbol-locate
30183 @end smallexample
30184
30185 @subsubheading @value{GDBN} Command
30186
30187 @samp{gdb_loc} in @code{gdbtk}.
30188
30189 @subsubheading Example
30190 N.A.
30191
30192
30193 @subheading The @code{-symbol-type} Command
30194 @findex -symbol-type
30195
30196 @subsubheading Synopsis
30197
30198 @smallexample
30199  -symbol-type @var{variable}
30200 @end smallexample
30201
30202 Show type of @var{variable}.
30203
30204 @subsubheading @value{GDBN} Command
30205
30206 The corresponding @value{GDBN} command is @samp{ptype}, @code{gdbtk} has
30207 @samp{gdb_obj_variable}.
30208
30209 @subsubheading Example
30210 N.A.
30211 @end ignore
30212
30213
30214 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
30215 @node GDB/MI File Commands
30216 @section @sc{gdb/mi} File Commands
30217
30218 This section describes the GDB/MI commands to specify executable file names
30219 and to read in and obtain symbol table information.
30220
30221 @subheading The @code{-file-exec-and-symbols} Command
30222 @findex -file-exec-and-symbols
30223
30224 @subsubheading Synopsis
30225
30226 @smallexample
30227  -file-exec-and-symbols @var{file}
30228 @end smallexample
30229
30230 Specify the executable file to be debugged.  This file is the one from
30231 which the symbol table is also read.  If no file is specified, the
30232 command clears the executable and symbol information.  If breakpoints
30233 are set when using this command with no arguments, @value{GDBN} will produce
30234 error messages.  Otherwise, no output is produced, except a completion
30235 notification.
30236
30237 @subsubheading @value{GDBN} Command
30238
30239 The corresponding @value{GDBN} command is @samp{file}.
30240
30241 @subsubheading Example
30242
30243 @smallexample
30244 (gdb)
30245 -file-exec-and-symbols /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
30246 ^done
30247 (gdb)
30248 @end smallexample
30249
30250
30251 @subheading The @code{-file-exec-file} Command
30252 @findex -file-exec-file
30253
30254 @subsubheading Synopsis
30255
30256 @smallexample
30257  -file-exec-file @var{file}
30258 @end smallexample
30259
30260 Specify the executable file to be debugged.  Unlike
30261 @samp{-file-exec-and-symbols}, the symbol table is @emph{not} read
30262 from this file.  If used without argument, @value{GDBN} clears the information
30263 about the executable file.  No output is produced, except a completion
30264 notification.
30265
30266 @subsubheading @value{GDBN} Command
30267
30268 The corresponding @value{GDBN} command is @samp{exec-file}.
30269
30270 @subsubheading Example
30271
30272 @smallexample
30273 (gdb)
30274 -file-exec-file /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
30275 ^done
30276 (gdb)
30277 @end smallexample
30278
30279
30280 @ignore
30281 @subheading The @code{-file-list-exec-sections} Command
30282 @findex -file-list-exec-sections
30283
30284 @subsubheading Synopsis
30285
30286 @smallexample
30287  -file-list-exec-sections
30288 @end smallexample
30289
30290 List the sections of the current executable file.
30291
30292 @subsubheading @value{GDBN} Command
30293
30294 The @value{GDBN} command @samp{info file} shows, among the rest, the same
30295 information as this command.  @code{gdbtk} has a corresponding command
30296 @samp{gdb_load_info}.
30297
30298 @subsubheading Example
30299 N.A.
30300 @end ignore
30301
30302
30303 @subheading The @code{-file-list-exec-source-file} Command
30304 @findex -file-list-exec-source-file
30305
30306 @subsubheading Synopsis
30307
30308 @smallexample
30309  -file-list-exec-source-file
30310 @end smallexample
30311
30312 List the line number, the current source file, and the absolute path
30313 to the current source file for the current executable.  The macro
30314 information field has a value of @samp{1} or @samp{0} depending on
30315 whether or not the file includes preprocessor macro information.
30316
30317 @subsubheading @value{GDBN} Command
30318
30319 The @value{GDBN} equivalent is @samp{info source}
30320
30321 @subsubheading Example
30322
30323 @smallexample
30324 (gdb)
30325 123-file-list-exec-source-file
30326 123^done,line="1",file="foo.c",fullname="/home/bar/foo.c,macro-info="1"
30327 (gdb)
30328 @end smallexample
30329
30330
30331 @subheading The @code{-file-list-exec-source-files} Command
30332 @findex -file-list-exec-source-files
30333
30334 @subsubheading Synopsis
30335
30336 @smallexample
30337  -file-list-exec-source-files
30338 @end smallexample
30339
30340 List the source files for the current executable.
30341
30342 It will always output the filename, but only when @value{GDBN} can find
30343 the absolute file name of a source file, will it output the fullname.
30344
30345 @subsubheading @value{GDBN} Command
30346
30347 The @value{GDBN} equivalent is @samp{info sources}.
30348 @code{gdbtk} has an analogous command @samp{gdb_listfiles}.
30349
30350 @subsubheading Example
30351 @smallexample
30352 (gdb)
30353 -file-list-exec-source-files
30354 ^done,files=[
30355 @{file=foo.c,fullname=/home/foo.c@},
30356 @{file=/home/bar.c,fullname=/home/bar.c@},
30357 @{file=gdb_could_not_find_fullpath.c@}]
30358 (gdb)
30359 @end smallexample
30360
30361 @ignore
30362 @subheading The @code{-file-list-shared-libraries} Command
30363 @findex -file-list-shared-libraries
30364
30365 @subsubheading Synopsis
30366
30367 @smallexample
30368  -file-list-shared-libraries
30369 @end smallexample
30370
30371 List the shared libraries in the program.
30372
30373 @subsubheading @value{GDBN} Command
30374
30375 The corresponding @value{GDBN} command is @samp{info shared}.
30376
30377 @subsubheading Example
30378 N.A.
30379
30380
30381 @subheading The @code{-file-list-symbol-files} Command
30382 @findex -file-list-symbol-files
30383
30384 @subsubheading Synopsis
30385
30386 @smallexample
30387  -file-list-symbol-files
30388 @end smallexample
30389
30390 List symbol files.
30391
30392 @subsubheading @value{GDBN} Command
30393
30394 The corresponding @value{GDBN} command is @samp{info file} (part of it).
30395
30396 @subsubheading Example
30397 N.A.
30398 @end ignore
30399
30400
30401 @subheading The @code{-file-symbol-file} Command
30402 @findex -file-symbol-file
30403
30404 @subsubheading Synopsis
30405
30406 @smallexample
30407  -file-symbol-file @var{file}
30408 @end smallexample
30409
30410 Read symbol table info from the specified @var{file} argument.  When
30411 used without arguments, clears @value{GDBN}'s symbol table info.  No output is
30412 produced, except for a completion notification.
30413
30414 @subsubheading @value{GDBN} Command
30415
30416 The corresponding @value{GDBN} command is @samp{symbol-file}.
30417
30418 @subsubheading Example
30419
30420 @smallexample
30421 (gdb)
30422 -file-symbol-file /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
30423 ^done
30424 (gdb)
30425 @end smallexample
30426
30427 @ignore
30428 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
30429 @node GDB/MI Memory Overlay Commands
30430 @section @sc{gdb/mi} Memory Overlay Commands
30431
30432 The memory overlay commands are not implemented.
30433
30434 @c @subheading -overlay-auto
30435
30436 @c @subheading -overlay-list-mapping-state
30437
30438 @c @subheading -overlay-list-overlays
30439
30440 @c @subheading -overlay-map
30441
30442 @c @subheading -overlay-off
30443
30444 @c @subheading -overlay-on
30445
30446 @c @subheading -overlay-unmap
30447
30448 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
30449 @node GDB/MI Signal Handling Commands
30450 @section @sc{gdb/mi} Signal Handling Commands
30451
30452 Signal handling commands are not implemented.
30453
30454 @c @subheading -signal-handle
30455
30456 @c @subheading -signal-list-handle-actions
30457
30458 @c @subheading -signal-list-signal-types
30459 @end ignore
30460
30461
30462 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
30463 @node GDB/MI Target Manipulation
30464 @section @sc{gdb/mi} Target Manipulation Commands
30465
30466
30467 @subheading The @code{-target-attach} Command
30468 @findex -target-attach
30469
30470 @subsubheading Synopsis
30471
30472 @smallexample
30473  -target-attach @var{pid} | @var{gid} | @var{file}
30474 @end smallexample
30475
30476 Attach to a process @var{pid} or a file @var{file} outside of
30477 @value{GDBN}, or a thread group @var{gid}.  If attaching to a thread
30478 group, the id previously returned by 
30479 @samp{-list-thread-groups --available} must be used.
30480
30481 @subsubheading @value{GDBN} Command
30482
30483 The corresponding @value{GDBN} command is @samp{attach}.
30484
30485 @subsubheading Example
30486 @smallexample
30487 (gdb)
30488 -target-attach 34
30489 =thread-created,id="1"
30490 *stopped,thread-id="1",frame=@{addr="0xb7f7e410",func="bar",args=[]@}
30491 ^done
30492 (gdb)
30493 @end smallexample
30494
30495 @ignore
30496 @subheading The @code{-target-compare-sections} Command
30497 @findex -target-compare-sections
30498
30499 @subsubheading Synopsis
30500
30501 @smallexample
30502  -target-compare-sections [ @var{section} ]
30503 @end smallexample
30504
30505 Compare data of section @var{section} on target to the exec file.
30506 Without the argument, all sections are compared.
30507
30508 @subsubheading @value{GDBN} Command
30509
30510 The @value{GDBN} equivalent is @samp{compare-sections}.
30511
30512 @subsubheading Example
30513 N.A.
30514 @end ignore
30515
30516
30517 @subheading The @code{-target-detach} Command
30518 @findex -target-detach
30519
30520 @subsubheading Synopsis
30521
30522 @smallexample
30523  -target-detach [ @var{pid} | @var{gid} ]
30524 @end smallexample
30525
30526 Detach from the remote target which normally resumes its execution.
30527 If either @var{pid} or @var{gid} is specified, detaches from either
30528 the specified process, or specified thread group.  There's no output.
30529
30530 @subsubheading @value{GDBN} Command
30531
30532 The corresponding @value{GDBN} command is @samp{detach}.
30533
30534 @subsubheading Example
30535
30536 @smallexample
30537 (gdb)
30538 -target-detach
30539 ^done
30540 (gdb)
30541 @end smallexample
30542
30543
30544 @subheading The @code{-target-disconnect} Command
30545 @findex -target-disconnect
30546
30547 @subsubheading Synopsis
30548
30549 @smallexample
30550  -target-disconnect
30551 @end smallexample
30552
30553 Disconnect from the remote target.  There's no output and the target is
30554 generally not resumed.
30555
30556 @subsubheading @value{GDBN} Command
30557
30558 The corresponding @value{GDBN} command is @samp{disconnect}.
30559
30560 @subsubheading Example
30561
30562 @smallexample
30563 (gdb)
30564 -target-disconnect
30565 ^done
30566 (gdb)
30567 @end smallexample
30568
30569
30570 @subheading The @code{-target-download} Command
30571 @findex -target-download
30572
30573 @subsubheading Synopsis
30574
30575 @smallexample
30576  -target-download
30577 @end smallexample
30578
30579 Loads the executable onto the remote target.
30580 It prints out an update message every half second, which includes the fields:
30581
30582 @table @samp
30583 @item section
30584 The name of the section.
30585 @item section-sent
30586 The size of what has been sent so far for that section.
30587 @item section-size
30588 The size of the section.
30589 @item total-sent
30590 The total size of what was sent so far (the current and the previous sections).
30591 @item total-size
30592 The size of the overall executable to download.
30593 @end table
30594
30595 @noindent
30596 Each message is sent as status record (@pxref{GDB/MI Output Syntax, ,
30597 @sc{gdb/mi} Output Syntax}).
30598
30599 In addition, it prints the name and size of the sections, as they are
30600 downloaded.  These messages include the following fields:
30601
30602 @table @samp
30603 @item section
30604 The name of the section.
30605 @item section-size
30606 The size of the section.
30607 @item total-size
30608 The size of the overall executable to download.
30609 @end table
30610
30611 @noindent
30612 At the end, a summary is printed.
30613
30614 @subsubheading @value{GDBN} Command
30615
30616 The corresponding @value{GDBN} command is @samp{load}.
30617
30618 @subsubheading Example
30619
30620 Note: each status message appears on a single line.  Here the messages
30621 have been broken down so that they can fit onto a page.
30622
30623 @smallexample
30624 (gdb)
30625 -target-download
30626 +download,@{section=".text",section-size="6668",total-size="9880"@}
30627 +download,@{section=".text",section-sent="512",section-size="6668",
30628 total-sent="512",total-size="9880"@}
30629 +download,@{section=".text",section-sent="1024",section-size="6668",
30630 total-sent="1024",total-size="9880"@}
30631 +download,@{section=".text",section-sent="1536",section-size="6668",
30632 total-sent="1536",total-size="9880"@}
30633 +download,@{section=".text",section-sent="2048",section-size="6668",
30634 total-sent="2048",total-size="9880"@}
30635 +download,@{section=".text",section-sent="2560",section-size="6668",
30636 total-sent="2560",total-size="9880"@}
30637 +download,@{section=".text",section-sent="3072",section-size="6668",
30638 total-sent="3072",total-size="9880"@}
30639 +download,@{section=".text",section-sent="3584",section-size="6668",
30640 total-sent="3584",total-size="9880"@}
30641 +download,@{section=".text",section-sent="4096",section-size="6668",
30642 total-sent="4096",total-size="9880"@}
30643 +download,@{section=".text",section-sent="4608",section-size="6668",
30644 total-sent="4608",total-size="9880"@}
30645 +download,@{section=".text",section-sent="5120",section-size="6668",
30646 total-sent="5120",total-size="9880"@}
30647 +download,@{section=".text",section-sent="5632",section-size="6668",
30648 total-sent="5632",total-size="9880"@}
30649 +download,@{section=".text",section-sent="6144",section-size="6668",
30650 total-sent="6144",total-size="9880"@}
30651 +download,@{section=".text",section-sent="6656",section-size="6668",
30652 total-sent="6656",total-size="9880"@}
30653 +download,@{section=".init",section-size="28",total-size="9880"@}
30654 +download,@{section=".fini",section-size="28",total-size="9880"@}
30655 +download,@{section=".data",section-size="3156",total-size="9880"@}
30656 +download,@{section=".data",section-sent="512",section-size="3156",
30657 total-sent="7236",total-size="9880"@}
30658 +download,@{section=".data",section-sent="1024",section-size="3156",
30659 total-sent="7748",total-size="9880"@}
30660 +download,@{section=".data",section-sent="1536",section-size="3156",
30661 total-sent="8260",total-size="9880"@}
30662 +download,@{section=".data",section-sent="2048",section-size="3156",
30663 total-sent="8772",total-size="9880"@}
30664 +download,@{section=".data",section-sent="2560",section-size="3156",
30665 total-sent="9284",total-size="9880"@}
30666 +download,@{section=".data",section-sent="3072",section-size="3156",
30667 total-sent="9796",total-size="9880"@}
30668 ^done,address="0x10004",load-size="9880",transfer-rate="6586",
30669 write-rate="429"
30670 (gdb)
30671 @end smallexample
30672
30673
30674 @ignore
30675 @subheading The @code{-target-exec-status} Command
30676 @findex -target-exec-status
30677
30678 @subsubheading Synopsis
30679
30680 @smallexample
30681  -target-exec-status
30682 @end smallexample
30683
30684 Provide information on the state of the target (whether it is running or
30685 not, for instance).
30686
30687 @subsubheading @value{GDBN} Command
30688
30689 There's no equivalent @value{GDBN} command.
30690
30691 @subsubheading Example
30692 N.A.
30693
30694
30695 @subheading The @code{-target-list-available-targets} Command
30696 @findex -target-list-available-targets
30697
30698 @subsubheading Synopsis
30699
30700 @smallexample
30701  -target-list-available-targets
30702 @end smallexample
30703
30704 List the possible targets to connect to.
30705
30706 @subsubheading @value{GDBN} Command
30707
30708 The corresponding @value{GDBN} command is @samp{help target}.
30709
30710 @subsubheading Example
30711 N.A.
30712
30713
30714 @subheading The @code{-target-list-current-targets} Command
30715 @findex -target-list-current-targets
30716
30717 @subsubheading Synopsis
30718
30719 @smallexample
30720  -target-list-current-targets
30721 @end smallexample
30722
30723 Describe the current target.
30724
30725 @subsubheading @value{GDBN} Command
30726
30727 The corresponding information is printed by @samp{info file} (among
30728 other things).
30729
30730 @subsubheading Example
30731 N.A.
30732
30733
30734 @subheading The @code{-target-list-parameters} Command
30735 @findex -target-list-parameters
30736
30737 @subsubheading Synopsis
30738
30739 @smallexample
30740  -target-list-parameters
30741 @end smallexample
30742
30743 @c ????
30744 @end ignore
30745
30746 @subsubheading @value{GDBN} Command
30747
30748 No equivalent.
30749
30750 @subsubheading Example
30751 N.A.
30752
30753
30754 @subheading The @code{-target-select} Command
30755 @findex -target-select
30756
30757 @subsubheading Synopsis
30758
30759 @smallexample
30760  -target-select @var{type} @var{parameters @dots{}}
30761 @end smallexample
30762
30763 Connect @value{GDBN} to the remote target.  This command takes two args:
30764
30765 @table @samp
30766 @item @var{type}
30767 The type of target, for instance @samp{remote}, etc.
30768 @item @var{parameters}
30769 Device names, host names and the like.  @xref{Target Commands, ,
30770 Commands for Managing Targets}, for more details.
30771 @end table
30772
30773 The output is a connection notification, followed by the address at
30774 which the target program is, in the following form:
30775
30776 @smallexample
30777 ^connected,addr="@var{address}",func="@var{function name}",
30778   args=[@var{arg list}]
30779 @end smallexample
30780
30781 @subsubheading @value{GDBN} Command
30782
30783 The corresponding @value{GDBN} command is @samp{target}.
30784
30785 @subsubheading Example
30786
30787 @smallexample
30788 (gdb)
30789 -target-select remote /dev/ttya
30790 ^connected,addr="0xfe00a300",func="??",args=[]
30791 (gdb)
30792 @end smallexample
30793
30794 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
30795 @node GDB/MI File Transfer Commands
30796 @section @sc{gdb/mi} File Transfer Commands
30797
30798
30799 @subheading The @code{-target-file-put} Command
30800 @findex -target-file-put
30801
30802 @subsubheading Synopsis
30803
30804 @smallexample
30805  -target-file-put @var{hostfile} @var{targetfile}
30806 @end smallexample
30807
30808 Copy file @var{hostfile} from the host system (the machine running
30809 @value{GDBN}) to @var{targetfile} on the target system.
30810
30811 @subsubheading @value{GDBN} Command
30812
30813 The corresponding @value{GDBN} command is @samp{remote put}.
30814
30815 @subsubheading Example
30816
30817 @smallexample
30818 (gdb)
30819 -target-file-put localfile remotefile
30820 ^done
30821 (gdb)
30822 @end smallexample
30823
30824
30825 @subheading The @code{-target-file-get} Command
30826 @findex -target-file-get
30827
30828 @subsubheading Synopsis
30829
30830 @smallexample
30831  -target-file-get @var{targetfile} @var{hostfile}
30832 @end smallexample
30833
30834 Copy file @var{targetfile} from the target system to @var{hostfile}
30835 on the host system.
30836
30837 @subsubheading @value{GDBN} Command
30838
30839 The corresponding @value{GDBN} command is @samp{remote get}.
30840
30841 @subsubheading Example
30842
30843 @smallexample
30844 (gdb)
30845 -target-file-get remotefile localfile
30846 ^done
30847 (gdb)
30848 @end smallexample
30849
30850
30851 @subheading The @code{-target-file-delete} Command
30852 @findex -target-file-delete
30853
30854 @subsubheading Synopsis
30855
30856 @smallexample
30857  -target-file-delete @var{targetfile}
30858 @end smallexample
30859
30860 Delete @var{targetfile} from the target system.
30861
30862 @subsubheading @value{GDBN} Command
30863
30864 The corresponding @value{GDBN} command is @samp{remote delete}.
30865
30866 @subsubheading Example
30867
30868 @smallexample
30869 (gdb)
30870 -target-file-delete remotefile
30871 ^done
30872 (gdb)
30873 @end smallexample
30874
30875
30876 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
30877 @node GDB/MI Miscellaneous Commands
30878 @section Miscellaneous @sc{gdb/mi} Commands
30879
30880 @c @subheading -gdb-complete
30881
30882 @subheading The @code{-gdb-exit} Command
30883 @findex -gdb-exit
30884
30885 @subsubheading Synopsis
30886
30887 @smallexample
30888  -gdb-exit
30889 @end smallexample
30890
30891 Exit @value{GDBN} immediately.
30892
30893 @subsubheading @value{GDBN} Command
30894
30895 Approximately corresponds to @samp{quit}.
30896
30897 @subsubheading Example
30898
30899 @smallexample
30900 (gdb)
30901 -gdb-exit
30902 ^exit
30903 @end smallexample
30904
30905
30906 @ignore
30907 @subheading The @code{-exec-abort} Command
30908 @findex -exec-abort
30909
30910 @subsubheading Synopsis
30911
30912 @smallexample
30913  -exec-abort
30914 @end smallexample
30915
30916 Kill the inferior running program.
30917
30918 @subsubheading @value{GDBN} Command
30919
30920 The corresponding @value{GDBN} command is @samp{kill}.
30921
30922 @subsubheading Example
30923 N.A.
30924 @end ignore
30925
30926
30927 @subheading The @code{-gdb-set} Command
30928 @findex -gdb-set
30929
30930 @subsubheading Synopsis
30931
30932 @smallexample
30933  -gdb-set
30934 @end smallexample
30935
30936 Set an internal @value{GDBN} variable.
30937 @c IS THIS A DOLLAR VARIABLE? OR SOMETHING LIKE ANNOTATE ?????
30938
30939 @subsubheading @value{GDBN} Command
30940
30941 The corresponding @value{GDBN} command is @samp{set}.
30942
30943 @subsubheading Example
30944
30945 @smallexample
30946 (gdb)
30947 -gdb-set $foo=3
30948 ^done
30949 (gdb)
30950 @end smallexample
30951
30952
30953 @subheading The @code{-gdb-show} Command
30954 @findex -gdb-show
30955
30956 @subsubheading Synopsis
30957
30958 @smallexample
30959  -gdb-show
30960 @end smallexample
30961
30962 Show the current value of a @value{GDBN} variable.
30963
30964 @subsubheading @value{GDBN} Command
30965
30966 The corresponding @value{GDBN} command is @samp{show}.
30967
30968 @subsubheading Example
30969
30970 @smallexample
30971 (gdb)
30972 -gdb-show annotate
30973 ^done,value="0"
30974 (gdb)
30975 @end smallexample
30976
30977 @c @subheading -gdb-source
30978
30979
30980 @subheading The @code{-gdb-version} Command
30981 @findex -gdb-version
30982
30983 @subsubheading Synopsis
30984
30985 @smallexample
30986  -gdb-version
30987 @end smallexample
30988
30989 Show version information for @value{GDBN}.  Used mostly in testing.
30990
30991 @subsubheading @value{GDBN} Command
30992
30993 The @value{GDBN} equivalent is @samp{show version}.  @value{GDBN} by
30994 default shows this information when you start an interactive session.
30995
30996 @subsubheading Example
30997
30998 @c This example modifies the actual output from GDB to avoid overfull
30999 @c box in TeX.
31000 @smallexample
31001 (gdb)
31002 -gdb-version
31003 ~GNU gdb 5.2.1
31004 ~Copyright 2000 Free Software Foundation, Inc.
31005 ~GDB is free software, covered by the GNU General Public License, and
31006 ~you are welcome to change it and/or distribute copies of it under
31007 ~ certain conditions.
31008 ~Type "show copying" to see the conditions.
31009 ~There is absolutely no warranty for GDB.  Type "show warranty" for
31010 ~ details.
31011 ~This GDB was configured as
31012  "--host=sparc-sun-solaris2.5.1 --target=ppc-eabi".
31013 ^done
31014 (gdb)
31015 @end smallexample
31016
31017 @subheading The @code{-list-features} Command
31018 @findex -list-features
31019
31020 Returns a list of particular features of the MI protocol that
31021 this version of gdb implements.  A feature can be a command,
31022 or a new field in an output of some command, or even an
31023 important bugfix.  While a frontend can sometimes detect presence
31024 of a feature at runtime, it is easier to perform detection at debugger
31025 startup. 
31026
31027 The command returns a list of strings, with each string naming an
31028 available feature.  Each returned string is just a name, it does not
31029 have any internal structure.  The list of possible feature names 
31030 is given below.
31031
31032 Example output:
31033
31034 @smallexample
31035 (gdb) -list-features
31036 ^done,result=["feature1","feature2"]
31037 @end smallexample
31038
31039 The current list of features is:
31040
31041 @table @samp
31042 @item frozen-varobjs
31043 Indicates support for the @code{-var-set-frozen} command, as well
31044 as possible presense of the @code{frozen} field in the output
31045 of @code{-varobj-create}.
31046 @item pending-breakpoints
31047 Indicates support for the @option{-f} option to the @code{-break-insert}
31048 command.
31049 @item python
31050 Indicates Python scripting support, Python-based
31051 pretty-printing commands, and possible presence of the
31052 @samp{display_hint} field in the output of @code{-var-list-children}
31053 @item thread-info
31054 Indicates support for the @code{-thread-info} command.
31055 @item data-read-memory-bytes
31056 Indicates support for the @code{-data-read-memory-bytes} and the
31057 @code{-data-write-memory-bytes} commands.
31058 @item breakpoint-notifications
31059 Indicates that changes to breakpoints and breakpoints created via the
31060 CLI will be announced via async records.
31061 @item ada-task-info
31062 Indicates support for the @code{-ada-task-info} command.
31063 @end table
31064
31065 @subheading The @code{-list-target-features} Command
31066 @findex -list-target-features
31067
31068 Returns a list of particular features that are supported by the
31069 target.  Those features affect the permitted MI commands, but 
31070 unlike the features reported by the @code{-list-features} command, the
31071 features depend on which target GDB is using at the moment.  Whenever
31072 a target can change, due to commands such as @code{-target-select},
31073 @code{-target-attach} or @code{-exec-run}, the list of target features
31074 may change, and the frontend should obtain it again.
31075 Example output:
31076
31077 @smallexample
31078 (gdb) -list-features
31079 ^done,result=["async"]
31080 @end smallexample
31081
31082 The current list of features is:
31083
31084 @table @samp
31085 @item async
31086 Indicates that the target is capable of asynchronous command
31087 execution, which means that @value{GDBN} will accept further commands
31088 while the target is running.
31089
31090 @item reverse
31091 Indicates that the target is capable of reverse execution.
31092 @xref{Reverse Execution}, for more information.
31093
31094 @end table
31095
31096 @subheading The @code{-list-thread-groups} Command
31097 @findex -list-thread-groups
31098
31099 @subheading Synopsis
31100
31101 @smallexample
31102 -list-thread-groups [ --available ] [ --recurse 1 ] [ @var{group} ... ]
31103 @end smallexample
31104
31105 Lists thread groups (@pxref{Thread groups}).  When a single thread
31106 group is passed as the argument, lists the children of that group.
31107 When several thread group are passed, lists information about those
31108 thread groups.  Without any parameters, lists information about all
31109 top-level thread groups.
31110
31111 Normally, thread groups that are being debugged are reported.
31112 With the @samp{--available} option, @value{GDBN} reports thread groups
31113 available on the target.
31114
31115 The output of this command may have either a @samp{threads} result or
31116 a @samp{groups} result.  The @samp{thread} result has a list of tuples
31117 as value, with each tuple describing a thread (@pxref{GDB/MI Thread
31118 Information}).  The @samp{groups} result has a list of tuples as value,
31119 each tuple describing a thread group.  If top-level groups are
31120 requested (that is, no parameter is passed), or when several groups
31121 are passed, the output always has a @samp{groups} result.  The format
31122 of the @samp{group} result is described below.
31123
31124 To reduce the number of roundtrips it's possible to list thread groups
31125 together with their children, by passing the @samp{--recurse} option
31126 and the recursion depth.  Presently, only recursion depth of 1 is
31127 permitted.  If this option is present, then every reported thread group
31128 will also include its children, either as @samp{group} or
31129 @samp{threads} field.
31130
31131 In general, any combination of option and parameters is permitted, with
31132 the following caveats:
31133
31134 @itemize @bullet
31135 @item
31136 When a single thread group is passed, the output will typically
31137 be the @samp{threads} result.  Because threads may not contain
31138 anything, the @samp{recurse} option will be ignored.
31139
31140 @item
31141 When the @samp{--available} option is passed, limited information may
31142 be available.  In particular, the list of threads of a process might
31143 be inaccessible.  Further, specifying specific thread groups might
31144 not give any performance advantage over listing all thread groups.
31145 The frontend should assume that @samp{-list-thread-groups --available}
31146 is always an expensive operation and cache the results.
31147
31148 @end itemize
31149
31150 The @samp{groups} result is a list of tuples, where each tuple may
31151 have the following fields:
31152
31153 @table @code
31154 @item id
31155 Identifier of the thread group.  This field is always present.
31156 The identifier is an opaque string; frontends should not try to
31157 convert it to an integer, even though it might look like one.
31158
31159 @item type
31160 The type of the thread group.  At present, only @samp{process} is a
31161 valid type.
31162
31163 @item pid
31164 The target-specific process identifier.  This field is only present
31165 for thread groups of type @samp{process} and only if the process exists.
31166
31167 @item num_children
31168 The number of children this thread group has.  This field may be
31169 absent for an available thread group.
31170
31171 @item threads
31172 This field has a list of tuples as value, each tuple describing a
31173 thread.  It may be present if the @samp{--recurse} option is
31174 specified, and it's actually possible to obtain the threads.
31175
31176 @item cores
31177 This field is a list of integers, each identifying a core that one
31178 thread of the group is running on.  This field may be absent if
31179 such information is not available.
31180
31181 @item executable
31182 The name of the executable file that corresponds to this thread group.
31183 The field is only present for thread groups of type @samp{process},
31184 and only if there is a corresponding executable file.
31185
31186 @end table
31187
31188 @subheading Example
31189
31190 @smallexample
31191 @value{GDBP}
31192 -list-thread-groups
31193 ^done,groups=[@{id="17",type="process",pid="yyy",num_children="2"@}]
31194 -list-thread-groups 17
31195 ^done,threads=[@{id="2",target-id="Thread 0xb7e14b90 (LWP 21257)",
31196    frame=@{level="0",addr="0xffffe410",func="__kernel_vsyscall",args=[]@},state="running"@},
31197 @{id="1",target-id="Thread 0xb7e156b0 (LWP 21254)",
31198    frame=@{level="0",addr="0x0804891f",func="foo",args=[@{name="i",value="10"@}],
31199            file="/tmp/a.c",fullname="/tmp/a.c",line="158"@},state="running"@}]]
31200 -list-thread-groups --available
31201 ^done,groups=[@{id="17",type="process",pid="yyy",num_children="2",cores=[1,2]@}]
31202 -list-thread-groups --available --recurse 1
31203  ^done,groups=[@{id="17", types="process",pid="yyy",num_children="2",cores=[1,2],
31204                 threads=[@{id="1",target-id="Thread 0xb7e14b90",cores=[1]@},
31205                          @{id="2",target-id="Thread 0xb7e14b90",cores=[2]@}]@},..]
31206 -list-thread-groups --available --recurse 1 17 18
31207 ^done,groups=[@{id="17", types="process",pid="yyy",num_children="2",cores=[1,2],
31208                threads=[@{id="1",target-id="Thread 0xb7e14b90",cores=[1]@},
31209                         @{id="2",target-id="Thread 0xb7e14b90",cores=[2]@}]@},...]
31210 @end smallexample
31211
31212
31213 @subheading The @code{-add-inferior} Command
31214 @findex -add-inferior
31215
31216 @subheading Synopsis
31217
31218 @smallexample
31219 -add-inferior
31220 @end smallexample
31221
31222 Creates a new inferior (@pxref{Inferiors and Programs}).  The created
31223 inferior is not associated with any executable.  Such association may
31224 be established with the @samp{-file-exec-and-symbols} command
31225 (@pxref{GDB/MI File Commands}).  The command response has a single
31226 field, @samp{thread-group}, whose value is the identifier of the
31227 thread group corresponding to the new inferior.
31228
31229 @subheading Example
31230
31231 @smallexample
31232 @value{GDBP}
31233 -add-inferior
31234 ^done,thread-group="i3"
31235 @end smallexample
31236
31237 @subheading The @code{-interpreter-exec} Command
31238 @findex -interpreter-exec
31239
31240 @subheading Synopsis
31241
31242 @smallexample
31243 -interpreter-exec @var{interpreter} @var{command}
31244 @end smallexample
31245 @anchor{-interpreter-exec} 
31246
31247 Execute the specified @var{command} in the given @var{interpreter}.
31248
31249 @subheading @value{GDBN} Command
31250
31251 The corresponding @value{GDBN} command is @samp{interpreter-exec}.
31252
31253 @subheading Example
31254
31255 @smallexample
31256 (gdb)
31257 -interpreter-exec console "break main"
31258 &"During symbol reading, couldn't parse type; debugger out of date?.\n"
31259 &"During symbol reading, bad structure-type format.\n"
31260 ~"Breakpoint 1 at 0x8074fc6: file ../../src/gdb/main.c, line 743.\n"
31261 ^done
31262 (gdb)
31263 @end smallexample
31264
31265 @subheading The @code{-inferior-tty-set} Command
31266 @findex -inferior-tty-set
31267
31268 @subheading Synopsis
31269
31270 @smallexample
31271 -inferior-tty-set /dev/pts/1
31272 @end smallexample
31273
31274 Set terminal for future runs of the program being debugged.
31275
31276 @subheading @value{GDBN} Command
31277
31278 The corresponding @value{GDBN} command is @samp{set inferior-tty} /dev/pts/1.
31279
31280 @subheading Example
31281
31282 @smallexample
31283 (gdb)
31284 -inferior-tty-set /dev/pts/1
31285 ^done
31286 (gdb)
31287 @end smallexample
31288
31289 @subheading The @code{-inferior-tty-show} Command
31290 @findex -inferior-tty-show
31291
31292 @subheading Synopsis
31293
31294 @smallexample
31295 -inferior-tty-show
31296 @end smallexample
31297
31298 Show terminal for future runs of program being debugged.
31299
31300 @subheading @value{GDBN} Command
31301
31302 The corresponding @value{GDBN} command is @samp{show inferior-tty}.
31303
31304 @subheading Example
31305
31306 @smallexample
31307 (gdb)
31308 -inferior-tty-set /dev/pts/1
31309 ^done
31310 (gdb)
31311 -inferior-tty-show
31312 ^done,inferior_tty_terminal="/dev/pts/1"
31313 (gdb)
31314 @end smallexample
31315
31316 @subheading The @code{-enable-timings} Command
31317 @findex -enable-timings
31318
31319 @subheading Synopsis
31320
31321 @smallexample
31322 -enable-timings [yes | no]
31323 @end smallexample
31324
31325 Toggle the printing of the wallclock, user and system times for an MI
31326 command as a field in its output.  This command is to help frontend
31327 developers optimize the performance of their code.  No argument is
31328 equivalent to @samp{yes}.
31329
31330 @subheading @value{GDBN} Command
31331
31332 No equivalent.
31333
31334 @subheading Example
31335
31336 @smallexample
31337 (gdb)
31338 -enable-timings
31339 ^done
31340 (gdb)
31341 -break-insert main
31342 ^done,bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
31343 addr="0x080484ed",func="main",file="myprog.c",
31344 fullname="/home/nickrob/myprog.c",line="73",times="0"@},
31345 time=@{wallclock="0.05185",user="0.00800",system="0.00000"@}
31346 (gdb)
31347 -enable-timings no
31348 ^done
31349 (gdb)
31350 -exec-run
31351 ^running
31352 (gdb)
31353 *stopped,reason="breakpoint-hit",disp="keep",bkptno="1",thread-id="0",
31354 frame=@{addr="0x080484ed",func="main",args=[@{name="argc",value="1"@},
31355 @{name="argv",value="0xbfb60364"@}],file="myprog.c",
31356 fullname="/home/nickrob/myprog.c",line="73"@}
31357 (gdb)
31358 @end smallexample
31359
31360 @node Annotations
31361 @chapter @value{GDBN} Annotations
31362
31363 This chapter describes annotations in @value{GDBN}.  Annotations were
31364 designed to interface @value{GDBN} to graphical user interfaces or other
31365 similar programs which want to interact with @value{GDBN} at a
31366 relatively high level.
31367
31368 The annotation mechanism has largely been superseded by @sc{gdb/mi}
31369 (@pxref{GDB/MI}).
31370
31371 @ignore
31372 This is Edition @value{EDITION}, @value{DATE}.
31373 @end ignore
31374
31375 @menu
31376 * Annotations Overview::  What annotations are; the general syntax.
31377 * Server Prefix::       Issuing a command without affecting user state.
31378 * Prompting::           Annotations marking @value{GDBN}'s need for input.
31379 * Errors::              Annotations for error messages.
31380 * Invalidation::        Some annotations describe things now invalid.
31381 * Annotations for Running::
31382                         Whether the program is running, how it stopped, etc.
31383 * Source Annotations::  Annotations describing source code.
31384 @end menu
31385
31386 @node Annotations Overview
31387 @section What is an Annotation?
31388 @cindex annotations
31389
31390 Annotations start with a newline character, two @samp{control-z}
31391 characters, and the name of the annotation.  If there is no additional
31392 information associated with this annotation, the name of the annotation
31393 is followed immediately by a newline.  If there is additional
31394 information, the name of the annotation is followed by a space, the
31395 additional information, and a newline.  The additional information
31396 cannot contain newline characters.
31397
31398 Any output not beginning with a newline and two @samp{control-z}
31399 characters denotes literal output from @value{GDBN}.  Currently there is
31400 no need for @value{GDBN} to output a newline followed by two
31401 @samp{control-z} characters, but if there was such a need, the
31402 annotations could be extended with an @samp{escape} annotation which
31403 means those three characters as output.
31404
31405 The annotation @var{level}, which is specified using the
31406 @option{--annotate} command line option (@pxref{Mode Options}), controls
31407 how much information @value{GDBN} prints together with its prompt,
31408 values of expressions, source lines, and other types of output.  Level 0
31409 is for no annotations, level 1 is for use when @value{GDBN} is run as a
31410 subprocess of @sc{gnu} Emacs, level 3 is the maximum annotation suitable
31411 for programs that control @value{GDBN}, and level 2 annotations have
31412 been made obsolete (@pxref{Limitations, , Limitations of the Annotation
31413 Interface, annotate, GDB's Obsolete Annotations}).
31414
31415 @table @code
31416 @kindex set annotate
31417 @item set annotate @var{level}
31418 The @value{GDBN} command @code{set annotate} sets the level of
31419 annotations to the specified @var{level}.
31420
31421 @item show annotate
31422 @kindex show annotate
31423 Show the current annotation level.
31424 @end table
31425
31426 This chapter describes level 3 annotations.
31427
31428 A simple example of starting up @value{GDBN} with annotations is:
31429
31430 @smallexample
31431 $ @kbd{gdb --annotate=3}
31432 GNU gdb 6.0
31433 Copyright 2003 Free Software Foundation, Inc.
31434 GDB is free software, covered by the GNU General Public License,
31435 and you are welcome to change it and/or distribute copies of it
31436 under certain conditions.
31437 Type "show copying" to see the conditions.
31438 There is absolutely no warranty for GDB.  Type "show warranty"
31439 for details.
31440 This GDB was configured as "i386-pc-linux-gnu"
31441
31442 ^Z^Zpre-prompt
31443 (@value{GDBP})
31444 ^Z^Zprompt
31445 @kbd{quit}
31446
31447 ^Z^Zpost-prompt
31448 $
31449 @end smallexample
31450
31451 Here @samp{quit} is input to @value{GDBN}; the rest is output from
31452 @value{GDBN}.  The three lines beginning @samp{^Z^Z} (where @samp{^Z}
31453 denotes a @samp{control-z} character) are annotations; the rest is
31454 output from @value{GDBN}.
31455
31456 @node Server Prefix
31457 @section The Server Prefix
31458 @cindex server prefix
31459
31460 If you prefix a command with @samp{server } then it will not affect
31461 the command history, nor will it affect @value{GDBN}'s notion of which
31462 command to repeat if @key{RET} is pressed on a line by itself.  This
31463 means that commands can be run behind a user's back by a front-end in
31464 a transparent manner.
31465
31466 The @code{server } prefix does not affect the recording of values into
31467 the value history; to print a value without recording it into the
31468 value history, use the @code{output} command instead of the
31469 @code{print} command.
31470
31471 Using this prefix also disables confirmation requests
31472 (@pxref{confirmation requests}).
31473
31474 @node Prompting
31475 @section Annotation for @value{GDBN} Input
31476
31477 @cindex annotations for prompts
31478 When @value{GDBN} prompts for input, it annotates this fact so it is possible
31479 to know when to send output, when the output from a given command is
31480 over, etc.
31481
31482 Different kinds of input each have a different @dfn{input type}.  Each
31483 input type has three annotations: a @code{pre-} annotation, which
31484 denotes the beginning of any prompt which is being output, a plain
31485 annotation, which denotes the end of the prompt, and then a @code{post-}
31486 annotation which denotes the end of any echo which may (or may not) be
31487 associated with the input.  For example, the @code{prompt} input type
31488 features the following annotations:
31489
31490 @smallexample
31491 ^Z^Zpre-prompt
31492 ^Z^Zprompt
31493 ^Z^Zpost-prompt
31494 @end smallexample
31495
31496 The input types are
31497
31498 @table @code
31499 @findex pre-prompt annotation
31500 @findex prompt annotation
31501 @findex post-prompt annotation
31502 @item prompt
31503 When @value{GDBN} is prompting for a command (the main @value{GDBN} prompt).
31504
31505 @findex pre-commands annotation
31506 @findex commands annotation
31507 @findex post-commands annotation
31508 @item commands
31509 When @value{GDBN} prompts for a set of commands, like in the @code{commands}
31510 command.  The annotations are repeated for each command which is input.
31511
31512 @findex pre-overload-choice annotation
31513 @findex overload-choice annotation
31514 @findex post-overload-choice annotation
31515 @item overload-choice
31516 When @value{GDBN} wants the user to select between various overloaded functions.
31517
31518 @findex pre-query annotation
31519 @findex query annotation
31520 @findex post-query annotation
31521 @item query
31522 When @value{GDBN} wants the user to confirm a potentially dangerous operation.
31523
31524 @findex pre-prompt-for-continue annotation
31525 @findex prompt-for-continue annotation
31526 @findex post-prompt-for-continue annotation
31527 @item prompt-for-continue
31528 When @value{GDBN} is asking the user to press return to continue.  Note: Don't
31529 expect this to work well; instead use @code{set height 0} to disable
31530 prompting.  This is because the counting of lines is buggy in the
31531 presence of annotations.
31532 @end table
31533
31534 @node Errors
31535 @section Errors
31536 @cindex annotations for errors, warnings and interrupts
31537
31538 @findex quit annotation
31539 @smallexample
31540 ^Z^Zquit
31541 @end smallexample
31542
31543 This annotation occurs right before @value{GDBN} responds to an interrupt.
31544
31545 @findex error annotation
31546 @smallexample
31547 ^Z^Zerror
31548 @end smallexample
31549
31550 This annotation occurs right before @value{GDBN} responds to an error.
31551
31552 Quit and error annotations indicate that any annotations which @value{GDBN} was
31553 in the middle of may end abruptly.  For example, if a
31554 @code{value-history-begin} annotation is followed by a @code{error}, one
31555 cannot expect to receive the matching @code{value-history-end}.  One
31556 cannot expect not to receive it either, however; an error annotation
31557 does not necessarily mean that @value{GDBN} is immediately returning all the way
31558 to the top level.
31559
31560 @findex error-begin annotation
31561 A quit or error annotation may be preceded by
31562
31563 @smallexample
31564 ^Z^Zerror-begin
31565 @end smallexample
31566
31567 Any output between that and the quit or error annotation is the error
31568 message.
31569
31570 Warning messages are not yet annotated.
31571 @c If we want to change that, need to fix warning(), type_error(),
31572 @c range_error(), and possibly other places.
31573
31574 @node Invalidation
31575 @section Invalidation Notices
31576
31577 @cindex annotations for invalidation messages
31578 The following annotations say that certain pieces of state may have
31579 changed.
31580
31581 @table @code
31582 @findex frames-invalid annotation
31583 @item ^Z^Zframes-invalid
31584
31585 The frames (for example, output from the @code{backtrace} command) may
31586 have changed.
31587
31588 @findex breakpoints-invalid annotation
31589 @item ^Z^Zbreakpoints-invalid
31590
31591 The breakpoints may have changed.  For example, the user just added or
31592 deleted a breakpoint.
31593 @end table
31594
31595 @node Annotations for Running
31596 @section Running the Program
31597 @cindex annotations for running programs
31598
31599 @findex starting annotation
31600 @findex stopping annotation
31601 When the program starts executing due to a @value{GDBN} command such as
31602 @code{step} or @code{continue},
31603
31604 @smallexample
31605 ^Z^Zstarting
31606 @end smallexample
31607
31608 is output.  When the program stops,
31609
31610 @smallexample
31611 ^Z^Zstopped
31612 @end smallexample
31613
31614 is output.  Before the @code{stopped} annotation, a variety of
31615 annotations describe how the program stopped.
31616
31617 @table @code
31618 @findex exited annotation
31619 @item ^Z^Zexited @var{exit-status}
31620 The program exited, and @var{exit-status} is the exit status (zero for
31621 successful exit, otherwise nonzero).
31622
31623 @findex signalled annotation
31624 @findex signal-name annotation
31625 @findex signal-name-end annotation
31626 @findex signal-string annotation
31627 @findex signal-string-end annotation
31628 @item ^Z^Zsignalled
31629 The program exited with a signal.  After the @code{^Z^Zsignalled}, the
31630 annotation continues:
31631
31632 @smallexample
31633 @var{intro-text}
31634 ^Z^Zsignal-name
31635 @var{name}
31636 ^Z^Zsignal-name-end
31637 @var{middle-text}
31638 ^Z^Zsignal-string
31639 @var{string}
31640 ^Z^Zsignal-string-end
31641 @var{end-text}
31642 @end smallexample
31643
31644 @noindent
31645 where @var{name} is the name of the signal, such as @code{SIGILL} or
31646 @code{SIGSEGV}, and @var{string} is the explanation of the signal, such
31647 as @code{Illegal Instruction} or @code{Segmentation fault}.
31648 @var{intro-text}, @var{middle-text}, and @var{end-text} are for the
31649 user's benefit and have no particular format.
31650
31651 @findex signal annotation
31652 @item ^Z^Zsignal
31653 The syntax of this annotation is just like @code{signalled}, but @value{GDBN} is
31654 just saying that the program received the signal, not that it was
31655 terminated with it.
31656
31657 @findex breakpoint annotation
31658 @item ^Z^Zbreakpoint @var{number}
31659 The program hit breakpoint number @var{number}.
31660
31661 @findex watchpoint annotation
31662 @item ^Z^Zwatchpoint @var{number}
31663 The program hit watchpoint number @var{number}.
31664 @end table
31665
31666 @node Source Annotations
31667 @section Displaying Source
31668 @cindex annotations for source display
31669
31670 @findex source annotation
31671 The following annotation is used instead of displaying source code:
31672
31673 @smallexample
31674 ^Z^Zsource @var{filename}:@var{line}:@var{character}:@var{middle}:@var{addr}
31675 @end smallexample
31676
31677 where @var{filename} is an absolute file name indicating which source
31678 file, @var{line} is the line number within that file (where 1 is the
31679 first line in the file), @var{character} is the character position
31680 within the file (where 0 is the first character in the file) (for most
31681 debug formats this will necessarily point to the beginning of a line),
31682 @var{middle} is @samp{middle} if @var{addr} is in the middle of the
31683 line, or @samp{beg} if @var{addr} is at the beginning of the line, and
31684 @var{addr} is the address in the target program associated with the
31685 source which is being displayed.  @var{addr} is in the form @samp{0x}
31686 followed by one or more lowercase hex digits (note that this does not
31687 depend on the language).
31688
31689 @node JIT Interface
31690 @chapter JIT Compilation Interface
31691 @cindex just-in-time compilation
31692 @cindex JIT compilation interface
31693
31694 This chapter documents @value{GDBN}'s @dfn{just-in-time} (JIT) compilation
31695 interface.  A JIT compiler is a program or library that generates native
31696 executable code at runtime and executes it, usually in order to achieve good
31697 performance while maintaining platform independence. 
31698
31699 Programs that use JIT compilation are normally difficult to debug because
31700 portions of their code are generated at runtime, instead of being loaded from
31701 object files, which is where @value{GDBN} normally finds the program's symbols
31702 and debug information.  In order to debug programs that use JIT compilation,
31703 @value{GDBN} has an interface that allows the program to register in-memory
31704 symbol files with @value{GDBN} at runtime.
31705
31706 If you are using @value{GDBN} to debug a program that uses this interface, then
31707 it should work transparently so long as you have not stripped the binary.  If
31708 you are developing a JIT compiler, then the interface is documented in the rest
31709 of this chapter.  At this time, the only known client of this interface is the
31710 LLVM JIT.
31711
31712 Broadly speaking, the JIT interface mirrors the dynamic loader interface.  The
31713 JIT compiler communicates with @value{GDBN} by writing data into a global
31714 variable and calling a fuction at a well-known symbol.  When @value{GDBN}
31715 attaches, it reads a linked list of symbol files from the global variable to
31716 find existing code, and puts a breakpoint in the function so that it can find
31717 out about additional code.
31718
31719 @menu
31720 * Declarations::                Relevant C struct declarations
31721 * Registering Code::            Steps to register code
31722 * Unregistering Code::          Steps to unregister code
31723 @end menu
31724
31725 @node Declarations
31726 @section JIT Declarations
31727
31728 These are the relevant struct declarations that a C program should include to
31729 implement the interface:
31730
31731 @smallexample
31732 typedef enum
31733 @{
31734   JIT_NOACTION = 0,
31735   JIT_REGISTER_FN,
31736   JIT_UNREGISTER_FN
31737 @} jit_actions_t;
31738
31739 struct jit_code_entry
31740 @{
31741   struct jit_code_entry *next_entry;
31742   struct jit_code_entry *prev_entry;
31743   const char *symfile_addr;
31744   uint64_t symfile_size;
31745 @};
31746
31747 struct jit_descriptor
31748 @{
31749   uint32_t version;
31750   /* This type should be jit_actions_t, but we use uint32_t
31751      to be explicit about the bitwidth.  */
31752   uint32_t action_flag;
31753   struct jit_code_entry *relevant_entry;
31754   struct jit_code_entry *first_entry;
31755 @};
31756
31757 /* GDB puts a breakpoint in this function.  */
31758 void __attribute__((noinline)) __jit_debug_register_code() @{ @};
31759
31760 /* Make sure to specify the version statically, because the
31761    debugger may check the version before we can set it.  */
31762 struct jit_descriptor __jit_debug_descriptor = @{ 1, 0, 0, 0 @};
31763 @end smallexample
31764
31765 If the JIT is multi-threaded, then it is important that the JIT synchronize any
31766 modifications to this global data properly, which can easily be done by putting
31767 a global mutex around modifications to these structures.
31768
31769 @node Registering Code
31770 @section Registering Code
31771
31772 To register code with @value{GDBN}, the JIT should follow this protocol:
31773
31774 @itemize @bullet
31775 @item
31776 Generate an object file in memory with symbols and other desired debug
31777 information.  The file must include the virtual addresses of the sections.
31778
31779 @item
31780 Create a code entry for the file, which gives the start and size of the symbol
31781 file.
31782
31783 @item
31784 Add it to the linked list in the JIT descriptor.
31785
31786 @item
31787 Point the relevant_entry field of the descriptor at the entry.
31788
31789 @item
31790 Set @code{action_flag} to @code{JIT_REGISTER} and call
31791 @code{__jit_debug_register_code}.
31792 @end itemize
31793
31794 When @value{GDBN} is attached and the breakpoint fires, @value{GDBN} uses the
31795 @code{relevant_entry} pointer so it doesn't have to walk the list looking for
31796 new code.  However, the linked list must still be maintained in order to allow
31797 @value{GDBN} to attach to a running process and still find the symbol files.
31798
31799 @node Unregistering Code
31800 @section Unregistering Code
31801
31802 If code is freed, then the JIT should use the following protocol:
31803
31804 @itemize @bullet
31805 @item
31806 Remove the code entry corresponding to the code from the linked list.
31807
31808 @item
31809 Point the @code{relevant_entry} field of the descriptor at the code entry.
31810
31811 @item
31812 Set @code{action_flag} to @code{JIT_UNREGISTER} and call
31813 @code{__jit_debug_register_code}.
31814 @end itemize
31815
31816 If the JIT frees or recompiles code without unregistering it, then @value{GDBN}
31817 and the JIT will leak the memory used for the associated symbol files.
31818
31819 @node GDB Bugs
31820 @chapter Reporting Bugs in @value{GDBN}
31821 @cindex bugs in @value{GDBN}
31822 @cindex reporting bugs in @value{GDBN}
31823
31824 Your bug reports play an essential role in making @value{GDBN} reliable.
31825
31826 Reporting a bug may help you by bringing a solution to your problem, or it
31827 may not.  But in any case the principal function of a bug report is to help
31828 the entire community by making the next version of @value{GDBN} work better.  Bug
31829 reports are your contribution to the maintenance of @value{GDBN}.
31830
31831 In order for a bug report to serve its purpose, you must include the
31832 information that enables us to fix the bug.
31833
31834 @menu
31835 * Bug Criteria::                Have you found a bug?
31836 * Bug Reporting::               How to report bugs
31837 @end menu
31838
31839 @node Bug Criteria
31840 @section Have You Found a Bug?
31841 @cindex bug criteria
31842
31843 If you are not sure whether you have found a bug, here are some guidelines:
31844
31845 @itemize @bullet
31846 @cindex fatal signal
31847 @cindex debugger crash
31848 @cindex crash of debugger
31849 @item
31850 If the debugger gets a fatal signal, for any input whatever, that is a
31851 @value{GDBN} bug.  Reliable debuggers never crash.
31852
31853 @cindex error on valid input
31854 @item
31855 If @value{GDBN} produces an error message for valid input, that is a
31856 bug.  (Note that if you're cross debugging, the problem may also be
31857 somewhere in the connection to the target.)
31858
31859 @cindex invalid input
31860 @item
31861 If @value{GDBN} does not produce an error message for invalid input,
31862 that is a bug.  However, you should note that your idea of
31863 ``invalid input'' might be our idea of ``an extension'' or ``support
31864 for traditional practice''.
31865
31866 @item
31867 If you are an experienced user of debugging tools, your suggestions
31868 for improvement of @value{GDBN} are welcome in any case.
31869 @end itemize
31870
31871 @node Bug Reporting
31872 @section How to Report Bugs
31873 @cindex bug reports
31874 @cindex @value{GDBN} bugs, reporting
31875
31876 A number of companies and individuals offer support for @sc{gnu} products.
31877 If you obtained @value{GDBN} from a support organization, we recommend you
31878 contact that organization first.
31879
31880 You can find contact information for many support companies and
31881 individuals in the file @file{etc/SERVICE} in the @sc{gnu} Emacs
31882 distribution.
31883 @c should add a web page ref...
31884
31885 @ifset BUGURL
31886 @ifset BUGURL_DEFAULT
31887 In any event, we also recommend that you submit bug reports for
31888 @value{GDBN}.  The preferred method is to submit them directly using
31889 @uref{http://www.gnu.org/software/gdb/bugs/, @value{GDBN}'s Bugs web
31890 page}.  Alternatively, the @email{bug-gdb@@gnu.org, e-mail gateway} can
31891 be used.
31892
31893 @strong{Do not send bug reports to @samp{info-gdb}, or to
31894 @samp{help-gdb}, or to any newsgroups.}  Most users of @value{GDBN} do
31895 not want to receive bug reports.  Those that do have arranged to receive
31896 @samp{bug-gdb}.
31897
31898 The mailing list @samp{bug-gdb} has a newsgroup @samp{gnu.gdb.bug} which
31899 serves as a repeater.  The mailing list and the newsgroup carry exactly
31900 the same messages.  Often people think of posting bug reports to the
31901 newsgroup instead of mailing them.  This appears to work, but it has one
31902 problem which can be crucial: a newsgroup posting often lacks a mail
31903 path back to the sender.  Thus, if we need to ask for more information,
31904 we may be unable to reach you.  For this reason, it is better to send
31905 bug reports to the mailing list.
31906 @end ifset
31907 @ifclear BUGURL_DEFAULT
31908 In any event, we also recommend that you submit bug reports for
31909 @value{GDBN} to @value{BUGURL}.
31910 @end ifclear
31911 @end ifset
31912
31913 The fundamental principle of reporting bugs usefully is this:
31914 @strong{report all the facts}.  If you are not sure whether to state a
31915 fact or leave it out, state it!
31916
31917 Often people omit facts because they think they know what causes the
31918 problem and assume that some details do not matter.  Thus, you might
31919 assume that the name of the variable you use in an example does not matter.
31920 Well, probably it does not, but one cannot be sure.  Perhaps the bug is a
31921 stray memory reference which happens to fetch from the location where that
31922 name is stored in memory; perhaps, if the name were different, the contents
31923 of that location would fool the debugger into doing the right thing despite
31924 the bug.  Play it safe and give a specific, complete example.  That is the
31925 easiest thing for you to do, and the most helpful.
31926
31927 Keep in mind that the purpose of a bug report is to enable us to fix the
31928 bug.  It may be that the bug has been reported previously, but neither
31929 you nor we can know that unless your bug report is complete and
31930 self-contained.
31931
31932 Sometimes people give a few sketchy facts and ask, ``Does this ring a
31933 bell?''  Those bug reports are useless, and we urge everyone to
31934 @emph{refuse to respond to them} except to chide the sender to report
31935 bugs properly.
31936
31937 To enable us to fix the bug, you should include all these things:
31938
31939 @itemize @bullet
31940 @item
31941 The version of @value{GDBN}.  @value{GDBN} announces it if you start
31942 with no arguments; you can also print it at any time using @code{show
31943 version}.
31944
31945 Without this, we will not know whether there is any point in looking for
31946 the bug in the current version of @value{GDBN}.
31947
31948 @item
31949 The type of machine you are using, and the operating system name and
31950 version number.
31951
31952 @item
31953 What compiler (and its version) was used to compile @value{GDBN}---e.g.@:
31954 ``@value{GCC}--2.8.1''.
31955
31956 @item
31957 What compiler (and its version) was used to compile the program you are
31958 debugging---e.g.@:  ``@value{GCC}--2.8.1'', or ``HP92453-01 A.10.32.03 HP
31959 C Compiler''.  For @value{NGCC}, you can say @kbd{@value{GCC} --version}
31960 to get this information; for other compilers, see the documentation for
31961 those compilers.
31962
31963 @item
31964 The command arguments you gave the compiler to compile your example and
31965 observe the bug.  For example, did you use @samp{-O}?  To guarantee
31966 you will not omit something important, list them all.  A copy of the
31967 Makefile (or the output from make) is sufficient.
31968
31969 If we were to try to guess the arguments, we would probably guess wrong
31970 and then we might not encounter the bug.
31971
31972 @item
31973 A complete input script, and all necessary source files, that will
31974 reproduce the bug.
31975
31976 @item
31977 A description of what behavior you observe that you believe is
31978 incorrect.  For example, ``It gets a fatal signal.''
31979
31980 Of course, if the bug is that @value{GDBN} gets a fatal signal, then we
31981 will certainly notice it.  But if the bug is incorrect output, we might
31982 not notice unless it is glaringly wrong.  You might as well not give us
31983 a chance to make a mistake.
31984
31985 Even if the problem you experience is a fatal signal, you should still
31986 say so explicitly.  Suppose something strange is going on, such as, your
31987 copy of @value{GDBN} is out of synch, or you have encountered a bug in
31988 the C library on your system.  (This has happened!)  Your copy might
31989 crash and ours would not.  If you told us to expect a crash, then when
31990 ours fails to crash, we would know that the bug was not happening for
31991 us.  If you had not told us to expect a crash, then we would not be able
31992 to draw any conclusion from our observations.
31993
31994 @pindex script
31995 @cindex recording a session script
31996 To collect all this information, you can use a session recording program
31997 such as @command{script}, which is available on many Unix systems.
31998 Just run your @value{GDBN} session inside @command{script} and then
31999 include the @file{typescript} file with your bug report.
32000
32001 Another way to record a @value{GDBN} session is to run @value{GDBN}
32002 inside Emacs and then save the entire buffer to a file.
32003
32004 @item
32005 If you wish to suggest changes to the @value{GDBN} source, send us context
32006 diffs.  If you even discuss something in the @value{GDBN} source, refer to
32007 it by context, not by line number.
32008
32009 The line numbers in our development sources will not match those in your
32010 sources.  Your line numbers would convey no useful information to us.
32011
32012 @end itemize
32013
32014 Here are some things that are not necessary:
32015
32016 @itemize @bullet
32017 @item
32018 A description of the envelope of the bug.
32019
32020 Often people who encounter a bug spend a lot of time investigating
32021 which changes to the input file will make the bug go away and which
32022 changes will not affect it.
32023
32024 This is often time consuming and not very useful, because the way we
32025 will find the bug is by running a single example under the debugger
32026 with breakpoints, not by pure deduction from a series of examples.
32027 We recommend that you save your time for something else.
32028
32029 Of course, if you can find a simpler example to report @emph{instead}
32030 of the original one, that is a convenience for us.  Errors in the
32031 output will be easier to spot, running under the debugger will take
32032 less time, and so on.
32033
32034 However, simplification is not vital; if you do not want to do this,
32035 report the bug anyway and send us the entire test case you used.
32036
32037 @item
32038 A patch for the bug.
32039
32040 A patch for the bug does help us if it is a good one.  But do not omit
32041 the necessary information, such as the test case, on the assumption that
32042 a patch is all we need.  We might see problems with your patch and decide
32043 to fix the problem another way, or we might not understand it at all.
32044
32045 Sometimes with a program as complicated as @value{GDBN} it is very hard to
32046 construct an example that will make the program follow a certain path
32047 through the code.  If you do not send us the example, we will not be able
32048 to construct one, so we will not be able to verify that the bug is fixed.
32049
32050 And if we cannot understand what bug you are trying to fix, or why your
32051 patch should be an improvement, we will not install it.  A test case will
32052 help us to understand.
32053
32054 @item
32055 A guess about what the bug is or what it depends on.
32056
32057 Such guesses are usually wrong.  Even we cannot guess right about such
32058 things without first using the debugger to find the facts.
32059 @end itemize
32060
32061 @c The readline documentation is distributed with the readline code
32062 @c and consists of the two following files:
32063 @c     rluser.texi
32064 @c     hsuser.texi
32065 @c Use -I with makeinfo to point to the appropriate directory,
32066 @c environment var TEXINPUTS with TeX.
32067 @ifclear SYSTEM_READLINE
32068 @include rluser.texi
32069 @include hsuser.texi
32070 @end ifclear
32071
32072 @node In Memoriam
32073 @appendix In Memoriam
32074
32075 The @value{GDBN} project mourns the loss of the following long-time
32076 contributors:
32077
32078 @table @code
32079 @item Fred Fish
32080 Fred was a long-standing contributor to @value{GDBN} (1991-2006), and
32081 to Free Software in general.  Outside of @value{GDBN}, he was known in
32082 the Amiga world for his series of Fish Disks, and the GeekGadget project.
32083
32084 @item Michael Snyder
32085 Michael was one of the Global Maintainers of the @value{GDBN} project,
32086 with contributions recorded as early as 1996, until 2011.  In addition
32087 to his day to day participation, he was a large driving force behind
32088 adding Reverse Debugging to @value{GDBN}.
32089 @end table
32090
32091 Beyond their technical contributions to the project, they were also
32092 enjoyable members of the Free Software Community.  We will miss them.
32093
32094 @node Formatting Documentation
32095 @appendix Formatting Documentation
32096
32097 @cindex @value{GDBN} reference card
32098 @cindex reference card
32099 The @value{GDBN} 4 release includes an already-formatted reference card, ready
32100 for printing with PostScript or Ghostscript, in the @file{gdb}
32101 subdirectory of the main source directory@footnote{In
32102 @file{gdb-@value{GDBVN}/gdb/refcard.ps} of the version @value{GDBVN}
32103 release.}.  If you can use PostScript or Ghostscript with your printer,
32104 you can print the reference card immediately with @file{refcard.ps}.
32105
32106 The release also includes the source for the reference card.  You
32107 can format it, using @TeX{}, by typing:
32108
32109 @smallexample
32110 make refcard.dvi
32111 @end smallexample
32112
32113 The @value{GDBN} reference card is designed to print in @dfn{landscape}
32114 mode on US ``letter'' size paper;
32115 that is, on a sheet 11 inches wide by 8.5 inches
32116 high.  You will need to specify this form of printing as an option to
32117 your @sc{dvi} output program.
32118
32119 @cindex documentation
32120
32121 All the documentation for @value{GDBN} comes as part of the machine-readable
32122 distribution.  The documentation is written in Texinfo format, which is
32123 a documentation system that uses a single source file to produce both
32124 on-line information and a printed manual.  You can use one of the Info
32125 formatting commands to create the on-line version of the documentation
32126 and @TeX{} (or @code{texi2roff}) to typeset the printed version.
32127
32128 @value{GDBN} includes an already formatted copy of the on-line Info
32129 version of this manual in the @file{gdb} subdirectory.  The main Info
32130 file is @file{gdb-@value{GDBVN}/gdb/gdb.info}, and it refers to
32131 subordinate files matching @samp{gdb.info*} in the same directory.  If
32132 necessary, you can print out these files, or read them with any editor;
32133 but they are easier to read using the @code{info} subsystem in @sc{gnu}
32134 Emacs or the standalone @code{info} program, available as part of the
32135 @sc{gnu} Texinfo distribution.
32136
32137 If you want to format these Info files yourself, you need one of the
32138 Info formatting programs, such as @code{texinfo-format-buffer} or
32139 @code{makeinfo}.
32140
32141 If you have @code{makeinfo} installed, and are in the top level
32142 @value{GDBN} source directory (@file{gdb-@value{GDBVN}}, in the case of
32143 version @value{GDBVN}), you can make the Info file by typing:
32144
32145 @smallexample
32146 cd gdb
32147 make gdb.info
32148 @end smallexample
32149
32150 If you want to typeset and print copies of this manual, you need @TeX{},
32151 a program to print its @sc{dvi} output files, and @file{texinfo.tex}, the
32152 Texinfo definitions file.
32153
32154 @TeX{} is a typesetting program; it does not print files directly, but
32155 produces output files called @sc{dvi} files.  To print a typeset
32156 document, you need a program to print @sc{dvi} files.  If your system
32157 has @TeX{} installed, chances are it has such a program.  The precise
32158 command to use depends on your system; @kbd{lpr -d} is common; another
32159 (for PostScript devices) is @kbd{dvips}.  The @sc{dvi} print command may
32160 require a file name without any extension or a @samp{.dvi} extension.
32161
32162 @TeX{} also requires a macro definitions file called
32163 @file{texinfo.tex}.  This file tells @TeX{} how to typeset a document
32164 written in Texinfo format.  On its own, @TeX{} cannot either read or
32165 typeset a Texinfo file.  @file{texinfo.tex} is distributed with GDB
32166 and is located in the @file{gdb-@var{version-number}/texinfo}
32167 directory.
32168
32169 If you have @TeX{} and a @sc{dvi} printer program installed, you can
32170 typeset and print this manual.  First switch to the @file{gdb}
32171 subdirectory of the main source directory (for example, to
32172 @file{gdb-@value{GDBVN}/gdb}) and type:
32173
32174 @smallexample
32175 make gdb.dvi
32176 @end smallexample
32177
32178 Then give @file{gdb.dvi} to your @sc{dvi} printing program.
32179
32180 @node Installing GDB
32181 @appendix Installing @value{GDBN}
32182 @cindex installation
32183
32184 @menu
32185 * Requirements::                Requirements for building @value{GDBN}
32186 * Running Configure::           Invoking the @value{GDBN} @file{configure} script
32187 * Separate Objdir::             Compiling @value{GDBN} in another directory
32188 * Config Names::                Specifying names for hosts and targets
32189 * Configure Options::           Summary of options for configure
32190 * System-wide configuration::   Having a system-wide init file
32191 @end menu
32192
32193 @node Requirements
32194 @section Requirements for Building @value{GDBN}
32195 @cindex building @value{GDBN}, requirements for
32196
32197 Building @value{GDBN} requires various tools and packages to be available.
32198 Other packages will be used only if they are found.
32199
32200 @heading Tools/Packages Necessary for Building @value{GDBN}
32201 @table @asis
32202 @item ISO C90 compiler
32203 @value{GDBN} is written in ISO C90.  It should be buildable with any
32204 working C90 compiler, e.g.@: GCC.
32205
32206 @end table
32207
32208 @heading Tools/Packages Optional for Building @value{GDBN}
32209 @table @asis
32210 @item Expat
32211 @anchor{Expat}
32212 @value{GDBN} can use the Expat XML parsing library.  This library may be
32213 included with your operating system distribution; if it is not, you
32214 can get the latest version from @url{http://expat.sourceforge.net}.
32215 The @file{configure} script will search for this library in several
32216 standard locations; if it is installed in an unusual path, you can
32217 use the @option{--with-libexpat-prefix} option to specify its location.
32218
32219 Expat is used for:
32220
32221 @itemize @bullet
32222 @item
32223 Remote protocol memory maps (@pxref{Memory Map Format})
32224 @item
32225 Target descriptions (@pxref{Target Descriptions})
32226 @item
32227 Remote shared library lists (@pxref{Library List Format})
32228 @item
32229 MS-Windows shared libraries (@pxref{Shared Libraries})
32230 @item
32231 Traceframe info (@pxref{Traceframe Info Format})
32232 @end itemize
32233
32234 @item zlib
32235 @cindex compressed debug sections 
32236 @value{GDBN} will use the @samp{zlib} library, if available, to read
32237 compressed debug sections.  Some linkers, such as GNU gold, are capable
32238 of producing binaries with compressed debug sections.  If @value{GDBN}
32239 is compiled with @samp{zlib}, it will be able to read the debug
32240 information in such binaries.
32241
32242 The @samp{zlib} library is likely included with your operating system
32243 distribution; if it is not, you can get the latest version from
32244 @url{http://zlib.net}.
32245
32246 @item iconv
32247 @value{GDBN}'s features related to character sets (@pxref{Character
32248 Sets}) require a functioning @code{iconv} implementation.  If you are
32249 on a GNU system, then this is provided by the GNU C Library.  Some
32250 other systems also provide a working @code{iconv}.
32251
32252 If @value{GDBN} is using the @code{iconv} program which is installed
32253 in a non-standard place, you will need to tell @value{GDBN} where to find it.
32254 This is done with @option{--with-iconv-bin} which specifies the
32255 directory that contains the @code{iconv} program.
32256
32257 On systems without @code{iconv}, you can install GNU Libiconv.  If you
32258 have previously installed Libiconv, you can use the
32259 @option{--with-libiconv-prefix} option to configure.
32260
32261 @value{GDBN}'s top-level @file{configure} and @file{Makefile} will
32262 arrange to build Libiconv if a directory named @file{libiconv} appears
32263 in the top-most source directory.  If Libiconv is built this way, and
32264 if the operating system does not provide a suitable @code{iconv}
32265 implementation, then the just-built library will automatically be used
32266 by @value{GDBN}.  One easy way to set this up is to download GNU
32267 Libiconv, unpack it, and then rename the directory holding the
32268 Libiconv source code to @samp{libiconv}.
32269 @end table
32270
32271 @node Running Configure
32272 @section Invoking the @value{GDBN} @file{configure} Script
32273 @cindex configuring @value{GDBN}
32274 @value{GDBN} comes with a @file{configure} script that automates the process
32275 of preparing @value{GDBN} for installation; you can then use @code{make} to
32276 build the @code{gdb} program.
32277 @iftex
32278 @c irrelevant in info file; it's as current as the code it lives with.
32279 @footnote{If you have a more recent version of @value{GDBN} than @value{GDBVN},
32280 look at the @file{README} file in the sources; we may have improved the
32281 installation procedures since publishing this manual.}
32282 @end iftex
32283
32284 The @value{GDBN} distribution includes all the source code you need for
32285 @value{GDBN} in a single directory, whose name is usually composed by
32286 appending the version number to @samp{gdb}.
32287
32288 For example, the @value{GDBN} version @value{GDBVN} distribution is in the
32289 @file{gdb-@value{GDBVN}} directory.  That directory contains:
32290
32291 @table @code
32292 @item gdb-@value{GDBVN}/configure @r{(and supporting files)}
32293 script for configuring @value{GDBN} and all its supporting libraries
32294
32295 @item gdb-@value{GDBVN}/gdb
32296 the source specific to @value{GDBN} itself
32297
32298 @item gdb-@value{GDBVN}/bfd
32299 source for the Binary File Descriptor library
32300
32301 @item gdb-@value{GDBVN}/include
32302 @sc{gnu} include files
32303
32304 @item gdb-@value{GDBVN}/libiberty
32305 source for the @samp{-liberty} free software library
32306
32307 @item gdb-@value{GDBVN}/opcodes
32308 source for the library of opcode tables and disassemblers
32309
32310 @item gdb-@value{GDBVN}/readline
32311 source for the @sc{gnu} command-line interface
32312
32313 @item gdb-@value{GDBVN}/glob
32314 source for the @sc{gnu} filename pattern-matching subroutine
32315
32316 @item gdb-@value{GDBVN}/mmalloc
32317 source for the @sc{gnu} memory-mapped malloc package
32318 @end table
32319
32320 The simplest way to configure and build @value{GDBN} is to run @file{configure}
32321 from the @file{gdb-@var{version-number}} source directory, which in
32322 this example is the @file{gdb-@value{GDBVN}} directory.
32323
32324 First switch to the @file{gdb-@var{version-number}} source directory
32325 if you are not already in it; then run @file{configure}.  Pass the
32326 identifier for the platform on which @value{GDBN} will run as an
32327 argument.
32328
32329 For example:
32330
32331 @smallexample
32332 cd gdb-@value{GDBVN}
32333 ./configure @var{host}
32334 make
32335 @end smallexample
32336
32337 @noindent
32338 where @var{host} is an identifier such as @samp{sun4} or
32339 @samp{decstation}, that identifies the platform where @value{GDBN} will run.
32340 (You can often leave off @var{host}; @file{configure} tries to guess the
32341 correct value by examining your system.)
32342
32343 Running @samp{configure @var{host}} and then running @code{make} builds the
32344 @file{bfd}, @file{readline}, @file{mmalloc}, and @file{libiberty}
32345 libraries, then @code{gdb} itself.  The configured source files, and the
32346 binaries, are left in the corresponding source directories.
32347
32348 @need 750
32349 @file{configure} is a Bourne-shell (@code{/bin/sh}) script; if your
32350 system does not recognize this automatically when you run a different
32351 shell, you may need to run @code{sh} on it explicitly:
32352
32353 @smallexample
32354 sh configure @var{host}
32355 @end smallexample
32356
32357 If you run @file{configure} from a directory that contains source
32358 directories for multiple libraries or programs, such as the
32359 @file{gdb-@value{GDBVN}} source directory for version @value{GDBVN},
32360 @file{configure}
32361 creates configuration files for every directory level underneath (unless
32362 you tell it not to, with the @samp{--norecursion} option).
32363
32364 You should run the @file{configure} script from the top directory in the
32365 source tree, the @file{gdb-@var{version-number}} directory.  If you run
32366 @file{configure} from one of the subdirectories, you will configure only
32367 that subdirectory.  That is usually not what you want.  In particular,
32368 if you run the first @file{configure} from the @file{gdb} subdirectory
32369 of the @file{gdb-@var{version-number}} directory, you will omit the
32370 configuration of @file{bfd}, @file{readline}, and other sibling
32371 directories of the @file{gdb} subdirectory.  This leads to build errors
32372 about missing include files such as @file{bfd/bfd.h}.
32373
32374 You can install @code{@value{GDBP}} anywhere; it has no hardwired paths.
32375 However, you should make sure that the shell on your path (named by
32376 the @samp{SHELL} environment variable) is publicly readable.  Remember
32377 that @value{GDBN} uses the shell to start your program---some systems refuse to
32378 let @value{GDBN} debug child processes whose programs are not readable.
32379
32380 @node Separate Objdir
32381 @section Compiling @value{GDBN} in Another Directory
32382
32383 If you want to run @value{GDBN} versions for several host or target machines,
32384 you need a different @code{gdb} compiled for each combination of
32385 host and target.  @file{configure} is designed to make this easy by
32386 allowing you to generate each configuration in a separate subdirectory,
32387 rather than in the source directory.  If your @code{make} program
32388 handles the @samp{VPATH} feature (@sc{gnu} @code{make} does), running
32389 @code{make} in each of these directories builds the @code{gdb}
32390 program specified there.
32391
32392 To build @code{gdb} in a separate directory, run @file{configure}
32393 with the @samp{--srcdir} option to specify where to find the source.
32394 (You also need to specify a path to find @file{configure}
32395 itself from your working directory.  If the path to @file{configure}
32396 would be the same as the argument to @samp{--srcdir}, you can leave out
32397 the @samp{--srcdir} option; it is assumed.)
32398
32399 For example, with version @value{GDBVN}, you can build @value{GDBN} in a
32400 separate directory for a Sun 4 like this:
32401
32402 @smallexample
32403 @group
32404 cd gdb-@value{GDBVN}
32405 mkdir ../gdb-sun4
32406 cd ../gdb-sun4
32407 ../gdb-@value{GDBVN}/configure sun4
32408 make
32409 @end group
32410 @end smallexample
32411
32412 When @file{configure} builds a configuration using a remote source
32413 directory, it creates a tree for the binaries with the same structure
32414 (and using the same names) as the tree under the source directory.  In
32415 the example, you'd find the Sun 4 library @file{libiberty.a} in the
32416 directory @file{gdb-sun4/libiberty}, and @value{GDBN} itself in
32417 @file{gdb-sun4/gdb}.
32418
32419 Make sure that your path to the @file{configure} script has just one
32420 instance of @file{gdb} in it.  If your path to @file{configure} looks
32421 like @file{../gdb-@value{GDBVN}/gdb/configure}, you are configuring only
32422 one subdirectory of @value{GDBN}, not the whole package.  This leads to
32423 build errors about missing include files such as @file{bfd/bfd.h}.
32424
32425 One popular reason to build several @value{GDBN} configurations in separate
32426 directories is to configure @value{GDBN} for cross-compiling (where
32427 @value{GDBN} runs on one machine---the @dfn{host}---while debugging
32428 programs that run on another machine---the @dfn{target}).
32429 You specify a cross-debugging target by
32430 giving the @samp{--target=@var{target}} option to @file{configure}.
32431
32432 When you run @code{make} to build a program or library, you must run
32433 it in a configured directory---whatever directory you were in when you
32434 called @file{configure} (or one of its subdirectories).
32435
32436 The @code{Makefile} that @file{configure} generates in each source
32437 directory also runs recursively.  If you type @code{make} in a source
32438 directory such as @file{gdb-@value{GDBVN}} (or in a separate configured
32439 directory configured with @samp{--srcdir=@var{dirname}/gdb-@value{GDBVN}}), you
32440 will build all the required libraries, and then build GDB.
32441
32442 When you have multiple hosts or targets configured in separate
32443 directories, you can run @code{make} on them in parallel (for example,
32444 if they are NFS-mounted on each of the hosts); they will not interfere
32445 with each other.
32446
32447 @node Config Names
32448 @section Specifying Names for Hosts and Targets
32449
32450 The specifications used for hosts and targets in the @file{configure}
32451 script are based on a three-part naming scheme, but some short predefined
32452 aliases are also supported.  The full naming scheme encodes three pieces
32453 of information in the following pattern:
32454
32455 @smallexample
32456 @var{architecture}-@var{vendor}-@var{os}
32457 @end smallexample
32458
32459 For example, you can use the alias @code{sun4} as a @var{host} argument,
32460 or as the value for @var{target} in a @code{--target=@var{target}}
32461 option.  The equivalent full name is @samp{sparc-sun-sunos4}.
32462
32463 The @file{configure} script accompanying @value{GDBN} does not provide
32464 any query facility to list all supported host and target names or
32465 aliases.  @file{configure} calls the Bourne shell script
32466 @code{config.sub} to map abbreviations to full names; you can read the
32467 script, if you wish, or you can use it to test your guesses on
32468 abbreviations---for example:
32469
32470 @smallexample
32471 % sh config.sub i386-linux
32472 i386-pc-linux-gnu
32473 % sh config.sub alpha-linux
32474 alpha-unknown-linux-gnu
32475 % sh config.sub hp9k700
32476 hppa1.1-hp-hpux
32477 % sh config.sub sun4
32478 sparc-sun-sunos4.1.1
32479 % sh config.sub sun3
32480 m68k-sun-sunos4.1.1
32481 % sh config.sub i986v
32482 Invalid configuration `i986v': machine `i986v' not recognized
32483 @end smallexample
32484
32485 @noindent
32486 @code{config.sub} is also distributed in the @value{GDBN} source
32487 directory (@file{gdb-@value{GDBVN}}, for version @value{GDBVN}).
32488
32489 @node Configure Options
32490 @section @file{configure} Options
32491
32492 Here is a summary of the @file{configure} options and arguments that
32493 are most often useful for building @value{GDBN}.  @file{configure} also has
32494 several other options not listed here.  @inforef{What Configure
32495 Does,,configure.info}, for a full explanation of @file{configure}.
32496
32497 @smallexample
32498 configure @r{[}--help@r{]}
32499           @r{[}--prefix=@var{dir}@r{]}
32500           @r{[}--exec-prefix=@var{dir}@r{]}
32501           @r{[}--srcdir=@var{dirname}@r{]}
32502           @r{[}--norecursion@r{]} @r{[}--rm@r{]}
32503           @r{[}--target=@var{target}@r{]}
32504           @var{host}
32505 @end smallexample
32506
32507 @noindent
32508 You may introduce options with a single @samp{-} rather than
32509 @samp{--} if you prefer; but you may abbreviate option names if you use
32510 @samp{--}.
32511
32512 @table @code
32513 @item --help
32514 Display a quick summary of how to invoke @file{configure}.
32515
32516 @item --prefix=@var{dir}
32517 Configure the source to install programs and files under directory
32518 @file{@var{dir}}.
32519
32520 @item --exec-prefix=@var{dir}
32521 Configure the source to install programs under directory
32522 @file{@var{dir}}.
32523
32524 @c avoid splitting the warning from the explanation:
32525 @need 2000
32526 @item --srcdir=@var{dirname}
32527 @strong{Warning: using this option requires @sc{gnu} @code{make}, or another
32528 @code{make} that implements the @code{VPATH} feature.}@*
32529 Use this option to make configurations in directories separate from the
32530 @value{GDBN} source directories.  Among other things, you can use this to
32531 build (or maintain) several configurations simultaneously, in separate
32532 directories.  @file{configure} writes configuration-specific files in
32533 the current directory, but arranges for them to use the source in the
32534 directory @var{dirname}.  @file{configure} creates directories under
32535 the working directory in parallel to the source directories below
32536 @var{dirname}.
32537
32538 @item --norecursion
32539 Configure only the directory level where @file{configure} is executed; do not
32540 propagate configuration to subdirectories.
32541
32542 @item --target=@var{target}
32543 Configure @value{GDBN} for cross-debugging programs running on the specified
32544 @var{target}.  Without this option, @value{GDBN} is configured to debug
32545 programs that run on the same machine (@var{host}) as @value{GDBN} itself.
32546
32547 There is no convenient way to generate a list of all available targets.
32548
32549 @item @var{host} @dots{}
32550 Configure @value{GDBN} to run on the specified @var{host}.
32551
32552 There is no convenient way to generate a list of all available hosts.
32553 @end table
32554
32555 There are many other options available as well, but they are generally
32556 needed for special purposes only.
32557
32558 @node System-wide configuration
32559 @section System-wide configuration and settings
32560 @cindex system-wide init file
32561
32562 @value{GDBN} can be configured to have a system-wide init file;
32563 this file will be read and executed at startup (@pxref{Startup, , What
32564 @value{GDBN} does during startup}).
32565
32566 Here is the corresponding configure option:
32567
32568 @table @code
32569 @item --with-system-gdbinit=@var{file}
32570 Specify that the default location of the system-wide init file is
32571 @var{file}.
32572 @end table
32573
32574 If @value{GDBN} has been configured with the option @option{--prefix=$prefix},
32575 it may be subject to relocation.  Two possible cases:
32576
32577 @itemize @bullet
32578 @item 
32579 If the default location of this init file contains @file{$prefix},
32580 it will be subject to relocation.  Suppose that the configure options
32581 are @option{--prefix=$prefix --with-system-gdbinit=$prefix/etc/gdbinit};
32582 if @value{GDBN} is moved from @file{$prefix} to @file{$install}, the system
32583 init file is looked for as @file{$install/etc/gdbinit} instead of
32584 @file{$prefix/etc/gdbinit}.
32585
32586 @item
32587 By contrast, if the default location does not contain the prefix,
32588 it will not be relocated.  E.g.@: if @value{GDBN} has been configured with
32589 @option{--prefix=/usr/local --with-system-gdbinit=/usr/share/gdb/gdbinit},
32590 then @value{GDBN} will always look for @file{/usr/share/gdb/gdbinit},
32591 wherever @value{GDBN} is installed.
32592 @end itemize
32593
32594 @node Maintenance Commands
32595 @appendix Maintenance Commands
32596 @cindex maintenance commands
32597 @cindex internal commands
32598
32599 In addition to commands intended for @value{GDBN} users, @value{GDBN}
32600 includes a number of commands intended for @value{GDBN} developers,
32601 that are not documented elsewhere in this manual.  These commands are
32602 provided here for reference.  (For commands that turn on debugging
32603 messages, see @ref{Debugging Output}.)
32604
32605 @table @code
32606 @kindex maint agent
32607 @kindex maint agent-eval
32608 @item maint agent @var{expression}
32609 @itemx maint agent-eval @var{expression}
32610 Translate the given @var{expression} into remote agent bytecodes.
32611 This command is useful for debugging the Agent Expression mechanism
32612 (@pxref{Agent Expressions}).  The @samp{agent} version produces an
32613 expression useful for data collection, such as by tracepoints, while
32614 @samp{maint agent-eval} produces an expression that evaluates directly
32615 to a result.  For instance, a collection expression for @code{globa +
32616 globb} will include bytecodes to record four bytes of memory at each
32617 of the addresses of @code{globa} and @code{globb}, while discarding
32618 the result of the addition, while an evaluation expression will do the
32619 addition and return the sum.
32620
32621 @kindex maint info breakpoints
32622 @item @anchor{maint info breakpoints}maint info breakpoints
32623 Using the same format as @samp{info breakpoints}, display both the
32624 breakpoints you've set explicitly, and those @value{GDBN} is using for
32625 internal purposes.  Internal breakpoints are shown with negative
32626 breakpoint numbers.  The type column identifies what kind of breakpoint
32627 is shown:
32628
32629 @table @code
32630 @item breakpoint
32631 Normal, explicitly set breakpoint.
32632
32633 @item watchpoint
32634 Normal, explicitly set watchpoint.
32635
32636 @item longjmp
32637 Internal breakpoint, used to handle correctly stepping through
32638 @code{longjmp} calls.
32639
32640 @item longjmp resume
32641 Internal breakpoint at the target of a @code{longjmp}.
32642
32643 @item until
32644 Temporary internal breakpoint used by the @value{GDBN} @code{until} command.
32645
32646 @item finish
32647 Temporary internal breakpoint used by the @value{GDBN} @code{finish} command.
32648
32649 @item shlib events
32650 Shared library events.
32651
32652 @end table
32653
32654 @kindex set displaced-stepping
32655 @kindex show displaced-stepping
32656 @cindex displaced stepping support
32657 @cindex out-of-line single-stepping
32658 @item set displaced-stepping
32659 @itemx show displaced-stepping
32660 Control whether or not @value{GDBN} will do @dfn{displaced stepping}
32661 if the target supports it.  Displaced stepping is a way to single-step
32662 over breakpoints without removing them from the inferior, by executing
32663 an out-of-line copy of the instruction that was originally at the
32664 breakpoint location.  It is also known as out-of-line single-stepping.
32665
32666 @table @code
32667 @item set displaced-stepping on
32668 If the target architecture supports it, @value{GDBN} will use
32669 displaced stepping to step over breakpoints.
32670
32671 @item set displaced-stepping off
32672 @value{GDBN} will not use displaced stepping to step over breakpoints,
32673 even if such is supported by the target architecture.
32674
32675 @cindex non-stop mode, and @samp{set displaced-stepping}
32676 @item set displaced-stepping auto
32677 This is the default mode.  @value{GDBN} will use displaced stepping
32678 only if non-stop mode is active (@pxref{Non-Stop Mode}) and the target
32679 architecture supports displaced stepping.
32680 @end table
32681
32682 @kindex maint check-symtabs
32683 @item maint check-symtabs
32684 Check the consistency of psymtabs and symtabs.
32685
32686 @kindex maint cplus first_component
32687 @item maint cplus first_component @var{name}
32688 Print the first C@t{++} class/namespace component of @var{name}.
32689
32690 @kindex maint cplus namespace
32691 @item maint cplus namespace
32692 Print the list of possible C@t{++} namespaces.
32693
32694 @kindex maint demangle
32695 @item maint demangle @var{name}
32696 Demangle a C@t{++} or Objective-C mangled @var{name}.
32697
32698 @kindex maint deprecate
32699 @kindex maint undeprecate
32700 @cindex deprecated commands
32701 @item maint deprecate @var{command} @r{[}@var{replacement}@r{]}
32702 @itemx maint undeprecate @var{command}
32703 Deprecate or undeprecate the named @var{command}.  Deprecated commands
32704 cause @value{GDBN} to issue a warning when you use them.  The optional
32705 argument @var{replacement} says which newer command should be used in
32706 favor of the deprecated one; if it is given, @value{GDBN} will mention
32707 the replacement as part of the warning.
32708
32709 @kindex maint dump-me
32710 @item maint dump-me
32711 @cindex @code{SIGQUIT} signal, dump core of @value{GDBN}
32712 Cause a fatal signal in the debugger and force it to dump its core.
32713 This is supported only on systems which support aborting a program
32714 with the @code{SIGQUIT} signal.
32715
32716 @kindex maint internal-error
32717 @kindex maint internal-warning
32718 @item maint internal-error @r{[}@var{message-text}@r{]}
32719 @itemx maint internal-warning @r{[}@var{message-text}@r{]}
32720 Cause @value{GDBN} to call the internal function @code{internal_error}
32721 or @code{internal_warning} and hence behave as though an internal error
32722 or internal warning has been detected.  In addition to reporting the
32723 internal problem, these functions give the user the opportunity to
32724 either quit @value{GDBN} or create a core file of the current
32725 @value{GDBN} session.
32726
32727 These commands take an optional parameter @var{message-text} that is
32728 used as the text of the error or warning message.
32729
32730 Here's an example of using @code{internal-error}:
32731
32732 @smallexample
32733 (@value{GDBP}) @kbd{maint internal-error testing, 1, 2}
32734 @dots{}/maint.c:121: internal-error: testing, 1, 2
32735 A problem internal to GDB has been detected.  Further
32736 debugging may prove unreliable.
32737 Quit this debugging session? (y or n) @kbd{n}
32738 Create a core file? (y or n) @kbd{n}
32739 (@value{GDBP})
32740 @end smallexample
32741
32742 @cindex @value{GDBN} internal error
32743 @cindex internal errors, control of @value{GDBN} behavior
32744
32745 @kindex maint set internal-error
32746 @kindex maint show internal-error
32747 @kindex maint set internal-warning
32748 @kindex maint show internal-warning
32749 @item maint set internal-error @var{action} [ask|yes|no]
32750 @itemx maint show internal-error @var{action}
32751 @itemx maint set internal-warning @var{action} [ask|yes|no]
32752 @itemx maint show internal-warning @var{action}
32753 When @value{GDBN} reports an internal problem (error or warning) it
32754 gives the user the opportunity to both quit @value{GDBN} and create a
32755 core file of the current @value{GDBN} session.  These commands let you
32756 override the default behaviour for each particular @var{action},
32757 described in the table below.
32758
32759 @table @samp
32760 @item quit
32761 You can specify that @value{GDBN} should always (yes) or never (no)
32762 quit.  The default is to ask the user what to do.
32763
32764 @item corefile
32765 You can specify that @value{GDBN} should always (yes) or never (no)
32766 create a core file.  The default is to ask the user what to do.
32767 @end table
32768
32769 @kindex maint packet
32770 @item maint packet @var{text}
32771 If @value{GDBN} is talking to an inferior via the serial protocol,
32772 then this command sends the string @var{text} to the inferior, and
32773 displays the response packet.  @value{GDBN} supplies the initial
32774 @samp{$} character, the terminating @samp{#} character, and the
32775 checksum.
32776
32777 @kindex maint print architecture
32778 @item maint print architecture @r{[}@var{file}@r{]}
32779 Print the entire architecture configuration.  The optional argument
32780 @var{file} names the file where the output goes.
32781
32782 @kindex maint print c-tdesc
32783 @item maint print c-tdesc
32784 Print the current target description (@pxref{Target Descriptions}) as
32785 a C source file.  The created source file can be used in @value{GDBN}
32786 when an XML parser is not available to parse the description.
32787
32788 @kindex maint print dummy-frames
32789 @item maint print dummy-frames
32790 Prints the contents of @value{GDBN}'s internal dummy-frame stack.
32791
32792 @smallexample
32793 (@value{GDBP}) @kbd{b add}
32794 @dots{}
32795 (@value{GDBP}) @kbd{print add(2,3)}
32796 Breakpoint 2, add (a=2, b=3) at @dots{}
32797 58        return (a + b);
32798 The program being debugged stopped while in a function called from GDB.
32799 @dots{}
32800 (@value{GDBP}) @kbd{maint print dummy-frames}
32801 0x1a57c80: pc=0x01014068 fp=0x0200bddc sp=0x0200bdd6
32802  top=0x0200bdd4 id=@{stack=0x200bddc,code=0x101405c@}
32803  call_lo=0x01014000 call_hi=0x01014001
32804 (@value{GDBP})
32805 @end smallexample
32806
32807 Takes an optional file parameter.
32808
32809 @kindex maint print registers
32810 @kindex maint print raw-registers
32811 @kindex maint print cooked-registers
32812 @kindex maint print register-groups
32813 @kindex maint print remote-registers
32814 @item maint print registers @r{[}@var{file}@r{]}
32815 @itemx maint print raw-registers @r{[}@var{file}@r{]}
32816 @itemx maint print cooked-registers @r{[}@var{file}@r{]}
32817 @itemx maint print register-groups @r{[}@var{file}@r{]}
32818 @itemx maint print remote-registers @r{[}@var{file}@r{]}
32819 Print @value{GDBN}'s internal register data structures.
32820
32821 The command @code{maint print raw-registers} includes the contents of
32822 the raw register cache; the command @code{maint print
32823 cooked-registers} includes the (cooked) value of all registers,
32824 including registers which aren't available on the target nor visible
32825 to user; the command @code{maint print register-groups} includes the
32826 groups that each register is a member of; and the command @code{maint
32827 print remote-registers} includes the remote target's register numbers
32828 and offsets in the `G' packets.  @xref{Registers,, Registers, gdbint,
32829 @value{GDBN} Internals}.
32830
32831 These commands take an optional parameter, a file name to which to
32832 write the information.
32833
32834 @kindex maint print reggroups
32835 @item maint print reggroups @r{[}@var{file}@r{]}
32836 Print @value{GDBN}'s internal register group data structures.  The
32837 optional argument @var{file} tells to what file to write the
32838 information.
32839
32840 The register groups info looks like this:
32841
32842 @smallexample
32843 (@value{GDBP}) @kbd{maint print reggroups}
32844  Group      Type
32845  general    user
32846  float      user
32847  all        user
32848  vector     user
32849  system     user
32850  save       internal
32851  restore    internal
32852 @end smallexample
32853
32854 @kindex flushregs
32855 @item flushregs
32856 This command forces @value{GDBN} to flush its internal register cache.
32857
32858 @kindex maint print objfiles
32859 @cindex info for known object files
32860 @item maint print objfiles
32861 Print a dump of all known object files.  For each object file, this
32862 command prints its name, address in memory, and all of its psymtabs
32863 and symtabs.
32864
32865 @kindex maint print section-scripts
32866 @cindex info for known .debug_gdb_scripts-loaded scripts
32867 @item maint print section-scripts [@var{regexp}]
32868 Print a dump of scripts specified in the @code{.debug_gdb_section} section.
32869 If @var{regexp} is specified, only print scripts loaded by object files
32870 matching @var{regexp}.
32871 For each script, this command prints its name as specified in the objfile,
32872 and the full path if known.
32873 @xref{.debug_gdb_scripts section}.
32874
32875 @kindex maint print statistics
32876 @cindex bcache statistics
32877 @item maint print statistics
32878 This command prints, for each object file in the program, various data
32879 about that object file followed by the byte cache (@dfn{bcache})
32880 statistics for the object file.  The objfile data includes the number
32881 of minimal, partial, full, and stabs symbols, the number of types
32882 defined by the objfile, the number of as yet unexpanded psym tables,
32883 the number of line tables and string tables, and the amount of memory
32884 used by the various tables.  The bcache statistics include the counts,
32885 sizes, and counts of duplicates of all and unique objects, max,
32886 average, and median entry size, total memory used and its overhead and
32887 savings, and various measures of the hash table size and chain
32888 lengths.
32889
32890 @kindex maint print target-stack
32891 @cindex target stack description
32892 @item maint print target-stack
32893 A @dfn{target} is an interface between the debugger and a particular
32894 kind of file or process.  Targets can be stacked in @dfn{strata},
32895 so that more than one target can potentially respond to a request.
32896 In particular, memory accesses will walk down the stack of targets
32897 until they find a target that is interested in handling that particular
32898 address.
32899
32900 This command prints a short description of each layer that was pushed on
32901 the @dfn{target stack}, starting from the top layer down to the bottom one.
32902
32903 @kindex maint print type
32904 @cindex type chain of a data type
32905 @item maint print type @var{expr}
32906 Print the type chain for a type specified by @var{expr}.  The argument
32907 can be either a type name or a symbol.  If it is a symbol, the type of
32908 that symbol is described.  The type chain produced by this command is
32909 a recursive definition of the data type as stored in @value{GDBN}'s
32910 data structures, including its flags and contained types.
32911
32912 @kindex maint set dwarf2 always-disassemble
32913 @kindex maint show dwarf2 always-disassemble
32914 @item maint set dwarf2 always-disassemble
32915 @item maint show dwarf2 always-disassemble
32916 Control the behavior of @code{info address} when using DWARF debugging
32917 information.
32918
32919 The default is @code{off}, which means that @value{GDBN} should try to
32920 describe a variable's location in an easily readable format.  When
32921 @code{on}, @value{GDBN} will instead display the DWARF location
32922 expression in an assembly-like format.  Note that some locations are
32923 too complex for @value{GDBN} to describe simply; in this case you will
32924 always see the disassembly form.
32925
32926 Here is an example of the resulting disassembly:
32927
32928 @smallexample
32929 (gdb) info addr argc
32930 Symbol "argc" is a complex DWARF expression:
32931      1: DW_OP_fbreg 0
32932 @end smallexample
32933
32934 For more information on these expressions, see
32935 @uref{http://www.dwarfstd.org/, the DWARF standard}.
32936
32937 @kindex maint set dwarf2 max-cache-age
32938 @kindex maint show dwarf2 max-cache-age
32939 @item maint set dwarf2 max-cache-age
32940 @itemx maint show dwarf2 max-cache-age
32941 Control the DWARF 2 compilation unit cache.
32942
32943 @cindex DWARF 2 compilation units cache
32944 In object files with inter-compilation-unit references, such as those
32945 produced by the GCC option @samp{-feliminate-dwarf2-dups}, the DWARF 2
32946 reader needs to frequently refer to previously read compilation units.
32947 This setting controls how long a compilation unit will remain in the
32948 cache if it is not referenced.  A higher limit means that cached
32949 compilation units will be stored in memory longer, and more total
32950 memory will be used.  Setting it to zero disables caching, which will
32951 slow down @value{GDBN} startup, but reduce memory consumption.
32952
32953 @kindex maint set profile
32954 @kindex maint show profile
32955 @cindex profiling GDB
32956 @item maint set profile
32957 @itemx maint show profile
32958 Control profiling of @value{GDBN}.
32959
32960 Profiling will be disabled until you use the @samp{maint set profile}
32961 command to enable it.  When you enable profiling, the system will begin
32962 collecting timing and execution count data; when you disable profiling or
32963 exit @value{GDBN}, the results will be written to a log file.  Remember that
32964 if you use profiling, @value{GDBN} will overwrite the profiling log file
32965 (often called @file{gmon.out}).  If you have a record of important profiling
32966 data in a @file{gmon.out} file, be sure to move it to a safe location.
32967
32968 Configuring with @samp{--enable-profiling} arranges for @value{GDBN} to be
32969 compiled with the @samp{-pg} compiler option.
32970
32971 @kindex maint set show-debug-regs
32972 @kindex maint show show-debug-regs
32973 @cindex hardware debug registers
32974 @item maint set show-debug-regs
32975 @itemx maint show show-debug-regs
32976 Control whether to show variables that mirror the hardware debug
32977 registers.  Use @code{ON} to enable, @code{OFF} to disable.  If
32978 enabled, the debug registers values are shown when @value{GDBN} inserts or
32979 removes a hardware breakpoint or watchpoint, and when the inferior
32980 triggers a hardware-assisted breakpoint or watchpoint.
32981
32982 @kindex maint set show-all-tib
32983 @kindex maint show show-all-tib
32984 @item maint set show-all-tib
32985 @itemx maint show show-all-tib
32986 Control whether to show all non zero areas within a 1k block starting
32987 at thread local base, when using the @samp{info w32 thread-information-block}
32988 command.
32989
32990 @kindex maint space
32991 @cindex memory used by commands
32992 @item maint space
32993 Control whether to display memory usage for each command.  If set to a
32994 nonzero value, @value{GDBN} will display how much memory each command
32995 took, following the command's own output.  This can also be requested
32996 by invoking @value{GDBN} with the @option{--statistics} command-line
32997 switch (@pxref{Mode Options}).
32998
32999 @kindex maint time
33000 @cindex time of command execution
33001 @item maint time
33002 Control whether to display the execution time of @value{GDBN} for each command.
33003 If set to a nonzero value, @value{GDBN} will display how much time it
33004 took to execute each command, following the command's own output.
33005 Both CPU time and wallclock time are printed.
33006 Printing both is useful when trying to determine whether the cost is
33007 CPU or, e.g., disk/network, latency.
33008 Note that the CPU time printed is for @value{GDBN} only, it does not include
33009 the execution time of the inferior because there's no mechanism currently
33010 to compute how much time was spent by @value{GDBN} and how much time was
33011 spent by the program been debugged.
33012 This can also be requested by invoking @value{GDBN} with the
33013 @option{--statistics} command-line switch (@pxref{Mode Options}).
33014
33015 @kindex maint translate-address
33016 @item maint translate-address @r{[}@var{section}@r{]} @var{addr}
33017 Find the symbol stored at the location specified by the address
33018 @var{addr} and an optional section name @var{section}.  If found,
33019 @value{GDBN} prints the name of the closest symbol and an offset from
33020 the symbol's location to the specified address.  This is similar to
33021 the @code{info address} command (@pxref{Symbols}), except that this
33022 command also allows to find symbols in other sections.
33023
33024 If section was not specified, the section in which the symbol was found
33025 is also printed.  For dynamically linked executables, the name of
33026 executable or shared library containing the symbol is printed as well.
33027
33028 @end table
33029
33030 The following command is useful for non-interactive invocations of
33031 @value{GDBN}, such as in the test suite.
33032
33033 @table @code
33034 @item set watchdog @var{nsec}
33035 @kindex set watchdog
33036 @cindex watchdog timer
33037 @cindex timeout for commands
33038 Set the maximum number of seconds @value{GDBN} will wait for the
33039 target operation to finish.  If this time expires, @value{GDBN}
33040 reports and error and the command is aborted.
33041
33042 @item show watchdog
33043 Show the current setting of the target wait timeout.
33044 @end table
33045
33046 @node Remote Protocol
33047 @appendix @value{GDBN} Remote Serial Protocol
33048
33049 @menu
33050 * Overview::
33051 * Packets::
33052 * Stop Reply Packets::
33053 * General Query Packets::
33054 * Architecture-Specific Protocol Details::
33055 * Tracepoint Packets::
33056 * Host I/O Packets::
33057 * Interrupts::
33058 * Notification Packets::
33059 * Remote Non-Stop::
33060 * Packet Acknowledgment::
33061 * Examples::
33062 * File-I/O Remote Protocol Extension::
33063 * Library List Format::
33064 * Memory Map Format::
33065 * Thread List Format::
33066 * Traceframe Info Format::
33067 @end menu
33068
33069 @node Overview
33070 @section Overview
33071
33072 There may be occasions when you need to know something about the
33073 protocol---for example, if there is only one serial port to your target
33074 machine, you might want your program to do something special if it
33075 recognizes a packet meant for @value{GDBN}.
33076
33077 In the examples below, @samp{->} and @samp{<-} are used to indicate
33078 transmitted and received data, respectively.
33079
33080 @cindex protocol, @value{GDBN} remote serial
33081 @cindex serial protocol, @value{GDBN} remote
33082 @cindex remote serial protocol
33083 All @value{GDBN} commands and responses (other than acknowledgments
33084 and notifications, see @ref{Notification Packets}) are sent as a
33085 @var{packet}.  A @var{packet} is introduced with the character
33086 @samp{$}, the actual @var{packet-data}, and the terminating character
33087 @samp{#} followed by a two-digit @var{checksum}:
33088
33089 @smallexample
33090 @code{$}@var{packet-data}@code{#}@var{checksum}
33091 @end smallexample
33092 @noindent
33093
33094 @cindex checksum, for @value{GDBN} remote
33095 @noindent
33096 The two-digit @var{checksum} is computed as the modulo 256 sum of all
33097 characters between the leading @samp{$} and the trailing @samp{#} (an
33098 eight bit unsigned checksum).
33099
33100 Implementors should note that prior to @value{GDBN} 5.0 the protocol
33101 specification also included an optional two-digit @var{sequence-id}:
33102
33103 @smallexample
33104 @code{$}@var{sequence-id}@code{:}@var{packet-data}@code{#}@var{checksum}
33105 @end smallexample
33106
33107 @cindex sequence-id, for @value{GDBN} remote
33108 @noindent
33109 That @var{sequence-id} was appended to the acknowledgment.  @value{GDBN}
33110 has never output @var{sequence-id}s.  Stubs that handle packets added
33111 since @value{GDBN} 5.0 must not accept @var{sequence-id}.
33112
33113 When either the host or the target machine receives a packet, the first
33114 response expected is an acknowledgment: either @samp{+} (to indicate
33115 the package was received correctly) or @samp{-} (to request
33116 retransmission):
33117
33118 @smallexample
33119 -> @code{$}@var{packet-data}@code{#}@var{checksum}
33120 <- @code{+}
33121 @end smallexample
33122 @noindent
33123
33124 The @samp{+}/@samp{-} acknowledgments can be disabled
33125 once a connection is established.
33126 @xref{Packet Acknowledgment}, for details.
33127
33128 The host (@value{GDBN}) sends @var{command}s, and the target (the
33129 debugging stub incorporated in your program) sends a @var{response}.  In
33130 the case of step and continue @var{command}s, the response is only sent
33131 when the operation has completed, and the target has again stopped all
33132 threads in all attached processes.  This is the default all-stop mode
33133 behavior, but the remote protocol also supports @value{GDBN}'s non-stop 
33134 execution mode; see @ref{Remote Non-Stop}, for details.
33135
33136 @var{packet-data} consists of a sequence of characters with the
33137 exception of @samp{#} and @samp{$} (see @samp{X} packet for additional
33138 exceptions).
33139
33140 @cindex remote protocol, field separator
33141 Fields within the packet should be separated using @samp{,} @samp{;} or
33142 @samp{:}.  Except where otherwise noted all numbers are represented in
33143 @sc{hex} with leading zeros suppressed.
33144
33145 Implementors should note that prior to @value{GDBN} 5.0, the character
33146 @samp{:} could not appear as the third character in a packet (as it
33147 would potentially conflict with the @var{sequence-id}).
33148
33149 @cindex remote protocol, binary data
33150 @anchor{Binary Data}
33151 Binary data in most packets is encoded either as two hexadecimal
33152 digits per byte of binary data.  This allowed the traditional remote
33153 protocol to work over connections which were only seven-bit clean.
33154 Some packets designed more recently assume an eight-bit clean
33155 connection, and use a more efficient encoding to send and receive
33156 binary data.
33157
33158 The binary data representation uses @code{7d} (@sc{ascii} @samp{@}})
33159 as an escape character.  Any escaped byte is transmitted as the escape
33160 character followed by the original character XORed with @code{0x20}.
33161 For example, the byte @code{0x7d} would be transmitted as the two
33162 bytes @code{0x7d 0x5d}.  The bytes @code{0x23} (@sc{ascii} @samp{#}),
33163 @code{0x24} (@sc{ascii} @samp{$}), and @code{0x7d} (@sc{ascii}
33164 @samp{@}}) must always be escaped.  Responses sent by the stub
33165 must also escape @code{0x2a} (@sc{ascii} @samp{*}), so that it
33166 is not interpreted as the start of a run-length encoded sequence
33167 (described next).
33168
33169 Response @var{data} can be run-length encoded to save space.
33170 Run-length encoding replaces runs of identical characters with one
33171 instance of the repeated character, followed by a @samp{*} and a
33172 repeat count.  The repeat count is itself sent encoded, to avoid
33173 binary characters in @var{data}: a value of @var{n} is sent as
33174 @code{@var{n}+29}.  For a repeat count greater or equal to 3, this
33175 produces a printable @sc{ascii} character, e.g.@: a space (@sc{ascii}
33176 code 32) for a repeat count of 3.  (This is because run-length
33177 encoding starts to win for counts 3 or more.)  Thus, for example,
33178 @samp{0* } is a run-length encoding of ``0000'': the space character
33179 after @samp{*} means repeat the leading @code{0} @w{@code{32 - 29 =
33180 3}} more times.
33181
33182 The printable characters @samp{#} and @samp{$} or with a numeric value
33183 greater than 126 must not be used.  Runs of six repeats (@samp{#}) or
33184 seven repeats (@samp{$}) can be expanded using a repeat count of only
33185 five (@samp{"}).  For example, @samp{00000000} can be encoded as
33186 @samp{0*"00}.
33187
33188 The error response returned for some packets includes a two character
33189 error number.  That number is not well defined.
33190
33191 @cindex empty response, for unsupported packets
33192 For any @var{command} not supported by the stub, an empty response
33193 (@samp{$#00}) should be returned.  That way it is possible to extend the
33194 protocol.  A newer @value{GDBN} can tell if a packet is supported based
33195 on that response.
33196
33197 At a minimum, a stub is required to support the @samp{g} and @samp{G}
33198 commands for register access, and the @samp{m} and @samp{M} commands
33199 for memory access.  Stubs that only control single-threaded targets
33200 can implement run control with the @samp{c} (continue), and @samp{s}
33201 (step) commands.  Stubs that support multi-threading targets should
33202 support the @samp{vCont} command.  All other commands are optional.
33203
33204 @node Packets
33205 @section Packets
33206
33207 The following table provides a complete list of all currently defined
33208 @var{command}s and their corresponding response @var{data}.
33209 @xref{File-I/O Remote Protocol Extension}, for details about the File
33210 I/O extension of the remote protocol.
33211
33212 Each packet's description has a template showing the packet's overall
33213 syntax, followed by an explanation of the packet's meaning.  We
33214 include spaces in some of the templates for clarity; these are not
33215 part of the packet's syntax.  No @value{GDBN} packet uses spaces to
33216 separate its components.  For example, a template like @samp{foo
33217 @var{bar} @var{baz}} describes a packet beginning with the three ASCII
33218 bytes @samp{foo}, followed by a @var{bar}, followed directly by a
33219 @var{baz}.  @value{GDBN} does not transmit a space character between the
33220 @samp{foo} and the @var{bar}, or between the @var{bar} and the
33221 @var{baz}.
33222
33223 @cindex @var{thread-id}, in remote protocol
33224 @anchor{thread-id syntax} 
33225 Several packets and replies include a @var{thread-id} field to identify
33226 a thread.  Normally these are positive numbers with a target-specific
33227 interpretation, formatted as big-endian hex strings.  A @var{thread-id}
33228 can also be a literal @samp{-1} to indicate all threads, or @samp{0} to
33229 pick any thread.
33230
33231 In addition, the remote protocol supports a multiprocess feature in
33232 which the @var{thread-id} syntax is extended to optionally include both
33233 process and thread ID fields, as @samp{p@var{pid}.@var{tid}}.
33234 The @var{pid} (process) and @var{tid} (thread) components each have the
33235 format described above: a positive number with target-specific
33236 interpretation formatted as a big-endian hex string, literal @samp{-1}
33237 to indicate all processes or threads (respectively), or @samp{0} to
33238 indicate an arbitrary process or thread.  Specifying just a process, as
33239 @samp{p@var{pid}}, is equivalent to @samp{p@var{pid}.-1}.  It is an
33240 error to specify all processes but a specific thread, such as
33241 @samp{p-1.@var{tid}}.  Note that the @samp{p} prefix is @emph{not} used
33242 for those packets and replies explicitly documented to include a process
33243 ID, rather than a @var{thread-id}.
33244
33245 The multiprocess @var{thread-id} syntax extensions are only used if both
33246 @value{GDBN} and the stub report support for the @samp{multiprocess}
33247 feature using @samp{qSupported}.  @xref{multiprocess extensions}, for
33248 more information.
33249
33250 Note that all packet forms beginning with an upper- or lower-case
33251 letter, other than those described here, are reserved for future use.
33252
33253 Here are the packet descriptions.
33254
33255 @table @samp
33256
33257 @item !
33258 @cindex @samp{!} packet
33259 @anchor{extended mode}
33260 Enable extended mode.  In extended mode, the remote server is made
33261 persistent.  The @samp{R} packet is used to restart the program being
33262 debugged.
33263
33264 Reply:
33265 @table @samp
33266 @item OK
33267 The remote target both supports and has enabled extended mode.
33268 @end table
33269
33270 @item ?
33271 @cindex @samp{?} packet
33272 Indicate the reason the target halted.  The reply is the same as for
33273 step and continue.  This packet has a special interpretation when the
33274 target is in non-stop mode; see @ref{Remote Non-Stop}.
33275
33276 Reply:
33277 @xref{Stop Reply Packets}, for the reply specifications.
33278
33279 @item A @var{arglen},@var{argnum},@var{arg},@dots{}
33280 @cindex @samp{A} packet
33281 Initialized @code{argv[]} array passed into program. @var{arglen}
33282 specifies the number of bytes in the hex encoded byte stream
33283 @var{arg}.  See @code{gdbserver} for more details.
33284
33285 Reply:
33286 @table @samp
33287 @item OK
33288 The arguments were set.
33289 @item E @var{NN}
33290 An error occurred.
33291 @end table
33292
33293 @item b @var{baud}
33294 @cindex @samp{b} packet
33295 (Don't use this packet; its behavior is not well-defined.)
33296 Change the serial line speed to @var{baud}.
33297
33298 JTC: @emph{When does the transport layer state change?  When it's
33299 received, or after the ACK is transmitted.  In either case, there are
33300 problems if the command or the acknowledgment packet is dropped.}
33301
33302 Stan: @emph{If people really wanted to add something like this, and get
33303 it working for the first time, they ought to modify ser-unix.c to send
33304 some kind of out-of-band message to a specially-setup stub and have the
33305 switch happen "in between" packets, so that from remote protocol's point
33306 of view, nothing actually happened.}
33307
33308 @item B @var{addr},@var{mode}
33309 @cindex @samp{B} packet
33310 Set (@var{mode} is @samp{S}) or clear (@var{mode} is @samp{C}) a
33311 breakpoint at @var{addr}.
33312
33313 Don't use this packet.  Use the @samp{Z} and @samp{z} packets instead
33314 (@pxref{insert breakpoint or watchpoint packet}).
33315
33316 @cindex @samp{bc} packet
33317 @anchor{bc}
33318 @item bc
33319 Backward continue.  Execute the target system in reverse.  No parameter.
33320 @xref{Reverse Execution}, for more information.
33321
33322 Reply:
33323 @xref{Stop Reply Packets}, for the reply specifications.
33324
33325 @cindex @samp{bs} packet
33326 @anchor{bs}
33327 @item bs
33328 Backward single step.  Execute one instruction in reverse.  No parameter.
33329 @xref{Reverse Execution}, for more information.
33330
33331 Reply:
33332 @xref{Stop Reply Packets}, for the reply specifications.
33333
33334 @item c @r{[}@var{addr}@r{]}
33335 @cindex @samp{c} packet
33336 Continue.  @var{addr} is address to resume.  If @var{addr} is omitted,
33337 resume at current address.
33338
33339 This packet is deprecated for multi-threading support.  @xref{vCont
33340 packet}.
33341
33342 Reply:
33343 @xref{Stop Reply Packets}, for the reply specifications.
33344
33345 @item C @var{sig}@r{[};@var{addr}@r{]}
33346 @cindex @samp{C} packet
33347 Continue with signal @var{sig} (hex signal number).  If
33348 @samp{;@var{addr}} is omitted, resume at same address.
33349
33350 This packet is deprecated for multi-threading support.  @xref{vCont
33351 packet}.
33352
33353 Reply:
33354 @xref{Stop Reply Packets}, for the reply specifications.
33355
33356 @item d
33357 @cindex @samp{d} packet
33358 Toggle debug flag.
33359
33360 Don't use this packet; instead, define a general set packet
33361 (@pxref{General Query Packets}).
33362
33363 @item D
33364 @itemx D;@var{pid}
33365 @cindex @samp{D} packet
33366 The first form of the packet is used to detach @value{GDBN} from the 
33367 remote system.  It is sent to the remote target
33368 before @value{GDBN} disconnects via the @code{detach} command.
33369
33370 The second form, including a process ID, is used when multiprocess
33371 protocol extensions are enabled (@pxref{multiprocess extensions}), to
33372 detach only a specific process.  The @var{pid} is specified as a
33373 big-endian hex string.
33374
33375 Reply:
33376 @table @samp
33377 @item OK
33378 for success
33379 @item E @var{NN}
33380 for an error
33381 @end table
33382
33383 @item F @var{RC},@var{EE},@var{CF};@var{XX}
33384 @cindex @samp{F} packet
33385 A reply from @value{GDBN} to an @samp{F} packet sent by the target.
33386 This is part of the File-I/O protocol extension.  @xref{File-I/O
33387 Remote Protocol Extension}, for the specification.
33388
33389 @item g
33390 @anchor{read registers packet}
33391 @cindex @samp{g} packet
33392 Read general registers.
33393
33394 Reply:
33395 @table @samp
33396 @item @var{XX@dots{}}
33397 Each byte of register data is described by two hex digits.  The bytes
33398 with the register are transmitted in target byte order.  The size of
33399 each register and their position within the @samp{g} packet are
33400 determined by the @value{GDBN} internal gdbarch functions
33401 @code{DEPRECATED_REGISTER_RAW_SIZE} and @code{gdbarch_register_name}.  The
33402 specification of several standard @samp{g} packets is specified below.
33403
33404 When reading registers from a trace frame (@pxref{Analyze Collected
33405 Data,,Using the Collected Data}), the stub may also return a string of
33406 literal @samp{x}'s in place of the register data digits, to indicate
33407 that the corresponding register has not been collected, thus its value
33408 is unavailable.  For example, for an architecture with 4 registers of
33409 4 bytes each, the following reply indicates to @value{GDBN} that
33410 registers 0 and 2 have not been collected, while registers 1 and 3
33411 have been collected, and both have zero value:
33412
33413 @smallexample
33414 -> @code{g}
33415 <- @code{xxxxxxxx00000000xxxxxxxx00000000}
33416 @end smallexample
33417
33418 @item E @var{NN}
33419 for an error.
33420 @end table
33421
33422 @item G @var{XX@dots{}}
33423 @cindex @samp{G} packet
33424 Write general registers.  @xref{read registers packet}, for a
33425 description of the @var{XX@dots{}} data.
33426
33427 Reply:
33428 @table @samp
33429 @item OK
33430 for success
33431 @item E @var{NN}
33432 for an error
33433 @end table
33434
33435 @item H @var{op} @var{thread-id}
33436 @cindex @samp{H} packet
33437 Set thread for subsequent operations (@samp{m}, @samp{M}, @samp{g},
33438 @samp{G}, et.al.).  @var{op} depends on the operation to be performed:
33439 it should be @samp{c} for step and continue operations (note that this
33440 is deprecated, supporting the @samp{vCont} command is a better
33441 option), @samp{g} for other operations.  The thread designator
33442 @var{thread-id} has the format and interpretation described in
33443 @ref{thread-id syntax}.
33444
33445 Reply:
33446 @table @samp
33447 @item OK
33448 for success
33449 @item E @var{NN}
33450 for an error
33451 @end table
33452
33453 @c FIXME: JTC:
33454 @c   'H': How restrictive (or permissive) is the thread model.  If a
33455 @c        thread is selected and stopped, are other threads allowed
33456 @c        to continue to execute?  As I mentioned above, I think the
33457 @c        semantics of each command when a thread is selected must be
33458 @c        described.  For example:
33459 @c
33460 @c        'g':    If the stub supports threads and a specific thread is
33461 @c                selected, returns the register block from that thread;
33462 @c                otherwise returns current registers.
33463 @c
33464 @c        'G'     If the stub supports threads and a specific thread is
33465 @c                selected, sets the registers of the register block of
33466 @c                that thread; otherwise sets current registers.
33467
33468 @item i @r{[}@var{addr}@r{[},@var{nnn}@r{]]}
33469 @anchor{cycle step packet}
33470 @cindex @samp{i} packet
33471 Step the remote target by a single clock cycle.  If @samp{,@var{nnn}} is
33472 present, cycle step @var{nnn} cycles.  If @var{addr} is present, cycle
33473 step starting at that address.
33474
33475 @item I
33476 @cindex @samp{I} packet
33477 Signal, then cycle step.  @xref{step with signal packet}.  @xref{cycle
33478 step packet}.
33479
33480 @item k
33481 @cindex @samp{k} packet
33482 Kill request.
33483
33484 FIXME: @emph{There is no description of how to operate when a specific
33485 thread context has been selected (i.e.@: does 'k' kill only that
33486 thread?)}.
33487
33488 @item m @var{addr},@var{length}
33489 @cindex @samp{m} packet
33490 Read @var{length} bytes of memory starting at address @var{addr}.
33491 Note that @var{addr} may not be aligned to any particular boundary.
33492
33493 The stub need not use any particular size or alignment when gathering
33494 data from memory for the response; even if @var{addr} is word-aligned
33495 and @var{length} is a multiple of the word size, the stub is free to
33496 use byte accesses, or not.  For this reason, this packet may not be
33497 suitable for accessing memory-mapped I/O devices.
33498 @cindex alignment of remote memory accesses
33499 @cindex size of remote memory accesses
33500 @cindex memory, alignment and size of remote accesses
33501
33502 Reply:
33503 @table @samp
33504 @item @var{XX@dots{}}
33505 Memory contents; each byte is transmitted as a two-digit hexadecimal
33506 number.  The reply may contain fewer bytes than requested if the
33507 server was able to read only part of the region of memory.
33508 @item E @var{NN}
33509 @var{NN} is errno
33510 @end table
33511
33512 @item M @var{addr},@var{length}:@var{XX@dots{}}
33513 @cindex @samp{M} packet
33514 Write @var{length} bytes of memory starting at address @var{addr}.
33515 @var{XX@dots{}} is the data; each byte is transmitted as a two-digit
33516 hexadecimal number.
33517
33518 Reply:
33519 @table @samp
33520 @item OK
33521 for success
33522 @item E @var{NN}
33523 for an error (this includes the case where only part of the data was
33524 written).
33525 @end table
33526
33527 @item p @var{n}
33528 @cindex @samp{p} packet
33529 Read the value of register @var{n}; @var{n} is in hex.
33530 @xref{read registers packet}, for a description of how the returned
33531 register value is encoded.
33532
33533 Reply:
33534 @table @samp
33535 @item @var{XX@dots{}}
33536 the register's value
33537 @item E @var{NN}
33538 for an error
33539 @item
33540 Indicating an unrecognized @var{query}.
33541 @end table
33542
33543 @item P @var{n@dots{}}=@var{r@dots{}}
33544 @anchor{write register packet}
33545 @cindex @samp{P} packet
33546 Write register @var{n@dots{}} with value @var{r@dots{}}.  The register
33547 number @var{n} is in hexadecimal, and @var{r@dots{}} contains two hex
33548 digits for each byte in the register (target byte order).
33549
33550 Reply:
33551 @table @samp
33552 @item OK
33553 for success
33554 @item E @var{NN}
33555 for an error
33556 @end table
33557
33558 @item q @var{name} @var{params}@dots{}
33559 @itemx Q @var{name} @var{params}@dots{}
33560 @cindex @samp{q} packet
33561 @cindex @samp{Q} packet
33562 General query (@samp{q}) and set (@samp{Q}).  These packets are
33563 described fully in @ref{General Query Packets}.
33564
33565 @item r
33566 @cindex @samp{r} packet
33567 Reset the entire system.
33568
33569 Don't use this packet; use the @samp{R} packet instead.
33570
33571 @item R @var{XX}
33572 @cindex @samp{R} packet
33573 Restart the program being debugged.  @var{XX}, while needed, is ignored.
33574 This packet is only available in extended mode (@pxref{extended mode}).
33575
33576 The @samp{R} packet has no reply.
33577
33578 @item s @r{[}@var{addr}@r{]}
33579 @cindex @samp{s} packet
33580 Single step.  @var{addr} is the address at which to resume.  If
33581 @var{addr} is omitted, resume at same address.
33582
33583 This packet is deprecated for multi-threading support.  @xref{vCont
33584 packet}.
33585
33586 Reply:
33587 @xref{Stop Reply Packets}, for the reply specifications.
33588
33589 @item S @var{sig}@r{[};@var{addr}@r{]}
33590 @anchor{step with signal packet}
33591 @cindex @samp{S} packet
33592 Step with signal.  This is analogous to the @samp{C} packet, but
33593 requests a single-step, rather than a normal resumption of execution.
33594
33595 This packet is deprecated for multi-threading support.  @xref{vCont
33596 packet}.
33597
33598 Reply:
33599 @xref{Stop Reply Packets}, for the reply specifications.
33600
33601 @item t @var{addr}:@var{PP},@var{MM}
33602 @cindex @samp{t} packet
33603 Search backwards starting at address @var{addr} for a match with pattern
33604 @var{PP} and mask @var{MM}.  @var{PP} and @var{MM} are 4 bytes.
33605 @var{addr} must be at least 3 digits.
33606
33607 @item T @var{thread-id}
33608 @cindex @samp{T} packet
33609 Find out if the thread @var{thread-id} is alive.  @xref{thread-id syntax}.
33610
33611 Reply:
33612 @table @samp
33613 @item OK
33614 thread is still alive
33615 @item E @var{NN}
33616 thread is dead
33617 @end table
33618
33619 @item v
33620 Packets starting with @samp{v} are identified by a multi-letter name,
33621 up to the first @samp{;} or @samp{?} (or the end of the packet).
33622
33623 @item vAttach;@var{pid}
33624 @cindex @samp{vAttach} packet
33625 Attach to a new process with the specified process ID @var{pid}.
33626 The process ID is a
33627 hexadecimal integer identifying the process.  In all-stop mode, all
33628 threads in the attached process are stopped; in non-stop mode, it may be
33629 attached without being stopped if that is supported by the target.
33630
33631 @c In non-stop mode, on a successful vAttach, the stub should set the
33632 @c current thread to a thread of the newly-attached process.  After
33633 @c attaching, GDB queries for the attached process's thread ID with qC.
33634 @c Also note that, from a user perspective, whether or not the 
33635 @c target is stopped on attach in non-stop mode depends on whether you 
33636 @c use the foreground or background version of the attach command, not 
33637 @c on what vAttach does; GDB does the right thing with respect to either 
33638 @c stopping or restarting threads.
33639
33640 This packet is only available in extended mode (@pxref{extended mode}).
33641
33642 Reply:
33643 @table @samp
33644 @item E @var{nn}
33645 for an error
33646 @item @r{Any stop packet}
33647 for success in all-stop mode (@pxref{Stop Reply Packets})
33648 @item OK
33649 for success in non-stop mode (@pxref{Remote Non-Stop})
33650 @end table
33651
33652 @item vCont@r{[};@var{action}@r{[}:@var{thread-id}@r{]]}@dots{}
33653 @cindex @samp{vCont} packet
33654 @anchor{vCont packet}
33655 Resume the inferior, specifying different actions for each thread.
33656 If an action is specified with no @var{thread-id}, then it is applied to any
33657 threads that don't have a specific action specified; if no default action is
33658 specified then other threads should remain stopped in all-stop mode and
33659 in their current state in non-stop mode.
33660 Specifying multiple
33661 default actions is an error; specifying no actions is also an error.
33662 Thread IDs are specified using the syntax described in @ref{thread-id syntax}.
33663
33664 Currently supported actions are:
33665
33666 @table @samp
33667 @item c
33668 Continue.
33669 @item C @var{sig}
33670 Continue with signal @var{sig}.  The signal @var{sig} should be two hex digits.
33671 @item s
33672 Step.
33673 @item S @var{sig}
33674 Step with signal @var{sig}.  The signal @var{sig} should be two hex digits.
33675 @item t
33676 Stop.
33677 @end table
33678
33679 The optional argument @var{addr} normally associated with the 
33680 @samp{c}, @samp{C}, @samp{s}, and @samp{S} packets is
33681 not supported in @samp{vCont}.
33682
33683 The @samp{t} action is only relevant in non-stop mode
33684 (@pxref{Remote Non-Stop}) and may be ignored by the stub otherwise.
33685 A stop reply should be generated for any affected thread not already stopped.
33686 When a thread is stopped by means of a @samp{t} action,
33687 the corresponding stop reply should indicate that the thread has stopped with
33688 signal @samp{0}, regardless of whether the target uses some other signal
33689 as an implementation detail.
33690
33691 Reply:
33692 @xref{Stop Reply Packets}, for the reply specifications.
33693
33694 @item vCont?
33695 @cindex @samp{vCont?} packet
33696 Request a list of actions supported by the @samp{vCont} packet.
33697
33698 Reply:
33699 @table @samp
33700 @item vCont@r{[};@var{action}@dots{}@r{]}
33701 The @samp{vCont} packet is supported.  Each @var{action} is a supported
33702 command in the @samp{vCont} packet.
33703 @item
33704 The @samp{vCont} packet is not supported.
33705 @end table
33706
33707 @item vFile:@var{operation}:@var{parameter}@dots{}
33708 @cindex @samp{vFile} packet
33709 Perform a file operation on the target system.  For details,
33710 see @ref{Host I/O Packets}.
33711
33712 @item vFlashErase:@var{addr},@var{length}
33713 @cindex @samp{vFlashErase} packet
33714 Direct the stub to erase @var{length} bytes of flash starting at
33715 @var{addr}.  The region may enclose any number of flash blocks, but
33716 its start and end must fall on block boundaries, as indicated by the
33717 flash block size appearing in the memory map (@pxref{Memory Map
33718 Format}).  @value{GDBN} groups flash memory programming operations
33719 together, and sends a @samp{vFlashDone} request after each group; the
33720 stub is allowed to delay erase operation until the @samp{vFlashDone}
33721 packet is received.
33722
33723 The stub must support @samp{vCont} if it reports support for
33724 multiprocess extensions (@pxref{multiprocess extensions}).  Note that in
33725 this case @samp{vCont} actions can be specified to apply to all threads
33726 in a process by using the @samp{p@var{pid}.-1} form of the
33727 @var{thread-id}.
33728
33729 Reply:
33730 @table @samp
33731 @item OK
33732 for success
33733 @item E @var{NN}
33734 for an error
33735 @end table
33736
33737 @item vFlashWrite:@var{addr}:@var{XX@dots{}}
33738 @cindex @samp{vFlashWrite} packet
33739 Direct the stub to write data to flash address @var{addr}.  The data
33740 is passed in binary form using the same encoding as for the @samp{X}
33741 packet (@pxref{Binary Data}).  The memory ranges specified by
33742 @samp{vFlashWrite} packets preceding a @samp{vFlashDone} packet must
33743 not overlap, and must appear in order of increasing addresses
33744 (although @samp{vFlashErase} packets for higher addresses may already
33745 have been received; the ordering is guaranteed only between
33746 @samp{vFlashWrite} packets).  If a packet writes to an address that was
33747 neither erased by a preceding @samp{vFlashErase} packet nor by some other
33748 target-specific method, the results are unpredictable.
33749
33750
33751 Reply:
33752 @table @samp
33753 @item OK
33754 for success
33755 @item E.memtype
33756 for vFlashWrite addressing non-flash memory
33757 @item E @var{NN}
33758 for an error
33759 @end table
33760
33761 @item vFlashDone
33762 @cindex @samp{vFlashDone} packet
33763 Indicate to the stub that flash programming operation is finished.
33764 The stub is permitted to delay or batch the effects of a group of
33765 @samp{vFlashErase} and @samp{vFlashWrite} packets until a
33766 @samp{vFlashDone} packet is received.  The contents of the affected
33767 regions of flash memory are unpredictable until the @samp{vFlashDone}
33768 request is completed.
33769
33770 @item vKill;@var{pid}
33771 @cindex @samp{vKill} packet
33772 Kill the process with the specified process ID.  @var{pid} is a
33773 hexadecimal integer identifying the process.  This packet is used in
33774 preference to @samp{k} when multiprocess protocol extensions are
33775 supported; see @ref{multiprocess extensions}.
33776
33777 Reply:
33778 @table @samp
33779 @item E @var{nn}
33780 for an error
33781 @item OK
33782 for success
33783 @end table
33784
33785 @item vRun;@var{filename}@r{[};@var{argument}@r{]}@dots{}
33786 @cindex @samp{vRun} packet
33787 Run the program @var{filename}, passing it each @var{argument} on its
33788 command line.  The file and arguments are hex-encoded strings.  If
33789 @var{filename} is an empty string, the stub may use a default program
33790 (e.g.@: the last program run).  The program is created in the stopped
33791 state.
33792
33793 @c FIXME:  What about non-stop mode?
33794
33795 This packet is only available in extended mode (@pxref{extended mode}).
33796
33797 Reply:
33798 @table @samp
33799 @item E @var{nn}
33800 for an error
33801 @item @r{Any stop packet}
33802 for success (@pxref{Stop Reply Packets})
33803 @end table
33804
33805 @item vStopped
33806 @anchor{vStopped packet}
33807 @cindex @samp{vStopped} packet
33808
33809 In non-stop mode (@pxref{Remote Non-Stop}), acknowledge a previous stop
33810 reply and prompt for the stub to report another one.
33811
33812 Reply:
33813 @table @samp
33814 @item @r{Any stop packet}
33815 if there is another unreported stop event (@pxref{Stop Reply Packets})
33816 @item OK
33817 if there are no unreported stop events
33818 @end table
33819
33820 @item X @var{addr},@var{length}:@var{XX@dots{}}
33821 @anchor{X packet}
33822 @cindex @samp{X} packet
33823 Write data to memory, where the data is transmitted in binary.
33824 @var{addr} is address, @var{length} is number of bytes,
33825 @samp{@var{XX}@dots{}} is binary data (@pxref{Binary Data}).
33826
33827 Reply:
33828 @table @samp
33829 @item OK
33830 for success
33831 @item E @var{NN}
33832 for an error
33833 @end table
33834
33835 @item z @var{type},@var{addr},@var{kind}
33836 @itemx Z @var{type},@var{addr},@var{kind}
33837 @anchor{insert breakpoint or watchpoint packet}
33838 @cindex @samp{z} packet
33839 @cindex @samp{Z} packets
33840 Insert (@samp{Z}) or remove (@samp{z}) a @var{type} breakpoint or
33841 watchpoint starting at address @var{address} of kind @var{kind}.
33842
33843 Each breakpoint and watchpoint packet @var{type} is documented
33844 separately.
33845
33846 @emph{Implementation notes: A remote target shall return an empty string
33847 for an unrecognized breakpoint or watchpoint packet @var{type}.  A
33848 remote target shall support either both or neither of a given
33849 @samp{Z@var{type}@dots{}} and @samp{z@var{type}@dots{}} packet pair.  To
33850 avoid potential problems with duplicate packets, the operations should
33851 be implemented in an idempotent way.}
33852
33853 @item z0,@var{addr},@var{kind}
33854 @itemx Z0,@var{addr},@var{kind}
33855 @cindex @samp{z0} packet
33856 @cindex @samp{Z0} packet
33857 Insert (@samp{Z0}) or remove (@samp{z0}) a memory breakpoint at address
33858 @var{addr} of type @var{kind}.
33859
33860 A memory breakpoint is implemented by replacing the instruction at
33861 @var{addr} with a software breakpoint or trap instruction.  The
33862 @var{kind} is target-specific and typically indicates the size of
33863 the breakpoint in bytes that should be inserted.  E.g., the @sc{arm}
33864 and @sc{mips} can insert either a 2 or 4 byte breakpoint.  Some
33865 architectures have additional meanings for @var{kind};
33866 see @ref{Architecture-Specific Protocol Details}.
33867
33868 @emph{Implementation note: It is possible for a target to copy or move
33869 code that contains memory breakpoints (e.g., when implementing
33870 overlays).  The behavior of this packet, in the presence of such a
33871 target, is not defined.}
33872
33873 Reply:
33874 @table @samp
33875 @item OK
33876 success
33877 @item
33878 not supported
33879 @item E @var{NN}
33880 for an error
33881 @end table
33882
33883 @item z1,@var{addr},@var{kind}
33884 @itemx Z1,@var{addr},@var{kind}
33885 @cindex @samp{z1} packet
33886 @cindex @samp{Z1} packet
33887 Insert (@samp{Z1}) or remove (@samp{z1}) a hardware breakpoint at
33888 address @var{addr}.
33889
33890 A hardware breakpoint is implemented using a mechanism that is not
33891 dependant on being able to modify the target's memory.  @var{kind}
33892 has the same meaning as in @samp{Z0} packets.
33893
33894 @emph{Implementation note: A hardware breakpoint is not affected by code
33895 movement.}
33896
33897 Reply:
33898 @table @samp
33899 @item OK
33900 success
33901 @item
33902 not supported
33903 @item E @var{NN}
33904 for an error
33905 @end table
33906
33907 @item z2,@var{addr},@var{kind}
33908 @itemx Z2,@var{addr},@var{kind}
33909 @cindex @samp{z2} packet
33910 @cindex @samp{Z2} packet
33911 Insert (@samp{Z2}) or remove (@samp{z2}) a write watchpoint at @var{addr}.
33912 @var{kind} is interpreted as the number of bytes to watch.
33913
33914 Reply:
33915 @table @samp
33916 @item OK
33917 success
33918 @item
33919 not supported
33920 @item E @var{NN}
33921 for an error
33922 @end table
33923
33924 @item z3,@var{addr},@var{kind}
33925 @itemx Z3,@var{addr},@var{kind}
33926 @cindex @samp{z3} packet
33927 @cindex @samp{Z3} packet
33928 Insert (@samp{Z3}) or remove (@samp{z3}) a read watchpoint at @var{addr}.
33929 @var{kind} is interpreted as the number of bytes to watch.
33930
33931 Reply:
33932 @table @samp
33933 @item OK
33934 success
33935 @item
33936 not supported
33937 @item E @var{NN}
33938 for an error
33939 @end table
33940
33941 @item z4,@var{addr},@var{kind}
33942 @itemx Z4,@var{addr},@var{kind}
33943 @cindex @samp{z4} packet
33944 @cindex @samp{Z4} packet
33945 Insert (@samp{Z4}) or remove (@samp{z4}) an access watchpoint at @var{addr}.
33946 @var{kind} is interpreted as the number of bytes to watch.
33947
33948 Reply:
33949 @table @samp
33950 @item OK
33951 success
33952 @item
33953 not supported
33954 @item E @var{NN}
33955 for an error
33956 @end table
33957
33958 @end table
33959
33960 @node Stop Reply Packets
33961 @section Stop Reply Packets
33962 @cindex stop reply packets
33963
33964 The @samp{C}, @samp{c}, @samp{S}, @samp{s}, @samp{vCont},
33965 @samp{vAttach}, @samp{vRun}, @samp{vStopped}, and @samp{?} packets can
33966 receive any of the below as a reply.  Except for @samp{?}
33967 and @samp{vStopped}, that reply is only returned
33968 when the target halts.  In the below the exact meaning of @dfn{signal
33969 number} is defined by the header @file{include/gdb/signals.h} in the
33970 @value{GDBN} source code.
33971
33972 As in the description of request packets, we include spaces in the
33973 reply templates for clarity; these are not part of the reply packet's
33974 syntax.  No @value{GDBN} stop reply packet uses spaces to separate its
33975 components.
33976
33977 @table @samp
33978
33979 @item S @var{AA}
33980 The program received signal number @var{AA} (a two-digit hexadecimal
33981 number).  This is equivalent to a @samp{T} response with no
33982 @var{n}:@var{r} pairs.
33983
33984 @item T @var{AA} @var{n1}:@var{r1};@var{n2}:@var{r2};@dots{}
33985 @cindex @samp{T} packet reply
33986 The program received signal number @var{AA} (a two-digit hexadecimal
33987 number).  This is equivalent to an @samp{S} response, except that the
33988 @samp{@var{n}:@var{r}} pairs can carry values of important registers
33989 and other information directly in the stop reply packet, reducing
33990 round-trip latency.  Single-step and breakpoint traps are reported
33991 this way.  Each @samp{@var{n}:@var{r}} pair is interpreted as follows:
33992
33993 @itemize @bullet
33994 @item
33995 If @var{n} is a hexadecimal number, it is a register number, and the
33996 corresponding @var{r} gives that register's value.  @var{r} is a
33997 series of bytes in target byte order, with each byte given by a
33998 two-digit hex number.
33999
34000 @item
34001 If @var{n} is @samp{thread}, then @var{r} is the @var{thread-id} of
34002 the stopped thread, as specified in @ref{thread-id syntax}.
34003
34004 @item
34005 If @var{n} is @samp{core}, then @var{r} is the hexadecimal number of
34006 the core on which the stop event was detected.
34007
34008 @item
34009 If @var{n} is a recognized @dfn{stop reason}, it describes a more
34010 specific event that stopped the target.  The currently defined stop
34011 reasons are listed below.  @var{aa} should be @samp{05}, the trap
34012 signal.  At most one stop reason should be present.
34013
34014 @item
34015 Otherwise, @value{GDBN} should ignore this @samp{@var{n}:@var{r}} pair
34016 and go on to the next; this allows us to extend the protocol in the
34017 future.
34018 @end itemize
34019
34020 The currently defined stop reasons are:
34021
34022 @table @samp
34023 @item watch
34024 @itemx rwatch
34025 @itemx awatch
34026 The packet indicates a watchpoint hit, and @var{r} is the data address, in
34027 hex.
34028
34029 @cindex shared library events, remote reply
34030 @item library
34031 The packet indicates that the loaded libraries have changed.
34032 @value{GDBN} should use @samp{qXfer:libraries:read} to fetch a new
34033 list of loaded libraries.  @var{r} is ignored.
34034
34035 @cindex replay log events, remote reply
34036 @item replaylog
34037 The packet indicates that the target cannot continue replaying 
34038 logged execution events, because it has reached the end (or the
34039 beginning when executing backward) of the log.  The value of @var{r}
34040 will be either @samp{begin} or @samp{end}.  @xref{Reverse Execution}, 
34041 for more information.
34042 @end table
34043
34044 @item W @var{AA}
34045 @itemx W @var{AA} ; process:@var{pid}
34046 The process exited, and @var{AA} is the exit status.  This is only
34047 applicable to certain targets.
34048
34049 The second form of the response, including the process ID of the exited
34050 process, can be used only when @value{GDBN} has reported support for
34051 multiprocess protocol extensions; see @ref{multiprocess extensions}.
34052 The @var{pid} is formatted as a big-endian hex string.
34053
34054 @item X @var{AA}
34055 @itemx X @var{AA} ; process:@var{pid}
34056 The process terminated with signal @var{AA}.
34057
34058 The second form of the response, including the process ID of the
34059 terminated process, can be used only when @value{GDBN} has reported
34060 support for multiprocess protocol extensions; see @ref{multiprocess
34061 extensions}.  The @var{pid} is formatted as a big-endian hex string.
34062
34063 @item O @var{XX}@dots{}
34064 @samp{@var{XX}@dots{}} is hex encoding of @sc{ascii} data, to be
34065 written as the program's console output.  This can happen at any time
34066 while the program is running and the debugger should continue to wait
34067 for @samp{W}, @samp{T}, etc.  This reply is not permitted in non-stop mode.
34068
34069 @item F @var{call-id},@var{parameter}@dots{}
34070 @var{call-id} is the identifier which says which host system call should
34071 be called.  This is just the name of the function.  Translation into the
34072 correct system call is only applicable as it's defined in @value{GDBN}.
34073 @xref{File-I/O Remote Protocol Extension}, for a list of implemented
34074 system calls.
34075
34076 @samp{@var{parameter}@dots{}} is a list of parameters as defined for
34077 this very system call.
34078
34079 The target replies with this packet when it expects @value{GDBN} to
34080 call a host system call on behalf of the target.  @value{GDBN} replies
34081 with an appropriate @samp{F} packet and keeps up waiting for the next
34082 reply packet from the target.  The latest @samp{C}, @samp{c}, @samp{S}
34083 or @samp{s} action is expected to be continued.  @xref{File-I/O Remote
34084 Protocol Extension}, for more details.
34085
34086 @end table
34087
34088 @node General Query Packets
34089 @section General Query Packets
34090 @cindex remote query requests
34091
34092 Packets starting with @samp{q} are @dfn{general query packets};
34093 packets starting with @samp{Q} are @dfn{general set packets}.  General
34094 query and set packets are a semi-unified form for retrieving and
34095 sending information to and from the stub.
34096
34097 The initial letter of a query or set packet is followed by a name
34098 indicating what sort of thing the packet applies to.  For example,
34099 @value{GDBN} may use a @samp{qSymbol} packet to exchange symbol
34100 definitions with the stub.  These packet names follow some
34101 conventions:
34102
34103 @itemize @bullet
34104 @item
34105 The name must not contain commas, colons or semicolons.
34106 @item
34107 Most @value{GDBN} query and set packets have a leading upper case
34108 letter.
34109 @item
34110 The names of custom vendor packets should use a company prefix, in
34111 lower case, followed by a period.  For example, packets designed at
34112 the Acme Corporation might begin with @samp{qacme.foo} (for querying
34113 foos) or @samp{Qacme.bar} (for setting bars).
34114 @end itemize
34115
34116 The name of a query or set packet should be separated from any
34117 parameters by a @samp{:}; the parameters themselves should be
34118 separated by @samp{,} or @samp{;}.  Stubs must be careful to match the
34119 full packet name, and check for a separator or the end of the packet,
34120 in case two packet names share a common prefix.  New packets should not begin
34121 with @samp{qC}, @samp{qP}, or @samp{qL}@footnote{The @samp{qP} and @samp{qL}
34122 packets predate these conventions, and have arguments without any terminator
34123 for the packet name; we suspect they are in widespread use in places that
34124 are difficult to upgrade.  The @samp{qC} packet has no arguments, but some
34125 existing stubs (e.g.@: RedBoot) are known to not check for the end of the
34126 packet.}.
34127
34128 Like the descriptions of the other packets, each description here
34129 has a template showing the packet's overall syntax, followed by an
34130 explanation of the packet's meaning.  We include spaces in some of the
34131 templates for clarity; these are not part of the packet's syntax.  No
34132 @value{GDBN} packet uses spaces to separate its components.
34133
34134 Here are the currently defined query and set packets:
34135
34136 @table @samp
34137
34138 @item QAllow:@var{op}:@var{val}@dots{}
34139 @cindex @samp{QAllow} packet
34140 Specify which operations @value{GDBN} expects to request of the
34141 target, as a semicolon-separated list of operation name and value
34142 pairs.  Possible values for @var{op} include @samp{WriteReg},
34143 @samp{WriteMem}, @samp{InsertBreak}, @samp{InsertTrace},
34144 @samp{InsertFastTrace}, and @samp{Stop}. @var{val} is either 0,
34145 indicating that @value{GDBN} will not request the operation, or 1,
34146 indicating that it may.  (The target can then use this to set up its
34147 own internals optimally, for instance if the debugger never expects to
34148 insert breakpoints, it may not need to install its own trap handler.)
34149
34150 @item qC
34151 @cindex current thread, remote request
34152 @cindex @samp{qC} packet
34153 Return the current thread ID.
34154
34155 Reply:
34156 @table @samp
34157 @item QC @var{thread-id}
34158 Where @var{thread-id} is a thread ID as documented in 
34159 @ref{thread-id syntax}.
34160 @item @r{(anything else)}
34161 Any other reply implies the old thread ID.
34162 @end table
34163
34164 @item qCRC:@var{addr},@var{length}
34165 @cindex CRC of memory block, remote request
34166 @cindex @samp{qCRC} packet
34167 Compute the CRC checksum of a block of memory using CRC-32 defined in
34168 IEEE 802.3.  The CRC is computed byte at a time, taking the most
34169 significant bit of each byte first.  The initial pattern code
34170 @code{0xffffffff} is used to ensure leading zeros affect the CRC.
34171
34172 @emph{Note:} This is the same CRC used in validating separate debug
34173 files (@pxref{Separate Debug Files, , Debugging Information in Separate
34174 Files}).  However the algorithm is slightly different.  When validating
34175 separate debug files, the CRC is computed taking the @emph{least}
34176 significant bit of each byte first, and the final result is inverted to
34177 detect trailing zeros.
34178
34179 Reply:
34180 @table @samp
34181 @item E @var{NN}
34182 An error (such as memory fault)
34183 @item C @var{crc32}
34184 The specified memory region's checksum is @var{crc32}.
34185 @end table
34186
34187 @item QDisableRandomization:@var{value}
34188 @cindex disable address space randomization, remote request
34189 @cindex @samp{QDisableRandomization} packet
34190 Some target operating systems will randomize the virtual address space
34191 of the inferior process as a security feature, but provide a feature
34192 to disable such randomization, e.g.@: to allow for a more deterministic
34193 debugging experience.  On such systems, this packet with a @var{value}
34194 of 1 directs the target to disable address space randomization for
34195 processes subsequently started via @samp{vRun} packets, while a packet
34196 with a @var{value} of 0 tells the target to enable address space
34197 randomization.
34198
34199 This packet is only available in extended mode (@pxref{extended mode}).
34200
34201 Reply:
34202 @table @samp
34203 @item OK
34204 The request succeeded.
34205
34206 @item E @var{nn}
34207 An error occurred.  @var{nn} are hex digits.
34208
34209 @item
34210 An empty reply indicates that @samp{QDisableRandomization} is not supported
34211 by the stub.
34212 @end table
34213
34214 This packet is not probed by default; the remote stub must request it,
34215 by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
34216 This should only be done on targets that actually support disabling
34217 address space randomization.
34218
34219 @item qfThreadInfo
34220 @itemx qsThreadInfo
34221 @cindex list active threads, remote request
34222 @cindex @samp{qfThreadInfo} packet
34223 @cindex @samp{qsThreadInfo} packet
34224 Obtain a list of all active thread IDs from the target (OS).  Since there
34225 may be too many active threads to fit into one reply packet, this query
34226 works iteratively: it may require more than one query/reply sequence to
34227 obtain the entire list of threads.  The first query of the sequence will
34228 be the @samp{qfThreadInfo} query; subsequent queries in the
34229 sequence will be the @samp{qsThreadInfo} query.
34230
34231 NOTE: This packet replaces the @samp{qL} query (see below).
34232
34233 Reply:
34234 @table @samp
34235 @item m @var{thread-id}
34236 A single thread ID
34237 @item m @var{thread-id},@var{thread-id}@dots{}
34238 a comma-separated list of thread IDs
34239 @item l
34240 (lower case letter @samp{L}) denotes end of list.
34241 @end table
34242
34243 In response to each query, the target will reply with a list of one or
34244 more thread IDs, separated by commas.
34245 @value{GDBN} will respond to each reply with a request for more thread
34246 ids (using the @samp{qs} form of the query), until the target responds
34247 with @samp{l} (lower-case ell, for @dfn{last}).
34248 Refer to @ref{thread-id syntax}, for the format of the @var{thread-id}
34249 fields.
34250
34251 @item qGetTLSAddr:@var{thread-id},@var{offset},@var{lm}
34252 @cindex get thread-local storage address, remote request
34253 @cindex @samp{qGetTLSAddr} packet
34254 Fetch the address associated with thread local storage specified
34255 by @var{thread-id}, @var{offset}, and @var{lm}.
34256
34257 @var{thread-id} is the thread ID associated with the
34258 thread for which to fetch the TLS address.  @xref{thread-id syntax}.
34259
34260 @var{offset} is the (big endian, hex encoded) offset associated with the
34261 thread local variable.  (This offset is obtained from the debug
34262 information associated with the variable.)
34263
34264 @var{lm} is the (big endian, hex encoded) OS/ABI-specific encoding of the
34265 load module associated with the thread local storage.  For example,
34266 a @sc{gnu}/Linux system will pass the link map address of the shared
34267 object associated with the thread local storage under consideration. 
34268 Other operating environments may choose to represent the load module
34269 differently, so the precise meaning of this parameter will vary.
34270
34271 Reply:
34272 @table @samp
34273 @item @var{XX}@dots{}
34274 Hex encoded (big endian) bytes representing the address of the thread
34275 local storage requested.
34276
34277 @item E @var{nn}
34278 An error occurred.  @var{nn} are hex digits.
34279
34280 @item
34281 An empty reply indicates that @samp{qGetTLSAddr} is not supported by the stub.
34282 @end table
34283
34284 @item qGetTIBAddr:@var{thread-id}
34285 @cindex get thread information block address
34286 @cindex @samp{qGetTIBAddr} packet
34287 Fetch address of the Windows OS specific Thread Information Block.
34288
34289 @var{thread-id} is the thread ID associated with the thread.
34290
34291 Reply:
34292 @table @samp
34293 @item @var{XX}@dots{}
34294 Hex encoded (big endian) bytes representing the linear address of the
34295 thread information block.
34296
34297 @item E @var{nn}
34298 An error occured.  This means that either the thread was not found, or the
34299 address could not be retrieved.
34300
34301 @item
34302 An empty reply indicates that @samp{qGetTIBAddr} is not supported by the stub.
34303 @end table
34304
34305 @item qL @var{startflag} @var{threadcount} @var{nextthread}
34306 Obtain thread information from RTOS.  Where: @var{startflag} (one hex
34307 digit) is one to indicate the first query and zero to indicate a
34308 subsequent query; @var{threadcount} (two hex digits) is the maximum
34309 number of threads the response packet can contain; and @var{nextthread}
34310 (eight hex digits), for subsequent queries (@var{startflag} is zero), is
34311 returned in the response as @var{argthread}.
34312
34313 Don't use this packet; use the @samp{qfThreadInfo} query instead (see above).
34314
34315 Reply:
34316 @table @samp
34317 @item qM @var{count} @var{done} @var{argthread} @var{thread}@dots{}
34318 Where: @var{count} (two hex digits) is the number of threads being
34319 returned; @var{done} (one hex digit) is zero to indicate more threads
34320 and one indicates no further threads; @var{argthreadid} (eight hex
34321 digits) is @var{nextthread} from the request packet; @var{thread}@dots{}
34322 is a sequence of thread IDs from the target.  @var{threadid} (eight hex
34323 digits).  See @code{remote.c:parse_threadlist_response()}.
34324 @end table
34325
34326 @item qOffsets
34327 @cindex section offsets, remote request
34328 @cindex @samp{qOffsets} packet
34329 Get section offsets that the target used when relocating the downloaded
34330 image.
34331
34332 Reply:
34333 @table @samp
34334 @item Text=@var{xxx};Data=@var{yyy}@r{[};Bss=@var{zzz}@r{]}
34335 Relocate the @code{Text} section by @var{xxx} from its original address.
34336 Relocate the @code{Data} section by @var{yyy} from its original address.
34337 If the object file format provides segment information (e.g.@: @sc{elf}
34338 @samp{PT_LOAD} program headers), @value{GDBN} will relocate entire
34339 segments by the supplied offsets.
34340
34341 @emph{Note: while a @code{Bss} offset may be included in the response,
34342 @value{GDBN} ignores this and instead applies the @code{Data} offset
34343 to the @code{Bss} section.}
34344
34345 @item TextSeg=@var{xxx}@r{[};DataSeg=@var{yyy}@r{]}
34346 Relocate the first segment of the object file, which conventionally
34347 contains program code, to a starting address of @var{xxx}.  If
34348 @samp{DataSeg} is specified, relocate the second segment, which
34349 conventionally contains modifiable data, to a starting address of
34350 @var{yyy}.  @value{GDBN} will report an error if the object file
34351 does not contain segment information, or does not contain at least
34352 as many segments as mentioned in the reply.  Extra segments are
34353 kept at fixed offsets relative to the last relocated segment.
34354 @end table
34355
34356 @item qP @var{mode} @var{thread-id}
34357 @cindex thread information, remote request
34358 @cindex @samp{qP} packet
34359 Returns information on @var{thread-id}.  Where: @var{mode} is a hex
34360 encoded 32 bit mode; @var{thread-id} is a thread ID 
34361 (@pxref{thread-id syntax}).
34362
34363 Don't use this packet; use the @samp{qThreadExtraInfo} query instead
34364 (see below).
34365
34366 Reply: see @code{remote.c:remote_unpack_thread_info_response()}.
34367
34368 @item QNonStop:1
34369 @item QNonStop:0
34370 @cindex non-stop mode, remote request
34371 @cindex @samp{QNonStop} packet
34372 @anchor{QNonStop}
34373 Enter non-stop (@samp{QNonStop:1}) or all-stop (@samp{QNonStop:0}) mode.
34374 @xref{Remote Non-Stop}, for more information.
34375
34376 Reply:
34377 @table @samp
34378 @item OK
34379 The request succeeded.
34380
34381 @item E @var{nn}
34382 An error occurred.  @var{nn} are hex digits.
34383
34384 @item
34385 An empty reply indicates that @samp{QNonStop} is not supported by
34386 the stub.
34387 @end table
34388
34389 This packet is not probed by default; the remote stub must request it,
34390 by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
34391 Use of this packet is controlled by the @code{set non-stop} command; 
34392 @pxref{Non-Stop Mode}.
34393
34394 @item QPassSignals: @var{signal} @r{[};@var{signal}@r{]}@dots{}
34395 @cindex pass signals to inferior, remote request
34396 @cindex @samp{QPassSignals} packet
34397 @anchor{QPassSignals}
34398 Each listed @var{signal} should be passed directly to the inferior process. 
34399 Signals are numbered identically to continue packets and stop replies
34400 (@pxref{Stop Reply Packets}).  Each @var{signal} list item should be
34401 strictly greater than the previous item.  These signals do not need to stop
34402 the inferior, or be reported to @value{GDBN}.  All other signals should be
34403 reported to @value{GDBN}.  Multiple @samp{QPassSignals} packets do not
34404 combine; any earlier @samp{QPassSignals} list is completely replaced by the
34405 new list.  This packet improves performance when using @samp{handle
34406 @var{signal} nostop noprint pass}.
34407
34408 Reply:
34409 @table @samp
34410 @item OK
34411 The request succeeded.
34412
34413 @item E @var{nn}
34414 An error occurred.  @var{nn} are hex digits.
34415
34416 @item
34417 An empty reply indicates that @samp{QPassSignals} is not supported by
34418 the stub.
34419 @end table
34420
34421 Use of this packet is controlled by the @code{set remote pass-signals}
34422 command (@pxref{Remote Configuration, set remote pass-signals}).
34423 This packet is not probed by default; the remote stub must request it,
34424 by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
34425
34426 @item qRcmd,@var{command}
34427 @cindex execute remote command, remote request
34428 @cindex @samp{qRcmd} packet
34429 @var{command} (hex encoded) is passed to the local interpreter for
34430 execution.  Invalid commands should be reported using the output
34431 string.  Before the final result packet, the target may also respond
34432 with a number of intermediate @samp{O@var{output}} console output
34433 packets.  @emph{Implementors should note that providing access to a
34434 stubs's interpreter may have security implications}.
34435
34436 Reply:
34437 @table @samp
34438 @item OK
34439 A command response with no output.
34440 @item @var{OUTPUT}
34441 A command response with the hex encoded output string @var{OUTPUT}.
34442 @item E @var{NN}
34443 Indicate a badly formed request.
34444 @item
34445 An empty reply indicates that @samp{qRcmd} is not recognized.
34446 @end table
34447
34448 (Note that the @code{qRcmd} packet's name is separated from the
34449 command by a @samp{,}, not a @samp{:}, contrary to the naming
34450 conventions above.  Please don't use this packet as a model for new
34451 packets.)
34452
34453 @item qSearch:memory:@var{address};@var{length};@var{search-pattern}
34454 @cindex searching memory, in remote debugging
34455 @cindex @samp{qSearch:memory} packet
34456 @anchor{qSearch memory}
34457 Search @var{length} bytes at @var{address} for @var{search-pattern}.
34458 @var{address} and @var{length} are encoded in hex.
34459 @var{search-pattern} is a sequence of bytes, hex encoded.
34460
34461 Reply:
34462 @table @samp
34463 @item 0
34464 The pattern was not found.
34465 @item 1,address
34466 The pattern was found at @var{address}.
34467 @item E @var{NN}
34468 A badly formed request or an error was encountered while searching memory.
34469 @item
34470 An empty reply indicates that @samp{qSearch:memory} is not recognized.
34471 @end table
34472
34473 @item QStartNoAckMode
34474 @cindex @samp{QStartNoAckMode} packet
34475 @anchor{QStartNoAckMode}
34476 Request that the remote stub disable the normal @samp{+}/@samp{-}
34477 protocol acknowledgments (@pxref{Packet Acknowledgment}).
34478
34479 Reply:
34480 @table @samp
34481 @item OK
34482 The stub has switched to no-acknowledgment mode.
34483 @value{GDBN} acknowledges this reponse,
34484 but neither the stub nor @value{GDBN} shall send or expect further
34485 @samp{+}/@samp{-} acknowledgments in the current connection.
34486 @item
34487 An empty reply indicates that the stub does not support no-acknowledgment mode.
34488 @end table
34489
34490 @item qSupported @r{[}:@var{gdbfeature} @r{[};@var{gdbfeature}@r{]}@dots{} @r{]}
34491 @cindex supported packets, remote query
34492 @cindex features of the remote protocol
34493 @cindex @samp{qSupported} packet
34494 @anchor{qSupported}
34495 Tell the remote stub about features supported by @value{GDBN}, and
34496 query the stub for features it supports.  This packet allows
34497 @value{GDBN} and the remote stub to take advantage of each others'
34498 features.  @samp{qSupported} also consolidates multiple feature probes
34499 at startup, to improve @value{GDBN} performance---a single larger
34500 packet performs better than multiple smaller probe packets on
34501 high-latency links.  Some features may enable behavior which must not
34502 be on by default, e.g.@: because it would confuse older clients or
34503 stubs.  Other features may describe packets which could be
34504 automatically probed for, but are not.  These features must be
34505 reported before @value{GDBN} will use them.  This ``default
34506 unsupported'' behavior is not appropriate for all packets, but it
34507 helps to keep the initial connection time under control with new
34508 versions of @value{GDBN} which support increasing numbers of packets.
34509
34510 Reply:
34511 @table @samp
34512 @item @var{stubfeature} @r{[};@var{stubfeature}@r{]}@dots{}
34513 The stub supports or does not support each returned @var{stubfeature},
34514 depending on the form of each @var{stubfeature} (see below for the
34515 possible forms).
34516 @item
34517 An empty reply indicates that @samp{qSupported} is not recognized,
34518 or that no features needed to be reported to @value{GDBN}.
34519 @end table
34520
34521 The allowed forms for each feature (either a @var{gdbfeature} in the
34522 @samp{qSupported} packet, or a @var{stubfeature} in the response)
34523 are:
34524
34525 @table @samp
34526 @item @var{name}=@var{value}
34527 The remote protocol feature @var{name} is supported, and associated
34528 with the specified @var{value}.  The format of @var{value} depends
34529 on the feature, but it must not include a semicolon.
34530 @item @var{name}+
34531 The remote protocol feature @var{name} is supported, and does not
34532 need an associated value.
34533 @item @var{name}-
34534 The remote protocol feature @var{name} is not supported.
34535 @item @var{name}?
34536 The remote protocol feature @var{name} may be supported, and
34537 @value{GDBN} should auto-detect support in some other way when it is
34538 needed.  This form will not be used for @var{gdbfeature} notifications,
34539 but may be used for @var{stubfeature} responses.
34540 @end table
34541
34542 Whenever the stub receives a @samp{qSupported} request, the
34543 supplied set of @value{GDBN} features should override any previous
34544 request.  This allows @value{GDBN} to put the stub in a known
34545 state, even if the stub had previously been communicating with
34546 a different version of @value{GDBN}.
34547
34548 The following values of @var{gdbfeature} (for the packet sent by @value{GDBN})
34549 are defined:  
34550
34551 @table @samp
34552 @item multiprocess
34553 This feature indicates whether @value{GDBN} supports multiprocess 
34554 extensions to the remote protocol.  @value{GDBN} does not use such
34555 extensions unless the stub also reports that it supports them by
34556 including @samp{multiprocess+} in its @samp{qSupported} reply.
34557 @xref{multiprocess extensions}, for details.
34558
34559 @item xmlRegisters
34560 This feature indicates that @value{GDBN} supports the XML target
34561 description.  If the stub sees @samp{xmlRegisters=} with target
34562 specific strings separated by a comma, it will report register
34563 description.
34564
34565 @item qRelocInsn
34566 This feature indicates whether @value{GDBN} supports the
34567 @samp{qRelocInsn} packet (@pxref{Tracepoint Packets,,Relocate
34568 instruction reply packet}).
34569 @end table
34570
34571 Stubs should ignore any unknown values for
34572 @var{gdbfeature}.  Any @value{GDBN} which sends a @samp{qSupported}
34573 packet supports receiving packets of unlimited length (earlier
34574 versions of @value{GDBN} may reject overly long responses).  Additional values
34575 for @var{gdbfeature} may be defined in the future to let the stub take
34576 advantage of new features in @value{GDBN}, e.g.@: incompatible
34577 improvements in the remote protocol---the @samp{multiprocess} feature is
34578 an example of such a feature.  The stub's reply should be independent
34579 of the @var{gdbfeature} entries sent by @value{GDBN}; first @value{GDBN}
34580 describes all the features it supports, and then the stub replies with
34581 all the features it supports.
34582
34583 Similarly, @value{GDBN} will silently ignore unrecognized stub feature
34584 responses, as long as each response uses one of the standard forms.
34585
34586 Some features are flags.  A stub which supports a flag feature
34587 should respond with a @samp{+} form response.  Other features
34588 require values, and the stub should respond with an @samp{=}
34589 form response.
34590
34591 Each feature has a default value, which @value{GDBN} will use if
34592 @samp{qSupported} is not available or if the feature is not mentioned
34593 in the @samp{qSupported} response.  The default values are fixed; a
34594 stub is free to omit any feature responses that match the defaults.
34595
34596 Not all features can be probed, but for those which can, the probing
34597 mechanism is useful: in some cases, a stub's internal
34598 architecture may not allow the protocol layer to know some information
34599 about the underlying target in advance.  This is especially common in
34600 stubs which may be configured for multiple targets.
34601
34602 These are the currently defined stub features and their properties:
34603
34604 @multitable @columnfractions 0.35 0.2 0.12 0.2
34605 @c NOTE: The first row should be @headitem, but we do not yet require
34606 @c a new enough version of Texinfo (4.7) to use @headitem.
34607 @item Feature Name
34608 @tab Value Required
34609 @tab Default
34610 @tab Probe Allowed
34611
34612 @item @samp{PacketSize}
34613 @tab Yes
34614 @tab @samp{-}
34615 @tab No
34616
34617 @item @samp{qXfer:auxv:read}
34618 @tab No
34619 @tab @samp{-}
34620 @tab Yes
34621
34622 @item @samp{qXfer:features:read}
34623 @tab No
34624 @tab @samp{-}
34625 @tab Yes
34626
34627 @item @samp{qXfer:libraries:read}
34628 @tab No
34629 @tab @samp{-}
34630 @tab Yes
34631
34632 @item @samp{qXfer:memory-map:read}
34633 @tab No
34634 @tab @samp{-}
34635 @tab Yes
34636
34637 @item @samp{qXfer:sdata:read}
34638 @tab No
34639 @tab @samp{-}
34640 @tab Yes
34641
34642 @item @samp{qXfer:spu:read}
34643 @tab No
34644 @tab @samp{-}
34645 @tab Yes
34646
34647 @item @samp{qXfer:spu:write}
34648 @tab No
34649 @tab @samp{-}
34650 @tab Yes
34651
34652 @item @samp{qXfer:siginfo:read}
34653 @tab No
34654 @tab @samp{-}
34655 @tab Yes
34656
34657 @item @samp{qXfer:siginfo:write}
34658 @tab No
34659 @tab @samp{-}
34660 @tab Yes
34661
34662 @item @samp{qXfer:threads:read}
34663 @tab No
34664 @tab @samp{-}
34665 @tab Yes
34666
34667 @item @samp{qXfer:traceframe-info:read}
34668 @tab No
34669 @tab @samp{-}
34670 @tab Yes
34671
34672 @item @samp{qXfer:fdpic:read}
34673 @tab No
34674 @tab @samp{-}
34675 @tab Yes
34676
34677 @item @samp{QNonStop}
34678 @tab No
34679 @tab @samp{-}
34680 @tab Yes
34681
34682 @item @samp{QPassSignals}
34683 @tab No
34684 @tab @samp{-}
34685 @tab Yes
34686
34687 @item @samp{QStartNoAckMode}
34688 @tab No
34689 @tab @samp{-}
34690 @tab Yes
34691
34692 @item @samp{multiprocess}
34693 @tab No
34694 @tab @samp{-}
34695 @tab No
34696
34697 @item @samp{ConditionalTracepoints}
34698 @tab No
34699 @tab @samp{-}
34700 @tab No
34701
34702 @item @samp{ReverseContinue}
34703 @tab No
34704 @tab @samp{-}
34705 @tab No
34706
34707 @item @samp{ReverseStep}
34708 @tab No
34709 @tab @samp{-}
34710 @tab No
34711
34712 @item @samp{TracepointSource}
34713 @tab No
34714 @tab @samp{-}
34715 @tab No
34716
34717 @item @samp{QAllow}
34718 @tab No
34719 @tab @samp{-}
34720 @tab No
34721
34722 @item @samp{QDisableRandomization}
34723 @tab No
34724 @tab @samp{-}
34725 @tab No
34726
34727 @item @samp{EnableDisableTracepoints}
34728 @tab No
34729 @tab @samp{-}
34730 @tab No
34731
34732 @item @samp{tracenz}
34733 @tab No
34734 @tab @samp{-}
34735 @tab No
34736
34737 @end multitable
34738
34739 These are the currently defined stub features, in more detail:
34740
34741 @table @samp
34742 @cindex packet size, remote protocol
34743 @item PacketSize=@var{bytes}
34744 The remote stub can accept packets up to at least @var{bytes} in
34745 length.  @value{GDBN} will send packets up to this size for bulk
34746 transfers, and will never send larger packets.  This is a limit on the
34747 data characters in the packet, including the frame and checksum.
34748 There is no trailing NUL byte in a remote protocol packet; if the stub
34749 stores packets in a NUL-terminated format, it should allow an extra
34750 byte in its buffer for the NUL.  If this stub feature is not supported,
34751 @value{GDBN} guesses based on the size of the @samp{g} packet response.
34752
34753 @item qXfer:auxv:read
34754 The remote stub understands the @samp{qXfer:auxv:read} packet
34755 (@pxref{qXfer auxiliary vector read}).
34756
34757 @item qXfer:features:read
34758 The remote stub understands the @samp{qXfer:features:read} packet
34759 (@pxref{qXfer target description read}).
34760
34761 @item qXfer:libraries:read
34762 The remote stub understands the @samp{qXfer:libraries:read} packet
34763 (@pxref{qXfer library list read}).
34764
34765 @item qXfer:memory-map:read
34766 The remote stub understands the @samp{qXfer:memory-map:read} packet
34767 (@pxref{qXfer memory map read}).
34768
34769 @item qXfer:sdata:read
34770 The remote stub understands the @samp{qXfer:sdata:read} packet
34771 (@pxref{qXfer sdata read}).
34772
34773 @item qXfer:spu:read
34774 The remote stub understands the @samp{qXfer:spu:read} packet
34775 (@pxref{qXfer spu read}).
34776
34777 @item qXfer:spu:write
34778 The remote stub understands the @samp{qXfer:spu:write} packet
34779 (@pxref{qXfer spu write}).
34780
34781 @item qXfer:siginfo:read
34782 The remote stub understands the @samp{qXfer:siginfo:read} packet
34783 (@pxref{qXfer siginfo read}).
34784
34785 @item qXfer:siginfo:write
34786 The remote stub understands the @samp{qXfer:siginfo:write} packet
34787 (@pxref{qXfer siginfo write}).
34788
34789 @item qXfer:threads:read
34790 The remote stub understands the @samp{qXfer:threads:read} packet
34791 (@pxref{qXfer threads read}).
34792
34793 @item qXfer:traceframe-info:read
34794 The remote stub understands the @samp{qXfer:traceframe-info:read}
34795 packet (@pxref{qXfer traceframe info read}).
34796
34797 @item qXfer:fdpic:read
34798 The remote stub understands the @samp{qXfer:fdpic:read}
34799 packet (@pxref{qXfer fdpic loadmap read}).
34800
34801 @item QNonStop
34802 The remote stub understands the @samp{QNonStop} packet
34803 (@pxref{QNonStop}).
34804
34805 @item QPassSignals
34806 The remote stub understands the @samp{QPassSignals} packet
34807 (@pxref{QPassSignals}).
34808
34809 @item QStartNoAckMode
34810 The remote stub understands the @samp{QStartNoAckMode} packet and
34811 prefers to operate in no-acknowledgment mode.  @xref{Packet Acknowledgment}.
34812
34813 @item multiprocess
34814 @anchor{multiprocess extensions}
34815 @cindex multiprocess extensions, in remote protocol
34816 The remote stub understands the multiprocess extensions to the remote
34817 protocol syntax.  The multiprocess extensions affect the syntax of
34818 thread IDs in both packets and replies (@pxref{thread-id syntax}), and
34819 add process IDs to the @samp{D} packet and @samp{W} and @samp{X}
34820 replies.  Note that reporting this feature indicates support for the
34821 syntactic extensions only, not that the stub necessarily supports
34822 debugging of more than one process at a time.  The stub must not use
34823 multiprocess extensions in packet replies unless @value{GDBN} has also
34824 indicated it supports them in its @samp{qSupported} request.
34825
34826 @item qXfer:osdata:read
34827 The remote stub understands the @samp{qXfer:osdata:read} packet
34828 ((@pxref{qXfer osdata read}).
34829
34830 @item ConditionalTracepoints
34831 The remote stub accepts and implements conditional expressions defined
34832 for tracepoints (@pxref{Tracepoint Conditions}).
34833
34834 @item ReverseContinue
34835 The remote stub accepts and implements the reverse continue packet
34836 (@pxref{bc}).
34837
34838 @item ReverseStep
34839 The remote stub accepts and implements the reverse step packet
34840 (@pxref{bs}).
34841
34842 @item TracepointSource
34843 The remote stub understands the @samp{QTDPsrc} packet that supplies
34844 the source form of tracepoint definitions.
34845
34846 @item QAllow
34847 The remote stub understands the @samp{QAllow} packet.
34848
34849 @item QDisableRandomization
34850 The remote stub understands the @samp{QDisableRandomization} packet.
34851
34852 @item StaticTracepoint
34853 @cindex static tracepoints, in remote protocol
34854 The remote stub supports static tracepoints.
34855
34856 @item InstallInTrace
34857 @anchor{install tracepoint in tracing}
34858 The remote stub supports installing tracepoint in tracing.
34859
34860 @item EnableDisableTracepoints
34861 The remote stub supports the @samp{QTEnable} (@pxref{QTEnable}) and
34862 @samp{QTDisable} (@pxref{QTDisable}) packets that allow tracepoints
34863 to be enabled and disabled while a trace experiment is running.
34864
34865 @item tracenz
34866 @cindex string tracing, in remote protocol
34867 The remote stub supports the @samp{tracenz} bytecode for collecting strings.
34868 See @ref{Bytecode Descriptions} for details about the bytecode.
34869
34870 @end table
34871
34872 @item qSymbol::
34873 @cindex symbol lookup, remote request
34874 @cindex @samp{qSymbol} packet
34875 Notify the target that @value{GDBN} is prepared to serve symbol lookup
34876 requests.  Accept requests from the target for the values of symbols.
34877
34878 Reply:
34879 @table @samp
34880 @item OK
34881 The target does not need to look up any (more) symbols.
34882 @item qSymbol:@var{sym_name}
34883 The target requests the value of symbol @var{sym_name} (hex encoded).
34884 @value{GDBN} may provide the value by using the
34885 @samp{qSymbol:@var{sym_value}:@var{sym_name}} message, described
34886 below.
34887 @end table
34888
34889 @item qSymbol:@var{sym_value}:@var{sym_name}
34890 Set the value of @var{sym_name} to @var{sym_value}.
34891
34892 @var{sym_name} (hex encoded) is the name of a symbol whose value the
34893 target has previously requested.
34894
34895 @var{sym_value} (hex) is the value for symbol @var{sym_name}.  If
34896 @value{GDBN} cannot supply a value for @var{sym_name}, then this field
34897 will be empty.
34898
34899 Reply:
34900 @table @samp
34901 @item OK
34902 The target does not need to look up any (more) symbols.
34903 @item qSymbol:@var{sym_name}
34904 The target requests the value of a new symbol @var{sym_name} (hex
34905 encoded).  @value{GDBN} will continue to supply the values of symbols
34906 (if available), until the target ceases to request them.
34907 @end table
34908
34909 @item qTBuffer
34910 @item QTBuffer
34911 @item QTDisconnected
34912 @itemx QTDP
34913 @itemx QTDPsrc
34914 @itemx QTDV
34915 @itemx qTfP
34916 @itemx qTfV
34917 @itemx QTFrame
34918 @xref{Tracepoint Packets}.
34919
34920 @item qThreadExtraInfo,@var{thread-id}
34921 @cindex thread attributes info, remote request
34922 @cindex @samp{qThreadExtraInfo} packet
34923 Obtain a printable string description of a thread's attributes from
34924 the target OS.  @var{thread-id} is a thread ID; 
34925 see @ref{thread-id syntax}.  This
34926 string may contain anything that the target OS thinks is interesting
34927 for @value{GDBN} to tell the user about the thread.  The string is
34928 displayed in @value{GDBN}'s @code{info threads} display.  Some
34929 examples of possible thread extra info strings are @samp{Runnable}, or
34930 @samp{Blocked on Mutex}.
34931
34932 Reply:
34933 @table @samp
34934 @item @var{XX}@dots{}
34935 Where @samp{@var{XX}@dots{}} is a hex encoding of @sc{ascii} data,
34936 comprising the printable string containing the extra information about
34937 the thread's attributes.
34938 @end table
34939
34940 (Note that the @code{qThreadExtraInfo} packet's name is separated from
34941 the command by a @samp{,}, not a @samp{:}, contrary to the naming
34942 conventions above.  Please don't use this packet as a model for new
34943 packets.)
34944
34945 @item QTSave
34946 @item qTsP
34947 @item qTsV
34948 @itemx QTStart    
34949 @itemx QTStop     
34950 @itemx QTEnable
34951 @itemx QTDisable
34952 @itemx QTinit     
34953 @itemx QTro       
34954 @itemx qTStatus   
34955 @itemx qTV
34956 @itemx qTfSTM
34957 @itemx qTsSTM
34958 @itemx qTSTMat
34959 @xref{Tracepoint Packets}.
34960
34961 @item qXfer:@var{object}:read:@var{annex}:@var{offset},@var{length}
34962 @cindex read special object, remote request
34963 @cindex @samp{qXfer} packet
34964 @anchor{qXfer read}
34965 Read uninterpreted bytes from the target's special data area
34966 identified by the keyword @var{object}.  Request @var{length} bytes
34967 starting at @var{offset} bytes into the data.  The content and
34968 encoding of @var{annex} is specific to @var{object}; it can supply
34969 additional details about what data to access.
34970
34971 Here are the specific requests of this form defined so far.  All
34972 @samp{qXfer:@var{object}:read:@dots{}} requests use the same reply
34973 formats, listed below.
34974
34975 @table @samp
34976 @item qXfer:auxv:read::@var{offset},@var{length}
34977 @anchor{qXfer auxiliary vector read}
34978 Access the target's @dfn{auxiliary vector}.  @xref{OS Information,
34979 auxiliary vector}.  Note @var{annex} must be empty.
34980
34981 This packet is not probed by default; the remote stub must request it,
34982 by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
34983
34984 @item qXfer:features:read:@var{annex}:@var{offset},@var{length}
34985 @anchor{qXfer target description read}
34986 Access the @dfn{target description}.  @xref{Target Descriptions}.  The
34987 annex specifies which XML document to access.  The main description is
34988 always loaded from the @samp{target.xml} annex.
34989
34990 This packet is not probed by default; the remote stub must request it,
34991 by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
34992
34993 @item qXfer:libraries:read:@var{annex}:@var{offset},@var{length}
34994 @anchor{qXfer library list read}
34995 Access the target's list of loaded libraries.  @xref{Library List Format}.
34996 The annex part of the generic @samp{qXfer} packet must be empty
34997 (@pxref{qXfer read}).
34998
34999 Targets which maintain a list of libraries in the program's memory do
35000 not need to implement this packet; it is designed for platforms where
35001 the operating system manages the list of loaded libraries.
35002
35003 This packet is not probed by default; the remote stub must request it,
35004 by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
35005
35006 @item qXfer:memory-map:read::@var{offset},@var{length}
35007 @anchor{qXfer memory map read}
35008 Access the target's @dfn{memory-map}.  @xref{Memory Map Format}.  The
35009 annex part of the generic @samp{qXfer} packet must be empty
35010 (@pxref{qXfer read}).
35011
35012 This packet is not probed by default; the remote stub must request it,
35013 by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
35014
35015 @item qXfer:sdata:read::@var{offset},@var{length}
35016 @anchor{qXfer sdata read}
35017
35018 Read contents of the extra collected static tracepoint marker
35019 information.  The annex part of the generic @samp{qXfer} packet must
35020 be empty (@pxref{qXfer read}).  @xref{Tracepoint Actions,,Tracepoint
35021 Action Lists}.
35022
35023 This packet is not probed by default; the remote stub must request it,
35024 by supplying an appropriate @samp{qSupported} response
35025 (@pxref{qSupported}).
35026
35027 @item qXfer:siginfo:read::@var{offset},@var{length}
35028 @anchor{qXfer siginfo read}
35029 Read contents of the extra signal information on the target
35030 system.  The annex part of the generic @samp{qXfer} packet must be
35031 empty (@pxref{qXfer read}).
35032
35033 This packet is not probed by default; the remote stub must request it,
35034 by supplying an appropriate @samp{qSupported} response
35035 (@pxref{qSupported}).
35036
35037 @item qXfer:spu:read:@var{annex}:@var{offset},@var{length}
35038 @anchor{qXfer spu read}
35039 Read contents of an @code{spufs} file on the target system.  The
35040 annex specifies which file to read; it must be of the form 
35041 @file{@var{id}/@var{name}}, where @var{id} specifies an SPU context ID
35042 in the target process, and @var{name} identifes the @code{spufs} file
35043 in that context to be accessed.
35044
35045 This packet is not probed by default; the remote stub must request it,
35046 by supplying an appropriate @samp{qSupported} response
35047 (@pxref{qSupported}).
35048
35049 @item qXfer:threads:read::@var{offset},@var{length}
35050 @anchor{qXfer threads read}
35051 Access the list of threads on target.  @xref{Thread List Format}.  The
35052 annex part of the generic @samp{qXfer} packet must be empty
35053 (@pxref{qXfer read}).
35054
35055 This packet is not probed by default; the remote stub must request it,
35056 by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
35057
35058 @item qXfer:traceframe-info:read::@var{offset},@var{length}
35059 @anchor{qXfer traceframe info read}
35060
35061 Return a description of the current traceframe's contents.
35062 @xref{Traceframe Info Format}.  The annex part of the generic
35063 @samp{qXfer} packet must be empty (@pxref{qXfer read}).
35064
35065 This packet is not probed by default; the remote stub must request it,
35066 by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
35067
35068 @item qXfer:fdpic:read:@var{annex}:@var{offset},@var{length}
35069 @anchor{qXfer fdpic loadmap read}
35070 Read contents of @code{loadmap}s on the target system.  The
35071 annex, either @samp{exec} or @samp{interp}, specifies which @code{loadmap},
35072 executable @code{loadmap} or interpreter @code{loadmap} to read.
35073
35074 This packet is not probed by default; the remote stub must request it,
35075 by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
35076
35077 @item qXfer:osdata:read::@var{offset},@var{length}
35078 @anchor{qXfer osdata read}
35079 Access the target's @dfn{operating system information}.  
35080 @xref{Operating System Information}.
35081
35082 @end table
35083
35084 Reply:
35085 @table @samp
35086 @item m @var{data}
35087 Data @var{data} (@pxref{Binary Data}) has been read from the
35088 target.  There may be more data at a higher address (although
35089 it is permitted to return @samp{m} even for the last valid
35090 block of data, as long as at least one byte of data was read).
35091 @var{data} may have fewer bytes than the @var{length} in the
35092 request.
35093
35094 @item l @var{data}
35095 Data @var{data} (@pxref{Binary Data}) has been read from the target.
35096 There is no more data to be read.  @var{data} may have fewer bytes
35097 than the @var{length} in the request.
35098
35099 @item l
35100 The @var{offset} in the request is at the end of the data.
35101 There is no more data to be read.
35102
35103 @item E00
35104 The request was malformed, or @var{annex} was invalid.
35105
35106 @item E @var{nn}
35107 The offset was invalid, or there was an error encountered reading the data.
35108 @var{nn} is a hex-encoded @code{errno} value.
35109
35110 @item
35111 An empty reply indicates the @var{object} string was not recognized by
35112 the stub, or that the object does not support reading.
35113 @end table
35114
35115 @item qXfer:@var{object}:write:@var{annex}:@var{offset}:@var{data}@dots{}
35116 @cindex write data into object, remote request
35117 @anchor{qXfer write}
35118 Write uninterpreted bytes into the target's special data area
35119 identified by the keyword @var{object}, starting at @var{offset} bytes
35120 into the data.  @var{data}@dots{} is the binary-encoded data
35121 (@pxref{Binary Data}) to be written.  The content and encoding of @var{annex}
35122 is specific to @var{object}; it can supply additional details about what data
35123 to access.
35124
35125 Here are the specific requests of this form defined so far.  All
35126 @samp{qXfer:@var{object}:write:@dots{}} requests use the same reply
35127 formats, listed below.
35128
35129 @table @samp
35130 @item qXfer:siginfo:write::@var{offset}:@var{data}@dots{}
35131 @anchor{qXfer siginfo write}
35132 Write @var{data} to the extra signal information on the target system.
35133 The annex part of the generic @samp{qXfer} packet must be
35134 empty (@pxref{qXfer write}).
35135
35136 This packet is not probed by default; the remote stub must request it,
35137 by supplying an appropriate @samp{qSupported} response
35138 (@pxref{qSupported}).
35139
35140 @item qXfer:spu:write:@var{annex}:@var{offset}:@var{data}@dots{}
35141 @anchor{qXfer spu write}
35142 Write @var{data} to an @code{spufs} file on the target system.  The
35143 annex specifies which file to write; it must be of the form
35144 @file{@var{id}/@var{name}}, where @var{id} specifies an SPU context ID
35145 in the target process, and @var{name} identifes the @code{spufs} file
35146 in that context to be accessed.
35147
35148 This packet is not probed by default; the remote stub must request it,
35149 by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
35150 @end table
35151
35152 Reply:
35153 @table @samp
35154 @item @var{nn}
35155 @var{nn} (hex encoded) is the number of bytes written.
35156 This may be fewer bytes than supplied in the request.
35157
35158 @item E00
35159 The request was malformed, or @var{annex} was invalid.
35160
35161 @item E @var{nn}
35162 The offset was invalid, or there was an error encountered writing the data.
35163 @var{nn} is a hex-encoded @code{errno} value.
35164
35165 @item
35166 An empty reply indicates the @var{object} string was not
35167 recognized by the stub, or that the object does not support writing.
35168 @end table
35169
35170 @item qXfer:@var{object}:@var{operation}:@dots{}
35171 Requests of this form may be added in the future.  When a stub does
35172 not recognize the @var{object} keyword, or its support for
35173 @var{object} does not recognize the @var{operation} keyword, the stub
35174 must respond with an empty packet.
35175
35176 @item qAttached:@var{pid}
35177 @cindex query attached, remote request
35178 @cindex @samp{qAttached} packet
35179 Return an indication of whether the remote server attached to an
35180 existing process or created a new process.  When the multiprocess
35181 protocol extensions are supported (@pxref{multiprocess extensions}),
35182 @var{pid} is an integer in hexadecimal format identifying the target
35183 process.  Otherwise, @value{GDBN} will omit the @var{pid} field and
35184 the query packet will be simplified as @samp{qAttached}.
35185
35186 This query is used, for example, to know whether the remote process
35187 should be detached or killed when a @value{GDBN} session is ended with
35188 the @code{quit} command.
35189
35190 Reply:
35191 @table @samp
35192 @item 1
35193 The remote server attached to an existing process.
35194 @item 0
35195 The remote server created a new process.
35196 @item E @var{NN}
35197 A badly formed request or an error was encountered.
35198 @end table
35199
35200 @end table
35201
35202 @node Architecture-Specific Protocol Details
35203 @section Architecture-Specific Protocol Details
35204
35205 This section describes how the remote protocol is applied to specific
35206 target architectures.  Also see @ref{Standard Target Features}, for
35207 details of XML target descriptions for each architecture.
35208
35209 @subsection ARM
35210
35211 @subsubsection Breakpoint Kinds
35212
35213 These breakpoint kinds are defined for the @samp{Z0} and @samp{Z1} packets.
35214
35215 @table @r
35216
35217 @item 2
35218 16-bit Thumb mode breakpoint.
35219
35220 @item 3
35221 32-bit Thumb mode (Thumb-2) breakpoint.
35222
35223 @item 4
35224 32-bit ARM mode breakpoint.
35225
35226 @end table
35227
35228 @subsection MIPS
35229
35230 @subsubsection Register Packet Format
35231
35232 The following @code{g}/@code{G} packets have previously been defined.
35233 In the below, some thirty-two bit registers are transferred as
35234 sixty-four bits.  Those registers should be zero/sign extended (which?)
35235 to fill the space allocated.  Register bytes are transferred in target
35236 byte order.  The two nibbles within a register byte are transferred
35237 most-significant - least-significant.
35238
35239 @table @r
35240
35241 @item MIPS32
35242
35243 All registers are transferred as thirty-two bit quantities in the order:
35244 32 general-purpose; sr; lo; hi; bad; cause; pc; 32 floating-point
35245 registers; fsr; fir; fp.
35246
35247 @item MIPS64
35248
35249 All registers are transferred as sixty-four bit quantities (including
35250 thirty-two bit registers such as @code{sr}).  The ordering is the same
35251 as @code{MIPS32}.
35252
35253 @end table
35254
35255 @node Tracepoint Packets
35256 @section Tracepoint Packets
35257 @cindex tracepoint packets
35258 @cindex packets, tracepoint
35259
35260 Here we describe the packets @value{GDBN} uses to implement
35261 tracepoints (@pxref{Tracepoints}).
35262
35263 @table @samp
35264
35265 @item QTDP:@var{n}:@var{addr}:@var{ena}:@var{step}:@var{pass}[:F@var{flen}][:X@var{len},@var{bytes}]@r{[}-@r{]}
35266 Create a new tracepoint, number @var{n}, at @var{addr}.  If @var{ena}
35267 is @samp{E}, then the tracepoint is enabled; if it is @samp{D}, then
35268 the tracepoint is disabled.  @var{step} is the tracepoint's step
35269 count, and @var{pass} is its pass count.  If an @samp{F} is present,
35270 then the tracepoint is to be a fast tracepoint, and the @var{flen} is
35271 the number of bytes that the target should copy elsewhere to make room
35272 for the tracepoint.  If an @samp{X} is present, it introduces a
35273 tracepoint condition, which consists of a hexadecimal length, followed
35274 by a comma and hex-encoded bytes, in a manner similar to action
35275 encodings as described below.  If the trailing @samp{-} is present,
35276 further @samp{QTDP} packets will follow to specify this tracepoint's
35277 actions.
35278
35279 Replies:
35280 @table @samp
35281 @item OK
35282 The packet was understood and carried out.
35283 @item qRelocInsn
35284 @xref{Tracepoint Packets,,Relocate instruction reply packet}.
35285 @item 
35286 The packet was not recognized.
35287 @end table
35288
35289 @item QTDP:-@var{n}:@var{addr}:@r{[}S@r{]}@var{action}@dots{}@r{[}-@r{]}
35290 Define actions to be taken when a tracepoint is hit.  @var{n} and
35291 @var{addr} must be the same as in the initial @samp{QTDP} packet for
35292 this tracepoint.  This packet may only be sent immediately after
35293 another @samp{QTDP} packet that ended with a @samp{-}.  If the
35294 trailing @samp{-} is present, further @samp{QTDP} packets will follow,
35295 specifying more actions for this tracepoint.
35296
35297 In the series of action packets for a given tracepoint, at most one
35298 can have an @samp{S} before its first @var{action}.  If such a packet
35299 is sent, it and the following packets define ``while-stepping''
35300 actions.  Any prior packets define ordinary actions --- that is, those
35301 taken when the tracepoint is first hit.  If no action packet has an
35302 @samp{S}, then all the packets in the series specify ordinary
35303 tracepoint actions.
35304
35305 The @samp{@var{action}@dots{}} portion of the packet is a series of
35306 actions, concatenated without separators.  Each action has one of the
35307 following forms:
35308
35309 @table @samp
35310
35311 @item R @var{mask}
35312 Collect the registers whose bits are set in @var{mask}.  @var{mask} is
35313 a hexadecimal number whose @var{i}'th bit is set if register number
35314 @var{i} should be collected.  (The least significant bit is numbered
35315 zero.)  Note that @var{mask} may be any number of digits long; it may
35316 not fit in a 32-bit word.
35317
35318 @item M @var{basereg},@var{offset},@var{len}
35319 Collect @var{len} bytes of memory starting at the address in register
35320 number @var{basereg}, plus @var{offset}.  If @var{basereg} is
35321 @samp{-1}, then the range has a fixed address: @var{offset} is the
35322 address of the lowest byte to collect.  The @var{basereg},
35323 @var{offset}, and @var{len} parameters are all unsigned hexadecimal
35324 values (the @samp{-1} value for @var{basereg} is a special case).
35325
35326 @item X @var{len},@var{expr}
35327 Evaluate @var{expr}, whose length is @var{len}, and collect memory as
35328 it directs.  @var{expr} is an agent expression, as described in
35329 @ref{Agent Expressions}.  Each byte of the expression is encoded as a
35330 two-digit hex number in the packet; @var{len} is the number of bytes
35331 in the expression (and thus one-half the number of hex digits in the
35332 packet).
35333
35334 @end table
35335
35336 Any number of actions may be packed together in a single @samp{QTDP}
35337 packet, as long as the packet does not exceed the maximum packet
35338 length (400 bytes, for many stubs).  There may be only one @samp{R}
35339 action per tracepoint, and it must precede any @samp{M} or @samp{X}
35340 actions.  Any registers referred to by @samp{M} and @samp{X} actions
35341 must be collected by a preceding @samp{R} action.  (The
35342 ``while-stepping'' actions are treated as if they were attached to a
35343 separate tracepoint, as far as these restrictions are concerned.)
35344
35345 Replies:
35346 @table @samp
35347 @item OK
35348 The packet was understood and carried out.
35349 @item qRelocInsn
35350 @xref{Tracepoint Packets,,Relocate instruction reply packet}.
35351 @item 
35352 The packet was not recognized.
35353 @end table
35354
35355 @item QTDPsrc:@var{n}:@var{addr}:@var{type}:@var{start}:@var{slen}:@var{bytes}
35356 @cindex @samp{QTDPsrc} packet
35357 Specify a source string of tracepoint @var{n} at address @var{addr}.
35358 This is useful to get accurate reproduction of the tracepoints
35359 originally downloaded at the beginning of the trace run.  @var{type}
35360 is the name of the tracepoint part, such as @samp{cond} for the
35361 tracepoint's conditional expression (see below for a list of types), while
35362 @var{bytes} is the string, encoded in hexadecimal.
35363
35364 @var{start} is the offset of the @var{bytes} within the overall source
35365 string, while @var{slen} is the total length of the source string.
35366 This is intended for handling source strings that are longer than will
35367 fit in a single packet.
35368 @c Add detailed example when this info is moved into a dedicated
35369 @c tracepoint descriptions section.
35370
35371 The available string types are @samp{at} for the location,
35372 @samp{cond} for the conditional, and @samp{cmd} for an action command.
35373 @value{GDBN} sends a separate packet for each command in the action
35374 list, in the same order in which the commands are stored in the list.
35375
35376 The target does not need to do anything with source strings except
35377 report them back as part of the replies to the @samp{qTfP}/@samp{qTsP}
35378 query packets.
35379
35380 Although this packet is optional, and @value{GDBN} will only send it
35381 if the target replies with @samp{TracepointSource} @xref{General
35382 Query Packets}, it makes both disconnected tracing and trace files
35383 much easier to use.  Otherwise the user must be careful that the
35384 tracepoints in effect while looking at trace frames are identical to
35385 the ones in effect during the trace run; even a small discrepancy
35386 could cause @samp{tdump} not to work, or a particular trace frame not
35387 be found.
35388
35389 @item QTDV:@var{n}:@var{value}
35390 @cindex define trace state variable, remote request
35391 @cindex @samp{QTDV} packet
35392 Create a new trace state variable, number @var{n}, with an initial
35393 value of @var{value}, which is a 64-bit signed integer.  Both @var{n}
35394 and @var{value} are encoded as hexadecimal values. @value{GDBN} has
35395 the option of not using this packet for initial values of zero; the
35396 target should simply create the trace state variables as they are
35397 mentioned in expressions.
35398
35399 @item QTFrame:@var{n}
35400 Select the @var{n}'th tracepoint frame from the buffer, and use the
35401 register and memory contents recorded there to answer subsequent
35402 request packets from @value{GDBN}.
35403
35404 A successful reply from the stub indicates that the stub has found the
35405 requested frame.  The response is a series of parts, concatenated
35406 without separators, describing the frame we selected.  Each part has
35407 one of the following forms:
35408
35409 @table @samp
35410 @item F @var{f}
35411 The selected frame is number @var{n} in the trace frame buffer;
35412 @var{f} is a hexadecimal number.  If @var{f} is @samp{-1}, then there
35413 was no frame matching the criteria in the request packet.
35414
35415 @item T @var{t}
35416 The selected trace frame records a hit of tracepoint number @var{t};
35417 @var{t} is a hexadecimal number.
35418
35419 @end table
35420
35421 @item QTFrame:pc:@var{addr}
35422 Like @samp{QTFrame:@var{n}}, but select the first tracepoint frame after the
35423 currently selected frame whose PC is @var{addr};
35424 @var{addr} is a hexadecimal number.
35425
35426 @item QTFrame:tdp:@var{t}
35427 Like @samp{QTFrame:@var{n}}, but select the first tracepoint frame after the
35428 currently selected frame that is a hit of tracepoint @var{t}; @var{t}
35429 is a hexadecimal number.
35430
35431 @item QTFrame:range:@var{start}:@var{end}
35432 Like @samp{QTFrame:@var{n}}, but select the first tracepoint frame after the
35433 currently selected frame whose PC is between @var{start} (inclusive)
35434 and @var{end} (inclusive); @var{start} and @var{end} are hexadecimal
35435 numbers.
35436
35437 @item QTFrame:outside:@var{start}:@var{end}
35438 Like @samp{QTFrame:range:@var{start}:@var{end}}, but select the first
35439 frame @emph{outside} the given range of addresses (exclusive).
35440
35441 @item QTStart
35442 Begin the tracepoint experiment.  Begin collecting data from
35443 tracepoint hits in the trace frame buffer.  This packet supports the
35444 @samp{qRelocInsn} reply (@pxref{Tracepoint Packets,,Relocate
35445 instruction reply packet}).
35446
35447 @item QTStop
35448 End the tracepoint experiment.  Stop collecting trace frames.
35449
35450 @item QTEnable:@var{n}:@var{addr}
35451 @anchor{QTEnable}
35452 Enable tracepoint @var{n} at address @var{addr} in a started tracepoint
35453 experiment.  If the tracepoint was previously disabled, then collection
35454 of data from it will resume.
35455
35456 @item QTDisable:@var{n}:@var{addr}
35457 @anchor{QTDisable}
35458 Disable tracepoint @var{n} at address @var{addr} in a started tracepoint
35459 experiment.  No more data will be collected from the tracepoint unless
35460 @samp{QTEnable:@var{n}:@var{addr}} is subsequently issued.
35461
35462 @item QTinit
35463 Clear the table of tracepoints, and empty the trace frame buffer.
35464
35465 @item QTro:@var{start1},@var{end1}:@var{start2},@var{end2}:@dots{}
35466 Establish the given ranges of memory as ``transparent''.  The stub
35467 will answer requests for these ranges from memory's current contents,
35468 if they were not collected as part of the tracepoint hit.
35469
35470 @value{GDBN} uses this to mark read-only regions of memory, like those
35471 containing program code.  Since these areas never change, they should
35472 still have the same contents they did when the tracepoint was hit, so
35473 there's no reason for the stub to refuse to provide their contents.
35474
35475 @item QTDisconnected:@var{value}
35476 Set the choice to what to do with the tracing run when @value{GDBN}
35477 disconnects from the target.  A @var{value} of 1 directs the target to
35478 continue the tracing run, while 0 tells the target to stop tracing if
35479 @value{GDBN} is no longer in the picture.
35480
35481 @item qTStatus
35482 Ask the stub if there is a trace experiment running right now.
35483
35484 The reply has the form:
35485
35486 @table @samp
35487
35488 @item T@var{running}@r{[};@var{field}@r{]}@dots{}
35489 @var{running} is a single digit @code{1} if the trace is presently
35490 running, or @code{0} if not.  It is followed by semicolon-separated
35491 optional fields that an agent may use to report additional status.
35492
35493 @end table
35494
35495 If the trace is not running, the agent may report any of several
35496 explanations as one of the optional fields:
35497
35498 @table @samp
35499
35500 @item tnotrun:0
35501 No trace has been run yet.
35502
35503 @item tstop:0
35504 The trace was stopped by a user-originated stop command.
35505
35506 @item tfull:0
35507 The trace stopped because the trace buffer filled up.
35508
35509 @item tdisconnected:0
35510 The trace stopped because @value{GDBN} disconnected from the target.
35511
35512 @item tpasscount:@var{tpnum}
35513 The trace stopped because tracepoint @var{tpnum} exceeded its pass count.
35514
35515 @item terror:@var{text}:@var{tpnum}
35516 The trace stopped because tracepoint @var{tpnum} had an error.  The
35517 string @var{text} is available to describe the nature of the error
35518 (for instance, a divide by zero in the condition expression).
35519 @var{text} is hex encoded.
35520
35521 @item tunknown:0
35522 The trace stopped for some other reason.
35523
35524 @end table
35525
35526 Additional optional fields supply statistical and other information.
35527 Although not required, they are extremely useful for users monitoring
35528 the progress of a trace run.  If a trace has stopped, and these
35529 numbers are reported, they must reflect the state of the just-stopped
35530 trace.
35531
35532 @table @samp
35533
35534 @item tframes:@var{n}
35535 The number of trace frames in the buffer.
35536
35537 @item tcreated:@var{n}
35538 The total number of trace frames created during the run. This may
35539 be larger than the trace frame count, if the buffer is circular.
35540
35541 @item tsize:@var{n}
35542 The total size of the trace buffer, in bytes.
35543
35544 @item tfree:@var{n}
35545 The number of bytes still unused in the buffer.
35546
35547 @item circular:@var{n}
35548 The value of the circular trace buffer flag.  @code{1} means that the
35549 trace buffer is circular and old trace frames will be discarded if
35550 necessary to make room, @code{0} means that the trace buffer is linear
35551 and may fill up.
35552
35553 @item disconn:@var{n}
35554 The value of the disconnected tracing flag.  @code{1} means that
35555 tracing will continue after @value{GDBN} disconnects, @code{0} means
35556 that the trace run will stop.
35557
35558 @end table
35559
35560 @item qTV:@var{var}
35561 @cindex trace state variable value, remote request
35562 @cindex @samp{qTV} packet
35563 Ask the stub for the value of the trace state variable number @var{var}.
35564
35565 Replies:
35566 @table @samp
35567 @item V@var{value}
35568 The value of the variable is @var{value}.  This will be the current
35569 value of the variable if the user is examining a running target, or a
35570 saved value if the variable was collected in the trace frame that the
35571 user is looking at.  Note that multiple requests may result in
35572 different reply values, such as when requesting values while the
35573 program is running.
35574
35575 @item U
35576 The value of the variable is unknown.  This would occur, for example,
35577 if the user is examining a trace frame in which the requested variable
35578 was not collected.
35579 @end table
35580
35581 @item qTfP
35582 @itemx qTsP
35583 These packets request data about tracepoints that are being used by
35584 the target.  @value{GDBN} sends @code{qTfP} to get the first piece
35585 of data, and multiple @code{qTsP} to get additional pieces.  Replies
35586 to these packets generally take the form of the @code{QTDP} packets
35587 that define tracepoints. (FIXME add detailed syntax)
35588
35589 @item qTfV
35590 @itemx qTsV
35591 These packets request data about trace state variables that are on the
35592 target.  @value{GDBN} sends @code{qTfV} to get the first vari of data,
35593 and multiple @code{qTsV} to get additional variables.  Replies to
35594 these packets follow the syntax of the @code{QTDV} packets that define
35595 trace state variables.
35596
35597 @item qTfSTM
35598 @itemx qTsSTM
35599 These packets request data about static tracepoint markers that exist
35600 in the target program.  @value{GDBN} sends @code{qTfSTM} to get the
35601 first piece of data, and multiple @code{qTsSTM} to get additional
35602 pieces.  Replies to these packets take the following form:
35603
35604 Reply:
35605 @table @samp
35606 @item m @var{address}:@var{id}:@var{extra}
35607 A single marker
35608 @item m @var{address}:@var{id}:@var{extra},@var{address}:@var{id}:@var{extra}@dots{}
35609 a comma-separated list of markers
35610 @item l
35611 (lower case letter @samp{L}) denotes end of list.
35612 @item E @var{nn}
35613 An error occurred.  @var{nn} are hex digits.
35614 @item
35615 An empty reply indicates that the request is not supported by the
35616 stub.
35617 @end table
35618
35619 @var{address} is encoded in hex.
35620 @var{id} and @var{extra} are strings encoded in hex.
35621
35622 In response to each query, the target will reply with a list of one or
35623 more markers, separated by commas.  @value{GDBN} will respond to each
35624 reply with a request for more markers (using the @samp{qs} form of the
35625 query), until the target responds with @samp{l} (lower-case ell, for
35626 @dfn{last}).
35627
35628 @item qTSTMat:@var{address}
35629 This packets requests data about static tracepoint markers in the
35630 target program at @var{address}.  Replies to this packet follow the
35631 syntax of the @samp{qTfSTM} and @code{qTsSTM} packets that list static
35632 tracepoint markers.
35633
35634 @item QTSave:@var{filename}
35635 This packet directs the target to save trace data to the file name
35636 @var{filename} in the target's filesystem.  @var{filename} is encoded
35637 as a hex string; the interpretation of the file name (relative vs
35638 absolute, wild cards, etc) is up to the target.
35639
35640 @item qTBuffer:@var{offset},@var{len}
35641 Return up to @var{len} bytes of the current contents of trace buffer,
35642 starting at @var{offset}.  The trace buffer is treated as if it were
35643 a contiguous collection of traceframes, as per the trace file format.
35644 The reply consists as many hex-encoded bytes as the target can deliver
35645 in a packet; it is not an error to return fewer than were asked for.
35646 A reply consisting of just @code{l} indicates that no bytes are
35647 available.
35648
35649 @item QTBuffer:circular:@var{value}
35650 This packet directs the target to use a circular trace buffer if
35651 @var{value} is 1, or a linear buffer if the value is 0.
35652
35653 @end table
35654
35655 @subsection Relocate instruction reply packet
35656 When installing fast tracepoints in memory, the target may need to
35657 relocate the instruction currently at the tracepoint address to a
35658 different address in memory.  For most instructions, a simple copy is
35659 enough, but, for example, call instructions that implicitly push the
35660 return address on the stack, and relative branches or other
35661 PC-relative instructions require offset adjustment, so that the effect
35662 of executing the instruction at a different address is the same as if
35663 it had executed in the original location.
35664
35665 In response to several of the tracepoint packets, the target may also
35666 respond with a number of intermediate @samp{qRelocInsn} request
35667 packets before the final result packet, to have @value{GDBN} handle
35668 this relocation operation.  If a packet supports this mechanism, its
35669 documentation will explicitly say so.  See for example the above
35670 descriptions for the @samp{QTStart} and @samp{QTDP} packets.  The
35671 format of the request is:
35672
35673 @table @samp
35674 @item qRelocInsn:@var{from};@var{to}
35675
35676 This requests @value{GDBN} to copy instruction at address @var{from}
35677 to address @var{to}, possibly adjusted so that executing the
35678 instruction at @var{to} has the same effect as executing it at
35679 @var{from}.  @value{GDBN} writes the adjusted instruction to target
35680 memory starting at @var{to}.
35681 @end table
35682
35683 Replies:
35684 @table @samp
35685 @item qRelocInsn:@var{adjusted_size}
35686 Informs the stub the relocation is complete.  @var{adjusted_size} is
35687 the length in bytes of resulting relocated instruction sequence.
35688 @item E @var{NN}
35689 A badly formed request was detected, or an error was encountered while
35690 relocating the instruction.
35691 @end table
35692
35693 @node Host I/O Packets
35694 @section Host I/O Packets
35695 @cindex Host I/O, remote protocol
35696 @cindex file transfer, remote protocol
35697
35698 The @dfn{Host I/O} packets allow @value{GDBN} to perform I/O
35699 operations on the far side of a remote link.  For example, Host I/O is
35700 used to upload and download files to a remote target with its own
35701 filesystem.  Host I/O uses the same constant values and data structure
35702 layout as the target-initiated File-I/O protocol.  However, the
35703 Host I/O packets are structured differently.  The target-initiated
35704 protocol relies on target memory to store parameters and buffers.
35705 Host I/O requests are initiated by @value{GDBN}, and the
35706 target's memory is not involved.  @xref{File-I/O Remote Protocol
35707 Extension}, for more details on the target-initiated protocol.
35708
35709 The Host I/O request packets all encode a single operation along with
35710 its arguments.  They have this format:
35711
35712 @table @samp
35713
35714 @item vFile:@var{operation}: @var{parameter}@dots{}
35715 @var{operation} is the name of the particular request; the target
35716 should compare the entire packet name up to the second colon when checking
35717 for a supported operation.  The format of @var{parameter} depends on
35718 the operation.  Numbers are always passed in hexadecimal.  Negative
35719 numbers have an explicit minus sign (i.e.@: two's complement is not
35720 used).  Strings (e.g.@: filenames) are encoded as a series of
35721 hexadecimal bytes.  The last argument to a system call may be a
35722 buffer of escaped binary data (@pxref{Binary Data}).
35723
35724 @end table
35725
35726 The valid responses to Host I/O packets are:
35727
35728 @table @samp
35729
35730 @item F @var{result} [, @var{errno}] [; @var{attachment}]
35731 @var{result} is the integer value returned by this operation, usually
35732 non-negative for success and -1 for errors.  If an error has occured,
35733 @var{errno} will be included in the result.  @var{errno} will have a
35734 value defined by the File-I/O protocol (@pxref{Errno Values}).  For
35735 operations which return data, @var{attachment} supplies the data as a
35736 binary buffer.  Binary buffers in response packets are escaped in the
35737 normal way (@pxref{Binary Data}).  See the individual packet
35738 documentation for the interpretation of @var{result} and
35739 @var{attachment}.
35740
35741 @item
35742 An empty response indicates that this operation is not recognized.
35743
35744 @end table
35745
35746 These are the supported Host I/O operations:
35747
35748 @table @samp
35749 @item vFile:open: @var{pathname}, @var{flags}, @var{mode}
35750 Open a file at @var{pathname} and return a file descriptor for it, or
35751 return -1 if an error occurs.  @var{pathname} is a string,
35752 @var{flags} is an integer indicating a mask of open flags
35753 (@pxref{Open Flags}), and @var{mode} is an integer indicating a mask
35754 of mode bits to use if the file is created (@pxref{mode_t Values}).
35755 @xref{open}, for details of the open flags and mode values.
35756
35757 @item vFile:close: @var{fd}
35758 Close the open file corresponding to @var{fd} and return 0, or
35759 -1 if an error occurs.
35760
35761 @item vFile:pread: @var{fd}, @var{count}, @var{offset}
35762 Read data from the open file corresponding to @var{fd}.  Up to
35763 @var{count} bytes will be read from the file, starting at @var{offset}
35764 relative to the start of the file.  The target may read fewer bytes;
35765 common reasons include packet size limits and an end-of-file
35766 condition.  The number of bytes read is returned.  Zero should only be
35767 returned for a successful read at the end of the file, or if
35768 @var{count} was zero.
35769
35770 The data read should be returned as a binary attachment on success.
35771 If zero bytes were read, the response should include an empty binary
35772 attachment (i.e.@: a trailing semicolon).  The return value is the
35773 number of target bytes read; the binary attachment may be longer if
35774 some characters were escaped.
35775
35776 @item vFile:pwrite: @var{fd}, @var{offset}, @var{data}
35777 Write @var{data} (a binary buffer) to the open file corresponding
35778 to @var{fd}.  Start the write at @var{offset} from the start of the
35779 file.  Unlike many @code{write} system calls, there is no
35780 separate @var{count} argument; the length of @var{data} in the
35781 packet is used.  @samp{vFile:write} returns the number of bytes written,
35782 which may be shorter than the length of @var{data}, or -1 if an
35783 error occurred.
35784
35785 @item vFile:unlink: @var{pathname}
35786 Delete the file at @var{pathname} on the target.  Return 0,
35787 or -1 if an error occurs.  @var{pathname} is a string.
35788
35789 @end table
35790
35791 @node Interrupts
35792 @section Interrupts
35793 @cindex interrupts (remote protocol)
35794
35795 When a program on the remote target is running, @value{GDBN} may
35796 attempt to interrupt it by sending a @samp{Ctrl-C}, @code{BREAK} or
35797 a @code{BREAK} followed by @code{g},
35798 control of which is specified via @value{GDBN}'s @samp{interrupt-sequence}.
35799
35800 The precise meaning of @code{BREAK} is defined by the transport
35801 mechanism and may, in fact, be undefined.  @value{GDBN} does not
35802 currently define a @code{BREAK} mechanism for any of the network
35803 interfaces except for TCP, in which case @value{GDBN} sends the
35804 @code{telnet} BREAK sequence.
35805
35806 @samp{Ctrl-C}, on the other hand, is defined and implemented for all
35807 transport mechanisms.  It is represented by sending the single byte
35808 @code{0x03} without any of the usual packet overhead described in
35809 the Overview section (@pxref{Overview}).  When a @code{0x03} byte is
35810 transmitted as part of a packet, it is considered to be packet data
35811 and does @emph{not} represent an interrupt.  E.g., an @samp{X} packet
35812 (@pxref{X packet}), used for binary downloads, may include an unescaped
35813 @code{0x03} as part of its packet.
35814
35815 @code{BREAK} followed by @code{g} is also known as Magic SysRq g.
35816 When Linux kernel receives this sequence from serial port,
35817 it stops execution and connects to gdb.
35818
35819 Stubs are not required to recognize these interrupt mechanisms and the
35820 precise meaning associated with receipt of the interrupt is
35821 implementation defined.  If the target supports debugging of multiple
35822 threads and/or processes, it should attempt to interrupt all 
35823 currently-executing threads and processes.
35824 If the stub is successful at interrupting the
35825 running program, it should send one of the stop
35826 reply packets (@pxref{Stop Reply Packets}) to @value{GDBN} as a result
35827 of successfully stopping the program in all-stop mode, and a stop reply
35828 for each stopped thread in non-stop mode.
35829 Interrupts received while the
35830 program is stopped are discarded.
35831
35832 @node Notification Packets
35833 @section Notification Packets
35834 @cindex notification packets
35835 @cindex packets, notification
35836
35837 The @value{GDBN} remote serial protocol includes @dfn{notifications},
35838 packets that require no acknowledgment.  Both the GDB and the stub
35839 may send notifications (although the only notifications defined at
35840 present are sent by the stub).  Notifications carry information
35841 without incurring the round-trip latency of an acknowledgment, and so
35842 are useful for low-impact communications where occasional packet loss
35843 is not a problem.
35844
35845 A notification packet has the form @samp{% @var{data} #
35846 @var{checksum}}, where @var{data} is the content of the notification,
35847 and @var{checksum} is a checksum of @var{data}, computed and formatted
35848 as for ordinary @value{GDBN} packets.  A notification's @var{data}
35849 never contains @samp{$}, @samp{%} or @samp{#} characters.  Upon
35850 receiving a notification, the recipient sends no @samp{+} or @samp{-}
35851 to acknowledge the notification's receipt or to report its corruption.
35852
35853 Every notification's @var{data} begins with a name, which contains no
35854 colon characters, followed by a colon character.
35855
35856 Recipients should silently ignore corrupted notifications and
35857 notifications they do not understand.  Recipients should restart
35858 timeout periods on receipt of a well-formed notification, whether or
35859 not they understand it.
35860
35861 Senders should only send the notifications described here when this
35862 protocol description specifies that they are permitted.  In the
35863 future, we may extend the protocol to permit existing notifications in
35864 new contexts; this rule helps older senders avoid confusing newer
35865 recipients.
35866
35867 (Older versions of @value{GDBN} ignore bytes received until they see
35868 the @samp{$} byte that begins an ordinary packet, so new stubs may
35869 transmit notifications without fear of confusing older clients.  There
35870 are no notifications defined for @value{GDBN} to send at the moment, but we
35871 assume that most older stubs would ignore them, as well.)
35872
35873 The following notification packets from the stub to @value{GDBN} are
35874 defined:
35875
35876 @table @samp
35877 @item Stop: @var{reply}
35878 Report an asynchronous stop event in non-stop mode.  
35879 The @var{reply} has the form of a stop reply, as
35880 described in @ref{Stop Reply Packets}.  Refer to @ref{Remote Non-Stop},
35881 for information on how these notifications are acknowledged by 
35882 @value{GDBN}.
35883 @end table
35884
35885 @node Remote Non-Stop
35886 @section Remote Protocol Support for Non-Stop Mode
35887
35888 @value{GDBN}'s remote protocol supports non-stop debugging of
35889 multi-threaded programs, as described in @ref{Non-Stop Mode}.  If the stub
35890 supports non-stop mode, it should report that to @value{GDBN} by including
35891 @samp{QNonStop+} in its @samp{qSupported} response (@pxref{qSupported}).
35892
35893 @value{GDBN} typically sends a @samp{QNonStop} packet only when
35894 establishing a new connection with the stub.  Entering non-stop mode
35895 does not alter the state of any currently-running threads, but targets
35896 must stop all threads in any already-attached processes when entering
35897 all-stop mode.  @value{GDBN} uses the @samp{?} packet as necessary to
35898 probe the target state after a mode change.
35899
35900 In non-stop mode, when an attached process encounters an event that
35901 would otherwise be reported with a stop reply, it uses the
35902 asynchronous notification mechanism (@pxref{Notification Packets}) to
35903 inform @value{GDBN}.  In contrast to all-stop mode, where all threads
35904 in all processes are stopped when a stop reply is sent, in non-stop
35905 mode only the thread reporting the stop event is stopped.  That is,
35906 when reporting a @samp{S} or @samp{T} response to indicate completion
35907 of a step operation, hitting a breakpoint, or a fault, only the
35908 affected thread is stopped; any other still-running threads continue
35909 to run.  When reporting a @samp{W} or @samp{X} response, all running
35910 threads belonging to other attached processes continue to run.
35911
35912 Only one stop reply notification at a time may be pending; if
35913 additional stop events occur before @value{GDBN} has acknowledged the
35914 previous notification, they must be queued by the stub for later
35915 synchronous transmission in response to @samp{vStopped} packets from
35916 @value{GDBN}.  Because the notification mechanism is unreliable, 
35917 the stub is permitted to resend a stop reply notification
35918 if it believes @value{GDBN} may not have received it.  @value{GDBN}
35919 ignores additional stop reply notifications received before it has
35920 finished processing a previous notification and the stub has completed
35921 sending any queued stop events.
35922
35923 Otherwise, @value{GDBN} must be prepared to receive a stop reply
35924 notification at any time.  Specifically, they may appear when
35925 @value{GDBN} is not otherwise reading input from the stub, or when
35926 @value{GDBN} is expecting to read a normal synchronous response or a
35927 @samp{+}/@samp{-} acknowledgment to a packet it has sent.
35928 Notification packets are distinct from any other communication from
35929 the stub so there is no ambiguity.
35930
35931 After receiving a stop reply notification, @value{GDBN} shall
35932 acknowledge it by sending a @samp{vStopped} packet (@pxref{vStopped packet})
35933 as a regular, synchronous request to the stub.  Such acknowledgment
35934 is not required to happen immediately, as @value{GDBN} is permitted to
35935 send other, unrelated packets to the stub first, which the stub should
35936 process normally.
35937
35938 Upon receiving a @samp{vStopped} packet, if the stub has other queued
35939 stop events to report to @value{GDBN}, it shall respond by sending a
35940 normal stop reply response.  @value{GDBN} shall then send another
35941 @samp{vStopped} packet to solicit further responses; again, it is
35942 permitted to send other, unrelated packets as well which the stub
35943 should process normally.
35944
35945 If the stub receives a @samp{vStopped} packet and there are no
35946 additional stop events to report, the stub shall return an @samp{OK}
35947 response.  At this point, if further stop events occur, the stub shall
35948 send a new stop reply notification, @value{GDBN} shall accept the
35949 notification, and the process shall be repeated.
35950
35951 In non-stop mode, the target shall respond to the @samp{?} packet as
35952 follows.  First, any incomplete stop reply notification/@samp{vStopped} 
35953 sequence in progress is abandoned.  The target must begin a new
35954 sequence reporting stop events for all stopped threads, whether or not
35955 it has previously reported those events to @value{GDBN}.  The first
35956 stop reply is sent as a synchronous reply to the @samp{?} packet, and
35957 subsequent stop replies are sent as responses to @samp{vStopped} packets
35958 using the mechanism described above.  The target must not send
35959 asynchronous stop reply notifications until the sequence is complete.
35960 If all threads are running when the target receives the @samp{?} packet,
35961 or if the target is not attached to any process, it shall respond
35962 @samp{OK}.
35963
35964 @node Packet Acknowledgment
35965 @section Packet Acknowledgment
35966
35967 @cindex acknowledgment, for @value{GDBN} remote
35968 @cindex packet acknowledgment, for @value{GDBN} remote
35969 By default, when either the host or the target machine receives a packet,
35970 the first response expected is an acknowledgment: either @samp{+} (to indicate
35971 the package was received correctly) or @samp{-} (to request retransmission).
35972 This mechanism allows the @value{GDBN} remote protocol to operate over
35973 unreliable transport mechanisms, such as a serial line.
35974
35975 In cases where the transport mechanism is itself reliable (such as a pipe or
35976 TCP connection), the @samp{+}/@samp{-} acknowledgments are redundant.
35977 It may be desirable to disable them in that case to reduce communication
35978 overhead, or for other reasons.  This can be accomplished by means of the
35979 @samp{QStartNoAckMode} packet; @pxref{QStartNoAckMode}.
35980
35981 When in no-acknowledgment mode, neither the stub nor @value{GDBN} shall send or
35982 expect @samp{+}/@samp{-} protocol acknowledgments.  The packet
35983 and response format still includes the normal checksum, as described in
35984 @ref{Overview}, but the checksum may be ignored by the receiver.
35985
35986 If the stub supports @samp{QStartNoAckMode} and prefers to operate in
35987 no-acknowledgment mode, it should report that to @value{GDBN}
35988 by including @samp{QStartNoAckMode+} in its response to @samp{qSupported};
35989 @pxref{qSupported}.
35990 If @value{GDBN} also supports @samp{QStartNoAckMode} and it has not been
35991 disabled via the @code{set remote noack-packet off} command
35992 (@pxref{Remote Configuration}),
35993 @value{GDBN} may then send a @samp{QStartNoAckMode} packet to the stub.
35994 Only then may the stub actually turn off packet acknowledgments.
35995 @value{GDBN} sends a final @samp{+} acknowledgment of the stub's @samp{OK}
35996 response, which can be safely ignored by the stub.
35997
35998 Note that @code{set remote noack-packet} command only affects negotiation
35999 between @value{GDBN} and the stub when subsequent connections are made;
36000 it does not affect the protocol acknowledgment state for any current
36001 connection.
36002 Since @samp{+}/@samp{-} acknowledgments are enabled by default when a
36003 new connection is established,
36004 there is also no protocol request to re-enable the acknowledgments
36005 for the current connection, once disabled.
36006
36007 @node Examples
36008 @section Examples
36009
36010 Example sequence of a target being re-started.  Notice how the restart
36011 does not get any direct output:
36012
36013 @smallexample
36014 -> @code{R00}
36015 <- @code{+}
36016 @emph{target restarts}
36017 -> @code{?}
36018 <- @code{+}
36019 <- @code{T001:1234123412341234}
36020 -> @code{+}
36021 @end smallexample
36022
36023 Example sequence of a target being stepped by a single instruction:
36024
36025 @smallexample
36026 -> @code{G1445@dots{}}
36027 <- @code{+}
36028 -> @code{s}
36029 <- @code{+}
36030 @emph{time passes}
36031 <- @code{T001:1234123412341234}
36032 -> @code{+}
36033 -> @code{g}
36034 <- @code{+}
36035 <- @code{1455@dots{}}
36036 -> @code{+}
36037 @end smallexample
36038
36039 @node File-I/O Remote Protocol Extension
36040 @section File-I/O Remote Protocol Extension
36041 @cindex File-I/O remote protocol extension
36042
36043 @menu
36044 * File-I/O Overview::
36045 * Protocol Basics::
36046 * The F Request Packet::
36047 * The F Reply Packet::
36048 * The Ctrl-C Message::
36049 * Console I/O::
36050 * List of Supported Calls::
36051 * Protocol-specific Representation of Datatypes::
36052 * Constants::
36053 * File-I/O Examples::
36054 @end menu
36055
36056 @node File-I/O Overview
36057 @subsection File-I/O Overview
36058 @cindex file-i/o overview
36059
36060 The @dfn{File I/O remote protocol extension} (short: File-I/O) allows the
36061 target to use the host's file system and console I/O to perform various
36062 system calls.  System calls on the target system are translated into a
36063 remote protocol packet to the host system, which then performs the needed
36064 actions and returns a response packet to the target system.
36065 This simulates file system operations even on targets that lack file systems.
36066
36067 The protocol is defined to be independent of both the host and target systems.
36068 It uses its own internal representation of datatypes and values.  Both
36069 @value{GDBN} and the target's @value{GDBN} stub are responsible for
36070 translating the system-dependent value representations into the internal
36071 protocol representations when data is transmitted.
36072
36073 The communication is synchronous.  A system call is possible only when 
36074 @value{GDBN} is waiting for a response from the @samp{C}, @samp{c}, @samp{S} 
36075 or @samp{s} packets.  While @value{GDBN} handles the request for a system call,
36076 the target is stopped to allow deterministic access to the target's
36077 memory.  Therefore File-I/O is not interruptible by target signals.  On
36078 the other hand, it is possible to interrupt File-I/O by a user interrupt 
36079 (@samp{Ctrl-C}) within @value{GDBN}.
36080
36081 The target's request to perform a host system call does not finish
36082 the latest @samp{C}, @samp{c}, @samp{S} or @samp{s} action.  That means,
36083 after finishing the system call, the target returns to continuing the
36084 previous activity (continue, step).  No additional continue or step
36085 request from @value{GDBN} is required.
36086
36087 @smallexample
36088 (@value{GDBP}) continue
36089   <- target requests 'system call X'
36090   target is stopped, @value{GDBN} executes system call
36091   -> @value{GDBN} returns result
36092   ... target continues, @value{GDBN} returns to wait for the target
36093   <- target hits breakpoint and sends a Txx packet
36094 @end smallexample
36095
36096 The protocol only supports I/O on the console and to regular files on 
36097 the host file system.  Character or block special devices, pipes,
36098 named pipes, sockets or any other communication method on the host
36099 system are not supported by this protocol.
36100
36101 File I/O is not supported in non-stop mode.
36102
36103 @node Protocol Basics
36104 @subsection Protocol Basics
36105 @cindex protocol basics, file-i/o
36106
36107 The File-I/O protocol uses the @code{F} packet as the request as well
36108 as reply packet.  Since a File-I/O system call can only occur when
36109 @value{GDBN} is waiting for a response from the continuing or stepping target, 
36110 the File-I/O request is a reply that @value{GDBN} has to expect as a result
36111 of a previous @samp{C}, @samp{c}, @samp{S} or @samp{s} packet.
36112 This @code{F} packet contains all information needed to allow @value{GDBN}
36113 to call the appropriate host system call:
36114
36115 @itemize @bullet
36116 @item
36117 A unique identifier for the requested system call.
36118
36119 @item
36120 All parameters to the system call.  Pointers are given as addresses
36121 in the target memory address space.  Pointers to strings are given as
36122 pointer/length pair.  Numerical values are given as they are.
36123 Numerical control flags are given in a protocol-specific representation.
36124
36125 @end itemize
36126
36127 At this point, @value{GDBN} has to perform the following actions.
36128
36129 @itemize @bullet
36130 @item
36131 If the parameters include pointer values to data needed as input to a 
36132 system call, @value{GDBN} requests this data from the target with a
36133 standard @code{m} packet request.  This additional communication has to be
36134 expected by the target implementation and is handled as any other @code{m}
36135 packet.
36136
36137 @item
36138 @value{GDBN} translates all value from protocol representation to host
36139 representation as needed.  Datatypes are coerced into the host types.
36140
36141 @item
36142 @value{GDBN} calls the system call.
36143
36144 @item
36145 It then coerces datatypes back to protocol representation.
36146
36147 @item
36148 If the system call is expected to return data in buffer space specified
36149 by pointer parameters to the call, the data is transmitted to the
36150 target using a @code{M} or @code{X} packet.  This packet has to be expected
36151 by the target implementation and is handled as any other @code{M} or @code{X}
36152 packet.
36153
36154 @end itemize
36155
36156 Eventually @value{GDBN} replies with another @code{F} packet which contains all
36157 necessary information for the target to continue.  This at least contains
36158
36159 @itemize @bullet
36160 @item
36161 Return value.
36162
36163 @item
36164 @code{errno}, if has been changed by the system call.
36165
36166 @item
36167 ``Ctrl-C'' flag.
36168
36169 @end itemize
36170
36171 After having done the needed type and value coercion, the target continues
36172 the latest continue or step action.
36173
36174 @node The F Request Packet
36175 @subsection The @code{F} Request Packet
36176 @cindex file-i/o request packet
36177 @cindex @code{F} request packet
36178
36179 The @code{F} request packet has the following format:
36180
36181 @table @samp
36182 @item F@var{call-id},@var{parameter@dots{}}
36183
36184 @var{call-id} is the identifier to indicate the host system call to be called.
36185 This is just the name of the function.
36186
36187 @var{parameter@dots{}} are the parameters to the system call.  
36188 Parameters are hexadecimal integer values, either the actual values in case
36189 of scalar datatypes, pointers to target buffer space in case of compound
36190 datatypes and unspecified memory areas, or pointer/length pairs in case
36191 of string parameters.  These are appended to the @var{call-id} as a 
36192 comma-delimited list.  All values are transmitted in ASCII
36193 string representation, pointer/length pairs separated by a slash.
36194
36195 @end table
36196
36197
36198
36199 @node The F Reply Packet
36200 @subsection The @code{F} Reply Packet
36201 @cindex file-i/o reply packet
36202 @cindex @code{F} reply packet
36203
36204 The @code{F} reply packet has the following format:
36205
36206 @table @samp
36207
36208 @item F@var{retcode},@var{errno},@var{Ctrl-C flag};@var{call-specific attachment}
36209
36210 @var{retcode} is the return code of the system call as hexadecimal value.
36211
36212 @var{errno} is the @code{errno} set by the call, in protocol-specific
36213 representation.
36214 This parameter can be omitted if the call was successful.
36215
36216 @var{Ctrl-C flag} is only sent if the user requested a break.  In this
36217 case, @var{errno} must be sent as well, even if the call was successful.
36218 The @var{Ctrl-C flag} itself consists of the character @samp{C}:
36219
36220 @smallexample
36221 F0,0,C
36222 @end smallexample
36223
36224 @noindent
36225 or, if the call was interrupted before the host call has been performed:
36226
36227 @smallexample
36228 F-1,4,C
36229 @end smallexample
36230
36231 @noindent
36232 assuming 4 is the protocol-specific representation of @code{EINTR}.
36233
36234 @end table
36235
36236
36237 @node The Ctrl-C Message
36238 @subsection The @samp{Ctrl-C} Message
36239 @cindex ctrl-c message, in file-i/o protocol
36240
36241 If the @samp{Ctrl-C} flag is set in the @value{GDBN}
36242 reply packet (@pxref{The F Reply Packet}),
36243 the target should behave as if it had
36244 gotten a break message.  The meaning for the target is ``system call
36245 interrupted by @code{SIGINT}''.  Consequentially, the target should actually stop
36246 (as with a break message) and return to @value{GDBN} with a @code{T02}
36247 packet.
36248
36249 It's important for the target to know in which
36250 state the system call was interrupted.  There are two possible cases:
36251
36252 @itemize @bullet
36253 @item
36254 The system call hasn't been performed on the host yet.
36255
36256 @item
36257 The system call on the host has been finished.
36258
36259 @end itemize
36260
36261 These two states can be distinguished by the target by the value of the
36262 returned @code{errno}.  If it's the protocol representation of @code{EINTR}, the system
36263 call hasn't been performed.  This is equivalent to the @code{EINTR} handling
36264 on POSIX systems.  In any other case, the target may presume that the
36265 system call has been finished --- successfully or not --- and should behave
36266 as if the break message arrived right after the system call.
36267
36268 @value{GDBN} must behave reliably.  If the system call has not been called
36269 yet, @value{GDBN} may send the @code{F} reply immediately, setting @code{EINTR} as
36270 @code{errno} in the packet.  If the system call on the host has been finished
36271 before the user requests a break, the full action must be finished by
36272 @value{GDBN}.  This requires sending @code{M} or @code{X} packets as necessary.
36273 The @code{F} packet may only be sent when either nothing has happened
36274 or the full action has been completed.
36275
36276 @node Console I/O
36277 @subsection Console I/O
36278 @cindex console i/o as part of file-i/o
36279
36280 By default and if not explicitly closed by the target system, the file
36281 descriptors 0, 1 and 2 are connected to the @value{GDBN} console.  Output
36282 on the @value{GDBN} console is handled as any other file output operation
36283 (@code{write(1, @dots{})} or @code{write(2, @dots{})}).  Console input is handled
36284 by @value{GDBN} so that after the target read request from file descriptor
36285 0 all following typing is buffered until either one of the following
36286 conditions is met:
36287
36288 @itemize @bullet
36289 @item
36290 The user types @kbd{Ctrl-c}.  The behaviour is as explained above, and the
36291 @code{read}
36292 system call is treated as finished.
36293
36294 @item
36295 The user presses @key{RET}.  This is treated as end of input with a trailing
36296 newline.
36297
36298 @item
36299 The user types @kbd{Ctrl-d}.  This is treated as end of input.  No trailing
36300 character (neither newline nor @samp{Ctrl-D}) is appended to the input.
36301
36302 @end itemize
36303
36304 If the user has typed more characters than fit in the buffer given to
36305 the @code{read} call, the trailing characters are buffered in @value{GDBN} until
36306 either another @code{read(0, @dots{})} is requested by the target, or debugging
36307 is stopped at the user's request.
36308
36309
36310 @node List of Supported Calls
36311 @subsection List of Supported Calls
36312 @cindex list of supported file-i/o calls
36313
36314 @menu
36315 * open::
36316 * close::
36317 * read::
36318 * write::
36319 * lseek::
36320 * rename::
36321 * unlink::
36322 * stat/fstat::
36323 * gettimeofday::
36324 * isatty::
36325 * system::
36326 @end menu
36327
36328 @node open
36329 @unnumberedsubsubsec open
36330 @cindex open, file-i/o system call
36331
36332 @table @asis
36333 @item Synopsis:
36334 @smallexample
36335 int open(const char *pathname, int flags);
36336 int open(const char *pathname, int flags, mode_t mode);
36337 @end smallexample
36338
36339 @item Request:
36340 @samp{Fopen,@var{pathptr}/@var{len},@var{flags},@var{mode}}
36341
36342 @noindent
36343 @var{flags} is the bitwise @code{OR} of the following values:
36344
36345 @table @code
36346 @item O_CREAT
36347 If the file does not exist it will be created.  The host
36348 rules apply as far as file ownership and time stamps
36349 are concerned.
36350
36351 @item O_EXCL
36352 When used with @code{O_CREAT}, if the file already exists it is
36353 an error and open() fails.
36354
36355 @item O_TRUNC
36356 If the file already exists and the open mode allows
36357 writing (@code{O_RDWR} or @code{O_WRONLY} is given) it will be
36358 truncated to zero length.
36359
36360 @item O_APPEND
36361 The file is opened in append mode.
36362
36363 @item O_RDONLY
36364 The file is opened for reading only.
36365
36366 @item O_WRONLY
36367 The file is opened for writing only.
36368
36369 @item O_RDWR
36370 The file is opened for reading and writing.
36371 @end table
36372
36373 @noindent
36374 Other bits are silently ignored.
36375
36376
36377 @noindent
36378 @var{mode} is the bitwise @code{OR} of the following values:
36379
36380 @table @code
36381 @item S_IRUSR
36382 User has read permission.
36383
36384 @item S_IWUSR
36385 User has write permission.
36386
36387 @item S_IRGRP
36388 Group has read permission.
36389
36390 @item S_IWGRP
36391 Group has write permission.
36392
36393 @item S_IROTH
36394 Others have read permission.
36395
36396 @item S_IWOTH
36397 Others have write permission.
36398 @end table
36399
36400 @noindent
36401 Other bits are silently ignored.
36402
36403
36404 @item Return value:
36405 @code{open} returns the new file descriptor or -1 if an error
36406 occurred.
36407
36408 @item Errors:
36409
36410 @table @code
36411 @item EEXIST
36412 @var{pathname} already exists and @code{O_CREAT} and @code{O_EXCL} were used.
36413
36414 @item EISDIR
36415 @var{pathname} refers to a directory.
36416
36417 @item EACCES
36418 The requested access is not allowed.
36419
36420 @item ENAMETOOLONG
36421 @var{pathname} was too long.
36422
36423 @item ENOENT
36424 A directory component in @var{pathname} does not exist.
36425
36426 @item ENODEV
36427 @var{pathname} refers to a device, pipe, named pipe or socket.
36428
36429 @item EROFS
36430 @var{pathname} refers to a file on a read-only filesystem and
36431 write access was requested.
36432
36433 @item EFAULT
36434 @var{pathname} is an invalid pointer value.
36435
36436 @item ENOSPC
36437 No space on device to create the file.
36438
36439 @item EMFILE
36440 The process already has the maximum number of files open.
36441
36442 @item ENFILE
36443 The limit on the total number of files open on the system
36444 has been reached.
36445
36446 @item EINTR
36447 The call was interrupted by the user.
36448 @end table
36449
36450 @end table
36451
36452 @node close
36453 @unnumberedsubsubsec close
36454 @cindex close, file-i/o system call
36455
36456 @table @asis
36457 @item Synopsis:
36458 @smallexample
36459 int close(int fd);
36460 @end smallexample
36461
36462 @item Request:
36463 @samp{Fclose,@var{fd}}
36464
36465 @item Return value:
36466 @code{close} returns zero on success, or -1 if an error occurred.
36467
36468 @item Errors:
36469
36470 @table @code
36471 @item EBADF
36472 @var{fd} isn't a valid open file descriptor.
36473
36474 @item EINTR
36475 The call was interrupted by the user.
36476 @end table
36477
36478 @end table
36479
36480 @node read
36481 @unnumberedsubsubsec read
36482 @cindex read, file-i/o system call
36483
36484 @table @asis
36485 @item Synopsis:
36486 @smallexample
36487 int read(int fd, void *buf, unsigned int count);
36488 @end smallexample
36489
36490 @item Request:
36491 @samp{Fread,@var{fd},@var{bufptr},@var{count}}
36492
36493 @item Return value:
36494 On success, the number of bytes read is returned.
36495 Zero indicates end of file.  If count is zero, read
36496 returns zero as well.  On error, -1 is returned.
36497
36498 @item Errors:
36499
36500 @table @code
36501 @item EBADF
36502 @var{fd} is not a valid file descriptor or is not open for
36503 reading.
36504
36505 @item EFAULT
36506 @var{bufptr} is an invalid pointer value.
36507
36508 @item EINTR
36509 The call was interrupted by the user.
36510 @end table
36511
36512 @end table
36513
36514 @node write
36515 @unnumberedsubsubsec write
36516 @cindex write, file-i/o system call
36517
36518 @table @asis
36519 @item Synopsis:
36520 @smallexample
36521 int write(int fd, const void *buf, unsigned int count);
36522 @end smallexample
36523
36524 @item Request:
36525 @samp{Fwrite,@var{fd},@var{bufptr},@var{count}}
36526
36527 @item Return value:
36528 On success, the number of bytes written are returned.
36529 Zero indicates nothing was written.  On error, -1
36530 is returned.
36531
36532 @item Errors:
36533
36534 @table @code
36535 @item EBADF
36536 @var{fd} is not a valid file descriptor or is not open for
36537 writing.
36538
36539 @item EFAULT
36540 @var{bufptr} is an invalid pointer value.
36541
36542 @item EFBIG
36543 An attempt was made to write a file that exceeds the
36544 host-specific maximum file size allowed.
36545
36546 @item ENOSPC
36547 No space on device to write the data.
36548
36549 @item EINTR
36550 The call was interrupted by the user.
36551 @end table
36552
36553 @end table
36554
36555 @node lseek
36556 @unnumberedsubsubsec lseek
36557 @cindex lseek, file-i/o system call
36558
36559 @table @asis
36560 @item Synopsis:
36561 @smallexample
36562 long lseek (int fd, long offset, int flag);
36563 @end smallexample
36564
36565 @item Request:
36566 @samp{Flseek,@var{fd},@var{offset},@var{flag}}
36567
36568 @var{flag} is one of:
36569
36570 @table @code
36571 @item SEEK_SET
36572 The offset is set to @var{offset} bytes.
36573
36574 @item SEEK_CUR
36575 The offset is set to its current location plus @var{offset}
36576 bytes.
36577
36578 @item SEEK_END
36579 The offset is set to the size of the file plus @var{offset}
36580 bytes.
36581 @end table
36582
36583 @item Return value:
36584 On success, the resulting unsigned offset in bytes from
36585 the beginning of the file is returned.  Otherwise, a
36586 value of -1 is returned.
36587
36588 @item Errors:
36589
36590 @table @code
36591 @item EBADF
36592 @var{fd} is not a valid open file descriptor.
36593
36594 @item ESPIPE
36595 @var{fd} is associated with the @value{GDBN} console.
36596
36597 @item EINVAL
36598 @var{flag} is not a proper value.
36599
36600 @item EINTR
36601 The call was interrupted by the user.
36602 @end table
36603
36604 @end table
36605
36606 @node rename
36607 @unnumberedsubsubsec rename
36608 @cindex rename, file-i/o system call
36609
36610 @table @asis
36611 @item Synopsis:
36612 @smallexample
36613 int rename(const char *oldpath, const char *newpath);
36614 @end smallexample
36615
36616 @item Request:
36617 @samp{Frename,@var{oldpathptr}/@var{len},@var{newpathptr}/@var{len}}
36618
36619 @item Return value:
36620 On success, zero is returned.  On error, -1 is returned.
36621
36622 @item Errors:
36623
36624 @table @code
36625 @item EISDIR
36626 @var{newpath} is an existing directory, but @var{oldpath} is not a
36627 directory.
36628
36629 @item EEXIST
36630 @var{newpath} is a non-empty directory.
36631
36632 @item EBUSY
36633 @var{oldpath} or @var{newpath} is a directory that is in use by some
36634 process.
36635
36636 @item EINVAL
36637 An attempt was made to make a directory a subdirectory
36638 of itself.
36639
36640 @item ENOTDIR
36641 A  component used as a directory in @var{oldpath} or new
36642 path is not a directory.  Or @var{oldpath} is a directory
36643 and @var{newpath} exists but is not a directory.
36644
36645 @item EFAULT
36646 @var{oldpathptr} or @var{newpathptr} are invalid pointer values.
36647
36648 @item EACCES
36649 No access to the file or the path of the file.
36650
36651 @item ENAMETOOLONG
36652
36653 @var{oldpath} or @var{newpath} was too long.
36654
36655 @item ENOENT
36656 A directory component in @var{oldpath} or @var{newpath} does not exist.
36657
36658 @item EROFS
36659 The file is on a read-only filesystem.
36660
36661 @item ENOSPC
36662 The device containing the file has no room for the new
36663 directory entry.
36664
36665 @item EINTR
36666 The call was interrupted by the user.
36667 @end table
36668
36669 @end table
36670
36671 @node unlink
36672 @unnumberedsubsubsec unlink
36673 @cindex unlink, file-i/o system call
36674
36675 @table @asis
36676 @item Synopsis:
36677 @smallexample
36678 int unlink(const char *pathname);
36679 @end smallexample
36680
36681 @item Request:
36682 @samp{Funlink,@var{pathnameptr}/@var{len}}
36683
36684 @item Return value:
36685 On success, zero is returned.  On error, -1 is returned.
36686
36687 @item Errors:
36688
36689 @table @code
36690 @item EACCES
36691 No access to the file or the path of the file.
36692
36693 @item EPERM
36694 The system does not allow unlinking of directories.
36695
36696 @item EBUSY
36697 The file @var{pathname} cannot be unlinked because it's
36698 being used by another process.
36699
36700 @item EFAULT
36701 @var{pathnameptr} is an invalid pointer value.
36702
36703 @item ENAMETOOLONG
36704 @var{pathname} was too long.
36705
36706 @item ENOENT
36707 A directory component in @var{pathname} does not exist.
36708
36709 @item ENOTDIR
36710 A component of the path is not a directory.
36711
36712 @item EROFS
36713 The file is on a read-only filesystem.
36714
36715 @item EINTR
36716 The call was interrupted by the user.
36717 @end table
36718
36719 @end table
36720
36721 @node stat/fstat
36722 @unnumberedsubsubsec stat/fstat
36723 @cindex fstat, file-i/o system call
36724 @cindex stat, file-i/o system call
36725
36726 @table @asis
36727 @item Synopsis:
36728 @smallexample
36729 int stat(const char *pathname, struct stat *buf);
36730 int fstat(int fd, struct stat *buf);
36731 @end smallexample
36732
36733 @item Request:
36734 @samp{Fstat,@var{pathnameptr}/@var{len},@var{bufptr}}@*
36735 @samp{Ffstat,@var{fd},@var{bufptr}}
36736
36737 @item Return value:
36738 On success, zero is returned.  On error, -1 is returned.
36739
36740 @item Errors:
36741
36742 @table @code
36743 @item EBADF
36744 @var{fd} is not a valid open file.
36745
36746 @item ENOENT
36747 A directory component in @var{pathname} does not exist or the
36748 path is an empty string.
36749
36750 @item ENOTDIR
36751 A component of the path is not a directory.
36752
36753 @item EFAULT
36754 @var{pathnameptr} is an invalid pointer value.
36755
36756 @item EACCES
36757 No access to the file or the path of the file.
36758
36759 @item ENAMETOOLONG
36760 @var{pathname} was too long.
36761
36762 @item EINTR
36763 The call was interrupted by the user.
36764 @end table
36765
36766 @end table
36767
36768 @node gettimeofday
36769 @unnumberedsubsubsec gettimeofday
36770 @cindex gettimeofday, file-i/o system call
36771
36772 @table @asis
36773 @item Synopsis:
36774 @smallexample
36775 int gettimeofday(struct timeval *tv, void *tz);
36776 @end smallexample
36777
36778 @item Request:
36779 @samp{Fgettimeofday,@var{tvptr},@var{tzptr}}
36780
36781 @item Return value:
36782 On success, 0 is returned, -1 otherwise.
36783
36784 @item Errors:
36785
36786 @table @code
36787 @item EINVAL
36788 @var{tz} is a non-NULL pointer.
36789
36790 @item EFAULT
36791 @var{tvptr} and/or @var{tzptr} is an invalid pointer value.
36792 @end table
36793
36794 @end table
36795
36796 @node isatty
36797 @unnumberedsubsubsec isatty
36798 @cindex isatty, file-i/o system call
36799
36800 @table @asis
36801 @item Synopsis:
36802 @smallexample
36803 int isatty(int fd);
36804 @end smallexample
36805
36806 @item Request:
36807 @samp{Fisatty,@var{fd}}
36808
36809 @item Return value:
36810 Returns 1 if @var{fd} refers to the @value{GDBN} console, 0 otherwise.
36811
36812 @item Errors:
36813
36814 @table @code
36815 @item EINTR
36816 The call was interrupted by the user.
36817 @end table
36818
36819 @end table
36820
36821 Note that the @code{isatty} call is treated as a special case: it returns
36822 1 to the target if the file descriptor is attached
36823 to the @value{GDBN} console, 0 otherwise.  Implementing through system calls
36824 would require implementing @code{ioctl} and would be more complex than
36825 needed.
36826
36827
36828 @node system
36829 @unnumberedsubsubsec system
36830 @cindex system, file-i/o system call
36831
36832 @table @asis
36833 @item Synopsis:
36834 @smallexample
36835 int system(const char *command);
36836 @end smallexample
36837
36838 @item Request:
36839 @samp{Fsystem,@var{commandptr}/@var{len}}
36840
36841 @item Return value:
36842 If @var{len} is zero, the return value indicates whether a shell is
36843 available.  A zero return value indicates a shell is not available.
36844 For non-zero @var{len}, the value returned is -1 on error and the
36845 return status of the command otherwise.  Only the exit status of the
36846 command is returned, which is extracted from the host's @code{system}
36847 return value by calling @code{WEXITSTATUS(retval)}.  In case
36848 @file{/bin/sh} could not be executed, 127 is returned.
36849
36850 @item Errors:
36851
36852 @table @code
36853 @item EINTR
36854 The call was interrupted by the user.
36855 @end table
36856
36857 @end table
36858
36859 @value{GDBN} takes over the full task of calling the necessary host calls 
36860 to perform the @code{system} call.  The return value of @code{system} on 
36861 the host is simplified before it's returned
36862 to the target.  Any termination signal information from the child process 
36863 is discarded, and the return value consists
36864 entirely of the exit status of the called command.
36865
36866 Due to security concerns, the @code{system} call is by default refused
36867 by @value{GDBN}.  The user has to allow this call explicitly with the
36868 @code{set remote system-call-allowed 1} command.
36869
36870 @table @code
36871 @item set remote system-call-allowed
36872 @kindex set remote system-call-allowed
36873 Control whether to allow the @code{system} calls in the File I/O
36874 protocol for the remote target.  The default is zero (disabled).
36875
36876 @item show remote system-call-allowed
36877 @kindex show remote system-call-allowed
36878 Show whether the @code{system} calls are allowed in the File I/O
36879 protocol.
36880 @end table
36881
36882 @node Protocol-specific Representation of Datatypes
36883 @subsection Protocol-specific Representation of Datatypes
36884 @cindex protocol-specific representation of datatypes, in file-i/o protocol
36885
36886 @menu
36887 * Integral Datatypes::
36888 * Pointer Values::
36889 * Memory Transfer::
36890 * struct stat::
36891 * struct timeval::
36892 @end menu
36893
36894 @node Integral Datatypes
36895 @unnumberedsubsubsec Integral Datatypes
36896 @cindex integral datatypes, in file-i/o protocol
36897
36898 The integral datatypes used in the system calls are @code{int}, 
36899 @code{unsigned int}, @code{long}, @code{unsigned long},
36900 @code{mode_t}, and @code{time_t}.  
36901
36902 @code{int}, @code{unsigned int}, @code{mode_t} and @code{time_t} are
36903 implemented as 32 bit values in this protocol.
36904
36905 @code{long} and @code{unsigned long} are implemented as 64 bit types.
36906
36907 @xref{Limits}, for corresponding MIN and MAX values (similar to those
36908 in @file{limits.h}) to allow range checking on host and target.
36909
36910 @code{time_t} datatypes are defined as seconds since the Epoch.
36911
36912 All integral datatypes transferred as part of a memory read or write of a
36913 structured datatype e.g.@: a @code{struct stat} have to be given in big endian
36914 byte order.
36915
36916 @node Pointer Values
36917 @unnumberedsubsubsec Pointer Values
36918 @cindex pointer values, in file-i/o protocol
36919
36920 Pointers to target data are transmitted as they are.  An exception
36921 is made for pointers to buffers for which the length isn't
36922 transmitted as part of the function call, namely strings.  Strings
36923 are transmitted as a pointer/length pair, both as hex values, e.g.@:
36924
36925 @smallexample
36926 @code{1aaf/12}
36927 @end smallexample
36928
36929 @noindent
36930 which is a pointer to data of length 18 bytes at position 0x1aaf.
36931 The length is defined as the full string length in bytes, including
36932 the trailing null byte.  For example, the string @code{"hello world"}
36933 at address 0x123456 is transmitted as
36934
36935 @smallexample
36936 @code{123456/d}
36937 @end smallexample
36938
36939 @node Memory Transfer
36940 @unnumberedsubsubsec Memory Transfer
36941 @cindex memory transfer, in file-i/o protocol
36942
36943 Structured data which is transferred using a memory read or write (for
36944 example, a @code{struct stat}) is expected to be in a protocol-specific format 
36945 with all scalar multibyte datatypes being big endian.  Translation to
36946 this representation needs to be done both by the target before the @code{F} 
36947 packet is sent, and by @value{GDBN} before 
36948 it transfers memory to the target.  Transferred pointers to structured
36949 data should point to the already-coerced data at any time.
36950
36951
36952 @node struct stat
36953 @unnumberedsubsubsec struct stat
36954 @cindex struct stat, in file-i/o protocol
36955
36956 The buffer of type @code{struct stat} used by the target and @value{GDBN} 
36957 is defined as follows:
36958
36959 @smallexample
36960 struct stat @{
36961     unsigned int  st_dev;      /* device */
36962     unsigned int  st_ino;      /* inode */
36963     mode_t        st_mode;     /* protection */
36964     unsigned int  st_nlink;    /* number of hard links */
36965     unsigned int  st_uid;      /* user ID of owner */
36966     unsigned int  st_gid;      /* group ID of owner */
36967     unsigned int  st_rdev;     /* device type (if inode device) */
36968     unsigned long st_size;     /* total size, in bytes */
36969     unsigned long st_blksize;  /* blocksize for filesystem I/O */
36970     unsigned long st_blocks;   /* number of blocks allocated */
36971     time_t        st_atime;    /* time of last access */
36972     time_t        st_mtime;    /* time of last modification */
36973     time_t        st_ctime;    /* time of last change */
36974 @};
36975 @end smallexample
36976
36977 The integral datatypes conform to the definitions given in the
36978 appropriate section (see @ref{Integral Datatypes}, for details) so this
36979 structure is of size 64 bytes.
36980
36981 The values of several fields have a restricted meaning and/or
36982 range of values.
36983
36984 @table @code
36985
36986 @item st_dev
36987 A value of 0 represents a file, 1 the console.
36988
36989 @item st_ino
36990 No valid meaning for the target.  Transmitted unchanged.
36991
36992 @item st_mode
36993 Valid mode bits are described in @ref{Constants}.  Any other
36994 bits have currently no meaning for the target.
36995
36996 @item st_uid
36997 @itemx st_gid
36998 @itemx st_rdev
36999 No valid meaning for the target.  Transmitted unchanged.
37000
37001 @item st_atime
37002 @itemx st_mtime
37003 @itemx st_ctime
37004 These values have a host and file system dependent
37005 accuracy.  Especially on Windows hosts, the file system may not
37006 support exact timing values.
37007 @end table
37008
37009 The target gets a @code{struct stat} of the above representation and is
37010 responsible for coercing it to the target representation before
37011 continuing.
37012
37013 Note that due to size differences between the host, target, and protocol
37014 representations of @code{struct stat} members, these members could eventually
37015 get truncated on the target.
37016
37017 @node struct timeval
37018 @unnumberedsubsubsec struct timeval
37019 @cindex struct timeval, in file-i/o protocol
37020
37021 The buffer of type @code{struct timeval} used by the File-I/O protocol
37022 is defined as follows:
37023
37024 @smallexample
37025 struct timeval @{
37026     time_t tv_sec;  /* second */
37027     long   tv_usec; /* microsecond */
37028 @};
37029 @end smallexample
37030
37031 The integral datatypes conform to the definitions given in the
37032 appropriate section (see @ref{Integral Datatypes}, for details) so this
37033 structure is of size 8 bytes.
37034
37035 @node Constants
37036 @subsection Constants
37037 @cindex constants, in file-i/o protocol
37038
37039 The following values are used for the constants inside of the
37040 protocol.  @value{GDBN} and target are responsible for translating these
37041 values before and after the call as needed.
37042
37043 @menu
37044 * Open Flags::
37045 * mode_t Values::
37046 * Errno Values::
37047 * Lseek Flags::
37048 * Limits::
37049 @end menu
37050
37051 @node Open Flags
37052 @unnumberedsubsubsec Open Flags
37053 @cindex open flags, in file-i/o protocol
37054
37055 All values are given in hexadecimal representation.
37056
37057 @smallexample
37058   O_RDONLY        0x0
37059   O_WRONLY        0x1
37060   O_RDWR          0x2
37061   O_APPEND        0x8
37062   O_CREAT       0x200
37063   O_TRUNC       0x400
37064   O_EXCL        0x800
37065 @end smallexample
37066
37067 @node mode_t Values
37068 @unnumberedsubsubsec mode_t Values
37069 @cindex mode_t values, in file-i/o protocol
37070
37071 All values are given in octal representation.
37072
37073 @smallexample
37074   S_IFREG       0100000
37075   S_IFDIR        040000
37076   S_IRUSR          0400
37077   S_IWUSR          0200
37078   S_IXUSR          0100
37079   S_IRGRP           040
37080   S_IWGRP           020
37081   S_IXGRP           010
37082   S_IROTH            04
37083   S_IWOTH            02
37084   S_IXOTH            01
37085 @end smallexample
37086
37087 @node Errno Values
37088 @unnumberedsubsubsec Errno Values
37089 @cindex errno values, in file-i/o protocol
37090
37091 All values are given in decimal representation.
37092
37093 @smallexample
37094   EPERM           1
37095   ENOENT          2
37096   EINTR           4
37097   EBADF           9
37098   EACCES         13
37099   EFAULT         14
37100   EBUSY          16
37101   EEXIST         17
37102   ENODEV         19
37103   ENOTDIR        20
37104   EISDIR         21
37105   EINVAL         22
37106   ENFILE         23
37107   EMFILE         24
37108   EFBIG          27
37109   ENOSPC         28
37110   ESPIPE         29
37111   EROFS          30
37112   ENAMETOOLONG   91
37113   EUNKNOWN       9999
37114 @end smallexample
37115
37116   @code{EUNKNOWN} is used as a fallback error value if a host system returns
37117   any error value not in the list of supported error numbers.
37118
37119 @node Lseek Flags
37120 @unnumberedsubsubsec Lseek Flags
37121 @cindex lseek flags, in file-i/o protocol
37122
37123 @smallexample
37124   SEEK_SET      0
37125   SEEK_CUR      1
37126   SEEK_END      2
37127 @end smallexample
37128
37129 @node Limits
37130 @unnumberedsubsubsec Limits
37131 @cindex limits, in file-i/o protocol
37132
37133 All values are given in decimal representation.
37134
37135 @smallexample
37136   INT_MIN       -2147483648
37137   INT_MAX        2147483647
37138   UINT_MAX       4294967295
37139   LONG_MIN      -9223372036854775808
37140   LONG_MAX       9223372036854775807
37141   ULONG_MAX      18446744073709551615
37142 @end smallexample
37143
37144 @node File-I/O Examples
37145 @subsection File-I/O Examples
37146 @cindex file-i/o examples
37147
37148 Example sequence of a write call, file descriptor 3, buffer is at target
37149 address 0x1234, 6 bytes should be written:
37150
37151 @smallexample
37152 <- @code{Fwrite,3,1234,6}
37153 @emph{request memory read from target}
37154 -> @code{m1234,6}
37155 <- XXXXXX
37156 @emph{return "6 bytes written"}
37157 -> @code{F6}
37158 @end smallexample
37159
37160 Example sequence of a read call, file descriptor 3, buffer is at target
37161 address 0x1234, 6 bytes should be read:
37162
37163 @smallexample
37164 <- @code{Fread,3,1234,6}
37165 @emph{request memory write to target}
37166 -> @code{X1234,6:XXXXXX}
37167 @emph{return "6 bytes read"}
37168 -> @code{F6}
37169 @end smallexample
37170
37171 Example sequence of a read call, call fails on the host due to invalid
37172 file descriptor (@code{EBADF}):
37173
37174 @smallexample
37175 <- @code{Fread,3,1234,6}
37176 -> @code{F-1,9}
37177 @end smallexample
37178
37179 Example sequence of a read call, user presses @kbd{Ctrl-c} before syscall on
37180 host is called:
37181
37182 @smallexample
37183 <- @code{Fread,3,1234,6}
37184 -> @code{F-1,4,C}
37185 <- @code{T02}
37186 @end smallexample
37187
37188 Example sequence of a read call, user presses @kbd{Ctrl-c} after syscall on
37189 host is called:
37190
37191 @smallexample
37192 <- @code{Fread,3,1234,6}
37193 -> @code{X1234,6:XXXXXX}
37194 <- @code{T02}
37195 @end smallexample
37196
37197 @node Library List Format
37198 @section Library List Format
37199 @cindex library list format, remote protocol
37200
37201 On some platforms, a dynamic loader (e.g.@: @file{ld.so}) runs in the
37202 same process as your application to manage libraries.  In this case,
37203 @value{GDBN} can use the loader's symbol table and normal memory
37204 operations to maintain a list of shared libraries.  On other
37205 platforms, the operating system manages loaded libraries.
37206 @value{GDBN} can not retrieve the list of currently loaded libraries
37207 through memory operations, so it uses the @samp{qXfer:libraries:read}
37208 packet (@pxref{qXfer library list read}) instead.  The remote stub
37209 queries the target's operating system and reports which libraries
37210 are loaded.
37211
37212 The @samp{qXfer:libraries:read} packet returns an XML document which
37213 lists loaded libraries and their offsets.  Each library has an
37214 associated name and one or more segment or section base addresses,
37215 which report where the library was loaded in memory.
37216
37217 For the common case of libraries that are fully linked binaries, the
37218 library should have a list of segments.  If the target supports
37219 dynamic linking of a relocatable object file, its library XML element
37220 should instead include a list of allocated sections.  The segment or
37221 section bases are start addresses, not relocation offsets; they do not
37222 depend on the library's link-time base addresses.
37223
37224 @value{GDBN} must be linked with the Expat library to support XML
37225 library lists.  @xref{Expat}.
37226
37227 A simple memory map, with one loaded library relocated by a single
37228 offset, looks like this:
37229
37230 @smallexample
37231 <library-list>
37232   <library name="/lib/libc.so.6">
37233     <segment address="0x10000000"/>
37234   </library>
37235 </library-list>
37236 @end smallexample
37237
37238 Another simple memory map, with one loaded library with three
37239 allocated sections (.text, .data, .bss), looks like this:
37240
37241 @smallexample
37242 <library-list>
37243   <library name="sharedlib.o">
37244     <section address="0x10000000"/>
37245     <section address="0x20000000"/>
37246     <section address="0x30000000"/>
37247   </library>
37248 </library-list>
37249 @end smallexample
37250
37251 The format of a library list is described by this DTD:
37252
37253 @smallexample
37254 <!-- library-list: Root element with versioning -->
37255 <!ELEMENT library-list  (library)*>
37256 <!ATTLIST library-list  version CDATA   #FIXED  "1.0">
37257 <!ELEMENT library       (segment*, section*)>
37258 <!ATTLIST library       name    CDATA   #REQUIRED>
37259 <!ELEMENT segment       EMPTY>
37260 <!ATTLIST segment       address CDATA   #REQUIRED>
37261 <!ELEMENT section       EMPTY>
37262 <!ATTLIST section       address CDATA   #REQUIRED>
37263 @end smallexample
37264
37265 In addition, segments and section descriptors cannot be mixed within a
37266 single library element, and you must supply at least one segment or
37267 section for each library.
37268
37269 @node Memory Map Format
37270 @section Memory Map Format
37271 @cindex memory map format
37272
37273 To be able to write into flash memory, @value{GDBN} needs to obtain a
37274 memory map from the target.  This section describes the format of the
37275 memory map.
37276
37277 The memory map is obtained using the @samp{qXfer:memory-map:read}
37278 (@pxref{qXfer memory map read}) packet and is an XML document that
37279 lists memory regions.
37280
37281 @value{GDBN} must be linked with the Expat library to support XML
37282 memory maps.  @xref{Expat}.
37283
37284 The top-level structure of the document is shown below:
37285
37286 @smallexample
37287 <?xml version="1.0"?>
37288 <!DOCTYPE memory-map
37289           PUBLIC "+//IDN gnu.org//DTD GDB Memory Map V1.0//EN"
37290                  "http://sourceware.org/gdb/gdb-memory-map.dtd">
37291 <memory-map>
37292     region...
37293 </memory-map>
37294 @end smallexample
37295
37296 Each region can be either:
37297
37298 @itemize
37299
37300 @item
37301 A region of RAM starting at @var{addr} and extending for @var{length}
37302 bytes from there:
37303
37304 @smallexample
37305 <memory type="ram" start="@var{addr}" length="@var{length}"/>
37306 @end smallexample
37307
37308
37309 @item
37310 A region of read-only memory:
37311
37312 @smallexample
37313 <memory type="rom" start="@var{addr}" length="@var{length}"/>
37314 @end smallexample
37315
37316
37317 @item
37318 A region of flash memory, with erasure blocks @var{blocksize}
37319 bytes in length:
37320
37321 @smallexample
37322 <memory type="flash" start="@var{addr}" length="@var{length}">
37323   <property name="blocksize">@var{blocksize}</property>
37324 </memory>
37325 @end smallexample
37326
37327 @end itemize
37328
37329 Regions must not overlap.  @value{GDBN} assumes that areas of memory not covered
37330 by the memory map are RAM, and uses the ordinary @samp{M} and @samp{X}
37331 packets to write to addresses in such ranges.
37332
37333 The formal DTD for memory map format is given below:
37334
37335 @smallexample
37336 <!-- ................................................... -->
37337 <!-- Memory Map XML DTD ................................ -->
37338 <!-- File: memory-map.dtd .............................. -->
37339 <!-- .................................... .............. -->
37340 <!-- memory-map.dtd -->
37341 <!-- memory-map: Root element with versioning -->
37342 <!ELEMENT memory-map (memory | property)>
37343 <!ATTLIST memory-map    version CDATA   #FIXED  "1.0.0">
37344 <!ELEMENT memory (property)>
37345 <!-- memory: Specifies a memory region,
37346              and its type, or device. -->
37347 <!ATTLIST memory        type    CDATA   #REQUIRED
37348                         start   CDATA   #REQUIRED
37349                         length  CDATA   #REQUIRED
37350                         device  CDATA   #IMPLIED>
37351 <!-- property: Generic attribute tag -->
37352 <!ELEMENT property (#PCDATA | property)*>
37353 <!ATTLIST property      name    CDATA   #REQUIRED>
37354 @end smallexample
37355
37356 @node Thread List Format
37357 @section Thread List Format
37358 @cindex thread list format
37359
37360 To efficiently update the list of threads and their attributes,
37361 @value{GDBN} issues the @samp{qXfer:threads:read} packet
37362 (@pxref{qXfer threads read}) and obtains the XML document with
37363 the following structure:
37364
37365 @smallexample
37366 <?xml version="1.0"?>
37367 <threads>
37368     <thread id="id" core="0">
37369     ... description ...
37370     </thread>
37371 </threads>
37372 @end smallexample
37373
37374 Each @samp{thread} element must have the @samp{id} attribute that
37375 identifies the thread (@pxref{thread-id syntax}).  The
37376 @samp{core} attribute, if present, specifies which processor core
37377 the thread was last executing on.  The content of the of @samp{thread}
37378 element is interpreted as human-readable auxilliary information.
37379
37380 @node Traceframe Info Format
37381 @section Traceframe Info Format
37382 @cindex traceframe info format
37383
37384 To be able to know which objects in the inferior can be examined when
37385 inspecting a tracepoint hit, @value{GDBN} needs to obtain the list of
37386 memory ranges, registers and trace state variables that have been
37387 collected in a traceframe.
37388
37389 This list is obtained using the @samp{qXfer:traceframe-info:read}
37390 (@pxref{qXfer traceframe info read}) packet and is an XML document.
37391
37392 @value{GDBN} must be linked with the Expat library to support XML
37393 traceframe info discovery.  @xref{Expat}.
37394
37395 The top-level structure of the document is shown below:
37396
37397 @smallexample
37398 <?xml version="1.0"?>
37399 <!DOCTYPE traceframe-info
37400           PUBLIC "+//IDN gnu.org//DTD GDB Memory Map V1.0//EN"
37401                  "http://sourceware.org/gdb/gdb-traceframe-info.dtd">
37402 <traceframe-info>
37403    block...
37404 </traceframe-info>
37405 @end smallexample
37406
37407 Each traceframe block can be either:
37408
37409 @itemize
37410
37411 @item
37412 A region of collected memory starting at @var{addr} and extending for
37413 @var{length} bytes from there:
37414
37415 @smallexample
37416 <memory start="@var{addr}" length="@var{length}"/>
37417 @end smallexample
37418
37419 @end itemize
37420
37421 The formal DTD for the traceframe info format is given below:
37422
37423 @smallexample
37424 <!ELEMENT traceframe-info  (memory)* >
37425 <!ATTLIST traceframe-info  version CDATA   #FIXED  "1.0">
37426
37427 <!ELEMENT memory        EMPTY>
37428 <!ATTLIST memory        start   CDATA   #REQUIRED
37429                         length  CDATA   #REQUIRED>
37430 @end smallexample
37431
37432 @include agentexpr.texi
37433
37434 @node Target Descriptions
37435 @appendix Target Descriptions
37436 @cindex target descriptions
37437
37438 One of the challenges of using @value{GDBN} to debug embedded systems
37439 is that there are so many minor variants of each processor
37440 architecture in use.  It is common practice for vendors to start with
37441 a standard processor core --- ARM, PowerPC, or MIPS, for example ---
37442 and then make changes to adapt it to a particular market niche.  Some
37443 architectures have hundreds of variants, available from dozens of
37444 vendors.  This leads to a number of problems:
37445
37446 @itemize @bullet
37447 @item
37448 With so many different customized processors, it is difficult for
37449 the @value{GDBN} maintainers to keep up with the changes.
37450 @item
37451 Since individual variants may have short lifetimes or limited
37452 audiences, it may not be worthwhile to carry information about every
37453 variant in the @value{GDBN} source tree.
37454 @item
37455 When @value{GDBN} does support the architecture of the embedded system
37456 at hand, the task of finding the correct architecture name to give the
37457 @command{set architecture} command can be error-prone.
37458 @end itemize
37459
37460 To address these problems, the @value{GDBN} remote protocol allows a
37461 target system to not only identify itself to @value{GDBN}, but to
37462 actually describe its own features.  This lets @value{GDBN} support
37463 processor variants it has never seen before --- to the extent that the
37464 descriptions are accurate, and that @value{GDBN} understands them.
37465
37466 @value{GDBN} must be linked with the Expat library to support XML
37467 target descriptions.  @xref{Expat}.
37468
37469 @menu
37470 * Retrieving Descriptions::         How descriptions are fetched from a target.
37471 * Target Description Format::       The contents of a target description.
37472 * Predefined Target Types::         Standard types available for target
37473                                     descriptions.
37474 * Standard Target Features::        Features @value{GDBN} knows about.
37475 @end menu
37476
37477 @node Retrieving Descriptions
37478 @section Retrieving Descriptions
37479
37480 Target descriptions can be read from the target automatically, or
37481 specified by the user manually.  The default behavior is to read the
37482 description from the target.  @value{GDBN} retrieves it via the remote
37483 protocol using @samp{qXfer} requests (@pxref{General Query Packets,
37484 qXfer}).  The @var{annex} in the @samp{qXfer} packet will be
37485 @samp{target.xml}.  The contents of the @samp{target.xml} annex are an
37486 XML document, of the form described in @ref{Target Description
37487 Format}.
37488
37489 Alternatively, you can specify a file to read for the target description.
37490 If a file is set, the target will not be queried.  The commands to
37491 specify a file are:
37492
37493 @table @code
37494 @cindex set tdesc filename
37495 @item set tdesc filename @var{path}
37496 Read the target description from @var{path}.
37497
37498 @cindex unset tdesc filename
37499 @item unset tdesc filename
37500 Do not read the XML target description from a file.  @value{GDBN}
37501 will use the description supplied by the current target.
37502
37503 @cindex show tdesc filename
37504 @item show tdesc filename
37505 Show the filename to read for a target description, if any.
37506 @end table
37507
37508
37509 @node Target Description Format
37510 @section Target Description Format
37511 @cindex target descriptions, XML format
37512
37513 A target description annex is an @uref{http://www.w3.org/XML/, XML}
37514 document which complies with the Document Type Definition provided in
37515 the @value{GDBN} sources in @file{gdb/features/gdb-target.dtd}.  This
37516 means you can use generally available tools like @command{xmllint} to
37517 check that your feature descriptions are well-formed and valid.
37518 However, to help people unfamiliar with XML write descriptions for
37519 their targets, we also describe the grammar here.
37520
37521 Target descriptions can identify the architecture of the remote target
37522 and (for some architectures) provide information about custom register
37523 sets.  They can also identify the OS ABI of the remote target.
37524 @value{GDBN} can use this information to autoconfigure for your
37525 target, or to warn you if you connect to an unsupported target.
37526
37527 Here is a simple target description:
37528
37529 @smallexample
37530 <target version="1.0">
37531   <architecture>i386:x86-64</architecture>
37532 </target>
37533 @end smallexample
37534
37535 @noindent
37536 This minimal description only says that the target uses
37537 the x86-64 architecture.
37538
37539 A target description has the following overall form, with [ ] marking
37540 optional elements and @dots{} marking repeatable elements.  The elements
37541 are explained further below.
37542
37543 @smallexample
37544 <?xml version="1.0"?>
37545 <!DOCTYPE target SYSTEM "gdb-target.dtd">
37546 <target version="1.0">
37547   @r{[}@var{architecture}@r{]}
37548   @r{[}@var{osabi}@r{]}
37549   @r{[}@var{compatible}@r{]}
37550   @r{[}@var{feature}@dots{}@r{]}
37551 </target>
37552 @end smallexample
37553
37554 @noindent
37555 The description is generally insensitive to whitespace and line
37556 breaks, under the usual common-sense rules.  The XML version
37557 declaration and document type declaration can generally be omitted
37558 (@value{GDBN} does not require them), but specifying them may be
37559 useful for XML validation tools.  The @samp{version} attribute for
37560 @samp{<target>} may also be omitted, but we recommend
37561 including it; if future versions of @value{GDBN} use an incompatible
37562 revision of @file{gdb-target.dtd}, they will detect and report
37563 the version mismatch.
37564
37565 @subsection Inclusion
37566 @cindex target descriptions, inclusion
37567 @cindex XInclude
37568 @ifnotinfo
37569 @cindex <xi:include>
37570 @end ifnotinfo
37571
37572 It can sometimes be valuable to split a target description up into
37573 several different annexes, either for organizational purposes, or to
37574 share files between different possible target descriptions.  You can
37575 divide a description into multiple files by replacing any element of
37576 the target description with an inclusion directive of the form:
37577
37578 @smallexample
37579 <xi:include href="@var{document}"/>
37580 @end smallexample
37581
37582 @noindent
37583 When @value{GDBN} encounters an element of this form, it will retrieve
37584 the named XML @var{document}, and replace the inclusion directive with
37585 the contents of that document.  If the current description was read
37586 using @samp{qXfer}, then so will be the included document;
37587 @var{document} will be interpreted as the name of an annex.  If the
37588 current description was read from a file, @value{GDBN} will look for
37589 @var{document} as a file in the same directory where it found the
37590 original description.
37591
37592 @subsection Architecture
37593 @cindex <architecture>
37594
37595 An @samp{<architecture>} element has this form:
37596
37597 @smallexample
37598   <architecture>@var{arch}</architecture>
37599 @end smallexample
37600
37601 @var{arch} is one of the architectures from the set accepted by
37602 @code{set architecture} (@pxref{Targets, ,Specifying a Debugging Target}).
37603
37604 @subsection OS ABI
37605 @cindex @code{<osabi>}
37606
37607 This optional field was introduced in @value{GDBN} version 7.0.
37608 Previous versions of @value{GDBN} ignore it.
37609
37610 An @samp{<osabi>} element has this form:
37611
37612 @smallexample
37613   <osabi>@var{abi-name}</osabi>
37614 @end smallexample
37615
37616 @var{abi-name} is an OS ABI name from the same selection accepted by
37617 @w{@code{set osabi}} (@pxref{ABI, ,Configuring the Current ABI}).
37618
37619 @subsection Compatible Architecture
37620 @cindex @code{<compatible>}
37621
37622 This optional field was introduced in @value{GDBN} version 7.0.
37623 Previous versions of @value{GDBN} ignore it.
37624
37625 A @samp{<compatible>} element has this form:
37626
37627 @smallexample
37628   <compatible>@var{arch}</compatible>
37629 @end smallexample
37630
37631 @var{arch} is one of the architectures from the set accepted by
37632 @code{set architecture} (@pxref{Targets, ,Specifying a Debugging Target}).
37633
37634 A @samp{<compatible>} element is used to specify that the target
37635 is able to run binaries in some other than the main target architecture
37636 given by the @samp{<architecture>} element.  For example, on the
37637 Cell Broadband Engine, the main architecture is @code{powerpc:common}
37638 or @code{powerpc:common64}, but the system is able to run binaries
37639 in the @code{spu} architecture as well.  The way to describe this
37640 capability with @samp{<compatible>} is as follows:
37641
37642 @smallexample
37643   <architecture>powerpc:common</architecture>
37644   <compatible>spu</compatible>
37645 @end smallexample
37646
37647 @subsection Features
37648 @cindex <feature>
37649
37650 Each @samp{<feature>} describes some logical portion of the target
37651 system.  Features are currently used to describe available CPU
37652 registers and the types of their contents.  A @samp{<feature>} element
37653 has this form:
37654
37655 @smallexample
37656 <feature name="@var{name}">
37657   @r{[}@var{type}@dots{}@r{]}
37658   @var{reg}@dots{}
37659 </feature>
37660 @end smallexample
37661
37662 @noindent
37663 Each feature's name should be unique within the description.  The name
37664 of a feature does not matter unless @value{GDBN} has some special
37665 knowledge of the contents of that feature; if it does, the feature
37666 should have its standard name.  @xref{Standard Target Features}.
37667
37668 @subsection Types
37669
37670 Any register's value is a collection of bits which @value{GDBN} must
37671 interpret.  The default interpretation is a two's complement integer,
37672 but other types can be requested by name in the register description.
37673 Some predefined types are provided by @value{GDBN} (@pxref{Predefined
37674 Target Types}), and the description can define additional composite types.
37675
37676 Each type element must have an @samp{id} attribute, which gives
37677 a unique (within the containing @samp{<feature>}) name to the type.
37678 Types must be defined before they are used.
37679
37680 @cindex <vector>
37681 Some targets offer vector registers, which can be treated as arrays
37682 of scalar elements.  These types are written as @samp{<vector>} elements,
37683 specifying the array element type, @var{type}, and the number of elements,
37684 @var{count}:
37685
37686 @smallexample
37687 <vector id="@var{id}" type="@var{type}" count="@var{count}"/>
37688 @end smallexample
37689
37690 @cindex <union>
37691 If a register's value is usefully viewed in multiple ways, define it
37692 with a union type containing the useful representations.  The
37693 @samp{<union>} element contains one or more @samp{<field>} elements,
37694 each of which has a @var{name} and a @var{type}:
37695
37696 @smallexample
37697 <union id="@var{id}">
37698   <field name="@var{name}" type="@var{type}"/>
37699   @dots{}
37700 </union>
37701 @end smallexample
37702
37703 @cindex <struct>
37704 If a register's value is composed from several separate values, define
37705 it with a structure type.  There are two forms of the @samp{<struct>}
37706 element; a @samp{<struct>} element must either contain only bitfields
37707 or contain no bitfields.  If the structure contains only bitfields,
37708 its total size in bytes must be specified, each bitfield must have an
37709 explicit start and end, and bitfields are automatically assigned an
37710 integer type.  The field's @var{start} should be less than or
37711 equal to its @var{end}, and zero represents the least significant bit.
37712
37713 @smallexample
37714 <struct id="@var{id}" size="@var{size}">
37715   <field name="@var{name}" start="@var{start}" end="@var{end}"/>
37716   @dots{}
37717 </struct>
37718 @end smallexample
37719
37720 If the structure contains no bitfields, then each field has an
37721 explicit type, and no implicit padding is added.
37722
37723 @smallexample
37724 <struct id="@var{id}">
37725   <field name="@var{name}" type="@var{type}"/>
37726   @dots{}
37727 </struct>
37728 @end smallexample
37729
37730 @cindex <flags>
37731 If a register's value is a series of single-bit flags, define it with
37732 a flags type.  The @samp{<flags>} element has an explicit @var{size}
37733 and contains one or more @samp{<field>} elements.  Each field has a
37734 @var{name}, a @var{start}, and an @var{end}.  Only single-bit flags
37735 are supported.
37736
37737 @smallexample
37738 <flags id="@var{id}" size="@var{size}">
37739   <field name="@var{name}" start="@var{start}" end="@var{end}"/>
37740   @dots{}
37741 </flags>
37742 @end smallexample
37743
37744 @subsection Registers
37745 @cindex <reg>
37746
37747 Each register is represented as an element with this form:
37748
37749 @smallexample
37750 <reg name="@var{name}"
37751      bitsize="@var{size}"
37752      @r{[}regnum="@var{num}"@r{]}
37753      @r{[}save-restore="@var{save-restore}"@r{]}
37754      @r{[}type="@var{type}"@r{]}
37755      @r{[}group="@var{group}"@r{]}/>
37756 @end smallexample
37757
37758 @noindent
37759 The components are as follows:
37760
37761 @table @var
37762
37763 @item name
37764 The register's name; it must be unique within the target description.
37765
37766 @item bitsize
37767 The register's size, in bits.
37768
37769 @item regnum
37770 The register's number.  If omitted, a register's number is one greater
37771 than that of the previous register (either in the current feature or in
37772 a preceding feature); the first register in the target description
37773 defaults to zero.  This register number is used to read or write
37774 the register; e.g.@: it is used in the remote @code{p} and @code{P}
37775 packets, and registers appear in the @code{g} and @code{G} packets
37776 in order of increasing register number.
37777
37778 @item save-restore
37779 Whether the register should be preserved across inferior function
37780 calls; this must be either @code{yes} or @code{no}.  The default is
37781 @code{yes}, which is appropriate for most registers except for
37782 some system control registers; this is not related to the target's
37783 ABI.
37784
37785 @item type
37786 The type of the register.  @var{type} may be a predefined type, a type
37787 defined in the current feature, or one of the special types @code{int}
37788 and @code{float}.  @code{int} is an integer type of the correct size
37789 for @var{bitsize}, and @code{float} is a floating point type (in the
37790 architecture's normal floating point format) of the correct size for
37791 @var{bitsize}.  The default is @code{int}.
37792
37793 @item group
37794 The register group to which this register belongs.  @var{group} must
37795 be either @code{general}, @code{float}, or @code{vector}.  If no
37796 @var{group} is specified, @value{GDBN} will not display the register
37797 in @code{info registers}.
37798
37799 @end table
37800
37801 @node Predefined Target Types
37802 @section Predefined Target Types
37803 @cindex target descriptions, predefined types
37804
37805 Type definitions in the self-description can build up composite types
37806 from basic building blocks, but can not define fundamental types.  Instead,
37807 standard identifiers are provided by @value{GDBN} for the fundamental
37808 types.  The currently supported types are:
37809
37810 @table @code
37811
37812 @item int8
37813 @itemx int16
37814 @itemx int32
37815 @itemx int64
37816 @itemx int128
37817 Signed integer types holding the specified number of bits.
37818
37819 @item uint8
37820 @itemx uint16
37821 @itemx uint32
37822 @itemx uint64
37823 @itemx uint128
37824 Unsigned integer types holding the specified number of bits.
37825
37826 @item code_ptr
37827 @itemx data_ptr
37828 Pointers to unspecified code and data.  The program counter and
37829 any dedicated return address register may be marked as code
37830 pointers; printing a code pointer converts it into a symbolic
37831 address.  The stack pointer and any dedicated address registers
37832 may be marked as data pointers.
37833
37834 @item ieee_single
37835 Single precision IEEE floating point.
37836
37837 @item ieee_double
37838 Double precision IEEE floating point.
37839
37840 @item arm_fpa_ext
37841 The 12-byte extended precision format used by ARM FPA registers.
37842
37843 @item i387_ext
37844 The 10-byte extended precision format used by x87 registers.
37845
37846 @item i386_eflags
37847 32bit @sc{eflags} register used by x86.
37848
37849 @item i386_mxcsr
37850 32bit @sc{mxcsr} register used by x86.
37851
37852 @end table
37853
37854 @node Standard Target Features
37855 @section Standard Target Features
37856 @cindex target descriptions, standard features
37857
37858 A target description must contain either no registers or all the
37859 target's registers.  If the description contains no registers, then
37860 @value{GDBN} will assume a default register layout, selected based on
37861 the architecture.  If the description contains any registers, the
37862 default layout will not be used; the standard registers must be
37863 described in the target description, in such a way that @value{GDBN}
37864 can recognize them.
37865
37866 This is accomplished by giving specific names to feature elements
37867 which contain standard registers.  @value{GDBN} will look for features
37868 with those names and verify that they contain the expected registers;
37869 if any known feature is missing required registers, or if any required
37870 feature is missing, @value{GDBN} will reject the target
37871 description.  You can add additional registers to any of the
37872 standard features --- @value{GDBN} will display them just as if
37873 they were added to an unrecognized feature.
37874
37875 This section lists the known features and their expected contents.
37876 Sample XML documents for these features are included in the
37877 @value{GDBN} source tree, in the directory @file{gdb/features}.
37878
37879 Names recognized by @value{GDBN} should include the name of the
37880 company or organization which selected the name, and the overall
37881 architecture to which the feature applies; so e.g.@: the feature
37882 containing ARM core registers is named @samp{org.gnu.gdb.arm.core}.
37883
37884 The names of registers are not case sensitive for the purpose
37885 of recognizing standard features, but @value{GDBN} will only display
37886 registers using the capitalization used in the description.
37887
37888 @menu
37889 * ARM Features::
37890 * i386 Features::
37891 * MIPS Features::
37892 * M68K Features::
37893 * PowerPC Features::
37894 * TIC6x Features::
37895 @end menu
37896
37897
37898 @node ARM Features
37899 @subsection ARM Features
37900 @cindex target descriptions, ARM features
37901
37902 The @samp{org.gnu.gdb.arm.core} feature is required for non-M-profile
37903 ARM targets.
37904 It should contain registers @samp{r0} through @samp{r13}, @samp{sp},
37905 @samp{lr}, @samp{pc}, and @samp{cpsr}.
37906
37907 For M-profile targets (e.g. Cortex-M3), the @samp{org.gnu.gdb.arm.core}
37908 feature is replaced by @samp{org.gnu.gdb.arm.m-profile}.  It should contain
37909 registers @samp{r0} through @samp{r13}, @samp{sp}, @samp{lr}, @samp{pc},
37910 and @samp{xpsr}.
37911
37912 The @samp{org.gnu.gdb.arm.fpa} feature is optional.  If present, it
37913 should contain registers @samp{f0} through @samp{f7} and @samp{fps}.
37914
37915 The @samp{org.gnu.gdb.xscale.iwmmxt} feature is optional.  If present,
37916 it should contain at least registers @samp{wR0} through @samp{wR15} and
37917 @samp{wCGR0} through @samp{wCGR3}.  The @samp{wCID}, @samp{wCon},
37918 @samp{wCSSF}, and @samp{wCASF} registers are optional.
37919
37920 The @samp{org.gnu.gdb.arm.vfp} feature is optional.  If present, it
37921 should contain at least registers @samp{d0} through @samp{d15}.  If
37922 they are present, @samp{d16} through @samp{d31} should also be included.
37923 @value{GDBN} will synthesize the single-precision registers from
37924 halves of the double-precision registers.
37925
37926 The @samp{org.gnu.gdb.arm.neon} feature is optional.  It does not
37927 need to contain registers; it instructs @value{GDBN} to display the
37928 VFP double-precision registers as vectors and to synthesize the
37929 quad-precision registers from pairs of double-precision registers.
37930 If this feature is present, @samp{org.gnu.gdb.arm.vfp} must also
37931 be present and include 32 double-precision registers.
37932
37933 @node i386 Features
37934 @subsection i386 Features
37935 @cindex target descriptions, i386 features
37936
37937 The @samp{org.gnu.gdb.i386.core} feature is required for i386/amd64
37938 targets.  It should describe the following registers:
37939
37940 @itemize @minus
37941 @item
37942 @samp{eax} through @samp{edi} plus @samp{eip} for i386
37943 @item
37944 @samp{rax} through @samp{r15} plus @samp{rip} for amd64
37945 @item
37946 @samp{eflags}, @samp{cs}, @samp{ss}, @samp{ds}, @samp{es},
37947 @samp{fs}, @samp{gs}
37948 @item 
37949 @samp{st0} through @samp{st7}
37950 @item 
37951 @samp{fctrl}, @samp{fstat}, @samp{ftag}, @samp{fiseg}, @samp{fioff},
37952 @samp{foseg}, @samp{fooff} and @samp{fop}
37953 @end itemize
37954
37955 The register sets may be different, depending on the target.
37956
37957 The @samp{org.gnu.gdb.i386.sse} feature is optional.  It should
37958 describe registers:
37959
37960 @itemize @minus
37961 @item
37962 @samp{xmm0} through @samp{xmm7} for i386
37963 @item
37964 @samp{xmm0} through @samp{xmm15} for amd64
37965 @item 
37966 @samp{mxcsr}
37967 @end itemize
37968
37969 The @samp{org.gnu.gdb.i386.avx} feature is optional and requires the
37970 @samp{org.gnu.gdb.i386.sse} feature.  It should
37971 describe the upper 128 bits of @sc{ymm} registers:
37972
37973 @itemize @minus
37974 @item
37975 @samp{ymm0h} through @samp{ymm7h} for i386
37976 @item
37977 @samp{ymm0h} through @samp{ymm15h} for amd64
37978 @end itemize
37979
37980 The @samp{org.gnu.gdb.i386.linux} feature is optional.  It should
37981 describe a single register, @samp{orig_eax}.
37982
37983 @node MIPS Features
37984 @subsection MIPS Features
37985 @cindex target descriptions, MIPS features
37986
37987 The @samp{org.gnu.gdb.mips.cpu} feature is required for MIPS targets.
37988 It should contain registers @samp{r0} through @samp{r31}, @samp{lo},
37989 @samp{hi}, and @samp{pc}.  They may be 32-bit or 64-bit depending
37990 on the target.
37991
37992 The @samp{org.gnu.gdb.mips.cp0} feature is also required.  It should
37993 contain at least the @samp{status}, @samp{badvaddr}, and @samp{cause}
37994 registers.  They may be 32-bit or 64-bit depending on the target.
37995
37996 The @samp{org.gnu.gdb.mips.fpu} feature is currently required, though
37997 it may be optional in a future version of @value{GDBN}.  It should
37998 contain registers @samp{f0} through @samp{f31}, @samp{fcsr}, and
37999 @samp{fir}.  They may be 32-bit or 64-bit depending on the target.
38000
38001 The @samp{org.gnu.gdb.mips.linux} feature is optional.  It should
38002 contain a single register, @samp{restart}, which is used by the
38003 Linux kernel to control restartable syscalls.
38004
38005 @node M68K Features
38006 @subsection M68K Features
38007 @cindex target descriptions, M68K features
38008
38009 @table @code
38010 @item @samp{org.gnu.gdb.m68k.core}
38011 @itemx @samp{org.gnu.gdb.coldfire.core}
38012 @itemx @samp{org.gnu.gdb.fido.core}
38013 One of those features must be always present. 
38014 The feature that is present determines which flavor of m68k is
38015 used.  The feature that is present should contain registers
38016 @samp{d0} through @samp{d7}, @samp{a0} through @samp{a5}, @samp{fp},
38017 @samp{sp}, @samp{ps} and @samp{pc}.
38018
38019 @item @samp{org.gnu.gdb.coldfire.fp}
38020 This feature is optional.  If present, it should contain registers
38021 @samp{fp0} through @samp{fp7}, @samp{fpcontrol}, @samp{fpstatus} and
38022 @samp{fpiaddr}.
38023 @end table
38024
38025 @node PowerPC Features
38026 @subsection PowerPC Features
38027 @cindex target descriptions, PowerPC features
38028
38029 The @samp{org.gnu.gdb.power.core} feature is required for PowerPC
38030 targets.  It should contain registers @samp{r0} through @samp{r31},
38031 @samp{pc}, @samp{msr}, @samp{cr}, @samp{lr}, @samp{ctr}, and
38032 @samp{xer}.  They may be 32-bit or 64-bit depending on the target.
38033
38034 The @samp{org.gnu.gdb.power.fpu} feature is optional.  It should
38035 contain registers @samp{f0} through @samp{f31} and @samp{fpscr}.
38036
38037 The @samp{org.gnu.gdb.power.altivec} feature is optional.  It should
38038 contain registers @samp{vr0} through @samp{vr31}, @samp{vscr},
38039 and @samp{vrsave}.
38040
38041 The @samp{org.gnu.gdb.power.vsx} feature is optional.  It should
38042 contain registers @samp{vs0h} through @samp{vs31h}.  @value{GDBN}
38043 will combine these registers with the floating point registers
38044 (@samp{f0} through @samp{f31}) and the altivec registers (@samp{vr0}
38045 through @samp{vr31}) to present the 128-bit wide registers @samp{vs0}
38046 through @samp{vs63}, the set of vector registers for POWER7.
38047
38048 The @samp{org.gnu.gdb.power.spe} feature is optional.  It should
38049 contain registers @samp{ev0h} through @samp{ev31h}, @samp{acc}, and
38050 @samp{spefscr}.  SPE targets should provide 32-bit registers in
38051 @samp{org.gnu.gdb.power.core} and provide the upper halves in
38052 @samp{ev0h} through @samp{ev31h}.  @value{GDBN} will combine
38053 these to present registers @samp{ev0} through @samp{ev31} to the
38054 user.
38055
38056 @node TIC6x Features
38057 @subsection TMS320C6x Features
38058 @cindex target descriptions, TIC6x features
38059 @cindex target descriptions, TMS320C6x features
38060 The @samp{org.gnu.gdb.tic6x.core} feature is required for TMS320C6x
38061 targets.  It should contain registers @samp{A0} through @samp{A15},
38062 registers @samp{B0} through @samp{B15}, @samp{CSR} and @samp{PC}.
38063
38064 The @samp{org.gnu.gdb.tic6x.gp} feature is optional.  It should
38065 contain registers @samp{A16} through @samp{A31} and @samp{B16}
38066 through @samp{B31}.
38067
38068 The @samp{org.gnu.gdb.tic6x.c6xp} feature is optional.  It should
38069 contain registers @samp{TSR}, @samp{ILC} and @samp{RILC}.
38070
38071 @node Operating System Information
38072 @appendix Operating System Information
38073 @cindex operating system information
38074
38075 @menu
38076 * Process list::
38077 @end menu
38078
38079 Users of @value{GDBN} often wish to obtain information about the state of
38080 the operating system running on the target---for example the list of
38081 processes, or the list of open files.  This section describes the
38082 mechanism that makes it possible.  This mechanism is similar to the 
38083 target features mechanism (@pxref{Target Descriptions}), but focuses
38084 on a different aspect of target.
38085
38086 Operating system information is retrived from the target via the
38087 remote protocol, using @samp{qXfer} requests (@pxref{qXfer osdata
38088 read}).  The object name in the request should be @samp{osdata}, and
38089 the @var{annex} identifies the data to be fetched.
38090
38091 @node Process list
38092 @appendixsection Process list
38093 @cindex operating system information, process list
38094
38095 When requesting the process list, the @var{annex} field in the
38096 @samp{qXfer} request should be @samp{processes}.  The returned data is
38097 an XML document.  The formal syntax of this document is defined in
38098 @file{gdb/features/osdata.dtd}.
38099
38100 An example document is:
38101
38102 @smallexample
38103 <?xml version="1.0"?>
38104 <!DOCTYPE target SYSTEM "osdata.dtd">
38105 <osdata type="processes">
38106   <item>
38107     <column name="pid">1</column>
38108     <column name="user">root</column>
38109     <column name="command">/sbin/init</column>
38110     <column name="cores">1,2,3</column>
38111   </item>
38112 </osdata>
38113 @end smallexample
38114
38115 Each item should include a column whose name is @samp{pid}.  The value
38116 of that column should identify the process on the target.  The
38117 @samp{user} and @samp{command} columns are optional, and will be
38118 displayed by @value{GDBN}.  The @samp{cores} column, if present,
38119 should contain a comma-separated list of cores that this process
38120 is running on.  Target may provide additional columns,
38121 which @value{GDBN} currently ignores.
38122
38123 @node Trace File Format
38124 @appendix Trace File Format
38125 @cindex trace file format
38126
38127 The trace file comes in three parts: a header, a textual description
38128 section, and a trace frame section with binary data.
38129
38130 The header has the form @code{\x7fTRACE0\n}.  The first byte is
38131 @code{0x7f} so as to indicate that the file contains binary data,
38132 while the @code{0} is a version number that may have different values
38133 in the future.
38134
38135 The description section consists of multiple lines of @sc{ascii} text
38136 separated by newline characters (@code{0xa}).  The lines may include a
38137 variety of optional descriptive or context-setting information, such
38138 as tracepoint definitions or register set size.  @value{GDBN} will
38139 ignore any line that it does not recognize.  An empty line marks the end
38140 of this section.
38141
38142 @c FIXME add some specific types of data
38143
38144 The trace frame section consists of a number of consecutive frames.
38145 Each frame begins with a two-byte tracepoint number, followed by a
38146 four-byte size giving the amount of data in the frame.  The data in
38147 the frame consists of a number of blocks, each introduced by a
38148 character indicating its type (at least register, memory, and trace
38149 state variable).  The data in this section is raw binary, not a
38150 hexadecimal or other encoding; its endianness matches the target's
38151 endianness.
38152
38153 @c FIXME bi-arch may require endianness/arch info in description section
38154
38155 @table @code
38156 @item R @var{bytes}
38157 Register block.  The number and ordering of bytes matches that of a
38158 @code{g} packet in the remote protocol.  Note that these are the
38159 actual bytes, in target order and @value{GDBN} register order, not a
38160 hexadecimal encoding.
38161
38162 @item M @var{address} @var{length} @var{bytes}...
38163 Memory block.  This is a contiguous block of memory, at the 8-byte
38164 address @var{address}, with a 2-byte length @var{length}, followed by
38165 @var{length} bytes.
38166
38167 @item V @var{number} @var{value}
38168 Trace state variable block.  This records the 8-byte signed value
38169 @var{value} of trace state variable numbered @var{number}.
38170
38171 @end table
38172
38173 Future enhancements of the trace file format may include additional types
38174 of blocks.
38175
38176 @node Index Section Format
38177 @appendix @code{.gdb_index} section format
38178 @cindex .gdb_index section format
38179 @cindex index section format
38180
38181 This section documents the index section that is created by @code{save
38182 gdb-index} (@pxref{Index Files}).  The index section is
38183 DWARF-specific; some knowledge of DWARF is assumed in this
38184 description.
38185
38186 The mapped index file format is designed to be directly
38187 @code{mmap}able on any architecture.  In most cases, a datum is
38188 represented using a little-endian 32-bit integer value, called an
38189 @code{offset_type}.  Big endian machines must byte-swap the values
38190 before using them.  Exceptions to this rule are noted.  The data is
38191 laid out such that alignment is always respected.
38192
38193 A mapped index consists of several areas, laid out in order.
38194
38195 @enumerate
38196 @item
38197 The file header.  This is a sequence of values, of @code{offset_type}
38198 unless otherwise noted:
38199
38200 @enumerate
38201 @item
38202 The version number, currently 5.  Versions 1, 2 and 3 are obsolete.
38203 Version 4 differs by its hashing function.
38204
38205 @item
38206 The offset, from the start of the file, of the CU list.
38207
38208 @item
38209 The offset, from the start of the file, of the types CU list.  Note
38210 that this area can be empty, in which case this offset will be equal
38211 to the next offset.
38212
38213 @item
38214 The offset, from the start of the file, of the address area.
38215
38216 @item
38217 The offset, from the start of the file, of the symbol table.
38218
38219 @item
38220 The offset, from the start of the file, of the constant pool.
38221 @end enumerate
38222
38223 @item
38224 The CU list.  This is a sequence of pairs of 64-bit little-endian
38225 values, sorted by the CU offset.  The first element in each pair is
38226 the offset of a CU in the @code{.debug_info} section.  The second
38227 element in each pair is the length of that CU.  References to a CU
38228 elsewhere in the map are done using a CU index, which is just the
38229 0-based index into this table.  Note that if there are type CUs, then
38230 conceptually CUs and type CUs form a single list for the purposes of
38231 CU indices.
38232
38233 @item
38234 The types CU list.  This is a sequence of triplets of 64-bit
38235 little-endian values.  In a triplet, the first value is the CU offset,
38236 the second value is the type offset in the CU, and the third value is
38237 the type signature.  The types CU list is not sorted.
38238
38239 @item
38240 The address area.  The address area consists of a sequence of address
38241 entries.  Each address entry has three elements:
38242
38243 @enumerate
38244 @item
38245 The low address.  This is a 64-bit little-endian value.
38246
38247 @item
38248 The high address.  This is a 64-bit little-endian value.  Like
38249 @code{DW_AT_high_pc}, the value is one byte beyond the end.
38250
38251 @item
38252 The CU index.  This is an @code{offset_type} value.
38253 @end enumerate
38254
38255 @item
38256 The symbol table.  This is an open-addressed hash table.  The size of
38257 the hash table is always a power of 2.
38258
38259 Each slot in the hash table consists of a pair of @code{offset_type}
38260 values.  The first value is the offset of the symbol's name in the
38261 constant pool.  The second value is the offset of the CU vector in the
38262 constant pool.
38263
38264 If both values are 0, then this slot in the hash table is empty.  This
38265 is ok because while 0 is a valid constant pool index, it cannot be a
38266 valid index for both a string and a CU vector.
38267
38268 The hash value for a table entry is computed by applying an
38269 iterative hash function to the symbol's name.  Starting with an
38270 initial value of @code{r = 0}, each (unsigned) character @samp{c} in
38271 the string is incorporated into the hash using the formula depending on the
38272 index version:
38273
38274 @table @asis
38275 @item Version 4
38276 The formula is @code{r = r * 67 + c - 113}.
38277
38278 @item Version 5
38279 The formula is @code{r = r * 67 + tolower (c) - 113}.
38280 @end table
38281
38282 The terminating @samp{\0} is not incorporated into the hash.
38283
38284 The step size used in the hash table is computed via
38285 @code{((hash * 17) & (size - 1)) | 1}, where @samp{hash} is the hash
38286 value, and @samp{size} is the size of the hash table.  The step size
38287 is used to find the next candidate slot when handling a hash
38288 collision.
38289
38290 The names of C@t{++} symbols in the hash table are canonicalized.  We
38291 don't currently have a simple description of the canonicalization
38292 algorithm; if you intend to create new index sections, you must read
38293 the code.
38294
38295 @item
38296 The constant pool.  This is simply a bunch of bytes.  It is organized
38297 so that alignment is correct: CU vectors are stored first, followed by
38298 strings.
38299
38300 A CU vector in the constant pool is a sequence of @code{offset_type}
38301 values.  The first value is the number of CU indices in the vector.
38302 Each subsequent value is the index of a CU in the CU list.  This
38303 element in the hash table is used to indicate which CUs define the
38304 symbol.
38305
38306 A string in the constant pool is zero-terminated.
38307 @end enumerate
38308
38309 @include gpl.texi
38310
38311 @node GNU Free Documentation License
38312 @appendix GNU Free Documentation License
38313 @include fdl.texi
38314
38315 @node Index
38316 @unnumbered Index
38317
38318 @printindex cp
38319
38320 @tex
38321 % I think something like @colophon should be in texinfo.  In the
38322 % meantime:
38323 \long\def\colophon{\hbox to0pt{}\vfill
38324 \centerline{The body of this manual is set in}
38325 \centerline{\fontname\tenrm,}
38326 \centerline{with headings in {\bf\fontname\tenbf}}
38327 \centerline{and examples in {\tt\fontname\tentt}.}
38328 \centerline{{\it\fontname\tenit\/},}
38329 \centerline{{\bf\fontname\tenbf}, and}
38330 \centerline{{\sl\fontname\tensl\/}}
38331 \centerline{are used for emphasis.}\vfill}
38332 \page\colophon
38333 % Blame: doc@cygnus.com, 1991.
38334 @end tex
38335
38336 @bye