gdb.texinfo (Separate Debug Files): More accurate wording regarding
[external/binutils.git] / gdb / doc / gdb.texinfo
1 \input texinfo      @c -*-texinfo-*-
2 @c Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998,
3 @c 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
4 @c Free Software Foundation, Inc.
5 @c
6 @c %**start of header
7 @c makeinfo ignores cmds prev to setfilename, so its arg cannot make use
8 @c of @set vars.  However, you can override filename with makeinfo -o.
9 @setfilename gdb.info
10 @c
11 @include gdb-cfg.texi
12 @c
13 @settitle Debugging with @value{GDBN}
14 @setchapternewpage odd
15 @c %**end of header
16
17 @iftex
18 @c @smallbook
19 @c @cropmarks
20 @end iftex
21
22 @finalout
23 @syncodeindex ky cp
24
25 @c readline appendices use @vindex, @findex and @ftable,
26 @c annotate.texi and gdbmi use @findex.
27 @syncodeindex vr cp
28 @syncodeindex fn cp
29
30 @c !!set GDB manual's edition---not the same as GDB version!
31 @c This is updated by GNU Press.
32 @set EDITION Ninth
33
34 @c !!set GDB edit command default editor
35 @set EDITOR /bin/ex
36
37 @c THIS MANUAL REQUIRES TEXINFO 4.0 OR LATER.
38
39 @c This is a dir.info fragment to support semi-automated addition of
40 @c manuals to an info tree.
41 @dircategory Software development
42 @direntry
43 * Gdb: (gdb).                     The GNU debugger.
44 @end direntry
45
46 @ifinfo
47 This file documents the @sc{gnu} debugger @value{GDBN}.
48
49
50 This is the @value{EDITION} Edition, of @cite{Debugging with
51 @value{GDBN}: the @sc{gnu} Source-Level Debugger} for @value{GDBN}
52 Version @value{GDBVN}.
53
54 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998,@*
55               1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006@*
56               Free Software Foundation, Inc.
57
58 Permission is granted to copy, distribute and/or modify this document
59 under the terms of the GNU Free Documentation License, Version 1.1 or
60 any later version published by the Free Software Foundation; with the
61 Invariant Sections being ``Free Software'' and ``Free Software Needs
62 Free Documentation'', with the Front-Cover Texts being ``A GNU Manual,''
63 and with the Back-Cover Texts as in (a) below.
64
65 (a) The FSF's Back-Cover Text is: ``You are free to copy and modify
66 this GNU Manual.  Buying copies from GNU Press supports the FSF in
67 developing GNU and promoting software freedom.''
68 @end ifinfo
69
70 @titlepage
71 @title Debugging with @value{GDBN}
72 @subtitle The @sc{gnu} Source-Level Debugger
73 @sp 1
74 @subtitle @value{EDITION} Edition, for @value{GDBN} version @value{GDBVN}
75 @author Richard Stallman, Roland Pesch, Stan Shebs, et al.
76 @page
77 @tex
78 {\parskip=0pt
79 \hfill (Send bugs and comments on @value{GDBN} to bug-gdb\@gnu.org.)\par
80 \hfill {\it Debugging with @value{GDBN}}\par
81 \hfill \TeX{}info \texinfoversion\par
82 }
83 @end tex
84
85 @vskip 0pt plus 1filll
86 Copyright @copyright{} 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
87 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2006 
88 Free Software Foundation, Inc.
89 @sp 2
90 Published by the Free Software Foundation @*
91 51 Franklin Street, Fifth Floor,
92 Boston, MA 02110-1301, USA@*
93 ISBN 1-882114-77-9 @*
94
95 Permission is granted to copy, distribute and/or modify this document
96 under the terms of the GNU Free Documentation License, Version 1.1 or
97 any later version published by the Free Software Foundation; with the
98 Invariant Sections being ``Free Software'' and ``Free Software Needs
99 Free Documentation'', with the Front-Cover Texts being ``A GNU Manual,''
100 and with the Back-Cover Texts as in (a) below.
101
102 (a) The FSF's Back-Cover Text is: ``You are free to copy and modify
103 this GNU Manual.  Buying copies from GNU Press supports the FSF in
104 developing GNU and promoting software freedom.''
105 @page
106 This edition of the GDB manual is dedicated to the memory of Fred
107 Fish.  Fred was a long-standing contributor to GDB and to Free
108 software in general.  We will miss him.
109 @end titlepage
110 @page
111
112 @ifnottex
113 @node Top, Summary, (dir), (dir)
114
115 @top Debugging with @value{GDBN}
116
117 This file describes @value{GDBN}, the @sc{gnu} symbolic debugger.
118
119 This is the @value{EDITION} Edition, for @value{GDBN} Version
120 @value{GDBVN}.
121
122 Copyright (C) 1988-2006 Free Software Foundation, Inc.
123
124 This edition of the GDB manual is dedicated to the memory of Fred
125 Fish.  Fred was a long-standing contributor to GDB and to Free
126 software in general.  We will miss him.
127
128 @menu
129 * Summary::                     Summary of @value{GDBN}
130 * Sample Session::              A sample @value{GDBN} session
131
132 * Invocation::                  Getting in and out of @value{GDBN}
133 * Commands::                    @value{GDBN} commands
134 * Running::                     Running programs under @value{GDBN}
135 * Stopping::                    Stopping and continuing
136 * Stack::                       Examining the stack
137 * Source::                      Examining source files
138 * Data::                        Examining data
139 * Macros::                      Preprocessor Macros
140 * Tracepoints::                 Debugging remote targets non-intrusively
141 * Overlays::                    Debugging programs that use overlays
142
143 * Languages::                   Using @value{GDBN} with different languages
144
145 * Symbols::                     Examining the symbol table
146 * Altering::                    Altering execution
147 * GDB Files::                   @value{GDBN} files
148 * Targets::                     Specifying a debugging target
149 * Remote Debugging::            Debugging remote programs
150 * Configurations::              Configuration-specific information
151 * Controlling GDB::             Controlling @value{GDBN}
152 * Sequences::                   Canned sequences of commands
153 * Interpreters::                Command Interpreters
154 * TUI::                         @value{GDBN} Text User Interface
155 * Emacs::                       Using @value{GDBN} under @sc{gnu} Emacs
156 * GDB/MI::                      @value{GDBN}'s Machine Interface.
157 * Annotations::                 @value{GDBN}'s annotation interface.
158
159 * GDB Bugs::                    Reporting bugs in @value{GDBN}
160
161 * Command Line Editing::        Command Line Editing
162 * Using History Interactively:: Using History Interactively
163 * Formatting Documentation::    How to format and print @value{GDBN} documentation
164 * Installing GDB::              Installing GDB
165 * Maintenance Commands::        Maintenance Commands
166 * Remote Protocol::             GDB Remote Serial Protocol
167 * Agent Expressions::           The GDB Agent Expression Mechanism
168 * Target Descriptions::         How targets can describe themselves to
169                                 @value{GDBN}
170 * Copying::                     GNU General Public License says
171                                 how you can copy and share GDB
172 * GNU Free Documentation License::  The license for this documentation
173 * Index::                       Index
174 @end menu
175
176 @end ifnottex
177
178 @contents
179
180 @node Summary
181 @unnumbered Summary of @value{GDBN}
182
183 The purpose of a debugger such as @value{GDBN} is to allow you to see what is
184 going on ``inside'' another program while it executes---or what another
185 program was doing at the moment it crashed.
186
187 @value{GDBN} can do four main kinds of things (plus other things in support of
188 these) to help you catch bugs in the act:
189
190 @itemize @bullet
191 @item
192 Start your program, specifying anything that might affect its behavior.
193
194 @item
195 Make your program stop on specified conditions.
196
197 @item
198 Examine what has happened, when your program has stopped.
199
200 @item
201 Change things in your program, so you can experiment with correcting the
202 effects of one bug and go on to learn about another.
203 @end itemize
204
205 You can use @value{GDBN} to debug programs written in C and C@t{++}.
206 For more information, see @ref{Supported Languages,,Supported Languages}.
207 For more information, see @ref{C,,C and C++}.
208
209 @cindex Modula-2
210 Support for Modula-2 is partial.  For information on Modula-2, see
211 @ref{Modula-2,,Modula-2}.
212
213 @cindex Pascal
214 Debugging Pascal programs which use sets, subranges, file variables, or
215 nested functions does not currently work.  @value{GDBN} does not support
216 entering expressions, printing values, or similar features using Pascal
217 syntax.
218
219 @cindex Fortran
220 @value{GDBN} can be used to debug programs written in Fortran, although
221 it may be necessary to refer to some variables with a trailing
222 underscore.
223
224 @value{GDBN} can be used to debug programs written in Objective-C,
225 using either the Apple/NeXT or the GNU Objective-C runtime.
226
227 @menu
228 * Free Software::               Freely redistributable software
229 * Contributors::                Contributors to GDB
230 @end menu
231
232 @node Free Software
233 @unnumberedsec Free Software
234
235 @value{GDBN} is @dfn{free software}, protected by the @sc{gnu}
236 General Public License
237 (GPL).  The GPL gives you the freedom to copy or adapt a licensed
238 program---but every person getting a copy also gets with it the
239 freedom to modify that copy (which means that they must get access to
240 the source code), and the freedom to distribute further copies.
241 Typical software companies use copyrights to limit your freedoms; the
242 Free Software Foundation uses the GPL to preserve these freedoms.
243
244 Fundamentally, the General Public License is a license which says that
245 you have these freedoms and that you cannot take these freedoms away
246 from anyone else.
247
248 @unnumberedsec Free Software Needs Free Documentation
249
250 The biggest deficiency in the free software community today is not in
251 the software---it is the lack of good free documentation that we can
252 include with the free software.  Many of our most important
253 programs do not come with free reference manuals and free introductory
254 texts.  Documentation is an essential part of any software package;
255 when an important free software package does not come with a free
256 manual and a free tutorial, that is a major gap.  We have many such
257 gaps today.
258
259 Consider Perl, for instance.  The tutorial manuals that people
260 normally use are non-free.  How did this come about?  Because the
261 authors of those manuals published them with restrictive terms---no
262 copying, no modification, source files not available---which exclude
263 them from the free software world.
264
265 That wasn't the first time this sort of thing happened, and it was far
266 from the last.  Many times we have heard a GNU user eagerly describe a
267 manual that he is writing, his intended contribution to the community,
268 only to learn that he had ruined everything by signing a publication
269 contract to make it non-free.
270
271 Free documentation, like free software, is a matter of freedom, not
272 price.  The problem with the non-free manual is not that publishers
273 charge a price for printed copies---that in itself is fine.  (The Free
274 Software Foundation sells printed copies of manuals, too.)  The
275 problem is the restrictions on the use of the manual.  Free manuals
276 are available in source code form, and give you permission to copy and
277 modify.  Non-free manuals do not allow this.
278
279 The criteria of freedom for a free manual are roughly the same as for
280 free software.  Redistribution (including the normal kinds of
281 commercial redistribution) must be permitted, so that the manual can
282 accompany every copy of the program, both on-line and on paper.
283
284 Permission for modification of the technical content is crucial too.
285 When people modify the software, adding or changing features, if they
286 are conscientious they will change the manual too---so they can
287 provide accurate and clear documentation for the modified program.  A
288 manual that leaves you no choice but to write a new manual to document
289 a changed version of the program is not really available to our
290 community.
291
292 Some kinds of limits on the way modification is handled are
293 acceptable.  For example, requirements to preserve the original
294 author's copyright notice, the distribution terms, or the list of
295 authors, are ok.  It is also no problem to require modified versions
296 to include notice that they were modified.  Even entire sections that
297 may not be deleted or changed are acceptable, as long as they deal
298 with nontechnical topics (like this one).  These kinds of restrictions
299 are acceptable because they don't obstruct the community's normal use
300 of the manual.
301
302 However, it must be possible to modify all the @emph{technical}
303 content of the manual, and then distribute the result in all the usual
304 media, through all the usual channels.  Otherwise, the restrictions
305 obstruct the use of the manual, it is not free, and we need another
306 manual to replace it.
307
308 Please spread the word about this issue.  Our community continues to
309 lose manuals to proprietary publishing.  If we spread the word that
310 free software needs free reference manuals and free tutorials, perhaps
311 the next person who wants to contribute by writing documentation will
312 realize, before it is too late, that only free manuals contribute to
313 the free software community.
314
315 If you are writing documentation, please insist on publishing it under
316 the GNU Free Documentation License or another free documentation
317 license.  Remember that this decision requires your approval---you
318 don't have to let the publisher decide.  Some commercial publishers
319 will use a free license if you insist, but they will not propose the
320 option; it is up to you to raise the issue and say firmly that this is
321 what you want.  If the publisher you are dealing with refuses, please
322 try other publishers.  If you're not sure whether a proposed license
323 is free, write to @email{licensing@@gnu.org}.
324
325 You can encourage commercial publishers to sell more free, copylefted
326 manuals and tutorials by buying them, and particularly by buying
327 copies from the publishers that paid for their writing or for major
328 improvements.  Meanwhile, try to avoid buying non-free documentation
329 at all.  Check the distribution terms of a manual before you buy it,
330 and insist that whoever seeks your business must respect your freedom.
331 Check the history of the book, and try to reward the publishers that
332 have paid or pay the authors to work on it.
333
334 The Free Software Foundation maintains a list of free documentation
335 published by other publishers, at
336 @url{http://www.fsf.org/doc/other-free-books.html}.
337
338 @node Contributors
339 @unnumberedsec Contributors to @value{GDBN}
340
341 Richard Stallman was the original author of @value{GDBN}, and of many
342 other @sc{gnu} programs.  Many others have contributed to its
343 development.  This section attempts to credit major contributors.  One
344 of the virtues of free software is that everyone is free to contribute
345 to it; with regret, we cannot actually acknowledge everyone here.  The
346 file @file{ChangeLog} in the @value{GDBN} distribution approximates a
347 blow-by-blow account.
348
349 Changes much prior to version 2.0 are lost in the mists of time.
350
351 @quotation
352 @emph{Plea:} Additions to this section are particularly welcome.  If you
353 or your friends (or enemies, to be evenhanded) have been unfairly
354 omitted from this list, we would like to add your names!
355 @end quotation
356
357 So that they may not regard their many labors as thankless, we
358 particularly thank those who shepherded @value{GDBN} through major
359 releases:
360 Andrew Cagney (releases 6.3, 6.2, 6.1, 6.0, 5.3, 5.2, 5.1 and 5.0);
361 Jim Blandy (release 4.18);
362 Jason Molenda (release 4.17);
363 Stan Shebs (release 4.14);
364 Fred Fish (releases 4.16, 4.15, 4.13, 4.12, 4.11, 4.10, and 4.9);
365 Stu Grossman and John Gilmore (releases 4.8, 4.7, 4.6, 4.5, and 4.4);
366 John Gilmore (releases 4.3, 4.2, 4.1, 4.0, and 3.9);
367 Jim Kingdon (releases 3.5, 3.4, and 3.3);
368 and Randy Smith (releases 3.2, 3.1, and 3.0).
369
370 Richard Stallman, assisted at various times by Peter TerMaat, Chris
371 Hanson, and Richard Mlynarik, handled releases through 2.8.
372
373 Michael Tiemann is the author of most of the @sc{gnu} C@t{++} support
374 in @value{GDBN}, with significant additional contributions from Per
375 Bothner and Daniel Berlin.  James Clark wrote the @sc{gnu} C@t{++}
376 demangler.  Early work on C@t{++} was by Peter TerMaat (who also did
377 much general update work leading to release 3.0).
378
379 @value{GDBN} uses the BFD subroutine library to examine multiple
380 object-file formats; BFD was a joint project of David V.
381 Henkel-Wallace, Rich Pixley, Steve Chamberlain, and John Gilmore.
382
383 David Johnson wrote the original COFF support; Pace Willison did
384 the original support for encapsulated COFF.
385
386 Brent Benson of Harris Computer Systems contributed DWARF 2 support.
387
388 Adam de Boor and Bradley Davis contributed the ISI Optimum V support.
389 Per Bothner, Noboyuki Hikichi, and Alessandro Forin contributed MIPS
390 support.
391 Jean-Daniel Fekete contributed Sun 386i support.
392 Chris Hanson improved the HP9000 support.
393 Noboyuki Hikichi and Tomoyuki Hasei contributed Sony/News OS 3 support.
394 David Johnson contributed Encore Umax support.
395 Jyrki Kuoppala contributed Altos 3068 support.
396 Jeff Law contributed HP PA and SOM support.
397 Keith Packard contributed NS32K support.
398 Doug Rabson contributed Acorn Risc Machine support.
399 Bob Rusk contributed Harris Nighthawk CX-UX support.
400 Chris Smith contributed Convex support (and Fortran debugging).
401 Jonathan Stone contributed Pyramid support.
402 Michael Tiemann contributed SPARC support.
403 Tim Tucker contributed support for the Gould NP1 and Gould Powernode.
404 Pace Willison contributed Intel 386 support.
405 Jay Vosburgh contributed Symmetry support.
406 Marko Mlinar contributed OpenRISC 1000 support.
407
408 Andreas Schwab contributed M68K @sc{gnu}/Linux support.
409
410 Rich Schaefer and Peter Schauer helped with support of SunOS shared
411 libraries.
412
413 Jay Fenlason and Roland McGrath ensured that @value{GDBN} and GAS agree
414 about several machine instruction sets.
415
416 Patrick Duval, Ted Goldstein, Vikram Koka and Glenn Engel helped develop
417 remote debugging.  Intel Corporation, Wind River Systems, AMD, and ARM
418 contributed remote debugging modules for the i960, VxWorks, A29K UDI,
419 and RDI targets, respectively.
420
421 Brian Fox is the author of the readline libraries providing
422 command-line editing and command history.
423
424 Andrew Beers of SUNY Buffalo wrote the language-switching code, the
425 Modula-2 support, and contributed the Languages chapter of this manual.
426
427 Fred Fish wrote most of the support for Unix System Vr4.
428 He also enhanced the command-completion support to cover C@t{++} overloaded
429 symbols.
430
431 Hitachi America (now Renesas America), Ltd. sponsored the support for
432 H8/300, H8/500, and Super-H processors.
433
434 NEC sponsored the support for the v850, Vr4xxx, and Vr5xxx processors.
435
436 Mitsubishi (now Renesas) sponsored the support for D10V, D30V, and M32R/D
437 processors.
438
439 Toshiba sponsored the support for the TX39 Mips processor.
440
441 Matsushita sponsored the support for the MN10200 and MN10300 processors.
442
443 Fujitsu sponsored the support for SPARClite and FR30 processors.
444
445 Kung Hsu, Jeff Law, and Rick Sladkey added support for hardware
446 watchpoints.
447
448 Michael Snyder added support for tracepoints.
449
450 Stu Grossman wrote gdbserver.
451
452 Jim Kingdon, Peter Schauer, Ian Taylor, and Stu Grossman made
453 nearly innumerable bug fixes and cleanups throughout @value{GDBN}.
454
455 The following people at the Hewlett-Packard Company contributed
456 support for the PA-RISC 2.0 architecture, HP-UX 10.20, 10.30, and 11.0
457 (narrow mode), HP's implementation of kernel threads, HP's aC@t{++}
458 compiler, and the Text User Interface (nee Terminal User Interface):
459 Ben Krepp, Richard Title, John Bishop, Susan Macchia, Kathy Mann,
460 Satish Pai, India Paul, Steve Rehrauer, and Elena Zannoni.  Kim Haase
461 provided HP-specific information in this manual.
462
463 DJ Delorie ported @value{GDBN} to MS-DOS, for the DJGPP project.
464 Robert Hoehne made significant contributions to the DJGPP port.
465
466 Cygnus Solutions has sponsored @value{GDBN} maintenance and much of its
467 development since 1991.  Cygnus engineers who have worked on @value{GDBN}
468 fulltime include Mark Alexander, Jim Blandy, Per Bothner, Kevin
469 Buettner, Edith Epstein, Chris Faylor, Fred Fish, Martin Hunt, Jim
470 Ingham, John Gilmore, Stu Grossman, Kung Hsu, Jim Kingdon, John Metzler,
471 Fernando Nasser, Geoffrey Noer, Dawn Perchik, Rich Pixley, Zdenek
472 Radouch, Keith Seitz, Stan Shebs, David Taylor, and Elena Zannoni.  In
473 addition, Dave Brolley, Ian Carmichael, Steve Chamberlain, Nick Clifton,
474 JT Conklin, Stan Cox, DJ Delorie, Ulrich Drepper, Frank Eigler, Doug
475 Evans, Sean Fagan, David Henkel-Wallace, Richard Henderson, Jeff
476 Holcomb, Jeff Law, Jim Lemke, Tom Lord, Bob Manson, Michael Meissner,
477 Jason Merrill, Catherine Moore, Drew Moseley, Ken Raeburn, Gavin
478 Romig-Koch, Rob Savoye, Jamie Smith, Mike Stump, Ian Taylor, Angela
479 Thomas, Michael Tiemann, Tom Tromey, Ron Unrau, Jim Wilson, and David
480 Zuhn have made contributions both large and small.
481
482 Andrew Cagney, Fernando Nasser, and Elena Zannoni, while working for
483 Cygnus Solutions, implemented the original @sc{gdb/mi} interface.
484
485 Jim Blandy added support for preprocessor macros, while working for Red
486 Hat.
487
488 Andrew Cagney designed @value{GDBN}'s architecture vector.  Many
489 people including Andrew Cagney, Stephane Carrez, Randolph Chung, Nick
490 Duffek, Richard Henderson, Mark Kettenis, Grace Sainsbury, Kei
491 Sakamoto, Yoshinori Sato, Michael Snyder, Andreas Schwab, Jason
492 Thorpe, Corinna Vinschen, Ulrich Weigand, and Elena Zannoni, helped
493 with the migration of old architectures to this new framework.
494
495 Andrew Cagney completely re-designed and re-implemented @value{GDBN}'s
496 unwinder framework, this consisting of a fresh new design featuring
497 frame IDs, independent frame sniffers, and the sentinel frame.  Mark
498 Kettenis implemented the @sc{dwarf 2} unwinder, Jeff Johnston the
499 libunwind unwinder, and Andrew Cagney the dummy, sentinel, tramp, and
500 trad unwinders.  The architecture-specific changes, each involving a
501 complete rewrite of the architecture's frame code, were carried out by
502 Jim Blandy, Joel Brobecker, Kevin Buettner, Andrew Cagney, Stephane
503 Carrez, Randolph Chung, Orjan Friberg, Richard Henderson, Daniel
504 Jacobowitz, Jeff Johnston, Mark Kettenis, Theodore A. Roth, Kei
505 Sakamoto, Yoshinori Sato, Michael Snyder, Corinna Vinschen, and Ulrich
506 Weigand.
507
508 Christian Zankel, Ross Morley, Bob Wilson, and Maxim Grigoriev from
509 Tensilica, Inc.@: contributed support for Xtensa processors.  Others
510 who have worked on the Xtensa port of @value{GDBN} in the past include
511 Steve Tjiang, John Newlin, and Scott Foehner.
512
513 @node Sample Session
514 @chapter A Sample @value{GDBN} Session
515
516 You can use this manual at your leisure to read all about @value{GDBN}.
517 However, a handful of commands are enough to get started using the
518 debugger.  This chapter illustrates those commands.
519
520 @iftex
521 In this sample session, we emphasize user input like this: @b{input},
522 to make it easier to pick out from the surrounding output.
523 @end iftex
524
525 @c FIXME: this example may not be appropriate for some configs, where
526 @c FIXME...primary interest is in remote use.
527
528 One of the preliminary versions of @sc{gnu} @code{m4} (a generic macro
529 processor) exhibits the following bug: sometimes, when we change its
530 quote strings from the default, the commands used to capture one macro
531 definition within another stop working.  In the following short @code{m4}
532 session, we define a macro @code{foo} which expands to @code{0000}; we
533 then use the @code{m4} built-in @code{defn} to define @code{bar} as the
534 same thing.  However, when we change the open quote string to
535 @code{<QUOTE>} and the close quote string to @code{<UNQUOTE>}, the same
536 procedure fails to define a new synonym @code{baz}:
537
538 @smallexample
539 $ @b{cd gnu/m4}
540 $ @b{./m4}
541 @b{define(foo,0000)}
542
543 @b{foo}
544 0000
545 @b{define(bar,defn(`foo'))}
546
547 @b{bar}
548 0000
549 @b{changequote(<QUOTE>,<UNQUOTE>)}
550
551 @b{define(baz,defn(<QUOTE>foo<UNQUOTE>))}
552 @b{baz}
553 @b{Ctrl-d}
554 m4: End of input: 0: fatal error: EOF in string
555 @end smallexample
556
557 @noindent
558 Let us use @value{GDBN} to try to see what is going on.
559
560 @smallexample
561 $ @b{@value{GDBP} m4}
562 @c FIXME: this falsifies the exact text played out, to permit smallbook
563 @c FIXME... format to come out better.
564 @value{GDBN} is free software and you are welcome to distribute copies
565  of it under certain conditions; type "show copying" to see
566  the conditions.
567 There is absolutely no warranty for @value{GDBN}; type "show warranty"
568  for details.
569
570 @value{GDBN} @value{GDBVN}, Copyright 1999 Free Software Foundation, Inc...
571 (@value{GDBP})
572 @end smallexample
573
574 @noindent
575 @value{GDBN} reads only enough symbol data to know where to find the
576 rest when needed; as a result, the first prompt comes up very quickly.
577 We now tell @value{GDBN} to use a narrower display width than usual, so
578 that examples fit in this manual.
579
580 @smallexample
581 (@value{GDBP}) @b{set width 70}
582 @end smallexample
583
584 @noindent
585 We need to see how the @code{m4} built-in @code{changequote} works.
586 Having looked at the source, we know the relevant subroutine is
587 @code{m4_changequote}, so we set a breakpoint there with the @value{GDBN}
588 @code{break} command.
589
590 @smallexample
591 (@value{GDBP}) @b{break m4_changequote}
592 Breakpoint 1 at 0x62f4: file builtin.c, line 879.
593 @end smallexample
594
595 @noindent
596 Using the @code{run} command, we start @code{m4} running under @value{GDBN}
597 control; as long as control does not reach the @code{m4_changequote}
598 subroutine, the program runs as usual:
599
600 @smallexample
601 (@value{GDBP}) @b{run}
602 Starting program: /work/Editorial/gdb/gnu/m4/m4
603 @b{define(foo,0000)}
604
605 @b{foo}
606 0000
607 @end smallexample
608
609 @noindent
610 To trigger the breakpoint, we call @code{changequote}.  @value{GDBN}
611 suspends execution of @code{m4}, displaying information about the
612 context where it stops.
613
614 @smallexample
615 @b{changequote(<QUOTE>,<UNQUOTE>)}
616
617 Breakpoint 1, m4_changequote (argc=3, argv=0x33c70)
618     at builtin.c:879
619 879         if (bad_argc(TOKEN_DATA_TEXT(argv[0]),argc,1,3))
620 @end smallexample
621
622 @noindent
623 Now we use the command @code{n} (@code{next}) to advance execution to
624 the next line of the current function.
625
626 @smallexample
627 (@value{GDBP}) @b{n}
628 882         set_quotes((argc >= 2) ? TOKEN_DATA_TEXT(argv[1])\
629  : nil,
630 @end smallexample
631
632 @noindent
633 @code{set_quotes} looks like a promising subroutine.  We can go into it
634 by using the command @code{s} (@code{step}) instead of @code{next}.
635 @code{step} goes to the next line to be executed in @emph{any}
636 subroutine, so it steps into @code{set_quotes}.
637
638 @smallexample
639 (@value{GDBP}) @b{s}
640 set_quotes (lq=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")
641     at input.c:530
642 530         if (lquote != def_lquote)
643 @end smallexample
644
645 @noindent
646 The display that shows the subroutine where @code{m4} is now
647 suspended (and its arguments) is called a stack frame display.  It
648 shows a summary of the stack.  We can use the @code{backtrace}
649 command (which can also be spelled @code{bt}), to see where we are
650 in the stack as a whole: the @code{backtrace} command displays a
651 stack frame for each active subroutine.
652
653 @smallexample
654 (@value{GDBP}) @b{bt}
655 #0  set_quotes (lq=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")
656     at input.c:530
657 #1  0x6344 in m4_changequote (argc=3, argv=0x33c70)
658     at builtin.c:882
659 #2  0x8174 in expand_macro (sym=0x33320) at macro.c:242
660 #3  0x7a88 in expand_token (obs=0x0, t=209696, td=0xf7fffa30)
661     at macro.c:71
662 #4  0x79dc in expand_input () at macro.c:40
663 #5  0x2930 in main (argc=0, argv=0xf7fffb20) at m4.c:195
664 @end smallexample
665
666 @noindent
667 We step through a few more lines to see what happens.  The first two
668 times, we can use @samp{s}; the next two times we use @code{n} to avoid
669 falling into the @code{xstrdup} subroutine.
670
671 @smallexample
672 (@value{GDBP}) @b{s}
673 0x3b5c  532         if (rquote != def_rquote)
674 (@value{GDBP}) @b{s}
675 0x3b80  535         lquote = (lq == nil || *lq == '\0') ?  \
676 def_lquote : xstrdup(lq);
677 (@value{GDBP}) @b{n}
678 536         rquote = (rq == nil || *rq == '\0') ? def_rquote\
679  : xstrdup(rq);
680 (@value{GDBP}) @b{n}
681 538         len_lquote = strlen(rquote);
682 @end smallexample
683
684 @noindent
685 The last line displayed looks a little odd; we can examine the variables
686 @code{lquote} and @code{rquote} to see if they are in fact the new left
687 and right quotes we specified.  We use the command @code{p}
688 (@code{print}) to see their values.
689
690 @smallexample
691 (@value{GDBP}) @b{p lquote}
692 $1 = 0x35d40 "<QUOTE>"
693 (@value{GDBP}) @b{p rquote}
694 $2 = 0x35d50 "<UNQUOTE>"
695 @end smallexample
696
697 @noindent
698 @code{lquote} and @code{rquote} are indeed the new left and right quotes.
699 To look at some context, we can display ten lines of source
700 surrounding the current line with the @code{l} (@code{list}) command.
701
702 @smallexample
703 (@value{GDBP}) @b{l}
704 533             xfree(rquote);
705 534
706 535         lquote = (lq == nil || *lq == '\0') ? def_lquote\
707  : xstrdup (lq);
708 536         rquote = (rq == nil || *rq == '\0') ? def_rquote\
709  : xstrdup (rq);
710 537
711 538         len_lquote = strlen(rquote);
712 539         len_rquote = strlen(lquote);
713 540     @}
714 541
715 542     void
716 @end smallexample
717
718 @noindent
719 Let us step past the two lines that set @code{len_lquote} and
720 @code{len_rquote}, and then examine the values of those variables.
721
722 @smallexample
723 (@value{GDBP}) @b{n}
724 539         len_rquote = strlen(lquote);
725 (@value{GDBP}) @b{n}
726 540     @}
727 (@value{GDBP}) @b{p len_lquote}
728 $3 = 9
729 (@value{GDBP}) @b{p len_rquote}
730 $4 = 7
731 @end smallexample
732
733 @noindent
734 That certainly looks wrong, assuming @code{len_lquote} and
735 @code{len_rquote} are meant to be the lengths of @code{lquote} and
736 @code{rquote} respectively.  We can set them to better values using
737 the @code{p} command, since it can print the value of
738 any expression---and that expression can include subroutine calls and
739 assignments.
740
741 @smallexample
742 (@value{GDBP}) @b{p len_lquote=strlen(lquote)}
743 $5 = 7
744 (@value{GDBP}) @b{p len_rquote=strlen(rquote)}
745 $6 = 9
746 @end smallexample
747
748 @noindent
749 Is that enough to fix the problem of using the new quotes with the
750 @code{m4} built-in @code{defn}?  We can allow @code{m4} to continue
751 executing with the @code{c} (@code{continue}) command, and then try the
752 example that caused trouble initially:
753
754 @smallexample
755 (@value{GDBP}) @b{c}
756 Continuing.
757
758 @b{define(baz,defn(<QUOTE>foo<UNQUOTE>))}
759
760 baz
761 0000
762 @end smallexample
763
764 @noindent
765 Success!  The new quotes now work just as well as the default ones.  The
766 problem seems to have been just the two typos defining the wrong
767 lengths.  We allow @code{m4} exit by giving it an EOF as input:
768
769 @smallexample
770 @b{Ctrl-d}
771 Program exited normally.
772 @end smallexample
773
774 @noindent
775 The message @samp{Program exited normally.} is from @value{GDBN}; it
776 indicates @code{m4} has finished executing.  We can end our @value{GDBN}
777 session with the @value{GDBN} @code{quit} command.
778
779 @smallexample
780 (@value{GDBP}) @b{quit}
781 @end smallexample
782
783 @node Invocation
784 @chapter Getting In and Out of @value{GDBN}
785
786 This chapter discusses how to start @value{GDBN}, and how to get out of it.
787 The essentials are:
788 @itemize @bullet
789 @item
790 type @samp{@value{GDBP}} to start @value{GDBN}.
791 @item
792 type @kbd{quit} or @kbd{Ctrl-d} to exit.
793 @end itemize
794
795 @menu
796 * Invoking GDB::                How to start @value{GDBN}
797 * Quitting GDB::                How to quit @value{GDBN}
798 * Shell Commands::              How to use shell commands inside @value{GDBN}
799 * Logging Output::              How to log @value{GDBN}'s output to a file
800 @end menu
801
802 @node Invoking GDB
803 @section Invoking @value{GDBN}
804
805 Invoke @value{GDBN} by running the program @code{@value{GDBP}}.  Once started,
806 @value{GDBN} reads commands from the terminal until you tell it to exit.
807
808 You can also run @code{@value{GDBP}} with a variety of arguments and options,
809 to specify more of your debugging environment at the outset.
810
811 The command-line options described here are designed
812 to cover a variety of situations; in some environments, some of these
813 options may effectively be unavailable.
814
815 The most usual way to start @value{GDBN} is with one argument,
816 specifying an executable program:
817
818 @smallexample
819 @value{GDBP} @var{program}
820 @end smallexample
821
822 @noindent
823 You can also start with both an executable program and a core file
824 specified:
825
826 @smallexample
827 @value{GDBP} @var{program} @var{core}
828 @end smallexample
829
830 You can, instead, specify a process ID as a second argument, if you want
831 to debug a running process:
832
833 @smallexample
834 @value{GDBP} @var{program} 1234
835 @end smallexample
836
837 @noindent
838 would attach @value{GDBN} to process @code{1234} (unless you also have a file
839 named @file{1234}; @value{GDBN} does check for a core file first).
840
841 Taking advantage of the second command-line argument requires a fairly
842 complete operating system; when you use @value{GDBN} as a remote
843 debugger attached to a bare board, there may not be any notion of
844 ``process'', and there is often no way to get a core dump.  @value{GDBN}
845 will warn you if it is unable to attach or to read core dumps.
846
847 You can optionally have @code{@value{GDBP}} pass any arguments after the
848 executable file to the inferior using @code{--args}.  This option stops
849 option processing.
850 @smallexample
851 @value{GDBP} --args gcc -O2 -c foo.c
852 @end smallexample
853 This will cause @code{@value{GDBP}} to debug @code{gcc}, and to set
854 @code{gcc}'s command-line arguments (@pxref{Arguments}) to @samp{-O2 -c foo.c}.
855
856 You can run @code{@value{GDBP}} without printing the front material, which describes
857 @value{GDBN}'s non-warranty, by specifying @code{-silent}:
858
859 @smallexample
860 @value{GDBP} -silent
861 @end smallexample
862
863 @noindent
864 You can further control how @value{GDBN} starts up by using command-line
865 options.  @value{GDBN} itself can remind you of the options available.
866
867 @noindent
868 Type
869
870 @smallexample
871 @value{GDBP} -help
872 @end smallexample
873
874 @noindent
875 to display all available options and briefly describe their use
876 (@samp{@value{GDBP} -h} is a shorter equivalent).
877
878 All options and command line arguments you give are processed
879 in sequential order.  The order makes a difference when the
880 @samp{-x} option is used.
881
882
883 @menu
884 * File Options::                Choosing files
885 * Mode Options::                Choosing modes
886 * Startup::                     What @value{GDBN} does during startup
887 @end menu
888
889 @node File Options
890 @subsection Choosing Files
891
892 When @value{GDBN} starts, it reads any arguments other than options as
893 specifying an executable file and core file (or process ID).  This is
894 the same as if the arguments were specified by the @samp{-se} and
895 @samp{-c} (or @samp{-p}) options respectively.  (@value{GDBN} reads the
896 first argument that does not have an associated option flag as
897 equivalent to the @samp{-se} option followed by that argument; and the
898 second argument that does not have an associated option flag, if any, as
899 equivalent to the @samp{-c}/@samp{-p} option followed by that argument.)
900 If the second argument begins with a decimal digit, @value{GDBN} will
901 first attempt to attach to it as a process, and if that fails, attempt
902 to open it as a corefile.  If you have a corefile whose name begins with
903 a digit, you can prevent @value{GDBN} from treating it as a pid by
904 prefixing it with @file{./}, e.g.@: @file{./12345}.
905
906 If @value{GDBN} has not been configured to included core file support,
907 such as for most embedded targets, then it will complain about a second
908 argument and ignore it.
909
910 Many options have both long and short forms; both are shown in the
911 following list.  @value{GDBN} also recognizes the long forms if you truncate
912 them, so long as enough of the option is present to be unambiguous.
913 (If you prefer, you can flag option arguments with @samp{--} rather
914 than @samp{-}, though we illustrate the more usual convention.)
915
916 @c NOTE: the @cindex entries here use double dashes ON PURPOSE.  This
917 @c way, both those who look for -foo and --foo in the index, will find
918 @c it.
919
920 @table @code
921 @item -symbols @var{file}
922 @itemx -s @var{file}
923 @cindex @code{--symbols}
924 @cindex @code{-s}
925 Read symbol table from file @var{file}.
926
927 @item -exec @var{file}
928 @itemx -e @var{file}
929 @cindex @code{--exec}
930 @cindex @code{-e}
931 Use file @var{file} as the executable file to execute when appropriate,
932 and for examining pure data in conjunction with a core dump.
933
934 @item -se @var{file}
935 @cindex @code{--se}
936 Read symbol table from file @var{file} and use it as the executable
937 file.
938
939 @item -core @var{file}
940 @itemx -c @var{file}
941 @cindex @code{--core}
942 @cindex @code{-c}
943 Use file @var{file} as a core dump to examine.
944
945 @item -c @var{number}
946 @item -pid @var{number}
947 @itemx -p @var{number}
948 @cindex @code{--pid}
949 @cindex @code{-p}
950 Connect to process ID @var{number}, as with the @code{attach} command.
951 If there is no such process, @value{GDBN} will attempt to open a core
952 file named @var{number}.
953
954 @item -command @var{file}
955 @itemx -x @var{file}
956 @cindex @code{--command}
957 @cindex @code{-x}
958 Execute @value{GDBN} commands from file @var{file}.  @xref{Command
959 Files,, Command files}.
960
961 @item -eval-command @var{command}
962 @itemx -ex @var{command}
963 @cindex @code{--eval-command}
964 @cindex @code{-ex}
965 Execute a single @value{GDBN} command.
966
967 This option may be used multiple times to call multiple commands.  It may
968 also be interleaved with @samp{-command} as required.
969
970 @smallexample
971 @value{GDBP} -ex 'target sim' -ex 'load' \
972    -x setbreakpoints -ex 'run' a.out
973 @end smallexample
974
975 @item -directory @var{directory}
976 @itemx -d @var{directory}
977 @cindex @code{--directory}
978 @cindex @code{-d}
979 Add @var{directory} to the path to search for source and script files.
980
981 @item -r
982 @itemx -readnow
983 @cindex @code{--readnow}
984 @cindex @code{-r}
985 Read each symbol file's entire symbol table immediately, rather than
986 the default, which is to read it incrementally as it is needed.
987 This makes startup slower, but makes future operations faster.
988
989 @end table
990
991 @node Mode Options
992 @subsection Choosing Modes
993
994 You can run @value{GDBN} in various alternative modes---for example, in
995 batch mode or quiet mode.
996
997 @table @code
998 @item -nx
999 @itemx -n
1000 @cindex @code{--nx}
1001 @cindex @code{-n}
1002 Do not execute commands found in any initialization files.  Normally,
1003 @value{GDBN} executes the commands in these files after all the command
1004 options and arguments have been processed.  @xref{Command Files,,Command
1005 Files}.
1006
1007 @item -quiet
1008 @itemx -silent
1009 @itemx -q
1010 @cindex @code{--quiet}
1011 @cindex @code{--silent}
1012 @cindex @code{-q}
1013 ``Quiet''.  Do not print the introductory and copyright messages.  These
1014 messages are also suppressed in batch mode.
1015
1016 @item -batch
1017 @cindex @code{--batch}
1018 Run in batch mode.  Exit with status @code{0} after processing all the
1019 command files specified with @samp{-x} (and all commands from
1020 initialization files, if not inhibited with @samp{-n}).  Exit with
1021 nonzero status if an error occurs in executing the @value{GDBN} commands
1022 in the command files.
1023
1024 Batch mode may be useful for running @value{GDBN} as a filter, for
1025 example to download and run a program on another computer; in order to
1026 make this more useful, the message
1027
1028 @smallexample
1029 Program exited normally.
1030 @end smallexample
1031
1032 @noindent
1033 (which is ordinarily issued whenever a program running under
1034 @value{GDBN} control terminates) is not issued when running in batch
1035 mode.
1036
1037 @item -batch-silent
1038 @cindex @code{--batch-silent}
1039 Run in batch mode exactly like @samp{-batch}, but totally silently.  All
1040 @value{GDBN} output to @code{stdout} is prevented (@code{stderr} is
1041 unaffected).  This is much quieter than @samp{-silent} and would be useless
1042 for an interactive session.
1043
1044 This is particularly useful when using targets that give @samp{Loading section}
1045 messages, for example.
1046
1047 Note that targets that give their output via @value{GDBN}, as opposed to
1048 writing directly to @code{stdout}, will also be made silent.
1049
1050 @item -return-child-result
1051 @cindex @code{--return-child-result}
1052 The return code from @value{GDBN} will be the return code from the child
1053 process (the process being debugged), with the following exceptions:
1054
1055 @itemize @bullet
1056 @item
1057 @value{GDBN} exits abnormally.  E.g., due to an incorrect argument or an
1058 internal error.  In this case the exit code is the same as it would have been
1059 without @samp{-return-child-result}.
1060 @item
1061 The user quits with an explicit value.  E.g., @samp{quit 1}.
1062 @item
1063 The child process never runs, or is not allowed to terminate, in which case
1064 the exit code will be -1.
1065 @end itemize
1066
1067 This option is useful in conjunction with @samp{-batch} or @samp{-batch-silent},
1068 when @value{GDBN} is being used as a remote program loader or simulator
1069 interface.
1070
1071 @item -nowindows
1072 @itemx -nw
1073 @cindex @code{--nowindows}
1074 @cindex @code{-nw}
1075 ``No windows''.  If @value{GDBN} comes with a graphical user interface
1076 (GUI) built in, then this option tells @value{GDBN} to only use the command-line
1077 interface.  If no GUI is available, this option has no effect.
1078
1079 @item -windows
1080 @itemx -w
1081 @cindex @code{--windows}
1082 @cindex @code{-w}
1083 If @value{GDBN} includes a GUI, then this option requires it to be
1084 used if possible.
1085
1086 @item -cd @var{directory}
1087 @cindex @code{--cd}
1088 Run @value{GDBN} using @var{directory} as its working directory,
1089 instead of the current directory.
1090
1091 @item -fullname
1092 @itemx -f
1093 @cindex @code{--fullname}
1094 @cindex @code{-f}
1095 @sc{gnu} Emacs sets this option when it runs @value{GDBN} as a
1096 subprocess.  It tells @value{GDBN} to output the full file name and line
1097 number in a standard, recognizable fashion each time a stack frame is
1098 displayed (which includes each time your program stops).  This
1099 recognizable format looks like two @samp{\032} characters, followed by
1100 the file name, line number and character position separated by colons,
1101 and a newline.  The Emacs-to-@value{GDBN} interface program uses the two
1102 @samp{\032} characters as a signal to display the source code for the
1103 frame.
1104
1105 @item -epoch
1106 @cindex @code{--epoch}
1107 The Epoch Emacs-@value{GDBN} interface sets this option when it runs
1108 @value{GDBN} as a subprocess.  It tells @value{GDBN} to modify its print
1109 routines so as to allow Epoch to display values of expressions in a
1110 separate window.
1111
1112 @item -annotate @var{level}
1113 @cindex @code{--annotate}
1114 This option sets the @dfn{annotation level} inside @value{GDBN}.  Its
1115 effect is identical to using @samp{set annotate @var{level}}
1116 (@pxref{Annotations}).  The annotation @var{level} controls how much
1117 information @value{GDBN} prints together with its prompt, values of
1118 expressions, source lines, and other types of output.  Level 0 is the
1119 normal, level 1 is for use when @value{GDBN} is run as a subprocess of
1120 @sc{gnu} Emacs, level 3 is the maximum annotation suitable for programs
1121 that control @value{GDBN}, and level 2 has been deprecated.
1122
1123 The annotation mechanism has largely been superseded by @sc{gdb/mi}
1124 (@pxref{GDB/MI}).
1125
1126 @item --args
1127 @cindex @code{--args}
1128 Change interpretation of command line so that arguments following the
1129 executable file are passed as command line arguments to the inferior.
1130 This option stops option processing.
1131
1132 @item -baud @var{bps}
1133 @itemx -b @var{bps}
1134 @cindex @code{--baud}
1135 @cindex @code{-b}
1136 Set the line speed (baud rate or bits per second) of any serial
1137 interface used by @value{GDBN} for remote debugging.
1138
1139 @item -l @var{timeout}
1140 @cindex @code{-l}
1141 Set the timeout (in seconds) of any communication used by @value{GDBN}
1142 for remote debugging.
1143
1144 @item -tty @var{device}
1145 @itemx -t @var{device}
1146 @cindex @code{--tty}
1147 @cindex @code{-t}
1148 Run using @var{device} for your program's standard input and output.
1149 @c FIXME: kingdon thinks there is more to -tty.  Investigate.
1150
1151 @c resolve the situation of these eventually
1152 @item -tui
1153 @cindex @code{--tui}
1154 Activate the @dfn{Text User Interface} when starting.  The Text User
1155 Interface manages several text windows on the terminal, showing
1156 source, assembly, registers and @value{GDBN} command outputs
1157 (@pxref{TUI, ,@value{GDBN} Text User Interface}).  Alternatively, the
1158 Text User Interface can be enabled by invoking the program
1159 @samp{@value{GDBTUI}}.  Do not use this option if you run @value{GDBN} from
1160 Emacs (@pxref{Emacs, ,Using @value{GDBN} under @sc{gnu} Emacs}).
1161
1162 @c @item -xdb
1163 @c @cindex @code{--xdb}
1164 @c Run in XDB compatibility mode, allowing the use of certain XDB commands.
1165 @c For information, see the file @file{xdb_trans.html}, which is usually
1166 @c installed in the directory @code{/opt/langtools/wdb/doc} on HP-UX
1167 @c systems.
1168
1169 @item -interpreter @var{interp}
1170 @cindex @code{--interpreter}
1171 Use the interpreter @var{interp} for interface with the controlling
1172 program or device.  This option is meant to be set by programs which
1173 communicate with @value{GDBN} using it as a back end.
1174 @xref{Interpreters, , Command Interpreters}.
1175
1176 @samp{--interpreter=mi} (or @samp{--interpreter=mi2}) causes
1177 @value{GDBN} to use the @dfn{@sc{gdb/mi} interface} (@pxref{GDB/MI, ,
1178 The @sc{gdb/mi} Interface}) included since @value{GDBN} version 6.0.  The
1179 previous @sc{gdb/mi} interface, included in @value{GDBN} version 5.3 and
1180 selected with @samp{--interpreter=mi1}, is deprecated.  Earlier
1181 @sc{gdb/mi} interfaces are no longer supported.
1182
1183 @item -write
1184 @cindex @code{--write}
1185 Open the executable and core files for both reading and writing.  This
1186 is equivalent to the @samp{set write on} command inside @value{GDBN}
1187 (@pxref{Patching}).
1188
1189 @item -statistics
1190 @cindex @code{--statistics}
1191 This option causes @value{GDBN} to print statistics about time and
1192 memory usage after it completes each command and returns to the prompt.
1193
1194 @item -version
1195 @cindex @code{--version}
1196 This option causes @value{GDBN} to print its version number and
1197 no-warranty blurb, and exit.
1198
1199 @end table
1200
1201 @node Startup
1202 @subsection What @value{GDBN} Does During Startup
1203 @cindex @value{GDBN} startup
1204
1205 Here's the description of what @value{GDBN} does during session startup:
1206
1207 @enumerate
1208 @item
1209 Sets up the command interpreter as specified by the command line
1210 (@pxref{Mode Options, interpreter}).
1211
1212 @item
1213 @cindex init file
1214 Reads the @dfn{init file} (if any) in your home directory@footnote{On
1215 DOS/Windows systems, the home directory is the one pointed to by the
1216 @code{HOME} environment variable.} and executes all the commands in
1217 that file.
1218
1219 @item
1220 Processes command line options and operands.
1221
1222 @item
1223 Reads and executes the commands from init file (if any) in the current
1224 working directory.  This is only done if the current directory is
1225 different from your home directory.  Thus, you can have more than one
1226 init file, one generic in your home directory, and another, specific
1227 to the program you are debugging, in the directory where you invoke
1228 @value{GDBN}.
1229
1230 @item
1231 Reads command files specified by the @samp{-x} option.  @xref{Command
1232 Files}, for more details about @value{GDBN} command files.
1233
1234 @item
1235 Reads the command history recorded in the @dfn{history file}.
1236 @xref{Command History}, for more details about the command history and the
1237 files where @value{GDBN} records it.
1238 @end enumerate
1239
1240 Init files use the same syntax as @dfn{command files} (@pxref{Command
1241 Files}) and are processed by @value{GDBN} in the same way.  The init
1242 file in your home directory can set options (such as @samp{set
1243 complaints}) that affect subsequent processing of command line options
1244 and operands.  Init files are not executed if you use the @samp{-nx}
1245 option (@pxref{Mode Options, ,Choosing Modes}).
1246
1247 @cindex init file name
1248 @cindex @file{.gdbinit}
1249 @cindex @file{gdb.ini}
1250 The @value{GDBN} init files are normally called @file{.gdbinit}.
1251 The DJGPP port of @value{GDBN} uses the name @file{gdb.ini}, due to
1252 the limitations of file names imposed by DOS filesystems.  The Windows
1253 ports of @value{GDBN} use the standard name, but if they find a
1254 @file{gdb.ini} file, they warn you about that and suggest to rename
1255 the file to the standard name.
1256
1257
1258 @node Quitting GDB
1259 @section Quitting @value{GDBN}
1260 @cindex exiting @value{GDBN}
1261 @cindex leaving @value{GDBN}
1262
1263 @table @code
1264 @kindex quit @r{[}@var{expression}@r{]}
1265 @kindex q @r{(@code{quit})}
1266 @item quit @r{[}@var{expression}@r{]}
1267 @itemx q
1268 To exit @value{GDBN}, use the @code{quit} command (abbreviated
1269 @code{q}), or type an end-of-file character (usually @kbd{Ctrl-d}).  If you
1270 do not supply @var{expression}, @value{GDBN} will terminate normally;
1271 otherwise it will terminate using the result of @var{expression} as the
1272 error code.
1273 @end table
1274
1275 @cindex interrupt
1276 An interrupt (often @kbd{Ctrl-c}) does not exit from @value{GDBN}, but rather
1277 terminates the action of any @value{GDBN} command that is in progress and
1278 returns to @value{GDBN} command level.  It is safe to type the interrupt
1279 character at any time because @value{GDBN} does not allow it to take effect
1280 until a time when it is safe.
1281
1282 If you have been using @value{GDBN} to control an attached process or
1283 device, you can release it with the @code{detach} command
1284 (@pxref{Attach, ,Debugging an Already-running Process}).
1285
1286 @node Shell Commands
1287 @section Shell Commands
1288
1289 If you need to execute occasional shell commands during your
1290 debugging session, there is no need to leave or suspend @value{GDBN}; you can
1291 just use the @code{shell} command.
1292
1293 @table @code
1294 @kindex shell
1295 @cindex shell escape
1296 @item shell @var{command string}
1297 Invoke a standard shell to execute @var{command string}.
1298 If it exists, the environment variable @code{SHELL} determines which
1299 shell to run.  Otherwise @value{GDBN} uses the default shell
1300 (@file{/bin/sh} on Unix systems, @file{COMMAND.COM} on MS-DOS, etc.).
1301 @end table
1302
1303 The utility @code{make} is often needed in development environments.
1304 You do not have to use the @code{shell} command for this purpose in
1305 @value{GDBN}:
1306
1307 @table @code
1308 @kindex make
1309 @cindex calling make
1310 @item make @var{make-args}
1311 Execute the @code{make} program with the specified
1312 arguments.  This is equivalent to @samp{shell make @var{make-args}}.
1313 @end table
1314
1315 @node Logging Output
1316 @section Logging Output
1317 @cindex logging @value{GDBN} output
1318 @cindex save @value{GDBN} output to a file
1319
1320 You may want to save the output of @value{GDBN} commands to a file.
1321 There are several commands to control @value{GDBN}'s logging.
1322
1323 @table @code
1324 @kindex set logging
1325 @item set logging on
1326 Enable logging.
1327 @item set logging off
1328 Disable logging.
1329 @cindex logging file name
1330 @item set logging file @var{file}
1331 Change the name of the current logfile.  The default logfile is @file{gdb.txt}.
1332 @item set logging overwrite [on|off]
1333 By default, @value{GDBN} will append to the logfile.  Set @code{overwrite} if
1334 you want @code{set logging on} to overwrite the logfile instead.
1335 @item set logging redirect [on|off]
1336 By default, @value{GDBN} output will go to both the terminal and the logfile.
1337 Set @code{redirect} if you want output to go only to the log file.
1338 @kindex show logging
1339 @item show logging
1340 Show the current values of the logging settings.
1341 @end table
1342
1343 @node Commands
1344 @chapter @value{GDBN} Commands
1345
1346 You can abbreviate a @value{GDBN} command to the first few letters of the command
1347 name, if that abbreviation is unambiguous; and you can repeat certain
1348 @value{GDBN} commands by typing just @key{RET}.  You can also use the @key{TAB}
1349 key to get @value{GDBN} to fill out the rest of a word in a command (or to
1350 show you the alternatives available, if there is more than one possibility).
1351
1352 @menu
1353 * Command Syntax::              How to give commands to @value{GDBN}
1354 * Completion::                  Command completion
1355 * Help::                        How to ask @value{GDBN} for help
1356 @end menu
1357
1358 @node Command Syntax
1359 @section Command Syntax
1360
1361 A @value{GDBN} command is a single line of input.  There is no limit on
1362 how long it can be.  It starts with a command name, which is followed by
1363 arguments whose meaning depends on the command name.  For example, the
1364 command @code{step} accepts an argument which is the number of times to
1365 step, as in @samp{step 5}.  You can also use the @code{step} command
1366 with no arguments.  Some commands do not allow any arguments.
1367
1368 @cindex abbreviation
1369 @value{GDBN} command names may always be truncated if that abbreviation is
1370 unambiguous.  Other possible command abbreviations are listed in the
1371 documentation for individual commands.  In some cases, even ambiguous
1372 abbreviations are allowed; for example, @code{s} is specially defined as
1373 equivalent to @code{step} even though there are other commands whose
1374 names start with @code{s}.  You can test abbreviations by using them as
1375 arguments to the @code{help} command.
1376
1377 @cindex repeating commands
1378 @kindex RET @r{(repeat last command)}
1379 A blank line as input to @value{GDBN} (typing just @key{RET}) means to
1380 repeat the previous command.  Certain commands (for example, @code{run})
1381 will not repeat this way; these are commands whose unintentional
1382 repetition might cause trouble and which you are unlikely to want to
1383 repeat.  User-defined commands can disable this feature; see
1384 @ref{Define, dont-repeat}.
1385
1386 The @code{list} and @code{x} commands, when you repeat them with
1387 @key{RET}, construct new arguments rather than repeating
1388 exactly as typed.  This permits easy scanning of source or memory.
1389
1390 @value{GDBN} can also use @key{RET} in another way: to partition lengthy
1391 output, in a way similar to the common utility @code{more}
1392 (@pxref{Screen Size,,Screen Size}).  Since it is easy to press one
1393 @key{RET} too many in this situation, @value{GDBN} disables command
1394 repetition after any command that generates this sort of display.
1395
1396 @kindex # @r{(a comment)}
1397 @cindex comment
1398 Any text from a @kbd{#} to the end of the line is a comment; it does
1399 nothing.  This is useful mainly in command files (@pxref{Command
1400 Files,,Command Files}).
1401
1402 @cindex repeating command sequences
1403 @kindex Ctrl-o @r{(operate-and-get-next)}
1404 The @kbd{Ctrl-o} binding is useful for repeating a complex sequence of
1405 commands.  This command accepts the current line, like @key{RET}, and
1406 then fetches the next line relative to the current line from the history
1407 for editing.
1408
1409 @node Completion
1410 @section Command Completion
1411
1412 @cindex completion
1413 @cindex word completion
1414 @value{GDBN} can fill in the rest of a word in a command for you, if there is
1415 only one possibility; it can also show you what the valid possibilities
1416 are for the next word in a command, at any time.  This works for @value{GDBN}
1417 commands, @value{GDBN} subcommands, and the names of symbols in your program.
1418
1419 Press the @key{TAB} key whenever you want @value{GDBN} to fill out the rest
1420 of a word.  If there is only one possibility, @value{GDBN} fills in the
1421 word, and waits for you to finish the command (or press @key{RET} to
1422 enter it).  For example, if you type
1423
1424 @c FIXME "@key" does not distinguish its argument sufficiently to permit
1425 @c complete accuracy in these examples; space introduced for clarity.
1426 @c If texinfo enhancements make it unnecessary, it would be nice to
1427 @c replace " @key" by "@key" in the following...
1428 @smallexample
1429 (@value{GDBP}) info bre @key{TAB}
1430 @end smallexample
1431
1432 @noindent
1433 @value{GDBN} fills in the rest of the word @samp{breakpoints}, since that is
1434 the only @code{info} subcommand beginning with @samp{bre}:
1435
1436 @smallexample
1437 (@value{GDBP}) info breakpoints
1438 @end smallexample
1439
1440 @noindent
1441 You can either press @key{RET} at this point, to run the @code{info
1442 breakpoints} command, or backspace and enter something else, if
1443 @samp{breakpoints} does not look like the command you expected.  (If you
1444 were sure you wanted @code{info breakpoints} in the first place, you
1445 might as well just type @key{RET} immediately after @samp{info bre},
1446 to exploit command abbreviations rather than command completion).
1447
1448 If there is more than one possibility for the next word when you press
1449 @key{TAB}, @value{GDBN} sounds a bell.  You can either supply more
1450 characters and try again, or just press @key{TAB} a second time;
1451 @value{GDBN} displays all the possible completions for that word.  For
1452 example, you might want to set a breakpoint on a subroutine whose name
1453 begins with @samp{make_}, but when you type @kbd{b make_@key{TAB}} @value{GDBN}
1454 just sounds the bell.  Typing @key{TAB} again displays all the
1455 function names in your program that begin with those characters, for
1456 example:
1457
1458 @smallexample
1459 (@value{GDBP}) b make_ @key{TAB}
1460 @exdent @value{GDBN} sounds bell; press @key{TAB} again, to see:
1461 make_a_section_from_file     make_environ
1462 make_abs_section             make_function_type
1463 make_blockvector             make_pointer_type
1464 make_cleanup                 make_reference_type
1465 make_command                 make_symbol_completion_list
1466 (@value{GDBP}) b make_
1467 @end smallexample
1468
1469 @noindent
1470 After displaying the available possibilities, @value{GDBN} copies your
1471 partial input (@samp{b make_} in the example) so you can finish the
1472 command.
1473
1474 If you just want to see the list of alternatives in the first place, you
1475 can press @kbd{M-?} rather than pressing @key{TAB} twice.  @kbd{M-?}
1476 means @kbd{@key{META} ?}.  You can type this either by holding down a
1477 key designated as the @key{META} shift on your keyboard (if there is
1478 one) while typing @kbd{?}, or as @key{ESC} followed by @kbd{?}.
1479
1480 @cindex quotes in commands
1481 @cindex completion of quoted strings
1482 Sometimes the string you need, while logically a ``word'', may contain
1483 parentheses or other characters that @value{GDBN} normally excludes from
1484 its notion of a word.  To permit word completion to work in this
1485 situation, you may enclose words in @code{'} (single quote marks) in
1486 @value{GDBN} commands.
1487
1488 The most likely situation where you might need this is in typing the
1489 name of a C@t{++} function.  This is because C@t{++} allows function
1490 overloading (multiple definitions of the same function, distinguished
1491 by argument type).  For example, when you want to set a breakpoint you
1492 may need to distinguish whether you mean the version of @code{name}
1493 that takes an @code{int} parameter, @code{name(int)}, or the version
1494 that takes a @code{float} parameter, @code{name(float)}.  To use the
1495 word-completion facilities in this situation, type a single quote
1496 @code{'} at the beginning of the function name.  This alerts
1497 @value{GDBN} that it may need to consider more information than usual
1498 when you press @key{TAB} or @kbd{M-?} to request word completion:
1499
1500 @smallexample
1501 (@value{GDBP}) b 'bubble( @kbd{M-?}
1502 bubble(double,double)    bubble(int,int)
1503 (@value{GDBP}) b 'bubble(
1504 @end smallexample
1505
1506 In some cases, @value{GDBN} can tell that completing a name requires using
1507 quotes.  When this happens, @value{GDBN} inserts the quote for you (while
1508 completing as much as it can) if you do not type the quote in the first
1509 place:
1510
1511 @smallexample
1512 (@value{GDBP}) b bub @key{TAB}
1513 @exdent @value{GDBN} alters your input line to the following, and rings a bell:
1514 (@value{GDBP}) b 'bubble(
1515 @end smallexample
1516
1517 @noindent
1518 In general, @value{GDBN} can tell that a quote is needed (and inserts it) if
1519 you have not yet started typing the argument list when you ask for
1520 completion on an overloaded symbol.
1521
1522 For more information about overloaded functions, see @ref{C Plus Plus
1523 Expressions, ,C@t{++} Expressions}.  You can use the command @code{set
1524 overload-resolution off} to disable overload resolution;
1525 see @ref{Debugging C Plus Plus, ,@value{GDBN} Features for C@t{++}}.
1526
1527
1528 @node Help
1529 @section Getting Help
1530 @cindex online documentation
1531 @kindex help
1532
1533 You can always ask @value{GDBN} itself for information on its commands,
1534 using the command @code{help}.
1535
1536 @table @code
1537 @kindex h @r{(@code{help})}
1538 @item help
1539 @itemx h
1540 You can use @code{help} (abbreviated @code{h}) with no arguments to
1541 display a short list of named classes of commands:
1542
1543 @smallexample
1544 (@value{GDBP}) help
1545 List of classes of commands:
1546
1547 aliases -- Aliases of other commands
1548 breakpoints -- Making program stop at certain points
1549 data -- Examining data
1550 files -- Specifying and examining files
1551 internals -- Maintenance commands
1552 obscure -- Obscure features
1553 running -- Running the program
1554 stack -- Examining the stack
1555 status -- Status inquiries
1556 support -- Support facilities
1557 tracepoints -- Tracing of program execution without
1558                stopping the program
1559 user-defined -- User-defined commands
1560
1561 Type "help" followed by a class name for a list of
1562 commands in that class.
1563 Type "help" followed by command name for full
1564 documentation.
1565 Command name abbreviations are allowed if unambiguous.
1566 (@value{GDBP})
1567 @end smallexample
1568 @c the above line break eliminates huge line overfull...
1569
1570 @item help @var{class}
1571 Using one of the general help classes as an argument, you can get a
1572 list of the individual commands in that class.  For example, here is the
1573 help display for the class @code{status}:
1574
1575 @smallexample
1576 (@value{GDBP}) help status
1577 Status inquiries.
1578
1579 List of commands:
1580
1581 @c Line break in "show" line falsifies real output, but needed
1582 @c to fit in smallbook page size.
1583 info -- Generic command for showing things
1584         about the program being debugged
1585 show -- Generic command for showing things
1586         about the debugger
1587
1588 Type "help" followed by command name for full
1589 documentation.
1590 Command name abbreviations are allowed if unambiguous.
1591 (@value{GDBP})
1592 @end smallexample
1593
1594 @item help @var{command}
1595 With a command name as @code{help} argument, @value{GDBN} displays a
1596 short paragraph on how to use that command.
1597
1598 @kindex apropos
1599 @item apropos @var{args}
1600 The @code{apropos} command searches through all of the @value{GDBN}
1601 commands, and their documentation, for the regular expression specified in
1602 @var{args}. It prints out all matches found. For example:
1603
1604 @smallexample
1605 apropos reload
1606 @end smallexample
1607
1608 @noindent
1609 results in:
1610
1611 @smallexample
1612 @c @group
1613 set symbol-reloading -- Set dynamic symbol table reloading
1614                         multiple times in one run
1615 show symbol-reloading -- Show dynamic symbol table reloading
1616                         multiple times in one run
1617 @c @end group
1618 @end smallexample
1619
1620 @kindex complete
1621 @item complete @var{args}
1622 The @code{complete @var{args}} command lists all the possible completions
1623 for the beginning of a command.  Use @var{args} to specify the beginning of the
1624 command you want completed.  For example:
1625
1626 @smallexample
1627 complete i
1628 @end smallexample
1629
1630 @noindent results in:
1631
1632 @smallexample
1633 @group
1634 if
1635 ignore
1636 info
1637 inspect
1638 @end group
1639 @end smallexample
1640
1641 @noindent This is intended for use by @sc{gnu} Emacs.
1642 @end table
1643
1644 In addition to @code{help}, you can use the @value{GDBN} commands @code{info}
1645 and @code{show} to inquire about the state of your program, or the state
1646 of @value{GDBN} itself.  Each command supports many topics of inquiry; this
1647 manual introduces each of them in the appropriate context.  The listings
1648 under @code{info} and under @code{show} in the Index point to
1649 all the sub-commands.  @xref{Index}.
1650
1651 @c @group
1652 @table @code
1653 @kindex info
1654 @kindex i @r{(@code{info})}
1655 @item info
1656 This command (abbreviated @code{i}) is for describing the state of your
1657 program.  For example, you can list the arguments given to your program
1658 with @code{info args}, list the registers currently in use with @code{info
1659 registers}, or list the breakpoints you have set with @code{info breakpoints}.
1660 You can get a complete list of the @code{info} sub-commands with
1661 @w{@code{help info}}.
1662
1663 @kindex set
1664 @item set
1665 You can assign the result of an expression to an environment variable with
1666 @code{set}.  For example, you can set the @value{GDBN} prompt to a $-sign with
1667 @code{set prompt $}.
1668
1669 @kindex show
1670 @item show
1671 In contrast to @code{info}, @code{show} is for describing the state of
1672 @value{GDBN} itself.
1673 You can change most of the things you can @code{show}, by using the
1674 related command @code{set}; for example, you can control what number
1675 system is used for displays with @code{set radix}, or simply inquire
1676 which is currently in use with @code{show radix}.
1677
1678 @kindex info set
1679 To display all the settable parameters and their current
1680 values, you can use @code{show} with no arguments; you may also use
1681 @code{info set}.  Both commands produce the same display.
1682 @c FIXME: "info set" violates the rule that "info" is for state of
1683 @c FIXME...program.  Ck w/ GNU: "info set" to be called something else,
1684 @c FIXME...or change desc of rule---eg "state of prog and debugging session"?
1685 @end table
1686 @c @end group
1687
1688 Here are three miscellaneous @code{show} subcommands, all of which are
1689 exceptional in lacking corresponding @code{set} commands:
1690
1691 @table @code
1692 @kindex show version
1693 @cindex @value{GDBN} version number
1694 @item show version
1695 Show what version of @value{GDBN} is running.  You should include this
1696 information in @value{GDBN} bug-reports.  If multiple versions of
1697 @value{GDBN} are in use at your site, you may need to determine which
1698 version of @value{GDBN} you are running; as @value{GDBN} evolves, new
1699 commands are introduced, and old ones may wither away.  Also, many
1700 system vendors ship variant versions of @value{GDBN}, and there are
1701 variant versions of @value{GDBN} in @sc{gnu}/Linux distributions as well.
1702 The version number is the same as the one announced when you start
1703 @value{GDBN}.
1704
1705 @kindex show copying
1706 @kindex info copying
1707 @cindex display @value{GDBN} copyright
1708 @item show copying
1709 @itemx info copying
1710 Display information about permission for copying @value{GDBN}.
1711
1712 @kindex show warranty
1713 @kindex info warranty
1714 @item show warranty
1715 @itemx info warranty
1716 Display the @sc{gnu} ``NO WARRANTY'' statement, or a warranty,
1717 if your version of @value{GDBN} comes with one.
1718
1719 @end table
1720
1721 @node Running
1722 @chapter Running Programs Under @value{GDBN}
1723
1724 When you run a program under @value{GDBN}, you must first generate
1725 debugging information when you compile it.
1726
1727 You may start @value{GDBN} with its arguments, if any, in an environment
1728 of your choice.  If you are doing native debugging, you may redirect
1729 your program's input and output, debug an already running process, or
1730 kill a child process.
1731
1732 @menu
1733 * Compilation::                 Compiling for debugging
1734 * Starting::                    Starting your program
1735 * Arguments::                   Your program's arguments
1736 * Environment::                 Your program's environment
1737
1738 * Working Directory::           Your program's working directory
1739 * Input/Output::                Your program's input and output
1740 * Attach::                      Debugging an already-running process
1741 * Kill Process::                Killing the child process
1742
1743 * Threads::                     Debugging programs with multiple threads
1744 * Processes::                   Debugging programs with multiple processes
1745 * Checkpoint/Restart::          Setting a @emph{bookmark} to return to later
1746 @end menu
1747
1748 @node Compilation
1749 @section Compiling for Debugging
1750
1751 In order to debug a program effectively, you need to generate
1752 debugging information when you compile it.  This debugging information
1753 is stored in the object file; it describes the data type of each
1754 variable or function and the correspondence between source line numbers
1755 and addresses in the executable code.
1756
1757 To request debugging information, specify the @samp{-g} option when you run
1758 the compiler.
1759
1760 Programs that are to be shipped to your customers are compiled with
1761 optimizations, using the @samp{-O} compiler option.  However, many
1762 compilers are unable to handle the @samp{-g} and @samp{-O} options
1763 together.  Using those compilers, you cannot generate optimized
1764 executables containing debugging information.
1765
1766 @value{NGCC}, the @sc{gnu} C/C@t{++} compiler, supports @samp{-g} with or
1767 without @samp{-O}, making it possible to debug optimized code.  We
1768 recommend that you @emph{always} use @samp{-g} whenever you compile a
1769 program.  You may think your program is correct, but there is no sense
1770 in pushing your luck.
1771
1772 @cindex optimized code, debugging
1773 @cindex debugging optimized code
1774 When you debug a program compiled with @samp{-g -O}, remember that the
1775 optimizer is rearranging your code; the debugger shows you what is
1776 really there.  Do not be too surprised when the execution path does not
1777 exactly match your source file!  An extreme example: if you define a
1778 variable, but never use it, @value{GDBN} never sees that
1779 variable---because the compiler optimizes it out of existence.
1780
1781 Some things do not work as well with @samp{-g -O} as with just
1782 @samp{-g}, particularly on machines with instruction scheduling.  If in
1783 doubt, recompile with @samp{-g} alone, and if this fixes the problem,
1784 please report it to us as a bug (including a test case!).
1785 @xref{Variables}, for more information about debugging optimized code.
1786
1787 Older versions of the @sc{gnu} C compiler permitted a variant option
1788 @w{@samp{-gg}} for debugging information.  @value{GDBN} no longer supports this
1789 format; if your @sc{gnu} C compiler has this option, do not use it.
1790
1791 @value{GDBN} knows about preprocessor macros and can show you their
1792 expansion (@pxref{Macros}).  Most compilers do not include information
1793 about preprocessor macros in the debugging information if you specify
1794 the @option{-g} flag alone, because this information is rather large.
1795 Version 3.1 and later of @value{NGCC}, the @sc{gnu} C compiler,
1796 provides macro information if you specify the options
1797 @option{-gdwarf-2} and @option{-g3}; the former option requests
1798 debugging information in the Dwarf 2 format, and the latter requests
1799 ``extra information''.  In the future, we hope to find more compact
1800 ways to represent macro information, so that it can be included with
1801 @option{-g} alone.
1802
1803 @need 2000
1804 @node Starting
1805 @section Starting your Program
1806 @cindex starting
1807 @cindex running
1808
1809 @table @code
1810 @kindex run
1811 @kindex r @r{(@code{run})}
1812 @item run
1813 @itemx r
1814 Use the @code{run} command to start your program under @value{GDBN}.
1815 You must first specify the program name (except on VxWorks) with an
1816 argument to @value{GDBN} (@pxref{Invocation, ,Getting In and Out of
1817 @value{GDBN}}), or by using the @code{file} or @code{exec-file} command
1818 (@pxref{Files, ,Commands to Specify Files}).
1819
1820 @end table
1821
1822 If you are running your program in an execution environment that
1823 supports processes, @code{run} creates an inferior process and makes
1824 that process run your program.  (In environments without processes,
1825 @code{run} jumps to the start of your program.)
1826
1827 The execution of a program is affected by certain information it
1828 receives from its superior.  @value{GDBN} provides ways to specify this
1829 information, which you must do @emph{before} starting your program.  (You
1830 can change it after starting your program, but such changes only affect
1831 your program the next time you start it.)  This information may be
1832 divided into four categories:
1833
1834 @table @asis
1835 @item The @emph{arguments.}
1836 Specify the arguments to give your program as the arguments of the
1837 @code{run} command.  If a shell is available on your target, the shell
1838 is used to pass the arguments, so that you may use normal conventions
1839 (such as wildcard expansion or variable substitution) in describing
1840 the arguments.
1841 In Unix systems, you can control which shell is used with the
1842 @code{SHELL} environment variable.
1843 @xref{Arguments, ,Your Program's Arguments}.
1844
1845 @item The @emph{environment.}
1846 Your program normally inherits its environment from @value{GDBN}, but you can
1847 use the @value{GDBN} commands @code{set environment} and @code{unset
1848 environment} to change parts of the environment that affect
1849 your program.  @xref{Environment, ,Your Program's Environment}.
1850
1851 @item The @emph{working directory.}
1852 Your program inherits its working directory from @value{GDBN}.  You can set
1853 the @value{GDBN} working directory with the @code{cd} command in @value{GDBN}.
1854 @xref{Working Directory, ,Your Program's Working Directory}.
1855
1856 @item The @emph{standard input and output.}
1857 Your program normally uses the same device for standard input and
1858 standard output as @value{GDBN} is using.  You can redirect input and output
1859 in the @code{run} command line, or you can use the @code{tty} command to
1860 set a different device for your program.
1861 @xref{Input/Output, ,Your Program's Input and Output}.
1862
1863 @cindex pipes
1864 @emph{Warning:} While input and output redirection work, you cannot use
1865 pipes to pass the output of the program you are debugging to another
1866 program; if you attempt this, @value{GDBN} is likely to wind up debugging the
1867 wrong program.
1868 @end table
1869
1870 When you issue the @code{run} command, your program begins to execute
1871 immediately.  @xref{Stopping, ,Stopping and Continuing}, for discussion
1872 of how to arrange for your program to stop.  Once your program has
1873 stopped, you may call functions in your program, using the @code{print}
1874 or @code{call} commands.  @xref{Data, ,Examining Data}.
1875
1876 If the modification time of your symbol file has changed since the last
1877 time @value{GDBN} read its symbols, @value{GDBN} discards its symbol
1878 table, and reads it again.  When it does this, @value{GDBN} tries to retain
1879 your current breakpoints.
1880
1881 @table @code
1882 @kindex start
1883 @item start
1884 @cindex run to main procedure
1885 The name of the main procedure can vary from language to language.
1886 With C or C@t{++}, the main procedure name is always @code{main}, but
1887 other languages such as Ada do not require a specific name for their
1888 main procedure.  The debugger provides a convenient way to start the
1889 execution of the program and to stop at the beginning of the main
1890 procedure, depending on the language used.
1891
1892 The @samp{start} command does the equivalent of setting a temporary
1893 breakpoint at the beginning of the main procedure and then invoking
1894 the @samp{run} command.
1895
1896 @cindex elaboration phase
1897 Some programs contain an @dfn{elaboration} phase where some startup code is
1898 executed before the main procedure is called.  This depends on the
1899 languages used to write your program.  In C@t{++}, for instance,
1900 constructors for static and global objects are executed before
1901 @code{main} is called.  It is therefore possible that the debugger stops
1902 before reaching the main procedure.  However, the temporary breakpoint
1903 will remain to halt execution.
1904
1905 Specify the arguments to give to your program as arguments to the
1906 @samp{start} command.  These arguments will be given verbatim to the
1907 underlying @samp{run} command.  Note that the same arguments will be
1908 reused if no argument is provided during subsequent calls to
1909 @samp{start} or @samp{run}.
1910
1911 It is sometimes necessary to debug the program during elaboration.  In
1912 these cases, using the @code{start} command would stop the execution of
1913 your program too late, as the program would have already completed the
1914 elaboration phase.  Under these circumstances, insert breakpoints in your
1915 elaboration code before running your program.
1916 @end table
1917
1918 @node Arguments
1919 @section Your Program's Arguments
1920
1921 @cindex arguments (to your program)
1922 The arguments to your program can be specified by the arguments of the
1923 @code{run} command.
1924 They are passed to a shell, which expands wildcard characters and
1925 performs redirection of I/O, and thence to your program.  Your
1926 @code{SHELL} environment variable (if it exists) specifies what shell
1927 @value{GDBN} uses.  If you do not define @code{SHELL}, @value{GDBN} uses
1928 the default shell (@file{/bin/sh} on Unix).
1929
1930 On non-Unix systems, the program is usually invoked directly by
1931 @value{GDBN}, which emulates I/O redirection via the appropriate system
1932 calls, and the wildcard characters are expanded by the startup code of
1933 the program, not by the shell.
1934
1935 @code{run} with no arguments uses the same arguments used by the previous
1936 @code{run}, or those set by the @code{set args} command.
1937
1938 @table @code
1939 @kindex set args
1940 @item set args
1941 Specify the arguments to be used the next time your program is run.  If
1942 @code{set args} has no arguments, @code{run} executes your program
1943 with no arguments.  Once you have run your program with arguments,
1944 using @code{set args} before the next @code{run} is the only way to run
1945 it again without arguments.
1946
1947 @kindex show args
1948 @item show args
1949 Show the arguments to give your program when it is started.
1950 @end table
1951
1952 @node Environment
1953 @section Your Program's Environment
1954
1955 @cindex environment (of your program)
1956 The @dfn{environment} consists of a set of environment variables and
1957 their values.  Environment variables conventionally record such things as
1958 your user name, your home directory, your terminal type, and your search
1959 path for programs to run.  Usually you set up environment variables with
1960 the shell and they are inherited by all the other programs you run.  When
1961 debugging, it can be useful to try running your program with a modified
1962 environment without having to start @value{GDBN} over again.
1963
1964 @table @code
1965 @kindex path
1966 @item path @var{directory}
1967 Add @var{directory} to the front of the @code{PATH} environment variable
1968 (the search path for executables) that will be passed to your program.
1969 The value of @code{PATH} used by @value{GDBN} does not change.
1970 You may specify several directory names, separated by whitespace or by a
1971 system-dependent separator character (@samp{:} on Unix, @samp{;} on
1972 MS-DOS and MS-Windows).  If @var{directory} is already in the path, it
1973 is moved to the front, so it is searched sooner.
1974
1975 You can use the string @samp{$cwd} to refer to whatever is the current
1976 working directory at the time @value{GDBN} searches the path.  If you
1977 use @samp{.} instead, it refers to the directory where you executed the
1978 @code{path} command.  @value{GDBN} replaces @samp{.} in the
1979 @var{directory} argument (with the current path) before adding
1980 @var{directory} to the search path.
1981 @c 'path' is explicitly nonrepeatable, but RMS points out it is silly to
1982 @c document that, since repeating it would be a no-op.
1983
1984 @kindex show paths
1985 @item show paths
1986 Display the list of search paths for executables (the @code{PATH}
1987 environment variable).
1988
1989 @kindex show environment
1990 @item show environment @r{[}@var{varname}@r{]}
1991 Print the value of environment variable @var{varname} to be given to
1992 your program when it starts.  If you do not supply @var{varname},
1993 print the names and values of all environment variables to be given to
1994 your program.  You can abbreviate @code{environment} as @code{env}.
1995
1996 @kindex set environment
1997 @item set environment @var{varname} @r{[}=@var{value}@r{]}
1998 Set environment variable @var{varname} to @var{value}.  The value
1999 changes for your program only, not for @value{GDBN} itself.  @var{value} may
2000 be any string; the values of environment variables are just strings, and
2001 any interpretation is supplied by your program itself.  The @var{value}
2002 parameter is optional; if it is eliminated, the variable is set to a
2003 null value.
2004 @c "any string" here does not include leading, trailing
2005 @c blanks. Gnu asks: does anyone care?
2006
2007 For example, this command:
2008
2009 @smallexample
2010 set env USER = foo
2011 @end smallexample
2012
2013 @noindent
2014 tells the debugged program, when subsequently run, that its user is named
2015 @samp{foo}.  (The spaces around @samp{=} are used for clarity here; they
2016 are not actually required.)
2017
2018 @kindex unset environment
2019 @item unset environment @var{varname}
2020 Remove variable @var{varname} from the environment to be passed to your
2021 program.  This is different from @samp{set env @var{varname} =};
2022 @code{unset environment} removes the variable from the environment,
2023 rather than assigning it an empty value.
2024 @end table
2025
2026 @emph{Warning:} On Unix systems, @value{GDBN} runs your program using
2027 the shell indicated
2028 by your @code{SHELL} environment variable if it exists (or
2029 @code{/bin/sh} if not).  If your @code{SHELL} variable names a shell
2030 that runs an initialization file---such as @file{.cshrc} for C-shell, or
2031 @file{.bashrc} for BASH---any variables you set in that file affect
2032 your program.  You may wish to move setting of environment variables to
2033 files that are only run when you sign on, such as @file{.login} or
2034 @file{.profile}.
2035
2036 @node Working Directory
2037 @section Your Program's Working Directory
2038
2039 @cindex working directory (of your program)
2040 Each time you start your program with @code{run}, it inherits its
2041 working directory from the current working directory of @value{GDBN}.
2042 The @value{GDBN} working directory is initially whatever it inherited
2043 from its parent process (typically the shell), but you can specify a new
2044 working directory in @value{GDBN} with the @code{cd} command.
2045
2046 The @value{GDBN} working directory also serves as a default for the commands
2047 that specify files for @value{GDBN} to operate on.  @xref{Files, ,Commands to
2048 Specify Files}.
2049
2050 @table @code
2051 @kindex cd
2052 @cindex change working directory
2053 @item cd @var{directory}
2054 Set the @value{GDBN} working directory to @var{directory}.
2055
2056 @kindex pwd
2057 @item pwd
2058 Print the @value{GDBN} working directory.
2059 @end table
2060
2061 It is generally impossible to find the current working directory of
2062 the process being debugged (since a program can change its directory
2063 during its run).  If you work on a system where @value{GDBN} is
2064 configured with the @file{/proc} support, you can use the @code{info
2065 proc} command (@pxref{SVR4 Process Information}) to find out the
2066 current working directory of the debuggee.
2067
2068 @node Input/Output
2069 @section Your Program's Input and Output
2070
2071 @cindex redirection
2072 @cindex i/o
2073 @cindex terminal
2074 By default, the program you run under @value{GDBN} does input and output to
2075 the same terminal that @value{GDBN} uses.  @value{GDBN} switches the terminal
2076 to its own terminal modes to interact with you, but it records the terminal
2077 modes your program was using and switches back to them when you continue
2078 running your program.
2079
2080 @table @code
2081 @kindex info terminal
2082 @item info terminal
2083 Displays information recorded by @value{GDBN} about the terminal modes your
2084 program is using.
2085 @end table
2086
2087 You can redirect your program's input and/or output using shell
2088 redirection with the @code{run} command.  For example,
2089
2090 @smallexample
2091 run > outfile
2092 @end smallexample
2093
2094 @noindent
2095 starts your program, diverting its output to the file @file{outfile}.
2096
2097 @kindex tty
2098 @cindex controlling terminal
2099 Another way to specify where your program should do input and output is
2100 with the @code{tty} command.  This command accepts a file name as
2101 argument, and causes this file to be the default for future @code{run}
2102 commands.  It also resets the controlling terminal for the child
2103 process, for future @code{run} commands.  For example,
2104
2105 @smallexample
2106 tty /dev/ttyb
2107 @end smallexample
2108
2109 @noindent
2110 directs that processes started with subsequent @code{run} commands
2111 default to do input and output on the terminal @file{/dev/ttyb} and have
2112 that as their controlling terminal.
2113
2114 An explicit redirection in @code{run} overrides the @code{tty} command's
2115 effect on the input/output device, but not its effect on the controlling
2116 terminal.
2117
2118 When you use the @code{tty} command or redirect input in the @code{run}
2119 command, only the input @emph{for your program} is affected.  The input
2120 for @value{GDBN} still comes from your terminal.  @code{tty} is an alias
2121 for @code{set inferior-tty}.
2122
2123 @cindex inferior tty
2124 @cindex set inferior controlling terminal
2125 You can use the @code{show inferior-tty} command to tell @value{GDBN} to
2126 display the name of the terminal that will be used for future runs of your
2127 program.
2128
2129 @table @code
2130 @item set inferior-tty /dev/ttyb
2131 @kindex set inferior-tty
2132 Set the tty for the program being debugged to /dev/ttyb.
2133
2134 @item show inferior-tty
2135 @kindex show inferior-tty
2136 Show the current tty for the program being debugged.
2137 @end table
2138
2139 @node Attach
2140 @section Debugging an Already-running Process
2141 @kindex attach
2142 @cindex attach
2143
2144 @table @code
2145 @item attach @var{process-id}
2146 This command attaches to a running process---one that was started
2147 outside @value{GDBN}.  (@code{info files} shows your active
2148 targets.)  The command takes as argument a process ID.  The usual way to
2149 find out the @var{process-id} of a Unix process is with the @code{ps} utility,
2150 or with the @samp{jobs -l} shell command.
2151
2152 @code{attach} does not repeat if you press @key{RET} a second time after
2153 executing the command.
2154 @end table
2155
2156 To use @code{attach}, your program must be running in an environment
2157 which supports processes; for example, @code{attach} does not work for
2158 programs on bare-board targets that lack an operating system.  You must
2159 also have permission to send the process a signal.
2160
2161 When you use @code{attach}, the debugger finds the program running in
2162 the process first by looking in the current working directory, then (if
2163 the program is not found) by using the source file search path
2164 (@pxref{Source Path, ,Specifying Source Directories}).  You can also use
2165 the @code{file} command to load the program.  @xref{Files, ,Commands to
2166 Specify Files}.
2167
2168 The first thing @value{GDBN} does after arranging to debug the specified
2169 process is to stop it.  You can examine and modify an attached process
2170 with all the @value{GDBN} commands that are ordinarily available when
2171 you start processes with @code{run}.  You can insert breakpoints; you
2172 can step and continue; you can modify storage.  If you would rather the
2173 process continue running, you may use the @code{continue} command after
2174 attaching @value{GDBN} to the process.
2175
2176 @table @code
2177 @kindex detach
2178 @item detach
2179 When you have finished debugging the attached process, you can use the
2180 @code{detach} command to release it from @value{GDBN} control.  Detaching
2181 the process continues its execution.  After the @code{detach} command,
2182 that process and @value{GDBN} become completely independent once more, and you
2183 are ready to @code{attach} another process or start one with @code{run}.
2184 @code{detach} does not repeat if you press @key{RET} again after
2185 executing the command.
2186 @end table
2187
2188 If you exit @value{GDBN} while you have an attached process, you detach
2189 that process.  If you use the @code{run} command, you kill that process.
2190 By default, @value{GDBN} asks for confirmation if you try to do either of these
2191 things; you can control whether or not you need to confirm by using the
2192 @code{set confirm} command (@pxref{Messages/Warnings, ,Optional Warnings and
2193 Messages}).
2194
2195 @node Kill Process
2196 @section Killing the Child Process
2197
2198 @table @code
2199 @kindex kill
2200 @item kill
2201 Kill the child process in which your program is running under @value{GDBN}.
2202 @end table
2203
2204 This command is useful if you wish to debug a core dump instead of a
2205 running process.  @value{GDBN} ignores any core dump file while your program
2206 is running.
2207
2208 On some operating systems, a program cannot be executed outside @value{GDBN}
2209 while you have breakpoints set on it inside @value{GDBN}.  You can use the
2210 @code{kill} command in this situation to permit running your program
2211 outside the debugger.
2212
2213 The @code{kill} command is also useful if you wish to recompile and
2214 relink your program, since on many systems it is impossible to modify an
2215 executable file while it is running in a process.  In this case, when you
2216 next type @code{run}, @value{GDBN} notices that the file has changed, and
2217 reads the symbol table again (while trying to preserve your current
2218 breakpoint settings).
2219
2220 @node Threads
2221 @section Debugging Programs with Multiple Threads
2222
2223 @cindex threads of execution
2224 @cindex multiple threads
2225 @cindex switching threads
2226 In some operating systems, such as HP-UX and Solaris, a single program
2227 may have more than one @dfn{thread} of execution.  The precise semantics
2228 of threads differ from one operating system to another, but in general
2229 the threads of a single program are akin to multiple processes---except
2230 that they share one address space (that is, they can all examine and
2231 modify the same variables).  On the other hand, each thread has its own
2232 registers and execution stack, and perhaps private memory.
2233
2234 @value{GDBN} provides these facilities for debugging multi-thread
2235 programs:
2236
2237 @itemize @bullet
2238 @item automatic notification of new threads
2239 @item @samp{thread @var{threadno}}, a command to switch among threads
2240 @item @samp{info threads}, a command to inquire about existing threads
2241 @item @samp{thread apply [@var{threadno}] [@var{all}] @var{args}},
2242 a command to apply a command to a list of threads
2243 @item thread-specific breakpoints
2244 @end itemize
2245
2246 @quotation
2247 @emph{Warning:} These facilities are not yet available on every
2248 @value{GDBN} configuration where the operating system supports threads.
2249 If your @value{GDBN} does not support threads, these commands have no
2250 effect.  For example, a system without thread support shows no output
2251 from @samp{info threads}, and always rejects the @code{thread} command,
2252 like this:
2253
2254 @smallexample
2255 (@value{GDBP}) info threads
2256 (@value{GDBP}) thread 1
2257 Thread ID 1 not known.  Use the "info threads" command to
2258 see the IDs of currently known threads.
2259 @end smallexample
2260 @c FIXME to implementors: how hard would it be to say "sorry, this GDB
2261 @c                        doesn't support threads"?
2262 @end quotation
2263
2264 @cindex focus of debugging
2265 @cindex current thread
2266 The @value{GDBN} thread debugging facility allows you to observe all
2267 threads while your program runs---but whenever @value{GDBN} takes
2268 control, one thread in particular is always the focus of debugging.
2269 This thread is called the @dfn{current thread}.  Debugging commands show
2270 program information from the perspective of the current thread.
2271
2272 @cindex @code{New} @var{systag} message
2273 @cindex thread identifier (system)
2274 @c FIXME-implementors!! It would be more helpful if the [New...] message
2275 @c included GDB's numeric thread handle, so you could just go to that
2276 @c thread without first checking `info threads'.
2277 Whenever @value{GDBN} detects a new thread in your program, it displays
2278 the target system's identification for the thread with a message in the
2279 form @samp{[New @var{systag}]}.  @var{systag} is a thread identifier
2280 whose form varies depending on the particular system.  For example, on
2281 @sc{gnu}/Linux, you might see
2282
2283 @smallexample
2284 [New Thread 46912507313328 (LWP 25582)]
2285 @end smallexample
2286
2287 @noindent
2288 when @value{GDBN} notices a new thread.  In contrast, on an SGI system,
2289 the @var{systag} is simply something like @samp{process 368}, with no
2290 further qualifier.
2291
2292 @c FIXME!! (1) Does the [New...] message appear even for the very first
2293 @c         thread of a program, or does it only appear for the
2294 @c         second---i.e.@: when it becomes obvious we have a multithread
2295 @c         program?
2296 @c         (2) *Is* there necessarily a first thread always?  Or do some
2297 @c         multithread systems permit starting a program with multiple
2298 @c         threads ab initio?
2299
2300 @cindex thread number
2301 @cindex thread identifier (GDB)
2302 For debugging purposes, @value{GDBN} associates its own thread
2303 number---always a single integer---with each thread in your program.
2304
2305 @table @code
2306 @kindex info threads
2307 @item info threads
2308 Display a summary of all threads currently in your
2309 program.  @value{GDBN} displays for each thread (in this order):
2310
2311 @enumerate
2312 @item
2313 the thread number assigned by @value{GDBN}
2314
2315 @item
2316 the target system's thread identifier (@var{systag})
2317
2318 @item
2319 the current stack frame summary for that thread
2320 @end enumerate
2321
2322 @noindent
2323 An asterisk @samp{*} to the left of the @value{GDBN} thread number
2324 indicates the current thread.
2325
2326 For example,
2327 @end table
2328 @c end table here to get a little more width for example
2329
2330 @smallexample
2331 (@value{GDBP}) info threads
2332   3 process 35 thread 27  0x34e5 in sigpause ()
2333   2 process 35 thread 23  0x34e5 in sigpause ()
2334 * 1 process 35 thread 13  main (argc=1, argv=0x7ffffff8)
2335     at threadtest.c:68
2336 @end smallexample
2337
2338 On HP-UX systems:
2339
2340 @cindex debugging multithreaded programs (on HP-UX)
2341 @cindex thread identifier (GDB), on HP-UX
2342 For debugging purposes, @value{GDBN} associates its own thread
2343 number---a small integer assigned in thread-creation order---with each
2344 thread in your program.
2345
2346 @cindex @code{New} @var{systag} message, on HP-UX
2347 @cindex thread identifier (system), on HP-UX
2348 @c FIXME-implementors!! It would be more helpful if the [New...] message
2349 @c included GDB's numeric thread handle, so you could just go to that
2350 @c thread without first checking `info threads'.
2351 Whenever @value{GDBN} detects a new thread in your program, it displays
2352 both @value{GDBN}'s thread number and the target system's identification for the thread with a message in the
2353 form @samp{[New @var{systag}]}.  @var{systag} is a thread identifier
2354 whose form varies depending on the particular system.  For example, on
2355 HP-UX, you see
2356
2357 @smallexample
2358 [New thread 2 (system thread 26594)]
2359 @end smallexample
2360
2361 @noindent
2362 when @value{GDBN} notices a new thread.
2363
2364 @table @code
2365 @kindex info threads (HP-UX)
2366 @item info threads
2367 Display a summary of all threads currently in your
2368 program.  @value{GDBN} displays for each thread (in this order):
2369
2370 @enumerate
2371 @item the thread number assigned by @value{GDBN}
2372
2373 @item the target system's thread identifier (@var{systag})
2374
2375 @item the current stack frame summary for that thread
2376 @end enumerate
2377
2378 @noindent
2379 An asterisk @samp{*} to the left of the @value{GDBN} thread number
2380 indicates the current thread.
2381
2382 For example,
2383 @end table
2384 @c end table here to get a little more width for example
2385
2386 @smallexample
2387 (@value{GDBP}) info threads
2388     * 3 system thread 26607  worker (wptr=0x7b09c318 "@@") \@*
2389                                at quicksort.c:137
2390       2 system thread 26606  0x7b0030d8 in __ksleep () \@*
2391                                from /usr/lib/libc.2
2392       1 system thread 27905  0x7b003498 in _brk () \@*
2393                                from /usr/lib/libc.2
2394 @end smallexample
2395
2396 On Solaris, you can display more information about user threads with a
2397 Solaris-specific command:
2398
2399 @table @code
2400 @item maint info sol-threads
2401 @kindex maint info sol-threads
2402 @cindex thread info (Solaris)
2403 Display info on Solaris user threads.
2404 @end table
2405
2406 @table @code
2407 @kindex thread @var{threadno}
2408 @item thread @var{threadno}
2409 Make thread number @var{threadno} the current thread.  The command
2410 argument @var{threadno} is the internal @value{GDBN} thread number, as
2411 shown in the first field of the @samp{info threads} display.
2412 @value{GDBN} responds by displaying the system identifier of the thread
2413 you selected, and its current stack frame summary:
2414
2415 @smallexample
2416 @c FIXME!! This example made up; find a @value{GDBN} w/threads and get real one
2417 (@value{GDBP}) thread 2
2418 [Switching to process 35 thread 23]
2419 0x34e5 in sigpause ()
2420 @end smallexample
2421
2422 @noindent
2423 As with the @samp{[New @dots{}]} message, the form of the text after
2424 @samp{Switching to} depends on your system's conventions for identifying
2425 threads.
2426
2427 @kindex thread apply
2428 @cindex apply command to several threads
2429 @item thread apply [@var{threadno}] [@var{all}] @var{command}
2430 The @code{thread apply} command allows you to apply the named
2431 @var{command} to one or more threads.  Specify the numbers of the
2432 threads that you want affected with the command argument
2433 @var{threadno}.  It can be a single thread number, one of the numbers
2434 shown in the first field of the @samp{info threads} display; or it
2435 could be a range of thread numbers, as in @code{2-4}.  To apply a
2436 command to all threads, type @kbd{thread apply all @var{command}}.
2437 @end table
2438
2439 @cindex automatic thread selection
2440 @cindex switching threads automatically
2441 @cindex threads, automatic switching
2442 Whenever @value{GDBN} stops your program, due to a breakpoint or a
2443 signal, it automatically selects the thread where that breakpoint or
2444 signal happened.  @value{GDBN} alerts you to the context switch with a
2445 message of the form @samp{[Switching to @var{systag}]} to identify the
2446 thread.
2447
2448 @xref{Thread Stops,,Stopping and Starting Multi-thread Programs}, for
2449 more information about how @value{GDBN} behaves when you stop and start
2450 programs with multiple threads.
2451
2452 @xref{Set Watchpoints,,Setting Watchpoints}, for information about
2453 watchpoints in programs with multiple threads.
2454
2455 @node Processes
2456 @section Debugging Programs with Multiple Processes
2457
2458 @cindex fork, debugging programs which call
2459 @cindex multiple processes
2460 @cindex processes, multiple
2461 On most systems, @value{GDBN} has no special support for debugging
2462 programs which create additional processes using the @code{fork}
2463 function.  When a program forks, @value{GDBN} will continue to debug the
2464 parent process and the child process will run unimpeded.  If you have
2465 set a breakpoint in any code which the child then executes, the child
2466 will get a @code{SIGTRAP} signal which (unless it catches the signal)
2467 will cause it to terminate.
2468
2469 However, if you want to debug the child process there is a workaround
2470 which isn't too painful.  Put a call to @code{sleep} in the code which
2471 the child process executes after the fork.  It may be useful to sleep
2472 only if a certain environment variable is set, or a certain file exists,
2473 so that the delay need not occur when you don't want to run @value{GDBN}
2474 on the child.  While the child is sleeping, use the @code{ps} program to
2475 get its process ID.  Then tell @value{GDBN} (a new invocation of
2476 @value{GDBN} if you are also debugging the parent process) to attach to
2477 the child process (@pxref{Attach}).  From that point on you can debug
2478 the child process just like any other process which you attached to.
2479
2480 On some systems, @value{GDBN} provides support for debugging programs that
2481 create additional processes using the @code{fork} or @code{vfork} functions.
2482 Currently, the only platforms with this feature are HP-UX (11.x and later
2483 only?) and GNU/Linux (kernel version 2.5.60 and later).
2484
2485 By default, when a program forks, @value{GDBN} will continue to debug
2486 the parent process and the child process will run unimpeded.
2487
2488 If you want to follow the child process instead of the parent process,
2489 use the command @w{@code{set follow-fork-mode}}.
2490
2491 @table @code
2492 @kindex set follow-fork-mode
2493 @item set follow-fork-mode @var{mode}
2494 Set the debugger response to a program call of @code{fork} or
2495 @code{vfork}.  A call to @code{fork} or @code{vfork} creates a new
2496 process.  The @var{mode} argument can be:
2497
2498 @table @code
2499 @item parent
2500 The original process is debugged after a fork.  The child process runs
2501 unimpeded.  This is the default.
2502
2503 @item child
2504 The new process is debugged after a fork.  The parent process runs
2505 unimpeded.
2506
2507 @end table
2508
2509 @kindex show follow-fork-mode
2510 @item show follow-fork-mode
2511 Display the current debugger response to a @code{fork} or @code{vfork} call.
2512 @end table
2513
2514 @cindex debugging multiple processes
2515 On Linux, if you want to debug both the parent and child processes, use the
2516 command @w{@code{set detach-on-fork}}.
2517
2518 @table @code
2519 @kindex set detach-on-fork
2520 @item set detach-on-fork @var{mode}
2521 Tells gdb whether to detach one of the processes after a fork, or
2522 retain debugger control over them both.
2523
2524 @table @code
2525 @item on
2526 The child process (or parent process, depending on the value of
2527 @code{follow-fork-mode}) will be detached and allowed to run 
2528 independently.  This is the default.
2529
2530 @item off
2531 Both processes will be held under the control of @value{GDBN}.
2532 One process (child or parent, depending on the value of 
2533 @code{follow-fork-mode}) is debugged as usual, while the other
2534 is held suspended.  
2535
2536 @end table
2537
2538 @kindex show detach-on-follow
2539 @item show detach-on-follow
2540 Show whether detach-on-follow mode is on/off.
2541 @end table
2542
2543 If you choose to set @var{detach-on-follow} mode off, then
2544 @value{GDBN} will retain control of all forked processes (including
2545 nested forks).  You can list the forked processes under the control of
2546 @value{GDBN} by using the @w{@code{info forks}} command, and switch
2547 from one fork to another by using the @w{@code{fork}} command.
2548
2549 @table @code
2550 @kindex info forks
2551 @item info forks
2552 Print a list of all forked processes under the control of @value{GDBN}.
2553 The listing will include a fork id, a process id, and the current 
2554 position (program counter) of the process.
2555
2556
2557 @kindex fork @var{fork-id}
2558 @item fork @var{fork-id}
2559 Make fork number @var{fork-id} the current process.  The argument
2560 @var{fork-id} is the internal fork number assigned by @value{GDBN},
2561 as shown in the first field of the @samp{info forks} display.
2562
2563 @end table
2564
2565 To quit debugging one of the forked processes, you can either detach
2566 from it by using the @w{@code{detach fork}} command (allowing it to
2567 run independently), or delete (and kill) it using the
2568 @w{@code{delete fork}} command.
2569
2570 @table @code
2571 @kindex detach fork @var{fork-id}
2572 @item detach fork @var{fork-id}
2573 Detach from the process identified by @value{GDBN} fork number
2574 @var{fork-id}, and remove it from the fork list.  The process will be
2575 allowed to run independently.
2576
2577 @kindex delete fork @var{fork-id}
2578 @item delete fork @var{fork-id}
2579 Kill the process identified by @value{GDBN} fork number @var{fork-id},
2580 and remove it from the fork list.
2581
2582 @end table
2583
2584 If you ask to debug a child process and a @code{vfork} is followed by an
2585 @code{exec}, @value{GDBN} executes the new target up to the first
2586 breakpoint in the new target.  If you have a breakpoint set on
2587 @code{main} in your original program, the breakpoint will also be set on
2588 the child process's @code{main}.
2589
2590 When a child process is spawned by @code{vfork}, you cannot debug the
2591 child or parent until an @code{exec} call completes.
2592
2593 If you issue a @code{run} command to @value{GDBN} after an @code{exec}
2594 call executes, the new target restarts.  To restart the parent process,
2595 use the @code{file} command with the parent executable name as its
2596 argument.
2597
2598 You can use the @code{catch} command to make @value{GDBN} stop whenever
2599 a @code{fork}, @code{vfork}, or @code{exec} call is made.  @xref{Set
2600 Catchpoints, ,Setting Catchpoints}.
2601
2602 @node Checkpoint/Restart
2603 @section Setting a @emph{Bookmark} to Return to Later
2604
2605 @cindex checkpoint
2606 @cindex restart
2607 @cindex bookmark
2608 @cindex snapshot of a process
2609 @cindex rewind program state
2610
2611 On certain operating systems@footnote{Currently, only
2612 @sc{gnu}/Linux.}, @value{GDBN} is able to save a @dfn{snapshot} of a
2613 program's state, called a @dfn{checkpoint}, and come back to it
2614 later.
2615
2616 Returning to a checkpoint effectively undoes everything that has
2617 happened in the program since the @code{checkpoint} was saved.  This
2618 includes changes in memory, registers, and even (within some limits)
2619 system state.  Effectively, it is like going back in time to the
2620 moment when the checkpoint was saved.
2621
2622 Thus, if you're stepping thru a program and you think you're 
2623 getting close to the point where things go wrong, you can save
2624 a checkpoint.  Then, if you accidentally go too far and miss
2625 the critical statement, instead of having to restart your program
2626 from the beginning, you can just go back to the checkpoint and
2627 start again from there.
2628
2629 This can be especially useful if it takes a lot of time or 
2630 steps to reach the point where you think the bug occurs.  
2631
2632 To use the @code{checkpoint}/@code{restart} method of debugging:
2633
2634 @table @code
2635 @kindex checkpoint
2636 @item checkpoint
2637 Save a snapshot of the debugged program's current execution state.
2638 The @code{checkpoint} command takes no arguments, but each checkpoint
2639 is assigned a small integer id, similar to a breakpoint id.
2640
2641 @kindex info checkpoints
2642 @item info checkpoints
2643 List the checkpoints that have been saved in the current debugging
2644 session.  For each checkpoint, the following information will be
2645 listed:
2646
2647 @table @code
2648 @item Checkpoint ID
2649 @item Process ID
2650 @item Code Address
2651 @item Source line, or label
2652 @end table
2653
2654 @kindex restart @var{checkpoint-id}
2655 @item restart @var{checkpoint-id}
2656 Restore the program state that was saved as checkpoint number
2657 @var{checkpoint-id}.  All program variables, registers, stack frames
2658 etc.@:  will be returned to the values that they had when the checkpoint
2659 was saved.  In essence, gdb will ``wind back the clock'' to the point
2660 in time when the checkpoint was saved.
2661
2662 Note that breakpoints, @value{GDBN} variables, command history etc.
2663 are not affected by restoring a checkpoint.  In general, a checkpoint
2664 only restores things that reside in the program being debugged, not in
2665 the debugger.
2666
2667 @kindex delete checkpoint @var{checkpoint-id}
2668 @item delete checkpoint @var{checkpoint-id}
2669 Delete the previously-saved checkpoint identified by @var{checkpoint-id}.
2670
2671 @end table
2672
2673 Returning to a previously saved checkpoint will restore the user state
2674 of the program being debugged, plus a significant subset of the system
2675 (OS) state, including file pointers.  It won't ``un-write'' data from
2676 a file, but it will rewind the file pointer to the previous location,
2677 so that the previously written data can be overwritten.  For files
2678 opened in read mode, the pointer will also be restored so that the
2679 previously read data can be read again.
2680
2681 Of course, characters that have been sent to a printer (or other
2682 external device) cannot be ``snatched back'', and characters received
2683 from eg.@: a serial device can be removed from internal program buffers,
2684 but they cannot be ``pushed back'' into the serial pipeline, ready to
2685 be received again.  Similarly, the actual contents of files that have
2686 been changed cannot be restored (at this time).
2687
2688 However, within those constraints, you actually can ``rewind'' your
2689 program to a previously saved point in time, and begin debugging it
2690 again --- and you can change the course of events so as to debug a
2691 different execution path this time.
2692
2693 @cindex checkpoints and process id
2694 Finally, there is one bit of internal program state that will be
2695 different when you return to a checkpoint --- the program's process
2696 id.  Each checkpoint will have a unique process id (or @var{pid}), 
2697 and each will be different from the program's original @var{pid}.
2698 If your program has saved a local copy of its process id, this could
2699 potentially pose a problem.
2700
2701 @subsection A Non-obvious Benefit of Using Checkpoints
2702
2703 On some systems such as @sc{gnu}/Linux, address space randomization
2704 is performed on new processes for security reasons.  This makes it 
2705 difficult or impossible to set a breakpoint, or watchpoint, on an
2706 absolute address if you have to restart the program, since the 
2707 absolute location of a symbol will change from one execution to the
2708 next.
2709
2710 A checkpoint, however, is an @emph{identical} copy of a process. 
2711 Therefore if you create a checkpoint at (eg.@:) the start of main, 
2712 and simply return to that checkpoint instead of restarting the 
2713 process, you can avoid the effects of address randomization and
2714 your symbols will all stay in the same place.
2715
2716 @node Stopping
2717 @chapter Stopping and Continuing
2718
2719 The principal purposes of using a debugger are so that you can stop your
2720 program before it terminates; or so that, if your program runs into
2721 trouble, you can investigate and find out why.
2722
2723 Inside @value{GDBN}, your program may stop for any of several reasons,
2724 such as a signal, a breakpoint, or reaching a new line after a
2725 @value{GDBN} command such as @code{step}.  You may then examine and
2726 change variables, set new breakpoints or remove old ones, and then
2727 continue execution.  Usually, the messages shown by @value{GDBN} provide
2728 ample explanation of the status of your program---but you can also
2729 explicitly request this information at any time.
2730
2731 @table @code
2732 @kindex info program
2733 @item info program
2734 Display information about the status of your program: whether it is
2735 running or not, what process it is, and why it stopped.
2736 @end table
2737
2738 @menu
2739 * Breakpoints::                 Breakpoints, watchpoints, and catchpoints
2740 * Continuing and Stepping::     Resuming execution
2741 * Signals::                     Signals
2742 * Thread Stops::                Stopping and starting multi-thread programs
2743 @end menu
2744
2745 @node Breakpoints
2746 @section Breakpoints, Watchpoints, and Catchpoints
2747
2748 @cindex breakpoints
2749 A @dfn{breakpoint} makes your program stop whenever a certain point in
2750 the program is reached.  For each breakpoint, you can add conditions to
2751 control in finer detail whether your program stops.  You can set
2752 breakpoints with the @code{break} command and its variants (@pxref{Set
2753 Breaks, ,Setting Breakpoints}), to specify the place where your program
2754 should stop by line number, function name or exact address in the
2755 program.
2756
2757 On some systems, you can set breakpoints in shared libraries before
2758 the executable is run.  There is a minor limitation on HP-UX systems:
2759 you must wait until the executable is run in order to set breakpoints
2760 in shared library routines that are not called directly by the program
2761 (for example, routines that are arguments in a @code{pthread_create}
2762 call).
2763
2764 @cindex watchpoints
2765 @cindex data breakpoints
2766 @cindex memory tracing
2767 @cindex breakpoint on memory address
2768 @cindex breakpoint on variable modification
2769 A @dfn{watchpoint} is a special breakpoint that stops your program
2770 when the value of an expression changes.  The expression may be a value
2771 of a variable, or it could involve values of one or more variables
2772 combined by operators, such as @samp{a + b}.  This is sometimes called
2773 @dfn{data breakpoints}.  You must use a different command to set
2774 watchpoints (@pxref{Set Watchpoints, ,Setting Watchpoints}), but aside
2775 from that, you can manage a watchpoint like any other breakpoint: you
2776 enable, disable, and delete both breakpoints and watchpoints using the
2777 same commands.
2778
2779 You can arrange to have values from your program displayed automatically
2780 whenever @value{GDBN} stops at a breakpoint.  @xref{Auto Display,,
2781 Automatic Display}.
2782
2783 @cindex catchpoints
2784 @cindex breakpoint on events
2785 A @dfn{catchpoint} is another special breakpoint that stops your program
2786 when a certain kind of event occurs, such as the throwing of a C@t{++}
2787 exception or the loading of a library.  As with watchpoints, you use a
2788 different command to set a catchpoint (@pxref{Set Catchpoints, ,Setting
2789 Catchpoints}), but aside from that, you can manage a catchpoint like any
2790 other breakpoint.  (To stop when your program receives a signal, use the
2791 @code{handle} command; see @ref{Signals, ,Signals}.)
2792
2793 @cindex breakpoint numbers
2794 @cindex numbers for breakpoints
2795 @value{GDBN} assigns a number to each breakpoint, watchpoint, or
2796 catchpoint when you create it; these numbers are successive integers
2797 starting with one.  In many of the commands for controlling various
2798 features of breakpoints you use the breakpoint number to say which
2799 breakpoint you want to change.  Each breakpoint may be @dfn{enabled} or
2800 @dfn{disabled}; if disabled, it has no effect on your program until you
2801 enable it again.
2802
2803 @cindex breakpoint ranges
2804 @cindex ranges of breakpoints
2805 Some @value{GDBN} commands accept a range of breakpoints on which to
2806 operate.  A breakpoint range is either a single breakpoint number, like
2807 @samp{5}, or two such numbers, in increasing order, separated by a
2808 hyphen, like @samp{5-7}.  When a breakpoint range is given to a command,
2809 all breakpoints in that range are operated on.
2810
2811 @menu
2812 * Set Breaks::                  Setting breakpoints
2813 * Set Watchpoints::             Setting watchpoints
2814 * Set Catchpoints::             Setting catchpoints
2815 * Delete Breaks::               Deleting breakpoints
2816 * Disabling::                   Disabling breakpoints
2817 * Conditions::                  Break conditions
2818 * Break Commands::              Breakpoint command lists
2819 * Breakpoint Menus::            Breakpoint menus
2820 * Error in Breakpoints::        ``Cannot insert breakpoints''
2821 * Breakpoint-related Warnings:: ``Breakpoint address adjusted...''
2822 @end menu
2823
2824 @node Set Breaks
2825 @subsection Setting Breakpoints
2826
2827 @c FIXME LMB what does GDB do if no code on line of breakpt?
2828 @c       consider in particular declaration with/without initialization.
2829 @c
2830 @c FIXME 2 is there stuff on this already? break at fun start, already init?
2831
2832 @kindex break
2833 @kindex b @r{(@code{break})}
2834 @vindex $bpnum@r{, convenience variable}
2835 @cindex latest breakpoint
2836 Breakpoints are set with the @code{break} command (abbreviated
2837 @code{b}).  The debugger convenience variable @samp{$bpnum} records the
2838 number of the breakpoint you've set most recently; see @ref{Convenience
2839 Vars,, Convenience Variables}, for a discussion of what you can do with
2840 convenience variables.
2841
2842 You have several ways to say where the breakpoint should go.
2843
2844 @table @code
2845 @item break @var{function}
2846 Set a breakpoint at entry to function @var{function}.
2847 When using source languages that permit overloading of symbols, such as
2848 C@t{++}, @var{function} may refer to more than one possible place to break.
2849 @xref{Breakpoint Menus,,Breakpoint Menus}, for a discussion of that situation.
2850
2851 @item break +@var{offset}
2852 @itemx break -@var{offset}
2853 Set a breakpoint some number of lines forward or back from the position
2854 at which execution stopped in the currently selected @dfn{stack frame}.
2855 (@xref{Frames, ,Frames}, for a description of stack frames.)
2856
2857 @item break @var{linenum}
2858 Set a breakpoint at line @var{linenum} in the current source file.
2859 The current source file is the last file whose source text was printed.
2860 The breakpoint will stop your program just before it executes any of the
2861 code on that line.
2862
2863 @item break @var{filename}:@var{linenum}
2864 Set a breakpoint at line @var{linenum} in source file @var{filename}.
2865
2866 @item break @var{filename}:@var{function}
2867 Set a breakpoint at entry to function @var{function} found in file
2868 @var{filename}.  Specifying a file name as well as a function name is
2869 superfluous except when multiple files contain similarly named
2870 functions.
2871
2872 @item break *@var{address}
2873 Set a breakpoint at address @var{address}.  You can use this to set
2874 breakpoints in parts of your program which do not have debugging
2875 information or source files.
2876
2877 @item break
2878 When called without any arguments, @code{break} sets a breakpoint at
2879 the next instruction to be executed in the selected stack frame
2880 (@pxref{Stack, ,Examining the Stack}).  In any selected frame but the
2881 innermost, this makes your program stop as soon as control
2882 returns to that frame.  This is similar to the effect of a
2883 @code{finish} command in the frame inside the selected frame---except
2884 that @code{finish} does not leave an active breakpoint.  If you use
2885 @code{break} without an argument in the innermost frame, @value{GDBN} stops
2886 the next time it reaches the current location; this may be useful
2887 inside loops.
2888
2889 @value{GDBN} normally ignores breakpoints when it resumes execution, until at
2890 least one instruction has been executed.  If it did not do this, you
2891 would be unable to proceed past a breakpoint without first disabling the
2892 breakpoint.  This rule applies whether or not the breakpoint already
2893 existed when your program stopped.
2894
2895 @item break @dots{} if @var{cond}
2896 Set a breakpoint with condition @var{cond}; evaluate the expression
2897 @var{cond} each time the breakpoint is reached, and stop only if the
2898 value is nonzero---that is, if @var{cond} evaluates as true.
2899 @samp{@dots{}} stands for one of the possible arguments described
2900 above (or no argument) specifying where to break.  @xref{Conditions,
2901 ,Break Conditions}, for more information on breakpoint conditions.
2902
2903 @kindex tbreak
2904 @item tbreak @var{args}
2905 Set a breakpoint enabled only for one stop.  @var{args} are the
2906 same as for the @code{break} command, and the breakpoint is set in the same
2907 way, but the breakpoint is automatically deleted after the first time your
2908 program stops there.  @xref{Disabling, ,Disabling Breakpoints}.
2909
2910 @kindex hbreak
2911 @cindex hardware breakpoints
2912 @item hbreak @var{args}
2913 Set a hardware-assisted breakpoint.  @var{args} are the same as for the
2914 @code{break} command and the breakpoint is set in the same way, but the
2915 breakpoint requires hardware support and some target hardware may not
2916 have this support.  The main purpose of this is EPROM/ROM code
2917 debugging, so you can set a breakpoint at an instruction without
2918 changing the instruction.  This can be used with the new trap-generation
2919 provided by SPARClite DSU and most x86-based targets.  These targets
2920 will generate traps when a program accesses some data or instruction
2921 address that is assigned to the debug registers.  However the hardware
2922 breakpoint registers can take a limited number of breakpoints.  For
2923 example, on the DSU, only two data breakpoints can be set at a time, and
2924 @value{GDBN} will reject this command if more than two are used.  Delete
2925 or disable unused hardware breakpoints before setting new ones
2926 (@pxref{Disabling, ,Disabling Breakpoints}).
2927 @xref{Conditions, ,Break Conditions}.
2928 For remote targets, you can restrict the number of hardware
2929 breakpoints @value{GDBN} will use, see @ref{set remote
2930 hardware-breakpoint-limit}.
2931
2932
2933 @kindex thbreak
2934 @item thbreak @var{args}
2935 Set a hardware-assisted breakpoint enabled only for one stop.  @var{args}
2936 are the same as for the @code{hbreak} command and the breakpoint is set in
2937 the same way.  However, like the @code{tbreak} command,
2938 the breakpoint is automatically deleted after the
2939 first time your program stops there.  Also, like the @code{hbreak}
2940 command, the breakpoint requires hardware support and some target hardware
2941 may not have this support.  @xref{Disabling, ,Disabling Breakpoints}.
2942 See also @ref{Conditions, ,Break Conditions}.
2943
2944 @kindex rbreak
2945 @cindex regular expression
2946 @cindex breakpoints in functions matching a regexp
2947 @cindex set breakpoints in many functions
2948 @item rbreak @var{regex}
2949 Set breakpoints on all functions matching the regular expression
2950 @var{regex}.  This command sets an unconditional breakpoint on all
2951 matches, printing a list of all breakpoints it set.  Once these
2952 breakpoints are set, they are treated just like the breakpoints set with
2953 the @code{break} command.  You can delete them, disable them, or make
2954 them conditional the same way as any other breakpoint.
2955
2956 The syntax of the regular expression is the standard one used with tools
2957 like @file{grep}.  Note that this is different from the syntax used by
2958 shells, so for instance @code{foo*} matches all functions that include
2959 an @code{fo} followed by zero or more @code{o}s.  There is an implicit
2960 @code{.*} leading and trailing the regular expression you supply, so to
2961 match only functions that begin with @code{foo}, use @code{^foo}.
2962
2963 @cindex non-member C@t{++} functions, set breakpoint in
2964 When debugging C@t{++} programs, @code{rbreak} is useful for setting
2965 breakpoints on overloaded functions that are not members of any special
2966 classes.
2967
2968 @cindex set breakpoints on all functions
2969 The @code{rbreak} command can be used to set breakpoints in
2970 @strong{all} the functions in a program, like this:
2971
2972 @smallexample
2973 (@value{GDBP}) rbreak .
2974 @end smallexample
2975
2976 @kindex info breakpoints
2977 @cindex @code{$_} and @code{info breakpoints}
2978 @item info breakpoints @r{[}@var{n}@r{]}
2979 @itemx info break @r{[}@var{n}@r{]}
2980 @itemx info watchpoints @r{[}@var{n}@r{]}
2981 Print a table of all breakpoints, watchpoints, and catchpoints set and
2982 not deleted.  Optional argument @var{n} means print information only
2983 about the specified breakpoint (or watchpoint or catchpoint).  For
2984 each breakpoint, following columns are printed:
2985
2986 @table @emph
2987 @item Breakpoint Numbers
2988 @item Type
2989 Breakpoint, watchpoint, or catchpoint.
2990 @item Disposition
2991 Whether the breakpoint is marked to be disabled or deleted when hit.
2992 @item Enabled or Disabled
2993 Enabled breakpoints are marked with @samp{y}.  @samp{n} marks breakpoints
2994 that are not enabled.
2995 @item Address
2996 Where the breakpoint is in your program, as a memory address.  If the
2997 breakpoint is pending (see below for details) on a future load of a shared library, the address
2998 will be listed as @samp{<PENDING>}.
2999 @item What
3000 Where the breakpoint is in the source for your program, as a file and
3001 line number.  For a pending breakpoint, the original string passed to
3002 the breakpoint command will be listed as it cannot be resolved until
3003 the appropriate shared library is loaded in the future.
3004 @end table
3005
3006 @noindent
3007 If a breakpoint is conditional, @code{info break} shows the condition on
3008 the line following the affected breakpoint; breakpoint commands, if any,
3009 are listed after that.  A pending breakpoint is allowed to have a condition
3010 specified for it.  The condition is not parsed for validity until a shared
3011 library is loaded that allows the pending breakpoint to resolve to a
3012 valid location.
3013
3014 @noindent
3015 @code{info break} with a breakpoint
3016 number @var{n} as argument lists only that breakpoint.  The
3017 convenience variable @code{$_} and the default examining-address for
3018 the @code{x} command are set to the address of the last breakpoint
3019 listed (@pxref{Memory, ,Examining Memory}).
3020
3021 @noindent
3022 @code{info break} displays a count of the number of times the breakpoint
3023 has been hit.  This is especially useful in conjunction with the
3024 @code{ignore} command.  You can ignore a large number of breakpoint
3025 hits, look at the breakpoint info to see how many times the breakpoint
3026 was hit, and then run again, ignoring one less than that number.  This
3027 will get you quickly to the last hit of that breakpoint.
3028 @end table
3029
3030 @value{GDBN} allows you to set any number of breakpoints at the same place in
3031 your program.  There is nothing silly or meaningless about this.  When
3032 the breakpoints are conditional, this is even useful
3033 (@pxref{Conditions, ,Break Conditions}).
3034
3035 @cindex pending breakpoints
3036 If a specified breakpoint location cannot be found, it may be due to the fact
3037 that the location is in a shared library that is yet to be loaded.  In such
3038 a case, you may want @value{GDBN} to create a special breakpoint (known as
3039 a @dfn{pending breakpoint}) that
3040 attempts to resolve itself in the future when an appropriate shared library
3041 gets loaded.
3042
3043 Pending breakpoints are useful to set at the start of your
3044 @value{GDBN} session for locations that you know will be dynamically loaded
3045 later by the program being debugged.  When shared libraries are loaded,
3046 a check is made to see if the load resolves any pending breakpoint locations.
3047 If a pending breakpoint location gets resolved,
3048 a regular breakpoint is created and the original pending breakpoint is removed.
3049
3050 @value{GDBN} provides some additional commands for controlling pending
3051 breakpoint support:
3052
3053 @kindex set breakpoint pending
3054 @kindex show breakpoint pending
3055 @table @code
3056 @item set breakpoint pending auto
3057 This is the default behavior.  When @value{GDBN} cannot find the breakpoint
3058 location, it queries you whether a pending breakpoint should be created.
3059
3060 @item set breakpoint pending on
3061 This indicates that an unrecognized breakpoint location should automatically
3062 result in a pending breakpoint being created.
3063
3064 @item set breakpoint pending off
3065 This indicates that pending breakpoints are not to be created.  Any
3066 unrecognized breakpoint location results in an error.  This setting does
3067 not affect any pending breakpoints previously created.
3068
3069 @item show breakpoint pending
3070 Show the current behavior setting for creating pending breakpoints.
3071 @end table
3072
3073 @cindex operations allowed on pending breakpoints
3074 Normal breakpoint operations apply to pending breakpoints as well.  You may
3075 specify a condition for a pending breakpoint and/or commands to run when the
3076 breakpoint is reached.  You can also enable or disable
3077 the pending breakpoint.  When you specify a condition for a pending breakpoint,
3078 the parsing of the condition will be deferred until the point where the
3079 pending breakpoint location is resolved.  Disabling a pending breakpoint
3080 tells @value{GDBN} to not attempt to resolve the breakpoint on any subsequent
3081 shared library load.  When a pending breakpoint is re-enabled,
3082 @value{GDBN} checks to see if the location is already resolved.
3083 This is done because any number of shared library loads could have
3084 occurred since the time the breakpoint was disabled and one or more
3085 of these loads could resolve the location.
3086
3087 @cindex automatic hardware breakpoints
3088 For some targets, @value{GDBN} can automatically decide if hardware or
3089 software breakpoints should be used, depending on whether the
3090 breakpoint address is read-only or read-write.  This applies to
3091 breakpoints set with the @code{break} command as well as to internal
3092 breakpoints set by commands like @code{next} and @code{finish}.  For
3093 breakpoints set with @code{hbreak}, @value{GDBN} will always use hardware 
3094 breakpoints.
3095
3096 You can control this automatic behaviour with the following commands::
3097
3098 @kindex set breakpoint auto-hw
3099 @kindex show breakpoint auto-hw
3100 @table @code
3101 @item set breakpoint auto-hw on
3102 This is the default behavior.  When @value{GDBN} sets a breakpoint, it
3103 will try to use the target memory map to decide if software or hardware
3104 breakpoint must be used.
3105
3106 @item set breakpoint auto-hw off
3107 This indicates @value{GDBN} should not automatically select breakpoint
3108 type.  If the target provides a memory map, @value{GDBN} will warn when
3109 trying to set software breakpoint at a read-only address.
3110 @end table
3111
3112
3113 @cindex negative breakpoint numbers
3114 @cindex internal @value{GDBN} breakpoints
3115 @value{GDBN} itself sometimes sets breakpoints in your program for
3116 special purposes, such as proper handling of @code{longjmp} (in C
3117 programs).  These internal breakpoints are assigned negative numbers,
3118 starting with @code{-1}; @samp{info breakpoints} does not display them.
3119 You can see these breakpoints with the @value{GDBN} maintenance command
3120 @samp{maint info breakpoints} (@pxref{maint info breakpoints}).
3121
3122
3123 @node Set Watchpoints
3124 @subsection Setting Watchpoints
3125
3126 @cindex setting watchpoints
3127 You can use a watchpoint to stop execution whenever the value of an
3128 expression changes, without having to predict a particular place where
3129 this may happen.  (This is sometimes called a @dfn{data breakpoint}.)
3130 The expression may be as simple as the value of a single variable, or
3131 as complex as many variables combined by operators.  Examples include:
3132
3133 @itemize @bullet
3134 @item
3135 A reference to the value of a single variable.
3136
3137 @item
3138 An address cast to an appropriate data type.  For example,
3139 @samp{*(int *)0x12345678} will watch a 4-byte region at the specified
3140 address (assuming an @code{int} occupies 4 bytes).
3141
3142 @item
3143 An arbitrarily complex expression, such as @samp{a*b + c/d}.  The
3144 expression can use any operators valid in the program's native
3145 language (@pxref{Languages}).
3146 @end itemize
3147
3148 @cindex software watchpoints
3149 @cindex hardware watchpoints
3150 Depending on your system, watchpoints may be implemented in software or
3151 hardware.  @value{GDBN} does software watchpointing by single-stepping your
3152 program and testing the variable's value each time, which is hundreds of
3153 times slower than normal execution.  (But this may still be worth it, to
3154 catch errors where you have no clue what part of your program is the
3155 culprit.)
3156
3157 On some systems, such as HP-UX, @sc{gnu}/Linux and most other
3158 x86-based targets, @value{GDBN} includes support for hardware
3159 watchpoints, which do not slow down the running of your program.
3160
3161 @table @code
3162 @kindex watch
3163 @item watch @var{expr}
3164 Set a watchpoint for an expression.  @value{GDBN} will break when the
3165 expression @var{expr} is written into by the program and its value
3166 changes.  The simplest (and the most popular) use of this command is
3167 to watch the value of a single variable:
3168
3169 @smallexample
3170 (@value{GDBP}) watch foo
3171 @end smallexample
3172
3173 @kindex rwatch
3174 @item rwatch @var{expr}
3175 Set a watchpoint that will break when the value of @var{expr} is read
3176 by the program.
3177
3178 @kindex awatch
3179 @item awatch @var{expr}
3180 Set a watchpoint that will break when @var{expr} is either read from
3181 or written into by the program.
3182
3183 @kindex info watchpoints @r{[}@var{n}@r{]}
3184 @item info watchpoints
3185 This command prints a list of watchpoints, breakpoints, and catchpoints;
3186 it is the same as @code{info break} (@pxref{Set Breaks}).
3187 @end table
3188
3189 @value{GDBN} sets a @dfn{hardware watchpoint} if possible.  Hardware
3190 watchpoints execute very quickly, and the debugger reports a change in
3191 value at the exact instruction where the change occurs.  If @value{GDBN}
3192 cannot set a hardware watchpoint, it sets a software watchpoint, which
3193 executes more slowly and reports the change in value at the next
3194 @emph{statement}, not the instruction, after the change occurs.
3195
3196 @cindex use only software watchpoints
3197 You can force @value{GDBN} to use only software watchpoints with the
3198 @kbd{set can-use-hw-watchpoints 0} command.  With this variable set to
3199 zero, @value{GDBN} will never try to use hardware watchpoints, even if
3200 the underlying system supports them.  (Note that hardware-assisted
3201 watchpoints that were set @emph{before} setting
3202 @code{can-use-hw-watchpoints} to zero will still use the hardware
3203 mechanism of watching expression values.)
3204
3205 @table @code
3206 @item set can-use-hw-watchpoints
3207 @kindex set can-use-hw-watchpoints
3208 Set whether or not to use hardware watchpoints.
3209
3210 @item show can-use-hw-watchpoints
3211 @kindex show can-use-hw-watchpoints
3212 Show the current mode of using hardware watchpoints.
3213 @end table
3214
3215 For remote targets, you can restrict the number of hardware
3216 watchpoints @value{GDBN} will use, see @ref{set remote
3217 hardware-breakpoint-limit}.
3218
3219 When you issue the @code{watch} command, @value{GDBN} reports
3220
3221 @smallexample
3222 Hardware watchpoint @var{num}: @var{expr}
3223 @end smallexample
3224
3225 @noindent
3226 if it was able to set a hardware watchpoint.
3227
3228 Currently, the @code{awatch} and @code{rwatch} commands can only set
3229 hardware watchpoints, because accesses to data that don't change the
3230 value of the watched expression cannot be detected without examining
3231 every instruction as it is being executed, and @value{GDBN} does not do
3232 that currently.  If @value{GDBN} finds that it is unable to set a
3233 hardware breakpoint with the @code{awatch} or @code{rwatch} command, it
3234 will print a message like this:
3235
3236 @smallexample
3237 Expression cannot be implemented with read/access watchpoint.
3238 @end smallexample
3239
3240 Sometimes, @value{GDBN} cannot set a hardware watchpoint because the
3241 data type of the watched expression is wider than what a hardware
3242 watchpoint on the target machine can handle.  For example, some systems
3243 can only watch regions that are up to 4 bytes wide; on such systems you
3244 cannot set hardware watchpoints for an expression that yields a
3245 double-precision floating-point number (which is typically 8 bytes
3246 wide).  As a work-around, it might be possible to break the large region
3247 into a series of smaller ones and watch them with separate watchpoints.
3248
3249 If you set too many hardware watchpoints, @value{GDBN} might be unable
3250 to insert all of them when you resume the execution of your program.
3251 Since the precise number of active watchpoints is unknown until such
3252 time as the program is about to be resumed, @value{GDBN} might not be
3253 able to warn you about this when you set the watchpoints, and the
3254 warning will be printed only when the program is resumed:
3255
3256 @smallexample
3257 Hardware watchpoint @var{num}: Could not insert watchpoint
3258 @end smallexample
3259
3260 @noindent
3261 If this happens, delete or disable some of the watchpoints.
3262
3263 Watching complex expressions that reference many variables can also
3264 exhaust the resources available for hardware-assisted watchpoints.
3265 That's because @value{GDBN} needs to watch every variable in the
3266 expression with separately allocated resources.
3267
3268 The SPARClite DSU will generate traps when a program accesses some data
3269 or instruction address that is assigned to the debug registers.  For the
3270 data addresses, DSU facilitates the @code{watch} command.  However the
3271 hardware breakpoint registers can only take two data watchpoints, and
3272 both watchpoints must be the same kind.  For example, you can set two
3273 watchpoints with @code{watch} commands, two with @code{rwatch} commands,
3274 @strong{or} two with @code{awatch} commands, but you cannot set one
3275 watchpoint with one command and the other with a different command.
3276 @value{GDBN} will reject the command if you try to mix watchpoints.
3277 Delete or disable unused watchpoint commands before setting new ones.
3278
3279 If you call a function interactively using @code{print} or @code{call},
3280 any watchpoints you have set will be inactive until @value{GDBN} reaches another
3281 kind of breakpoint or the call completes.
3282
3283 @value{GDBN} automatically deletes watchpoints that watch local
3284 (automatic) variables, or expressions that involve such variables, when
3285 they go out of scope, that is, when the execution leaves the block in
3286 which these variables were defined.  In particular, when the program
3287 being debugged terminates, @emph{all} local variables go out of scope,
3288 and so only watchpoints that watch global variables remain set.  If you
3289 rerun the program, you will need to set all such watchpoints again.  One
3290 way of doing that would be to set a code breakpoint at the entry to the
3291 @code{main} function and when it breaks, set all the watchpoints.
3292
3293 @quotation
3294 @cindex watchpoints and threads
3295 @cindex threads and watchpoints
3296 @emph{Warning:} In multi-thread programs, watchpoints have only limited
3297 usefulness.  With the current watchpoint implementation, @value{GDBN}
3298 can only watch the value of an expression @emph{in a single thread}.  If
3299 you are confident that the expression can only change due to the current
3300 thread's activity (and if you are also confident that no other thread
3301 can become current), then you can use watchpoints as usual.  However,
3302 @value{GDBN} may not notice when a non-current thread's activity changes
3303 the expression.
3304
3305 @c FIXME: this is almost identical to the previous paragraph.
3306 @emph{HP-UX Warning:} In multi-thread programs, software watchpoints
3307 have only limited usefulness.  If @value{GDBN} creates a software
3308 watchpoint, it can only watch the value of an expression @emph{in a
3309 single thread}.  If you are confident that the expression can only
3310 change due to the current thread's activity (and if you are also
3311 confident that no other thread can become current), then you can use
3312 software watchpoints as usual.  However, @value{GDBN} may not notice
3313 when a non-current thread's activity changes the expression.  (Hardware
3314 watchpoints, in contrast, watch an expression in all threads.)
3315 @end quotation
3316
3317 @xref{set remote hardware-watchpoint-limit}.
3318
3319 @node Set Catchpoints
3320 @subsection Setting Catchpoints
3321 @cindex catchpoints, setting
3322 @cindex exception handlers
3323 @cindex event handling
3324
3325 You can use @dfn{catchpoints} to cause the debugger to stop for certain
3326 kinds of program events, such as C@t{++} exceptions or the loading of a
3327 shared library.  Use the @code{catch} command to set a catchpoint.
3328
3329 @table @code
3330 @kindex catch
3331 @item catch @var{event}
3332 Stop when @var{event} occurs.  @var{event} can be any of the following:
3333 @table @code
3334 @item throw
3335 @cindex stop on C@t{++} exceptions
3336 The throwing of a C@t{++} exception.
3337
3338 @item catch
3339 The catching of a C@t{++} exception.
3340
3341 @item exception
3342 @cindex Ada exception catching
3343 @cindex catch Ada exceptions
3344 An Ada exception being raised.  If an exception name is specified
3345 at the end of the command (eg @code{catch exception Program_Error}),
3346 the debugger will stop only when this specific exception is raised.
3347 Otherwise, the debugger stops execution when any Ada exception is raised.
3348
3349 @item exception unhandled
3350 An exception that was raised but is not handled by the program.
3351
3352 @item assert
3353 A failed Ada assertion.
3354
3355 @item exec
3356 @cindex break on fork/exec
3357 A call to @code{exec}.  This is currently only available for HP-UX.
3358
3359 @item fork
3360 A call to @code{fork}.  This is currently only available for HP-UX.
3361
3362 @item vfork
3363 A call to @code{vfork}.  This is currently only available for HP-UX.
3364
3365 @item load
3366 @itemx load @var{libname}
3367 @cindex break on load/unload of shared library
3368 The dynamic loading of any shared library, or the loading of the library
3369 @var{libname}.  This is currently only available for HP-UX.
3370
3371 @item unload
3372 @itemx unload @var{libname}
3373 The unloading of any dynamically loaded shared library, or the unloading
3374 of the library @var{libname}.  This is currently only available for HP-UX.
3375 @end table
3376
3377 @item tcatch @var{event}
3378 Set a catchpoint that is enabled only for one stop.  The catchpoint is
3379 automatically deleted after the first time the event is caught.
3380
3381 @end table
3382
3383 Use the @code{info break} command to list the current catchpoints.
3384
3385 There are currently some limitations to C@t{++} exception handling
3386 (@code{catch throw} and @code{catch catch}) in @value{GDBN}:
3387
3388 @itemize @bullet
3389 @item
3390 If you call a function interactively, @value{GDBN} normally returns
3391 control to you when the function has finished executing.  If the call
3392 raises an exception, however, the call may bypass the mechanism that
3393 returns control to you and cause your program either to abort or to
3394 simply continue running until it hits a breakpoint, catches a signal
3395 that @value{GDBN} is listening for, or exits.  This is the case even if
3396 you set a catchpoint for the exception; catchpoints on exceptions are
3397 disabled within interactive calls.
3398
3399 @item
3400 You cannot raise an exception interactively.
3401
3402 @item
3403 You cannot install an exception handler interactively.
3404 @end itemize
3405
3406 @cindex raise exceptions
3407 Sometimes @code{catch} is not the best way to debug exception handling:
3408 if you need to know exactly where an exception is raised, it is better to
3409 stop @emph{before} the exception handler is called, since that way you
3410 can see the stack before any unwinding takes place.  If you set a
3411 breakpoint in an exception handler instead, it may not be easy to find
3412 out where the exception was raised.
3413
3414 To stop just before an exception handler is called, you need some
3415 knowledge of the implementation.  In the case of @sc{gnu} C@t{++}, exceptions are
3416 raised by calling a library function named @code{__raise_exception}
3417 which has the following ANSI C interface:
3418
3419 @smallexample
3420     /* @var{addr} is where the exception identifier is stored.
3421        @var{id} is the exception identifier.  */
3422     void __raise_exception (void **addr, void *id);
3423 @end smallexample
3424
3425 @noindent
3426 To make the debugger catch all exceptions before any stack
3427 unwinding takes place, set a breakpoint on @code{__raise_exception}
3428 (@pxref{Breakpoints, ,Breakpoints; Watchpoints; and Exceptions}).
3429
3430 With a conditional breakpoint (@pxref{Conditions, ,Break Conditions})
3431 that depends on the value of @var{id}, you can stop your program when
3432 a specific exception is raised.  You can use multiple conditional
3433 breakpoints to stop your program when any of a number of exceptions are
3434 raised.
3435
3436
3437 @node Delete Breaks
3438 @subsection Deleting Breakpoints
3439
3440 @cindex clearing breakpoints, watchpoints, catchpoints
3441 @cindex deleting breakpoints, watchpoints, catchpoints
3442 It is often necessary to eliminate a breakpoint, watchpoint, or
3443 catchpoint once it has done its job and you no longer want your program
3444 to stop there.  This is called @dfn{deleting} the breakpoint.  A
3445 breakpoint that has been deleted no longer exists; it is forgotten.
3446
3447 With the @code{clear} command you can delete breakpoints according to
3448 where they are in your program.  With the @code{delete} command you can
3449 delete individual breakpoints, watchpoints, or catchpoints by specifying
3450 their breakpoint numbers.
3451
3452 It is not necessary to delete a breakpoint to proceed past it.  @value{GDBN}
3453 automatically ignores breakpoints on the first instruction to be executed
3454 when you continue execution without changing the execution address.
3455
3456 @table @code
3457 @kindex clear
3458 @item clear
3459 Delete any breakpoints at the next instruction to be executed in the
3460 selected stack frame (@pxref{Selection, ,Selecting a Frame}).  When
3461 the innermost frame is selected, this is a good way to delete a
3462 breakpoint where your program just stopped.
3463
3464 @item clear @var{function}
3465 @itemx clear @var{filename}:@var{function}
3466 Delete any breakpoints set at entry to the named @var{function}.
3467
3468 @item clear @var{linenum}
3469 @itemx clear @var{filename}:@var{linenum}
3470 Delete any breakpoints set at or within the code of the specified
3471 @var{linenum} of the specified @var{filename}.
3472
3473 @cindex delete breakpoints
3474 @kindex delete
3475 @kindex d @r{(@code{delete})}
3476 @item delete @r{[}breakpoints@r{]} @r{[}@var{range}@dots{}@r{]}
3477 Delete the breakpoints, watchpoints, or catchpoints of the breakpoint
3478 ranges specified as arguments.  If no argument is specified, delete all
3479 breakpoints (@value{GDBN} asks confirmation, unless you have @code{set
3480 confirm off}).  You can abbreviate this command as @code{d}.
3481 @end table
3482
3483 @node Disabling
3484 @subsection Disabling Breakpoints
3485
3486 @cindex enable/disable a breakpoint
3487 Rather than deleting a breakpoint, watchpoint, or catchpoint, you might
3488 prefer to @dfn{disable} it.  This makes the breakpoint inoperative as if
3489 it had been deleted, but remembers the information on the breakpoint so
3490 that you can @dfn{enable} it again later.
3491
3492 You disable and enable breakpoints, watchpoints, and catchpoints with
3493 the @code{enable} and @code{disable} commands, optionally specifying one
3494 or more breakpoint numbers as arguments.  Use @code{info break} or
3495 @code{info watch} to print a list of breakpoints, watchpoints, and
3496 catchpoints if you do not know which numbers to use.
3497
3498 A breakpoint, watchpoint, or catchpoint can have any of four different
3499 states of enablement:
3500
3501 @itemize @bullet
3502 @item
3503 Enabled.  The breakpoint stops your program.  A breakpoint set
3504 with the @code{break} command starts out in this state.
3505 @item
3506 Disabled.  The breakpoint has no effect on your program.
3507 @item
3508 Enabled once.  The breakpoint stops your program, but then becomes
3509 disabled.
3510 @item
3511 Enabled for deletion.  The breakpoint stops your program, but
3512 immediately after it does so it is deleted permanently.  A breakpoint
3513 set with the @code{tbreak} command starts out in this state.
3514 @end itemize
3515
3516 You can use the following commands to enable or disable breakpoints,
3517 watchpoints, and catchpoints:
3518
3519 @table @code
3520 @kindex disable
3521 @kindex dis @r{(@code{disable})}
3522 @item disable @r{[}breakpoints@r{]} @r{[}@var{range}@dots{}@r{]}
3523 Disable the specified breakpoints---or all breakpoints, if none are
3524 listed.  A disabled breakpoint has no effect but is not forgotten.  All
3525 options such as ignore-counts, conditions and commands are remembered in
3526 case the breakpoint is enabled again later.  You may abbreviate
3527 @code{disable} as @code{dis}.
3528
3529 @kindex enable
3530 @item enable @r{[}breakpoints@r{]} @r{[}@var{range}@dots{}@r{]}
3531 Enable the specified breakpoints (or all defined breakpoints).  They
3532 become effective once again in stopping your program.
3533
3534 @item enable @r{[}breakpoints@r{]} once @var{range}@dots{}
3535 Enable the specified breakpoints temporarily.  @value{GDBN} disables any
3536 of these breakpoints immediately after stopping your program.
3537
3538 @item enable @r{[}breakpoints@r{]} delete @var{range}@dots{}
3539 Enable the specified breakpoints to work once, then die.  @value{GDBN}
3540 deletes any of these breakpoints as soon as your program stops there.
3541 Breakpoints set by the @code{tbreak} command start out in this state.
3542 @end table
3543
3544 @c FIXME: I think the following ``Except for [...] @code{tbreak}'' is
3545 @c confusing: tbreak is also initially enabled.
3546 Except for a breakpoint set with @code{tbreak} (@pxref{Set Breaks,
3547 ,Setting Breakpoints}), breakpoints that you set are initially enabled;
3548 subsequently, they become disabled or enabled only when you use one of
3549 the commands above.  (The command @code{until} can set and delete a
3550 breakpoint of its own, but it does not change the state of your other
3551 breakpoints; see @ref{Continuing and Stepping, ,Continuing and
3552 Stepping}.)
3553
3554 @node Conditions
3555 @subsection Break Conditions
3556 @cindex conditional breakpoints
3557 @cindex breakpoint conditions
3558
3559 @c FIXME what is scope of break condition expr?  Context where wanted?
3560 @c      in particular for a watchpoint?
3561 The simplest sort of breakpoint breaks every time your program reaches a
3562 specified place.  You can also specify a @dfn{condition} for a
3563 breakpoint.  A condition is just a Boolean expression in your
3564 programming language (@pxref{Expressions, ,Expressions}).  A breakpoint with
3565 a condition evaluates the expression each time your program reaches it,
3566 and your program stops only if the condition is @emph{true}.
3567
3568 This is the converse of using assertions for program validation; in that
3569 situation, you want to stop when the assertion is violated---that is,
3570 when the condition is false.  In C, if you want to test an assertion expressed
3571 by the condition @var{assert}, you should set the condition
3572 @samp{! @var{assert}} on the appropriate breakpoint.
3573
3574 Conditions are also accepted for watchpoints; you may not need them,
3575 since a watchpoint is inspecting the value of an expression anyhow---but
3576 it might be simpler, say, to just set a watchpoint on a variable name,
3577 and specify a condition that tests whether the new value is an interesting
3578 one.
3579
3580 Break conditions can have side effects, and may even call functions in
3581 your program.  This can be useful, for example, to activate functions
3582 that log program progress, or to use your own print functions to
3583 format special data structures. The effects are completely predictable
3584 unless there is another enabled breakpoint at the same address.  (In
3585 that case, @value{GDBN} might see the other breakpoint first and stop your
3586 program without checking the condition of this one.)  Note that
3587 breakpoint commands are usually more convenient and flexible than break
3588 conditions for the
3589 purpose of performing side effects when a breakpoint is reached
3590 (@pxref{Break Commands, ,Breakpoint Command Lists}).
3591
3592 Break conditions can be specified when a breakpoint is set, by using
3593 @samp{if} in the arguments to the @code{break} command.  @xref{Set
3594 Breaks, ,Setting Breakpoints}.  They can also be changed at any time
3595 with the @code{condition} command.
3596
3597 You can also use the @code{if} keyword with the @code{watch} command.
3598 The @code{catch} command does not recognize the @code{if} keyword;
3599 @code{condition} is the only way to impose a further condition on a
3600 catchpoint.
3601
3602 @table @code
3603 @kindex condition
3604 @item condition @var{bnum} @var{expression}
3605 Specify @var{expression} as the break condition for breakpoint,
3606 watchpoint, or catchpoint number @var{bnum}.  After you set a condition,
3607 breakpoint @var{bnum} stops your program only if the value of
3608 @var{expression} is true (nonzero, in C).  When you use
3609 @code{condition}, @value{GDBN} checks @var{expression} immediately for
3610 syntactic correctness, and to determine whether symbols in it have
3611 referents in the context of your breakpoint.  If @var{expression} uses
3612 symbols not referenced in the context of the breakpoint, @value{GDBN}
3613 prints an error message:
3614
3615 @smallexample
3616 No symbol "foo" in current context.
3617 @end smallexample
3618
3619 @noindent
3620 @value{GDBN} does
3621 not actually evaluate @var{expression} at the time the @code{condition}
3622 command (or a command that sets a breakpoint with a condition, like
3623 @code{break if @dots{}}) is given, however.  @xref{Expressions, ,Expressions}.
3624
3625 @item condition @var{bnum}
3626 Remove the condition from breakpoint number @var{bnum}.  It becomes
3627 an ordinary unconditional breakpoint.
3628 @end table
3629
3630 @cindex ignore count (of breakpoint)
3631 A special case of a breakpoint condition is to stop only when the
3632 breakpoint has been reached a certain number of times.  This is so
3633 useful that there is a special way to do it, using the @dfn{ignore
3634 count} of the breakpoint.  Every breakpoint has an ignore count, which
3635 is an integer.  Most of the time, the ignore count is zero, and
3636 therefore has no effect.  But if your program reaches a breakpoint whose
3637 ignore count is positive, then instead of stopping, it just decrements
3638 the ignore count by one and continues.  As a result, if the ignore count
3639 value is @var{n}, the breakpoint does not stop the next @var{n} times
3640 your program reaches it.
3641
3642 @table @code
3643 @kindex ignore
3644 @item ignore @var{bnum} @var{count}
3645 Set the ignore count of breakpoint number @var{bnum} to @var{count}.
3646 The next @var{count} times the breakpoint is reached, your program's
3647 execution does not stop; other than to decrement the ignore count, @value{GDBN}
3648 takes no action.
3649
3650 To make the breakpoint stop the next time it is reached, specify
3651 a count of zero.
3652
3653 When you use @code{continue} to resume execution of your program from a
3654 breakpoint, you can specify an ignore count directly as an argument to
3655 @code{continue}, rather than using @code{ignore}.  @xref{Continuing and
3656 Stepping,,Continuing and Stepping}.
3657
3658 If a breakpoint has a positive ignore count and a condition, the
3659 condition is not checked.  Once the ignore count reaches zero,
3660 @value{GDBN} resumes checking the condition.
3661
3662 You could achieve the effect of the ignore count with a condition such
3663 as @w{@samp{$foo-- <= 0}} using a debugger convenience variable that
3664 is decremented each time.  @xref{Convenience Vars, ,Convenience
3665 Variables}.
3666 @end table
3667
3668 Ignore counts apply to breakpoints, watchpoints, and catchpoints.
3669
3670
3671 @node Break Commands
3672 @subsection Breakpoint Command Lists
3673
3674 @cindex breakpoint commands
3675 You can give any breakpoint (or watchpoint or catchpoint) a series of
3676 commands to execute when your program stops due to that breakpoint.  For
3677 example, you might want to print the values of certain expressions, or
3678 enable other breakpoints.
3679
3680 @table @code
3681 @kindex commands
3682 @kindex end@r{ (breakpoint commands)}
3683 @item commands @r{[}@var{bnum}@r{]}
3684 @itemx @dots{} @var{command-list} @dots{}
3685 @itemx end
3686 Specify a list of commands for breakpoint number @var{bnum}.  The commands
3687 themselves appear on the following lines.  Type a line containing just
3688 @code{end} to terminate the commands.
3689
3690 To remove all commands from a breakpoint, type @code{commands} and
3691 follow it immediately with @code{end}; that is, give no commands.
3692
3693 With no @var{bnum} argument, @code{commands} refers to the last
3694 breakpoint, watchpoint, or catchpoint set (not to the breakpoint most
3695 recently encountered).
3696 @end table
3697
3698 Pressing @key{RET} as a means of repeating the last @value{GDBN} command is
3699 disabled within a @var{command-list}.
3700
3701 You can use breakpoint commands to start your program up again.  Simply
3702 use the @code{continue} command, or @code{step}, or any other command
3703 that resumes execution.
3704
3705 Any other commands in the command list, after a command that resumes
3706 execution, are ignored.  This is because any time you resume execution
3707 (even with a simple @code{next} or @code{step}), you may encounter
3708 another breakpoint---which could have its own command list, leading to
3709 ambiguities about which list to execute.
3710
3711 @kindex silent
3712 If the first command you specify in a command list is @code{silent}, the
3713 usual message about stopping at a breakpoint is not printed.  This may
3714 be desirable for breakpoints that are to print a specific message and
3715 then continue.  If none of the remaining commands print anything, you
3716 see no sign that the breakpoint was reached.  @code{silent} is
3717 meaningful only at the beginning of a breakpoint command list.
3718
3719 The commands @code{echo}, @code{output}, and @code{printf} allow you to
3720 print precisely controlled output, and are often useful in silent
3721 breakpoints.  @xref{Output, ,Commands for Controlled Output}.
3722
3723 For example, here is how you could use breakpoint commands to print the
3724 value of @code{x} at entry to @code{foo} whenever @code{x} is positive.
3725
3726 @smallexample
3727 break foo if x>0
3728 commands
3729 silent
3730 printf "x is %d\n",x
3731 cont
3732 end
3733 @end smallexample
3734
3735 One application for breakpoint commands is to compensate for one bug so
3736 you can test for another.  Put a breakpoint just after the erroneous line
3737 of code, give it a condition to detect the case in which something
3738 erroneous has been done, and give it commands to assign correct values
3739 to any variables that need them.  End with the @code{continue} command
3740 so that your program does not stop, and start with the @code{silent}
3741 command so that no output is produced.  Here is an example:
3742
3743 @smallexample
3744 break 403
3745 commands
3746 silent
3747 set x = y + 4
3748 cont
3749 end
3750 @end smallexample
3751
3752 @node Breakpoint Menus
3753 @subsection Breakpoint Menus
3754 @cindex overloading
3755 @cindex symbol overloading
3756
3757 Some programming languages (notably C@t{++} and Objective-C) permit a
3758 single function name
3759 to be defined several times, for application in different contexts.
3760 This is called @dfn{overloading}.  When a function name is overloaded,
3761 @samp{break @var{function}} is not enough to tell @value{GDBN} where you want
3762 a breakpoint.  If you realize this is a problem, you can use
3763 something like @samp{break @var{function}(@var{types})} to specify which
3764 particular version of the function you want.  Otherwise, @value{GDBN} offers
3765 you a menu of numbered choices for different possible breakpoints, and
3766 waits for your selection with the prompt @samp{>}.  The first two
3767 options are always @samp{[0] cancel} and @samp{[1] all}.  Typing @kbd{1}
3768 sets a breakpoint at each definition of @var{function}, and typing
3769 @kbd{0} aborts the @code{break} command without setting any new
3770 breakpoints.
3771
3772 For example, the following session excerpt shows an attempt to set a
3773 breakpoint at the overloaded symbol @code{String::after}.
3774 We choose three particular definitions of that function name:
3775
3776 @c FIXME! This is likely to change to show arg type lists, at least
3777 @smallexample
3778 @group
3779 (@value{GDBP}) b String::after
3780 [0] cancel
3781 [1] all
3782 [2] file:String.cc; line number:867
3783 [3] file:String.cc; line number:860
3784 [4] file:String.cc; line number:875
3785 [5] file:String.cc; line number:853
3786 [6] file:String.cc; line number:846
3787 [7] file:String.cc; line number:735
3788 > 2 4 6
3789 Breakpoint 1 at 0xb26c: file String.cc, line 867.
3790 Breakpoint 2 at 0xb344: file String.cc, line 875.
3791 Breakpoint 3 at 0xafcc: file String.cc, line 846.
3792 Multiple breakpoints were set.
3793 Use the "delete" command to delete unwanted
3794  breakpoints.
3795 (@value{GDBP})
3796 @end group
3797 @end smallexample
3798
3799 @c  @ifclear BARETARGET
3800 @node Error in Breakpoints
3801 @subsection ``Cannot insert breakpoints''
3802 @c
3803 @c  FIXME!! 14/6/95  Is there a real example of this?  Let's use it.
3804 @c
3805 Under some operating systems, breakpoints cannot be used in a program if
3806 any other process is running that program.  In this situation,
3807 attempting to run or continue a program with a breakpoint causes
3808 @value{GDBN} to print an error message:
3809
3810 @smallexample
3811 Cannot insert breakpoints.
3812 The same program may be running in another process.
3813 @end smallexample
3814
3815 When this happens, you have three ways to proceed:
3816
3817 @enumerate
3818 @item
3819 Remove or disable the breakpoints, then continue.
3820
3821 @item
3822 Suspend @value{GDBN}, and copy the file containing your program to a new
3823 name.  Resume @value{GDBN} and use the @code{exec-file} command to specify
3824 that @value{GDBN} should run your program under that name.
3825 Then start your program again.
3826
3827 @item
3828 Relink your program so that the text segment is nonsharable, using the
3829 linker option @samp{-N}.  The operating system limitation may not apply
3830 to nonsharable executables.
3831 @end enumerate
3832 @c  @end ifclear
3833
3834 A similar message can be printed if you request too many active
3835 hardware-assisted breakpoints and watchpoints:
3836
3837 @c FIXME: the precise wording of this message may change; the relevant
3838 @c source change is not committed yet (Sep 3, 1999).
3839 @smallexample
3840 Stopped; cannot insert breakpoints.
3841 You may have requested too many hardware breakpoints and watchpoints.
3842 @end smallexample
3843
3844 @noindent
3845 This message is printed when you attempt to resume the program, since
3846 only then @value{GDBN} knows exactly how many hardware breakpoints and
3847 watchpoints it needs to insert.
3848
3849 When this message is printed, you need to disable or remove some of the
3850 hardware-assisted breakpoints and watchpoints, and then continue.
3851
3852 @node Breakpoint-related Warnings
3853 @subsection ``Breakpoint address adjusted...''
3854 @cindex breakpoint address adjusted
3855
3856 Some processor architectures place constraints on the addresses at
3857 which breakpoints may be placed.  For architectures thus constrained,
3858 @value{GDBN} will attempt to adjust the breakpoint's address to comply
3859 with the constraints dictated by the architecture.
3860
3861 One example of such an architecture is the Fujitsu FR-V.  The FR-V is
3862 a VLIW architecture in which a number of RISC-like instructions may be
3863 bundled together for parallel execution.  The FR-V architecture
3864 constrains the location of a breakpoint instruction within such a
3865 bundle to the instruction with the lowest address.  @value{GDBN}
3866 honors this constraint by adjusting a breakpoint's address to the
3867 first in the bundle.
3868
3869 It is not uncommon for optimized code to have bundles which contain
3870 instructions from different source statements, thus it may happen that
3871 a breakpoint's address will be adjusted from one source statement to
3872 another.  Since this adjustment may significantly alter @value{GDBN}'s
3873 breakpoint related behavior from what the user expects, a warning is
3874 printed when the breakpoint is first set and also when the breakpoint
3875 is hit.
3876
3877 A warning like the one below is printed when setting a breakpoint
3878 that's been subject to address adjustment:
3879
3880 @smallexample
3881 warning: Breakpoint address adjusted from 0x00010414 to 0x00010410.
3882 @end smallexample
3883
3884 Such warnings are printed both for user settable and @value{GDBN}'s
3885 internal breakpoints.  If you see one of these warnings, you should
3886 verify that a breakpoint set at the adjusted address will have the
3887 desired affect.  If not, the breakpoint in question may be removed and
3888 other breakpoints may be set which will have the desired behavior.
3889 E.g., it may be sufficient to place the breakpoint at a later
3890 instruction.  A conditional breakpoint may also be useful in some
3891 cases to prevent the breakpoint from triggering too often.
3892
3893 @value{GDBN} will also issue a warning when stopping at one of these
3894 adjusted breakpoints:
3895
3896 @smallexample
3897 warning: Breakpoint 1 address previously adjusted from 0x00010414
3898 to 0x00010410.
3899 @end smallexample
3900
3901 When this warning is encountered, it may be too late to take remedial
3902 action except in cases where the breakpoint is hit earlier or more
3903 frequently than expected.
3904
3905 @node Continuing and Stepping
3906 @section Continuing and Stepping
3907
3908 @cindex stepping
3909 @cindex continuing
3910 @cindex resuming execution
3911 @dfn{Continuing} means resuming program execution until your program
3912 completes normally.  In contrast, @dfn{stepping} means executing just
3913 one more ``step'' of your program, where ``step'' may mean either one
3914 line of source code, or one machine instruction (depending on what
3915 particular command you use).  Either when continuing or when stepping,
3916 your program may stop even sooner, due to a breakpoint or a signal.  (If
3917 it stops due to a signal, you may want to use @code{handle}, or use
3918 @samp{signal 0} to resume execution.  @xref{Signals, ,Signals}.)
3919
3920 @table @code
3921 @kindex continue
3922 @kindex c @r{(@code{continue})}
3923 @kindex fg @r{(resume foreground execution)}
3924 @item continue @r{[}@var{ignore-count}@r{]}
3925 @itemx c @r{[}@var{ignore-count}@r{]}
3926 @itemx fg @r{[}@var{ignore-count}@r{]}
3927 Resume program execution, at the address where your program last stopped;
3928 any breakpoints set at that address are bypassed.  The optional argument
3929 @var{ignore-count} allows you to specify a further number of times to
3930 ignore a breakpoint at this location; its effect is like that of
3931 @code{ignore} (@pxref{Conditions, ,Break Conditions}).
3932
3933 The argument @var{ignore-count} is meaningful only when your program
3934 stopped due to a breakpoint.  At other times, the argument to
3935 @code{continue} is ignored.
3936
3937 The synonyms @code{c} and @code{fg} (for @dfn{foreground}, as the
3938 debugged program is deemed to be the foreground program) are provided
3939 purely for convenience, and have exactly the same behavior as
3940 @code{continue}.
3941 @end table
3942
3943 To resume execution at a different place, you can use @code{return}
3944 (@pxref{Returning, ,Returning from a Function}) to go back to the
3945 calling function; or @code{jump} (@pxref{Jumping, ,Continuing at a
3946 Different Address}) to go to an arbitrary location in your program.
3947
3948 A typical technique for using stepping is to set a breakpoint
3949 (@pxref{Breakpoints, ,Breakpoints; Watchpoints; and Catchpoints}) at the
3950 beginning of the function or the section of your program where a problem
3951 is believed to lie, run your program until it stops at that breakpoint,
3952 and then step through the suspect area, examining the variables that are
3953 interesting, until you see the problem happen.
3954
3955 @table @code
3956 @kindex step
3957 @kindex s @r{(@code{step})}
3958 @item step
3959 Continue running your program until control reaches a different source
3960 line, then stop it and return control to @value{GDBN}.  This command is
3961 abbreviated @code{s}.
3962
3963 @quotation
3964 @c "without debugging information" is imprecise; actually "without line
3965 @c numbers in the debugging information".  (gcc -g1 has debugging info but
3966 @c not line numbers).  But it seems complex to try to make that
3967 @c distinction here.
3968 @emph{Warning:} If you use the @code{step} command while control is
3969 within a function that was compiled without debugging information,
3970 execution proceeds until control reaches a function that does have
3971 debugging information.  Likewise, it will not step into a function which
3972 is compiled without debugging information.  To step through functions
3973 without debugging information, use the @code{stepi} command, described
3974 below.
3975 @end quotation
3976
3977 The @code{step} command only stops at the first instruction of a source
3978 line.  This prevents the multiple stops that could otherwise occur in
3979 @code{switch} statements, @code{for} loops, etc.  @code{step} continues
3980 to stop if a function that has debugging information is called within
3981 the line.  In other words, @code{step} @emph{steps inside} any functions
3982 called within the line.
3983
3984 Also, the @code{step} command only enters a function if there is line
3985 number information for the function.  Otherwise it acts like the
3986 @code{next} command.  This avoids problems when using @code{cc -gl}
3987 on MIPS machines.  Previously, @code{step} entered subroutines if there
3988 was any debugging information about the routine.
3989
3990 @item step @var{count}
3991 Continue running as in @code{step}, but do so @var{count} times.  If a
3992 breakpoint is reached, or a signal not related to stepping occurs before
3993 @var{count} steps, stepping stops right away.
3994
3995 @kindex next
3996 @kindex n @r{(@code{next})}
3997 @item next @r{[}@var{count}@r{]}
3998 Continue to the next source line in the current (innermost) stack frame.
3999 This is similar to @code{step}, but function calls that appear within
4000 the line of code are executed without stopping.  Execution stops when
4001 control reaches a different line of code at the original stack level
4002 that was executing when you gave the @code{next} command.  This command
4003 is abbreviated @code{n}.
4004
4005 An argument @var{count} is a repeat count, as for @code{step}.
4006
4007
4008 @c  FIX ME!!  Do we delete this, or is there a way it fits in with
4009 @c  the following paragraph?   ---  Vctoria
4010 @c
4011 @c  @code{next} within a function that lacks debugging information acts like
4012 @c  @code{step}, but any function calls appearing within the code of the
4013 @c  function are executed without stopping.
4014
4015 The @code{next} command only stops at the first instruction of a
4016 source line.  This prevents multiple stops that could otherwise occur in
4017 @code{switch} statements, @code{for} loops, etc.
4018
4019 @kindex set step-mode
4020 @item set step-mode
4021 @cindex functions without line info, and stepping
4022 @cindex stepping into functions with no line info
4023 @itemx set step-mode on
4024 The @code{set step-mode on} command causes the @code{step} command to
4025 stop at the first instruction of a function which contains no debug line
4026 information rather than stepping over it.
4027
4028 This is useful in cases where you may be interested in inspecting the
4029 machine instructions of a function which has no symbolic info and do not
4030 want @value{GDBN} to automatically skip over this function.
4031
4032 @item set step-mode off
4033 Causes the @code{step} command to step over any functions which contains no
4034 debug information.  This is the default.
4035
4036 @item show step-mode
4037 Show whether @value{GDBN} will stop in or step over functions without
4038 source line debug information.
4039
4040 @kindex finish
4041 @item finish
4042 Continue running until just after function in the selected stack frame
4043 returns.  Print the returned value (if any).
4044
4045 Contrast this with the @code{return} command (@pxref{Returning,
4046 ,Returning from a Function}).
4047
4048 @kindex until
4049 @kindex u @r{(@code{until})}
4050 @cindex run until specified location
4051 @item until
4052 @itemx u
4053 Continue running until a source line past the current line, in the
4054 current stack frame, is reached.  This command is used to avoid single
4055 stepping through a loop more than once.  It is like the @code{next}
4056 command, except that when @code{until} encounters a jump, it
4057 automatically continues execution until the program counter is greater
4058 than the address of the jump.
4059
4060 This means that when you reach the end of a loop after single stepping
4061 though it, @code{until} makes your program continue execution until it
4062 exits the loop.  In contrast, a @code{next} command at the end of a loop
4063 simply steps back to the beginning of the loop, which forces you to step
4064 through the next iteration.
4065
4066 @code{until} always stops your program if it attempts to exit the current
4067 stack frame.
4068
4069 @code{until} may produce somewhat counterintuitive results if the order
4070 of machine code does not match the order of the source lines.  For
4071 example, in the following excerpt from a debugging session, the @code{f}
4072 (@code{frame}) command shows that execution is stopped at line
4073 @code{206}; yet when we use @code{until}, we get to line @code{195}:
4074
4075 @smallexample
4076 (@value{GDBP}) f
4077 #0  main (argc=4, argv=0xf7fffae8) at m4.c:206
4078 206                 expand_input();
4079 (@value{GDBP}) until
4080 195             for ( ; argc > 0; NEXTARG) @{
4081 @end smallexample
4082
4083 This happened because, for execution efficiency, the compiler had
4084 generated code for the loop closure test at the end, rather than the
4085 start, of the loop---even though the test in a C @code{for}-loop is
4086 written before the body of the loop.  The @code{until} command appeared
4087 to step back to the beginning of the loop when it advanced to this
4088 expression; however, it has not really gone to an earlier
4089 statement---not in terms of the actual machine code.
4090
4091 @code{until} with no argument works by means of single
4092 instruction stepping, and hence is slower than @code{until} with an
4093 argument.
4094
4095 @item until @var{location}
4096 @itemx u @var{location}
4097 Continue running your program until either the specified location is
4098 reached, or the current stack frame returns.  @var{location} is any of
4099 the forms of argument acceptable to @code{break} (@pxref{Set Breaks,
4100 ,Setting Breakpoints}).  This form of the command uses breakpoints, and
4101 hence is quicker than @code{until} without an argument.  The specified
4102 location is actually reached only if it is in the current frame.  This
4103 implies that @code{until} can be used to skip over recursive function
4104 invocations.  For instance in the code below, if the current location is
4105 line @code{96}, issuing @code{until 99} will execute the program up to
4106 line @code{99} in the same invocation of factorial, i.e., after the inner
4107 invocations have returned.
4108
4109 @smallexample
4110 94      int factorial (int value)
4111 95      @{
4112 96          if (value > 1) @{
4113 97            value *= factorial (value - 1);
4114 98          @}
4115 99          return (value);
4116 100     @}
4117 @end smallexample
4118
4119
4120 @kindex advance @var{location}
4121 @itemx advance @var{location}
4122 Continue running the program up to the given @var{location}.  An argument is
4123 required, which should be of the same form as arguments for the @code{break}
4124 command.  Execution will also stop upon exit from the current stack
4125 frame.  This command is similar to @code{until}, but @code{advance} will
4126 not skip over recursive function calls, and the target location doesn't
4127 have to be in the same frame as the current one.
4128
4129
4130 @kindex stepi
4131 @kindex si @r{(@code{stepi})}
4132 @item stepi
4133 @itemx stepi @var{arg}
4134 @itemx si
4135 Execute one machine instruction, then stop and return to the debugger.
4136
4137 It is often useful to do @samp{display/i $pc} when stepping by machine
4138 instructions.  This makes @value{GDBN} automatically display the next
4139 instruction to be executed, each time your program stops.  @xref{Auto
4140 Display,, Automatic Display}.
4141
4142 An argument is a repeat count, as in @code{step}.
4143
4144 @need 750
4145 @kindex nexti
4146 @kindex ni @r{(@code{nexti})}
4147 @item nexti
4148 @itemx nexti @var{arg}
4149 @itemx ni
4150 Execute one machine instruction, but if it is a function call,
4151 proceed until the function returns.
4152
4153 An argument is a repeat count, as in @code{next}.
4154 @end table
4155
4156 @node Signals
4157 @section Signals
4158 @cindex signals
4159
4160 A signal is an asynchronous event that can happen in a program.  The
4161 operating system defines the possible kinds of signals, and gives each
4162 kind a name and a number.  For example, in Unix @code{SIGINT} is the
4163 signal a program gets when you type an interrupt character (often @kbd{Ctrl-c});
4164 @code{SIGSEGV} is the signal a program gets from referencing a place in
4165 memory far away from all the areas in use; @code{SIGALRM} occurs when
4166 the alarm clock timer goes off (which happens only if your program has
4167 requested an alarm).
4168
4169 @cindex fatal signals
4170 Some signals, including @code{SIGALRM}, are a normal part of the
4171 functioning of your program.  Others, such as @code{SIGSEGV}, indicate
4172 errors; these signals are @dfn{fatal} (they kill your program immediately) if the
4173 program has not specified in advance some other way to handle the signal.
4174 @code{SIGINT} does not indicate an error in your program, but it is normally
4175 fatal so it can carry out the purpose of the interrupt: to kill the program.
4176
4177 @value{GDBN} has the ability to detect any occurrence of a signal in your
4178 program.  You can tell @value{GDBN} in advance what to do for each kind of
4179 signal.
4180
4181 @cindex handling signals
4182 Normally, @value{GDBN} is set up to let the non-erroneous signals like
4183 @code{SIGALRM} be silently passed to your program
4184 (so as not to interfere with their role in the program's functioning)
4185 but to stop your program immediately whenever an error signal happens.
4186 You can change these settings with the @code{handle} command.
4187
4188 @table @code
4189 @kindex info signals
4190 @kindex info handle
4191 @item info signals
4192 @itemx info handle
4193 Print a table of all the kinds of signals and how @value{GDBN} has been told to
4194 handle each one.  You can use this to see the signal numbers of all
4195 the defined types of signals.
4196
4197 @item info signals @var{sig}
4198 Similar, but print information only about the specified signal number.
4199
4200 @code{info handle} is an alias for @code{info signals}.
4201
4202 @kindex handle
4203 @item handle @var{signal} @r{[}@var{keywords}@dots{}@r{]}
4204 Change the way @value{GDBN} handles signal @var{signal}.  @var{signal}
4205 can be the number of a signal or its name (with or without the
4206 @samp{SIG} at the beginning); a list of signal numbers of the form
4207 @samp{@var{low}-@var{high}}; or the word @samp{all}, meaning all the
4208 known signals.  Optional arguments @var{keywords}, described below,
4209 say what change to make.
4210 @end table
4211
4212 @c @group
4213 The keywords allowed by the @code{handle} command can be abbreviated.
4214 Their full names are:
4215
4216 @table @code
4217 @item nostop
4218 @value{GDBN} should not stop your program when this signal happens.  It may
4219 still print a message telling you that the signal has come in.
4220
4221 @item stop
4222 @value{GDBN} should stop your program when this signal happens.  This implies
4223 the @code{print} keyword as well.
4224
4225 @item print
4226 @value{GDBN} should print a message when this signal happens.
4227
4228 @item noprint
4229 @value{GDBN} should not mention the occurrence of the signal at all.  This
4230 implies the @code{nostop} keyword as well.
4231
4232 @item pass
4233 @itemx noignore
4234 @value{GDBN} should allow your program to see this signal; your program
4235 can handle the signal, or else it may terminate if the signal is fatal
4236 and not handled.  @code{pass} and @code{noignore} are synonyms.
4237
4238 @item nopass
4239 @itemx ignore
4240 @value{GDBN} should not allow your program to see this signal.
4241 @code{nopass} and @code{ignore} are synonyms.
4242 @end table
4243 @c @end group
4244
4245 When a signal stops your program, the signal is not visible to the
4246 program until you
4247 continue.  Your program sees the signal then, if @code{pass} is in
4248 effect for the signal in question @emph{at that time}.  In other words,
4249 after @value{GDBN} reports a signal, you can use the @code{handle}
4250 command with @code{pass} or @code{nopass} to control whether your
4251 program sees that signal when you continue.
4252
4253 The default is set to @code{nostop}, @code{noprint}, @code{pass} for
4254 non-erroneous signals such as @code{SIGALRM}, @code{SIGWINCH} and
4255 @code{SIGCHLD}, and to @code{stop}, @code{print}, @code{pass} for the
4256 erroneous signals.
4257
4258 You can also use the @code{signal} command to prevent your program from
4259 seeing a signal, or cause it to see a signal it normally would not see,
4260 or to give it any signal at any time.  For example, if your program stopped
4261 due to some sort of memory reference error, you might store correct
4262 values into the erroneous variables and continue, hoping to see more
4263 execution; but your program would probably terminate immediately as
4264 a result of the fatal signal once it saw the signal.  To prevent this,
4265 you can continue with @samp{signal 0}.  @xref{Signaling, ,Giving your
4266 Program a Signal}.
4267
4268 @node Thread Stops
4269 @section Stopping and Starting Multi-thread Programs
4270
4271 When your program has multiple threads (@pxref{Threads,, Debugging
4272 Programs with Multiple Threads}), you can choose whether to set
4273 breakpoints on all threads, or on a particular thread.
4274
4275 @table @code
4276 @cindex breakpoints and threads
4277 @cindex thread breakpoints
4278 @kindex break @dots{} thread @var{threadno}
4279 @item break @var{linespec} thread @var{threadno}
4280 @itemx break @var{linespec} thread @var{threadno} if @dots{}
4281 @var{linespec} specifies source lines; there are several ways of
4282 writing them, but the effect is always to specify some source line.
4283
4284 Use the qualifier @samp{thread @var{threadno}} with a breakpoint command
4285 to specify that you only want @value{GDBN} to stop the program when a
4286 particular thread reaches this breakpoint.  @var{threadno} is one of the
4287 numeric thread identifiers assigned by @value{GDBN}, shown in the first
4288 column of the @samp{info threads} display.
4289
4290 If you do not specify @samp{thread @var{threadno}} when you set a
4291 breakpoint, the breakpoint applies to @emph{all} threads of your
4292 program.
4293
4294 You can use the @code{thread} qualifier on conditional breakpoints as
4295 well; in this case, place @samp{thread @var{threadno}} before the
4296 breakpoint condition, like this:
4297
4298 @smallexample
4299 (@value{GDBP}) break frik.c:13 thread 28 if bartab > lim
4300 @end smallexample
4301
4302 @end table
4303
4304 @cindex stopped threads
4305 @cindex threads, stopped
4306 Whenever your program stops under @value{GDBN} for any reason,
4307 @emph{all} threads of execution stop, not just the current thread.  This
4308 allows you to examine the overall state of the program, including
4309 switching between threads, without worrying that things may change
4310 underfoot.
4311
4312 @cindex thread breakpoints and system calls
4313 @cindex system calls and thread breakpoints
4314 @cindex premature return from system calls
4315 There is an unfortunate side effect.  If one thread stops for a
4316 breakpoint, or for some other reason, and another thread is blocked in a
4317 system call, then the system call may return prematurely.  This is a
4318 consequence of the interaction between multiple threads and the signals
4319 that @value{GDBN} uses to implement breakpoints and other events that
4320 stop execution.
4321
4322 To handle this problem, your program should check the return value of
4323 each system call and react appropriately.  This is good programming
4324 style anyways.
4325
4326 For example, do not write code like this:
4327
4328 @smallexample
4329   sleep (10);
4330 @end smallexample
4331
4332 The call to @code{sleep} will return early if a different thread stops
4333 at a breakpoint or for some other reason.
4334
4335 Instead, write this:
4336
4337 @smallexample
4338   int unslept = 10;
4339   while (unslept > 0)
4340     unslept = sleep (unslept);
4341 @end smallexample
4342
4343 A system call is allowed to return early, so the system is still
4344 conforming to its specification.  But @value{GDBN} does cause your
4345 multi-threaded program to behave differently than it would without
4346 @value{GDBN}.
4347
4348 Also, @value{GDBN} uses internal breakpoints in the thread library to
4349 monitor certain events such as thread creation and thread destruction.
4350 When such an event happens, a system call in another thread may return
4351 prematurely, even though your program does not appear to stop.
4352
4353 @cindex continuing threads
4354 @cindex threads, continuing
4355 Conversely, whenever you restart the program, @emph{all} threads start
4356 executing.  @emph{This is true even when single-stepping} with commands
4357 like @code{step} or @code{next}.
4358
4359 In particular, @value{GDBN} cannot single-step all threads in lockstep.
4360 Since thread scheduling is up to your debugging target's operating
4361 system (not controlled by @value{GDBN}), other threads may
4362 execute more than one statement while the current thread completes a
4363 single step.  Moreover, in general other threads stop in the middle of a
4364 statement, rather than at a clean statement boundary, when the program
4365 stops.
4366
4367 You might even find your program stopped in another thread after
4368 continuing or even single-stepping.  This happens whenever some other
4369 thread runs into a breakpoint, a signal, or an exception before the
4370 first thread completes whatever you requested.
4371
4372 On some OSes, you can lock the OS scheduler and thus allow only a single
4373 thread to run.
4374
4375 @table @code
4376 @item set scheduler-locking @var{mode}
4377 @cindex scheduler locking mode
4378 @cindex lock scheduler
4379 Set the scheduler locking mode.  If it is @code{off}, then there is no
4380 locking and any thread may run at any time.  If @code{on}, then only the
4381 current thread may run when the inferior is resumed.  The @code{step}
4382 mode optimizes for single-stepping.  It stops other threads from
4383 ``seizing the prompt'' by preempting the current thread while you are
4384 stepping.  Other threads will only rarely (or never) get a chance to run
4385 when you step.  They are more likely to run when you @samp{next} over a
4386 function call, and they are completely free to run when you use commands
4387 like @samp{continue}, @samp{until}, or @samp{finish}.  However, unless another
4388 thread hits a breakpoint during its timeslice, they will never steal the
4389 @value{GDBN} prompt away from the thread that you are debugging.
4390
4391 @item show scheduler-locking
4392 Display the current scheduler locking mode.
4393 @end table
4394
4395
4396 @node Stack
4397 @chapter Examining the Stack
4398
4399 When your program has stopped, the first thing you need to know is where it
4400 stopped and how it got there.
4401
4402 @cindex call stack
4403 Each time your program performs a function call, information about the call
4404 is generated.
4405 That information includes the location of the call in your program,
4406 the arguments of the call,
4407 and the local variables of the function being called.
4408 The information is saved in a block of data called a @dfn{stack frame}.
4409 The stack frames are allocated in a region of memory called the @dfn{call
4410 stack}.
4411
4412 When your program stops, the @value{GDBN} commands for examining the
4413 stack allow you to see all of this information.
4414
4415 @cindex selected frame
4416 One of the stack frames is @dfn{selected} by @value{GDBN} and many
4417 @value{GDBN} commands refer implicitly to the selected frame.  In
4418 particular, whenever you ask @value{GDBN} for the value of a variable in
4419 your program, the value is found in the selected frame.  There are
4420 special @value{GDBN} commands to select whichever frame you are
4421 interested in.  @xref{Selection, ,Selecting a Frame}.
4422
4423 When your program stops, @value{GDBN} automatically selects the
4424 currently executing frame and describes it briefly, similar to the
4425 @code{frame} command (@pxref{Frame Info, ,Information about a Frame}).
4426
4427 @menu
4428 * Frames::                      Stack frames
4429 * Backtrace::                   Backtraces
4430 * Selection::                   Selecting a frame
4431 * Frame Info::                  Information on a frame
4432
4433 @end menu
4434
4435 @node Frames
4436 @section Stack Frames
4437
4438 @cindex frame, definition
4439 @cindex stack frame
4440 The call stack is divided up into contiguous pieces called @dfn{stack
4441 frames}, or @dfn{frames} for short; each frame is the data associated
4442 with one call to one function.  The frame contains the arguments given
4443 to the function, the function's local variables, and the address at
4444 which the function is executing.
4445
4446 @cindex initial frame
4447 @cindex outermost frame
4448 @cindex innermost frame
4449 When your program is started, the stack has only one frame, that of the
4450 function @code{main}.  This is called the @dfn{initial} frame or the
4451 @dfn{outermost} frame.  Each time a function is called, a new frame is
4452 made.  Each time a function returns, the frame for that function invocation
4453 is eliminated.  If a function is recursive, there can be many frames for
4454 the same function.  The frame for the function in which execution is
4455 actually occurring is called the @dfn{innermost} frame.  This is the most
4456 recently created of all the stack frames that still exist.
4457
4458 @cindex frame pointer
4459 Inside your program, stack frames are identified by their addresses.  A
4460 stack frame consists of many bytes, each of which has its own address; each
4461 kind of computer has a convention for choosing one byte whose
4462 address serves as the address of the frame.  Usually this address is kept
4463 in a register called the @dfn{frame pointer register}
4464 (@pxref{Registers, $fp}) while execution is going on in that frame.
4465
4466 @cindex frame number
4467 @value{GDBN} assigns numbers to all existing stack frames, starting with
4468 zero for the innermost frame, one for the frame that called it,
4469 and so on upward.  These numbers do not really exist in your program;
4470 they are assigned by @value{GDBN} to give you a way of designating stack
4471 frames in @value{GDBN} commands.
4472
4473 @c The -fomit-frame-pointer below perennially causes hbox overflow
4474 @c underflow problems.
4475 @cindex frameless execution
4476 Some compilers provide a way to compile functions so that they operate
4477 without stack frames.  (For example, the @value{NGCC} option
4478 @smallexample
4479 @samp{-fomit-frame-pointer}
4480 @end smallexample
4481 generates functions without a frame.)
4482 This is occasionally done with heavily used library functions to save
4483 the frame setup time.  @value{GDBN} has limited facilities for dealing
4484 with these function invocations.  If the innermost function invocation
4485 has no stack frame, @value{GDBN} nevertheless regards it as though
4486 it had a separate frame, which is numbered zero as usual, allowing
4487 correct tracing of the function call chain.  However, @value{GDBN} has
4488 no provision for frameless functions elsewhere in the stack.
4489
4490 @table @code
4491 @kindex frame@r{, command}
4492 @cindex current stack frame
4493 @item frame @var{args}
4494 The @code{frame} command allows you to move from one stack frame to another,
4495 and to print the stack frame you select.  @var{args} may be either the
4496 address of the frame or the stack frame number.  Without an argument,
4497 @code{frame} prints the current stack frame.
4498
4499 @kindex select-frame
4500 @cindex selecting frame silently
4501 @item select-frame
4502 The @code{select-frame} command allows you to move from one stack frame
4503 to another without printing the frame.  This is the silent version of
4504 @code{frame}.
4505 @end table
4506
4507 @node Backtrace
4508 @section Backtraces
4509
4510 @cindex traceback
4511 @cindex call stack traces
4512 A backtrace is a summary of how your program got where it is.  It shows one
4513 line per frame, for many frames, starting with the currently executing
4514 frame (frame zero), followed by its caller (frame one), and on up the
4515 stack.
4516
4517 @table @code
4518 @kindex backtrace
4519 @kindex bt @r{(@code{backtrace})}
4520 @item backtrace
4521 @itemx bt
4522 Print a backtrace of the entire stack: one line per frame for all
4523 frames in the stack.
4524
4525 You can stop the backtrace at any time by typing the system interrupt
4526 character, normally @kbd{Ctrl-c}.
4527
4528 @item backtrace @var{n}
4529 @itemx bt @var{n}
4530 Similar, but print only the innermost @var{n} frames.
4531
4532 @item backtrace -@var{n}
4533 @itemx bt -@var{n}
4534 Similar, but print only the outermost @var{n} frames.
4535
4536 @item backtrace full
4537 @itemx bt full
4538 @itemx bt full @var{n}
4539 @itemx bt full -@var{n}
4540 Print the values of the local variables also.  @var{n} specifies the
4541 number of frames to print, as described above.
4542 @end table
4543
4544 @kindex where
4545 @kindex info stack
4546 The names @code{where} and @code{info stack} (abbreviated @code{info s})
4547 are additional aliases for @code{backtrace}.
4548
4549 @cindex multiple threads, backtrace
4550 In a multi-threaded program, @value{GDBN} by default shows the
4551 backtrace only for the current thread.  To display the backtrace for
4552 several or all of the threads, use the command @code{thread apply}
4553 (@pxref{Threads, thread apply}).  For example, if you type @kbd{thread
4554 apply all backtrace}, @value{GDBN} will display the backtrace for all
4555 the threads; this is handy when you debug a core dump of a
4556 multi-threaded program.
4557
4558 Each line in the backtrace shows the frame number and the function name.
4559 The program counter value is also shown---unless you use @code{set
4560 print address off}.  The backtrace also shows the source file name and
4561 line number, as well as the arguments to the function.  The program
4562 counter value is omitted if it is at the beginning of the code for that
4563 line number.
4564
4565 Here is an example of a backtrace.  It was made with the command
4566 @samp{bt 3}, so it shows the innermost three frames.
4567
4568 @smallexample
4569 @group
4570 #0  m4_traceon (obs=0x24eb0, argc=1, argv=0x2b8c8)
4571     at builtin.c:993
4572 #1  0x6e38 in expand_macro (sym=0x2b600) at macro.c:242
4573 #2  0x6840 in expand_token (obs=0x0, t=177664, td=0xf7fffb08)
4574     at macro.c:71
4575 (More stack frames follow...)
4576 @end group
4577 @end smallexample
4578
4579 @noindent
4580 The display for frame zero does not begin with a program counter
4581 value, indicating that your program has stopped at the beginning of the
4582 code for line @code{993} of @code{builtin.c}.
4583
4584 @cindex value optimized out, in backtrace
4585 @cindex function call arguments, optimized out
4586 If your program was compiled with optimizations, some compilers will
4587 optimize away arguments passed to functions if those arguments are
4588 never used after the call.  Such optimizations generate code that
4589 passes arguments through registers, but doesn't store those arguments
4590 in the stack frame.  @value{GDBN} has no way of displaying such
4591 arguments in stack frames other than the innermost one.  Here's what
4592 such a backtrace might look like:
4593
4594 @smallexample
4595 @group
4596 #0  m4_traceon (obs=0x24eb0, argc=1, argv=0x2b8c8)
4597     at builtin.c:993
4598 #1  0x6e38 in expand_macro (sym=<value optimized out>) at macro.c:242
4599 #2  0x6840 in expand_token (obs=0x0, t=<value optimized out>, td=0xf7fffb08)
4600     at macro.c:71
4601 (More stack frames follow...)
4602 @end group
4603 @end smallexample
4604
4605 @noindent
4606 The values of arguments that were not saved in their stack frames are
4607 shown as @samp{<value optimized out>}.
4608
4609 If you need to display the values of such optimized-out arguments,
4610 either deduce that from other variables whose values depend on the one
4611 you are interested in, or recompile without optimizations.
4612
4613 @cindex backtrace beyond @code{main} function
4614 @cindex program entry point
4615 @cindex startup code, and backtrace
4616 Most programs have a standard user entry point---a place where system
4617 libraries and startup code transition into user code.  For C this is
4618 @code{main}@footnote{
4619 Note that embedded programs (the so-called ``free-standing''
4620 environment) are not required to have a @code{main} function as the
4621 entry point.  They could even have multiple entry points.}.
4622 When @value{GDBN} finds the entry function in a backtrace
4623 it will terminate the backtrace, to avoid tracing into highly
4624 system-specific (and generally uninteresting) code.
4625
4626 If you need to examine the startup code, or limit the number of levels
4627 in a backtrace, you can change this behavior:
4628
4629 @table @code
4630 @item set backtrace past-main
4631 @itemx set backtrace past-main on
4632 @kindex set backtrace
4633 Backtraces will continue past the user entry point.
4634
4635 @item set backtrace past-main off
4636 Backtraces will stop when they encounter the user entry point.  This is the
4637 default.
4638
4639 @item show backtrace past-main
4640 @kindex show backtrace
4641 Display the current user entry point backtrace policy.
4642
4643 @item set backtrace past-entry
4644 @itemx set backtrace past-entry on
4645 Backtraces will continue past the internal entry point of an application.
4646 This entry point is encoded by the linker when the application is built,
4647 and is likely before the user entry point @code{main} (or equivalent) is called.
4648
4649 @item set backtrace past-entry off
4650 Backtraces will stop when they encounter the internal entry point of an
4651 application.  This is the default.
4652
4653 @item show backtrace past-entry
4654 Display the current internal entry point backtrace policy.
4655
4656 @item set backtrace limit @var{n}
4657 @itemx set backtrace limit 0
4658 @cindex backtrace limit
4659 Limit the backtrace to @var{n} levels.  A value of zero means
4660 unlimited.
4661
4662 @item show backtrace limit
4663 Display the current limit on backtrace levels.
4664 @end table
4665
4666 @node Selection
4667 @section Selecting a Frame
4668
4669 Most commands for examining the stack and other data in your program work on
4670 whichever stack frame is selected at the moment.  Here are the commands for
4671 selecting a stack frame; all of them finish by printing a brief description
4672 of the stack frame just selected.
4673
4674 @table @code
4675 @kindex frame@r{, selecting}
4676 @kindex f @r{(@code{frame})}
4677 @item frame @var{n}
4678 @itemx f @var{n}
4679 Select frame number @var{n}.  Recall that frame zero is the innermost
4680 (currently executing) frame, frame one is the frame that called the
4681 innermost one, and so on.  The highest-numbered frame is the one for
4682 @code{main}.
4683
4684 @item frame @var{addr}
4685 @itemx f @var{addr}
4686 Select the frame at address @var{addr}.  This is useful mainly if the
4687 chaining of stack frames has been damaged by a bug, making it
4688 impossible for @value{GDBN} to assign numbers properly to all frames.  In
4689 addition, this can be useful when your program has multiple stacks and
4690 switches between them.
4691
4692 On the SPARC architecture, @code{frame} needs two addresses to
4693 select an arbitrary frame: a frame pointer and a stack pointer.
4694
4695 On the MIPS and Alpha architecture, it needs two addresses: a stack
4696 pointer and a program counter.
4697
4698 On the 29k architecture, it needs three addresses: a register stack
4699 pointer, a program counter, and a memory stack pointer.
4700
4701 @kindex up
4702 @item up @var{n}
4703 Move @var{n} frames up the stack.  For positive numbers @var{n}, this
4704 advances toward the outermost frame, to higher frame numbers, to frames
4705 that have existed longer.  @var{n} defaults to one.
4706
4707 @kindex down
4708 @kindex do @r{(@code{down})}
4709 @item down @var{n}
4710 Move @var{n} frames down the stack.  For positive numbers @var{n}, this
4711 advances toward the innermost frame, to lower frame numbers, to frames
4712 that were created more recently.  @var{n} defaults to one.  You may
4713 abbreviate @code{down} as @code{do}.
4714 @end table
4715
4716 All of these commands end by printing two lines of output describing the
4717 frame.  The first line shows the frame number, the function name, the
4718 arguments, and the source file and line number of execution in that
4719 frame.  The second line shows the text of that source line.
4720
4721 @need 1000
4722 For example:
4723
4724 @smallexample
4725 @group
4726 (@value{GDBP}) up
4727 #1  0x22f0 in main (argc=1, argv=0xf7fffbf4, env=0xf7fffbfc)
4728     at env.c:10
4729 10              read_input_file (argv[i]);
4730 @end group
4731 @end smallexample
4732
4733 After such a printout, the @code{list} command with no arguments
4734 prints ten lines centered on the point of execution in the frame.
4735 You can also edit the program at the point of execution with your favorite
4736 editing program by typing @code{edit}.
4737 @xref{List, ,Printing Source Lines},
4738 for details.
4739
4740 @table @code
4741 @kindex down-silently
4742 @kindex up-silently
4743 @item up-silently @var{n}
4744 @itemx down-silently @var{n}
4745 These two commands are variants of @code{up} and @code{down},
4746 respectively; they differ in that they do their work silently, without
4747 causing display of the new frame.  They are intended primarily for use
4748 in @value{GDBN} command scripts, where the output might be unnecessary and
4749 distracting.
4750 @end table
4751
4752 @node Frame Info
4753 @section Information About a Frame
4754
4755 There are several other commands to print information about the selected
4756 stack frame.
4757
4758 @table @code
4759 @item frame
4760 @itemx f
4761 When used without any argument, this command does not change which
4762 frame is selected, but prints a brief description of the currently
4763 selected stack frame.  It can be abbreviated @code{f}.  With an
4764 argument, this command is used to select a stack frame.
4765 @xref{Selection, ,Selecting a Frame}.
4766
4767 @kindex info frame
4768 @kindex info f @r{(@code{info frame})}
4769 @item info frame
4770 @itemx info f
4771 This command prints a verbose description of the selected stack frame,
4772 including:
4773
4774 @itemize @bullet
4775 @item
4776 the address of the frame
4777 @item
4778 the address of the next frame down (called by this frame)
4779 @item
4780 the address of the next frame up (caller of this frame)
4781 @item
4782 the language in which the source code corresponding to this frame is written
4783 @item
4784 the address of the frame's arguments
4785 @item
4786 the address of the frame's local variables
4787 @item
4788 the program counter saved in it (the address of execution in the caller frame)
4789 @item
4790 which registers were saved in the frame
4791 @end itemize
4792
4793 @noindent The verbose description is useful when
4794 something has gone wrong that has made the stack format fail to fit
4795 the usual conventions.
4796
4797 @item info frame @var{addr}
4798 @itemx info f @var{addr}
4799 Print a verbose description of the frame at address @var{addr}, without
4800 selecting that frame.  The selected frame remains unchanged by this
4801 command.  This requires the same kind of address (more than one for some
4802 architectures) that you specify in the @code{frame} command.
4803 @xref{Selection, ,Selecting a Frame}.
4804
4805 @kindex info args
4806 @item info args
4807 Print the arguments of the selected frame, each on a separate line.
4808
4809 @item info locals
4810 @kindex info locals
4811 Print the local variables of the selected frame, each on a separate
4812 line.  These are all variables (declared either static or automatic)
4813 accessible at the point of execution of the selected frame.
4814
4815 @kindex info catch
4816 @cindex catch exceptions, list active handlers
4817 @cindex exception handlers, how to list
4818 @item info catch
4819 Print a list of all the exception handlers that are active in the
4820 current stack frame at the current point of execution.  To see other
4821 exception handlers, visit the associated frame (using the @code{up},
4822 @code{down}, or @code{frame} commands); then type @code{info catch}.
4823 @xref{Set Catchpoints, , Setting Catchpoints}.
4824
4825 @end table
4826
4827
4828 @node Source
4829 @chapter Examining Source Files
4830
4831 @value{GDBN} can print parts of your program's source, since the debugging
4832 information recorded in the program tells @value{GDBN} what source files were
4833 used to build it.  When your program stops, @value{GDBN} spontaneously prints
4834 the line where it stopped.  Likewise, when you select a stack frame
4835 (@pxref{Selection, ,Selecting a Frame}), @value{GDBN} prints the line where
4836 execution in that frame has stopped.  You can print other portions of
4837 source files by explicit command.
4838
4839 If you use @value{GDBN} through its @sc{gnu} Emacs interface, you may
4840 prefer to use Emacs facilities to view source; see @ref{Emacs, ,Using
4841 @value{GDBN} under @sc{gnu} Emacs}.
4842
4843 @menu
4844 * List::                        Printing source lines
4845 * Edit::                        Editing source files
4846 * Search::                      Searching source files
4847 * Source Path::                 Specifying source directories
4848 * Machine Code::                Source and machine code
4849 @end menu
4850
4851 @node List
4852 @section Printing Source Lines
4853
4854 @kindex list
4855 @kindex l @r{(@code{list})}
4856 To print lines from a source file, use the @code{list} command
4857 (abbreviated @code{l}).  By default, ten lines are printed.
4858 There are several ways to specify what part of the file you want to print.
4859
4860 Here are the forms of the @code{list} command most commonly used:
4861
4862 @table @code
4863 @item list @var{linenum}
4864 Print lines centered around line number @var{linenum} in the
4865 current source file.
4866
4867 @item list @var{function}
4868 Print lines centered around the beginning of function
4869 @var{function}.
4870
4871 @item list
4872 Print more lines.  If the last lines printed were printed with a
4873 @code{list} command, this prints lines following the last lines
4874 printed; however, if the last line printed was a solitary line printed
4875 as part of displaying a stack frame (@pxref{Stack, ,Examining the
4876 Stack}), this prints lines centered around that line.
4877
4878 @item list -
4879 Print lines just before the lines last printed.
4880 @end table
4881
4882 @cindex @code{list}, how many lines to display
4883 By default, @value{GDBN} prints ten source lines with any of these forms of
4884 the @code{list} command.  You can change this using @code{set listsize}:
4885
4886 @table @code
4887 @kindex set listsize
4888 @item set listsize @var{count}
4889 Make the @code{list} command display @var{count} source lines (unless
4890 the @code{list} argument explicitly specifies some other number).
4891
4892 @kindex show listsize
4893 @item show listsize
4894 Display the number of lines that @code{list} prints.
4895 @end table
4896
4897 Repeating a @code{list} command with @key{RET} discards the argument,
4898 so it is equivalent to typing just @code{list}.  This is more useful
4899 than listing the same lines again.  An exception is made for an
4900 argument of @samp{-}; that argument is preserved in repetition so that
4901 each repetition moves up in the source file.
4902
4903 @cindex linespec
4904 In general, the @code{list} command expects you to supply zero, one or two
4905 @dfn{linespecs}.  Linespecs specify source lines; there are several ways
4906 of writing them, but the effect is always to specify some source line.
4907 Here is a complete description of the possible arguments for @code{list}:
4908
4909 @table @code
4910 @item list @var{linespec}
4911 Print lines centered around the line specified by @var{linespec}.
4912
4913 @item list @var{first},@var{last}
4914 Print lines from @var{first} to @var{last}.  Both arguments are
4915 linespecs.
4916
4917 @item list ,@var{last}
4918 Print lines ending with @var{last}.
4919
4920 @item list @var{first},
4921 Print lines starting with @var{first}.
4922
4923 @item list +
4924 Print lines just after the lines last printed.
4925
4926 @item list -
4927 Print lines just before the lines last printed.
4928
4929 @item list
4930 As described in the preceding table.
4931 @end table
4932
4933 Here are the ways of specifying a single source line---all the
4934 kinds of linespec.
4935
4936 @table @code
4937 @item @var{number}
4938 Specifies line @var{number} of the current source file.
4939 When a @code{list} command has two linespecs, this refers to
4940 the same source file as the first linespec.
4941
4942 @item +@var{offset}
4943 Specifies the line @var{offset} lines after the last line printed.
4944 When used as the second linespec in a @code{list} command that has
4945 two, this specifies the line @var{offset} lines down from the
4946 first linespec.
4947
4948 @item -@var{offset}
4949 Specifies the line @var{offset} lines before the last line printed.
4950
4951 @item @var{filename}:@var{number}
4952 Specifies line @var{number} in the source file @var{filename}.
4953
4954 @item @var{function}
4955 Specifies the line that begins the body of the function @var{function}.
4956 For example: in C, this is the line with the open brace.
4957
4958 @item @var{filename}:@var{function}
4959 Specifies the line of the open-brace that begins the body of the
4960 function @var{function} in the file @var{filename}.  You only need the
4961 file name with a function name to avoid ambiguity when there are
4962 identically named functions in different source files.
4963
4964 @item *@var{address}
4965 Specifies the line containing the program address @var{address}.
4966 @var{address} may be any expression.
4967 @end table
4968
4969 @node Edit
4970 @section Editing Source Files
4971 @cindex editing source files
4972
4973 @kindex edit
4974 @kindex e @r{(@code{edit})}
4975 To edit the lines in a source file, use the @code{edit} command.
4976 The editing program of your choice
4977 is invoked with the current line set to
4978 the active line in the program.
4979 Alternatively, there are several ways to specify what part of the file you
4980 want to print if you want to see other parts of the program.
4981
4982 Here are the forms of the @code{edit} command most commonly used:
4983
4984 @table @code
4985 @item edit
4986 Edit the current source file at the active line number in the program.
4987
4988 @item edit @var{number}
4989 Edit the current source file with @var{number} as the active line number.
4990
4991 @item edit @var{function}
4992 Edit the file containing @var{function} at the beginning of its definition.
4993
4994 @item edit @var{filename}:@var{number}
4995 Specifies line @var{number} in the source file @var{filename}.
4996
4997 @item edit @var{filename}:@var{function}
4998 Specifies the line that begins the body of the
4999 function @var{function} in the file @var{filename}.  You only need the
5000 file name with a function name to avoid ambiguity when there are
5001 identically named functions in different source files.
5002
5003 @item edit *@var{address}
5004 Specifies the line containing the program address @var{address}.
5005 @var{address} may be any expression.
5006 @end table
5007
5008 @subsection Choosing your Editor
5009 You can customize @value{GDBN} to use any editor you want
5010 @footnote{
5011 The only restriction is that your editor (say @code{ex}), recognizes the
5012 following command-line syntax:
5013 @smallexample
5014 ex +@var{number} file
5015 @end smallexample
5016 The optional numeric value +@var{number} specifies the number of the line in
5017 the file where to start editing.}.
5018 By default, it is @file{@value{EDITOR}}, but you can change this
5019 by setting the environment variable @code{EDITOR} before using
5020 @value{GDBN}.  For example, to configure @value{GDBN} to use the
5021 @code{vi} editor, you could use these commands with the @code{sh} shell:
5022 @smallexample
5023 EDITOR=/usr/bin/vi
5024 export EDITOR
5025 gdb @dots{}
5026 @end smallexample
5027 or in the @code{csh} shell,
5028 @smallexample
5029 setenv EDITOR /usr/bin/vi
5030 gdb @dots{}
5031 @end smallexample
5032
5033 @node Search
5034 @section Searching Source Files
5035 @cindex searching source files
5036
5037 There are two commands for searching through the current source file for a
5038 regular expression.
5039
5040 @table @code
5041 @kindex search
5042 @kindex forward-search
5043 @item forward-search @var{regexp}
5044 @itemx search @var{regexp}
5045 The command @samp{forward-search @var{regexp}} checks each line,
5046 starting with the one following the last line listed, for a match for
5047 @var{regexp}.  It lists the line that is found.  You can use the
5048 synonym @samp{search @var{regexp}} or abbreviate the command name as
5049 @code{fo}.
5050
5051 @kindex reverse-search
5052 @item reverse-search @var{regexp}
5053 The command @samp{reverse-search @var{regexp}} checks each line, starting
5054 with the one before the last line listed and going backward, for a match
5055 for @var{regexp}.  It lists the line that is found.  You can abbreviate
5056 this command as @code{rev}.
5057 @end table
5058
5059 @node Source Path
5060 @section Specifying Source Directories
5061
5062 @cindex source path
5063 @cindex directories for source files
5064 Executable programs sometimes do not record the directories of the source
5065 files from which they were compiled, just the names.  Even when they do,
5066 the directories could be moved between the compilation and your debugging
5067 session.  @value{GDBN} has a list of directories to search for source files;
5068 this is called the @dfn{source path}.  Each time @value{GDBN} wants a source file,
5069 it tries all the directories in the list, in the order they are present
5070 in the list, until it finds a file with the desired name.
5071
5072 For example, suppose an executable references the file
5073 @file{/usr/src/foo-1.0/lib/foo.c}, and our source path is
5074 @file{/mnt/cross}.  The file is first looked up literally; if this
5075 fails, @file{/mnt/cross/usr/src/foo-1.0/lib/foo.c} is tried; if this
5076 fails, @file{/mnt/cross/foo.c} is opened; if this fails, an error
5077 message is printed.  @value{GDBN} does not look up the parts of the
5078 source file name, such as @file{/mnt/cross/src/foo-1.0/lib/foo.c}.
5079 Likewise, the subdirectories of the source path are not searched: if
5080 the source path is @file{/mnt/cross}, and the binary refers to
5081 @file{foo.c}, @value{GDBN} would not find it under
5082 @file{/mnt/cross/usr/src/foo-1.0/lib}.
5083
5084 Plain file names, relative file names with leading directories, file
5085 names containing dots, etc.@: are all treated as described above; for
5086 instance, if the source path is @file{/mnt/cross}, and the source file
5087 is recorded as @file{../lib/foo.c}, @value{GDBN} would first try
5088 @file{../lib/foo.c}, then @file{/mnt/cross/../lib/foo.c}, and after
5089 that---@file{/mnt/cross/foo.c}.
5090
5091 Note that the executable search path is @emph{not} used to locate the
5092 source files.
5093
5094 Whenever you reset or rearrange the source path, @value{GDBN} clears out
5095 any information it has cached about where source files are found and where
5096 each line is in the file.
5097
5098 @kindex directory
5099 @kindex dir
5100 When you start @value{GDBN}, its source path includes only @samp{cdir}
5101 and @samp{cwd}, in that order.
5102 To add other directories, use the @code{directory} command.
5103
5104 The search path is used to find both program source files and @value{GDBN}
5105 script files (read using the @samp{-command} option and @samp{source} command).
5106
5107 In addition to the source path, @value{GDBN} provides a set of commands
5108 that manage a list of source path substitution rules.  A @dfn{substitution
5109 rule} specifies how to rewrite source directories stored in the program's
5110 debug information in case the sources were moved to a different
5111 directory between compilation and debugging.  A rule is made of
5112 two strings, the first specifying what needs to be rewritten in
5113 the path, and the second specifying how it should be rewritten.
5114 In @ref{set substitute-path}, we name these two parts @var{from} and
5115 @var{to} respectively.  @value{GDBN} does a simple string replacement
5116 of @var{from} with @var{to} at the start of the directory part of the
5117 source file name, and uses that result instead of the original file
5118 name to look up the sources.
5119
5120 Using the previous example, suppose the @file{foo-1.0} tree has been
5121 moved from @file{/usr/src} to @file{/mnt/cross}, then you can tell
5122 @value{GDBN} to replace @file{/usr/src} in all source path names with
5123 @file{/mnt/cross}.  The first lookup will then be
5124 @file{/mnt/cross/foo-1.0/lib/foo.c} in place of the original location
5125 of @file{/usr/src/foo-1.0/lib/foo.c}.  To define a source path
5126 substitution rule, use the @code{set substitute-path} command
5127 (@pxref{set substitute-path}).
5128
5129 To avoid unexpected substitution results, a rule is applied only if the
5130 @var{from} part of the directory name ends at a directory separator.
5131 For instance, a rule substituting  @file{/usr/source} into
5132 @file{/mnt/cross} will be applied to @file{/usr/source/foo-1.0} but
5133 not to @file{/usr/sourceware/foo-2.0}.  And because the substitution
5134 is applied only at the beginning of the directory name, this rule will
5135 not be applied to @file{/root/usr/source/baz.c} either.
5136
5137 In many cases, you can achieve the same result using the @code{directory}
5138 command.  However, @code{set substitute-path} can be more efficient in
5139 the case where the sources are organized in a complex tree with multiple
5140 subdirectories.  With the @code{directory} command, you need to add each
5141 subdirectory of your project.  If you moved the entire tree while
5142 preserving its internal organization, then @code{set substitute-path}
5143 allows you to direct the debugger to all the sources with one single
5144 command.
5145
5146 @code{set substitute-path} is also more than just a shortcut command.
5147 The source path is only used if the file at the original location no
5148 longer exists.  On the other hand, @code{set substitute-path} modifies
5149 the debugger behavior to look at the rewritten location instead.  So, if
5150 for any reason a source file that is not relevant to your executable is
5151 located at the original location, a substitution rule is the only
5152 method available to point @value{GDBN} at the new location.
5153
5154 @table @code
5155 @item directory @var{dirname} @dots{}
5156 @item dir @var{dirname} @dots{}
5157 Add directory @var{dirname} to the front of the source path.  Several
5158 directory names may be given to this command, separated by @samp{:}
5159 (@samp{;} on MS-DOS and MS-Windows, where @samp{:} usually appears as
5160 part of absolute file names) or
5161 whitespace.  You may specify a directory that is already in the source
5162 path; this moves it forward, so @value{GDBN} searches it sooner.
5163
5164 @kindex cdir
5165 @kindex cwd
5166 @vindex $cdir@r{, convenience variable}
5167 @vindex $cwd@r{, convenience variable}
5168 @cindex compilation directory
5169 @cindex current directory
5170 @cindex working directory
5171 @cindex directory, current
5172 @cindex directory, compilation
5173 You can use the string @samp{$cdir} to refer to the compilation
5174 directory (if one is recorded), and @samp{$cwd} to refer to the current
5175 working directory.  @samp{$cwd} is not the same as @samp{.}---the former
5176 tracks the current working directory as it changes during your @value{GDBN}
5177 session, while the latter is immediately expanded to the current
5178 directory at the time you add an entry to the source path.
5179
5180 @item directory
5181 Reset the source path to its default value (@samp{$cdir:$cwd} on Unix systems).  This requires confirmation.
5182
5183 @c RET-repeat for @code{directory} is explicitly disabled, but since
5184 @c repeating it would be a no-op we do not say that.  (thanks to RMS)
5185
5186 @item show directories
5187 @kindex show directories
5188 Print the source path: show which directories it contains.
5189
5190 @anchor{set substitute-path}
5191 @item set substitute-path @var{from} @var{to}
5192 @kindex set substitute-path
5193 Define a source path substitution rule, and add it at the end of the
5194 current list of existing substitution rules.  If a rule with the same
5195 @var{from} was already defined, then the old rule is also deleted.
5196
5197 For example, if the file @file{/foo/bar/baz.c} was moved to
5198 @file{/mnt/cross/baz.c}, then the command
5199
5200 @smallexample
5201 (@value{GDBP}) set substitute-path /usr/src /mnt/cross
5202 @end smallexample
5203
5204 @noindent
5205 will tell @value{GDBN} to replace @samp{/usr/src} with
5206 @samp{/mnt/cross}, which will allow @value{GDBN} to find the file
5207 @file{baz.c} even though it was moved.
5208
5209 In the case when more than one substitution rule have been defined,
5210 the rules are evaluated one by one in the order where they have been
5211 defined.  The first one matching, if any, is selected to perform
5212 the substitution.
5213
5214 For instance, if we had entered the following commands:
5215
5216 @smallexample
5217 (@value{GDBP}) set substitute-path /usr/src/include /mnt/include
5218 (@value{GDBP}) set substitute-path /usr/src /mnt/src
5219 @end smallexample
5220
5221 @noindent
5222 @value{GDBN} would then rewrite @file{/usr/src/include/defs.h} into
5223 @file{/mnt/include/defs.h} by using the first rule.  However, it would
5224 use the second rule to rewrite @file{/usr/src/lib/foo.c} into
5225 @file{/mnt/src/lib/foo.c}.
5226
5227
5228 @item unset substitute-path [path]
5229 @kindex unset substitute-path
5230 If a path is specified, search the current list of substitution rules
5231 for a rule that would rewrite that path.  Delete that rule if found.
5232 A warning is emitted by the debugger if no rule could be found.
5233
5234 If no path is specified, then all substitution rules are deleted.
5235
5236 @item show substitute-path [path]
5237 @kindex show substitute-path
5238 If a path is specified, then print the source path substitution rule
5239 which would rewrite that path, if any.
5240
5241 If no path is specified, then print all existing source path substitution
5242 rules.
5243
5244 @end table
5245
5246 If your source path is cluttered with directories that are no longer of
5247 interest, @value{GDBN} may sometimes cause confusion by finding the wrong
5248 versions of source.  You can correct the situation as follows:
5249
5250 @enumerate
5251 @item
5252 Use @code{directory} with no argument to reset the source path to its default value.
5253
5254 @item
5255 Use @code{directory} with suitable arguments to reinstall the
5256 directories you want in the source path.  You can add all the
5257 directories in one command.
5258 @end enumerate
5259
5260 @node Machine Code
5261 @section Source and Machine Code
5262 @cindex source line and its code address
5263
5264 You can use the command @code{info line} to map source lines to program
5265 addresses (and vice versa), and the command @code{disassemble} to display
5266 a range of addresses as machine instructions.  When run under @sc{gnu} Emacs
5267 mode, the @code{info line} command causes the arrow to point to the
5268 line specified.  Also, @code{info line} prints addresses in symbolic form as
5269 well as hex.
5270
5271 @table @code
5272 @kindex info line
5273 @item info line @var{linespec}
5274 Print the starting and ending addresses of the compiled code for
5275 source line @var{linespec}.  You can specify source lines in any of
5276 the ways understood by the @code{list} command (@pxref{List, ,Printing
5277 Source Lines}).
5278 @end table
5279
5280 For example, we can use @code{info line} to discover the location of
5281 the object code for the first line of function
5282 @code{m4_changequote}:
5283
5284 @c FIXME: I think this example should also show the addresses in
5285 @c symbolic form, as they usually would be displayed.
5286 @smallexample
5287 (@value{GDBP}) info line m4_changequote
5288 Line 895 of "builtin.c" starts at pc 0x634c and ends at 0x6350.
5289 @end smallexample
5290
5291 @noindent
5292 @cindex code address and its source line
5293 We can also inquire (using @code{*@var{addr}} as the form for
5294 @var{linespec}) what source line covers a particular address:
5295 @smallexample
5296 (@value{GDBP}) info line *0x63ff
5297 Line 926 of "builtin.c" starts at pc 0x63e4 and ends at 0x6404.
5298 @end smallexample
5299
5300 @cindex @code{$_} and @code{info line}
5301 @cindex @code{x} command, default address
5302 @kindex x@r{(examine), and} info line
5303 After @code{info line}, the default address for the @code{x} command
5304 is changed to the starting address of the line, so that @samp{x/i} is
5305 sufficient to begin examining the machine code (@pxref{Memory,
5306 ,Examining Memory}).  Also, this address is saved as the value of the
5307 convenience variable @code{$_} (@pxref{Convenience Vars, ,Convenience
5308 Variables}).
5309
5310 @table @code
5311 @kindex disassemble
5312 @cindex assembly instructions
5313 @cindex instructions, assembly
5314 @cindex machine instructions
5315 @cindex listing machine instructions
5316 @item disassemble
5317 This specialized command dumps a range of memory as machine
5318 instructions.  The default memory range is the function surrounding the
5319 program counter of the selected frame.  A single argument to this
5320 command is a program counter value; @value{GDBN} dumps the function
5321 surrounding this value.  Two arguments specify a range of addresses
5322 (first inclusive, second exclusive) to dump.
5323 @end table
5324
5325 The following example shows the disassembly of a range of addresses of
5326 HP PA-RISC 2.0 code:
5327
5328 @smallexample
5329 (@value{GDBP}) disas 0x32c4 0x32e4
5330 Dump of assembler code from 0x32c4 to 0x32e4:
5331 0x32c4 <main+204>:      addil 0,dp
5332 0x32c8 <main+208>:      ldw 0x22c(sr0,r1),r26
5333 0x32cc <main+212>:      ldil 0x3000,r31
5334 0x32d0 <main+216>:      ble 0x3f8(sr4,r31)
5335 0x32d4 <main+220>:      ldo 0(r31),rp
5336 0x32d8 <main+224>:      addil -0x800,dp
5337 0x32dc <main+228>:      ldo 0x588(r1),r26
5338 0x32e0 <main+232>:      ldil 0x3000,r31
5339 End of assembler dump.
5340 @end smallexample
5341
5342 Some architectures have more than one commonly-used set of instruction
5343 mnemonics or other syntax.
5344
5345 For programs that were dynamically linked and use shared libraries,
5346 instructions that call functions or branch to locations in the shared
5347 libraries might show a seemingly bogus location---it's actually a
5348 location of the relocation table.  On some architectures, @value{GDBN}
5349 might be able to resolve these to actual function names.
5350
5351 @table @code
5352 @kindex set disassembly-flavor
5353 @cindex Intel disassembly flavor
5354 @cindex AT&T disassembly flavor
5355 @item set disassembly-flavor @var{instruction-set}
5356 Select the instruction set to use when disassembling the
5357 program via the @code{disassemble} or @code{x/i} commands.
5358
5359 Currently this command is only defined for the Intel x86 family.  You
5360 can set @var{instruction-set} to either @code{intel} or @code{att}.
5361 The default is @code{att}, the AT&T flavor used by default by Unix
5362 assemblers for x86-based targets.
5363
5364 @kindex show disassembly-flavor
5365 @item show disassembly-flavor
5366 Show the current setting of the disassembly flavor.
5367 @end table
5368
5369
5370 @node Data
5371 @chapter Examining Data
5372
5373 @cindex printing data
5374 @cindex examining data
5375 @kindex print
5376 @kindex inspect
5377 @c "inspect" is not quite a synonym if you are using Epoch, which we do not
5378 @c document because it is nonstandard...  Under Epoch it displays in a
5379 @c different window or something like that.
5380 The usual way to examine data in your program is with the @code{print}
5381 command (abbreviated @code{p}), or its synonym @code{inspect}.  It
5382 evaluates and prints the value of an expression of the language your
5383 program is written in (@pxref{Languages, ,Using @value{GDBN} with
5384 Different Languages}).
5385
5386 @table @code
5387 @item print @var{expr}
5388 @itemx print /@var{f} @var{expr}
5389 @var{expr} is an expression (in the source language).  By default the
5390 value of @var{expr} is printed in a format appropriate to its data type;
5391 you can choose a different format by specifying @samp{/@var{f}}, where
5392 @var{f} is a letter specifying the format; see @ref{Output Formats,,Output
5393 Formats}.
5394
5395 @item print
5396 @itemx print /@var{f}
5397 @cindex reprint the last value
5398 If you omit @var{expr}, @value{GDBN} displays the last value again (from the
5399 @dfn{value history}; @pxref{Value History, ,Value History}).  This allows you to
5400 conveniently inspect the same value in an alternative format.
5401 @end table
5402
5403 A more low-level way of examining data is with the @code{x} command.
5404 It examines data in memory at a specified address and prints it in a
5405 specified format.  @xref{Memory, ,Examining Memory}.
5406
5407 If you are interested in information about types, or about how the
5408 fields of a struct or a class are declared, use the @code{ptype @var{exp}}
5409 command rather than @code{print}.  @xref{Symbols, ,Examining the Symbol
5410 Table}.
5411
5412 @menu
5413 * Expressions::                 Expressions
5414 * Variables::                   Program variables
5415 * Arrays::                      Artificial arrays
5416 * Output Formats::              Output formats
5417 * Memory::                      Examining memory
5418 * Auto Display::                Automatic display
5419 * Print Settings::              Print settings
5420 * Value History::               Value history
5421 * Convenience Vars::            Convenience variables
5422 * Registers::                   Registers
5423 * Floating Point Hardware::     Floating point hardware
5424 * Vector Unit::                 Vector Unit
5425 * OS Information::              Auxiliary data provided by operating system
5426 * Memory Region Attributes::    Memory region attributes
5427 * Dump/Restore Files::          Copy between memory and a file
5428 * Core File Generation::        Cause a program dump its core
5429 * Character Sets::              Debugging programs that use a different
5430                                 character set than GDB does
5431 * Caching Remote Data::         Data caching for remote targets
5432 @end menu
5433
5434 @node Expressions
5435 @section Expressions
5436
5437 @cindex expressions
5438 @code{print} and many other @value{GDBN} commands accept an expression and
5439 compute its value.  Any kind of constant, variable or operator defined
5440 by the programming language you are using is valid in an expression in
5441 @value{GDBN}.  This includes conditional expressions, function calls,
5442 casts, and string constants.  It also includes preprocessor macros, if
5443 you compiled your program to include this information; see
5444 @ref{Compilation}.
5445
5446 @cindex arrays in expressions
5447 @value{GDBN} supports array constants in expressions input by
5448 the user.  The syntax is @{@var{element}, @var{element}@dots{}@}.  For example,
5449 you can use the command @code{print @{1, 2, 3@}} to build up an array in
5450 memory that is @code{malloc}ed in the target program.
5451
5452 Because C is so widespread, most of the expressions shown in examples in
5453 this manual are in C.  @xref{Languages, , Using @value{GDBN} with Different
5454 Languages}, for information on how to use expressions in other
5455 languages.
5456
5457 In this section, we discuss operators that you can use in @value{GDBN}
5458 expressions regardless of your programming language.
5459
5460 @cindex casts, in expressions
5461 Casts are supported in all languages, not just in C, because it is so
5462 useful to cast a number into a pointer in order to examine a structure
5463 at that address in memory.
5464 @c FIXME: casts supported---Mod2 true?
5465
5466 @value{GDBN} supports these operators, in addition to those common
5467 to programming languages:
5468
5469 @table @code
5470 @item @@
5471 @samp{@@} is a binary operator for treating parts of memory as arrays.
5472 @xref{Arrays, ,Artificial Arrays}, for more information.
5473
5474 @item ::
5475 @samp{::} allows you to specify a variable in terms of the file or
5476 function where it is defined.  @xref{Variables, ,Program Variables}.
5477
5478 @cindex @{@var{type}@}
5479 @cindex type casting memory
5480 @cindex memory, viewing as typed object
5481 @cindex casts, to view memory
5482 @item @{@var{type}@} @var{addr}
5483 Refers to an object of type @var{type} stored at address @var{addr} in
5484 memory.  @var{addr} may be any expression whose value is an integer or
5485 pointer (but parentheses are required around binary operators, just as in
5486 a cast).  This construct is allowed regardless of what kind of data is
5487 normally supposed to reside at @var{addr}.
5488 @end table
5489
5490 @node Variables
5491 @section Program Variables
5492
5493 The most common kind of expression to use is the name of a variable
5494 in your program.
5495
5496 Variables in expressions are understood in the selected stack frame
5497 (@pxref{Selection, ,Selecting a Frame}); they must be either:
5498
5499 @itemize @bullet
5500 @item
5501 global (or file-static)
5502 @end itemize
5503
5504 @noindent or
5505
5506 @itemize @bullet
5507 @item
5508 visible according to the scope rules of the
5509 programming language from the point of execution in that frame
5510 @end itemize
5511
5512 @noindent This means that in the function
5513
5514 @smallexample
5515 foo (a)
5516      int a;
5517 @{
5518   bar (a);
5519   @{
5520     int b = test ();
5521     bar (b);
5522   @}
5523 @}
5524 @end smallexample
5525
5526 @noindent
5527 you can examine and use the variable @code{a} whenever your program is
5528 executing within the function @code{foo}, but you can only use or
5529 examine the variable @code{b} while your program is executing inside
5530 the block where @code{b} is declared.
5531
5532 @cindex variable name conflict
5533 There is an exception: you can refer to a variable or function whose
5534 scope is a single source file even if the current execution point is not
5535 in this file.  But it is possible to have more than one such variable or
5536 function with the same name (in different source files).  If that
5537 happens, referring to that name has unpredictable effects.  If you wish,
5538 you can specify a static variable in a particular function or file,
5539 using the colon-colon (@code{::}) notation:
5540
5541 @cindex colon-colon, context for variables/functions
5542 @ifnotinfo
5543 @c info cannot cope with a :: index entry, but why deprive hard copy readers?
5544 @cindex @code{::}, context for variables/functions
5545 @end ifnotinfo
5546 @smallexample
5547 @var{file}::@var{variable}
5548 @var{function}::@var{variable}
5549 @end smallexample
5550
5551 @noindent
5552 Here @var{file} or @var{function} is the name of the context for the
5553 static @var{variable}.  In the case of file names, you can use quotes to
5554 make sure @value{GDBN} parses the file name as a single word---for example,
5555 to print a global value of @code{x} defined in @file{f2.c}:
5556
5557 @smallexample
5558 (@value{GDBP}) p 'f2.c'::x
5559 @end smallexample
5560
5561 @cindex C@t{++} scope resolution
5562 This use of @samp{::} is very rarely in conflict with the very similar
5563 use of the same notation in C@t{++}.  @value{GDBN} also supports use of the C@t{++}
5564 scope resolution operator in @value{GDBN} expressions.
5565 @c FIXME: Um, so what happens in one of those rare cases where it's in
5566 @c conflict??  --mew
5567
5568 @cindex wrong values
5569 @cindex variable values, wrong
5570 @cindex function entry/exit, wrong values of variables
5571 @cindex optimized code, wrong values of variables
5572 @quotation
5573 @emph{Warning:} Occasionally, a local variable may appear to have the
5574 wrong value at certain points in a function---just after entry to a new
5575 scope, and just before exit.
5576 @end quotation
5577 You may see this problem when you are stepping by machine instructions.
5578 This is because, on most machines, it takes more than one instruction to
5579 set up a stack frame (including local variable definitions); if you are
5580 stepping by machine instructions, variables may appear to have the wrong
5581 values until the stack frame is completely built.  On exit, it usually
5582 also takes more than one machine instruction to destroy a stack frame;
5583 after you begin stepping through that group of instructions, local
5584 variable definitions may be gone.
5585
5586 This may also happen when the compiler does significant optimizations.
5587 To be sure of always seeing accurate values, turn off all optimization
5588 when compiling.
5589
5590 @cindex ``No symbol "foo" in current context''
5591 Another possible effect of compiler optimizations is to optimize
5592 unused variables out of existence, or assign variables to registers (as
5593 opposed to memory addresses).  Depending on the support for such cases
5594 offered by the debug info format used by the compiler, @value{GDBN}
5595 might not be able to display values for such local variables.  If that
5596 happens, @value{GDBN} will print a message like this:
5597
5598 @smallexample
5599 No symbol "foo" in current context.
5600 @end smallexample
5601
5602 To solve such problems, either recompile without optimizations, or use a
5603 different debug info format, if the compiler supports several such
5604 formats.  For example, @value{NGCC}, the @sc{gnu} C/C@t{++} compiler,
5605 usually supports the @option{-gstabs+} option.  @option{-gstabs+}
5606 produces debug info in a format that is superior to formats such as
5607 COFF.  You may be able to use DWARF 2 (@option{-gdwarf-2}), which is also
5608 an effective form for debug info.  @xref{Debugging Options,,Options
5609 for Debugging Your Program or GCC, gcc.info, Using the @sc{gnu}
5610 Compiler Collection (GCC)}.
5611 @xref{C, ,C and C@t{++}}, for more information about debug info formats
5612 that are best suited to C@t{++} programs.
5613
5614 If you ask to print an object whose contents are unknown to
5615 @value{GDBN}, e.g., because its data type is not completely specified
5616 by the debug information, @value{GDBN} will say @samp{<incomplete
5617 type>}.  @xref{Symbols, incomplete type}, for more about this.
5618
5619 Strings are identified as arrays of @code{char} values without specified
5620 signedness.  Arrays of either @code{signed char} or @code{unsigned char} get
5621 printed as arrays of 1 byte sized integers.  @code{-fsigned-char} or
5622 @code{-funsigned-char} @value{NGCC} options have no effect as @value{GDBN}
5623 defines literal string type @code{"char"} as @code{char} without a sign.
5624 For program code
5625
5626 @smallexample
5627 char var0[] = "A";
5628 signed char var1[] = "A";
5629 @end smallexample
5630
5631 You get during debugging
5632 @smallexample
5633 (gdb) print var0
5634 $1 = "A"
5635 (gdb) print var1
5636 $2 = @{65 'A', 0 '\0'@}
5637 @end smallexample
5638
5639 @node Arrays
5640 @section Artificial Arrays
5641
5642 @cindex artificial array
5643 @cindex arrays
5644 @kindex @@@r{, referencing memory as an array}
5645 It is often useful to print out several successive objects of the
5646 same type in memory; a section of an array, or an array of
5647 dynamically determined size for which only a pointer exists in the
5648 program.
5649
5650 You can do this by referring to a contiguous span of memory as an
5651 @dfn{artificial array}, using the binary operator @samp{@@}.  The left
5652 operand of @samp{@@} should be the first element of the desired array
5653 and be an individual object.  The right operand should be the desired length
5654 of the array.  The result is an array value whose elements are all of
5655 the type of the left argument.  The first element is actually the left
5656 argument; the second element comes from bytes of memory immediately
5657 following those that hold the first element, and so on.  Here is an
5658 example.  If a program says
5659
5660 @smallexample
5661 int *array = (int *) malloc (len * sizeof (int));
5662 @end smallexample
5663
5664 @noindent
5665 you can print the contents of @code{array} with
5666
5667 @smallexample
5668 p *array@@len
5669 @end smallexample
5670
5671 The left operand of @samp{@@} must reside in memory.  Array values made
5672 with @samp{@@} in this way behave just like other arrays in terms of
5673 subscripting, and are coerced to pointers when used in expressions.
5674 Artificial arrays most often appear in expressions via the value history
5675 (@pxref{Value History, ,Value History}), after printing one out.
5676
5677 Another way to create an artificial array is to use a cast.
5678 This re-interprets a value as if it were an array.
5679 The value need not be in memory:
5680 @smallexample
5681 (@value{GDBP}) p/x (short[2])0x12345678
5682 $1 = @{0x1234, 0x5678@}
5683 @end smallexample
5684
5685 As a convenience, if you leave the array length out (as in
5686 @samp{(@var{type}[])@var{value}}) @value{GDBN} calculates the size to fill
5687 the value (as @samp{sizeof(@var{value})/sizeof(@var{type})}:
5688 @smallexample
5689 (@value{GDBP}) p/x (short[])0x12345678
5690 $2 = @{0x1234, 0x5678@}
5691 @end smallexample
5692
5693 Sometimes the artificial array mechanism is not quite enough; in
5694 moderately complex data structures, the elements of interest may not
5695 actually be adjacent---for example, if you are interested in the values
5696 of pointers in an array.  One useful work-around in this situation is
5697 to use a convenience variable (@pxref{Convenience Vars, ,Convenience
5698 Variables}) as a counter in an expression that prints the first
5699 interesting value, and then repeat that expression via @key{RET}.  For
5700 instance, suppose you have an array @code{dtab} of pointers to
5701 structures, and you are interested in the values of a field @code{fv}
5702 in each structure.  Here is an example of what you might type:
5703
5704 @smallexample
5705 set $i = 0
5706 p dtab[$i++]->fv
5707 @key{RET}
5708 @key{RET}
5709 @dots{}
5710 @end smallexample
5711
5712 @node Output Formats
5713 @section Output Formats
5714
5715 @cindex formatted output
5716 @cindex output formats
5717 By default, @value{GDBN} prints a value according to its data type.  Sometimes
5718 this is not what you want.  For example, you might want to print a number
5719 in hex, or a pointer in decimal.  Or you might want to view data in memory
5720 at a certain address as a character string or as an instruction.  To do
5721 these things, specify an @dfn{output format} when you print a value.
5722
5723 The simplest use of output formats is to say how to print a value
5724 already computed.  This is done by starting the arguments of the
5725 @code{print} command with a slash and a format letter.  The format
5726 letters supported are:
5727
5728 @table @code
5729 @item x
5730 Regard the bits of the value as an integer, and print the integer in
5731 hexadecimal.
5732
5733 @item d
5734 Print as integer in signed decimal.
5735
5736 @item u
5737 Print as integer in unsigned decimal.
5738
5739 @item o
5740 Print as integer in octal.
5741
5742 @item t
5743 Print as integer in binary.  The letter @samp{t} stands for ``two''.
5744 @footnote{@samp{b} cannot be used because these format letters are also
5745 used with the @code{x} command, where @samp{b} stands for ``byte'';
5746 see @ref{Memory,,Examining Memory}.}
5747
5748 @item a
5749 @cindex unknown address, locating
5750 @cindex locate address
5751 Print as an address, both absolute in hexadecimal and as an offset from
5752 the nearest preceding symbol.  You can use this format used to discover
5753 where (in what function) an unknown address is located:
5754
5755 @smallexample
5756 (@value{GDBP}) p/a 0x54320
5757 $3 = 0x54320 <_initialize_vx+396>
5758 @end smallexample
5759
5760 @noindent
5761 The command @code{info symbol 0x54320} yields similar results.
5762 @xref{Symbols, info symbol}.
5763
5764 @item c
5765 Regard as an integer and print it as a character constant.  This
5766 prints both the numerical value and its character representation.  The
5767 character representation is replaced with the octal escape @samp{\nnn}
5768 for characters outside the 7-bit @sc{ascii} range.
5769
5770 Without this format, @value{GDBN} displays @code{char},
5771 @w{@code{unsigned char}}, and @w{@code{signed char}} data as character
5772 constants.  Single-byte members of vectors are displayed as integer
5773 data.
5774
5775 @item f
5776 Regard the bits of the value as a floating point number and print
5777 using typical floating point syntax.
5778
5779 @item s
5780 @cindex printing strings
5781 @cindex printing byte arrays
5782 Regard as a string, if possible.  With this format, pointers to single-byte
5783 data are displayed as null-terminated strings and arrays of single-byte data
5784 are displayed as fixed-length strings.  Other values are displayed in their
5785 natural types.
5786
5787 Without this format, @value{GDBN} displays pointers to and arrays of
5788 @code{char}, @w{@code{unsigned char}}, and @w{@code{signed char}} as
5789 strings.  Single-byte members of a vector are displayed as an integer
5790 array.
5791 @end table
5792
5793 For example, to print the program counter in hex (@pxref{Registers}), type
5794
5795 @smallexample
5796 p/x $pc
5797 @end smallexample
5798
5799 @noindent
5800 Note that no space is required before the slash; this is because command
5801 names in @value{GDBN} cannot contain a slash.
5802
5803 To reprint the last value in the value history with a different format,
5804 you can use the @code{print} command with just a format and no
5805 expression.  For example, @samp{p/x} reprints the last value in hex.
5806
5807 @node Memory
5808 @section Examining Memory
5809
5810 You can use the command @code{x} (for ``examine'') to examine memory in
5811 any of several formats, independently of your program's data types.
5812
5813 @cindex examining memory
5814 @table @code
5815 @kindex x @r{(examine memory)}
5816 @item x/@var{nfu} @var{addr}
5817 @itemx x @var{addr}
5818 @itemx x
5819 Use the @code{x} command to examine memory.
5820 @end table
5821
5822 @var{n}, @var{f}, and @var{u} are all optional parameters that specify how
5823 much memory to display and how to format it; @var{addr} is an
5824 expression giving the address where you want to start displaying memory.
5825 If you use defaults for @var{nfu}, you need not type the slash @samp{/}.
5826 Several commands set convenient defaults for @var{addr}.
5827
5828 @table @r
5829 @item @var{n}, the repeat count
5830 The repeat count is a decimal integer; the default is 1.  It specifies
5831 how much memory (counting by units @var{u}) to display.
5832 @c This really is **decimal**; unaffected by 'set radix' as of GDB
5833 @c 4.1.2.
5834
5835 @item @var{f}, the display format
5836 The display format is one of the formats used by @code{print}
5837 (@samp{x}, @samp{d}, @samp{u}, @samp{o}, @samp{t}, @samp{a}, @samp{c},
5838 @samp{f}, @samp{s}), and in addition @samp{i} (for machine instructions).
5839 The default is @samp{x} (hexadecimal) initially.  The default changes
5840 each time you use either @code{x} or @code{print}.
5841
5842 @item @var{u}, the unit size
5843 The unit size is any of
5844
5845 @table @code
5846 @item b
5847 Bytes.
5848 @item h
5849 Halfwords (two bytes).
5850 @item w
5851 Words (four bytes).  This is the initial default.
5852 @item g
5853 Giant words (eight bytes).
5854 @end table
5855
5856 Each time you specify a unit size with @code{x}, that size becomes the
5857 default unit the next time you use @code{x}.  (For the @samp{s} and
5858 @samp{i} formats, the unit size is ignored and is normally not written.)
5859
5860 @item @var{addr}, starting display address
5861 @var{addr} is the address where you want @value{GDBN} to begin displaying
5862 memory.  The expression need not have a pointer value (though it may);
5863 it is always interpreted as an integer address of a byte of memory.
5864 @xref{Expressions, ,Expressions}, for more information on expressions.  The default for
5865 @var{addr} is usually just after the last address examined---but several
5866 other commands also set the default address: @code{info breakpoints} (to
5867 the address of the last breakpoint listed), @code{info line} (to the
5868 starting address of a line), and @code{print} (if you use it to display
5869 a value from memory).
5870 @end table
5871
5872 For example, @samp{x/3uh 0x54320} is a request to display three halfwords
5873 (@code{h}) of memory, formatted as unsigned decimal integers (@samp{u}),
5874 starting at address @code{0x54320}.  @samp{x/4xw $sp} prints the four
5875 words (@samp{w}) of memory above the stack pointer (here, @samp{$sp};
5876 @pxref{Registers, ,Registers}) in hexadecimal (@samp{x}).
5877
5878 Since the letters indicating unit sizes are all distinct from the
5879 letters specifying output formats, you do not have to remember whether
5880 unit size or format comes first; either order works.  The output
5881 specifications @samp{4xw} and @samp{4wx} mean exactly the same thing.
5882 (However, the count @var{n} must come first; @samp{wx4} does not work.)
5883
5884 Even though the unit size @var{u} is ignored for the formats @samp{s}
5885 and @samp{i}, you might still want to use a count @var{n}; for example,
5886 @samp{3i} specifies that you want to see three machine instructions,
5887 including any operands.  For convenience, especially when used with
5888 the @code{display} command, the @samp{i} format also prints branch delay
5889 slot instructions, if any, beyond the count specified, which immediately
5890 follow the last instruction that is within the count.  The command
5891 @code{disassemble} gives an alternative way of inspecting machine
5892 instructions; see @ref{Machine Code,,Source and Machine Code}.
5893
5894 All the defaults for the arguments to @code{x} are designed to make it
5895 easy to continue scanning memory with minimal specifications each time
5896 you use @code{x}.  For example, after you have inspected three machine
5897 instructions with @samp{x/3i @var{addr}}, you can inspect the next seven
5898 with just @samp{x/7}.  If you use @key{RET} to repeat the @code{x} command,
5899 the repeat count @var{n} is used again; the other arguments default as
5900 for successive uses of @code{x}.
5901
5902 @cindex @code{$_}, @code{$__}, and value history
5903 The addresses and contents printed by the @code{x} command are not saved
5904 in the value history because there is often too much of them and they
5905 would get in the way.  Instead, @value{GDBN} makes these values available for
5906 subsequent use in expressions as values of the convenience variables
5907 @code{$_} and @code{$__}.  After an @code{x} command, the last address
5908 examined is available for use in expressions in the convenience variable
5909 @code{$_}.  The contents of that address, as examined, are available in
5910 the convenience variable @code{$__}.
5911
5912 If the @code{x} command has a repeat count, the address and contents saved
5913 are from the last memory unit printed; this is not the same as the last
5914 address printed if several units were printed on the last line of output.
5915
5916 @cindex remote memory comparison
5917 @cindex verify remote memory image
5918 When you are debugging a program running on a remote target machine
5919 (@pxref{Remote Debugging}), you may wish to verify the program's image in the
5920 remote machine's memory against the executable file you downloaded to
5921 the target.  The @code{compare-sections} command is provided for such
5922 situations.
5923
5924 @table @code
5925 @kindex compare-sections
5926 @item compare-sections @r{[}@var{section-name}@r{]}
5927 Compare the data of a loadable section @var{section-name} in the
5928 executable file of the program being debugged with the same section in
5929 the remote machine's memory, and report any mismatches.  With no
5930 arguments, compares all loadable sections.  This command's
5931 availability depends on the target's support for the @code{"qCRC"}
5932 remote request.
5933 @end table
5934
5935 @node Auto Display
5936 @section Automatic Display
5937 @cindex automatic display
5938 @cindex display of expressions
5939
5940 If you find that you want to print the value of an expression frequently
5941 (to see how it changes), you might want to add it to the @dfn{automatic
5942 display list} so that @value{GDBN} prints its value each time your program stops.
5943 Each expression added to the list is given a number to identify it;
5944 to remove an expression from the list, you specify that number.
5945 The automatic display looks like this:
5946
5947 @smallexample
5948 2: foo = 38
5949 3: bar[5] = (struct hack *) 0x3804
5950 @end smallexample
5951
5952 @noindent
5953 This display shows item numbers, expressions and their current values.  As with
5954 displays you request manually using @code{x} or @code{print}, you can
5955 specify the output format you prefer; in fact, @code{display} decides
5956 whether to use @code{print} or @code{x} depending your format
5957 specification---it uses @code{x} if you specify either the @samp{i}
5958 or @samp{s} format, or a unit size; otherwise it uses @code{print}.
5959
5960 @table @code
5961 @kindex display
5962 @item display @var{expr}
5963 Add the expression @var{expr} to the list of expressions to display
5964 each time your program stops.  @xref{Expressions, ,Expressions}.
5965
5966 @code{display} does not repeat if you press @key{RET} again after using it.
5967
5968 @item display/@var{fmt} @var{expr}
5969 For @var{fmt} specifying only a display format and not a size or
5970 count, add the expression @var{expr} to the auto-display list but
5971 arrange to display it each time in the specified format @var{fmt}.
5972 @xref{Output Formats,,Output Formats}.
5973
5974 @item display/@var{fmt} @var{addr}
5975 For @var{fmt} @samp{i} or @samp{s}, or including a unit-size or a
5976 number of units, add the expression @var{addr} as a memory address to
5977 be examined each time your program stops.  Examining means in effect
5978 doing @samp{x/@var{fmt} @var{addr}}.  @xref{Memory, ,Examining Memory}.
5979 @end table
5980
5981 For example, @samp{display/i $pc} can be helpful, to see the machine
5982 instruction about to be executed each time execution stops (@samp{$pc}
5983 is a common name for the program counter; @pxref{Registers, ,Registers}).
5984
5985 @table @code
5986 @kindex delete display
5987 @kindex undisplay
5988 @item undisplay @var{dnums}@dots{}
5989 @itemx delete display @var{dnums}@dots{}
5990 Remove item numbers @var{dnums} from the list of expressions to display.
5991
5992 @code{undisplay} does not repeat if you press @key{RET} after using it.
5993 (Otherwise you would just get the error @samp{No display number @dots{}}.)
5994
5995 @kindex disable display
5996 @item disable display @var{dnums}@dots{}
5997 Disable the display of item numbers @var{dnums}.  A disabled display
5998 item is not printed automatically, but is not forgotten.  It may be
5999 enabled again later.
6000
6001 @kindex enable display
6002 @item enable display @var{dnums}@dots{}
6003 Enable display of item numbers @var{dnums}.  It becomes effective once
6004 again in auto display of its expression, until you specify otherwise.
6005
6006 @item display
6007 Display the current values of the expressions on the list, just as is
6008 done when your program stops.
6009
6010 @kindex info display
6011 @item info display
6012 Print the list of expressions previously set up to display
6013 automatically, each one with its item number, but without showing the
6014 values.  This includes disabled expressions, which are marked as such.
6015 It also includes expressions which would not be displayed right now
6016 because they refer to automatic variables not currently available.
6017 @end table
6018
6019 @cindex display disabled out of scope
6020 If a display expression refers to local variables, then it does not make
6021 sense outside the lexical context for which it was set up.  Such an
6022 expression is disabled when execution enters a context where one of its
6023 variables is not defined.  For example, if you give the command
6024 @code{display last_char} while inside a function with an argument
6025 @code{last_char}, @value{GDBN} displays this argument while your program
6026 continues to stop inside that function.  When it stops elsewhere---where
6027 there is no variable @code{last_char}---the display is disabled
6028 automatically.  The next time your program stops where @code{last_char}
6029 is meaningful, you can enable the display expression once again.
6030
6031 @node Print Settings
6032 @section Print Settings
6033
6034 @cindex format options
6035 @cindex print settings
6036 @value{GDBN} provides the following ways to control how arrays, structures,
6037 and symbols are printed.
6038
6039 @noindent
6040 These settings are useful for debugging programs in any language:
6041
6042 @table @code
6043 @kindex set print
6044 @item set print address
6045 @itemx set print address on
6046 @cindex print/don't print memory addresses
6047 @value{GDBN} prints memory addresses showing the location of stack
6048 traces, structure values, pointer values, breakpoints, and so forth,
6049 even when it also displays the contents of those addresses.  The default
6050 is @code{on}.  For example, this is what a stack frame display looks like with
6051 @code{set print address on}:
6052
6053 @smallexample
6054 @group
6055 (@value{GDBP}) f
6056 #0  set_quotes (lq=0x34c78 "<<", rq=0x34c88 ">>")
6057     at input.c:530
6058 530         if (lquote != def_lquote)
6059 @end group
6060 @end smallexample
6061
6062 @item set print address off
6063 Do not print addresses when displaying their contents.  For example,
6064 this is the same stack frame displayed with @code{set print address off}:
6065
6066 @smallexample
6067 @group
6068 (@value{GDBP}) set print addr off
6069 (@value{GDBP}) f
6070 #0  set_quotes (lq="<<", rq=">>") at input.c:530
6071 530         if (lquote != def_lquote)
6072 @end group
6073 @end smallexample
6074
6075 You can use @samp{set print address off} to eliminate all machine
6076 dependent displays from the @value{GDBN} interface.  For example, with
6077 @code{print address off}, you should get the same text for backtraces on
6078 all machines---whether or not they involve pointer arguments.
6079
6080 @kindex show print
6081 @item show print address
6082 Show whether or not addresses are to be printed.
6083 @end table
6084
6085 When @value{GDBN} prints a symbolic address, it normally prints the
6086 closest earlier symbol plus an offset.  If that symbol does not uniquely
6087 identify the address (for example, it is a name whose scope is a single
6088 source file), you may need to clarify.  One way to do this is with
6089 @code{info line}, for example @samp{info line *0x4537}.  Alternately,
6090 you can set @value{GDBN} to print the source file and line number when
6091 it prints a symbolic address:
6092
6093 @table @code
6094 @item set print symbol-filename on
6095 @cindex source file and line of a symbol
6096 @cindex symbol, source file and line
6097 Tell @value{GDBN} to print the source file name and line number of a
6098 symbol in the symbolic form of an address.
6099
6100 @item set print symbol-filename off
6101 Do not print source file name and line number of a symbol.  This is the
6102 default.
6103
6104 @item show print symbol-filename
6105 Show whether or not @value{GDBN} will print the source file name and
6106 line number of a symbol in the symbolic form of an address.
6107 @end table
6108
6109 Another situation where it is helpful to show symbol filenames and line
6110 numbers is when disassembling code; @value{GDBN} shows you the line
6111 number and source file that corresponds to each instruction.
6112
6113 Also, you may wish to see the symbolic form only if the address being
6114 printed is reasonably close to the closest earlier symbol:
6115
6116 @table @code
6117 @item set print max-symbolic-offset @var{max-offset}
6118 @cindex maximum value for offset of closest symbol
6119 Tell @value{GDBN} to only display the symbolic form of an address if the
6120 offset between the closest earlier symbol and the address is less than
6121 @var{max-offset}.  The default is 0, which tells @value{GDBN}
6122 to always print the symbolic form of an address if any symbol precedes it.
6123
6124 @item show print max-symbolic-offset
6125 Ask how large the maximum offset is that @value{GDBN} prints in a
6126 symbolic address.
6127 @end table
6128
6129 @cindex wild pointer, interpreting
6130 @cindex pointer, finding referent
6131 If you have a pointer and you are not sure where it points, try
6132 @samp{set print symbol-filename on}.  Then you can determine the name
6133 and source file location of the variable where it points, using
6134 @samp{p/a @var{pointer}}.  This interprets the address in symbolic form.
6135 For example, here @value{GDBN} shows that a variable @code{ptt} points
6136 at another variable @code{t}, defined in @file{hi2.c}:
6137
6138 @smallexample
6139 (@value{GDBP}) set print symbol-filename on
6140 (@value{GDBP}) p/a ptt
6141 $4 = 0xe008 <t in hi2.c>
6142 @end smallexample
6143
6144 @quotation
6145 @emph{Warning:} For pointers that point to a local variable, @samp{p/a}
6146 does not show the symbol name and filename of the referent, even with
6147 the appropriate @code{set print} options turned on.
6148 @end quotation
6149
6150 Other settings control how different kinds of objects are printed:
6151
6152 @table @code
6153 @item set print array
6154 @itemx set print array on
6155 @cindex pretty print arrays
6156 Pretty print arrays.  This format is more convenient to read,
6157 but uses more space.  The default is off.
6158
6159 @item set print array off
6160 Return to compressed format for arrays.
6161
6162 @item show print array
6163 Show whether compressed or pretty format is selected for displaying
6164 arrays.
6165
6166 @cindex print array indexes
6167 @item set print array-indexes
6168 @itemx set print array-indexes on
6169 Print the index of each element when displaying arrays.  May be more
6170 convenient to locate a given element in the array or quickly find the
6171 index of a given element in that printed array.  The default is off.
6172
6173 @item set print array-indexes off
6174 Stop printing element indexes when displaying arrays.
6175
6176 @item show print array-indexes
6177 Show whether the index of each element is printed when displaying
6178 arrays.
6179
6180 @item set print elements @var{number-of-elements}
6181 @cindex number of array elements to print
6182 @cindex limit on number of printed array elements
6183 Set a limit on how many elements of an array @value{GDBN} will print.
6184 If @value{GDBN} is printing a large array, it stops printing after it has
6185 printed the number of elements set by the @code{set print elements} command.
6186 This limit also applies to the display of strings.
6187 When @value{GDBN} starts, this limit is set to 200.
6188 Setting  @var{number-of-elements} to zero means that the printing is unlimited.
6189
6190 @item show print elements
6191 Display the number of elements of a large array that @value{GDBN} will print.
6192 If the number is 0, then the printing is unlimited.
6193
6194 @item set print repeats
6195 @cindex repeated array elements
6196 Set the threshold for suppressing display of repeated array
6197 elements.  When the number of consecutive identical elements of an
6198 array exceeds the threshold, @value{GDBN} prints the string
6199 @code{"<repeats @var{n} times>"}, where @var{n} is the number of
6200 identical repetitions, instead of displaying the identical elements
6201 themselves.  Setting the threshold to zero will cause all elements to
6202 be individually printed.  The default threshold is 10.
6203
6204 @item show print repeats
6205 Display the current threshold for printing repeated identical
6206 elements.
6207
6208 @item set print null-stop
6209 @cindex @sc{null} elements in arrays
6210 Cause @value{GDBN} to stop printing the characters of an array when the first
6211 @sc{null} is encountered.  This is useful when large arrays actually
6212 contain only short strings.
6213 The default is off.
6214
6215 @item show print null-stop
6216 Show whether @value{GDBN} stops printing an array on the first
6217 @sc{null} character.
6218
6219 @item set print pretty on
6220 @cindex print structures in indented form
6221 @cindex indentation in structure display
6222 Cause @value{GDBN} to print structures in an indented format with one member
6223 per line, like this:
6224
6225 @smallexample
6226 @group
6227 $1 = @{
6228   next = 0x0,
6229   flags = @{
6230     sweet = 1,
6231     sour = 1
6232   @},
6233   meat = 0x54 "Pork"
6234 @}
6235 @end group
6236 @end smallexample
6237
6238 @item set print pretty off
6239 Cause @value{GDBN} to print structures in a compact format, like this:
6240
6241 @smallexample
6242 @group
6243 $1 = @{next = 0x0, flags = @{sweet = 1, sour = 1@}, \
6244 meat = 0x54 "Pork"@}
6245 @end group
6246 @end smallexample
6247
6248 @noindent
6249 This is the default format.
6250
6251 @item show print pretty
6252 Show which format @value{GDBN} is using to print structures.
6253
6254 @item set print sevenbit-strings on
6255 @cindex eight-bit characters in strings
6256 @cindex octal escapes in strings
6257 Print using only seven-bit characters; if this option is set,
6258 @value{GDBN} displays any eight-bit characters (in strings or
6259 character values) using the notation @code{\}@var{nnn}.  This setting is
6260 best if you are working in English (@sc{ascii}) and you use the
6261 high-order bit of characters as a marker or ``meta'' bit.
6262
6263 @item set print sevenbit-strings off
6264 Print full eight-bit characters.  This allows the use of more
6265 international character sets, and is the default.
6266
6267 @item show print sevenbit-strings
6268 Show whether or not @value{GDBN} is printing only seven-bit characters.
6269
6270 @item set print union on
6271 @cindex unions in structures, printing
6272 Tell @value{GDBN} to print unions which are contained in structures
6273 and other unions.  This is the default setting.
6274
6275 @item set print union off
6276 Tell @value{GDBN} not to print unions which are contained in
6277 structures and other unions.  @value{GDBN} will print @code{"@{...@}"}
6278 instead.
6279
6280 @item show print union
6281 Ask @value{GDBN} whether or not it will print unions which are contained in
6282 structures and other unions.
6283
6284 For example, given the declarations
6285
6286 @smallexample
6287 typedef enum @{Tree, Bug@} Species;
6288 typedef enum @{Big_tree, Acorn, Seedling@} Tree_forms;
6289 typedef enum @{Caterpillar, Cocoon, Butterfly@}
6290               Bug_forms;
6291
6292 struct thing @{
6293   Species it;
6294   union @{
6295     Tree_forms tree;
6296     Bug_forms bug;
6297   @} form;
6298 @};
6299
6300 struct thing foo = @{Tree, @{Acorn@}@};
6301 @end smallexample
6302
6303 @noindent
6304 with @code{set print union on} in effect @samp{p foo} would print
6305
6306 @smallexample
6307 $1 = @{it = Tree, form = @{tree = Acorn, bug = Cocoon@}@}
6308 @end smallexample
6309
6310 @noindent
6311 and with @code{set print union off} in effect it would print
6312
6313 @smallexample
6314 $1 = @{it = Tree, form = @{...@}@}
6315 @end smallexample
6316
6317 @noindent
6318 @code{set print union} affects programs written in C-like languages
6319 and in Pascal.
6320 @end table
6321
6322 @need 1000
6323 @noindent
6324 These settings are of interest when debugging C@t{++} programs:
6325
6326 @table @code
6327 @cindex demangling C@t{++} names
6328 @item set print demangle
6329 @itemx set print demangle on
6330 Print C@t{++} names in their source form rather than in the encoded
6331 (``mangled'') form passed to the assembler and linker for type-safe
6332 linkage.  The default is on.
6333
6334 @item show print demangle
6335 Show whether C@t{++} names are printed in mangled or demangled form.
6336
6337 @item set print asm-demangle
6338 @itemx set print asm-demangle on
6339 Print C@t{++} names in their source form rather than their mangled form, even
6340 in assembler code printouts such as instruction disassemblies.
6341 The default is off.
6342
6343 @item show print asm-demangle
6344 Show whether C@t{++} names in assembly listings are printed in mangled
6345 or demangled form.
6346
6347 @cindex C@t{++} symbol decoding style
6348 @cindex symbol decoding style, C@t{++}
6349 @kindex set demangle-style
6350 @item set demangle-style @var{style}
6351 Choose among several encoding schemes used by different compilers to
6352 represent C@t{++} names.  The choices for @var{style} are currently:
6353
6354 @table @code
6355 @item auto
6356 Allow @value{GDBN} to choose a decoding style by inspecting your program.
6357
6358 @item gnu
6359 Decode based on the @sc{gnu} C@t{++} compiler (@code{g++}) encoding algorithm.
6360 This is the default.
6361
6362 @item hp
6363 Decode based on the HP ANSI C@t{++} (@code{aCC}) encoding algorithm.
6364
6365 @item lucid
6366 Decode based on the Lucid C@t{++} compiler (@code{lcc}) encoding algorithm.
6367
6368 @item arm
6369 Decode using the algorithm in the @cite{C@t{++} Annotated Reference Manual}.
6370 @strong{Warning:} this setting alone is not sufficient to allow
6371 debugging @code{cfront}-generated executables.  @value{GDBN} would
6372 require further enhancement to permit that.
6373
6374 @end table
6375 If you omit @var{style}, you will see a list of possible formats.
6376
6377 @item show demangle-style
6378 Display the encoding style currently in use for decoding C@t{++} symbols.
6379
6380 @item set print object
6381 @itemx set print object on
6382 @cindex derived type of an object, printing
6383 @cindex display derived types
6384 When displaying a pointer to an object, identify the @emph{actual}
6385 (derived) type of the object rather than the @emph{declared} type, using
6386 the virtual function table.
6387
6388 @item set print object off
6389 Display only the declared type of objects, without reference to the
6390 virtual function table.  This is the default setting.
6391
6392 @item show print object
6393 Show whether actual, or declared, object types are displayed.
6394
6395 @item set print static-members
6396 @itemx set print static-members on
6397 @cindex static members of C@t{++} objects
6398 Print static members when displaying a C@t{++} object.  The default is on.
6399
6400 @item set print static-members off
6401 Do not print static members when displaying a C@t{++} object.
6402
6403 @item show print static-members
6404 Show whether C@t{++} static members are printed or not.
6405
6406 @item set print pascal_static-members
6407 @itemx set print pascal_static-members on
6408 @cindex static members of Pascal objects
6409 @cindex Pascal objects, static members display
6410 Print static members when displaying a Pascal object.  The default is on.
6411
6412 @item set print pascal_static-members off
6413 Do not print static members when displaying a Pascal object.
6414
6415 @item show print pascal_static-members
6416 Show whether Pascal static members are printed or not.
6417
6418 @c These don't work with HP ANSI C++ yet.
6419 @item set print vtbl
6420 @itemx set print vtbl on
6421 @cindex pretty print C@t{++} virtual function tables
6422 @cindex virtual functions (C@t{++}) display
6423 @cindex VTBL display
6424 Pretty print C@t{++} virtual function tables.  The default is off.
6425 (The @code{vtbl} commands do not work on programs compiled with the HP
6426 ANSI C@t{++} compiler (@code{aCC}).)
6427
6428 @item set print vtbl off
6429 Do not pretty print C@t{++} virtual function tables.
6430
6431 @item show print vtbl
6432 Show whether C@t{++} virtual function tables are pretty printed, or not.
6433 @end table
6434
6435 @node Value History
6436 @section Value History
6437
6438 @cindex value history
6439 @cindex history of values printed by @value{GDBN}
6440 Values printed by the @code{print} command are saved in the @value{GDBN}
6441 @dfn{value history}.  This allows you to refer to them in other expressions.
6442 Values are kept until the symbol table is re-read or discarded
6443 (for example with the @code{file} or @code{symbol-file} commands).
6444 When the symbol table changes, the value history is discarded,
6445 since the values may contain pointers back to the types defined in the
6446 symbol table.
6447
6448 @cindex @code{$}
6449 @cindex @code{$$}
6450 @cindex history number
6451 The values printed are given @dfn{history numbers} by which you can
6452 refer to them.  These are successive integers starting with one.
6453 @code{print} shows you the history number assigned to a value by
6454 printing @samp{$@var{num} = } before the value; here @var{num} is the
6455 history number.
6456
6457 To refer to any previous value, use @samp{$} followed by the value's
6458 history number.  The way @code{print} labels its output is designed to
6459 remind you of this.  Just @code{$} refers to the most recent value in
6460 the history, and @code{$$} refers to the value before that.
6461 @code{$$@var{n}} refers to the @var{n}th value from the end; @code{$$2}
6462 is the value just prior to @code{$$}, @code{$$1} is equivalent to
6463 @code{$$}, and @code{$$0} is equivalent to @code{$}.
6464
6465 For example, suppose you have just printed a pointer to a structure and
6466 want to see the contents of the structure.  It suffices to type
6467
6468 @smallexample
6469 p *$
6470 @end smallexample
6471
6472 If you have a chain of structures where the component @code{next} points
6473 to the next one, you can print the contents of the next one with this:
6474
6475 @smallexample
6476 p *$.next
6477 @end smallexample
6478
6479 @noindent
6480 You can print successive links in the chain by repeating this
6481 command---which you can do by just typing @key{RET}.
6482
6483 Note that the history records values, not expressions.  If the value of
6484 @code{x} is 4 and you type these commands:
6485
6486 @smallexample
6487 print x
6488 set x=5
6489 @end smallexample
6490
6491 @noindent
6492 then the value recorded in the value history by the @code{print} command
6493 remains 4 even though the value of @code{x} has changed.
6494
6495 @table @code
6496 @kindex show values
6497 @item show values
6498 Print the last ten values in the value history, with their item numbers.
6499 This is like @samp{p@ $$9} repeated ten times, except that @code{show
6500 values} does not change the history.
6501
6502 @item show values @var{n}
6503 Print ten history values centered on history item number @var{n}.
6504
6505 @item show values +
6506 Print ten history values just after the values last printed.  If no more
6507 values are available, @code{show values +} produces no display.
6508 @end table
6509
6510 Pressing @key{RET} to repeat @code{show values @var{n}} has exactly the
6511 same effect as @samp{show values +}.
6512
6513 @node Convenience Vars
6514 @section Convenience Variables
6515
6516 @cindex convenience variables
6517 @cindex user-defined variables
6518 @value{GDBN} provides @dfn{convenience variables} that you can use within
6519 @value{GDBN} to hold on to a value and refer to it later.  These variables
6520 exist entirely within @value{GDBN}; they are not part of your program, and
6521 setting a convenience variable has no direct effect on further execution
6522 of your program.  That is why you can use them freely.
6523
6524 Convenience variables are prefixed with @samp{$}.  Any name preceded by
6525 @samp{$} can be used for a convenience variable, unless it is one of
6526 the predefined machine-specific register names (@pxref{Registers, ,Registers}).
6527 (Value history references, in contrast, are @emph{numbers} preceded
6528 by @samp{$}.  @xref{Value History, ,Value History}.)
6529
6530 You can save a value in a convenience variable with an assignment
6531 expression, just as you would set a variable in your program.
6532 For example:
6533
6534 @smallexample
6535 set $foo = *object_ptr
6536 @end smallexample
6537
6538 @noindent
6539 would save in @code{$foo} the value contained in the object pointed to by
6540 @code{object_ptr}.
6541
6542 Using a convenience variable for the first time creates it, but its
6543 value is @code{void} until you assign a new value.  You can alter the
6544 value with another assignment at any time.
6545
6546 Convenience variables have no fixed types.  You can assign a convenience
6547 variable any type of value, including structures and arrays, even if
6548 that variable already has a value of a different type.  The convenience
6549 variable, when used as an expression, has the type of its current value.
6550
6551 @table @code
6552 @kindex show convenience
6553 @cindex show all user variables
6554 @item show convenience
6555 Print a list of convenience variables used so far, and their values.
6556 Abbreviated @code{show conv}.
6557
6558 @kindex init-if-undefined
6559 @cindex convenience variables, initializing
6560 @item init-if-undefined $@var{variable} = @var{expression}
6561 Set a convenience variable if it has not already been set.  This is useful
6562 for user-defined commands that keep some state.  It is similar, in concept,
6563 to using local static variables with initializers in C (except that
6564 convenience variables are global).  It can also be used to allow users to
6565 override default values used in a command script.
6566
6567 If the variable is already defined then the expression is not evaluated so
6568 any side-effects do not occur.
6569 @end table
6570
6571 One of the ways to use a convenience variable is as a counter to be
6572 incremented or a pointer to be advanced.  For example, to print
6573 a field from successive elements of an array of structures:
6574
6575 @smallexample
6576 set $i = 0
6577 print bar[$i++]->contents
6578 @end smallexample
6579
6580 @noindent
6581 Repeat that command by typing @key{RET}.
6582
6583 Some convenience variables are created automatically by @value{GDBN} and given
6584 values likely to be useful.
6585
6586 @table @code
6587 @vindex $_@r{, convenience variable}
6588 @item $_
6589 The variable @code{$_} is automatically set by the @code{x} command to
6590 the last address examined (@pxref{Memory, ,Examining Memory}).  Other
6591 commands which provide a default address for @code{x} to examine also
6592 set @code{$_} to that address; these commands include @code{info line}
6593 and @code{info breakpoint}.  The type of @code{$_} is @code{void *}
6594 except when set by the @code{x} command, in which case it is a pointer
6595 to the type of @code{$__}.
6596
6597 @vindex $__@r{, convenience variable}
6598 @item $__
6599 The variable @code{$__} is automatically set by the @code{x} command
6600 to the value found in the last address examined.  Its type is chosen
6601 to match the format in which the data was printed.
6602
6603 @item $_exitcode
6604 @vindex $_exitcode@r{, convenience variable}
6605 The variable @code{$_exitcode} is automatically set to the exit code when
6606 the program being debugged terminates.
6607 @end table
6608
6609 On HP-UX systems, if you refer to a function or variable name that
6610 begins with a dollar sign, @value{GDBN} searches for a user or system
6611 name first, before it searches for a convenience variable.
6612
6613 @node Registers
6614 @section Registers
6615
6616 @cindex registers
6617 You can refer to machine register contents, in expressions, as variables
6618 with names starting with @samp{$}.  The names of registers are different
6619 for each machine; use @code{info registers} to see the names used on
6620 your machine.
6621
6622 @table @code
6623 @kindex info registers
6624 @item info registers
6625 Print the names and values of all registers except floating-point
6626 and vector registers (in the selected stack frame).
6627
6628 @kindex info all-registers
6629 @cindex floating point registers
6630 @item info all-registers
6631 Print the names and values of all registers, including floating-point
6632 and vector registers (in the selected stack frame).
6633
6634 @item info registers @var{regname} @dots{}
6635 Print the @dfn{relativized} value of each specified register @var{regname}.
6636 As discussed in detail below, register values are normally relative to
6637 the selected stack frame.  @var{regname} may be any register name valid on
6638 the machine you are using, with or without the initial @samp{$}.
6639 @end table
6640
6641 @cindex stack pointer register
6642 @cindex program counter register
6643 @cindex process status register
6644 @cindex frame pointer register
6645 @cindex standard registers
6646 @value{GDBN} has four ``standard'' register names that are available (in
6647 expressions) on most machines---whenever they do not conflict with an
6648 architecture's canonical mnemonics for registers.  The register names
6649 @code{$pc} and @code{$sp} are used for the program counter register and
6650 the stack pointer.  @code{$fp} is used for a register that contains a
6651 pointer to the current stack frame, and @code{$ps} is used for a
6652 register that contains the processor status.  For example,
6653 you could print the program counter in hex with
6654
6655 @smallexample
6656 p/x $pc
6657 @end smallexample
6658
6659 @noindent
6660 or print the instruction to be executed next with
6661
6662 @smallexample
6663 x/i $pc
6664 @end smallexample
6665
6666 @noindent
6667 or add four to the stack pointer@footnote{This is a way of removing
6668 one word from the stack, on machines where stacks grow downward in
6669 memory (most machines, nowadays).  This assumes that the innermost
6670 stack frame is selected; setting @code{$sp} is not allowed when other
6671 stack frames are selected.  To pop entire frames off the stack,
6672 regardless of machine architecture, use @code{return};
6673 see @ref{Returning, ,Returning from a Function}.} with
6674
6675 @smallexample
6676 set $sp += 4
6677 @end smallexample
6678
6679 Whenever possible, these four standard register names are available on
6680 your machine even though the machine has different canonical mnemonics,
6681 so long as there is no conflict.  The @code{info registers} command
6682 shows the canonical names.  For example, on the SPARC, @code{info
6683 registers} displays the processor status register as @code{$psr} but you
6684 can also refer to it as @code{$ps}; and on x86-based machines @code{$ps}
6685 is an alias for the @sc{eflags} register.
6686
6687 @value{GDBN} always considers the contents of an ordinary register as an
6688 integer when the register is examined in this way.  Some machines have
6689 special registers which can hold nothing but floating point; these
6690 registers are considered to have floating point values.  There is no way
6691 to refer to the contents of an ordinary register as floating point value
6692 (although you can @emph{print} it as a floating point value with
6693 @samp{print/f $@var{regname}}).
6694
6695 Some registers have distinct ``raw'' and ``virtual'' data formats.  This
6696 means that the data format in which the register contents are saved by
6697 the operating system is not the same one that your program normally
6698 sees.  For example, the registers of the 68881 floating point
6699 coprocessor are always saved in ``extended'' (raw) format, but all C
6700 programs expect to work with ``double'' (virtual) format.  In such
6701 cases, @value{GDBN} normally works with the virtual format only (the format
6702 that makes sense for your program), but the @code{info registers} command
6703 prints the data in both formats.
6704
6705 @cindex SSE registers (x86)
6706 @cindex MMX registers (x86)
6707 Some machines have special registers whose contents can be interpreted
6708 in several different ways.  For example, modern x86-based machines
6709 have SSE and MMX registers that can hold several values packed
6710 together in several different formats.  @value{GDBN} refers to such
6711 registers in @code{struct} notation:
6712
6713 @smallexample
6714 (@value{GDBP}) print $xmm1
6715 $1 = @{
6716   v4_float = @{0, 3.43859137e-038, 1.54142831e-044, 1.821688e-044@},
6717   v2_double = @{9.92129282474342e-303, 2.7585945287983262e-313@},
6718   v16_int8 = "\000\000\000\000\3706;\001\v\000\000\000\r\000\000",
6719   v8_int16 = @{0, 0, 14072, 315, 11, 0, 13, 0@},
6720   v4_int32 = @{0, 20657912, 11, 13@},
6721   v2_int64 = @{88725056443645952, 55834574859@},
6722   uint128 = 0x0000000d0000000b013b36f800000000
6723 @}
6724 @end smallexample
6725
6726 @noindent
6727 To set values of such registers, you need to tell @value{GDBN} which
6728 view of the register you wish to change, as if you were assigning
6729 value to a @code{struct} member:
6730
6731 @smallexample
6732  (@value{GDBP}) set $xmm1.uint128 = 0x000000000000000000000000FFFFFFFF
6733 @end smallexample
6734
6735 Normally, register values are relative to the selected stack frame
6736 (@pxref{Selection, ,Selecting a Frame}).  This means that you get the
6737 value that the register would contain if all stack frames farther in
6738 were exited and their saved registers restored.  In order to see the
6739 true contents of hardware registers, you must select the innermost
6740 frame (with @samp{frame 0}).
6741
6742 However, @value{GDBN} must deduce where registers are saved, from the machine
6743 code generated by your compiler.  If some registers are not saved, or if
6744 @value{GDBN} is unable to locate the saved registers, the selected stack
6745 frame makes no difference.
6746
6747 @node Floating Point Hardware
6748 @section Floating Point Hardware
6749 @cindex floating point
6750
6751 Depending on the configuration, @value{GDBN} may be able to give
6752 you more information about the status of the floating point hardware.
6753
6754 @table @code
6755 @kindex info float
6756 @item info float
6757 Display hardware-dependent information about the floating
6758 point unit.  The exact contents and layout vary depending on the
6759 floating point chip.  Currently, @samp{info float} is supported on
6760 the ARM and x86 machines.
6761 @end table
6762
6763 @node Vector Unit
6764 @section Vector Unit
6765 @cindex vector unit
6766
6767 Depending on the configuration, @value{GDBN} may be able to give you
6768 more information about the status of the vector unit.
6769
6770 @table @code
6771 @kindex info vector
6772 @item info vector
6773 Display information about the vector unit.  The exact contents and
6774 layout vary depending on the hardware.
6775 @end table
6776
6777 @node OS Information
6778 @section Operating System Auxiliary Information
6779 @cindex OS information
6780
6781 @value{GDBN} provides interfaces to useful OS facilities that can help
6782 you debug your program.
6783
6784 @cindex @code{ptrace} system call
6785 @cindex @code{struct user} contents
6786 When @value{GDBN} runs on a @dfn{Posix system} (such as GNU or Unix
6787 machines), it interfaces with the inferior via the @code{ptrace}
6788 system call.  The operating system creates a special sata structure,
6789 called @code{struct user}, for this interface.  You can use the
6790 command @code{info udot} to display the contents of this data
6791 structure.
6792
6793 @table @code
6794 @item info udot
6795 @kindex info udot
6796 Display the contents of the @code{struct user} maintained by the OS
6797 kernel for the program being debugged.  @value{GDBN} displays the
6798 contents of @code{struct user} as a list of hex numbers, similar to
6799 the @code{examine} command.
6800 @end table
6801
6802 @cindex auxiliary vector
6803 @cindex vector, auxiliary
6804 Some operating systems supply an @dfn{auxiliary vector} to programs at
6805 startup.  This is akin to the arguments and environment that you
6806 specify for a program, but contains a system-dependent variety of
6807 binary values that tell system libraries important details about the
6808 hardware, operating system, and process.  Each value's purpose is
6809 identified by an integer tag; the meanings are well-known but system-specific.
6810 Depending on the configuration and operating system facilities,
6811 @value{GDBN} may be able to show you this information.  For remote
6812 targets, this functionality may further depend on the remote stub's
6813 support of the @samp{qXfer:auxv:read} packet, see
6814 @ref{qXfer auxiliary vector read}.
6815
6816 @table @code
6817 @kindex info auxv
6818 @item info auxv
6819 Display the auxiliary vector of the inferior, which can be either a
6820 live process or a core dump file.  @value{GDBN} prints each tag value
6821 numerically, and also shows names and text descriptions for recognized
6822 tags.  Some values in the vector are numbers, some bit masks, and some
6823 pointers to strings or other data.  @value{GDBN} displays each value in the
6824 most appropriate form for a recognized tag, and in hexadecimal for
6825 an unrecognized tag.
6826 @end table
6827
6828
6829 @node Memory Region Attributes
6830 @section Memory Region Attributes
6831 @cindex memory region attributes
6832
6833 @dfn{Memory region attributes} allow you to describe special handling
6834 required by regions of your target's memory.  @value{GDBN} uses
6835 attributes to determine whether to allow certain types of memory
6836 accesses; whether to use specific width accesses; and whether to cache
6837 target memory.  By default the description of memory regions is
6838 fetched from the target (if the current target supports this), but the
6839 user can override the fetched regions.
6840
6841 Defined memory regions can be individually enabled and disabled.  When a
6842 memory region is disabled, @value{GDBN} uses the default attributes when
6843 accessing memory in that region.  Similarly, if no memory regions have
6844 been defined, @value{GDBN} uses the default attributes when accessing
6845 all memory.
6846
6847 When a memory region is defined, it is given a number to identify it;
6848 to enable, disable, or remove a memory region, you specify that number.
6849
6850 @table @code
6851 @kindex mem
6852 @item mem @var{lower} @var{upper} @var{attributes}@dots{}
6853 Define a memory region bounded by @var{lower} and @var{upper} with
6854 attributes @var{attributes}@dots{}, and add it to the list of regions
6855 monitored by @value{GDBN}.  Note that @var{upper} == 0 is a special
6856 case: it is treated as the target's maximum memory address.
6857 (0xffff on 16 bit targets, 0xffffffff on 32 bit targets, etc.)
6858
6859 @item mem auto
6860 Discard any user changes to the memory regions and use target-supplied
6861 regions, if available, or no regions if the target does not support.
6862
6863 @kindex delete mem
6864 @item delete mem @var{nums}@dots{}
6865 Remove memory regions @var{nums}@dots{} from the list of regions
6866 monitored by @value{GDBN}.
6867
6868 @kindex disable mem
6869 @item disable mem @var{nums}@dots{}
6870 Disable monitoring of memory regions @var{nums}@dots{}.
6871 A disabled memory region is not forgotten.
6872 It may be enabled again later.
6873
6874 @kindex enable mem
6875 @item enable mem @var{nums}@dots{}
6876 Enable monitoring of memory regions @var{nums}@dots{}.
6877
6878 @kindex info mem
6879 @item info mem
6880 Print a table of all defined memory regions, with the following columns
6881 for each region:
6882
6883 @table @emph
6884 @item Memory Region Number
6885 @item Enabled or Disabled.
6886 Enabled memory regions are marked with @samp{y}.
6887 Disabled memory regions are marked with @samp{n}.
6888
6889 @item Lo Address
6890 The address defining the inclusive lower bound of the memory region.
6891
6892 @item Hi Address
6893 The address defining the exclusive upper bound of the memory region.
6894
6895 @item Attributes
6896 The list of attributes set for this memory region.
6897 @end table
6898 @end table
6899
6900
6901 @subsection Attributes
6902
6903 @subsubsection Memory Access Mode
6904 The access mode attributes set whether @value{GDBN} may make read or
6905 write accesses to a memory region.
6906
6907 While these attributes prevent @value{GDBN} from performing invalid
6908 memory accesses, they do nothing to prevent the target system, I/O DMA,
6909 etc.@: from accessing memory.
6910
6911 @table @code
6912 @item ro
6913 Memory is read only.
6914 @item wo
6915 Memory is write only.
6916 @item rw
6917 Memory is read/write.  This is the default.
6918 @end table
6919
6920 @subsubsection Memory Access Size
6921 The access size attribute tells @value{GDBN} to use specific sized
6922 accesses in the memory region.  Often memory mapped device registers
6923 require specific sized accesses.  If no access size attribute is
6924 specified, @value{GDBN} may use accesses of any size.
6925
6926 @table @code
6927 @item 8
6928 Use 8 bit memory accesses.
6929 @item 16
6930 Use 16 bit memory accesses.
6931 @item 32
6932 Use 32 bit memory accesses.
6933 @item 64
6934 Use 64 bit memory accesses.
6935 @end table
6936
6937 @c @subsubsection Hardware/Software Breakpoints
6938 @c The hardware/software breakpoint attributes set whether @value{GDBN}
6939 @c will use hardware or software breakpoints for the internal breakpoints
6940 @c used by the step, next, finish, until, etc. commands.
6941 @c
6942 @c @table @code
6943 @c @item hwbreak
6944 @c Always use hardware breakpoints
6945 @c @item swbreak (default)
6946 @c @end table
6947
6948 @subsubsection Data Cache
6949 The data cache attributes set whether @value{GDBN} will cache target
6950 memory.  While this generally improves performance by reducing debug
6951 protocol overhead, it can lead to incorrect results because @value{GDBN}
6952 does not know about volatile variables or memory mapped device
6953 registers.
6954
6955 @table @code
6956 @item cache
6957 Enable @value{GDBN} to cache target memory.
6958 @item nocache
6959 Disable @value{GDBN} from caching target memory.  This is the default.
6960 @end table
6961
6962 @subsection Memory Access Checking
6963 @value{GDBN} can be instructed to refuse accesses to memory that is
6964 not explicitly described.  This can be useful if accessing such
6965 regions has undesired effects for a specific target, or to provide
6966 better error checking.  The following commands control this behaviour.
6967
6968 @table @code
6969 @kindex set mem inaccessible-by-default
6970 @item set mem inaccessible-by-default [on|off]
6971 If @code{on} is specified, make  @value{GDBN} treat memory not
6972 explicitly described by the memory ranges as non-existent and refuse accesses
6973 to such memory.  The checks are only performed if there's at least one
6974 memory range defined.  If @code{off} is specified, make @value{GDBN}
6975 treat the memory not explicitly described by the memory ranges as RAM.
6976 The default value is @code{off}.
6977 @kindex show mem inaccessible-by-default
6978 @item show mem inaccessible-by-default
6979 Show the current handling of accesses to unknown memory.
6980 @end table
6981
6982
6983 @c @subsubsection Memory Write Verification
6984 @c The memory write verification attributes set whether @value{GDBN}
6985 @c will re-reads data after each write to verify the write was successful.
6986 @c
6987 @c @table @code
6988 @c @item verify
6989 @c @item noverify (default)
6990 @c @end table
6991
6992 @node Dump/Restore Files
6993 @section Copy Between Memory and a File
6994 @cindex dump/restore files
6995 @cindex append data to a file
6996 @cindex dump data to a file
6997 @cindex restore data from a file
6998
6999 You can use the commands @code{dump}, @code{append}, and
7000 @code{restore} to copy data between target memory and a file.  The
7001 @code{dump} and @code{append} commands write data to a file, and the
7002 @code{restore} command reads data from a file back into the inferior's
7003 memory.  Files may be in binary, Motorola S-record, Intel hex, or
7004 Tektronix Hex format; however, @value{GDBN} can only append to binary
7005 files.
7006
7007 @table @code
7008
7009 @kindex dump
7010 @item dump @r{[}@var{format}@r{]} memory @var{filename} @var{start_addr} @var{end_addr}
7011 @itemx dump @r{[}@var{format}@r{]} value @var{filename} @var{expr}
7012 Dump the contents of memory from @var{start_addr} to @var{end_addr},
7013 or the value of @var{expr}, to @var{filename} in the given format.
7014
7015 The @var{format} parameter may be any one of:
7016 @table @code
7017 @item binary
7018 Raw binary form.
7019 @item ihex
7020 Intel hex format.
7021 @item srec
7022 Motorola S-record format.
7023 @item tekhex
7024 Tektronix Hex format.
7025 @end table
7026
7027 @value{GDBN} uses the same definitions of these formats as the
7028 @sc{gnu} binary utilities, like @samp{objdump} and @samp{objcopy}.  If
7029 @var{format} is omitted, @value{GDBN} dumps the data in raw binary
7030 form.
7031
7032 @kindex append
7033 @item append @r{[}binary@r{]} memory @var{filename} @var{start_addr} @var{end_addr}
7034 @itemx append @r{[}binary@r{]} value @var{filename} @var{expr}
7035 Append the contents of memory from @var{start_addr} to @var{end_addr},
7036 or the value of @var{expr}, to the file @var{filename}, in raw binary form.
7037 (@value{GDBN} can only append data to files in raw binary form.)
7038
7039 @kindex restore
7040 @item restore @var{filename} @r{[}binary@r{]} @var{bias} @var{start} @var{end}
7041 Restore the contents of file @var{filename} into memory.  The
7042 @code{restore} command can automatically recognize any known @sc{bfd}
7043 file format, except for raw binary.  To restore a raw binary file you
7044 must specify the optional keyword @code{binary} after the filename.
7045
7046 If @var{bias} is non-zero, its value will be added to the addresses
7047 contained in the file.  Binary files always start at address zero, so
7048 they will be restored at address @var{bias}.  Other bfd files have
7049 a built-in location; they will be restored at offset @var{bias}
7050 from that location.
7051
7052 If @var{start} and/or @var{end} are non-zero, then only data between
7053 file offset @var{start} and file offset @var{end} will be restored.
7054 These offsets are relative to the addresses in the file, before
7055 the @var{bias} argument is applied.
7056
7057 @end table
7058
7059 @node Core File Generation
7060 @section How to Produce a Core File from Your Program
7061 @cindex dump core from inferior
7062
7063 A @dfn{core file} or @dfn{core dump} is a file that records the memory
7064 image of a running process and its process status (register values
7065 etc.).  Its primary use is post-mortem debugging of a program that
7066 crashed while it ran outside a debugger.  A program that crashes
7067 automatically produces a core file, unless this feature is disabled by
7068 the user.  @xref{Files}, for information on invoking @value{GDBN} in
7069 the post-mortem debugging mode.
7070
7071 Occasionally, you may wish to produce a core file of the program you
7072 are debugging in order to preserve a snapshot of its state.
7073 @value{GDBN} has a special command for that.
7074
7075 @table @code
7076 @kindex gcore
7077 @kindex generate-core-file
7078 @item generate-core-file [@var{file}]
7079 @itemx gcore [@var{file}]
7080 Produce a core dump of the inferior process.  The optional argument
7081 @var{file} specifies the file name where to put the core dump.  If not
7082 specified, the file name defaults to @file{core.@var{pid}}, where
7083 @var{pid} is the inferior process ID.
7084
7085 Note that this command is implemented only for some systems (as of
7086 this writing, @sc{gnu}/Linux, FreeBSD, Solaris, Unixware, and S390).
7087 @end table
7088
7089 @node Character Sets
7090 @section Character Sets
7091 @cindex character sets
7092 @cindex charset
7093 @cindex translating between character sets
7094 @cindex host character set
7095 @cindex target character set
7096
7097 If the program you are debugging uses a different character set to
7098 represent characters and strings than the one @value{GDBN} uses itself,
7099 @value{GDBN} can automatically translate between the character sets for
7100 you.  The character set @value{GDBN} uses we call the @dfn{host
7101 character set}; the one the inferior program uses we call the
7102 @dfn{target character set}.
7103
7104 For example, if you are running @value{GDBN} on a @sc{gnu}/Linux system, which
7105 uses the ISO Latin 1 character set, but you are using @value{GDBN}'s
7106 remote protocol (@pxref{Remote Debugging}) to debug a program
7107 running on an IBM mainframe, which uses the @sc{ebcdic} character set,
7108 then the host character set is Latin-1, and the target character set is
7109 @sc{ebcdic}.  If you give @value{GDBN} the command @code{set
7110 target-charset EBCDIC-US}, then @value{GDBN} translates between
7111 @sc{ebcdic} and Latin 1 as you print character or string values, or use
7112 character and string literals in expressions.
7113
7114 @value{GDBN} has no way to automatically recognize which character set
7115 the inferior program uses; you must tell it, using the @code{set
7116 target-charset} command, described below.
7117
7118 Here are the commands for controlling @value{GDBN}'s character set
7119 support:
7120
7121 @table @code
7122 @item set target-charset @var{charset}
7123 @kindex set target-charset
7124 Set the current target character set to @var{charset}.  We list the
7125 character set names @value{GDBN} recognizes below, but if you type
7126 @code{set target-charset} followed by @key{TAB}@key{TAB}, @value{GDBN} will
7127 list the target character sets it supports.
7128 @end table
7129
7130 @table @code
7131 @item set host-charset @var{charset}
7132 @kindex set host-charset
7133 Set the current host character set to @var{charset}.
7134
7135 By default, @value{GDBN} uses a host character set appropriate to the
7136 system it is running on; you can override that default using the
7137 @code{set host-charset} command.
7138
7139 @value{GDBN} can only use certain character sets as its host character
7140 set.  We list the character set names @value{GDBN} recognizes below, and
7141 indicate which can be host character sets, but if you type
7142 @code{set target-charset} followed by @key{TAB}@key{TAB}, @value{GDBN} will
7143 list the host character sets it supports.
7144
7145 @item set charset @var{charset}
7146 @kindex set charset
7147 Set the current host and target character sets to @var{charset}.  As
7148 above, if you type @code{set charset} followed by @key{TAB}@key{TAB},
7149 @value{GDBN} will list the name of the character sets that can be used
7150 for both host and target.
7151
7152
7153 @item show charset
7154 @kindex show charset
7155 Show the names of the current host and target charsets.
7156
7157 @itemx show host-charset
7158 @kindex show host-charset
7159 Show the name of the current host charset.
7160
7161 @itemx show target-charset
7162 @kindex show target-charset
7163 Show the name of the current target charset.
7164
7165 @end table
7166
7167 @value{GDBN} currently includes support for the following character
7168 sets:
7169
7170 @table @code
7171
7172 @item ASCII
7173 @cindex ASCII character set
7174 Seven-bit U.S. @sc{ascii}.  @value{GDBN} can use this as its host
7175 character set.
7176
7177 @item ISO-8859-1
7178 @cindex ISO 8859-1 character set
7179 @cindex ISO Latin 1 character set
7180 The ISO Latin 1 character set.  This extends @sc{ascii} with accented
7181 characters needed for French, German, and Spanish.  @value{GDBN} can use
7182 this as its host character set.
7183
7184 @item EBCDIC-US
7185 @itemx IBM1047
7186 @cindex EBCDIC character set
7187 @cindex IBM1047 character set
7188 Variants of the @sc{ebcdic} character set, used on some of IBM's
7189 mainframe operating systems.  (@sc{gnu}/Linux on the S/390 uses U.S. @sc{ascii}.)
7190 @value{GDBN} cannot use these as its host character set.
7191
7192 @end table
7193
7194 Note that these are all single-byte character sets.  More work inside
7195 @value{GDBN} is needed to support multi-byte or variable-width character
7196 encodings, like the UTF-8 and UCS-2 encodings of Unicode.
7197
7198 Here is an example of @value{GDBN}'s character set support in action.
7199 Assume that the following source code has been placed in the file
7200 @file{charset-test.c}:
7201
7202 @smallexample
7203 #include <stdio.h>
7204
7205 char ascii_hello[]
7206   = @{72, 101, 108, 108, 111, 44, 32, 119,
7207      111, 114, 108, 100, 33, 10, 0@};
7208 char ibm1047_hello[]
7209   = @{200, 133, 147, 147, 150, 107, 64, 166,
7210      150, 153, 147, 132, 90, 37, 0@};
7211
7212 main ()
7213 @{
7214   printf ("Hello, world!\n");
7215 @}
7216 @end smallexample
7217
7218 In this program, @code{ascii_hello} and @code{ibm1047_hello} are arrays
7219 containing the string @samp{Hello, world!} followed by a newline,
7220 encoded in the @sc{ascii} and @sc{ibm1047} character sets.
7221
7222 We compile the program, and invoke the debugger on it:
7223
7224 @smallexample
7225 $ gcc -g charset-test.c -o charset-test
7226 $ gdb -nw charset-test
7227 GNU gdb 2001-12-19-cvs
7228 Copyright 2001 Free Software Foundation, Inc.
7229 @dots{}
7230 (@value{GDBP})
7231 @end smallexample
7232
7233 We can use the @code{show charset} command to see what character sets
7234 @value{GDBN} is currently using to interpret and display characters and
7235 strings:
7236
7237 @smallexample
7238 (@value{GDBP}) show charset
7239 The current host and target character set is `ISO-8859-1'.
7240 (@value{GDBP})
7241 @end smallexample
7242
7243 For the sake of printing this manual, let's use @sc{ascii} as our
7244 initial character set:
7245 @smallexample
7246 (@value{GDBP}) set charset ASCII
7247 (@value{GDBP}) show charset
7248 The current host and target character set is `ASCII'.
7249 (@value{GDBP})
7250 @end smallexample
7251
7252 Let's assume that @sc{ascii} is indeed the correct character set for our
7253 host system --- in other words, let's assume that if @value{GDBN} prints
7254 characters using the @sc{ascii} character set, our terminal will display
7255 them properly.  Since our current target character set is also
7256 @sc{ascii}, the contents of @code{ascii_hello} print legibly:
7257
7258 @smallexample
7259 (@value{GDBP}) print ascii_hello
7260 $1 = 0x401698 "Hello, world!\n"
7261 (@value{GDBP}) print ascii_hello[0]
7262 $2 = 72 'H'
7263 (@value{GDBP})
7264 @end smallexample
7265
7266 @value{GDBN} uses the target character set for character and string
7267 literals you use in expressions:
7268
7269 @smallexample
7270 (@value{GDBP}) print '+'
7271 $3 = 43 '+'
7272 (@value{GDBP})
7273 @end smallexample
7274
7275 The @sc{ascii} character set uses the number 43 to encode the @samp{+}
7276 character.
7277
7278 @value{GDBN} relies on the user to tell it which character set the
7279 target program uses.  If we print @code{ibm1047_hello} while our target
7280 character set is still @sc{ascii}, we get jibberish:
7281
7282 @smallexample
7283 (@value{GDBP}) print ibm1047_hello
7284 $4 = 0x4016a8 "\310\205\223\223\226k@@\246\226\231\223\204Z%"
7285 (@value{GDBP}) print ibm1047_hello[0]
7286 $5 = 200 '\310'
7287 (@value{GDBP})
7288 @end smallexample
7289
7290 If we invoke the @code{set target-charset} followed by @key{TAB}@key{TAB},
7291 @value{GDBN} tells us the character sets it supports:
7292
7293 @smallexample
7294 (@value{GDBP}) set target-charset
7295 ASCII       EBCDIC-US   IBM1047     ISO-8859-1
7296 (@value{GDBP}) set target-charset
7297 @end smallexample
7298
7299 We can select @sc{ibm1047} as our target character set, and examine the
7300 program's strings again.  Now the @sc{ascii} string is wrong, but
7301 @value{GDBN} translates the contents of @code{ibm1047_hello} from the
7302 target character set, @sc{ibm1047}, to the host character set,
7303 @sc{ascii}, and they display correctly:
7304
7305 @smallexample
7306 (@value{GDBP}) set target-charset IBM1047
7307 (@value{GDBP}) show charset
7308 The current host character set is `ASCII'.
7309 The current target character set is `IBM1047'.
7310 (@value{GDBP}) print ascii_hello
7311 $6 = 0x401698 "\110\145%%?\054\040\167?\162%\144\041\012"
7312 (@value{GDBP}) print ascii_hello[0]
7313 $7 = 72 '\110'
7314 (@value{GDBP}) print ibm1047_hello
7315 $8 = 0x4016a8 "Hello, world!\n"
7316 (@value{GDBP}) print ibm1047_hello[0]
7317 $9 = 200 'H'
7318 (@value{GDBP})
7319 @end smallexample
7320
7321 As above, @value{GDBN} uses the target character set for character and
7322 string literals you use in expressions:
7323
7324 @smallexample
7325 (@value{GDBP}) print '+'
7326 $10 = 78 '+'
7327 (@value{GDBP})
7328 @end smallexample
7329
7330 The @sc{ibm1047} character set uses the number 78 to encode the @samp{+}
7331 character.
7332
7333 @node Caching Remote Data
7334 @section Caching Data of Remote Targets
7335 @cindex caching data of remote targets
7336
7337 @value{GDBN} can cache data exchanged between the debugger and a
7338 remote target (@pxref{Remote Debugging}).  Such caching generally improves
7339 performance, because it reduces the overhead of the remote protocol by
7340 bundling memory reads and writes into large chunks.  Unfortunately,
7341 @value{GDBN} does not currently know anything about volatile
7342 registers, and thus data caching will produce incorrect results when
7343 volatile registers are in use.
7344
7345 @table @code
7346 @kindex set remotecache
7347 @item set remotecache on
7348 @itemx set remotecache off
7349 Set caching state for remote targets.  When @code{ON}, use data
7350 caching.  By default, this option is @code{OFF}.
7351
7352 @kindex show remotecache
7353 @item show remotecache
7354 Show the current state of data caching for remote targets.
7355
7356 @kindex info dcache
7357 @item info dcache
7358 Print the information about the data cache performance.  The
7359 information displayed includes: the dcache width and depth; and for
7360 each cache line, how many times it was referenced, and its data and
7361 state (dirty, bad, ok, etc.).  This command is useful for debugging
7362 the data cache operation.
7363 @end table
7364
7365
7366 @node Macros
7367 @chapter C Preprocessor Macros
7368
7369 Some languages, such as C and C@t{++}, provide a way to define and invoke
7370 ``preprocessor macros'' which expand into strings of tokens.
7371 @value{GDBN} can evaluate expressions containing macro invocations, show
7372 the result of macro expansion, and show a macro's definition, including
7373 where it was defined.
7374
7375 You may need to compile your program specially to provide @value{GDBN}
7376 with information about preprocessor macros.  Most compilers do not
7377 include macros in their debugging information, even when you compile
7378 with the @option{-g} flag.  @xref{Compilation}.
7379
7380 A program may define a macro at one point, remove that definition later,
7381 and then provide a different definition after that.  Thus, at different
7382 points in the program, a macro may have different definitions, or have
7383 no definition at all.  If there is a current stack frame, @value{GDBN}
7384 uses the macros in scope at that frame's source code line.  Otherwise,
7385 @value{GDBN} uses the macros in scope at the current listing location;
7386 see @ref{List}.
7387
7388 At the moment, @value{GDBN} does not support the @code{##}
7389 token-splicing operator, the @code{#} stringification operator, or
7390 variable-arity macros.
7391
7392 Whenever @value{GDBN} evaluates an expression, it always expands any
7393 macro invocations present in the expression.  @value{GDBN} also provides
7394 the following commands for working with macros explicitly.
7395
7396 @table @code
7397
7398 @kindex macro expand
7399 @cindex macro expansion, showing the results of preprocessor
7400 @cindex preprocessor macro expansion, showing the results of
7401 @cindex expanding preprocessor macros
7402 @item macro expand @var{expression}
7403 @itemx macro exp @var{expression}
7404 Show the results of expanding all preprocessor macro invocations in
7405 @var{expression}.  Since @value{GDBN} simply expands macros, but does
7406 not parse the result, @var{expression} need not be a valid expression;
7407 it can be any string of tokens.
7408
7409 @kindex macro exp1
7410 @item macro expand-once @var{expression}
7411 @itemx macro exp1 @var{expression}
7412 @cindex expand macro once
7413 @i{(This command is not yet implemented.)}  Show the results of
7414 expanding those preprocessor macro invocations that appear explicitly in
7415 @var{expression}.  Macro invocations appearing in that expansion are
7416 left unchanged.  This command allows you to see the effect of a
7417 particular macro more clearly, without being confused by further
7418 expansions.  Since @value{GDBN} simply expands macros, but does not
7419 parse the result, @var{expression} need not be a valid expression; it
7420 can be any string of tokens.
7421
7422 @kindex info macro
7423 @cindex macro definition, showing
7424 @cindex definition, showing a macro's
7425 @item info macro @var{macro}
7426 Show the definition of the macro named @var{macro}, and describe the
7427 source location where that definition was established.
7428
7429 @kindex macro define
7430 @cindex user-defined macros
7431 @cindex defining macros interactively
7432 @cindex macros, user-defined
7433 @item macro define @var{macro} @var{replacement-list}
7434 @itemx macro define @var{macro}(@var{arglist}) @var{replacement-list}
7435 @i{(This command is not yet implemented.)}  Introduce a definition for a
7436 preprocessor macro named @var{macro}, invocations of which are replaced
7437 by the tokens given in @var{replacement-list}.  The first form of this
7438 command defines an ``object-like'' macro, which takes no arguments; the
7439 second form defines a ``function-like'' macro, which takes the arguments
7440 given in @var{arglist}.
7441
7442 A definition introduced by this command is in scope in every expression
7443 evaluated in @value{GDBN}, until it is removed with the @command{macro
7444 undef} command, described below.  The definition overrides all
7445 definitions for @var{macro} present in the program being debugged, as
7446 well as any previous user-supplied definition.
7447
7448 @kindex macro undef
7449 @item macro undef @var{macro}
7450 @i{(This command is not yet implemented.)}  Remove any user-supplied
7451 definition for the macro named @var{macro}.  This command only affects
7452 definitions provided with the @command{macro define} command, described
7453 above; it cannot remove definitions present in the program being
7454 debugged.
7455
7456 @kindex macro list
7457 @item macro list
7458 @i{(This command is not yet implemented.)}  List all the macros
7459 defined using the @code{macro define} command.
7460 @end table
7461
7462 @cindex macros, example of debugging with
7463 Here is a transcript showing the above commands in action.  First, we
7464 show our source files:
7465
7466 @smallexample
7467 $ cat sample.c
7468 #include <stdio.h>
7469 #include "sample.h"
7470
7471 #define M 42
7472 #define ADD(x) (M + x)
7473
7474 main ()
7475 @{
7476 #define N 28
7477   printf ("Hello, world!\n");
7478 #undef N
7479   printf ("We're so creative.\n");
7480 #define N 1729
7481   printf ("Goodbye, world!\n");
7482 @}
7483 $ cat sample.h
7484 #define Q <
7485 $
7486 @end smallexample
7487
7488 Now, we compile the program using the @sc{gnu} C compiler, @value{NGCC}.
7489 We pass the @option{-gdwarf-2} and @option{-g3} flags to ensure the
7490 compiler includes information about preprocessor macros in the debugging
7491 information.
7492
7493 @smallexample
7494 $ gcc -gdwarf-2 -g3 sample.c -o sample
7495 $
7496 @end smallexample
7497
7498 Now, we start @value{GDBN} on our sample program:
7499
7500 @smallexample
7501 $ gdb -nw sample
7502 GNU gdb 2002-05-06-cvs
7503 Copyright 2002 Free Software Foundation, Inc.
7504 GDB is free software, @dots{}
7505 (@value{GDBP})
7506 @end smallexample
7507
7508 We can expand macros and examine their definitions, even when the
7509 program is not running.  @value{GDBN} uses the current listing position
7510 to decide which macro definitions are in scope:
7511
7512 @smallexample
7513 (@value{GDBP}) list main
7514 3
7515 4       #define M 42
7516 5       #define ADD(x) (M + x)
7517 6
7518 7       main ()
7519 8       @{
7520 9       #define N 28
7521 10        printf ("Hello, world!\n");
7522 11      #undef N
7523 12        printf ("We're so creative.\n");
7524 (@value{GDBP}) info macro ADD
7525 Defined at /home/jimb/gdb/macros/play/sample.c:5
7526 #define ADD(x) (M + x)
7527 (@value{GDBP}) info macro Q
7528 Defined at /home/jimb/gdb/macros/play/sample.h:1
7529   included at /home/jimb/gdb/macros/play/sample.c:2
7530 #define Q <
7531 (@value{GDBP}) macro expand ADD(1)
7532 expands to: (42 + 1)
7533 (@value{GDBP}) macro expand-once ADD(1)
7534 expands to: once (M + 1)
7535 (@value{GDBP})
7536 @end smallexample
7537
7538 In the example above, note that @command{macro expand-once} expands only
7539 the macro invocation explicit in the original text --- the invocation of
7540 @code{ADD} --- but does not expand the invocation of the macro @code{M},
7541 which was introduced by @code{ADD}.
7542
7543 Once the program is running, @value{GDBN} uses the macro definitions in
7544 force at the source line of the current stack frame:
7545
7546 @smallexample
7547 (@value{GDBP}) break main
7548 Breakpoint 1 at 0x8048370: file sample.c, line 10.
7549 (@value{GDBP}) run
7550 Starting program: /home/jimb/gdb/macros/play/sample
7551
7552 Breakpoint 1, main () at sample.c:10
7553 10        printf ("Hello, world!\n");
7554 (@value{GDBP})
7555 @end smallexample
7556
7557 At line 10, the definition of the macro @code{N} at line 9 is in force:
7558
7559 @smallexample
7560 (@value{GDBP}) info macro N
7561 Defined at /home/jimb/gdb/macros/play/sample.c:9
7562 #define N 28
7563 (@value{GDBP}) macro expand N Q M
7564 expands to: 28 < 42
7565 (@value{GDBP}) print N Q M
7566 $1 = 1
7567 (@value{GDBP})
7568 @end smallexample
7569
7570 As we step over directives that remove @code{N}'s definition, and then
7571 give it a new definition, @value{GDBN} finds the definition (or lack
7572 thereof) in force at each point:
7573
7574 @smallexample
7575 (@value{GDBP}) next
7576 Hello, world!
7577 12        printf ("We're so creative.\n");
7578 (@value{GDBP}) info macro N
7579 The symbol `N' has no definition as a C/C++ preprocessor macro
7580 at /home/jimb/gdb/macros/play/sample.c:12
7581 (@value{GDBP}) next
7582 We're so creative.
7583 14        printf ("Goodbye, world!\n");
7584 (@value{GDBP}) info macro N
7585 Defined at /home/jimb/gdb/macros/play/sample.c:13
7586 #define N 1729
7587 (@value{GDBP}) macro expand N Q M
7588 expands to: 1729 < 42
7589 (@value{GDBP}) print N Q M
7590 $2 = 0
7591 (@value{GDBP})
7592 @end smallexample
7593
7594
7595 @node Tracepoints
7596 @chapter Tracepoints
7597 @c This chapter is based on the documentation written by Michael
7598 @c Snyder, David Taylor, Jim Blandy, and Elena Zannoni.
7599
7600 @cindex tracepoints
7601 In some applications, it is not feasible for the debugger to interrupt
7602 the program's execution long enough for the developer to learn
7603 anything helpful about its behavior.  If the program's correctness
7604 depends on its real-time behavior, delays introduced by a debugger
7605 might cause the program to change its behavior drastically, or perhaps
7606 fail, even when the code itself is correct.  It is useful to be able
7607 to observe the program's behavior without interrupting it.
7608
7609 Using @value{GDBN}'s @code{trace} and @code{collect} commands, you can
7610 specify locations in the program, called @dfn{tracepoints}, and
7611 arbitrary expressions to evaluate when those tracepoints are reached.
7612 Later, using the @code{tfind} command, you can examine the values
7613 those expressions had when the program hit the tracepoints.  The
7614 expressions may also denote objects in memory---structures or arrays,
7615 for example---whose values @value{GDBN} should record; while visiting
7616 a particular tracepoint, you may inspect those objects as if they were
7617 in memory at that moment.  However, because @value{GDBN} records these
7618 values without interacting with you, it can do so quickly and
7619 unobtrusively, hopefully not disturbing the program's behavior.
7620
7621 The tracepoint facility is currently available only for remote
7622 targets.  @xref{Targets}.  In addition, your remote target must know
7623 how to collect trace data.  This functionality is implemented in the
7624 remote stub; however, none of the stubs distributed with @value{GDBN}
7625 support tracepoints as of this writing.  The format of the remote
7626 packets used to implement tracepoints are described in @ref{Tracepoint
7627 Packets}.
7628
7629 This chapter describes the tracepoint commands and features.
7630
7631 @menu
7632 * Set Tracepoints::
7633 * Analyze Collected Data::
7634 * Tracepoint Variables::
7635 @end menu
7636
7637 @node Set Tracepoints
7638 @section Commands to Set Tracepoints
7639
7640 Before running such a @dfn{trace experiment}, an arbitrary number of
7641 tracepoints can be set.  Like a breakpoint (@pxref{Set Breaks}), a
7642 tracepoint has a number assigned to it by @value{GDBN}.  Like with
7643 breakpoints, tracepoint numbers are successive integers starting from
7644 one.  Many of the commands associated with tracepoints take the
7645 tracepoint number as their argument, to identify which tracepoint to
7646 work on.
7647
7648 For each tracepoint, you can specify, in advance, some arbitrary set
7649 of data that you want the target to collect in the trace buffer when
7650 it hits that tracepoint.  The collected data can include registers,
7651 local variables, or global data.  Later, you can use @value{GDBN}
7652 commands to examine the values these data had at the time the
7653 tracepoint was hit.
7654
7655 This section describes commands to set tracepoints and associated
7656 conditions and actions.
7657
7658 @menu
7659 * Create and Delete Tracepoints::
7660 * Enable and Disable Tracepoints::
7661 * Tracepoint Passcounts::
7662 * Tracepoint Actions::
7663 * Listing Tracepoints::
7664 * Starting and Stopping Trace Experiments::
7665 @end menu
7666
7667 @node Create and Delete Tracepoints
7668 @subsection Create and Delete Tracepoints
7669
7670 @table @code
7671 @cindex set tracepoint
7672 @kindex trace
7673 @item trace
7674 The @code{trace} command is very similar to the @code{break} command.
7675 Its argument can be a source line, a function name, or an address in
7676 the target program.  @xref{Set Breaks}.  The @code{trace} command
7677 defines a tracepoint, which is a point in the target program where the
7678 debugger will briefly stop, collect some data, and then allow the
7679 program to continue.  Setting a tracepoint or changing its commands
7680 doesn't take effect until the next @code{tstart} command; thus, you
7681 cannot change the tracepoint attributes once a trace experiment is
7682 running.
7683
7684 Here are some examples of using the @code{trace} command:
7685
7686 @smallexample
7687 (@value{GDBP}) @b{trace foo.c:121}    // a source file and line number
7688
7689 (@value{GDBP}) @b{trace +2}           // 2 lines forward
7690
7691 (@value{GDBP}) @b{trace my_function}  // first source line of function
7692
7693 (@value{GDBP}) @b{trace *my_function} // EXACT start address of function
7694
7695 (@value{GDBP}) @b{trace *0x2117c4}    // an address
7696 @end smallexample
7697
7698 @noindent
7699 You can abbreviate @code{trace} as @code{tr}.
7700
7701 @vindex $tpnum
7702 @cindex last tracepoint number
7703 @cindex recent tracepoint number
7704 @cindex tracepoint number
7705 The convenience variable @code{$tpnum} records the tracepoint number
7706 of the most recently set tracepoint.
7707
7708 @kindex delete tracepoint
7709 @cindex tracepoint deletion
7710 @item delete tracepoint @r{[}@var{num}@r{]}
7711 Permanently delete one or more tracepoints.  With no argument, the
7712 default is to delete all tracepoints.
7713
7714 Examples:
7715
7716 @smallexample
7717 (@value{GDBP}) @b{delete trace 1 2 3} // remove three tracepoints
7718
7719 (@value{GDBP}) @b{delete trace}       // remove all tracepoints
7720 @end smallexample
7721
7722 @noindent
7723 You can abbreviate this command as @code{del tr}.
7724 @end table
7725
7726 @node Enable and Disable Tracepoints
7727 @subsection Enable and Disable Tracepoints
7728
7729 @table @code
7730 @kindex disable tracepoint
7731 @item disable tracepoint @r{[}@var{num}@r{]}
7732 Disable tracepoint @var{num}, or all tracepoints if no argument
7733 @var{num} is given.  A disabled tracepoint will have no effect during
7734 the next trace experiment, but it is not forgotten.  You can re-enable
7735 a disabled tracepoint using the @code{enable tracepoint} command.
7736
7737 @kindex enable tracepoint
7738 @item enable tracepoint @r{[}@var{num}@r{]}
7739 Enable tracepoint @var{num}, or all tracepoints.  The enabled
7740 tracepoints will become effective the next time a trace experiment is
7741 run.
7742 @end table
7743
7744 @node Tracepoint Passcounts
7745 @subsection Tracepoint Passcounts
7746
7747 @table @code
7748 @kindex passcount
7749 @cindex tracepoint pass count
7750 @item passcount @r{[}@var{n} @r{[}@var{num}@r{]]}
7751 Set the @dfn{passcount} of a tracepoint.  The passcount is a way to
7752 automatically stop a trace experiment.  If a tracepoint's passcount is
7753 @var{n}, then the trace experiment will be automatically stopped on
7754 the @var{n}'th time that tracepoint is hit.  If the tracepoint number
7755 @var{num} is not specified, the @code{passcount} command sets the
7756 passcount of the most recently defined tracepoint.  If no passcount is
7757 given, the trace experiment will run until stopped explicitly by the
7758 user.
7759
7760 Examples:
7761
7762 @smallexample
7763 (@value{GDBP}) @b{passcount 5 2} // Stop on the 5th execution of
7764 @exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// tracepoint 2}
7765
7766 (@value{GDBP}) @b{passcount 12}  // Stop on the 12th execution of the
7767 @exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// most recently defined tracepoint.}
7768 (@value{GDBP}) @b{trace foo}
7769 (@value{GDBP}) @b{pass 3}
7770 (@value{GDBP}) @b{trace bar}
7771 (@value{GDBP}) @b{pass 2}
7772 (@value{GDBP}) @b{trace baz}
7773 (@value{GDBP}) @b{pass 1}        // Stop tracing when foo has been
7774 @exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// executed 3 times OR when bar has}
7775 @exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// been executed 2 times}
7776 @exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// OR when baz has been executed 1 time.}
7777 @end smallexample
7778 @end table
7779
7780 @node Tracepoint Actions
7781 @subsection Tracepoint Action Lists
7782
7783 @table @code
7784 @kindex actions
7785 @cindex tracepoint actions
7786 @item actions @r{[}@var{num}@r{]}
7787 This command will prompt for a list of actions to be taken when the
7788 tracepoint is hit.  If the tracepoint number @var{num} is not
7789 specified, this command sets the actions for the one that was most
7790 recently defined (so that you can define a tracepoint and then say
7791 @code{actions} without bothering about its number).  You specify the
7792 actions themselves on the following lines, one action at a time, and
7793 terminate the actions list with a line containing just @code{end}.  So
7794 far, the only defined actions are @code{collect} and
7795 @code{while-stepping}.
7796
7797 @cindex remove actions from a tracepoint
7798 To remove all actions from a tracepoint, type @samp{actions @var{num}}
7799 and follow it immediately with @samp{end}.
7800
7801 @smallexample
7802 (@value{GDBP}) @b{collect @var{data}} // collect some data
7803
7804 (@value{GDBP}) @b{while-stepping 5} // single-step 5 times, collect data
7805
7806 (@value{GDBP}) @b{end}              // signals the end of actions.
7807 @end smallexample
7808
7809 In the following example, the action list begins with @code{collect}
7810 commands indicating the things to be collected when the tracepoint is
7811 hit.  Then, in order to single-step and collect additional data
7812 following the tracepoint, a @code{while-stepping} command is used,
7813 followed by the list of things to be collected while stepping.  The
7814 @code{while-stepping} command is terminated by its own separate
7815 @code{end} command.  Lastly, the action list is terminated by an
7816 @code{end} command.
7817
7818 @smallexample
7819 (@value{GDBP}) @b{trace foo}
7820 (@value{GDBP}) @b{actions}
7821 Enter actions for tracepoint 1, one per line:
7822 > collect bar,baz
7823 > collect $regs
7824 > while-stepping 12
7825   > collect $fp, $sp
7826   > end
7827 end
7828 @end smallexample
7829
7830 @kindex collect @r{(tracepoints)}
7831 @item collect @var{expr1}, @var{expr2}, @dots{}
7832 Collect values of the given expressions when the tracepoint is hit.
7833 This command accepts a comma-separated list of any valid expressions.
7834 In addition to global, static, or local variables, the following
7835 special arguments are supported:
7836
7837 @table @code
7838 @item $regs
7839 collect all registers
7840
7841 @item $args
7842 collect all function arguments
7843
7844 @item $locals
7845 collect all local variables.
7846 @end table
7847
7848 You can give several consecutive @code{collect} commands, each one
7849 with a single argument, or one @code{collect} command with several
7850 arguments separated by commas: the effect is the same.
7851
7852 The command @code{info scope} (@pxref{Symbols, info scope}) is
7853 particularly useful for figuring out what data to collect.
7854
7855 @kindex while-stepping @r{(tracepoints)}
7856 @item while-stepping @var{n}
7857 Perform @var{n} single-step traces after the tracepoint, collecting
7858 new data at each step.  The @code{while-stepping} command is
7859 followed by the list of what to collect while stepping (followed by
7860 its own @code{end} command):
7861
7862 @smallexample
7863 > while-stepping 12
7864   > collect $regs, myglobal
7865   > end
7866 >
7867 @end smallexample
7868
7869 @noindent
7870 You may abbreviate @code{while-stepping} as @code{ws} or
7871 @code{stepping}.
7872 @end table
7873
7874 @node Listing Tracepoints
7875 @subsection Listing Tracepoints
7876
7877 @table @code
7878 @kindex info tracepoints
7879 @kindex info tp
7880 @cindex information about tracepoints
7881 @item info tracepoints @r{[}@var{num}@r{]}
7882 Display information about the tracepoint @var{num}.  If you don't specify
7883 a tracepoint number, displays information about all the tracepoints
7884 defined so far.  For each tracepoint, the following information is
7885 shown:
7886
7887 @itemize @bullet
7888 @item
7889 its number
7890 @item
7891 whether it is enabled or disabled
7892 @item
7893 its address
7894 @item
7895 its passcount as given by the @code{passcount @var{n}} command
7896 @item
7897 its step count as given by the @code{while-stepping @var{n}} command
7898 @item
7899 where in the source files is the tracepoint set
7900 @item
7901 its action list as given by the @code{actions} command
7902 @end itemize
7903
7904 @smallexample
7905 (@value{GDBP}) @b{info trace}
7906 Num Enb Address    PassC StepC What
7907 1   y   0x002117c4 0     0     <gdb_asm>
7908 2   y   0x0020dc64 0     0     in g_test at g_test.c:1375
7909 3   y   0x0020b1f4 0     0     in get_data at ../foo.c:41
7910 (@value{GDBP})
7911 @end smallexample
7912
7913 @noindent
7914 This command can be abbreviated @code{info tp}.
7915 @end table
7916
7917 @node Starting and Stopping Trace Experiments
7918 @subsection Starting and Stopping Trace Experiments
7919
7920 @table @code
7921 @kindex tstart
7922 @cindex start a new trace experiment
7923 @cindex collected data discarded
7924 @item tstart
7925 This command takes no arguments.  It starts the trace experiment, and
7926 begins collecting data.  This has the side effect of discarding all
7927 the data collected in the trace buffer during the previous trace
7928 experiment.
7929
7930 @kindex tstop
7931 @cindex stop a running trace experiment
7932 @item tstop
7933 This command takes no arguments.  It ends the trace experiment, and
7934 stops collecting data.
7935
7936 @strong{Note}: a trace experiment and data collection may stop
7937 automatically if any tracepoint's passcount is reached
7938 (@pxref{Tracepoint Passcounts}), or if the trace buffer becomes full.
7939
7940 @kindex tstatus
7941 @cindex status of trace data collection
7942 @cindex trace experiment, status of
7943 @item tstatus
7944 This command displays the status of the current trace data
7945 collection.
7946 @end table
7947
7948 Here is an example of the commands we described so far:
7949
7950 @smallexample
7951 (@value{GDBP}) @b{trace gdb_c_test}
7952 (@value{GDBP}) @b{actions}
7953 Enter actions for tracepoint #1, one per line.
7954 > collect $regs,$locals,$args
7955 > while-stepping 11
7956   > collect $regs
7957   > end
7958 > end
7959 (@value{GDBP}) @b{tstart}
7960         [time passes @dots{}]
7961 (@value{GDBP}) @b{tstop}
7962 @end smallexample
7963
7964
7965 @node Analyze Collected Data
7966 @section Using the Collected Data
7967
7968 After the tracepoint experiment ends, you use @value{GDBN} commands
7969 for examining the trace data.  The basic idea is that each tracepoint
7970 collects a trace @dfn{snapshot} every time it is hit and another
7971 snapshot every time it single-steps.  All these snapshots are
7972 consecutively numbered from zero and go into a buffer, and you can
7973 examine them later.  The way you examine them is to @dfn{focus} on a
7974 specific trace snapshot.  When the remote stub is focused on a trace
7975 snapshot, it will respond to all @value{GDBN} requests for memory and
7976 registers by reading from the buffer which belongs to that snapshot,
7977 rather than from @emph{real} memory or registers of the program being
7978 debugged.  This means that @strong{all} @value{GDBN} commands
7979 (@code{print}, @code{info registers}, @code{backtrace}, etc.) will
7980 behave as if we were currently debugging the program state as it was
7981 when the tracepoint occurred.  Any requests for data that are not in
7982 the buffer will fail.
7983
7984 @menu
7985 * tfind::                       How to select a trace snapshot
7986 * tdump::                       How to display all data for a snapshot
7987 * save-tracepoints::            How to save tracepoints for a future run
7988 @end menu
7989
7990 @node tfind
7991 @subsection @code{tfind @var{n}}
7992
7993 @kindex tfind
7994 @cindex select trace snapshot
7995 @cindex find trace snapshot
7996 The basic command for selecting a trace snapshot from the buffer is
7997 @code{tfind @var{n}}, which finds trace snapshot number @var{n},
7998 counting from zero.  If no argument @var{n} is given, the next
7999 snapshot is selected.
8000
8001 Here are the various forms of using the @code{tfind} command.
8002
8003 @table @code
8004 @item tfind start
8005 Find the first snapshot in the buffer.  This is a synonym for
8006 @code{tfind 0} (since 0 is the number of the first snapshot).
8007
8008 @item tfind none
8009 Stop debugging trace snapshots, resume @emph{live} debugging.
8010
8011 @item tfind end
8012 Same as @samp{tfind none}.
8013
8014 @item tfind
8015 No argument means find the next trace snapshot.
8016
8017 @item tfind -
8018 Find the previous trace snapshot before the current one.  This permits
8019 retracing earlier steps.
8020
8021 @item tfind tracepoint @var{num}
8022 Find the next snapshot associated with tracepoint @var{num}.  Search
8023 proceeds forward from the last examined trace snapshot.  If no
8024 argument @var{num} is given, it means find the next snapshot collected
8025 for the same tracepoint as the current snapshot.
8026
8027 @item tfind pc @var{addr}
8028 Find the next snapshot associated with the value @var{addr} of the
8029 program counter.  Search proceeds forward from the last examined trace
8030 snapshot.  If no argument @var{addr} is given, it means find the next
8031 snapshot with the same value of PC as the current snapshot.
8032
8033 @item tfind outside @var{addr1}, @var{addr2}
8034 Find the next snapshot whose PC is outside the given range of
8035 addresses.
8036
8037 @item tfind range @var{addr1}, @var{addr2}
8038 Find the next snapshot whose PC is between @var{addr1} and
8039 @var{addr2}.  @c FIXME: Is the range inclusive or exclusive?
8040
8041 @item tfind line @r{[}@var{file}:@r{]}@var{n}
8042 Find the next snapshot associated with the source line @var{n}.  If
8043 the optional argument @var{file} is given, refer to line @var{n} in
8044 that source file.  Search proceeds forward from the last examined
8045 trace snapshot.  If no argument @var{n} is given, it means find the
8046 next line other than the one currently being examined; thus saying
8047 @code{tfind line} repeatedly can appear to have the same effect as
8048 stepping from line to line in a @emph{live} debugging session.
8049 @end table
8050
8051 The default arguments for the @code{tfind} commands are specifically
8052 designed to make it easy to scan through the trace buffer.  For
8053 instance, @code{tfind} with no argument selects the next trace
8054 snapshot, and @code{tfind -} with no argument selects the previous
8055 trace snapshot.  So, by giving one @code{tfind} command, and then
8056 simply hitting @key{RET} repeatedly you can examine all the trace
8057 snapshots in order.  Or, by saying @code{tfind -} and then hitting
8058 @key{RET} repeatedly you can examine the snapshots in reverse order.
8059 The @code{tfind line} command with no argument selects the snapshot
8060 for the next source line executed.  The @code{tfind pc} command with
8061 no argument selects the next snapshot with the same program counter
8062 (PC) as the current frame.  The @code{tfind tracepoint} command with
8063 no argument selects the next trace snapshot collected by the same
8064 tracepoint as the current one.
8065
8066 In addition to letting you scan through the trace buffer manually,
8067 these commands make it easy to construct @value{GDBN} scripts that
8068 scan through the trace buffer and print out whatever collected data
8069 you are interested in.  Thus, if we want to examine the PC, FP, and SP
8070 registers from each trace frame in the buffer, we can say this:
8071
8072 @smallexample
8073 (@value{GDBP}) @b{tfind start}
8074 (@value{GDBP}) @b{while ($trace_frame != -1)}
8075 > printf "Frame %d, PC = %08X, SP = %08X, FP = %08X\n", \
8076           $trace_frame, $pc, $sp, $fp
8077 > tfind
8078 > end
8079
8080 Frame 0, PC = 0020DC64, SP = 0030BF3C, FP = 0030BF44
8081 Frame 1, PC = 0020DC6C, SP = 0030BF38, FP = 0030BF44
8082 Frame 2, PC = 0020DC70, SP = 0030BF34, FP = 0030BF44
8083 Frame 3, PC = 0020DC74, SP = 0030BF30, FP = 0030BF44
8084 Frame 4, PC = 0020DC78, SP = 0030BF2C, FP = 0030BF44
8085 Frame 5, PC = 0020DC7C, SP = 0030BF28, FP = 0030BF44
8086 Frame 6, PC = 0020DC80, SP = 0030BF24, FP = 0030BF44
8087 Frame 7, PC = 0020DC84, SP = 0030BF20, FP = 0030BF44
8088 Frame 8, PC = 0020DC88, SP = 0030BF1C, FP = 0030BF44
8089 Frame 9, PC = 0020DC8E, SP = 0030BF18, FP = 0030BF44
8090 Frame 10, PC = 00203F6C, SP = 0030BE3C, FP = 0030BF14
8091 @end smallexample
8092
8093 Or, if we want to examine the variable @code{X} at each source line in
8094 the buffer:
8095
8096 @smallexample
8097 (@value{GDBP}) @b{tfind start}
8098 (@value{GDBP}) @b{while ($trace_frame != -1)}
8099 > printf "Frame %d, X == %d\n", $trace_frame, X
8100 > tfind line
8101 > end
8102
8103 Frame 0, X = 1
8104 Frame 7, X = 2
8105 Frame 13, X = 255
8106 @end smallexample
8107
8108 @node tdump
8109 @subsection @code{tdump}
8110 @kindex tdump
8111 @cindex dump all data collected at tracepoint
8112 @cindex tracepoint data, display
8113
8114 This command takes no arguments.  It prints all the data collected at
8115 the current trace snapshot.
8116
8117 @smallexample
8118 (@value{GDBP}) @b{trace 444}
8119 (@value{GDBP}) @b{actions}
8120 Enter actions for tracepoint #2, one per line:
8121 > collect $regs, $locals, $args, gdb_long_test
8122 > end
8123
8124 (@value{GDBP}) @b{tstart}
8125
8126 (@value{GDBP}) @b{tfind line 444}
8127 #0  gdb_test (p1=0x11, p2=0x22, p3=0x33, p4=0x44, p5=0x55, p6=0x66)
8128 at gdb_test.c:444
8129 444        printp( "%s: arguments = 0x%X 0x%X 0x%X 0x%X 0x%X 0x%X\n", )
8130
8131 (@value{GDBP}) @b{tdump}
8132 Data collected at tracepoint 2, trace frame 1:
8133 d0             0xc4aa0085       -995491707
8134 d1             0x18     24
8135 d2             0x80     128
8136 d3             0x33     51
8137 d4             0x71aea3d        119204413
8138 d5             0x22     34
8139 d6             0xe0     224
8140 d7             0x380035 3670069
8141 a0             0x19e24a 1696330
8142 a1             0x3000668        50333288
8143 a2             0x100    256
8144 a3             0x322000 3284992
8145 a4             0x3000698        50333336
8146 a5             0x1ad3cc 1758156
8147 fp             0x30bf3c 0x30bf3c
8148 sp             0x30bf34 0x30bf34
8149 ps             0x0      0
8150 pc             0x20b2c8 0x20b2c8
8151 fpcontrol      0x0      0
8152 fpstatus       0x0      0
8153 fpiaddr        0x0      0
8154 p = 0x20e5b4 "gdb-test"
8155 p1 = (void *) 0x11
8156 p2 = (void *) 0x22
8157 p3 = (void *) 0x33
8158 p4 = (void *) 0x44
8159 p5 = (void *) 0x55
8160 p6 = (void *) 0x66
8161 gdb_long_test = 17 '\021'
8162
8163 (@value{GDBP})
8164 @end smallexample
8165
8166 @node save-tracepoints
8167 @subsection @code{save-tracepoints @var{filename}}
8168 @kindex save-tracepoints
8169 @cindex save tracepoints for future sessions
8170
8171 This command saves all current tracepoint definitions together with
8172 their actions and passcounts, into a file @file{@var{filename}}
8173 suitable for use in a later debugging session.  To read the saved
8174 tracepoint definitions, use the @code{source} command (@pxref{Command
8175 Files}).
8176
8177 @node Tracepoint Variables
8178 @section Convenience Variables for Tracepoints
8179 @cindex tracepoint variables
8180 @cindex convenience variables for tracepoints
8181
8182 @table @code
8183 @vindex $trace_frame
8184 @item (int) $trace_frame
8185 The current trace snapshot (a.k.a.@: @dfn{frame}) number, or -1 if no
8186 snapshot is selected.
8187
8188 @vindex $tracepoint
8189 @item (int) $tracepoint
8190 The tracepoint for the current trace snapshot.
8191
8192 @vindex $trace_line
8193 @item (int) $trace_line
8194 The line number for the current trace snapshot.
8195
8196 @vindex $trace_file
8197 @item (char []) $trace_file
8198 The source file for the current trace snapshot.
8199
8200 @vindex $trace_func
8201 @item (char []) $trace_func
8202 The name of the function containing @code{$tracepoint}.
8203 @end table
8204
8205 Note: @code{$trace_file} is not suitable for use in @code{printf},
8206 use @code{output} instead.
8207
8208 Here's a simple example of using these convenience variables for
8209 stepping through all the trace snapshots and printing some of their
8210 data.
8211
8212 @smallexample
8213 (@value{GDBP}) @b{tfind start}
8214
8215 (@value{GDBP}) @b{while $trace_frame != -1}
8216 > output $trace_file
8217 > printf ", line %d (tracepoint #%d)\n", $trace_line, $tracepoint
8218 > tfind
8219 > end
8220 @end smallexample
8221
8222 @node Overlays
8223 @chapter Debugging Programs That Use Overlays
8224 @cindex overlays
8225
8226 If your program is too large to fit completely in your target system's
8227 memory, you can sometimes use @dfn{overlays} to work around this
8228 problem.  @value{GDBN} provides some support for debugging programs that
8229 use overlays.
8230
8231 @menu
8232 * How Overlays Work::              A general explanation of overlays.
8233 * Overlay Commands::               Managing overlays in @value{GDBN}.
8234 * Automatic Overlay Debugging::    @value{GDBN} can find out which overlays are
8235                                    mapped by asking the inferior.
8236 * Overlay Sample Program::         A sample program using overlays.
8237 @end menu
8238
8239 @node How Overlays Work
8240 @section How Overlays Work
8241 @cindex mapped overlays
8242 @cindex unmapped overlays
8243 @cindex load address, overlay's
8244 @cindex mapped address
8245 @cindex overlay area
8246
8247 Suppose you have a computer whose instruction address space is only 64
8248 kilobytes long, but which has much more memory which can be accessed by
8249 other means: special instructions, segment registers, or memory
8250 management hardware, for example.  Suppose further that you want to
8251 adapt a program which is larger than 64 kilobytes to run on this system.
8252
8253 One solution is to identify modules of your program which are relatively
8254 independent, and need not call each other directly; call these modules
8255 @dfn{overlays}.  Separate the overlays from the main program, and place
8256 their machine code in the larger memory.  Place your main program in
8257 instruction memory, but leave at least enough space there to hold the
8258 largest overlay as well.
8259
8260 Now, to call a function located in an overlay, you must first copy that
8261 overlay's machine code from the large memory into the space set aside
8262 for it in the instruction memory, and then jump to its entry point
8263 there.
8264
8265 @c NB:  In the below the mapped area's size is greater or equal to the
8266 @c size of all overlays.  This is intentional to remind the developer
8267 @c that overlays don't necessarily need to be the same size.
8268
8269 @smallexample
8270 @group
8271     Data             Instruction            Larger
8272 Address Space       Address Space        Address Space
8273 +-----------+       +-----------+        +-----------+
8274 |           |       |           |        |           |
8275 +-----------+       +-----------+        +-----------+<-- overlay 1
8276 | program   |       |   main    |   .----| overlay 1 | load address
8277 | variables |       |  program  |   |    +-----------+
8278 | and heap  |       |           |   |    |           |
8279 +-----------+       |           |   |    +-----------+<-- overlay 2
8280 |           |       +-----------+   |    |           | load address
8281 +-----------+       |           |   |  .-| overlay 2 |
8282                     |           |   |  | |           |
8283          mapped --->+-----------+   |  | +-----------+
8284          address    |           |   |  | |           |
8285                     |  overlay  | <-'  | |           |
8286                     |   area    |  <---' +-----------+<-- overlay 3
8287                     |           | <---.  |           | load address
8288                     +-----------+     `--| overlay 3 |
8289                     |           |        |           |
8290                     +-----------+        |           |
8291                                          +-----------+
8292                                          |           |
8293                                          +-----------+
8294
8295                     @anchor{A code overlay}A code overlay
8296 @end group
8297 @end smallexample
8298
8299 The diagram (@pxref{A code overlay}) shows a system with separate data
8300 and instruction address spaces.  To map an overlay, the program copies
8301 its code from the larger address space to the instruction address space.
8302 Since the overlays shown here all use the same mapped address, only one
8303 may be mapped at a time.  For a system with a single address space for
8304 data and instructions, the diagram would be similar, except that the
8305 program variables and heap would share an address space with the main
8306 program and the overlay area.
8307
8308 An overlay loaded into instruction memory and ready for use is called a
8309 @dfn{mapped} overlay; its @dfn{mapped address} is its address in the
8310 instruction memory.  An overlay not present (or only partially present)
8311 in instruction memory is called @dfn{unmapped}; its @dfn{load address}
8312 is its address in the larger memory.  The mapped address is also called
8313 the @dfn{virtual memory address}, or @dfn{VMA}; the load address is also
8314 called the @dfn{load memory address}, or @dfn{LMA}.
8315
8316 Unfortunately, overlays are not a completely transparent way to adapt a
8317 program to limited instruction memory.  They introduce a new set of
8318 global constraints you must keep in mind as you design your program:
8319
8320 @itemize @bullet
8321
8322 @item
8323 Before calling or returning to a function in an overlay, your program
8324 must make sure that overlay is actually mapped.  Otherwise, the call or
8325 return will transfer control to the right address, but in the wrong
8326 overlay, and your program will probably crash.
8327
8328 @item
8329 If the process of mapping an overlay is expensive on your system, you
8330 will need to choose your overlays carefully to minimize their effect on
8331 your program's performance.
8332
8333 @item
8334 The executable file you load onto your system must contain each
8335 overlay's instructions, appearing at the overlay's load address, not its
8336 mapped address.  However, each overlay's instructions must be relocated
8337 and its symbols defined as if the overlay were at its mapped address.
8338 You can use GNU linker scripts to specify different load and relocation
8339 addresses for pieces of your program; see @ref{Overlay Description,,,
8340 ld.info, Using ld: the GNU linker}.
8341
8342 @item
8343 The procedure for loading executable files onto your system must be able
8344 to load their contents into the larger address space as well as the
8345 instruction and data spaces.
8346
8347 @end itemize
8348
8349 The overlay system described above is rather simple, and could be
8350 improved in many ways:
8351
8352 @itemize @bullet
8353
8354 @item
8355 If your system has suitable bank switch registers or memory management
8356 hardware, you could use those facilities to make an overlay's load area
8357 contents simply appear at their mapped address in instruction space.
8358 This would probably be faster than copying the overlay to its mapped
8359 area in the usual way.
8360
8361 @item
8362 If your overlays are small enough, you could set aside more than one
8363 overlay area, and have more than one overlay mapped at a time.
8364
8365 @item
8366 You can use overlays to manage data, as well as instructions.  In
8367 general, data overlays are even less transparent to your design than
8368 code overlays: whereas code overlays only require care when you call or
8369 return to functions, data overlays require care every time you access
8370 the data.  Also, if you change the contents of a data overlay, you
8371 must copy its contents back out to its load address before you can copy a
8372 different data overlay into the same mapped area.
8373
8374 @end itemize
8375
8376
8377 @node Overlay Commands
8378 @section Overlay Commands
8379
8380 To use @value{GDBN}'s overlay support, each overlay in your program must
8381 correspond to a separate section of the executable file.  The section's
8382 virtual memory address and load memory address must be the overlay's
8383 mapped and load addresses.  Identifying overlays with sections allows
8384 @value{GDBN} to determine the appropriate address of a function or
8385 variable, depending on whether the overlay is mapped or not.
8386
8387 @value{GDBN}'s overlay commands all start with the word @code{overlay};
8388 you can abbreviate this as @code{ov} or @code{ovly}.  The commands are:
8389
8390 @table @code
8391 @item overlay off
8392 @kindex overlay
8393 Disable @value{GDBN}'s overlay support.  When overlay support is
8394 disabled, @value{GDBN} assumes that all functions and variables are
8395 always present at their mapped addresses.  By default, @value{GDBN}'s
8396 overlay support is disabled.
8397
8398 @item overlay manual
8399 @cindex manual overlay debugging
8400 Enable @dfn{manual} overlay debugging.  In this mode, @value{GDBN}
8401 relies on you to tell it which overlays are mapped, and which are not,
8402 using the @code{overlay map-overlay} and @code{overlay unmap-overlay}
8403 commands described below.
8404
8405 @item overlay map-overlay @var{overlay}
8406 @itemx overlay map @var{overlay}
8407 @cindex map an overlay
8408 Tell @value{GDBN} that @var{overlay} is now mapped; @var{overlay} must
8409 be the name of the object file section containing the overlay.  When an
8410 overlay is mapped, @value{GDBN} assumes it can find the overlay's
8411 functions and variables at their mapped addresses.  @value{GDBN} assumes
8412 that any other overlays whose mapped ranges overlap that of
8413 @var{overlay} are now unmapped.
8414
8415 @item overlay unmap-overlay @var{overlay}
8416 @itemx overlay unmap @var{overlay}
8417 @cindex unmap an overlay
8418 Tell @value{GDBN} that @var{overlay} is no longer mapped; @var{overlay}
8419 must be the name of the object file section containing the overlay.
8420 When an overlay is unmapped, @value{GDBN} assumes it can find the
8421 overlay's functions and variables at their load addresses.
8422
8423 @item overlay auto
8424 Enable @dfn{automatic} overlay debugging.  In this mode, @value{GDBN}
8425 consults a data structure the overlay manager maintains in the inferior
8426 to see which overlays are mapped.  For details, see @ref{Automatic
8427 Overlay Debugging}.
8428
8429 @item overlay load-target
8430 @itemx overlay load
8431 @cindex reloading the overlay table
8432 Re-read the overlay table from the inferior.  Normally, @value{GDBN}
8433 re-reads the table @value{GDBN} automatically each time the inferior
8434 stops, so this command should only be necessary if you have changed the
8435 overlay mapping yourself using @value{GDBN}.  This command is only
8436 useful when using automatic overlay debugging.
8437
8438 @item overlay list-overlays
8439 @itemx overlay list
8440 @cindex listing mapped overlays
8441 Display a list of the overlays currently mapped, along with their mapped
8442 addresses, load addresses, and sizes.
8443
8444 @end table
8445
8446 Normally, when @value{GDBN} prints a code address, it includes the name
8447 of the function the address falls in:
8448
8449 @smallexample
8450 (@value{GDBP}) print main
8451 $3 = @{int ()@} 0x11a0 <main>
8452 @end smallexample
8453 @noindent
8454 When overlay debugging is enabled, @value{GDBN} recognizes code in
8455 unmapped overlays, and prints the names of unmapped functions with
8456 asterisks around them.  For example, if @code{foo} is a function in an
8457 unmapped overlay, @value{GDBN} prints it this way:
8458
8459 @smallexample
8460 (@value{GDBP}) overlay list
8461 No sections are mapped.
8462 (@value{GDBP}) print foo
8463 $5 = @{int (int)@} 0x100000 <*foo*>
8464 @end smallexample
8465 @noindent
8466 When @code{foo}'s overlay is mapped, @value{GDBN} prints the function's
8467 name normally:
8468
8469 @smallexample
8470 (@value{GDBP}) overlay list
8471 Section .ov.foo.text, loaded at 0x100000 - 0x100034,
8472         mapped at 0x1016 - 0x104a
8473 (@value{GDBP}) print foo
8474 $6 = @{int (int)@} 0x1016 <foo>
8475 @end smallexample
8476
8477 When overlay debugging is enabled, @value{GDBN} can find the correct
8478 address for functions and variables in an overlay, whether or not the
8479 overlay is mapped.  This allows most @value{GDBN} commands, like
8480 @code{break} and @code{disassemble}, to work normally, even on unmapped
8481 code.  However, @value{GDBN}'s breakpoint support has some limitations:
8482
8483 @itemize @bullet
8484 @item
8485 @cindex breakpoints in overlays
8486 @cindex overlays, setting breakpoints in
8487 You can set breakpoints in functions in unmapped overlays, as long as
8488 @value{GDBN} can write to the overlay at its load address.
8489 @item
8490 @value{GDBN} can not set hardware or simulator-based breakpoints in
8491 unmapped overlays.  However, if you set a breakpoint at the end of your
8492 overlay manager (and tell @value{GDBN} which overlays are now mapped, if
8493 you are using manual overlay management), @value{GDBN} will re-set its
8494 breakpoints properly.
8495 @end itemize
8496
8497
8498 @node Automatic Overlay Debugging
8499 @section Automatic Overlay Debugging
8500 @cindex automatic overlay debugging
8501
8502 @value{GDBN} can automatically track which overlays are mapped and which
8503 are not, given some simple co-operation from the overlay manager in the
8504 inferior.  If you enable automatic overlay debugging with the
8505 @code{overlay auto} command (@pxref{Overlay Commands}), @value{GDBN}
8506 looks in the inferior's memory for certain variables describing the
8507 current state of the overlays.
8508
8509 Here are the variables your overlay manager must define to support
8510 @value{GDBN}'s automatic overlay debugging:
8511
8512 @table @asis
8513
8514 @item @code{_ovly_table}:
8515 This variable must be an array of the following structures:
8516
8517 @smallexample
8518 struct
8519 @{
8520   /* The overlay's mapped address.  */
8521   unsigned long vma;
8522
8523   /* The size of the overlay, in bytes.  */
8524   unsigned long size;
8525
8526   /* The overlay's load address.  */
8527   unsigned long lma;
8528
8529   /* Non-zero if the overlay is currently mapped;
8530      zero otherwise.  */
8531   unsigned long mapped;
8532 @}
8533 @end smallexample
8534
8535 @item @code{_novlys}:
8536 This variable must be a four-byte signed integer, holding the total
8537 number of elements in @code{_ovly_table}.
8538
8539 @end table
8540
8541 To decide whether a particular overlay is mapped or not, @value{GDBN}
8542 looks for an entry in @w{@code{_ovly_table}} whose @code{vma} and
8543 @code{lma} members equal the VMA and LMA of the overlay's section in the
8544 executable file.  When @value{GDBN} finds a matching entry, it consults
8545 the entry's @code{mapped} member to determine whether the overlay is
8546 currently mapped.
8547
8548 In addition, your overlay manager may define a function called
8549 @code{_ovly_debug_event}.  If this function is defined, @value{GDBN}
8550 will silently set a breakpoint there.  If the overlay manager then
8551 calls this function whenever it has changed the overlay table, this
8552 will enable @value{GDBN} to accurately keep track of which overlays
8553 are in program memory, and update any breakpoints that may be set
8554 in overlays.  This will allow breakpoints to work even if the
8555 overlays are kept in ROM or other non-writable memory while they
8556 are not being executed.
8557
8558 @node Overlay Sample Program
8559 @section Overlay Sample Program
8560 @cindex overlay example program
8561
8562 When linking a program which uses overlays, you must place the overlays
8563 at their load addresses, while relocating them to run at their mapped
8564 addresses.  To do this, you must write a linker script (@pxref{Overlay
8565 Description,,, ld.info, Using ld: the GNU linker}).  Unfortunately,
8566 since linker scripts are specific to a particular host system, target
8567 architecture, and target memory layout, this manual cannot provide
8568 portable sample code demonstrating @value{GDBN}'s overlay support.
8569
8570 However, the @value{GDBN} source distribution does contain an overlaid
8571 program, with linker scripts for a few systems, as part of its test
8572 suite.  The program consists of the following files from
8573 @file{gdb/testsuite/gdb.base}:
8574
8575 @table @file
8576 @item overlays.c
8577 The main program file.
8578 @item ovlymgr.c
8579 A simple overlay manager, used by @file{overlays.c}.
8580 @item foo.c
8581 @itemx bar.c
8582 @itemx baz.c
8583 @itemx grbx.c
8584 Overlay modules, loaded and used by @file{overlays.c}.
8585 @item d10v.ld
8586 @itemx m32r.ld
8587 Linker scripts for linking the test program on the @code{d10v-elf}
8588 and @code{m32r-elf} targets.
8589 @end table
8590
8591 You can build the test program using the @code{d10v-elf} GCC
8592 cross-compiler like this:
8593
8594 @smallexample
8595 $ d10v-elf-gcc -g -c overlays.c
8596 $ d10v-elf-gcc -g -c ovlymgr.c
8597 $ d10v-elf-gcc -g -c foo.c
8598 $ d10v-elf-gcc -g -c bar.c
8599 $ d10v-elf-gcc -g -c baz.c
8600 $ d10v-elf-gcc -g -c grbx.c
8601 $ d10v-elf-gcc -g overlays.o ovlymgr.o foo.o bar.o \
8602                   baz.o grbx.o -Wl,-Td10v.ld -o overlays
8603 @end smallexample
8604
8605 The build process is identical for any other architecture, except that
8606 you must substitute the appropriate compiler and linker script for the
8607 target system for @code{d10v-elf-gcc} and @code{d10v.ld}.
8608
8609
8610 @node Languages
8611 @chapter Using @value{GDBN} with Different Languages
8612 @cindex languages
8613
8614 Although programming languages generally have common aspects, they are
8615 rarely expressed in the same manner.  For instance, in ANSI C,
8616 dereferencing a pointer @code{p} is accomplished by @code{*p}, but in
8617 Modula-2, it is accomplished by @code{p^}.  Values can also be
8618 represented (and displayed) differently.  Hex numbers in C appear as
8619 @samp{0x1ae}, while in Modula-2 they appear as @samp{1AEH}.
8620
8621 @cindex working language
8622 Language-specific information is built into @value{GDBN} for some languages,
8623 allowing you to express operations like the above in your program's
8624 native language, and allowing @value{GDBN} to output values in a manner
8625 consistent with the syntax of your program's native language.  The
8626 language you use to build expressions is called the @dfn{working
8627 language}.
8628
8629 @menu
8630 * Setting::                     Switching between source languages
8631 * Show::                        Displaying the language
8632 * Checks::                      Type and range checks
8633 * Supported Languages::         Supported languages
8634 * Unsupported Languages::       Unsupported languages
8635 @end menu
8636
8637 @node Setting
8638 @section Switching Between Source Languages
8639
8640 There are two ways to control the working language---either have @value{GDBN}
8641 set it automatically, or select it manually yourself.  You can use the
8642 @code{set language} command for either purpose.  On startup, @value{GDBN}
8643 defaults to setting the language automatically.  The working language is
8644 used to determine how expressions you type are interpreted, how values
8645 are printed, etc.
8646
8647 In addition to the working language, every source file that
8648 @value{GDBN} knows about has its own working language.  For some object
8649 file formats, the compiler might indicate which language a particular
8650 source file is in.  However, most of the time @value{GDBN} infers the
8651 language from the name of the file.  The language of a source file
8652 controls whether C@t{++} names are demangled---this way @code{backtrace} can
8653 show each frame appropriately for its own language.  There is no way to
8654 set the language of a source file from within @value{GDBN}, but you can
8655 set the language associated with a filename extension.  @xref{Show, ,
8656 Displaying the Language}.
8657
8658 This is most commonly a problem when you use a program, such
8659 as @code{cfront} or @code{f2c}, that generates C but is written in
8660 another language.  In that case, make the
8661 program use @code{#line} directives in its C output; that way
8662 @value{GDBN} will know the correct language of the source code of the original
8663 program, and will display that source code, not the generated C code.
8664
8665 @menu
8666 * Filenames::                   Filename extensions and languages.
8667 * Manually::                    Setting the working language manually
8668 * Automatically::               Having @value{GDBN} infer the source language
8669 @end menu
8670
8671 @node Filenames
8672 @subsection List of Filename Extensions and Languages
8673
8674 If a source file name ends in one of the following extensions, then
8675 @value{GDBN} infers that its language is the one indicated.
8676
8677 @table @file
8678 @item .ada
8679 @itemx .ads
8680 @itemx .adb
8681 @itemx .a
8682 Ada source file.
8683
8684 @item .c
8685 C source file
8686
8687 @item .C
8688 @itemx .cc
8689 @itemx .cp
8690 @itemx .cpp
8691 @itemx .cxx
8692 @itemx .c++
8693 C@t{++} source file
8694
8695 @item .m
8696 Objective-C source file
8697
8698 @item .f
8699 @itemx .F
8700 Fortran source file
8701
8702 @item .mod
8703 Modula-2 source file
8704
8705 @item .s
8706 @itemx .S
8707 Assembler source file.  This actually behaves almost like C, but
8708 @value{GDBN} does not skip over function prologues when stepping.
8709 @end table
8710
8711 In addition, you may set the language associated with a filename
8712 extension.  @xref{Show, , Displaying the Language}.
8713
8714 @node Manually
8715 @subsection Setting the Working Language
8716
8717 If you allow @value{GDBN} to set the language automatically,
8718 expressions are interpreted the same way in your debugging session and
8719 your program.
8720
8721 @kindex set language
8722 If you wish, you may set the language manually.  To do this, issue the
8723 command @samp{set language @var{lang}}, where @var{lang} is the name of
8724 a language, such as
8725 @code{c} or @code{modula-2}.
8726 For a list of the supported languages, type @samp{set language}.
8727
8728 Setting the language manually prevents @value{GDBN} from updating the working
8729 language automatically.  This can lead to confusion if you try
8730 to debug a program when the working language is not the same as the
8731 source language, when an expression is acceptable to both
8732 languages---but means different things.  For instance, if the current
8733 source file were written in C, and @value{GDBN} was parsing Modula-2, a
8734 command such as:
8735
8736 @smallexample
8737 print a = b + c
8738 @end smallexample
8739
8740 @noindent
8741 might not have the effect you intended.  In C, this means to add
8742 @code{b} and @code{c} and place the result in @code{a}.  The result
8743 printed would be the value of @code{a}.  In Modula-2, this means to compare
8744 @code{a} to the result of @code{b+c}, yielding a @code{BOOLEAN} value.
8745
8746 @node Automatically
8747 @subsection Having @value{GDBN} Infer the Source Language
8748
8749 To have @value{GDBN} set the working language automatically, use
8750 @samp{set language local} or @samp{set language auto}.  @value{GDBN}
8751 then infers the working language.  That is, when your program stops in a
8752 frame (usually by encountering a breakpoint), @value{GDBN} sets the
8753 working language to the language recorded for the function in that
8754 frame.  If the language for a frame is unknown (that is, if the function
8755 or block corresponding to the frame was defined in a source file that
8756 does not have a recognized extension), the current working language is
8757 not changed, and @value{GDBN} issues a warning.
8758
8759 This may not seem necessary for most programs, which are written
8760 entirely in one source language.  However, program modules and libraries
8761 written in one source language can be used by a main program written in
8762 a different source language.  Using @samp{set language auto} in this
8763 case frees you from having to set the working language manually.
8764
8765 @node Show
8766 @section Displaying the Language
8767
8768 The following commands help you find out which language is the
8769 working language, and also what language source files were written in.
8770
8771 @table @code
8772 @item show language
8773 @kindex show language
8774 Display the current working language.  This is the
8775 language you can use with commands such as @code{print} to
8776 build and compute expressions that may involve variables in your program.
8777
8778 @item info frame
8779 @kindex info frame@r{, show the source language}
8780 Display the source language for this frame.  This language becomes the
8781 working language if you use an identifier from this frame.
8782 @xref{Frame Info, ,Information about a Frame}, to identify the other
8783 information listed here.
8784
8785 @item info source
8786 @kindex info source@r{, show the source language}
8787 Display the source language of this source file.
8788 @xref{Symbols, ,Examining the Symbol Table}, to identify the other
8789 information listed here.
8790 @end table
8791
8792 In unusual circumstances, you may have source files with extensions
8793 not in the standard list.  You can then set the extension associated
8794 with a language explicitly:
8795
8796 @table @code
8797 @item set extension-language @var{ext} @var{language}
8798 @kindex set extension-language
8799 Tell @value{GDBN} that source files with extension @var{ext} are to be
8800 assumed as written in the source language @var{language}.
8801
8802 @item info extensions
8803 @kindex info extensions
8804 List all the filename extensions and the associated languages.
8805 @end table
8806
8807 @node Checks
8808 @section Type and Range Checking
8809
8810 @quotation
8811 @emph{Warning:} In this release, the @value{GDBN} commands for type and range
8812 checking are included, but they do not yet have any effect.  This
8813 section documents the intended facilities.
8814 @end quotation
8815 @c FIXME remove warning when type/range code added
8816
8817 Some languages are designed to guard you against making seemingly common
8818 errors through a series of compile- and run-time checks.  These include
8819 checking the type of arguments to functions and operators, and making
8820 sure mathematical overflows are caught at run time.  Checks such as
8821 these help to ensure a program's correctness once it has been compiled
8822 by eliminating type mismatches, and providing active checks for range
8823 errors when your program is running.
8824
8825 @value{GDBN} can check for conditions like the above if you wish.
8826 Although @value{GDBN} does not check the statements in your program,
8827 it can check expressions entered directly into @value{GDBN} for
8828 evaluation via the @code{print} command, for example.  As with the
8829 working language, @value{GDBN} can also decide whether or not to check
8830 automatically based on your program's source language.
8831 @xref{Supported Languages, ,Supported Languages}, for the default
8832 settings of supported languages.
8833
8834 @menu
8835 * Type Checking::               An overview of type checking
8836 * Range Checking::              An overview of range checking
8837 @end menu
8838
8839 @cindex type checking
8840 @cindex checks, type
8841 @node Type Checking
8842 @subsection An Overview of Type Checking
8843
8844 Some languages, such as Modula-2, are strongly typed, meaning that the
8845 arguments to operators and functions have to be of the correct type,
8846 otherwise an error occurs.  These checks prevent type mismatch
8847 errors from ever causing any run-time problems.  For example,
8848
8849 @smallexample
8850 1 + 2 @result{} 3
8851 @exdent but
8852 @error{} 1 + 2.3
8853 @end smallexample
8854
8855 The second example fails because the @code{CARDINAL} 1 is not
8856 type-compatible with the @code{REAL} 2.3.
8857
8858 For the expressions you use in @value{GDBN} commands, you can tell the
8859 @value{GDBN} type checker to skip checking;
8860 to treat any mismatches as errors and abandon the expression;
8861 or to only issue warnings when type mismatches occur,
8862 but evaluate the expression anyway.  When you choose the last of
8863 these, @value{GDBN} evaluates expressions like the second example above, but
8864 also issues a warning.
8865
8866 Even if you turn type checking off, there may be other reasons
8867 related to type that prevent @value{GDBN} from evaluating an expression.
8868 For instance, @value{GDBN} does not know how to add an @code{int} and
8869 a @code{struct foo}.  These particular type errors have nothing to do
8870 with the language in use, and usually arise from expressions, such as
8871 the one described above, which make little sense to evaluate anyway.
8872
8873 Each language defines to what degree it is strict about type.  For
8874 instance, both Modula-2 and C require the arguments to arithmetical
8875 operators to be numbers.  In C, enumerated types and pointers can be
8876 represented as numbers, so that they are valid arguments to mathematical
8877 operators.  @xref{Supported Languages, ,Supported Languages}, for further
8878 details on specific languages.
8879
8880 @value{GDBN} provides some additional commands for controlling the type checker:
8881
8882 @kindex set check type
8883 @kindex show check type
8884 @table @code
8885 @item set check type auto
8886 Set type checking on or off based on the current working language.
8887 @xref{Supported Languages, ,Supported Languages}, for the default settings for
8888 each language.
8889
8890 @item set check type on
8891 @itemx set check type off
8892 Set type checking on or off, overriding the default setting for the
8893 current working language.  Issue a warning if the setting does not
8894 match the language default.  If any type mismatches occur in
8895 evaluating an expression while type checking is on, @value{GDBN} prints a
8896 message and aborts evaluation of the expression.
8897
8898 @item set check type warn
8899 Cause the type checker to issue warnings, but to always attempt to
8900 evaluate the expression.  Evaluating the expression may still
8901 be impossible for other reasons.  For example, @value{GDBN} cannot add
8902 numbers and structures.
8903
8904 @item show type
8905 Show the current setting of the type checker, and whether or not @value{GDBN}
8906 is setting it automatically.
8907 @end table
8908
8909 @cindex range checking
8910 @cindex checks, range
8911 @node Range Checking
8912 @subsection An Overview of Range Checking
8913
8914 In some languages (such as Modula-2), it is an error to exceed the
8915 bounds of a type; this is enforced with run-time checks.  Such range
8916 checking is meant to ensure program correctness by making sure
8917 computations do not overflow, or indices on an array element access do
8918 not exceed the bounds of the array.
8919
8920 For expressions you use in @value{GDBN} commands, you can tell
8921 @value{GDBN} to treat range errors in one of three ways: ignore them,
8922 always treat them as errors and abandon the expression, or issue
8923 warnings but evaluate the expression anyway.
8924
8925 A range error can result from numerical overflow, from exceeding an
8926 array index bound, or when you type a constant that is not a member
8927 of any type.  Some languages, however, do not treat overflows as an
8928 error.  In many implementations of C, mathematical overflow causes the
8929 result to ``wrap around'' to lower values---for example, if @var{m} is
8930 the largest integer value, and @var{s} is the smallest, then
8931
8932 @smallexample
8933 @var{m} + 1 @result{} @var{s}
8934 @end smallexample
8935
8936 This, too, is specific to individual languages, and in some cases
8937 specific to individual compilers or machines.  @xref{Supported Languages, ,
8938 Supported Languages}, for further details on specific languages.
8939
8940 @value{GDBN} provides some additional commands for controlling the range checker:
8941
8942 @kindex set check range
8943 @kindex show check range
8944 @table @code
8945 @item set check range auto
8946 Set range checking on or off based on the current working language.
8947 @xref{Supported Languages, ,Supported Languages}, for the default settings for
8948 each language.
8949
8950 @item set check range on
8951 @itemx set check range off
8952 Set range checking on or off, overriding the default setting for the
8953 current working language.  A warning is issued if the setting does not
8954 match the language default.  If a range error occurs and range checking is on,
8955 then a message is printed and evaluation of the expression is aborted.
8956
8957 @item set check range warn
8958 Output messages when the @value{GDBN} range checker detects a range error,
8959 but attempt to evaluate the expression anyway.  Evaluating the
8960 expression may still be impossible for other reasons, such as accessing
8961 memory that the process does not own (a typical example from many Unix
8962 systems).
8963
8964 @item show range
8965 Show the current setting of the range checker, and whether or not it is
8966 being set automatically by @value{GDBN}.
8967 @end table
8968
8969 @node Supported Languages
8970 @section Supported Languages
8971
8972 @value{GDBN} supports C, C@t{++}, Objective-C, Fortran, Java, Pascal,
8973 assembly, Modula-2, and Ada.
8974 @c This is false ...
8975 Some @value{GDBN} features may be used in expressions regardless of the
8976 language you use: the @value{GDBN} @code{@@} and @code{::} operators,
8977 and the @samp{@{type@}addr} construct (@pxref{Expressions,
8978 ,Expressions}) can be used with the constructs of any supported
8979 language.
8980
8981 The following sections detail to what degree each source language is
8982 supported by @value{GDBN}.  These sections are not meant to be language
8983 tutorials or references, but serve only as a reference guide to what the
8984 @value{GDBN} expression parser accepts, and what input and output
8985 formats should look like for different languages.  There are many good
8986 books written on each of these languages; please look to these for a
8987 language reference or tutorial.
8988
8989 @menu
8990 * C::                           C and C@t{++}
8991 * Objective-C::                 Objective-C
8992 * Fortran::                     Fortran
8993 * Pascal::                      Pascal
8994 * Modula-2::                    Modula-2
8995 * Ada::                         Ada
8996 @end menu
8997
8998 @node C
8999 @subsection C and C@t{++}
9000
9001 @cindex C and C@t{++}
9002 @cindex expressions in C or C@t{++}
9003
9004 Since C and C@t{++} are so closely related, many features of @value{GDBN} apply
9005 to both languages.  Whenever this is the case, we discuss those languages
9006 together.
9007
9008 @cindex C@t{++}
9009 @cindex @code{g++}, @sc{gnu} C@t{++} compiler
9010 @cindex @sc{gnu} C@t{++}
9011 The C@t{++} debugging facilities are jointly implemented by the C@t{++}
9012 compiler and @value{GDBN}.  Therefore, to debug your C@t{++} code
9013 effectively, you must compile your C@t{++} programs with a supported
9014 C@t{++} compiler, such as @sc{gnu} @code{g++}, or the HP ANSI C@t{++}
9015 compiler (@code{aCC}).
9016
9017 For best results when using @sc{gnu} C@t{++}, use the DWARF 2 debugging
9018 format; if it doesn't work on your system, try the stabs+ debugging
9019 format.  You can select those formats explicitly with the @code{g++}
9020 command-line options @option{-gdwarf-2} and @option{-gstabs+}.
9021 @xref{Debugging Options,,Options for Debugging Your Program or GCC,
9022 gcc.info, Using the @sc{gnu} Compiler Collection (GCC)}.
9023
9024 @menu
9025 * C Operators::                 C and C@t{++} operators
9026 * C Constants::                 C and C@t{++} constants
9027 * C Plus Plus Expressions::     C@t{++} expressions
9028 * C Defaults::                  Default settings for C and C@t{++}
9029 * C Checks::                    C and C@t{++} type and range checks
9030 * Debugging C::                 @value{GDBN} and C
9031 * Debugging C Plus Plus::       @value{GDBN} features for C@t{++}
9032 @end menu
9033
9034 @node C Operators
9035 @subsubsection C and C@t{++} Operators
9036
9037 @cindex C and C@t{++} operators
9038
9039 Operators must be defined on values of specific types.  For instance,
9040 @code{+} is defined on numbers, but not on structures.  Operators are
9041 often defined on groups of types.
9042
9043 For the purposes of C and C@t{++}, the following definitions hold:
9044
9045 @itemize @bullet
9046
9047 @item
9048 @emph{Integral types} include @code{int} with any of its storage-class
9049 specifiers; @code{char}; @code{enum}; and, for C@t{++}, @code{bool}.
9050
9051 @item
9052 @emph{Floating-point types} include @code{float}, @code{double}, and
9053 @code{long double} (if supported by the target platform).
9054
9055 @item
9056 @emph{Pointer types} include all types defined as @code{(@var{type} *)}.
9057
9058 @item
9059 @emph{Scalar types} include all of the above.
9060
9061 @end itemize
9062
9063 @noindent
9064 The following operators are supported.  They are listed here
9065 in order of increasing precedence:
9066
9067 @table @code
9068 @item ,
9069 The comma or sequencing operator.  Expressions in a comma-separated list
9070 are evaluated from left to right, with the result of the entire
9071 expression being the last expression evaluated.
9072
9073 @item =
9074 Assignment.  The value of an assignment expression is the value
9075 assigned.  Defined on scalar types.
9076
9077 @item @var{op}=
9078 Used in an expression of the form @w{@code{@var{a} @var{op}= @var{b}}},
9079 and translated to @w{@code{@var{a} = @var{a op b}}}.
9080 @w{@code{@var{op}=}} and @code{=} have the same precedence.
9081 @var{op} is any one of the operators @code{|}, @code{^}, @code{&},
9082 @code{<<}, @code{>>}, @code{+}, @code{-}, @code{*}, @code{/}, @code{%}.
9083
9084 @item ?:
9085 The ternary operator.  @code{@var{a} ? @var{b} : @var{c}} can be thought
9086 of as:  if @var{a} then @var{b} else @var{c}.  @var{a} should be of an
9087 integral type.
9088
9089 @item ||
9090 Logical @sc{or}.  Defined on integral types.
9091
9092 @item &&
9093 Logical @sc{and}.  Defined on integral types.
9094
9095 @item |
9096 Bitwise @sc{or}.  Defined on integral types.
9097
9098 @item ^
9099 Bitwise exclusive-@sc{or}.  Defined on integral types.
9100
9101 @item &
9102 Bitwise @sc{and}.  Defined on integral types.
9103
9104 @item ==@r{, }!=
9105 Equality and inequality.  Defined on scalar types.  The value of these
9106 expressions is 0 for false and non-zero for true.
9107
9108 @item <@r{, }>@r{, }<=@r{, }>=
9109 Less than, greater than, less than or equal, greater than or equal.
9110 Defined on scalar types.  The value of these expressions is 0 for false
9111 and non-zero for true.
9112
9113 @item <<@r{, }>>
9114 left shift, and right shift.  Defined on integral types.
9115
9116 @item @@
9117 The @value{GDBN} ``artificial array'' operator (@pxref{Expressions, ,Expressions}).
9118
9119 @item +@r{, }-
9120 Addition and subtraction.  Defined on integral types, floating-point types and
9121 pointer types.
9122
9123 @item *@r{, }/@r{, }%
9124 Multiplication, division, and modulus.  Multiplication and division are
9125 defined on integral and floating-point types.  Modulus is defined on
9126 integral types.
9127
9128 @item ++@r{, }--
9129 Increment and decrement.  When appearing before a variable, the
9130 operation is performed before the variable is used in an expression;
9131 when appearing after it, the variable's value is used before the
9132 operation takes place.
9133
9134 @item *
9135 Pointer dereferencing.  Defined on pointer types.  Same precedence as
9136 @code{++}.
9137
9138 @item &
9139 Address operator.  Defined on variables.  Same precedence as @code{++}.
9140
9141 For debugging C@t{++}, @value{GDBN} implements a use of @samp{&} beyond what is
9142 allowed in the C@t{++} language itself: you can use @samp{&(&@var{ref})}
9143 (or, if you prefer, simply @samp{&&@var{ref}}) to examine the address
9144 where a C@t{++} reference variable (declared with @samp{&@var{ref}}) is
9145 stored.
9146
9147 @item -
9148 Negative.  Defined on integral and floating-point types.  Same
9149 precedence as @code{++}.
9150
9151 @item !
9152 Logical negation.  Defined on integral types.  Same precedence as
9153 @code{++}.
9154
9155 @item ~
9156 Bitwise complement operator.  Defined on integral types.  Same precedence as
9157 @code{++}.
9158
9159
9160 @item .@r{, }->
9161 Structure member, and pointer-to-structure member.  For convenience,
9162 @value{GDBN} regards the two as equivalent, choosing whether to dereference a
9163 pointer based on the stored type information.
9164 Defined on @code{struct} and @code{union} data.
9165
9166 @item .*@r{, }->*
9167 Dereferences of pointers to members.
9168
9169 @item []
9170 Array indexing.  @code{@var{a}[@var{i}]} is defined as
9171 @code{*(@var{a}+@var{i})}.  Same precedence as @code{->}.
9172
9173 @item ()
9174 Function parameter list.  Same precedence as @code{->}.
9175
9176 @item ::
9177 C@t{++} scope resolution operator.  Defined on @code{struct}, @code{union},
9178 and @code{class} types.
9179
9180 @item ::
9181 Doubled colons also represent the @value{GDBN} scope operator
9182 (@pxref{Expressions, ,Expressions}).  Same precedence as @code{::},
9183 above.
9184 @end table
9185
9186 If an operator is redefined in the user code, @value{GDBN} usually
9187 attempts to invoke the redefined version instead of using the operator's
9188 predefined meaning.
9189
9190 @node C Constants
9191 @subsubsection C and C@t{++} Constants
9192
9193 @cindex C and C@t{++} constants
9194
9195 @value{GDBN} allows you to express the constants of C and C@t{++} in the
9196 following ways:
9197
9198 @itemize @bullet
9199 @item
9200 Integer constants are a sequence of digits.  Octal constants are
9201 specified by a leading @samp{0} (i.e.@: zero), and hexadecimal constants
9202 by a leading @samp{0x} or @samp{0X}.  Constants may also end with a letter
9203 @samp{l}, specifying that the constant should be treated as a
9204 @code{long} value.
9205
9206 @item
9207 Floating point constants are a sequence of digits, followed by a decimal
9208 point, followed by a sequence of digits, and optionally followed by an
9209 exponent.  An exponent is of the form:
9210 @samp{@w{e@r{[[}+@r{]|}-@r{]}@var{nnn}}}, where @var{nnn} is another
9211 sequence of digits.  The @samp{+} is optional for positive exponents.
9212 A floating-point constant may also end with a letter @samp{f} or
9213 @samp{F}, specifying that the constant should be treated as being of
9214 the @code{float} (as opposed to the default @code{double}) type; or with
9215 a letter @samp{l} or @samp{L}, which specifies a @code{long double}
9216 constant.
9217
9218 @item
9219 Enumerated constants consist of enumerated identifiers, or their
9220 integral equivalents.
9221
9222 @item
9223 Character constants are a single character surrounded by single quotes
9224 (@code{'}), or a number---the ordinal value of the corresponding character
9225 (usually its @sc{ascii} value).  Within quotes, the single character may
9226 be represented by a letter or by @dfn{escape sequences}, which are of
9227 the form @samp{\@var{nnn}}, where @var{nnn} is the octal representation
9228 of the character's ordinal value; or of the form @samp{\@var{x}}, where
9229 @samp{@var{x}} is a predefined special character---for example,
9230 @samp{\n} for newline.
9231
9232 @item
9233 String constants are a sequence of character constants surrounded by
9234 double quotes (@code{"}).  Any valid character constant (as described
9235 above) may appear.  Double quotes within the string must be preceded by
9236 a backslash, so for instance @samp{"a\"b'c"} is a string of five
9237 characters.
9238
9239 @item
9240 Pointer constants are an integral value.  You can also write pointers
9241 to constants using the C operator @samp{&}.
9242
9243 @item
9244 Array constants are comma-separated lists surrounded by braces @samp{@{}
9245 and @samp{@}}; for example, @samp{@{1,2,3@}} is a three-element array of
9246 integers, @samp{@{@{1,2@}, @{3,4@}, @{5,6@}@}} is a three-by-two array,
9247 and @samp{@{&"hi", &"there", &"fred"@}} is a three-element array of pointers.
9248 @end itemize
9249
9250 @node C Plus Plus Expressions
9251 @subsubsection C@t{++} Expressions
9252
9253 @cindex expressions in C@t{++}
9254 @value{GDBN} expression handling can interpret most C@t{++} expressions.
9255
9256 @cindex debugging C@t{++} programs
9257 @cindex C@t{++} compilers
9258 @cindex debug formats and C@t{++}
9259 @cindex @value{NGCC} and C@t{++}
9260 @quotation
9261 @emph{Warning:} @value{GDBN} can only debug C@t{++} code if you use the
9262 proper compiler and the proper debug format.  Currently, @value{GDBN}
9263 works best when debugging C@t{++} code that is compiled with
9264 @value{NGCC} 2.95.3 or with @value{NGCC} 3.1 or newer, using the options
9265 @option{-gdwarf-2} or @option{-gstabs+}.  DWARF 2 is preferred over
9266 stabs+.  Most configurations of @value{NGCC} emit either DWARF 2 or
9267 stabs+ as their default debug format, so you usually don't need to
9268 specify a debug format explicitly.  Other compilers and/or debug formats
9269 are likely to work badly or not at all when using @value{GDBN} to debug
9270 C@t{++} code.
9271 @end quotation
9272
9273 @enumerate
9274
9275 @cindex member functions
9276 @item
9277 Member function calls are allowed; you can use expressions like
9278
9279 @smallexample
9280 count = aml->GetOriginal(x, y)
9281 @end smallexample
9282
9283 @vindex this@r{, inside C@t{++} member functions}
9284 @cindex namespace in C@t{++}
9285 @item
9286 While a member function is active (in the selected stack frame), your
9287 expressions have the same namespace available as the member function;
9288 that is, @value{GDBN} allows implicit references to the class instance
9289 pointer @code{this} following the same rules as C@t{++}.
9290
9291 @cindex call overloaded functions
9292 @cindex overloaded functions, calling
9293 @cindex type conversions in C@t{++}
9294 @item
9295 You can call overloaded functions; @value{GDBN} resolves the function
9296 call to the right definition, with some restrictions.  @value{GDBN} does not
9297 perform overload resolution involving user-defined type conversions,
9298 calls to constructors, or instantiations of templates that do not exist
9299 in the program.  It also cannot handle ellipsis argument lists or
9300 default arguments.
9301
9302 It does perform integral conversions and promotions, floating-point
9303 promotions, arithmetic conversions, pointer conversions, conversions of
9304 class objects to base classes, and standard conversions such as those of
9305 functions or arrays to pointers; it requires an exact match on the
9306 number of function arguments.
9307
9308 Overload resolution is always performed, unless you have specified
9309 @code{set overload-resolution off}.  @xref{Debugging C Plus Plus,
9310 ,@value{GDBN} Features for C@t{++}}.
9311
9312 You must specify @code{set overload-resolution off} in order to use an
9313 explicit function signature to call an overloaded function, as in
9314 @smallexample
9315 p 'foo(char,int)'('x', 13)
9316 @end smallexample
9317
9318 The @value{GDBN} command-completion facility can simplify this;
9319 see @ref{Completion, ,Command Completion}.
9320
9321 @cindex reference declarations
9322 @item
9323 @value{GDBN} understands variables declared as C@t{++} references; you can use
9324 them in expressions just as you do in C@t{++} source---they are automatically
9325 dereferenced.
9326
9327 In the parameter list shown when @value{GDBN} displays a frame, the values of
9328 reference variables are not displayed (unlike other variables); this
9329 avoids clutter, since references are often used for large structures.
9330 The @emph{address} of a reference variable is always shown, unless
9331 you have specified @samp{set print address off}.
9332
9333 @item
9334 @value{GDBN} supports the C@t{++} name resolution operator @code{::}---your
9335 expressions can use it just as expressions in your program do.  Since
9336 one scope may be defined in another, you can use @code{::} repeatedly if
9337 necessary, for example in an expression like
9338 @samp{@var{scope1}::@var{scope2}::@var{name}}.  @value{GDBN} also allows
9339 resolving name scope by reference to source files, in both C and C@t{++}
9340 debugging (@pxref{Variables, ,Program Variables}).
9341 @end enumerate
9342
9343 In addition, when used with HP's C@t{++} compiler, @value{GDBN} supports
9344 calling virtual functions correctly, printing out virtual bases of
9345 objects, calling functions in a base subobject, casting objects, and
9346 invoking user-defined operators.
9347
9348 @node C Defaults
9349 @subsubsection C and C@t{++} Defaults
9350
9351 @cindex C and C@t{++} defaults
9352
9353 If you allow @value{GDBN} to set type and range checking automatically, they
9354 both default to @code{off} whenever the working language changes to
9355 C or C@t{++}.  This happens regardless of whether you or @value{GDBN}
9356 selects the working language.
9357
9358 If you allow @value{GDBN} to set the language automatically, it
9359 recognizes source files whose names end with @file{.c}, @file{.C}, or
9360 @file{.cc}, etc, and when @value{GDBN} enters code compiled from one of
9361 these files, it sets the working language to C or C@t{++}.
9362 @xref{Automatically, ,Having @value{GDBN} Infer the Source Language},
9363 for further details.
9364
9365 @c Type checking is (a) primarily motivated by Modula-2, and (b)
9366 @c unimplemented.  If (b) changes, it might make sense to let this node
9367 @c appear even if Mod-2 does not, but meanwhile ignore it. roland 16jul93.
9368
9369 @node C Checks
9370 @subsubsection C and C@t{++} Type and Range Checks
9371
9372 @cindex C and C@t{++} checks
9373
9374 By default, when @value{GDBN} parses C or C@t{++} expressions, type checking
9375 is not used.  However, if you turn type checking on, @value{GDBN}
9376 considers two variables type equivalent if:
9377
9378 @itemize @bullet
9379 @item
9380 The two variables are structured and have the same structure, union, or
9381 enumerated tag.
9382
9383 @item
9384 The two variables have the same type name, or types that have been
9385 declared equivalent through @code{typedef}.
9386
9387 @ignore
9388 @c leaving this out because neither J Gilmore nor R Pesch understand it.
9389 @c FIXME--beers?
9390 @item
9391 The two @code{struct}, @code{union}, or @code{enum} variables are
9392 declared in the same declaration.  (Note: this may not be true for all C
9393 compilers.)
9394 @end ignore
9395 @end itemize
9396
9397 Range checking, if turned on, is done on mathematical operations.  Array
9398 indices are not checked, since they are often used to index a pointer
9399 that is not itself an array.
9400
9401 @node Debugging C
9402 @subsubsection @value{GDBN} and C
9403
9404 The @code{set print union} and @code{show print union} commands apply to
9405 the @code{union} type.  When set to @samp{on}, any @code{union} that is
9406 inside a @code{struct} or @code{class} is also printed.  Otherwise, it
9407 appears as @samp{@{...@}}.
9408
9409 The @code{@@} operator aids in the debugging of dynamic arrays, formed
9410 with pointers and a memory allocation function.  @xref{Expressions,
9411 ,Expressions}.
9412
9413 @node Debugging C Plus Plus
9414 @subsubsection @value{GDBN} Features for C@t{++}
9415
9416 @cindex commands for C@t{++}
9417
9418 Some @value{GDBN} commands are particularly useful with C@t{++}, and some are
9419 designed specifically for use with C@t{++}.  Here is a summary:
9420
9421 @table @code
9422 @cindex break in overloaded functions
9423 @item @r{breakpoint menus}
9424 When you want a breakpoint in a function whose name is overloaded,
9425 @value{GDBN} breakpoint menus help you specify which function definition
9426 you want.  @xref{Breakpoint Menus,,Breakpoint Menus}.
9427
9428 @cindex overloading in C@t{++}
9429 @item rbreak @var{regex}
9430 Setting breakpoints using regular expressions is helpful for setting
9431 breakpoints on overloaded functions that are not members of any special
9432 classes.
9433 @xref{Set Breaks, ,Setting Breakpoints}.
9434
9435 @cindex C@t{++} exception handling
9436 @item catch throw
9437 @itemx catch catch
9438 Debug C@t{++} exception handling using these commands.  @xref{Set
9439 Catchpoints, , Setting Catchpoints}.
9440
9441 @cindex inheritance
9442 @item ptype @var{typename}
9443 Print inheritance relationships as well as other information for type
9444 @var{typename}.
9445 @xref{Symbols, ,Examining the Symbol Table}.
9446
9447 @cindex C@t{++} symbol display
9448 @item set print demangle
9449 @itemx show print demangle
9450 @itemx set print asm-demangle
9451 @itemx show print asm-demangle
9452 Control whether C@t{++} symbols display in their source form, both when
9453 displaying code as C@t{++} source and when displaying disassemblies.
9454 @xref{Print Settings, ,Print Settings}.
9455
9456 @item set print object
9457 @itemx show print object
9458 Choose whether to print derived (actual) or declared types of objects.
9459 @xref{Print Settings, ,Print Settings}.
9460
9461 @item set print vtbl
9462 @itemx show print vtbl
9463 Control the format for printing virtual function tables.
9464 @xref{Print Settings, ,Print Settings}.
9465 (The @code{vtbl} commands do not work on programs compiled with the HP
9466 ANSI C@t{++} compiler (@code{aCC}).)
9467
9468 @kindex set overload-resolution
9469 @cindex overloaded functions, overload resolution
9470 @item set overload-resolution on
9471 Enable overload resolution for C@t{++} expression evaluation.  The default
9472 is on.  For overloaded functions, @value{GDBN} evaluates the arguments
9473 and searches for a function whose signature matches the argument types,
9474 using the standard C@t{++} conversion rules (see @ref{C Plus Plus
9475 Expressions, ,C@t{++} Expressions}, for details).
9476 If it cannot find a match, it emits a message.
9477
9478 @item set overload-resolution off
9479 Disable overload resolution for C@t{++} expression evaluation.  For
9480 overloaded functions that are not class member functions, @value{GDBN}
9481 chooses the first function of the specified name that it finds in the
9482 symbol table, whether or not its arguments are of the correct type.  For
9483 overloaded functions that are class member functions, @value{GDBN}
9484 searches for a function whose signature @emph{exactly} matches the
9485 argument types.
9486
9487 @kindex show overload-resolution
9488 @item show overload-resolution
9489 Show the current setting of overload resolution.
9490
9491 @item @r{Overloaded symbol names}
9492 You can specify a particular definition of an overloaded symbol, using
9493 the same notation that is used to declare such symbols in C@t{++}: type
9494 @code{@var{symbol}(@var{types})} rather than just @var{symbol}.  You can
9495 also use the @value{GDBN} command-line word completion facilities to list the
9496 available choices, or to finish the type list for you.
9497 @xref{Completion,, Command Completion}, for details on how to do this.
9498 @end table
9499
9500 @node Objective-C
9501 @subsection Objective-C
9502
9503 @cindex Objective-C
9504 This section provides information about some commands and command
9505 options that are useful for debugging Objective-C code.  See also
9506 @ref{Symbols, info classes}, and @ref{Symbols, info selectors}, for a
9507 few more commands specific to Objective-C support.
9508
9509 @menu
9510 * Method Names in Commands::
9511 * The Print Command with Objective-C::
9512 @end menu
9513
9514 @node Method Names in Commands
9515 @subsubsection Method Names in Commands
9516
9517 The following commands have been extended to accept Objective-C method
9518 names as line specifications:
9519
9520 @kindex clear@r{, and Objective-C}
9521 @kindex break@r{, and Objective-C}
9522 @kindex info line@r{, and Objective-C}
9523 @kindex jump@r{, and Objective-C}
9524 @kindex list@r{, and Objective-C}
9525 @itemize
9526 @item @code{clear}
9527 @item @code{break}
9528 @item @code{info line}
9529 @item @code{jump}
9530 @item @code{list}
9531 @end itemize
9532
9533 A fully qualified Objective-C method name is specified as
9534
9535 @smallexample
9536 -[@var{Class} @var{methodName}]
9537 @end smallexample
9538
9539 where the minus sign is used to indicate an instance method and a
9540 plus sign (not shown) is used to indicate a class method.  The class
9541 name @var{Class} and method name @var{methodName} are enclosed in
9542 brackets, similar to the way messages are specified in Objective-C
9543 source code.  For example, to set a breakpoint at the @code{create}
9544 instance method of class @code{Fruit} in the program currently being
9545 debugged, enter:
9546
9547 @smallexample
9548 break -[Fruit create]
9549 @end smallexample
9550
9551 To list ten program lines around the @code{initialize} class method,
9552 enter:
9553
9554 @smallexample
9555 list +[NSText initialize]
9556 @end smallexample
9557
9558 In the current version of @value{GDBN}, the plus or minus sign is
9559 required.  In future versions of @value{GDBN}, the plus or minus
9560 sign will be optional, but you can use it to narrow the search.  It
9561 is also possible to specify just a method name:
9562
9563 @smallexample
9564 break create
9565 @end smallexample
9566
9567 You must specify the complete method name, including any colons.  If
9568 your program's source files contain more than one @code{create} method,
9569 you'll be presented with a numbered list of classes that implement that
9570 method.  Indicate your choice by number, or type @samp{0} to exit if
9571 none apply.
9572
9573 As another example, to clear a breakpoint established at the
9574 @code{makeKeyAndOrderFront:} method of the @code{NSWindow} class, enter:
9575
9576 @smallexample
9577 clear -[NSWindow makeKeyAndOrderFront:]
9578 @end smallexample
9579
9580 @node The Print Command with Objective-C
9581 @subsubsection The Print Command With Objective-C
9582 @cindex Objective-C, print objects
9583 @kindex print-object
9584 @kindex po @r{(@code{print-object})}
9585
9586 The print command has also been extended to accept methods.  For example:
9587
9588 @smallexample
9589 print -[@var{object} hash]
9590 @end smallexample
9591
9592 @cindex print an Objective-C object description
9593 @cindex @code{_NSPrintForDebugger}, and printing Objective-C objects
9594 @noindent
9595 will tell @value{GDBN} to send the @code{hash} message to @var{object}
9596 and print the result.  Also, an additional command has been added,
9597 @code{print-object} or @code{po} for short, which is meant to print
9598 the description of an object.  However, this command may only work
9599 with certain Objective-C libraries that have a particular hook
9600 function, @code{_NSPrintForDebugger}, defined.
9601
9602 @node Fortran
9603 @subsection Fortran
9604 @cindex Fortran-specific support in @value{GDBN}
9605
9606 @value{GDBN} can be used to debug programs written in Fortran, but it
9607 currently supports only the features of Fortran 77 language.
9608
9609 @cindex trailing underscore, in Fortran symbols
9610 Some Fortran compilers (@sc{gnu} Fortran 77 and Fortran 95 compilers
9611 among them) append an underscore to the names of variables and
9612 functions.  When you debug programs compiled by those compilers, you
9613 will need to refer to variables and functions with a trailing
9614 underscore.
9615
9616 @menu
9617 * Fortran Operators::           Fortran operators and expressions
9618 * Fortran Defaults::            Default settings for Fortran
9619 * Special Fortran Commands::    Special @value{GDBN} commands for Fortran
9620 @end menu
9621
9622 @node Fortran Operators
9623 @subsubsection Fortran Operators and Expressions
9624
9625 @cindex Fortran operators and expressions
9626
9627 Operators must be defined on values of specific types.  For instance,
9628 @code{+} is defined on numbers, but not on characters or other non-
9629 arithmetic types.  Operators are often defined on groups of types.
9630
9631 @table @code
9632 @item **
9633 The exponentiation operator. It raises the first operand to the power
9634 of the second one.
9635
9636 @item :
9637 The range operator.  Normally used in the form of array(low:high) to
9638 represent a section of array.
9639 @end table
9640
9641 @node Fortran Defaults
9642 @subsubsection Fortran Defaults
9643
9644 @cindex Fortran Defaults
9645
9646 Fortran symbols are usually case-insensitive, so @value{GDBN} by
9647 default uses case-insensitive matches for Fortran symbols.  You can
9648 change that with the @samp{set case-insensitive} command, see
9649 @ref{Symbols}, for the details.
9650
9651 @node Special Fortran Commands
9652 @subsubsection Special Fortran Commands
9653
9654 @cindex Special Fortran commands
9655
9656 @value{GDBN} has some commands to support Fortran-specific features,
9657 such as displaying common blocks.
9658
9659 @table @code
9660 @cindex @code{COMMON} blocks, Fortran
9661 @kindex info common
9662 @item info common @r{[}@var{common-name}@r{]}
9663 This command prints the values contained in the Fortran @code{COMMON}
9664 block whose name is @var{common-name}.  With no argument, the names of
9665 all @code{COMMON} blocks visible at the current program location are
9666 printed.
9667 @end table
9668
9669 @node Pascal
9670 @subsection Pascal
9671
9672 @cindex Pascal support in @value{GDBN}, limitations
9673 Debugging Pascal programs which use sets, subranges, file variables, or
9674 nested functions does not currently work.  @value{GDBN} does not support
9675 entering expressions, printing values, or similar features using Pascal
9676 syntax.
9677
9678 The Pascal-specific command @code{set print pascal_static-members}
9679 controls whether static members of Pascal objects are displayed.
9680 @xref{Print Settings, pascal_static-members}.
9681
9682 @node Modula-2
9683 @subsection Modula-2
9684
9685 @cindex Modula-2, @value{GDBN} support
9686
9687 The extensions made to @value{GDBN} to support Modula-2 only support
9688 output from the @sc{gnu} Modula-2 compiler (which is currently being
9689 developed).  Other Modula-2 compilers are not currently supported, and
9690 attempting to debug executables produced by them is most likely
9691 to give an error as @value{GDBN} reads in the executable's symbol
9692 table.
9693
9694 @cindex expressions in Modula-2
9695 @menu
9696 * M2 Operators::                Built-in operators
9697 * Built-In Func/Proc::          Built-in functions and procedures
9698 * M2 Constants::                Modula-2 constants
9699 * M2 Types::                    Modula-2 types
9700 * M2 Defaults::                 Default settings for Modula-2
9701 * Deviations::                  Deviations from standard Modula-2
9702 * M2 Checks::                   Modula-2 type and range checks
9703 * M2 Scope::                    The scope operators @code{::} and @code{.}
9704 * GDB/M2::                      @value{GDBN} and Modula-2
9705 @end menu
9706
9707 @node M2 Operators
9708 @subsubsection Operators
9709 @cindex Modula-2 operators
9710
9711 Operators must be defined on values of specific types.  For instance,
9712 @code{+} is defined on numbers, but not on structures.  Operators are
9713 often defined on groups of types.  For the purposes of Modula-2, the
9714 following definitions hold:
9715
9716 @itemize @bullet
9717
9718 @item
9719 @emph{Integral types} consist of @code{INTEGER}, @code{CARDINAL}, and
9720 their subranges.
9721
9722 @item
9723 @emph{Character types} consist of @code{CHAR} and its subranges.
9724
9725 @item
9726 @emph{Floating-point types} consist of @code{REAL}.
9727
9728 @item
9729 @emph{Pointer types} consist of anything declared as @code{POINTER TO
9730 @var{type}}.
9731
9732 @item
9733 @emph{Scalar types} consist of all of the above.
9734
9735 @item
9736 @emph{Set types} consist of @code{SET} and @code{BITSET} types.
9737
9738 @item
9739 @emph{Boolean types} consist of @code{BOOLEAN}.
9740 @end itemize
9741
9742 @noindent
9743 The following operators are supported, and appear in order of
9744 increasing precedence:
9745
9746 @table @code
9747 @item ,
9748 Function argument or array index separator.
9749
9750 @item :=
9751 Assignment.  The value of @var{var} @code{:=} @var{value} is
9752 @var{value}.
9753
9754 @item <@r{, }>
9755 Less than, greater than on integral, floating-point, or enumerated
9756 types.
9757
9758 @item <=@r{, }>=
9759 Less than or equal to, greater than or equal to
9760 on integral, floating-point and enumerated types, or set inclusion on
9761 set types.  Same precedence as @code{<}.
9762
9763 @item =@r{, }<>@r{, }#
9764 Equality and two ways of expressing inequality, valid on scalar types.
9765 Same precedence as @code{<}.  In @value{GDBN} scripts, only @code{<>} is
9766 available for inequality, since @code{#} conflicts with the script
9767 comment character.
9768
9769 @item IN
9770 Set membership.  Defined on set types and the types of their members.
9771 Same precedence as @code{<}.
9772
9773 @item OR
9774 Boolean disjunction.  Defined on boolean types.
9775
9776 @item AND@r{, }&
9777 Boolean conjunction.  Defined on boolean types.
9778
9779 @item @@
9780 The @value{GDBN} ``artificial array'' operator (@pxref{Expressions, ,Expressions}).
9781
9782 @item +@r{, }-
9783 Addition and subtraction on integral and floating-point types, or union
9784 and difference on set types.
9785
9786 @item *
9787 Multiplication on integral and floating-point types, or set intersection
9788 on set types.
9789
9790 @item /
9791 Division on floating-point types, or symmetric set difference on set
9792 types.  Same precedence as @code{*}.
9793
9794 @item DIV@r{, }MOD
9795 Integer division and remainder.  Defined on integral types.  Same
9796 precedence as @code{*}.
9797
9798 @item -
9799 Negative. Defined on @code{INTEGER} and @code{REAL} data.
9800
9801 @item ^
9802 Pointer dereferencing.  Defined on pointer types.
9803
9804 @item NOT
9805 Boolean negation.  Defined on boolean types.  Same precedence as
9806 @code{^}.
9807
9808 @item .
9809 @code{RECORD} field selector.  Defined on @code{RECORD} data.  Same
9810 precedence as @code{^}.
9811
9812 @item []
9813 Array indexing.  Defined on @code{ARRAY} data.  Same precedence as @code{^}.
9814
9815 @item ()
9816 Procedure argument list.  Defined on @code{PROCEDURE} objects.  Same precedence
9817 as @code{^}.
9818
9819 @item ::@r{, }.
9820 @value{GDBN} and Modula-2 scope operators.
9821 @end table
9822
9823 @quotation
9824 @emph{Warning:} Set expressions and their operations are not yet supported, so @value{GDBN}
9825 treats the use of the operator @code{IN}, or the use of operators
9826 @code{+}, @code{-}, @code{*}, @code{/}, @code{=}, , @code{<>}, @code{#},
9827 @code{<=}, and @code{>=} on sets as an error.
9828 @end quotation
9829
9830
9831 @node Built-In Func/Proc
9832 @subsubsection Built-in Functions and Procedures
9833 @cindex Modula-2 built-ins
9834
9835 Modula-2 also makes available several built-in procedures and functions.
9836 In describing these, the following metavariables are used:
9837
9838 @table @var
9839
9840 @item a
9841 represents an @code{ARRAY} variable.
9842
9843 @item c
9844 represents a @code{CHAR} constant or variable.
9845
9846 @item i
9847 represents a variable or constant of integral type.
9848
9849 @item m
9850 represents an identifier that belongs to a set.  Generally used in the
9851 same function with the metavariable @var{s}.  The type of @var{s} should
9852 be @code{SET OF @var{mtype}} (where @var{mtype} is the type of @var{m}).
9853
9854 @item n
9855 represents a variable or constant of integral or floating-point type.
9856
9857 @item r
9858 represents a variable or constant of floating-point type.
9859
9860 @item t
9861 represents a type.
9862
9863 @item v
9864 represents a variable.
9865
9866 @item x
9867 represents a variable or constant of one of many types.  See the
9868 explanation of the function for details.
9869 @end table
9870
9871 All Modula-2 built-in procedures also return a result, described below.
9872
9873 @table @code
9874 @item ABS(@var{n})
9875 Returns the absolute value of @var{n}.
9876
9877 @item CAP(@var{c})
9878 If @var{c} is a lower case letter, it returns its upper case
9879 equivalent, otherwise it returns its argument.
9880
9881 @item CHR(@var{i})
9882 Returns the character whose ordinal value is @var{i}.
9883
9884 @item DEC(@var{v})
9885 Decrements the value in the variable @var{v} by one.  Returns the new value.
9886
9887 @item DEC(@var{v},@var{i})
9888 Decrements the value in the variable @var{v} by @var{i}.  Returns the
9889 new value.
9890
9891 @item EXCL(@var{m},@var{s})
9892 Removes the element @var{m} from the set @var{s}.  Returns the new
9893 set.
9894
9895 @item FLOAT(@var{i})
9896 Returns the floating point equivalent of the integer @var{i}.
9897
9898 @item HIGH(@var{a})
9899 Returns the index of the last member of @var{a}.
9900
9901 @item INC(@var{v})
9902 Increments the value in the variable @var{v} by one.  Returns the new value.
9903
9904 @item INC(@var{v},@var{i})
9905 Increments the value in the variable @var{v} by @var{i}.  Returns the
9906 new value.
9907
9908 @item INCL(@var{m},@var{s})
9909 Adds the element @var{m} to the set @var{s} if it is not already
9910 there.  Returns the new set.
9911
9912 @item MAX(@var{t})
9913 Returns the maximum value of the type @var{t}.
9914
9915 @item MIN(@var{t})
9916 Returns the minimum value of the type @var{t}.
9917
9918 @item ODD(@var{i})
9919 Returns boolean TRUE if @var{i} is an odd number.
9920
9921 @item ORD(@var{x})
9922 Returns the ordinal value of its argument.  For example, the ordinal
9923 value of a character is its @sc{ascii} value (on machines supporting the
9924 @sc{ascii} character set).  @var{x} must be of an ordered type, which include
9925 integral, character and enumerated types.
9926
9927 @item SIZE(@var{x})
9928 Returns the size of its argument.  @var{x} can be a variable or a type.
9929
9930 @item TRUNC(@var{r})
9931 Returns the integral part of @var{r}.
9932
9933 @item VAL(@var{t},@var{i})
9934 Returns the member of the type @var{t} whose ordinal value is @var{i}.
9935 @end table
9936
9937 @quotation
9938 @emph{Warning:}  Sets and their operations are not yet supported, so
9939 @value{GDBN} treats the use of procedures @code{INCL} and @code{EXCL} as
9940 an error.
9941 @end quotation
9942
9943 @cindex Modula-2 constants
9944 @node M2 Constants
9945 @subsubsection Constants
9946
9947 @value{GDBN} allows you to express the constants of Modula-2 in the following
9948 ways:
9949
9950 @itemize @bullet
9951
9952 @item
9953 Integer constants are simply a sequence of digits.  When used in an
9954 expression, a constant is interpreted to be type-compatible with the
9955 rest of the expression.  Hexadecimal integers are specified by a
9956 trailing @samp{H}, and octal integers by a trailing @samp{B}.
9957
9958 @item
9959 Floating point constants appear as a sequence of digits, followed by a
9960 decimal point and another sequence of digits.  An optional exponent can
9961 then be specified, in the form @samp{E@r{[}+@r{|}-@r{]}@var{nnn}}, where
9962 @samp{@r{[}+@r{|}-@r{]}@var{nnn}} is the desired exponent.  All of the
9963 digits of the floating point constant must be valid decimal (base 10)
9964 digits.
9965
9966 @item
9967 Character constants consist of a single character enclosed by a pair of
9968 like quotes, either single (@code{'}) or double (@code{"}).  They may
9969 also be expressed by their ordinal value (their @sc{ascii} value, usually)
9970 followed by a @samp{C}.
9971
9972 @item
9973 String constants consist of a sequence of characters enclosed by a
9974 pair of like quotes, either single (@code{'}) or double (@code{"}).
9975 Escape sequences in the style of C are also allowed.  @xref{C
9976 Constants, ,C and C@t{++} Constants}, for a brief explanation of escape
9977 sequences.
9978
9979 @item
9980 Enumerated constants consist of an enumerated identifier.
9981
9982 @item
9983 Boolean constants consist of the identifiers @code{TRUE} and
9984 @code{FALSE}.
9985
9986 @item
9987 Pointer constants consist of integral values only.
9988
9989 @item
9990 Set constants are not yet supported.
9991 @end itemize
9992
9993 @node M2 Types
9994 @subsubsection Modula-2 Types
9995 @cindex Modula-2 types
9996
9997 Currently @value{GDBN} can print the following data types in Modula-2
9998 syntax: array types, record types, set types, pointer types, procedure
9999 types, enumerated types, subrange types and base types.  You can also
10000 print the contents of variables declared using these type.
10001 This section gives a number of simple source code examples together with
10002 sample @value{GDBN} sessions.
10003
10004 The first example contains the following section of code:
10005
10006 @smallexample
10007 VAR
10008    s: SET OF CHAR ;
10009    r: [20..40] ;
10010 @end smallexample
10011
10012 @noindent
10013 and you can request @value{GDBN} to interrogate the type and value of
10014 @code{r} and @code{s}.
10015
10016 @smallexample
10017 (@value{GDBP}) print s
10018 @{'A'..'C', 'Z'@}
10019 (@value{GDBP}) ptype s
10020 SET OF CHAR
10021 (@value{GDBP}) print r
10022 21
10023 (@value{GDBP}) ptype r
10024 [20..40]
10025 @end smallexample
10026
10027 @noindent
10028 Likewise if your source code declares @code{s} as:
10029
10030 @smallexample
10031 VAR
10032    s: SET ['A'..'Z'] ;
10033 @end smallexample
10034
10035 @noindent
10036 then you may query the type of @code{s} by:
10037
10038 @smallexample
10039 (@value{GDBP}) ptype s
10040 type = SET ['A'..'Z']
10041 @end smallexample
10042
10043 @noindent
10044 Note that at present you cannot interactively manipulate set
10045 expressions using the debugger.
10046
10047 The following example shows how you might declare an array in Modula-2
10048 and how you can interact with @value{GDBN} to print its type and contents:
10049
10050 @smallexample
10051 VAR
10052    s: ARRAY [-10..10] OF CHAR ;
10053 @end smallexample
10054
10055 @smallexample
10056 (@value{GDBP}) ptype s
10057 ARRAY [-10..10] OF CHAR
10058 @end smallexample
10059
10060 Note that the array handling is not yet complete and although the type
10061 is printed correctly, expression handling still assumes that all
10062 arrays have a lower bound of zero and not @code{-10} as in the example
10063 above.  Unbounded arrays are also not yet recognized in @value{GDBN}.
10064
10065 Here are some more type related Modula-2 examples:
10066
10067 @smallexample
10068 TYPE
10069    colour = (blue, red, yellow, green) ;
10070    t = [blue..yellow] ;
10071 VAR
10072    s: t ;
10073 BEGIN
10074    s := blue ;
10075 @end smallexample
10076
10077 @noindent
10078 The @value{GDBN} interaction shows how you can query the data type
10079 and value of a variable.
10080
10081 @smallexample
10082 (@value{GDBP}) print s
10083 $1 = blue
10084 (@value{GDBP}) ptype t
10085 type = [blue..yellow]
10086 @end smallexample
10087
10088 @noindent
10089 In this example a Modula-2 array is declared and its contents
10090 displayed.  Observe that the contents are written in the same way as
10091 their @code{C} counterparts.
10092
10093 @smallexample
10094 VAR
10095    s: ARRAY [1..5] OF CARDINAL ;
10096 BEGIN
10097    s[1] := 1 ;
10098 @end smallexample
10099
10100 @smallexample
10101 (@value{GDBP}) print s
10102 $1 = @{1, 0, 0, 0, 0@}
10103 (@value{GDBP}) ptype s
10104 type = ARRAY [1..5] OF CARDINAL
10105 @end smallexample
10106
10107 The Modula-2 language interface to @value{GDBN} also understands
10108 pointer types as shown in this example:
10109
10110 @smallexample
10111 VAR
10112    s: POINTER TO ARRAY [1..5] OF CARDINAL ;
10113 BEGIN
10114    NEW(s) ;
10115    s^[1] := 1 ;
10116 @end smallexample
10117
10118 @noindent
10119 and you can request that @value{GDBN} describes the type of @code{s}.
10120
10121 @smallexample
10122 (@value{GDBP}) ptype s
10123 type = POINTER TO ARRAY [1..5] OF CARDINAL
10124 @end smallexample
10125
10126 @value{GDBN} handles compound types as we can see in this example.
10127 Here we combine array types, record types, pointer types and subrange
10128 types:
10129
10130 @smallexample
10131 TYPE
10132    foo = RECORD
10133             f1: CARDINAL ;
10134             f2: CHAR ;
10135             f3: myarray ;
10136          END ;
10137
10138    myarray = ARRAY myrange OF CARDINAL ;
10139    myrange = [-2..2] ;
10140 VAR
10141    s: POINTER TO ARRAY myrange OF foo ;
10142 @end smallexample
10143
10144 @noindent
10145 and you can ask @value{GDBN} to describe the type of @code{s} as shown
10146 below.
10147
10148 @smallexample
10149 (@value{GDBP}) ptype s
10150 type = POINTER TO ARRAY [-2..2] OF foo = RECORD
10151     f1 : CARDINAL;
10152     f2 : CHAR;
10153     f3 : ARRAY [-2..2] OF CARDINAL;
10154 END 
10155 @end smallexample
10156
10157 @node M2 Defaults
10158 @subsubsection Modula-2 Defaults
10159 @cindex Modula-2 defaults
10160
10161 If type and range checking are set automatically by @value{GDBN}, they
10162 both default to @code{on} whenever the working language changes to
10163 Modula-2.  This happens regardless of whether you or @value{GDBN}
10164 selected the working language.
10165
10166 If you allow @value{GDBN} to set the language automatically, then entering
10167 code compiled from a file whose name ends with @file{.mod} sets the
10168 working language to Modula-2.  @xref{Automatically, ,Having @value{GDBN}
10169 Infer the Source Language}, for further details.
10170
10171 @node Deviations
10172 @subsubsection Deviations from Standard Modula-2
10173 @cindex Modula-2, deviations from
10174
10175 A few changes have been made to make Modula-2 programs easier to debug.
10176 This is done primarily via loosening its type strictness:
10177
10178 @itemize @bullet
10179 @item
10180 Unlike in standard Modula-2, pointer constants can be formed by
10181 integers.  This allows you to modify pointer variables during
10182 debugging.  (In standard Modula-2, the actual address contained in a
10183 pointer variable is hidden from you; it can only be modified
10184 through direct assignment to another pointer variable or expression that
10185 returned a pointer.)
10186
10187 @item
10188 C escape sequences can be used in strings and characters to represent
10189 non-printable characters.  @value{GDBN} prints out strings with these
10190 escape sequences embedded.  Single non-printable characters are
10191 printed using the @samp{CHR(@var{nnn})} format.
10192
10193 @item
10194 The assignment operator (@code{:=}) returns the value of its right-hand
10195 argument.
10196
10197 @item
10198 All built-in procedures both modify @emph{and} return their argument.
10199 @end itemize
10200
10201 @node M2 Checks
10202 @subsubsection Modula-2 Type and Range Checks
10203 @cindex Modula-2 checks
10204
10205 @quotation
10206 @emph{Warning:} in this release, @value{GDBN} does not yet perform type or
10207 range checking.
10208 @end quotation
10209 @c FIXME remove warning when type/range checks added
10210
10211 @value{GDBN} considers two Modula-2 variables type equivalent if:
10212
10213 @itemize @bullet
10214 @item
10215 They are of types that have been declared equivalent via a @code{TYPE
10216 @var{t1} = @var{t2}} statement
10217
10218 @item
10219 They have been declared on the same line.  (Note:  This is true of the
10220 @sc{gnu} Modula-2 compiler, but it may not be true of other compilers.)
10221 @end itemize
10222
10223 As long as type checking is enabled, any attempt to combine variables
10224 whose types are not equivalent is an error.
10225
10226 Range checking is done on all mathematical operations, assignment, array
10227 index bounds, and all built-in functions and procedures.
10228
10229 @node M2 Scope
10230 @subsubsection The Scope Operators @code{::} and @code{.}
10231 @cindex scope
10232 @cindex @code{.}, Modula-2 scope operator
10233 @cindex colon, doubled as scope operator
10234 @ifinfo
10235 @vindex colon-colon@r{, in Modula-2}
10236 @c Info cannot handle :: but TeX can.
10237 @end ifinfo
10238 @iftex
10239 @vindex ::@r{, in Modula-2}
10240 @end iftex
10241
10242 There are a few subtle differences between the Modula-2 scope operator
10243 (@code{.}) and the @value{GDBN} scope operator (@code{::}).  The two have
10244 similar syntax:
10245
10246 @smallexample
10247
10248 @var{module} . @var{id}
10249 @var{scope} :: @var{id}
10250 @end smallexample
10251
10252 @noindent
10253 where @var{scope} is the name of a module or a procedure,
10254 @var{module} the name of a module, and @var{id} is any declared
10255 identifier within your program, except another module.
10256
10257 Using the @code{::} operator makes @value{GDBN} search the scope
10258 specified by @var{scope} for the identifier @var{id}.  If it is not
10259 found in the specified scope, then @value{GDBN} searches all scopes
10260 enclosing the one specified by @var{scope}.
10261
10262 Using the @code{.} operator makes @value{GDBN} search the current scope for
10263 the identifier specified by @var{id} that was imported from the
10264 definition module specified by @var{module}.  With this operator, it is
10265 an error if the identifier @var{id} was not imported from definition
10266 module @var{module}, or if @var{id} is not an identifier in
10267 @var{module}.
10268
10269 @node GDB/M2
10270 @subsubsection @value{GDBN} and Modula-2
10271
10272 Some @value{GDBN} commands have little use when debugging Modula-2 programs.
10273 Five subcommands of @code{set print} and @code{show print} apply
10274 specifically to C and C@t{++}: @samp{vtbl}, @samp{demangle},
10275 @samp{asm-demangle}, @samp{object}, and @samp{union}.  The first four
10276 apply to C@t{++}, and the last to the C @code{union} type, which has no direct
10277 analogue in Modula-2.
10278
10279 The @code{@@} operator (@pxref{Expressions, ,Expressions}), while available
10280 with any language, is not useful with Modula-2.  Its
10281 intent is to aid the debugging of @dfn{dynamic arrays}, which cannot be
10282 created in Modula-2 as they can in C or C@t{++}.  However, because an
10283 address can be specified by an integral constant, the construct
10284 @samp{@{@var{type}@}@var{adrexp}} is still useful.
10285
10286 @cindex @code{#} in Modula-2
10287 In @value{GDBN} scripts, the Modula-2 inequality operator @code{#} is
10288 interpreted as the beginning of a comment.  Use @code{<>} instead.
10289
10290 @node Ada
10291 @subsection Ada
10292 @cindex Ada
10293
10294 The extensions made to @value{GDBN} for Ada only support
10295 output from the @sc{gnu} Ada (GNAT) compiler.
10296 Other Ada compilers are not currently supported, and
10297 attempting to debug executables produced by them is most likely
10298 to be difficult.
10299
10300
10301 @cindex expressions in Ada
10302 @menu
10303 * Ada Mode Intro::              General remarks on the Ada syntax 
10304                                    and semantics supported by Ada mode 
10305                                    in @value{GDBN}.
10306 * Omissions from Ada::          Restrictions on the Ada expression syntax.
10307 * Additions to Ada::            Extensions of the Ada expression syntax.
10308 * Stopping Before Main Program:: Debugging the program during elaboration.
10309 * Ada Glitches::                Known peculiarities of Ada mode.
10310 @end menu
10311
10312 @node Ada Mode Intro
10313 @subsubsection Introduction
10314 @cindex Ada mode, general
10315
10316 The Ada mode of @value{GDBN} supports a fairly large subset of Ada expression 
10317 syntax, with some extensions.
10318 The philosophy behind the design of this subset is 
10319
10320 @itemize @bullet
10321 @item
10322 That @value{GDBN} should provide basic literals and access to operations for 
10323 arithmetic, dereferencing, field selection, indexing, and subprogram calls, 
10324 leaving more sophisticated computations to subprograms written into the
10325 program (which therefore may be called from @value{GDBN}).
10326
10327 @item 
10328 That type safety and strict adherence to Ada language restrictions
10329 are not particularly important to the @value{GDBN} user.
10330
10331 @item 
10332 That brevity is important to the @value{GDBN} user.
10333 @end itemize
10334
10335 Thus, for brevity, the debugger acts as if there were 
10336 implicit @code{with} and @code{use} clauses in effect for all user-written 
10337 packages, making it unnecessary to fully qualify most names with 
10338 their packages, regardless of context.  Where this causes ambiguity, 
10339 @value{GDBN} asks the user's intent.
10340
10341 The debugger will start in Ada mode if it detects an Ada main program. 
10342 As for other languages, it will enter Ada mode when stopped in a program that
10343 was translated from an Ada source file.
10344
10345 While in Ada mode, you may use `@t{--}' for comments.  This is useful 
10346 mostly for documenting command files.  The standard @value{GDBN} comment 
10347 (@samp{#}) still works at the beginning of a line in Ada mode, but not in the 
10348 middle (to allow based literals).
10349
10350 The debugger supports limited overloading.  Given a subprogram call in which
10351 the function symbol has multiple definitions, it will use the number of 
10352 actual parameters and some information about their types to attempt to narrow
10353 the set of definitions.  It also makes very limited use of context, preferring
10354 procedures to functions in the context of the @code{call} command, and
10355 functions to procedures elsewhere. 
10356
10357 @node Omissions from Ada
10358 @subsubsection Omissions from Ada
10359 @cindex Ada, omissions from
10360
10361 Here are the notable omissions from the subset:
10362
10363 @itemize @bullet
10364 @item
10365 Only a subset of the attributes are supported:
10366
10367 @itemize @minus
10368 @item
10369 @t{'First}, @t{'Last}, and @t{'Length}
10370  on array objects (not on types and subtypes).
10371
10372 @item
10373 @t{'Min} and @t{'Max}.  
10374
10375 @item 
10376 @t{'Pos} and @t{'Val}. 
10377
10378 @item
10379 @t{'Tag}.
10380
10381 @item
10382 @t{'Range} on array objects (not subtypes), but only as the right
10383 operand of the membership (@code{in}) operator.
10384
10385 @item 
10386 @t{'Access}, @t{'Unchecked_Access}, and 
10387 @t{'Unrestricted_Access} (a GNAT extension).
10388
10389 @item
10390 @t{'Address}.
10391 @end itemize
10392
10393 @item
10394 The names in
10395 @code{Characters.Latin_1} are not available and
10396 concatenation is not implemented.  Thus, escape characters in strings are 
10397 not currently available.
10398
10399 @item
10400 Equality tests (@samp{=} and @samp{/=}) on arrays test for bitwise
10401 equality of representations.  They will generally work correctly
10402 for strings and arrays whose elements have integer or enumeration types.
10403 They may not work correctly for arrays whose element
10404 types have user-defined equality, for arrays of real values 
10405 (in particular, IEEE-conformant floating point, because of negative
10406 zeroes and NaNs), and for arrays whose elements contain unused bits with
10407 indeterminate values.  
10408
10409 @item
10410 The other component-by-component array operations (@code{and}, @code{or}, 
10411 @code{xor}, @code{not}, and relational tests other than equality)
10412 are not implemented. 
10413
10414 @item 
10415 @cindex array aggregates (Ada)
10416 @cindex record aggregates (Ada)
10417 @cindex aggregates (Ada) 
10418 There is limited support for array and record aggregates.  They are
10419 permitted only on the right sides of assignments, as in these examples:
10420
10421 @smallexample
10422 set An_Array := (1, 2, 3, 4, 5, 6)
10423 set An_Array := (1, others => 0)
10424 set An_Array := (0|4 => 1, 1..3 => 2, 5 => 6)
10425 set A_2D_Array := ((1, 2, 3), (4, 5, 6), (7, 8, 9))
10426 set A_Record := (1, "Peter", True);
10427 set A_Record := (Name => "Peter", Id => 1, Alive => True)
10428 @end smallexample
10429
10430 Changing a
10431 discriminant's value by assigning an aggregate has an
10432 undefined effect if that discriminant is used within the record.
10433 However, you can first modify discriminants by directly assigning to
10434 them (which normally would not be allowed in Ada), and then performing an
10435 aggregate assignment.  For example, given a variable @code{A_Rec} 
10436 declared to have a type such as:
10437
10438 @smallexample
10439 type Rec (Len : Small_Integer := 0) is record
10440     Id : Integer;
10441     Vals : IntArray (1 .. Len);
10442 end record;
10443 @end smallexample
10444
10445 you can assign a value with a different size of @code{Vals} with two
10446 assignments:
10447
10448 @smallexample
10449 set A_Rec.Len := 4
10450 set A_Rec := (Id => 42, Vals => (1, 2, 3, 4))
10451 @end smallexample
10452
10453 As this example also illustrates, @value{GDBN} is very loose about the usual
10454 rules concerning aggregates.  You may leave out some of the
10455 components of an array or record aggregate (such as the @code{Len} 
10456 component in the assignment to @code{A_Rec} above); they will retain their
10457 original values upon assignment.  You may freely use dynamic values as
10458 indices in component associations.  You may even use overlapping or
10459 redundant component associations, although which component values are
10460 assigned in such cases is not defined.
10461
10462 @item
10463 Calls to dispatching subprograms are not implemented.
10464
10465 @item
10466 The overloading algorithm is much more limited (i.e., less selective)
10467 than that of real Ada.  It makes only limited use of the context in
10468 which a subexpression appears to resolve its meaning, and it is much
10469 looser in its rules for allowing type matches.  As a result, some
10470 function calls will be ambiguous, and the user will be asked to choose
10471 the proper resolution.
10472
10473 @item
10474 The @code{new} operator is not implemented.
10475
10476 @item
10477 Entry calls are not implemented.
10478
10479 @item 
10480 Aside from printing, arithmetic operations on the native VAX floating-point 
10481 formats are not supported.
10482
10483 @item
10484 It is not possible to slice a packed array.
10485 @end itemize
10486
10487 @node Additions to Ada
10488 @subsubsection Additions to Ada
10489 @cindex Ada, deviations from 
10490
10491 As it does for other languages, @value{GDBN} makes certain generic
10492 extensions to Ada (@pxref{Expressions}):
10493
10494 @itemize @bullet
10495 @item
10496 If the expression @var{E} is a variable residing in memory (typically
10497 a local variable or array element) and @var{N} is a positive integer,
10498 then @code{@var{E}@@@var{N}} displays the values of @var{E} and the
10499 @var{N}-1 adjacent variables following it in memory as an array.  In
10500 Ada, this operator is generally not necessary, since its prime use is
10501 in displaying parts of an array, and slicing will usually do this in
10502 Ada.  However, there are occasional uses when debugging programs in
10503 which certain debugging information has been optimized away.
10504
10505 @item
10506 @code{@var{B}::@var{var}} means ``the variable named @var{var} that
10507 appears in function or file @var{B}.''  When @var{B} is a file name,
10508 you must typically surround it in single quotes.
10509
10510 @item 
10511 The expression @code{@{@var{type}@} @var{addr}} means ``the variable of type
10512 @var{type} that appears at address @var{addr}.''
10513
10514 @item
10515 A name starting with @samp{$} is a convenience variable 
10516 (@pxref{Convenience Vars}) or a machine register (@pxref{Registers}).
10517 @end itemize
10518
10519 In addition, @value{GDBN} provides a few other shortcuts and outright
10520 additions specific to Ada:
10521
10522 @itemize @bullet
10523 @item 
10524 The assignment statement is allowed as an expression, returning
10525 its right-hand operand as its value.  Thus, you may enter
10526
10527 @smallexample
10528 set x := y + 3
10529 print A(tmp := y + 1)
10530 @end smallexample
10531
10532 @item 
10533 The semicolon is allowed as an ``operator,''  returning as its value 
10534 the value of its right-hand operand.
10535 This allows, for example,
10536 complex conditional breaks:
10537
10538 @smallexample
10539 break f
10540 condition 1 (report(i); k += 1; A(k) > 100)
10541 @end smallexample
10542
10543 @item 
10544 Rather than use catenation and symbolic character names to introduce special 
10545 characters into strings, one may instead use a special bracket notation, 
10546 which is also used to print strings.  A sequence of characters of the form 
10547 @samp{["@var{XX}"]} within a string or character literal denotes the 
10548 (single) character whose numeric encoding is @var{XX} in hexadecimal.  The
10549 sequence of characters @samp{["""]} also denotes a single quotation mark 
10550 in strings.   For example,
10551 @smallexample
10552    "One line.["0a"]Next line.["0a"]"
10553 @end smallexample
10554 @noindent
10555 contains an ASCII newline character (@code{Ada.Characters.Latin_1.LF})
10556 after each period.
10557
10558 @item
10559 The subtype used as a prefix for the attributes @t{'Pos}, @t{'Min}, and
10560 @t{'Max} is optional (and is ignored in any case).  For example, it is valid
10561 to write
10562
10563 @smallexample
10564 print 'max(x, y)
10565 @end smallexample
10566
10567 @item
10568 When printing arrays, @value{GDBN} uses positional notation when the 
10569 array has a lower bound of 1, and uses a modified named notation otherwise.
10570 For example, a one-dimensional array of three integers with a lower bound
10571 of 3 might print as
10572
10573 @smallexample
10574 (3 => 10, 17, 1)
10575 @end smallexample
10576
10577 @noindent
10578 That is, in contrast to valid Ada, only the first component has a @code{=>} 
10579 clause.
10580
10581 @item
10582 You may abbreviate attributes in expressions with any unique,
10583 multi-character subsequence of 
10584 their names (an exact match gets preference).
10585 For example, you may use @t{a'len}, @t{a'gth}, or @t{a'lh}
10586 in place of  @t{a'length}.
10587
10588 @item
10589 @cindex quoting Ada internal identifiers
10590 Since Ada is case-insensitive, the debugger normally maps identifiers you type 
10591 to lower case.  The GNAT compiler uses upper-case characters for 
10592 some of its internal identifiers, which are normally of no interest to users.
10593 For the rare occasions when you actually have to look at them,
10594 enclose them in angle brackets to avoid the lower-case mapping. 
10595 For example,
10596 @smallexample
10597 @value{GDBP} print <JMPBUF_SAVE>[0]
10598 @end smallexample
10599
10600 @item
10601 Printing an object of class-wide type or dereferencing an 
10602 access-to-class-wide value will display all the components of the object's
10603 specific type (as indicated by its run-time tag).  Likewise, component
10604 selection on such a value will operate on the specific type of the
10605 object.
10606
10607 @end itemize
10608
10609 @node Stopping Before Main Program
10610 @subsubsection Stopping at the Very Beginning
10611
10612 @cindex breakpointing Ada elaboration code
10613 It is sometimes necessary to debug the program during elaboration, and
10614 before reaching the main procedure.
10615 As defined in the Ada Reference
10616 Manual, the elaboration code is invoked from a procedure called
10617 @code{adainit}.  To run your program up to the beginning of
10618 elaboration, simply use the following two commands:
10619 @code{tbreak adainit} and @code{run}.
10620
10621 @node Ada Glitches
10622 @subsubsection Known Peculiarities of Ada Mode
10623 @cindex Ada, problems
10624
10625 Besides the omissions listed previously (@pxref{Omissions from Ada}),
10626 we know of several problems with and limitations of Ada mode in
10627 @value{GDBN},
10628 some of which will be fixed with planned future releases of the debugger 
10629 and the GNU Ada compiler.
10630
10631 @itemize @bullet
10632 @item
10633 Currently, the debugger 
10634 has insufficient information to determine whether certain pointers represent
10635 pointers to objects or the objects themselves.
10636 Thus, the user may have to tack an extra @code{.all} after an expression
10637 to get it printed properly.
10638
10639 @item 
10640 Static constants that the compiler chooses not to materialize as objects in 
10641 storage are invisible to the debugger.
10642
10643 @item
10644 Named parameter associations in function argument lists are ignored (the
10645 argument lists are treated as positional).
10646
10647 @item
10648 Many useful library packages are currently invisible to the debugger.
10649
10650 @item
10651 Fixed-point arithmetic, conversions, input, and output is carried out using 
10652 floating-point arithmetic, and may give results that only approximate those on 
10653 the host machine.
10654
10655 @item
10656 The type of the @t{'Address} attribute may not be @code{System.Address}.
10657
10658 @item
10659 The GNAT compiler never generates the prefix @code{Standard} for any of 
10660 the standard symbols defined by the Ada language.  @value{GDBN} knows about 
10661 this: it will strip the prefix from names when you use it, and will never
10662 look for a name you have so qualified among local symbols, nor match against
10663 symbols in other packages or subprograms.  If you have 
10664 defined entities anywhere in your program other than parameters and 
10665 local variables whose simple names match names in @code{Standard}, 
10666 GNAT's lack of qualification here can cause confusion.  When this happens,
10667 you can usually resolve the confusion 
10668 by qualifying the problematic names with package
10669 @code{Standard} explicitly.  
10670 @end itemize
10671
10672 @node Unsupported Languages
10673 @section Unsupported Languages
10674
10675 @cindex unsupported languages
10676 @cindex minimal language
10677 In addition to the other fully-supported programming languages,
10678 @value{GDBN} also provides a pseudo-language, called @code{minimal}.
10679 It does not represent a real programming language, but provides a set
10680 of capabilities close to what the C or assembly languages provide.
10681 This should allow most simple operations to be performed while debugging
10682 an application that uses a language currently not supported by @value{GDBN}.
10683
10684 If the language is set to @code{auto}, @value{GDBN} will automatically
10685 select this language if the current frame corresponds to an unsupported
10686 language.
10687
10688 @node Symbols
10689 @chapter Examining the Symbol Table
10690
10691 The commands described in this chapter allow you to inquire about the
10692 symbols (names of variables, functions and types) defined in your
10693 program.  This information is inherent in the text of your program and
10694 does not change as your program executes.  @value{GDBN} finds it in your
10695 program's symbol table, in the file indicated when you started @value{GDBN}
10696 (@pxref{File Options, ,Choosing Files}), or by one of the
10697 file-management commands (@pxref{Files, ,Commands to Specify Files}).
10698
10699 @cindex symbol names
10700 @cindex names of symbols
10701 @cindex quoting names
10702 Occasionally, you may need to refer to symbols that contain unusual
10703 characters, which @value{GDBN} ordinarily treats as word delimiters.  The
10704 most frequent case is in referring to static variables in other
10705 source files (@pxref{Variables,,Program Variables}).  File names
10706 are recorded in object files as debugging symbols, but @value{GDBN} would
10707 ordinarily parse a typical file name, like @file{foo.c}, as the three words
10708 @samp{foo} @samp{.} @samp{c}.  To allow @value{GDBN} to recognize
10709 @samp{foo.c} as a single symbol, enclose it in single quotes; for example,
10710
10711 @smallexample
10712 p 'foo.c'::x
10713 @end smallexample
10714
10715 @noindent
10716 looks up the value of @code{x} in the scope of the file @file{foo.c}.
10717
10718 @table @code
10719 @cindex case-insensitive symbol names
10720 @cindex case sensitivity in symbol names
10721 @kindex set case-sensitive
10722 @item set case-sensitive on
10723 @itemx set case-sensitive off
10724 @itemx set case-sensitive auto
10725 Normally, when @value{GDBN} looks up symbols, it matches their names
10726 with case sensitivity determined by the current source language.
10727 Occasionally, you may wish to control that.  The command @code{set
10728 case-sensitive} lets you do that by specifying @code{on} for
10729 case-sensitive matches or @code{off} for case-insensitive ones.  If
10730 you specify @code{auto}, case sensitivity is reset to the default
10731 suitable for the source language.  The default is case-sensitive
10732 matches for all languages except for Fortran, for which the default is
10733 case-insensitive matches.
10734
10735 @kindex show case-sensitive
10736 @item show case-sensitive
10737 This command shows the current setting of case sensitivity for symbols
10738 lookups.
10739
10740 @kindex info address
10741 @cindex address of a symbol
10742 @item info address @var{symbol}
10743 Describe where the data for @var{symbol} is stored.  For a register
10744 variable, this says which register it is kept in.  For a non-register
10745 local variable, this prints the stack-frame offset at which the variable
10746 is always stored.
10747
10748 Note the contrast with @samp{print &@var{symbol}}, which does not work
10749 at all for a register variable, and for a stack local variable prints
10750 the exact address of the current instantiation of the variable.
10751
10752 @kindex info symbol
10753 @cindex symbol from address
10754 @cindex closest symbol and offset for an address
10755 @item info symbol @var{addr}
10756 Print the name of a symbol which is stored at the address @var{addr}.
10757 If no symbol is stored exactly at @var{addr}, @value{GDBN} prints the
10758 nearest symbol and an offset from it:
10759
10760 @smallexample
10761 (@value{GDBP}) info symbol 0x54320
10762 _initialize_vx + 396 in section .text
10763 @end smallexample
10764
10765 @noindent
10766 This is the opposite of the @code{info address} command.  You can use
10767 it to find out the name of a variable or a function given its address.
10768
10769 @kindex whatis
10770 @item whatis [@var{arg}]
10771 Print the data type of @var{arg}, which can be either an expression or
10772 a data type.  With no argument, print the data type of @code{$}, the
10773 last value in the value history.  If @var{arg} is an expression, it is
10774 not actually evaluated, and any side-effecting operations (such as
10775 assignments or function calls) inside it do not take place.  If
10776 @var{arg} is a type name, it may be the name of a type or typedef, or
10777 for C code it may have the form @samp{class @var{class-name}},
10778 @samp{struct @var{struct-tag}}, @samp{union @var{union-tag}} or
10779 @samp{enum @var{enum-tag}}.
10780 @xref{Expressions, ,Expressions}.
10781
10782 @kindex ptype
10783 @item ptype [@var{arg}]
10784 @code{ptype} accepts the same arguments as @code{whatis}, but prints a
10785 detailed description of the type, instead of just the name of the type.
10786 @xref{Expressions, ,Expressions}.
10787
10788 For example, for this variable declaration:
10789
10790 @smallexample
10791 struct complex @{double real; double imag;@} v;
10792 @end smallexample
10793
10794 @noindent
10795 the two commands give this output:
10796
10797 @smallexample
10798 @group
10799 (@value{GDBP}) whatis v
10800 type = struct complex
10801 (@value{GDBP}) ptype v
10802 type = struct complex @{
10803     double real;
10804     double imag;
10805 @}
10806 @end group
10807 @end smallexample
10808
10809 @noindent
10810 As with @code{whatis}, using @code{ptype} without an argument refers to
10811 the type of @code{$}, the last value in the value history.
10812
10813 @cindex incomplete type
10814 Sometimes, programs use opaque data types or incomplete specifications
10815 of complex data structure.  If the debug information included in the
10816 program does not allow @value{GDBN} to display a full declaration of
10817 the data type, it will say @samp{<incomplete type>}.  For example,
10818 given these declarations:
10819
10820 @smallexample
10821     struct foo;
10822     struct foo *fooptr;
10823 @end smallexample
10824
10825 @noindent
10826 but no definition for @code{struct foo} itself, @value{GDBN} will say:
10827
10828 @smallexample
10829   (@value{GDBP}) ptype foo
10830   $1 = <incomplete type>
10831 @end smallexample
10832
10833 @noindent
10834 ``Incomplete type'' is C terminology for data types that are not
10835 completely specified.
10836
10837 @kindex info types
10838 @item info types @var{regexp}
10839 @itemx info types
10840 Print a brief description of all types whose names match the regular
10841 expression @var{regexp} (or all types in your program, if you supply
10842 no argument).  Each complete typename is matched as though it were a
10843 complete line; thus, @samp{i type value} gives information on all
10844 types in your program whose names include the string @code{value}, but
10845 @samp{i type ^value$} gives information only on types whose complete
10846 name is @code{value}.
10847
10848 This command differs from @code{ptype} in two ways: first, like
10849 @code{whatis}, it does not print a detailed description; second, it
10850 lists all source files where a type is defined.
10851
10852 @kindex info scope
10853 @cindex local variables
10854 @item info scope @var{location}
10855 List all the variables local to a particular scope.  This command
10856 accepts a @var{location} argument---a function name, a source line, or
10857 an address preceded by a @samp{*}, and prints all the variables local
10858 to the scope defined by that location.  For example:
10859
10860 @smallexample
10861 (@value{GDBP}) @b{info scope command_line_handler}
10862 Scope for command_line_handler:
10863 Symbol rl is an argument at stack/frame offset 8, length 4.
10864 Symbol linebuffer is in static storage at address 0x150a18, length 4.
10865 Symbol linelength is in static storage at address 0x150a1c, length 4.
10866 Symbol p is a local variable in register $esi, length 4.
10867 Symbol p1 is a local variable in register $ebx, length 4.
10868 Symbol nline is a local variable in register $edx, length 4.
10869 Symbol repeat is a local variable at frame offset -8, length 4.
10870 @end smallexample
10871
10872 @noindent
10873 This command is especially useful for determining what data to collect
10874 during a @dfn{trace experiment}, see @ref{Tracepoint Actions,
10875 collect}.
10876
10877 @kindex info source
10878 @item info source
10879 Show information about the current source file---that is, the source file for
10880 the function containing the current point of execution:
10881 @itemize @bullet
10882 @item
10883 the name of the source file, and the directory containing it,
10884 @item
10885 the directory it was compiled in,
10886 @item
10887 its length, in lines,
10888 @item
10889 which programming language it is written in,
10890 @item
10891 whether the executable includes debugging information for that file, and
10892 if so, what format the information is in (e.g., STABS, Dwarf 2, etc.), and
10893 @item
10894 whether the debugging information includes information about
10895 preprocessor macros.
10896 @end itemize
10897
10898
10899 @kindex info sources
10900 @item info sources
10901 Print the names of all source files in your program for which there is
10902 debugging information, organized into two lists: files whose symbols
10903 have already been read, and files whose symbols will be read when needed.
10904
10905 @kindex info functions
10906 @item info functions
10907 Print the names and data types of all defined functions.
10908
10909 @item info functions @var{regexp}
10910 Print the names and data types of all defined functions
10911 whose names contain a match for regular expression @var{regexp}.
10912 Thus, @samp{info fun step} finds all functions whose names
10913 include @code{step}; @samp{info fun ^step} finds those whose names
10914 start with @code{step}.  If a function name contains characters
10915 that conflict with the regular expression language (e.g.@:
10916 @samp{operator*()}), they may be quoted with a backslash.
10917
10918 @kindex info variables
10919 @item info variables
10920 Print the names and data types of all variables that are declared
10921 outside of functions (i.e.@: excluding local variables).
10922
10923 @item info variables @var{regexp}
10924 Print the names and data types of all variables (except for local
10925 variables) whose names contain a match for regular expression
10926 @var{regexp}.
10927
10928 @kindex info classes
10929 @cindex Objective-C, classes and selectors
10930 @item info classes
10931 @itemx info classes @var{regexp}
10932 Display all Objective-C classes in your program, or
10933 (with the @var{regexp} argument) all those matching a particular regular
10934 expression.
10935
10936 @kindex info selectors
10937 @item info selectors
10938 @itemx info selectors @var{regexp}
10939 Display all Objective-C selectors in your program, or
10940 (with the @var{regexp} argument) all those matching a particular regular
10941 expression.
10942
10943 @ignore
10944 This was never implemented.
10945 @kindex info methods
10946 @item info methods
10947 @itemx info methods @var{regexp}
10948 The @code{info methods} command permits the user to examine all defined
10949 methods within C@t{++} program, or (with the @var{regexp} argument) a
10950 specific set of methods found in the various C@t{++} classes.  Many
10951 C@t{++} classes provide a large number of methods.  Thus, the output
10952 from the @code{ptype} command can be overwhelming and hard to use.  The
10953 @code{info-methods} command filters the methods, printing only those
10954 which match the regular-expression @var{regexp}.
10955 @end ignore
10956
10957 @cindex reloading symbols
10958 Some systems allow individual object files that make up your program to
10959 be replaced without stopping and restarting your program.  For example,
10960 in VxWorks you can simply recompile a defective object file and keep on
10961 running.  If you are running on one of these systems, you can allow
10962 @value{GDBN} to reload the symbols for automatically relinked modules:
10963
10964 @table @code
10965 @kindex set symbol-reloading
10966 @item set symbol-reloading on
10967 Replace symbol definitions for the corresponding source file when an
10968 object file with a particular name is seen again.
10969
10970 @item set symbol-reloading off
10971 Do not replace symbol definitions when encountering object files of the
10972 same name more than once.  This is the default state; if you are not
10973 running on a system that permits automatic relinking of modules, you
10974 should leave @code{symbol-reloading} off, since otherwise @value{GDBN}
10975 may discard symbols when linking large programs, that may contain
10976 several modules (from different directories or libraries) with the same
10977 name.
10978
10979 @kindex show symbol-reloading
10980 @item show symbol-reloading
10981 Show the current @code{on} or @code{off} setting.
10982 @end table
10983
10984 @cindex opaque data types
10985 @kindex set opaque-type-resolution
10986 @item set opaque-type-resolution on
10987 Tell @value{GDBN} to resolve opaque types.  An opaque type is a type
10988 declared as a pointer to a @code{struct}, @code{class}, or
10989 @code{union}---for example, @code{struct MyType *}---that is used in one
10990 source file although the full declaration of @code{struct MyType} is in
10991 another source file.  The default is on.
10992
10993 A change in the setting of this subcommand will not take effect until
10994 the next time symbols for a file are loaded.
10995
10996 @item set opaque-type-resolution off
10997 Tell @value{GDBN} not to resolve opaque types.  In this case, the type
10998 is printed as follows:
10999 @smallexample
11000 @{<no data fields>@}
11001 @end smallexample
11002
11003 @kindex show opaque-type-resolution
11004 @item show opaque-type-resolution
11005 Show whether opaque types are resolved or not.
11006
11007 @kindex maint print symbols
11008 @cindex symbol dump
11009 @kindex maint print psymbols
11010 @cindex partial symbol dump
11011 @item maint print symbols @var{filename}
11012 @itemx maint print psymbols @var{filename}
11013 @itemx maint print msymbols @var{filename}
11014 Write a dump of debugging symbol data into the file @var{filename}.
11015 These commands are used to debug the @value{GDBN} symbol-reading code.  Only
11016 symbols with debugging data are included.  If you use @samp{maint print
11017 symbols}, @value{GDBN} includes all the symbols for which it has already
11018 collected full details: that is, @var{filename} reflects symbols for
11019 only those files whose symbols @value{GDBN} has read.  You can use the
11020 command @code{info sources} to find out which files these are.  If you
11021 use @samp{maint print psymbols} instead, the dump shows information about
11022 symbols that @value{GDBN} only knows partially---that is, symbols defined in
11023 files that @value{GDBN} has skimmed, but not yet read completely.  Finally,
11024 @samp{maint print msymbols} dumps just the minimal symbol information
11025 required for each object file from which @value{GDBN} has read some symbols.
11026 @xref{Files, ,Commands to Specify Files}, for a discussion of how
11027 @value{GDBN} reads symbols (in the description of @code{symbol-file}).
11028
11029 @kindex maint info symtabs
11030 @kindex maint info psymtabs
11031 @cindex listing @value{GDBN}'s internal symbol tables
11032 @cindex symbol tables, listing @value{GDBN}'s internal
11033 @cindex full symbol tables, listing @value{GDBN}'s internal
11034 @cindex partial symbol tables, listing @value{GDBN}'s internal
11035 @item maint info symtabs @r{[} @var{regexp} @r{]}
11036 @itemx maint info psymtabs @r{[} @var{regexp} @r{]}
11037
11038 List the @code{struct symtab} or @code{struct partial_symtab}
11039 structures whose names match @var{regexp}.  If @var{regexp} is not
11040 given, list them all.  The output includes expressions which you can
11041 copy into a @value{GDBN} debugging this one to examine a particular
11042 structure in more detail.  For example:
11043
11044 @smallexample
11045 (@value{GDBP}) maint info psymtabs dwarf2read
11046 @{ objfile /home/gnu/build/gdb/gdb
11047   ((struct objfile *) 0x82e69d0)
11048   @{ psymtab /home/gnu/src/gdb/dwarf2read.c
11049     ((struct partial_symtab *) 0x8474b10)
11050     readin no
11051     fullname (null)
11052     text addresses 0x814d3c8 -- 0x8158074
11053     globals (* (struct partial_symbol **) 0x8507a08 @@ 9)
11054     statics (* (struct partial_symbol **) 0x40e95b78 @@ 2882)
11055     dependencies (none)
11056   @}
11057 @}
11058 (@value{GDBP}) maint info symtabs
11059 (@value{GDBP})
11060 @end smallexample
11061 @noindent
11062 We see that there is one partial symbol table whose filename contains
11063 the string @samp{dwarf2read}, belonging to the @samp{gdb} executable;
11064 and we see that @value{GDBN} has not read in any symtabs yet at all.
11065 If we set a breakpoint on a function, that will cause @value{GDBN} to
11066 read the symtab for the compilation unit containing that function:
11067
11068 @smallexample
11069 (@value{GDBP}) break dwarf2_psymtab_to_symtab
11070 Breakpoint 1 at 0x814e5da: file /home/gnu/src/gdb/dwarf2read.c,
11071 line 1574.
11072 (@value{GDBP}) maint info symtabs
11073 @{ objfile /home/gnu/build/gdb/gdb
11074   ((struct objfile *) 0x82e69d0)
11075   @{ symtab /home/gnu/src/gdb/dwarf2read.c
11076     ((struct symtab *) 0x86c1f38)
11077     dirname (null)
11078     fullname (null)
11079     blockvector ((struct blockvector *) 0x86c1bd0) (primary)
11080     debugformat DWARF 2
11081   @}
11082 @}
11083 (@value{GDBP})
11084 @end smallexample
11085 @end table
11086
11087
11088 @node Altering
11089 @chapter Altering Execution
11090
11091 Once you think you have found an error in your program, you might want to
11092 find out for certain whether correcting the apparent error would lead to
11093 correct results in the rest of the run.  You can find the answer by
11094 experiment, using the @value{GDBN} features for altering execution of the
11095 program.
11096
11097 For example, you can store new values into variables or memory
11098 locations, give your program a signal, restart it at a different
11099 address, or even return prematurely from a function.
11100
11101 @menu
11102 * Assignment::                  Assignment to variables
11103 * Jumping::                     Continuing at a different address
11104 * Signaling::                   Giving your program a signal
11105 * Returning::                   Returning from a function
11106 * Calling::                     Calling your program's functions
11107 * Patching::                    Patching your program
11108 @end menu
11109
11110 @node Assignment
11111 @section Assignment to Variables
11112
11113 @cindex assignment
11114 @cindex setting variables
11115 To alter the value of a variable, evaluate an assignment expression.
11116 @xref{Expressions, ,Expressions}.  For example,
11117
11118 @smallexample
11119 print x=4
11120 @end smallexample
11121
11122 @noindent
11123 stores the value 4 into the variable @code{x}, and then prints the
11124 value of the assignment expression (which is 4).
11125 @xref{Languages, ,Using @value{GDBN} with Different Languages}, for more
11126 information on operators in supported languages.
11127
11128 @kindex set variable
11129 @cindex variables, setting
11130 If you are not interested in seeing the value of the assignment, use the
11131 @code{set} command instead of the @code{print} command.  @code{set} is
11132 really the same as @code{print} except that the expression's value is
11133 not printed and is not put in the value history (@pxref{Value History,
11134 ,Value History}).  The expression is evaluated only for its effects.
11135
11136 If the beginning of the argument string of the @code{set} command
11137 appears identical to a @code{set} subcommand, use the @code{set
11138 variable} command instead of just @code{set}.  This command is identical
11139 to @code{set} except for its lack of subcommands.  For example, if your
11140 program has a variable @code{width}, you get an error if you try to set
11141 a new value with just @samp{set width=13}, because @value{GDBN} has the
11142 command @code{set width}:
11143
11144 @smallexample
11145 (@value{GDBP}) whatis width
11146 type = double
11147 (@value{GDBP}) p width
11148 $4 = 13
11149 (@value{GDBP}) set width=47
11150 Invalid syntax in expression.
11151 @end smallexample
11152
11153 @noindent
11154 The invalid expression, of course, is @samp{=47}.  In
11155 order to actually set the program's variable @code{width}, use
11156
11157 @smallexample
11158 (@value{GDBP}) set var width=47
11159 @end smallexample
11160
11161 Because the @code{set} command has many subcommands that can conflict
11162 with the names of program variables, it is a good idea to use the
11163 @code{set variable} command instead of just @code{set}.  For example, if
11164 your program has a variable @code{g}, you run into problems if you try
11165 to set a new value with just @samp{set g=4}, because @value{GDBN} has
11166 the command @code{set gnutarget}, abbreviated @code{set g}:
11167
11168 @smallexample
11169 @group
11170 (@value{GDBP}) whatis g
11171 type = double
11172 (@value{GDBP}) p g
11173 $1 = 1
11174 (@value{GDBP}) set g=4
11175 (@value{GDBP}) p g
11176 $2 = 1
11177 (@value{GDBP}) r
11178 The program being debugged has been started already.
11179 Start it from the beginning? (y or n) y
11180 Starting program: /home/smith/cc_progs/a.out
11181 "/home/smith/cc_progs/a.out": can't open to read symbols:
11182                                  Invalid bfd target.
11183 (@value{GDBP}) show g
11184 The current BFD target is "=4".
11185 @end group
11186 @end smallexample
11187
11188 @noindent
11189 The program variable @code{g} did not change, and you silently set the
11190 @code{gnutarget} to an invalid value.  In order to set the variable
11191 @code{g}, use
11192
11193 @smallexample
11194 (@value{GDBP}) set var g=4
11195 @end smallexample
11196
11197 @value{GDBN} allows more implicit conversions in assignments than C; you can
11198 freely store an integer value into a pointer variable or vice versa,
11199 and you can convert any structure to any other structure that is the
11200 same length or shorter.
11201 @comment FIXME: how do structs align/pad in these conversions?
11202 @comment        /doc@cygnus.com 18dec1990
11203
11204 To store values into arbitrary places in memory, use the @samp{@{@dots{}@}}
11205 construct to generate a value of specified type at a specified address
11206 (@pxref{Expressions, ,Expressions}).  For example, @code{@{int@}0x83040} refers
11207 to memory location @code{0x83040} as an integer (which implies a certain size
11208 and representation in memory), and
11209
11210 @smallexample
11211 set @{int@}0x83040 = 4
11212 @end smallexample
11213
11214 @noindent
11215 stores the value 4 into that memory location.
11216
11217 @node Jumping
11218 @section Continuing at a Different Address
11219
11220 Ordinarily, when you continue your program, you do so at the place where
11221 it stopped, with the @code{continue} command.  You can instead continue at
11222 an address of your own choosing, with the following commands:
11223
11224 @table @code
11225 @kindex jump
11226 @item jump @var{linespec}
11227 Resume execution at line @var{linespec}.  Execution stops again
11228 immediately if there is a breakpoint there.  @xref{List, ,Printing
11229 Source Lines}, for a description of the different forms of
11230 @var{linespec}.  It is common practice to use the @code{tbreak} command
11231 in conjunction with @code{jump}.  @xref{Set Breaks, ,Setting
11232 Breakpoints}.
11233
11234 The @code{jump} command does not change the current stack frame, or
11235 the stack pointer, or the contents of any memory location or any
11236 register other than the program counter.  If line @var{linespec} is in
11237 a different function from the one currently executing, the results may
11238 be bizarre if the two functions expect different patterns of arguments or
11239 of local variables.  For this reason, the @code{jump} command requests
11240 confirmation if the specified line is not in the function currently
11241 executing.  However, even bizarre results are predictable if you are
11242 well acquainted with the machine-language code of your program.
11243
11244 @item jump *@var{address}
11245 Resume execution at the instruction at address @var{address}.
11246 @end table
11247
11248 @c Doesn't work on HP-UX; have to set $pcoqh and $pcoqt.
11249 On many systems, you can get much the same effect as the @code{jump}
11250 command by storing a new value into the register @code{$pc}.  The
11251 difference is that this does not start your program running; it only
11252 changes the address of where it @emph{will} run when you continue.  For
11253 example,
11254
11255 @smallexample
11256 set $pc = 0x485
11257 @end smallexample
11258
11259 @noindent
11260 makes the next @code{continue} command or stepping command execute at
11261 address @code{0x485}, rather than at the address where your program stopped.
11262 @xref{Continuing and Stepping, ,Continuing and Stepping}.
11263
11264 The most common occasion to use the @code{jump} command is to back
11265 up---perhaps with more breakpoints set---over a portion of a program
11266 that has already executed, in order to examine its execution in more
11267 detail.
11268
11269 @c @group
11270 @node Signaling
11271 @section Giving your Program a Signal
11272 @cindex deliver a signal to a program
11273
11274 @table @code
11275 @kindex signal
11276 @item signal @var{signal}
11277 Resume execution where your program stopped, but immediately give it the
11278 signal @var{signal}.  @var{signal} can be the name or the number of a
11279 signal.  For example, on many systems @code{signal 2} and @code{signal
11280 SIGINT} are both ways of sending an interrupt signal.
11281
11282 Alternatively, if @var{signal} is zero, continue execution without
11283 giving a signal.  This is useful when your program stopped on account of
11284 a signal and would ordinary see the signal when resumed with the
11285 @code{continue} command; @samp{signal 0} causes it to resume without a
11286 signal.
11287
11288 @code{signal} does not repeat when you press @key{RET} a second time
11289 after executing the command.
11290 @end table
11291 @c @end group
11292
11293 Invoking the @code{signal} command is not the same as invoking the
11294 @code{kill} utility from the shell.  Sending a signal with @code{kill}
11295 causes @value{GDBN} to decide what to do with the signal depending on
11296 the signal handling tables (@pxref{Signals}).  The @code{signal} command
11297 passes the signal directly to your program.
11298
11299
11300 @node Returning
11301 @section Returning from a Function
11302
11303 @table @code
11304 @cindex returning from a function
11305 @kindex return
11306 @item return
11307 @itemx return @var{expression}
11308 You can cancel execution of a function call with the @code{return}
11309 command.  If you give an
11310 @var{expression} argument, its value is used as the function's return
11311 value.
11312 @end table
11313
11314 When you use @code{return}, @value{GDBN} discards the selected stack frame
11315 (and all frames within it).  You can think of this as making the
11316 discarded frame return prematurely.  If you wish to specify a value to
11317 be returned, give that value as the argument to @code{return}.
11318
11319 This pops the selected stack frame (@pxref{Selection, ,Selecting a
11320 Frame}), and any other frames inside of it, leaving its caller as the
11321 innermost remaining frame.  That frame becomes selected.  The
11322 specified value is stored in the registers used for returning values
11323 of functions.
11324
11325 The @code{return} command does not resume execution; it leaves the
11326 program stopped in the state that would exist if the function had just
11327 returned.  In contrast, the @code{finish} command (@pxref{Continuing
11328 and Stepping, ,Continuing and Stepping}) resumes execution until the
11329 selected stack frame returns naturally.
11330
11331 @node Calling
11332 @section Calling Program Functions
11333
11334 @table @code
11335 @cindex calling functions
11336 @cindex inferior functions, calling
11337 @item print @var{expr}
11338 Evaluate the expression @var{expr} and display the resulting value.
11339 @var{expr} may include calls to functions in the program being
11340 debugged.
11341
11342 @kindex call
11343 @item call @var{expr}
11344 Evaluate the expression @var{expr} without displaying @code{void}
11345 returned values.
11346
11347 You can use this variant of the @code{print} command if you want to
11348 execute a function from your program that does not return anything
11349 (a.k.a.@: @dfn{a void function}), but without cluttering the output
11350 with @code{void} returned values that @value{GDBN} will otherwise
11351 print.  If the result is not void, it is printed and saved in the
11352 value history.
11353 @end table
11354
11355 It is possible for the function you call via the @code{print} or
11356 @code{call} command to generate a signal (e.g., if there's a bug in
11357 the function, or if you passed it incorrect arguments).  What happens
11358 in that case is controlled by the @code{set unwindonsignal} command.
11359
11360 @table @code
11361 @item set unwindonsignal
11362 @kindex set unwindonsignal
11363 @cindex unwind stack in called functions
11364 @cindex call dummy stack unwinding
11365 Set unwinding of the stack if a signal is received while in a function
11366 that @value{GDBN} called in the program being debugged.  If set to on,
11367 @value{GDBN} unwinds the stack it created for the call and restores
11368 the context to what it was before the call.  If set to off (the
11369 default), @value{GDBN} stops in the frame where the signal was
11370 received.
11371
11372 @item show unwindonsignal
11373 @kindex show unwindonsignal
11374 Show the current setting of stack unwinding in the functions called by
11375 @value{GDBN}.
11376 @end table
11377
11378 @cindex weak alias functions
11379 Sometimes, a function you wish to call is actually a @dfn{weak alias}
11380 for another function.  In such case, @value{GDBN} might not pick up
11381 the type information, including the types of the function arguments,
11382 which causes @value{GDBN} to call the inferior function incorrectly.
11383 As a result, the called function will function erroneously and may
11384 even crash.  A solution to that is to use the name of the aliased
11385 function instead.
11386
11387 @node Patching
11388 @section Patching Programs
11389
11390 @cindex patching binaries
11391 @cindex writing into executables
11392 @cindex writing into corefiles
11393
11394 By default, @value{GDBN} opens the file containing your program's
11395 executable code (or the corefile) read-only.  This prevents accidental
11396 alterations to machine code; but it also prevents you from intentionally
11397 patching your program's binary.
11398
11399 If you'd like to be able to patch the binary, you can specify that
11400 explicitly with the @code{set write} command.  For example, you might
11401 want to turn on internal debugging flags, or even to make emergency
11402 repairs.
11403
11404 @table @code
11405 @kindex set write
11406 @item set write on
11407 @itemx set write off
11408 If you specify @samp{set write on}, @value{GDBN} opens executable and
11409 core files for both reading and writing; if you specify @samp{set write
11410 off} (the default), @value{GDBN} opens them read-only.
11411
11412 If you have already loaded a file, you must load it again (using the
11413 @code{exec-file} or @code{core-file} command) after changing @code{set
11414 write}, for your new setting to take effect.
11415
11416 @item show write
11417 @kindex show write
11418 Display whether executable files and core files are opened for writing
11419 as well as reading.
11420 @end table
11421
11422 @node GDB Files
11423 @chapter @value{GDBN} Files
11424
11425 @value{GDBN} needs to know the file name of the program to be debugged,
11426 both in order to read its symbol table and in order to start your
11427 program.  To debug a core dump of a previous run, you must also tell
11428 @value{GDBN} the name of the core dump file.
11429
11430 @menu
11431 * Files::                       Commands to specify files
11432 * Separate Debug Files::        Debugging information in separate files
11433 * Symbol Errors::               Errors reading symbol files
11434 @end menu
11435
11436 @node Files
11437 @section Commands to Specify Files
11438
11439 @cindex symbol table
11440 @cindex core dump file
11441
11442 You may want to specify executable and core dump file names.  The usual
11443 way to do this is at start-up time, using the arguments to
11444 @value{GDBN}'s start-up commands (@pxref{Invocation, , Getting In and
11445 Out of @value{GDBN}}).
11446
11447 Occasionally it is necessary to change to a different file during a
11448 @value{GDBN} session.  Or you may run @value{GDBN} and forget to
11449 specify a file you want to use.  Or you are debugging a remote target
11450 via @code{gdbserver} (@pxref{Server, file, Using the @code{gdbserver}
11451 Program}).  In these situations the @value{GDBN} commands to specify
11452 new files are useful.
11453
11454 @table @code
11455 @cindex executable file
11456 @kindex file
11457 @item file @var{filename}
11458 Use @var{filename} as the program to be debugged.  It is read for its
11459 symbols and for the contents of pure memory.  It is also the program
11460 executed when you use the @code{run} command.  If you do not specify a
11461 directory and the file is not found in the @value{GDBN} working directory,
11462 @value{GDBN} uses the environment variable @code{PATH} as a list of
11463 directories to search, just as the shell does when looking for a program
11464 to run.  You can change the value of this variable, for both @value{GDBN}
11465 and your program, using the @code{path} command.
11466
11467 @cindex unlinked object files
11468 @cindex patching object files
11469 You can load unlinked object @file{.o} files into @value{GDBN} using
11470 the @code{file} command.  You will not be able to ``run'' an object
11471 file, but you can disassemble functions and inspect variables.  Also,
11472 if the underlying BFD functionality supports it, you could use
11473 @kbd{gdb -write} to patch object files using this technique.  Note
11474 that @value{GDBN} can neither interpret nor modify relocations in this
11475 case, so branches and some initialized variables will appear to go to
11476 the wrong place.  But this feature is still handy from time to time.
11477
11478 @item file
11479 @code{file} with no argument makes @value{GDBN} discard any information it
11480 has on both executable file and the symbol table.
11481
11482 @kindex exec-file
11483 @item exec-file @r{[} @var{filename} @r{]}
11484 Specify that the program to be run (but not the symbol table) is found
11485 in @var{filename}.  @value{GDBN} searches the environment variable @code{PATH}
11486 if necessary to locate your program.  Omitting @var{filename} means to
11487 discard information on the executable file.
11488
11489 @kindex symbol-file
11490 @item symbol-file @r{[} @var{filename} @r{]}
11491 Read symbol table information from file @var{filename}.  @code{PATH} is
11492 searched when necessary.  Use the @code{file} command to get both symbol
11493 table and program to run from the same file.
11494
11495 @code{symbol-file} with no argument clears out @value{GDBN} information on your
11496 program's symbol table.
11497
11498 The @code{symbol-file} command causes @value{GDBN} to forget the contents of
11499 some breakpoints and auto-display expressions.  This is because they may
11500 contain pointers to the internal data recording symbols and data types,
11501 which are part of the old symbol table data being discarded inside
11502 @value{GDBN}.
11503
11504 @code{symbol-file} does not repeat if you press @key{RET} again after
11505 executing it once.
11506
11507 When @value{GDBN} is configured for a particular environment, it
11508 understands debugging information in whatever format is the standard
11509 generated for that environment; you may use either a @sc{gnu} compiler, or
11510 other compilers that adhere to the local conventions.
11511 Best results are usually obtained from @sc{gnu} compilers; for example,
11512 using @code{@value{NGCC}} you can generate debugging information for
11513 optimized code.
11514
11515 For most kinds of object files, with the exception of old SVR3 systems
11516 using COFF, the @code{symbol-file} command does not normally read the
11517 symbol table in full right away.  Instead, it scans the symbol table
11518 quickly to find which source files and which symbols are present.  The
11519 details are read later, one source file at a time, as they are needed.
11520
11521 The purpose of this two-stage reading strategy is to make @value{GDBN}
11522 start up faster.  For the most part, it is invisible except for
11523 occasional pauses while the symbol table details for a particular source
11524 file are being read.  (The @code{set verbose} command can turn these
11525 pauses into messages if desired.  @xref{Messages/Warnings, ,Optional
11526 Warnings and Messages}.)
11527
11528 We have not implemented the two-stage strategy for COFF yet.  When the
11529 symbol table is stored in COFF format, @code{symbol-file} reads the
11530 symbol table data in full right away.  Note that ``stabs-in-COFF''
11531 still does the two-stage strategy, since the debug info is actually
11532 in stabs format.
11533
11534 @kindex readnow
11535 @cindex reading symbols immediately
11536 @cindex symbols, reading immediately
11537 @item symbol-file @var{filename} @r{[} -readnow @r{]}
11538 @itemx file @var{filename} @r{[} -readnow @r{]}
11539 You can override the @value{GDBN} two-stage strategy for reading symbol
11540 tables by using the @samp{-readnow} option with any of the commands that
11541 load symbol table information, if you want to be sure @value{GDBN} has the
11542 entire symbol table available.
11543
11544 @c FIXME: for now no mention of directories, since this seems to be in
11545 @c flux.  13mar1992 status is that in theory GDB would look either in
11546 @c current dir or in same dir as myprog; but issues like competing
11547 @c GDB's, or clutter in system dirs, mean that in practice right now
11548 @c only current dir is used.  FFish says maybe a special GDB hierarchy
11549 @c (eg rooted in val of env var GDBSYMS) could exist for mappable symbol
11550 @c files.
11551
11552 @kindex core-file
11553 @item core-file @r{[}@var{filename}@r{]}
11554 @itemx core
11555 Specify the whereabouts of a core dump file to be used as the ``contents
11556 of memory''.  Traditionally, core files contain only some parts of the
11557 address space of the process that generated them; @value{GDBN} can access the
11558 executable file itself for other parts.
11559
11560 @code{core-file} with no argument specifies that no core file is
11561 to be used.
11562
11563 Note that the core file is ignored when your program is actually running
11564 under @value{GDBN}.  So, if you have been running your program and you
11565 wish to debug a core file instead, you must kill the subprocess in which
11566 the program is running.  To do this, use the @code{kill} command
11567 (@pxref{Kill Process, ,Killing the Child Process}).
11568
11569 @kindex add-symbol-file
11570 @cindex dynamic linking
11571 @item add-symbol-file @var{filename} @var{address}
11572 @itemx add-symbol-file @var{filename} @var{address} @r{[} -readnow @r{]}
11573 @itemx add-symbol-file @var{filename} @r{-s}@var{section} @var{address} @dots{}
11574 The @code{add-symbol-file} command reads additional symbol table
11575 information from the file @var{filename}.  You would use this command
11576 when @var{filename} has been dynamically loaded (by some other means)
11577 into the program that is running.  @var{address} should be the memory
11578 address at which the file has been loaded; @value{GDBN} cannot figure
11579 this out for itself.  You can additionally specify an arbitrary number
11580 of @samp{@r{-s}@var{section} @var{address}} pairs, to give an explicit
11581 section name and base address for that section.  You can specify any
11582 @var{address} as an expression.
11583
11584 The symbol table of the file @var{filename} is added to the symbol table
11585 originally read with the @code{symbol-file} command.  You can use the
11586 @code{add-symbol-file} command any number of times; the new symbol data
11587 thus read keeps adding to the old.  To discard all old symbol data
11588 instead, use the @code{symbol-file} command without any arguments.
11589
11590 @cindex relocatable object files, reading symbols from
11591 @cindex object files, relocatable, reading symbols from
11592 @cindex reading symbols from relocatable object files
11593 @cindex symbols, reading from relocatable object files
11594 @cindex @file{.o} files, reading symbols from
11595 Although @var{filename} is typically a shared library file, an
11596 executable file, or some other object file which has been fully
11597 relocated for loading into a process, you can also load symbolic
11598 information from relocatable @file{.o} files, as long as:
11599
11600 @itemize @bullet
11601 @item
11602 the file's symbolic information refers only to linker symbols defined in
11603 that file, not to symbols defined by other object files,
11604 @item
11605 every section the file's symbolic information refers to has actually
11606 been loaded into the inferior, as it appears in the file, and
11607 @item
11608 you can determine the address at which every section was loaded, and
11609 provide these to the @code{add-symbol-file} command.
11610 @end itemize
11611
11612 @noindent
11613 Some embedded operating systems, like Sun Chorus and VxWorks, can load
11614 relocatable files into an already running program; such systems
11615 typically make the requirements above easy to meet.  However, it's
11616 important to recognize that many native systems use complex link
11617 procedures (@code{.linkonce} section factoring and C@t{++} constructor table
11618 assembly, for example) that make the requirements difficult to meet.  In
11619 general, one cannot assume that using @code{add-symbol-file} to read a
11620 relocatable object file's symbolic information will have the same effect
11621 as linking the relocatable object file into the program in the normal
11622 way.
11623
11624 @code{add-symbol-file} does not repeat if you press @key{RET} after using it.
11625
11626 @kindex add-symbol-file-from-memory
11627 @cindex @code{syscall DSO}
11628 @cindex load symbols from memory
11629 @item add-symbol-file-from-memory @var{address}
11630 Load symbols from the given @var{address} in a dynamically loaded
11631 object file whose image is mapped directly into the inferior's memory.
11632 For example, the Linux kernel maps a @code{syscall DSO} into each
11633 process's address space; this DSO provides kernel-specific code for
11634 some system calls.  The argument can be any expression whose
11635 evaluation yields the address of the file's shared object file header.
11636 For this command to work, you must have used @code{symbol-file} or
11637 @code{exec-file} commands in advance.
11638
11639 @kindex add-shared-symbol-files
11640 @kindex assf
11641 @item add-shared-symbol-files @var{library-file}
11642 @itemx assf @var{library-file}
11643 The @code{add-shared-symbol-files} command can currently be used only
11644 in the Cygwin build of @value{GDBN} on MS-Windows OS, where it is an
11645 alias for the @code{dll-symbols} command (@pxref{Cygwin Native}).
11646 @value{GDBN} automatically looks for shared libraries, however if
11647 @value{GDBN} does not find yours, you can invoke
11648 @code{add-shared-symbol-files}.  It takes one argument: the shared
11649 library's file name.  @code{assf} is a shorthand alias for
11650 @code{add-shared-symbol-files}.
11651
11652 @kindex section
11653 @item section @var{section} @var{addr}
11654 The @code{section} command changes the base address of the named
11655 @var{section} of the exec file to @var{addr}.  This can be used if the
11656 exec file does not contain section addresses, (such as in the
11657 @code{a.out} format), or when the addresses specified in the file
11658 itself are wrong.  Each section must be changed separately.  The
11659 @code{info files} command, described below, lists all the sections and
11660 their addresses.
11661
11662 @kindex info files
11663 @kindex info target
11664 @item info files
11665 @itemx info target
11666 @code{info files} and @code{info target} are synonymous; both print the
11667 current target (@pxref{Targets, ,Specifying a Debugging Target}),
11668 including the names of the executable and core dump files currently in
11669 use by @value{GDBN}, and the files from which symbols were loaded.  The
11670 command @code{help target} lists all possible targets rather than
11671 current ones.
11672
11673 @kindex maint info sections
11674 @item maint info sections
11675 Another command that can give you extra information about program sections
11676 is @code{maint info sections}.  In addition to the section information
11677 displayed by @code{info files}, this command displays the flags and file
11678 offset of each section in the executable and core dump files.  In addition,
11679 @code{maint info sections} provides the following command options (which
11680 may be arbitrarily combined):
11681
11682 @table @code
11683 @item ALLOBJ
11684 Display sections for all loaded object files, including shared libraries.
11685 @item @var{sections}
11686 Display info only for named @var{sections}.
11687 @item @var{section-flags}
11688 Display info only for sections for which @var{section-flags} are true.
11689 The section flags that @value{GDBN} currently knows about are:
11690 @table @code
11691 @item ALLOC
11692 Section will have space allocated in the process when loaded.
11693 Set for all sections except those containing debug information.
11694 @item LOAD
11695 Section will be loaded from the file into the child process memory.
11696 Set for pre-initialized code and data, clear for @code{.bss} sections.
11697 @item RELOC
11698 Section needs to be relocated before loading.
11699 @item READONLY
11700 Section cannot be modified by the child process.
11701 @item CODE
11702 Section contains executable code only.
11703 @item DATA
11704 Section contains data only (no executable code).
11705 @item ROM
11706 Section will reside in ROM.
11707 @item CONSTRUCTOR
11708 Section contains data for constructor/destructor lists.
11709 @item HAS_CONTENTS
11710 Section is not empty.
11711 @item NEVER_LOAD
11712 An instruction to the linker to not output the section.
11713 @item COFF_SHARED_LIBRARY
11714 A notification to the linker that the section contains
11715 COFF shared library information.
11716 @item IS_COMMON
11717 Section contains common symbols.
11718 @end table
11719 @end table
11720 @kindex set trust-readonly-sections
11721 @cindex read-only sections
11722 @item set trust-readonly-sections on
11723 Tell @value{GDBN} that readonly sections in your object file
11724 really are read-only (i.e.@: that their contents will not change).
11725 In that case, @value{GDBN} can fetch values from these sections
11726 out of the object file, rather than from the target program.
11727 For some targets (notably embedded ones), this can be a significant
11728 enhancement to debugging performance.
11729
11730 The default is off.
11731
11732 @item set trust-readonly-sections off
11733 Tell @value{GDBN} not to trust readonly sections.  This means that
11734 the contents of the section might change while the program is running,
11735 and must therefore be fetched from the target when needed.
11736
11737 @item show trust-readonly-sections
11738 Show the current setting of trusting readonly sections.
11739 @end table
11740
11741 All file-specifying commands allow both absolute and relative file names
11742 as arguments.  @value{GDBN} always converts the file name to an absolute file
11743 name and remembers it that way.
11744
11745 @cindex shared libraries
11746 @value{GDBN} supports GNU/Linux, MS-Windows, HP-UX, SunOS, SVr4, Irix,
11747 and IBM RS/6000 AIX shared libraries.
11748
11749 @value{GDBN} automatically loads symbol definitions from shared libraries
11750 when you use the @code{run} command, or when you examine a core file.
11751 (Before you issue the @code{run} command, @value{GDBN} does not understand
11752 references to a function in a shared library, however---unless you are
11753 debugging a core file).
11754
11755 On HP-UX, if the program loads a library explicitly, @value{GDBN}
11756 automatically loads the symbols at the time of the @code{shl_load} call.
11757
11758 @c FIXME: some @value{GDBN} release may permit some refs to undef
11759 @c FIXME...symbols---eg in a break cmd---assuming they are from a shared
11760 @c FIXME...lib; check this from time to time when updating manual
11761
11762 There are times, however, when you may wish to not automatically load
11763 symbol definitions from shared libraries, such as when they are
11764 particularly large or there are many of them.
11765
11766 To control the automatic loading of shared library symbols, use the
11767 commands:
11768
11769 @table @code
11770 @kindex set auto-solib-add
11771 @item set auto-solib-add @var{mode}
11772 If @var{mode} is @code{on}, symbols from all shared object libraries
11773 will be loaded automatically when the inferior begins execution, you
11774 attach to an independently started inferior, or when the dynamic linker
11775 informs @value{GDBN} that a new library has been loaded.  If @var{mode}
11776 is @code{off}, symbols must be loaded manually, using the
11777 @code{sharedlibrary} command.  The default value is @code{on}.
11778
11779 @cindex memory used for symbol tables
11780 If your program uses lots of shared libraries with debug info that
11781 takes large amounts of memory, you can decrease the @value{GDBN}
11782 memory footprint by preventing it from automatically loading the
11783 symbols from shared libraries.  To that end, type @kbd{set
11784 auto-solib-add off} before running the inferior, then load each
11785 library whose debug symbols you do need with @kbd{sharedlibrary
11786 @var{regexp}}, where @var{regexp} is a regular expression that matches
11787 the libraries whose symbols you want to be loaded.
11788
11789 @kindex show auto-solib-add
11790 @item show auto-solib-add
11791 Display the current autoloading mode.
11792 @end table
11793
11794 @cindex load shared library
11795 To explicitly load shared library symbols, use the @code{sharedlibrary}
11796 command:
11797
11798 @table @code
11799 @kindex info sharedlibrary
11800 @kindex info share
11801 @item info share
11802 @itemx info sharedlibrary
11803 Print the names of the shared libraries which are currently loaded.
11804
11805 @kindex sharedlibrary
11806 @kindex share
11807 @item sharedlibrary @var{regex}
11808 @itemx share @var{regex}
11809 Load shared object library symbols for files matching a
11810 Unix regular expression.
11811 As with files loaded automatically, it only loads shared libraries
11812 required by your program for a core file or after typing @code{run}.  If
11813 @var{regex} is omitted all shared libraries required by your program are
11814 loaded.
11815
11816 @item nosharedlibrary
11817 @kindex nosharedlibrary
11818 @cindex unload symbols from shared libraries
11819 Unload all shared object library symbols.  This discards all symbols
11820 that have been loaded from all shared libraries.  Symbols from shared
11821 libraries that were loaded by explicit user requests are not
11822 discarded.
11823 @end table
11824
11825 Sometimes you may wish that @value{GDBN} stops and gives you control
11826 when any of shared library events happen.  Use the @code{set
11827 stop-on-solib-events} command for this:
11828
11829 @table @code
11830 @item set stop-on-solib-events
11831 @kindex set stop-on-solib-events
11832 This command controls whether @value{GDBN} should give you control
11833 when the dynamic linker notifies it about some shared library event.
11834 The most common event of interest is loading or unloading of a new
11835 shared library.
11836
11837 @item show stop-on-solib-events
11838 @kindex show stop-on-solib-events
11839 Show whether @value{GDBN} stops and gives you control when shared
11840 library events happen.
11841 @end table
11842
11843 Shared libraries are also supported in many cross or remote debugging
11844 configurations.  A copy of the target's libraries need to be present on the
11845 host system; they need to be the same as the target libraries, although the
11846 copies on the target can be stripped as long as the copies on the host are
11847 not.
11848
11849 @cindex where to look for shared libraries
11850 For remote debugging, you need to tell @value{GDBN} where the target
11851 libraries are, so that it can load the correct copies---otherwise, it
11852 may try to load the host's libraries.  @value{GDBN} has two variables
11853 to specify the search directories for target libraries.
11854
11855 @table @code
11856 @cindex prefix for shared library file names
11857 @cindex system root, alternate
11858 @kindex set solib-absolute-prefix
11859 @kindex set sysroot
11860 @item set sysroot @var{path}
11861 Use @var{path} as the system root for the program being debugged.  Any
11862 absolute shared library paths will be prefixed with @var{path}; many
11863 runtime loaders store the absolute paths to the shared library in the
11864 target program's memory.  If you use @code{set sysroot} to find shared
11865 libraries, they need to be laid out in the same way that they are on
11866 the target, with e.g.@: a @file{/lib} and @file{/usr/lib} hierarchy
11867 under @var{path}.
11868
11869 The @code{set solib-absolute-prefix} command is an alias for @code{set
11870 sysroot}.
11871
11872 @cindex default system root
11873 @cindex @samp{--with-sysroot}
11874 You can set the default system root by using the configure-time
11875 @samp{--with-sysroot} option.  If the system root is inside
11876 @value{GDBN}'s configured binary prefix (set with @samp{--prefix} or
11877 @samp{--exec-prefix}), then the default system root will be updated
11878 automatically if the installed @value{GDBN} is moved to a new
11879 location.
11880
11881 @kindex show sysroot
11882 @item show sysroot
11883 Display the current shared library prefix.
11884
11885 @kindex set solib-search-path
11886 @item set solib-search-path @var{path}
11887 If this variable is set, @var{path} is a colon-separated list of
11888 directories to search for shared libraries.  @samp{solib-search-path}
11889 is used after @samp{sysroot} fails to locate the library, or if the
11890 path to the library is relative instead of absolute.  If you want to
11891 use @samp{solib-search-path} instead of @samp{sysroot}, be sure to set
11892 @samp{sysroot} to a nonexistent directory to prevent @value{GDBN} from
11893 finding your host's libraries.  @samp{sysroot} is preferred; setting
11894 it to a nonexistent directory may interfere with automatic loading
11895 of shared library symbols.
11896
11897 @kindex show solib-search-path
11898 @item show solib-search-path
11899 Display the current shared library search path.
11900 @end table
11901
11902
11903 @node Separate Debug Files
11904 @section Debugging Information in Separate Files
11905 @cindex separate debugging information files
11906 @cindex debugging information in separate files
11907 @cindex @file{.debug} subdirectories
11908 @cindex debugging information directory, global
11909 @cindex global debugging information directory
11910 @cindex build ID, and separate debugging files
11911 @cindex @file{.build-id} directory
11912
11913 @value{GDBN} allows you to put a program's debugging information in a
11914 file separate from the executable itself, in a way that allows
11915 @value{GDBN} to find and load the debugging information automatically.
11916 Since debugging information can be very large---sometimes larger
11917 than the executable code itself---some systems distribute debugging
11918 information for their executables in separate files, which users can
11919 install only when they need to debug a problem.
11920
11921 @value{GDBN} supports two ways of specifying the separate debug info
11922 file:
11923
11924 @itemize @bullet
11925 @item
11926 The executable contains a @dfn{debug link} that specifies the name of
11927 the separate debug info file.  The separate debug file's name is
11928 usually @file{@var{executable}.debug}, where @var{executable} is the
11929 name of the corresponding executable file without leading directories
11930 (e.g., @file{ls.debug} for @file{/usr/bin/ls}).  In addition, the
11931 debug link specifies a CRC32 checksum for the debug file, which
11932 @value{GDBN} uses to validate that the executable and the debug file
11933 came from the same build.
11934
11935 @item
11936 The executable contains a @dfn{build ID}, a unique bit string that is
11937 also present in the corresponding debug info file.  (This is supported
11938 only on some operating systems, notably those which use the ELF format
11939 for binary files and the @sc{gnu} Binutils.)  For more details about
11940 this feature, see the description of the @option{--build-id}
11941 command-line option in @ref{Options, , Command Line Options, ld.info,
11942 The GNU Linker}.  The debug info file's name is not specified
11943 explicitly by the build ID, but can be computed from the build ID, see
11944 below.
11945 @end itemize
11946
11947 Depending on the way the debug info file is specified, @value{GDBN}
11948 uses two different methods of looking for the debug file:
11949
11950 @itemize @bullet
11951 @item
11952 For the ``debug link'' method, @value{GDBN} looks up the named file in
11953 the directory of the executable file, then in a subdirectory of that
11954 directory named @file{.debug}, and finally under the global debug
11955 directory, in a subdirectory whose name is identical to the leading
11956 directories of the executable's absolute file name.
11957
11958 @item
11959 For the ``build ID'' method, @value{GDBN} looks in the
11960 @file{.build-id} subdirectory of the global debug directory for a file
11961 named @file{@var{nn}/@var{nnnnnnnn}.debug}, where @var{nn} are the
11962 first 2 hex characters of the build ID bit string, and @var{nnnnnnnn}
11963 are the rest of the bit string.  (Real build ID strings are 32 or more
11964 hex characters, not 10.)
11965 @end itemize
11966
11967 So, for example, suppose you ask @value{GDBN} to debug
11968 @file{/usr/bin/ls}, which has a debug link that specifies the
11969 file @file{ls.debug}, and a build ID whose value in hex is
11970 @code{abcdef1234}.  If the global debug directory is
11971 @file{/usr/lib/debug}, then @value{GDBN} will look for the following
11972 debug information files, in the indicated order:
11973
11974 @itemize @minus
11975 @item
11976 @file{/usr/lib/debug/.build-id/ab/cdef1234.debug}
11977 @item
11978 @file{/usr/bin/ls.debug}
11979 @item
11980 @file{/usr/bin/.debug/ls.debug}
11981 @item
11982 @file{/usr/lib/debug/usr/bin/ls.debug}.
11983 @end itemize
11984
11985 You can set the global debugging info directory's name, and view the
11986 name @value{GDBN} is currently using.
11987
11988 @table @code
11989
11990 @kindex set debug-file-directory
11991 @item set debug-file-directory @var{directory}
11992 Set the directory which @value{GDBN} searches for separate debugging
11993 information files to @var{directory}.
11994
11995 @kindex show debug-file-directory
11996 @item show debug-file-directory
11997 Show the directory @value{GDBN} searches for separate debugging
11998 information files.
11999
12000 @end table
12001
12002 @cindex @code{.gnu_debuglink} sections
12003 @cindex debug link sections
12004 A debug link is a special section of the executable file named
12005 @code{.gnu_debuglink}.  The section must contain:
12006
12007 @itemize
12008 @item
12009 A filename, with any leading directory components removed, followed by
12010 a zero byte,
12011 @item
12012 zero to three bytes of padding, as needed to reach the next four-byte
12013 boundary within the section, and
12014 @item
12015 a four-byte CRC checksum, stored in the same endianness used for the
12016 executable file itself.  The checksum is computed on the debugging
12017 information file's full contents by the function given below, passing
12018 zero as the @var{crc} argument.
12019 @end itemize
12020
12021 Any executable file format can carry a debug link, as long as it can
12022 contain a section named @code{.gnu_debuglink} with the contents
12023 described above.
12024
12025 @cindex @code{.note.gnu.build-id} sections
12026 @cindex build ID sections
12027 The build ID is a special section in the executable file (and in other
12028 ELF binary files that @value{GDBN} may consider).  This section is
12029 often named @code{.note.gnu.build-id}, but that name is not mandatory.
12030 It contains unique identification for the built files---the ID remains
12031 the same across multiple builds of the same build tree.  The default
12032 algorithm SHA1 produces 160 bits (40 hexadecimal characters) of the
12033 content for the build ID string.  The same section with an identical
12034 value is present in the original built binary with symbols, in its
12035 stripped variant, and in the separate debugging information file.
12036
12037 The debugging information file itself should be an ordinary
12038 executable, containing a full set of linker symbols, sections, and
12039 debugging information.  The sections of the debugging information file
12040 should have the same names, addresses, and sizes as the original file,
12041 but they need not contain any data---much like a @code{.bss} section
12042 in an ordinary executable.
12043
12044 The @sc{gnu} binary utilities (Binutils) package includes the
12045 @samp{objcopy} utility that can produce
12046 the separated executable / debugging information file pairs using the
12047 following commands:
12048
12049 @smallexample
12050 @kbd{objcopy --only-keep-debug foo foo.debug}
12051 @kbd{strip -g foo}
12052 @end smallexample
12053
12054 @noindent
12055 These commands remove the debugging
12056 information from the executable file @file{foo} and place it in the file
12057 @file{foo.debug}.  You can use the first, second or both methods to link the
12058 two files:
12059
12060 @itemize @bullet
12061 @item
12062 The debug link method needs the following additional command to also leave
12063 behind a debug link in @file{foo}:
12064
12065 @smallexample
12066 @kbd{objcopy --add-gnu-debuglink=foo.debug foo}
12067 @end smallexample
12068
12069 Ulrich Drepper's @file{elfutils} package, starting with version 0.53, contains
12070 a version of the @code{strip} command such that the command @kbd{strip foo -f
12071 foo.debug} has the same functionality as the two @code{objcopy} commands and
12072 the @code{ln -s} command above, together.
12073
12074 @item
12075 Build ID gets embedded into the main executable using @code{ld --build-id} or
12076 the @value{NGCC} counterpart @code{gcc -Wl,--build-id}.  Build ID support plus
12077 compatibility fixes for debug files separation are present in @sc{gnu} binary
12078 utilities (Binutils) package since version 2.18.
12079 @end itemize
12080
12081 @noindent
12082
12083 Since there are many different ways to compute CRC's for the debug
12084 link (different polynomials, reversals, byte ordering, etc.), the
12085 simplest way to describe the CRC used in @code{.gnu_debuglink}
12086 sections is to give the complete code for a function that computes it:
12087
12088 @kindex gnu_debuglink_crc32
12089 @smallexample
12090 unsigned long
12091 gnu_debuglink_crc32 (unsigned long crc,
12092                      unsigned char *buf, size_t len)
12093 @{
12094   static const unsigned long crc32_table[256] =
12095     @{
12096       0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419,
12097       0x706af48f, 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4,
12098       0xe0d5e91e, 0x97d2d988, 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07,
12099       0x90bf1d91, 0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de,
12100       0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 0x136c9856,
12101       0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,
12102       0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4,
12103       0xa2677172, 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b,
12104       0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3,
12105       0x45df5c75, 0xdcd60dcf, 0xabd13d59, 0x26d930ac, 0x51de003a,
12106       0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 0xcfba9599,
12107       0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
12108       0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190,
12109       0x01db7106, 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f,
12110       0x9fbfe4a5, 0xe8b8d433, 0x7807c9a2, 0x0f00f934, 0x9609a88e,
12111       0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01,
12112       0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 0x6c0695ed,
12113       0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,
12114       0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3,
12115       0xfbd44c65, 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2,
12116       0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a,
12117       0x346ed9fc, 0xad678846, 0xda60b8d0, 0x44042d73, 0x33031de5,
12118       0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 0xbe0b1010,
12119       0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
12120       0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17,
12121       0x2eb40d81, 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6,
12122       0x03b6e20c, 0x74b1d29a, 0xead54739, 0x9dd277af, 0x04db2615,
12123       0x73dc1683, 0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8,
12124       0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 0xf00f9344,
12125       0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
12126       0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a,
12127       0x67dd4acc, 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5,
12128       0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1,
12129       0xa6bc5767, 0x3fb506dd, 0x48b2364b, 0xd80d2bda, 0xaf0a1b4c,
12130       0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 0x316e8eef,
12131       0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
12132       0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe,
12133       0xb2bd0b28, 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31,
12134       0x2cd99e8b, 0x5bdeae1d, 0x9b64c2b0, 0xec63f226, 0x756aa39c,
12135       0x026d930a, 0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713,
12136       0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 0x92d28e9b,
12137       0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,
12138       0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1,
12139       0x18b74777, 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c,
12140       0x8f659eff, 0xf862ae69, 0x616bffd3, 0x166ccf45, 0xa00ae278,
12141       0xd70dd2ee, 0x4e048354, 0x3903b3c2, 0xa7672661, 0xd06016f7,
12142       0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 0x40df0b66,
12143       0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
12144       0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605,
12145       0xcdd70693, 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8,
12146       0x5d681b02, 0x2a6f2b94, 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b,
12147       0x2d02ef8d
12148     @};
12149   unsigned char *end;
12150
12151   crc = ~crc & 0xffffffff;
12152   for (end = buf + len; buf < end; ++buf)
12153     crc = crc32_table[(crc ^ *buf) & 0xff] ^ (crc >> 8);
12154   return ~crc & 0xffffffff;
12155 @}
12156 @end smallexample
12157
12158 @noindent
12159 This computation does not apply to the ``build ID'' method.
12160
12161
12162 @node Symbol Errors
12163 @section Errors Reading Symbol Files
12164
12165 While reading a symbol file, @value{GDBN} occasionally encounters problems,
12166 such as symbol types it does not recognize, or known bugs in compiler
12167 output.  By default, @value{GDBN} does not notify you of such problems, since
12168 they are relatively common and primarily of interest to people
12169 debugging compilers.  If you are interested in seeing information
12170 about ill-constructed symbol tables, you can either ask @value{GDBN} to print
12171 only one message about each such type of problem, no matter how many
12172 times the problem occurs; or you can ask @value{GDBN} to print more messages,
12173 to see how many times the problems occur, with the @code{set
12174 complaints} command (@pxref{Messages/Warnings, ,Optional Warnings and
12175 Messages}).
12176
12177 The messages currently printed, and their meanings, include:
12178
12179 @table @code
12180 @item inner block not inside outer block in @var{symbol}
12181
12182 The symbol information shows where symbol scopes begin and end
12183 (such as at the start of a function or a block of statements).  This
12184 error indicates that an inner scope block is not fully contained
12185 in its outer scope blocks.
12186
12187 @value{GDBN} circumvents the problem by treating the inner block as if it had
12188 the same scope as the outer block.  In the error message, @var{symbol}
12189 may be shown as ``@code{(don't know)}'' if the outer block is not a
12190 function.
12191
12192 @item block at @var{address} out of order
12193
12194 The symbol information for symbol scope blocks should occur in
12195 order of increasing addresses.  This error indicates that it does not
12196 do so.
12197
12198 @value{GDBN} does not circumvent this problem, and has trouble
12199 locating symbols in the source file whose symbols it is reading.  (You
12200 can often determine what source file is affected by specifying
12201 @code{set verbose on}.  @xref{Messages/Warnings, ,Optional Warnings and
12202 Messages}.)
12203
12204 @item bad block start address patched
12205
12206 The symbol information for a symbol scope block has a start address
12207 smaller than the address of the preceding source line.  This is known
12208 to occur in the SunOS 4.1.1 (and earlier) C compiler.
12209
12210 @value{GDBN} circumvents the problem by treating the symbol scope block as
12211 starting on the previous source line.
12212
12213 @item bad string table offset in symbol @var{n}
12214
12215 @cindex foo
12216 Symbol number @var{n} contains a pointer into the string table which is
12217 larger than the size of the string table.
12218
12219 @value{GDBN} circumvents the problem by considering the symbol to have the
12220 name @code{foo}, which may cause other problems if many symbols end up
12221 with this name.
12222
12223 @item unknown symbol type @code{0x@var{nn}}
12224
12225 The symbol information contains new data types that @value{GDBN} does
12226 not yet know how to read.  @code{0x@var{nn}} is the symbol type of the
12227 uncomprehended information, in hexadecimal.
12228
12229 @value{GDBN} circumvents the error by ignoring this symbol information.
12230 This usually allows you to debug your program, though certain symbols
12231 are not accessible.  If you encounter such a problem and feel like
12232 debugging it, you can debug @code{@value{GDBP}} with itself, breakpoint
12233 on @code{complain}, then go up to the function @code{read_dbx_symtab}
12234 and examine @code{*bufp} to see the symbol.
12235
12236 @item stub type has NULL name
12237
12238 @value{GDBN} could not find the full definition for a struct or class.
12239
12240 @item const/volatile indicator missing (ok if using g++ v1.x), got@dots{}
12241 The symbol information for a C@t{++} member function is missing some
12242 information that recent versions of the compiler should have output for
12243 it.
12244
12245 @item info mismatch between compiler and debugger
12246
12247 @value{GDBN} could not parse a type specification output by the compiler.
12248
12249 @end table
12250
12251 @node Targets
12252 @chapter Specifying a Debugging Target
12253
12254 @cindex debugging target
12255 A @dfn{target} is the execution environment occupied by your program.
12256
12257 Often, @value{GDBN} runs in the same host environment as your program;
12258 in that case, the debugging target is specified as a side effect when
12259 you use the @code{file} or @code{core} commands.  When you need more
12260 flexibility---for example, running @value{GDBN} on a physically separate
12261 host, or controlling a standalone system over a serial port or a
12262 realtime system over a TCP/IP connection---you can use the @code{target}
12263 command to specify one of the target types configured for @value{GDBN}
12264 (@pxref{Target Commands, ,Commands for Managing Targets}).
12265
12266 @cindex target architecture
12267 It is possible to build @value{GDBN} for several different @dfn{target
12268 architectures}.  When @value{GDBN} is built like that, you can choose
12269 one of the available architectures with the @kbd{set architecture}
12270 command.
12271
12272 @table @code
12273 @kindex set architecture
12274 @kindex show architecture
12275 @item set architecture @var{arch}
12276 This command sets the current target architecture to @var{arch}.  The
12277 value of @var{arch} can be @code{"auto"}, in addition to one of the
12278 supported architectures.
12279
12280 @item show architecture
12281 Show the current target architecture.
12282
12283 @item set processor
12284 @itemx processor
12285 @kindex set processor
12286 @kindex show processor
12287 These are alias commands for, respectively, @code{set architecture}
12288 and @code{show architecture}.
12289 @end table
12290
12291 @menu
12292 * Active Targets::              Active targets
12293 * Target Commands::             Commands for managing targets
12294 * Byte Order::                  Choosing target byte order
12295 @end menu
12296
12297 @node Active Targets
12298 @section Active Targets
12299
12300 @cindex stacking targets
12301 @cindex active targets
12302 @cindex multiple targets
12303
12304 There are three classes of targets: processes, core files, and
12305 executable files.  @value{GDBN} can work concurrently on up to three
12306 active targets, one in each class.  This allows you to (for example)
12307 start a process and inspect its activity without abandoning your work on
12308 a core file.
12309
12310 For example, if you execute @samp{gdb a.out}, then the executable file
12311 @code{a.out} is the only active target.  If you designate a core file as
12312 well---presumably from a prior run that crashed and coredumped---then
12313 @value{GDBN} has two active targets and uses them in tandem, looking
12314 first in the corefile target, then in the executable file, to satisfy
12315 requests for memory addresses.  (Typically, these two classes of target
12316 are complementary, since core files contain only a program's
12317 read-write memory---variables and so on---plus machine status, while
12318 executable files contain only the program text and initialized data.)
12319
12320 When you type @code{run}, your executable file becomes an active process
12321 target as well.  When a process target is active, all @value{GDBN}
12322 commands requesting memory addresses refer to that target; addresses in
12323 an active core file or executable file target are obscured while the
12324 process target is active.
12325
12326 Use the @code{core-file} and @code{exec-file} commands to select a new
12327 core file or executable target (@pxref{Files, ,Commands to Specify
12328 Files}).  To specify as a target a process that is already running, use
12329 the @code{attach} command (@pxref{Attach, ,Debugging an Already-running
12330 Process}).
12331
12332 @node Target Commands
12333 @section Commands for Managing Targets
12334
12335 @table @code
12336 @item target @var{type} @var{parameters}
12337 Connects the @value{GDBN} host environment to a target machine or
12338 process.  A target is typically a protocol for talking to debugging
12339 facilities.  You use the argument @var{type} to specify the type or
12340 protocol of the target machine.
12341
12342 Further @var{parameters} are interpreted by the target protocol, but
12343 typically include things like device names or host names to connect
12344 with, process numbers, and baud rates.
12345
12346 The @code{target} command does not repeat if you press @key{RET} again
12347 after executing the command.
12348
12349 @kindex help target
12350 @item help target
12351 Displays the names of all targets available.  To display targets
12352 currently selected, use either @code{info target} or @code{info files}
12353 (@pxref{Files, ,Commands to Specify Files}).
12354
12355 @item help target @var{name}
12356 Describe a particular target, including any parameters necessary to
12357 select it.
12358
12359 @kindex set gnutarget
12360 @item set gnutarget @var{args}
12361 @value{GDBN} uses its own library BFD to read your files.  @value{GDBN}
12362 knows whether it is reading an @dfn{executable},
12363 a @dfn{core}, or a @dfn{.o} file; however, you can specify the file format
12364 with the @code{set gnutarget} command.  Unlike most @code{target} commands,
12365 with @code{gnutarget} the @code{target} refers to a program, not a machine.
12366
12367 @quotation
12368 @emph{Warning:} To specify a file format with @code{set gnutarget},
12369 you must know the actual BFD name.
12370 @end quotation
12371
12372 @noindent
12373 @xref{Files, , Commands to Specify Files}.
12374
12375 @kindex show gnutarget
12376 @item show gnutarget
12377 Use the @code{show gnutarget} command to display what file format
12378 @code{gnutarget} is set to read.  If you have not set @code{gnutarget},
12379 @value{GDBN} will determine the file format for each file automatically,
12380 and @code{show gnutarget} displays @samp{The current BDF target is "auto"}.
12381 @end table
12382
12383 @cindex common targets
12384 Here are some common targets (available, or not, depending on the GDB
12385 configuration):
12386
12387 @table @code
12388 @kindex target
12389 @item target exec @var{program}
12390 @cindex executable file target
12391 An executable file.  @samp{target exec @var{program}} is the same as
12392 @samp{exec-file @var{program}}.
12393
12394 @item target core @var{filename}
12395 @cindex core dump file target
12396 A core dump file.  @samp{target core @var{filename}} is the same as
12397 @samp{core-file @var{filename}}.
12398
12399 @item target remote @var{medium}
12400 @cindex remote target
12401 A remote system connected to @value{GDBN} via a serial line or network
12402 connection.  This command tells @value{GDBN} to use its own remote
12403 protocol over @var{medium} for debugging.  @xref{Remote Debugging}.
12404
12405 For example, if you have a board connected to @file{/dev/ttya} on the
12406 machine running @value{GDBN}, you could say:
12407
12408 @smallexample
12409 target remote /dev/ttya
12410 @end smallexample
12411
12412 @code{target remote} supports the @code{load} command.  This is only
12413 useful if you have some other way of getting the stub to the target
12414 system, and you can put it somewhere in memory where it won't get
12415 clobbered by the download.
12416
12417 @item target sim
12418 @cindex built-in simulator target
12419 Builtin CPU simulator.  @value{GDBN} includes simulators for most architectures.
12420 In general,
12421 @smallexample
12422         target sim
12423         load
12424         run
12425 @end smallexample
12426 @noindent
12427 works; however, you cannot assume that a specific memory map, device
12428 drivers, or even basic I/O is available, although some simulators do
12429 provide these.  For info about any processor-specific simulator details,
12430 see the appropriate section in @ref{Embedded Processors, ,Embedded
12431 Processors}.
12432
12433 @end table
12434
12435 Some configurations may include these targets as well:
12436
12437 @table @code
12438
12439 @item target nrom @var{dev}
12440 @cindex NetROM ROM emulator target
12441 NetROM ROM emulator.  This target only supports downloading.
12442
12443 @end table
12444
12445 Different targets are available on different configurations of @value{GDBN};
12446 your configuration may have more or fewer targets.
12447
12448 Many remote targets require you to download the executable's code once
12449 you've successfully established a connection.  You may wish to control
12450 various aspects of this process.
12451
12452 @table @code
12453
12454 @item set hash
12455 @kindex set hash@r{, for remote monitors}
12456 @cindex hash mark while downloading
12457 This command controls whether a hash mark @samp{#} is displayed while
12458 downloading a file to the remote monitor.  If on, a hash mark is
12459 displayed after each S-record is successfully downloaded to the
12460 monitor.
12461
12462 @item show hash
12463 @kindex show hash@r{, for remote monitors}
12464 Show the current status of displaying the hash mark.
12465
12466 @item set debug monitor
12467 @kindex set debug monitor
12468 @cindex display remote monitor communications
12469 Enable or disable display of communications messages between
12470 @value{GDBN} and the remote monitor.
12471
12472 @item show debug monitor
12473 @kindex show debug monitor
12474 Show the current status of displaying communications between
12475 @value{GDBN} and the remote monitor.
12476 @end table
12477
12478 @table @code
12479
12480 @kindex load @var{filename}
12481 @item load @var{filename}
12482 Depending on what remote debugging facilities are configured into
12483 @value{GDBN}, the @code{load} command may be available.  Where it exists, it
12484 is meant to make @var{filename} (an executable) available for debugging
12485 on the remote system---by downloading, or dynamic linking, for example.
12486 @code{load} also records the @var{filename} symbol table in @value{GDBN}, like
12487 the @code{add-symbol-file} command.
12488
12489 If your @value{GDBN} does not have a @code{load} command, attempting to
12490 execute it gets the error message ``@code{You can't do that when your
12491 target is @dots{}}''
12492
12493 The file is loaded at whatever address is specified in the executable.
12494 For some object file formats, you can specify the load address when you
12495 link the program; for other formats, like a.out, the object file format
12496 specifies a fixed address.
12497 @c FIXME! This would be a good place for an xref to the GNU linker doc.
12498
12499 Depending on the remote side capabilities, @value{GDBN} may be able to
12500 load programs into flash memory.
12501
12502 @code{load} does not repeat if you press @key{RET} again after using it.
12503 @end table
12504
12505 @node Byte Order
12506 @section Choosing Target Byte Order
12507
12508 @cindex choosing target byte order
12509 @cindex target byte order
12510
12511 Some types of processors, such as the MIPS, PowerPC, and Renesas SH,
12512 offer the ability to run either big-endian or little-endian byte
12513 orders.  Usually the executable or symbol will include a bit to
12514 designate the endian-ness, and you will not need to worry about
12515 which to use.  However, you may still find it useful to adjust
12516 @value{GDBN}'s idea of processor endian-ness manually.
12517
12518 @table @code
12519 @kindex set endian
12520 @item set endian big
12521 Instruct @value{GDBN} to assume the target is big-endian.
12522
12523 @item set endian little
12524 Instruct @value{GDBN} to assume the target is little-endian.
12525
12526 @item set endian auto
12527 Instruct @value{GDBN} to use the byte order associated with the
12528 executable.
12529
12530 @item show endian
12531 Display @value{GDBN}'s current idea of the target byte order.
12532
12533 @end table
12534
12535 Note that these commands merely adjust interpretation of symbolic
12536 data on the host, and that they have absolutely no effect on the
12537 target system.
12538
12539
12540 @node Remote Debugging
12541 @chapter Debugging Remote Programs
12542 @cindex remote debugging
12543
12544 If you are trying to debug a program running on a machine that cannot run
12545 @value{GDBN} in the usual way, it is often useful to use remote debugging.
12546 For example, you might use remote debugging on an operating system kernel,
12547 or on a small system which does not have a general purpose operating system
12548 powerful enough to run a full-featured debugger.
12549
12550 Some configurations of @value{GDBN} have special serial or TCP/IP interfaces
12551 to make this work with particular debugging targets.  In addition,
12552 @value{GDBN} comes with a generic serial protocol (specific to @value{GDBN},
12553 but not specific to any particular target system) which you can use if you
12554 write the remote stubs---the code that runs on the remote system to
12555 communicate with @value{GDBN}.
12556
12557 Other remote targets may be available in your
12558 configuration of @value{GDBN}; use @code{help target} to list them.
12559
12560 @menu
12561 * Connecting::                  Connecting to a remote target
12562 * Server::                      Using the gdbserver program
12563 * Remote Configuration::        Remote configuration
12564 * Remote Stub::                 Implementing a remote stub
12565 @end menu
12566
12567 @node Connecting
12568 @section Connecting to a Remote Target
12569
12570 On the @value{GDBN} host machine, you will need an unstripped copy of
12571 your program, since @value{GDBN} needs symbol and debugging information.
12572 Start up @value{GDBN} as usual, using the name of the local copy of your
12573 program as the first argument.
12574
12575 @cindex @code{target remote}
12576 @value{GDBN} can communicate with the target over a serial line, or
12577 over an @acronym{IP} network using @acronym{TCP} or @acronym{UDP}.  In
12578 each case, @value{GDBN} uses the same protocol for debugging your
12579 program; only the medium carrying the debugging packets varies.  The
12580 @code{target remote} command establishes a connection to the target.
12581 Its arguments indicate which medium to use:
12582
12583 @table @code
12584
12585 @item target remote @var{serial-device}
12586 @cindex serial line, @code{target remote}
12587 Use @var{serial-device} to communicate with the target.  For example,
12588 to use a serial line connected to the device named @file{/dev/ttyb}:
12589
12590 @smallexample
12591 target remote /dev/ttyb
12592 @end smallexample
12593
12594 If you're using a serial line, you may want to give @value{GDBN} the
12595 @w{@samp{--baud}} option, or use the @code{set remotebaud} command
12596 (@pxref{Remote Configuration, set remotebaud}) before the
12597 @code{target} command.
12598
12599 @item target remote @code{@var{host}:@var{port}}
12600 @itemx target remote @code{tcp:@var{host}:@var{port}}
12601 @cindex @acronym{TCP} port, @code{target remote}
12602 Debug using a @acronym{TCP} connection to @var{port} on @var{host}.
12603 The @var{host} may be either a host name or a numeric @acronym{IP}
12604 address; @var{port} must be a decimal number.  The @var{host} could be
12605 the target machine itself, if it is directly connected to the net, or
12606 it might be a terminal server which in turn has a serial line to the
12607 target.
12608
12609 For example, to connect to port 2828 on a terminal server named
12610 @code{manyfarms}:
12611
12612 @smallexample
12613 target remote manyfarms:2828
12614 @end smallexample
12615
12616 If your remote target is actually running on the same machine as your
12617 debugger session (e.g.@: a simulator for your target running on the
12618 same host), you can omit the hostname.  For example, to connect to
12619 port 1234 on your local machine:
12620
12621 @smallexample
12622 target remote :1234
12623 @end smallexample
12624 @noindent
12625
12626 Note that the colon is still required here.
12627
12628 @item target remote @code{udp:@var{host}:@var{port}}
12629 @cindex @acronym{UDP} port, @code{target remote}
12630 Debug using @acronym{UDP} packets to @var{port} on @var{host}.  For example, to
12631 connect to @acronym{UDP} port 2828 on a terminal server named @code{manyfarms}:
12632
12633 @smallexample
12634 target remote udp:manyfarms:2828
12635 @end smallexample
12636
12637 When using a @acronym{UDP} connection for remote debugging, you should
12638 keep in mind that the `U' stands for ``Unreliable''.  @acronym{UDP}
12639 can silently drop packets on busy or unreliable networks, which will
12640 cause havoc with your debugging session.
12641
12642 @item target remote | @var{command}
12643 @cindex pipe, @code{target remote} to
12644 Run @var{command} in the background and communicate with it using a
12645 pipe.  The @var{command} is a shell command, to be parsed and expanded
12646 by the system's command shell, @code{/bin/sh}; it should expect remote
12647 protocol packets on its standard input, and send replies on its
12648 standard output.  You could use this to run a stand-alone simulator
12649 that speaks the remote debugging protocol, to make net connections
12650 using programs like @code{ssh}, or for other similar tricks.
12651
12652 If @var{command} closes its standard output (perhaps by exiting),
12653 @value{GDBN} will try to send it a @code{SIGTERM} signal.  (If the
12654 program has already exited, this will have no effect.)
12655
12656 @end table
12657
12658 Once the connection has been established, you can use all the usual
12659 commands to examine and change data and to step and continue the
12660 remote program.
12661
12662 @cindex interrupting remote programs
12663 @cindex remote programs, interrupting
12664 Whenever @value{GDBN} is waiting for the remote program, if you type the
12665 interrupt character (often @kbd{Ctrl-c}), @value{GDBN} attempts to stop the
12666 program.  This may or may not succeed, depending in part on the hardware
12667 and the serial drivers the remote system uses.  If you type the
12668 interrupt character once again, @value{GDBN} displays this prompt:
12669
12670 @smallexample
12671 Interrupted while waiting for the program.
12672 Give up (and stop debugging it)?  (y or n)
12673 @end smallexample
12674
12675 If you type @kbd{y}, @value{GDBN} abandons the remote debugging session.
12676 (If you decide you want to try again later, you can use @samp{target
12677 remote} again to connect once more.)  If you type @kbd{n}, @value{GDBN}
12678 goes back to waiting.
12679
12680 @table @code
12681 @kindex detach (remote)
12682 @item detach
12683 When you have finished debugging the remote program, you can use the
12684 @code{detach} command to release it from @value{GDBN} control.
12685 Detaching from the target normally resumes its execution, but the results
12686 will depend on your particular remote stub.  After the @code{detach}
12687 command, @value{GDBN} is free to connect to another target.
12688
12689 @kindex disconnect
12690 @item disconnect
12691 The @code{disconnect} command behaves like @code{detach}, except that
12692 the target is generally not resumed.  It will wait for @value{GDBN}
12693 (this instance or another one) to connect and continue debugging.  After
12694 the @code{disconnect} command, @value{GDBN} is again free to connect to
12695 another target.
12696
12697 @cindex send command to remote monitor
12698 @cindex extend @value{GDBN} for remote targets
12699 @cindex add new commands for external monitor
12700 @kindex monitor
12701 @item monitor @var{cmd}
12702 This command allows you to send arbitrary commands directly to the
12703 remote monitor.  Since @value{GDBN} doesn't care about the commands it
12704 sends like this, this command is the way to extend @value{GDBN}---you
12705 can add new commands that only the external monitor will understand
12706 and implement.
12707 @end table
12708
12709 @node Server
12710 @section Using the @code{gdbserver} Program
12711
12712 @kindex gdbserver
12713 @cindex remote connection without stubs
12714 @code{gdbserver} is a control program for Unix-like systems, which
12715 allows you to connect your program with a remote @value{GDBN} via
12716 @code{target remote}---but without linking in the usual debugging stub.
12717
12718 @code{gdbserver} is not a complete replacement for the debugging stubs,
12719 because it requires essentially the same operating-system facilities
12720 that @value{GDBN} itself does.  In fact, a system that can run
12721 @code{gdbserver} to connect to a remote @value{GDBN} could also run
12722 @value{GDBN} locally!  @code{gdbserver} is sometimes useful nevertheless,
12723 because it is a much smaller program than @value{GDBN} itself.  It is
12724 also easier to port than all of @value{GDBN}, so you may be able to get
12725 started more quickly on a new system by using @code{gdbserver}.
12726 Finally, if you develop code for real-time systems, you may find that
12727 the tradeoffs involved in real-time operation make it more convenient to
12728 do as much development work as possible on another system, for example
12729 by cross-compiling.  You can use @code{gdbserver} to make a similar
12730 choice for debugging.
12731
12732 @value{GDBN} and @code{gdbserver} communicate via either a serial line
12733 or a TCP connection, using the standard @value{GDBN} remote serial
12734 protocol.
12735
12736 @table @emph
12737 @item On the target machine,
12738 you need to have a copy of the program you want to debug.
12739 @code{gdbserver} does not need your program's symbol table, so you can
12740 strip the program if necessary to save space.  @value{GDBN} on the host
12741 system does all the symbol handling.
12742
12743 To use the server, you must tell it how to communicate with @value{GDBN};
12744 the name of your program; and the arguments for your program.  The usual
12745 syntax is:
12746
12747 @smallexample
12748 target> gdbserver @var{comm} @var{program} [ @var{args} @dots{} ]
12749 @end smallexample
12750
12751 @var{comm} is either a device name (to use a serial line) or a TCP
12752 hostname and portnumber.  For example, to debug Emacs with the argument
12753 @samp{foo.txt} and communicate with @value{GDBN} over the serial port
12754 @file{/dev/com1}:
12755
12756 @smallexample
12757 target> gdbserver /dev/com1 emacs foo.txt
12758 @end smallexample
12759
12760 @code{gdbserver} waits passively for the host @value{GDBN} to communicate
12761 with it.
12762
12763 To use a TCP connection instead of a serial line:
12764
12765 @smallexample
12766 target> gdbserver host:2345 emacs foo.txt
12767 @end smallexample
12768
12769 The only difference from the previous example is the first argument,
12770 specifying that you are communicating with the host @value{GDBN} via
12771 TCP.  The @samp{host:2345} argument means that @code{gdbserver} is to
12772 expect a TCP connection from machine @samp{host} to local TCP port 2345.
12773 (Currently, the @samp{host} part is ignored.)  You can choose any number
12774 you want for the port number as long as it does not conflict with any
12775 TCP ports already in use on the target system (for example, @code{23} is
12776 reserved for @code{telnet}).@footnote{If you choose a port number that
12777 conflicts with another service, @code{gdbserver} prints an error message
12778 and exits.}  You must use the same port number with the host @value{GDBN}
12779 @code{target remote} command.
12780
12781 On some targets, @code{gdbserver} can also attach to running programs.
12782 This is accomplished via the @code{--attach} argument.  The syntax is:
12783
12784 @smallexample
12785 target> gdbserver @var{comm} --attach @var{pid}
12786 @end smallexample
12787
12788 @var{pid} is the process ID of a currently running process.  It isn't necessary
12789 to point @code{gdbserver} at a binary for the running process.
12790
12791 @pindex pidof
12792 @cindex attach to a program by name
12793 You can debug processes by name instead of process ID if your target has the
12794 @code{pidof} utility:
12795
12796 @smallexample
12797 target> gdbserver @var{comm} --attach `pidof @var{program}`
12798 @end smallexample
12799
12800 In case more than one copy of @var{program} is running, or @var{program}
12801 has multiple threads, most versions of @code{pidof} support the
12802 @code{-s} option to only return the first process ID.
12803
12804 @item On the host machine,
12805 first make sure you have the necessary symbol files.  Load symbols for
12806 your application using the @code{file} command before you connect.  Use
12807 @code{set sysroot} to locate target libraries (unless your @value{GDBN}
12808 was compiled with the correct sysroot using @code{--with-system-root}).
12809
12810 The symbol file and target libraries must exactly match the executable
12811 and libraries on the target, with one exception: the files on the host
12812 system should not be stripped, even if the files on the target system
12813 are.  Mismatched or missing files will lead to confusing results
12814 during debugging.  On @sc{gnu}/Linux targets, mismatched or missing
12815 files may also prevent @code{gdbserver} from debugging multi-threaded
12816 programs.
12817
12818 Connect to your target (@pxref{Connecting,,Connecting to a Remote Target}).
12819 For TCP connections, you must start up @code{gdbserver} prior to using
12820 the @code{target remote} command.  Otherwise you may get an error whose
12821 text depends on the host system, but which usually looks something like
12822 @samp{Connection refused}.  You don't need to use the @code{load}
12823 command in @value{GDBN} when using @code{gdbserver}, since the program is
12824 already on the target.
12825
12826 @end table
12827
12828 @subsection Monitor Commands for @code{gdbserver}
12829 @cindex monitor commands, for @code{gdbserver}
12830
12831 During a @value{GDBN} session using @code{gdbserver}, you can use the
12832 @code{monitor} command to send special requests to @code{gdbserver}.
12833 Here are the available commands; they are only of interest when
12834 debugging @value{GDBN} or @code{gdbserver}.
12835
12836 @table @code
12837 @item monitor help
12838 List the available monitor commands.
12839
12840 @item monitor set debug 0
12841 @itemx monitor set debug 1
12842 Disable or enable general debugging messages.
12843
12844 @item monitor set remote-debug 0
12845 @itemx monitor set remote-debug 1
12846 Disable or enable specific debugging messages associated with the remote
12847 protocol (@pxref{Remote Protocol}).
12848
12849 @end table
12850
12851 @node Remote Configuration
12852 @section Remote Configuration
12853
12854 @kindex set remote
12855 @kindex show remote
12856 This section documents the configuration options available when
12857 debugging remote programs.  For the options related to the File I/O
12858 extensions of the remote protocol, see @ref{system,
12859 system-call-allowed}.
12860
12861 @table @code
12862 @item set remoteaddresssize @var{bits}
12863 @cindex address size for remote targets
12864 @cindex bits in remote address
12865 Set the maximum size of address in a memory packet to the specified
12866 number of bits.  @value{GDBN} will mask off the address bits above
12867 that number, when it passes addresses to the remote target.  The
12868 default value is the number of bits in the target's address.
12869
12870 @item show remoteaddresssize
12871 Show the current value of remote address size in bits.
12872
12873 @item set remotebaud @var{n}
12874 @cindex baud rate for remote targets
12875 Set the baud rate for the remote serial I/O to @var{n} baud.  The
12876 value is used to set the speed of the serial port used for debugging
12877 remote targets.
12878
12879 @item show remotebaud
12880 Show the current speed of the remote connection.
12881
12882 @item set remotebreak
12883 @cindex interrupt remote programs
12884 @cindex BREAK signal instead of Ctrl-C
12885 @anchor{set remotebreak}
12886 If set to on, @value{GDBN} sends a @code{BREAK} signal to the remote
12887 when you type @kbd{Ctrl-c} to interrupt the program running
12888 on the remote.  If set to off, @value{GDBN} sends the @samp{Ctrl-C}
12889 character instead.  The default is off, since most remote systems
12890 expect to see @samp{Ctrl-C} as the interrupt signal.
12891
12892 @item show remotebreak
12893 Show whether @value{GDBN} sends @code{BREAK} or @samp{Ctrl-C} to
12894 interrupt the remote program.
12895
12896 @item set remoteflow on
12897 @itemx set remoteflow off
12898 @kindex set remoteflow
12899 Enable or disable hardware flow control (@code{RTS}/@code{CTS})
12900 on the serial port used to communicate to the remote target.
12901
12902 @item show remoteflow
12903 @kindex show remoteflow
12904 Show the current setting of hardware flow control.
12905
12906 @item set remotelogbase @var{base}
12907 Set the base (a.k.a.@: radix) of logging serial protocol
12908 communications to @var{base}.  Supported values of @var{base} are:
12909 @code{ascii}, @code{octal}, and @code{hex}.  The default is
12910 @code{ascii}.
12911
12912 @item show remotelogbase
12913 Show the current setting of the radix for logging remote serial
12914 protocol.
12915
12916 @item set remotelogfile @var{file}
12917 @cindex record serial communications on file
12918 Record remote serial communications on the named @var{file}.  The
12919 default is not to record at all.
12920
12921 @item show remotelogfile.
12922 Show the current setting  of the file name on which to record the
12923 serial communications.
12924
12925 @item set remotetimeout @var{num}
12926 @cindex timeout for serial communications
12927 @cindex remote timeout
12928 Set the timeout limit to wait for the remote target to respond to
12929 @var{num} seconds.  The default is 2 seconds.
12930
12931 @item show remotetimeout
12932 Show the current number of seconds to wait for the remote target
12933 responses.
12934
12935 @cindex limit hardware breakpoints and watchpoints
12936 @cindex remote target, limit break- and watchpoints
12937 @anchor{set remote hardware-watchpoint-limit}
12938 @anchor{set remote hardware-breakpoint-limit}
12939 @item set remote hardware-watchpoint-limit @var{limit}
12940 @itemx set remote hardware-breakpoint-limit @var{limit}
12941 Restrict @value{GDBN} to using @var{limit} remote hardware breakpoint or
12942 watchpoints.  A limit of -1, the default, is treated as unlimited.
12943 @end table
12944
12945 @cindex remote packets, enabling and disabling
12946 The @value{GDBN} remote protocol autodetects the packets supported by
12947 your debugging stub.  If you need to override the autodetection, you
12948 can use these commands to enable or disable individual packets.  Each
12949 packet can be set to @samp{on} (the remote target supports this
12950 packet), @samp{off} (the remote target does not support this packet),
12951 or @samp{auto} (detect remote target support for this packet).  They
12952 all default to @samp{auto}.  For more information about each packet,
12953 see @ref{Remote Protocol}.
12954
12955 During normal use, you should not have to use any of these commands.
12956 If you do, that may be a bug in your remote debugging stub, or a bug
12957 in @value{GDBN}.  You may want to report the problem to the
12958 @value{GDBN} developers.
12959
12960 For each packet @var{name}, the command to enable or disable the
12961 packet is @code{set remote @var{name}-packet}.  The available settings
12962 are:
12963
12964 @multitable @columnfractions 0.28 0.32 0.25
12965 @item Command Name
12966 @tab Remote Packet
12967 @tab Related Features
12968
12969 @item @code{fetch-register}
12970 @tab @code{p}
12971 @tab @code{info registers}
12972
12973 @item @code{set-register}
12974 @tab @code{P}
12975 @tab @code{set}
12976
12977 @item @code{binary-download}
12978 @tab @code{X}
12979 @tab @code{load}, @code{set}
12980
12981 @item @code{read-aux-vector}
12982 @tab @code{qXfer:auxv:read}
12983 @tab @code{info auxv}
12984
12985 @item @code{symbol-lookup}
12986 @tab @code{qSymbol}
12987 @tab Detecting multiple threads
12988
12989 @item @code{verbose-resume}
12990 @tab @code{vCont}
12991 @tab Stepping or resuming multiple threads
12992
12993 @item @code{software-breakpoint}
12994 @tab @code{Z0}
12995 @tab @code{break}
12996
12997 @item @code{hardware-breakpoint}
12998 @tab @code{Z1}
12999 @tab @code{hbreak}
13000
13001 @item @code{write-watchpoint}
13002 @tab @code{Z2}
13003 @tab @code{watch}
13004
13005 @item @code{read-watchpoint}
13006 @tab @code{Z3}
13007 @tab @code{rwatch}
13008
13009 @item @code{access-watchpoint}
13010 @tab @code{Z4}
13011 @tab @code{awatch}
13012
13013 @item @code{target-features}
13014 @tab @code{qXfer:features:read}
13015 @tab @code{set architecture}
13016
13017 @item @code{library-info}
13018 @tab @code{qXfer:libraries:read}
13019 @tab @code{info sharedlibrary}
13020
13021 @item @code{memory-map}
13022 @tab @code{qXfer:memory-map:read}
13023 @tab @code{info mem}
13024
13025 @item @code{read-spu-object}
13026 @tab @code{qXfer:spu:read}
13027 @tab @code{info spu}
13028
13029 @item @code{write-spu-object}
13030 @tab @code{qXfer:spu:write}
13031 @tab @code{info spu}
13032
13033 @item @code{get-thread-local-@*storage-address}
13034 @tab @code{qGetTLSAddr}
13035 @tab Displaying @code{__thread} variables
13036
13037 @item @code{supported-packets}
13038 @tab @code{qSupported}
13039 @tab Remote communications parameters
13040
13041 @item @code{pass-signals}
13042 @tab @code{QPassSignals}
13043 @tab @code{handle @var{signal}}
13044
13045 @end multitable
13046
13047 @node Remote Stub
13048 @section Implementing a Remote Stub
13049
13050 @cindex debugging stub, example
13051 @cindex remote stub, example
13052 @cindex stub example, remote debugging
13053 The stub files provided with @value{GDBN} implement the target side of the
13054 communication protocol, and the @value{GDBN} side is implemented in the
13055 @value{GDBN} source file @file{remote.c}.  Normally, you can simply allow
13056 these subroutines to communicate, and ignore the details.  (If you're
13057 implementing your own stub file, you can still ignore the details: start
13058 with one of the existing stub files.  @file{sparc-stub.c} is the best
13059 organized, and therefore the easiest to read.)
13060
13061 @cindex remote serial debugging, overview
13062 To debug a program running on another machine (the debugging
13063 @dfn{target} machine), you must first arrange for all the usual
13064 prerequisites for the program to run by itself.  For example, for a C
13065 program, you need:
13066
13067 @enumerate
13068 @item
13069 A startup routine to set up the C runtime environment; these usually
13070 have a name like @file{crt0}.  The startup routine may be supplied by
13071 your hardware supplier, or you may have to write your own.
13072
13073 @item
13074 A C subroutine library to support your program's
13075 subroutine calls, notably managing input and output.
13076
13077 @item
13078 A way of getting your program to the other machine---for example, a
13079 download program.  These are often supplied by the hardware
13080 manufacturer, but you may have to write your own from hardware
13081 documentation.
13082 @end enumerate
13083
13084 The next step is to arrange for your program to use a serial port to
13085 communicate with the machine where @value{GDBN} is running (the @dfn{host}
13086 machine).  In general terms, the scheme looks like this:
13087
13088 @table @emph
13089 @item On the host,
13090 @value{GDBN} already understands how to use this protocol; when everything
13091 else is set up, you can simply use the @samp{target remote} command
13092 (@pxref{Targets,,Specifying a Debugging Target}).
13093
13094 @item On the target,
13095 you must link with your program a few special-purpose subroutines that
13096 implement the @value{GDBN} remote serial protocol.  The file containing these
13097 subroutines is called  a @dfn{debugging stub}.
13098
13099 On certain remote targets, you can use an auxiliary program
13100 @code{gdbserver} instead of linking a stub into your program.
13101 @xref{Server,,Using the @code{gdbserver} Program}, for details.
13102 @end table
13103
13104 The debugging stub is specific to the architecture of the remote
13105 machine; for example, use @file{sparc-stub.c} to debug programs on
13106 @sc{sparc} boards.
13107
13108 @cindex remote serial stub list
13109 These working remote stubs are distributed with @value{GDBN}:
13110
13111 @table @code
13112
13113 @item i386-stub.c
13114 @cindex @file{i386-stub.c}
13115 @cindex Intel
13116 @cindex i386
13117 For Intel 386 and compatible architectures.
13118
13119 @item m68k-stub.c
13120 @cindex @file{m68k-stub.c}
13121 @cindex Motorola 680x0
13122 @cindex m680x0
13123 For Motorola 680x0 architectures.
13124
13125 @item sh-stub.c
13126 @cindex @file{sh-stub.c}
13127 @cindex Renesas
13128 @cindex SH
13129 For Renesas SH architectures.
13130
13131 @item sparc-stub.c
13132 @cindex @file{sparc-stub.c}
13133 @cindex Sparc
13134 For @sc{sparc} architectures.
13135
13136 @item sparcl-stub.c
13137 @cindex @file{sparcl-stub.c}
13138 @cindex Fujitsu
13139 @cindex SparcLite
13140 For Fujitsu @sc{sparclite} architectures.
13141
13142 @end table
13143
13144 The @file{README} file in the @value{GDBN} distribution may list other
13145 recently added stubs.
13146
13147 @menu
13148 * Stub Contents::       What the stub can do for you
13149 * Bootstrapping::       What you must do for the stub
13150 * Debug Session::       Putting it all together
13151 @end menu
13152
13153 @node Stub Contents
13154 @subsection What the Stub Can Do for You
13155
13156 @cindex remote serial stub
13157 The debugging stub for your architecture supplies these three
13158 subroutines:
13159
13160 @table @code
13161 @item set_debug_traps
13162 @findex set_debug_traps
13163 @cindex remote serial stub, initialization
13164 This routine arranges for @code{handle_exception} to run when your
13165 program stops.  You must call this subroutine explicitly near the
13166 beginning of your program.
13167
13168 @item handle_exception
13169 @findex handle_exception
13170 @cindex remote serial stub, main routine
13171 This is the central workhorse, but your program never calls it
13172 explicitly---the setup code arranges for @code{handle_exception} to
13173 run when a trap is triggered.
13174
13175 @code{handle_exception} takes control when your program stops during
13176 execution (for example, on a breakpoint), and mediates communications
13177 with @value{GDBN} on the host machine.  This is where the communications
13178 protocol is implemented; @code{handle_exception} acts as the @value{GDBN}
13179 representative on the target machine.  It begins by sending summary
13180 information on the state of your program, then continues to execute,
13181 retrieving and transmitting any information @value{GDBN} needs, until you
13182 execute a @value{GDBN} command that makes your program resume; at that point,
13183 @code{handle_exception} returns control to your own code on the target
13184 machine.
13185
13186 @item breakpoint
13187 @cindex @code{breakpoint} subroutine, remote
13188 Use this auxiliary subroutine to make your program contain a
13189 breakpoint.  Depending on the particular situation, this may be the only
13190 way for @value{GDBN} to get control.  For instance, if your target
13191 machine has some sort of interrupt button, you won't need to call this;
13192 pressing the interrupt button transfers control to
13193 @code{handle_exception}---in effect, to @value{GDBN}.  On some machines,
13194 simply receiving characters on the serial port may also trigger a trap;
13195 again, in that situation, you don't need to call @code{breakpoint} from
13196 your own program---simply running @samp{target remote} from the host
13197 @value{GDBN} session gets control.
13198
13199 Call @code{breakpoint} if none of these is true, or if you simply want
13200 to make certain your program stops at a predetermined point for the
13201 start of your debugging session.
13202 @end table
13203
13204 @node Bootstrapping
13205 @subsection What You Must Do for the Stub
13206
13207 @cindex remote stub, support routines
13208 The debugging stubs that come with @value{GDBN} are set up for a particular
13209 chip architecture, but they have no information about the rest of your
13210 debugging target machine.
13211
13212 First of all you need to tell the stub how to communicate with the
13213 serial port.
13214
13215 @table @code
13216 @item int getDebugChar()
13217 @findex getDebugChar
13218 Write this subroutine to read a single character from the serial port.
13219 It may be identical to @code{getchar} for your target system; a
13220 different name is used to allow you to distinguish the two if you wish.
13221
13222 @item void putDebugChar(int)
13223 @findex putDebugChar
13224 Write this subroutine to write a single character to the serial port.
13225 It may be identical to @code{putchar} for your target system; a
13226 different name is used to allow you to distinguish the two if you wish.
13227 @end table
13228
13229 @cindex control C, and remote debugging
13230 @cindex interrupting remote targets
13231 If you want @value{GDBN} to be able to stop your program while it is
13232 running, you need to use an interrupt-driven serial driver, and arrange
13233 for it to stop when it receives a @code{^C} (@samp{\003}, the control-C
13234 character).  That is the character which @value{GDBN} uses to tell the
13235 remote system to stop.
13236
13237 Getting the debugging target to return the proper status to @value{GDBN}
13238 probably requires changes to the standard stub; one quick and dirty way
13239 is to just execute a breakpoint instruction (the ``dirty'' part is that
13240 @value{GDBN} reports a @code{SIGTRAP} instead of a @code{SIGINT}).
13241
13242 Other routines you need to supply are:
13243
13244 @table @code
13245 @item void exceptionHandler (int @var{exception_number}, void *@var{exception_address})
13246 @findex exceptionHandler
13247 Write this function to install @var{exception_address} in the exception
13248 handling tables.  You need to do this because the stub does not have any
13249 way of knowing what the exception handling tables on your target system
13250 are like (for example, the processor's table might be in @sc{rom},
13251 containing entries which point to a table in @sc{ram}).
13252 @var{exception_number} is the exception number which should be changed;
13253 its meaning is architecture-dependent (for example, different numbers
13254 might represent divide by zero, misaligned access, etc).  When this
13255 exception occurs, control should be transferred directly to
13256 @var{exception_address}, and the processor state (stack, registers,
13257 and so on) should be just as it is when a processor exception occurs.  So if
13258 you want to use a jump instruction to reach @var{exception_address}, it
13259 should be a simple jump, not a jump to subroutine.
13260
13261 For the 386, @var{exception_address} should be installed as an interrupt
13262 gate so that interrupts are masked while the handler runs.  The gate
13263 should be at privilege level 0 (the most privileged level).  The
13264 @sc{sparc} and 68k stubs are able to mask interrupts themselves without
13265 help from @code{exceptionHandler}.
13266
13267 @item void flush_i_cache()
13268 @findex flush_i_cache
13269 On @sc{sparc} and @sc{sparclite} only, write this subroutine to flush the
13270 instruction cache, if any, on your target machine.  If there is no
13271 instruction cache, this subroutine may be a no-op.
13272
13273 On target machines that have instruction caches, @value{GDBN} requires this
13274 function to make certain that the state of your program is stable.
13275 @end table
13276
13277 @noindent
13278 You must also make sure this library routine is available:
13279
13280 @table @code
13281 @item void *memset(void *, int, int)
13282 @findex memset
13283 This is the standard library function @code{memset} that sets an area of
13284 memory to a known value.  If you have one of the free versions of
13285 @code{libc.a}, @code{memset} can be found there; otherwise, you must
13286 either obtain it from your hardware manufacturer, or write your own.
13287 @end table
13288
13289 If you do not use the GNU C compiler, you may need other standard
13290 library subroutines as well; this varies from one stub to another,
13291 but in general the stubs are likely to use any of the common library
13292 subroutines which @code{@value{NGCC}} generates as inline code.
13293
13294
13295 @node Debug Session
13296 @subsection Putting it All Together
13297
13298 @cindex remote serial debugging summary
13299 In summary, when your program is ready to debug, you must follow these
13300 steps.
13301
13302 @enumerate
13303 @item
13304 Make sure you have defined the supporting low-level routines
13305 (@pxref{Bootstrapping,,What You Must Do for the Stub}):
13306 @display
13307 @code{getDebugChar}, @code{putDebugChar},
13308 @code{flush_i_cache}, @code{memset}, @code{exceptionHandler}.
13309 @end display
13310
13311 @item
13312 Insert these lines near the top of your program:
13313
13314 @smallexample
13315 set_debug_traps();
13316 breakpoint();
13317 @end smallexample
13318
13319 @item
13320 For the 680x0 stub only, you need to provide a variable called
13321 @code{exceptionHook}.  Normally you just use:
13322
13323 @smallexample
13324 void (*exceptionHook)() = 0;
13325 @end smallexample
13326
13327 @noindent
13328 but if before calling @code{set_debug_traps}, you set it to point to a
13329 function in your program, that function is called when
13330 @code{@value{GDBN}} continues after stopping on a trap (for example, bus
13331 error).  The function indicated by @code{exceptionHook} is called with
13332 one parameter: an @code{int} which is the exception number.
13333
13334 @item
13335 Compile and link together: your program, the @value{GDBN} debugging stub for
13336 your target architecture, and the supporting subroutines.
13337
13338 @item
13339 Make sure you have a serial connection between your target machine and
13340 the @value{GDBN} host, and identify the serial port on the host.
13341
13342 @item
13343 @c The "remote" target now provides a `load' command, so we should
13344 @c document that.  FIXME.
13345 Download your program to your target machine (or get it there by
13346 whatever means the manufacturer provides), and start it.
13347
13348 @item
13349 Start @value{GDBN} on the host, and connect to the target
13350 (@pxref{Connecting,,Connecting to a Remote Target}).
13351
13352 @end enumerate
13353
13354 @node Configurations
13355 @chapter Configuration-Specific Information
13356
13357 While nearly all @value{GDBN} commands are available for all native and
13358 cross versions of the debugger, there are some exceptions.  This chapter
13359 describes things that are only available in certain configurations.
13360
13361 There are three major categories of configurations: native
13362 configurations, where the host and target are the same, embedded
13363 operating system configurations, which are usually the same for several
13364 different processor architectures, and bare embedded processors, which
13365 are quite different from each other.
13366
13367 @menu
13368 * Native::
13369 * Embedded OS::
13370 * Embedded Processors::
13371 * Architectures::
13372 @end menu
13373
13374 @node Native
13375 @section Native
13376
13377 This section describes details specific to particular native
13378 configurations.
13379
13380 @menu
13381 * HP-UX::                       HP-UX
13382 * BSD libkvm Interface::        Debugging BSD kernel memory images
13383 * SVR4 Process Information::    SVR4 process information
13384 * DJGPP Native::                Features specific to the DJGPP port
13385 * Cygwin Native::               Features specific to the Cygwin port
13386 * Hurd Native::                 Features specific to @sc{gnu} Hurd
13387 * Neutrino::                    Features specific to QNX Neutrino
13388 @end menu
13389
13390 @node HP-UX
13391 @subsection HP-UX
13392
13393 On HP-UX systems, if you refer to a function or variable name that
13394 begins with a dollar sign, @value{GDBN} searches for a user or system
13395 name first, before it searches for a convenience variable.
13396
13397
13398 @node BSD libkvm Interface
13399 @subsection BSD libkvm Interface
13400
13401 @cindex libkvm
13402 @cindex kernel memory image
13403 @cindex kernel crash dump
13404
13405 BSD-derived systems (FreeBSD/NetBSD/OpenBSD) have a kernel memory
13406 interface that provides a uniform interface for accessing kernel virtual
13407 memory images, including live systems and crash dumps.  @value{GDBN}
13408 uses this interface to allow you to debug live kernels and kernel crash
13409 dumps on many native BSD configurations.  This is implemented as a
13410 special @code{kvm} debugging target.  For debugging a live system, load
13411 the currently running kernel into @value{GDBN} and connect to the
13412 @code{kvm} target:
13413
13414 @smallexample
13415 (@value{GDBP}) @b{target kvm}
13416 @end smallexample
13417
13418 For debugging crash dumps, provide the file name of the crash dump as an
13419 argument:
13420
13421 @smallexample
13422 (@value{GDBP}) @b{target kvm /var/crash/bsd.0}
13423 @end smallexample
13424
13425 Once connected to the @code{kvm} target, the following commands are
13426 available:
13427
13428 @table @code
13429 @kindex kvm
13430 @item kvm pcb
13431 Set current context from the @dfn{Process Control Block} (PCB) address.
13432
13433 @item kvm proc
13434 Set current context from proc address.  This command isn't available on
13435 modern FreeBSD systems.
13436 @end table
13437
13438 @node SVR4 Process Information
13439 @subsection SVR4 Process Information
13440 @cindex /proc
13441 @cindex examine process image
13442 @cindex process info via @file{/proc}
13443
13444 Many versions of SVR4 and compatible systems provide a facility called
13445 @samp{/proc} that can be used to examine the image of a running
13446 process using file-system subroutines.  If @value{GDBN} is configured
13447 for an operating system with this facility, the command @code{info
13448 proc} is available to report information about the process running
13449 your program, or about any process running on your system.  @code{info
13450 proc} works only on SVR4 systems that include the @code{procfs} code.
13451 This includes, as of this writing, @sc{gnu}/Linux, OSF/1 (Digital
13452 Unix), Solaris, Irix, and Unixware, but not HP-UX, for example.
13453
13454 @table @code
13455 @kindex info proc
13456 @cindex process ID
13457 @item info proc
13458 @itemx info proc @var{process-id}
13459 Summarize available information about any running process.  If a
13460 process ID is specified by @var{process-id}, display information about
13461 that process; otherwise display information about the program being
13462 debugged.  The summary includes the debugged process ID, the command
13463 line used to invoke it, its current working directory, and its
13464 executable file's absolute file name.
13465
13466 On some systems, @var{process-id} can be of the form
13467 @samp{[@var{pid}]/@var{tid}} which specifies a certain thread ID
13468 within a process.  If the optional @var{pid} part is missing, it means
13469 a thread from the process being debugged (the leading @samp{/} still
13470 needs to be present, or else @value{GDBN} will interpret the number as
13471 a process ID rather than a thread ID).
13472
13473 @item info proc mappings
13474 @cindex memory address space mappings
13475 Report the memory address space ranges accessible in the program, with
13476 information on whether the process has read, write, or execute access
13477 rights to each range.  On @sc{gnu}/Linux systems, each memory range
13478 includes the object file which is mapped to that range, instead of the
13479 memory access rights to that range.
13480
13481 @item info proc stat
13482 @itemx info proc status
13483 @cindex process detailed status information
13484 These subcommands are specific to @sc{gnu}/Linux systems.  They show
13485 the process-related information, including the user ID and group ID;
13486 how many threads are there in the process; its virtual memory usage;
13487 the signals that are pending, blocked, and ignored; its TTY; its
13488 consumption of system and user time; its stack size; its @samp{nice}
13489 value; etc.  For more information, see the @samp{proc} man page
13490 (type @kbd{man 5 proc} from your shell prompt).
13491
13492 @item info proc all
13493 Show all the information about the process described under all of the
13494 above @code{info proc} subcommands.
13495
13496 @ignore
13497 @comment These sub-options of 'info proc' were not included when
13498 @comment procfs.c was re-written.  Keep their descriptions around
13499 @comment against the day when someone finds the time to put them back in.
13500 @kindex info proc times
13501 @item info proc times
13502 Starting time, user CPU time, and system CPU time for your program and
13503 its children.
13504
13505 @kindex info proc id
13506 @item info proc id
13507 Report on the process IDs related to your program: its own process ID,
13508 the ID of its parent, the process group ID, and the session ID.
13509 @end ignore
13510
13511 @item set procfs-trace
13512 @kindex set procfs-trace
13513 @cindex @code{procfs} API calls
13514 This command enables and disables tracing of @code{procfs} API calls.
13515
13516 @item show procfs-trace
13517 @kindex show procfs-trace
13518 Show the current state of @code{procfs} API call tracing.
13519
13520 @item set procfs-file @var{file}
13521 @kindex set procfs-file
13522 Tell @value{GDBN} to write @code{procfs} API trace to the named
13523 @var{file}.  @value{GDBN} appends the trace info to the previous
13524 contents of the file.  The default is to display the trace on the
13525 standard output.
13526
13527 @item show procfs-file
13528 @kindex show procfs-file
13529 Show the file to which @code{procfs} API trace is written.
13530
13531 @item proc-trace-entry
13532 @itemx proc-trace-exit
13533 @itemx proc-untrace-entry
13534 @itemx proc-untrace-exit
13535 @kindex proc-trace-entry
13536 @kindex proc-trace-exit
13537 @kindex proc-untrace-entry
13538 @kindex proc-untrace-exit
13539 These commands enable and disable tracing of entries into and exits
13540 from the @code{syscall} interface.
13541
13542 @item info pidlist
13543 @kindex info pidlist
13544 @cindex process list, QNX Neutrino
13545 For QNX Neutrino only, this command displays the list of all the
13546 processes and all the threads within each process.
13547
13548 @item info meminfo
13549 @kindex info meminfo
13550 @cindex mapinfo list, QNX Neutrino
13551 For QNX Neutrino only, this command displays the list of all mapinfos.
13552 @end table
13553
13554 @node DJGPP Native
13555 @subsection Features for Debugging @sc{djgpp} Programs
13556 @cindex @sc{djgpp} debugging
13557 @cindex native @sc{djgpp} debugging
13558 @cindex MS-DOS-specific commands
13559
13560 @cindex DPMI
13561 @sc{djgpp} is a port of the @sc{gnu} development tools to MS-DOS and
13562 MS-Windows.  @sc{djgpp} programs are 32-bit protected-mode programs
13563 that use the @dfn{DPMI} (DOS Protected-Mode Interface) API to run on
13564 top of real-mode DOS systems and their emulations.
13565
13566 @value{GDBN} supports native debugging of @sc{djgpp} programs, and
13567 defines a few commands specific to the @sc{djgpp} port.  This
13568 subsection describes those commands.
13569
13570 @table @code
13571 @kindex info dos
13572 @item info dos
13573 This is a prefix of @sc{djgpp}-specific commands which print
13574 information about the target system and important OS structures.
13575
13576 @kindex sysinfo
13577 @cindex MS-DOS system info
13578 @cindex free memory information (MS-DOS)
13579 @item info dos sysinfo
13580 This command displays assorted information about the underlying
13581 platform: the CPU type and features, the OS version and flavor, the
13582 DPMI version, and the available conventional and DPMI memory.
13583
13584 @cindex GDT
13585 @cindex LDT
13586 @cindex IDT
13587 @cindex segment descriptor tables
13588 @cindex descriptor tables display
13589 @item info dos gdt
13590 @itemx info dos ldt
13591 @itemx info dos idt
13592 These 3 commands display entries from, respectively, Global, Local,
13593 and Interrupt Descriptor Tables (GDT, LDT, and IDT).  The descriptor
13594 tables are data structures which store a descriptor for each segment
13595 that is currently in use.  The segment's selector is an index into a
13596 descriptor table; the table entry for that index holds the
13597 descriptor's base address and limit, and its attributes and access
13598 rights.
13599
13600 A typical @sc{djgpp} program uses 3 segments: a code segment, a data
13601 segment (used for both data and the stack), and a DOS segment (which
13602 allows access to DOS/BIOS data structures and absolute addresses in
13603 conventional memory).  However, the DPMI host will usually define
13604 additional segments in order to support the DPMI environment.
13605
13606 @cindex garbled pointers
13607 These commands allow to display entries from the descriptor tables.
13608 Without an argument, all entries from the specified table are
13609 displayed.  An argument, which should be an integer expression, means
13610 display a single entry whose index is given by the argument.  For
13611 example, here's a convenient way to display information about the
13612 debugged program's data segment:
13613
13614 @smallexample
13615 @exdent @code{(@value{GDBP}) info dos ldt $ds}
13616 @exdent @code{0x13f: base=0x11970000 limit=0x0009ffff 32-Bit Data (Read/Write, Exp-up)}
13617 @end smallexample
13618
13619 @noindent
13620 This comes in handy when you want to see whether a pointer is outside
13621 the data segment's limit (i.e.@: @dfn{garbled}).
13622
13623 @cindex page tables display (MS-DOS)
13624 @item info dos pde
13625 @itemx info dos pte
13626 These two commands display entries from, respectively, the Page
13627 Directory and the Page Tables.  Page Directories and Page Tables are
13628 data structures which control how virtual memory addresses are mapped
13629 into physical addresses.  A Page Table includes an entry for every
13630 page of memory that is mapped into the program's address space; there
13631 may be several Page Tables, each one holding up to 4096 entries.  A
13632 Page Directory has up to 4096 entries, one each for every Page Table
13633 that is currently in use.
13634
13635 Without an argument, @kbd{info dos pde} displays the entire Page
13636 Directory, and @kbd{info dos pte} displays all the entries in all of
13637 the Page Tables.  An argument, an integer expression, given to the
13638 @kbd{info dos pde} command means display only that entry from the Page
13639 Directory table.  An argument given to the @kbd{info dos pte} command
13640 means display entries from a single Page Table, the one pointed to by
13641 the specified entry in the Page Directory.
13642
13643 @cindex direct memory access (DMA) on MS-DOS
13644 These commands are useful when your program uses @dfn{DMA} (Direct
13645 Memory Access), which needs physical addresses to program the DMA
13646 controller.
13647
13648 These commands are supported only with some DPMI servers.
13649
13650 @cindex physical address from linear address
13651 @item info dos address-pte @var{addr}
13652 This command displays the Page Table entry for a specified linear
13653 address.  The argument @var{addr} is a linear address which should
13654 already have the appropriate segment's base address added to it,
13655 because this command accepts addresses which may belong to @emph{any}
13656 segment.  For example, here's how to display the Page Table entry for
13657 the page where a variable @code{i} is stored:
13658
13659 @smallexample
13660 @exdent @code{(@value{GDBP}) info dos address-pte __djgpp_base_address + (char *)&i}
13661 @exdent @code{Page Table entry for address 0x11a00d30:}
13662 @exdent @code{Base=0x02698000 Dirty Acc. Not-Cached Write-Back Usr Read-Write +0xd30}
13663 @end smallexample
13664
13665 @noindent
13666 This says that @code{i} is stored at offset @code{0xd30} from the page
13667 whose physical base address is @code{0x02698000}, and shows all the
13668 attributes of that page.
13669
13670 Note that you must cast the addresses of variables to a @code{char *},
13671 since otherwise the value of @code{__djgpp_base_address}, the base
13672 address of all variables and functions in a @sc{djgpp} program, will
13673 be added using the rules of C pointer arithmetics: if @code{i} is
13674 declared an @code{int}, @value{GDBN} will add 4 times the value of
13675 @code{__djgpp_base_address} to the address of @code{i}.
13676
13677 Here's another example, it displays the Page Table entry for the
13678 transfer buffer:
13679
13680 @smallexample
13681 @exdent @code{(@value{GDBP}) info dos address-pte *((unsigned *)&_go32_info_block + 3)}
13682 @exdent @code{Page Table entry for address 0x29110:}
13683 @exdent @code{Base=0x00029000 Dirty Acc. Not-Cached Write-Back Usr Read-Write +0x110}
13684 @end smallexample
13685
13686 @noindent
13687 (The @code{+ 3} offset is because the transfer buffer's address is the
13688 3rd member of the @code{_go32_info_block} structure.)  The output
13689 clearly shows that this DPMI server maps the addresses in conventional
13690 memory 1:1, i.e.@: the physical (@code{0x00029000} + @code{0x110}) and
13691 linear (@code{0x29110}) addresses are identical.
13692
13693 This command is supported only with some DPMI servers.
13694 @end table
13695
13696 @cindex DOS serial data link, remote debugging
13697 In addition to native debugging, the DJGPP port supports remote
13698 debugging via a serial data link.  The following commands are specific
13699 to remote serial debugging in the DJGPP port of @value{GDBN}.
13700
13701 @table @code
13702 @kindex set com1base
13703 @kindex set com1irq
13704 @kindex set com2base
13705 @kindex set com2irq
13706 @kindex set com3base
13707 @kindex set com3irq
13708 @kindex set com4base
13709 @kindex set com4irq
13710 @item set com1base @var{addr}
13711 This command sets the base I/O port address of the @file{COM1} serial
13712 port.
13713
13714 @item set com1irq @var{irq}
13715 This command sets the @dfn{Interrupt Request} (@code{IRQ}) line to use
13716 for the @file{COM1} serial port.
13717
13718 There are similar commands @samp{set com2base}, @samp{set com3irq},
13719 etc.@: for setting the port address and the @code{IRQ} lines for the
13720 other 3 COM ports.
13721
13722 @kindex show com1base
13723 @kindex show com1irq
13724 @kindex show com2base
13725 @kindex show com2irq
13726 @kindex show com3base
13727 @kindex show com3irq
13728 @kindex show com4base
13729 @kindex show com4irq
13730 The related commands @samp{show com1base}, @samp{show com1irq} etc.@:
13731 display the current settings of the base address and the @code{IRQ}
13732 lines used by the COM ports.
13733
13734 @item info serial
13735 @kindex info serial
13736 @cindex DOS serial port status
13737 This command prints the status of the 4 DOS serial ports.  For each
13738 port, it prints whether it's active or not, its I/O base address and
13739 IRQ number, whether it uses a 16550-style FIFO, its baudrate, and the
13740 counts of various errors encountered so far.
13741 @end table
13742
13743
13744 @node Cygwin Native
13745 @subsection Features for Debugging MS Windows PE Executables
13746 @cindex MS Windows debugging
13747 @cindex native Cygwin debugging
13748 @cindex Cygwin-specific commands
13749
13750 @value{GDBN} supports native debugging of MS Windows programs, including
13751 DLLs with and without symbolic debugging information.  There are various
13752 additional Cygwin-specific commands, described in this section.
13753 Working with DLLs that have no debugging symbols is described in
13754 @ref{Non-debug DLL Symbols}.
13755
13756 @table @code
13757 @kindex info w32
13758 @item info w32
13759 This is a prefix of MS Windows-specific commands which print
13760 information about the target system and important OS structures.
13761
13762 @item info w32 selector
13763 This command displays information returned by
13764 the Win32 API @code{GetThreadSelectorEntry} function.
13765 It takes an optional argument that is evaluated to
13766 a long value to give the information about this given selector.
13767 Without argument, this command displays information
13768 about the six segment registers.
13769
13770 @kindex info dll
13771 @item info dll
13772 This is a Cygwin-specific alias of @code{info shared}.
13773
13774 @kindex dll-symbols
13775 @item dll-symbols
13776 This command loads symbols from a dll similarly to
13777 add-sym command but without the need to specify a base address.
13778
13779 @kindex set cygwin-exceptions
13780 @cindex debugging the Cygwin DLL
13781 @cindex Cygwin DLL, debugging
13782 @item set cygwin-exceptions @var{mode}
13783 If @var{mode} is @code{on}, @value{GDBN} will break on exceptions that
13784 happen inside the Cygwin DLL.  If @var{mode} is @code{off},
13785 @value{GDBN} will delay recognition of exceptions, and may ignore some
13786 exceptions which seem to be caused by internal Cygwin DLL
13787 ``bookkeeping''.  This option is meant primarily for debugging the
13788 Cygwin DLL itself; the default value is @code{off} to avoid annoying
13789 @value{GDBN} users with false @code{SIGSEGV} signals.
13790
13791 @kindex show cygwin-exceptions
13792 @item show cygwin-exceptions
13793 Displays whether @value{GDBN} will break on exceptions that happen
13794 inside the Cygwin DLL itself.
13795
13796 @kindex set new-console
13797 @item set new-console @var{mode}
13798 If @var{mode} is @code{on} the debuggee will
13799 be started in a new console on next start.
13800 If @var{mode} is @code{off}i, the debuggee will
13801 be started in the same console as the debugger.
13802
13803 @kindex show new-console
13804 @item show new-console
13805 Displays whether a new console is used
13806 when the debuggee is started.
13807
13808 @kindex set new-group
13809 @item set new-group @var{mode}
13810 This boolean value controls whether the debuggee should
13811 start a new group or stay in the same group as the debugger.
13812 This affects the way the Windows OS handles
13813 @samp{Ctrl-C}.
13814
13815 @kindex show new-group
13816 @item show new-group
13817 Displays current value of new-group boolean.
13818
13819 @kindex set debugevents
13820 @item set debugevents
13821 This boolean value adds debug output concerning kernel events related
13822 to the debuggee seen by the debugger.  This includes events that
13823 signal thread and process creation and exit, DLL loading and
13824 unloading, console interrupts, and debugging messages produced by the
13825 Windows @code{OutputDebugString} API call.
13826
13827 @kindex set debugexec
13828 @item set debugexec
13829 This boolean value adds debug output concerning execute events
13830 (such as resume thread) seen by the debugger.
13831
13832 @kindex set debugexceptions
13833 @item set debugexceptions
13834 This boolean value adds debug output concerning exceptions in the
13835 debuggee seen by the debugger.
13836
13837 @kindex set debugmemory
13838 @item set debugmemory
13839 This boolean value adds debug output concerning debuggee memory reads
13840 and writes by the debugger.
13841
13842 @kindex set shell
13843 @item set shell
13844 This boolean values specifies whether the debuggee is called
13845 via a shell or directly (default value is on).
13846
13847 @kindex show shell
13848 @item show shell
13849 Displays if the debuggee will be started with a shell.
13850
13851 @end table
13852
13853 @menu
13854 * Non-debug DLL Symbols::  Support for DLLs without debugging symbols
13855 @end menu
13856
13857 @node Non-debug DLL Symbols
13858 @subsubsection Support for DLLs without Debugging Symbols
13859 @cindex DLLs with no debugging symbols
13860 @cindex Minimal symbols and DLLs
13861
13862 Very often on windows, some of the DLLs that your program relies on do
13863 not include symbolic debugging information (for example,
13864 @file{kernel32.dll}).  When @value{GDBN} doesn't recognize any debugging
13865 symbols in a DLL, it relies on the minimal amount of symbolic
13866 information contained in the DLL's export table.  This section
13867 describes working with such symbols, known internally to @value{GDBN} as
13868 ``minimal symbols''.
13869
13870 Note that before the debugged program has started execution, no DLLs
13871 will have been loaded.  The easiest way around this problem is simply to
13872 start the program --- either by setting a breakpoint or letting the
13873 program run once to completion.  It is also possible to force
13874 @value{GDBN} to load a particular DLL before starting the executable ---
13875 see the shared library information in @ref{Files}, or the
13876 @code{dll-symbols} command in @ref{Cygwin Native}.  Currently,
13877 explicitly loading symbols from a DLL with no debugging information will
13878 cause the symbol names to be duplicated in @value{GDBN}'s lookup table,
13879 which may adversely affect symbol lookup performance.
13880
13881 @subsubsection DLL Name Prefixes
13882
13883 In keeping with the naming conventions used by the Microsoft debugging
13884 tools, DLL export symbols are made available with a prefix based on the
13885 DLL name, for instance @code{KERNEL32!CreateFileA}.  The plain name is
13886 also entered into the symbol table, so @code{CreateFileA} is often
13887 sufficient. In some cases there will be name clashes within a program
13888 (particularly if the executable itself includes full debugging symbols)
13889 necessitating the use of the fully qualified name when referring to the
13890 contents of the DLL. Use single-quotes around the name to avoid the
13891 exclamation mark (``!'')  being interpreted as a language operator.
13892
13893 Note that the internal name of the DLL may be all upper-case, even
13894 though the file name of the DLL is lower-case, or vice-versa. Since
13895 symbols within @value{GDBN} are @emph{case-sensitive} this may cause
13896 some confusion. If in doubt, try the @code{info functions} and
13897 @code{info variables} commands or even @code{maint print msymbols}
13898 (@pxref{Symbols}). Here's an example:
13899
13900 @smallexample
13901 (@value{GDBP}) info function CreateFileA
13902 All functions matching regular expression "CreateFileA":
13903
13904 Non-debugging symbols:
13905 0x77e885f4  CreateFileA
13906 0x77e885f4  KERNEL32!CreateFileA
13907 @end smallexample
13908
13909 @smallexample
13910 (@value{GDBP}) info function !
13911 All functions matching regular expression "!":
13912
13913 Non-debugging symbols:
13914 0x6100114c  cygwin1!__assert
13915 0x61004034  cygwin1!_dll_crt0@@0
13916 0x61004240  cygwin1!dll_crt0(per_process *)
13917 [etc...]
13918 @end smallexample
13919
13920 @subsubsection Working with Minimal Symbols
13921
13922 Symbols extracted from a DLL's export table do not contain very much
13923 type information. All that @value{GDBN} can do is guess whether a symbol
13924 refers to a function or variable depending on the linker section that
13925 contains the symbol. Also note that the actual contents of the memory
13926 contained in a DLL are not available unless the program is running. This
13927 means that you cannot examine the contents of a variable or disassemble
13928 a function within a DLL without a running program.
13929
13930 Variables are generally treated as pointers and dereferenced
13931 automatically. For this reason, it is often necessary to prefix a
13932 variable name with the address-of operator (``&'') and provide explicit
13933 type information in the command. Here's an example of the type of
13934 problem:
13935
13936 @smallexample
13937 (@value{GDBP}) print 'cygwin1!__argv'
13938 $1 = 268572168
13939 @end smallexample
13940
13941 @smallexample
13942 (@value{GDBP}) x 'cygwin1!__argv'
13943 0x10021610:      "\230y\""
13944 @end smallexample
13945
13946 And two possible solutions:
13947
13948 @smallexample
13949 (@value{GDBP}) print ((char **)'cygwin1!__argv')[0]
13950 $2 = 0x22fd98 "/cygdrive/c/mydirectory/myprogram"
13951 @end smallexample
13952
13953 @smallexample
13954 (@value{GDBP}) x/2x &'cygwin1!__argv'
13955 0x610c0aa8 <cygwin1!__argv>:    0x10021608      0x00000000
13956 (@value{GDBP}) x/x 0x10021608
13957 0x10021608:     0x0022fd98
13958 (@value{GDBP}) x/s 0x0022fd98
13959 0x22fd98:        "/cygdrive/c/mydirectory/myprogram"
13960 @end smallexample
13961
13962 Setting a break point within a DLL is possible even before the program
13963 starts execution. However, under these circumstances, @value{GDBN} can't
13964 examine the initial instructions of the function in order to skip the
13965 function's frame set-up code. You can work around this by using ``*&''
13966 to set the breakpoint at a raw memory address:
13967
13968 @smallexample
13969 (@value{GDBP}) break *&'python22!PyOS_Readline'
13970 Breakpoint 1 at 0x1e04eff0
13971 @end smallexample
13972
13973 The author of these extensions is not entirely convinced that setting a
13974 break point within a shared DLL like @file{kernel32.dll} is completely
13975 safe.
13976
13977 @node Hurd Native
13978 @subsection Commands Specific to @sc{gnu} Hurd Systems
13979 @cindex @sc{gnu} Hurd debugging
13980
13981 This subsection describes @value{GDBN} commands specific to the
13982 @sc{gnu} Hurd native debugging.
13983
13984 @table @code
13985 @item set signals
13986 @itemx set sigs
13987 @kindex set signals@r{, Hurd command}
13988 @kindex set sigs@r{, Hurd command}
13989 This command toggles the state of inferior signal interception by
13990 @value{GDBN}.  Mach exceptions, such as breakpoint traps, are not
13991 affected by this command.  @code{sigs} is a shorthand alias for
13992 @code{signals}.
13993
13994 @item show signals
13995 @itemx show sigs
13996 @kindex show signals@r{, Hurd command}
13997 @kindex show sigs@r{, Hurd command}
13998 Show the current state of intercepting inferior's signals.
13999
14000 @item set signal-thread
14001 @itemx set sigthread
14002 @kindex set signal-thread
14003 @kindex set sigthread
14004 This command tells @value{GDBN} which thread is the @code{libc} signal
14005 thread.  That thread is run when a signal is delivered to a running
14006 process.  @code{set sigthread} is the shorthand alias of @code{set
14007 signal-thread}.
14008
14009 @item show signal-thread
14010 @itemx show sigthread
14011 @kindex show signal-thread
14012 @kindex show sigthread
14013 These two commands show which thread will run when the inferior is
14014 delivered a signal.
14015
14016 @item set stopped
14017 @kindex set stopped@r{, Hurd command}
14018 This commands tells @value{GDBN} that the inferior process is stopped,
14019 as with the @code{SIGSTOP} signal.  The stopped process can be
14020 continued by delivering a signal to it.
14021
14022 @item show stopped
14023 @kindex show stopped@r{, Hurd command}
14024 This command shows whether @value{GDBN} thinks the debuggee is
14025 stopped.
14026
14027 @item set exceptions
14028 @kindex set exceptions@r{, Hurd command}
14029 Use this command to turn off trapping of exceptions in the inferior.
14030 When exception trapping is off, neither breakpoints nor
14031 single-stepping will work.  To restore the default, set exception
14032 trapping on.
14033
14034 @item show exceptions
14035 @kindex show exceptions@r{, Hurd command}
14036 Show the current state of trapping exceptions in the inferior.
14037
14038 @item set task pause
14039 @kindex set task@r{, Hurd commands}
14040 @cindex task attributes (@sc{gnu} Hurd)
14041 @cindex pause current task (@sc{gnu} Hurd)
14042 This command toggles task suspension when @value{GDBN} has control.
14043 Setting it to on takes effect immediately, and the task is suspended
14044 whenever @value{GDBN} gets control.  Setting it to off will take
14045 effect the next time the inferior is continued.  If this option is set
14046 to off, you can use @code{set thread default pause on} or @code{set
14047 thread pause on} (see below) to pause individual threads.
14048
14049 @item show task pause
14050 @kindex show task@r{, Hurd commands}
14051 Show the current state of task suspension.
14052
14053 @item set task detach-suspend-count
14054 @cindex task suspend count
14055 @cindex detach from task, @sc{gnu} Hurd
14056 This command sets the suspend count the task will be left with when
14057 @value{GDBN} detaches from it.
14058
14059 @item show task detach-suspend-count
14060 Show the suspend count the task will be left with when detaching.
14061
14062 @item set task exception-port
14063 @itemx set task excp
14064 @cindex task exception port, @sc{gnu} Hurd
14065 This command sets the task exception port to which @value{GDBN} will
14066 forward exceptions.  The argument should be the value of the @dfn{send
14067 rights} of the task.  @code{set task excp} is a shorthand alias.
14068
14069 @item set noninvasive
14070 @cindex noninvasive task options
14071 This command switches @value{GDBN} to a mode that is the least
14072 invasive as far as interfering with the inferior is concerned.  This
14073 is the same as using @code{set task pause}, @code{set exceptions}, and
14074 @code{set signals} to values opposite to the defaults.
14075
14076 @item info send-rights
14077 @itemx info receive-rights
14078 @itemx info port-rights
14079 @itemx info port-sets
14080 @itemx info dead-names
14081 @itemx info ports
14082 @itemx info psets
14083 @cindex send rights, @sc{gnu} Hurd
14084 @cindex receive rights, @sc{gnu} Hurd
14085 @cindex port rights, @sc{gnu} Hurd
14086 @cindex port sets, @sc{gnu} Hurd
14087 @cindex dead names, @sc{gnu} Hurd
14088 These commands display information about, respectively, send rights,
14089 receive rights, port rights, port sets, and dead names of a task.
14090 There are also shorthand aliases: @code{info ports} for @code{info
14091 port-rights} and @code{info psets} for @code{info port-sets}.
14092
14093 @item set thread pause
14094 @kindex set thread@r{, Hurd command}
14095 @cindex thread properties, @sc{gnu} Hurd
14096 @cindex pause current thread (@sc{gnu} Hurd)
14097 This command toggles current thread suspension when @value{GDBN} has
14098 control.  Setting it to on takes effect immediately, and the current
14099 thread is suspended whenever @value{GDBN} gets control.  Setting it to
14100 off will take effect the next time the inferior is continued.
14101 Normally, this command has no effect, since when @value{GDBN} has
14102 control, the whole task is suspended.  However, if you used @code{set
14103 task pause off} (see above), this command comes in handy to suspend
14104 only the current thread.
14105
14106 @item show thread pause
14107 @kindex show thread@r{, Hurd command}
14108 This command shows the state of current thread suspension.
14109
14110 @item set thread run
14111 This command sets whether the current thread is allowed to run.
14112
14113 @item show thread run
14114 Show whether the current thread is allowed to run.
14115
14116 @item set thread detach-suspend-count
14117 @cindex thread suspend count, @sc{gnu} Hurd
14118 @cindex detach from thread, @sc{gnu} Hurd
14119 This command sets the suspend count @value{GDBN} will leave on a
14120 thread when detaching.  This number is relative to the suspend count
14121 found by @value{GDBN} when it notices the thread; use @code{set thread
14122 takeover-suspend-count} to force it to an absolute value.
14123
14124 @item show thread detach-suspend-count
14125 Show the suspend count @value{GDBN} will leave on the thread when
14126 detaching.
14127
14128 @item set thread exception-port
14129 @itemx set thread excp
14130 Set the thread exception port to which to forward exceptions.  This
14131 overrides the port set by @code{set task exception-port} (see above).
14132 @code{set thread excp} is the shorthand alias.
14133
14134 @item set thread takeover-suspend-count
14135 Normally, @value{GDBN}'s thread suspend counts are relative to the
14136 value @value{GDBN} finds when it notices each thread.  This command
14137 changes the suspend counts to be absolute instead.
14138
14139 @item set thread default
14140 @itemx show thread default
14141 @cindex thread default settings, @sc{gnu} Hurd
14142 Each of the above @code{set thread} commands has a @code{set thread
14143 default} counterpart (e.g., @code{set thread default pause}, @code{set
14144 thread default exception-port}, etc.).  The @code{thread default}
14145 variety of commands sets the default thread properties for all
14146 threads; you can then change the properties of individual threads with
14147 the non-default commands.
14148 @end table
14149
14150
14151 @node Neutrino
14152 @subsection QNX Neutrino
14153 @cindex QNX Neutrino
14154
14155 @value{GDBN} provides the following commands specific to the QNX
14156 Neutrino target:
14157
14158 @table @code
14159 @item set debug nto-debug
14160 @kindex set debug nto-debug
14161 When set to on, enables debugging messages specific to the QNX
14162 Neutrino support.
14163
14164 @item show debug nto-debug
14165 @kindex show debug nto-debug
14166 Show the current state of QNX Neutrino messages.
14167 @end table
14168
14169
14170 @node Embedded OS
14171 @section Embedded Operating Systems
14172
14173 This section describes configurations involving the debugging of
14174 embedded operating systems that are available for several different
14175 architectures.
14176
14177 @menu
14178 * VxWorks::                     Using @value{GDBN} with VxWorks
14179 @end menu
14180
14181 @value{GDBN} includes the ability to debug programs running on
14182 various real-time operating systems.
14183
14184 @node VxWorks
14185 @subsection Using @value{GDBN} with VxWorks
14186
14187 @cindex VxWorks
14188
14189 @table @code
14190
14191 @kindex target vxworks
14192 @item target vxworks @var{machinename}
14193 A VxWorks system, attached via TCP/IP.  The argument @var{machinename}
14194 is the target system's machine name or IP address.
14195
14196 @end table
14197
14198 On VxWorks, @code{load} links @var{filename} dynamically on the
14199 current target system as well as adding its symbols in @value{GDBN}.
14200
14201 @value{GDBN} enables developers to spawn and debug tasks running on networked
14202 VxWorks targets from a Unix host.  Already-running tasks spawned from
14203 the VxWorks shell can also be debugged.  @value{GDBN} uses code that runs on
14204 both the Unix host and on the VxWorks target.  The program
14205 @code{@value{GDBP}} is installed and executed on the Unix host.  (It may be
14206 installed with the name @code{vxgdb}, to distinguish it from a
14207 @value{GDBN} for debugging programs on the host itself.)
14208
14209 @table @code
14210 @item VxWorks-timeout @var{args}
14211 @kindex vxworks-timeout
14212 All VxWorks-based targets now support the option @code{vxworks-timeout}.
14213 This option is set by the user, and  @var{args} represents the number of
14214 seconds @value{GDBN} waits for responses to rpc's.  You might use this if
14215 your VxWorks target is a slow software simulator or is on the far side
14216 of a thin network line.
14217 @end table
14218
14219 The following information on connecting to VxWorks was current when
14220 this manual was produced; newer releases of VxWorks may use revised
14221 procedures.
14222
14223 @findex INCLUDE_RDB
14224 To use @value{GDBN} with VxWorks, you must rebuild your VxWorks kernel
14225 to include the remote debugging interface routines in the VxWorks
14226 library @file{rdb.a}.  To do this, define @code{INCLUDE_RDB} in the
14227 VxWorks configuration file @file{configAll.h} and rebuild your VxWorks
14228 kernel.  The resulting kernel contains @file{rdb.a}, and spawns the
14229 source debugging task @code{tRdbTask} when VxWorks is booted.  For more
14230 information on configuring and remaking VxWorks, see the manufacturer's
14231 manual.
14232 @c VxWorks, see the @cite{VxWorks Programmer's Guide}.
14233
14234 Once you have included @file{rdb.a} in your VxWorks system image and set
14235 your Unix execution search path to find @value{GDBN}, you are ready to
14236 run @value{GDBN}.  From your Unix host, run @code{@value{GDBP}} (or
14237 @code{vxgdb}, depending on your installation).
14238
14239 @value{GDBN} comes up showing the prompt:
14240
14241 @smallexample
14242 (vxgdb)
14243 @end smallexample
14244
14245 @menu
14246 * VxWorks Connection::          Connecting to VxWorks
14247 * VxWorks Download::            VxWorks download
14248 * VxWorks Attach::              Running tasks
14249 @end menu
14250
14251 @node VxWorks Connection
14252 @subsubsection Connecting to VxWorks
14253
14254 The @value{GDBN} command @code{target} lets you connect to a VxWorks target on the
14255 network.  To connect to a target whose host name is ``@code{tt}'', type:
14256
14257 @smallexample
14258 (vxgdb) target vxworks tt
14259 @end smallexample
14260
14261 @need 750
14262 @value{GDBN} displays messages like these:
14263
14264 @smallexample
14265 Attaching remote machine across net...
14266 Connected to tt.
14267 @end smallexample
14268
14269 @need 1000
14270 @value{GDBN} then attempts to read the symbol tables of any object modules
14271 loaded into the VxWorks target since it was last booted.  @value{GDBN} locates
14272 these files by searching the directories listed in the command search
14273 path (@pxref{Environment, ,Your Program's Environment}); if it fails
14274 to find an object file, it displays a message such as:
14275
14276 @smallexample
14277 prog.o: No such file or directory.
14278 @end smallexample
14279
14280 When this happens, add the appropriate directory to the search path with
14281 the @value{GDBN} command @code{path}, and execute the @code{target}
14282 command again.
14283
14284 @node VxWorks Download
14285 @subsubsection VxWorks Download
14286
14287 @cindex download to VxWorks
14288 If you have connected to the VxWorks target and you want to debug an
14289 object that has not yet been loaded, you can use the @value{GDBN}
14290 @code{load} command to download a file from Unix to VxWorks
14291 incrementally.  The object file given as an argument to the @code{load}
14292 command is actually opened twice: first by the VxWorks target in order
14293 to download the code, then by @value{GDBN} in order to read the symbol
14294 table.  This can lead to problems if the current working directories on
14295 the two systems differ.  If both systems have NFS mounted the same
14296 filesystems, you can avoid these problems by using absolute paths.
14297 Otherwise, it is simplest to set the working directory on both systems
14298 to the directory in which the object file resides, and then to reference
14299 the file by its name, without any path.  For instance, a program
14300 @file{prog.o} may reside in @file{@var{vxpath}/vw/demo/rdb} in VxWorks
14301 and in @file{@var{hostpath}/vw/demo/rdb} on the host.  To load this
14302 program, type this on VxWorks:
14303
14304 @smallexample
14305 -> cd "@var{vxpath}/vw/demo/rdb"
14306 @end smallexample
14307
14308 @noindent
14309 Then, in @value{GDBN}, type:
14310
14311 @smallexample
14312 (vxgdb) cd @var{hostpath}/vw/demo/rdb
14313 (vxgdb) load prog.o
14314 @end smallexample
14315
14316 @value{GDBN} displays a response similar to this:
14317
14318 @smallexample
14319 Reading symbol data from wherever/vw/demo/rdb/prog.o... done.
14320 @end smallexample
14321
14322 You can also use the @code{load} command to reload an object module
14323 after editing and recompiling the corresponding source file.  Note that
14324 this makes @value{GDBN} delete all currently-defined breakpoints,
14325 auto-displays, and convenience variables, and to clear the value
14326 history.  (This is necessary in order to preserve the integrity of
14327 debugger's data structures that reference the target system's symbol
14328 table.)
14329
14330 @node VxWorks Attach
14331 @subsubsection Running Tasks
14332
14333 @cindex running VxWorks tasks
14334 You can also attach to an existing task using the @code{attach} command as
14335 follows:
14336
14337 @smallexample
14338 (vxgdb) attach @var{task}
14339 @end smallexample
14340
14341 @noindent
14342 where @var{task} is the VxWorks hexadecimal task ID.  The task can be running
14343 or suspended when you attach to it.  Running tasks are suspended at
14344 the time of attachment.
14345
14346 @node Embedded Processors
14347 @section Embedded Processors
14348
14349 This section goes into details specific to particular embedded
14350 configurations.
14351
14352 @cindex send command to simulator
14353 Whenever a specific embedded processor has a simulator, @value{GDBN}
14354 allows to send an arbitrary command to the simulator.
14355
14356 @table @code
14357 @item sim @var{command}
14358 @kindex sim@r{, a command}
14359 Send an arbitrary @var{command} string to the simulator.  Consult the
14360 documentation for the specific simulator in use for information about
14361 acceptable commands.
14362 @end table
14363
14364
14365 @menu
14366 * ARM::                         ARM RDI
14367 * M32R/D::                      Renesas M32R/D
14368 * M68K::                        Motorola M68K
14369 * MIPS Embedded::               MIPS Embedded
14370 * OpenRISC 1000::               OpenRisc 1000
14371 * PA::                          HP PA Embedded
14372 * PowerPC::                     PowerPC
14373 * Sparclet::                    Tsqware Sparclet
14374 * Sparclite::                   Fujitsu Sparclite
14375 * Z8000::                       Zilog Z8000
14376 * AVR::                         Atmel AVR
14377 * CRIS::                        CRIS
14378 * Super-H::                     Renesas Super-H
14379 @end menu
14380
14381 @node ARM
14382 @subsection ARM
14383 @cindex ARM RDI
14384
14385 @table @code
14386 @kindex target rdi
14387 @item target rdi @var{dev}
14388 ARM Angel monitor, via RDI library interface to ADP protocol.  You may
14389 use this target to communicate with both boards running the Angel
14390 monitor, or with the EmbeddedICE JTAG debug device.
14391
14392 @kindex target rdp
14393 @item target rdp @var{dev}
14394 ARM Demon monitor.
14395
14396 @end table
14397
14398 @value{GDBN} provides the following ARM-specific commands:
14399
14400 @table @code
14401 @item set arm disassembler
14402 @kindex set arm
14403 This commands selects from a list of disassembly styles.  The
14404 @code{"std"} style is the standard style.
14405
14406 @item show arm disassembler
14407 @kindex show arm
14408 Show the current disassembly style.
14409
14410 @item set arm apcs32
14411 @cindex ARM 32-bit mode
14412 This command toggles ARM operation mode between 32-bit and 26-bit.
14413
14414 @item show arm apcs32
14415 Display the current usage of the ARM 32-bit mode.
14416
14417 @item set arm fpu @var{fputype}
14418 This command sets the ARM floating-point unit (FPU) type.  The
14419 argument @var{fputype} can be one of these:
14420
14421 @table @code
14422 @item auto
14423 Determine the FPU type by querying the OS ABI.
14424 @item softfpa
14425 Software FPU, with mixed-endian doubles on little-endian ARM
14426 processors.
14427 @item fpa
14428 GCC-compiled FPA co-processor.
14429 @item softvfp
14430 Software FPU with pure-endian doubles.
14431 @item vfp
14432 VFP co-processor.
14433 @end table
14434
14435 @item show arm fpu
14436 Show the current type of the FPU.
14437
14438 @item set arm abi
14439 This command forces @value{GDBN} to use the specified ABI.
14440
14441 @item show arm abi
14442 Show the currently used ABI.
14443
14444 @item set debug arm
14445 Toggle whether to display ARM-specific debugging messages from the ARM
14446 target support subsystem.
14447
14448 @item show debug arm
14449 Show whether ARM-specific debugging messages are enabled.
14450 @end table
14451
14452 The following commands are available when an ARM target is debugged
14453 using the RDI interface:
14454
14455 @table @code
14456 @item rdilogfile @r{[}@var{file}@r{]}
14457 @kindex rdilogfile
14458 @cindex ADP (Angel Debugger Protocol) logging
14459 Set the filename for the ADP (Angel Debugger Protocol) packet log.
14460 With an argument, sets the log file to the specified @var{file}.  With
14461 no argument, show the current log file name.  The default log file is
14462 @file{rdi.log}.
14463
14464 @item rdilogenable @r{[}@var{arg}@r{]}
14465 @kindex rdilogenable
14466 Control logging of ADP packets.  With an argument of 1 or @code{"yes"}
14467 enables logging, with an argument 0 or @code{"no"} disables it.  With
14468 no arguments displays the current setting.  When logging is enabled,
14469 ADP packets exchanged between @value{GDBN} and the RDI target device
14470 are logged to a file.
14471
14472 @item set rdiromatzero
14473 @kindex set rdiromatzero
14474 @cindex ROM at zero address, RDI
14475 Tell @value{GDBN} whether the target has ROM at address 0.  If on,
14476 vector catching is disabled, so that zero address can be used.  If off
14477 (the default), vector catching is enabled.  For this command to take
14478 effect, it needs to be invoked prior to the @code{target rdi} command.
14479
14480 @item show rdiromatzero
14481 @kindex show rdiromatzero
14482 Show the current setting of ROM at zero address.
14483
14484 @item set rdiheartbeat
14485 @kindex set rdiheartbeat
14486 @cindex RDI heartbeat
14487 Enable or disable RDI heartbeat packets.  It is not recommended to
14488 turn on this option, since it confuses ARM and EPI JTAG interface, as
14489 well as the Angel monitor.
14490
14491 @item show rdiheartbeat
14492 @kindex show rdiheartbeat
14493 Show the setting of RDI heartbeat packets.
14494 @end table
14495
14496
14497 @node M32R/D
14498 @subsection Renesas M32R/D and M32R/SDI
14499
14500 @table @code
14501 @kindex target m32r
14502 @item target m32r @var{dev}
14503 Renesas M32R/D ROM monitor.
14504
14505 @kindex target m32rsdi
14506 @item target m32rsdi @var{dev}
14507 Renesas M32R SDI server, connected via parallel port to the board.
14508 @end table
14509
14510 The following @value{GDBN} commands are specific to the M32R monitor:
14511
14512 @table @code
14513 @item set download-path @var{path}
14514 @kindex set download-path
14515 @cindex find downloadable @sc{srec} files (M32R)
14516 Set the default path for finding downloadable @sc{srec} files.
14517
14518 @item show download-path
14519 @kindex show download-path
14520 Show the default path for downloadable @sc{srec} files.
14521
14522 @item set board-address @var{addr}
14523 @kindex set board-address
14524 @cindex M32-EVA target board address
14525 Set the IP address for the M32R-EVA target board.
14526
14527 @item show board-address
14528 @kindex show board-address
14529 Show the current IP address of the target board.
14530
14531 @item set server-address @var{addr}
14532 @kindex set server-address
14533 @cindex download server address (M32R)
14534 Set the IP address for the download server, which is the @value{GDBN}'s
14535 host machine.
14536
14537 @item show server-address
14538 @kindex show server-address
14539 Display the IP address of the download server.
14540
14541 @item upload @r{[}@var{file}@r{]}
14542 @kindex upload@r{, M32R}
14543 Upload the specified @sc{srec} @var{file} via the monitor's Ethernet
14544 upload capability.  If no @var{file} argument is given, the current
14545 executable file is uploaded.
14546
14547 @item tload @r{[}@var{file}@r{]}
14548 @kindex tload@r{, M32R}
14549 Test the @code{upload} command.
14550 @end table
14551
14552 The following commands are available for M32R/SDI:
14553
14554 @table @code
14555 @item sdireset
14556 @kindex sdireset
14557 @cindex reset SDI connection, M32R
14558 This command resets the SDI connection.
14559
14560 @item sdistatus
14561 @kindex sdistatus
14562 This command shows the SDI connection status.
14563
14564 @item debug_chaos
14565 @kindex debug_chaos
14566 @cindex M32R/Chaos debugging
14567 Instructs the remote that M32R/Chaos debugging is to be used.
14568
14569 @item use_debug_dma
14570 @kindex use_debug_dma
14571 Instructs the remote to use the DEBUG_DMA method of accessing memory.
14572
14573 @item use_mon_code
14574 @kindex use_mon_code
14575 Instructs the remote to use the MON_CODE method of accessing memory.
14576
14577 @item use_ib_break
14578 @kindex use_ib_break
14579 Instructs the remote to set breakpoints by IB break.
14580
14581 @item use_dbt_break
14582 @kindex use_dbt_break
14583 Instructs the remote to set breakpoints by DBT.
14584 @end table
14585
14586 @node M68K
14587 @subsection M68k
14588
14589 The Motorola m68k configuration includes ColdFire support, and a
14590 target command for the following ROM monitor.
14591
14592 @table @code
14593
14594 @kindex target dbug
14595 @item target dbug @var{dev}
14596 dBUG ROM monitor for Motorola ColdFire.
14597
14598 @end table
14599
14600 @node MIPS Embedded
14601 @subsection MIPS Embedded
14602
14603 @cindex MIPS boards
14604 @value{GDBN} can use the MIPS remote debugging protocol to talk to a
14605 MIPS board attached to a serial line.  This is available when
14606 you configure @value{GDBN} with @samp{--target=mips-idt-ecoff}.
14607
14608 @need 1000
14609 Use these @value{GDBN} commands to specify the connection to your target board:
14610
14611 @table @code
14612 @item target mips @var{port}
14613 @kindex target mips @var{port}
14614 To run a program on the board, start up @code{@value{GDBP}} with the
14615 name of your program as the argument.  To connect to the board, use the
14616 command @samp{target mips @var{port}}, where @var{port} is the name of
14617 the serial port connected to the board.  If the program has not already
14618 been downloaded to the board, you may use the @code{load} command to
14619 download it.  You can then use all the usual @value{GDBN} commands.
14620
14621 For example, this sequence connects to the target board through a serial
14622 port, and loads and runs a program called @var{prog} through the
14623 debugger:
14624
14625 @smallexample
14626 host$ @value{GDBP} @var{prog}
14627 @value{GDBN} is free software and @dots{}
14628 (@value{GDBP}) target mips /dev/ttyb
14629 (@value{GDBP}) load @var{prog}
14630 (@value{GDBP}) run
14631 @end smallexample
14632
14633 @item target mips @var{hostname}:@var{portnumber}
14634 On some @value{GDBN} host configurations, you can specify a TCP
14635 connection (for instance, to a serial line managed by a terminal
14636 concentrator) instead of a serial port, using the syntax
14637 @samp{@var{hostname}:@var{portnumber}}.
14638
14639 @item target pmon @var{port}
14640 @kindex target pmon @var{port}
14641 PMON ROM monitor.
14642
14643 @item target ddb @var{port}
14644 @kindex target ddb @var{port}
14645 NEC's DDB variant of PMON for Vr4300.
14646
14647 @item target lsi @var{port}
14648 @kindex target lsi @var{port}
14649 LSI variant of PMON.
14650
14651 @kindex target r3900
14652 @item target r3900 @var{dev}
14653 Densan DVE-R3900 ROM monitor for Toshiba R3900 Mips.
14654
14655 @kindex target array
14656 @item target array @var{dev}
14657 Array Tech LSI33K RAID controller board.
14658
14659 @end table
14660
14661
14662 @noindent
14663 @value{GDBN} also supports these special commands for MIPS targets:
14664
14665 @table @code
14666 @item set mipsfpu double
14667 @itemx set mipsfpu single
14668 @itemx set mipsfpu none
14669 @itemx set mipsfpu auto
14670 @itemx show mipsfpu
14671 @kindex set mipsfpu
14672 @kindex show mipsfpu
14673 @cindex MIPS remote floating point
14674 @cindex floating point, MIPS remote
14675 If your target board does not support the MIPS floating point
14676 coprocessor, you should use the command @samp{set mipsfpu none} (if you
14677 need this, you may wish to put the command in your @value{GDBN} init
14678 file).  This tells @value{GDBN} how to find the return value of
14679 functions which return floating point values.  It also allows
14680 @value{GDBN} to avoid saving the floating point registers when calling
14681 functions on the board.  If you are using a floating point coprocessor
14682 with only single precision floating point support, as on the @sc{r4650}
14683 processor, use the command @samp{set mipsfpu single}.  The default
14684 double precision floating point coprocessor may be selected using
14685 @samp{set mipsfpu double}.
14686
14687 In previous versions the only choices were double precision or no
14688 floating point, so @samp{set mipsfpu on} will select double precision
14689 and @samp{set mipsfpu off} will select no floating point.
14690
14691 As usual, you can inquire about the @code{mipsfpu} variable with
14692 @samp{show mipsfpu}.
14693
14694 @item set timeout @var{seconds}
14695 @itemx set retransmit-timeout @var{seconds}
14696 @itemx show timeout
14697 @itemx show retransmit-timeout
14698 @cindex @code{timeout}, MIPS protocol
14699 @cindex @code{retransmit-timeout}, MIPS protocol
14700 @kindex set timeout
14701 @kindex show timeout
14702 @kindex set retransmit-timeout
14703 @kindex show retransmit-timeout
14704 You can control the timeout used while waiting for a packet, in the MIPS
14705 remote protocol, with the @code{set timeout @var{seconds}} command.  The
14706 default is 5 seconds.  Similarly, you can control the timeout used while
14707 waiting for an acknowledgement of a packet with the @code{set
14708 retransmit-timeout @var{seconds}} command.  The default is 3 seconds.
14709 You can inspect both values with @code{show timeout} and @code{show
14710 retransmit-timeout}.  (These commands are @emph{only} available when
14711 @value{GDBN} is configured for @samp{--target=mips-idt-ecoff}.)
14712
14713 The timeout set by @code{set timeout} does not apply when @value{GDBN}
14714 is waiting for your program to stop.  In that case, @value{GDBN} waits
14715 forever because it has no way of knowing how long the program is going
14716 to run before stopping.
14717
14718 @item set syn-garbage-limit @var{num}
14719 @kindex set syn-garbage-limit@r{, MIPS remote}
14720 @cindex synchronize with remote MIPS target
14721 Limit the maximum number of characters @value{GDBN} should ignore when
14722 it tries to synchronize with the remote target.  The default is 10
14723 characters.  Setting the limit to -1 means there's no limit.
14724
14725 @item show syn-garbage-limit
14726 @kindex show syn-garbage-limit@r{, MIPS remote}
14727 Show the current limit on the number of characters to ignore when
14728 trying to synchronize with the remote system.
14729
14730 @item set monitor-prompt @var{prompt}
14731 @kindex set monitor-prompt@r{, MIPS remote}
14732 @cindex remote monitor prompt
14733 Tell @value{GDBN} to expect the specified @var{prompt} string from the
14734 remote monitor.  The default depends on the target:
14735 @table @asis
14736 @item pmon target
14737 @samp{PMON}
14738 @item ddb target
14739 @samp{NEC010}
14740 @item lsi target
14741 @samp{PMON>}
14742 @end table
14743
14744 @item show monitor-prompt
14745 @kindex show monitor-prompt@r{, MIPS remote}
14746 Show the current strings @value{GDBN} expects as the prompt from the
14747 remote monitor.
14748
14749 @item set monitor-warnings
14750 @kindex set monitor-warnings@r{, MIPS remote}
14751 Enable or disable monitor warnings about hardware breakpoints.  This
14752 has effect only for the @code{lsi} target.  When on, @value{GDBN} will
14753 display warning messages whose codes are returned by the @code{lsi}
14754 PMON monitor for breakpoint commands.
14755
14756 @item show monitor-warnings
14757 @kindex show monitor-warnings@r{, MIPS remote}
14758 Show the current setting of printing monitor warnings.
14759
14760 @item pmon @var{command}
14761 @kindex pmon@r{, MIPS remote}
14762 @cindex send PMON command
14763 This command allows sending an arbitrary @var{command} string to the
14764 monitor.  The monitor must be in debug mode for this to work.
14765 @end table
14766
14767 @node OpenRISC 1000
14768 @subsection OpenRISC 1000
14769 @cindex OpenRISC 1000
14770
14771 @cindex or1k boards
14772 See OR1k Architecture document (@uref{www.opencores.org}) for more information
14773 about platform and commands.
14774
14775 @table @code
14776
14777 @kindex target jtag
14778 @item target jtag jtag://@var{host}:@var{port}
14779
14780 Connects to remote JTAG server.
14781 JTAG remote server can be either an or1ksim or JTAG server,
14782 connected via parallel port to the board.
14783
14784 Example: @code{target jtag jtag://localhost:9999}
14785
14786 @kindex or1ksim
14787 @item or1ksim @var{command}
14788 If connected to @code{or1ksim} OpenRISC 1000 Architectural
14789 Simulator, proprietary commands can be executed.
14790
14791 @kindex info or1k spr
14792 @item info or1k spr
14793 Displays spr groups.
14794
14795 @item info or1k spr @var{group}
14796 @itemx info or1k spr @var{groupno}
14797 Displays register names in selected group.
14798
14799 @item info or1k spr @var{group} @var{register}
14800 @itemx info or1k spr @var{register}
14801 @itemx info or1k spr @var{groupno} @var{registerno}
14802 @itemx info or1k spr @var{registerno}
14803 Shows information about specified spr register.
14804
14805 @kindex spr
14806 @item spr @var{group} @var{register} @var{value}
14807 @itemx spr @var{register @var{value}}
14808 @itemx spr @var{groupno} @var{registerno @var{value}}
14809 @itemx spr @var{registerno @var{value}}
14810 Writes @var{value} to specified spr register.
14811 @end table
14812
14813 Some implementations of OpenRISC 1000 Architecture also have hardware trace.
14814 It is very similar to @value{GDBN} trace, except it does not interfere with normal
14815 program execution and is thus much faster.  Hardware breakpoints/watchpoint
14816 triggers can be set using:
14817 @table @code
14818 @item $LEA/$LDATA
14819 Load effective address/data
14820 @item $SEA/$SDATA
14821 Store effective address/data
14822 @item $AEA/$ADATA
14823 Access effective address ($SEA or $LEA) or data ($SDATA/$LDATA)
14824 @item $FETCH
14825 Fetch data
14826 @end table
14827
14828 When triggered, it can capture low level data, like: @code{PC}, @code{LSEA},
14829 @code{LDATA}, @code{SDATA}, @code{READSPR}, @code{WRITESPR}, @code{INSTR}.
14830
14831 @code{htrace} commands:
14832 @cindex OpenRISC 1000 htrace
14833 @table @code
14834 @kindex hwatch
14835 @item hwatch @var{conditional}
14836 Set hardware watchpoint on combination of Load/Store Effective Address(es)
14837 or Data.  For example:
14838
14839 @code{hwatch ($LEA == my_var) && ($LDATA < 50) || ($SEA == my_var) && ($SDATA >= 50)}
14840
14841 @code{hwatch ($LEA == my_var) && ($LDATA < 50) || ($SEA == my_var) && ($SDATA >= 50)}
14842
14843 @kindex htrace
14844 @item htrace info
14845 Display information about current HW trace configuration.
14846
14847 @item htrace trigger @var{conditional}
14848 Set starting criteria for HW trace.
14849
14850 @item htrace qualifier @var{conditional}
14851 Set acquisition qualifier for HW trace.
14852
14853 @item htrace stop @var{conditional}
14854 Set HW trace stopping criteria.
14855
14856 @item htrace record [@var{data}]*
14857 Selects the data to be recorded, when qualifier is met and HW trace was
14858 triggered.
14859
14860 @item htrace enable
14861 @itemx htrace disable
14862 Enables/disables the HW trace.
14863
14864 @item htrace rewind [@var{filename}]
14865 Clears currently recorded trace data.
14866
14867 If filename is specified, new trace file is made and any newly collected data
14868 will be written there.
14869
14870 @item htrace print [@var{start} [@var{len}]]
14871 Prints trace buffer, using current record configuration.
14872
14873 @item htrace mode continuous
14874 Set continuous trace mode.
14875
14876 @item htrace mode suspend
14877 Set suspend trace mode.
14878
14879 @end table
14880
14881 @node PowerPC
14882 @subsection PowerPC
14883
14884 @table @code
14885 @kindex target dink32
14886 @item target dink32 @var{dev}
14887 DINK32 ROM monitor.
14888
14889 @kindex target ppcbug
14890 @item target ppcbug @var{dev}
14891 @kindex target ppcbug1
14892 @item target ppcbug1 @var{dev}
14893 PPCBUG ROM monitor for PowerPC.
14894
14895 @kindex target sds
14896 @item target sds @var{dev}
14897 SDS monitor, running on a PowerPC board (such as Motorola's ADS).
14898 @end table
14899
14900 @cindex SDS protocol
14901 The following commands specific to the SDS protocol are supported
14902 by@value{GDBN}:
14903
14904 @table @code
14905 @item set sdstimeout @var{nsec}
14906 @kindex set sdstimeout
14907 Set the timeout for SDS protocol reads to be @var{nsec} seconds.  The
14908 default is 2 seconds.
14909
14910 @item show sdstimeout
14911 @kindex show sdstimeout
14912 Show the current value of the SDS timeout.
14913
14914 @item sds @var{command}
14915 @kindex sds@r{, a command}
14916 Send the specified @var{command} string to the SDS monitor.
14917 @end table
14918
14919
14920 @node PA
14921 @subsection HP PA Embedded
14922
14923 @table @code
14924
14925 @kindex target op50n
14926 @item target op50n @var{dev}
14927 OP50N monitor, running on an OKI HPPA board.
14928
14929 @kindex target w89k
14930 @item target w89k @var{dev}
14931 W89K monitor, running on a Winbond HPPA board.
14932
14933 @end table
14934
14935 @node Sparclet
14936 @subsection Tsqware Sparclet
14937
14938 @cindex Sparclet
14939
14940 @value{GDBN} enables developers to debug tasks running on
14941 Sparclet targets from a Unix host.
14942 @value{GDBN} uses code that runs on
14943 both the Unix host and on the Sparclet target.  The program
14944 @code{@value{GDBP}} is installed and executed on the Unix host.
14945
14946 @table @code
14947 @item remotetimeout @var{args}
14948 @kindex remotetimeout
14949 @value{GDBN} supports the option @code{remotetimeout}.
14950 This option is set by the user, and  @var{args} represents the number of
14951 seconds @value{GDBN} waits for responses.
14952 @end table
14953
14954 @cindex compiling, on Sparclet
14955 When compiling for debugging, include the options @samp{-g} to get debug
14956 information and @samp{-Ttext} to relocate the program to where you wish to
14957 load it on the target.  You may also want to add the options @samp{-n} or
14958 @samp{-N} in order to reduce the size of the sections.  Example:
14959
14960 @smallexample
14961 sparclet-aout-gcc prog.c -Ttext 0x12010000 -g -o prog -N
14962 @end smallexample
14963
14964 You can use @code{objdump} to verify that the addresses are what you intended:
14965
14966 @smallexample
14967 sparclet-aout-objdump --headers --syms prog
14968 @end smallexample
14969
14970 @cindex running, on Sparclet
14971 Once you have set
14972 your Unix execution search path to find @value{GDBN}, you are ready to
14973 run @value{GDBN}.  From your Unix host, run @code{@value{GDBP}}
14974 (or @code{sparclet-aout-gdb}, depending on your installation).
14975
14976 @value{GDBN} comes up showing the prompt:
14977
14978 @smallexample
14979 (gdbslet)
14980 @end smallexample
14981
14982 @menu
14983 * Sparclet File::                Setting the file to debug
14984 * Sparclet Connection::          Connecting to Sparclet
14985 * Sparclet Download::            Sparclet download
14986 * Sparclet Execution::           Running and debugging
14987 @end menu
14988
14989 @node Sparclet File
14990 @subsubsection Setting File to Debug
14991
14992 The @value{GDBN} command @code{file} lets you choose with program to debug.
14993
14994 @smallexample
14995 (gdbslet) file prog
14996 @end smallexample
14997
14998 @need 1000
14999 @value{GDBN} then attempts to read the symbol table of @file{prog}.
15000 @value{GDBN} locates
15001 the file by searching the directories listed in the command search
15002 path.
15003 If the file was compiled with debug information (option @samp{-g}), source
15004 files will be searched as well.
15005 @value{GDBN} locates
15006 the source files by searching the directories listed in the directory search
15007 path (@pxref{Environment, ,Your Program's Environment}).
15008 If it fails
15009 to find a file, it displays a message such as:
15010
15011 @smallexample
15012 prog: No such file or directory.
15013 @end smallexample
15014
15015 When this happens, add the appropriate directories to the search paths with
15016 the @value{GDBN} commands @code{path} and @code{dir}, and execute the
15017 @code{target} command again.
15018
15019 @node Sparclet Connection
15020 @subsubsection Connecting to Sparclet
15021
15022 The @value{GDBN} command @code{target} lets you connect to a Sparclet target.
15023 To connect to a target on serial port ``@code{ttya}'', type:
15024
15025 @smallexample
15026 (gdbslet) target sparclet /dev/ttya
15027 Remote target sparclet connected to /dev/ttya
15028 main () at ../prog.c:3
15029 @end smallexample
15030
15031 @need 750
15032 @value{GDBN} displays messages like these:
15033
15034 @smallexample
15035 Connected to ttya.
15036 @end smallexample
15037
15038 @node Sparclet Download
15039 @subsubsection Sparclet Download
15040
15041 @cindex download to Sparclet
15042 Once connected to the Sparclet target,
15043 you can use the @value{GDBN}
15044 @code{load} command to download the file from the host to the target.
15045 The file name and load offset should be given as arguments to the @code{load}
15046 command.
15047 Since the file format is aout, the program must be loaded to the starting
15048 address.  You can use @code{objdump} to find out what this value is.  The load
15049 offset is an offset which is added to the VMA (virtual memory address)
15050 of each of the file's sections.
15051 For instance, if the program
15052 @file{prog} was linked to text address 0x1201000, with data at 0x12010160
15053 and bss at 0x12010170, in @value{GDBN}, type:
15054
15055 @smallexample
15056 (gdbslet) load prog 0x12010000
15057 Loading section .text, size 0xdb0 vma 0x12010000
15058 @end smallexample
15059
15060 If the code is loaded at a different address then what the program was linked
15061 to, you may need to use the @code{section} and @code{add-symbol-file} commands
15062 to tell @value{GDBN} where to map the symbol table.
15063
15064 @node Sparclet Execution
15065 @subsubsection Running and Debugging
15066
15067 @cindex running and debugging Sparclet programs
15068 You can now begin debugging the task using @value{GDBN}'s execution control
15069 commands, @code{b}, @code{step}, @code{run}, etc.  See the @value{GDBN}
15070 manual for the list of commands.
15071
15072 @smallexample
15073 (gdbslet) b main
15074 Breakpoint 1 at 0x12010000: file prog.c, line 3.
15075 (gdbslet) run
15076 Starting program: prog
15077 Breakpoint 1, main (argc=1, argv=0xeffff21c) at prog.c:3
15078 3        char *symarg = 0;
15079 (gdbslet) step
15080 4        char *execarg = "hello!";
15081 (gdbslet)
15082 @end smallexample
15083
15084 @node Sparclite
15085 @subsection Fujitsu Sparclite
15086
15087 @table @code
15088
15089 @kindex target sparclite
15090 @item target sparclite @var{dev}
15091 Fujitsu sparclite boards, used only for the purpose of loading.
15092 You must use an additional command to debug the program.
15093 For example: target remote @var{dev} using @value{GDBN} standard
15094 remote protocol.
15095
15096 @end table
15097
15098 @node Z8000
15099 @subsection Zilog Z8000
15100
15101 @cindex Z8000
15102 @cindex simulator, Z8000
15103 @cindex Zilog Z8000 simulator
15104
15105 When configured for debugging Zilog Z8000 targets, @value{GDBN} includes
15106 a Z8000 simulator.
15107
15108 For the Z8000 family, @samp{target sim} simulates either the Z8002 (the
15109 unsegmented variant of the Z8000 architecture) or the Z8001 (the
15110 segmented variant).  The simulator recognizes which architecture is
15111 appropriate by inspecting the object code.
15112
15113 @table @code
15114 @item target sim @var{args}
15115 @kindex sim
15116 @kindex target sim@r{, with Z8000}
15117 Debug programs on a simulated CPU.  If the simulator supports setup
15118 options, specify them via @var{args}.
15119 @end table
15120
15121 @noindent
15122 After specifying this target, you can debug programs for the simulated
15123 CPU in the same style as programs for your host computer; use the
15124 @code{file} command to load a new program image, the @code{run} command
15125 to run your program, and so on.
15126
15127 As well as making available all the usual machine registers
15128 (@pxref{Registers, ,Registers}), the Z8000 simulator provides three
15129 additional items of information as specially named registers:
15130
15131 @table @code
15132
15133 @item cycles
15134 Counts clock-ticks in the simulator.
15135
15136 @item insts
15137 Counts instructions run in the simulator.
15138
15139 @item time
15140 Execution time in 60ths of a second.
15141
15142 @end table
15143
15144 You can refer to these values in @value{GDBN} expressions with the usual
15145 conventions; for example, @w{@samp{b fputc if $cycles>5000}} sets a
15146 conditional breakpoint that suspends only after at least 5000
15147 simulated clock ticks.
15148
15149 @node AVR
15150 @subsection Atmel AVR
15151 @cindex AVR
15152
15153 When configured for debugging the Atmel AVR, @value{GDBN} supports the
15154 following AVR-specific commands:
15155
15156 @table @code
15157 @item info io_registers
15158 @kindex info io_registers@r{, AVR}
15159 @cindex I/O registers (Atmel AVR)
15160 This command displays information about the AVR I/O registers.  For
15161 each register, @value{GDBN} prints its number and value.
15162 @end table
15163
15164 @node CRIS
15165 @subsection CRIS
15166 @cindex CRIS
15167
15168 When configured for debugging CRIS, @value{GDBN} provides the
15169 following CRIS-specific commands:
15170
15171 @table @code
15172 @item set cris-version @var{ver}
15173 @cindex CRIS version
15174 Set the current CRIS version to @var{ver}, either @samp{10} or @samp{32}.
15175 The CRIS version affects register names and sizes.  This command is useful in
15176 case autodetection of the CRIS version fails.
15177
15178 @item show cris-version
15179 Show the current CRIS version.
15180
15181 @item set cris-dwarf2-cfi
15182 @cindex DWARF-2 CFI and CRIS
15183 Set the usage of DWARF-2 CFI for CRIS debugging.  The default is @samp{on}.
15184 Change to @samp{off} when using @code{gcc-cris} whose version is below 
15185 @code{R59}.
15186
15187 @item show cris-dwarf2-cfi
15188 Show the current state of using DWARF-2 CFI.
15189
15190 @item set cris-mode @var{mode}
15191 @cindex CRIS mode
15192 Set the current CRIS mode to @var{mode}.  It should only be changed when
15193 debugging in guru mode, in which case it should be set to 
15194 @samp{guru} (the default is @samp{normal}).
15195
15196 @item show cris-mode
15197 Show the current CRIS mode.
15198 @end table
15199
15200 @node Super-H
15201 @subsection Renesas Super-H
15202 @cindex Super-H
15203
15204 For the Renesas Super-H processor, @value{GDBN} provides these
15205 commands:
15206
15207 @table @code
15208 @item regs
15209 @kindex regs@r{, Super-H}
15210 Show the values of all Super-H registers.
15211 @end table
15212
15213
15214 @node Architectures
15215 @section Architectures
15216
15217 This section describes characteristics of architectures that affect
15218 all uses of @value{GDBN} with the architecture, both native and cross.
15219
15220 @menu
15221 * i386::
15222 * A29K::
15223 * Alpha::
15224 * MIPS::
15225 * HPPA::               HP PA architecture
15226 * SPU::                Cell Broadband Engine SPU architecture
15227 @end menu
15228
15229 @node i386
15230 @subsection x86 Architecture-specific Issues
15231
15232 @table @code
15233 @item set struct-convention @var{mode}
15234 @kindex set struct-convention
15235 @cindex struct return convention
15236 @cindex struct/union returned in registers
15237 Set the convention used by the inferior to return @code{struct}s and
15238 @code{union}s from functions to @var{mode}.  Possible values of
15239 @var{mode} are @code{"pcc"}, @code{"reg"}, and @code{"default"} (the
15240 default).  @code{"default"} or @code{"pcc"} means that @code{struct}s
15241 are returned on the stack, while @code{"reg"} means that a
15242 @code{struct} or a @code{union} whose size is 1, 2, 4, or 8 bytes will
15243 be returned in a register.
15244
15245 @item show struct-convention
15246 @kindex show struct-convention
15247 Show the current setting of the convention to return @code{struct}s
15248 from functions.
15249 @end table
15250
15251 @node A29K
15252 @subsection A29K
15253
15254 @table @code
15255
15256 @kindex set rstack_high_address
15257 @cindex AMD 29K register stack
15258 @cindex register stack, AMD29K
15259 @item set rstack_high_address @var{address}
15260 On AMD 29000 family processors, registers are saved in a separate
15261 @dfn{register stack}.  There is no way for @value{GDBN} to determine the
15262 extent of this stack.  Normally, @value{GDBN} just assumes that the
15263 stack is ``large enough''.  This may result in @value{GDBN} referencing
15264 memory locations that do not exist.  If necessary, you can get around
15265 this problem by specifying the ending address of the register stack with
15266 the @code{set rstack_high_address} command.  The argument should be an
15267 address, which you probably want to precede with @samp{0x} to specify in
15268 hexadecimal.
15269
15270 @kindex show rstack_high_address
15271 @item show rstack_high_address
15272 Display the current limit of the register stack, on AMD 29000 family
15273 processors.
15274
15275 @end table
15276
15277 @node Alpha
15278 @subsection Alpha
15279
15280 See the following section.
15281
15282 @node MIPS
15283 @subsection MIPS
15284
15285 @cindex stack on Alpha
15286 @cindex stack on MIPS
15287 @cindex Alpha stack
15288 @cindex MIPS stack
15289 Alpha- and MIPS-based computers use an unusual stack frame, which
15290 sometimes requires @value{GDBN} to search backward in the object code to
15291 find the beginning of a function.
15292
15293 @cindex response time, MIPS debugging
15294 To improve response time (especially for embedded applications, where
15295 @value{GDBN} may be restricted to a slow serial line for this search)
15296 you may want to limit the size of this search, using one of these
15297 commands:
15298
15299 @table @code
15300 @cindex @code{heuristic-fence-post} (Alpha, MIPS)
15301 @item set heuristic-fence-post @var{limit}
15302 Restrict @value{GDBN} to examining at most @var{limit} bytes in its
15303 search for the beginning of a function.  A value of @var{0} (the
15304 default) means there is no limit.  However, except for @var{0}, the
15305 larger the limit the more bytes @code{heuristic-fence-post} must search
15306 and therefore the longer it takes to run.  You should only need to use
15307 this command when debugging a stripped executable.
15308
15309 @item show heuristic-fence-post
15310 Display the current limit.
15311 @end table
15312
15313 @noindent
15314 These commands are available @emph{only} when @value{GDBN} is configured
15315 for debugging programs on Alpha or MIPS processors.
15316
15317 Several MIPS-specific commands are available when debugging MIPS
15318 programs:
15319
15320 @table @code
15321 @item set mips abi @var{arg}
15322 @kindex set mips abi
15323 @cindex set ABI for MIPS
15324 Tell @value{GDBN} which MIPS ABI is used by the inferior.  Possible
15325 values of @var{arg} are:
15326
15327 @table @samp
15328 @item auto
15329 The default ABI associated with the current binary (this is the
15330 default).
15331 @item o32
15332 @item o64
15333 @item n32
15334 @item n64
15335 @item eabi32
15336 @item eabi64
15337 @item auto
15338 @end table
15339
15340 @item show mips abi
15341 @kindex show mips abi
15342 Show the MIPS ABI used by @value{GDBN} to debug the inferior.
15343
15344 @item set mipsfpu
15345 @itemx show mipsfpu
15346 @xref{MIPS Embedded, set mipsfpu}.
15347
15348 @item set mips mask-address @var{arg}
15349 @kindex set mips mask-address
15350 @cindex MIPS addresses, masking
15351 This command determines whether the most-significant 32 bits of 64-bit
15352 MIPS addresses are masked off.  The argument @var{arg} can be
15353 @samp{on}, @samp{off}, or @samp{auto}.  The latter is the default
15354 setting, which lets @value{GDBN} determine the correct value.
15355
15356 @item show mips mask-address
15357 @kindex show mips mask-address
15358 Show whether the upper 32 bits of MIPS addresses are masked off or
15359 not.
15360
15361 @item set remote-mips64-transfers-32bit-regs
15362 @kindex set remote-mips64-transfers-32bit-regs
15363 This command controls compatibility with 64-bit MIPS targets that
15364 transfer data in 32-bit quantities.  If you have an old MIPS 64 target
15365 that transfers 32 bits for some registers, like @sc{sr} and @sc{fsr},
15366 and 64 bits for other registers, set this option to @samp{on}.
15367
15368 @item show remote-mips64-transfers-32bit-regs
15369 @kindex show remote-mips64-transfers-32bit-regs
15370 Show the current setting of compatibility with older MIPS 64 targets.
15371
15372 @item set debug mips
15373 @kindex set debug mips
15374 This command turns on and off debugging messages for the MIPS-specific
15375 target code in @value{GDBN}.
15376
15377 @item show debug mips
15378 @kindex show debug mips
15379 Show the current setting of MIPS debugging messages.
15380 @end table
15381
15382
15383 @node HPPA
15384 @subsection HPPA
15385 @cindex HPPA support
15386
15387 When @value{GDBN} is debugging the HP PA architecture, it provides the
15388 following special commands:
15389
15390 @table @code
15391 @item set debug hppa
15392 @kindex set debug hppa
15393 This command determines whether HPPA architecture-specific debugging
15394 messages are to be displayed.
15395
15396 @item show debug hppa
15397 Show whether HPPA debugging messages are displayed.
15398
15399 @item maint print unwind @var{address}
15400 @kindex maint print unwind@r{, HPPA}
15401 This command displays the contents of the unwind table entry at the
15402 given @var{address}.
15403
15404 @end table
15405
15406
15407 @node SPU
15408 @subsection Cell Broadband Engine SPU architecture
15409 @cindex Cell Broadband Engine
15410 @cindex SPU
15411
15412 When @value{GDBN} is debugging the Cell Broadband Engine SPU architecture,
15413 it provides the following special commands:
15414
15415 @table @code
15416 @item info spu event
15417 @kindex info spu
15418 Display SPU event facility status.  Shows current event mask
15419 and pending event status.
15420
15421 @item info spu signal
15422 Display SPU signal notification facility status.  Shows pending
15423 signal-control word and signal notification mode of both signal
15424 notification channels.
15425
15426 @item info spu mailbox
15427 Display SPU mailbox facility status.  Shows all pending entries,
15428 in order of processing, in each of the SPU Write Outbound,
15429 SPU Write Outbound Interrupt, and SPU Read Inbound mailboxes.
15430
15431 @item info spu dma
15432 Display MFC DMA status.  Shows all pending commands in the MFC
15433 DMA queue.  For each entry, opcode, tag, class IDs, effective
15434 and local store addresses and transfer size are shown.
15435
15436 @item info spu proxydma
15437 Display MFC Proxy-DMA status.  Shows all pending commands in the MFC
15438 Proxy-DMA queue.  For each entry, opcode, tag, class IDs, effective
15439 and local store addresses and transfer size are shown.
15440
15441 @end table
15442  
15443
15444 @node Controlling GDB
15445 @chapter Controlling @value{GDBN}
15446
15447 You can alter the way @value{GDBN} interacts with you by using the
15448 @code{set} command.  For commands controlling how @value{GDBN} displays
15449 data, see @ref{Print Settings, ,Print Settings}.  Other settings are
15450 described here.
15451
15452 @menu
15453 * Prompt::                      Prompt
15454 * Editing::                     Command editing
15455 * Command History::             Command history
15456 * Screen Size::                 Screen size
15457 * Numbers::                     Numbers
15458 * ABI::                         Configuring the current ABI
15459 * Messages/Warnings::           Optional warnings and messages
15460 * Debugging Output::            Optional messages about internal happenings
15461 @end menu
15462
15463 @node Prompt
15464 @section Prompt
15465
15466 @cindex prompt
15467
15468 @value{GDBN} indicates its readiness to read a command by printing a string
15469 called the @dfn{prompt}.  This string is normally @samp{(@value{GDBP})}.  You
15470 can change the prompt string with the @code{set prompt} command.  For
15471 instance, when debugging @value{GDBN} with @value{GDBN}, it is useful to change
15472 the prompt in one of the @value{GDBN} sessions so that you can always tell
15473 which one you are talking to.
15474
15475 @emph{Note:}  @code{set prompt} does not add a space for you after the
15476 prompt you set.  This allows you to set a prompt which ends in a space
15477 or a prompt that does not.
15478
15479 @table @code
15480 @kindex set prompt
15481 @item set prompt @var{newprompt}
15482 Directs @value{GDBN} to use @var{newprompt} as its prompt string henceforth.
15483
15484 @kindex show prompt
15485 @item show prompt
15486 Prints a line of the form: @samp{Gdb's prompt is: @var{your-prompt}}
15487 @end table
15488
15489 @node Editing
15490 @section Command Editing
15491 @cindex readline
15492 @cindex command line editing
15493
15494 @value{GDBN} reads its input commands via the @dfn{Readline} interface.  This
15495 @sc{gnu} library provides consistent behavior for programs which provide a
15496 command line interface to the user.  Advantages are @sc{gnu} Emacs-style
15497 or @dfn{vi}-style inline editing of commands, @code{csh}-like history
15498 substitution, and a storage and recall of command history across
15499 debugging sessions.
15500
15501 You may control the behavior of command line editing in @value{GDBN} with the
15502 command @code{set}.
15503
15504 @table @code
15505 @kindex set editing
15506 @cindex editing
15507 @item set editing
15508 @itemx set editing on
15509 Enable command line editing (enabled by default).
15510
15511 @item set editing off
15512 Disable command line editing.
15513
15514 @kindex show editing
15515 @item show editing
15516 Show whether command line editing is enabled.
15517 @end table
15518
15519 @xref{Command Line Editing}, for more details about the Readline
15520 interface.  Users unfamiliar with @sc{gnu} Emacs or @code{vi} are
15521 encouraged to read that chapter.
15522
15523 @node Command History
15524 @section Command History
15525 @cindex command history
15526
15527 @value{GDBN} can keep track of the commands you type during your
15528 debugging sessions, so that you can be certain of precisely what
15529 happened.  Use these commands to manage the @value{GDBN} command
15530 history facility.
15531
15532 @value{GDBN} uses the @sc{gnu} History library, a part of the Readline
15533 package, to provide the history facility.  @xref{Using History
15534 Interactively}, for the detailed description of the History library.
15535
15536 To issue a command to @value{GDBN} without affecting certain aspects of
15537 the state which is seen by users, prefix it with @samp{server }
15538 (@pxref{Server Prefix}).  This
15539 means that this command will not affect the command history, nor will it
15540 affect @value{GDBN}'s notion of which command to repeat if @key{RET} is
15541 pressed on a line by itself.
15542
15543 @cindex @code{server}, command prefix
15544 The server prefix does not affect the recording of values into the value
15545 history; to print a value without recording it into the value history,
15546 use the @code{output} command instead of the @code{print} command.
15547
15548 Here is the description of @value{GDBN} commands related to command
15549 history.
15550
15551 @table @code
15552 @cindex history substitution
15553 @cindex history file
15554 @kindex set history filename
15555 @cindex @env{GDBHISTFILE}, environment variable
15556 @item set history filename @var{fname}
15557 Set the name of the @value{GDBN} command history file to @var{fname}.
15558 This is the file where @value{GDBN} reads an initial command history
15559 list, and where it writes the command history from this session when it
15560 exits.  You can access this list through history expansion or through
15561 the history command editing characters listed below.  This file defaults
15562 to the value of the environment variable @code{GDBHISTFILE}, or to
15563 @file{./.gdb_history} (@file{./_gdb_history} on MS-DOS) if this variable
15564 is not set.
15565
15566 @cindex save command history
15567 @kindex set history save
15568 @item set history save
15569 @itemx set history save on
15570 Record command history in a file, whose name may be specified with the
15571 @code{set history filename} command.  By default, this option is disabled.
15572
15573 @item set history save off
15574 Stop recording command history in a file.
15575
15576 @cindex history size
15577 @kindex set history size
15578 @cindex @env{HISTSIZE}, environment variable
15579 @item set history size @var{size}
15580 Set the number of commands which @value{GDBN} keeps in its history list.
15581 This defaults to the value of the environment variable
15582 @code{HISTSIZE}, or to 256 if this variable is not set.
15583 @end table
15584
15585 History expansion assigns special meaning to the character @kbd{!}.
15586 @xref{Event Designators}, for more details.
15587
15588 @cindex history expansion, turn on/off
15589 Since @kbd{!} is also the logical not operator in C, history expansion
15590 is off by default. If you decide to enable history expansion with the
15591 @code{set history expansion on} command, you may sometimes need to
15592 follow @kbd{!} (when it is used as logical not, in an expression) with
15593 a space or a tab to prevent it from being expanded.  The readline
15594 history facilities do not attempt substitution on the strings
15595 @kbd{!=} and @kbd{!(}, even when history expansion is enabled.
15596
15597 The commands to control history expansion are:
15598
15599 @table @code
15600 @item set history expansion on
15601 @itemx set history expansion
15602 @kindex set history expansion
15603 Enable history expansion.  History expansion is off by default.
15604
15605 @item set history expansion off
15606 Disable history expansion.
15607
15608 @c @group
15609 @kindex show history
15610 @item show history
15611 @itemx show history filename
15612 @itemx show history save
15613 @itemx show history size
15614 @itemx show history expansion
15615 These commands display the state of the @value{GDBN} history parameters.
15616 @code{show history} by itself displays all four states.
15617 @c @end group
15618 @end table
15619
15620 @table @code
15621 @kindex show commands
15622 @cindex show last commands
15623 @cindex display command history
15624 @item show commands
15625 Display the last ten commands in the command history.
15626
15627 @item show commands @var{n}
15628 Print ten commands centered on command number @var{n}.
15629
15630 @item show commands +
15631 Print ten commands just after the commands last printed.
15632 @end table
15633
15634 @node Screen Size
15635 @section Screen Size
15636 @cindex size of screen
15637 @cindex pauses in output
15638
15639 Certain commands to @value{GDBN} may produce large amounts of
15640 information output to the screen.  To help you read all of it,
15641 @value{GDBN} pauses and asks you for input at the end of each page of
15642 output.  Type @key{RET} when you want to continue the output, or @kbd{q}
15643 to discard the remaining output.  Also, the screen width setting
15644 determines when to wrap lines of output.  Depending on what is being
15645 printed, @value{GDBN} tries to break the line at a readable place,
15646 rather than simply letting it overflow onto the following line.
15647
15648 Normally @value{GDBN} knows the size of the screen from the terminal
15649 driver software.  For example, on Unix @value{GDBN} uses the termcap data base
15650 together with the value of the @code{TERM} environment variable and the
15651 @code{stty rows} and @code{stty cols} settings.  If this is not correct,
15652 you can override it with the @code{set height} and @code{set
15653 width} commands:
15654
15655 @table @code
15656 @kindex set height
15657 @kindex set width
15658 @kindex show width
15659 @kindex show height
15660 @item set height @var{lpp}
15661 @itemx show height
15662 @itemx set width @var{cpl}
15663 @itemx show width
15664 These @code{set} commands specify a screen height of @var{lpp} lines and
15665 a screen width of @var{cpl} characters.  The associated @code{show}
15666 commands display the current settings.
15667
15668 If you specify a height of zero lines, @value{GDBN} does not pause during
15669 output no matter how long the output is.  This is useful if output is to a
15670 file or to an editor buffer.
15671
15672 Likewise, you can specify @samp{set width 0} to prevent @value{GDBN}
15673 from wrapping its output.
15674
15675 @item set pagination on
15676 @itemx set pagination off
15677 @kindex set pagination
15678 Turn the output pagination on or off; the default is on.  Turning
15679 pagination off is the alternative to @code{set height 0}.
15680
15681 @item show pagination
15682 @kindex show pagination
15683 Show the current pagination mode.
15684 @end table
15685
15686 @node Numbers
15687 @section Numbers
15688 @cindex number representation
15689 @cindex entering numbers
15690
15691 You can always enter numbers in octal, decimal, or hexadecimal in
15692 @value{GDBN} by the usual conventions: octal numbers begin with
15693 @samp{0}, decimal numbers end with @samp{.}, and hexadecimal numbers
15694 begin with @samp{0x}.  Numbers that neither begin with @samp{0} or
15695 @samp{0x}, nor end with a @samp{.} are, by default, entered in base
15696 10; likewise, the default display for numbers---when no particular
15697 format is specified---is base 10.  You can change the default base for
15698 both input and output with the commands described below.
15699
15700 @table @code
15701 @kindex set input-radix
15702 @item set input-radix @var{base}
15703 Set the default base for numeric input.  Supported choices
15704 for @var{base} are decimal 8, 10, or 16.  @var{base} must itself be
15705 specified either unambiguously or using the current input radix; for
15706 example, any of
15707
15708 @smallexample
15709 set input-radix 012
15710 set input-radix 10.
15711 set input-radix 0xa
15712 @end smallexample
15713
15714 @noindent
15715 sets the input base to decimal.  On the other hand, @samp{set input-radix 10}
15716 leaves the input radix unchanged, no matter what it was, since
15717 @samp{10}, being without any leading or trailing signs of its base, is
15718 interpreted in the current radix.  Thus, if the current radix is 16,
15719 @samp{10} is interpreted in hex, i.e.@: as 16 decimal, which doesn't
15720 change the radix.
15721
15722 @kindex set output-radix
15723 @item set output-radix @var{base}
15724 Set the default base for numeric display.  Supported choices
15725 for @var{base} are decimal 8, 10, or 16.  @var{base} must itself be
15726 specified either unambiguously or using the current input radix.
15727
15728 @kindex show input-radix
15729 @item show input-radix
15730 Display the current default base for numeric input.
15731
15732 @kindex show output-radix
15733 @item show output-radix
15734 Display the current default base for numeric display.
15735
15736 @item set radix @r{[}@var{base}@r{]}
15737 @itemx show radix
15738 @kindex set radix
15739 @kindex show radix
15740 These commands set and show the default base for both input and output
15741 of numbers.  @code{set radix} sets the radix of input and output to
15742 the same base; without an argument, it resets the radix back to its
15743 default value of 10.
15744
15745 @end table
15746
15747 @node ABI
15748 @section Configuring the Current ABI
15749
15750 @value{GDBN} can determine the @dfn{ABI} (Application Binary Interface) of your
15751 application automatically.  However, sometimes you need to override its
15752 conclusions.  Use these commands to manage @value{GDBN}'s view of the
15753 current ABI.
15754
15755 @cindex OS ABI
15756 @kindex set osabi
15757 @kindex show osabi
15758
15759 One @value{GDBN} configuration can debug binaries for multiple operating
15760 system targets, either via remote debugging or native emulation.
15761 @value{GDBN} will autodetect the @dfn{OS ABI} (Operating System ABI) in use,
15762 but you can override its conclusion using the @code{set osabi} command.
15763 One example where this is useful is in debugging of binaries which use
15764 an alternate C library (e.g.@: @sc{uClibc} for @sc{gnu}/Linux) which does
15765 not have the same identifying marks that the standard C library for your
15766 platform provides.
15767
15768 @table @code
15769 @item show osabi
15770 Show the OS ABI currently in use.
15771
15772 @item set osabi
15773 With no argument, show the list of registered available OS ABI's.
15774
15775 @item set osabi @var{abi}
15776 Set the current OS ABI to @var{abi}.
15777 @end table
15778
15779 @cindex float promotion
15780
15781 Generally, the way that an argument of type @code{float} is passed to a
15782 function depends on whether the function is prototyped.  For a prototyped
15783 (i.e.@: ANSI/ISO style) function, @code{float} arguments are passed unchanged,
15784 according to the architecture's convention for @code{float}.  For unprototyped
15785 (i.e.@: K&R style) functions, @code{float} arguments are first promoted to type
15786 @code{double} and then passed.
15787
15788 Unfortunately, some forms of debug information do not reliably indicate whether
15789 a function is prototyped.  If @value{GDBN} calls a function that is not marked
15790 as prototyped, it consults @kbd{set coerce-float-to-double}.
15791
15792 @table @code
15793 @kindex set coerce-float-to-double
15794 @item set coerce-float-to-double
15795 @itemx set coerce-float-to-double on
15796 Arguments of type @code{float} will be promoted to @code{double} when passed
15797 to an unprototyped function.  This is the default setting.
15798
15799 @item set coerce-float-to-double off
15800 Arguments of type @code{float} will be passed directly to unprototyped
15801 functions.
15802
15803 @kindex show coerce-float-to-double
15804 @item show coerce-float-to-double
15805 Show the current setting of promoting @code{float} to @code{double}.
15806 @end table
15807
15808 @kindex set cp-abi
15809 @kindex show cp-abi
15810 @value{GDBN} needs to know the ABI used for your program's C@t{++}
15811 objects.  The correct C@t{++} ABI depends on which C@t{++} compiler was
15812 used to build your application.  @value{GDBN} only fully supports
15813 programs with a single C@t{++} ABI; if your program contains code using
15814 multiple C@t{++} ABI's or if @value{GDBN} can not identify your
15815 program's ABI correctly, you can tell @value{GDBN} which ABI to use.
15816 Currently supported ABI's include ``gnu-v2'', for @code{g++} versions
15817 before 3.0, ``gnu-v3'', for @code{g++} versions 3.0 and later, and
15818 ``hpaCC'' for the HP ANSI C@t{++} compiler.  Other C@t{++} compilers may
15819 use the ``gnu-v2'' or ``gnu-v3'' ABI's as well.  The default setting is
15820 ``auto''.
15821
15822 @table @code
15823 @item show cp-abi
15824 Show the C@t{++} ABI currently in use.
15825
15826 @item set cp-abi
15827 With no argument, show the list of supported C@t{++} ABI's.
15828
15829 @item set cp-abi @var{abi}
15830 @itemx set cp-abi auto
15831 Set the current C@t{++} ABI to @var{abi}, or return to automatic detection.
15832 @end table
15833
15834 @node Messages/Warnings
15835 @section Optional Warnings and Messages
15836
15837 @cindex verbose operation
15838 @cindex optional warnings
15839 By default, @value{GDBN} is silent about its inner workings.  If you are
15840 running on a slow machine, you may want to use the @code{set verbose}
15841 command.  This makes @value{GDBN} tell you when it does a lengthy
15842 internal operation, so you will not think it has crashed.
15843
15844 Currently, the messages controlled by @code{set verbose} are those
15845 which announce that the symbol table for a source file is being read;
15846 see @code{symbol-file} in @ref{Files, ,Commands to Specify Files}.
15847
15848 @table @code
15849 @kindex set verbose
15850 @item set verbose on
15851 Enables @value{GDBN} output of certain informational messages.
15852
15853 @item set verbose off
15854 Disables @value{GDBN} output of certain informational messages.
15855
15856 @kindex show verbose
15857 @item show verbose
15858 Displays whether @code{set verbose} is on or off.
15859 @end table
15860
15861 By default, if @value{GDBN} encounters bugs in the symbol table of an
15862 object file, it is silent; but if you are debugging a compiler, you may
15863 find this information useful (@pxref{Symbol Errors, ,Errors Reading
15864 Symbol Files}).
15865
15866 @table @code
15867
15868 @kindex set complaints
15869 @item set complaints @var{limit}
15870 Permits @value{GDBN} to output @var{limit} complaints about each type of
15871 unusual symbols before becoming silent about the problem.  Set
15872 @var{limit} to zero to suppress all complaints; set it to a large number
15873 to prevent complaints from being suppressed.
15874
15875 @kindex show complaints
15876 @item show complaints
15877 Displays how many symbol complaints @value{GDBN} is permitted to produce.
15878
15879 @end table
15880
15881 By default, @value{GDBN} is cautious, and asks what sometimes seems to be a
15882 lot of stupid questions to confirm certain commands.  For example, if
15883 you try to run a program which is already running:
15884
15885 @smallexample
15886 (@value{GDBP}) run
15887 The program being debugged has been started already.
15888 Start it from the beginning? (y or n)
15889 @end smallexample
15890
15891 If you are willing to unflinchingly face the consequences of your own
15892 commands, you can disable this ``feature'':
15893
15894 @table @code
15895
15896 @kindex set confirm
15897 @cindex flinching
15898 @cindex confirmation
15899 @cindex stupid questions
15900 @item set confirm off
15901 Disables confirmation requests.
15902
15903 @item set confirm on
15904 Enables confirmation requests (the default).
15905
15906 @kindex show confirm
15907 @item show confirm
15908 Displays state of confirmation requests.
15909
15910 @end table
15911
15912 @cindex command tracing
15913 If you need to debug user-defined commands or sourced files you may find it
15914 useful to enable @dfn{command tracing}.  In this mode each command will be
15915 printed as it is executed, prefixed with one or more @samp{+} symbols, the
15916 quantity denoting the call depth of each command.
15917
15918 @table @code
15919 @kindex set trace-commands
15920 @cindex command scripts, debugging
15921 @item set trace-commands on
15922 Enable command tracing.
15923 @item set trace-commands off
15924 Disable command tracing.
15925 @item show trace-commands
15926 Display the current state of command tracing.
15927 @end table
15928
15929 @node Debugging Output
15930 @section Optional Messages about Internal Happenings
15931 @cindex optional debugging messages
15932
15933 @value{GDBN} has commands that enable optional debugging messages from
15934 various @value{GDBN} subsystems; normally these commands are of
15935 interest to @value{GDBN} maintainers, or when reporting a bug.  This
15936 section documents those commands.
15937
15938 @table @code
15939 @kindex set exec-done-display
15940 @item set exec-done-display
15941 Turns on or off the notification of asynchronous commands'
15942 completion.  When on, @value{GDBN} will print a message when an
15943 asynchronous command finishes its execution.  The default is off.
15944 @kindex show exec-done-display
15945 @item show exec-done-display
15946 Displays the current setting of asynchronous command completion
15947 notification.
15948 @kindex set debug
15949 @cindex gdbarch debugging info
15950 @cindex architecture debugging info
15951 @item set debug arch
15952 Turns on or off display of gdbarch debugging info.  The default is off
15953 @kindex show debug
15954 @item show debug arch
15955 Displays the current state of displaying gdbarch debugging info.
15956 @item set debug aix-thread
15957 @cindex AIX threads
15958 Display debugging messages about inner workings of the AIX thread
15959 module.
15960 @item show debug aix-thread
15961 Show the current state of AIX thread debugging info display.
15962 @item set debug event
15963 @cindex event debugging info
15964 Turns on or off display of @value{GDBN} event debugging info.  The
15965 default is off.
15966 @item show debug event
15967 Displays the current state of displaying @value{GDBN} event debugging
15968 info.
15969 @item set debug expression
15970 @cindex expression debugging info
15971 Turns on or off display of debugging info about @value{GDBN}
15972 expression parsing.  The default is off.
15973 @item show debug expression
15974 Displays the current state of displaying debugging info about
15975 @value{GDBN} expression parsing.
15976 @item set debug frame
15977 @cindex frame debugging info
15978 Turns on or off display of @value{GDBN} frame debugging info.  The
15979 default is off.
15980 @item show debug frame
15981 Displays the current state of displaying @value{GDBN} frame debugging
15982 info.
15983 @item set debug infrun
15984 @cindex inferior debugging info
15985 Turns on or off display of @value{GDBN} debugging info for running the inferior.
15986 The default is off.  @file{infrun.c} contains GDB's runtime state machine used 
15987 for implementing operations such as single-stepping the inferior.
15988 @item show debug infrun
15989 Displays the current state of @value{GDBN} inferior debugging.
15990 @item set debug lin-lwp
15991 @cindex @sc{gnu}/Linux LWP debug messages
15992 @cindex Linux lightweight processes
15993 Turns on or off debugging messages from the Linux LWP debug support.
15994 @item show debug lin-lwp
15995 Show the current state of Linux LWP debugging messages.
15996 @item set debug observer
15997 @cindex observer debugging info
15998 Turns on or off display of @value{GDBN} observer debugging.  This
15999 includes info such as the notification of observable events.
16000 @item show debug observer
16001 Displays the current state of observer debugging.
16002 @item set debug overload
16003 @cindex C@t{++} overload debugging info
16004 Turns on or off display of @value{GDBN} C@t{++} overload debugging
16005 info. This includes info such as ranking of functions, etc.  The default
16006 is off.
16007 @item show debug overload
16008 Displays the current state of displaying @value{GDBN} C@t{++} overload
16009 debugging info.
16010 @cindex packets, reporting on stdout
16011 @cindex serial connections, debugging
16012 @cindex debug remote protocol
16013 @cindex remote protocol debugging
16014 @cindex display remote packets
16015 @item set debug remote
16016 Turns on or off display of reports on all packets sent back and forth across
16017 the serial line to the remote machine.  The info is printed on the
16018 @value{GDBN} standard output stream. The default is off.
16019 @item show debug remote
16020 Displays the state of display of remote packets.
16021 @item set debug serial
16022 Turns on or off display of @value{GDBN} serial debugging info. The
16023 default is off.
16024 @item show debug serial
16025 Displays the current state of displaying @value{GDBN} serial debugging
16026 info.
16027 @item set debug solib-frv
16028 @cindex FR-V shared-library debugging
16029 Turns on or off debugging messages for FR-V shared-library code.
16030 @item show debug solib-frv
16031 Display the current state of FR-V shared-library code debugging
16032 messages.
16033 @item set debug target
16034 @cindex target debugging info
16035 Turns on or off display of @value{GDBN} target debugging info. This info
16036 includes what is going on at the target level of GDB, as it happens. The
16037 default is 0.  Set it to 1 to track events, and to 2 to also track the
16038 value of large memory transfers.  Changes to this flag do not take effect
16039 until the next time you connect to a target or use the @code{run} command.
16040 @item show debug target
16041 Displays the current state of displaying @value{GDBN} target debugging
16042 info.
16043 @item set debugvarobj
16044 @cindex variable object debugging info
16045 Turns on or off display of @value{GDBN} variable object debugging
16046 info. The default is off.
16047 @item show debugvarobj
16048 Displays the current state of displaying @value{GDBN} variable object
16049 debugging info.
16050 @item set debug xml
16051 @cindex XML parser debugging
16052 Turns on or off debugging messages for built-in XML parsers.
16053 @item show debug xml
16054 Displays the current state of XML debugging messages.
16055 @end table
16056
16057 @node Sequences
16058 @chapter Canned Sequences of Commands
16059
16060 Aside from breakpoint commands (@pxref{Break Commands, ,Breakpoint
16061 Command Lists}), @value{GDBN} provides two ways to store sequences of
16062 commands for execution as a unit: user-defined commands and command
16063 files.
16064
16065 @menu
16066 * Define::             How to define your own commands
16067 * Hooks::              Hooks for user-defined commands
16068 * Command Files::      How to write scripts of commands to be stored in a file
16069 * Output::             Commands for controlled output
16070 @end menu
16071
16072 @node Define
16073 @section User-defined Commands
16074
16075 @cindex user-defined command
16076 @cindex arguments, to user-defined commands
16077 A @dfn{user-defined command} is a sequence of @value{GDBN} commands to
16078 which you assign a new name as a command.  This is done with the
16079 @code{define} command.  User commands may accept up to 10 arguments
16080 separated by whitespace.  Arguments are accessed within the user command
16081 via @code{$arg0@dots{}$arg9}.  A trivial example:
16082
16083 @smallexample
16084 define adder
16085   print $arg0 + $arg1 + $arg2
16086 end
16087 @end smallexample
16088
16089 @noindent
16090 To execute the command use:
16091
16092 @smallexample
16093 adder 1 2 3
16094 @end smallexample
16095
16096 @noindent
16097 This defines the command @code{adder}, which prints the sum of
16098 its three arguments.  Note the arguments are text substitutions, so they may
16099 reference variables, use complex expressions, or even perform inferior
16100 functions calls.
16101
16102 @cindex argument count in user-defined commands
16103 @cindex how many arguments (user-defined commands)
16104 In addition, @code{$argc} may be used to find out how many arguments have
16105 been passed.  This expands to a number in the range 0@dots{}10.
16106
16107 @smallexample
16108 define adder
16109   if $argc == 2
16110     print $arg0 + $arg1
16111   end
16112   if $argc == 3
16113     print $arg0 + $arg1 + $arg2
16114   end
16115 end
16116 @end smallexample
16117
16118 @table @code
16119
16120 @kindex define
16121 @item define @var{commandname}
16122 Define a command named @var{commandname}.  If there is already a command
16123 by that name, you are asked to confirm that you want to redefine it.
16124
16125 The definition of the command is made up of other @value{GDBN} command lines,
16126 which are given following the @code{define} command.  The end of these
16127 commands is marked by a line containing @code{end}.
16128
16129 @kindex document
16130 @kindex end@r{ (user-defined commands)}
16131 @item document @var{commandname}
16132 Document the user-defined command @var{commandname}, so that it can be
16133 accessed by @code{help}.  The command @var{commandname} must already be
16134 defined.  This command reads lines of documentation just as @code{define}
16135 reads the lines of the command definition, ending with @code{end}.
16136 After the @code{document} command is finished, @code{help} on command
16137 @var{commandname} displays the documentation you have written.
16138
16139 You may use the @code{document} command again to change the
16140 documentation of a command.  Redefining the command with @code{define}
16141 does not change the documentation.
16142
16143 @kindex dont-repeat
16144 @cindex don't repeat command
16145 @item dont-repeat
16146 Used inside a user-defined command, this tells @value{GDBN} that this
16147 command should not be repeated when the user hits @key{RET}
16148 (@pxref{Command Syntax, repeat last command}).
16149
16150 @kindex help user-defined
16151 @item help user-defined
16152 List all user-defined commands, with the first line of the documentation
16153 (if any) for each.
16154
16155 @kindex show user
16156 @item show user
16157 @itemx show user @var{commandname}
16158 Display the @value{GDBN} commands used to define @var{commandname} (but
16159 not its documentation).  If no @var{commandname} is given, display the
16160 definitions for all user-defined commands.
16161
16162 @cindex infinite recursion in user-defined commands
16163 @kindex show max-user-call-depth
16164 @kindex set max-user-call-depth
16165 @item show max-user-call-depth
16166 @itemx set max-user-call-depth
16167 The value of @code{max-user-call-depth} controls how many recursion
16168 levels are allowed in user-defined commands before @value{GDBN} suspects an
16169 infinite recursion and aborts the command.
16170 @end table
16171
16172 In addition to the above commands, user-defined commands frequently
16173 use control flow commands, described in @ref{Command Files}.
16174
16175 When user-defined commands are executed, the
16176 commands of the definition are not printed.  An error in any command
16177 stops execution of the user-defined command.
16178
16179 If used interactively, commands that would ask for confirmation proceed
16180 without asking when used inside a user-defined command.  Many @value{GDBN}
16181 commands that normally print messages to say what they are doing omit the
16182 messages when used in a user-defined command.
16183
16184 @node Hooks
16185 @section User-defined Command Hooks
16186 @cindex command hooks
16187 @cindex hooks, for commands
16188 @cindex hooks, pre-command
16189
16190 @kindex hook
16191 You may define @dfn{hooks}, which are a special kind of user-defined
16192 command.  Whenever you run the command @samp{foo}, if the user-defined
16193 command @samp{hook-foo} exists, it is executed (with no arguments)
16194 before that command.
16195
16196 @cindex hooks, post-command
16197 @kindex hookpost
16198 A hook may also be defined which is run after the command you executed.
16199 Whenever you run the command @samp{foo}, if the user-defined command
16200 @samp{hookpost-foo} exists, it is executed (with no arguments) after
16201 that command.  Post-execution hooks may exist simultaneously with
16202 pre-execution hooks, for the same command.
16203
16204 It is valid for a hook to call the command which it hooks.  If this
16205 occurs, the hook is not re-executed, thereby avoiding infinite recursion.
16206
16207 @c It would be nice if hookpost could be passed a parameter indicating
16208 @c if the command it hooks executed properly or not.  FIXME!
16209
16210 @kindex stop@r{, a pseudo-command}
16211 In addition, a pseudo-command, @samp{stop} exists.  Defining
16212 (@samp{hook-stop}) makes the associated commands execute every time
16213 execution stops in your program: before breakpoint commands are run,
16214 displays are printed, or the stack frame is printed.
16215
16216 For example, to ignore @code{SIGALRM} signals while
16217 single-stepping, but treat them normally during normal execution,
16218 you could define:
16219
16220 @smallexample
16221 define hook-stop
16222 handle SIGALRM nopass
16223 end
16224
16225 define hook-run
16226 handle SIGALRM pass
16227 end
16228
16229 define hook-continue
16230 handle SIGALRM pass
16231 end
16232 @end smallexample
16233
16234 As a further example, to hook at the beginning and end of the @code{echo}
16235 command, and to add extra text to the beginning and end of the message,
16236 you could define:
16237
16238 @smallexample
16239 define hook-echo
16240 echo <<<---
16241 end
16242
16243 define hookpost-echo
16244 echo --->>>\n
16245 end
16246
16247 (@value{GDBP}) echo Hello World
16248 <<<---Hello World--->>>
16249 (@value{GDBP})
16250
16251 @end smallexample
16252
16253 You can define a hook for any single-word command in @value{GDBN}, but
16254 not for command aliases; you should define a hook for the basic command
16255 name, e.g.@:  @code{backtrace} rather than @code{bt}.
16256 @c FIXME!  So how does Joe User discover whether a command is an alias
16257 @c or not?
16258 If an error occurs during the execution of your hook, execution of
16259 @value{GDBN} commands stops and @value{GDBN} issues a prompt
16260 (before the command that you actually typed had a chance to run).
16261
16262 If you try to define a hook which does not match any known command, you
16263 get a warning from the @code{define} command.
16264
16265 @node Command Files
16266 @section Command Files
16267
16268 @cindex command files
16269 @cindex scripting commands
16270 A command file for @value{GDBN} is a text file made of lines that are
16271 @value{GDBN} commands.  Comments (lines starting with @kbd{#}) may
16272 also be included.  An empty line in a command file does nothing; it
16273 does not mean to repeat the last command, as it would from the
16274 terminal.
16275
16276 You can request the execution of a command file with the @code{source}
16277 command:
16278
16279 @table @code
16280 @kindex source
16281 @cindex execute commands from a file
16282 @item source [@code{-v}] @var{filename}
16283 Execute the command file @var{filename}.
16284 @end table
16285
16286 The lines in a command file are generally executed sequentially,
16287 unless the order of execution is changed by one of the
16288 @emph{flow-control commands} described below.  The commands are not
16289 printed as they are executed.  An error in any command terminates
16290 execution of the command file and control is returned to the console.
16291
16292 @value{GDBN} searches for @var{filename} in the current directory and then
16293 on the search path (specified with the @samp{directory} command).
16294
16295 If @code{-v}, for verbose mode, is given then @value{GDBN} displays
16296 each command as it is executed.  The option must be given before
16297 @var{filename}, and is interpreted as part of the filename anywhere else.
16298
16299 Commands that would ask for confirmation if used interactively proceed
16300 without asking when used in a command file.  Many @value{GDBN} commands that
16301 normally print messages to say what they are doing omit the messages
16302 when called from command files.
16303
16304 @value{GDBN} also accepts command input from standard input.  In this
16305 mode, normal output goes to standard output and error output goes to
16306 standard error.  Errors in a command file supplied on standard input do
16307 not terminate execution of the command file---execution continues with
16308 the next command.
16309
16310 @smallexample
16311 gdb < cmds > log 2>&1
16312 @end smallexample
16313
16314 (The syntax above will vary depending on the shell used.) This example
16315 will execute commands from the file @file{cmds}. All output and errors
16316 would be directed to @file{log}.
16317
16318 Since commands stored on command files tend to be more general than
16319 commands typed interactively, they frequently need to deal with
16320 complicated situations, such as different or unexpected values of
16321 variables and symbols, changes in how the program being debugged is
16322 built, etc.  @value{GDBN} provides a set of flow-control commands to
16323 deal with these complexities.  Using these commands, you can write
16324 complex scripts that loop over data structures, execute commands
16325 conditionally, etc.
16326
16327 @table @code
16328 @kindex if
16329 @kindex else
16330 @item if
16331 @itemx else
16332 This command allows to include in your script conditionally executed
16333 commands. The @code{if} command takes a single argument, which is an
16334 expression to evaluate.  It is followed by a series of commands that
16335 are executed only if the expression is true (its value is nonzero).
16336 There can then optionally be an @code{else} line, followed by a series
16337 of commands that are only executed if the expression was false.  The
16338 end of the list is marked by a line containing @code{end}.
16339
16340 @kindex while
16341 @item while
16342 This command allows to write loops.  Its syntax is similar to
16343 @code{if}: the command takes a single argument, which is an expression
16344 to evaluate, and must be followed by the commands to execute, one per
16345 line, terminated by an @code{end}.  These commands are called the
16346 @dfn{body} of the loop.  The commands in the body of @code{while} are
16347 executed repeatedly as long as the expression evaluates to true.
16348
16349 @kindex loop_break
16350 @item loop_break
16351 This command exits the @code{while} loop in whose body it is included.
16352 Execution of the script continues after that @code{while}s @code{end}
16353 line.
16354
16355 @kindex loop_continue
16356 @item loop_continue
16357 This command skips the execution of the rest of the body of commands
16358 in the @code{while} loop in whose body it is included.  Execution
16359 branches to the beginning of the @code{while} loop, where it evaluates
16360 the controlling expression.
16361
16362 @kindex end@r{ (if/else/while commands)}
16363 @item end
16364 Terminate the block of commands that are the body of @code{if},
16365 @code{else}, or @code{while} flow-control commands.
16366 @end table
16367
16368
16369 @node Output
16370 @section Commands for Controlled Output
16371
16372 During the execution of a command file or a user-defined command, normal
16373 @value{GDBN} output is suppressed; the only output that appears is what is
16374 explicitly printed by the commands in the definition.  This section
16375 describes three commands useful for generating exactly the output you
16376 want.
16377
16378 @table @code
16379 @kindex echo
16380 @item echo @var{text}
16381 @c I do not consider backslash-space a standard C escape sequence
16382 @c because it is not in ANSI.
16383 Print @var{text}.  Nonprinting characters can be included in
16384 @var{text} using C escape sequences, such as @samp{\n} to print a
16385 newline.  @strong{No newline is printed unless you specify one.}
16386 In addition to the standard C escape sequences, a backslash followed
16387 by a space stands for a space.  This is useful for displaying a
16388 string with spaces at the beginning or the end, since leading and
16389 trailing spaces are otherwise trimmed from all arguments.
16390 To print @samp{@w{ }and foo =@w{ }}, use the command
16391 @samp{echo \@w{ }and foo = \@w{ }}.
16392
16393 A backslash at the end of @var{text} can be used, as in C, to continue
16394 the command onto subsequent lines.  For example,
16395
16396 @smallexample
16397 echo This is some text\n\
16398 which is continued\n\
16399 onto several lines.\n
16400 @end smallexample
16401
16402 produces the same output as
16403
16404 @smallexample
16405 echo This is some text\n
16406 echo which is continued\n
16407 echo onto several lines.\n
16408 @end smallexample
16409
16410 @kindex output
16411 @item output @var{expression}
16412 Print the value of @var{expression} and nothing but that value: no
16413 newlines, no @samp{$@var{nn} = }.  The value is not entered in the
16414 value history either.  @xref{Expressions, ,Expressions}, for more information
16415 on expressions.
16416
16417 @item output/@var{fmt} @var{expression}
16418 Print the value of @var{expression} in format @var{fmt}.  You can use
16419 the same formats as for @code{print}.  @xref{Output Formats,,Output
16420 Formats}, for more information.
16421
16422 @kindex printf
16423 @item printf @var{template}, @var{expressions}@dots{}
16424 Print the values of one or more @var{expressions} under the control of
16425 the string @var{template}.  To print several values, make
16426 @var{expressions} be a comma-separated list of individual expressions,
16427 which may be either numbers or pointers.  Their values are printed as
16428 specified by @var{template}, exactly as a C program would do by
16429 executing the code below:
16430
16431 @smallexample
16432 printf (@var{template}, @var{expressions}@dots{});
16433 @end smallexample
16434
16435 As in @code{C} @code{printf}, ordinary characters in @var{template}
16436 are printed verbatim, while @dfn{conversion specification} introduced
16437 by the @samp{%} character cause subsequent @var{expressions} to be
16438 evaluated, their values converted and formatted according to type and
16439 style information encoded in the conversion specifications, and then
16440 printed.
16441
16442 For example, you can print two values in hex like this:
16443
16444 @smallexample
16445 printf "foo, bar-foo = 0x%x, 0x%x\n", foo, bar-foo
16446 @end smallexample
16447
16448 @code{printf} supports all the standard @code{C} conversion
16449 specifications, including the flags and modifiers between the @samp{%}
16450 character and the conversion letter, with the following exceptions:
16451
16452 @itemize @bullet
16453 @item
16454 The argument-ordering modifiers, such as @samp{2$}, are not supported.
16455
16456 @item
16457 The modifier @samp{*} is not supported for specifying precision or
16458 width.
16459
16460 @item
16461 The @samp{'} flag (for separation of digits into groups according to
16462 @code{LC_NUMERIC'}) is not supported.
16463
16464 @item
16465 The type modifiers @samp{hh}, @samp{j}, @samp{t}, and @samp{z} are not
16466 supported.
16467
16468 @item
16469 The conversion letter @samp{n} (as in @samp{%n}) is not supported.
16470
16471 @item
16472 The conversion letters @samp{a} and @samp{A} are not supported.
16473 @end itemize
16474
16475 @noindent
16476 Note that the @samp{ll} type modifier is supported only if the
16477 underlying @code{C} implementation used to build @value{GDBN} supports
16478 the @code{long long int} type, and the @samp{L} type modifier is
16479 supported only if @code{long double} type is available.
16480
16481 As in @code{C}, @code{printf} supports simple backslash-escape
16482 sequences, such as @code{\n}, @samp{\t}, @samp{\\}, @samp{\"},
16483 @samp{\a}, and @samp{\f}, that consist of backslash followed by a
16484 single character.  Octal and hexadecimal escape sequences are not
16485 supported.
16486 @end table
16487
16488 @node Interpreters
16489 @chapter Command Interpreters
16490 @cindex command interpreters
16491
16492 @value{GDBN} supports multiple command interpreters, and some command
16493 infrastructure to allow users or user interface writers to switch
16494 between interpreters or run commands in other interpreters.
16495
16496 @value{GDBN} currently supports two command interpreters, the console
16497 interpreter (sometimes called the command-line interpreter or @sc{cli})
16498 and the machine interface interpreter (or @sc{gdb/mi}).  This manual
16499 describes both of these interfaces in great detail.
16500
16501 By default, @value{GDBN} will start with the console interpreter.
16502 However, the user may choose to start @value{GDBN} with another
16503 interpreter by specifying the @option{-i} or @option{--interpreter}
16504 startup options.  Defined interpreters include:
16505
16506 @table @code
16507 @item console
16508 @cindex console interpreter
16509 The traditional console or command-line interpreter.  This is the most often
16510 used interpreter with @value{GDBN}. With no interpreter specified at runtime,
16511 @value{GDBN} will use this interpreter.
16512
16513 @item mi
16514 @cindex mi interpreter
16515 The newest @sc{gdb/mi} interface (currently @code{mi2}).  Used primarily
16516 by programs wishing to use @value{GDBN} as a backend for a debugger GUI
16517 or an IDE.  For more information, see @ref{GDB/MI, ,The @sc{gdb/mi}
16518 Interface}.
16519
16520 @item mi2
16521 @cindex mi2 interpreter
16522 The current @sc{gdb/mi} interface.
16523
16524 @item mi1
16525 @cindex mi1 interpreter
16526 The @sc{gdb/mi} interface included in @value{GDBN} 5.1, 5.2, and 5.3.
16527
16528 @end table
16529
16530 @cindex invoke another interpreter
16531 The interpreter being used by @value{GDBN} may not be dynamically
16532 switched at runtime.  Although possible, this could lead to a very
16533 precarious situation.  Consider an IDE using @sc{gdb/mi}.  If a user
16534 enters the command "interpreter-set console" in a console view,
16535 @value{GDBN} would switch to using the console interpreter, rendering
16536 the IDE inoperable!
16537
16538 @kindex interpreter-exec
16539 Although you may only choose a single interpreter at startup, you may execute
16540 commands in any interpreter from the current interpreter using the appropriate
16541 command.  If you are running the console interpreter, simply use the
16542 @code{interpreter-exec} command:
16543
16544 @smallexample
16545 interpreter-exec mi "-data-list-register-names"
16546 @end smallexample
16547
16548 @sc{gdb/mi} has a similar command, although it is only available in versions of
16549 @value{GDBN} which support @sc{gdb/mi} version 2 (or greater).
16550
16551 @node TUI
16552 @chapter @value{GDBN} Text User Interface
16553 @cindex TUI
16554 @cindex Text User Interface
16555
16556 @menu
16557 * TUI Overview::                TUI overview
16558 * TUI Keys::                    TUI key bindings
16559 * TUI Single Key Mode::         TUI single key mode
16560 * TUI Commands::                TUI-specific commands
16561 * TUI Configuration::           TUI configuration variables
16562 @end menu
16563
16564 The @value{GDBN} Text User Interface (TUI) is a terminal
16565 interface which uses the @code{curses} library to show the source
16566 file, the assembly output, the program registers and @value{GDBN}
16567 commands in separate text windows.  The TUI mode is supported only
16568 on platforms where a suitable version of the @code{curses} library
16569 is available.
16570
16571 @pindex @value{GDBTUI}
16572 The TUI mode is enabled by default when you invoke @value{GDBN} as
16573 either @samp{@value{GDBTUI}} or @samp{@value{GDBP} -tui}.
16574 You can also switch in and out of TUI mode while @value{GDBN} runs by
16575 using various TUI commands and key bindings, such as @kbd{C-x C-a}. 
16576 @xref{TUI Keys, ,TUI Key Bindings}.
16577
16578 @node TUI Overview
16579 @section TUI Overview
16580
16581 In TUI mode, @value{GDBN} can display several text windows:
16582
16583 @table @emph
16584 @item command
16585 This window is the @value{GDBN} command window with the @value{GDBN}
16586 prompt and the @value{GDBN} output.  The @value{GDBN} input is still
16587 managed using readline.
16588
16589 @item source
16590 The source window shows the source file of the program.  The current
16591 line and active breakpoints are displayed in this window.
16592
16593 @item assembly
16594 The assembly window shows the disassembly output of the program.
16595
16596 @item register
16597 This window shows the processor registers.  Registers are highlighted
16598 when their values change.
16599 @end table
16600
16601 The source and assembly windows show the current program position
16602 by highlighting the current line and marking it with a @samp{>} marker.
16603 Breakpoints are indicated with two markers.  The first marker
16604 indicates the breakpoint type:
16605
16606 @table @code
16607 @item B
16608 Breakpoint which was hit at least once.
16609
16610 @item b
16611 Breakpoint which was never hit.
16612
16613 @item H
16614 Hardware breakpoint which was hit at least once.
16615
16616 @item h
16617 Hardware breakpoint which was never hit.
16618 @end table
16619
16620 The second marker indicates whether the breakpoint is enabled or not:
16621
16622 @table @code
16623 @item +
16624 Breakpoint is enabled.
16625
16626 @item -
16627 Breakpoint is disabled.
16628 @end table
16629
16630 The source, assembly and register windows are updated when the current
16631 thread changes, when the frame changes, or when the program counter
16632 changes.
16633
16634 These windows are not all visible at the same time.  The command
16635 window is always visible.  The others can be arranged in several
16636 layouts:
16637
16638 @itemize @bullet
16639 @item
16640 source only,
16641
16642 @item
16643 assembly only,
16644
16645 @item
16646 source and assembly,
16647
16648 @item
16649 source and registers, or
16650
16651 @item
16652 assembly and registers.
16653 @end itemize
16654
16655 A status line above the command window shows the following information:
16656
16657 @table @emph
16658 @item target
16659 Indicates the current @value{GDBN} target.
16660 (@pxref{Targets, ,Specifying a Debugging Target}).
16661
16662 @item process
16663 Gives the current process or thread number.
16664 When no process is being debugged, this field is set to @code{No process}.
16665
16666 @item function
16667 Gives the current function name for the selected frame.
16668 The name is demangled if demangling is turned on (@pxref{Print Settings}).
16669 When there is no symbol corresponding to the current program counter,
16670 the string @code{??} is displayed.
16671
16672 @item line
16673 Indicates the current line number for the selected frame.
16674 When the current line number is not known, the string @code{??} is displayed.
16675
16676 @item pc
16677 Indicates the current program counter address.
16678 @end table
16679
16680 @node TUI Keys
16681 @section TUI Key Bindings
16682 @cindex TUI key bindings
16683
16684 The TUI installs several key bindings in the readline keymaps
16685 (@pxref{Command Line Editing}).  The following key bindings
16686 are installed for both TUI mode and the @value{GDBN} standard mode.
16687
16688 @table @kbd
16689 @kindex C-x C-a
16690 @item C-x C-a
16691 @kindex C-x a
16692 @itemx C-x a
16693 @kindex C-x A
16694 @itemx C-x A
16695 Enter or leave the TUI mode.  When leaving the TUI mode,
16696 the curses window management stops and @value{GDBN} operates using
16697 its standard mode, writing on the terminal directly.  When reentering
16698 the TUI mode, control is given back to the curses windows.
16699 The screen is then refreshed.
16700
16701 @kindex C-x 1
16702 @item C-x 1
16703 Use a TUI layout with only one window.  The layout will
16704 either be @samp{source} or @samp{assembly}.  When the TUI mode
16705 is not active, it will switch to the TUI mode.
16706
16707 Think of this key binding as the Emacs @kbd{C-x 1} binding.
16708
16709 @kindex C-x 2
16710 @item C-x 2
16711 Use a TUI layout with at least two windows.  When the current
16712 layout already has two windows, the next layout with two windows is used.
16713 When a new layout is chosen, one window will always be common to the
16714 previous layout and the new one.
16715
16716 Think of it as the Emacs @kbd{C-x 2} binding.
16717
16718 @kindex C-x o
16719 @item C-x o
16720 Change the active window.  The TUI associates several key bindings
16721 (like scrolling and arrow keys) with the active window.  This command
16722 gives the focus to the next TUI window.
16723
16724 Think of it as the Emacs @kbd{C-x o} binding.
16725
16726 @kindex C-x s
16727 @item C-x s
16728 Switch in and out of the TUI SingleKey mode that binds single
16729 keys to @value{GDBN} commands (@pxref{TUI Single Key Mode}).
16730 @end table
16731
16732 The following key bindings only work in the TUI mode:
16733
16734 @table @asis
16735 @kindex PgUp
16736 @item @key{PgUp}
16737 Scroll the active window one page up.
16738
16739 @kindex PgDn
16740 @item @key{PgDn}
16741 Scroll the active window one page down.
16742
16743 @kindex Up
16744 @item @key{Up}
16745 Scroll the active window one line up.
16746
16747 @kindex Down
16748 @item @key{Down}
16749 Scroll the active window one line down.
16750
16751 @kindex Left
16752 @item @key{Left}
16753 Scroll the active window one column left.
16754
16755 @kindex Right
16756 @item @key{Right}
16757 Scroll the active window one column right.
16758
16759 @kindex C-L
16760 @item @kbd{C-L}
16761 Refresh the screen.
16762 @end table
16763
16764 Because the arrow keys scroll the active window in the TUI mode, they
16765 are not available for their normal use by readline unless the command
16766 window has the focus.  When another window is active, you must use
16767 other readline key bindings such as @kbd{C-p}, @kbd{C-n}, @kbd{C-b}
16768 and @kbd{C-f} to control the command window.
16769
16770 @node TUI Single Key Mode
16771 @section TUI Single Key Mode
16772 @cindex TUI single key mode
16773
16774 The TUI also provides a @dfn{SingleKey} mode, which binds several
16775 frequently used @value{GDBN} commands to single keys.  Type @kbd{C-x s} to
16776 switch into this mode, where the following key bindings are used:
16777
16778 @table @kbd
16779 @kindex c @r{(SingleKey TUI key)}
16780 @item c
16781 continue
16782
16783 @kindex d @r{(SingleKey TUI key)}
16784 @item d
16785 down
16786
16787 @kindex f @r{(SingleKey TUI key)}
16788 @item f
16789 finish
16790
16791 @kindex n @r{(SingleKey TUI key)}
16792 @item n
16793 next
16794
16795 @kindex q @r{(SingleKey TUI key)}
16796 @item q
16797 exit the SingleKey mode.
16798
16799 @kindex r @r{(SingleKey TUI key)}
16800 @item r
16801 run
16802
16803 @kindex s @r{(SingleKey TUI key)}
16804 @item s
16805 step
16806
16807 @kindex u @r{(SingleKey TUI key)}
16808 @item u
16809 up
16810
16811 @kindex v @r{(SingleKey TUI key)}
16812 @item v
16813 info locals
16814
16815 @kindex w @r{(SingleKey TUI key)}
16816 @item w
16817 where
16818 @end table
16819
16820 Other keys temporarily switch to the @value{GDBN} command prompt.
16821 The key that was pressed is inserted in the editing buffer so that
16822 it is possible to type most @value{GDBN} commands without interaction
16823 with the TUI SingleKey mode.  Once the command is entered the TUI
16824 SingleKey mode is restored.  The only way to permanently leave
16825 this mode is by typing @kbd{q} or @kbd{C-x s}.
16826
16827
16828 @node TUI Commands
16829 @section TUI-specific Commands
16830 @cindex TUI commands
16831
16832 The TUI has specific commands to control the text windows.
16833 These commands are always available, even when @value{GDBN} is not in
16834 the TUI mode.  When @value{GDBN} is in the standard mode, most
16835 of these commands will automatically switch to the TUI mode.
16836
16837 @table @code
16838 @item info win
16839 @kindex info win
16840 List and give the size of all displayed windows.
16841
16842 @item layout next
16843 @kindex layout
16844 Display the next layout.
16845
16846 @item layout prev
16847 Display the previous layout.
16848
16849 @item layout src
16850 Display the source window only.
16851
16852 @item layout asm
16853 Display the assembly window only.
16854
16855 @item layout split
16856 Display the source and assembly window.
16857
16858 @item layout regs
16859 Display the register window together with the source or assembly window.
16860
16861 @item focus next
16862 @kindex focus
16863 Make the next window active for scrolling.
16864
16865 @item focus prev
16866 Make the previous window active for scrolling.
16867
16868 @item focus src
16869 Make the source window active for scrolling.
16870
16871 @item focus asm
16872 Make the assembly window active for scrolling.
16873
16874 @item focus regs
16875 Make the register window active for scrolling.
16876
16877 @item focus cmd
16878 Make the command window active for scrolling.
16879
16880 @item refresh
16881 @kindex refresh
16882 Refresh the screen.  This is similar to typing @kbd{C-L}.
16883
16884 @item tui reg float
16885 @kindex tui reg
16886 Show the floating point registers in the register window.
16887
16888 @item tui reg general
16889 Show the general registers in the register window.
16890
16891 @item tui reg next
16892 Show the next register group.  The list of register groups as well as
16893 their order is target specific.  The predefined register groups are the
16894 following: @code{general}, @code{float}, @code{system}, @code{vector},
16895 @code{all}, @code{save}, @code{restore}.
16896
16897 @item tui reg system
16898 Show the system registers in the register window.
16899
16900 @item update
16901 @kindex update
16902 Update the source window and the current execution point.
16903
16904 @item winheight @var{name} +@var{count}
16905 @itemx winheight @var{name} -@var{count}
16906 @kindex winheight
16907 Change the height of the window @var{name} by @var{count}
16908 lines.  Positive counts increase the height, while negative counts
16909 decrease it.
16910
16911 @item tabset @var{nchars}
16912 @kindex tabset
16913 Set the width of tab stops to be @var{nchars} characters.
16914 @end table
16915
16916 @node TUI Configuration
16917 @section TUI Configuration Variables
16918 @cindex TUI configuration variables
16919
16920 Several configuration variables control the appearance of TUI windows.
16921
16922 @table @code
16923 @item set tui border-kind @var{kind}
16924 @kindex set tui border-kind
16925 Select the border appearance for the source, assembly and register windows.
16926 The possible values are the following:
16927 @table @code
16928 @item space
16929 Use a space character to draw the border.
16930
16931 @item ascii
16932 Use @sc{ascii} characters @samp{+}, @samp{-} and @samp{|} to draw the border.
16933
16934 @item acs
16935 Use the Alternate Character Set to draw the border.  The border is
16936 drawn using character line graphics if the terminal supports them.
16937 @end table
16938
16939 @item set tui border-mode @var{mode}
16940 @kindex set tui border-mode
16941 @itemx set tui active-border-mode @var{mode}
16942 @kindex set tui active-border-mode
16943 Select the display attributes for the borders of the inactive windows
16944 or the active window.  The @var{mode} can be one of the following:
16945 @table @code
16946 @item normal
16947 Use normal attributes to display the border.
16948
16949 @item standout
16950 Use standout mode.
16951
16952 @item reverse
16953 Use reverse video mode.
16954
16955 @item half
16956 Use half bright mode.
16957
16958 @item half-standout
16959 Use half bright and standout mode.
16960
16961 @item bold
16962 Use extra bright or bold mode.
16963
16964 @item bold-standout
16965 Use extra bright or bold and standout mode.
16966 @end table
16967 @end table
16968
16969 @node Emacs
16970 @chapter Using @value{GDBN} under @sc{gnu} Emacs
16971
16972 @cindex Emacs
16973 @cindex @sc{gnu} Emacs
16974 A special interface allows you to use @sc{gnu} Emacs to view (and
16975 edit) the source files for the program you are debugging with
16976 @value{GDBN}.
16977
16978 To use this interface, use the command @kbd{M-x gdb} in Emacs.  Give the
16979 executable file you want to debug as an argument.  This command starts
16980 @value{GDBN} as a subprocess of Emacs, with input and output through a newly
16981 created Emacs buffer.
16982 @c (Do not use the @code{-tui} option to run @value{GDBN} from Emacs.)
16983
16984 Running @value{GDBN} under Emacs can be just like running @value{GDBN} normally except for two
16985 things:
16986
16987 @itemize @bullet
16988 @item
16989 All ``terminal'' input and output goes through an Emacs buffer, called
16990 the GUD buffer.
16991
16992 This applies both to @value{GDBN} commands and their output, and to the input
16993 and output done by the program you are debugging.
16994
16995 This is useful because it means that you can copy the text of previous
16996 commands and input them again; you can even use parts of the output
16997 in this way.
16998
16999 All the facilities of Emacs' Shell mode are available for interacting
17000 with your program.  In particular, you can send signals the usual
17001 way---for example, @kbd{C-c C-c} for an interrupt, @kbd{C-c C-z} for a
17002 stop.
17003
17004 @item
17005 @value{GDBN} displays source code through Emacs.
17006
17007 Each time @value{GDBN} displays a stack frame, Emacs automatically finds the
17008 source file for that frame and puts an arrow (@samp{=>}) at the
17009 left margin of the current line.  Emacs uses a separate buffer for
17010 source display, and splits the screen to show both your @value{GDBN} session
17011 and the source.
17012
17013 Explicit @value{GDBN} @code{list} or search commands still produce output as
17014 usual, but you probably have no reason to use them from Emacs.
17015 @end itemize
17016
17017 We call this @dfn{text command mode}.  Emacs 22.1, and later, also uses
17018 a graphical mode, enabled by default, which provides further buffers
17019 that can control the execution and describe the state of your program.
17020 @xref{GDB Graphical Interface,,, Emacs, The @sc{gnu} Emacs Manual}.
17021
17022 If you specify an absolute file name when prompted for the @kbd{M-x
17023 gdb} argument, then Emacs sets your current working directory to where
17024 your program resides.  If you only specify the file name, then Emacs
17025 sets your current working directory to to the directory associated
17026 with the previous buffer.  In this case, @value{GDBN} may find your
17027 program by searching your environment's @code{PATH} variable, but on
17028 some operating systems it might not find the source.  So, although the
17029 @value{GDBN} input and output session proceeds normally, the auxiliary
17030 buffer does not display the current source and line of execution.
17031
17032 The initial working directory of @value{GDBN} is printed on the top
17033 line of the GUD buffer and this serves as a default for the commands
17034 that specify files for @value{GDBN} to operate on.  @xref{Files,
17035 ,Commands to Specify Files}.
17036
17037 By default, @kbd{M-x gdb} calls the program called @file{gdb}.  If you
17038 need to call @value{GDBN} by a different name (for example, if you
17039 keep several configurations around, with different names) you can
17040 customize the Emacs variable @code{gud-gdb-command-name} to run the
17041 one you want.
17042
17043 In the GUD buffer, you can use these special Emacs commands in
17044 addition to the standard Shell mode commands:
17045
17046 @table @kbd
17047 @item C-h m
17048 Describe the features of Emacs' GUD Mode.
17049
17050 @item C-c C-s
17051 Execute to another source line, like the @value{GDBN} @code{step} command; also
17052 update the display window to show the current file and location.
17053
17054 @item C-c C-n
17055 Execute to next source line in this function, skipping all function
17056 calls, like the @value{GDBN} @code{next} command.  Then update the display window
17057 to show the current file and location.
17058
17059 @item C-c C-i
17060 Execute one instruction, like the @value{GDBN} @code{stepi} command; update
17061 display window accordingly.
17062
17063 @item C-c C-f
17064 Execute until exit from the selected stack frame, like the @value{GDBN}
17065 @code{finish} command.
17066
17067 @item C-c C-r
17068 Continue execution of your program, like the @value{GDBN} @code{continue}
17069 command.
17070
17071 @item C-c <
17072 Go up the number of frames indicated by the numeric argument
17073 (@pxref{Arguments, , Numeric Arguments, Emacs, The @sc{gnu} Emacs Manual}),
17074 like the @value{GDBN} @code{up} command.
17075
17076 @item C-c >
17077 Go down the number of frames indicated by the numeric argument, like the
17078 @value{GDBN} @code{down} command.
17079 @end table
17080
17081 In any source file, the Emacs command @kbd{C-x @key{SPC}} (@code{gud-break})
17082 tells @value{GDBN} to set a breakpoint on the source line point is on.
17083
17084 In text command mode, if you type @kbd{M-x speedbar}, Emacs displays a
17085 separate frame which shows a backtrace when the GUD buffer is current.
17086 Move point to any frame in the stack and type @key{RET} to make it
17087 become the current frame and display the associated source in the
17088 source buffer.  Alternatively, click @kbd{Mouse-2} to make the
17089 selected frame become the current one.  In graphical mode, the
17090 speedbar displays watch expressions.
17091
17092 If you accidentally delete the source-display buffer, an easy way to get
17093 it back is to type the command @code{f} in the @value{GDBN} buffer, to
17094 request a frame display; when you run under Emacs, this recreates
17095 the source buffer if necessary to show you the context of the current
17096 frame.
17097
17098 The source files displayed in Emacs are in ordinary Emacs buffers
17099 which are visiting the source files in the usual way.  You can edit
17100 the files with these buffers if you wish; but keep in mind that @value{GDBN}
17101 communicates with Emacs in terms of line numbers.  If you add or
17102 delete lines from the text, the line numbers that @value{GDBN} knows cease
17103 to correspond properly with the code.
17104
17105 A more detailed description of Emacs' interaction with @value{GDBN} is
17106 given in the Emacs manual (@pxref{Debuggers,,, Emacs, The @sc{gnu}
17107 Emacs Manual}).
17108
17109 @c The following dropped because Epoch is nonstandard.  Reactivate
17110 @c if/when v19 does something similar. ---doc@cygnus.com 19dec1990
17111 @ignore
17112 @kindex Emacs Epoch environment
17113 @kindex Epoch
17114 @kindex inspect
17115
17116 Version 18 of @sc{gnu} Emacs has a built-in window system
17117 called the @code{epoch}
17118 environment.  Users of this environment can use a new command,
17119 @code{inspect} which performs identically to @code{print} except that
17120 each value is printed in its own window.
17121 @end ignore
17122
17123
17124 @node GDB/MI
17125 @chapter The @sc{gdb/mi} Interface
17126
17127 @unnumberedsec Function and Purpose
17128
17129 @cindex @sc{gdb/mi}, its purpose
17130 @sc{gdb/mi} is a line based machine oriented text interface to
17131 @value{GDBN} and is activated by specifying using the
17132 @option{--interpreter} command line option (@pxref{Mode Options}).  It
17133 is specifically intended to support the development of systems which
17134 use the debugger as just one small component of a larger system.
17135
17136 This chapter is a specification of the @sc{gdb/mi} interface.  It is written
17137 in the form of a reference manual.
17138
17139 Note that @sc{gdb/mi} is still under construction, so some of the
17140 features described below are incomplete and subject to change
17141 (@pxref{GDB/MI Development and Front Ends, , @sc{gdb/mi} Development and Front Ends}).  
17142
17143 @unnumberedsec Notation and Terminology
17144
17145 @cindex notational conventions, for @sc{gdb/mi}
17146 This chapter uses the following notation:
17147
17148 @itemize @bullet
17149 @item
17150 @code{|} separates two alternatives.
17151
17152 @item
17153 @code{[ @var{something} ]} indicates that @var{something} is optional:
17154 it may or may not be given.
17155
17156 @item
17157 @code{( @var{group} )*} means that @var{group} inside the parentheses
17158 may repeat zero or more times.
17159
17160 @item
17161 @code{( @var{group} )+} means that @var{group} inside the parentheses
17162 may repeat one or more times.
17163
17164 @item
17165 @code{"@var{string}"} means a literal @var{string}.
17166 @end itemize
17167
17168 @ignore
17169 @heading Dependencies
17170 @end ignore
17171
17172 @menu
17173 * GDB/MI Command Syntax::
17174 * GDB/MI Compatibility with CLI::
17175 * GDB/MI Development and Front Ends::
17176 * GDB/MI Output Records::
17177 * GDB/MI Simple Examples::
17178 * GDB/MI Command Description Format::
17179 * GDB/MI Breakpoint Commands::
17180 * GDB/MI Program Context::
17181 * GDB/MI Thread Commands::
17182 * GDB/MI Program Execution::
17183 * GDB/MI Stack Manipulation::
17184 * GDB/MI Variable Objects::
17185 * GDB/MI Data Manipulation::
17186 * GDB/MI Tracepoint Commands::
17187 * GDB/MI Symbol Query::
17188 * GDB/MI File Commands::
17189 @ignore
17190 * GDB/MI Kod Commands::
17191 * GDB/MI Memory Overlay Commands::
17192 * GDB/MI Signal Handling Commands::
17193 @end ignore
17194 * GDB/MI Target Manipulation::
17195 * GDB/MI Miscellaneous Commands::
17196 @end menu
17197
17198 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17199 @node GDB/MI Command Syntax
17200 @section @sc{gdb/mi} Command Syntax
17201
17202 @menu
17203 * GDB/MI Input Syntax::
17204 * GDB/MI Output Syntax::
17205 @end menu
17206
17207 @node GDB/MI Input Syntax
17208 @subsection @sc{gdb/mi} Input Syntax
17209
17210 @cindex input syntax for @sc{gdb/mi}
17211 @cindex @sc{gdb/mi}, input syntax
17212 @table @code
17213 @item @var{command} @expansion{}
17214 @code{@var{cli-command} | @var{mi-command}}
17215
17216 @item @var{cli-command} @expansion{}
17217 @code{[ @var{token} ] @var{cli-command} @var{nl}}, where
17218 @var{cli-command} is any existing @value{GDBN} CLI command.
17219
17220 @item @var{mi-command} @expansion{}
17221 @code{[ @var{token} ] "-" @var{operation} ( " " @var{option} )*
17222 @code{[} " --" @code{]} ( " " @var{parameter} )* @var{nl}}
17223
17224 @item @var{token} @expansion{}
17225 "any sequence of digits"
17226
17227 @item @var{option} @expansion{}
17228 @code{"-" @var{parameter} [ " " @var{parameter} ]}
17229
17230 @item @var{parameter} @expansion{}
17231 @code{@var{non-blank-sequence} | @var{c-string}}
17232
17233 @item @var{operation} @expansion{}
17234 @emph{any of the operations described in this chapter}
17235
17236 @item @var{non-blank-sequence} @expansion{}
17237 @emph{anything, provided it doesn't contain special characters such as
17238 "-", @var{nl}, """ and of course " "}
17239
17240 @item @var{c-string} @expansion{}
17241 @code{""" @var{seven-bit-iso-c-string-content} """}
17242
17243 @item @var{nl} @expansion{}
17244 @code{CR | CR-LF}
17245 @end table
17246
17247 @noindent
17248 Notes:
17249
17250 @itemize @bullet
17251 @item
17252 The CLI commands are still handled by the @sc{mi} interpreter; their
17253 output is described below.
17254
17255 @item
17256 The @code{@var{token}}, when present, is passed back when the command
17257 finishes.
17258
17259 @item
17260 Some @sc{mi} commands accept optional arguments as part of the parameter
17261 list.  Each option is identified by a leading @samp{-} (dash) and may be
17262 followed by an optional argument parameter.  Options occur first in the
17263 parameter list and can be delimited from normal parameters using
17264 @samp{--} (this is useful when some parameters begin with a dash).
17265 @end itemize
17266
17267 Pragmatics:
17268
17269 @itemize @bullet
17270 @item
17271 We want easy access to the existing CLI syntax (for debugging).
17272
17273 @item
17274 We want it to be easy to spot a @sc{mi} operation.
17275 @end itemize
17276
17277 @node GDB/MI Output Syntax
17278 @subsection @sc{gdb/mi} Output Syntax
17279
17280 @cindex output syntax of @sc{gdb/mi}
17281 @cindex @sc{gdb/mi}, output syntax
17282 The output from @sc{gdb/mi} consists of zero or more out-of-band records
17283 followed, optionally, by a single result record.  This result record
17284 is for the most recent command.  The sequence of output records is
17285 terminated by @samp{(gdb)}.
17286
17287 If an input command was prefixed with a @code{@var{token}} then the
17288 corresponding output for that command will also be prefixed by that same
17289 @var{token}.
17290
17291 @table @code
17292 @item @var{output} @expansion{}
17293 @code{( @var{out-of-band-record} )* [ @var{result-record} ] "(gdb)" @var{nl}}
17294
17295 @item @var{result-record} @expansion{}
17296 @code{ [ @var{token} ] "^" @var{result-class} ( "," @var{result} )* @var{nl}}
17297
17298 @item @var{out-of-band-record} @expansion{}
17299 @code{@var{async-record} | @var{stream-record}}
17300
17301 @item @var{async-record} @expansion{}
17302 @code{@var{exec-async-output} | @var{status-async-output} | @var{notify-async-output}}
17303
17304 @item @var{exec-async-output} @expansion{}
17305 @code{[ @var{token} ] "*" @var{async-output}}
17306
17307 @item @var{status-async-output} @expansion{}
17308 @code{[ @var{token} ] "+" @var{async-output}}
17309
17310 @item @var{notify-async-output} @expansion{}
17311 @code{[ @var{token} ] "=" @var{async-output}}
17312
17313 @item @var{async-output} @expansion{}
17314 @code{@var{async-class} ( "," @var{result} )* @var{nl}}
17315
17316 @item @var{result-class} @expansion{}
17317 @code{"done" | "running" | "connected" | "error" | "exit"}
17318
17319 @item @var{async-class} @expansion{}
17320 @code{"stopped" | @var{others}} (where @var{others} will be added
17321 depending on the needs---this is still in development).
17322
17323 @item @var{result} @expansion{}
17324 @code{ @var{variable} "=" @var{value}}
17325
17326 @item @var{variable} @expansion{}
17327 @code{ @var{string} }
17328
17329 @item @var{value} @expansion{}
17330 @code{ @var{const} | @var{tuple} | @var{list} }
17331
17332 @item @var{const} @expansion{}
17333 @code{@var{c-string}}
17334
17335 @item @var{tuple} @expansion{}
17336 @code{ "@{@}" | "@{" @var{result} ( "," @var{result} )* "@}" }
17337
17338 @item @var{list} @expansion{}
17339 @code{ "[]" | "[" @var{value} ( "," @var{value} )* "]" | "["
17340 @var{result} ( "," @var{result} )* "]" }
17341
17342 @item @var{stream-record} @expansion{}
17343 @code{@var{console-stream-output} | @var{target-stream-output} | @var{log-stream-output}}
17344
17345 @item @var{console-stream-output} @expansion{}
17346 @code{"~" @var{c-string}}
17347
17348 @item @var{target-stream-output} @expansion{}
17349 @code{"@@" @var{c-string}}
17350
17351 @item @var{log-stream-output} @expansion{}
17352 @code{"&" @var{c-string}}
17353
17354 @item @var{nl} @expansion{}
17355 @code{CR | CR-LF}
17356
17357 @item @var{token} @expansion{}
17358 @emph{any sequence of digits}.
17359 @end table
17360
17361 @noindent
17362 Notes:
17363
17364 @itemize @bullet
17365 @item
17366 All output sequences end in a single line containing a period.
17367
17368 @item
17369 The @code{@var{token}} is from the corresponding request.  If an execution
17370 command is interrupted by the @samp{-exec-interrupt} command, the
17371 @var{token} associated with the @samp{*stopped} message is the one of the
17372 original execution command, not the one of the interrupt command.
17373
17374 @item
17375 @cindex status output in @sc{gdb/mi}
17376 @var{status-async-output} contains on-going status information about the
17377 progress of a slow operation.  It can be discarded.  All status output is
17378 prefixed by @samp{+}.
17379
17380 @item
17381 @cindex async output in @sc{gdb/mi}
17382 @var{exec-async-output} contains asynchronous state change on the target
17383 (stopped, started, disappeared).  All async output is prefixed by
17384 @samp{*}.
17385
17386 @item
17387 @cindex notify output in @sc{gdb/mi}
17388 @var{notify-async-output} contains supplementary information that the
17389 client should handle (e.g., a new breakpoint information).  All notify
17390 output is prefixed by @samp{=}.
17391
17392 @item
17393 @cindex console output in @sc{gdb/mi}
17394 @var{console-stream-output} is output that should be displayed as is in the
17395 console.  It is the textual response to a CLI command.  All the console
17396 output is prefixed by @samp{~}.
17397
17398 @item
17399 @cindex target output in @sc{gdb/mi}
17400 @var{target-stream-output} is the output produced by the target program.
17401 All the target output is prefixed by @samp{@@}.
17402
17403 @item
17404 @cindex log output in @sc{gdb/mi}
17405 @var{log-stream-output} is output text coming from @value{GDBN}'s internals, for
17406 instance messages that should be displayed as part of an error log.  All
17407 the log output is prefixed by @samp{&}.
17408
17409 @item
17410 @cindex list output in @sc{gdb/mi}
17411 New @sc{gdb/mi} commands should only output @var{lists} containing
17412 @var{values}.
17413
17414
17415 @end itemize
17416
17417 @xref{GDB/MI Stream Records, , @sc{gdb/mi} Stream Records}, for more
17418 details about the various output records.
17419
17420 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17421 @node GDB/MI Compatibility with CLI
17422 @section @sc{gdb/mi} Compatibility with CLI
17423
17424 @cindex compatibility, @sc{gdb/mi} and CLI
17425 @cindex @sc{gdb/mi}, compatibility with CLI
17426
17427 For the developers convenience CLI commands can be entered directly,
17428 but there may be some unexpected behaviour.  For example, commands
17429 that query the user will behave as if the user replied yes, breakpoint
17430 command lists are not executed and some CLI commands, such as
17431 @code{if}, @code{when} and @code{define}, prompt for further input with
17432 @samp{>}, which is not valid MI output.
17433
17434 This feature may be removed at some stage in the future and it is
17435 recommended that front ends use the @code{-interpreter-exec} command
17436 (@pxref{-interpreter-exec}).
17437
17438 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17439 @node GDB/MI Development and Front Ends
17440 @section @sc{gdb/mi} Development and Front Ends
17441 @cindex @sc{gdb/mi} development
17442
17443 The application which takes the MI output and presents the state of the
17444 program being debugged to the user is called a @dfn{front end}.
17445
17446 Although @sc{gdb/mi} is still incomplete, it is currently being used
17447 by a variety of front ends to @value{GDBN}.  This makes it difficult
17448 to introduce new functionality without breaking existing usage.  This
17449 section tries to minimize the problems by describing how the protocol
17450 might change.
17451
17452 Some changes in MI need not break a carefully designed front end, and
17453 for these the MI version will remain unchanged.  The following is a
17454 list of changes that may occur within one level, so front ends should
17455 parse MI output in a way that can handle them:
17456
17457 @itemize @bullet
17458 @item
17459 New MI commands may be added.
17460
17461 @item
17462 New fields may be added to the output of any MI command.
17463
17464 @item
17465 The range of values for fields with specified values, e.g.,
17466 @code{in_scope} (@pxref{-var-update}) may be extended.
17467
17468 @c The format of field's content e.g type prefix, may change so parse it
17469 @c   at your own risk.  Yes, in general?
17470
17471 @c The order of fields may change?  Shouldn't really matter but it might
17472 @c resolve inconsistencies.
17473 @end itemize
17474
17475 If the changes are likely to break front ends, the MI version level
17476 will be increased by one.  This will allow the front end to parse the
17477 output according to the MI version.  Apart from mi0, new versions of
17478 @value{GDBN} will not support old versions of MI and it will be the
17479 responsibility of the front end to work with the new one.
17480
17481 @c Starting with mi3, add a new command -mi-version that prints the MI
17482 @c version?
17483
17484 The best way to avoid unexpected changes in MI that might break your front
17485 end is to make your project known to @value{GDBN} developers and
17486 follow development on @email{gdb@@sourceware.org} and
17487 @email{gdb-patches@@sourceware.org}.  There is also the mailing list
17488 @email{dmi-discuss@@lists.freestandards.org}, hosted by the Free Standards
17489 Group, which has the aim of creating a more general MI protocol
17490 called Debugger Machine Interface (DMI) that will become a standard
17491 for all debuggers, not just @value{GDBN}.
17492 @cindex mailing lists
17493
17494 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17495 @node GDB/MI Output Records
17496 @section @sc{gdb/mi} Output Records
17497
17498 @menu
17499 * GDB/MI Result Records::
17500 * GDB/MI Stream Records::
17501 * GDB/MI Out-of-band Records::
17502 @end menu
17503
17504 @node GDB/MI Result Records
17505 @subsection @sc{gdb/mi} Result Records
17506
17507 @cindex result records in @sc{gdb/mi}
17508 @cindex @sc{gdb/mi}, result records
17509 In addition to a number of out-of-band notifications, the response to a
17510 @sc{gdb/mi} command includes one of the following result indications:
17511
17512 @table @code
17513 @findex ^done
17514 @item "^done" [ "," @var{results} ]
17515 The synchronous operation was successful, @code{@var{results}} are the return
17516 values.
17517
17518 @item "^running"
17519 @findex ^running
17520 @c Is this one correct?  Should it be an out-of-band notification?
17521 The asynchronous operation was successfully started.  The target is
17522 running.
17523
17524 @item "^connected"
17525 @findex ^connected
17526 @value{GDBN} has connected to a remote target.
17527
17528 @item "^error" "," @var{c-string}
17529 @findex ^error
17530 The operation failed.  The @code{@var{c-string}} contains the corresponding
17531 error message.
17532
17533 @item "^exit"
17534 @findex ^exit
17535 @value{GDBN} has terminated.
17536
17537 @end table
17538
17539 @node GDB/MI Stream Records
17540 @subsection @sc{gdb/mi} Stream Records
17541
17542 @cindex @sc{gdb/mi}, stream records
17543 @cindex stream records in @sc{gdb/mi}
17544 @value{GDBN} internally maintains a number of output streams: the console, the
17545 target, and the log.  The output intended for each of these streams is
17546 funneled through the @sc{gdb/mi} interface using @dfn{stream records}.
17547
17548 Each stream record begins with a unique @dfn{prefix character} which
17549 identifies its stream (@pxref{GDB/MI Output Syntax, , @sc{gdb/mi} Output
17550 Syntax}).  In addition to the prefix, each stream record contains a
17551 @code{@var{string-output}}.  This is either raw text (with an implicit new
17552 line) or a quoted C string (which does not contain an implicit newline).
17553
17554 @table @code
17555 @item "~" @var{string-output}
17556 The console output stream contains text that should be displayed in the
17557 CLI console window.  It contains the textual responses to CLI commands.
17558
17559 @item "@@" @var{string-output}
17560 The target output stream contains any textual output from the running
17561 target.  This is only present when GDB's event loop is truly
17562 asynchronous, which is currently only the case for remote targets.
17563
17564 @item "&" @var{string-output}
17565 The log stream contains debugging messages being produced by @value{GDBN}'s
17566 internals.
17567 @end table
17568
17569 @node GDB/MI Out-of-band Records
17570 @subsection @sc{gdb/mi} Out-of-band Records
17571
17572 @cindex out-of-band records in @sc{gdb/mi}
17573 @cindex @sc{gdb/mi}, out-of-band records
17574 @dfn{Out-of-band} records are used to notify the @sc{gdb/mi} client of
17575 additional changes that have occurred.  Those changes can either be a
17576 consequence of @sc{gdb/mi} (e.g., a breakpoint modified) or a result of
17577 target activity (e.g., target stopped).
17578
17579 The following is a preliminary list of possible out-of-band records.
17580 In particular, the @var{exec-async-output} records.
17581
17582 @table @code
17583 @item *stopped,reason="@var{reason}"
17584 @end table
17585
17586 @var{reason} can be one of the following:
17587
17588 @table @code
17589 @item breakpoint-hit
17590 A breakpoint was reached.
17591 @item watchpoint-trigger
17592 A watchpoint was triggered.
17593 @item read-watchpoint-trigger
17594 A read watchpoint was triggered.
17595 @item access-watchpoint-trigger 
17596 An access watchpoint was triggered.
17597 @item function-finished
17598 An -exec-finish or similar CLI command was accomplished.
17599 @item location-reached
17600 An -exec-until or similar CLI command was accomplished.
17601 @item watchpoint-scope
17602 A watchpoint has gone out of scope.
17603 @item end-stepping-range
17604 An -exec-next, -exec-next-instruction, -exec-step, -exec-step-instruction or 
17605 similar CLI command was accomplished.
17606 @item exited-signalled 
17607 The inferior exited because of a signal.
17608 @item exited 
17609 The inferior exited.
17610 @item exited-normally 
17611 The inferior exited normally.
17612 @item signal-received 
17613 A signal was received by the inferior.
17614 @end table
17615
17616
17617 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17618 @node GDB/MI Simple Examples
17619 @section Simple Examples of @sc{gdb/mi} Interaction
17620 @cindex @sc{gdb/mi}, simple examples
17621
17622 This subsection presents several simple examples of interaction using
17623 the @sc{gdb/mi} interface.  In these examples, @samp{->} means that the
17624 following line is passed to @sc{gdb/mi} as input, while @samp{<-} means
17625 the output received from @sc{gdb/mi}.
17626
17627 Note the line breaks shown in the examples are here only for
17628 readability, they don't appear in the real output.
17629
17630 @subheading Setting a Breakpoint
17631
17632 Setting a breakpoint generates synchronous output which contains detailed
17633 information of the breakpoint.
17634
17635 @smallexample
17636 -> -break-insert main
17637 <- ^done,bkpt=@{number="1",type="breakpoint",disp="keep",
17638     enabled="y",addr="0x08048564",func="main",file="myprog.c",
17639     fullname="/home/nickrob/myprog.c",line="68",times="0"@}
17640 <- (gdb)
17641 @end smallexample
17642
17643 @subheading Program Execution
17644
17645 Program execution generates asynchronous records and MI gives the
17646 reason that execution stopped.
17647
17648 @smallexample
17649 -> -exec-run
17650 <- ^running
17651 <- (gdb)
17652 <- *stopped,reason="breakpoint-hit",bkptno="1",thread-id="0",
17653    frame=@{addr="0x08048564",func="main",
17654    args=[@{name="argc",value="1"@},@{name="argv",value="0xbfc4d4d4"@}],
17655    file="myprog.c",fullname="/home/nickrob/myprog.c",line="68"@}
17656 <- (gdb)
17657 -> -exec-continue
17658 <- ^running
17659 <- (gdb)
17660 <- *stopped,reason="exited-normally"
17661 <- (gdb)
17662 @end smallexample
17663
17664 @subheading Quitting @value{GDBN}
17665
17666 Quitting @value{GDBN} just prints the result class @samp{^exit}.
17667
17668 @smallexample
17669 -> (gdb)
17670 <- -gdb-exit
17671 <- ^exit
17672 @end smallexample
17673
17674 @subheading A Bad Command
17675
17676 Here's what happens if you pass a non-existent command:
17677
17678 @smallexample
17679 -> -rubbish
17680 <- ^error,msg="Undefined MI command: rubbish"
17681 <- (gdb)
17682 @end smallexample
17683
17684
17685 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17686 @node GDB/MI Command Description Format
17687 @section @sc{gdb/mi} Command Description Format
17688
17689 The remaining sections describe blocks of commands.  Each block of
17690 commands is laid out in a fashion similar to this section.
17691
17692 @subheading Motivation
17693
17694 The motivation for this collection of commands.
17695
17696 @subheading Introduction
17697
17698 A brief introduction to this collection of commands as a whole.
17699
17700 @subheading Commands
17701
17702 For each command in the block, the following is described:
17703
17704 @subsubheading Synopsis
17705
17706 @smallexample
17707  -command @var{args}@dots{}
17708 @end smallexample
17709
17710 @subsubheading Result
17711
17712 @subsubheading @value{GDBN} Command
17713
17714 The corresponding @value{GDBN} CLI command(s), if any.
17715
17716 @subsubheading Example
17717
17718 Example(s) formatted for readability.  Some of the described commands  have
17719 not been implemented yet and these are labeled N.A.@: (not available).
17720
17721
17722 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17723 @node GDB/MI Breakpoint Commands
17724 @section @sc{gdb/mi} Breakpoint Commands
17725
17726 @cindex breakpoint commands for @sc{gdb/mi}
17727 @cindex @sc{gdb/mi}, breakpoint commands
17728 This section documents @sc{gdb/mi} commands for manipulating
17729 breakpoints.
17730
17731 @subheading The @code{-break-after} Command
17732 @findex -break-after
17733
17734 @subsubheading Synopsis
17735
17736 @smallexample
17737  -break-after @var{number} @var{count}
17738 @end smallexample
17739
17740 The breakpoint number @var{number} is not in effect until it has been
17741 hit @var{count} times.  To see how this is reflected in the output of
17742 the @samp{-break-list} command, see the description of the
17743 @samp{-break-list} command below.
17744
17745 @subsubheading @value{GDBN} Command
17746
17747 The corresponding @value{GDBN} command is @samp{ignore}.
17748
17749 @subsubheading Example
17750
17751 @smallexample
17752 (gdb)
17753 -break-insert main
17754 ^done,bkpt=@{number="1",addr="0x000100d0",file="hello.c",
17755 fullname="/home/foo/hello.c",line="5",times="0"@}
17756 (gdb)
17757 -break-after 1 3
17758 ~
17759 ^done
17760 (gdb)
17761 -break-list
17762 ^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
17763 hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
17764 @{width="14",alignment="-1",col_name="type",colhdr="Type"@},
17765 @{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
17766 @{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
17767 @{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
17768 @{width="40",alignment="2",col_name="what",colhdr="What"@}],
17769 body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
17770 addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
17771 line="5",times="0",ignore="3"@}]@}
17772 (gdb)
17773 @end smallexample
17774
17775 @ignore
17776 @subheading The @code{-break-catch} Command
17777 @findex -break-catch
17778
17779 @subheading The @code{-break-commands} Command
17780 @findex -break-commands
17781 @end ignore
17782
17783
17784 @subheading The @code{-break-condition} Command
17785 @findex -break-condition
17786
17787 @subsubheading Synopsis
17788
17789 @smallexample
17790  -break-condition @var{number} @var{expr}
17791 @end smallexample
17792
17793 Breakpoint @var{number} will stop the program only if the condition in
17794 @var{expr} is true.  The condition becomes part of the
17795 @samp{-break-list} output (see the description of the @samp{-break-list}
17796 command below).
17797
17798 @subsubheading @value{GDBN} Command
17799
17800 The corresponding @value{GDBN} command is @samp{condition}.
17801
17802 @subsubheading Example
17803
17804 @smallexample
17805 (gdb)
17806 -break-condition 1 1
17807 ^done
17808 (gdb)
17809 -break-list
17810 ^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
17811 hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
17812 @{width="14",alignment="-1",col_name="type",colhdr="Type"@},
17813 @{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
17814 @{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
17815 @{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
17816 @{width="40",alignment="2",col_name="what",colhdr="What"@}],
17817 body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
17818 addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
17819 line="5",cond="1",times="0",ignore="3"@}]@}
17820 (gdb)
17821 @end smallexample
17822
17823 @subheading The @code{-break-delete} Command
17824 @findex -break-delete
17825
17826 @subsubheading Synopsis
17827
17828 @smallexample
17829  -break-delete ( @var{breakpoint} )+
17830 @end smallexample
17831
17832 Delete the breakpoint(s) whose number(s) are specified in the argument
17833 list.  This is obviously reflected in the breakpoint list.
17834
17835 @subsubheading @value{GDBN} Command
17836
17837 The corresponding @value{GDBN} command is @samp{delete}.
17838
17839 @subsubheading Example
17840
17841 @smallexample
17842 (gdb)
17843 -break-delete 1
17844 ^done
17845 (gdb)
17846 -break-list
17847 ^done,BreakpointTable=@{nr_rows="0",nr_cols="6",
17848 hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
17849 @{width="14",alignment="-1",col_name="type",colhdr="Type"@},
17850 @{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
17851 @{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
17852 @{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
17853 @{width="40",alignment="2",col_name="what",colhdr="What"@}],
17854 body=[]@}
17855 (gdb)
17856 @end smallexample
17857
17858 @subheading The @code{-break-disable} Command
17859 @findex -break-disable
17860
17861 @subsubheading Synopsis
17862
17863 @smallexample
17864  -break-disable ( @var{breakpoint} )+
17865 @end smallexample
17866
17867 Disable the named @var{breakpoint}(s).  The field @samp{enabled} in the
17868 break list is now set to @samp{n} for the named @var{breakpoint}(s).
17869
17870 @subsubheading @value{GDBN} Command
17871
17872 The corresponding @value{GDBN} command is @samp{disable}.
17873
17874 @subsubheading Example
17875
17876 @smallexample
17877 (gdb)
17878 -break-disable 2
17879 ^done
17880 (gdb)
17881 -break-list
17882 ^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
17883 hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
17884 @{width="14",alignment="-1",col_name="type",colhdr="Type"@},
17885 @{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
17886 @{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
17887 @{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
17888 @{width="40",alignment="2",col_name="what",colhdr="What"@}],
17889 body=[bkpt=@{number="2",type="breakpoint",disp="keep",enabled="n",
17890 addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
17891 line="5",times="0"@}]@}
17892 (gdb)
17893 @end smallexample
17894
17895 @subheading The @code{-break-enable} Command
17896 @findex -break-enable
17897
17898 @subsubheading Synopsis
17899
17900 @smallexample
17901  -break-enable ( @var{breakpoint} )+
17902 @end smallexample
17903
17904 Enable (previously disabled) @var{breakpoint}(s).
17905
17906 @subsubheading @value{GDBN} Command
17907
17908 The corresponding @value{GDBN} command is @samp{enable}.
17909
17910 @subsubheading Example
17911
17912 @smallexample
17913 (gdb)
17914 -break-enable 2
17915 ^done
17916 (gdb)
17917 -break-list
17918 ^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
17919 hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
17920 @{width="14",alignment="-1",col_name="type",colhdr="Type"@},
17921 @{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
17922 @{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
17923 @{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
17924 @{width="40",alignment="2",col_name="what",colhdr="What"@}],
17925 body=[bkpt=@{number="2",type="breakpoint",disp="keep",enabled="y",
17926 addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
17927 line="5",times="0"@}]@}
17928 (gdb)
17929 @end smallexample
17930
17931 @subheading The @code{-break-info} Command
17932 @findex -break-info
17933
17934 @subsubheading Synopsis
17935
17936 @smallexample
17937  -break-info @var{breakpoint}
17938 @end smallexample
17939
17940 @c REDUNDANT???
17941 Get information about a single breakpoint.
17942
17943 @subsubheading @value{GDBN} Command
17944
17945 The corresponding @value{GDBN} command is @samp{info break @var{breakpoint}}.
17946
17947 @subsubheading Example
17948 N.A.
17949
17950 @subheading The @code{-break-insert} Command
17951 @findex -break-insert
17952
17953 @subsubheading Synopsis
17954
17955 @smallexample
17956  -break-insert [ -t ] [ -h ] [ -r ]
17957     [ -c @var{condition} ] [ -i @var{ignore-count} ]
17958     [ -p @var{thread} ] [ @var{line} | @var{addr} ]
17959 @end smallexample
17960
17961 @noindent
17962 If specified, @var{line}, can be one of:
17963
17964 @itemize @bullet
17965 @item function
17966 @c @item +offset
17967 @c @item -offset
17968 @c @item linenum
17969 @item filename:linenum
17970 @item filename:function
17971 @item *address
17972 @end itemize
17973
17974 The possible optional parameters of this command are:
17975
17976 @table @samp
17977 @item -t
17978 Insert a temporary breakpoint.
17979 @item -h
17980 Insert a hardware breakpoint.
17981 @item -c @var{condition}
17982 Make the breakpoint conditional on @var{condition}.
17983 @item -i @var{ignore-count}
17984 Initialize the @var{ignore-count}.
17985 @item -r
17986 Insert a regular breakpoint in all the functions whose names match the
17987 given regular expression.  Other flags are not applicable to regular
17988 expressions.
17989 @end table
17990
17991 @subsubheading Result
17992
17993 The result is in the form:
17994
17995 @smallexample
17996 ^done,bkpt=@{number="@var{number}",type="@var{type}",disp="del"|"keep",
17997 enabled="y"|"n",addr="@var{hex}",func="@var{funcname}",file="@var{filename}",
17998 fullname="@var{full_filename}",line="@var{lineno}",[thread="@var{threadno},]
17999 times="@var{times}"@}
18000 @end smallexample
18001
18002 @noindent
18003 where @var{number} is the @value{GDBN} number for this breakpoint,
18004 @var{funcname} is the name of the function where the breakpoint was
18005 inserted, @var{filename} is the name of the source file which contains
18006 this function, @var{lineno} is the source line number within that file
18007 and @var{times} the number of times that the breakpoint has been hit
18008 (always 0 for -break-insert but may be greater for -break-info or -break-list
18009 which use the same output).
18010
18011 Note: this format is open to change.
18012 @c An out-of-band breakpoint instead of part of the result?
18013
18014 @subsubheading @value{GDBN} Command
18015
18016 The corresponding @value{GDBN} commands are @samp{break}, @samp{tbreak},
18017 @samp{hbreak}, @samp{thbreak}, and @samp{rbreak}.
18018
18019 @subsubheading Example
18020
18021 @smallexample
18022 (gdb)
18023 -break-insert main
18024 ^done,bkpt=@{number="1",addr="0x0001072c",file="recursive2.c",
18025 fullname="/home/foo/recursive2.c,line="4",times="0"@}
18026 (gdb)
18027 -break-insert -t foo
18028 ^done,bkpt=@{number="2",addr="0x00010774",file="recursive2.c",
18029 fullname="/home/foo/recursive2.c,line="11",times="0"@}
18030 (gdb)
18031 -break-list
18032 ^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
18033 hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18034 @{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18035 @{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18036 @{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18037 @{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18038 @{width="40",alignment="2",col_name="what",colhdr="What"@}],
18039 body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
18040 addr="0x0001072c", func="main",file="recursive2.c",
18041 fullname="/home/foo/recursive2.c,"line="4",times="0"@},
18042 bkpt=@{number="2",type="breakpoint",disp="del",enabled="y",
18043 addr="0x00010774",func="foo",file="recursive2.c",
18044 fullname="/home/foo/recursive2.c",line="11",times="0"@}]@}
18045 (gdb)
18046 -break-insert -r foo.*
18047 ~int foo(int, int);
18048 ^done,bkpt=@{number="3",addr="0x00010774",file="recursive2.c,
18049 "fullname="/home/foo/recursive2.c",line="11",times="0"@}
18050 (gdb)
18051 @end smallexample
18052
18053 @subheading The @code{-break-list} Command
18054 @findex -break-list
18055
18056 @subsubheading Synopsis
18057
18058 @smallexample
18059  -break-list
18060 @end smallexample
18061
18062 Displays the list of inserted breakpoints, showing the following fields:
18063
18064 @table @samp
18065 @item Number
18066 number of the breakpoint
18067 @item Type
18068 type of the breakpoint: @samp{breakpoint} or @samp{watchpoint}
18069 @item Disposition
18070 should the breakpoint be deleted or disabled when it is hit: @samp{keep}
18071 or @samp{nokeep}
18072 @item Enabled
18073 is the breakpoint enabled or no: @samp{y} or @samp{n}
18074 @item Address
18075 memory location at which the breakpoint is set
18076 @item What
18077 logical location of the breakpoint, expressed by function name, file
18078 name, line number
18079 @item Times
18080 number of times the breakpoint has been hit
18081 @end table
18082
18083 If there are no breakpoints or watchpoints, the @code{BreakpointTable}
18084 @code{body} field is an empty list.
18085
18086 @subsubheading @value{GDBN} Command
18087
18088 The corresponding @value{GDBN} command is @samp{info break}.
18089
18090 @subsubheading Example
18091
18092 @smallexample
18093 (gdb)
18094 -break-list
18095 ^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
18096 hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18097 @{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18098 @{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18099 @{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18100 @{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18101 @{width="40",alignment="2",col_name="what",colhdr="What"@}],
18102 body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
18103 addr="0x000100d0",func="main",file="hello.c",line="5",times="0"@},
18104 bkpt=@{number="2",type="breakpoint",disp="keep",enabled="y",
18105 addr="0x00010114",func="foo",file="hello.c",fullname="/home/foo/hello.c",
18106 line="13",times="0"@}]@}
18107 (gdb)
18108 @end smallexample
18109
18110 Here's an example of the result when there are no breakpoints:
18111
18112 @smallexample
18113 (gdb)
18114 -break-list
18115 ^done,BreakpointTable=@{nr_rows="0",nr_cols="6",
18116 hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18117 @{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18118 @{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18119 @{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18120 @{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18121 @{width="40",alignment="2",col_name="what",colhdr="What"@}],
18122 body=[]@}
18123 (gdb)
18124 @end smallexample
18125
18126 @subheading The @code{-break-watch} Command
18127 @findex -break-watch
18128
18129 @subsubheading Synopsis
18130
18131 @smallexample
18132  -break-watch [ -a | -r ]
18133 @end smallexample
18134
18135 Create a watchpoint.  With the @samp{-a} option it will create an
18136 @dfn{access} watchpoint, i.e., a watchpoint that triggers either on a
18137 read from or on a write to the memory location.  With the @samp{-r}
18138 option, the watchpoint created is a @dfn{read} watchpoint, i.e., it will
18139 trigger only when the memory location is accessed for reading.  Without
18140 either of the options, the watchpoint created is a regular watchpoint,
18141 i.e., it will trigger when the memory location is accessed for writing.
18142 @xref{Set Watchpoints, , Setting Watchpoints}.
18143
18144 Note that @samp{-break-list} will report a single list of watchpoints and
18145 breakpoints inserted.
18146
18147 @subsubheading @value{GDBN} Command
18148
18149 The corresponding @value{GDBN} commands are @samp{watch}, @samp{awatch}, and
18150 @samp{rwatch}.
18151
18152 @subsubheading Example
18153
18154 Setting a watchpoint on a variable in the @code{main} function:
18155
18156 @smallexample
18157 (gdb)
18158 -break-watch x
18159 ^done,wpt=@{number="2",exp="x"@}
18160 (gdb)
18161 -exec-continue
18162 ^running
18163 (gdb)
18164 *stopped,reason="watchpoint-trigger",wpt=@{number="2",exp="x"@},
18165 value=@{old="-268439212",new="55"@},
18166 frame=@{func="main",args=[],file="recursive2.c",
18167 fullname="/home/foo/bar/recursive2.c",line="5"@}
18168 (gdb)
18169 @end smallexample
18170
18171 Setting a watchpoint on a variable local to a function.  @value{GDBN} will stop
18172 the program execution twice: first for the variable changing value, then
18173 for the watchpoint going out of scope.
18174
18175 @smallexample
18176 (gdb)
18177 -break-watch C
18178 ^done,wpt=@{number="5",exp="C"@}
18179 (gdb)
18180 -exec-continue
18181 ^running
18182 (gdb)
18183 *stopped,reason="watchpoint-trigger",
18184 wpt=@{number="5",exp="C"@},value=@{old="-276895068",new="3"@},
18185 frame=@{func="callee4",args=[],
18186 file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18187 fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="13"@}
18188 (gdb)
18189 -exec-continue
18190 ^running
18191 (gdb)
18192 *stopped,reason="watchpoint-scope",wpnum="5",
18193 frame=@{func="callee3",args=[@{name="strarg",
18194 value="0x11940 \"A string argument.\""@}],
18195 file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18196 fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="18"@}
18197 (gdb)
18198 @end smallexample
18199
18200 Listing breakpoints and watchpoints, at different points in the program
18201 execution.  Note that once the watchpoint goes out of scope, it is
18202 deleted.
18203
18204 @smallexample
18205 (gdb)
18206 -break-watch C
18207 ^done,wpt=@{number="2",exp="C"@}
18208 (gdb)
18209 -break-list
18210 ^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
18211 hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18212 @{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18213 @{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18214 @{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18215 @{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18216 @{width="40",alignment="2",col_name="what",colhdr="What"@}],
18217 body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
18218 addr="0x00010734",func="callee4",
18219 file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18220 fullname="/home/foo/devo/gdb/testsuite/gdb.mi/basics.c"line="8",times="1"@},
18221 bkpt=@{number="2",type="watchpoint",disp="keep",
18222 enabled="y",addr="",what="C",times="0"@}]@}
18223 (gdb)
18224 -exec-continue
18225 ^running
18226 (gdb)
18227 *stopped,reason="watchpoint-trigger",wpt=@{number="2",exp="C"@},
18228 value=@{old="-276895068",new="3"@},
18229 frame=@{func="callee4",args=[],
18230 file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18231 fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="13"@}
18232 (gdb)
18233 -break-list
18234 ^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
18235 hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18236 @{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18237 @{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18238 @{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18239 @{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18240 @{width="40",alignment="2",col_name="what",colhdr="What"@}],
18241 body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
18242 addr="0x00010734",func="callee4",
18243 file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18244 fullname="/home/foo/devo/gdb/testsuite/gdb.mi/basics.c",line="8",times="1"@},
18245 bkpt=@{number="2",type="watchpoint",disp="keep",
18246 enabled="y",addr="",what="C",times="-5"@}]@}
18247 (gdb)
18248 -exec-continue
18249 ^running
18250 ^done,reason="watchpoint-scope",wpnum="2",
18251 frame=@{func="callee3",args=[@{name="strarg",
18252 value="0x11940 \"A string argument.\""@}],
18253 file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18254 fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="18"@}
18255 (gdb)
18256 -break-list
18257 ^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18258 hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18259 @{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18260 @{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18261 @{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18262 @{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18263 @{width="40",alignment="2",col_name="what",colhdr="What"@}],
18264 body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
18265 addr="0x00010734",func="callee4",
18266 file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18267 fullname="/home/foo/devo/gdb/testsuite/gdb.mi/basics.c",line="8",
18268 times="1"@}]@}
18269 (gdb)
18270 @end smallexample
18271
18272 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18273 @node GDB/MI Program Context
18274 @section @sc{gdb/mi}  Program Context
18275
18276 @subheading The @code{-exec-arguments} Command
18277 @findex -exec-arguments
18278
18279
18280 @subsubheading Synopsis
18281
18282 @smallexample
18283  -exec-arguments @var{args}
18284 @end smallexample
18285
18286 Set the inferior program arguments, to be used in the next
18287 @samp{-exec-run}.
18288
18289 @subsubheading @value{GDBN} Command
18290
18291 The corresponding @value{GDBN} command is @samp{set args}.
18292
18293 @subsubheading Example
18294
18295 @c FIXME!
18296 Don't have one around.
18297
18298
18299 @subheading The @code{-exec-show-arguments} Command
18300 @findex -exec-show-arguments
18301
18302 @subsubheading Synopsis
18303
18304 @smallexample
18305  -exec-show-arguments
18306 @end smallexample
18307
18308 Print the arguments of the program.
18309
18310 @subsubheading @value{GDBN} Command
18311
18312 The corresponding @value{GDBN} command is @samp{show args}.
18313
18314 @subsubheading Example
18315 N.A.
18316
18317
18318 @subheading The @code{-environment-cd} Command
18319 @findex -environment-cd
18320
18321 @subsubheading Synopsis
18322
18323 @smallexample
18324  -environment-cd @var{pathdir}
18325 @end smallexample
18326
18327 Set @value{GDBN}'s working directory.
18328
18329 @subsubheading @value{GDBN} Command
18330
18331 The corresponding @value{GDBN} command is @samp{cd}.
18332
18333 @subsubheading Example
18334
18335 @smallexample
18336 (gdb)
18337 -environment-cd /kwikemart/marge/ezannoni/flathead-dev/devo/gdb
18338 ^done
18339 (gdb)
18340 @end smallexample
18341
18342
18343 @subheading The @code{-environment-directory} Command
18344 @findex -environment-directory
18345
18346 @subsubheading Synopsis
18347
18348 @smallexample
18349  -environment-directory [ -r ] [ @var{pathdir} ]+
18350 @end smallexample
18351
18352 Add directories @var{pathdir} to beginning of search path for source files.
18353 If the @samp{-r} option is used, the search path is reset to the default
18354 search path.  If directories @var{pathdir} are supplied in addition to the
18355 @samp{-r} option, the search path is first reset and then addition
18356 occurs as normal.
18357 Multiple directories may be specified, separated by blanks.  Specifying
18358 multiple directories in a single command
18359 results in the directories added to the beginning of the
18360 search path in the same order they were presented in the command.
18361 If blanks are needed as
18362 part of a directory name, double-quotes should be used around
18363 the name.  In the command output, the path will show up separated
18364 by the system directory-separator character.  The directory-separator
18365 character must not be used
18366 in any directory name.
18367 If no directories are specified, the current search path is displayed.
18368
18369 @subsubheading @value{GDBN} Command
18370
18371 The corresponding @value{GDBN} command is @samp{dir}.
18372
18373 @subsubheading Example
18374
18375 @smallexample
18376 (gdb)
18377 -environment-directory /kwikemart/marge/ezannoni/flathead-dev/devo/gdb
18378 ^done,source-path="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb:$cdir:$cwd"
18379 (gdb)
18380 -environment-directory ""
18381 ^done,source-path="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb:$cdir:$cwd"
18382 (gdb)
18383 -environment-directory -r /home/jjohnstn/src/gdb /usr/src
18384 ^done,source-path="/home/jjohnstn/src/gdb:/usr/src:$cdir:$cwd"
18385 (gdb)
18386 -environment-directory -r
18387 ^done,source-path="$cdir:$cwd"
18388 (gdb)
18389 @end smallexample
18390
18391
18392 @subheading The @code{-environment-path} Command
18393 @findex -environment-path
18394
18395 @subsubheading Synopsis
18396
18397 @smallexample
18398  -environment-path [ -r ] [ @var{pathdir} ]+
18399 @end smallexample
18400
18401 Add directories @var{pathdir} to beginning of search path for object files.
18402 If the @samp{-r} option is used, the search path is reset to the original
18403 search path that existed at gdb start-up.  If directories @var{pathdir} are
18404 supplied in addition to the
18405 @samp{-r} option, the search path is first reset and then addition
18406 occurs as normal.
18407 Multiple directories may be specified, separated by blanks.  Specifying
18408 multiple directories in a single command
18409 results in the directories added to the beginning of the
18410 search path in the same order they were presented in the command.
18411 If blanks are needed as
18412 part of a directory name, double-quotes should be used around
18413 the name.  In the command output, the path will show up separated
18414 by the system directory-separator character.  The directory-separator
18415 character must not be used
18416 in any directory name.
18417 If no directories are specified, the current path is displayed.
18418
18419
18420 @subsubheading @value{GDBN} Command
18421
18422 The corresponding @value{GDBN} command is @samp{path}.
18423
18424 @subsubheading Example
18425
18426 @smallexample
18427 (gdb)
18428 -environment-path
18429 ^done,path="/usr/bin"
18430 (gdb)
18431 -environment-path /kwikemart/marge/ezannoni/flathead-dev/ppc-eabi/gdb /bin
18432 ^done,path="/kwikemart/marge/ezannoni/flathead-dev/ppc-eabi/gdb:/bin:/usr/bin"
18433 (gdb)
18434 -environment-path -r /usr/local/bin
18435 ^done,path="/usr/local/bin:/usr/bin"
18436 (gdb)
18437 @end smallexample
18438
18439
18440 @subheading The @code{-environment-pwd} Command
18441 @findex -environment-pwd
18442
18443 @subsubheading Synopsis
18444
18445 @smallexample
18446  -environment-pwd
18447 @end smallexample
18448
18449 Show the current working directory.
18450
18451 @subsubheading @value{GDBN} Command
18452
18453 The corresponding @value{GDBN} command is @samp{pwd}.
18454
18455 @subsubheading Example
18456
18457 @smallexample
18458 (gdb)
18459 -environment-pwd
18460 ^done,cwd="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb"
18461 (gdb)
18462 @end smallexample
18463
18464 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18465 @node GDB/MI Thread Commands
18466 @section @sc{gdb/mi} Thread Commands
18467
18468
18469 @subheading The @code{-thread-info} Command
18470 @findex -thread-info
18471
18472 @subsubheading Synopsis
18473
18474 @smallexample
18475  -thread-info
18476 @end smallexample
18477
18478 @subsubheading @value{GDBN} Command
18479
18480 No equivalent.
18481
18482 @subsubheading Example
18483 N.A.
18484
18485
18486 @subheading The @code{-thread-list-all-threads} Command
18487 @findex -thread-list-all-threads
18488
18489 @subsubheading Synopsis
18490
18491 @smallexample
18492  -thread-list-all-threads
18493 @end smallexample
18494
18495 @subsubheading @value{GDBN} Command
18496
18497 The equivalent @value{GDBN} command is @samp{info threads}.
18498
18499 @subsubheading Example
18500 N.A.
18501
18502
18503 @subheading The @code{-thread-list-ids} Command
18504 @findex -thread-list-ids
18505
18506 @subsubheading Synopsis
18507
18508 @smallexample
18509  -thread-list-ids
18510 @end smallexample
18511
18512 Produces a list of the currently known @value{GDBN} thread ids.  At the
18513 end of the list it also prints the total number of such threads.
18514
18515 @subsubheading @value{GDBN} Command
18516
18517 Part of @samp{info threads} supplies the same information.
18518
18519 @subsubheading Example
18520
18521 No threads present, besides the main process:
18522
18523 @smallexample
18524 (gdb)
18525 -thread-list-ids
18526 ^done,thread-ids=@{@},number-of-threads="0"
18527 (gdb)
18528 @end smallexample
18529
18530
18531 Several threads:
18532
18533 @smallexample
18534 (gdb)
18535 -thread-list-ids
18536 ^done,thread-ids=@{thread-id="3",thread-id="2",thread-id="1"@},
18537 number-of-threads="3"
18538 (gdb)
18539 @end smallexample
18540
18541
18542 @subheading The @code{-thread-select} Command
18543 @findex -thread-select
18544
18545 @subsubheading Synopsis
18546
18547 @smallexample
18548  -thread-select @var{threadnum}
18549 @end smallexample
18550
18551 Make @var{threadnum} the current thread.  It prints the number of the new
18552 current thread, and the topmost frame for that thread.
18553
18554 @subsubheading @value{GDBN} Command
18555
18556 The corresponding @value{GDBN} command is @samp{thread}.
18557
18558 @subsubheading Example
18559
18560 @smallexample
18561 (gdb)
18562 -exec-next
18563 ^running
18564 (gdb)
18565 *stopped,reason="end-stepping-range",thread-id="2",line="187",
18566 file="../../../devo/gdb/testsuite/gdb.threads/linux-dp.c"
18567 (gdb)
18568 -thread-list-ids
18569 ^done,
18570 thread-ids=@{thread-id="3",thread-id="2",thread-id="1"@},
18571 number-of-threads="3"
18572 (gdb)
18573 -thread-select 3
18574 ^done,new-thread-id="3",
18575 frame=@{level="0",func="vprintf",
18576 args=[@{name="format",value="0x8048e9c \"%*s%c %d %c\\n\""@},
18577 @{name="arg",value="0x2"@}],file="vprintf.c",line="31"@}
18578 (gdb)
18579 @end smallexample
18580
18581 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18582 @node GDB/MI Program Execution
18583 @section @sc{gdb/mi} Program Execution
18584
18585 These are the asynchronous commands which generate the out-of-band
18586 record @samp{*stopped}.  Currently @value{GDBN} only really executes
18587 asynchronously with remote targets and this interaction is mimicked in
18588 other cases.
18589
18590 @subheading The @code{-exec-continue} Command
18591 @findex -exec-continue
18592
18593 @subsubheading Synopsis
18594
18595 @smallexample
18596  -exec-continue
18597 @end smallexample
18598
18599 Resumes the execution of the inferior program until a breakpoint is
18600 encountered, or until the inferior exits.
18601
18602 @subsubheading @value{GDBN} Command
18603
18604 The corresponding @value{GDBN} corresponding is @samp{continue}.
18605
18606 @subsubheading Example
18607
18608 @smallexample
18609 -exec-continue
18610 ^running
18611 (gdb)
18612 @@Hello world
18613 *stopped,reason="breakpoint-hit",bkptno="2",frame=@{func="foo",args=[],
18614 file="hello.c",fullname="/home/foo/bar/hello.c",line="13"@}
18615 (gdb)
18616 @end smallexample
18617
18618
18619 @subheading The @code{-exec-finish} Command
18620 @findex -exec-finish
18621
18622 @subsubheading Synopsis
18623
18624 @smallexample
18625  -exec-finish
18626 @end smallexample
18627
18628 Resumes the execution of the inferior program until the current
18629 function is exited.  Displays the results returned by the function.
18630
18631 @subsubheading @value{GDBN} Command
18632
18633 The corresponding @value{GDBN} command is @samp{finish}.
18634
18635 @subsubheading Example
18636
18637 Function returning @code{void}.
18638
18639 @smallexample
18640 -exec-finish
18641 ^running
18642 (gdb)
18643 @@hello from foo
18644 *stopped,reason="function-finished",frame=@{func="main",args=[],
18645 file="hello.c",fullname="/home/foo/bar/hello.c",line="7"@}
18646 (gdb)
18647 @end smallexample
18648
18649 Function returning other than @code{void}.  The name of the internal
18650 @value{GDBN} variable storing the result is printed, together with the
18651 value itself.
18652
18653 @smallexample
18654 -exec-finish
18655 ^running
18656 (gdb)
18657 *stopped,reason="function-finished",frame=@{addr="0x000107b0",func="foo",
18658 args=[@{name="a",value="1"],@{name="b",value="9"@}@},
18659 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
18660 gdb-result-var="$1",return-value="0"
18661 (gdb)
18662 @end smallexample
18663
18664
18665 @subheading The @code{-exec-interrupt} Command
18666 @findex -exec-interrupt
18667
18668 @subsubheading Synopsis
18669
18670 @smallexample
18671  -exec-interrupt
18672 @end smallexample
18673
18674 Interrupts the background execution of the target.  Note how the token
18675 associated with the stop message is the one for the execution command
18676 that has been interrupted.  The token for the interrupt itself only
18677 appears in the @samp{^done} output.  If the user is trying to
18678 interrupt a non-running program, an error message will be printed.
18679
18680 @subsubheading @value{GDBN} Command
18681
18682 The corresponding @value{GDBN} command is @samp{interrupt}.
18683
18684 @subsubheading Example
18685
18686 @smallexample
18687 (gdb)
18688 111-exec-continue
18689 111^running
18690
18691 (gdb)
18692 222-exec-interrupt
18693 222^done
18694 (gdb)
18695 111*stopped,signal-name="SIGINT",signal-meaning="Interrupt",
18696 frame=@{addr="0x00010140",func="foo",args=[],file="try.c",
18697 fullname="/home/foo/bar/try.c",line="13"@}
18698 (gdb)
18699
18700 (gdb)
18701 -exec-interrupt
18702 ^error,msg="mi_cmd_exec_interrupt: Inferior not executing."
18703 (gdb)
18704 @end smallexample
18705
18706
18707 @subheading The @code{-exec-next} Command
18708 @findex -exec-next
18709
18710 @subsubheading Synopsis
18711
18712 @smallexample
18713  -exec-next
18714 @end smallexample
18715
18716 Resumes execution of the inferior program, stopping when the beginning
18717 of the next source line is reached.
18718
18719 @subsubheading @value{GDBN} Command
18720
18721 The corresponding @value{GDBN} command is @samp{next}.
18722
18723 @subsubheading Example
18724
18725 @smallexample
18726 -exec-next
18727 ^running
18728 (gdb)
18729 *stopped,reason="end-stepping-range",line="8",file="hello.c"
18730 (gdb)
18731 @end smallexample
18732
18733
18734 @subheading The @code{-exec-next-instruction} Command
18735 @findex -exec-next-instruction
18736
18737 @subsubheading Synopsis
18738
18739 @smallexample
18740  -exec-next-instruction
18741 @end smallexample
18742
18743 Executes one machine instruction.  If the instruction is a function
18744 call, continues until the function returns.  If the program stops at an
18745 instruction in the middle of a source line, the address will be
18746 printed as well.
18747
18748 @subsubheading @value{GDBN} Command
18749
18750 The corresponding @value{GDBN} command is @samp{nexti}.
18751
18752 @subsubheading Example
18753
18754 @smallexample
18755 (gdb)
18756 -exec-next-instruction
18757 ^running
18758
18759 (gdb)
18760 *stopped,reason="end-stepping-range",
18761 addr="0x000100d4",line="5",file="hello.c"
18762 (gdb)
18763 @end smallexample
18764
18765
18766 @subheading The @code{-exec-return} Command
18767 @findex -exec-return
18768
18769 @subsubheading Synopsis
18770
18771 @smallexample
18772  -exec-return
18773 @end smallexample
18774
18775 Makes current function return immediately.  Doesn't execute the inferior.
18776 Displays the new current frame.
18777
18778 @subsubheading @value{GDBN} Command
18779
18780 The corresponding @value{GDBN} command is @samp{return}.
18781
18782 @subsubheading Example
18783
18784 @smallexample
18785 (gdb)
18786 200-break-insert callee4
18787 200^done,bkpt=@{number="1",addr="0x00010734",
18788 file="../../../devo/gdb/testsuite/gdb.mi/basics.c",line="8"@}
18789 (gdb)
18790 000-exec-run
18791 000^running
18792 (gdb)
18793 000*stopped,reason="breakpoint-hit",bkptno="1",
18794 frame=@{func="callee4",args=[],
18795 file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18796 fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="8"@}
18797 (gdb)
18798 205-break-delete
18799 205^done
18800 (gdb)
18801 111-exec-return
18802 111^done,frame=@{level="0",func="callee3",
18803 args=[@{name="strarg",
18804 value="0x11940 \"A string argument.\""@}],
18805 file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18806 fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="18"@}
18807 (gdb)
18808 @end smallexample
18809
18810
18811 @subheading The @code{-exec-run} Command
18812 @findex -exec-run
18813
18814 @subsubheading Synopsis
18815
18816 @smallexample
18817  -exec-run
18818 @end smallexample
18819
18820 Starts execution of the inferior from the beginning.  The inferior
18821 executes until either a breakpoint is encountered or the program
18822 exits.  In the latter case the output will include an exit code, if
18823 the program has exited exceptionally.
18824
18825 @subsubheading @value{GDBN} Command
18826
18827 The corresponding @value{GDBN} command is @samp{run}.
18828
18829 @subsubheading Examples
18830
18831 @smallexample
18832 (gdb)
18833 -break-insert main
18834 ^done,bkpt=@{number="1",addr="0x0001072c",file="recursive2.c",line="4"@}
18835 (gdb)
18836 -exec-run
18837 ^running
18838 (gdb)
18839 *stopped,reason="breakpoint-hit",bkptno="1",
18840 frame=@{func="main",args=[],file="recursive2.c",
18841 fullname="/home/foo/bar/recursive2.c",line="4"@}
18842 (gdb)
18843 @end smallexample
18844
18845 @noindent
18846 Program exited normally:
18847
18848 @smallexample
18849 (gdb)
18850 -exec-run
18851 ^running
18852 (gdb)
18853 x = 55
18854 *stopped,reason="exited-normally"
18855 (gdb)
18856 @end smallexample
18857
18858 @noindent
18859 Program exited exceptionally:
18860
18861 @smallexample
18862 (gdb)
18863 -exec-run
18864 ^running
18865 (gdb)
18866 x = 55
18867 *stopped,reason="exited",exit-code="01"
18868 (gdb)
18869 @end smallexample
18870
18871 Another way the program can terminate is if it receives a signal such as
18872 @code{SIGINT}.  In this case, @sc{gdb/mi} displays this:
18873
18874 @smallexample
18875 (gdb)
18876 *stopped,reason="exited-signalled",signal-name="SIGINT",
18877 signal-meaning="Interrupt"
18878 @end smallexample
18879
18880
18881 @c @subheading -exec-signal
18882
18883
18884 @subheading The @code{-exec-step} Command
18885 @findex -exec-step
18886
18887 @subsubheading Synopsis
18888
18889 @smallexample
18890  -exec-step
18891 @end smallexample
18892
18893 Resumes execution of the inferior program, stopping when the beginning
18894 of the next source line is reached, if the next source line is not a
18895 function call.  If it is, stop at the first instruction of the called
18896 function.
18897
18898 @subsubheading @value{GDBN} Command
18899
18900 The corresponding @value{GDBN} command is @samp{step}.
18901
18902 @subsubheading Example
18903
18904 Stepping into a function:
18905
18906 @smallexample
18907 -exec-step
18908 ^running
18909 (gdb)
18910 *stopped,reason="end-stepping-range",
18911 frame=@{func="foo",args=[@{name="a",value="10"@},
18912 @{name="b",value="0"@}],file="recursive2.c",
18913 fullname="/home/foo/bar/recursive2.c",line="11"@}
18914 (gdb)
18915 @end smallexample
18916
18917 Regular stepping:
18918
18919 @smallexample
18920 -exec-step
18921 ^running
18922 (gdb)
18923 *stopped,reason="end-stepping-range",line="14",file="recursive2.c"
18924 (gdb)
18925 @end smallexample
18926
18927
18928 @subheading The @code{-exec-step-instruction} Command
18929 @findex -exec-step-instruction
18930
18931 @subsubheading Synopsis
18932
18933 @smallexample
18934  -exec-step-instruction
18935 @end smallexample
18936
18937 Resumes the inferior which executes one machine instruction.  The
18938 output, once @value{GDBN} has stopped, will vary depending on whether
18939 we have stopped in the middle of a source line or not.  In the former
18940 case, the address at which the program stopped will be printed as
18941 well.
18942
18943 @subsubheading @value{GDBN} Command
18944
18945 The corresponding @value{GDBN} command is @samp{stepi}.
18946
18947 @subsubheading Example
18948
18949 @smallexample
18950 (gdb)
18951 -exec-step-instruction
18952 ^running
18953
18954 (gdb)
18955 *stopped,reason="end-stepping-range",
18956 frame=@{func="foo",args=[],file="try.c",
18957 fullname="/home/foo/bar/try.c",line="10"@}
18958 (gdb)
18959 -exec-step-instruction
18960 ^running
18961
18962 (gdb)
18963 *stopped,reason="end-stepping-range",
18964 frame=@{addr="0x000100f4",func="foo",args=[],file="try.c",
18965 fullname="/home/foo/bar/try.c",line="10"@}
18966 (gdb)
18967 @end smallexample
18968
18969
18970 @subheading The @code{-exec-until} Command
18971 @findex -exec-until
18972
18973 @subsubheading Synopsis
18974
18975 @smallexample
18976  -exec-until [ @var{location} ]
18977 @end smallexample
18978
18979 Executes the inferior until the @var{location} specified in the
18980 argument is reached.  If there is no argument, the inferior executes
18981 until a source line greater than the current one is reached.  The
18982 reason for stopping in this case will be @samp{location-reached}.
18983
18984 @subsubheading @value{GDBN} Command
18985
18986 The corresponding @value{GDBN} command is @samp{until}.
18987
18988 @subsubheading Example
18989
18990 @smallexample
18991 (gdb)
18992 -exec-until recursive2.c:6
18993 ^running
18994 (gdb)
18995 x = 55
18996 *stopped,reason="location-reached",frame=@{func="main",args=[],
18997 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="6"@}
18998 (gdb)
18999 @end smallexample
19000
19001 @ignore
19002 @subheading -file-clear
19003 Is this going away????
19004 @end ignore
19005
19006 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
19007 @node GDB/MI Stack Manipulation
19008 @section @sc{gdb/mi} Stack Manipulation Commands
19009
19010
19011 @subheading The @code{-stack-info-frame} Command
19012 @findex -stack-info-frame
19013
19014 @subsubheading Synopsis
19015
19016 @smallexample
19017  -stack-info-frame
19018 @end smallexample
19019
19020 Get info on the selected frame.
19021
19022 @subsubheading @value{GDBN} Command
19023
19024 The corresponding @value{GDBN} command is @samp{info frame} or @samp{frame}
19025 (without arguments).
19026
19027 @subsubheading Example
19028
19029 @smallexample
19030 (gdb)
19031 -stack-info-frame
19032 ^done,frame=@{level="1",addr="0x0001076c",func="callee3",
19033 file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19034 fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="17"@}
19035 (gdb)
19036 @end smallexample
19037
19038 @subheading The @code{-stack-info-depth} Command
19039 @findex -stack-info-depth
19040
19041 @subsubheading Synopsis
19042
19043 @smallexample
19044  -stack-info-depth [ @var{max-depth} ]
19045 @end smallexample
19046
19047 Return the depth of the stack.  If the integer argument @var{max-depth}
19048 is specified, do not count beyond @var{max-depth} frames.
19049
19050 @subsubheading @value{GDBN} Command
19051
19052 There's no equivalent @value{GDBN} command.
19053
19054 @subsubheading Example
19055
19056 For a stack with frame levels 0 through 11:
19057
19058 @smallexample
19059 (gdb)
19060 -stack-info-depth
19061 ^done,depth="12"
19062 (gdb)
19063 -stack-info-depth 4
19064 ^done,depth="4"
19065 (gdb)
19066 -stack-info-depth 12
19067 ^done,depth="12"
19068 (gdb)
19069 -stack-info-depth 11
19070 ^done,depth="11"
19071 (gdb)
19072 -stack-info-depth 13
19073 ^done,depth="12"
19074 (gdb)
19075 @end smallexample
19076
19077 @subheading The @code{-stack-list-arguments} Command
19078 @findex -stack-list-arguments
19079
19080 @subsubheading Synopsis
19081
19082 @smallexample
19083  -stack-list-arguments @var{show-values}
19084     [ @var{low-frame} @var{high-frame} ]
19085 @end smallexample
19086
19087 Display a list of the arguments for the frames between @var{low-frame}
19088 and @var{high-frame} (inclusive).  If @var{low-frame} and
19089 @var{high-frame} are not provided, list the arguments for the whole
19090 call stack.  If the two arguments are equal, show the single frame
19091 at the corresponding level.  It is an error if @var{low-frame} is
19092 larger than the actual number of frames.  On the other hand,
19093 @var{high-frame} may be larger than the actual number of frames, in
19094 which case only existing frames will be returned.
19095
19096 The @var{show-values} argument must have a value of 0 or 1.  A value of
19097 0 means that only the names of the arguments are listed, a value of 1
19098 means that both names and values of the arguments are printed.
19099
19100 @subsubheading @value{GDBN} Command
19101
19102 @value{GDBN} does not have an equivalent command.  @code{gdbtk} has a
19103 @samp{gdb_get_args} command which partially overlaps with the
19104 functionality of @samp{-stack-list-arguments}.
19105
19106 @subsubheading Example
19107
19108 @smallexample
19109 (gdb)
19110 -stack-list-frames
19111 ^done,
19112 stack=[
19113 frame=@{level="0",addr="0x00010734",func="callee4",
19114 file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19115 fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="8"@},
19116 frame=@{level="1",addr="0x0001076c",func="callee3",
19117 file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19118 fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="17"@},
19119 frame=@{level="2",addr="0x0001078c",func="callee2",
19120 file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19121 fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="22"@},
19122 frame=@{level="3",addr="0x000107b4",func="callee1",
19123 file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19124 fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="27"@},
19125 frame=@{level="4",addr="0x000107e0",func="main",
19126 file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19127 fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="32"@}]
19128 (gdb)
19129 -stack-list-arguments 0
19130 ^done,
19131 stack-args=[
19132 frame=@{level="0",args=[]@},
19133 frame=@{level="1",args=[name="strarg"]@},
19134 frame=@{level="2",args=[name="intarg",name="strarg"]@},
19135 frame=@{level="3",args=[name="intarg",name="strarg",name="fltarg"]@},
19136 frame=@{level="4",args=[]@}]
19137 (gdb)
19138 -stack-list-arguments 1
19139 ^done,
19140 stack-args=[
19141 frame=@{level="0",args=[]@},
19142 frame=@{level="1",
19143  args=[@{name="strarg",value="0x11940 \"A string argument.\""@}]@},
19144 frame=@{level="2",args=[
19145 @{name="intarg",value="2"@},
19146 @{name="strarg",value="0x11940 \"A string argument.\""@}]@},
19147 @{frame=@{level="3",args=[
19148 @{name="intarg",value="2"@},
19149 @{name="strarg",value="0x11940 \"A string argument.\""@},
19150 @{name="fltarg",value="3.5"@}]@},
19151 frame=@{level="4",args=[]@}]
19152 (gdb)
19153 -stack-list-arguments 0 2 2
19154 ^done,stack-args=[frame=@{level="2",args=[name="intarg",name="strarg"]@}]
19155 (gdb)
19156 -stack-list-arguments 1 2 2
19157 ^done,stack-args=[frame=@{level="2",
19158 args=[@{name="intarg",value="2"@},
19159 @{name="strarg",value="0x11940 \"A string argument.\""@}]@}]
19160 (gdb)
19161 @end smallexample
19162
19163 @c @subheading -stack-list-exception-handlers
19164
19165
19166 @subheading The @code{-stack-list-frames} Command
19167 @findex -stack-list-frames
19168
19169 @subsubheading Synopsis
19170
19171 @smallexample
19172  -stack-list-frames [ @var{low-frame} @var{high-frame} ]
19173 @end smallexample
19174
19175 List the frames currently on the stack.  For each frame it displays the
19176 following info:
19177
19178 @table @samp
19179 @item @var{level}
19180 The frame number, 0 being the topmost frame, i.e., the innermost function.
19181 @item @var{addr}
19182 The @code{$pc} value for that frame.
19183 @item @var{func}
19184 Function name.
19185 @item @var{file}
19186 File name of the source file where the function lives.
19187 @item @var{line}
19188 Line number corresponding to the @code{$pc}.
19189 @end table
19190
19191 If invoked without arguments, this command prints a backtrace for the
19192 whole stack.  If given two integer arguments, it shows the frames whose
19193 levels are between the two arguments (inclusive).  If the two arguments
19194 are equal, it shows the single frame at the corresponding level.  It is
19195 an error if @var{low-frame} is larger than the actual number of
19196 frames.  On the other hand, @var{high-frame} may be larger than the
19197 actual number of frames, in which case only existing frames will be returned.
19198
19199 @subsubheading @value{GDBN} Command
19200
19201 The corresponding @value{GDBN} commands are @samp{backtrace} and @samp{where}.
19202
19203 @subsubheading Example
19204
19205 Full stack backtrace:
19206
19207 @smallexample
19208 (gdb)
19209 -stack-list-frames
19210 ^done,stack=
19211 [frame=@{level="0",addr="0x0001076c",func="foo",
19212   file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="11"@},
19213 frame=@{level="1",addr="0x000107a4",func="foo",
19214   file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19215 frame=@{level="2",addr="0x000107a4",func="foo",
19216   file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19217 frame=@{level="3",addr="0x000107a4",func="foo",
19218   file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19219 frame=@{level="4",addr="0x000107a4",func="foo",
19220   file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19221 frame=@{level="5",addr="0x000107a4",func="foo",
19222   file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19223 frame=@{level="6",addr="0x000107a4",func="foo",
19224   file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19225 frame=@{level="7",addr="0x000107a4",func="foo",
19226   file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19227 frame=@{level="8",addr="0x000107a4",func="foo",
19228   file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19229 frame=@{level="9",addr="0x000107a4",func="foo",
19230   file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19231 frame=@{level="10",addr="0x000107a4",func="foo",
19232   file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19233 frame=@{level="11",addr="0x00010738",func="main",
19234   file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="4"@}]
19235 (gdb)
19236 @end smallexample
19237
19238 Show frames between @var{low_frame} and @var{high_frame}:
19239
19240 @smallexample
19241 (gdb)
19242 -stack-list-frames 3 5
19243 ^done,stack=
19244 [frame=@{level="3",addr="0x000107a4",func="foo",
19245   file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19246 frame=@{level="4",addr="0x000107a4",func="foo",
19247   file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19248 frame=@{level="5",addr="0x000107a4",func="foo",
19249   file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@}]
19250 (gdb)
19251 @end smallexample
19252
19253 Show a single frame:
19254
19255 @smallexample
19256 (gdb)
19257 -stack-list-frames 3 3
19258 ^done,stack=
19259 [frame=@{level="3",addr="0x000107a4",func="foo",
19260   file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@}]
19261 (gdb)
19262 @end smallexample
19263
19264
19265 @subheading The @code{-stack-list-locals} Command
19266 @findex -stack-list-locals
19267
19268 @subsubheading Synopsis
19269
19270 @smallexample
19271  -stack-list-locals @var{print-values}
19272 @end smallexample
19273
19274 Display the local variable names for the selected frame.  If
19275 @var{print-values} is 0 or @code{--no-values}, print only the names of
19276 the variables; if it is 1 or @code{--all-values}, print also their
19277 values; and if it is 2 or @code{--simple-values}, print the name,
19278 type and value for simple data types and the name and type for arrays,
19279 structures and unions.  In this last case, a frontend can immediately
19280 display the value of simple data types and create variable objects for
19281 other data types when the user wishes to explore their values in
19282 more detail.
19283
19284 @subsubheading @value{GDBN} Command
19285
19286 @samp{info locals} in @value{GDBN}, @samp{gdb_get_locals} in @code{gdbtk}.
19287
19288 @subsubheading Example
19289
19290 @smallexample
19291 (gdb)
19292 -stack-list-locals 0
19293 ^done,locals=[name="A",name="B",name="C"]
19294 (gdb)
19295 -stack-list-locals --all-values
19296 ^done,locals=[@{name="A",value="1"@},@{name="B",value="2"@},
19297   @{name="C",value="@{1, 2, 3@}"@}]
19298 -stack-list-locals --simple-values
19299 ^done,locals=[@{name="A",type="int",value="1"@},
19300   @{name="B",type="int",value="2"@},@{name="C",type="int [3]"@}]
19301 (gdb)
19302 @end smallexample
19303
19304
19305 @subheading The @code{-stack-select-frame} Command
19306 @findex -stack-select-frame
19307
19308 @subsubheading Synopsis
19309
19310 @smallexample
19311  -stack-select-frame @var{framenum}
19312 @end smallexample
19313
19314 Change the selected frame.  Select a different frame @var{framenum} on
19315 the stack.
19316
19317 @subsubheading @value{GDBN} Command
19318
19319 The corresponding @value{GDBN} commands are @samp{frame}, @samp{up},
19320 @samp{down}, @samp{select-frame}, @samp{up-silent}, and @samp{down-silent}.
19321
19322 @subsubheading Example
19323
19324 @smallexample
19325 (gdb)
19326 -stack-select-frame 2
19327 ^done
19328 (gdb)
19329 @end smallexample
19330
19331 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
19332 @node GDB/MI Variable Objects
19333 @section @sc{gdb/mi} Variable Objects
19334
19335 @ignore
19336
19337 @subheading Motivation for Variable Objects in @sc{gdb/mi}
19338
19339 For the implementation of a variable debugger window (locals, watched
19340 expressions, etc.), we are proposing the adaptation of the existing code
19341 used by @code{Insight}.
19342
19343 The two main reasons for that are:
19344
19345 @enumerate 1
19346 @item
19347 It has been proven in practice (it is already on its second generation).
19348
19349 @item
19350 It will shorten development time (needless to say how important it is
19351 now).
19352 @end enumerate
19353
19354 The original interface was designed to be used by Tcl code, so it was
19355 slightly changed so it could be used through @sc{gdb/mi}.  This section
19356 describes the @sc{gdb/mi} operations that will be available and gives some
19357 hints about their use.
19358
19359 @emph{Note}: In addition to the set of operations described here, we
19360 expect the @sc{gui} implementation of a variable window to require, at
19361 least, the following operations:
19362
19363 @itemize @bullet
19364 @item @code{-gdb-show} @code{output-radix}
19365 @item @code{-stack-list-arguments}
19366 @item @code{-stack-list-locals}
19367 @item @code{-stack-select-frame}
19368 @end itemize
19369
19370 @end ignore
19371
19372 @subheading Introduction to Variable Objects
19373
19374 @cindex variable objects in @sc{gdb/mi}
19375
19376 Variable objects are "object-oriented" MI interface for examining and
19377 changing values of expressions.  Unlike some other MI interfaces that
19378 work with expressions, variable objects are specifically designed for
19379 simple and efficient presentation in the frontend.  A variable object
19380 is identified by string name.  When a variable object is created, the
19381 frontend specifies the expression for that variable object.  The
19382 expression can be a simple variable, or it can be an arbitrary complex
19383 expression, and can even involve CPU registers.  After creating a
19384 variable object, the frontend can invoke other variable object
19385 operations---for example to obtain or change the value of a variable
19386 object, or to change display format.
19387
19388 Variable objects have hierarchical tree structure.  Any variable object
19389 that corresponds to a composite type, such as structure in C, has
19390 a number of child variable objects, for example corresponding to each
19391 element of a structure.  A child variable object can itself have 
19392 children, recursively.  Recursion ends when we reach 
19393 leaf variable objects, which always have built-in types.  Child variable
19394 objects are created only by explicit request, so if a frontend 
19395 is not interested in the children of a particular variable object, no
19396 child will be created.
19397
19398 For a leaf variable object it is possible to obtain its value as a
19399 string, or set the value from a string.  String value can be also
19400 obtained for a non-leaf variable object, but it's generally a string
19401 that only indicates the type of the object, and does not list its
19402 contents.  Assignment to a non-leaf variable object is not allowed.
19403  
19404 A frontend does not need to read the values of all variable objects each time
19405 the program stops.  Instead, MI provides an update command that lists all
19406 variable objects whose values has changed since the last update
19407 operation.  This considerably reduces the amount of data that must
19408 be transferred to the frontend.  As noted above, children variable
19409 objects are created on demand, and only leaf variable objects have a
19410 real value.  As result, gdb will read target memory only for leaf
19411 variables that frontend has created.
19412
19413 The automatic update is not always desirable.  For example, a frontend
19414 might want to keep a value of some expression for future reference,
19415 and never update it.  For another example,  fetching memory is
19416 relatively slow for embedded targets, so a frontend might want
19417 to disable automatic update for the variables that are either not
19418 visible on the screen, or ``closed''.  This is possible using so
19419 called ``frozen variable objects''.  Such variable objects are never
19420 implicitly updated.  
19421
19422 The following is the complete set of @sc{gdb/mi} operations defined to
19423 access this functionality:
19424
19425 @multitable @columnfractions .4 .6
19426 @item @strong{Operation}
19427 @tab @strong{Description}
19428
19429 @item @code{-var-create}
19430 @tab create a variable object
19431 @item @code{-var-delete}
19432 @tab delete the variable object and/or its children
19433 @item @code{-var-set-format}
19434 @tab set the display format of this variable
19435 @item @code{-var-show-format}
19436 @tab show the display format of this variable
19437 @item @code{-var-info-num-children}
19438 @tab tells how many children this object has
19439 @item @code{-var-list-children}
19440 @tab return a list of the object's children
19441 @item @code{-var-info-type}
19442 @tab show the type of this variable object
19443 @item @code{-var-info-expression}
19444 @tab print parent-relative expression that this variable object represents
19445 @item @code{-var-info-path-expression}
19446 @tab print full expression that this variable object represents
19447 @item @code{-var-show-attributes}
19448 @tab is this variable editable? does it exist here?
19449 @item @code{-var-evaluate-expression}
19450 @tab get the value of this variable
19451 @item @code{-var-assign}
19452 @tab set the value of this variable
19453 @item @code{-var-update}
19454 @tab update the variable and its children
19455 @item @code{-var-set-frozen}
19456 @tab set frozeness attribute
19457 @end multitable
19458
19459 In the next subsection we describe each operation in detail and suggest
19460 how it can be used.
19461
19462 @subheading Description And Use of Operations on Variable Objects
19463
19464 @subheading The @code{-var-create} Command
19465 @findex -var-create
19466
19467 @subsubheading Synopsis
19468
19469 @smallexample
19470  -var-create @{@var{name} | "-"@}
19471     @{@var{frame-addr} | "*"@} @var{expression}
19472 @end smallexample
19473
19474 This operation creates a variable object, which allows the monitoring of
19475 a variable, the result of an expression, a memory cell or a CPU
19476 register.
19477
19478 The @var{name} parameter is the string by which the object can be
19479 referenced.  It must be unique.  If @samp{-} is specified, the varobj
19480 system will generate a string ``varNNNNNN'' automatically.  It will be
19481 unique provided that one does not specify @var{name} on that format.
19482 The command fails if a duplicate name is found.
19483
19484 The frame under which the expression should be evaluated can be
19485 specified by @var{frame-addr}.  A @samp{*} indicates that the current
19486 frame should be used.
19487
19488 @var{expression} is any expression valid on the current language set (must not
19489 begin with a @samp{*}), or one of the following:
19490
19491 @itemize @bullet
19492 @item
19493 @samp{*@var{addr}}, where @var{addr} is the address of a memory cell
19494
19495 @item
19496 @samp{*@var{addr}-@var{addr}} --- a memory address range (TBD)
19497
19498 @item
19499 @samp{$@var{regname}} --- a CPU register name
19500 @end itemize
19501
19502 @subsubheading Result
19503
19504 This operation returns the name, number of children and the type of the
19505 object created.  Type is returned as a string as the ones generated by
19506 the @value{GDBN} CLI:
19507
19508 @smallexample
19509  name="@var{name}",numchild="N",type="@var{type}"
19510 @end smallexample
19511
19512
19513 @subheading The @code{-var-delete} Command
19514 @findex -var-delete
19515
19516 @subsubheading Synopsis
19517
19518 @smallexample
19519  -var-delete [ -c ] @var{name}
19520 @end smallexample
19521
19522 Deletes a previously created variable object and all of its children.
19523 With the @samp{-c} option, just deletes the children.
19524
19525 Returns an error if the object @var{name} is not found.
19526
19527
19528 @subheading The @code{-var-set-format} Command
19529 @findex -var-set-format
19530
19531 @subsubheading Synopsis
19532
19533 @smallexample
19534  -var-set-format @var{name} @var{format-spec}
19535 @end smallexample
19536
19537 Sets the output format for the value of the object @var{name} to be
19538 @var{format-spec}.
19539
19540 The syntax for the @var{format-spec} is as follows:
19541
19542 @smallexample
19543  @var{format-spec} @expansion{}
19544  @{binary | decimal | hexadecimal | octal | natural@}
19545 @end smallexample
19546
19547 The natural format is the default format choosen automatically
19548 based on the variable type (like decimal for an @code{int}, hex
19549 for pointers, etc.).
19550
19551 For a variable with children, the format is set only on the 
19552 variable itself, and the children are not affected.  
19553
19554 @subheading The @code{-var-show-format} Command
19555 @findex -var-show-format
19556
19557 @subsubheading Synopsis
19558
19559 @smallexample
19560  -var-show-format @var{name}
19561 @end smallexample
19562
19563 Returns the format used to display the value of the object @var{name}.
19564
19565 @smallexample
19566  @var{format} @expansion{}
19567  @var{format-spec}
19568 @end smallexample
19569
19570
19571 @subheading The @code{-var-info-num-children} Command
19572 @findex -var-info-num-children
19573
19574 @subsubheading Synopsis
19575
19576 @smallexample
19577  -var-info-num-children @var{name}
19578 @end smallexample
19579
19580 Returns the number of children of a variable object @var{name}:
19581
19582 @smallexample
19583  numchild=@var{n}
19584 @end smallexample
19585
19586
19587 @subheading The @code{-var-list-children} Command
19588 @findex -var-list-children
19589
19590 @subsubheading Synopsis
19591
19592 @smallexample
19593  -var-list-children [@var{print-values}] @var{name}
19594 @end smallexample
19595 @anchor{-var-list-children} 
19596
19597 Return a list of the children of the specified variable object and
19598 create variable objects for them, if they do not already exist.  With
19599 a single argument or if @var{print-values} has a value for of 0 or
19600 @code{--no-values}, print only the names of the variables; if
19601 @var{print-values} is 1 or @code{--all-values}, also print their
19602 values; and if it is 2 or @code{--simple-values} print the name and
19603 value for simple data types and just the name for arrays, structures
19604 and unions.
19605
19606 @subsubheading Example
19607
19608 @smallexample
19609 (gdb)
19610  -var-list-children n
19611  ^done,numchild=@var{n},children=[@{name=@var{name},
19612  numchild=@var{n},type=@var{type}@},@r{(repeats N times)}]
19613 (gdb)
19614  -var-list-children --all-values n
19615  ^done,numchild=@var{n},children=[@{name=@var{name},
19616  numchild=@var{n},value=@var{value},type=@var{type}@},@r{(repeats N times)}]
19617 @end smallexample
19618
19619
19620 @subheading The @code{-var-info-type} Command
19621 @findex -var-info-type
19622
19623 @subsubheading Synopsis
19624
19625 @smallexample
19626  -var-info-type @var{name}
19627 @end smallexample
19628
19629 Returns the type of the specified variable @var{name}.  The type is
19630 returned as a string in the same format as it is output by the
19631 @value{GDBN} CLI:
19632
19633 @smallexample
19634  type=@var{typename}
19635 @end smallexample
19636
19637
19638 @subheading The @code{-var-info-expression} Command
19639 @findex -var-info-expression
19640
19641 @subsubheading Synopsis
19642
19643 @smallexample
19644  -var-info-expression @var{name}
19645 @end smallexample
19646
19647 Returns a string that is suitable for presenting this
19648 variable object in user interface.  The string is generally
19649 not valid expression in the current language, and cannot be evaluated.
19650
19651 For example, if @code{a} is an array, and variable object
19652 @code{A} was created for @code{a}, then we'll get this output:
19653
19654 @smallexample
19655 (gdb) -var-info-expression A.1
19656 ^done,lang="C",exp="1"
19657 @end smallexample
19658
19659 @noindent
19660 Here, the values of @code{lang} can be @code{@{"C" | "C++" | "Java"@}}.
19661
19662 Note that the output of the @code{-var-list-children} command also
19663 includes those expressions, so the @code{-var-info-expression} command
19664 is of limited use.
19665
19666 @subheading The @code{-var-info-path-expression} Command
19667 @findex -var-info-path-expression
19668
19669 @subsubheading Synopsis
19670
19671 @smallexample
19672  -var-info-path-expression @var{name}
19673 @end smallexample
19674
19675 Returns an expression that can be evaluated in the current
19676 context and will yield the same value that a variable object has.
19677 Compare this with the @code{-var-info-expression} command, which
19678 result can be used only for UI presentation.  Typical use of
19679 the @code{-var-info-path-expression} command is creating a 
19680 watchpoint from a variable object.
19681
19682 For example, suppose @code{C} is a C@t{++} class, derived from class
19683 @code{Base}, and that the @code{Base} class has a member called
19684 @code{m_size}.  Assume a variable @code{c} is has the type of
19685 @code{C} and a variable object @code{C} was created for variable
19686 @code{c}.  Then, we'll get this output:
19687 @smallexample
19688 (gdb) -var-info-path-expression C.Base.public.m_size
19689 ^done,path_expr=((Base)c).m_size)
19690 @end smallexample
19691
19692 @subheading The @code{-var-show-attributes} Command
19693 @findex -var-show-attributes
19694
19695 @subsubheading Synopsis
19696
19697 @smallexample
19698  -var-show-attributes @var{name}
19699 @end smallexample
19700
19701 List attributes of the specified variable object @var{name}:
19702
19703 @smallexample
19704  status=@var{attr} [ ( ,@var{attr} )* ]
19705 @end smallexample
19706
19707 @noindent
19708 where @var{attr} is @code{@{ @{ editable | noneditable @} | TBD @}}.
19709
19710 @subheading The @code{-var-evaluate-expression} Command
19711 @findex -var-evaluate-expression
19712
19713 @subsubheading Synopsis
19714
19715 @smallexample
19716  -var-evaluate-expression @var{name}
19717 @end smallexample
19718
19719 Evaluates the expression that is represented by the specified variable
19720 object and returns its value as a string.  The format of the
19721 string can be changed using the @code{-var-set-format} command.
19722
19723 @smallexample
19724  value=@var{value}
19725 @end smallexample
19726
19727 Note that one must invoke @code{-var-list-children} for a variable
19728 before the value of a child variable can be evaluated.
19729
19730 @subheading The @code{-var-assign} Command
19731 @findex -var-assign
19732
19733 @subsubheading Synopsis
19734
19735 @smallexample
19736  -var-assign @var{name} @var{expression}
19737 @end smallexample
19738
19739 Assigns the value of @var{expression} to the variable object specified
19740 by @var{name}.  The object must be @samp{editable}.  If the variable's
19741 value is altered by the assign, the variable will show up in any
19742 subsequent @code{-var-update} list.
19743
19744 @subsubheading Example
19745
19746 @smallexample
19747 (gdb)
19748 -var-assign var1 3
19749 ^done,value="3"
19750 (gdb)
19751 -var-update *
19752 ^done,changelist=[@{name="var1",in_scope="true",type_changed="false"@}]
19753 (gdb)
19754 @end smallexample
19755
19756 @subheading The @code{-var-update} Command
19757 @findex -var-update
19758
19759 @subsubheading Synopsis
19760
19761 @smallexample
19762  -var-update [@var{print-values}] @{@var{name} | "*"@}
19763 @end smallexample
19764
19765 Reevaluate the expressions corresponding to the variable object
19766 @var{name} and all its direct and indirect children, and return the
19767 list of variable objects whose values have changed; @var{name} must
19768 be a root variable object.  Here, ``changed'' means that the result of
19769 @code{-var-evaluate-expression} before and after the
19770 @code{-var-update} is different.  If @samp{*} is used as the variable
19771 object names, all existing variable objects are updated, except
19772 for frozen ones (@pxref{-var-set-frozen}).  The option
19773 @var{print-values} determines whether both names and values, or just
19774 names are printed.  The possible values of this options are the same
19775 as for @code{-var-list-children} (@pxref{-var-list-children}).  It is
19776 recommended to use the @samp{--all-values} option, to reduce the
19777 number of MI commands needed on each program stop.
19778
19779
19780 @subsubheading Example
19781
19782 @smallexample
19783 (gdb)
19784 -var-assign var1 3
19785 ^done,value="3"
19786 (gdb)
19787 -var-update --all-values var1
19788 ^done,changelist=[@{name="var1",value="3",in_scope="true",
19789 type_changed="false"@}]
19790 (gdb)
19791 @end smallexample
19792
19793 @anchor{-var-update}
19794 The field in_scope may take three values:
19795
19796 @table @code
19797 @item "true"
19798 The variable object's current value is valid.
19799
19800 @item "false"
19801 The variable object does not currently hold a valid value but it may
19802 hold one in the future if its associated expression comes back into
19803 scope.
19804
19805 @item "invalid"
19806 The variable object no longer holds a valid value.
19807 This can occur when the executable file being debugged has changed,
19808 either through recompilation or by using the @value{GDBN} @code{file}
19809 command.  The front end should normally choose to delete these variable
19810 objects.
19811 @end table
19812
19813 In the future new values may be added to this list so the front should
19814 be prepared for this possibility.  @xref{GDB/MI Development and Front Ends, ,@sc{GDB/MI} Development and Front Ends}.
19815
19816 @subheading The @code{-var-set-frozen} Command
19817 @findex -var-set-frozen
19818 @anchor{-var-set-frozen}
19819
19820 @subsubheading Synopsis
19821
19822 @smallexample
19823  -var-set-frozen @var{name} @var{flag}
19824 @end smallexample
19825
19826 Set the frozenness flag on the variable object @var{name}.  The
19827 @var{flag} parameter should be either @samp{1} to make the variable
19828 frozen or @samp{0} to make it unfrozen.  If a variable object is
19829 frozen, then neither itself, nor any of its children, are 
19830 implicitly updated by @code{-var-update} of 
19831 a parent variable or by @code{-var-update *}.  Only
19832 @code{-var-update} of the variable itself will update its value and
19833 values of its children.  After a variable object is unfrozen, it is
19834 implicitly updated by all subsequent @code{-var-update} operations.  
19835 Unfreezing a variable does not update it, only subsequent
19836 @code{-var-update} does.
19837
19838 @subsubheading Example
19839
19840 @smallexample
19841 (gdb)
19842 -var-set-frozen V 1
19843 ^done
19844 (gdb)
19845 @end smallexample
19846
19847
19848 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
19849 @node GDB/MI Data Manipulation
19850 @section @sc{gdb/mi} Data Manipulation
19851
19852 @cindex data manipulation, in @sc{gdb/mi}
19853 @cindex @sc{gdb/mi}, data manipulation
19854 This section describes the @sc{gdb/mi} commands that manipulate data:
19855 examine memory and registers, evaluate expressions, etc.
19856
19857 @c REMOVED FROM THE INTERFACE.
19858 @c @subheading -data-assign
19859 @c Change the value of a program variable. Plenty of side effects.
19860 @c @subsubheading GDB Command
19861 @c set variable
19862 @c @subsubheading Example
19863 @c N.A.
19864
19865 @subheading The @code{-data-disassemble} Command
19866 @findex -data-disassemble
19867
19868 @subsubheading Synopsis
19869
19870 @smallexample
19871  -data-disassemble
19872     [ -s @var{start-addr} -e @var{end-addr} ]
19873   | [ -f @var{filename} -l @var{linenum} [ -n @var{lines} ] ]
19874   -- @var{mode}
19875 @end smallexample
19876
19877 @noindent
19878 Where:
19879
19880 @table @samp
19881 @item @var{start-addr}
19882 is the beginning address (or @code{$pc})
19883 @item @var{end-addr}
19884 is the end address
19885 @item @var{filename}
19886 is the name of the file to disassemble
19887 @item @var{linenum}
19888 is the line number to disassemble around
19889 @item @var{lines}
19890 is the number of disassembly lines to be produced.  If it is -1,
19891 the whole function will be disassembled, in case no @var{end-addr} is
19892 specified.  If @var{end-addr} is specified as a non-zero value, and
19893 @var{lines} is lower than the number of disassembly lines between
19894 @var{start-addr} and @var{end-addr}, only @var{lines} lines are
19895 displayed; if @var{lines} is higher than the number of lines between
19896 @var{start-addr} and @var{end-addr}, only the lines up to @var{end-addr}
19897 are displayed.
19898 @item @var{mode}
19899 is either 0 (meaning only disassembly) or 1 (meaning mixed source and
19900 disassembly).
19901 @end table
19902
19903 @subsubheading Result
19904
19905 The output for each instruction is composed of four fields:
19906
19907 @itemize @bullet
19908 @item Address
19909 @item Func-name
19910 @item Offset
19911 @item Instruction
19912 @end itemize
19913
19914 Note that whatever included in the instruction field, is not manipulated
19915 directly by @sc{gdb/mi}, i.e., it is not possible to adjust its format.
19916
19917 @subsubheading @value{GDBN} Command
19918
19919 There's no direct mapping from this command to the CLI.
19920
19921 @subsubheading Example
19922
19923 Disassemble from the current value of @code{$pc} to @code{$pc + 20}:
19924
19925 @smallexample
19926 (gdb)
19927 -data-disassemble -s $pc -e "$pc + 20" -- 0
19928 ^done,
19929 asm_insns=[
19930 @{address="0x000107c0",func-name="main",offset="4",
19931 inst="mov  2, %o0"@},
19932 @{address="0x000107c4",func-name="main",offset="8",
19933 inst="sethi  %hi(0x11800), %o2"@},
19934 @{address="0x000107c8",func-name="main",offset="12",
19935 inst="or  %o2, 0x140, %o1\t! 0x11940 <_lib_version+8>"@},
19936 @{address="0x000107cc",func-name="main",offset="16",
19937 inst="sethi  %hi(0x11800), %o2"@},
19938 @{address="0x000107d0",func-name="main",offset="20",
19939 inst="or  %o2, 0x168, %o4\t! 0x11968 <_lib_version+48>"@}]
19940 (gdb)
19941 @end smallexample
19942
19943 Disassemble the whole @code{main} function.  Line 32 is part of
19944 @code{main}.
19945
19946 @smallexample
19947 -data-disassemble -f basics.c -l 32 -- 0
19948 ^done,asm_insns=[
19949 @{address="0x000107bc",func-name="main",offset="0",
19950 inst="save  %sp, -112, %sp"@},
19951 @{address="0x000107c0",func-name="main",offset="4",
19952 inst="mov   2, %o0"@},
19953 @{address="0x000107c4",func-name="main",offset="8",
19954 inst="sethi %hi(0x11800), %o2"@},
19955 [@dots{}]
19956 @{address="0x0001081c",func-name="main",offset="96",inst="ret "@},
19957 @{address="0x00010820",func-name="main",offset="100",inst="restore "@}]
19958 (gdb)
19959 @end smallexample
19960
19961 Disassemble 3 instructions from the start of @code{main}:
19962
19963 @smallexample
19964 (gdb)
19965 -data-disassemble -f basics.c -l 32 -n 3 -- 0
19966 ^done,asm_insns=[
19967 @{address="0x000107bc",func-name="main",offset="0",
19968 inst="save  %sp, -112, %sp"@},
19969 @{address="0x000107c0",func-name="main",offset="4",
19970 inst="mov  2, %o0"@},
19971 @{address="0x000107c4",func-name="main",offset="8",
19972 inst="sethi  %hi(0x11800), %o2"@}]
19973 (gdb)
19974 @end smallexample
19975
19976 Disassemble 3 instructions from the start of @code{main} in mixed mode:
19977
19978 @smallexample
19979 (gdb)
19980 -data-disassemble -f basics.c -l 32 -n 3 -- 1
19981 ^done,asm_insns=[
19982 src_and_asm_line=@{line="31",
19983 file="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb/ \
19984   testsuite/gdb.mi/basics.c",line_asm_insn=[
19985 @{address="0x000107bc",func-name="main",offset="0",
19986 inst="save  %sp, -112, %sp"@}]@},
19987 src_and_asm_line=@{line="32",
19988 file="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb/ \
19989   testsuite/gdb.mi/basics.c",line_asm_insn=[
19990 @{address="0x000107c0",func-name="main",offset="4",
19991 inst="mov  2, %o0"@},
19992 @{address="0x000107c4",func-name="main",offset="8",
19993 inst="sethi  %hi(0x11800), %o2"@}]@}]
19994 (gdb)
19995 @end smallexample
19996
19997
19998 @subheading The @code{-data-evaluate-expression} Command
19999 @findex -data-evaluate-expression
20000
20001 @subsubheading Synopsis
20002
20003 @smallexample
20004  -data-evaluate-expression @var{expr}
20005 @end smallexample
20006
20007 Evaluate @var{expr} as an expression.  The expression could contain an
20008 inferior function call.  The function call will execute synchronously.
20009 If the expression contains spaces, it must be enclosed in double quotes.
20010
20011 @subsubheading @value{GDBN} Command
20012
20013 The corresponding @value{GDBN} commands are @samp{print}, @samp{output}, and
20014 @samp{call}.  In @code{gdbtk} only, there's a corresponding
20015 @samp{gdb_eval} command.
20016
20017 @subsubheading Example
20018
20019 In the following example, the numbers that precede the commands are the
20020 @dfn{tokens} described in @ref{GDB/MI Command Syntax, ,@sc{gdb/mi}
20021 Command Syntax}.  Notice how @sc{gdb/mi} returns the same tokens in its
20022 output.
20023
20024 @smallexample
20025 211-data-evaluate-expression A
20026 211^done,value="1"
20027 (gdb)
20028 311-data-evaluate-expression &A
20029 311^done,value="0xefffeb7c"
20030 (gdb)
20031 411-data-evaluate-expression A+3
20032 411^done,value="4"
20033 (gdb)
20034 511-data-evaluate-expression "A + 3"
20035 511^done,value="4"
20036 (gdb)
20037 @end smallexample
20038
20039
20040 @subheading The @code{-data-list-changed-registers} Command
20041 @findex -data-list-changed-registers
20042
20043 @subsubheading Synopsis
20044
20045 @smallexample
20046  -data-list-changed-registers
20047 @end smallexample
20048
20049 Display a list of the registers that have changed.
20050
20051 @subsubheading @value{GDBN} Command
20052
20053 @value{GDBN} doesn't have a direct analog for this command; @code{gdbtk}
20054 has the corresponding command @samp{gdb_changed_register_list}.
20055
20056 @subsubheading Example
20057
20058 On a PPC MBX board:
20059
20060 @smallexample
20061 (gdb)
20062 -exec-continue
20063 ^running
20064
20065 (gdb)
20066 *stopped,reason="breakpoint-hit",bkptno="1",frame=@{func="main",
20067 args=[],file="try.c",fullname="/home/foo/bar/try.c",line="5"@}
20068 (gdb)
20069 -data-list-changed-registers
20070 ^done,changed-registers=["0","1","2","4","5","6","7","8","9",
20071 "10","11","13","14","15","16","17","18","19","20","21","22","23",
20072 "24","25","26","27","28","30","31","64","65","66","67","69"]
20073 (gdb)
20074 @end smallexample
20075
20076
20077 @subheading The @code{-data-list-register-names} Command
20078 @findex -data-list-register-names
20079
20080 @subsubheading Synopsis
20081
20082 @smallexample
20083  -data-list-register-names [ ( @var{regno} )+ ]
20084 @end smallexample
20085
20086 Show a list of register names for the current target.  If no arguments
20087 are given, it shows a list of the names of all the registers.  If
20088 integer numbers are given as arguments, it will print a list of the
20089 names of the registers corresponding to the arguments.  To ensure
20090 consistency between a register name and its number, the output list may
20091 include empty register names.
20092
20093 @subsubheading @value{GDBN} Command
20094
20095 @value{GDBN} does not have a command which corresponds to
20096 @samp{-data-list-register-names}.  In @code{gdbtk} there is a
20097 corresponding command @samp{gdb_regnames}.
20098
20099 @subsubheading Example
20100
20101 For the PPC MBX board:
20102 @smallexample
20103 (gdb)
20104 -data-list-register-names
20105 ^done,register-names=["r0","r1","r2","r3","r4","r5","r6","r7",
20106 "r8","r9","r10","r11","r12","r13","r14","r15","r16","r17","r18",
20107 "r19","r20","r21","r22","r23","r24","r25","r26","r27","r28","r29",
20108 "r30","r31","f0","f1","f2","f3","f4","f5","f6","f7","f8","f9",
20109 "f10","f11","f12","f13","f14","f15","f16","f17","f18","f19","f20",
20110 "f21","f22","f23","f24","f25","f26","f27","f28","f29","f30","f31",
20111 "", "pc","ps","cr","lr","ctr","xer"]
20112 (gdb)
20113 -data-list-register-names 1 2 3
20114 ^done,register-names=["r1","r2","r3"]
20115 (gdb)
20116 @end smallexample
20117
20118 @subheading The @code{-data-list-register-values} Command
20119 @findex -data-list-register-values
20120
20121 @subsubheading Synopsis
20122
20123 @smallexample
20124  -data-list-register-values @var{fmt} [ ( @var{regno} )*]
20125 @end smallexample
20126
20127 Display the registers' contents.  @var{fmt} is the format according to
20128 which the registers' contents are to be returned, followed by an optional
20129 list of numbers specifying the registers to display.  A missing list of
20130 numbers indicates that the contents of all the registers must be returned.
20131
20132 Allowed formats for @var{fmt} are:
20133
20134 @table @code
20135 @item x
20136 Hexadecimal
20137 @item o
20138 Octal
20139 @item t
20140 Binary
20141 @item d
20142 Decimal
20143 @item r
20144 Raw
20145 @item N
20146 Natural
20147 @end table
20148
20149 @subsubheading @value{GDBN} Command
20150
20151 The corresponding @value{GDBN} commands are @samp{info reg}, @samp{info
20152 all-reg}, and (in @code{gdbtk}) @samp{gdb_fetch_registers}.
20153
20154 @subsubheading Example
20155
20156 For a PPC MBX board (note: line breaks are for readability only, they
20157 don't appear in the actual output):
20158
20159 @smallexample
20160 (gdb)
20161 -data-list-register-values r 64 65
20162 ^done,register-values=[@{number="64",value="0xfe00a300"@},
20163 @{number="65",value="0x00029002"@}]
20164 (gdb)
20165 -data-list-register-values x
20166 ^done,register-values=[@{number="0",value="0xfe0043c8"@},
20167 @{number="1",value="0x3fff88"@},@{number="2",value="0xfffffffe"@},
20168 @{number="3",value="0x0"@},@{number="4",value="0xa"@},
20169 @{number="5",value="0x3fff68"@},@{number="6",value="0x3fff58"@},
20170 @{number="7",value="0xfe011e98"@},@{number="8",value="0x2"@},
20171 @{number="9",value="0xfa202820"@},@{number="10",value="0xfa202808"@},
20172 @{number="11",value="0x1"@},@{number="12",value="0x0"@},
20173 @{number="13",value="0x4544"@},@{number="14",value="0xffdfffff"@},
20174 @{number="15",value="0xffffffff"@},@{number="16",value="0xfffffeff"@},
20175 @{number="17",value="0xefffffed"@},@{number="18",value="0xfffffffe"@},
20176 @{number="19",value="0xffffffff"@},@{number="20",value="0xffffffff"@},
20177 @{number="21",value="0xffffffff"@},@{number="22",value="0xfffffff7"@},
20178 @{number="23",value="0xffffffff"@},@{number="24",value="0xffffffff"@},
20179 @{number="25",value="0xffffffff"@},@{number="26",value="0xfffffffb"@},
20180 @{number="27",value="0xffffffff"@},@{number="28",value="0xf7bfffff"@},
20181 @{number="29",value="0x0"@},@{number="30",value="0xfe010000"@},
20182 @{number="31",value="0x0"@},@{number="32",value="0x0"@},
20183 @{number="33",value="0x0"@},@{number="34",value="0x0"@},
20184 @{number="35",value="0x0"@},@{number="36",value="0x0"@},
20185 @{number="37",value="0x0"@},@{number="38",value="0x0"@},
20186 @{number="39",value="0x0"@},@{number="40",value="0x0"@},
20187 @{number="41",value="0x0"@},@{number="42",value="0x0"@},
20188 @{number="43",value="0x0"@},@{number="44",value="0x0"@},
20189 @{number="45",value="0x0"@},@{number="46",value="0x0"@},
20190 @{number="47",value="0x0"@},@{number="48",value="0x0"@},
20191 @{number="49",value="0x0"@},@{number="50",value="0x0"@},
20192 @{number="51",value="0x0"@},@{number="52",value="0x0"@},
20193 @{number="53",value="0x0"@},@{number="54",value="0x0"@},
20194 @{number="55",value="0x0"@},@{number="56",value="0x0"@},
20195 @{number="57",value="0x0"@},@{number="58",value="0x0"@},
20196 @{number="59",value="0x0"@},@{number="60",value="0x0"@},
20197 @{number="61",value="0x0"@},@{number="62",value="0x0"@},
20198 @{number="63",value="0x0"@},@{number="64",value="0xfe00a300"@},
20199 @{number="65",value="0x29002"@},@{number="66",value="0x202f04b5"@},
20200 @{number="67",value="0xfe0043b0"@},@{number="68",value="0xfe00b3e4"@},
20201 @{number="69",value="0x20002b03"@}]
20202 (gdb)
20203 @end smallexample
20204
20205
20206 @subheading The @code{-data-read-memory} Command
20207 @findex -data-read-memory
20208
20209 @subsubheading Synopsis
20210
20211 @smallexample
20212  -data-read-memory [ -o @var{byte-offset} ]
20213    @var{address} @var{word-format} @var{word-size}
20214    @var{nr-rows} @var{nr-cols} [ @var{aschar} ]
20215 @end smallexample
20216
20217 @noindent
20218 where:
20219
20220 @table @samp
20221 @item @var{address}
20222 An expression specifying the address of the first memory word to be
20223 read.  Complex expressions containing embedded white space should be
20224 quoted using the C convention.
20225
20226 @item @var{word-format}
20227 The format to be used to print the memory words.  The notation is the
20228 same as for @value{GDBN}'s @code{print} command (@pxref{Output Formats,
20229 ,Output Formats}).
20230
20231 @item @var{word-size}
20232 The size of each memory word in bytes.
20233
20234 @item @var{nr-rows}
20235 The number of rows in the output table.
20236
20237 @item @var{nr-cols}
20238 The number of columns in the output table.
20239
20240 @item @var{aschar}
20241 If present, indicates that each row should include an @sc{ascii} dump.  The
20242 value of @var{aschar} is used as a padding character when a byte is not a
20243 member of the printable @sc{ascii} character set (printable @sc{ascii}
20244 characters are those whose code is between 32 and 126, inclusively).
20245
20246 @item @var{byte-offset}
20247 An offset to add to the @var{address} before fetching memory.
20248 @end table
20249
20250 This command displays memory contents as a table of @var{nr-rows} by
20251 @var{nr-cols} words, each word being @var{word-size} bytes.  In total,
20252 @code{@var{nr-rows} * @var{nr-cols} * @var{word-size}} bytes are read
20253 (returned as @samp{total-bytes}).  Should less than the requested number
20254 of bytes be returned by the target, the missing words are identified
20255 using @samp{N/A}.  The number of bytes read from the target is returned
20256 in @samp{nr-bytes} and the starting address used to read memory in
20257 @samp{addr}.
20258
20259 The address of the next/previous row or page is available in
20260 @samp{next-row} and @samp{prev-row}, @samp{next-page} and
20261 @samp{prev-page}.
20262
20263 @subsubheading @value{GDBN} Command
20264
20265 The corresponding @value{GDBN} command is @samp{x}.  @code{gdbtk} has
20266 @samp{gdb_get_mem} memory read command.
20267
20268 @subsubheading Example
20269
20270 Read six bytes of memory starting at @code{bytes+6} but then offset by
20271 @code{-6} bytes.  Format as three rows of two columns.  One byte per
20272 word.  Display each word in hex.
20273
20274 @smallexample
20275 (gdb)
20276 9-data-read-memory -o -6 -- bytes+6 x 1 3 2
20277 9^done,addr="0x00001390",nr-bytes="6",total-bytes="6",
20278 next-row="0x00001396",prev-row="0x0000138e",next-page="0x00001396",
20279 prev-page="0x0000138a",memory=[
20280 @{addr="0x00001390",data=["0x00","0x01"]@},
20281 @{addr="0x00001392",data=["0x02","0x03"]@},
20282 @{addr="0x00001394",data=["0x04","0x05"]@}]
20283 (gdb)
20284 @end smallexample
20285
20286 Read two bytes of memory starting at address @code{shorts + 64} and
20287 display as a single word formatted in decimal.
20288
20289 @smallexample
20290 (gdb)
20291 5-data-read-memory shorts+64 d 2 1 1
20292 5^done,addr="0x00001510",nr-bytes="2",total-bytes="2",
20293 next-row="0x00001512",prev-row="0x0000150e",
20294 next-page="0x00001512",prev-page="0x0000150e",memory=[
20295 @{addr="0x00001510",data=["128"]@}]
20296 (gdb)
20297 @end smallexample
20298
20299 Read thirty two bytes of memory starting at @code{bytes+16} and format
20300 as eight rows of four columns.  Include a string encoding with @samp{x}
20301 used as the non-printable character.
20302
20303 @smallexample
20304 (gdb)
20305 4-data-read-memory bytes+16 x 1 8 4 x
20306 4^done,addr="0x000013a0",nr-bytes="32",total-bytes="32",
20307 next-row="0x000013c0",prev-row="0x0000139c",
20308 next-page="0x000013c0",prev-page="0x00001380",memory=[
20309 @{addr="0x000013a0",data=["0x10","0x11","0x12","0x13"],ascii="xxxx"@},
20310 @{addr="0x000013a4",data=["0x14","0x15","0x16","0x17"],ascii="xxxx"@},
20311 @{addr="0x000013a8",data=["0x18","0x19","0x1a","0x1b"],ascii="xxxx"@},
20312 @{addr="0x000013ac",data=["0x1c","0x1d","0x1e","0x1f"],ascii="xxxx"@},
20313 @{addr="0x000013b0",data=["0x20","0x21","0x22","0x23"],ascii=" !\"#"@},
20314 @{addr="0x000013b4",data=["0x24","0x25","0x26","0x27"],ascii="$%&'"@},
20315 @{addr="0x000013b8",data=["0x28","0x29","0x2a","0x2b"],ascii="()*+"@},
20316 @{addr="0x000013bc",data=["0x2c","0x2d","0x2e","0x2f"],ascii=",-./"@}]
20317 (gdb)
20318 @end smallexample
20319
20320 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20321 @node GDB/MI Tracepoint Commands
20322 @section @sc{gdb/mi} Tracepoint Commands
20323
20324 The tracepoint commands are not yet implemented.
20325
20326 @c @subheading -trace-actions
20327
20328 @c @subheading -trace-delete
20329
20330 @c @subheading -trace-disable
20331
20332 @c @subheading -trace-dump
20333
20334 @c @subheading -trace-enable
20335
20336 @c @subheading -trace-exists
20337
20338 @c @subheading -trace-find
20339
20340 @c @subheading -trace-frame-number
20341
20342 @c @subheading -trace-info
20343
20344 @c @subheading -trace-insert
20345
20346 @c @subheading -trace-list
20347
20348 @c @subheading -trace-pass-count
20349
20350 @c @subheading -trace-save
20351
20352 @c @subheading -trace-start
20353
20354 @c @subheading -trace-stop
20355
20356
20357 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20358 @node GDB/MI Symbol Query
20359 @section @sc{gdb/mi} Symbol Query Commands
20360
20361
20362 @subheading The @code{-symbol-info-address} Command
20363 @findex -symbol-info-address
20364
20365 @subsubheading Synopsis
20366
20367 @smallexample
20368  -symbol-info-address @var{symbol}
20369 @end smallexample
20370
20371 Describe where @var{symbol} is stored.
20372
20373 @subsubheading @value{GDBN} Command
20374
20375 The corresponding @value{GDBN} command is @samp{info address}.
20376
20377 @subsubheading Example
20378 N.A.
20379
20380
20381 @subheading The @code{-symbol-info-file} Command
20382 @findex -symbol-info-file
20383
20384 @subsubheading Synopsis
20385
20386 @smallexample
20387  -symbol-info-file
20388 @end smallexample
20389
20390 Show the file for the symbol.
20391
20392 @subsubheading @value{GDBN} Command
20393
20394 There's no equivalent @value{GDBN} command.  @code{gdbtk} has
20395 @samp{gdb_find_file}.
20396
20397 @subsubheading Example
20398 N.A.
20399
20400
20401 @subheading The @code{-symbol-info-function} Command
20402 @findex -symbol-info-function
20403
20404 @subsubheading Synopsis
20405
20406 @smallexample
20407  -symbol-info-function
20408 @end smallexample
20409
20410 Show which function the symbol lives in.
20411
20412 @subsubheading @value{GDBN} Command
20413
20414 @samp{gdb_get_function} in @code{gdbtk}.
20415
20416 @subsubheading Example
20417 N.A.
20418
20419
20420 @subheading The @code{-symbol-info-line} Command
20421 @findex -symbol-info-line
20422
20423 @subsubheading Synopsis
20424
20425 @smallexample
20426  -symbol-info-line
20427 @end smallexample
20428
20429 Show the core addresses of the code for a source line.
20430
20431 @subsubheading @value{GDBN} Command
20432
20433 The corresponding @value{GDBN} command is @samp{info line}.
20434 @code{gdbtk} has the @samp{gdb_get_line} and @samp{gdb_get_file} commands.
20435
20436 @subsubheading Example
20437 N.A.
20438
20439
20440 @subheading The @code{-symbol-info-symbol} Command
20441 @findex -symbol-info-symbol
20442
20443 @subsubheading Synopsis
20444
20445 @smallexample
20446  -symbol-info-symbol @var{addr}
20447 @end smallexample
20448
20449 Describe what symbol is at location @var{addr}.
20450
20451 @subsubheading @value{GDBN} Command
20452
20453 The corresponding @value{GDBN} command is @samp{info symbol}.
20454
20455 @subsubheading Example
20456 N.A.
20457
20458
20459 @subheading The @code{-symbol-list-functions} Command
20460 @findex -symbol-list-functions
20461
20462 @subsubheading Synopsis
20463
20464 @smallexample
20465  -symbol-list-functions
20466 @end smallexample
20467
20468 List the functions in the executable.
20469
20470 @subsubheading @value{GDBN} Command
20471
20472 @samp{info functions} in @value{GDBN}, @samp{gdb_listfunc} and
20473 @samp{gdb_search} in @code{gdbtk}.
20474
20475 @subsubheading Example
20476 N.A.
20477
20478
20479 @subheading The @code{-symbol-list-lines} Command
20480 @findex -symbol-list-lines
20481
20482 @subsubheading Synopsis
20483
20484 @smallexample
20485  -symbol-list-lines @var{filename}
20486 @end smallexample
20487
20488 Print the list of lines that contain code and their associated program
20489 addresses for the given source filename.  The entries are sorted in
20490 ascending PC order.
20491
20492 @subsubheading @value{GDBN} Command
20493
20494 There is no corresponding @value{GDBN} command.
20495
20496 @subsubheading Example
20497 @smallexample
20498 (gdb)
20499 -symbol-list-lines basics.c
20500 ^done,lines=[@{pc="0x08048554",line="7"@},@{pc="0x0804855a",line="8"@}]
20501 (gdb)
20502 @end smallexample
20503
20504
20505 @subheading The @code{-symbol-list-types} Command
20506 @findex -symbol-list-types
20507
20508 @subsubheading Synopsis
20509
20510 @smallexample
20511  -symbol-list-types
20512 @end smallexample
20513
20514 List all the type names.
20515
20516 @subsubheading @value{GDBN} Command
20517
20518 The corresponding commands are @samp{info types} in @value{GDBN},
20519 @samp{gdb_search} in @code{gdbtk}.
20520
20521 @subsubheading Example
20522 N.A.
20523
20524
20525 @subheading The @code{-symbol-list-variables} Command
20526 @findex -symbol-list-variables
20527
20528 @subsubheading Synopsis
20529
20530 @smallexample
20531  -symbol-list-variables
20532 @end smallexample
20533
20534 List all the global and static variable names.
20535
20536 @subsubheading @value{GDBN} Command
20537
20538 @samp{info variables} in @value{GDBN}, @samp{gdb_search} in @code{gdbtk}.
20539
20540 @subsubheading Example
20541 N.A.
20542
20543
20544 @subheading The @code{-symbol-locate} Command
20545 @findex -symbol-locate
20546
20547 @subsubheading Synopsis
20548
20549 @smallexample
20550  -symbol-locate
20551 @end smallexample
20552
20553 @subsubheading @value{GDBN} Command
20554
20555 @samp{gdb_loc} in @code{gdbtk}.
20556
20557 @subsubheading Example
20558 N.A.
20559
20560
20561 @subheading The @code{-symbol-type} Command
20562 @findex -symbol-type
20563
20564 @subsubheading Synopsis
20565
20566 @smallexample
20567  -symbol-type @var{variable}
20568 @end smallexample
20569
20570 Show type of @var{variable}.
20571
20572 @subsubheading @value{GDBN} Command
20573
20574 The corresponding @value{GDBN} command is @samp{ptype}, @code{gdbtk} has
20575 @samp{gdb_obj_variable}.
20576
20577 @subsubheading Example
20578 N.A.
20579
20580
20581 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20582 @node GDB/MI File Commands
20583 @section @sc{gdb/mi} File Commands
20584
20585 This section describes the GDB/MI commands to specify executable file names
20586 and to read in and obtain symbol table information.
20587
20588 @subheading The @code{-file-exec-and-symbols} Command
20589 @findex -file-exec-and-symbols
20590
20591 @subsubheading Synopsis
20592
20593 @smallexample
20594  -file-exec-and-symbols @var{file}
20595 @end smallexample
20596
20597 Specify the executable file to be debugged.  This file is the one from
20598 which the symbol table is also read.  If no file is specified, the
20599 command clears the executable and symbol information.  If breakpoints
20600 are set when using this command with no arguments, @value{GDBN} will produce
20601 error messages.  Otherwise, no output is produced, except a completion
20602 notification.
20603
20604 @subsubheading @value{GDBN} Command
20605
20606 The corresponding @value{GDBN} command is @samp{file}.
20607
20608 @subsubheading Example
20609
20610 @smallexample
20611 (gdb)
20612 -file-exec-and-symbols /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
20613 ^done
20614 (gdb)
20615 @end smallexample
20616
20617
20618 @subheading The @code{-file-exec-file} Command
20619 @findex -file-exec-file
20620
20621 @subsubheading Synopsis
20622
20623 @smallexample
20624  -file-exec-file @var{file}
20625 @end smallexample
20626
20627 Specify the executable file to be debugged.  Unlike
20628 @samp{-file-exec-and-symbols}, the symbol table is @emph{not} read
20629 from this file.  If used without argument, @value{GDBN} clears the information
20630 about the executable file.  No output is produced, except a completion
20631 notification.
20632
20633 @subsubheading @value{GDBN} Command
20634
20635 The corresponding @value{GDBN} command is @samp{exec-file}.
20636
20637 @subsubheading Example
20638
20639 @smallexample
20640 (gdb)
20641 -file-exec-file /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
20642 ^done
20643 (gdb)
20644 @end smallexample
20645
20646
20647 @subheading The @code{-file-list-exec-sections} Command
20648 @findex -file-list-exec-sections
20649
20650 @subsubheading Synopsis
20651
20652 @smallexample
20653  -file-list-exec-sections
20654 @end smallexample
20655
20656 List the sections of the current executable file.
20657
20658 @subsubheading @value{GDBN} Command
20659
20660 The @value{GDBN} command @samp{info file} shows, among the rest, the same
20661 information as this command.  @code{gdbtk} has a corresponding command
20662 @samp{gdb_load_info}.
20663
20664 @subsubheading Example
20665 N.A.
20666
20667
20668 @subheading The @code{-file-list-exec-source-file} Command
20669 @findex -file-list-exec-source-file
20670
20671 @subsubheading Synopsis
20672
20673 @smallexample
20674  -file-list-exec-source-file
20675 @end smallexample
20676
20677 List the line number, the current source file, and the absolute path
20678 to the current source file for the current executable.
20679
20680 @subsubheading @value{GDBN} Command
20681
20682 The @value{GDBN} equivalent is @samp{info source}
20683
20684 @subsubheading Example
20685
20686 @smallexample
20687 (gdb)
20688 123-file-list-exec-source-file
20689 123^done,line="1",file="foo.c",fullname="/home/bar/foo.c"
20690 (gdb)
20691 @end smallexample
20692
20693
20694 @subheading The @code{-file-list-exec-source-files} Command
20695 @findex -file-list-exec-source-files
20696
20697 @subsubheading Synopsis
20698
20699 @smallexample
20700  -file-list-exec-source-files
20701 @end smallexample
20702
20703 List the source files for the current executable.
20704
20705 It will always output the filename, but only when @value{GDBN} can find
20706 the absolute file name of a source file, will it output the fullname.
20707
20708 @subsubheading @value{GDBN} Command
20709
20710 The @value{GDBN} equivalent is @samp{info sources}.
20711 @code{gdbtk} has an analogous command @samp{gdb_listfiles}.
20712
20713 @subsubheading Example
20714 @smallexample
20715 (gdb)
20716 -file-list-exec-source-files
20717 ^done,files=[
20718 @{file=foo.c,fullname=/home/foo.c@},
20719 @{file=/home/bar.c,fullname=/home/bar.c@},
20720 @{file=gdb_could_not_find_fullpath.c@}]
20721 (gdb)
20722 @end smallexample
20723
20724 @subheading The @code{-file-list-shared-libraries} Command
20725 @findex -file-list-shared-libraries
20726
20727 @subsubheading Synopsis
20728
20729 @smallexample
20730  -file-list-shared-libraries
20731 @end smallexample
20732
20733 List the shared libraries in the program.
20734
20735 @subsubheading @value{GDBN} Command
20736
20737 The corresponding @value{GDBN} command is @samp{info shared}.
20738
20739 @subsubheading Example
20740 N.A.
20741
20742
20743 @subheading The @code{-file-list-symbol-files} Command
20744 @findex -file-list-symbol-files
20745
20746 @subsubheading Synopsis
20747
20748 @smallexample
20749  -file-list-symbol-files
20750 @end smallexample
20751
20752 List symbol files.
20753
20754 @subsubheading @value{GDBN} Command
20755
20756 The corresponding @value{GDBN} command is @samp{info file} (part of it).
20757
20758 @subsubheading Example
20759 N.A.
20760
20761
20762 @subheading The @code{-file-symbol-file} Command
20763 @findex -file-symbol-file
20764
20765 @subsubheading Synopsis
20766
20767 @smallexample
20768  -file-symbol-file @var{file}
20769 @end smallexample
20770
20771 Read symbol table info from the specified @var{file} argument.  When
20772 used without arguments, clears @value{GDBN}'s symbol table info.  No output is
20773 produced, except for a completion notification.
20774
20775 @subsubheading @value{GDBN} Command
20776
20777 The corresponding @value{GDBN} command is @samp{symbol-file}.
20778
20779 @subsubheading Example
20780
20781 @smallexample
20782 (gdb)
20783 -file-symbol-file /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
20784 ^done
20785 (gdb)
20786 @end smallexample
20787
20788 @ignore
20789 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20790 @node GDB/MI Memory Overlay Commands
20791 @section @sc{gdb/mi} Memory Overlay Commands
20792
20793 The memory overlay commands are not implemented.
20794
20795 @c @subheading -overlay-auto
20796
20797 @c @subheading -overlay-list-mapping-state
20798
20799 @c @subheading -overlay-list-overlays
20800
20801 @c @subheading -overlay-map
20802
20803 @c @subheading -overlay-off
20804
20805 @c @subheading -overlay-on
20806
20807 @c @subheading -overlay-unmap
20808
20809 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20810 @node GDB/MI Signal Handling Commands
20811 @section @sc{gdb/mi} Signal Handling Commands
20812
20813 Signal handling commands are not implemented.
20814
20815 @c @subheading -signal-handle
20816
20817 @c @subheading -signal-list-handle-actions
20818
20819 @c @subheading -signal-list-signal-types
20820 @end ignore
20821
20822
20823 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20824 @node GDB/MI Target Manipulation
20825 @section @sc{gdb/mi} Target Manipulation Commands
20826
20827
20828 @subheading The @code{-target-attach} Command
20829 @findex -target-attach
20830
20831 @subsubheading Synopsis
20832
20833 @smallexample
20834  -target-attach @var{pid} | @var{file}
20835 @end smallexample
20836
20837 Attach to a process @var{pid} or a file @var{file} outside of @value{GDBN}.
20838
20839 @subsubheading @value{GDBN} Command
20840
20841 The corresponding @value{GDBN} command is @samp{attach}.
20842
20843 @subsubheading Example
20844 N.A.
20845
20846
20847 @subheading The @code{-target-compare-sections} Command
20848 @findex -target-compare-sections
20849
20850 @subsubheading Synopsis
20851
20852 @smallexample
20853  -target-compare-sections [ @var{section} ]
20854 @end smallexample
20855
20856 Compare data of section @var{section} on target to the exec file.
20857 Without the argument, all sections are compared.
20858
20859 @subsubheading @value{GDBN} Command
20860
20861 The @value{GDBN} equivalent is @samp{compare-sections}.
20862
20863 @subsubheading Example
20864 N.A.
20865
20866
20867 @subheading The @code{-target-detach} Command
20868 @findex -target-detach
20869
20870 @subsubheading Synopsis
20871
20872 @smallexample
20873  -target-detach
20874 @end smallexample
20875
20876 Detach from the remote target which normally resumes its execution.
20877 There's no output.
20878
20879 @subsubheading @value{GDBN} Command
20880
20881 The corresponding @value{GDBN} command is @samp{detach}.
20882
20883 @subsubheading Example
20884
20885 @smallexample
20886 (gdb)
20887 -target-detach
20888 ^done
20889 (gdb)
20890 @end smallexample
20891
20892
20893 @subheading The @code{-target-disconnect} Command
20894 @findex -target-disconnect
20895
20896 @subsubheading Synopsis
20897
20898 @smallexample
20899  -target-disconnect
20900 @end smallexample
20901
20902 Disconnect from the remote target.  There's no output and the target is
20903 generally not resumed.
20904
20905 @subsubheading @value{GDBN} Command
20906
20907 The corresponding @value{GDBN} command is @samp{disconnect}.
20908
20909 @subsubheading Example
20910
20911 @smallexample
20912 (gdb)
20913 -target-disconnect
20914 ^done
20915 (gdb)
20916 @end smallexample
20917
20918
20919 @subheading The @code{-target-download} Command
20920 @findex -target-download
20921
20922 @subsubheading Synopsis
20923
20924 @smallexample
20925  -target-download
20926 @end smallexample
20927
20928 Loads the executable onto the remote target.
20929 It prints out an update message every half second, which includes the fields:
20930
20931 @table @samp
20932 @item section
20933 The name of the section.
20934 @item section-sent
20935 The size of what has been sent so far for that section.
20936 @item section-size
20937 The size of the section.
20938 @item total-sent
20939 The total size of what was sent so far (the current and the previous sections).
20940 @item total-size
20941 The size of the overall executable to download.
20942 @end table
20943
20944 @noindent
20945 Each message is sent as status record (@pxref{GDB/MI Output Syntax, ,
20946 @sc{gdb/mi} Output Syntax}).
20947
20948 In addition, it prints the name and size of the sections, as they are
20949 downloaded.  These messages include the following fields:
20950
20951 @table @samp
20952 @item section
20953 The name of the section.
20954 @item section-size
20955 The size of the section.
20956 @item total-size
20957 The size of the overall executable to download.
20958 @end table
20959
20960 @noindent
20961 At the end, a summary is printed.
20962
20963 @subsubheading @value{GDBN} Command
20964
20965 The corresponding @value{GDBN} command is @samp{load}.
20966
20967 @subsubheading Example
20968
20969 Note: each status message appears on a single line.  Here the messages
20970 have been broken down so that they can fit onto a page.
20971
20972 @smallexample
20973 (gdb)
20974 -target-download
20975 +download,@{section=".text",section-size="6668",total-size="9880"@}
20976 +download,@{section=".text",section-sent="512",section-size="6668",
20977 total-sent="512",total-size="9880"@}
20978 +download,@{section=".text",section-sent="1024",section-size="6668",
20979 total-sent="1024",total-size="9880"@}
20980 +download,@{section=".text",section-sent="1536",section-size="6668",
20981 total-sent="1536",total-size="9880"@}
20982 +download,@{section=".text",section-sent="2048",section-size="6668",
20983 total-sent="2048",total-size="9880"@}
20984 +download,@{section=".text",section-sent="2560",section-size="6668",
20985 total-sent="2560",total-size="9880"@}
20986 +download,@{section=".text",section-sent="3072",section-size="6668",
20987 total-sent="3072",total-size="9880"@}
20988 +download,@{section=".text",section-sent="3584",section-size="6668",
20989 total-sent="3584",total-size="9880"@}
20990 +download,@{section=".text",section-sent="4096",section-size="6668",
20991 total-sent="4096",total-size="9880"@}
20992 +download,@{section=".text",section-sent="4608",section-size="6668",
20993 total-sent="4608",total-size="9880"@}
20994 +download,@{section=".text",section-sent="5120",section-size="6668",
20995 total-sent="5120",total-size="9880"@}
20996 +download,@{section=".text",section-sent="5632",section-size="6668",
20997 total-sent="5632",total-size="9880"@}
20998 +download,@{section=".text",section-sent="6144",section-size="6668",
20999 total-sent="6144",total-size="9880"@}
21000 +download,@{section=".text",section-sent="6656",section-size="6668",
21001 total-sent="6656",total-size="9880"@}
21002 +download,@{section=".init",section-size="28",total-size="9880"@}
21003 +download,@{section=".fini",section-size="28",total-size="9880"@}
21004 +download,@{section=".data",section-size="3156",total-size="9880"@}
21005 +download,@{section=".data",section-sent="512",section-size="3156",
21006 total-sent="7236",total-size="9880"@}
21007 +download,@{section=".data",section-sent="1024",section-size="3156",
21008 total-sent="7748",total-size="9880"@}
21009 +download,@{section=".data",section-sent="1536",section-size="3156",
21010 total-sent="8260",total-size="9880"@}
21011 +download,@{section=".data",section-sent="2048",section-size="3156",
21012 total-sent="8772",total-size="9880"@}
21013 +download,@{section=".data",section-sent="2560",section-size="3156",
21014 total-sent="9284",total-size="9880"@}
21015 +download,@{section=".data",section-sent="3072",section-size="3156",
21016 total-sent="9796",total-size="9880"@}
21017 ^done,address="0x10004",load-size="9880",transfer-rate="6586",
21018 write-rate="429"
21019 (gdb)
21020 @end smallexample
21021
21022
21023 @subheading The @code{-target-exec-status} Command
21024 @findex -target-exec-status
21025
21026 @subsubheading Synopsis
21027
21028 @smallexample
21029  -target-exec-status
21030 @end smallexample
21031
21032 Provide information on the state of the target (whether it is running or
21033 not, for instance).
21034
21035 @subsubheading @value{GDBN} Command
21036
21037 There's no equivalent @value{GDBN} command.
21038
21039 @subsubheading Example
21040 N.A.
21041
21042
21043 @subheading The @code{-target-list-available-targets} Command
21044 @findex -target-list-available-targets
21045
21046 @subsubheading Synopsis
21047
21048 @smallexample
21049  -target-list-available-targets
21050 @end smallexample
21051
21052 List the possible targets to connect to.
21053
21054 @subsubheading @value{GDBN} Command
21055
21056 The corresponding @value{GDBN} command is @samp{help target}.
21057
21058 @subsubheading Example
21059 N.A.
21060
21061
21062 @subheading The @code{-target-list-current-targets} Command
21063 @findex -target-list-current-targets
21064
21065 @subsubheading Synopsis
21066
21067 @smallexample
21068  -target-list-current-targets
21069 @end smallexample
21070
21071 Describe the current target.
21072
21073 @subsubheading @value{GDBN} Command
21074
21075 The corresponding information is printed by @samp{info file} (among
21076 other things).
21077
21078 @subsubheading Example
21079 N.A.
21080
21081
21082 @subheading The @code{-target-list-parameters} Command
21083 @findex -target-list-parameters
21084
21085 @subsubheading Synopsis
21086
21087 @smallexample
21088  -target-list-parameters
21089 @end smallexample
21090
21091 @c ????
21092
21093 @subsubheading @value{GDBN} Command
21094
21095 No equivalent.
21096
21097 @subsubheading Example
21098 N.A.
21099
21100
21101 @subheading The @code{-target-select} Command
21102 @findex -target-select
21103
21104 @subsubheading Synopsis
21105
21106 @smallexample
21107  -target-select @var{type} @var{parameters @dots{}}
21108 @end smallexample
21109
21110 Connect @value{GDBN} to the remote target.  This command takes two args:
21111
21112 @table @samp
21113 @item @var{type}
21114 The type of target, for instance @samp{async}, @samp{remote}, etc.
21115 @item @var{parameters}
21116 Device names, host names and the like.  @xref{Target Commands, ,
21117 Commands for Managing Targets}, for more details.
21118 @end table
21119
21120 The output is a connection notification, followed by the address at
21121 which the target program is, in the following form:
21122
21123 @smallexample
21124 ^connected,addr="@var{address}",func="@var{function name}",
21125   args=[@var{arg list}]
21126 @end smallexample
21127
21128 @subsubheading @value{GDBN} Command
21129
21130 The corresponding @value{GDBN} command is @samp{target}.
21131
21132 @subsubheading Example
21133
21134 @smallexample
21135 (gdb)
21136 -target-select async /dev/ttya
21137 ^connected,addr="0xfe00a300",func="??",args=[]
21138 (gdb)
21139 @end smallexample
21140
21141 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21142 @node GDB/MI Miscellaneous Commands
21143 @section Miscellaneous @sc{gdb/mi} Commands
21144
21145 @c @subheading -gdb-complete
21146
21147 @subheading The @code{-gdb-exit} Command
21148 @findex -gdb-exit
21149
21150 @subsubheading Synopsis
21151
21152 @smallexample
21153  -gdb-exit
21154 @end smallexample
21155
21156 Exit @value{GDBN} immediately.
21157
21158 @subsubheading @value{GDBN} Command
21159
21160 Approximately corresponds to @samp{quit}.
21161
21162 @subsubheading Example
21163
21164 @smallexample
21165 (gdb)
21166 -gdb-exit
21167 ^exit
21168 @end smallexample
21169
21170
21171 @subheading The @code{-exec-abort} Command
21172 @findex -exec-abort
21173
21174 @subsubheading Synopsis
21175
21176 @smallexample
21177  -exec-abort
21178 @end smallexample
21179
21180 Kill the inferior running program.
21181
21182 @subsubheading @value{GDBN} Command
21183
21184 The corresponding @value{GDBN} command is @samp{kill}.
21185
21186 @subsubheading Example
21187 N.A.
21188
21189
21190 @subheading The @code{-gdb-set} Command
21191 @findex -gdb-set
21192
21193 @subsubheading Synopsis
21194
21195 @smallexample
21196  -gdb-set
21197 @end smallexample
21198
21199 Set an internal @value{GDBN} variable.
21200 @c IS THIS A DOLLAR VARIABLE? OR SOMETHING LIKE ANNOTATE ?????
21201
21202 @subsubheading @value{GDBN} Command
21203
21204 The corresponding @value{GDBN} command is @samp{set}.
21205
21206 @subsubheading Example
21207
21208 @smallexample
21209 (gdb)
21210 -gdb-set $foo=3
21211 ^done
21212 (gdb)
21213 @end smallexample
21214
21215
21216 @subheading The @code{-gdb-show} Command
21217 @findex -gdb-show
21218
21219 @subsubheading Synopsis
21220
21221 @smallexample
21222  -gdb-show
21223 @end smallexample
21224
21225 Show the current value of a @value{GDBN} variable.
21226
21227 @subsubheading @value{GDBN} Command
21228
21229 The corresponding @value{GDBN} command is @samp{show}.
21230
21231 @subsubheading Example
21232
21233 @smallexample
21234 (gdb)
21235 -gdb-show annotate
21236 ^done,value="0"
21237 (gdb)
21238 @end smallexample
21239
21240 @c @subheading -gdb-source
21241
21242
21243 @subheading The @code{-gdb-version} Command
21244 @findex -gdb-version
21245
21246 @subsubheading Synopsis
21247
21248 @smallexample
21249  -gdb-version
21250 @end smallexample
21251
21252 Show version information for @value{GDBN}.  Used mostly in testing.
21253
21254 @subsubheading @value{GDBN} Command
21255
21256 The @value{GDBN} equivalent is @samp{show version}.  @value{GDBN} by
21257 default shows this information when you start an interactive session.
21258
21259 @subsubheading Example
21260
21261 @c This example modifies the actual output from GDB to avoid overfull
21262 @c box in TeX.
21263 @smallexample
21264 (gdb)
21265 -gdb-version
21266 ~GNU gdb 5.2.1
21267 ~Copyright 2000 Free Software Foundation, Inc.
21268 ~GDB is free software, covered by the GNU General Public License, and
21269 ~you are welcome to change it and/or distribute copies of it under
21270 ~ certain conditions.
21271 ~Type "show copying" to see the conditions.
21272 ~There is absolutely no warranty for GDB.  Type "show warranty" for
21273 ~ details.
21274 ~This GDB was configured as
21275  "--host=sparc-sun-solaris2.5.1 --target=ppc-eabi".
21276 ^done
21277 (gdb)
21278 @end smallexample
21279
21280 @subheading The @code{-interpreter-exec} Command
21281 @findex -interpreter-exec
21282
21283 @subheading Synopsis
21284
21285 @smallexample
21286 -interpreter-exec @var{interpreter} @var{command}
21287 @end smallexample
21288 @anchor{-interpreter-exec} 
21289
21290 Execute the specified @var{command} in the given @var{interpreter}.
21291
21292 @subheading @value{GDBN} Command
21293
21294 The corresponding @value{GDBN} command is @samp{interpreter-exec}.
21295
21296 @subheading Example
21297
21298 @smallexample
21299 (gdb)
21300 -interpreter-exec console "break main"
21301 &"During symbol reading, couldn't parse type; debugger out of date?.\n"
21302 &"During symbol reading, bad structure-type format.\n"
21303 ~"Breakpoint 1 at 0x8074fc6: file ../../src/gdb/main.c, line 743.\n"
21304 ^done
21305 (gdb)
21306 @end smallexample
21307
21308 @subheading The @code{-inferior-tty-set} Command
21309 @findex -inferior-tty-set
21310
21311 @subheading Synopsis
21312
21313 @smallexample
21314 -inferior-tty-set /dev/pts/1
21315 @end smallexample
21316
21317 Set terminal for future runs of the program being debugged.
21318
21319 @subheading @value{GDBN} Command
21320
21321 The corresponding @value{GDBN} command is @samp{set inferior-tty} /dev/pts/1.
21322
21323 @subheading Example
21324
21325 @smallexample
21326 (gdb)
21327 -inferior-tty-set /dev/pts/1
21328 ^done
21329 (gdb)
21330 @end smallexample
21331
21332 @subheading The @code{-inferior-tty-show} Command
21333 @findex -inferior-tty-show
21334
21335 @subheading Synopsis
21336
21337 @smallexample
21338 -inferior-tty-show
21339 @end smallexample
21340
21341 Show terminal for future runs of program being debugged.
21342
21343 @subheading @value{GDBN} Command
21344
21345 The corresponding @value{GDBN} command is @samp{show inferior-tty}.
21346
21347 @subheading Example
21348
21349 @smallexample
21350 (gdb)
21351 -inferior-tty-set /dev/pts/1
21352 ^done
21353 (gdb)
21354 -inferior-tty-show
21355 ^done,inferior_tty_terminal="/dev/pts/1"
21356 (gdb)
21357 @end smallexample
21358
21359 @subheading The @code{-enable-timings} Command
21360 @findex -enable-timings
21361
21362 @subheading Synopsis
21363
21364 @smallexample
21365 -enable-timings [yes | no]
21366 @end smallexample
21367
21368 Toggle the printing of the wallclock, user and system times for an MI
21369 command as a field in its output.  This command is to help frontend
21370 developers optimize the performance of their code.  No argument is
21371 equivalent to @samp{yes}.
21372
21373 @subheading @value{GDBN} Command
21374
21375 No equivalent.
21376
21377 @subheading Example
21378
21379 @smallexample
21380 (gdb)
21381 -enable-timings
21382 ^done
21383 (gdb)
21384 -break-insert main
21385 ^done,bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
21386 addr="0x080484ed",func="main",file="myprog.c",
21387 fullname="/home/nickrob/myprog.c",line="73",times="0"@},
21388 time=@{wallclock="0.05185",user="0.00800",system="0.00000"@}
21389 (gdb)
21390 -enable-timings no
21391 ^done
21392 (gdb)
21393 -exec-run
21394 ^running
21395 (gdb)
21396 *stopped,reason="breakpoint-hit",bkptno="1",thread-id="0",
21397 frame=@{addr="0x080484ed",func="main",args=[@{name="argc",value="1"@},
21398 @{name="argv",value="0xbfb60364"@}],file="myprog.c",
21399 fullname="/home/nickrob/myprog.c",line="73"@}
21400 (gdb)
21401 @end smallexample
21402
21403 @node Annotations
21404 @chapter @value{GDBN} Annotations
21405
21406 This chapter describes annotations in @value{GDBN}.  Annotations were
21407 designed to interface @value{GDBN} to graphical user interfaces or other
21408 similar programs which want to interact with @value{GDBN} at a
21409 relatively high level.
21410
21411 The annotation mechanism has largely been superseded by @sc{gdb/mi}
21412 (@pxref{GDB/MI}).
21413
21414 @ignore
21415 This is Edition @value{EDITION}, @value{DATE}.
21416 @end ignore
21417
21418 @menu
21419 * Annotations Overview::  What annotations are; the general syntax.
21420 * Server Prefix::       Issuing a command without affecting user state.
21421 * Prompting::           Annotations marking @value{GDBN}'s need for input.
21422 * Errors::              Annotations for error messages.
21423 * Invalidation::        Some annotations describe things now invalid.
21424 * Annotations for Running::
21425                         Whether the program is running, how it stopped, etc.
21426 * Source Annotations::  Annotations describing source code.
21427 @end menu
21428
21429 @node Annotations Overview
21430 @section What is an Annotation?
21431 @cindex annotations
21432
21433 Annotations start with a newline character, two @samp{control-z}
21434 characters, and the name of the annotation.  If there is no additional
21435 information associated with this annotation, the name of the annotation
21436 is followed immediately by a newline.  If there is additional
21437 information, the name of the annotation is followed by a space, the
21438 additional information, and a newline.  The additional information
21439 cannot contain newline characters.
21440
21441 Any output not beginning with a newline and two @samp{control-z}
21442 characters denotes literal output from @value{GDBN}.  Currently there is
21443 no need for @value{GDBN} to output a newline followed by two
21444 @samp{control-z} characters, but if there was such a need, the
21445 annotations could be extended with an @samp{escape} annotation which
21446 means those three characters as output.
21447
21448 The annotation @var{level}, which is specified using the
21449 @option{--annotate} command line option (@pxref{Mode Options}), controls
21450 how much information @value{GDBN} prints together with its prompt,
21451 values of expressions, source lines, and other types of output.  Level 0
21452 is for no annotations, level 1 is for use when @value{GDBN} is run as a
21453 subprocess of @sc{gnu} Emacs, level 3 is the maximum annotation suitable
21454 for programs that control @value{GDBN}, and level 2 annotations have
21455 been made obsolete (@pxref{Limitations, , Limitations of the Annotation
21456 Interface, annotate, GDB's Obsolete Annotations}).
21457
21458 @table @code
21459 @kindex set annotate
21460 @item set annotate @var{level}
21461 The @value{GDBN} command @code{set annotate} sets the level of
21462 annotations to the specified @var{level}.
21463
21464 @item show annotate
21465 @kindex show annotate
21466 Show the current annotation level.
21467 @end table
21468
21469 This chapter describes level 3 annotations.
21470
21471 A simple example of starting up @value{GDBN} with annotations is:
21472
21473 @smallexample
21474 $ @kbd{gdb --annotate=3}
21475 GNU gdb 6.0
21476 Copyright 2003 Free Software Foundation, Inc.
21477 GDB is free software, covered by the GNU General Public License,
21478 and you are welcome to change it and/or distribute copies of it
21479 under certain conditions.
21480 Type "show copying" to see the conditions.
21481 There is absolutely no warranty for GDB.  Type "show warranty"
21482 for details.
21483 This GDB was configured as "i386-pc-linux-gnu"
21484
21485 ^Z^Zpre-prompt
21486 (@value{GDBP})
21487 ^Z^Zprompt
21488 @kbd{quit}
21489
21490 ^Z^Zpost-prompt
21491 $
21492 @end smallexample
21493
21494 Here @samp{quit} is input to @value{GDBN}; the rest is output from
21495 @value{GDBN}.  The three lines beginning @samp{^Z^Z} (where @samp{^Z}
21496 denotes a @samp{control-z} character) are annotations; the rest is
21497 output from @value{GDBN}.
21498
21499 @node Server Prefix
21500 @section The Server Prefix
21501 @cindex server prefix
21502
21503 If you prefix a command with @samp{server } then it will not affect
21504 the command history, nor will it affect @value{GDBN}'s notion of which
21505 command to repeat if @key{RET} is pressed on a line by itself.  This
21506 means that commands can be run behind a user's back by a front-end in
21507 a transparent manner.
21508
21509 The server prefix does not affect the recording of values into the value
21510 history; to print a value without recording it into the value history,
21511 use the @code{output} command instead of the @code{print} command.
21512
21513 @node Prompting
21514 @section Annotation for @value{GDBN} Input
21515
21516 @cindex annotations for prompts
21517 When @value{GDBN} prompts for input, it annotates this fact so it is possible
21518 to know when to send output, when the output from a given command is
21519 over, etc.
21520
21521 Different kinds of input each have a different @dfn{input type}.  Each
21522 input type has three annotations: a @code{pre-} annotation, which
21523 denotes the beginning of any prompt which is being output, a plain
21524 annotation, which denotes the end of the prompt, and then a @code{post-}
21525 annotation which denotes the end of any echo which may (or may not) be
21526 associated with the input.  For example, the @code{prompt} input type
21527 features the following annotations:
21528
21529 @smallexample
21530 ^Z^Zpre-prompt
21531 ^Z^Zprompt
21532 ^Z^Zpost-prompt
21533 @end smallexample
21534
21535 The input types are
21536
21537 @table @code
21538 @findex pre-prompt annotation
21539 @findex prompt annotation
21540 @findex post-prompt annotation
21541 @item prompt
21542 When @value{GDBN} is prompting for a command (the main @value{GDBN} prompt).
21543
21544 @findex pre-commands annotation
21545 @findex commands annotation
21546 @findex post-commands annotation
21547 @item commands
21548 When @value{GDBN} prompts for a set of commands, like in the @code{commands}
21549 command.  The annotations are repeated for each command which is input.
21550
21551 @findex pre-overload-choice annotation
21552 @findex overload-choice annotation
21553 @findex post-overload-choice annotation
21554 @item overload-choice
21555 When @value{GDBN} wants the user to select between various overloaded functions.
21556
21557 @findex pre-query annotation
21558 @findex query annotation
21559 @findex post-query annotation
21560 @item query
21561 When @value{GDBN} wants the user to confirm a potentially dangerous operation.
21562
21563 @findex pre-prompt-for-continue annotation
21564 @findex prompt-for-continue annotation
21565 @findex post-prompt-for-continue annotation
21566 @item prompt-for-continue
21567 When @value{GDBN} is asking the user to press return to continue.  Note: Don't
21568 expect this to work well; instead use @code{set height 0} to disable
21569 prompting.  This is because the counting of lines is buggy in the
21570 presence of annotations.
21571 @end table
21572
21573 @node Errors
21574 @section Errors
21575 @cindex annotations for errors, warnings and interrupts
21576
21577 @findex quit annotation
21578 @smallexample
21579 ^Z^Zquit
21580 @end smallexample
21581
21582 This annotation occurs right before @value{GDBN} responds to an interrupt.
21583
21584 @findex error annotation
21585 @smallexample
21586 ^Z^Zerror
21587 @end smallexample
21588
21589 This annotation occurs right before @value{GDBN} responds to an error.
21590
21591 Quit and error annotations indicate that any annotations which @value{GDBN} was
21592 in the middle of may end abruptly.  For example, if a
21593 @code{value-history-begin} annotation is followed by a @code{error}, one
21594 cannot expect to receive the matching @code{value-history-end}.  One
21595 cannot expect not to receive it either, however; an error annotation
21596 does not necessarily mean that @value{GDBN} is immediately returning all the way
21597 to the top level.
21598
21599 @findex error-begin annotation
21600 A quit or error annotation may be preceded by
21601
21602 @smallexample
21603 ^Z^Zerror-begin
21604 @end smallexample
21605
21606 Any output between that and the quit or error annotation is the error
21607 message.
21608
21609 Warning messages are not yet annotated.
21610 @c If we want to change that, need to fix warning(), type_error(),
21611 @c range_error(), and possibly other places.
21612
21613 @node Invalidation
21614 @section Invalidation Notices
21615
21616 @cindex annotations for invalidation messages
21617 The following annotations say that certain pieces of state may have
21618 changed.
21619
21620 @table @code
21621 @findex frames-invalid annotation
21622 @item ^Z^Zframes-invalid
21623
21624 The frames (for example, output from the @code{backtrace} command) may
21625 have changed.
21626
21627 @findex breakpoints-invalid annotation
21628 @item ^Z^Zbreakpoints-invalid
21629
21630 The breakpoints may have changed.  For example, the user just added or
21631 deleted a breakpoint.
21632 @end table
21633
21634 @node Annotations for Running
21635 @section Running the Program
21636 @cindex annotations for running programs
21637
21638 @findex starting annotation
21639 @findex stopping annotation
21640 When the program starts executing due to a @value{GDBN} command such as
21641 @code{step} or @code{continue},
21642
21643 @smallexample
21644 ^Z^Zstarting
21645 @end smallexample
21646
21647 is output.  When the program stops,
21648
21649 @smallexample
21650 ^Z^Zstopped
21651 @end smallexample
21652
21653 is output.  Before the @code{stopped} annotation, a variety of
21654 annotations describe how the program stopped.
21655
21656 @table @code
21657 @findex exited annotation
21658 @item ^Z^Zexited @var{exit-status}
21659 The program exited, and @var{exit-status} is the exit status (zero for
21660 successful exit, otherwise nonzero).
21661
21662 @findex signalled annotation
21663 @findex signal-name annotation
21664 @findex signal-name-end annotation
21665 @findex signal-string annotation
21666 @findex signal-string-end annotation
21667 @item ^Z^Zsignalled
21668 The program exited with a signal.  After the @code{^Z^Zsignalled}, the
21669 annotation continues:
21670
21671 @smallexample
21672 @var{intro-text}
21673 ^Z^Zsignal-name
21674 @var{name}
21675 ^Z^Zsignal-name-end
21676 @var{middle-text}
21677 ^Z^Zsignal-string
21678 @var{string}
21679 ^Z^Zsignal-string-end
21680 @var{end-text}
21681 @end smallexample
21682
21683 @noindent
21684 where @var{name} is the name of the signal, such as @code{SIGILL} or
21685 @code{SIGSEGV}, and @var{string} is the explanation of the signal, such
21686 as @code{Illegal Instruction} or @code{Segmentation fault}.
21687 @var{intro-text}, @var{middle-text}, and @var{end-text} are for the
21688 user's benefit and have no particular format.
21689
21690 @findex signal annotation
21691 @item ^Z^Zsignal
21692 The syntax of this annotation is just like @code{signalled}, but @value{GDBN} is
21693 just saying that the program received the signal, not that it was
21694 terminated with it.
21695
21696 @findex breakpoint annotation
21697 @item ^Z^Zbreakpoint @var{number}
21698 The program hit breakpoint number @var{number}.
21699
21700 @findex watchpoint annotation
21701 @item ^Z^Zwatchpoint @var{number}
21702 The program hit watchpoint number @var{number}.
21703 @end table
21704
21705 @node Source Annotations
21706 @section Displaying Source
21707 @cindex annotations for source display
21708
21709 @findex source annotation
21710 The following annotation is used instead of displaying source code:
21711
21712 @smallexample
21713 ^Z^Zsource @var{filename}:@var{line}:@var{character}:@var{middle}:@var{addr}
21714 @end smallexample
21715
21716 where @var{filename} is an absolute file name indicating which source
21717 file, @var{line} is the line number within that file (where 1 is the
21718 first line in the file), @var{character} is the character position
21719 within the file (where 0 is the first character in the file) (for most
21720 debug formats this will necessarily point to the beginning of a line),
21721 @var{middle} is @samp{middle} if @var{addr} is in the middle of the
21722 line, or @samp{beg} if @var{addr} is at the beginning of the line, and
21723 @var{addr} is the address in the target program associated with the
21724 source which is being displayed.  @var{addr} is in the form @samp{0x}
21725 followed by one or more lowercase hex digits (note that this does not
21726 depend on the language).
21727
21728 @node GDB Bugs
21729 @chapter Reporting Bugs in @value{GDBN}
21730 @cindex bugs in @value{GDBN}
21731 @cindex reporting bugs in @value{GDBN}
21732
21733 Your bug reports play an essential role in making @value{GDBN} reliable.
21734
21735 Reporting a bug may help you by bringing a solution to your problem, or it
21736 may not.  But in any case the principal function of a bug report is to help
21737 the entire community by making the next version of @value{GDBN} work better.  Bug
21738 reports are your contribution to the maintenance of @value{GDBN}.
21739
21740 In order for a bug report to serve its purpose, you must include the
21741 information that enables us to fix the bug.
21742
21743 @menu
21744 * Bug Criteria::                Have you found a bug?
21745 * Bug Reporting::               How to report bugs
21746 @end menu
21747
21748 @node Bug Criteria
21749 @section Have You Found a Bug?
21750 @cindex bug criteria
21751
21752 If you are not sure whether you have found a bug, here are some guidelines:
21753
21754 @itemize @bullet
21755 @cindex fatal signal
21756 @cindex debugger crash
21757 @cindex crash of debugger
21758 @item
21759 If the debugger gets a fatal signal, for any input whatever, that is a
21760 @value{GDBN} bug.  Reliable debuggers never crash.
21761
21762 @cindex error on valid input
21763 @item
21764 If @value{GDBN} produces an error message for valid input, that is a
21765 bug.  (Note that if you're cross debugging, the problem may also be
21766 somewhere in the connection to the target.)
21767
21768 @cindex invalid input
21769 @item
21770 If @value{GDBN} does not produce an error message for invalid input,
21771 that is a bug.  However, you should note that your idea of
21772 ``invalid input'' might be our idea of ``an extension'' or ``support
21773 for traditional practice''.
21774
21775 @item
21776 If you are an experienced user of debugging tools, your suggestions
21777 for improvement of @value{GDBN} are welcome in any case.
21778 @end itemize
21779
21780 @node Bug Reporting
21781 @section How to Report Bugs
21782 @cindex bug reports
21783 @cindex @value{GDBN} bugs, reporting
21784
21785 A number of companies and individuals offer support for @sc{gnu} products.
21786 If you obtained @value{GDBN} from a support organization, we recommend you
21787 contact that organization first.
21788
21789 You can find contact information for many support companies and
21790 individuals in the file @file{etc/SERVICE} in the @sc{gnu} Emacs
21791 distribution.
21792 @c should add a web page ref...
21793
21794 In any event, we also recommend that you submit bug reports for
21795 @value{GDBN}.  The preferred method is to submit them directly using
21796 @uref{http://www.gnu.org/software/gdb/bugs/, @value{GDBN}'s Bugs web
21797 page}.  Alternatively, the @email{bug-gdb@@gnu.org, e-mail gateway} can
21798 be used.
21799
21800 @strong{Do not send bug reports to @samp{info-gdb}, or to
21801 @samp{help-gdb}, or to any newsgroups.}  Most users of @value{GDBN} do
21802 not want to receive bug reports.  Those that do have arranged to receive
21803 @samp{bug-gdb}.
21804
21805 The mailing list @samp{bug-gdb} has a newsgroup @samp{gnu.gdb.bug} which
21806 serves as a repeater.  The mailing list and the newsgroup carry exactly
21807 the same messages.  Often people think of posting bug reports to the
21808 newsgroup instead of mailing them.  This appears to work, but it has one
21809 problem which can be crucial: a newsgroup posting often lacks a mail
21810 path back to the sender.  Thus, if we need to ask for more information,
21811 we may be unable to reach you.  For this reason, it is better to send
21812 bug reports to the mailing list.
21813
21814 The fundamental principle of reporting bugs usefully is this:
21815 @strong{report all the facts}.  If you are not sure whether to state a
21816 fact or leave it out, state it!
21817
21818 Often people omit facts because they think they know what causes the
21819 problem and assume that some details do not matter.  Thus, you might
21820 assume that the name of the variable you use in an example does not matter.
21821 Well, probably it does not, but one cannot be sure.  Perhaps the bug is a
21822 stray memory reference which happens to fetch from the location where that
21823 name is stored in memory; perhaps, if the name were different, the contents
21824 of that location would fool the debugger into doing the right thing despite
21825 the bug.  Play it safe and give a specific, complete example.  That is the
21826 easiest thing for you to do, and the most helpful.
21827
21828 Keep in mind that the purpose of a bug report is to enable us to fix the
21829 bug.  It may be that the bug has been reported previously, but neither
21830 you nor we can know that unless your bug report is complete and
21831 self-contained.
21832
21833 Sometimes people give a few sketchy facts and ask, ``Does this ring a
21834 bell?''  Those bug reports are useless, and we urge everyone to
21835 @emph{refuse to respond to them} except to chide the sender to report
21836 bugs properly.
21837
21838 To enable us to fix the bug, you should include all these things:
21839
21840 @itemize @bullet
21841 @item
21842 The version of @value{GDBN}.  @value{GDBN} announces it if you start
21843 with no arguments; you can also print it at any time using @code{show
21844 version}.
21845
21846 Without this, we will not know whether there is any point in looking for
21847 the bug in the current version of @value{GDBN}.
21848
21849 @item
21850 The type of machine you are using, and the operating system name and
21851 version number.
21852
21853 @item
21854 What compiler (and its version) was used to compile @value{GDBN}---e.g.@:
21855 ``@value{GCC}--2.8.1''.
21856
21857 @item
21858 What compiler (and its version) was used to compile the program you are
21859 debugging---e.g.@:  ``@value{GCC}--2.8.1'', or ``HP92453-01 A.10.32.03 HP
21860 C Compiler''.  For @value{NGCC}, you can say @kbd{@value{GCC} --version}
21861 to get this information; for other compilers, see the documentation for
21862 those compilers.
21863
21864 @item
21865 The command arguments you gave the compiler to compile your example and
21866 observe the bug.  For example, did you use @samp{-O}?  To guarantee
21867 you will not omit something important, list them all.  A copy of the
21868 Makefile (or the output from make) is sufficient.
21869
21870 If we were to try to guess the arguments, we would probably guess wrong
21871 and then we might not encounter the bug.
21872
21873 @item
21874 A complete input script, and all necessary source files, that will
21875 reproduce the bug.
21876
21877 @item
21878 A description of what behavior you observe that you believe is
21879 incorrect.  For example, ``It gets a fatal signal.''
21880
21881 Of course, if the bug is that @value{GDBN} gets a fatal signal, then we
21882 will certainly notice it.  But if the bug is incorrect output, we might
21883 not notice unless it is glaringly wrong.  You might as well not give us
21884 a chance to make a mistake.
21885
21886 Even if the problem you experience is a fatal signal, you should still
21887 say so explicitly.  Suppose something strange is going on, such as, your
21888 copy of @value{GDBN} is out of synch, or you have encountered a bug in
21889 the C library on your system.  (This has happened!)  Your copy might
21890 crash and ours would not.  If you told us to expect a crash, then when
21891 ours fails to crash, we would know that the bug was not happening for
21892 us.  If you had not told us to expect a crash, then we would not be able
21893 to draw any conclusion from our observations.
21894
21895 @pindex script
21896 @cindex recording a session script
21897 To collect all this information, you can use a session recording program
21898 such as @command{script}, which is available on many Unix systems.
21899 Just run your @value{GDBN} session inside @command{script} and then
21900 include the @file{typescript} file with your bug report.
21901
21902 Another way to record a @value{GDBN} session is to run @value{GDBN}
21903 inside Emacs and then save the entire buffer to a file.
21904
21905 @item
21906 If you wish to suggest changes to the @value{GDBN} source, send us context
21907 diffs.  If you even discuss something in the @value{GDBN} source, refer to
21908 it by context, not by line number.
21909
21910 The line numbers in our development sources will not match those in your
21911 sources.  Your line numbers would convey no useful information to us.
21912
21913 @end itemize
21914
21915 Here are some things that are not necessary:
21916
21917 @itemize @bullet
21918 @item
21919 A description of the envelope of the bug.
21920
21921 Often people who encounter a bug spend a lot of time investigating
21922 which changes to the input file will make the bug go away and which
21923 changes will not affect it.
21924
21925 This is often time consuming and not very useful, because the way we
21926 will find the bug is by running a single example under the debugger
21927 with breakpoints, not by pure deduction from a series of examples.
21928 We recommend that you save your time for something else.
21929
21930 Of course, if you can find a simpler example to report @emph{instead}
21931 of the original one, that is a convenience for us.  Errors in the
21932 output will be easier to spot, running under the debugger will take
21933 less time, and so on.
21934
21935 However, simplification is not vital; if you do not want to do this,
21936 report the bug anyway and send us the entire test case you used.
21937
21938 @item
21939 A patch for the bug.
21940
21941 A patch for the bug does help us if it is a good one.  But do not omit
21942 the necessary information, such as the test case, on the assumption that
21943 a patch is all we need.  We might see problems with your patch and decide
21944 to fix the problem another way, or we might not understand it at all.
21945
21946 Sometimes with a program as complicated as @value{GDBN} it is very hard to
21947 construct an example that will make the program follow a certain path
21948 through the code.  If you do not send us the example, we will not be able
21949 to construct one, so we will not be able to verify that the bug is fixed.
21950
21951 And if we cannot understand what bug you are trying to fix, or why your
21952 patch should be an improvement, we will not install it.  A test case will
21953 help us to understand.
21954
21955 @item
21956 A guess about what the bug is or what it depends on.
21957
21958 Such guesses are usually wrong.  Even we cannot guess right about such
21959 things without first using the debugger to find the facts.
21960 @end itemize
21961
21962 @c The readline documentation is distributed with the readline code
21963 @c and consists of the two following files:
21964 @c     rluser.texinfo
21965 @c     inc-hist.texinfo
21966 @c Use -I with makeinfo to point to the appropriate directory,
21967 @c environment var TEXINPUTS with TeX.
21968 @include rluser.texi
21969 @include inc-hist.texinfo
21970
21971
21972 @node Formatting Documentation
21973 @appendix Formatting Documentation
21974
21975 @cindex @value{GDBN} reference card
21976 @cindex reference card
21977 The @value{GDBN} 4 release includes an already-formatted reference card, ready
21978 for printing with PostScript or Ghostscript, in the @file{gdb}
21979 subdirectory of the main source directory@footnote{In
21980 @file{gdb-@value{GDBVN}/gdb/refcard.ps} of the version @value{GDBVN}
21981 release.}.  If you can use PostScript or Ghostscript with your printer,
21982 you can print the reference card immediately with @file{refcard.ps}.
21983
21984 The release also includes the source for the reference card.  You
21985 can format it, using @TeX{}, by typing:
21986
21987 @smallexample
21988 make refcard.dvi
21989 @end smallexample
21990
21991 The @value{GDBN} reference card is designed to print in @dfn{landscape}
21992 mode on US ``letter'' size paper;
21993 that is, on a sheet 11 inches wide by 8.5 inches
21994 high.  You will need to specify this form of printing as an option to
21995 your @sc{dvi} output program.
21996
21997 @cindex documentation
21998
21999 All the documentation for @value{GDBN} comes as part of the machine-readable
22000 distribution.  The documentation is written in Texinfo format, which is
22001 a documentation system that uses a single source file to produce both
22002 on-line information and a printed manual.  You can use one of the Info
22003 formatting commands to create the on-line version of the documentation
22004 and @TeX{} (or @code{texi2roff}) to typeset the printed version.
22005
22006 @value{GDBN} includes an already formatted copy of the on-line Info
22007 version of this manual in the @file{gdb} subdirectory.  The main Info
22008 file is @file{gdb-@value{GDBVN}/gdb/gdb.info}, and it refers to
22009 subordinate files matching @samp{gdb.info*} in the same directory.  If
22010 necessary, you can print out these files, or read them with any editor;
22011 but they are easier to read using the @code{info} subsystem in @sc{gnu}
22012 Emacs or the standalone @code{info} program, available as part of the
22013 @sc{gnu} Texinfo distribution.
22014
22015 If you want to format these Info files yourself, you need one of the
22016 Info formatting programs, such as @code{texinfo-format-buffer} or
22017 @code{makeinfo}.
22018
22019 If you have @code{makeinfo} installed, and are in the top level
22020 @value{GDBN} source directory (@file{gdb-@value{GDBVN}}, in the case of
22021 version @value{GDBVN}), you can make the Info file by typing:
22022
22023 @smallexample
22024 cd gdb
22025 make gdb.info
22026 @end smallexample
22027
22028 If you want to typeset and print copies of this manual, you need @TeX{},
22029 a program to print its @sc{dvi} output files, and @file{texinfo.tex}, the
22030 Texinfo definitions file.
22031
22032 @TeX{} is a typesetting program; it does not print files directly, but
22033 produces output files called @sc{dvi} files.  To print a typeset
22034 document, you need a program to print @sc{dvi} files.  If your system
22035 has @TeX{} installed, chances are it has such a program.  The precise
22036 command to use depends on your system; @kbd{lpr -d} is common; another
22037 (for PostScript devices) is @kbd{dvips}.  The @sc{dvi} print command may
22038 require a file name without any extension or a @samp{.dvi} extension.
22039
22040 @TeX{} also requires a macro definitions file called
22041 @file{texinfo.tex}.  This file tells @TeX{} how to typeset a document
22042 written in Texinfo format.  On its own, @TeX{} cannot either read or
22043 typeset a Texinfo file.  @file{texinfo.tex} is distributed with GDB
22044 and is located in the @file{gdb-@var{version-number}/texinfo}
22045 directory.
22046
22047 If you have @TeX{} and a @sc{dvi} printer program installed, you can
22048 typeset and print this manual.  First switch to the @file{gdb}
22049 subdirectory of the main source directory (for example, to
22050 @file{gdb-@value{GDBVN}/gdb}) and type:
22051
22052 @smallexample
22053 make gdb.dvi
22054 @end smallexample
22055
22056 Then give @file{gdb.dvi} to your @sc{dvi} printing program.
22057
22058 @node Installing GDB
22059 @appendix Installing @value{GDBN}
22060 @cindex installation
22061
22062 @menu
22063 * Requirements::                Requirements for building @value{GDBN}
22064 * Running Configure::           Invoking the @value{GDBN} @file{configure} script
22065 * Separate Objdir::             Compiling @value{GDBN} in another directory
22066 * Config Names::                Specifying names for hosts and targets
22067 * Configure Options::           Summary of options for configure
22068 @end menu
22069
22070 @node Requirements
22071 @section Requirements for Building @value{GDBN}
22072 @cindex building @value{GDBN}, requirements for
22073
22074 Building @value{GDBN} requires various tools and packages to be available.
22075 Other packages will be used only if they are found.
22076
22077 @heading Tools/Packages Necessary for Building @value{GDBN}
22078 @table @asis
22079 @item ISO C90 compiler
22080 @value{GDBN} is written in ISO C90.  It should be buildable with any
22081 working C90 compiler, e.g.@: GCC.
22082
22083 @end table
22084
22085 @heading Tools/Packages Optional for Building @value{GDBN}
22086 @table @asis
22087 @item Expat
22088 @anchor{Expat}
22089 @value{GDBN} can use the Expat XML parsing library.  This library may be
22090 included with your operating system distribution; if it is not, you
22091 can get the latest version from @url{http://expat.sourceforge.net}.
22092 The @file{configure} script will search for this library in several
22093 standard locations; if it is installed in an unusual path, you can
22094 use the @option{--with-libexpat-prefix} option to specify its location.
22095
22096 Expat is used for remote protocol memory maps (@pxref{Memory Map Format})
22097 and for target descriptions (@pxref{Target Descriptions}).
22098
22099 @end table
22100
22101 @node Running Configure
22102 @section Invoking the @value{GDBN} @file{configure} Script
22103 @cindex configuring @value{GDBN}
22104 @value{GDBN} comes with a @file{configure} script that automates the process
22105 of preparing @value{GDBN} for installation; you can then use @code{make} to
22106 build the @code{gdb} program.
22107 @iftex
22108 @c irrelevant in info file; it's as current as the code it lives with.
22109 @footnote{If you have a more recent version of @value{GDBN} than @value{GDBVN},
22110 look at the @file{README} file in the sources; we may have improved the
22111 installation procedures since publishing this manual.}
22112 @end iftex
22113
22114 The @value{GDBN} distribution includes all the source code you need for
22115 @value{GDBN} in a single directory, whose name is usually composed by
22116 appending the version number to @samp{gdb}.
22117
22118 For example, the @value{GDBN} version @value{GDBVN} distribution is in the
22119 @file{gdb-@value{GDBVN}} directory.  That directory contains:
22120
22121 @table @code
22122 @item gdb-@value{GDBVN}/configure @r{(and supporting files)}
22123 script for configuring @value{GDBN} and all its supporting libraries
22124
22125 @item gdb-@value{GDBVN}/gdb
22126 the source specific to @value{GDBN} itself
22127
22128 @item gdb-@value{GDBVN}/bfd
22129 source for the Binary File Descriptor library
22130
22131 @item gdb-@value{GDBVN}/include
22132 @sc{gnu} include files
22133
22134 @item gdb-@value{GDBVN}/libiberty
22135 source for the @samp{-liberty} free software library
22136
22137 @item gdb-@value{GDBVN}/opcodes
22138 source for the library of opcode tables and disassemblers
22139
22140 @item gdb-@value{GDBVN}/readline
22141 source for the @sc{gnu} command-line interface
22142
22143 @item gdb-@value{GDBVN}/glob
22144 source for the @sc{gnu} filename pattern-matching subroutine
22145
22146 @item gdb-@value{GDBVN}/mmalloc
22147 source for the @sc{gnu} memory-mapped malloc package
22148 @end table
22149
22150 The simplest way to configure and build @value{GDBN} is to run @file{configure}
22151 from the @file{gdb-@var{version-number}} source directory, which in
22152 this example is the @file{gdb-@value{GDBVN}} directory.
22153
22154 First switch to the @file{gdb-@var{version-number}} source directory
22155 if you are not already in it; then run @file{configure}.  Pass the
22156 identifier for the platform on which @value{GDBN} will run as an
22157 argument.
22158
22159 For example:
22160
22161 @smallexample
22162 cd gdb-@value{GDBVN}
22163 ./configure @var{host}
22164 make
22165 @end smallexample
22166
22167 @noindent
22168 where @var{host} is an identifier such as @samp{sun4} or
22169 @samp{decstation}, that identifies the platform where @value{GDBN} will run.
22170 (You can often leave off @var{host}; @file{configure} tries to guess the
22171 correct value by examining your system.)
22172
22173 Running @samp{configure @var{host}} and then running @code{make} builds the
22174 @file{bfd}, @file{readline}, @file{mmalloc}, and @file{libiberty}
22175 libraries, then @code{gdb} itself.  The configured source files, and the
22176 binaries, are left in the corresponding source directories.
22177
22178 @need 750
22179 @file{configure} is a Bourne-shell (@code{/bin/sh}) script; if your
22180 system does not recognize this automatically when you run a different
22181 shell, you may need to run @code{sh} on it explicitly:
22182
22183 @smallexample
22184 sh configure @var{host}
22185 @end smallexample
22186
22187 If you run @file{configure} from a directory that contains source
22188 directories for multiple libraries or programs, such as the
22189 @file{gdb-@value{GDBVN}} source directory for version @value{GDBVN},
22190 @file{configure}
22191 creates configuration files for every directory level underneath (unless
22192 you tell it not to, with the @samp{--norecursion} option).
22193
22194 You should run the @file{configure} script from the top directory in the
22195 source tree, the @file{gdb-@var{version-number}} directory.  If you run
22196 @file{configure} from one of the subdirectories, you will configure only
22197 that subdirectory.  That is usually not what you want.  In particular,
22198 if you run the first @file{configure} from the @file{gdb} subdirectory
22199 of the @file{gdb-@var{version-number}} directory, you will omit the
22200 configuration of @file{bfd}, @file{readline}, and other sibling
22201 directories of the @file{gdb} subdirectory.  This leads to build errors
22202 about missing include files such as @file{bfd/bfd.h}.
22203
22204 You can install @code{@value{GDBP}} anywhere; it has no hardwired paths.
22205 However, you should make sure that the shell on your path (named by
22206 the @samp{SHELL} environment variable) is publicly readable.  Remember
22207 that @value{GDBN} uses the shell to start your program---some systems refuse to
22208 let @value{GDBN} debug child processes whose programs are not readable.
22209
22210 @node Separate Objdir
22211 @section Compiling @value{GDBN} in Another Directory
22212
22213 If you want to run @value{GDBN} versions for several host or target machines,
22214 you need a different @code{gdb} compiled for each combination of
22215 host and target.  @file{configure} is designed to make this easy by
22216 allowing you to generate each configuration in a separate subdirectory,
22217 rather than in the source directory.  If your @code{make} program
22218 handles the @samp{VPATH} feature (@sc{gnu} @code{make} does), running
22219 @code{make} in each of these directories builds the @code{gdb}
22220 program specified there.
22221
22222 To build @code{gdb} in a separate directory, run @file{configure}
22223 with the @samp{--srcdir} option to specify where to find the source.
22224 (You also need to specify a path to find @file{configure}
22225 itself from your working directory.  If the path to @file{configure}
22226 would be the same as the argument to @samp{--srcdir}, you can leave out
22227 the @samp{--srcdir} option; it is assumed.)
22228
22229 For example, with version @value{GDBVN}, you can build @value{GDBN} in a
22230 separate directory for a Sun 4 like this:
22231
22232 @smallexample
22233 @group
22234 cd gdb-@value{GDBVN}
22235 mkdir ../gdb-sun4
22236 cd ../gdb-sun4
22237 ../gdb-@value{GDBVN}/configure sun4
22238 make
22239 @end group
22240 @end smallexample
22241
22242 When @file{configure} builds a configuration using a remote source
22243 directory, it creates a tree for the binaries with the same structure
22244 (and using the same names) as the tree under the source directory.  In
22245 the example, you'd find the Sun 4 library @file{libiberty.a} in the
22246 directory @file{gdb-sun4/libiberty}, and @value{GDBN} itself in
22247 @file{gdb-sun4/gdb}.
22248
22249 Make sure that your path to the @file{configure} script has just one
22250 instance of @file{gdb} in it.  If your path to @file{configure} looks
22251 like @file{../gdb-@value{GDBVN}/gdb/configure}, you are configuring only
22252 one subdirectory of @value{GDBN}, not the whole package.  This leads to
22253 build errors about missing include files such as @file{bfd/bfd.h}.
22254
22255 One popular reason to build several @value{GDBN} configurations in separate
22256 directories is to configure @value{GDBN} for cross-compiling (where
22257 @value{GDBN} runs on one machine---the @dfn{host}---while debugging
22258 programs that run on another machine---the @dfn{target}).
22259 You specify a cross-debugging target by
22260 giving the @samp{--target=@var{target}} option to @file{configure}.
22261
22262 When you run @code{make} to build a program or library, you must run
22263 it in a configured directory---whatever directory you were in when you
22264 called @file{configure} (or one of its subdirectories).
22265
22266 The @code{Makefile} that @file{configure} generates in each source
22267 directory also runs recursively.  If you type @code{make} in a source
22268 directory such as @file{gdb-@value{GDBVN}} (or in a separate configured
22269 directory configured with @samp{--srcdir=@var{dirname}/gdb-@value{GDBVN}}), you
22270 will build all the required libraries, and then build GDB.
22271
22272 When you have multiple hosts or targets configured in separate
22273 directories, you can run @code{make} on them in parallel (for example,
22274 if they are NFS-mounted on each of the hosts); they will not interfere
22275 with each other.
22276
22277 @node Config Names
22278 @section Specifying Names for Hosts and Targets
22279
22280 The specifications used for hosts and targets in the @file{configure}
22281 script are based on a three-part naming scheme, but some short predefined
22282 aliases are also supported.  The full naming scheme encodes three pieces
22283 of information in the following pattern:
22284
22285 @smallexample
22286 @var{architecture}-@var{vendor}-@var{os}
22287 @end smallexample
22288
22289 For example, you can use the alias @code{sun4} as a @var{host} argument,
22290 or as the value for @var{target} in a @code{--target=@var{target}}
22291 option.  The equivalent full name is @samp{sparc-sun-sunos4}.
22292
22293 The @file{configure} script accompanying @value{GDBN} does not provide
22294 any query facility to list all supported host and target names or
22295 aliases.  @file{configure} calls the Bourne shell script
22296 @code{config.sub} to map abbreviations to full names; you can read the
22297 script, if you wish, or you can use it to test your guesses on
22298 abbreviations---for example:
22299
22300 @smallexample
22301 % sh config.sub i386-linux
22302 i386-pc-linux-gnu
22303 % sh config.sub alpha-linux
22304 alpha-unknown-linux-gnu
22305 % sh config.sub hp9k700
22306 hppa1.1-hp-hpux
22307 % sh config.sub sun4
22308 sparc-sun-sunos4.1.1
22309 % sh config.sub sun3
22310 m68k-sun-sunos4.1.1
22311 % sh config.sub i986v
22312 Invalid configuration `i986v': machine `i986v' not recognized
22313 @end smallexample
22314
22315 @noindent
22316 @code{config.sub} is also distributed in the @value{GDBN} source
22317 directory (@file{gdb-@value{GDBVN}}, for version @value{GDBVN}).
22318
22319 @node Configure Options
22320 @section @file{configure} Options
22321
22322 Here is a summary of the @file{configure} options and arguments that
22323 are most often useful for building @value{GDBN}.  @file{configure} also has
22324 several other options not listed here.  @inforef{What Configure
22325 Does,,configure.info}, for a full explanation of @file{configure}.
22326
22327 @smallexample
22328 configure @r{[}--help@r{]}
22329           @r{[}--prefix=@var{dir}@r{]}
22330           @r{[}--exec-prefix=@var{dir}@r{]}
22331           @r{[}--srcdir=@var{dirname}@r{]}
22332           @r{[}--norecursion@r{]} @r{[}--rm@r{]}
22333           @r{[}--target=@var{target}@r{]}
22334           @var{host}
22335 @end smallexample
22336
22337 @noindent
22338 You may introduce options with a single @samp{-} rather than
22339 @samp{--} if you prefer; but you may abbreviate option names if you use
22340 @samp{--}.
22341
22342 @table @code
22343 @item --help
22344 Display a quick summary of how to invoke @file{configure}.
22345
22346 @item --prefix=@var{dir}
22347 Configure the source to install programs and files under directory
22348 @file{@var{dir}}.
22349
22350 @item --exec-prefix=@var{dir}
22351 Configure the source to install programs under directory
22352 @file{@var{dir}}.
22353
22354 @c avoid splitting the warning from the explanation:
22355 @need 2000
22356 @item --srcdir=@var{dirname}
22357 @strong{Warning: using this option requires @sc{gnu} @code{make}, or another
22358 @code{make} that implements the @code{VPATH} feature.}@*
22359 Use this option to make configurations in directories separate from the
22360 @value{GDBN} source directories.  Among other things, you can use this to
22361 build (or maintain) several configurations simultaneously, in separate
22362 directories.  @file{configure} writes configuration-specific files in
22363 the current directory, but arranges for them to use the source in the
22364 directory @var{dirname}.  @file{configure} creates directories under
22365 the working directory in parallel to the source directories below
22366 @var{dirname}.
22367
22368 @item --norecursion
22369 Configure only the directory level where @file{configure} is executed; do not
22370 propagate configuration to subdirectories.
22371
22372 @item --target=@var{target}
22373 Configure @value{GDBN} for cross-debugging programs running on the specified
22374 @var{target}.  Without this option, @value{GDBN} is configured to debug
22375 programs that run on the same machine (@var{host}) as @value{GDBN} itself.
22376
22377 There is no convenient way to generate a list of all available targets.
22378
22379 @item @var{host} @dots{}
22380 Configure @value{GDBN} to run on the specified @var{host}.
22381
22382 There is no convenient way to generate a list of all available hosts.
22383 @end table
22384
22385 There are many other options available as well, but they are generally
22386 needed for special purposes only.
22387
22388 @node Maintenance Commands
22389 @appendix Maintenance Commands
22390 @cindex maintenance commands
22391 @cindex internal commands
22392
22393 In addition to commands intended for @value{GDBN} users, @value{GDBN}
22394 includes a number of commands intended for @value{GDBN} developers,
22395 that are not documented elsewhere in this manual.  These commands are
22396 provided here for reference.  (For commands that turn on debugging
22397 messages, see @ref{Debugging Output}.)
22398
22399 @table @code
22400 @kindex maint agent
22401 @item maint agent @var{expression}
22402 Translate the given @var{expression} into remote agent bytecodes.
22403 This command is useful for debugging the Agent Expression mechanism
22404 (@pxref{Agent Expressions}).
22405
22406 @kindex maint info breakpoints
22407 @item @anchor{maint info breakpoints}maint info breakpoints
22408 Using the same format as @samp{info breakpoints}, display both the
22409 breakpoints you've set explicitly, and those @value{GDBN} is using for
22410 internal purposes.  Internal breakpoints are shown with negative
22411 breakpoint numbers.  The type column identifies what kind of breakpoint
22412 is shown:
22413
22414 @table @code
22415 @item breakpoint
22416 Normal, explicitly set breakpoint.
22417
22418 @item watchpoint
22419 Normal, explicitly set watchpoint.
22420
22421 @item longjmp
22422 Internal breakpoint, used to handle correctly stepping through
22423 @code{longjmp} calls.
22424
22425 @item longjmp resume
22426 Internal breakpoint at the target of a @code{longjmp}.
22427
22428 @item until
22429 Temporary internal breakpoint used by the @value{GDBN} @code{until} command.
22430
22431 @item finish
22432 Temporary internal breakpoint used by the @value{GDBN} @code{finish} command.
22433
22434 @item shlib events
22435 Shared library events.
22436
22437 @end table
22438
22439 @kindex maint check-symtabs
22440 @item maint check-symtabs
22441 Check the consistency of psymtabs and symtabs.
22442
22443 @kindex maint cplus first_component
22444 @item maint cplus first_component @var{name}
22445 Print the first C@t{++} class/namespace component of @var{name}.
22446
22447 @kindex maint cplus namespace
22448 @item maint cplus namespace
22449 Print the list of possible C@t{++} namespaces.
22450
22451 @kindex maint demangle
22452 @item maint demangle @var{name}
22453 Demangle a C@t{++} or Objective-C mangled @var{name}.
22454
22455 @kindex maint deprecate
22456 @kindex maint undeprecate
22457 @cindex deprecated commands
22458 @item maint deprecate @var{command} @r{[}@var{replacement}@r{]}
22459 @itemx maint undeprecate @var{command}
22460 Deprecate or undeprecate the named @var{command}.  Deprecated commands
22461 cause @value{GDBN} to issue a warning when you use them.  The optional
22462 argument @var{replacement} says which newer command should be used in
22463 favor of the deprecated one; if it is given, @value{GDBN} will mention
22464 the replacement as part of the warning.
22465
22466 @kindex maint dump-me
22467 @item maint dump-me
22468 @cindex @code{SIGQUIT} signal, dump core of @value{GDBN}
22469 Cause a fatal signal in the debugger and force it to dump its core.
22470 This is supported only on systems which support aborting a program
22471 with the @code{SIGQUIT} signal.
22472
22473 @kindex maint internal-error
22474 @kindex maint internal-warning
22475 @item maint internal-error @r{[}@var{message-text}@r{]}
22476 @itemx maint internal-warning @r{[}@var{message-text}@r{]}
22477 Cause @value{GDBN} to call the internal function @code{internal_error}
22478 or @code{internal_warning} and hence behave as though an internal error
22479 or internal warning has been detected.  In addition to reporting the
22480 internal problem, these functions give the user the opportunity to
22481 either quit @value{GDBN} or create a core file of the current
22482 @value{GDBN} session.
22483
22484 These commands take an optional parameter @var{message-text} that is
22485 used as the text of the error or warning message.
22486
22487 Here's an example of using @code{internal-error}:
22488
22489 @smallexample
22490 (@value{GDBP}) @kbd{maint internal-error testing, 1, 2}
22491 @dots{}/maint.c:121: internal-error: testing, 1, 2
22492 A problem internal to GDB has been detected.  Further
22493 debugging may prove unreliable.
22494 Quit this debugging session? (y or n) @kbd{n}
22495 Create a core file? (y or n) @kbd{n}
22496 (@value{GDBP})
22497 @end smallexample
22498
22499 @kindex maint packet
22500 @item maint packet @var{text}
22501 If @value{GDBN} is talking to an inferior via the serial protocol,
22502 then this command sends the string @var{text} to the inferior, and
22503 displays the response packet.  @value{GDBN} supplies the initial
22504 @samp{$} character, the terminating @samp{#} character, and the
22505 checksum.
22506
22507 @kindex maint print architecture
22508 @item maint print architecture @r{[}@var{file}@r{]}
22509 Print the entire architecture configuration.  The optional argument
22510 @var{file} names the file where the output goes.
22511
22512 @kindex maint print dummy-frames
22513 @item maint print dummy-frames
22514 Prints the contents of @value{GDBN}'s internal dummy-frame stack.
22515
22516 @smallexample
22517 (@value{GDBP}) @kbd{b add}
22518 @dots{}
22519 (@value{GDBP}) @kbd{print add(2,3)}
22520 Breakpoint 2, add (a=2, b=3) at @dots{}
22521 58        return (a + b);
22522 The program being debugged stopped while in a function called from GDB.
22523 @dots{}
22524 (@value{GDBP}) @kbd{maint print dummy-frames}
22525 0x1a57c80: pc=0x01014068 fp=0x0200bddc sp=0x0200bdd6
22526  top=0x0200bdd4 id=@{stack=0x200bddc,code=0x101405c@}
22527  call_lo=0x01014000 call_hi=0x01014001
22528 (@value{GDBP})
22529 @end smallexample
22530
22531 Takes an optional file parameter.
22532
22533 @kindex maint print registers
22534 @kindex maint print raw-registers
22535 @kindex maint print cooked-registers
22536 @kindex maint print register-groups
22537 @item maint print registers @r{[}@var{file}@r{]}
22538 @itemx maint print raw-registers @r{[}@var{file}@r{]}
22539 @itemx maint print cooked-registers @r{[}@var{file}@r{]}
22540 @itemx maint print register-groups @r{[}@var{file}@r{]}
22541 Print @value{GDBN}'s internal register data structures.
22542
22543 The command @code{maint print raw-registers} includes the contents of
22544 the raw register cache; the command @code{maint print cooked-registers}
22545 includes the (cooked) value of all registers; and the command
22546 @code{maint print register-groups} includes the groups that each
22547 register is a member of.  @xref{Registers,, Registers, gdbint,
22548 @value{GDBN} Internals}.
22549
22550 These commands take an optional parameter, a file name to which to
22551 write the information.
22552
22553 @kindex maint print reggroups
22554 @item maint print reggroups @r{[}@var{file}@r{]}
22555 Print @value{GDBN}'s internal register group data structures.  The
22556 optional argument @var{file} tells to what file to write the
22557 information.
22558
22559 The register groups info looks like this:
22560
22561 @smallexample
22562 (@value{GDBP}) @kbd{maint print reggroups}
22563  Group      Type
22564  general    user
22565  float      user
22566  all        user
22567  vector     user
22568  system     user
22569  save       internal
22570  restore    internal
22571 @end smallexample
22572
22573 @kindex flushregs
22574 @item flushregs
22575 This command forces @value{GDBN} to flush its internal register cache.
22576
22577 @kindex maint print objfiles
22578 @cindex info for known object files
22579 @item maint print objfiles
22580 Print a dump of all known object files.  For each object file, this
22581 command prints its name, address in memory, and all of its psymtabs
22582 and symtabs.
22583
22584 @kindex maint print statistics
22585 @cindex bcache statistics
22586 @item maint print statistics
22587 This command prints, for each object file in the program, various data
22588 about that object file followed by the byte cache (@dfn{bcache})
22589 statistics for the object file.  The objfile data includes the number
22590 of minimal, partial, full, and stabs symbols, the number of types
22591 defined by the objfile, the number of as yet unexpanded psym tables,
22592 the number of line tables and string tables, and the amount of memory
22593 used by the various tables.  The bcache statistics include the counts,
22594 sizes, and counts of duplicates of all and unique objects, max,
22595 average, and median entry size, total memory used and its overhead and
22596 savings, and various measures of the hash table size and chain
22597 lengths.
22598
22599 @kindex maint print target-stack
22600 @cindex target stack description
22601 @item maint print target-stack
22602 A @dfn{target} is an interface between the debugger and a particular
22603 kind of file or process.  Targets can be stacked in @dfn{strata},
22604 so that more than one target can potentially respond to a request.
22605 In particular, memory accesses will walk down the stack of targets
22606 until they find a target that is interested in handling that particular
22607 address.
22608
22609 This command prints a short description of each layer that was pushed on
22610 the @dfn{target stack}, starting from the top layer down to the bottom one.
22611
22612 @kindex maint print type
22613 @cindex type chain of a data type
22614 @item maint print type @var{expr}
22615 Print the type chain for a type specified by @var{expr}.  The argument
22616 can be either a type name or a symbol.  If it is a symbol, the type of
22617 that symbol is described.  The type chain produced by this command is
22618 a recursive definition of the data type as stored in @value{GDBN}'s
22619 data structures, including its flags and contained types.
22620
22621 @kindex maint set dwarf2 max-cache-age
22622 @kindex maint show dwarf2 max-cache-age
22623 @item maint set dwarf2 max-cache-age
22624 @itemx maint show dwarf2 max-cache-age
22625 Control the DWARF 2 compilation unit cache.
22626
22627 @cindex DWARF 2 compilation units cache
22628 In object files with inter-compilation-unit references, such as those
22629 produced by the GCC option @samp{-feliminate-dwarf2-dups}, the DWARF 2
22630 reader needs to frequently refer to previously read compilation units.
22631 This setting controls how long a compilation unit will remain in the
22632 cache if it is not referenced.  A higher limit means that cached
22633 compilation units will be stored in memory longer, and more total
22634 memory will be used.  Setting it to zero disables caching, which will
22635 slow down @value{GDBN} startup, but reduce memory consumption.
22636
22637 @kindex maint set profile
22638 @kindex maint show profile
22639 @cindex profiling GDB
22640 @item maint set profile
22641 @itemx maint show profile
22642 Control profiling of @value{GDBN}.
22643
22644 Profiling will be disabled until you use the @samp{maint set profile}
22645 command to enable it.  When you enable profiling, the system will begin
22646 collecting timing and execution count data; when you disable profiling or
22647 exit @value{GDBN}, the results will be written to a log file.  Remember that
22648 if you use profiling, @value{GDBN} will overwrite the profiling log file
22649 (often called @file{gmon.out}).  If you have a record of important profiling
22650 data in a @file{gmon.out} file, be sure to move it to a safe location.
22651
22652 Configuring with @samp{--enable-profiling} arranges for @value{GDBN} to be
22653 compiled with the @samp{-pg} compiler option.
22654
22655 @kindex maint show-debug-regs
22656 @cindex x86 hardware debug registers
22657 @item maint show-debug-regs
22658 Control whether to show variables that mirror the x86 hardware debug
22659 registers.  Use @code{ON} to enable, @code{OFF} to disable.  If
22660 enabled, the debug registers values are shown when @value{GDBN} inserts or
22661 removes a hardware breakpoint or watchpoint, and when the inferior
22662 triggers a hardware-assisted breakpoint or watchpoint.
22663
22664 @kindex maint space
22665 @cindex memory used by commands
22666 @item maint space
22667 Control whether to display memory usage for each command.  If set to a
22668 nonzero value, @value{GDBN} will display how much memory each command
22669 took, following the command's own output.  This can also be requested
22670 by invoking @value{GDBN} with the @option{--statistics} command-line
22671 switch (@pxref{Mode Options}).
22672
22673 @kindex maint time
22674 @cindex time of command execution
22675 @item maint time
22676 Control whether to display the execution time for each command.  If
22677 set to a nonzero value, @value{GDBN} will display how much time it
22678 took to execute each command, following the command's own output.
22679 This can also be requested by invoking @value{GDBN} with the
22680 @option{--statistics} command-line switch (@pxref{Mode Options}).
22681
22682 @kindex maint translate-address
22683 @item maint translate-address @r{[}@var{section}@r{]} @var{addr}
22684 Find the symbol stored at the location specified by the address
22685 @var{addr} and an optional section name @var{section}.  If found,
22686 @value{GDBN} prints the name of the closest symbol and an offset from
22687 the symbol's location to the specified address.  This is similar to
22688 the @code{info address} command (@pxref{Symbols}), except that this
22689 command also allows to find symbols in other sections.
22690
22691 @end table
22692
22693 The following command is useful for non-interactive invocations of
22694 @value{GDBN}, such as in the test suite.
22695
22696 @table @code
22697 @item set watchdog @var{nsec}
22698 @kindex set watchdog
22699 @cindex watchdog timer
22700 @cindex timeout for commands
22701 Set the maximum number of seconds @value{GDBN} will wait for the
22702 target operation to finish.  If this time expires, @value{GDBN}
22703 reports and error and the command is aborted.
22704
22705 @item show watchdog
22706 Show the current setting of the target wait timeout.
22707 @end table
22708
22709 @node Remote Protocol
22710 @appendix @value{GDBN} Remote Serial Protocol
22711
22712 @menu
22713 * Overview::
22714 * Packets::
22715 * Stop Reply Packets::
22716 * General Query Packets::
22717 * Register Packet Format::
22718 * Tracepoint Packets::
22719 * Interrupts::
22720 * Examples::
22721 * File-I/O Remote Protocol Extension::
22722 * Library List Format::
22723 * Memory Map Format::
22724 @end menu
22725
22726 @node Overview
22727 @section Overview
22728
22729 There may be occasions when you need to know something about the
22730 protocol---for example, if there is only one serial port to your target
22731 machine, you might want your program to do something special if it
22732 recognizes a packet meant for @value{GDBN}.
22733
22734 In the examples below, @samp{->} and @samp{<-} are used to indicate
22735 transmitted and received data, respectively.
22736
22737 @cindex protocol, @value{GDBN} remote serial
22738 @cindex serial protocol, @value{GDBN} remote
22739 @cindex remote serial protocol
22740 All @value{GDBN} commands and responses (other than acknowledgments) are
22741 sent as a @var{packet}.  A @var{packet} is introduced with the character
22742 @samp{$}, the actual @var{packet-data}, and the terminating character
22743 @samp{#} followed by a two-digit @var{checksum}:
22744
22745 @smallexample
22746 @code{$}@var{packet-data}@code{#}@var{checksum}
22747 @end smallexample
22748 @noindent
22749
22750 @cindex checksum, for @value{GDBN} remote
22751 @noindent
22752 The two-digit @var{checksum} is computed as the modulo 256 sum of all
22753 characters between the leading @samp{$} and the trailing @samp{#} (an
22754 eight bit unsigned checksum).
22755
22756 Implementors should note that prior to @value{GDBN} 5.0 the protocol
22757 specification also included an optional two-digit @var{sequence-id}:
22758
22759 @smallexample
22760 @code{$}@var{sequence-id}@code{:}@var{packet-data}@code{#}@var{checksum}
22761 @end smallexample
22762
22763 @cindex sequence-id, for @value{GDBN} remote
22764 @noindent
22765 That @var{sequence-id} was appended to the acknowledgment.  @value{GDBN}
22766 has never output @var{sequence-id}s.  Stubs that handle packets added
22767 since @value{GDBN} 5.0 must not accept @var{sequence-id}.
22768
22769 @cindex acknowledgment, for @value{GDBN} remote
22770 When either the host or the target machine receives a packet, the first
22771 response expected is an acknowledgment: either @samp{+} (to indicate
22772 the package was received correctly) or @samp{-} (to request
22773 retransmission):
22774
22775 @smallexample
22776 -> @code{$}@var{packet-data}@code{#}@var{checksum}
22777 <- @code{+}
22778 @end smallexample
22779 @noindent
22780
22781 The host (@value{GDBN}) sends @var{command}s, and the target (the
22782 debugging stub incorporated in your program) sends a @var{response}.  In
22783 the case of step and continue @var{command}s, the response is only sent
22784 when the operation has completed (the target has again stopped).
22785
22786 @var{packet-data} consists of a sequence of characters with the
22787 exception of @samp{#} and @samp{$} (see @samp{X} packet for additional
22788 exceptions).
22789
22790 @cindex remote protocol, field separator
22791 Fields within the packet should be separated using @samp{,} @samp{;} or
22792 @samp{:}.  Except where otherwise noted all numbers are represented in
22793 @sc{hex} with leading zeros suppressed.
22794
22795 Implementors should note that prior to @value{GDBN} 5.0, the character
22796 @samp{:} could not appear as the third character in a packet (as it
22797 would potentially conflict with the @var{sequence-id}).
22798
22799 @cindex remote protocol, binary data
22800 @anchor{Binary Data}
22801 Binary data in most packets is encoded either as two hexadecimal
22802 digits per byte of binary data.  This allowed the traditional remote
22803 protocol to work over connections which were only seven-bit clean.
22804 Some packets designed more recently assume an eight-bit clean
22805 connection, and use a more efficient encoding to send and receive
22806 binary data.
22807
22808 The binary data representation uses @code{7d} (@sc{ascii} @samp{@}})
22809 as an escape character.  Any escaped byte is transmitted as the escape
22810 character followed by the original character XORed with @code{0x20}.
22811 For example, the byte @code{0x7d} would be transmitted as the two
22812 bytes @code{0x7d 0x5d}.  The bytes @code{0x23} (@sc{ascii} @samp{#}),
22813 @code{0x24} (@sc{ascii} @samp{$}), and @code{0x7d} (@sc{ascii}
22814 @samp{@}}) must always be escaped.  Responses sent by the stub
22815 must also escape @code{0x2a} (@sc{ascii} @samp{*}), so that it
22816 is not interpreted as the start of a run-length encoded sequence
22817 (described next).
22818
22819 Response @var{data} can be run-length encoded to save space.  A @samp{*}
22820 means that the next character is an @sc{ascii} encoding giving a repeat count
22821 which stands for that many repetitions of the character preceding the
22822 @samp{*}.  The encoding is @code{n+29}, yielding a printable character
22823 where @code{n >=3} (which is where rle starts to win).  The printable
22824 characters @samp{$}, @samp{#}, @samp{+} and @samp{-} or with a numeric
22825 value greater than 126 should not be used.
22826
22827 So:
22828 @smallexample
22829 "@code{0* }"
22830 @end smallexample
22831 @noindent
22832 means the same as "0000".
22833
22834 The error response returned for some packets includes a two character
22835 error number.  That number is not well defined.
22836
22837 @cindex empty response, for unsupported packets
22838 For any @var{command} not supported by the stub, an empty response
22839 (@samp{$#00}) should be returned.  That way it is possible to extend the
22840 protocol.  A newer @value{GDBN} can tell if a packet is supported based
22841 on that response.
22842
22843 A stub is required to support the @samp{g}, @samp{G}, @samp{m}, @samp{M},
22844 @samp{c}, and @samp{s} @var{command}s.  All other @var{command}s are
22845 optional.
22846
22847 @node Packets
22848 @section Packets
22849
22850 The following table provides a complete list of all currently defined
22851 @var{command}s and their corresponding response @var{data}.
22852 @xref{File-I/O Remote Protocol Extension}, for details about the File
22853 I/O extension of the remote protocol.
22854
22855 Each packet's description has a template showing the packet's overall
22856 syntax, followed by an explanation of the packet's meaning.  We
22857 include spaces in some of the templates for clarity; these are not
22858 part of the packet's syntax.  No @value{GDBN} packet uses spaces to
22859 separate its components.  For example, a template like @samp{foo
22860 @var{bar} @var{baz}} describes a packet beginning with the three ASCII
22861 bytes @samp{foo}, followed by a @var{bar}, followed directly by a
22862 @var{baz}.  @value{GDBN} does not transmit a space character between the
22863 @samp{foo} and the @var{bar}, or between the @var{bar} and the
22864 @var{baz}.
22865
22866 Note that all packet forms beginning with an upper- or lower-case
22867 letter, other than those described here, are reserved for future use.
22868
22869 Here are the packet descriptions.
22870
22871 @table @samp
22872
22873 @item !
22874 @cindex @samp{!} packet
22875 Enable extended mode.  In extended mode, the remote server is made
22876 persistent.  The @samp{R} packet is used to restart the program being
22877 debugged.
22878
22879 Reply:
22880 @table @samp
22881 @item OK
22882 The remote target both supports and has enabled extended mode.
22883 @end table
22884
22885 @item ?
22886 @cindex @samp{?} packet
22887 Indicate the reason the target halted.  The reply is the same as for
22888 step and continue.
22889
22890 Reply:
22891 @xref{Stop Reply Packets}, for the reply specifications.
22892
22893 @item A @var{arglen},@var{argnum},@var{arg},@dots{}
22894 @cindex @samp{A} packet
22895 Initialized @code{argv[]} array passed into program. @var{arglen}
22896 specifies the number of bytes in the hex encoded byte stream
22897 @var{arg}.  See @code{gdbserver} for more details.
22898
22899 Reply:
22900 @table @samp
22901 @item OK
22902 The arguments were set.
22903 @item E @var{NN}
22904 An error occurred.
22905 @end table
22906
22907 @item b @var{baud}
22908 @cindex @samp{b} packet
22909 (Don't use this packet; its behavior is not well-defined.)
22910 Change the serial line speed to @var{baud}.
22911
22912 JTC: @emph{When does the transport layer state change?  When it's
22913 received, or after the ACK is transmitted.  In either case, there are
22914 problems if the command or the acknowledgment packet is dropped.}
22915
22916 Stan: @emph{If people really wanted to add something like this, and get
22917 it working for the first time, they ought to modify ser-unix.c to send
22918 some kind of out-of-band message to a specially-setup stub and have the
22919 switch happen "in between" packets, so that from remote protocol's point
22920 of view, nothing actually happened.}
22921
22922 @item B @var{addr},@var{mode}
22923 @cindex @samp{B} packet
22924 Set (@var{mode} is @samp{S}) or clear (@var{mode} is @samp{C}) a
22925 breakpoint at @var{addr}.
22926
22927 Don't use this packet.  Use the @samp{Z} and @samp{z} packets instead
22928 (@pxref{insert breakpoint or watchpoint packet}).
22929
22930 @item c @r{[}@var{addr}@r{]}
22931 @cindex @samp{c} packet
22932 Continue.  @var{addr} is address to resume.  If @var{addr} is omitted,
22933 resume at current address.
22934
22935 Reply:
22936 @xref{Stop Reply Packets}, for the reply specifications.
22937
22938 @item C @var{sig}@r{[};@var{addr}@r{]}
22939 @cindex @samp{C} packet
22940 Continue with signal @var{sig} (hex signal number).  If
22941 @samp{;@var{addr}} is omitted, resume at same address.
22942
22943 Reply:
22944 @xref{Stop Reply Packets}, for the reply specifications.
22945
22946 @item d
22947 @cindex @samp{d} packet
22948 Toggle debug flag.
22949
22950 Don't use this packet; instead, define a general set packet
22951 (@pxref{General Query Packets}).
22952
22953 @item D
22954 @cindex @samp{D} packet
22955 Detach @value{GDBN} from the remote system.  Sent to the remote target
22956 before @value{GDBN} disconnects via the @code{detach} command.
22957
22958 Reply:
22959 @table @samp
22960 @item OK
22961 for success
22962 @item E @var{NN}
22963 for an error
22964 @end table
22965
22966 @item F @var{RC},@var{EE},@var{CF};@var{XX}
22967 @cindex @samp{F} packet
22968 A reply from @value{GDBN} to an @samp{F} packet sent by the target.
22969 This is part of the File-I/O protocol extension.  @xref{File-I/O
22970 Remote Protocol Extension}, for the specification.
22971
22972 @item g
22973 @anchor{read registers packet}
22974 @cindex @samp{g} packet
22975 Read general registers.
22976
22977 Reply:
22978 @table @samp
22979 @item @var{XX@dots{}}
22980 Each byte of register data is described by two hex digits.  The bytes
22981 with the register are transmitted in target byte order.  The size of
22982 each register and their position within the @samp{g} packet are
22983 determined by the @value{GDBN} internal gdbarch functions
22984 @code{DEPRECATED_REGISTER_RAW_SIZE} and @code{gdbarch_register_name}.  The
22985 specification of several standard @samp{g} packets is specified below.
22986 @item E @var{NN}
22987 for an error.
22988 @end table
22989
22990 @item G @var{XX@dots{}}
22991 @cindex @samp{G} packet
22992 Write general registers.  @xref{read registers packet}, for a
22993 description of the @var{XX@dots{}} data.
22994
22995 Reply:
22996 @table @samp
22997 @item OK
22998 for success
22999 @item E @var{NN}
23000 for an error
23001 @end table
23002
23003 @item H @var{c} @var{t}
23004 @cindex @samp{H} packet
23005 Set thread for subsequent operations (@samp{m}, @samp{M}, @samp{g},
23006 @samp{G}, et.al.).  @var{c} depends on the operation to be performed: it
23007 should be @samp{c} for step and continue operations, @samp{g} for other
23008 operations.  The thread designator @var{t} may be @samp{-1}, meaning all
23009 the threads, a thread number, or @samp{0} which means pick any thread.
23010
23011 Reply:
23012 @table @samp
23013 @item OK
23014 for success
23015 @item E @var{NN}
23016 for an error
23017 @end table
23018
23019 @c FIXME: JTC:
23020 @c   'H': How restrictive (or permissive) is the thread model.  If a
23021 @c        thread is selected and stopped, are other threads allowed
23022 @c        to continue to execute?  As I mentioned above, I think the
23023 @c        semantics of each command when a thread is selected must be
23024 @c        described.  For example:
23025 @c
23026 @c        'g':    If the stub supports threads and a specific thread is
23027 @c                selected, returns the register block from that thread;
23028 @c                otherwise returns current registers.
23029 @c
23030 @c        'G'     If the stub supports threads and a specific thread is
23031 @c                selected, sets the registers of the register block of
23032 @c                that thread; otherwise sets current registers.
23033
23034 @item i @r{[}@var{addr}@r{[},@var{nnn}@r{]]}
23035 @anchor{cycle step packet}
23036 @cindex @samp{i} packet
23037 Step the remote target by a single clock cycle.  If @samp{,@var{nnn}} is
23038 present, cycle step @var{nnn} cycles.  If @var{addr} is present, cycle
23039 step starting at that address.
23040
23041 @item I
23042 @cindex @samp{I} packet
23043 Signal, then cycle step.  @xref{step with signal packet}.  @xref{cycle
23044 step packet}.
23045
23046 @item k
23047 @cindex @samp{k} packet
23048 Kill request.
23049
23050 FIXME: @emph{There is no description of how to operate when a specific
23051 thread context has been selected (i.e.@: does 'k' kill only that
23052 thread?)}.
23053
23054 @item m @var{addr},@var{length}
23055 @cindex @samp{m} packet
23056 Read @var{length} bytes of memory starting at address @var{addr}.
23057 Note that @var{addr} may not be aligned to any particular boundary.
23058
23059 The stub need not use any particular size or alignment when gathering
23060 data from memory for the response; even if @var{addr} is word-aligned
23061 and @var{length} is a multiple of the word size, the stub is free to
23062 use byte accesses, or not.  For this reason, this packet may not be
23063 suitable for accessing memory-mapped I/O devices.
23064 @cindex alignment of remote memory accesses
23065 @cindex size of remote memory accesses
23066 @cindex memory, alignment and size of remote accesses
23067
23068 Reply:
23069 @table @samp
23070 @item @var{XX@dots{}}
23071 Memory contents; each byte is transmitted as a two-digit hexadecimal
23072 number.  The reply may contain fewer bytes than requested if the
23073 server was able to read only part of the region of memory.
23074 @item E @var{NN}
23075 @var{NN} is errno
23076 @end table
23077
23078 @item M @var{addr},@var{length}:@var{XX@dots{}}
23079 @cindex @samp{M} packet
23080 Write @var{length} bytes of memory starting at address @var{addr}.
23081 @var{XX@dots{}} is the data; each byte is transmitted as a two-digit
23082 hexadecimal number.
23083
23084 Reply:
23085 @table @samp
23086 @item OK
23087 for success
23088 @item E @var{NN}
23089 for an error (this includes the case where only part of the data was
23090 written).
23091 @end table
23092
23093 @item p @var{n}
23094 @cindex @samp{p} packet
23095 Read the value of register @var{n}; @var{n} is in hex.
23096 @xref{read registers packet}, for a description of how the returned
23097 register value is encoded.
23098
23099 Reply:
23100 @table @samp
23101 @item @var{XX@dots{}}
23102 the register's value
23103 @item E @var{NN}
23104 for an error
23105 @item
23106 Indicating an unrecognized @var{query}.
23107 @end table
23108
23109 @item P @var{n@dots{}}=@var{r@dots{}}
23110 @anchor{write register packet}
23111 @cindex @samp{P} packet
23112 Write register @var{n@dots{}} with value @var{r@dots{}}.  The register
23113 number @var{n} is in hexadecimal, and @var{r@dots{}} contains two hex
23114 digits for each byte in the register (target byte order).
23115
23116 Reply:
23117 @table @samp
23118 @item OK
23119 for success
23120 @item E @var{NN}
23121 for an error
23122 @end table
23123
23124 @item q @var{name} @var{params}@dots{}
23125 @itemx Q @var{name} @var{params}@dots{}
23126 @cindex @samp{q} packet
23127 @cindex @samp{Q} packet
23128 General query (@samp{q}) and set (@samp{Q}).  These packets are
23129 described fully in @ref{General Query Packets}.
23130
23131 @item r
23132 @cindex @samp{r} packet
23133 Reset the entire system.
23134
23135 Don't use this packet; use the @samp{R} packet instead.
23136
23137 @item R @var{XX}
23138 @cindex @samp{R} packet
23139 Restart the program being debugged.  @var{XX}, while needed, is ignored.
23140 This packet is only available in extended mode.
23141
23142 The @samp{R} packet has no reply.
23143
23144 @item s @r{[}@var{addr}@r{]}
23145 @cindex @samp{s} packet
23146 Single step.  @var{addr} is the address at which to resume.  If
23147 @var{addr} is omitted, resume at same address.
23148
23149 Reply:
23150 @xref{Stop Reply Packets}, for the reply specifications.
23151
23152 @item S @var{sig}@r{[};@var{addr}@r{]}
23153 @anchor{step with signal packet}
23154 @cindex @samp{S} packet
23155 Step with signal.  This is analogous to the @samp{C} packet, but
23156 requests a single-step, rather than a normal resumption of execution.
23157
23158 Reply:
23159 @xref{Stop Reply Packets}, for the reply specifications.
23160
23161 @item t @var{addr}:@var{PP},@var{MM}
23162 @cindex @samp{t} packet
23163 Search backwards starting at address @var{addr} for a match with pattern
23164 @var{PP} and mask @var{MM}.  @var{PP} and @var{MM} are 4 bytes.
23165 @var{addr} must be at least 3 digits.
23166
23167 @item T @var{XX}
23168 @cindex @samp{T} packet
23169 Find out if the thread XX is alive.
23170
23171 Reply:
23172 @table @samp
23173 @item OK
23174 thread is still alive
23175 @item E @var{NN}
23176 thread is dead
23177 @end table
23178
23179 @item v
23180 Packets starting with @samp{v} are identified by a multi-letter name,
23181 up to the first @samp{;} or @samp{?} (or the end of the packet).
23182
23183 @item vCont@r{[};@var{action}@r{[}:@var{tid}@r{]]}@dots{}
23184 @cindex @samp{vCont} packet
23185 Resume the inferior, specifying different actions for each thread.
23186 If an action is specified with no @var{tid}, then it is applied to any
23187 threads that don't have a specific action specified; if no default action is
23188 specified then other threads should remain stopped.  Specifying multiple
23189 default actions is an error; specifying no actions is also an error.
23190 Thread IDs are specified in hexadecimal.  Currently supported actions are:
23191
23192 @table @samp
23193 @item c
23194 Continue.
23195 @item C @var{sig}
23196 Continue with signal @var{sig}.  @var{sig} should be two hex digits.
23197 @item s
23198 Step.
23199 @item S @var{sig}
23200 Step with signal @var{sig}.  @var{sig} should be two hex digits.
23201 @end table
23202
23203 The optional @var{addr} argument normally associated with these packets is
23204 not supported in @samp{vCont}.
23205
23206 Reply:
23207 @xref{Stop Reply Packets}, for the reply specifications.
23208
23209 @item vCont?
23210 @cindex @samp{vCont?} packet
23211 Request a list of actions supported by the @samp{vCont} packet.
23212
23213 Reply:
23214 @table @samp
23215 @item vCont@r{[};@var{action}@dots{}@r{]}
23216 The @samp{vCont} packet is supported.  Each @var{action} is a supported
23217 command in the @samp{vCont} packet.
23218 @item
23219 The @samp{vCont} packet is not supported.
23220 @end table
23221
23222 @item vFlashErase:@var{addr},@var{length}
23223 @cindex @samp{vFlashErase} packet
23224 Direct the stub to erase @var{length} bytes of flash starting at
23225 @var{addr}.  The region may enclose any number of flash blocks, but
23226 its start and end must fall on block boundaries, as indicated by the
23227 flash block size appearing in the memory map (@pxref{Memory Map
23228 Format}).  @value{GDBN} groups flash memory programming operations
23229 together, and sends a @samp{vFlashDone} request after each group; the
23230 stub is allowed to delay erase operation until the @samp{vFlashDone}
23231 packet is received.
23232
23233 Reply:
23234 @table @samp
23235 @item OK
23236 for success
23237 @item E @var{NN}
23238 for an error
23239 @end table
23240
23241 @item vFlashWrite:@var{addr}:@var{XX@dots{}}
23242 @cindex @samp{vFlashWrite} packet
23243 Direct the stub to write data to flash address @var{addr}.  The data
23244 is passed in binary form using the same encoding as for the @samp{X}
23245 packet (@pxref{Binary Data}).  The memory ranges specified by
23246 @samp{vFlashWrite} packets preceding a @samp{vFlashDone} packet must
23247 not overlap, and must appear in order of increasing addresses
23248 (although @samp{vFlashErase} packets for higher addresses may already
23249 have been received; the ordering is guaranteed only between
23250 @samp{vFlashWrite} packets).  If a packet writes to an address that was
23251 neither erased by a preceding @samp{vFlashErase} packet nor by some other
23252 target-specific method, the results are unpredictable.
23253
23254
23255 Reply:
23256 @table @samp
23257 @item OK
23258 for success
23259 @item E.memtype
23260 for vFlashWrite addressing non-flash memory
23261 @item E @var{NN}
23262 for an error
23263 @end table
23264
23265 @item vFlashDone
23266 @cindex @samp{vFlashDone} packet
23267 Indicate to the stub that flash programming operation is finished.
23268 The stub is permitted to delay or batch the effects of a group of
23269 @samp{vFlashErase} and @samp{vFlashWrite} packets until a
23270 @samp{vFlashDone} packet is received.  The contents of the affected
23271 regions of flash memory are unpredictable until the @samp{vFlashDone}
23272 request is completed.
23273
23274 @item X @var{addr},@var{length}:@var{XX@dots{}}
23275 @anchor{X packet}
23276 @cindex @samp{X} packet
23277 Write data to memory, where the data is transmitted in binary.
23278 @var{addr} is address, @var{length} is number of bytes,
23279 @samp{@var{XX}@dots{}} is binary data (@pxref{Binary Data}).
23280
23281 Reply:
23282 @table @samp
23283 @item OK
23284 for success
23285 @item E @var{NN}
23286 for an error
23287 @end table
23288
23289 @item z @var{type},@var{addr},@var{length}
23290 @itemx Z @var{type},@var{addr},@var{length}
23291 @anchor{insert breakpoint or watchpoint packet}
23292 @cindex @samp{z} packet
23293 @cindex @samp{Z} packets
23294 Insert (@samp{Z}) or remove (@samp{z}) a @var{type} breakpoint or
23295 watchpoint starting at address @var{address} and covering the next
23296 @var{length} bytes.
23297
23298 Each breakpoint and watchpoint packet @var{type} is documented
23299 separately.
23300
23301 @emph{Implementation notes: A remote target shall return an empty string
23302 for an unrecognized breakpoint or watchpoint packet @var{type}.  A
23303 remote target shall support either both or neither of a given
23304 @samp{Z@var{type}@dots{}} and @samp{z@var{type}@dots{}} packet pair.  To
23305 avoid potential problems with duplicate packets, the operations should
23306 be implemented in an idempotent way.}
23307
23308 @item z0,@var{addr},@var{length}
23309 @itemx Z0,@var{addr},@var{length}
23310 @cindex @samp{z0} packet
23311 @cindex @samp{Z0} packet
23312 Insert (@samp{Z0}) or remove (@samp{z0}) a memory breakpoint at address
23313 @var{addr} of size @var{length}.
23314
23315 A memory breakpoint is implemented by replacing the instruction at
23316 @var{addr} with a software breakpoint or trap instruction.  The
23317 @var{length} is used by targets that indicates the size of the
23318 breakpoint (in bytes) that should be inserted (e.g., the @sc{arm} and
23319 @sc{mips} can insert either a 2 or 4 byte breakpoint).
23320
23321 @emph{Implementation note: It is possible for a target to copy or move
23322 code that contains memory breakpoints (e.g., when implementing
23323 overlays).  The behavior of this packet, in the presence of such a
23324 target, is not defined.}
23325
23326 Reply:
23327 @table @samp
23328 @item OK
23329 success
23330 @item
23331 not supported
23332 @item E @var{NN}
23333 for an error
23334 @end table
23335
23336 @item z1,@var{addr},@var{length}
23337 @itemx Z1,@var{addr},@var{length}
23338 @cindex @samp{z1} packet
23339 @cindex @samp{Z1} packet
23340 Insert (@samp{Z1}) or remove (@samp{z1}) a hardware breakpoint at
23341 address @var{addr} of size @var{length}.
23342
23343 A hardware breakpoint is implemented using a mechanism that is not
23344 dependant on being able to modify the target's memory.
23345
23346 @emph{Implementation note: A hardware breakpoint is not affected by code
23347 movement.}
23348
23349 Reply:
23350 @table @samp
23351 @item OK
23352 success
23353 @item
23354 not supported
23355 @item E @var{NN}
23356 for an error
23357 @end table
23358
23359 @item z2,@var{addr},@var{length}
23360 @itemx Z2,@var{addr},@var{length}
23361 @cindex @samp{z2} packet
23362 @cindex @samp{Z2} packet
23363 Insert (@samp{Z2}) or remove (@samp{z2}) a write watchpoint.
23364
23365 Reply:
23366 @table @samp
23367 @item OK
23368 success
23369 @item
23370 not supported
23371 @item E @var{NN}
23372 for an error
23373 @end table
23374
23375 @item z3,@var{addr},@var{length}
23376 @itemx Z3,@var{addr},@var{length}
23377 @cindex @samp{z3} packet
23378 @cindex @samp{Z3} packet
23379 Insert (@samp{Z3}) or remove (@samp{z3}) a read watchpoint.
23380
23381 Reply:
23382 @table @samp
23383 @item OK
23384 success
23385 @item
23386 not supported
23387 @item E @var{NN}
23388 for an error
23389 @end table
23390
23391 @item z4,@var{addr},@var{length}
23392 @itemx Z4,@var{addr},@var{length}
23393 @cindex @samp{z4} packet
23394 @cindex @samp{Z4} packet
23395 Insert (@samp{Z4}) or remove (@samp{z4}) an access watchpoint.
23396
23397 Reply:
23398 @table @samp
23399 @item OK
23400 success
23401 @item
23402 not supported
23403 @item E @var{NN}
23404 for an error
23405 @end table
23406
23407 @end table
23408
23409 @node Stop Reply Packets
23410 @section Stop Reply Packets
23411 @cindex stop reply packets
23412
23413 The @samp{C}, @samp{c}, @samp{S}, @samp{s} and @samp{?} packets can
23414 receive any of the below as a reply.  In the case of the @samp{C},
23415 @samp{c}, @samp{S} and @samp{s} packets, that reply is only returned
23416 when the target halts.  In the below the exact meaning of @dfn{signal
23417 number} is defined by the header @file{include/gdb/signals.h} in the
23418 @value{GDBN} source code.
23419
23420 As in the description of request packets, we include spaces in the
23421 reply templates for clarity; these are not part of the reply packet's
23422 syntax.  No @value{GDBN} stop reply packet uses spaces to separate its
23423 components.
23424
23425 @table @samp
23426
23427 @item S @var{AA}
23428 The program received signal number @var{AA} (a two-digit hexadecimal
23429 number).  This is equivalent to a @samp{T} response with no
23430 @var{n}:@var{r} pairs.
23431
23432 @item T @var{AA} @var{n1}:@var{r1};@var{n2}:@var{r2};@dots{}
23433 @cindex @samp{T} packet reply
23434 The program received signal number @var{AA} (a two-digit hexadecimal
23435 number).  This is equivalent to an @samp{S} response, except that the
23436 @samp{@var{n}:@var{r}} pairs can carry values of important registers
23437 and other information directly in the stop reply packet, reducing
23438 round-trip latency.  Single-step and breakpoint traps are reported
23439 this way.  Each @samp{@var{n}:@var{r}} pair is interpreted as follows:
23440
23441 @itemize @bullet
23442 @item
23443 If @var{n} is a hexadecimal number, it is a register number, and the
23444 corresponding @var{r} gives that register's value.  @var{r} is a
23445 series of bytes in target byte order, with each byte given by a
23446 two-digit hex number.
23447
23448 @item
23449 If @var{n} is @samp{thread}, then @var{r} is the thread process ID, in
23450 hex.
23451
23452 @item
23453 If @var{n} is a recognized @dfn{stop reason}, it describes a more
23454 specific event that stopped the target.  The currently defined stop
23455 reasons are listed below.  @var{aa} should be @samp{05}, the trap
23456 signal.  At most one stop reason should be present.
23457
23458 @item
23459 Otherwise, @value{GDBN} should ignore this @samp{@var{n}:@var{r}} pair
23460 and go on to the next; this allows us to extend the protocol in the
23461 future.
23462 @end itemize
23463
23464 The currently defined stop reasons are:
23465
23466 @table @samp
23467 @item watch
23468 @itemx rwatch
23469 @itemx awatch
23470 The packet indicates a watchpoint hit, and @var{r} is the data address, in
23471 hex.
23472
23473 @cindex shared library events, remote reply
23474 @item library
23475 The packet indicates that the loaded libraries have changed.
23476 @value{GDBN} should use @samp{qXfer:libraries:read} to fetch a new
23477 list of loaded libraries.  @var{r} is ignored.
23478 @end table
23479
23480 @item W @var{AA}
23481 The process exited, and @var{AA} is the exit status.  This is only
23482 applicable to certain targets.
23483
23484 @item X @var{AA}
23485 The process terminated with signal @var{AA}.
23486
23487 @item O @var{XX}@dots{}
23488 @samp{@var{XX}@dots{}} is hex encoding of @sc{ascii} data, to be
23489 written as the program's console output.  This can happen at any time
23490 while the program is running and the debugger should continue to wait
23491 for @samp{W}, @samp{T}, etc.
23492
23493 @item F @var{call-id},@var{parameter}@dots{}
23494 @var{call-id} is the identifier which says which host system call should
23495 be called.  This is just the name of the function.  Translation into the
23496 correct system call is only applicable as it's defined in @value{GDBN}.
23497 @xref{File-I/O Remote Protocol Extension}, for a list of implemented
23498 system calls.
23499
23500 @samp{@var{parameter}@dots{}} is a list of parameters as defined for
23501 this very system call.
23502
23503 The target replies with this packet when it expects @value{GDBN} to
23504 call a host system call on behalf of the target.  @value{GDBN} replies
23505 with an appropriate @samp{F} packet and keeps up waiting for the next
23506 reply packet from the target.  The latest @samp{C}, @samp{c}, @samp{S}
23507 or @samp{s} action is expected to be continued.  @xref{File-I/O Remote
23508 Protocol Extension}, for more details.
23509
23510 @end table
23511
23512 @node General Query Packets
23513 @section General Query Packets
23514 @cindex remote query requests
23515
23516 Packets starting with @samp{q} are @dfn{general query packets};
23517 packets starting with @samp{Q} are @dfn{general set packets}.  General
23518 query and set packets are a semi-unified form for retrieving and
23519 sending information to and from the stub.
23520
23521 The initial letter of a query or set packet is followed by a name
23522 indicating what sort of thing the packet applies to.  For example,
23523 @value{GDBN} may use a @samp{qSymbol} packet to exchange symbol
23524 definitions with the stub.  These packet names follow some
23525 conventions:
23526
23527 @itemize @bullet
23528 @item
23529 The name must not contain commas, colons or semicolons.
23530 @item
23531 Most @value{GDBN} query and set packets have a leading upper case
23532 letter.
23533 @item
23534 The names of custom vendor packets should use a company prefix, in
23535 lower case, followed by a period.  For example, packets designed at
23536 the Acme Corporation might begin with @samp{qacme.foo} (for querying
23537 foos) or @samp{Qacme.bar} (for setting bars).
23538 @end itemize
23539
23540 The name of a query or set packet should be separated from any
23541 parameters by a @samp{:}; the parameters themselves should be
23542 separated by @samp{,} or @samp{;}.  Stubs must be careful to match the
23543 full packet name, and check for a separator or the end of the packet,
23544 in case two packet names share a common prefix.  New packets should not begin
23545 with @samp{qC}, @samp{qP}, or @samp{qL}@footnote{The @samp{qP} and @samp{qL}
23546 packets predate these conventions, and have arguments without any terminator
23547 for the packet name; we suspect they are in widespread use in places that
23548 are difficult to upgrade.  The @samp{qC} packet has no arguments, but some
23549 existing stubs (e.g.@: RedBoot) are known to not check for the end of the
23550 packet.}.
23551
23552 Like the descriptions of the other packets, each description here
23553 has a template showing the packet's overall syntax, followed by an
23554 explanation of the packet's meaning.  We include spaces in some of the
23555 templates for clarity; these are not part of the packet's syntax.  No
23556 @value{GDBN} packet uses spaces to separate its components.
23557
23558 Here are the currently defined query and set packets:
23559
23560 @table @samp
23561
23562 @item qC
23563 @cindex current thread, remote request
23564 @cindex @samp{qC} packet
23565 Return the current thread id.
23566
23567 Reply:
23568 @table @samp
23569 @item QC @var{pid}
23570 Where @var{pid} is an unsigned hexadecimal process id.
23571 @item @r{(anything else)}
23572 Any other reply implies the old pid.
23573 @end table
23574
23575 @item qCRC:@var{addr},@var{length}
23576 @cindex CRC of memory block, remote request
23577 @cindex @samp{qCRC} packet
23578 Compute the CRC checksum of a block of memory.
23579 Reply:
23580 @table @samp
23581 @item E @var{NN}
23582 An error (such as memory fault)
23583 @item C @var{crc32}
23584 The specified memory region's checksum is @var{crc32}.
23585 @end table
23586
23587 @item qfThreadInfo
23588 @itemx qsThreadInfo
23589 @cindex list active threads, remote request
23590 @cindex @samp{qfThreadInfo} packet
23591 @cindex @samp{qsThreadInfo} packet
23592 Obtain a list of all active thread ids from the target (OS).  Since there
23593 may be too many active threads to fit into one reply packet, this query
23594 works iteratively: it may require more than one query/reply sequence to
23595 obtain the entire list of threads.  The first query of the sequence will
23596 be the @samp{qfThreadInfo} query; subsequent queries in the
23597 sequence will be the @samp{qsThreadInfo} query.
23598
23599 NOTE: This packet replaces the @samp{qL} query (see below).
23600
23601 Reply:
23602 @table @samp
23603 @item m @var{id}
23604 A single thread id
23605 @item m @var{id},@var{id}@dots{}
23606 a comma-separated list of thread ids
23607 @item l
23608 (lower case letter @samp{L}) denotes end of list.
23609 @end table
23610
23611 In response to each query, the target will reply with a list of one or
23612 more thread ids, in big-endian unsigned hex, separated by commas.
23613 @value{GDBN} will respond to each reply with a request for more thread
23614 ids (using the @samp{qs} form of the query), until the target responds
23615 with @samp{l} (lower-case el, for @dfn{last}).
23616
23617 @item qGetTLSAddr:@var{thread-id},@var{offset},@var{lm}
23618 @cindex get thread-local storage address, remote request
23619 @cindex @samp{qGetTLSAddr} packet
23620 Fetch the address associated with thread local storage specified
23621 by @var{thread-id}, @var{offset}, and @var{lm}.
23622
23623 @var{thread-id} is the (big endian, hex encoded) thread id associated with the
23624 thread for which to fetch the TLS address.
23625
23626 @var{offset} is the (big endian, hex encoded) offset associated with the
23627 thread local variable.  (This offset is obtained from the debug
23628 information associated with the variable.)
23629
23630 @var{lm} is the (big endian, hex encoded) OS/ABI-specific encoding of the
23631 the load module associated with the thread local storage.  For example,
23632 a @sc{gnu}/Linux system will pass the link map address of the shared
23633 object associated with the thread local storage under consideration. 
23634 Other operating environments may choose to represent the load module
23635 differently, so the precise meaning of this parameter will vary.
23636
23637 Reply:
23638 @table @samp
23639 @item @var{XX}@dots{}
23640 Hex encoded (big endian) bytes representing the address of the thread
23641 local storage requested.
23642
23643 @item E @var{nn}
23644 An error occurred.  @var{nn} are hex digits.
23645
23646 @item
23647 An empty reply indicates that @samp{qGetTLSAddr} is not supported by the stub.
23648 @end table
23649
23650 @item qL @var{startflag} @var{threadcount} @var{nextthread}
23651 Obtain thread information from RTOS.  Where: @var{startflag} (one hex
23652 digit) is one to indicate the first query and zero to indicate a
23653 subsequent query; @var{threadcount} (two hex digits) is the maximum
23654 number of threads the response packet can contain; and @var{nextthread}
23655 (eight hex digits), for subsequent queries (@var{startflag} is zero), is
23656 returned in the response as @var{argthread}.
23657
23658 Don't use this packet; use the @samp{qfThreadInfo} query instead (see above).
23659
23660 Reply:
23661 @table @samp
23662 @item qM @var{count} @var{done} @var{argthread} @var{thread}@dots{}
23663 Where: @var{count} (two hex digits) is the number of threads being
23664 returned; @var{done} (one hex digit) is zero to indicate more threads
23665 and one indicates no further threads; @var{argthreadid} (eight hex
23666 digits) is @var{nextthread} from the request packet; @var{thread}@dots{}
23667 is a sequence of thread IDs from the target.  @var{threadid} (eight hex
23668 digits).  See @code{remote.c:parse_threadlist_response()}.
23669 @end table
23670
23671 @item qOffsets
23672 @cindex section offsets, remote request
23673 @cindex @samp{qOffsets} packet
23674 Get section offsets that the target used when relocating the downloaded
23675 image.
23676
23677 Reply:
23678 @table @samp
23679 @item Text=@var{xxx};Data=@var{yyy}@r{[};Bss=@var{zzz}@r{]}
23680 Relocate the @code{Text} section by @var{xxx} from its original address.
23681 Relocate the @code{Data} section by @var{yyy} from its original address.
23682 If the object file format provides segment information (e.g.@: @sc{elf}
23683 @samp{PT_LOAD} program headers), @value{GDBN} will relocate entire
23684 segments by the supplied offsets.
23685
23686 @emph{Note: while a @code{Bss} offset may be included in the response,
23687 @value{GDBN} ignores this and instead applies the @code{Data} offset
23688 to the @code{Bss} section.}
23689
23690 @item TextSeg=@var{xxx}@r{[};DataSeg=@var{yyy}@r{]}
23691 Relocate the first segment of the object file, which conventionally
23692 contains program code, to a starting address of @var{xxx}.  If
23693 @samp{DataSeg} is specified, relocate the second segment, which
23694 conventionally contains modifiable data, to a starting address of
23695 @var{yyy}.  @value{GDBN} will report an error if the object file
23696 does not contain segment information, or does not contain at least
23697 as many segments as mentioned in the reply.  Extra segments are
23698 kept at fixed offsets relative to the last relocated segment.
23699 @end table
23700
23701 @item qP @var{mode} @var{threadid}
23702 @cindex thread information, remote request
23703 @cindex @samp{qP} packet
23704 Returns information on @var{threadid}.  Where: @var{mode} is a hex
23705 encoded 32 bit mode; @var{threadid} is a hex encoded 64 bit thread ID.
23706
23707 Don't use this packet; use the @samp{qThreadExtraInfo} query instead
23708 (see below).
23709
23710 Reply: see @code{remote.c:remote_unpack_thread_info_response()}.
23711
23712 @item QPassSignals: @var{signal} @r{[};@var{signal}@r{]}@dots{}
23713 @cindex pass signals to inferior, remote request
23714 @cindex @samp{QPassSignals} packet
23715 @anchor{QPassSignals}
23716 Each listed @var{signal} should be passed directly to the inferior process. 
23717 Signals are numbered identically to continue packets and stop replies
23718 (@pxref{Stop Reply Packets}).  Each @var{signal} list item should be
23719 strictly greater than the previous item.  These signals do not need to stop
23720 the inferior, or be reported to @value{GDBN}.  All other signals should be
23721 reported to @value{GDBN}.  Multiple @samp{QPassSignals} packets do not
23722 combine; any earlier @samp{QPassSignals} list is completely replaced by the
23723 new list.  This packet improves performance when using @samp{handle
23724 @var{signal} nostop noprint pass}.
23725
23726 Reply:
23727 @table @samp
23728 @item OK
23729 The request succeeded.
23730
23731 @item E @var{nn}
23732 An error occurred.  @var{nn} are hex digits.
23733
23734 @item
23735 An empty reply indicates that @samp{QPassSignals} is not supported by
23736 the stub.
23737 @end table
23738
23739 Use of this packet is controlled by the @code{set remote pass-signals}
23740 command (@pxref{Remote Configuration, set remote pass-signals}).
23741 This packet is not probed by default; the remote stub must request it,
23742 by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
23743
23744 @item qRcmd,@var{command}
23745 @cindex execute remote command, remote request
23746 @cindex @samp{qRcmd} packet
23747 @var{command} (hex encoded) is passed to the local interpreter for
23748 execution.  Invalid commands should be reported using the output
23749 string.  Before the final result packet, the target may also respond
23750 with a number of intermediate @samp{O@var{output}} console output
23751 packets.  @emph{Implementors should note that providing access to a
23752 stubs's interpreter may have security implications}.
23753
23754 Reply:
23755 @table @samp
23756 @item OK
23757 A command response with no output.
23758 @item @var{OUTPUT}
23759 A command response with the hex encoded output string @var{OUTPUT}.
23760 @item E @var{NN}
23761 Indicate a badly formed request.
23762 @item
23763 An empty reply indicates that @samp{qRcmd} is not recognized.
23764 @end table
23765
23766 (Note that the @code{qRcmd} packet's name is separated from the
23767 command by a @samp{,}, not a @samp{:}, contrary to the naming
23768 conventions above.  Please don't use this packet as a model for new
23769 packets.)
23770
23771 @item qSupported @r{[}:@var{gdbfeature} @r{[};@var{gdbfeature}@r{]}@dots{} @r{]}
23772 @cindex supported packets, remote query
23773 @cindex features of the remote protocol
23774 @cindex @samp{qSupported} packet
23775 @anchor{qSupported}
23776 Tell the remote stub about features supported by @value{GDBN}, and
23777 query the stub for features it supports.  This packet allows
23778 @value{GDBN} and the remote stub to take advantage of each others'
23779 features.  @samp{qSupported} also consolidates multiple feature probes
23780 at startup, to improve @value{GDBN} performance---a single larger
23781 packet performs better than multiple smaller probe packets on
23782 high-latency links.  Some features may enable behavior which must not
23783 be on by default, e.g.@: because it would confuse older clients or
23784 stubs.  Other features may describe packets which could be
23785 automatically probed for, but are not.  These features must be
23786 reported before @value{GDBN} will use them.  This ``default
23787 unsupported'' behavior is not appropriate for all packets, but it
23788 helps to keep the initial connection time under control with new
23789 versions of @value{GDBN} which support increasing numbers of packets.
23790
23791 Reply:
23792 @table @samp
23793 @item @var{stubfeature} @r{[};@var{stubfeature}@r{]}@dots{}
23794 The stub supports or does not support each returned @var{stubfeature},
23795 depending on the form of each @var{stubfeature} (see below for the
23796 possible forms).
23797 @item
23798 An empty reply indicates that @samp{qSupported} is not recognized,
23799 or that no features needed to be reported to @value{GDBN}.
23800 @end table
23801
23802 The allowed forms for each feature (either a @var{gdbfeature} in the
23803 @samp{qSupported} packet, or a @var{stubfeature} in the response)
23804 are:
23805
23806 @table @samp
23807 @item @var{name}=@var{value}
23808 The remote protocol feature @var{name} is supported, and associated
23809 with the specified @var{value}.  The format of @var{value} depends
23810 on the feature, but it must not include a semicolon.
23811 @item @var{name}+
23812 The remote protocol feature @var{name} is supported, and does not
23813 need an associated value.
23814 @item @var{name}-
23815 The remote protocol feature @var{name} is not supported.
23816 @item @var{name}?
23817 The remote protocol feature @var{name} may be supported, and
23818 @value{GDBN} should auto-detect support in some other way when it is
23819 needed.  This form will not be used for @var{gdbfeature} notifications,
23820 but may be used for @var{stubfeature} responses.
23821 @end table
23822
23823 Whenever the stub receives a @samp{qSupported} request, the
23824 supplied set of @value{GDBN} features should override any previous
23825 request.  This allows @value{GDBN} to put the stub in a known
23826 state, even if the stub had previously been communicating with
23827 a different version of @value{GDBN}.
23828
23829 No values of @var{gdbfeature} (for the packet sent by @value{GDBN})
23830 are defined yet.  Stubs should ignore any unknown values for
23831 @var{gdbfeature}.  Any @value{GDBN} which sends a @samp{qSupported}
23832 packet supports receiving packets of unlimited length (earlier
23833 versions of @value{GDBN} may reject overly long responses).  Values
23834 for @var{gdbfeature} may be defined in the future to let the stub take
23835 advantage of new features in @value{GDBN}, e.g.@: incompatible
23836 improvements in the remote protocol---support for unlimited length
23837 responses would be a @var{gdbfeature} example, if it were not implied by
23838 the @samp{qSupported} query.  The stub's reply should be independent
23839 of the @var{gdbfeature} entries sent by @value{GDBN}; first @value{GDBN}
23840 describes all the features it supports, and then the stub replies with
23841 all the features it supports.
23842
23843 Similarly, @value{GDBN} will silently ignore unrecognized stub feature
23844 responses, as long as each response uses one of the standard forms.
23845
23846 Some features are flags.  A stub which supports a flag feature
23847 should respond with a @samp{+} form response.  Other features
23848 require values, and the stub should respond with an @samp{=}
23849 form response.
23850
23851 Each feature has a default value, which @value{GDBN} will use if
23852 @samp{qSupported} is not available or if the feature is not mentioned
23853 in the @samp{qSupported} response.  The default values are fixed; a
23854 stub is free to omit any feature responses that match the defaults.
23855
23856 Not all features can be probed, but for those which can, the probing
23857 mechanism is useful: in some cases, a stub's internal
23858 architecture may not allow the protocol layer to know some information
23859 about the underlying target in advance.  This is especially common in
23860 stubs which may be configured for multiple targets.
23861
23862 These are the currently defined stub features and their properties:
23863
23864 @multitable @columnfractions 0.35 0.2 0.12 0.2
23865 @c NOTE: The first row should be @headitem, but we do not yet require
23866 @c a new enough version of Texinfo (4.7) to use @headitem.
23867 @item Feature Name
23868 @tab Value Required
23869 @tab Default
23870 @tab Probe Allowed
23871
23872 @item @samp{PacketSize}
23873 @tab Yes
23874 @tab @samp{-}
23875 @tab No
23876
23877 @item @samp{qXfer:auxv:read}
23878 @tab No
23879 @tab @samp{-}
23880 @tab Yes
23881
23882 @item @samp{qXfer:features:read}
23883 @tab No
23884 @tab @samp{-}
23885 @tab Yes
23886
23887 @item @samp{qXfer:libraries:read}
23888 @tab No
23889 @tab @samp{-}
23890 @tab Yes
23891
23892 @item @samp{qXfer:memory-map:read}
23893 @tab No
23894 @tab @samp{-}
23895 @tab Yes
23896
23897 @item @samp{qXfer:spu:read}
23898 @tab No
23899 @tab @samp{-}
23900 @tab Yes
23901
23902 @item @samp{qXfer:spu:write}
23903 @tab No
23904 @tab @samp{-}
23905 @tab Yes
23906
23907 @item @samp{QPassSignals}
23908 @tab No
23909 @tab @samp{-}
23910 @tab Yes
23911
23912 @end multitable
23913
23914 These are the currently defined stub features, in more detail:
23915
23916 @table @samp
23917 @cindex packet size, remote protocol
23918 @item PacketSize=@var{bytes}
23919 The remote stub can accept packets up to at least @var{bytes} in
23920 length.  @value{GDBN} will send packets up to this size for bulk
23921 transfers, and will never send larger packets.  This is a limit on the
23922 data characters in the packet, including the frame and checksum.
23923 There is no trailing NUL byte in a remote protocol packet; if the stub
23924 stores packets in a NUL-terminated format, it should allow an extra
23925 byte in its buffer for the NUL.  If this stub feature is not supported,
23926 @value{GDBN} guesses based on the size of the @samp{g} packet response.
23927
23928 @item qXfer:auxv:read
23929 The remote stub understands the @samp{qXfer:auxv:read} packet
23930 (@pxref{qXfer auxiliary vector read}).
23931
23932 @item qXfer:features:read
23933 The remote stub understands the @samp{qXfer:features:read} packet
23934 (@pxref{qXfer target description read}).
23935
23936 @item qXfer:libraries:read
23937 The remote stub understands the @samp{qXfer:libraries:read} packet
23938 (@pxref{qXfer library list read}).
23939
23940 @item qXfer:memory-map:read
23941 The remote stub understands the @samp{qXfer:memory-map:read} packet
23942 (@pxref{qXfer memory map read}).
23943
23944 @item qXfer:spu:read
23945 The remote stub understands the @samp{qXfer:spu:read} packet
23946 (@pxref{qXfer spu read}).
23947
23948 @item qXfer:spu:write
23949 The remote stub understands the @samp{qXfer:spu:write} packet
23950 (@pxref{qXfer spu write}).
23951
23952 @item QPassSignals
23953 The remote stub understands the @samp{QPassSignals} packet
23954 (@pxref{QPassSignals}).
23955
23956 @end table
23957
23958 @item qSymbol::
23959 @cindex symbol lookup, remote request
23960 @cindex @samp{qSymbol} packet
23961 Notify the target that @value{GDBN} is prepared to serve symbol lookup
23962 requests.  Accept requests from the target for the values of symbols.
23963
23964 Reply:
23965 @table @samp
23966 @item OK
23967 The target does not need to look up any (more) symbols.
23968 @item qSymbol:@var{sym_name}
23969 The target requests the value of symbol @var{sym_name} (hex encoded).
23970 @value{GDBN} may provide the value by using the
23971 @samp{qSymbol:@var{sym_value}:@var{sym_name}} message, described
23972 below.
23973 @end table
23974
23975 @item qSymbol:@var{sym_value}:@var{sym_name}
23976 Set the value of @var{sym_name} to @var{sym_value}.
23977
23978 @var{sym_name} (hex encoded) is the name of a symbol whose value the
23979 target has previously requested.
23980
23981 @var{sym_value} (hex) is the value for symbol @var{sym_name}.  If
23982 @value{GDBN} cannot supply a value for @var{sym_name}, then this field
23983 will be empty.
23984
23985 Reply:
23986 @table @samp
23987 @item OK
23988 The target does not need to look up any (more) symbols.
23989 @item qSymbol:@var{sym_name}
23990 The target requests the value of a new symbol @var{sym_name} (hex
23991 encoded).  @value{GDBN} will continue to supply the values of symbols
23992 (if available), until the target ceases to request them.
23993 @end table
23994
23995 @item QTDP
23996 @itemx QTFrame
23997 @xref{Tracepoint Packets}.
23998
23999 @item qThreadExtraInfo,@var{id}
24000 @cindex thread attributes info, remote request
24001 @cindex @samp{qThreadExtraInfo} packet
24002 Obtain a printable string description of a thread's attributes from
24003 the target OS.  @var{id} is a thread-id in big-endian hex.  This
24004 string may contain anything that the target OS thinks is interesting
24005 for @value{GDBN} to tell the user about the thread.  The string is
24006 displayed in @value{GDBN}'s @code{info threads} display.  Some
24007 examples of possible thread extra info strings are @samp{Runnable}, or
24008 @samp{Blocked on Mutex}.
24009
24010 Reply:
24011 @table @samp
24012 @item @var{XX}@dots{}
24013 Where @samp{@var{XX}@dots{}} is a hex encoding of @sc{ascii} data,
24014 comprising the printable string containing the extra information about
24015 the thread's attributes.
24016 @end table
24017
24018 (Note that the @code{qThreadExtraInfo} packet's name is separated from
24019 the command by a @samp{,}, not a @samp{:}, contrary to the naming
24020 conventions above.  Please don't use this packet as a model for new
24021 packets.)
24022
24023 @item QTStart    
24024 @itemx QTStop     
24025 @itemx QTinit     
24026 @itemx QTro       
24027 @itemx qTStatus   
24028 @xref{Tracepoint Packets}.
24029
24030 @item qXfer:@var{object}:read:@var{annex}:@var{offset},@var{length}
24031 @cindex read special object, remote request
24032 @cindex @samp{qXfer} packet
24033 @anchor{qXfer read}
24034 Read uninterpreted bytes from the target's special data area
24035 identified by the keyword @var{object}.  Request @var{length} bytes
24036 starting at @var{offset} bytes into the data.  The content and
24037 encoding of @var{annex} is specific to @var{object}; it can supply
24038 additional details about what data to access.
24039
24040 Here are the specific requests of this form defined so far.  All
24041 @samp{qXfer:@var{object}:read:@dots{}} requests use the same reply
24042 formats, listed below.
24043
24044 @table @samp
24045 @item qXfer:auxv:read::@var{offset},@var{length}
24046 @anchor{qXfer auxiliary vector read}
24047 Access the target's @dfn{auxiliary vector}.  @xref{OS Information,
24048 auxiliary vector}.  Note @var{annex} must be empty.
24049
24050 This packet is not probed by default; the remote stub must request it,
24051 by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24052
24053 @item qXfer:features:read:@var{annex}:@var{offset},@var{length}
24054 @anchor{qXfer target description read}
24055 Access the @dfn{target description}.  @xref{Target Descriptions}.  The
24056 annex specifies which XML document to access.  The main description is
24057 always loaded from the @samp{target.xml} annex.
24058
24059 This packet is not probed by default; the remote stub must request it,
24060 by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24061
24062 @item qXfer:libraries:read:@var{annex}:@var{offset},@var{length}
24063 @anchor{qXfer library list read}
24064 Access the target's list of loaded libraries.  @xref{Library List Format}.
24065 The annex part of the generic @samp{qXfer} packet must be empty
24066 (@pxref{qXfer read}).
24067
24068 Targets which maintain a list of libraries in the program's memory do
24069 not need to implement this packet; it is designed for platforms where
24070 the operating system manages the list of loaded libraries.
24071
24072 This packet is not probed by default; the remote stub must request it,
24073 by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24074
24075 @item qXfer:memory-map:read::@var{offset},@var{length}
24076 @anchor{qXfer memory map read}
24077 Access the target's @dfn{memory-map}.  @xref{Memory Map Format}.  The
24078 annex part of the generic @samp{qXfer} packet must be empty
24079 (@pxref{qXfer read}).
24080
24081 This packet is not probed by default; the remote stub must request it,
24082 by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24083
24084 @item qXfer:spu:read:@var{annex}:@var{offset},@var{length}
24085 @anchor{qXfer spu read}
24086 Read contents of an @code{spufs} file on the target system.  The
24087 annex specifies which file to read; it must be of the form 
24088 @file{@var{id}/@var{name}}, where @var{id} specifies an SPU context ID
24089 in the target process, and @var{name} identifes the @code{spufs} file
24090 in that context to be accessed.
24091
24092 This packet is not probed by default; the remote stub must request it,
24093 by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24094 @end table
24095
24096 Reply:
24097 @table @samp
24098 @item m @var{data}
24099 Data @var{data} (@pxref{Binary Data}) has been read from the
24100 target.  There may be more data at a higher address (although
24101 it is permitted to return @samp{m} even for the last valid
24102 block of data, as long as at least one byte of data was read).
24103 @var{data} may have fewer bytes than the @var{length} in the
24104 request.
24105
24106 @item l @var{data}
24107 Data @var{data} (@pxref{Binary Data}) has been read from the target.
24108 There is no more data to be read.  @var{data} may have fewer bytes
24109 than the @var{length} in the request.
24110
24111 @item l
24112 The @var{offset} in the request is at the end of the data.
24113 There is no more data to be read.
24114
24115 @item E00
24116 The request was malformed, or @var{annex} was invalid.
24117
24118 @item E @var{nn}
24119 The offset was invalid, or there was an error encountered reading the data.
24120 @var{nn} is a hex-encoded @code{errno} value.
24121
24122 @item
24123 An empty reply indicates the @var{object} string was not recognized by
24124 the stub, or that the object does not support reading.
24125 @end table
24126
24127 @item qXfer:@var{object}:write:@var{annex}:@var{offset}:@var{data}@dots{}
24128 @cindex write data into object, remote request
24129 Write uninterpreted bytes into the target's special data area
24130 identified by the keyword @var{object}, starting at @var{offset} bytes
24131 into the data.  @var{data}@dots{} is the binary-encoded data
24132 (@pxref{Binary Data}) to be written.  The content and encoding of @var{annex}
24133 is specific to @var{object}; it can supply additional details about what data
24134 to access.
24135
24136 Here are the specific requests of this form defined so far.  All
24137 @samp{qXfer:@var{object}:write:@dots{}} requests use the same reply
24138 formats, listed below.
24139
24140 @table @samp
24141 @item qXfer:@var{spu}:write:@var{annex}:@var{offset}:@var{data}@dots{}
24142 @anchor{qXfer spu write}
24143 Write @var{data} to an @code{spufs} file on the target system.  The
24144 annex specifies which file to write; it must be of the form
24145 @file{@var{id}/@var{name}}, where @var{id} specifies an SPU context ID
24146 in the target process, and @var{name} identifes the @code{spufs} file
24147 in that context to be accessed.
24148
24149 This packet is not probed by default; the remote stub must request it,
24150 by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24151 @end table
24152
24153 Reply:
24154 @table @samp
24155 @item @var{nn}
24156 @var{nn} (hex encoded) is the number of bytes written.
24157 This may be fewer bytes than supplied in the request.
24158
24159 @item E00
24160 The request was malformed, or @var{annex} was invalid.
24161
24162 @item E @var{nn}
24163 The offset was invalid, or there was an error encountered writing the data.
24164 @var{nn} is a hex-encoded @code{errno} value.
24165
24166 @item
24167 An empty reply indicates the @var{object} string was not
24168 recognized by the stub, or that the object does not support writing.
24169 @end table
24170
24171 @item qXfer:@var{object}:@var{operation}:@dots{}
24172 Requests of this form may be added in the future.  When a stub does
24173 not recognize the @var{object} keyword, or its support for
24174 @var{object} does not recognize the @var{operation} keyword, the stub
24175 must respond with an empty packet.
24176
24177 @end table
24178
24179 @node Register Packet Format
24180 @section Register Packet Format
24181
24182 The following @code{g}/@code{G} packets have previously been defined.
24183 In the below, some thirty-two bit registers are transferred as
24184 sixty-four bits.  Those registers should be zero/sign extended (which?)
24185 to fill the space allocated.  Register bytes are transferred in target
24186 byte order.  The two nibbles within a register byte are transferred
24187 most-significant - least-significant.
24188
24189 @table @r
24190
24191 @item MIPS32
24192
24193 All registers are transferred as thirty-two bit quantities in the order:
24194 32 general-purpose; sr; lo; hi; bad; cause; pc; 32 floating-point
24195 registers; fsr; fir; fp.
24196
24197 @item MIPS64
24198
24199 All registers are transferred as sixty-four bit quantities (including
24200 thirty-two bit registers such as @code{sr}).  The ordering is the same
24201 as @code{MIPS32}.
24202
24203 @end table
24204
24205 @node Tracepoint Packets
24206 @section Tracepoint Packets
24207 @cindex tracepoint packets
24208 @cindex packets, tracepoint
24209
24210 Here we describe the packets @value{GDBN} uses to implement
24211 tracepoints (@pxref{Tracepoints}).
24212
24213 @table @samp
24214
24215 @item QTDP:@var{n}:@var{addr}:@var{ena}:@var{step}:@var{pass}@r{[}-@r{]}
24216 Create a new tracepoint, number @var{n}, at @var{addr}.  If @var{ena}
24217 is @samp{E}, then the tracepoint is enabled; if it is @samp{D}, then
24218 the tracepoint is disabled.  @var{step} is the tracepoint's step
24219 count, and @var{pass} is its pass count.  If the trailing @samp{-} is
24220 present, further @samp{QTDP} packets will follow to specify this
24221 tracepoint's actions.
24222
24223 Replies:
24224 @table @samp
24225 @item OK
24226 The packet was understood and carried out.
24227 @item 
24228 The packet was not recognized.
24229 @end table
24230
24231 @item QTDP:-@var{n}:@var{addr}:@r{[}S@r{]}@var{action}@dots{}@r{[}-@r{]}
24232 Define actions to be taken when a tracepoint is hit.  @var{n} and
24233 @var{addr} must be the same as in the initial @samp{QTDP} packet for
24234 this tracepoint.  This packet may only be sent immediately after
24235 another @samp{QTDP} packet that ended with a @samp{-}.  If the
24236 trailing @samp{-} is present, further @samp{QTDP} packets will follow,
24237 specifying more actions for this tracepoint.
24238
24239 In the series of action packets for a given tracepoint, at most one
24240 can have an @samp{S} before its first @var{action}.  If such a packet
24241 is sent, it and the following packets define ``while-stepping''
24242 actions.  Any prior packets define ordinary actions --- that is, those
24243 taken when the tracepoint is first hit.  If no action packet has an
24244 @samp{S}, then all the packets in the series specify ordinary
24245 tracepoint actions.
24246
24247 The @samp{@var{action}@dots{}} portion of the packet is a series of
24248 actions, concatenated without separators.  Each action has one of the
24249 following forms:
24250
24251 @table @samp
24252
24253 @item R @var{mask}
24254 Collect the registers whose bits are set in @var{mask}.  @var{mask} is
24255 a hexadecimal number whose @var{i}'th bit is set if register number
24256 @var{i} should be collected.  (The least significant bit is numbered
24257 zero.)  Note that @var{mask} may be any number of digits long; it may
24258 not fit in a 32-bit word.
24259
24260 @item M @var{basereg},@var{offset},@var{len}
24261 Collect @var{len} bytes of memory starting at the address in register
24262 number @var{basereg}, plus @var{offset}.  If @var{basereg} is
24263 @samp{-1}, then the range has a fixed address: @var{offset} is the
24264 address of the lowest byte to collect.  The @var{basereg},
24265 @var{offset}, and @var{len} parameters are all unsigned hexadecimal
24266 values (the @samp{-1} value for @var{basereg} is a special case).
24267
24268 @item X @var{len},@var{expr}
24269 Evaluate @var{expr}, whose length is @var{len}, and collect memory as
24270 it directs.  @var{expr} is an agent expression, as described in
24271 @ref{Agent Expressions}.  Each byte of the expression is encoded as a
24272 two-digit hex number in the packet; @var{len} is the number of bytes
24273 in the expression (and thus one-half the number of hex digits in the
24274 packet).
24275
24276 @end table
24277
24278 Any number of actions may be packed together in a single @samp{QTDP}
24279 packet, as long as the packet does not exceed the maximum packet
24280 length (400 bytes, for many stubs).  There may be only one @samp{R}
24281 action per tracepoint, and it must precede any @samp{M} or @samp{X}
24282 actions.  Any registers referred to by @samp{M} and @samp{X} actions
24283 must be collected by a preceding @samp{R} action.  (The
24284 ``while-stepping'' actions are treated as if they were attached to a
24285 separate tracepoint, as far as these restrictions are concerned.)
24286
24287 Replies:
24288 @table @samp
24289 @item OK
24290 The packet was understood and carried out.
24291 @item 
24292 The packet was not recognized.
24293 @end table
24294
24295 @item QTFrame:@var{n}
24296 Select the @var{n}'th tracepoint frame from the buffer, and use the
24297 register and memory contents recorded there to answer subsequent
24298 request packets from @value{GDBN}.
24299
24300 A successful reply from the stub indicates that the stub has found the
24301 requested frame.  The response is a series of parts, concatenated
24302 without separators, describing the frame we selected.  Each part has
24303 one of the following forms:
24304
24305 @table @samp
24306 @item F @var{f}
24307 The selected frame is number @var{n} in the trace frame buffer;
24308 @var{f} is a hexadecimal number.  If @var{f} is @samp{-1}, then there
24309 was no frame matching the criteria in the request packet.
24310
24311 @item T @var{t}
24312 The selected trace frame records a hit of tracepoint number @var{t};
24313 @var{t} is a hexadecimal number.
24314
24315 @end table
24316
24317 @item QTFrame:pc:@var{addr}
24318 Like @samp{QTFrame:@var{n}}, but select the first tracepoint frame after the
24319 currently selected frame whose PC is @var{addr};
24320 @var{addr} is a hexadecimal number.
24321
24322 @item QTFrame:tdp:@var{t}
24323 Like @samp{QTFrame:@var{n}}, but select the first tracepoint frame after the
24324 currently selected frame that is a hit of tracepoint @var{t}; @var{t}
24325 is a hexadecimal number.
24326
24327 @item QTFrame:range:@var{start}:@var{end}
24328 Like @samp{QTFrame:@var{n}}, but select the first tracepoint frame after the
24329 currently selected frame whose PC is between @var{start} (inclusive)
24330 and @var{end} (exclusive); @var{start} and @var{end} are hexadecimal
24331 numbers.
24332
24333 @item QTFrame:outside:@var{start}:@var{end}
24334 Like @samp{QTFrame:range:@var{start}:@var{end}}, but select the first
24335 frame @emph{outside} the given range of addresses.
24336
24337 @item QTStart
24338 Begin the tracepoint experiment.  Begin collecting data from tracepoint
24339 hits in the trace frame buffer.
24340
24341 @item QTStop
24342 End the tracepoint experiment.  Stop collecting trace frames.
24343
24344 @item QTinit
24345 Clear the table of tracepoints, and empty the trace frame buffer.
24346
24347 @item QTro:@var{start1},@var{end1}:@var{start2},@var{end2}:@dots{}
24348 Establish the given ranges of memory as ``transparent''.  The stub
24349 will answer requests for these ranges from memory's current contents,
24350 if they were not collected as part of the tracepoint hit.
24351
24352 @value{GDBN} uses this to mark read-only regions of memory, like those
24353 containing program code.  Since these areas never change, they should
24354 still have the same contents they did when the tracepoint was hit, so
24355 there's no reason for the stub to refuse to provide their contents.
24356
24357 @item qTStatus
24358 Ask the stub if there is a trace experiment running right now.
24359
24360 Replies:
24361 @table @samp
24362 @item T0
24363 There is no trace experiment running.
24364 @item T1
24365 There is a trace experiment running.
24366 @end table
24367
24368 @end table
24369
24370
24371 @node Interrupts
24372 @section Interrupts
24373 @cindex interrupts (remote protocol)
24374
24375 When a program on the remote target is running, @value{GDBN} may
24376 attempt to interrupt it by sending a @samp{Ctrl-C} or a @code{BREAK},
24377 control of which is specified via @value{GDBN}'s @samp{remotebreak}
24378 setting (@pxref{set remotebreak}).
24379
24380 The precise meaning of @code{BREAK} is defined by the transport
24381 mechanism and may, in fact, be undefined.  @value{GDBN} does
24382 not currently define a @code{BREAK} mechanism for any of the network
24383 interfaces.
24384
24385 @samp{Ctrl-C}, on the other hand, is defined and implemented for all
24386 transport mechanisms.  It is represented by sending the single byte
24387 @code{0x03} without any of the usual packet overhead described in
24388 the Overview section (@pxref{Overview}).  When a @code{0x03} byte is
24389 transmitted as part of a packet, it is considered to be packet data
24390 and does @emph{not} represent an interrupt.  E.g., an @samp{X} packet
24391 (@pxref{X packet}), used for binary downloads, may include an unescaped
24392 @code{0x03} as part of its packet.
24393
24394 Stubs are not required to recognize these interrupt mechanisms and the
24395 precise meaning associated with receipt of the interrupt is
24396 implementation defined.  If the stub is successful at interrupting the
24397 running program, it is expected that it will send one of the Stop
24398 Reply Packets (@pxref{Stop Reply Packets}) to @value{GDBN} as a result
24399 of successfully stopping the program.  Interrupts received while the
24400 program is stopped will be discarded.
24401
24402 @node Examples
24403 @section Examples
24404
24405 Example sequence of a target being re-started.  Notice how the restart
24406 does not get any direct output:
24407
24408 @smallexample
24409 -> @code{R00}
24410 <- @code{+}
24411 @emph{target restarts}
24412 -> @code{?}
24413 <- @code{+}
24414 <- @code{T001:1234123412341234}
24415 -> @code{+}
24416 @end smallexample
24417
24418 Example sequence of a target being stepped by a single instruction:
24419
24420 @smallexample
24421 -> @code{G1445@dots{}}
24422 <- @code{+}
24423 -> @code{s}
24424 <- @code{+}
24425 @emph{time passes}
24426 <- @code{T001:1234123412341234}
24427 -> @code{+}
24428 -> @code{g}
24429 <- @code{+}
24430 <- @code{1455@dots{}}
24431 -> @code{+}
24432 @end smallexample
24433
24434 @node File-I/O Remote Protocol Extension
24435 @section File-I/O Remote Protocol Extension
24436 @cindex File-I/O remote protocol extension
24437
24438 @menu
24439 * File-I/O Overview::
24440 * Protocol Basics::
24441 * The F Request Packet::
24442 * The F Reply Packet::
24443 * The Ctrl-C Message::
24444 * Console I/O::
24445 * List of Supported Calls::
24446 * Protocol-specific Representation of Datatypes::
24447 * Constants::
24448 * File-I/O Examples::
24449 @end menu
24450
24451 @node File-I/O Overview
24452 @subsection File-I/O Overview
24453 @cindex file-i/o overview
24454
24455 The @dfn{File I/O remote protocol extension} (short: File-I/O) allows the
24456 target to use the host's file system and console I/O to perform various
24457 system calls.  System calls on the target system are translated into a
24458 remote protocol packet to the host system, which then performs the needed
24459 actions and returns a response packet to the target system.
24460 This simulates file system operations even on targets that lack file systems.
24461
24462 The protocol is defined to be independent of both the host and target systems.
24463 It uses its own internal representation of datatypes and values.  Both
24464 @value{GDBN} and the target's @value{GDBN} stub are responsible for
24465 translating the system-dependent value representations into the internal
24466 protocol representations when data is transmitted.
24467
24468 The communication is synchronous.  A system call is possible only when 
24469 @value{GDBN} is waiting for a response from the @samp{C}, @samp{c}, @samp{S} 
24470 or @samp{s} packets.  While @value{GDBN} handles the request for a system call,
24471 the target is stopped to allow deterministic access to the target's
24472 memory.  Therefore File-I/O is not interruptible by target signals.  On
24473 the other hand, it is possible to interrupt File-I/O by a user interrupt 
24474 (@samp{Ctrl-C}) within @value{GDBN}.
24475
24476 The target's request to perform a host system call does not finish
24477 the latest @samp{C}, @samp{c}, @samp{S} or @samp{s} action.  That means,
24478 after finishing the system call, the target returns to continuing the
24479 previous activity (continue, step).  No additional continue or step
24480 request from @value{GDBN} is required.
24481
24482 @smallexample
24483 (@value{GDBP}) continue
24484   <- target requests 'system call X'
24485   target is stopped, @value{GDBN} executes system call
24486   -> @value{GDBN} returns result
24487   ... target continues, @value{GDBN} returns to wait for the target
24488   <- target hits breakpoint and sends a Txx packet
24489 @end smallexample
24490
24491 The protocol only supports I/O on the console and to regular files on 
24492 the host file system.  Character or block special devices, pipes,
24493 named pipes, sockets or any other communication method on the host
24494 system are not supported by this protocol.
24495
24496 @node Protocol Basics
24497 @subsection Protocol Basics
24498 @cindex protocol basics, file-i/o
24499
24500 The File-I/O protocol uses the @code{F} packet as the request as well
24501 as reply packet.  Since a File-I/O system call can only occur when
24502 @value{GDBN} is waiting for a response from the continuing or stepping target, 
24503 the File-I/O request is a reply that @value{GDBN} has to expect as a result
24504 of a previous @samp{C}, @samp{c}, @samp{S} or @samp{s} packet.
24505 This @code{F} packet contains all information needed to allow @value{GDBN}
24506 to call the appropriate host system call:
24507
24508 @itemize @bullet
24509 @item
24510 A unique identifier for the requested system call.
24511
24512 @item
24513 All parameters to the system call.  Pointers are given as addresses
24514 in the target memory address space.  Pointers to strings are given as
24515 pointer/length pair.  Numerical values are given as they are.
24516 Numerical control flags are given in a protocol-specific representation.
24517
24518 @end itemize
24519
24520 At this point, @value{GDBN} has to perform the following actions.
24521
24522 @itemize @bullet
24523 @item
24524 If the parameters include pointer values to data needed as input to a 
24525 system call, @value{GDBN} requests this data from the target with a
24526 standard @code{m} packet request.  This additional communication has to be
24527 expected by the target implementation and is handled as any other @code{m}
24528 packet.
24529
24530 @item
24531 @value{GDBN} translates all value from protocol representation to host
24532 representation as needed.  Datatypes are coerced into the host types.
24533
24534 @item
24535 @value{GDBN} calls the system call.
24536
24537 @item
24538 It then coerces datatypes back to protocol representation.
24539
24540 @item
24541 If the system call is expected to return data in buffer space specified
24542 by pointer parameters to the call, the data is transmitted to the
24543 target using a @code{M} or @code{X} packet.  This packet has to be expected
24544 by the target implementation and is handled as any other @code{M} or @code{X}
24545 packet.
24546
24547 @end itemize
24548
24549 Eventually @value{GDBN} replies with another @code{F} packet which contains all
24550 necessary information for the target to continue.  This at least contains
24551
24552 @itemize @bullet
24553 @item
24554 Return value.
24555
24556 @item
24557 @code{errno}, if has been changed by the system call.
24558
24559 @item
24560 ``Ctrl-C'' flag.
24561
24562 @end itemize
24563
24564 After having done the needed type and value coercion, the target continues
24565 the latest continue or step action.
24566
24567 @node The F Request Packet
24568 @subsection The @code{F} Request Packet
24569 @cindex file-i/o request packet
24570 @cindex @code{F} request packet
24571
24572 The @code{F} request packet has the following format:
24573
24574 @table @samp
24575 @item F@var{call-id},@var{parameter@dots{}}
24576
24577 @var{call-id} is the identifier to indicate the host system call to be called.
24578 This is just the name of the function.
24579
24580 @var{parameter@dots{}} are the parameters to the system call.  
24581 Parameters are hexadecimal integer values, either the actual values in case
24582 of scalar datatypes, pointers to target buffer space in case of compound
24583 datatypes and unspecified memory areas, or pointer/length pairs in case
24584 of string parameters.  These are appended to the @var{call-id} as a 
24585 comma-delimited list.  All values are transmitted in ASCII
24586 string representation, pointer/length pairs separated by a slash.
24587
24588 @end table
24589
24590
24591
24592 @node The F Reply Packet
24593 @subsection The @code{F} Reply Packet
24594 @cindex file-i/o reply packet
24595 @cindex @code{F} reply packet
24596
24597 The @code{F} reply packet has the following format:
24598
24599 @table @samp
24600
24601 @item F@var{retcode},@var{errno},@var{Ctrl-C flag};@var{call-specific attachment}
24602
24603 @var{retcode} is the return code of the system call as hexadecimal value.
24604
24605 @var{errno} is the @code{errno} set by the call, in protocol-specific
24606 representation.
24607 This parameter can be omitted if the call was successful.
24608
24609 @var{Ctrl-C flag} is only sent if the user requested a break.  In this
24610 case, @var{errno} must be sent as well, even if the call was successful.
24611 The @var{Ctrl-C flag} itself consists of the character @samp{C}:
24612
24613 @smallexample
24614 F0,0,C
24615 @end smallexample
24616
24617 @noindent
24618 or, if the call was interrupted before the host call has been performed:
24619
24620 @smallexample
24621 F-1,4,C
24622 @end smallexample
24623
24624 @noindent
24625 assuming 4 is the protocol-specific representation of @code{EINTR}.
24626
24627 @end table
24628
24629
24630 @node The Ctrl-C Message
24631 @subsection The @samp{Ctrl-C} Message
24632 @cindex ctrl-c message, in file-i/o protocol
24633
24634 If the @samp{Ctrl-C} flag is set in the @value{GDBN}
24635 reply packet (@pxref{The F Reply Packet}),
24636 the target should behave as if it had
24637 gotten a break message.  The meaning for the target is ``system call
24638 interrupted by @code{SIGINT}''.  Consequentially, the target should actually stop
24639 (as with a break message) and return to @value{GDBN} with a @code{T02}
24640 packet.
24641
24642 It's important for the target to know in which
24643 state the system call was interrupted.  There are two possible cases:
24644
24645 @itemize @bullet
24646 @item
24647 The system call hasn't been performed on the host yet.
24648
24649 @item
24650 The system call on the host has been finished.
24651
24652 @end itemize
24653
24654 These two states can be distinguished by the target by the value of the
24655 returned @code{errno}.  If it's the protocol representation of @code{EINTR}, the system
24656 call hasn't been performed.  This is equivalent to the @code{EINTR} handling
24657 on POSIX systems.  In any other case, the target may presume that the
24658 system call has been finished --- successfully or not --- and should behave
24659 as if the break message arrived right after the system call.
24660
24661 @value{GDBN} must behave reliably.  If the system call has not been called
24662 yet, @value{GDBN} may send the @code{F} reply immediately, setting @code{EINTR} as
24663 @code{errno} in the packet.  If the system call on the host has been finished
24664 before the user requests a break, the full action must be finished by
24665 @value{GDBN}.  This requires sending @code{M} or @code{X} packets as necessary.
24666 The @code{F} packet may only be sent when either nothing has happened
24667 or the full action has been completed.
24668
24669 @node Console I/O
24670 @subsection Console I/O
24671 @cindex console i/o as part of file-i/o
24672
24673 By default and if not explicitly closed by the target system, the file
24674 descriptors 0, 1 and 2 are connected to the @value{GDBN} console.  Output
24675 on the @value{GDBN} console is handled as any other file output operation
24676 (@code{write(1, @dots{})} or @code{write(2, @dots{})}).  Console input is handled
24677 by @value{GDBN} so that after the target read request from file descriptor
24678 0 all following typing is buffered until either one of the following
24679 conditions is met:
24680
24681 @itemize @bullet
24682 @item
24683 The user types @kbd{Ctrl-c}.  The behaviour is as explained above, and the
24684 @code{read}
24685 system call is treated as finished.
24686
24687 @item
24688 The user presses @key{RET}.  This is treated as end of input with a trailing
24689 newline.
24690
24691 @item
24692 The user types @kbd{Ctrl-d}.  This is treated as end of input.  No trailing
24693 character (neither newline nor @samp{Ctrl-D}) is appended to the input.
24694
24695 @end itemize
24696
24697 If the user has typed more characters than fit in the buffer given to
24698 the @code{read} call, the trailing characters are buffered in @value{GDBN} until
24699 either another @code{read(0, @dots{})} is requested by the target, or debugging
24700 is stopped at the user's request.
24701
24702
24703 @node List of Supported Calls
24704 @subsection List of Supported Calls
24705 @cindex list of supported file-i/o calls
24706
24707 @menu
24708 * open::
24709 * close::
24710 * read::
24711 * write::
24712 * lseek::
24713 * rename::
24714 * unlink::
24715 * stat/fstat::
24716 * gettimeofday::
24717 * isatty::
24718 * system::
24719 @end menu
24720
24721 @node open
24722 @unnumberedsubsubsec open
24723 @cindex open, file-i/o system call
24724
24725 @table @asis
24726 @item Synopsis:
24727 @smallexample
24728 int open(const char *pathname, int flags);
24729 int open(const char *pathname, int flags, mode_t mode);
24730 @end smallexample
24731
24732 @item Request:
24733 @samp{Fopen,@var{pathptr}/@var{len},@var{flags},@var{mode}}
24734
24735 @noindent
24736 @var{flags} is the bitwise @code{OR} of the following values:
24737
24738 @table @code
24739 @item O_CREAT
24740 If the file does not exist it will be created.  The host
24741 rules apply as far as file ownership and time stamps
24742 are concerned.
24743
24744 @item O_EXCL
24745 When used with @code{O_CREAT}, if the file already exists it is
24746 an error and open() fails.
24747
24748 @item O_TRUNC
24749 If the file already exists and the open mode allows
24750 writing (@code{O_RDWR} or @code{O_WRONLY} is given) it will be
24751 truncated to zero length.
24752
24753 @item O_APPEND
24754 The file is opened in append mode.
24755
24756 @item O_RDONLY
24757 The file is opened for reading only.
24758
24759 @item O_WRONLY
24760 The file is opened for writing only.
24761
24762 @item O_RDWR
24763 The file is opened for reading and writing.
24764 @end table
24765
24766 @noindent
24767 Other bits are silently ignored.
24768
24769
24770 @noindent
24771 @var{mode} is the bitwise @code{OR} of the following values:
24772
24773 @table @code
24774 @item S_IRUSR
24775 User has read permission.
24776
24777 @item S_IWUSR
24778 User has write permission.
24779
24780 @item S_IRGRP
24781 Group has read permission.
24782
24783 @item S_IWGRP
24784 Group has write permission.
24785
24786 @item S_IROTH
24787 Others have read permission.
24788
24789 @item S_IWOTH
24790 Others have write permission.
24791 @end table
24792
24793 @noindent
24794 Other bits are silently ignored.
24795
24796
24797 @item Return value:
24798 @code{open} returns the new file descriptor or -1 if an error
24799 occurred.
24800
24801 @item Errors:
24802
24803 @table @code
24804 @item EEXIST
24805 @var{pathname} already exists and @code{O_CREAT} and @code{O_EXCL} were used.
24806
24807 @item EISDIR
24808 @var{pathname} refers to a directory.
24809
24810 @item EACCES
24811 The requested access is not allowed.
24812
24813 @item ENAMETOOLONG
24814 @var{pathname} was too long.
24815
24816 @item ENOENT
24817 A directory component in @var{pathname} does not exist.
24818
24819 @item ENODEV
24820 @var{pathname} refers to a device, pipe, named pipe or socket.
24821
24822 @item EROFS
24823 @var{pathname} refers to a file on a read-only filesystem and
24824 write access was requested.
24825
24826 @item EFAULT
24827 @var{pathname} is an invalid pointer value.
24828
24829 @item ENOSPC
24830 No space on device to create the file.
24831
24832 @item EMFILE
24833 The process already has the maximum number of files open.
24834
24835 @item ENFILE
24836 The limit on the total number of files open on the system
24837 has been reached.
24838
24839 @item EINTR
24840 The call was interrupted by the user.
24841 @end table
24842
24843 @end table
24844
24845 @node close
24846 @unnumberedsubsubsec close
24847 @cindex close, file-i/o system call
24848
24849 @table @asis
24850 @item Synopsis:
24851 @smallexample
24852 int close(int fd);
24853 @end smallexample
24854
24855 @item Request:
24856 @samp{Fclose,@var{fd}}
24857
24858 @item Return value:
24859 @code{close} returns zero on success, or -1 if an error occurred.
24860
24861 @item Errors:
24862
24863 @table @code
24864 @item EBADF
24865 @var{fd} isn't a valid open file descriptor.
24866
24867 @item EINTR
24868 The call was interrupted by the user.
24869 @end table
24870
24871 @end table
24872
24873 @node read
24874 @unnumberedsubsubsec read
24875 @cindex read, file-i/o system call
24876
24877 @table @asis
24878 @item Synopsis:
24879 @smallexample
24880 int read(int fd, void *buf, unsigned int count);
24881 @end smallexample
24882
24883 @item Request:
24884 @samp{Fread,@var{fd},@var{bufptr},@var{count}}
24885
24886 @item Return value:
24887 On success, the number of bytes read is returned.
24888 Zero indicates end of file.  If count is zero, read
24889 returns zero as well.  On error, -1 is returned.
24890
24891 @item Errors:
24892
24893 @table @code
24894 @item EBADF
24895 @var{fd} is not a valid file descriptor or is not open for
24896 reading.
24897
24898 @item EFAULT
24899 @var{bufptr} is an invalid pointer value.
24900
24901 @item EINTR
24902 The call was interrupted by the user.
24903 @end table
24904
24905 @end table
24906
24907 @node write
24908 @unnumberedsubsubsec write
24909 @cindex write, file-i/o system call
24910
24911 @table @asis
24912 @item Synopsis:
24913 @smallexample
24914 int write(int fd, const void *buf, unsigned int count);
24915 @end smallexample
24916
24917 @item Request:
24918 @samp{Fwrite,@var{fd},@var{bufptr},@var{count}}
24919
24920 @item Return value:
24921 On success, the number of bytes written are returned.
24922 Zero indicates nothing was written.  On error, -1
24923 is returned.
24924
24925 @item Errors:
24926
24927 @table @code
24928 @item EBADF
24929 @var{fd} is not a valid file descriptor or is not open for
24930 writing.
24931
24932 @item EFAULT
24933 @var{bufptr} is an invalid pointer value.
24934
24935 @item EFBIG
24936 An attempt was made to write a file that exceeds the
24937 host-specific maximum file size allowed.
24938
24939 @item ENOSPC
24940 No space on device to write the data.
24941
24942 @item EINTR
24943 The call was interrupted by the user.
24944 @end table
24945
24946 @end table
24947
24948 @node lseek
24949 @unnumberedsubsubsec lseek
24950 @cindex lseek, file-i/o system call
24951
24952 @table @asis
24953 @item Synopsis:
24954 @smallexample
24955 long lseek (int fd, long offset, int flag);
24956 @end smallexample
24957
24958 @item Request:
24959 @samp{Flseek,@var{fd},@var{offset},@var{flag}}
24960
24961 @var{flag} is one of:
24962
24963 @table @code
24964 @item SEEK_SET
24965 The offset is set to @var{offset} bytes.
24966
24967 @item SEEK_CUR
24968 The offset is set to its current location plus @var{offset}
24969 bytes.
24970
24971 @item SEEK_END
24972 The offset is set to the size of the file plus @var{offset}
24973 bytes.
24974 @end table
24975
24976 @item Return value:
24977 On success, the resulting unsigned offset in bytes from
24978 the beginning of the file is returned.  Otherwise, a
24979 value of -1 is returned.
24980
24981 @item Errors:
24982
24983 @table @code
24984 @item EBADF
24985 @var{fd} is not a valid open file descriptor.
24986
24987 @item ESPIPE
24988 @var{fd} is associated with the @value{GDBN} console.
24989
24990 @item EINVAL
24991 @var{flag} is not a proper value.
24992
24993 @item EINTR
24994 The call was interrupted by the user.
24995 @end table
24996
24997 @end table
24998
24999 @node rename
25000 @unnumberedsubsubsec rename
25001 @cindex rename, file-i/o system call
25002
25003 @table @asis
25004 @item Synopsis:
25005 @smallexample
25006 int rename(const char *oldpath, const char *newpath);
25007 @end smallexample
25008
25009 @item Request:
25010 @samp{Frename,@var{oldpathptr}/@var{len},@var{newpathptr}/@var{len}}
25011
25012 @item Return value:
25013 On success, zero is returned.  On error, -1 is returned.
25014
25015 @item Errors:
25016
25017 @table @code
25018 @item EISDIR
25019 @var{newpath} is an existing directory, but @var{oldpath} is not a
25020 directory.
25021
25022 @item EEXIST
25023 @var{newpath} is a non-empty directory.
25024
25025 @item EBUSY
25026 @var{oldpath} or @var{newpath} is a directory that is in use by some
25027 process.
25028
25029 @item EINVAL
25030 An attempt was made to make a directory a subdirectory
25031 of itself.
25032
25033 @item ENOTDIR
25034 A  component used as a directory in @var{oldpath} or new
25035 path is not a directory.  Or @var{oldpath} is a directory
25036 and @var{newpath} exists but is not a directory.
25037
25038 @item EFAULT
25039 @var{oldpathptr} or @var{newpathptr} are invalid pointer values.
25040
25041 @item EACCES
25042 No access to the file or the path of the file.
25043
25044 @item ENAMETOOLONG
25045
25046 @var{oldpath} or @var{newpath} was too long.
25047
25048 @item ENOENT
25049 A directory component in @var{oldpath} or @var{newpath} does not exist.
25050
25051 @item EROFS
25052 The file is on a read-only filesystem.
25053
25054 @item ENOSPC
25055 The device containing the file has no room for the new
25056 directory entry.
25057
25058 @item EINTR
25059 The call was interrupted by the user.
25060 @end table
25061
25062 @end table
25063
25064 @node unlink
25065 @unnumberedsubsubsec unlink
25066 @cindex unlink, file-i/o system call
25067
25068 @table @asis
25069 @item Synopsis:
25070 @smallexample
25071 int unlink(const char *pathname);
25072 @end smallexample
25073
25074 @item Request:
25075 @samp{Funlink,@var{pathnameptr}/@var{len}}
25076
25077 @item Return value:
25078 On success, zero is returned.  On error, -1 is returned.
25079
25080 @item Errors:
25081
25082 @table @code
25083 @item EACCES
25084 No access to the file or the path of the file.
25085
25086 @item EPERM
25087 The system does not allow unlinking of directories.
25088
25089 @item EBUSY
25090 The file @var{pathname} cannot be unlinked because it's
25091 being used by another process.
25092
25093 @item EFAULT
25094 @var{pathnameptr} is an invalid pointer value.
25095
25096 @item ENAMETOOLONG
25097 @var{pathname} was too long.
25098
25099 @item ENOENT
25100 A directory component in @var{pathname} does not exist.
25101
25102 @item ENOTDIR
25103 A component of the path is not a directory.
25104
25105 @item EROFS
25106 The file is on a read-only filesystem.
25107
25108 @item EINTR
25109 The call was interrupted by the user.
25110 @end table
25111
25112 @end table
25113
25114 @node stat/fstat
25115 @unnumberedsubsubsec stat/fstat
25116 @cindex fstat, file-i/o system call
25117 @cindex stat, file-i/o system call
25118
25119 @table @asis
25120 @item Synopsis:
25121 @smallexample
25122 int stat(const char *pathname, struct stat *buf);
25123 int fstat(int fd, struct stat *buf);
25124 @end smallexample
25125
25126 @item Request:
25127 @samp{Fstat,@var{pathnameptr}/@var{len},@var{bufptr}}@*
25128 @samp{Ffstat,@var{fd},@var{bufptr}}
25129
25130 @item Return value:
25131 On success, zero is returned.  On error, -1 is returned.
25132
25133 @item Errors:
25134
25135 @table @code
25136 @item EBADF
25137 @var{fd} is not a valid open file.
25138
25139 @item ENOENT
25140 A directory component in @var{pathname} does not exist or the
25141 path is an empty string.
25142
25143 @item ENOTDIR
25144 A component of the path is not a directory.
25145
25146 @item EFAULT
25147 @var{pathnameptr} is an invalid pointer value.
25148
25149 @item EACCES
25150 No access to the file or the path of the file.
25151
25152 @item ENAMETOOLONG
25153 @var{pathname} was too long.
25154
25155 @item EINTR
25156 The call was interrupted by the user.
25157 @end table
25158
25159 @end table
25160
25161 @node gettimeofday
25162 @unnumberedsubsubsec gettimeofday
25163 @cindex gettimeofday, file-i/o system call
25164
25165 @table @asis
25166 @item Synopsis:
25167 @smallexample
25168 int gettimeofday(struct timeval *tv, void *tz);
25169 @end smallexample
25170
25171 @item Request:
25172 @samp{Fgettimeofday,@var{tvptr},@var{tzptr}}
25173
25174 @item Return value:
25175 On success, 0 is returned, -1 otherwise.
25176
25177 @item Errors:
25178
25179 @table @code
25180 @item EINVAL
25181 @var{tz} is a non-NULL pointer.
25182
25183 @item EFAULT
25184 @var{tvptr} and/or @var{tzptr} is an invalid pointer value.
25185 @end table
25186
25187 @end table
25188
25189 @node isatty
25190 @unnumberedsubsubsec isatty
25191 @cindex isatty, file-i/o system call
25192
25193 @table @asis
25194 @item Synopsis:
25195 @smallexample
25196 int isatty(int fd);
25197 @end smallexample
25198
25199 @item Request:
25200 @samp{Fisatty,@var{fd}}
25201
25202 @item Return value:
25203 Returns 1 if @var{fd} refers to the @value{GDBN} console, 0 otherwise.
25204
25205 @item Errors:
25206
25207 @table @code
25208 @item EINTR
25209 The call was interrupted by the user.
25210 @end table
25211
25212 @end table
25213
25214 Note that the @code{isatty} call is treated as a special case: it returns
25215 1 to the target if the file descriptor is attached
25216 to the @value{GDBN} console, 0 otherwise.  Implementing through system calls
25217 would require implementing @code{ioctl} and would be more complex than
25218 needed.
25219
25220
25221 @node system
25222 @unnumberedsubsubsec system
25223 @cindex system, file-i/o system call
25224
25225 @table @asis
25226 @item Synopsis:
25227 @smallexample
25228 int system(const char *command);
25229 @end smallexample
25230
25231 @item Request:
25232 @samp{Fsystem,@var{commandptr}/@var{len}}
25233
25234 @item Return value:
25235 If @var{len} is zero, the return value indicates whether a shell is
25236 available.  A zero return value indicates a shell is not available.
25237 For non-zero @var{len}, the value returned is -1 on error and the
25238 return status of the command otherwise.  Only the exit status of the
25239 command is returned, which is extracted from the host's @code{system}
25240 return value by calling @code{WEXITSTATUS(retval)}.  In case
25241 @file{/bin/sh} could not be executed, 127 is returned.
25242
25243 @item Errors:
25244
25245 @table @code
25246 @item EINTR
25247 The call was interrupted by the user.
25248 @end table
25249
25250 @end table
25251
25252 @value{GDBN} takes over the full task of calling the necessary host calls 
25253 to perform the @code{system} call.  The return value of @code{system} on 
25254 the host is simplified before it's returned
25255 to the target.  Any termination signal information from the child process 
25256 is discarded, and the return value consists
25257 entirely of the exit status of the called command.
25258
25259 Due to security concerns, the @code{system} call is by default refused
25260 by @value{GDBN}.  The user has to allow this call explicitly with the
25261 @code{set remote system-call-allowed 1} command.
25262
25263 @table @code
25264 @item set remote system-call-allowed
25265 @kindex set remote system-call-allowed
25266 Control whether to allow the @code{system} calls in the File I/O
25267 protocol for the remote target.  The default is zero (disabled).
25268
25269 @item show remote system-call-allowed
25270 @kindex show remote system-call-allowed
25271 Show whether the @code{system} calls are allowed in the File I/O
25272 protocol.
25273 @end table
25274
25275 @node Protocol-specific Representation of Datatypes
25276 @subsection Protocol-specific Representation of Datatypes
25277 @cindex protocol-specific representation of datatypes, in file-i/o protocol
25278
25279 @menu
25280 * Integral Datatypes::
25281 * Pointer Values::
25282 * Memory Transfer::
25283 * struct stat::
25284 * struct timeval::
25285 @end menu
25286
25287 @node Integral Datatypes
25288 @unnumberedsubsubsec Integral Datatypes
25289 @cindex integral datatypes, in file-i/o protocol
25290
25291 The integral datatypes used in the system calls are @code{int}, 
25292 @code{unsigned int}, @code{long}, @code{unsigned long},
25293 @code{mode_t}, and @code{time_t}.  
25294
25295 @code{int}, @code{unsigned int}, @code{mode_t} and @code{time_t} are
25296 implemented as 32 bit values in this protocol.
25297
25298 @code{long} and @code{unsigned long} are implemented as 64 bit types.
25299
25300 @xref{Limits}, for corresponding MIN and MAX values (similar to those
25301 in @file{limits.h}) to allow range checking on host and target.
25302
25303 @code{time_t} datatypes are defined as seconds since the Epoch.
25304
25305 All integral datatypes transferred as part of a memory read or write of a
25306 structured datatype e.g.@: a @code{struct stat} have to be given in big endian
25307 byte order.
25308
25309 @node Pointer Values
25310 @unnumberedsubsubsec Pointer Values
25311 @cindex pointer values, in file-i/o protocol
25312
25313 Pointers to target data are transmitted as they are.  An exception
25314 is made for pointers to buffers for which the length isn't
25315 transmitted as part of the function call, namely strings.  Strings
25316 are transmitted as a pointer/length pair, both as hex values, e.g.@:
25317
25318 @smallexample
25319 @code{1aaf/12}
25320 @end smallexample
25321
25322 @noindent
25323 which is a pointer to data of length 18 bytes at position 0x1aaf.
25324 The length is defined as the full string length in bytes, including
25325 the trailing null byte.  For example, the string @code{"hello world"}
25326 at address 0x123456 is transmitted as
25327
25328 @smallexample
25329 @code{123456/d}
25330 @end smallexample
25331
25332 @node Memory Transfer
25333 @unnumberedsubsubsec Memory Transfer
25334 @cindex memory transfer, in file-i/o protocol
25335
25336 Structured data which is transferred using a memory read or write (for
25337 example, a @code{struct stat}) is expected to be in a protocol-specific format 
25338 with all scalar multibyte datatypes being big endian.  Translation to
25339 this representation needs to be done both by the target before the @code{F} 
25340 packet is sent, and by @value{GDBN} before 
25341 it transfers memory to the target.  Transferred pointers to structured
25342 data should point to the already-coerced data at any time.
25343
25344
25345 @node struct stat
25346 @unnumberedsubsubsec struct stat
25347 @cindex struct stat, in file-i/o protocol
25348
25349 The buffer of type @code{struct stat} used by the target and @value{GDBN} 
25350 is defined as follows:
25351
25352 @smallexample
25353 struct stat @{
25354     unsigned int  st_dev;      /* device */
25355     unsigned int  st_ino;      /* inode */
25356     mode_t        st_mode;     /* protection */
25357     unsigned int  st_nlink;    /* number of hard links */
25358     unsigned int  st_uid;      /* user ID of owner */
25359     unsigned int  st_gid;      /* group ID of owner */
25360     unsigned int  st_rdev;     /* device type (if inode device) */
25361     unsigned long st_size;     /* total size, in bytes */
25362     unsigned long st_blksize;  /* blocksize for filesystem I/O */
25363     unsigned long st_blocks;   /* number of blocks allocated */
25364     time_t        st_atime;    /* time of last access */
25365     time_t        st_mtime;    /* time of last modification */
25366     time_t        st_ctime;    /* time of last change */
25367 @};
25368 @end smallexample
25369
25370 The integral datatypes conform to the definitions given in the
25371 appropriate section (see @ref{Integral Datatypes}, for details) so this
25372 structure is of size 64 bytes.
25373
25374 The values of several fields have a restricted meaning and/or
25375 range of values.
25376
25377 @table @code
25378
25379 @item st_dev
25380 A value of 0 represents a file, 1 the console.
25381
25382 @item st_ino
25383 No valid meaning for the target.  Transmitted unchanged.
25384
25385 @item st_mode
25386 Valid mode bits are described in @ref{Constants}.  Any other
25387 bits have currently no meaning for the target.
25388
25389 @item st_uid
25390 @itemx st_gid
25391 @itemx st_rdev
25392 No valid meaning for the target.  Transmitted unchanged.
25393
25394 @item st_atime
25395 @itemx st_mtime
25396 @itemx st_ctime
25397 These values have a host and file system dependent
25398 accuracy.  Especially on Windows hosts, the file system may not
25399 support exact timing values.
25400 @end table
25401
25402 The target gets a @code{struct stat} of the above representation and is
25403 responsible for coercing it to the target representation before
25404 continuing.
25405
25406 Note that due to size differences between the host, target, and protocol
25407 representations of @code{struct stat} members, these members could eventually
25408 get truncated on the target.
25409
25410 @node struct timeval
25411 @unnumberedsubsubsec struct timeval
25412 @cindex struct timeval, in file-i/o protocol
25413
25414 The buffer of type @code{struct timeval} used by the File-I/O protocol
25415 is defined as follows:
25416
25417 @smallexample
25418 struct timeval @{
25419     time_t tv_sec;  /* second */
25420     long   tv_usec; /* microsecond */
25421 @};
25422 @end smallexample
25423
25424 The integral datatypes conform to the definitions given in the
25425 appropriate section (see @ref{Integral Datatypes}, for details) so this
25426 structure is of size 8 bytes.
25427
25428 @node Constants
25429 @subsection Constants
25430 @cindex constants, in file-i/o protocol
25431
25432 The following values are used for the constants inside of the
25433 protocol.  @value{GDBN} and target are responsible for translating these
25434 values before and after the call as needed.
25435
25436 @menu
25437 * Open Flags::
25438 * mode_t Values::
25439 * Errno Values::
25440 * Lseek Flags::
25441 * Limits::
25442 @end menu
25443
25444 @node Open Flags
25445 @unnumberedsubsubsec Open Flags
25446 @cindex open flags, in file-i/o protocol
25447
25448 All values are given in hexadecimal representation.
25449
25450 @smallexample
25451   O_RDONLY        0x0
25452   O_WRONLY        0x1
25453   O_RDWR          0x2
25454   O_APPEND        0x8
25455   O_CREAT       0x200
25456   O_TRUNC       0x400
25457   O_EXCL        0x800
25458 @end smallexample
25459
25460 @node mode_t Values
25461 @unnumberedsubsubsec mode_t Values
25462 @cindex mode_t values, in file-i/o protocol
25463
25464 All values are given in octal representation.
25465
25466 @smallexample
25467   S_IFREG       0100000
25468   S_IFDIR        040000
25469   S_IRUSR          0400
25470   S_IWUSR          0200
25471   S_IXUSR          0100
25472   S_IRGRP           040
25473   S_IWGRP           020
25474   S_IXGRP           010
25475   S_IROTH            04
25476   S_IWOTH            02
25477   S_IXOTH            01
25478 @end smallexample
25479
25480 @node Errno Values
25481 @unnumberedsubsubsec Errno Values
25482 @cindex errno values, in file-i/o protocol
25483
25484 All values are given in decimal representation.
25485
25486 @smallexample
25487   EPERM           1
25488   ENOENT          2
25489   EINTR           4
25490   EBADF           9
25491   EACCES         13
25492   EFAULT         14
25493   EBUSY          16
25494   EEXIST         17
25495   ENODEV         19
25496   ENOTDIR        20
25497   EISDIR         21
25498   EINVAL         22
25499   ENFILE         23
25500   EMFILE         24
25501   EFBIG          27
25502   ENOSPC         28
25503   ESPIPE         29
25504   EROFS          30
25505   ENAMETOOLONG   91
25506   EUNKNOWN       9999
25507 @end smallexample
25508
25509   @code{EUNKNOWN} is used as a fallback error value if a host system returns
25510   any error value not in the list of supported error numbers.
25511
25512 @node Lseek Flags
25513 @unnumberedsubsubsec Lseek Flags
25514 @cindex lseek flags, in file-i/o protocol
25515
25516 @smallexample
25517   SEEK_SET      0
25518   SEEK_CUR      1
25519   SEEK_END      2
25520 @end smallexample
25521
25522 @node Limits
25523 @unnumberedsubsubsec Limits
25524 @cindex limits, in file-i/o protocol
25525
25526 All values are given in decimal representation.
25527
25528 @smallexample
25529   INT_MIN       -2147483648
25530   INT_MAX        2147483647
25531   UINT_MAX       4294967295
25532   LONG_MIN      -9223372036854775808
25533   LONG_MAX       9223372036854775807
25534   ULONG_MAX      18446744073709551615
25535 @end smallexample
25536
25537 @node File-I/O Examples
25538 @subsection File-I/O Examples
25539 @cindex file-i/o examples
25540
25541 Example sequence of a write call, file descriptor 3, buffer is at target
25542 address 0x1234, 6 bytes should be written:
25543
25544 @smallexample
25545 <- @code{Fwrite,3,1234,6}
25546 @emph{request memory read from target}
25547 -> @code{m1234,6}
25548 <- XXXXXX
25549 @emph{return "6 bytes written"}
25550 -> @code{F6}
25551 @end smallexample
25552
25553 Example sequence of a read call, file descriptor 3, buffer is at target
25554 address 0x1234, 6 bytes should be read:
25555
25556 @smallexample
25557 <- @code{Fread,3,1234,6}
25558 @emph{request memory write to target}
25559 -> @code{X1234,6:XXXXXX}
25560 @emph{return "6 bytes read"}
25561 -> @code{F6}
25562 @end smallexample
25563
25564 Example sequence of a read call, call fails on the host due to invalid
25565 file descriptor (@code{EBADF}):
25566
25567 @smallexample
25568 <- @code{Fread,3,1234,6}
25569 -> @code{F-1,9}
25570 @end smallexample
25571
25572 Example sequence of a read call, user presses @kbd{Ctrl-c} before syscall on
25573 host is called:
25574
25575 @smallexample
25576 <- @code{Fread,3,1234,6}
25577 -> @code{F-1,4,C}
25578 <- @code{T02}
25579 @end smallexample
25580
25581 Example sequence of a read call, user presses @kbd{Ctrl-c} after syscall on
25582 host is called:
25583
25584 @smallexample
25585 <- @code{Fread,3,1234,6}
25586 -> @code{X1234,6:XXXXXX}
25587 <- @code{T02}
25588 @end smallexample
25589
25590 @node Library List Format
25591 @section Library List Format
25592 @cindex library list format, remote protocol
25593
25594 On some platforms, a dynamic loader (e.g.@: @file{ld.so}) runs in the
25595 same process as your application to manage libraries.  In this case,
25596 @value{GDBN} can use the loader's symbol table and normal memory
25597 operations to maintain a list of shared libraries.  On other
25598 platforms, the operating system manages loaded libraries.
25599 @value{GDBN} can not retrieve the list of currently loaded libraries
25600 through memory operations, so it uses the @samp{qXfer:libraries:read}
25601 packet (@pxref{qXfer library list read}) instead.  The remote stub
25602 queries the target's operating system and reports which libraries
25603 are loaded.
25604
25605 The @samp{qXfer:libraries:read} packet returns an XML document which
25606 lists loaded libraries and their offsets.  Each library has an
25607 associated name and one or more segment base addresses, which report
25608 where the library was loaded in memory.  The segment bases are start
25609 addresses, not relocation offsets; they do not depend on the library's
25610 link-time base addresses.
25611
25612 A simple memory map, with one loaded library relocated by a single
25613 offset, looks like this:
25614
25615 @smallexample
25616 <library-list>
25617   <library name="/lib/libc.so.6">
25618     <segment address="0x10000000"/>
25619   </library>
25620 </library-list>
25621 @end smallexample
25622
25623 The format of a library list is described by this DTD:
25624
25625 @smallexample
25626 <!-- library-list: Root element with versioning -->
25627 <!ELEMENT library-list  (library)*>
25628 <!ATTLIST library-list  version CDATA   #FIXED  "1.0">
25629 <!ELEMENT library       (segment)*>
25630 <!ATTLIST library       name    CDATA   #REQUIRED>
25631 <!ELEMENT segment       EMPTY>
25632 <!ATTLIST segment       address CDATA   #REQUIRED>
25633 @end smallexample
25634
25635 @node Memory Map Format
25636 @section Memory Map Format
25637 @cindex memory map format
25638
25639 To be able to write into flash memory, @value{GDBN} needs to obtain a
25640 memory map from the target.  This section describes the format of the
25641 memory map.
25642
25643 The memory map is obtained using the @samp{qXfer:memory-map:read}
25644 (@pxref{qXfer memory map read}) packet and is an XML document that
25645 lists memory regions.  The top-level structure of the document is shown below:
25646
25647 @smallexample
25648 <?xml version="1.0"?>
25649 <!DOCTYPE memory-map
25650           PUBLIC "+//IDN gnu.org//DTD GDB Memory Map V1.0//EN"
25651                  "http://sourceware.org/gdb/gdb-memory-map.dtd">
25652 <memory-map>
25653     region...
25654 </memory-map>
25655 @end smallexample
25656
25657 Each region can be either:
25658
25659 @itemize
25660
25661 @item
25662 A region of RAM starting at @var{addr} and extending for @var{length}
25663 bytes from there:
25664
25665 @smallexample
25666 <memory type="ram" start="@var{addr}" length="@var{length}"/>
25667 @end smallexample
25668
25669
25670 @item
25671 A region of read-only memory:
25672
25673 @smallexample
25674 <memory type="rom" start="@var{addr}" length="@var{length}"/>
25675 @end smallexample
25676
25677
25678 @item
25679 A region of flash memory, with erasure blocks @var{blocksize}
25680 bytes in length:
25681
25682 @smallexample
25683 <memory type="flash" start="@var{addr}" length="@var{length}">
25684   <property name="blocksize">@var{blocksize}</property>
25685 </memory>
25686 @end smallexample
25687
25688 @end itemize
25689
25690 Regions must not overlap.  @value{GDBN} assumes that areas of memory not covered
25691 by the memory map are RAM, and uses the ordinary @samp{M} and @samp{X}
25692 packets to write to addresses in such ranges.
25693
25694 The formal DTD for memory map format is given below:
25695
25696 @smallexample
25697 <!-- ................................................... -->
25698 <!-- Memory Map XML DTD ................................ -->
25699 <!-- File: memory-map.dtd .............................. -->
25700 <!-- .................................... .............. -->
25701 <!-- memory-map.dtd -->
25702 <!-- memory-map: Root element with versioning -->
25703 <!ELEMENT memory-map (memory | property)>
25704 <!ATTLIST memory-map    version CDATA   #FIXED  "1.0.0">
25705 <!ELEMENT memory (property)>
25706 <!-- memory: Specifies a memory region,
25707              and its type, or device. -->
25708 <!ATTLIST memory        type    CDATA   #REQUIRED
25709                         start   CDATA   #REQUIRED
25710                         length  CDATA   #REQUIRED
25711                         device  CDATA   #IMPLIED>
25712 <!-- property: Generic attribute tag -->
25713 <!ELEMENT property (#PCDATA | property)*>
25714 <!ATTLIST property      name    CDATA   #REQUIRED>
25715 @end smallexample
25716
25717 @include agentexpr.texi
25718
25719 @node Target Descriptions
25720 @appendix Target Descriptions
25721 @cindex target descriptions
25722
25723 @strong{Warning:} target descriptions are still under active development,
25724 and the contents and format may change between @value{GDBN} releases.
25725 The format is expected to stabilize in the future.
25726
25727 One of the challenges of using @value{GDBN} to debug embedded systems
25728 is that there are so many minor variants of each processor
25729 architecture in use.  It is common practice for vendors to start with
25730 a standard processor core --- ARM, PowerPC, or MIPS, for example ---
25731 and then make changes to adapt it to a particular market niche.  Some
25732 architectures have hundreds of variants, available from dozens of
25733 vendors.  This leads to a number of problems:
25734
25735 @itemize @bullet
25736 @item
25737 With so many different customized processors, it is difficult for
25738 the @value{GDBN} maintainers to keep up with the changes.
25739 @item
25740 Since individual variants may have short lifetimes or limited
25741 audiences, it may not be worthwhile to carry information about every
25742 variant in the @value{GDBN} source tree.
25743 @item
25744 When @value{GDBN} does support the architecture of the embedded system
25745 at hand, the task of finding the correct architecture name to give the
25746 @command{set architecture} command can be error-prone.
25747 @end itemize
25748
25749 To address these problems, the @value{GDBN} remote protocol allows a
25750 target system to not only identify itself to @value{GDBN}, but to
25751 actually describe its own features.  This lets @value{GDBN} support
25752 processor variants it has never seen before --- to the extent that the
25753 descriptions are accurate, and that @value{GDBN} understands them.
25754
25755 @value{GDBN} must be compiled with Expat support to support XML target
25756 descriptions.  @xref{Expat}.
25757
25758 @menu
25759 * Retrieving Descriptions::         How descriptions are fetched from a target.
25760 * Target Description Format::       The contents of a target description.
25761 * Predefined Target Types::         Standard types available for target
25762                                     descriptions.
25763 * Standard Target Features::        Features @value{GDBN} knows about.
25764 @end menu
25765
25766 @node Retrieving Descriptions
25767 @section Retrieving Descriptions
25768
25769 Target descriptions can be read from the target automatically, or
25770 specified by the user manually.  The default behavior is to read the
25771 description from the target.  @value{GDBN} retrieves it via the remote
25772 protocol using @samp{qXfer} requests (@pxref{General Query Packets,
25773 qXfer}).  The @var{annex} in the @samp{qXfer} packet will be
25774 @samp{target.xml}.  The contents of the @samp{target.xml} annex are an
25775 XML document, of the form described in @ref{Target Description
25776 Format}.
25777
25778 Alternatively, you can specify a file to read for the target description.
25779 If a file is set, the target will not be queried.  The commands to
25780 specify a file are:
25781
25782 @table @code
25783 @cindex set tdesc filename
25784 @item set tdesc filename @var{path}
25785 Read the target description from @var{path}.
25786
25787 @cindex unset tdesc filename
25788 @item unset tdesc filename
25789 Do not read the XML target description from a file.  @value{GDBN}
25790 will use the description supplied by the current target.
25791
25792 @cindex show tdesc filename
25793 @item show tdesc filename
25794 Show the filename to read for a target description, if any.
25795 @end table
25796
25797
25798 @node Target Description Format
25799 @section Target Description Format
25800 @cindex target descriptions, XML format
25801
25802 A target description annex is an @uref{http://www.w3.org/XML/, XML}
25803 document which complies with the Document Type Definition provided in
25804 the @value{GDBN} sources in @file{gdb/features/gdb-target.dtd}.  This
25805 means you can use generally available tools like @command{xmllint} to
25806 check that your feature descriptions are well-formed and valid.
25807 However, to help people unfamiliar with XML write descriptions for
25808 their targets, we also describe the grammar here.
25809
25810 Target descriptions can identify the architecture of the remote target
25811 and (for some architectures) provide information about custom register
25812 sets.  @value{GDBN} can use this information to autoconfigure for your
25813 target, or to warn you if you connect to an unsupported target.
25814
25815 Here is a simple target description:
25816
25817 @smallexample
25818 <target version="1.0">
25819   <architecture>i386:x86-64</architecture>
25820 </target>
25821 @end smallexample
25822
25823 @noindent
25824 This minimal description only says that the target uses
25825 the x86-64 architecture.
25826
25827 A target description has the following overall form, with [ ] marking
25828 optional elements and @dots{} marking repeatable elements.  The elements
25829 are explained further below.
25830
25831 @smallexample
25832 <?xml version="1.0"?>
25833 <!DOCTYPE target SYSTEM "gdb-target.dtd">
25834 <target version="1.0">
25835   @r{[}@var{architecture}@r{]}
25836   @r{[}@var{feature}@dots{}@r{]}
25837 </target>
25838 @end smallexample
25839
25840 @noindent
25841 The description is generally insensitive to whitespace and line
25842 breaks, under the usual common-sense rules.  The XML version
25843 declaration and document type declaration can generally be omitted
25844 (@value{GDBN} does not require them), but specifying them may be
25845 useful for XML validation tools.  The @samp{version} attribute for
25846 @samp{<target>} may also be omitted, but we recommend
25847 including it; if future versions of @value{GDBN} use an incompatible
25848 revision of @file{gdb-target.dtd}, they will detect and report
25849 the version mismatch.
25850
25851 @subsection Inclusion
25852 @cindex target descriptions, inclusion
25853 @cindex XInclude
25854 @ifnotinfo
25855 @cindex <xi:include>
25856 @end ifnotinfo
25857
25858 It can sometimes be valuable to split a target description up into
25859 several different annexes, either for organizational purposes, or to
25860 share files between different possible target descriptions.  You can
25861 divide a description into multiple files by replacing any element of
25862 the target description with an inclusion directive of the form:
25863
25864 @smallexample
25865 <xi:include href="@var{document}"/>
25866 @end smallexample
25867
25868 @noindent
25869 When @value{GDBN} encounters an element of this form, it will retrieve
25870 the named XML @var{document}, and replace the inclusion directive with
25871 the contents of that document.  If the current description was read
25872 using @samp{qXfer}, then so will be the included document;
25873 @var{document} will be interpreted as the name of an annex.  If the
25874 current description was read from a file, @value{GDBN} will look for
25875 @var{document} as a file in the same directory where it found the
25876 original description.
25877
25878 @subsection Architecture
25879 @cindex <architecture>
25880
25881 An @samp{<architecture>} element has this form:
25882
25883 @smallexample
25884   <architecture>@var{arch}</architecture>
25885 @end smallexample
25886
25887 @var{arch} is an architecture name from the same selection
25888 accepted by @code{set architecture} (@pxref{Targets, ,Specifying a
25889 Debugging Target}).
25890
25891 @subsection Features
25892 @cindex <feature>
25893
25894 Each @samp{<feature>} describes some logical portion of the target
25895 system.  Features are currently used to describe available CPU
25896 registers and the types of their contents.  A @samp{<feature>} element
25897 has this form:
25898
25899 @smallexample
25900 <feature name="@var{name}">
25901   @r{[}@var{type}@dots{}@r{]}
25902   @var{reg}@dots{}
25903 </feature>
25904 @end smallexample
25905
25906 @noindent
25907 Each feature's name should be unique within the description.  The name
25908 of a feature does not matter unless @value{GDBN} has some special
25909 knowledge of the contents of that feature; if it does, the feature
25910 should have its standard name.  @xref{Standard Target Features}.
25911
25912 @subsection Types
25913
25914 Any register's value is a collection of bits which @value{GDBN} must
25915 interpret.  The default interpretation is a two's complement integer,
25916 but other types can be requested by name in the register description.
25917 Some predefined types are provided by @value{GDBN} (@pxref{Predefined
25918 Target Types}), and the description can define additional composite types.
25919
25920 Each type element must have an @samp{id} attribute, which gives
25921 a unique (within the containing @samp{<feature>}) name to the type.
25922 Types must be defined before they are used.
25923
25924 @cindex <vector>
25925 Some targets offer vector registers, which can be treated as arrays
25926 of scalar elements.  These types are written as @samp{<vector>} elements,
25927 specifying the array element type, @var{type}, and the number of elements,
25928 @var{count}:
25929
25930 @smallexample
25931 <vector id="@var{id}" type="@var{type}" count="@var{count}"/>
25932 @end smallexample
25933
25934 @cindex <union>
25935 If a register's value is usefully viewed in multiple ways, define it
25936 with a union type containing the useful representations.  The
25937 @samp{<union>} element contains one or more @samp{<field>} elements,
25938 each of which has a @var{name} and a @var{type}:
25939
25940 @smallexample
25941 <union id="@var{id}">
25942   <field name="@var{name}" type="@var{type}"/>
25943   @dots{}
25944 </union>
25945 @end smallexample
25946
25947 @subsection Registers
25948 @cindex <reg>
25949
25950 Each register is represented as an element with this form:
25951
25952 @smallexample
25953 <reg name="@var{name}"
25954      bitsize="@var{size}"
25955      @r{[}regnum="@var{num}"@r{]}
25956      @r{[}save-restore="@var{save-restore}"@r{]}
25957      @r{[}type="@var{type}"@r{]}
25958      @r{[}group="@var{group}"@r{]}/>
25959 @end smallexample
25960
25961 @noindent
25962 The components are as follows:
25963
25964 @table @var
25965
25966 @item name
25967 The register's name; it must be unique within the target description.
25968
25969 @item bitsize
25970 The register's size, in bits.
25971
25972 @item regnum
25973 The register's number.  If omitted, a register's number is one greater
25974 than that of the previous register (either in the current feature or in
25975 a preceeding feature); the first register in the target description
25976 defaults to zero.  This register number is used to read or write
25977 the register; e.g.@: it is used in the remote @code{p} and @code{P}
25978 packets, and registers appear in the @code{g} and @code{G} packets
25979 in order of increasing register number.
25980
25981 @item save-restore
25982 Whether the register should be preserved across inferior function
25983 calls; this must be either @code{yes} or @code{no}.  The default is
25984 @code{yes}, which is appropriate for most registers except for
25985 some system control registers; this is not related to the target's
25986 ABI.
25987
25988 @item type
25989 The type of the register.  @var{type} may be a predefined type, a type
25990 defined in the current feature, or one of the special types @code{int}
25991 and @code{float}.  @code{int} is an integer type of the correct size
25992 for @var{bitsize}, and @code{float} is a floating point type (in the
25993 architecture's normal floating point format) of the correct size for
25994 @var{bitsize}.  The default is @code{int}.
25995
25996 @item group
25997 The register group to which this register belongs.  @var{group} must
25998 be either @code{general}, @code{float}, or @code{vector}.  If no
25999 @var{group} is specified, @value{GDBN} will not display the register
26000 in @code{info registers}.
26001
26002 @end table
26003
26004 @node Predefined Target Types
26005 @section Predefined Target Types
26006 @cindex target descriptions, predefined types
26007
26008 Type definitions in the self-description can build up composite types
26009 from basic building blocks, but can not define fundamental types.  Instead,
26010 standard identifiers are provided by @value{GDBN} for the fundamental
26011 types.  The currently supported types are:
26012
26013 @table @code
26014
26015 @item int8
26016 @itemx int16
26017 @itemx int32
26018 @itemx int64
26019 Signed integer types holding the specified number of bits.
26020
26021 @item uint8
26022 @itemx uint16
26023 @itemx uint32
26024 @itemx uint64
26025 Unsigned integer types holding the specified number of bits.
26026
26027 @item code_ptr
26028 @itemx data_ptr
26029 Pointers to unspecified code and data.  The program counter and
26030 any dedicated return address register may be marked as code
26031 pointers; printing a code pointer converts it into a symbolic
26032 address.  The stack pointer and any dedicated address registers
26033 may be marked as data pointers.
26034
26035 @item ieee_single
26036 Single precision IEEE floating point.
26037
26038 @item ieee_double
26039 Double precision IEEE floating point.
26040
26041 @item arm_fpa_ext
26042 The 12-byte extended precision format used by ARM FPA registers.
26043
26044 @end table
26045
26046 @node Standard Target Features
26047 @section Standard Target Features
26048 @cindex target descriptions, standard features
26049
26050 A target description must contain either no registers or all the
26051 target's registers.  If the description contains no registers, then
26052 @value{GDBN} will assume a default register layout, selected based on
26053 the architecture.  If the description contains any registers, the
26054 default layout will not be used; the standard registers must be
26055 described in the target description, in such a way that @value{GDBN}
26056 can recognize them.
26057
26058 This is accomplished by giving specific names to feature elements
26059 which contain standard registers.  @value{GDBN} will look for features
26060 with those names and verify that they contain the expected registers;
26061 if any known feature is missing required registers, or if any required
26062 feature is missing, @value{GDBN} will reject the target
26063 description.  You can add additional registers to any of the
26064 standard features --- @value{GDBN} will display them just as if
26065 they were added to an unrecognized feature.
26066
26067 This section lists the known features and their expected contents.
26068 Sample XML documents for these features are included in the
26069 @value{GDBN} source tree, in the directory @file{gdb/features}.
26070
26071 Names recognized by @value{GDBN} should include the name of the
26072 company or organization which selected the name, and the overall
26073 architecture to which the feature applies; so e.g.@: the feature
26074 containing ARM core registers is named @samp{org.gnu.gdb.arm.core}.
26075
26076 The names of registers are not case sensitive for the purpose
26077 of recognizing standard features, but @value{GDBN} will only display
26078 registers using the capitalization used in the description.
26079
26080 @menu
26081 * ARM Features::
26082 * M68K Features::
26083 @end menu
26084
26085
26086 @node ARM Features
26087 @subsection ARM Features
26088 @cindex target descriptions, ARM features
26089
26090 The @samp{org.gnu.gdb.arm.core} feature is required for ARM targets.
26091 It should contain registers @samp{r0} through @samp{r13}, @samp{sp},
26092 @samp{lr}, @samp{pc}, and @samp{cpsr}.
26093
26094 The @samp{org.gnu.gdb.arm.fpa} feature is optional.  If present, it
26095 should contain registers @samp{f0} through @samp{f7} and @samp{fps}.
26096
26097 The @samp{org.gnu.gdb.xscale.iwmmxt} feature is optional.  If present,
26098 it should contain at least registers @samp{wR0} through @samp{wR15} and
26099 @samp{wCGR0} through @samp{wCGR3}.  The @samp{wCID}, @samp{wCon},
26100 @samp{wCSSF}, and @samp{wCASF} registers are optional.
26101
26102 @subsection MIPS Features
26103 @cindex target descriptions, MIPS features
26104
26105 The @samp{org.gnu.gdb.mips.cpu} feature is required for MIPS targets.
26106 It should contain registers @samp{r0} through @samp{r31}, @samp{lo},
26107 @samp{hi}, and @samp{pc}.  They may be 32-bit or 64-bit depending
26108 on the target.
26109
26110 The @samp{org.gnu.gdb.mips.cp0} feature is also required.  It should
26111 contain at least the @samp{status}, @samp{badvaddr}, and @samp{cause}
26112 registers.  They may be 32-bit or 64-bit depending on the target.
26113
26114 The @samp{org.gnu.gdb.mips.fpu} feature is currently required, though
26115 it may be optional in a future version of @value{GDBN}.  It should
26116 contain registers @samp{f0} through @samp{f31}, @samp{fcsr}, and
26117 @samp{fir}.  They may be 32-bit or 64-bit depending on the target.
26118
26119 The @samp{org.gnu.gdb.mips.linux} feature is optional.  It should
26120 contain a single register, @samp{restart}, which is used by the
26121 Linux kernel to control restartable syscalls.
26122
26123 @node M68K Features
26124 @subsection M68K Features
26125 @cindex target descriptions, M68K features
26126
26127 @table @code
26128 @item @samp{org.gnu.gdb.m68k.core}
26129 @itemx @samp{org.gnu.gdb.coldfire.core}
26130 @itemx @samp{org.gnu.gdb.fido.core}
26131 One of those features must be always present. 
26132 The feature that is present determines which flavor of m86k is
26133 used.  The feature that is present should contain registers
26134 @samp{d0} through @samp{d7}, @samp{a0} through @samp{a5}, @samp{fp},
26135 @samp{sp}, @samp{ps} and @samp{pc}.
26136
26137 @item @samp{org.gnu.gdb.coldfire.fp}
26138 This feature is optional.  If present, it should contain registers
26139 @samp{fp0} through @samp{fp7}, @samp{fpcontrol}, @samp{fpstatus} and
26140 @samp{fpiaddr}.
26141 @end table
26142
26143 @include gpl.texi
26144
26145 @raisesections
26146 @include fdl.texi
26147 @lowersections
26148
26149 @node Index
26150 @unnumbered Index
26151
26152 @printindex cp
26153
26154 @tex
26155 % I think something like @colophon should be in texinfo.  In the
26156 % meantime:
26157 \long\def\colophon{\hbox to0pt{}\vfill
26158 \centerline{The body of this manual is set in}
26159 \centerline{\fontname\tenrm,}
26160 \centerline{with headings in {\bf\fontname\tenbf}}
26161 \centerline{and examples in {\tt\fontname\tentt}.}
26162 \centerline{{\it\fontname\tenit\/},}
26163 \centerline{{\bf\fontname\tenbf}, and}
26164 \centerline{{\sl\fontname\tensl\/}}
26165 \centerline{are used for emphasis.}\vfill}
26166 \page\colophon
26167 % Blame: doc@cygnus.com, 1991.
26168 @end tex
26169
26170 @bye