334e5c37a4e453b6dfa483aabf28e7cff978500e
[platform/upstream/binutils.git] / gdb / doc / gdb.texinfo
1 \input texinfo      @c -*-texinfo-*-
2 @c Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998,
3 @c 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
4 @c Free Software Foundation, Inc.
5 @c
6 @c %**start of header
7 @c makeinfo ignores cmds prev to setfilename, so its arg cannot make use
8 @c of @set vars.  However, you can override filename with makeinfo -o.
9 @setfilename gdb.info
10 @c
11 @include gdb-cfg.texi
12 @c
13 @settitle Debugging with @value{GDBN}
14 @setchapternewpage odd
15 @c %**end of header
16
17 @iftex
18 @c @smallbook
19 @c @cropmarks
20 @end iftex
21
22 @finalout
23 @syncodeindex ky cp
24
25 @c readline appendices use @vindex, @findex and @ftable,
26 @c annotate.texi and gdbmi use @findex.
27 @syncodeindex vr cp
28 @syncodeindex fn cp
29
30 @c !!set GDB manual's edition---not the same as GDB version!
31 @c This is updated by GNU Press.
32 @set EDITION Ninth
33
34 @c !!set GDB edit command default editor
35 @set EDITOR /bin/ex
36
37 @c THIS MANUAL REQUIRES TEXINFO 4.0 OR LATER.
38
39 @c This is a dir.info fragment to support semi-automated addition of
40 @c manuals to an info tree.
41 @dircategory Software development
42 @direntry
43 * Gdb: (gdb).                     The GNU debugger.
44 @end direntry
45
46 @ifinfo
47 This file documents the @sc{gnu} debugger @value{GDBN}.
48
49
50 This is the @value{EDITION} Edition, of @cite{Debugging with
51 @value{GDBN}: the @sc{gnu} Source-Level Debugger} for @value{GDBN}
52 Version @value{GDBVN}.
53
54 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998,@*
55               1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006@*
56               Free Software Foundation, Inc.
57
58 Permission is granted to copy, distribute and/or modify this document
59 under the terms of the GNU Free Documentation License, Version 1.1 or
60 any later version published by the Free Software Foundation; with the
61 Invariant Sections being ``Free Software'' and ``Free Software Needs
62 Free Documentation'', with the Front-Cover Texts being ``A GNU Manual,''
63 and with the Back-Cover Texts as in (a) below.
64
65 (a) The FSF's Back-Cover Text is: ``You are free to copy and modify
66 this GNU Manual.  Buying copies from GNU Press supports the FSF in
67 developing GNU and promoting software freedom.''
68 @end ifinfo
69
70 @titlepage
71 @title Debugging with @value{GDBN}
72 @subtitle The @sc{gnu} Source-Level Debugger
73 @sp 1
74 @subtitle @value{EDITION} Edition, for @value{GDBN} version @value{GDBVN}
75 @author Richard Stallman, Roland Pesch, Stan Shebs, et al.
76 @page
77 @tex
78 {\parskip=0pt
79 \hfill (Send bugs and comments on @value{GDBN} to bug-gdb\@gnu.org.)\par
80 \hfill {\it Debugging with @value{GDBN}}\par
81 \hfill \TeX{}info \texinfoversion\par
82 }
83 @end tex
84
85 @vskip 0pt plus 1filll
86 Copyright @copyright{} 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
87 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2006 
88 Free Software Foundation, Inc.
89 @sp 2
90 Published by the Free Software Foundation @*
91 51 Franklin Street, Fifth Floor,
92 Boston, MA 02110-1301, USA@*
93 ISBN 1-882114-77-9 @*
94
95 Permission is granted to copy, distribute and/or modify this document
96 under the terms of the GNU Free Documentation License, Version 1.1 or
97 any later version published by the Free Software Foundation; with the
98 Invariant Sections being ``Free Software'' and ``Free Software Needs
99 Free Documentation'', with the Front-Cover Texts being ``A GNU Manual,''
100 and with the Back-Cover Texts as in (a) below.
101
102 (a) The FSF's Back-Cover Text is: ``You are free to copy and modify
103 this GNU Manual.  Buying copies from GNU Press supports the FSF in
104 developing GNU and promoting software freedom.''
105 @page
106 This edition of the GDB manual is dedicated to the memory of Fred
107 Fish.  Fred was a long-standing contributor to GDB and to Free
108 software in general.  We will miss him.
109 @end titlepage
110 @page
111
112 @ifnottex
113 @node Top, Summary, (dir), (dir)
114
115 @top Debugging with @value{GDBN}
116
117 This file describes @value{GDBN}, the @sc{gnu} symbolic debugger.
118
119 This is the @value{EDITION} Edition, for @value{GDBN} Version
120 @value{GDBVN}.
121
122 Copyright (C) 1988-2006 Free Software Foundation, Inc.
123
124 This edition of the GDB manual is dedicated to the memory of Fred
125 Fish.  Fred was a long-standing contributor to GDB and to Free
126 software in general.  We will miss him.
127
128 @menu
129 * Summary::                     Summary of @value{GDBN}
130 * Sample Session::              A sample @value{GDBN} session
131
132 * Invocation::                  Getting in and out of @value{GDBN}
133 * Commands::                    @value{GDBN} commands
134 * Running::                     Running programs under @value{GDBN}
135 * Stopping::                    Stopping and continuing
136 * Stack::                       Examining the stack
137 * Source::                      Examining source files
138 * Data::                        Examining data
139 * Macros::                      Preprocessor Macros
140 * Tracepoints::                 Debugging remote targets non-intrusively
141 * Overlays::                    Debugging programs that use overlays
142
143 * Languages::                   Using @value{GDBN} with different languages
144
145 * Symbols::                     Examining the symbol table
146 * Altering::                    Altering execution
147 * GDB Files::                   @value{GDBN} files
148 * Targets::                     Specifying a debugging target
149 * Remote Debugging::            Debugging remote programs
150 * Configurations::              Configuration-specific information
151 * Controlling GDB::             Controlling @value{GDBN}
152 * Sequences::                   Canned sequences of commands
153 * Interpreters::                Command Interpreters
154 * TUI::                         @value{GDBN} Text User Interface
155 * Emacs::                       Using @value{GDBN} under @sc{gnu} Emacs
156 * GDB/MI::                      @value{GDBN}'s Machine Interface.
157 * Annotations::                 @value{GDBN}'s annotation interface.
158
159 * GDB Bugs::                    Reporting bugs in @value{GDBN}
160
161 * Command Line Editing::        Command Line Editing
162 * Using History Interactively:: Using History Interactively
163 * Formatting Documentation::    How to format and print @value{GDBN} documentation
164 * Installing GDB::              Installing GDB
165 * Maintenance Commands::        Maintenance Commands
166 * Remote Protocol::             GDB Remote Serial Protocol
167 * Agent Expressions::           The GDB Agent Expression Mechanism
168 * Target Descriptions::         How targets can describe themselves to
169                                 @value{GDBN}
170 * Copying::                     GNU General Public License says
171                                 how you can copy and share GDB
172 * GNU Free Documentation License::  The license for this documentation
173 * Index::                       Index
174 @end menu
175
176 @end ifnottex
177
178 @contents
179
180 @node Summary
181 @unnumbered Summary of @value{GDBN}
182
183 The purpose of a debugger such as @value{GDBN} is to allow you to see what is
184 going on ``inside'' another program while it executes---or what another
185 program was doing at the moment it crashed.
186
187 @value{GDBN} can do four main kinds of things (plus other things in support of
188 these) to help you catch bugs in the act:
189
190 @itemize @bullet
191 @item
192 Start your program, specifying anything that might affect its behavior.
193
194 @item
195 Make your program stop on specified conditions.
196
197 @item
198 Examine what has happened, when your program has stopped.
199
200 @item
201 Change things in your program, so you can experiment with correcting the
202 effects of one bug and go on to learn about another.
203 @end itemize
204
205 You can use @value{GDBN} to debug programs written in C and C@t{++}.
206 For more information, see @ref{Supported Languages,,Supported Languages}.
207 For more information, see @ref{C,,C and C++}.
208
209 @cindex Modula-2
210 Support for Modula-2 is partial.  For information on Modula-2, see
211 @ref{Modula-2,,Modula-2}.
212
213 @cindex Pascal
214 Debugging Pascal programs which use sets, subranges, file variables, or
215 nested functions does not currently work.  @value{GDBN} does not support
216 entering expressions, printing values, or similar features using Pascal
217 syntax.
218
219 @cindex Fortran
220 @value{GDBN} can be used to debug programs written in Fortran, although
221 it may be necessary to refer to some variables with a trailing
222 underscore.
223
224 @value{GDBN} can be used to debug programs written in Objective-C,
225 using either the Apple/NeXT or the GNU Objective-C runtime.
226
227 @menu
228 * Free Software::               Freely redistributable software
229 * Contributors::                Contributors to GDB
230 @end menu
231
232 @node Free Software
233 @unnumberedsec Free Software
234
235 @value{GDBN} is @dfn{free software}, protected by the @sc{gnu}
236 General Public License
237 (GPL).  The GPL gives you the freedom to copy or adapt a licensed
238 program---but every person getting a copy also gets with it the
239 freedom to modify that copy (which means that they must get access to
240 the source code), and the freedom to distribute further copies.
241 Typical software companies use copyrights to limit your freedoms; the
242 Free Software Foundation uses the GPL to preserve these freedoms.
243
244 Fundamentally, the General Public License is a license which says that
245 you have these freedoms and that you cannot take these freedoms away
246 from anyone else.
247
248 @unnumberedsec Free Software Needs Free Documentation
249
250 The biggest deficiency in the free software community today is not in
251 the software---it is the lack of good free documentation that we can
252 include with the free software.  Many of our most important
253 programs do not come with free reference manuals and free introductory
254 texts.  Documentation is an essential part of any software package;
255 when an important free software package does not come with a free
256 manual and a free tutorial, that is a major gap.  We have many such
257 gaps today.
258
259 Consider Perl, for instance.  The tutorial manuals that people
260 normally use are non-free.  How did this come about?  Because the
261 authors of those manuals published them with restrictive terms---no
262 copying, no modification, source files not available---which exclude
263 them from the free software world.
264
265 That wasn't the first time this sort of thing happened, and it was far
266 from the last.  Many times we have heard a GNU user eagerly describe a
267 manual that he is writing, his intended contribution to the community,
268 only to learn that he had ruined everything by signing a publication
269 contract to make it non-free.
270
271 Free documentation, like free software, is a matter of freedom, not
272 price.  The problem with the non-free manual is not that publishers
273 charge a price for printed copies---that in itself is fine.  (The Free
274 Software Foundation sells printed copies of manuals, too.)  The
275 problem is the restrictions on the use of the manual.  Free manuals
276 are available in source code form, and give you permission to copy and
277 modify.  Non-free manuals do not allow this.
278
279 The criteria of freedom for a free manual are roughly the same as for
280 free software.  Redistribution (including the normal kinds of
281 commercial redistribution) must be permitted, so that the manual can
282 accompany every copy of the program, both on-line and on paper.
283
284 Permission for modification of the technical content is crucial too.
285 When people modify the software, adding or changing features, if they
286 are conscientious they will change the manual too---so they can
287 provide accurate and clear documentation for the modified program.  A
288 manual that leaves you no choice but to write a new manual to document
289 a changed version of the program is not really available to our
290 community.
291
292 Some kinds of limits on the way modification is handled are
293 acceptable.  For example, requirements to preserve the original
294 author's copyright notice, the distribution terms, or the list of
295 authors, are ok.  It is also no problem to require modified versions
296 to include notice that they were modified.  Even entire sections that
297 may not be deleted or changed are acceptable, as long as they deal
298 with nontechnical topics (like this one).  These kinds of restrictions
299 are acceptable because they don't obstruct the community's normal use
300 of the manual.
301
302 However, it must be possible to modify all the @emph{technical}
303 content of the manual, and then distribute the result in all the usual
304 media, through all the usual channels.  Otherwise, the restrictions
305 obstruct the use of the manual, it is not free, and we need another
306 manual to replace it.
307
308 Please spread the word about this issue.  Our community continues to
309 lose manuals to proprietary publishing.  If we spread the word that
310 free software needs free reference manuals and free tutorials, perhaps
311 the next person who wants to contribute by writing documentation will
312 realize, before it is too late, that only free manuals contribute to
313 the free software community.
314
315 If you are writing documentation, please insist on publishing it under
316 the GNU Free Documentation License or another free documentation
317 license.  Remember that this decision requires your approval---you
318 don't have to let the publisher decide.  Some commercial publishers
319 will use a free license if you insist, but they will not propose the
320 option; it is up to you to raise the issue and say firmly that this is
321 what you want.  If the publisher you are dealing with refuses, please
322 try other publishers.  If you're not sure whether a proposed license
323 is free, write to @email{licensing@@gnu.org}.
324
325 You can encourage commercial publishers to sell more free, copylefted
326 manuals and tutorials by buying them, and particularly by buying
327 copies from the publishers that paid for their writing or for major
328 improvements.  Meanwhile, try to avoid buying non-free documentation
329 at all.  Check the distribution terms of a manual before you buy it,
330 and insist that whoever seeks your business must respect your freedom.
331 Check the history of the book, and try to reward the publishers that
332 have paid or pay the authors to work on it.
333
334 The Free Software Foundation maintains a list of free documentation
335 published by other publishers, at
336 @url{http://www.fsf.org/doc/other-free-books.html}.
337
338 @node Contributors
339 @unnumberedsec Contributors to @value{GDBN}
340
341 Richard Stallman was the original author of @value{GDBN}, and of many
342 other @sc{gnu} programs.  Many others have contributed to its
343 development.  This section attempts to credit major contributors.  One
344 of the virtues of free software is that everyone is free to contribute
345 to it; with regret, we cannot actually acknowledge everyone here.  The
346 file @file{ChangeLog} in the @value{GDBN} distribution approximates a
347 blow-by-blow account.
348
349 Changes much prior to version 2.0 are lost in the mists of time.
350
351 @quotation
352 @emph{Plea:} Additions to this section are particularly welcome.  If you
353 or your friends (or enemies, to be evenhanded) have been unfairly
354 omitted from this list, we would like to add your names!
355 @end quotation
356
357 So that they may not regard their many labors as thankless, we
358 particularly thank those who shepherded @value{GDBN} through major
359 releases:
360 Andrew Cagney (releases 6.3, 6.2, 6.1, 6.0, 5.3, 5.2, 5.1 and 5.0);
361 Jim Blandy (release 4.18);
362 Jason Molenda (release 4.17);
363 Stan Shebs (release 4.14);
364 Fred Fish (releases 4.16, 4.15, 4.13, 4.12, 4.11, 4.10, and 4.9);
365 Stu Grossman and John Gilmore (releases 4.8, 4.7, 4.6, 4.5, and 4.4);
366 John Gilmore (releases 4.3, 4.2, 4.1, 4.0, and 3.9);
367 Jim Kingdon (releases 3.5, 3.4, and 3.3);
368 and Randy Smith (releases 3.2, 3.1, and 3.0).
369
370 Richard Stallman, assisted at various times by Peter TerMaat, Chris
371 Hanson, and Richard Mlynarik, handled releases through 2.8.
372
373 Michael Tiemann is the author of most of the @sc{gnu} C@t{++} support
374 in @value{GDBN}, with significant additional contributions from Per
375 Bothner and Daniel Berlin.  James Clark wrote the @sc{gnu} C@t{++}
376 demangler.  Early work on C@t{++} was by Peter TerMaat (who also did
377 much general update work leading to release 3.0).
378
379 @value{GDBN} uses the BFD subroutine library to examine multiple
380 object-file formats; BFD was a joint project of David V.
381 Henkel-Wallace, Rich Pixley, Steve Chamberlain, and John Gilmore.
382
383 David Johnson wrote the original COFF support; Pace Willison did
384 the original support for encapsulated COFF.
385
386 Brent Benson of Harris Computer Systems contributed DWARF 2 support.
387
388 Adam de Boor and Bradley Davis contributed the ISI Optimum V support.
389 Per Bothner, Noboyuki Hikichi, and Alessandro Forin contributed MIPS
390 support.
391 Jean-Daniel Fekete contributed Sun 386i support.
392 Chris Hanson improved the HP9000 support.
393 Noboyuki Hikichi and Tomoyuki Hasei contributed Sony/News OS 3 support.
394 David Johnson contributed Encore Umax support.
395 Jyrki Kuoppala contributed Altos 3068 support.
396 Jeff Law contributed HP PA and SOM support.
397 Keith Packard contributed NS32K support.
398 Doug Rabson contributed Acorn Risc Machine support.
399 Bob Rusk contributed Harris Nighthawk CX-UX support.
400 Chris Smith contributed Convex support (and Fortran debugging).
401 Jonathan Stone contributed Pyramid support.
402 Michael Tiemann contributed SPARC support.
403 Tim Tucker contributed support for the Gould NP1 and Gould Powernode.
404 Pace Willison contributed Intel 386 support.
405 Jay Vosburgh contributed Symmetry support.
406 Marko Mlinar contributed OpenRISC 1000 support.
407
408 Andreas Schwab contributed M68K @sc{gnu}/Linux support.
409
410 Rich Schaefer and Peter Schauer helped with support of SunOS shared
411 libraries.
412
413 Jay Fenlason and Roland McGrath ensured that @value{GDBN} and GAS agree
414 about several machine instruction sets.
415
416 Patrick Duval, Ted Goldstein, Vikram Koka and Glenn Engel helped develop
417 remote debugging.  Intel Corporation, Wind River Systems, AMD, and ARM
418 contributed remote debugging modules for the i960, VxWorks, A29K UDI,
419 and RDI targets, respectively.
420
421 Brian Fox is the author of the readline libraries providing
422 command-line editing and command history.
423
424 Andrew Beers of SUNY Buffalo wrote the language-switching code, the
425 Modula-2 support, and contributed the Languages chapter of this manual.
426
427 Fred Fish wrote most of the support for Unix System Vr4.
428 He also enhanced the command-completion support to cover C@t{++} overloaded
429 symbols.
430
431 Hitachi America (now Renesas America), Ltd. sponsored the support for
432 H8/300, H8/500, and Super-H processors.
433
434 NEC sponsored the support for the v850, Vr4xxx, and Vr5xxx processors.
435
436 Mitsubishi (now Renesas) sponsored the support for D10V, D30V, and M32R/D
437 processors.
438
439 Toshiba sponsored the support for the TX39 Mips processor.
440
441 Matsushita sponsored the support for the MN10200 and MN10300 processors.
442
443 Fujitsu sponsored the support for SPARClite and FR30 processors.
444
445 Kung Hsu, Jeff Law, and Rick Sladkey added support for hardware
446 watchpoints.
447
448 Michael Snyder added support for tracepoints.
449
450 Stu Grossman wrote gdbserver.
451
452 Jim Kingdon, Peter Schauer, Ian Taylor, and Stu Grossman made
453 nearly innumerable bug fixes and cleanups throughout @value{GDBN}.
454
455 The following people at the Hewlett-Packard Company contributed
456 support for the PA-RISC 2.0 architecture, HP-UX 10.20, 10.30, and 11.0
457 (narrow mode), HP's implementation of kernel threads, HP's aC@t{++}
458 compiler, and the Text User Interface (nee Terminal User Interface):
459 Ben Krepp, Richard Title, John Bishop, Susan Macchia, Kathy Mann,
460 Satish Pai, India Paul, Steve Rehrauer, and Elena Zannoni.  Kim Haase
461 provided HP-specific information in this manual.
462
463 DJ Delorie ported @value{GDBN} to MS-DOS, for the DJGPP project.
464 Robert Hoehne made significant contributions to the DJGPP port.
465
466 Cygnus Solutions has sponsored @value{GDBN} maintenance and much of its
467 development since 1991.  Cygnus engineers who have worked on @value{GDBN}
468 fulltime include Mark Alexander, Jim Blandy, Per Bothner, Kevin
469 Buettner, Edith Epstein, Chris Faylor, Fred Fish, Martin Hunt, Jim
470 Ingham, John Gilmore, Stu Grossman, Kung Hsu, Jim Kingdon, John Metzler,
471 Fernando Nasser, Geoffrey Noer, Dawn Perchik, Rich Pixley, Zdenek
472 Radouch, Keith Seitz, Stan Shebs, David Taylor, and Elena Zannoni.  In
473 addition, Dave Brolley, Ian Carmichael, Steve Chamberlain, Nick Clifton,
474 JT Conklin, Stan Cox, DJ Delorie, Ulrich Drepper, Frank Eigler, Doug
475 Evans, Sean Fagan, David Henkel-Wallace, Richard Henderson, Jeff
476 Holcomb, Jeff Law, Jim Lemke, Tom Lord, Bob Manson, Michael Meissner,
477 Jason Merrill, Catherine Moore, Drew Moseley, Ken Raeburn, Gavin
478 Romig-Koch, Rob Savoye, Jamie Smith, Mike Stump, Ian Taylor, Angela
479 Thomas, Michael Tiemann, Tom Tromey, Ron Unrau, Jim Wilson, and David
480 Zuhn have made contributions both large and small.
481
482 Andrew Cagney, Fernando Nasser, and Elena Zannoni, while working for
483 Cygnus Solutions, implemented the original @sc{gdb/mi} interface.
484
485 Jim Blandy added support for preprocessor macros, while working for Red
486 Hat.
487
488 Andrew Cagney designed @value{GDBN}'s architecture vector.  Many
489 people including Andrew Cagney, Stephane Carrez, Randolph Chung, Nick
490 Duffek, Richard Henderson, Mark Kettenis, Grace Sainsbury, Kei
491 Sakamoto, Yoshinori Sato, Michael Snyder, Andreas Schwab, Jason
492 Thorpe, Corinna Vinschen, Ulrich Weigand, and Elena Zannoni, helped
493 with the migration of old architectures to this new framework.
494
495 Andrew Cagney completely re-designed and re-implemented @value{GDBN}'s
496 unwinder framework, this consisting of a fresh new design featuring
497 frame IDs, independent frame sniffers, and the sentinel frame.  Mark
498 Kettenis implemented the @sc{dwarf 2} unwinder, Jeff Johnston the
499 libunwind unwinder, and Andrew Cagney the dummy, sentinel, tramp, and
500 trad unwinders.  The architecture-specific changes, each involving a
501 complete rewrite of the architecture's frame code, were carried out by
502 Jim Blandy, Joel Brobecker, Kevin Buettner, Andrew Cagney, Stephane
503 Carrez, Randolph Chung, Orjan Friberg, Richard Henderson, Daniel
504 Jacobowitz, Jeff Johnston, Mark Kettenis, Theodore A. Roth, Kei
505 Sakamoto, Yoshinori Sato, Michael Snyder, Corinna Vinschen, and Ulrich
506 Weigand.
507
508 Christian Zankel, Ross Morley, Bob Wilson, and Maxim Grigoriev from
509 Tensilica, Inc.@: contributed support for Xtensa processors.  Others
510 who have worked on the Xtensa port of @value{GDBN} in the past include
511 Steve Tjiang, John Newlin, and Scott Foehner.
512
513 @node Sample Session
514 @chapter A Sample @value{GDBN} Session
515
516 You can use this manual at your leisure to read all about @value{GDBN}.
517 However, a handful of commands are enough to get started using the
518 debugger.  This chapter illustrates those commands.
519
520 @iftex
521 In this sample session, we emphasize user input like this: @b{input},
522 to make it easier to pick out from the surrounding output.
523 @end iftex
524
525 @c FIXME: this example may not be appropriate for some configs, where
526 @c FIXME...primary interest is in remote use.
527
528 One of the preliminary versions of @sc{gnu} @code{m4} (a generic macro
529 processor) exhibits the following bug: sometimes, when we change its
530 quote strings from the default, the commands used to capture one macro
531 definition within another stop working.  In the following short @code{m4}
532 session, we define a macro @code{foo} which expands to @code{0000}; we
533 then use the @code{m4} built-in @code{defn} to define @code{bar} as the
534 same thing.  However, when we change the open quote string to
535 @code{<QUOTE>} and the close quote string to @code{<UNQUOTE>}, the same
536 procedure fails to define a new synonym @code{baz}:
537
538 @smallexample
539 $ @b{cd gnu/m4}
540 $ @b{./m4}
541 @b{define(foo,0000)}
542
543 @b{foo}
544 0000
545 @b{define(bar,defn(`foo'))}
546
547 @b{bar}
548 0000
549 @b{changequote(<QUOTE>,<UNQUOTE>)}
550
551 @b{define(baz,defn(<QUOTE>foo<UNQUOTE>))}
552 @b{baz}
553 @b{Ctrl-d}
554 m4: End of input: 0: fatal error: EOF in string
555 @end smallexample
556
557 @noindent
558 Let us use @value{GDBN} to try to see what is going on.
559
560 @smallexample
561 $ @b{@value{GDBP} m4}
562 @c FIXME: this falsifies the exact text played out, to permit smallbook
563 @c FIXME... format to come out better.
564 @value{GDBN} is free software and you are welcome to distribute copies
565  of it under certain conditions; type "show copying" to see
566  the conditions.
567 There is absolutely no warranty for @value{GDBN}; type "show warranty"
568  for details.
569
570 @value{GDBN} @value{GDBVN}, Copyright 1999 Free Software Foundation, Inc...
571 (@value{GDBP})
572 @end smallexample
573
574 @noindent
575 @value{GDBN} reads only enough symbol data to know where to find the
576 rest when needed; as a result, the first prompt comes up very quickly.
577 We now tell @value{GDBN} to use a narrower display width than usual, so
578 that examples fit in this manual.
579
580 @smallexample
581 (@value{GDBP}) @b{set width 70}
582 @end smallexample
583
584 @noindent
585 We need to see how the @code{m4} built-in @code{changequote} works.
586 Having looked at the source, we know the relevant subroutine is
587 @code{m4_changequote}, so we set a breakpoint there with the @value{GDBN}
588 @code{break} command.
589
590 @smallexample
591 (@value{GDBP}) @b{break m4_changequote}
592 Breakpoint 1 at 0x62f4: file builtin.c, line 879.
593 @end smallexample
594
595 @noindent
596 Using the @code{run} command, we start @code{m4} running under @value{GDBN}
597 control; as long as control does not reach the @code{m4_changequote}
598 subroutine, the program runs as usual:
599
600 @smallexample
601 (@value{GDBP}) @b{run}
602 Starting program: /work/Editorial/gdb/gnu/m4/m4
603 @b{define(foo,0000)}
604
605 @b{foo}
606 0000
607 @end smallexample
608
609 @noindent
610 To trigger the breakpoint, we call @code{changequote}.  @value{GDBN}
611 suspends execution of @code{m4}, displaying information about the
612 context where it stops.
613
614 @smallexample
615 @b{changequote(<QUOTE>,<UNQUOTE>)}
616
617 Breakpoint 1, m4_changequote (argc=3, argv=0x33c70)
618     at builtin.c:879
619 879         if (bad_argc(TOKEN_DATA_TEXT(argv[0]),argc,1,3))
620 @end smallexample
621
622 @noindent
623 Now we use the command @code{n} (@code{next}) to advance execution to
624 the next line of the current function.
625
626 @smallexample
627 (@value{GDBP}) @b{n}
628 882         set_quotes((argc >= 2) ? TOKEN_DATA_TEXT(argv[1])\
629  : nil,
630 @end smallexample
631
632 @noindent
633 @code{set_quotes} looks like a promising subroutine.  We can go into it
634 by using the command @code{s} (@code{step}) instead of @code{next}.
635 @code{step} goes to the next line to be executed in @emph{any}
636 subroutine, so it steps into @code{set_quotes}.
637
638 @smallexample
639 (@value{GDBP}) @b{s}
640 set_quotes (lq=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")
641     at input.c:530
642 530         if (lquote != def_lquote)
643 @end smallexample
644
645 @noindent
646 The display that shows the subroutine where @code{m4} is now
647 suspended (and its arguments) is called a stack frame display.  It
648 shows a summary of the stack.  We can use the @code{backtrace}
649 command (which can also be spelled @code{bt}), to see where we are
650 in the stack as a whole: the @code{backtrace} command displays a
651 stack frame for each active subroutine.
652
653 @smallexample
654 (@value{GDBP}) @b{bt}
655 #0  set_quotes (lq=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")
656     at input.c:530
657 #1  0x6344 in m4_changequote (argc=3, argv=0x33c70)
658     at builtin.c:882
659 #2  0x8174 in expand_macro (sym=0x33320) at macro.c:242
660 #3  0x7a88 in expand_token (obs=0x0, t=209696, td=0xf7fffa30)
661     at macro.c:71
662 #4  0x79dc in expand_input () at macro.c:40
663 #5  0x2930 in main (argc=0, argv=0xf7fffb20) at m4.c:195
664 @end smallexample
665
666 @noindent
667 We step through a few more lines to see what happens.  The first two
668 times, we can use @samp{s}; the next two times we use @code{n} to avoid
669 falling into the @code{xstrdup} subroutine.
670
671 @smallexample
672 (@value{GDBP}) @b{s}
673 0x3b5c  532         if (rquote != def_rquote)
674 (@value{GDBP}) @b{s}
675 0x3b80  535         lquote = (lq == nil || *lq == '\0') ?  \
676 def_lquote : xstrdup(lq);
677 (@value{GDBP}) @b{n}
678 536         rquote = (rq == nil || *rq == '\0') ? def_rquote\
679  : xstrdup(rq);
680 (@value{GDBP}) @b{n}
681 538         len_lquote = strlen(rquote);
682 @end smallexample
683
684 @noindent
685 The last line displayed looks a little odd; we can examine the variables
686 @code{lquote} and @code{rquote} to see if they are in fact the new left
687 and right quotes we specified.  We use the command @code{p}
688 (@code{print}) to see their values.
689
690 @smallexample
691 (@value{GDBP}) @b{p lquote}
692 $1 = 0x35d40 "<QUOTE>"
693 (@value{GDBP}) @b{p rquote}
694 $2 = 0x35d50 "<UNQUOTE>"
695 @end smallexample
696
697 @noindent
698 @code{lquote} and @code{rquote} are indeed the new left and right quotes.
699 To look at some context, we can display ten lines of source
700 surrounding the current line with the @code{l} (@code{list}) command.
701
702 @smallexample
703 (@value{GDBP}) @b{l}
704 533             xfree(rquote);
705 534
706 535         lquote = (lq == nil || *lq == '\0') ? def_lquote\
707  : xstrdup (lq);
708 536         rquote = (rq == nil || *rq == '\0') ? def_rquote\
709  : xstrdup (rq);
710 537
711 538         len_lquote = strlen(rquote);
712 539         len_rquote = strlen(lquote);
713 540     @}
714 541
715 542     void
716 @end smallexample
717
718 @noindent
719 Let us step past the two lines that set @code{len_lquote} and
720 @code{len_rquote}, and then examine the values of those variables.
721
722 @smallexample
723 (@value{GDBP}) @b{n}
724 539         len_rquote = strlen(lquote);
725 (@value{GDBP}) @b{n}
726 540     @}
727 (@value{GDBP}) @b{p len_lquote}
728 $3 = 9
729 (@value{GDBP}) @b{p len_rquote}
730 $4 = 7
731 @end smallexample
732
733 @noindent
734 That certainly looks wrong, assuming @code{len_lquote} and
735 @code{len_rquote} are meant to be the lengths of @code{lquote} and
736 @code{rquote} respectively.  We can set them to better values using
737 the @code{p} command, since it can print the value of
738 any expression---and that expression can include subroutine calls and
739 assignments.
740
741 @smallexample
742 (@value{GDBP}) @b{p len_lquote=strlen(lquote)}
743 $5 = 7
744 (@value{GDBP}) @b{p len_rquote=strlen(rquote)}
745 $6 = 9
746 @end smallexample
747
748 @noindent
749 Is that enough to fix the problem of using the new quotes with the
750 @code{m4} built-in @code{defn}?  We can allow @code{m4} to continue
751 executing with the @code{c} (@code{continue}) command, and then try the
752 example that caused trouble initially:
753
754 @smallexample
755 (@value{GDBP}) @b{c}
756 Continuing.
757
758 @b{define(baz,defn(<QUOTE>foo<UNQUOTE>))}
759
760 baz
761 0000
762 @end smallexample
763
764 @noindent
765 Success!  The new quotes now work just as well as the default ones.  The
766 problem seems to have been just the two typos defining the wrong
767 lengths.  We allow @code{m4} exit by giving it an EOF as input:
768
769 @smallexample
770 @b{Ctrl-d}
771 Program exited normally.
772 @end smallexample
773
774 @noindent
775 The message @samp{Program exited normally.} is from @value{GDBN}; it
776 indicates @code{m4} has finished executing.  We can end our @value{GDBN}
777 session with the @value{GDBN} @code{quit} command.
778
779 @smallexample
780 (@value{GDBP}) @b{quit}
781 @end smallexample
782
783 @node Invocation
784 @chapter Getting In and Out of @value{GDBN}
785
786 This chapter discusses how to start @value{GDBN}, and how to get out of it.
787 The essentials are:
788 @itemize @bullet
789 @item
790 type @samp{@value{GDBP}} to start @value{GDBN}.
791 @item
792 type @kbd{quit} or @kbd{Ctrl-d} to exit.
793 @end itemize
794
795 @menu
796 * Invoking GDB::                How to start @value{GDBN}
797 * Quitting GDB::                How to quit @value{GDBN}
798 * Shell Commands::              How to use shell commands inside @value{GDBN}
799 * Logging Output::              How to log @value{GDBN}'s output to a file
800 @end menu
801
802 @node Invoking GDB
803 @section Invoking @value{GDBN}
804
805 Invoke @value{GDBN} by running the program @code{@value{GDBP}}.  Once started,
806 @value{GDBN} reads commands from the terminal until you tell it to exit.
807
808 You can also run @code{@value{GDBP}} with a variety of arguments and options,
809 to specify more of your debugging environment at the outset.
810
811 The command-line options described here are designed
812 to cover a variety of situations; in some environments, some of these
813 options may effectively be unavailable.
814
815 The most usual way to start @value{GDBN} is with one argument,
816 specifying an executable program:
817
818 @smallexample
819 @value{GDBP} @var{program}
820 @end smallexample
821
822 @noindent
823 You can also start with both an executable program and a core file
824 specified:
825
826 @smallexample
827 @value{GDBP} @var{program} @var{core}
828 @end smallexample
829
830 You can, instead, specify a process ID as a second argument, if you want
831 to debug a running process:
832
833 @smallexample
834 @value{GDBP} @var{program} 1234
835 @end smallexample
836
837 @noindent
838 would attach @value{GDBN} to process @code{1234} (unless you also have a file
839 named @file{1234}; @value{GDBN} does check for a core file first).
840
841 Taking advantage of the second command-line argument requires a fairly
842 complete operating system; when you use @value{GDBN} as a remote
843 debugger attached to a bare board, there may not be any notion of
844 ``process'', and there is often no way to get a core dump.  @value{GDBN}
845 will warn you if it is unable to attach or to read core dumps.
846
847 You can optionally have @code{@value{GDBP}} pass any arguments after the
848 executable file to the inferior using @code{--args}.  This option stops
849 option processing.
850 @smallexample
851 @value{GDBP} --args gcc -O2 -c foo.c
852 @end smallexample
853 This will cause @code{@value{GDBP}} to debug @code{gcc}, and to set
854 @code{gcc}'s command-line arguments (@pxref{Arguments}) to @samp{-O2 -c foo.c}.
855
856 You can run @code{@value{GDBP}} without printing the front material, which describes
857 @value{GDBN}'s non-warranty, by specifying @code{-silent}:
858
859 @smallexample
860 @value{GDBP} -silent
861 @end smallexample
862
863 @noindent
864 You can further control how @value{GDBN} starts up by using command-line
865 options.  @value{GDBN} itself can remind you of the options available.
866
867 @noindent
868 Type
869
870 @smallexample
871 @value{GDBP} -help
872 @end smallexample
873
874 @noindent
875 to display all available options and briefly describe their use
876 (@samp{@value{GDBP} -h} is a shorter equivalent).
877
878 All options and command line arguments you give are processed
879 in sequential order.  The order makes a difference when the
880 @samp{-x} option is used.
881
882
883 @menu
884 * File Options::                Choosing files
885 * Mode Options::                Choosing modes
886 * Startup::                     What @value{GDBN} does during startup
887 @end menu
888
889 @node File Options
890 @subsection Choosing Files
891
892 When @value{GDBN} starts, it reads any arguments other than options as
893 specifying an executable file and core file (or process ID).  This is
894 the same as if the arguments were specified by the @samp{-se} and
895 @samp{-c} (or @samp{-p}) options respectively.  (@value{GDBN} reads the
896 first argument that does not have an associated option flag as
897 equivalent to the @samp{-se} option followed by that argument; and the
898 second argument that does not have an associated option flag, if any, as
899 equivalent to the @samp{-c}/@samp{-p} option followed by that argument.)
900 If the second argument begins with a decimal digit, @value{GDBN} will
901 first attempt to attach to it as a process, and if that fails, attempt
902 to open it as a corefile.  If you have a corefile whose name begins with
903 a digit, you can prevent @value{GDBN} from treating it as a pid by
904 prefixing it with @file{./}, e.g.@: @file{./12345}.
905
906 If @value{GDBN} has not been configured to included core file support,
907 such as for most embedded targets, then it will complain about a second
908 argument and ignore it.
909
910 Many options have both long and short forms; both are shown in the
911 following list.  @value{GDBN} also recognizes the long forms if you truncate
912 them, so long as enough of the option is present to be unambiguous.
913 (If you prefer, you can flag option arguments with @samp{--} rather
914 than @samp{-}, though we illustrate the more usual convention.)
915
916 @c NOTE: the @cindex entries here use double dashes ON PURPOSE.  This
917 @c way, both those who look for -foo and --foo in the index, will find
918 @c it.
919
920 @table @code
921 @item -symbols @var{file}
922 @itemx -s @var{file}
923 @cindex @code{--symbols}
924 @cindex @code{-s}
925 Read symbol table from file @var{file}.
926
927 @item -exec @var{file}
928 @itemx -e @var{file}
929 @cindex @code{--exec}
930 @cindex @code{-e}
931 Use file @var{file} as the executable file to execute when appropriate,
932 and for examining pure data in conjunction with a core dump.
933
934 @item -se @var{file}
935 @cindex @code{--se}
936 Read symbol table from file @var{file} and use it as the executable
937 file.
938
939 @item -core @var{file}
940 @itemx -c @var{file}
941 @cindex @code{--core}
942 @cindex @code{-c}
943 Use file @var{file} as a core dump to examine.
944
945 @item -c @var{number}
946 @item -pid @var{number}
947 @itemx -p @var{number}
948 @cindex @code{--pid}
949 @cindex @code{-p}
950 Connect to process ID @var{number}, as with the @code{attach} command.
951 If there is no such process, @value{GDBN} will attempt to open a core
952 file named @var{number}.
953
954 @item -command @var{file}
955 @itemx -x @var{file}
956 @cindex @code{--command}
957 @cindex @code{-x}
958 Execute @value{GDBN} commands from file @var{file}.  @xref{Command
959 Files,, Command files}.
960
961 @item -eval-command @var{command}
962 @itemx -ex @var{command}
963 @cindex @code{--eval-command}
964 @cindex @code{-ex}
965 Execute a single @value{GDBN} command.
966
967 This option may be used multiple times to call multiple commands.  It may
968 also be interleaved with @samp{-command} as required.
969
970 @smallexample
971 @value{GDBP} -ex 'target sim' -ex 'load' \
972    -x setbreakpoints -ex 'run' a.out
973 @end smallexample
974
975 @item -directory @var{directory}
976 @itemx -d @var{directory}
977 @cindex @code{--directory}
978 @cindex @code{-d}
979 Add @var{directory} to the path to search for source and script files.
980
981 @item -r
982 @itemx -readnow
983 @cindex @code{--readnow}
984 @cindex @code{-r}
985 Read each symbol file's entire symbol table immediately, rather than
986 the default, which is to read it incrementally as it is needed.
987 This makes startup slower, but makes future operations faster.
988
989 @end table
990
991 @node Mode Options
992 @subsection Choosing Modes
993
994 You can run @value{GDBN} in various alternative modes---for example, in
995 batch mode or quiet mode.
996
997 @table @code
998 @item -nx
999 @itemx -n
1000 @cindex @code{--nx}
1001 @cindex @code{-n}
1002 Do not execute commands found in any initialization files.  Normally,
1003 @value{GDBN} executes the commands in these files after all the command
1004 options and arguments have been processed.  @xref{Command Files,,Command
1005 Files}.
1006
1007 @item -quiet
1008 @itemx -silent
1009 @itemx -q
1010 @cindex @code{--quiet}
1011 @cindex @code{--silent}
1012 @cindex @code{-q}
1013 ``Quiet''.  Do not print the introductory and copyright messages.  These
1014 messages are also suppressed in batch mode.
1015
1016 @item -batch
1017 @cindex @code{--batch}
1018 Run in batch mode.  Exit with status @code{0} after processing all the
1019 command files specified with @samp{-x} (and all commands from
1020 initialization files, if not inhibited with @samp{-n}).  Exit with
1021 nonzero status if an error occurs in executing the @value{GDBN} commands
1022 in the command files.
1023
1024 Batch mode may be useful for running @value{GDBN} as a filter, for
1025 example to download and run a program on another computer; in order to
1026 make this more useful, the message
1027
1028 @smallexample
1029 Program exited normally.
1030 @end smallexample
1031
1032 @noindent
1033 (which is ordinarily issued whenever a program running under
1034 @value{GDBN} control terminates) is not issued when running in batch
1035 mode.
1036
1037 @item -batch-silent
1038 @cindex @code{--batch-silent}
1039 Run in batch mode exactly like @samp{-batch}, but totally silently.  All
1040 @value{GDBN} output to @code{stdout} is prevented (@code{stderr} is
1041 unaffected).  This is much quieter than @samp{-silent} and would be useless
1042 for an interactive session.
1043
1044 This is particularly useful when using targets that give @samp{Loading section}
1045 messages, for example.
1046
1047 Note that targets that give their output via @value{GDBN}, as opposed to
1048 writing directly to @code{stdout}, will also be made silent.
1049
1050 @item -return-child-result
1051 @cindex @code{--return-child-result}
1052 The return code from @value{GDBN} will be the return code from the child
1053 process (the process being debugged), with the following exceptions:
1054
1055 @itemize @bullet
1056 @item
1057 @value{GDBN} exits abnormally.  E.g., due to an incorrect argument or an
1058 internal error.  In this case the exit code is the same as it would have been
1059 without @samp{-return-child-result}.
1060 @item
1061 The user quits with an explicit value.  E.g., @samp{quit 1}.
1062 @item
1063 The child process never runs, or is not allowed to terminate, in which case
1064 the exit code will be -1.
1065 @end itemize
1066
1067 This option is useful in conjunction with @samp{-batch} or @samp{-batch-silent},
1068 when @value{GDBN} is being used as a remote program loader or simulator
1069 interface.
1070
1071 @item -nowindows
1072 @itemx -nw
1073 @cindex @code{--nowindows}
1074 @cindex @code{-nw}
1075 ``No windows''.  If @value{GDBN} comes with a graphical user interface
1076 (GUI) built in, then this option tells @value{GDBN} to only use the command-line
1077 interface.  If no GUI is available, this option has no effect.
1078
1079 @item -windows
1080 @itemx -w
1081 @cindex @code{--windows}
1082 @cindex @code{-w}
1083 If @value{GDBN} includes a GUI, then this option requires it to be
1084 used if possible.
1085
1086 @item -cd @var{directory}
1087 @cindex @code{--cd}
1088 Run @value{GDBN} using @var{directory} as its working directory,
1089 instead of the current directory.
1090
1091 @item -fullname
1092 @itemx -f
1093 @cindex @code{--fullname}
1094 @cindex @code{-f}
1095 @sc{gnu} Emacs sets this option when it runs @value{GDBN} as a
1096 subprocess.  It tells @value{GDBN} to output the full file name and line
1097 number in a standard, recognizable fashion each time a stack frame is
1098 displayed (which includes each time your program stops).  This
1099 recognizable format looks like two @samp{\032} characters, followed by
1100 the file name, line number and character position separated by colons,
1101 and a newline.  The Emacs-to-@value{GDBN} interface program uses the two
1102 @samp{\032} characters as a signal to display the source code for the
1103 frame.
1104
1105 @item -epoch
1106 @cindex @code{--epoch}
1107 The Epoch Emacs-@value{GDBN} interface sets this option when it runs
1108 @value{GDBN} as a subprocess.  It tells @value{GDBN} to modify its print
1109 routines so as to allow Epoch to display values of expressions in a
1110 separate window.
1111
1112 @item -annotate @var{level}
1113 @cindex @code{--annotate}
1114 This option sets the @dfn{annotation level} inside @value{GDBN}.  Its
1115 effect is identical to using @samp{set annotate @var{level}}
1116 (@pxref{Annotations}).  The annotation @var{level} controls how much
1117 information @value{GDBN} prints together with its prompt, values of
1118 expressions, source lines, and other types of output.  Level 0 is the
1119 normal, level 1 is for use when @value{GDBN} is run as a subprocess of
1120 @sc{gnu} Emacs, level 3 is the maximum annotation suitable for programs
1121 that control @value{GDBN}, and level 2 has been deprecated.
1122
1123 The annotation mechanism has largely been superseded by @sc{gdb/mi}
1124 (@pxref{GDB/MI}).
1125
1126 @item --args
1127 @cindex @code{--args}
1128 Change interpretation of command line so that arguments following the
1129 executable file are passed as command line arguments to the inferior.
1130 This option stops option processing.
1131
1132 @item -baud @var{bps}
1133 @itemx -b @var{bps}
1134 @cindex @code{--baud}
1135 @cindex @code{-b}
1136 Set the line speed (baud rate or bits per second) of any serial
1137 interface used by @value{GDBN} for remote debugging.
1138
1139 @item -l @var{timeout}
1140 @cindex @code{-l}
1141 Set the timeout (in seconds) of any communication used by @value{GDBN}
1142 for remote debugging.
1143
1144 @item -tty @var{device}
1145 @itemx -t @var{device}
1146 @cindex @code{--tty}
1147 @cindex @code{-t}
1148 Run using @var{device} for your program's standard input and output.
1149 @c FIXME: kingdon thinks there is more to -tty.  Investigate.
1150
1151 @c resolve the situation of these eventually
1152 @item -tui
1153 @cindex @code{--tui}
1154 Activate the @dfn{Text User Interface} when starting.  The Text User
1155 Interface manages several text windows on the terminal, showing
1156 source, assembly, registers and @value{GDBN} command outputs
1157 (@pxref{TUI, ,@value{GDBN} Text User Interface}).  Alternatively, the
1158 Text User Interface can be enabled by invoking the program
1159 @samp{@value{GDBTUI}}.  Do not use this option if you run @value{GDBN} from
1160 Emacs (@pxref{Emacs, ,Using @value{GDBN} under @sc{gnu} Emacs}).
1161
1162 @c @item -xdb
1163 @c @cindex @code{--xdb}
1164 @c Run in XDB compatibility mode, allowing the use of certain XDB commands.
1165 @c For information, see the file @file{xdb_trans.html}, which is usually
1166 @c installed in the directory @code{/opt/langtools/wdb/doc} on HP-UX
1167 @c systems.
1168
1169 @item -interpreter @var{interp}
1170 @cindex @code{--interpreter}
1171 Use the interpreter @var{interp} for interface with the controlling
1172 program or device.  This option is meant to be set by programs which
1173 communicate with @value{GDBN} using it as a back end.
1174 @xref{Interpreters, , Command Interpreters}.
1175
1176 @samp{--interpreter=mi} (or @samp{--interpreter=mi2}) causes
1177 @value{GDBN} to use the @dfn{@sc{gdb/mi} interface} (@pxref{GDB/MI, ,
1178 The @sc{gdb/mi} Interface}) included since @value{GDBN} version 6.0.  The
1179 previous @sc{gdb/mi} interface, included in @value{GDBN} version 5.3 and
1180 selected with @samp{--interpreter=mi1}, is deprecated.  Earlier
1181 @sc{gdb/mi} interfaces are no longer supported.
1182
1183 @item -write
1184 @cindex @code{--write}
1185 Open the executable and core files for both reading and writing.  This
1186 is equivalent to the @samp{set write on} command inside @value{GDBN}
1187 (@pxref{Patching}).
1188
1189 @item -statistics
1190 @cindex @code{--statistics}
1191 This option causes @value{GDBN} to print statistics about time and
1192 memory usage after it completes each command and returns to the prompt.
1193
1194 @item -version
1195 @cindex @code{--version}
1196 This option causes @value{GDBN} to print its version number and
1197 no-warranty blurb, and exit.
1198
1199 @end table
1200
1201 @node Startup
1202 @subsection What @value{GDBN} Does During Startup
1203 @cindex @value{GDBN} startup
1204
1205 Here's the description of what @value{GDBN} does during session startup:
1206
1207 @enumerate
1208 @item
1209 Sets up the command interpreter as specified by the command line
1210 (@pxref{Mode Options, interpreter}).
1211
1212 @item
1213 @cindex init file
1214 Reads the @dfn{init file} (if any) in your home directory@footnote{On
1215 DOS/Windows systems, the home directory is the one pointed to by the
1216 @code{HOME} environment variable.} and executes all the commands in
1217 that file.
1218
1219 @item
1220 Processes command line options and operands.
1221
1222 @item
1223 Reads and executes the commands from init file (if any) in the current
1224 working directory.  This is only done if the current directory is
1225 different from your home directory.  Thus, you can have more than one
1226 init file, one generic in your home directory, and another, specific
1227 to the program you are debugging, in the directory where you invoke
1228 @value{GDBN}.
1229
1230 @item
1231 Reads command files specified by the @samp{-x} option.  @xref{Command
1232 Files}, for more details about @value{GDBN} command files.
1233
1234 @item
1235 Reads the command history recorded in the @dfn{history file}.
1236 @xref{Command History}, for more details about the command history and the
1237 files where @value{GDBN} records it.
1238 @end enumerate
1239
1240 Init files use the same syntax as @dfn{command files} (@pxref{Command
1241 Files}) and are processed by @value{GDBN} in the same way.  The init
1242 file in your home directory can set options (such as @samp{set
1243 complaints}) that affect subsequent processing of command line options
1244 and operands.  Init files are not executed if you use the @samp{-nx}
1245 option (@pxref{Mode Options, ,Choosing Modes}).
1246
1247 @cindex init file name
1248 @cindex @file{.gdbinit}
1249 @cindex @file{gdb.ini}
1250 The @value{GDBN} init files are normally called @file{.gdbinit}.
1251 The DJGPP port of @value{GDBN} uses the name @file{gdb.ini}, due to
1252 the limitations of file names imposed by DOS filesystems.  The Windows
1253 ports of @value{GDBN} use the standard name, but if they find a
1254 @file{gdb.ini} file, they warn you about that and suggest to rename
1255 the file to the standard name.
1256
1257
1258 @node Quitting GDB
1259 @section Quitting @value{GDBN}
1260 @cindex exiting @value{GDBN}
1261 @cindex leaving @value{GDBN}
1262
1263 @table @code
1264 @kindex quit @r{[}@var{expression}@r{]}
1265 @kindex q @r{(@code{quit})}
1266 @item quit @r{[}@var{expression}@r{]}
1267 @itemx q
1268 To exit @value{GDBN}, use the @code{quit} command (abbreviated
1269 @code{q}), or type an end-of-file character (usually @kbd{Ctrl-d}).  If you
1270 do not supply @var{expression}, @value{GDBN} will terminate normally;
1271 otherwise it will terminate using the result of @var{expression} as the
1272 error code.
1273 @end table
1274
1275 @cindex interrupt
1276 An interrupt (often @kbd{Ctrl-c}) does not exit from @value{GDBN}, but rather
1277 terminates the action of any @value{GDBN} command that is in progress and
1278 returns to @value{GDBN} command level.  It is safe to type the interrupt
1279 character at any time because @value{GDBN} does not allow it to take effect
1280 until a time when it is safe.
1281
1282 If you have been using @value{GDBN} to control an attached process or
1283 device, you can release it with the @code{detach} command
1284 (@pxref{Attach, ,Debugging an Already-running Process}).
1285
1286 @node Shell Commands
1287 @section Shell Commands
1288
1289 If you need to execute occasional shell commands during your
1290 debugging session, there is no need to leave or suspend @value{GDBN}; you can
1291 just use the @code{shell} command.
1292
1293 @table @code
1294 @kindex shell
1295 @cindex shell escape
1296 @item shell @var{command string}
1297 Invoke a standard shell to execute @var{command string}.
1298 If it exists, the environment variable @code{SHELL} determines which
1299 shell to run.  Otherwise @value{GDBN} uses the default shell
1300 (@file{/bin/sh} on Unix systems, @file{COMMAND.COM} on MS-DOS, etc.).
1301 @end table
1302
1303 The utility @code{make} is often needed in development environments.
1304 You do not have to use the @code{shell} command for this purpose in
1305 @value{GDBN}:
1306
1307 @table @code
1308 @kindex make
1309 @cindex calling make
1310 @item make @var{make-args}
1311 Execute the @code{make} program with the specified
1312 arguments.  This is equivalent to @samp{shell make @var{make-args}}.
1313 @end table
1314
1315 @node Logging Output
1316 @section Logging Output
1317 @cindex logging @value{GDBN} output
1318 @cindex save @value{GDBN} output to a file
1319
1320 You may want to save the output of @value{GDBN} commands to a file.
1321 There are several commands to control @value{GDBN}'s logging.
1322
1323 @table @code
1324 @kindex set logging
1325 @item set logging on
1326 Enable logging.
1327 @item set logging off
1328 Disable logging.
1329 @cindex logging file name
1330 @item set logging file @var{file}
1331 Change the name of the current logfile.  The default logfile is @file{gdb.txt}.
1332 @item set logging overwrite [on|off]
1333 By default, @value{GDBN} will append to the logfile.  Set @code{overwrite} if
1334 you want @code{set logging on} to overwrite the logfile instead.
1335 @item set logging redirect [on|off]
1336 By default, @value{GDBN} output will go to both the terminal and the logfile.
1337 Set @code{redirect} if you want output to go only to the log file.
1338 @kindex show logging
1339 @item show logging
1340 Show the current values of the logging settings.
1341 @end table
1342
1343 @node Commands
1344 @chapter @value{GDBN} Commands
1345
1346 You can abbreviate a @value{GDBN} command to the first few letters of the command
1347 name, if that abbreviation is unambiguous; and you can repeat certain
1348 @value{GDBN} commands by typing just @key{RET}.  You can also use the @key{TAB}
1349 key to get @value{GDBN} to fill out the rest of a word in a command (or to
1350 show you the alternatives available, if there is more than one possibility).
1351
1352 @menu
1353 * Command Syntax::              How to give commands to @value{GDBN}
1354 * Completion::                  Command completion
1355 * Help::                        How to ask @value{GDBN} for help
1356 @end menu
1357
1358 @node Command Syntax
1359 @section Command Syntax
1360
1361 A @value{GDBN} command is a single line of input.  There is no limit on
1362 how long it can be.  It starts with a command name, which is followed by
1363 arguments whose meaning depends on the command name.  For example, the
1364 command @code{step} accepts an argument which is the number of times to
1365 step, as in @samp{step 5}.  You can also use the @code{step} command
1366 with no arguments.  Some commands do not allow any arguments.
1367
1368 @cindex abbreviation
1369 @value{GDBN} command names may always be truncated if that abbreviation is
1370 unambiguous.  Other possible command abbreviations are listed in the
1371 documentation for individual commands.  In some cases, even ambiguous
1372 abbreviations are allowed; for example, @code{s} is specially defined as
1373 equivalent to @code{step} even though there are other commands whose
1374 names start with @code{s}.  You can test abbreviations by using them as
1375 arguments to the @code{help} command.
1376
1377 @cindex repeating commands
1378 @kindex RET @r{(repeat last command)}
1379 A blank line as input to @value{GDBN} (typing just @key{RET}) means to
1380 repeat the previous command.  Certain commands (for example, @code{run})
1381 will not repeat this way; these are commands whose unintentional
1382 repetition might cause trouble and which you are unlikely to want to
1383 repeat.  User-defined commands can disable this feature; see
1384 @ref{Define, dont-repeat}.
1385
1386 The @code{list} and @code{x} commands, when you repeat them with
1387 @key{RET}, construct new arguments rather than repeating
1388 exactly as typed.  This permits easy scanning of source or memory.
1389
1390 @value{GDBN} can also use @key{RET} in another way: to partition lengthy
1391 output, in a way similar to the common utility @code{more}
1392 (@pxref{Screen Size,,Screen Size}).  Since it is easy to press one
1393 @key{RET} too many in this situation, @value{GDBN} disables command
1394 repetition after any command that generates this sort of display.
1395
1396 @kindex # @r{(a comment)}
1397 @cindex comment
1398 Any text from a @kbd{#} to the end of the line is a comment; it does
1399 nothing.  This is useful mainly in command files (@pxref{Command
1400 Files,,Command Files}).
1401
1402 @cindex repeating command sequences
1403 @kindex Ctrl-o @r{(operate-and-get-next)}
1404 The @kbd{Ctrl-o} binding is useful for repeating a complex sequence of
1405 commands.  This command accepts the current line, like @key{RET}, and
1406 then fetches the next line relative to the current line from the history
1407 for editing.
1408
1409 @node Completion
1410 @section Command Completion
1411
1412 @cindex completion
1413 @cindex word completion
1414 @value{GDBN} can fill in the rest of a word in a command for you, if there is
1415 only one possibility; it can also show you what the valid possibilities
1416 are for the next word in a command, at any time.  This works for @value{GDBN}
1417 commands, @value{GDBN} subcommands, and the names of symbols in your program.
1418
1419 Press the @key{TAB} key whenever you want @value{GDBN} to fill out the rest
1420 of a word.  If there is only one possibility, @value{GDBN} fills in the
1421 word, and waits for you to finish the command (or press @key{RET} to
1422 enter it).  For example, if you type
1423
1424 @c FIXME "@key" does not distinguish its argument sufficiently to permit
1425 @c complete accuracy in these examples; space introduced for clarity.
1426 @c If texinfo enhancements make it unnecessary, it would be nice to
1427 @c replace " @key" by "@key" in the following...
1428 @smallexample
1429 (@value{GDBP}) info bre @key{TAB}
1430 @end smallexample
1431
1432 @noindent
1433 @value{GDBN} fills in the rest of the word @samp{breakpoints}, since that is
1434 the only @code{info} subcommand beginning with @samp{bre}:
1435
1436 @smallexample
1437 (@value{GDBP}) info breakpoints
1438 @end smallexample
1439
1440 @noindent
1441 You can either press @key{RET} at this point, to run the @code{info
1442 breakpoints} command, or backspace and enter something else, if
1443 @samp{breakpoints} does not look like the command you expected.  (If you
1444 were sure you wanted @code{info breakpoints} in the first place, you
1445 might as well just type @key{RET} immediately after @samp{info bre},
1446 to exploit command abbreviations rather than command completion).
1447
1448 If there is more than one possibility for the next word when you press
1449 @key{TAB}, @value{GDBN} sounds a bell.  You can either supply more
1450 characters and try again, or just press @key{TAB} a second time;
1451 @value{GDBN} displays all the possible completions for that word.  For
1452 example, you might want to set a breakpoint on a subroutine whose name
1453 begins with @samp{make_}, but when you type @kbd{b make_@key{TAB}} @value{GDBN}
1454 just sounds the bell.  Typing @key{TAB} again displays all the
1455 function names in your program that begin with those characters, for
1456 example:
1457
1458 @smallexample
1459 (@value{GDBP}) b make_ @key{TAB}
1460 @exdent @value{GDBN} sounds bell; press @key{TAB} again, to see:
1461 make_a_section_from_file     make_environ
1462 make_abs_section             make_function_type
1463 make_blockvector             make_pointer_type
1464 make_cleanup                 make_reference_type
1465 make_command                 make_symbol_completion_list
1466 (@value{GDBP}) b make_
1467 @end smallexample
1468
1469 @noindent
1470 After displaying the available possibilities, @value{GDBN} copies your
1471 partial input (@samp{b make_} in the example) so you can finish the
1472 command.
1473
1474 If you just want to see the list of alternatives in the first place, you
1475 can press @kbd{M-?} rather than pressing @key{TAB} twice.  @kbd{M-?}
1476 means @kbd{@key{META} ?}.  You can type this either by holding down a
1477 key designated as the @key{META} shift on your keyboard (if there is
1478 one) while typing @kbd{?}, or as @key{ESC} followed by @kbd{?}.
1479
1480 @cindex quotes in commands
1481 @cindex completion of quoted strings
1482 Sometimes the string you need, while logically a ``word'', may contain
1483 parentheses or other characters that @value{GDBN} normally excludes from
1484 its notion of a word.  To permit word completion to work in this
1485 situation, you may enclose words in @code{'} (single quote marks) in
1486 @value{GDBN} commands.
1487
1488 The most likely situation where you might need this is in typing the
1489 name of a C@t{++} function.  This is because C@t{++} allows function
1490 overloading (multiple definitions of the same function, distinguished
1491 by argument type).  For example, when you want to set a breakpoint you
1492 may need to distinguish whether you mean the version of @code{name}
1493 that takes an @code{int} parameter, @code{name(int)}, or the version
1494 that takes a @code{float} parameter, @code{name(float)}.  To use the
1495 word-completion facilities in this situation, type a single quote
1496 @code{'} at the beginning of the function name.  This alerts
1497 @value{GDBN} that it may need to consider more information than usual
1498 when you press @key{TAB} or @kbd{M-?} to request word completion:
1499
1500 @smallexample
1501 (@value{GDBP}) b 'bubble( @kbd{M-?}
1502 bubble(double,double)    bubble(int,int)
1503 (@value{GDBP}) b 'bubble(
1504 @end smallexample
1505
1506 In some cases, @value{GDBN} can tell that completing a name requires using
1507 quotes.  When this happens, @value{GDBN} inserts the quote for you (while
1508 completing as much as it can) if you do not type the quote in the first
1509 place:
1510
1511 @smallexample
1512 (@value{GDBP}) b bub @key{TAB}
1513 @exdent @value{GDBN} alters your input line to the following, and rings a bell:
1514 (@value{GDBP}) b 'bubble(
1515 @end smallexample
1516
1517 @noindent
1518 In general, @value{GDBN} can tell that a quote is needed (and inserts it) if
1519 you have not yet started typing the argument list when you ask for
1520 completion on an overloaded symbol.
1521
1522 For more information about overloaded functions, see @ref{C Plus Plus
1523 Expressions, ,C@t{++} Expressions}.  You can use the command @code{set
1524 overload-resolution off} to disable overload resolution;
1525 see @ref{Debugging C Plus Plus, ,@value{GDBN} Features for C@t{++}}.
1526
1527
1528 @node Help
1529 @section Getting Help
1530 @cindex online documentation
1531 @kindex help
1532
1533 You can always ask @value{GDBN} itself for information on its commands,
1534 using the command @code{help}.
1535
1536 @table @code
1537 @kindex h @r{(@code{help})}
1538 @item help
1539 @itemx h
1540 You can use @code{help} (abbreviated @code{h}) with no arguments to
1541 display a short list of named classes of commands:
1542
1543 @smallexample
1544 (@value{GDBP}) help
1545 List of classes of commands:
1546
1547 aliases -- Aliases of other commands
1548 breakpoints -- Making program stop at certain points
1549 data -- Examining data
1550 files -- Specifying and examining files
1551 internals -- Maintenance commands
1552 obscure -- Obscure features
1553 running -- Running the program
1554 stack -- Examining the stack
1555 status -- Status inquiries
1556 support -- Support facilities
1557 tracepoints -- Tracing of program execution without
1558                stopping the program
1559 user-defined -- User-defined commands
1560
1561 Type "help" followed by a class name for a list of
1562 commands in that class.
1563 Type "help" followed by command name for full
1564 documentation.
1565 Command name abbreviations are allowed if unambiguous.
1566 (@value{GDBP})
1567 @end smallexample
1568 @c the above line break eliminates huge line overfull...
1569
1570 @item help @var{class}
1571 Using one of the general help classes as an argument, you can get a
1572 list of the individual commands in that class.  For example, here is the
1573 help display for the class @code{status}:
1574
1575 @smallexample
1576 (@value{GDBP}) help status
1577 Status inquiries.
1578
1579 List of commands:
1580
1581 @c Line break in "show" line falsifies real output, but needed
1582 @c to fit in smallbook page size.
1583 info -- Generic command for showing things
1584         about the program being debugged
1585 show -- Generic command for showing things
1586         about the debugger
1587
1588 Type "help" followed by command name for full
1589 documentation.
1590 Command name abbreviations are allowed if unambiguous.
1591 (@value{GDBP})
1592 @end smallexample
1593
1594 @item help @var{command}
1595 With a command name as @code{help} argument, @value{GDBN} displays a
1596 short paragraph on how to use that command.
1597
1598 @kindex apropos
1599 @item apropos @var{args}
1600 The @code{apropos} command searches through all of the @value{GDBN}
1601 commands, and their documentation, for the regular expression specified in
1602 @var{args}. It prints out all matches found. For example:
1603
1604 @smallexample
1605 apropos reload
1606 @end smallexample
1607
1608 @noindent
1609 results in:
1610
1611 @smallexample
1612 @c @group
1613 set symbol-reloading -- Set dynamic symbol table reloading
1614                         multiple times in one run
1615 show symbol-reloading -- Show dynamic symbol table reloading
1616                         multiple times in one run
1617 @c @end group
1618 @end smallexample
1619
1620 @kindex complete
1621 @item complete @var{args}
1622 The @code{complete @var{args}} command lists all the possible completions
1623 for the beginning of a command.  Use @var{args} to specify the beginning of the
1624 command you want completed.  For example:
1625
1626 @smallexample
1627 complete i
1628 @end smallexample
1629
1630 @noindent results in:
1631
1632 @smallexample
1633 @group
1634 if
1635 ignore
1636 info
1637 inspect
1638 @end group
1639 @end smallexample
1640
1641 @noindent This is intended for use by @sc{gnu} Emacs.
1642 @end table
1643
1644 In addition to @code{help}, you can use the @value{GDBN} commands @code{info}
1645 and @code{show} to inquire about the state of your program, or the state
1646 of @value{GDBN} itself.  Each command supports many topics of inquiry; this
1647 manual introduces each of them in the appropriate context.  The listings
1648 under @code{info} and under @code{show} in the Index point to
1649 all the sub-commands.  @xref{Index}.
1650
1651 @c @group
1652 @table @code
1653 @kindex info
1654 @kindex i @r{(@code{info})}
1655 @item info
1656 This command (abbreviated @code{i}) is for describing the state of your
1657 program.  For example, you can list the arguments given to your program
1658 with @code{info args}, list the registers currently in use with @code{info
1659 registers}, or list the breakpoints you have set with @code{info breakpoints}.
1660 You can get a complete list of the @code{info} sub-commands with
1661 @w{@code{help info}}.
1662
1663 @kindex set
1664 @item set
1665 You can assign the result of an expression to an environment variable with
1666 @code{set}.  For example, you can set the @value{GDBN} prompt to a $-sign with
1667 @code{set prompt $}.
1668
1669 @kindex show
1670 @item show
1671 In contrast to @code{info}, @code{show} is for describing the state of
1672 @value{GDBN} itself.
1673 You can change most of the things you can @code{show}, by using the
1674 related command @code{set}; for example, you can control what number
1675 system is used for displays with @code{set radix}, or simply inquire
1676 which is currently in use with @code{show radix}.
1677
1678 @kindex info set
1679 To display all the settable parameters and their current
1680 values, you can use @code{show} with no arguments; you may also use
1681 @code{info set}.  Both commands produce the same display.
1682 @c FIXME: "info set" violates the rule that "info" is for state of
1683 @c FIXME...program.  Ck w/ GNU: "info set" to be called something else,
1684 @c FIXME...or change desc of rule---eg "state of prog and debugging session"?
1685 @end table
1686 @c @end group
1687
1688 Here are three miscellaneous @code{show} subcommands, all of which are
1689 exceptional in lacking corresponding @code{set} commands:
1690
1691 @table @code
1692 @kindex show version
1693 @cindex @value{GDBN} version number
1694 @item show version
1695 Show what version of @value{GDBN} is running.  You should include this
1696 information in @value{GDBN} bug-reports.  If multiple versions of
1697 @value{GDBN} are in use at your site, you may need to determine which
1698 version of @value{GDBN} you are running; as @value{GDBN} evolves, new
1699 commands are introduced, and old ones may wither away.  Also, many
1700 system vendors ship variant versions of @value{GDBN}, and there are
1701 variant versions of @value{GDBN} in @sc{gnu}/Linux distributions as well.
1702 The version number is the same as the one announced when you start
1703 @value{GDBN}.
1704
1705 @kindex show copying
1706 @kindex info copying
1707 @cindex display @value{GDBN} copyright
1708 @item show copying
1709 @itemx info copying
1710 Display information about permission for copying @value{GDBN}.
1711
1712 @kindex show warranty
1713 @kindex info warranty
1714 @item show warranty
1715 @itemx info warranty
1716 Display the @sc{gnu} ``NO WARRANTY'' statement, or a warranty,
1717 if your version of @value{GDBN} comes with one.
1718
1719 @end table
1720
1721 @node Running
1722 @chapter Running Programs Under @value{GDBN}
1723
1724 When you run a program under @value{GDBN}, you must first generate
1725 debugging information when you compile it.
1726
1727 You may start @value{GDBN} with its arguments, if any, in an environment
1728 of your choice.  If you are doing native debugging, you may redirect
1729 your program's input and output, debug an already running process, or
1730 kill a child process.
1731
1732 @menu
1733 * Compilation::                 Compiling for debugging
1734 * Starting::                    Starting your program
1735 * Arguments::                   Your program's arguments
1736 * Environment::                 Your program's environment
1737
1738 * Working Directory::           Your program's working directory
1739 * Input/Output::                Your program's input and output
1740 * Attach::                      Debugging an already-running process
1741 * Kill Process::                Killing the child process
1742
1743 * Threads::                     Debugging programs with multiple threads
1744 * Processes::                   Debugging programs with multiple processes
1745 * Checkpoint/Restart::          Setting a @emph{bookmark} to return to later
1746 @end menu
1747
1748 @node Compilation
1749 @section Compiling for Debugging
1750
1751 In order to debug a program effectively, you need to generate
1752 debugging information when you compile it.  This debugging information
1753 is stored in the object file; it describes the data type of each
1754 variable or function and the correspondence between source line numbers
1755 and addresses in the executable code.
1756
1757 To request debugging information, specify the @samp{-g} option when you run
1758 the compiler.
1759
1760 Programs that are to be shipped to your customers are compiled with
1761 optimizations, using the @samp{-O} compiler option.  However, many
1762 compilers are unable to handle the @samp{-g} and @samp{-O} options
1763 together.  Using those compilers, you cannot generate optimized
1764 executables containing debugging information.
1765
1766 @value{NGCC}, the @sc{gnu} C/C@t{++} compiler, supports @samp{-g} with or
1767 without @samp{-O}, making it possible to debug optimized code.  We
1768 recommend that you @emph{always} use @samp{-g} whenever you compile a
1769 program.  You may think your program is correct, but there is no sense
1770 in pushing your luck.
1771
1772 @cindex optimized code, debugging
1773 @cindex debugging optimized code
1774 When you debug a program compiled with @samp{-g -O}, remember that the
1775 optimizer is rearranging your code; the debugger shows you what is
1776 really there.  Do not be too surprised when the execution path does not
1777 exactly match your source file!  An extreme example: if you define a
1778 variable, but never use it, @value{GDBN} never sees that
1779 variable---because the compiler optimizes it out of existence.
1780
1781 Some things do not work as well with @samp{-g -O} as with just
1782 @samp{-g}, particularly on machines with instruction scheduling.  If in
1783 doubt, recompile with @samp{-g} alone, and if this fixes the problem,
1784 please report it to us as a bug (including a test case!).
1785 @xref{Variables}, for more information about debugging optimized code.
1786
1787 Older versions of the @sc{gnu} C compiler permitted a variant option
1788 @w{@samp{-gg}} for debugging information.  @value{GDBN} no longer supports this
1789 format; if your @sc{gnu} C compiler has this option, do not use it.
1790
1791 @value{GDBN} knows about preprocessor macros and can show you their
1792 expansion (@pxref{Macros}).  Most compilers do not include information
1793 about preprocessor macros in the debugging information if you specify
1794 the @option{-g} flag alone, because this information is rather large.
1795 Version 3.1 and later of @value{NGCC}, the @sc{gnu} C compiler,
1796 provides macro information if you specify the options
1797 @option{-gdwarf-2} and @option{-g3}; the former option requests
1798 debugging information in the Dwarf 2 format, and the latter requests
1799 ``extra information''.  In the future, we hope to find more compact
1800 ways to represent macro information, so that it can be included with
1801 @option{-g} alone.
1802
1803 @need 2000
1804 @node Starting
1805 @section Starting your Program
1806 @cindex starting
1807 @cindex running
1808
1809 @table @code
1810 @kindex run
1811 @kindex r @r{(@code{run})}
1812 @item run
1813 @itemx r
1814 Use the @code{run} command to start your program under @value{GDBN}.
1815 You must first specify the program name (except on VxWorks) with an
1816 argument to @value{GDBN} (@pxref{Invocation, ,Getting In and Out of
1817 @value{GDBN}}), or by using the @code{file} or @code{exec-file} command
1818 (@pxref{Files, ,Commands to Specify Files}).
1819
1820 @end table
1821
1822 If you are running your program in an execution environment that
1823 supports processes, @code{run} creates an inferior process and makes
1824 that process run your program.  (In environments without processes,
1825 @code{run} jumps to the start of your program.)
1826
1827 The execution of a program is affected by certain information it
1828 receives from its superior.  @value{GDBN} provides ways to specify this
1829 information, which you must do @emph{before} starting your program.  (You
1830 can change it after starting your program, but such changes only affect
1831 your program the next time you start it.)  This information may be
1832 divided into four categories:
1833
1834 @table @asis
1835 @item The @emph{arguments.}
1836 Specify the arguments to give your program as the arguments of the
1837 @code{run} command.  If a shell is available on your target, the shell
1838 is used to pass the arguments, so that you may use normal conventions
1839 (such as wildcard expansion or variable substitution) in describing
1840 the arguments.
1841 In Unix systems, you can control which shell is used with the
1842 @code{SHELL} environment variable.
1843 @xref{Arguments, ,Your Program's Arguments}.
1844
1845 @item The @emph{environment.}
1846 Your program normally inherits its environment from @value{GDBN}, but you can
1847 use the @value{GDBN} commands @code{set environment} and @code{unset
1848 environment} to change parts of the environment that affect
1849 your program.  @xref{Environment, ,Your Program's Environment}.
1850
1851 @item The @emph{working directory.}
1852 Your program inherits its working directory from @value{GDBN}.  You can set
1853 the @value{GDBN} working directory with the @code{cd} command in @value{GDBN}.
1854 @xref{Working Directory, ,Your Program's Working Directory}.
1855
1856 @item The @emph{standard input and output.}
1857 Your program normally uses the same device for standard input and
1858 standard output as @value{GDBN} is using.  You can redirect input and output
1859 in the @code{run} command line, or you can use the @code{tty} command to
1860 set a different device for your program.
1861 @xref{Input/Output, ,Your Program's Input and Output}.
1862
1863 @cindex pipes
1864 @emph{Warning:} While input and output redirection work, you cannot use
1865 pipes to pass the output of the program you are debugging to another
1866 program; if you attempt this, @value{GDBN} is likely to wind up debugging the
1867 wrong program.
1868 @end table
1869
1870 When you issue the @code{run} command, your program begins to execute
1871 immediately.  @xref{Stopping, ,Stopping and Continuing}, for discussion
1872 of how to arrange for your program to stop.  Once your program has
1873 stopped, you may call functions in your program, using the @code{print}
1874 or @code{call} commands.  @xref{Data, ,Examining Data}.
1875
1876 If the modification time of your symbol file has changed since the last
1877 time @value{GDBN} read its symbols, @value{GDBN} discards its symbol
1878 table, and reads it again.  When it does this, @value{GDBN} tries to retain
1879 your current breakpoints.
1880
1881 @table @code
1882 @kindex start
1883 @item start
1884 @cindex run to main procedure
1885 The name of the main procedure can vary from language to language.
1886 With C or C@t{++}, the main procedure name is always @code{main}, but
1887 other languages such as Ada do not require a specific name for their
1888 main procedure.  The debugger provides a convenient way to start the
1889 execution of the program and to stop at the beginning of the main
1890 procedure, depending on the language used.
1891
1892 The @samp{start} command does the equivalent of setting a temporary
1893 breakpoint at the beginning of the main procedure and then invoking
1894 the @samp{run} command.
1895
1896 @cindex elaboration phase
1897 Some programs contain an @dfn{elaboration} phase where some startup code is
1898 executed before the main procedure is called.  This depends on the
1899 languages used to write your program.  In C@t{++}, for instance,
1900 constructors for static and global objects are executed before
1901 @code{main} is called.  It is therefore possible that the debugger stops
1902 before reaching the main procedure.  However, the temporary breakpoint
1903 will remain to halt execution.
1904
1905 Specify the arguments to give to your program as arguments to the
1906 @samp{start} command.  These arguments will be given verbatim to the
1907 underlying @samp{run} command.  Note that the same arguments will be
1908 reused if no argument is provided during subsequent calls to
1909 @samp{start} or @samp{run}.
1910
1911 It is sometimes necessary to debug the program during elaboration.  In
1912 these cases, using the @code{start} command would stop the execution of
1913 your program too late, as the program would have already completed the
1914 elaboration phase.  Under these circumstances, insert breakpoints in your
1915 elaboration code before running your program.
1916 @end table
1917
1918 @node Arguments
1919 @section Your Program's Arguments
1920
1921 @cindex arguments (to your program)
1922 The arguments to your program can be specified by the arguments of the
1923 @code{run} command.
1924 They are passed to a shell, which expands wildcard characters and
1925 performs redirection of I/O, and thence to your program.  Your
1926 @code{SHELL} environment variable (if it exists) specifies what shell
1927 @value{GDBN} uses.  If you do not define @code{SHELL}, @value{GDBN} uses
1928 the default shell (@file{/bin/sh} on Unix).
1929
1930 On non-Unix systems, the program is usually invoked directly by
1931 @value{GDBN}, which emulates I/O redirection via the appropriate system
1932 calls, and the wildcard characters are expanded by the startup code of
1933 the program, not by the shell.
1934
1935 @code{run} with no arguments uses the same arguments used by the previous
1936 @code{run}, or those set by the @code{set args} command.
1937
1938 @table @code
1939 @kindex set args
1940 @item set args
1941 Specify the arguments to be used the next time your program is run.  If
1942 @code{set args} has no arguments, @code{run} executes your program
1943 with no arguments.  Once you have run your program with arguments,
1944 using @code{set args} before the next @code{run} is the only way to run
1945 it again without arguments.
1946
1947 @kindex show args
1948 @item show args
1949 Show the arguments to give your program when it is started.
1950 @end table
1951
1952 @node Environment
1953 @section Your Program's Environment
1954
1955 @cindex environment (of your program)
1956 The @dfn{environment} consists of a set of environment variables and
1957 their values.  Environment variables conventionally record such things as
1958 your user name, your home directory, your terminal type, and your search
1959 path for programs to run.  Usually you set up environment variables with
1960 the shell and they are inherited by all the other programs you run.  When
1961 debugging, it can be useful to try running your program with a modified
1962 environment without having to start @value{GDBN} over again.
1963
1964 @table @code
1965 @kindex path
1966 @item path @var{directory}
1967 Add @var{directory} to the front of the @code{PATH} environment variable
1968 (the search path for executables) that will be passed to your program.
1969 The value of @code{PATH} used by @value{GDBN} does not change.
1970 You may specify several directory names, separated by whitespace or by a
1971 system-dependent separator character (@samp{:} on Unix, @samp{;} on
1972 MS-DOS and MS-Windows).  If @var{directory} is already in the path, it
1973 is moved to the front, so it is searched sooner.
1974
1975 You can use the string @samp{$cwd} to refer to whatever is the current
1976 working directory at the time @value{GDBN} searches the path.  If you
1977 use @samp{.} instead, it refers to the directory where you executed the
1978 @code{path} command.  @value{GDBN} replaces @samp{.} in the
1979 @var{directory} argument (with the current path) before adding
1980 @var{directory} to the search path.
1981 @c 'path' is explicitly nonrepeatable, but RMS points out it is silly to
1982 @c document that, since repeating it would be a no-op.
1983
1984 @kindex show paths
1985 @item show paths
1986 Display the list of search paths for executables (the @code{PATH}
1987 environment variable).
1988
1989 @kindex show environment
1990 @item show environment @r{[}@var{varname}@r{]}
1991 Print the value of environment variable @var{varname} to be given to
1992 your program when it starts.  If you do not supply @var{varname},
1993 print the names and values of all environment variables to be given to
1994 your program.  You can abbreviate @code{environment} as @code{env}.
1995
1996 @kindex set environment
1997 @item set environment @var{varname} @r{[}=@var{value}@r{]}
1998 Set environment variable @var{varname} to @var{value}.  The value
1999 changes for your program only, not for @value{GDBN} itself.  @var{value} may
2000 be any string; the values of environment variables are just strings, and
2001 any interpretation is supplied by your program itself.  The @var{value}
2002 parameter is optional; if it is eliminated, the variable is set to a
2003 null value.
2004 @c "any string" here does not include leading, trailing
2005 @c blanks. Gnu asks: does anyone care?
2006
2007 For example, this command:
2008
2009 @smallexample
2010 set env USER = foo
2011 @end smallexample
2012
2013 @noindent
2014 tells the debugged program, when subsequently run, that its user is named
2015 @samp{foo}.  (The spaces around @samp{=} are used for clarity here; they
2016 are not actually required.)
2017
2018 @kindex unset environment
2019 @item unset environment @var{varname}
2020 Remove variable @var{varname} from the environment to be passed to your
2021 program.  This is different from @samp{set env @var{varname} =};
2022 @code{unset environment} removes the variable from the environment,
2023 rather than assigning it an empty value.
2024 @end table
2025
2026 @emph{Warning:} On Unix systems, @value{GDBN} runs your program using
2027 the shell indicated
2028 by your @code{SHELL} environment variable if it exists (or
2029 @code{/bin/sh} if not).  If your @code{SHELL} variable names a shell
2030 that runs an initialization file---such as @file{.cshrc} for C-shell, or
2031 @file{.bashrc} for BASH---any variables you set in that file affect
2032 your program.  You may wish to move setting of environment variables to
2033 files that are only run when you sign on, such as @file{.login} or
2034 @file{.profile}.
2035
2036 @node Working Directory
2037 @section Your Program's Working Directory
2038
2039 @cindex working directory (of your program)
2040 Each time you start your program with @code{run}, it inherits its
2041 working directory from the current working directory of @value{GDBN}.
2042 The @value{GDBN} working directory is initially whatever it inherited
2043 from its parent process (typically the shell), but you can specify a new
2044 working directory in @value{GDBN} with the @code{cd} command.
2045
2046 The @value{GDBN} working directory also serves as a default for the commands
2047 that specify files for @value{GDBN} to operate on.  @xref{Files, ,Commands to
2048 Specify Files}.
2049
2050 @table @code
2051 @kindex cd
2052 @cindex change working directory
2053 @item cd @var{directory}
2054 Set the @value{GDBN} working directory to @var{directory}.
2055
2056 @kindex pwd
2057 @item pwd
2058 Print the @value{GDBN} working directory.
2059 @end table
2060
2061 It is generally impossible to find the current working directory of
2062 the process being debugged (since a program can change its directory
2063 during its run).  If you work on a system where @value{GDBN} is
2064 configured with the @file{/proc} support, you can use the @code{info
2065 proc} command (@pxref{SVR4 Process Information}) to find out the
2066 current working directory of the debuggee.
2067
2068 @node Input/Output
2069 @section Your Program's Input and Output
2070
2071 @cindex redirection
2072 @cindex i/o
2073 @cindex terminal
2074 By default, the program you run under @value{GDBN} does input and output to
2075 the same terminal that @value{GDBN} uses.  @value{GDBN} switches the terminal
2076 to its own terminal modes to interact with you, but it records the terminal
2077 modes your program was using and switches back to them when you continue
2078 running your program.
2079
2080 @table @code
2081 @kindex info terminal
2082 @item info terminal
2083 Displays information recorded by @value{GDBN} about the terminal modes your
2084 program is using.
2085 @end table
2086
2087 You can redirect your program's input and/or output using shell
2088 redirection with the @code{run} command.  For example,
2089
2090 @smallexample
2091 run > outfile
2092 @end smallexample
2093
2094 @noindent
2095 starts your program, diverting its output to the file @file{outfile}.
2096
2097 @kindex tty
2098 @cindex controlling terminal
2099 Another way to specify where your program should do input and output is
2100 with the @code{tty} command.  This command accepts a file name as
2101 argument, and causes this file to be the default for future @code{run}
2102 commands.  It also resets the controlling terminal for the child
2103 process, for future @code{run} commands.  For example,
2104
2105 @smallexample
2106 tty /dev/ttyb
2107 @end smallexample
2108
2109 @noindent
2110 directs that processes started with subsequent @code{run} commands
2111 default to do input and output on the terminal @file{/dev/ttyb} and have
2112 that as their controlling terminal.
2113
2114 An explicit redirection in @code{run} overrides the @code{tty} command's
2115 effect on the input/output device, but not its effect on the controlling
2116 terminal.
2117
2118 When you use the @code{tty} command or redirect input in the @code{run}
2119 command, only the input @emph{for your program} is affected.  The input
2120 for @value{GDBN} still comes from your terminal.  @code{tty} is an alias
2121 for @code{set inferior-tty}.
2122
2123 @cindex inferior tty
2124 @cindex set inferior controlling terminal
2125 You can use the @code{show inferior-tty} command to tell @value{GDBN} to
2126 display the name of the terminal that will be used for future runs of your
2127 program.
2128
2129 @table @code
2130 @item set inferior-tty /dev/ttyb
2131 @kindex set inferior-tty
2132 Set the tty for the program being debugged to /dev/ttyb.
2133
2134 @item show inferior-tty
2135 @kindex show inferior-tty
2136 Show the current tty for the program being debugged.
2137 @end table
2138
2139 @node Attach
2140 @section Debugging an Already-running Process
2141 @kindex attach
2142 @cindex attach
2143
2144 @table @code
2145 @item attach @var{process-id}
2146 This command attaches to a running process---one that was started
2147 outside @value{GDBN}.  (@code{info files} shows your active
2148 targets.)  The command takes as argument a process ID.  The usual way to
2149 find out the @var{process-id} of a Unix process is with the @code{ps} utility,
2150 or with the @samp{jobs -l} shell command.
2151
2152 @code{attach} does not repeat if you press @key{RET} a second time after
2153 executing the command.
2154 @end table
2155
2156 To use @code{attach}, your program must be running in an environment
2157 which supports processes; for example, @code{attach} does not work for
2158 programs on bare-board targets that lack an operating system.  You must
2159 also have permission to send the process a signal.
2160
2161 When you use @code{attach}, the debugger finds the program running in
2162 the process first by looking in the current working directory, then (if
2163 the program is not found) by using the source file search path
2164 (@pxref{Source Path, ,Specifying Source Directories}).  You can also use
2165 the @code{file} command to load the program.  @xref{Files, ,Commands to
2166 Specify Files}.
2167
2168 The first thing @value{GDBN} does after arranging to debug the specified
2169 process is to stop it.  You can examine and modify an attached process
2170 with all the @value{GDBN} commands that are ordinarily available when
2171 you start processes with @code{run}.  You can insert breakpoints; you
2172 can step and continue; you can modify storage.  If you would rather the
2173 process continue running, you may use the @code{continue} command after
2174 attaching @value{GDBN} to the process.
2175
2176 @table @code
2177 @kindex detach
2178 @item detach
2179 When you have finished debugging the attached process, you can use the
2180 @code{detach} command to release it from @value{GDBN} control.  Detaching
2181 the process continues its execution.  After the @code{detach} command,
2182 that process and @value{GDBN} become completely independent once more, and you
2183 are ready to @code{attach} another process or start one with @code{run}.
2184 @code{detach} does not repeat if you press @key{RET} again after
2185 executing the command.
2186 @end table
2187
2188 If you exit @value{GDBN} while you have an attached process, you detach
2189 that process.  If you use the @code{run} command, you kill that process.
2190 By default, @value{GDBN} asks for confirmation if you try to do either of these
2191 things; you can control whether or not you need to confirm by using the
2192 @code{set confirm} command (@pxref{Messages/Warnings, ,Optional Warnings and
2193 Messages}).
2194
2195 @node Kill Process
2196 @section Killing the Child Process
2197
2198 @table @code
2199 @kindex kill
2200 @item kill
2201 Kill the child process in which your program is running under @value{GDBN}.
2202 @end table
2203
2204 This command is useful if you wish to debug a core dump instead of a
2205 running process.  @value{GDBN} ignores any core dump file while your program
2206 is running.
2207
2208 On some operating systems, a program cannot be executed outside @value{GDBN}
2209 while you have breakpoints set on it inside @value{GDBN}.  You can use the
2210 @code{kill} command in this situation to permit running your program
2211 outside the debugger.
2212
2213 The @code{kill} command is also useful if you wish to recompile and
2214 relink your program, since on many systems it is impossible to modify an
2215 executable file while it is running in a process.  In this case, when you
2216 next type @code{run}, @value{GDBN} notices that the file has changed, and
2217 reads the symbol table again (while trying to preserve your current
2218 breakpoint settings).
2219
2220 @node Threads
2221 @section Debugging Programs with Multiple Threads
2222
2223 @cindex threads of execution
2224 @cindex multiple threads
2225 @cindex switching threads
2226 In some operating systems, such as HP-UX and Solaris, a single program
2227 may have more than one @dfn{thread} of execution.  The precise semantics
2228 of threads differ from one operating system to another, but in general
2229 the threads of a single program are akin to multiple processes---except
2230 that they share one address space (that is, they can all examine and
2231 modify the same variables).  On the other hand, each thread has its own
2232 registers and execution stack, and perhaps private memory.
2233
2234 @value{GDBN} provides these facilities for debugging multi-thread
2235 programs:
2236
2237 @itemize @bullet
2238 @item automatic notification of new threads
2239 @item @samp{thread @var{threadno}}, a command to switch among threads
2240 @item @samp{info threads}, a command to inquire about existing threads
2241 @item @samp{thread apply [@var{threadno}] [@var{all}] @var{args}},
2242 a command to apply a command to a list of threads
2243 @item thread-specific breakpoints
2244 @end itemize
2245
2246 @quotation
2247 @emph{Warning:} These facilities are not yet available on every
2248 @value{GDBN} configuration where the operating system supports threads.
2249 If your @value{GDBN} does not support threads, these commands have no
2250 effect.  For example, a system without thread support shows no output
2251 from @samp{info threads}, and always rejects the @code{thread} command,
2252 like this:
2253
2254 @smallexample
2255 (@value{GDBP}) info threads
2256 (@value{GDBP}) thread 1
2257 Thread ID 1 not known.  Use the "info threads" command to
2258 see the IDs of currently known threads.
2259 @end smallexample
2260 @c FIXME to implementors: how hard would it be to say "sorry, this GDB
2261 @c                        doesn't support threads"?
2262 @end quotation
2263
2264 @cindex focus of debugging
2265 @cindex current thread
2266 The @value{GDBN} thread debugging facility allows you to observe all
2267 threads while your program runs---but whenever @value{GDBN} takes
2268 control, one thread in particular is always the focus of debugging.
2269 This thread is called the @dfn{current thread}.  Debugging commands show
2270 program information from the perspective of the current thread.
2271
2272 @cindex @code{New} @var{systag} message
2273 @cindex thread identifier (system)
2274 @c FIXME-implementors!! It would be more helpful if the [New...] message
2275 @c included GDB's numeric thread handle, so you could just go to that
2276 @c thread without first checking `info threads'.
2277 Whenever @value{GDBN} detects a new thread in your program, it displays
2278 the target system's identification for the thread with a message in the
2279 form @samp{[New @var{systag}]}.  @var{systag} is a thread identifier
2280 whose form varies depending on the particular system.  For example, on
2281 @sc{gnu}/Linux, you might see
2282
2283 @smallexample
2284 [New Thread 46912507313328 (LWP 25582)]
2285 @end smallexample
2286
2287 @noindent
2288 when @value{GDBN} notices a new thread.  In contrast, on an SGI system,
2289 the @var{systag} is simply something like @samp{process 368}, with no
2290 further qualifier.
2291
2292 @c FIXME!! (1) Does the [New...] message appear even for the very first
2293 @c         thread of a program, or does it only appear for the
2294 @c         second---i.e.@: when it becomes obvious we have a multithread
2295 @c         program?
2296 @c         (2) *Is* there necessarily a first thread always?  Or do some
2297 @c         multithread systems permit starting a program with multiple
2298 @c         threads ab initio?
2299
2300 @cindex thread number
2301 @cindex thread identifier (GDB)
2302 For debugging purposes, @value{GDBN} associates its own thread
2303 number---always a single integer---with each thread in your program.
2304
2305 @table @code
2306 @kindex info threads
2307 @item info threads
2308 Display a summary of all threads currently in your
2309 program.  @value{GDBN} displays for each thread (in this order):
2310
2311 @enumerate
2312 @item
2313 the thread number assigned by @value{GDBN}
2314
2315 @item
2316 the target system's thread identifier (@var{systag})
2317
2318 @item
2319 the current stack frame summary for that thread
2320 @end enumerate
2321
2322 @noindent
2323 An asterisk @samp{*} to the left of the @value{GDBN} thread number
2324 indicates the current thread.
2325
2326 For example,
2327 @end table
2328 @c end table here to get a little more width for example
2329
2330 @smallexample
2331 (@value{GDBP}) info threads
2332   3 process 35 thread 27  0x34e5 in sigpause ()
2333   2 process 35 thread 23  0x34e5 in sigpause ()
2334 * 1 process 35 thread 13  main (argc=1, argv=0x7ffffff8)
2335     at threadtest.c:68
2336 @end smallexample
2337
2338 On HP-UX systems:
2339
2340 @cindex debugging multithreaded programs (on HP-UX)
2341 @cindex thread identifier (GDB), on HP-UX
2342 For debugging purposes, @value{GDBN} associates its own thread
2343 number---a small integer assigned in thread-creation order---with each
2344 thread in your program.
2345
2346 @cindex @code{New} @var{systag} message, on HP-UX
2347 @cindex thread identifier (system), on HP-UX
2348 @c FIXME-implementors!! It would be more helpful if the [New...] message
2349 @c included GDB's numeric thread handle, so you could just go to that
2350 @c thread without first checking `info threads'.
2351 Whenever @value{GDBN} detects a new thread in your program, it displays
2352 both @value{GDBN}'s thread number and the target system's identification for the thread with a message in the
2353 form @samp{[New @var{systag}]}.  @var{systag} is a thread identifier
2354 whose form varies depending on the particular system.  For example, on
2355 HP-UX, you see
2356
2357 @smallexample
2358 [New thread 2 (system thread 26594)]
2359 @end smallexample
2360
2361 @noindent
2362 when @value{GDBN} notices a new thread.
2363
2364 @table @code
2365 @kindex info threads (HP-UX)
2366 @item info threads
2367 Display a summary of all threads currently in your
2368 program.  @value{GDBN} displays for each thread (in this order):
2369
2370 @enumerate
2371 @item the thread number assigned by @value{GDBN}
2372
2373 @item the target system's thread identifier (@var{systag})
2374
2375 @item the current stack frame summary for that thread
2376 @end enumerate
2377
2378 @noindent
2379 An asterisk @samp{*} to the left of the @value{GDBN} thread number
2380 indicates the current thread.
2381
2382 For example,
2383 @end table
2384 @c end table here to get a little more width for example
2385
2386 @smallexample
2387 (@value{GDBP}) info threads
2388     * 3 system thread 26607  worker (wptr=0x7b09c318 "@@") \@*
2389                                at quicksort.c:137
2390       2 system thread 26606  0x7b0030d8 in __ksleep () \@*
2391                                from /usr/lib/libc.2
2392       1 system thread 27905  0x7b003498 in _brk () \@*
2393                                from /usr/lib/libc.2
2394 @end smallexample
2395
2396 On Solaris, you can display more information about user threads with a
2397 Solaris-specific command:
2398
2399 @table @code
2400 @item maint info sol-threads
2401 @kindex maint info sol-threads
2402 @cindex thread info (Solaris)
2403 Display info on Solaris user threads.
2404 @end table
2405
2406 @table @code
2407 @kindex thread @var{threadno}
2408 @item thread @var{threadno}
2409 Make thread number @var{threadno} the current thread.  The command
2410 argument @var{threadno} is the internal @value{GDBN} thread number, as
2411 shown in the first field of the @samp{info threads} display.
2412 @value{GDBN} responds by displaying the system identifier of the thread
2413 you selected, and its current stack frame summary:
2414
2415 @smallexample
2416 @c FIXME!! This example made up; find a @value{GDBN} w/threads and get real one
2417 (@value{GDBP}) thread 2
2418 [Switching to process 35 thread 23]
2419 0x34e5 in sigpause ()
2420 @end smallexample
2421
2422 @noindent
2423 As with the @samp{[New @dots{}]} message, the form of the text after
2424 @samp{Switching to} depends on your system's conventions for identifying
2425 threads.
2426
2427 @kindex thread apply
2428 @cindex apply command to several threads
2429 @item thread apply [@var{threadno}] [@var{all}] @var{command}
2430 The @code{thread apply} command allows you to apply the named
2431 @var{command} to one or more threads.  Specify the numbers of the
2432 threads that you want affected with the command argument
2433 @var{threadno}.  It can be a single thread number, one of the numbers
2434 shown in the first field of the @samp{info threads} display; or it
2435 could be a range of thread numbers, as in @code{2-4}.  To apply a
2436 command to all threads, type @kbd{thread apply all @var{command}}.
2437 @end table
2438
2439 @cindex automatic thread selection
2440 @cindex switching threads automatically
2441 @cindex threads, automatic switching
2442 Whenever @value{GDBN} stops your program, due to a breakpoint or a
2443 signal, it automatically selects the thread where that breakpoint or
2444 signal happened.  @value{GDBN} alerts you to the context switch with a
2445 message of the form @samp{[Switching to @var{systag}]} to identify the
2446 thread.
2447
2448 @xref{Thread Stops,,Stopping and Starting Multi-thread Programs}, for
2449 more information about how @value{GDBN} behaves when you stop and start
2450 programs with multiple threads.
2451
2452 @xref{Set Watchpoints,,Setting Watchpoints}, for information about
2453 watchpoints in programs with multiple threads.
2454
2455 @node Processes
2456 @section Debugging Programs with Multiple Processes
2457
2458 @cindex fork, debugging programs which call
2459 @cindex multiple processes
2460 @cindex processes, multiple
2461 On most systems, @value{GDBN} has no special support for debugging
2462 programs which create additional processes using the @code{fork}
2463 function.  When a program forks, @value{GDBN} will continue to debug the
2464 parent process and the child process will run unimpeded.  If you have
2465 set a breakpoint in any code which the child then executes, the child
2466 will get a @code{SIGTRAP} signal which (unless it catches the signal)
2467 will cause it to terminate.
2468
2469 However, if you want to debug the child process there is a workaround
2470 which isn't too painful.  Put a call to @code{sleep} in the code which
2471 the child process executes after the fork.  It may be useful to sleep
2472 only if a certain environment variable is set, or a certain file exists,
2473 so that the delay need not occur when you don't want to run @value{GDBN}
2474 on the child.  While the child is sleeping, use the @code{ps} program to
2475 get its process ID.  Then tell @value{GDBN} (a new invocation of
2476 @value{GDBN} if you are also debugging the parent process) to attach to
2477 the child process (@pxref{Attach}).  From that point on you can debug
2478 the child process just like any other process which you attached to.
2479
2480 On some systems, @value{GDBN} provides support for debugging programs that
2481 create additional processes using the @code{fork} or @code{vfork} functions.
2482 Currently, the only platforms with this feature are HP-UX (11.x and later
2483 only?) and GNU/Linux (kernel version 2.5.60 and later).
2484
2485 By default, when a program forks, @value{GDBN} will continue to debug
2486 the parent process and the child process will run unimpeded.
2487
2488 If you want to follow the child process instead of the parent process,
2489 use the command @w{@code{set follow-fork-mode}}.
2490
2491 @table @code
2492 @kindex set follow-fork-mode
2493 @item set follow-fork-mode @var{mode}
2494 Set the debugger response to a program call of @code{fork} or
2495 @code{vfork}.  A call to @code{fork} or @code{vfork} creates a new
2496 process.  The @var{mode} argument can be:
2497
2498 @table @code
2499 @item parent
2500 The original process is debugged after a fork.  The child process runs
2501 unimpeded.  This is the default.
2502
2503 @item child
2504 The new process is debugged after a fork.  The parent process runs
2505 unimpeded.
2506
2507 @end table
2508
2509 @kindex show follow-fork-mode
2510 @item show follow-fork-mode
2511 Display the current debugger response to a @code{fork} or @code{vfork} call.
2512 @end table
2513
2514 @cindex debugging multiple processes
2515 On Linux, if you want to debug both the parent and child processes, use the
2516 command @w{@code{set detach-on-fork}}.
2517
2518 @table @code
2519 @kindex set detach-on-fork
2520 @item set detach-on-fork @var{mode}
2521 Tells gdb whether to detach one of the processes after a fork, or
2522 retain debugger control over them both.
2523
2524 @table @code
2525 @item on
2526 The child process (or parent process, depending on the value of
2527 @code{follow-fork-mode}) will be detached and allowed to run 
2528 independently.  This is the default.
2529
2530 @item off
2531 Both processes will be held under the control of @value{GDBN}.
2532 One process (child or parent, depending on the value of 
2533 @code{follow-fork-mode}) is debugged as usual, while the other
2534 is held suspended.  
2535
2536 @end table
2537
2538 @kindex show detach-on-follow
2539 @item show detach-on-follow
2540 Show whether detach-on-follow mode is on/off.
2541 @end table
2542
2543 If you choose to set @var{detach-on-follow} mode off, then
2544 @value{GDBN} will retain control of all forked processes (including
2545 nested forks).  You can list the forked processes under the control of
2546 @value{GDBN} by using the @w{@code{info forks}} command, and switch
2547 from one fork to another by using the @w{@code{fork}} command.
2548
2549 @table @code
2550 @kindex info forks
2551 @item info forks
2552 Print a list of all forked processes under the control of @value{GDBN}.
2553 The listing will include a fork id, a process id, and the current 
2554 position (program counter) of the process.
2555
2556
2557 @kindex fork @var{fork-id}
2558 @item fork @var{fork-id}
2559 Make fork number @var{fork-id} the current process.  The argument
2560 @var{fork-id} is the internal fork number assigned by @value{GDBN},
2561 as shown in the first field of the @samp{info forks} display.
2562
2563 @end table
2564
2565 To quit debugging one of the forked processes, you can either detach
2566 from it by using the @w{@code{detach fork}} command (allowing it to
2567 run independently), or delete (and kill) it using the
2568 @w{@code{delete fork}} command.
2569
2570 @table @code
2571 @kindex detach fork @var{fork-id}
2572 @item detach fork @var{fork-id}
2573 Detach from the process identified by @value{GDBN} fork number
2574 @var{fork-id}, and remove it from the fork list.  The process will be
2575 allowed to run independently.
2576
2577 @kindex delete fork @var{fork-id}
2578 @item delete fork @var{fork-id}
2579 Kill the process identified by @value{GDBN} fork number @var{fork-id},
2580 and remove it from the fork list.
2581
2582 @end table
2583
2584 If you ask to debug a child process and a @code{vfork} is followed by an
2585 @code{exec}, @value{GDBN} executes the new target up to the first
2586 breakpoint in the new target.  If you have a breakpoint set on
2587 @code{main} in your original program, the breakpoint will also be set on
2588 the child process's @code{main}.
2589
2590 When a child process is spawned by @code{vfork}, you cannot debug the
2591 child or parent until an @code{exec} call completes.
2592
2593 If you issue a @code{run} command to @value{GDBN} after an @code{exec}
2594 call executes, the new target restarts.  To restart the parent process,
2595 use the @code{file} command with the parent executable name as its
2596 argument.
2597
2598 You can use the @code{catch} command to make @value{GDBN} stop whenever
2599 a @code{fork}, @code{vfork}, or @code{exec} call is made.  @xref{Set
2600 Catchpoints, ,Setting Catchpoints}.
2601
2602 @node Checkpoint/Restart
2603 @section Setting a @emph{Bookmark} to Return to Later
2604
2605 @cindex checkpoint
2606 @cindex restart
2607 @cindex bookmark
2608 @cindex snapshot of a process
2609 @cindex rewind program state
2610
2611 On certain operating systems@footnote{Currently, only
2612 @sc{gnu}/Linux.}, @value{GDBN} is able to save a @dfn{snapshot} of a
2613 program's state, called a @dfn{checkpoint}, and come back to it
2614 later.
2615
2616 Returning to a checkpoint effectively undoes everything that has
2617 happened in the program since the @code{checkpoint} was saved.  This
2618 includes changes in memory, registers, and even (within some limits)
2619 system state.  Effectively, it is like going back in time to the
2620 moment when the checkpoint was saved.
2621
2622 Thus, if you're stepping thru a program and you think you're 
2623 getting close to the point where things go wrong, you can save
2624 a checkpoint.  Then, if you accidentally go too far and miss
2625 the critical statement, instead of having to restart your program
2626 from the beginning, you can just go back to the checkpoint and
2627 start again from there.
2628
2629 This can be especially useful if it takes a lot of time or 
2630 steps to reach the point where you think the bug occurs.  
2631
2632 To use the @code{checkpoint}/@code{restart} method of debugging:
2633
2634 @table @code
2635 @kindex checkpoint
2636 @item checkpoint
2637 Save a snapshot of the debugged program's current execution state.
2638 The @code{checkpoint} command takes no arguments, but each checkpoint
2639 is assigned a small integer id, similar to a breakpoint id.
2640
2641 @kindex info checkpoints
2642 @item info checkpoints
2643 List the checkpoints that have been saved in the current debugging
2644 session.  For each checkpoint, the following information will be
2645 listed:
2646
2647 @table @code
2648 @item Checkpoint ID
2649 @item Process ID
2650 @item Code Address
2651 @item Source line, or label
2652 @end table
2653
2654 @kindex restart @var{checkpoint-id}
2655 @item restart @var{checkpoint-id}
2656 Restore the program state that was saved as checkpoint number
2657 @var{checkpoint-id}.  All program variables, registers, stack frames
2658 etc.@:  will be returned to the values that they had when the checkpoint
2659 was saved.  In essence, gdb will ``wind back the clock'' to the point
2660 in time when the checkpoint was saved.
2661
2662 Note that breakpoints, @value{GDBN} variables, command history etc.
2663 are not affected by restoring a checkpoint.  In general, a checkpoint
2664 only restores things that reside in the program being debugged, not in
2665 the debugger.
2666
2667 @kindex delete checkpoint @var{checkpoint-id}
2668 @item delete checkpoint @var{checkpoint-id}
2669 Delete the previously-saved checkpoint identified by @var{checkpoint-id}.
2670
2671 @end table
2672
2673 Returning to a previously saved checkpoint will restore the user state
2674 of the program being debugged, plus a significant subset of the system
2675 (OS) state, including file pointers.  It won't ``un-write'' data from
2676 a file, but it will rewind the file pointer to the previous location,
2677 so that the previously written data can be overwritten.  For files
2678 opened in read mode, the pointer will also be restored so that the
2679 previously read data can be read again.
2680
2681 Of course, characters that have been sent to a printer (or other
2682 external device) cannot be ``snatched back'', and characters received
2683 from eg.@: a serial device can be removed from internal program buffers,
2684 but they cannot be ``pushed back'' into the serial pipeline, ready to
2685 be received again.  Similarly, the actual contents of files that have
2686 been changed cannot be restored (at this time).
2687
2688 However, within those constraints, you actually can ``rewind'' your
2689 program to a previously saved point in time, and begin debugging it
2690 again --- and you can change the course of events so as to debug a
2691 different execution path this time.
2692
2693 @cindex checkpoints and process id
2694 Finally, there is one bit of internal program state that will be
2695 different when you return to a checkpoint --- the program's process
2696 id.  Each checkpoint will have a unique process id (or @var{pid}), 
2697 and each will be different from the program's original @var{pid}.
2698 If your program has saved a local copy of its process id, this could
2699 potentially pose a problem.
2700
2701 @subsection A Non-obvious Benefit of Using Checkpoints
2702
2703 On some systems such as @sc{gnu}/Linux, address space randomization
2704 is performed on new processes for security reasons.  This makes it 
2705 difficult or impossible to set a breakpoint, or watchpoint, on an
2706 absolute address if you have to restart the program, since the 
2707 absolute location of a symbol will change from one execution to the
2708 next.
2709
2710 A checkpoint, however, is an @emph{identical} copy of a process. 
2711 Therefore if you create a checkpoint at (eg.@:) the start of main, 
2712 and simply return to that checkpoint instead of restarting the 
2713 process, you can avoid the effects of address randomization and
2714 your symbols will all stay in the same place.
2715
2716 @node Stopping
2717 @chapter Stopping and Continuing
2718
2719 The principal purposes of using a debugger are so that you can stop your
2720 program before it terminates; or so that, if your program runs into
2721 trouble, you can investigate and find out why.
2722
2723 Inside @value{GDBN}, your program may stop for any of several reasons,
2724 such as a signal, a breakpoint, or reaching a new line after a
2725 @value{GDBN} command such as @code{step}.  You may then examine and
2726 change variables, set new breakpoints or remove old ones, and then
2727 continue execution.  Usually, the messages shown by @value{GDBN} provide
2728 ample explanation of the status of your program---but you can also
2729 explicitly request this information at any time.
2730
2731 @table @code
2732 @kindex info program
2733 @item info program
2734 Display information about the status of your program: whether it is
2735 running or not, what process it is, and why it stopped.
2736 @end table
2737
2738 @menu
2739 * Breakpoints::                 Breakpoints, watchpoints, and catchpoints
2740 * Continuing and Stepping::     Resuming execution
2741 * Signals::                     Signals
2742 * Thread Stops::                Stopping and starting multi-thread programs
2743 @end menu
2744
2745 @node Breakpoints
2746 @section Breakpoints, Watchpoints, and Catchpoints
2747
2748 @cindex breakpoints
2749 A @dfn{breakpoint} makes your program stop whenever a certain point in
2750 the program is reached.  For each breakpoint, you can add conditions to
2751 control in finer detail whether your program stops.  You can set
2752 breakpoints with the @code{break} command and its variants (@pxref{Set
2753 Breaks, ,Setting Breakpoints}), to specify the place where your program
2754 should stop by line number, function name or exact address in the
2755 program.
2756
2757 On some systems, you can set breakpoints in shared libraries before
2758 the executable is run.  There is a minor limitation on HP-UX systems:
2759 you must wait until the executable is run in order to set breakpoints
2760 in shared library routines that are not called directly by the program
2761 (for example, routines that are arguments in a @code{pthread_create}
2762 call).
2763
2764 @cindex watchpoints
2765 @cindex data breakpoints
2766 @cindex memory tracing
2767 @cindex breakpoint on memory address
2768 @cindex breakpoint on variable modification
2769 A @dfn{watchpoint} is a special breakpoint that stops your program
2770 when the value of an expression changes.  The expression may be a value
2771 of a variable, or it could involve values of one or more variables
2772 combined by operators, such as @samp{a + b}.  This is sometimes called
2773 @dfn{data breakpoints}.  You must use a different command to set
2774 watchpoints (@pxref{Set Watchpoints, ,Setting Watchpoints}), but aside
2775 from that, you can manage a watchpoint like any other breakpoint: you
2776 enable, disable, and delete both breakpoints and watchpoints using the
2777 same commands.
2778
2779 You can arrange to have values from your program displayed automatically
2780 whenever @value{GDBN} stops at a breakpoint.  @xref{Auto Display,,
2781 Automatic Display}.
2782
2783 @cindex catchpoints
2784 @cindex breakpoint on events
2785 A @dfn{catchpoint} is another special breakpoint that stops your program
2786 when a certain kind of event occurs, such as the throwing of a C@t{++}
2787 exception or the loading of a library.  As with watchpoints, you use a
2788 different command to set a catchpoint (@pxref{Set Catchpoints, ,Setting
2789 Catchpoints}), but aside from that, you can manage a catchpoint like any
2790 other breakpoint.  (To stop when your program receives a signal, use the
2791 @code{handle} command; see @ref{Signals, ,Signals}.)
2792
2793 @cindex breakpoint numbers
2794 @cindex numbers for breakpoints
2795 @value{GDBN} assigns a number to each breakpoint, watchpoint, or
2796 catchpoint when you create it; these numbers are successive integers
2797 starting with one.  In many of the commands for controlling various
2798 features of breakpoints you use the breakpoint number to say which
2799 breakpoint you want to change.  Each breakpoint may be @dfn{enabled} or
2800 @dfn{disabled}; if disabled, it has no effect on your program until you
2801 enable it again.
2802
2803 @cindex breakpoint ranges
2804 @cindex ranges of breakpoints
2805 Some @value{GDBN} commands accept a range of breakpoints on which to
2806 operate.  A breakpoint range is either a single breakpoint number, like
2807 @samp{5}, or two such numbers, in increasing order, separated by a
2808 hyphen, like @samp{5-7}.  When a breakpoint range is given to a command,
2809 all breakpoints in that range are operated on.
2810
2811 @menu
2812 * Set Breaks::                  Setting breakpoints
2813 * Set Watchpoints::             Setting watchpoints
2814 * Set Catchpoints::             Setting catchpoints
2815 * Delete Breaks::               Deleting breakpoints
2816 * Disabling::                   Disabling breakpoints
2817 * Conditions::                  Break conditions
2818 * Break Commands::              Breakpoint command lists
2819 * Breakpoint Menus::            Breakpoint menus
2820 * Error in Breakpoints::        ``Cannot insert breakpoints''
2821 * Breakpoint-related Warnings:: ``Breakpoint address adjusted...''
2822 @end menu
2823
2824 @node Set Breaks
2825 @subsection Setting Breakpoints
2826
2827 @c FIXME LMB what does GDB do if no code on line of breakpt?
2828 @c       consider in particular declaration with/without initialization.
2829 @c
2830 @c FIXME 2 is there stuff on this already? break at fun start, already init?
2831
2832 @kindex break
2833 @kindex b @r{(@code{break})}
2834 @vindex $bpnum@r{, convenience variable}
2835 @cindex latest breakpoint
2836 Breakpoints are set with the @code{break} command (abbreviated
2837 @code{b}).  The debugger convenience variable @samp{$bpnum} records the
2838 number of the breakpoint you've set most recently; see @ref{Convenience
2839 Vars,, Convenience Variables}, for a discussion of what you can do with
2840 convenience variables.
2841
2842 You have several ways to say where the breakpoint should go.
2843
2844 @table @code
2845 @item break @var{function}
2846 Set a breakpoint at entry to function @var{function}.
2847 When using source languages that permit overloading of symbols, such as
2848 C@t{++}, @var{function} may refer to more than one possible place to break.
2849 @xref{Breakpoint Menus,,Breakpoint Menus}, for a discussion of that situation.
2850
2851 @item break +@var{offset}
2852 @itemx break -@var{offset}
2853 Set a breakpoint some number of lines forward or back from the position
2854 at which execution stopped in the currently selected @dfn{stack frame}.
2855 (@xref{Frames, ,Frames}, for a description of stack frames.)
2856
2857 @item break @var{linenum}
2858 Set a breakpoint at line @var{linenum} in the current source file.
2859 The current source file is the last file whose source text was printed.
2860 The breakpoint will stop your program just before it executes any of the
2861 code on that line.
2862
2863 @item break @var{filename}:@var{linenum}
2864 Set a breakpoint at line @var{linenum} in source file @var{filename}.
2865
2866 @item break @var{filename}:@var{function}
2867 Set a breakpoint at entry to function @var{function} found in file
2868 @var{filename}.  Specifying a file name as well as a function name is
2869 superfluous except when multiple files contain similarly named
2870 functions.
2871
2872 @item break *@var{address}
2873 Set a breakpoint at address @var{address}.  You can use this to set
2874 breakpoints in parts of your program which do not have debugging
2875 information or source files.
2876
2877 @item break
2878 When called without any arguments, @code{break} sets a breakpoint at
2879 the next instruction to be executed in the selected stack frame
2880 (@pxref{Stack, ,Examining the Stack}).  In any selected frame but the
2881 innermost, this makes your program stop as soon as control
2882 returns to that frame.  This is similar to the effect of a
2883 @code{finish} command in the frame inside the selected frame---except
2884 that @code{finish} does not leave an active breakpoint.  If you use
2885 @code{break} without an argument in the innermost frame, @value{GDBN} stops
2886 the next time it reaches the current location; this may be useful
2887 inside loops.
2888
2889 @value{GDBN} normally ignores breakpoints when it resumes execution, until at
2890 least one instruction has been executed.  If it did not do this, you
2891 would be unable to proceed past a breakpoint without first disabling the
2892 breakpoint.  This rule applies whether or not the breakpoint already
2893 existed when your program stopped.
2894
2895 @item break @dots{} if @var{cond}
2896 Set a breakpoint with condition @var{cond}; evaluate the expression
2897 @var{cond} each time the breakpoint is reached, and stop only if the
2898 value is nonzero---that is, if @var{cond} evaluates as true.
2899 @samp{@dots{}} stands for one of the possible arguments described
2900 above (or no argument) specifying where to break.  @xref{Conditions,
2901 ,Break Conditions}, for more information on breakpoint conditions.
2902
2903 @kindex tbreak
2904 @item tbreak @var{args}
2905 Set a breakpoint enabled only for one stop.  @var{args} are the
2906 same as for the @code{break} command, and the breakpoint is set in the same
2907 way, but the breakpoint is automatically deleted after the first time your
2908 program stops there.  @xref{Disabling, ,Disabling Breakpoints}.
2909
2910 @kindex hbreak
2911 @cindex hardware breakpoints
2912 @item hbreak @var{args}
2913 Set a hardware-assisted breakpoint.  @var{args} are the same as for the
2914 @code{break} command and the breakpoint is set in the same way, but the
2915 breakpoint requires hardware support and some target hardware may not
2916 have this support.  The main purpose of this is EPROM/ROM code
2917 debugging, so you can set a breakpoint at an instruction without
2918 changing the instruction.  This can be used with the new trap-generation
2919 provided by SPARClite DSU and most x86-based targets.  These targets
2920 will generate traps when a program accesses some data or instruction
2921 address that is assigned to the debug registers.  However the hardware
2922 breakpoint registers can take a limited number of breakpoints.  For
2923 example, on the DSU, only two data breakpoints can be set at a time, and
2924 @value{GDBN} will reject this command if more than two are used.  Delete
2925 or disable unused hardware breakpoints before setting new ones
2926 (@pxref{Disabling, ,Disabling Breakpoints}).
2927 @xref{Conditions, ,Break Conditions}.
2928 For remote targets, you can restrict the number of hardware
2929 breakpoints @value{GDBN} will use, see @ref{set remote
2930 hardware-breakpoint-limit}.
2931
2932
2933 @kindex thbreak
2934 @item thbreak @var{args}
2935 Set a hardware-assisted breakpoint enabled only for one stop.  @var{args}
2936 are the same as for the @code{hbreak} command and the breakpoint is set in
2937 the same way.  However, like the @code{tbreak} command,
2938 the breakpoint is automatically deleted after the
2939 first time your program stops there.  Also, like the @code{hbreak}
2940 command, the breakpoint requires hardware support and some target hardware
2941 may not have this support.  @xref{Disabling, ,Disabling Breakpoints}.
2942 See also @ref{Conditions, ,Break Conditions}.
2943
2944 @kindex rbreak
2945 @cindex regular expression
2946 @cindex breakpoints in functions matching a regexp
2947 @cindex set breakpoints in many functions
2948 @item rbreak @var{regex}
2949 Set breakpoints on all functions matching the regular expression
2950 @var{regex}.  This command sets an unconditional breakpoint on all
2951 matches, printing a list of all breakpoints it set.  Once these
2952 breakpoints are set, they are treated just like the breakpoints set with
2953 the @code{break} command.  You can delete them, disable them, or make
2954 them conditional the same way as any other breakpoint.
2955
2956 The syntax of the regular expression is the standard one used with tools
2957 like @file{grep}.  Note that this is different from the syntax used by
2958 shells, so for instance @code{foo*} matches all functions that include
2959 an @code{fo} followed by zero or more @code{o}s.  There is an implicit
2960 @code{.*} leading and trailing the regular expression you supply, so to
2961 match only functions that begin with @code{foo}, use @code{^foo}.
2962
2963 @cindex non-member C@t{++} functions, set breakpoint in
2964 When debugging C@t{++} programs, @code{rbreak} is useful for setting
2965 breakpoints on overloaded functions that are not members of any special
2966 classes.
2967
2968 @cindex set breakpoints on all functions
2969 The @code{rbreak} command can be used to set breakpoints in
2970 @strong{all} the functions in a program, like this:
2971
2972 @smallexample
2973 (@value{GDBP}) rbreak .
2974 @end smallexample
2975
2976 @kindex info breakpoints
2977 @cindex @code{$_} and @code{info breakpoints}
2978 @item info breakpoints @r{[}@var{n}@r{]}
2979 @itemx info break @r{[}@var{n}@r{]}
2980 @itemx info watchpoints @r{[}@var{n}@r{]}
2981 Print a table of all breakpoints, watchpoints, and catchpoints set and
2982 not deleted.  Optional argument @var{n} means print information only
2983 about the specified breakpoint (or watchpoint or catchpoint).  For
2984 each breakpoint, following columns are printed:
2985
2986 @table @emph
2987 @item Breakpoint Numbers
2988 @item Type
2989 Breakpoint, watchpoint, or catchpoint.
2990 @item Disposition
2991 Whether the breakpoint is marked to be disabled or deleted when hit.
2992 @item Enabled or Disabled
2993 Enabled breakpoints are marked with @samp{y}.  @samp{n} marks breakpoints
2994 that are not enabled.
2995 @item Address
2996 Where the breakpoint is in your program, as a memory address.  If the
2997 breakpoint is pending (see below for details) on a future load of a shared library, the address
2998 will be listed as @samp{<PENDING>}.
2999 @item What
3000 Where the breakpoint is in the source for your program, as a file and
3001 line number.  For a pending breakpoint, the original string passed to
3002 the breakpoint command will be listed as it cannot be resolved until
3003 the appropriate shared library is loaded in the future.
3004 @end table
3005
3006 @noindent
3007 If a breakpoint is conditional, @code{info break} shows the condition on
3008 the line following the affected breakpoint; breakpoint commands, if any,
3009 are listed after that.  A pending breakpoint is allowed to have a condition
3010 specified for it.  The condition is not parsed for validity until a shared
3011 library is loaded that allows the pending breakpoint to resolve to a
3012 valid location.
3013
3014 @noindent
3015 @code{info break} with a breakpoint
3016 number @var{n} as argument lists only that breakpoint.  The
3017 convenience variable @code{$_} and the default examining-address for
3018 the @code{x} command are set to the address of the last breakpoint
3019 listed (@pxref{Memory, ,Examining Memory}).
3020
3021 @noindent
3022 @code{info break} displays a count of the number of times the breakpoint
3023 has been hit.  This is especially useful in conjunction with the
3024 @code{ignore} command.  You can ignore a large number of breakpoint
3025 hits, look at the breakpoint info to see how many times the breakpoint
3026 was hit, and then run again, ignoring one less than that number.  This
3027 will get you quickly to the last hit of that breakpoint.
3028 @end table
3029
3030 @value{GDBN} allows you to set any number of breakpoints at the same place in
3031 your program.  There is nothing silly or meaningless about this.  When
3032 the breakpoints are conditional, this is even useful
3033 (@pxref{Conditions, ,Break Conditions}).
3034
3035 @cindex pending breakpoints
3036 If a specified breakpoint location cannot be found, it may be due to the fact
3037 that the location is in a shared library that is yet to be loaded.  In such
3038 a case, you may want @value{GDBN} to create a special breakpoint (known as
3039 a @dfn{pending breakpoint}) that
3040 attempts to resolve itself in the future when an appropriate shared library
3041 gets loaded.
3042
3043 Pending breakpoints are useful to set at the start of your
3044 @value{GDBN} session for locations that you know will be dynamically loaded
3045 later by the program being debugged.  When shared libraries are loaded,
3046 a check is made to see if the load resolves any pending breakpoint locations.
3047 If a pending breakpoint location gets resolved,
3048 a regular breakpoint is created and the original pending breakpoint is removed.
3049
3050 @value{GDBN} provides some additional commands for controlling pending
3051 breakpoint support:
3052
3053 @kindex set breakpoint pending
3054 @kindex show breakpoint pending
3055 @table @code
3056 @item set breakpoint pending auto
3057 This is the default behavior.  When @value{GDBN} cannot find the breakpoint
3058 location, it queries you whether a pending breakpoint should be created.
3059
3060 @item set breakpoint pending on
3061 This indicates that an unrecognized breakpoint location should automatically
3062 result in a pending breakpoint being created.
3063
3064 @item set breakpoint pending off
3065 This indicates that pending breakpoints are not to be created.  Any
3066 unrecognized breakpoint location results in an error.  This setting does
3067 not affect any pending breakpoints previously created.
3068
3069 @item show breakpoint pending
3070 Show the current behavior setting for creating pending breakpoints.
3071 @end table
3072
3073 @cindex operations allowed on pending breakpoints
3074 Normal breakpoint operations apply to pending breakpoints as well.  You may
3075 specify a condition for a pending breakpoint and/or commands to run when the
3076 breakpoint is reached.  You can also enable or disable
3077 the pending breakpoint.  When you specify a condition for a pending breakpoint,
3078 the parsing of the condition will be deferred until the point where the
3079 pending breakpoint location is resolved.  Disabling a pending breakpoint
3080 tells @value{GDBN} to not attempt to resolve the breakpoint on any subsequent
3081 shared library load.  When a pending breakpoint is re-enabled,
3082 @value{GDBN} checks to see if the location is already resolved.
3083 This is done because any number of shared library loads could have
3084 occurred since the time the breakpoint was disabled and one or more
3085 of these loads could resolve the location.
3086
3087 @cindex automatic hardware breakpoints
3088 For some targets, @value{GDBN} can automatically decide if hardware or
3089 software breakpoints should be used, depending on whether the
3090 breakpoint address is read-only or read-write.  This applies to
3091 breakpoints set with the @code{break} command as well as to internal
3092 breakpoints set by commands like @code{next} and @code{finish}.  For
3093 breakpoints set with @code{hbreak}, @value{GDBN} will always use hardware 
3094 breakpoints.
3095
3096 You can control this automatic behaviour with the following commands::
3097
3098 @kindex set breakpoint auto-hw
3099 @kindex show breakpoint auto-hw
3100 @table @code
3101 @item set breakpoint auto-hw on
3102 This is the default behavior.  When @value{GDBN} sets a breakpoint, it
3103 will try to use the target memory map to decide if software or hardware
3104 breakpoint must be used.
3105
3106 @item set breakpoint auto-hw off
3107 This indicates @value{GDBN} should not automatically select breakpoint
3108 type.  If the target provides a memory map, @value{GDBN} will warn when
3109 trying to set software breakpoint at a read-only address.
3110 @end table
3111
3112
3113 @cindex negative breakpoint numbers
3114 @cindex internal @value{GDBN} breakpoints
3115 @value{GDBN} itself sometimes sets breakpoints in your program for
3116 special purposes, such as proper handling of @code{longjmp} (in C
3117 programs).  These internal breakpoints are assigned negative numbers,
3118 starting with @code{-1}; @samp{info breakpoints} does not display them.
3119 You can see these breakpoints with the @value{GDBN} maintenance command
3120 @samp{maint info breakpoints} (@pxref{maint info breakpoints}).
3121
3122
3123 @node Set Watchpoints
3124 @subsection Setting Watchpoints
3125
3126 @cindex setting watchpoints
3127 You can use a watchpoint to stop execution whenever the value of an
3128 expression changes, without having to predict a particular place where
3129 this may happen.  (This is sometimes called a @dfn{data breakpoint}.)
3130 The expression may be as simple as the value of a single variable, or
3131 as complex as many variables combined by operators.  Examples include:
3132
3133 @itemize @bullet
3134 @item
3135 A reference to the value of a single variable.
3136
3137 @item
3138 An address cast to an appropriate data type.  For example,
3139 @samp{*(int *)0x12345678} will watch a 4-byte region at the specified
3140 address (assuming an @code{int} occupies 4 bytes).
3141
3142 @item
3143 An arbitrarily complex expression, such as @samp{a*b + c/d}.  The
3144 expression can use any operators valid in the program's native
3145 language (@pxref{Languages}).
3146 @end itemize
3147
3148 @cindex software watchpoints
3149 @cindex hardware watchpoints
3150 Depending on your system, watchpoints may be implemented in software or
3151 hardware.  @value{GDBN} does software watchpointing by single-stepping your
3152 program and testing the variable's value each time, which is hundreds of
3153 times slower than normal execution.  (But this may still be worth it, to
3154 catch errors where you have no clue what part of your program is the
3155 culprit.)
3156
3157 On some systems, such as HP-UX, @sc{gnu}/Linux and most other
3158 x86-based targets, @value{GDBN} includes support for hardware
3159 watchpoints, which do not slow down the running of your program.
3160
3161 @table @code
3162 @kindex watch
3163 @item watch @var{expr}
3164 Set a watchpoint for an expression.  @value{GDBN} will break when the
3165 expression @var{expr} is written into by the program and its value
3166 changes.  The simplest (and the most popular) use of this command is
3167 to watch the value of a single variable:
3168
3169 @smallexample
3170 (@value{GDBP}) watch foo
3171 @end smallexample
3172
3173 @kindex rwatch
3174 @item rwatch @var{expr}
3175 Set a watchpoint that will break when the value of @var{expr} is read
3176 by the program.
3177
3178 @kindex awatch
3179 @item awatch @var{expr}
3180 Set a watchpoint that will break when @var{expr} is either read from
3181 or written into by the program.
3182
3183 @kindex info watchpoints @r{[}@var{n}@r{]}
3184 @item info watchpoints
3185 This command prints a list of watchpoints, breakpoints, and catchpoints;
3186 it is the same as @code{info break} (@pxref{Set Breaks}).
3187 @end table
3188
3189 @value{GDBN} sets a @dfn{hardware watchpoint} if possible.  Hardware
3190 watchpoints execute very quickly, and the debugger reports a change in
3191 value at the exact instruction where the change occurs.  If @value{GDBN}
3192 cannot set a hardware watchpoint, it sets a software watchpoint, which
3193 executes more slowly and reports the change in value at the next
3194 @emph{statement}, not the instruction, after the change occurs.
3195
3196 @cindex use only software watchpoints
3197 You can force @value{GDBN} to use only software watchpoints with the
3198 @kbd{set can-use-hw-watchpoints 0} command.  With this variable set to
3199 zero, @value{GDBN} will never try to use hardware watchpoints, even if
3200 the underlying system supports them.  (Note that hardware-assisted
3201 watchpoints that were set @emph{before} setting
3202 @code{can-use-hw-watchpoints} to zero will still use the hardware
3203 mechanism of watching expression values.)
3204
3205 @table @code
3206 @item set can-use-hw-watchpoints
3207 @kindex set can-use-hw-watchpoints
3208 Set whether or not to use hardware watchpoints.
3209
3210 @item show can-use-hw-watchpoints
3211 @kindex show can-use-hw-watchpoints
3212 Show the current mode of using hardware watchpoints.
3213 @end table
3214
3215 For remote targets, you can restrict the number of hardware
3216 watchpoints @value{GDBN} will use, see @ref{set remote
3217 hardware-breakpoint-limit}.
3218
3219 When you issue the @code{watch} command, @value{GDBN} reports
3220
3221 @smallexample
3222 Hardware watchpoint @var{num}: @var{expr}
3223 @end smallexample
3224
3225 @noindent
3226 if it was able to set a hardware watchpoint.
3227
3228 Currently, the @code{awatch} and @code{rwatch} commands can only set
3229 hardware watchpoints, because accesses to data that don't change the
3230 value of the watched expression cannot be detected without examining
3231 every instruction as it is being executed, and @value{GDBN} does not do
3232 that currently.  If @value{GDBN} finds that it is unable to set a
3233 hardware breakpoint with the @code{awatch} or @code{rwatch} command, it
3234 will print a message like this:
3235
3236 @smallexample
3237 Expression cannot be implemented with read/access watchpoint.
3238 @end smallexample
3239
3240 Sometimes, @value{GDBN} cannot set a hardware watchpoint because the
3241 data type of the watched expression is wider than what a hardware
3242 watchpoint on the target machine can handle.  For example, some systems
3243 can only watch regions that are up to 4 bytes wide; on such systems you
3244 cannot set hardware watchpoints for an expression that yields a
3245 double-precision floating-point number (which is typically 8 bytes
3246 wide).  As a work-around, it might be possible to break the large region
3247 into a series of smaller ones and watch them with separate watchpoints.
3248
3249 If you set too many hardware watchpoints, @value{GDBN} might be unable
3250 to insert all of them when you resume the execution of your program.
3251 Since the precise number of active watchpoints is unknown until such
3252 time as the program is about to be resumed, @value{GDBN} might not be
3253 able to warn you about this when you set the watchpoints, and the
3254 warning will be printed only when the program is resumed:
3255
3256 @smallexample
3257 Hardware watchpoint @var{num}: Could not insert watchpoint
3258 @end smallexample
3259
3260 @noindent
3261 If this happens, delete or disable some of the watchpoints.
3262
3263 Watching complex expressions that reference many variables can also
3264 exhaust the resources available for hardware-assisted watchpoints.
3265 That's because @value{GDBN} needs to watch every variable in the
3266 expression with separately allocated resources.
3267
3268 The SPARClite DSU will generate traps when a program accesses some data
3269 or instruction address that is assigned to the debug registers.  For the
3270 data addresses, DSU facilitates the @code{watch} command.  However the
3271 hardware breakpoint registers can only take two data watchpoints, and
3272 both watchpoints must be the same kind.  For example, you can set two
3273 watchpoints with @code{watch} commands, two with @code{rwatch} commands,
3274 @strong{or} two with @code{awatch} commands, but you cannot set one
3275 watchpoint with one command and the other with a different command.
3276 @value{GDBN} will reject the command if you try to mix watchpoints.
3277 Delete or disable unused watchpoint commands before setting new ones.
3278
3279 If you call a function interactively using @code{print} or @code{call},
3280 any watchpoints you have set will be inactive until @value{GDBN} reaches another
3281 kind of breakpoint or the call completes.
3282
3283 @value{GDBN} automatically deletes watchpoints that watch local
3284 (automatic) variables, or expressions that involve such variables, when
3285 they go out of scope, that is, when the execution leaves the block in
3286 which these variables were defined.  In particular, when the program
3287 being debugged terminates, @emph{all} local variables go out of scope,
3288 and so only watchpoints that watch global variables remain set.  If you
3289 rerun the program, you will need to set all such watchpoints again.  One
3290 way of doing that would be to set a code breakpoint at the entry to the
3291 @code{main} function and when it breaks, set all the watchpoints.
3292
3293 @quotation
3294 @cindex watchpoints and threads
3295 @cindex threads and watchpoints
3296 @emph{Warning:} In multi-thread programs, watchpoints have only limited
3297 usefulness.  With the current watchpoint implementation, @value{GDBN}
3298 can only watch the value of an expression @emph{in a single thread}.  If
3299 you are confident that the expression can only change due to the current
3300 thread's activity (and if you are also confident that no other thread
3301 can become current), then you can use watchpoints as usual.  However,
3302 @value{GDBN} may not notice when a non-current thread's activity changes
3303 the expression.
3304
3305 @c FIXME: this is almost identical to the previous paragraph.
3306 @emph{HP-UX Warning:} In multi-thread programs, software watchpoints
3307 have only limited usefulness.  If @value{GDBN} creates a software
3308 watchpoint, it can only watch the value of an expression @emph{in a
3309 single thread}.  If you are confident that the expression can only
3310 change due to the current thread's activity (and if you are also
3311 confident that no other thread can become current), then you can use
3312 software watchpoints as usual.  However, @value{GDBN} may not notice
3313 when a non-current thread's activity changes the expression.  (Hardware
3314 watchpoints, in contrast, watch an expression in all threads.)
3315 @end quotation
3316
3317 @xref{set remote hardware-watchpoint-limit}.
3318
3319 @node Set Catchpoints
3320 @subsection Setting Catchpoints
3321 @cindex catchpoints, setting
3322 @cindex exception handlers
3323 @cindex event handling
3324
3325 You can use @dfn{catchpoints} to cause the debugger to stop for certain
3326 kinds of program events, such as C@t{++} exceptions or the loading of a
3327 shared library.  Use the @code{catch} command to set a catchpoint.
3328
3329 @table @code
3330 @kindex catch
3331 @item catch @var{event}
3332 Stop when @var{event} occurs.  @var{event} can be any of the following:
3333 @table @code
3334 @item throw
3335 @cindex stop on C@t{++} exceptions
3336 The throwing of a C@t{++} exception.
3337
3338 @item catch
3339 The catching of a C@t{++} exception.
3340
3341 @item exception
3342 @cindex Ada exception catching
3343 @cindex catch Ada exceptions
3344 An Ada exception being raised.  If an exception name is specified
3345 at the end of the command (eg @code{catch exception Program_Error}),
3346 the debugger will stop only when this specific exception is raised.
3347 Otherwise, the debugger stops execution when any Ada exception is raised.
3348
3349 @item exception unhandled
3350 An exception that was raised but is not handled by the program.
3351
3352 @item assert
3353 A failed Ada assertion.
3354
3355 @item exec
3356 @cindex break on fork/exec
3357 A call to @code{exec}.  This is currently only available for HP-UX.
3358
3359 @item fork
3360 A call to @code{fork}.  This is currently only available for HP-UX.
3361
3362 @item vfork
3363 A call to @code{vfork}.  This is currently only available for HP-UX.
3364
3365 @item load
3366 @itemx load @var{libname}
3367 @cindex break on load/unload of shared library
3368 The dynamic loading of any shared library, or the loading of the library
3369 @var{libname}.  This is currently only available for HP-UX.
3370
3371 @item unload
3372 @itemx unload @var{libname}
3373 The unloading of any dynamically loaded shared library, or the unloading
3374 of the library @var{libname}.  This is currently only available for HP-UX.
3375 @end table
3376
3377 @item tcatch @var{event}
3378 Set a catchpoint that is enabled only for one stop.  The catchpoint is
3379 automatically deleted after the first time the event is caught.
3380
3381 @end table
3382
3383 Use the @code{info break} command to list the current catchpoints.
3384
3385 There are currently some limitations to C@t{++} exception handling
3386 (@code{catch throw} and @code{catch catch}) in @value{GDBN}:
3387
3388 @itemize @bullet
3389 @item
3390 If you call a function interactively, @value{GDBN} normally returns
3391 control to you when the function has finished executing.  If the call
3392 raises an exception, however, the call may bypass the mechanism that
3393 returns control to you and cause your program either to abort or to
3394 simply continue running until it hits a breakpoint, catches a signal
3395 that @value{GDBN} is listening for, or exits.  This is the case even if
3396 you set a catchpoint for the exception; catchpoints on exceptions are
3397 disabled within interactive calls.
3398
3399 @item
3400 You cannot raise an exception interactively.
3401
3402 @item
3403 You cannot install an exception handler interactively.
3404 @end itemize
3405
3406 @cindex raise exceptions
3407 Sometimes @code{catch} is not the best way to debug exception handling:
3408 if you need to know exactly where an exception is raised, it is better to
3409 stop @emph{before} the exception handler is called, since that way you
3410 can see the stack before any unwinding takes place.  If you set a
3411 breakpoint in an exception handler instead, it may not be easy to find
3412 out where the exception was raised.
3413
3414 To stop just before an exception handler is called, you need some
3415 knowledge of the implementation.  In the case of @sc{gnu} C@t{++}, exceptions are
3416 raised by calling a library function named @code{__raise_exception}
3417 which has the following ANSI C interface:
3418
3419 @smallexample
3420     /* @var{addr} is where the exception identifier is stored.
3421        @var{id} is the exception identifier.  */
3422     void __raise_exception (void **addr, void *id);
3423 @end smallexample
3424
3425 @noindent
3426 To make the debugger catch all exceptions before any stack
3427 unwinding takes place, set a breakpoint on @code{__raise_exception}
3428 (@pxref{Breakpoints, ,Breakpoints; Watchpoints; and Exceptions}).
3429
3430 With a conditional breakpoint (@pxref{Conditions, ,Break Conditions})
3431 that depends on the value of @var{id}, you can stop your program when
3432 a specific exception is raised.  You can use multiple conditional
3433 breakpoints to stop your program when any of a number of exceptions are
3434 raised.
3435
3436
3437 @node Delete Breaks
3438 @subsection Deleting Breakpoints
3439
3440 @cindex clearing breakpoints, watchpoints, catchpoints
3441 @cindex deleting breakpoints, watchpoints, catchpoints
3442 It is often necessary to eliminate a breakpoint, watchpoint, or
3443 catchpoint once it has done its job and you no longer want your program
3444 to stop there.  This is called @dfn{deleting} the breakpoint.  A
3445 breakpoint that has been deleted no longer exists; it is forgotten.
3446
3447 With the @code{clear} command you can delete breakpoints according to
3448 where they are in your program.  With the @code{delete} command you can
3449 delete individual breakpoints, watchpoints, or catchpoints by specifying
3450 their breakpoint numbers.
3451
3452 It is not necessary to delete a breakpoint to proceed past it.  @value{GDBN}
3453 automatically ignores breakpoints on the first instruction to be executed
3454 when you continue execution without changing the execution address.
3455
3456 @table @code
3457 @kindex clear
3458 @item clear
3459 Delete any breakpoints at the next instruction to be executed in the
3460 selected stack frame (@pxref{Selection, ,Selecting a Frame}).  When
3461 the innermost frame is selected, this is a good way to delete a
3462 breakpoint where your program just stopped.
3463
3464 @item clear @var{function}
3465 @itemx clear @var{filename}:@var{function}
3466 Delete any breakpoints set at entry to the named @var{function}.
3467
3468 @item clear @var{linenum}
3469 @itemx clear @var{filename}:@var{linenum}
3470 Delete any breakpoints set at or within the code of the specified
3471 @var{linenum} of the specified @var{filename}.
3472
3473 @cindex delete breakpoints
3474 @kindex delete
3475 @kindex d @r{(@code{delete})}
3476 @item delete @r{[}breakpoints@r{]} @r{[}@var{range}@dots{}@r{]}
3477 Delete the breakpoints, watchpoints, or catchpoints of the breakpoint
3478 ranges specified as arguments.  If no argument is specified, delete all
3479 breakpoints (@value{GDBN} asks confirmation, unless you have @code{set
3480 confirm off}).  You can abbreviate this command as @code{d}.
3481 @end table
3482
3483 @node Disabling
3484 @subsection Disabling Breakpoints
3485
3486 @cindex enable/disable a breakpoint
3487 Rather than deleting a breakpoint, watchpoint, or catchpoint, you might
3488 prefer to @dfn{disable} it.  This makes the breakpoint inoperative as if
3489 it had been deleted, but remembers the information on the breakpoint so
3490 that you can @dfn{enable} it again later.
3491
3492 You disable and enable breakpoints, watchpoints, and catchpoints with
3493 the @code{enable} and @code{disable} commands, optionally specifying one
3494 or more breakpoint numbers as arguments.  Use @code{info break} or
3495 @code{info watch} to print a list of breakpoints, watchpoints, and
3496 catchpoints if you do not know which numbers to use.
3497
3498 A breakpoint, watchpoint, or catchpoint can have any of four different
3499 states of enablement:
3500
3501 @itemize @bullet
3502 @item
3503 Enabled.  The breakpoint stops your program.  A breakpoint set
3504 with the @code{break} command starts out in this state.
3505 @item
3506 Disabled.  The breakpoint has no effect on your program.
3507 @item
3508 Enabled once.  The breakpoint stops your program, but then becomes
3509 disabled.
3510 @item
3511 Enabled for deletion.  The breakpoint stops your program, but
3512 immediately after it does so it is deleted permanently.  A breakpoint
3513 set with the @code{tbreak} command starts out in this state.
3514 @end itemize
3515
3516 You can use the following commands to enable or disable breakpoints,
3517 watchpoints, and catchpoints:
3518
3519 @table @code
3520 @kindex disable
3521 @kindex dis @r{(@code{disable})}
3522 @item disable @r{[}breakpoints@r{]} @r{[}@var{range}@dots{}@r{]}
3523 Disable the specified breakpoints---or all breakpoints, if none are
3524 listed.  A disabled breakpoint has no effect but is not forgotten.  All
3525 options such as ignore-counts, conditions and commands are remembered in
3526 case the breakpoint is enabled again later.  You may abbreviate
3527 @code{disable} as @code{dis}.
3528
3529 @kindex enable
3530 @item enable @r{[}breakpoints@r{]} @r{[}@var{range}@dots{}@r{]}
3531 Enable the specified breakpoints (or all defined breakpoints).  They
3532 become effective once again in stopping your program.
3533
3534 @item enable @r{[}breakpoints@r{]} once @var{range}@dots{}
3535 Enable the specified breakpoints temporarily.  @value{GDBN} disables any
3536 of these breakpoints immediately after stopping your program.
3537
3538 @item enable @r{[}breakpoints@r{]} delete @var{range}@dots{}
3539 Enable the specified breakpoints to work once, then die.  @value{GDBN}
3540 deletes any of these breakpoints as soon as your program stops there.
3541 Breakpoints set by the @code{tbreak} command start out in this state.
3542 @end table
3543
3544 @c FIXME: I think the following ``Except for [...] @code{tbreak}'' is
3545 @c confusing: tbreak is also initially enabled.
3546 Except for a breakpoint set with @code{tbreak} (@pxref{Set Breaks,
3547 ,Setting Breakpoints}), breakpoints that you set are initially enabled;
3548 subsequently, they become disabled or enabled only when you use one of
3549 the commands above.  (The command @code{until} can set and delete a
3550 breakpoint of its own, but it does not change the state of your other
3551 breakpoints; see @ref{Continuing and Stepping, ,Continuing and
3552 Stepping}.)
3553
3554 @node Conditions
3555 @subsection Break Conditions
3556 @cindex conditional breakpoints
3557 @cindex breakpoint conditions
3558
3559 @c FIXME what is scope of break condition expr?  Context where wanted?
3560 @c      in particular for a watchpoint?
3561 The simplest sort of breakpoint breaks every time your program reaches a
3562 specified place.  You can also specify a @dfn{condition} for a
3563 breakpoint.  A condition is just a Boolean expression in your
3564 programming language (@pxref{Expressions, ,Expressions}).  A breakpoint with
3565 a condition evaluates the expression each time your program reaches it,
3566 and your program stops only if the condition is @emph{true}.
3567
3568 This is the converse of using assertions for program validation; in that
3569 situation, you want to stop when the assertion is violated---that is,
3570 when the condition is false.  In C, if you want to test an assertion expressed
3571 by the condition @var{assert}, you should set the condition
3572 @samp{! @var{assert}} on the appropriate breakpoint.
3573
3574 Conditions are also accepted for watchpoints; you may not need them,
3575 since a watchpoint is inspecting the value of an expression anyhow---but
3576 it might be simpler, say, to just set a watchpoint on a variable name,
3577 and specify a condition that tests whether the new value is an interesting
3578 one.
3579
3580 Break conditions can have side effects, and may even call functions in
3581 your program.  This can be useful, for example, to activate functions
3582 that log program progress, or to use your own print functions to
3583 format special data structures. The effects are completely predictable
3584 unless there is another enabled breakpoint at the same address.  (In
3585 that case, @value{GDBN} might see the other breakpoint first and stop your
3586 program without checking the condition of this one.)  Note that
3587 breakpoint commands are usually more convenient and flexible than break
3588 conditions for the
3589 purpose of performing side effects when a breakpoint is reached
3590 (@pxref{Break Commands, ,Breakpoint Command Lists}).
3591
3592 Break conditions can be specified when a breakpoint is set, by using
3593 @samp{if} in the arguments to the @code{break} command.  @xref{Set
3594 Breaks, ,Setting Breakpoints}.  They can also be changed at any time
3595 with the @code{condition} command.
3596
3597 You can also use the @code{if} keyword with the @code{watch} command.
3598 The @code{catch} command does not recognize the @code{if} keyword;
3599 @code{condition} is the only way to impose a further condition on a
3600 catchpoint.
3601
3602 @table @code
3603 @kindex condition
3604 @item condition @var{bnum} @var{expression}
3605 Specify @var{expression} as the break condition for breakpoint,
3606 watchpoint, or catchpoint number @var{bnum}.  After you set a condition,
3607 breakpoint @var{bnum} stops your program only if the value of
3608 @var{expression} is true (nonzero, in C).  When you use
3609 @code{condition}, @value{GDBN} checks @var{expression} immediately for
3610 syntactic correctness, and to determine whether symbols in it have
3611 referents in the context of your breakpoint.  If @var{expression} uses
3612 symbols not referenced in the context of the breakpoint, @value{GDBN}
3613 prints an error message:
3614
3615 @smallexample
3616 No symbol "foo" in current context.
3617 @end smallexample
3618
3619 @noindent
3620 @value{GDBN} does
3621 not actually evaluate @var{expression} at the time the @code{condition}
3622 command (or a command that sets a breakpoint with a condition, like
3623 @code{break if @dots{}}) is given, however.  @xref{Expressions, ,Expressions}.
3624
3625 @item condition @var{bnum}
3626 Remove the condition from breakpoint number @var{bnum}.  It becomes
3627 an ordinary unconditional breakpoint.
3628 @end table
3629
3630 @cindex ignore count (of breakpoint)
3631 A special case of a breakpoint condition is to stop only when the
3632 breakpoint has been reached a certain number of times.  This is so
3633 useful that there is a special way to do it, using the @dfn{ignore
3634 count} of the breakpoint.  Every breakpoint has an ignore count, which
3635 is an integer.  Most of the time, the ignore count is zero, and
3636 therefore has no effect.  But if your program reaches a breakpoint whose
3637 ignore count is positive, then instead of stopping, it just decrements
3638 the ignore count by one and continues.  As a result, if the ignore count
3639 value is @var{n}, the breakpoint does not stop the next @var{n} times
3640 your program reaches it.
3641
3642 @table @code
3643 @kindex ignore
3644 @item ignore @var{bnum} @var{count}
3645 Set the ignore count of breakpoint number @var{bnum} to @var{count}.
3646 The next @var{count} times the breakpoint is reached, your program's
3647 execution does not stop; other than to decrement the ignore count, @value{GDBN}
3648 takes no action.
3649
3650 To make the breakpoint stop the next time it is reached, specify
3651 a count of zero.
3652
3653 When you use @code{continue} to resume execution of your program from a
3654 breakpoint, you can specify an ignore count directly as an argument to
3655 @code{continue}, rather than using @code{ignore}.  @xref{Continuing and
3656 Stepping,,Continuing and Stepping}.
3657
3658 If a breakpoint has a positive ignore count and a condition, the
3659 condition is not checked.  Once the ignore count reaches zero,
3660 @value{GDBN} resumes checking the condition.
3661
3662 You could achieve the effect of the ignore count with a condition such
3663 as @w{@samp{$foo-- <= 0}} using a debugger convenience variable that
3664 is decremented each time.  @xref{Convenience Vars, ,Convenience
3665 Variables}.
3666 @end table
3667
3668 Ignore counts apply to breakpoints, watchpoints, and catchpoints.
3669
3670
3671 @node Break Commands
3672 @subsection Breakpoint Command Lists
3673
3674 @cindex breakpoint commands
3675 You can give any breakpoint (or watchpoint or catchpoint) a series of
3676 commands to execute when your program stops due to that breakpoint.  For
3677 example, you might want to print the values of certain expressions, or
3678 enable other breakpoints.
3679
3680 @table @code
3681 @kindex commands
3682 @kindex end@r{ (breakpoint commands)}
3683 @item commands @r{[}@var{bnum}@r{]}
3684 @itemx @dots{} @var{command-list} @dots{}
3685 @itemx end
3686 Specify a list of commands for breakpoint number @var{bnum}.  The commands
3687 themselves appear on the following lines.  Type a line containing just
3688 @code{end} to terminate the commands.
3689
3690 To remove all commands from a breakpoint, type @code{commands} and
3691 follow it immediately with @code{end}; that is, give no commands.
3692
3693 With no @var{bnum} argument, @code{commands} refers to the last
3694 breakpoint, watchpoint, or catchpoint set (not to the breakpoint most
3695 recently encountered).
3696 @end table
3697
3698 Pressing @key{RET} as a means of repeating the last @value{GDBN} command is
3699 disabled within a @var{command-list}.
3700
3701 You can use breakpoint commands to start your program up again.  Simply
3702 use the @code{continue} command, or @code{step}, or any other command
3703 that resumes execution.
3704
3705 Any other commands in the command list, after a command that resumes
3706 execution, are ignored.  This is because any time you resume execution
3707 (even with a simple @code{next} or @code{step}), you may encounter
3708 another breakpoint---which could have its own command list, leading to
3709 ambiguities about which list to execute.
3710
3711 @kindex silent
3712 If the first command you specify in a command list is @code{silent}, the
3713 usual message about stopping at a breakpoint is not printed.  This may
3714 be desirable for breakpoints that are to print a specific message and
3715 then continue.  If none of the remaining commands print anything, you
3716 see no sign that the breakpoint was reached.  @code{silent} is
3717 meaningful only at the beginning of a breakpoint command list.
3718
3719 The commands @code{echo}, @code{output}, and @code{printf} allow you to
3720 print precisely controlled output, and are often useful in silent
3721 breakpoints.  @xref{Output, ,Commands for Controlled Output}.
3722
3723 For example, here is how you could use breakpoint commands to print the
3724 value of @code{x} at entry to @code{foo} whenever @code{x} is positive.
3725
3726 @smallexample
3727 break foo if x>0
3728 commands
3729 silent
3730 printf "x is %d\n",x
3731 cont
3732 end
3733 @end smallexample
3734
3735 One application for breakpoint commands is to compensate for one bug so
3736 you can test for another.  Put a breakpoint just after the erroneous line
3737 of code, give it a condition to detect the case in which something
3738 erroneous has been done, and give it commands to assign correct values
3739 to any variables that need them.  End with the @code{continue} command
3740 so that your program does not stop, and start with the @code{silent}
3741 command so that no output is produced.  Here is an example:
3742
3743 @smallexample
3744 break 403
3745 commands
3746 silent
3747 set x = y + 4
3748 cont
3749 end
3750 @end smallexample
3751
3752 @node Breakpoint Menus
3753 @subsection Breakpoint Menus
3754 @cindex overloading
3755 @cindex symbol overloading
3756
3757 Some programming languages (notably C@t{++} and Objective-C) permit a
3758 single function name
3759 to be defined several times, for application in different contexts.
3760 This is called @dfn{overloading}.  When a function name is overloaded,
3761 @samp{break @var{function}} is not enough to tell @value{GDBN} where you want
3762 a breakpoint.  If you realize this is a problem, you can use
3763 something like @samp{break @var{function}(@var{types})} to specify which
3764 particular version of the function you want.  Otherwise, @value{GDBN} offers
3765 you a menu of numbered choices for different possible breakpoints, and
3766 waits for your selection with the prompt @samp{>}.  The first two
3767 options are always @samp{[0] cancel} and @samp{[1] all}.  Typing @kbd{1}
3768 sets a breakpoint at each definition of @var{function}, and typing
3769 @kbd{0} aborts the @code{break} command without setting any new
3770 breakpoints.
3771
3772 For example, the following session excerpt shows an attempt to set a
3773 breakpoint at the overloaded symbol @code{String::after}.
3774 We choose three particular definitions of that function name:
3775
3776 @c FIXME! This is likely to change to show arg type lists, at least
3777 @smallexample
3778 @group
3779 (@value{GDBP}) b String::after
3780 [0] cancel
3781 [1] all
3782 [2] file:String.cc; line number:867
3783 [3] file:String.cc; line number:860
3784 [4] file:String.cc; line number:875
3785 [5] file:String.cc; line number:853
3786 [6] file:String.cc; line number:846
3787 [7] file:String.cc; line number:735
3788 > 2 4 6
3789 Breakpoint 1 at 0xb26c: file String.cc, line 867.
3790 Breakpoint 2 at 0xb344: file String.cc, line 875.
3791 Breakpoint 3 at 0xafcc: file String.cc, line 846.
3792 Multiple breakpoints were set.
3793 Use the "delete" command to delete unwanted
3794  breakpoints.
3795 (@value{GDBP})
3796 @end group
3797 @end smallexample
3798
3799 @c  @ifclear BARETARGET
3800 @node Error in Breakpoints
3801 @subsection ``Cannot insert breakpoints''
3802 @c
3803 @c  FIXME!! 14/6/95  Is there a real example of this?  Let's use it.
3804 @c
3805 Under some operating systems, breakpoints cannot be used in a program if
3806 any other process is running that program.  In this situation,
3807 attempting to run or continue a program with a breakpoint causes
3808 @value{GDBN} to print an error message:
3809
3810 @smallexample
3811 Cannot insert breakpoints.
3812 The same program may be running in another process.
3813 @end smallexample
3814
3815 When this happens, you have three ways to proceed:
3816
3817 @enumerate
3818 @item
3819 Remove or disable the breakpoints, then continue.
3820
3821 @item
3822 Suspend @value{GDBN}, and copy the file containing your program to a new
3823 name.  Resume @value{GDBN} and use the @code{exec-file} command to specify
3824 that @value{GDBN} should run your program under that name.
3825 Then start your program again.
3826
3827 @item
3828 Relink your program so that the text segment is nonsharable, using the
3829 linker option @samp{-N}.  The operating system limitation may not apply
3830 to nonsharable executables.
3831 @end enumerate
3832 @c  @end ifclear
3833
3834 A similar message can be printed if you request too many active
3835 hardware-assisted breakpoints and watchpoints:
3836
3837 @c FIXME: the precise wording of this message may change; the relevant
3838 @c source change is not committed yet (Sep 3, 1999).
3839 @smallexample
3840 Stopped; cannot insert breakpoints.
3841 You may have requested too many hardware breakpoints and watchpoints.
3842 @end smallexample
3843
3844 @noindent
3845 This message is printed when you attempt to resume the program, since
3846 only then @value{GDBN} knows exactly how many hardware breakpoints and
3847 watchpoints it needs to insert.
3848
3849 When this message is printed, you need to disable or remove some of the
3850 hardware-assisted breakpoints and watchpoints, and then continue.
3851
3852 @node Breakpoint-related Warnings
3853 @subsection ``Breakpoint address adjusted...''
3854 @cindex breakpoint address adjusted
3855
3856 Some processor architectures place constraints on the addresses at
3857 which breakpoints may be placed.  For architectures thus constrained,
3858 @value{GDBN} will attempt to adjust the breakpoint's address to comply
3859 with the constraints dictated by the architecture.
3860
3861 One example of such an architecture is the Fujitsu FR-V.  The FR-V is
3862 a VLIW architecture in which a number of RISC-like instructions may be
3863 bundled together for parallel execution.  The FR-V architecture
3864 constrains the location of a breakpoint instruction within such a
3865 bundle to the instruction with the lowest address.  @value{GDBN}
3866 honors this constraint by adjusting a breakpoint's address to the
3867 first in the bundle.
3868
3869 It is not uncommon for optimized code to have bundles which contain
3870 instructions from different source statements, thus it may happen that
3871 a breakpoint's address will be adjusted from one source statement to
3872 another.  Since this adjustment may significantly alter @value{GDBN}'s
3873 breakpoint related behavior from what the user expects, a warning is
3874 printed when the breakpoint is first set and also when the breakpoint
3875 is hit.
3876
3877 A warning like the one below is printed when setting a breakpoint
3878 that's been subject to address adjustment:
3879
3880 @smallexample
3881 warning: Breakpoint address adjusted from 0x00010414 to 0x00010410.
3882 @end smallexample
3883
3884 Such warnings are printed both for user settable and @value{GDBN}'s
3885 internal breakpoints.  If you see one of these warnings, you should
3886 verify that a breakpoint set at the adjusted address will have the
3887 desired affect.  If not, the breakpoint in question may be removed and
3888 other breakpoints may be set which will have the desired behavior.
3889 E.g., it may be sufficient to place the breakpoint at a later
3890 instruction.  A conditional breakpoint may also be useful in some
3891 cases to prevent the breakpoint from triggering too often.
3892
3893 @value{GDBN} will also issue a warning when stopping at one of these
3894 adjusted breakpoints:
3895
3896 @smallexample
3897 warning: Breakpoint 1 address previously adjusted from 0x00010414
3898 to 0x00010410.
3899 @end smallexample
3900
3901 When this warning is encountered, it may be too late to take remedial
3902 action except in cases where the breakpoint is hit earlier or more
3903 frequently than expected.
3904
3905 @node Continuing and Stepping
3906 @section Continuing and Stepping
3907
3908 @cindex stepping
3909 @cindex continuing
3910 @cindex resuming execution
3911 @dfn{Continuing} means resuming program execution until your program
3912 completes normally.  In contrast, @dfn{stepping} means executing just
3913 one more ``step'' of your program, where ``step'' may mean either one
3914 line of source code, or one machine instruction (depending on what
3915 particular command you use).  Either when continuing or when stepping,
3916 your program may stop even sooner, due to a breakpoint or a signal.  (If
3917 it stops due to a signal, you may want to use @code{handle}, or use
3918 @samp{signal 0} to resume execution.  @xref{Signals, ,Signals}.)
3919
3920 @table @code
3921 @kindex continue
3922 @kindex c @r{(@code{continue})}
3923 @kindex fg @r{(resume foreground execution)}
3924 @item continue @r{[}@var{ignore-count}@r{]}
3925 @itemx c @r{[}@var{ignore-count}@r{]}
3926 @itemx fg @r{[}@var{ignore-count}@r{]}
3927 Resume program execution, at the address where your program last stopped;
3928 any breakpoints set at that address are bypassed.  The optional argument
3929 @var{ignore-count} allows you to specify a further number of times to
3930 ignore a breakpoint at this location; its effect is like that of
3931 @code{ignore} (@pxref{Conditions, ,Break Conditions}).
3932
3933 The argument @var{ignore-count} is meaningful only when your program
3934 stopped due to a breakpoint.  At other times, the argument to
3935 @code{continue} is ignored.
3936
3937 The synonyms @code{c} and @code{fg} (for @dfn{foreground}, as the
3938 debugged program is deemed to be the foreground program) are provided
3939 purely for convenience, and have exactly the same behavior as
3940 @code{continue}.
3941 @end table
3942
3943 To resume execution at a different place, you can use @code{return}
3944 (@pxref{Returning, ,Returning from a Function}) to go back to the
3945 calling function; or @code{jump} (@pxref{Jumping, ,Continuing at a
3946 Different Address}) to go to an arbitrary location in your program.
3947
3948 A typical technique for using stepping is to set a breakpoint
3949 (@pxref{Breakpoints, ,Breakpoints; Watchpoints; and Catchpoints}) at the
3950 beginning of the function or the section of your program where a problem
3951 is believed to lie, run your program until it stops at that breakpoint,
3952 and then step through the suspect area, examining the variables that are
3953 interesting, until you see the problem happen.
3954
3955 @table @code
3956 @kindex step
3957 @kindex s @r{(@code{step})}
3958 @item step
3959 Continue running your program until control reaches a different source
3960 line, then stop it and return control to @value{GDBN}.  This command is
3961 abbreviated @code{s}.
3962
3963 @quotation
3964 @c "without debugging information" is imprecise; actually "without line
3965 @c numbers in the debugging information".  (gcc -g1 has debugging info but
3966 @c not line numbers).  But it seems complex to try to make that
3967 @c distinction here.
3968 @emph{Warning:} If you use the @code{step} command while control is
3969 within a function that was compiled without debugging information,
3970 execution proceeds until control reaches a function that does have
3971 debugging information.  Likewise, it will not step into a function which
3972 is compiled without debugging information.  To step through functions
3973 without debugging information, use the @code{stepi} command, described
3974 below.
3975 @end quotation
3976
3977 The @code{step} command only stops at the first instruction of a source
3978 line.  This prevents the multiple stops that could otherwise occur in
3979 @code{switch} statements, @code{for} loops, etc.  @code{step} continues
3980 to stop if a function that has debugging information is called within
3981 the line.  In other words, @code{step} @emph{steps inside} any functions
3982 called within the line.
3983
3984 Also, the @code{step} command only enters a function if there is line
3985 number information for the function.  Otherwise it acts like the
3986 @code{next} command.  This avoids problems when using @code{cc -gl}
3987 on MIPS machines.  Previously, @code{step} entered subroutines if there
3988 was any debugging information about the routine.
3989
3990 @item step @var{count}
3991 Continue running as in @code{step}, but do so @var{count} times.  If a
3992 breakpoint is reached, or a signal not related to stepping occurs before
3993 @var{count} steps, stepping stops right away.
3994
3995 @kindex next
3996 @kindex n @r{(@code{next})}
3997 @item next @r{[}@var{count}@r{]}
3998 Continue to the next source line in the current (innermost) stack frame.
3999 This is similar to @code{step}, but function calls that appear within
4000 the line of code are executed without stopping.  Execution stops when
4001 control reaches a different line of code at the original stack level
4002 that was executing when you gave the @code{next} command.  This command
4003 is abbreviated @code{n}.
4004
4005 An argument @var{count} is a repeat count, as for @code{step}.
4006
4007
4008 @c  FIX ME!!  Do we delete this, or is there a way it fits in with
4009 @c  the following paragraph?   ---  Vctoria
4010 @c
4011 @c  @code{next} within a function that lacks debugging information acts like
4012 @c  @code{step}, but any function calls appearing within the code of the
4013 @c  function are executed without stopping.
4014
4015 The @code{next} command only stops at the first instruction of a
4016 source line.  This prevents multiple stops that could otherwise occur in
4017 @code{switch} statements, @code{for} loops, etc.
4018
4019 @kindex set step-mode
4020 @item set step-mode
4021 @cindex functions without line info, and stepping
4022 @cindex stepping into functions with no line info
4023 @itemx set step-mode on
4024 The @code{set step-mode on} command causes the @code{step} command to
4025 stop at the first instruction of a function which contains no debug line
4026 information rather than stepping over it.
4027
4028 This is useful in cases where you may be interested in inspecting the
4029 machine instructions of a function which has no symbolic info and do not
4030 want @value{GDBN} to automatically skip over this function.
4031
4032 @item set step-mode off
4033 Causes the @code{step} command to step over any functions which contains no
4034 debug information.  This is the default.
4035
4036 @item show step-mode
4037 Show whether @value{GDBN} will stop in or step over functions without
4038 source line debug information.
4039
4040 @kindex finish
4041 @item finish
4042 Continue running until just after function in the selected stack frame
4043 returns.  Print the returned value (if any).
4044
4045 Contrast this with the @code{return} command (@pxref{Returning,
4046 ,Returning from a Function}).
4047
4048 @kindex until
4049 @kindex u @r{(@code{until})}
4050 @cindex run until specified location
4051 @item until
4052 @itemx u
4053 Continue running until a source line past the current line, in the
4054 current stack frame, is reached.  This command is used to avoid single
4055 stepping through a loop more than once.  It is like the @code{next}
4056 command, except that when @code{until} encounters a jump, it
4057 automatically continues execution until the program counter is greater
4058 than the address of the jump.
4059
4060 This means that when you reach the end of a loop after single stepping
4061 though it, @code{until} makes your program continue execution until it
4062 exits the loop.  In contrast, a @code{next} command at the end of a loop
4063 simply steps back to the beginning of the loop, which forces you to step
4064 through the next iteration.
4065
4066 @code{until} always stops your program if it attempts to exit the current
4067 stack frame.
4068
4069 @code{until} may produce somewhat counterintuitive results if the order
4070 of machine code does not match the order of the source lines.  For
4071 example, in the following excerpt from a debugging session, the @code{f}
4072 (@code{frame}) command shows that execution is stopped at line
4073 @code{206}; yet when we use @code{until}, we get to line @code{195}:
4074
4075 @smallexample
4076 (@value{GDBP}) f
4077 #0  main (argc=4, argv=0xf7fffae8) at m4.c:206
4078 206                 expand_input();
4079 (@value{GDBP}) until
4080 195             for ( ; argc > 0; NEXTARG) @{
4081 @end smallexample
4082
4083 This happened because, for execution efficiency, the compiler had
4084 generated code for the loop closure test at the end, rather than the
4085 start, of the loop---even though the test in a C @code{for}-loop is
4086 written before the body of the loop.  The @code{until} command appeared
4087 to step back to the beginning of the loop when it advanced to this
4088 expression; however, it has not really gone to an earlier
4089 statement---not in terms of the actual machine code.
4090
4091 @code{until} with no argument works by means of single
4092 instruction stepping, and hence is slower than @code{until} with an
4093 argument.
4094
4095 @item until @var{location}
4096 @itemx u @var{location}
4097 Continue running your program until either the specified location is
4098 reached, or the current stack frame returns.  @var{location} is any of
4099 the forms of argument acceptable to @code{break} (@pxref{Set Breaks,
4100 ,Setting Breakpoints}).  This form of the command uses breakpoints, and
4101 hence is quicker than @code{until} without an argument.  The specified
4102 location is actually reached only if it is in the current frame.  This
4103 implies that @code{until} can be used to skip over recursive function
4104 invocations.  For instance in the code below, if the current location is
4105 line @code{96}, issuing @code{until 99} will execute the program up to
4106 line @code{99} in the same invocation of factorial, i.e., after the inner
4107 invocations have returned.
4108
4109 @smallexample
4110 94      int factorial (int value)
4111 95      @{
4112 96          if (value > 1) @{
4113 97            value *= factorial (value - 1);
4114 98          @}
4115 99          return (value);
4116 100     @}
4117 @end smallexample
4118
4119
4120 @kindex advance @var{location}
4121 @itemx advance @var{location}
4122 Continue running the program up to the given @var{location}.  An argument is
4123 required, which should be of the same form as arguments for the @code{break}
4124 command.  Execution will also stop upon exit from the current stack
4125 frame.  This command is similar to @code{until}, but @code{advance} will
4126 not skip over recursive function calls, and the target location doesn't
4127 have to be in the same frame as the current one.
4128
4129
4130 @kindex stepi
4131 @kindex si @r{(@code{stepi})}
4132 @item stepi
4133 @itemx stepi @var{arg}
4134 @itemx si
4135 Execute one machine instruction, then stop and return to the debugger.
4136
4137 It is often useful to do @samp{display/i $pc} when stepping by machine
4138 instructions.  This makes @value{GDBN} automatically display the next
4139 instruction to be executed, each time your program stops.  @xref{Auto
4140 Display,, Automatic Display}.
4141
4142 An argument is a repeat count, as in @code{step}.
4143
4144 @need 750
4145 @kindex nexti
4146 @kindex ni @r{(@code{nexti})}
4147 @item nexti
4148 @itemx nexti @var{arg}
4149 @itemx ni
4150 Execute one machine instruction, but if it is a function call,
4151 proceed until the function returns.
4152
4153 An argument is a repeat count, as in @code{next}.
4154 @end table
4155
4156 @node Signals
4157 @section Signals
4158 @cindex signals
4159
4160 A signal is an asynchronous event that can happen in a program.  The
4161 operating system defines the possible kinds of signals, and gives each
4162 kind a name and a number.  For example, in Unix @code{SIGINT} is the
4163 signal a program gets when you type an interrupt character (often @kbd{Ctrl-c});
4164 @code{SIGSEGV} is the signal a program gets from referencing a place in
4165 memory far away from all the areas in use; @code{SIGALRM} occurs when
4166 the alarm clock timer goes off (which happens only if your program has
4167 requested an alarm).
4168
4169 @cindex fatal signals
4170 Some signals, including @code{SIGALRM}, are a normal part of the
4171 functioning of your program.  Others, such as @code{SIGSEGV}, indicate
4172 errors; these signals are @dfn{fatal} (they kill your program immediately) if the
4173 program has not specified in advance some other way to handle the signal.
4174 @code{SIGINT} does not indicate an error in your program, but it is normally
4175 fatal so it can carry out the purpose of the interrupt: to kill the program.
4176
4177 @value{GDBN} has the ability to detect any occurrence of a signal in your
4178 program.  You can tell @value{GDBN} in advance what to do for each kind of
4179 signal.
4180
4181 @cindex handling signals
4182 Normally, @value{GDBN} is set up to let the non-erroneous signals like
4183 @code{SIGALRM} be silently passed to your program
4184 (so as not to interfere with their role in the program's functioning)
4185 but to stop your program immediately whenever an error signal happens.
4186 You can change these settings with the @code{handle} command.
4187
4188 @table @code
4189 @kindex info signals
4190 @kindex info handle
4191 @item info signals
4192 @itemx info handle
4193 Print a table of all the kinds of signals and how @value{GDBN} has been told to
4194 handle each one.  You can use this to see the signal numbers of all
4195 the defined types of signals.
4196
4197 @item info signals @var{sig}
4198 Similar, but print information only about the specified signal number.
4199
4200 @code{info handle} is an alias for @code{info signals}.
4201
4202 @kindex handle
4203 @item handle @var{signal} @r{[}@var{keywords}@dots{}@r{]}
4204 Change the way @value{GDBN} handles signal @var{signal}.  @var{signal}
4205 can be the number of a signal or its name (with or without the
4206 @samp{SIG} at the beginning); a list of signal numbers of the form
4207 @samp{@var{low}-@var{high}}; or the word @samp{all}, meaning all the
4208 known signals.  Optional arguments @var{keywords}, described below,
4209 say what change to make.
4210 @end table
4211
4212 @c @group
4213 The keywords allowed by the @code{handle} command can be abbreviated.
4214 Their full names are:
4215
4216 @table @code
4217 @item nostop
4218 @value{GDBN} should not stop your program when this signal happens.  It may
4219 still print a message telling you that the signal has come in.
4220
4221 @item stop
4222 @value{GDBN} should stop your program when this signal happens.  This implies
4223 the @code{print} keyword as well.
4224
4225 @item print
4226 @value{GDBN} should print a message when this signal happens.
4227
4228 @item noprint
4229 @value{GDBN} should not mention the occurrence of the signal at all.  This
4230 implies the @code{nostop} keyword as well.
4231
4232 @item pass
4233 @itemx noignore
4234 @value{GDBN} should allow your program to see this signal; your program
4235 can handle the signal, or else it may terminate if the signal is fatal
4236 and not handled.  @code{pass} and @code{noignore} are synonyms.
4237
4238 @item nopass
4239 @itemx ignore
4240 @value{GDBN} should not allow your program to see this signal.
4241 @code{nopass} and @code{ignore} are synonyms.
4242 @end table
4243 @c @end group
4244
4245 When a signal stops your program, the signal is not visible to the
4246 program until you
4247 continue.  Your program sees the signal then, if @code{pass} is in
4248 effect for the signal in question @emph{at that time}.  In other words,
4249 after @value{GDBN} reports a signal, you can use the @code{handle}
4250 command with @code{pass} or @code{nopass} to control whether your
4251 program sees that signal when you continue.
4252
4253 The default is set to @code{nostop}, @code{noprint}, @code{pass} for
4254 non-erroneous signals such as @code{SIGALRM}, @code{SIGWINCH} and
4255 @code{SIGCHLD}, and to @code{stop}, @code{print}, @code{pass} for the
4256 erroneous signals.
4257
4258 You can also use the @code{signal} command to prevent your program from
4259 seeing a signal, or cause it to see a signal it normally would not see,
4260 or to give it any signal at any time.  For example, if your program stopped
4261 due to some sort of memory reference error, you might store correct
4262 values into the erroneous variables and continue, hoping to see more
4263 execution; but your program would probably terminate immediately as
4264 a result of the fatal signal once it saw the signal.  To prevent this,
4265 you can continue with @samp{signal 0}.  @xref{Signaling, ,Giving your
4266 Program a Signal}.
4267
4268 @node Thread Stops
4269 @section Stopping and Starting Multi-thread Programs
4270
4271 When your program has multiple threads (@pxref{Threads,, Debugging
4272 Programs with Multiple Threads}), you can choose whether to set
4273 breakpoints on all threads, or on a particular thread.
4274
4275 @table @code
4276 @cindex breakpoints and threads
4277 @cindex thread breakpoints
4278 @kindex break @dots{} thread @var{threadno}
4279 @item break @var{linespec} thread @var{threadno}
4280 @itemx break @var{linespec} thread @var{threadno} if @dots{}
4281 @var{linespec} specifies source lines; there are several ways of
4282 writing them, but the effect is always to specify some source line.
4283
4284 Use the qualifier @samp{thread @var{threadno}} with a breakpoint command
4285 to specify that you only want @value{GDBN} to stop the program when a
4286 particular thread reaches this breakpoint.  @var{threadno} is one of the
4287 numeric thread identifiers assigned by @value{GDBN}, shown in the first
4288 column of the @samp{info threads} display.
4289
4290 If you do not specify @samp{thread @var{threadno}} when you set a
4291 breakpoint, the breakpoint applies to @emph{all} threads of your
4292 program.
4293
4294 You can use the @code{thread} qualifier on conditional breakpoints as
4295 well; in this case, place @samp{thread @var{threadno}} before the
4296 breakpoint condition, like this:
4297
4298 @smallexample
4299 (@value{GDBP}) break frik.c:13 thread 28 if bartab > lim
4300 @end smallexample
4301
4302 @end table
4303
4304 @cindex stopped threads
4305 @cindex threads, stopped
4306 Whenever your program stops under @value{GDBN} for any reason,
4307 @emph{all} threads of execution stop, not just the current thread.  This
4308 allows you to examine the overall state of the program, including
4309 switching between threads, without worrying that things may change
4310 underfoot.
4311
4312 @cindex thread breakpoints and system calls
4313 @cindex system calls and thread breakpoints
4314 @cindex premature return from system calls
4315 There is an unfortunate side effect.  If one thread stops for a
4316 breakpoint, or for some other reason, and another thread is blocked in a
4317 system call, then the system call may return prematurely.  This is a
4318 consequence of the interaction between multiple threads and the signals
4319 that @value{GDBN} uses to implement breakpoints and other events that
4320 stop execution.
4321
4322 To handle this problem, your program should check the return value of
4323 each system call and react appropriately.  This is good programming
4324 style anyways.
4325
4326 For example, do not write code like this:
4327
4328 @smallexample
4329   sleep (10);
4330 @end smallexample
4331
4332 The call to @code{sleep} will return early if a different thread stops
4333 at a breakpoint or for some other reason.
4334
4335 Instead, write this:
4336
4337 @smallexample
4338   int unslept = 10;
4339   while (unslept > 0)
4340     unslept = sleep (unslept);
4341 @end smallexample
4342
4343 A system call is allowed to return early, so the system is still
4344 conforming to its specification.  But @value{GDBN} does cause your
4345 multi-threaded program to behave differently than it would without
4346 @value{GDBN}.
4347
4348 Also, @value{GDBN} uses internal breakpoints in the thread library to
4349 monitor certain events such as thread creation and thread destruction.
4350 When such an event happens, a system call in another thread may return
4351 prematurely, even though your program does not appear to stop.
4352
4353 @cindex continuing threads
4354 @cindex threads, continuing
4355 Conversely, whenever you restart the program, @emph{all} threads start
4356 executing.  @emph{This is true even when single-stepping} with commands
4357 like @code{step} or @code{next}.
4358
4359 In particular, @value{GDBN} cannot single-step all threads in lockstep.
4360 Since thread scheduling is up to your debugging target's operating
4361 system (not controlled by @value{GDBN}), other threads may
4362 execute more than one statement while the current thread completes a
4363 single step.  Moreover, in general other threads stop in the middle of a
4364 statement, rather than at a clean statement boundary, when the program
4365 stops.
4366
4367 You might even find your program stopped in another thread after
4368 continuing or even single-stepping.  This happens whenever some other
4369 thread runs into a breakpoint, a signal, or an exception before the
4370 first thread completes whatever you requested.
4371
4372 On some OSes, you can lock the OS scheduler and thus allow only a single
4373 thread to run.
4374
4375 @table @code
4376 @item set scheduler-locking @var{mode}
4377 @cindex scheduler locking mode
4378 @cindex lock scheduler
4379 Set the scheduler locking mode.  If it is @code{off}, then there is no
4380 locking and any thread may run at any time.  If @code{on}, then only the
4381 current thread may run when the inferior is resumed.  The @code{step}
4382 mode optimizes for single-stepping.  It stops other threads from
4383 ``seizing the prompt'' by preempting the current thread while you are
4384 stepping.  Other threads will only rarely (or never) get a chance to run
4385 when you step.  They are more likely to run when you @samp{next} over a
4386 function call, and they are completely free to run when you use commands
4387 like @samp{continue}, @samp{until}, or @samp{finish}.  However, unless another
4388 thread hits a breakpoint during its timeslice, they will never steal the
4389 @value{GDBN} prompt away from the thread that you are debugging.
4390
4391 @item show scheduler-locking
4392 Display the current scheduler locking mode.
4393 @end table
4394
4395
4396 @node Stack
4397 @chapter Examining the Stack
4398
4399 When your program has stopped, the first thing you need to know is where it
4400 stopped and how it got there.
4401
4402 @cindex call stack
4403 Each time your program performs a function call, information about the call
4404 is generated.
4405 That information includes the location of the call in your program,
4406 the arguments of the call,
4407 and the local variables of the function being called.
4408 The information is saved in a block of data called a @dfn{stack frame}.
4409 The stack frames are allocated in a region of memory called the @dfn{call
4410 stack}.
4411
4412 When your program stops, the @value{GDBN} commands for examining the
4413 stack allow you to see all of this information.
4414
4415 @cindex selected frame
4416 One of the stack frames is @dfn{selected} by @value{GDBN} and many
4417 @value{GDBN} commands refer implicitly to the selected frame.  In
4418 particular, whenever you ask @value{GDBN} for the value of a variable in
4419 your program, the value is found in the selected frame.  There are
4420 special @value{GDBN} commands to select whichever frame you are
4421 interested in.  @xref{Selection, ,Selecting a Frame}.
4422
4423 When your program stops, @value{GDBN} automatically selects the
4424 currently executing frame and describes it briefly, similar to the
4425 @code{frame} command (@pxref{Frame Info, ,Information about a Frame}).
4426
4427 @menu
4428 * Frames::                      Stack frames
4429 * Backtrace::                   Backtraces
4430 * Selection::                   Selecting a frame
4431 * Frame Info::                  Information on a frame
4432
4433 @end menu
4434
4435 @node Frames
4436 @section Stack Frames
4437
4438 @cindex frame, definition
4439 @cindex stack frame
4440 The call stack is divided up into contiguous pieces called @dfn{stack
4441 frames}, or @dfn{frames} for short; each frame is the data associated
4442 with one call to one function.  The frame contains the arguments given
4443 to the function, the function's local variables, and the address at
4444 which the function is executing.
4445
4446 @cindex initial frame
4447 @cindex outermost frame
4448 @cindex innermost frame
4449 When your program is started, the stack has only one frame, that of the
4450 function @code{main}.  This is called the @dfn{initial} frame or the
4451 @dfn{outermost} frame.  Each time a function is called, a new frame is
4452 made.  Each time a function returns, the frame for that function invocation
4453 is eliminated.  If a function is recursive, there can be many frames for
4454 the same function.  The frame for the function in which execution is
4455 actually occurring is called the @dfn{innermost} frame.  This is the most
4456 recently created of all the stack frames that still exist.
4457
4458 @cindex frame pointer
4459 Inside your program, stack frames are identified by their addresses.  A
4460 stack frame consists of many bytes, each of which has its own address; each
4461 kind of computer has a convention for choosing one byte whose
4462 address serves as the address of the frame.  Usually this address is kept
4463 in a register called the @dfn{frame pointer register}
4464 (@pxref{Registers, $fp}) while execution is going on in that frame.
4465
4466 @cindex frame number
4467 @value{GDBN} assigns numbers to all existing stack frames, starting with
4468 zero for the innermost frame, one for the frame that called it,
4469 and so on upward.  These numbers do not really exist in your program;
4470 they are assigned by @value{GDBN} to give you a way of designating stack
4471 frames in @value{GDBN} commands.
4472
4473 @c The -fomit-frame-pointer below perennially causes hbox overflow
4474 @c underflow problems.
4475 @cindex frameless execution
4476 Some compilers provide a way to compile functions so that they operate
4477 without stack frames.  (For example, the @value{NGCC} option
4478 @smallexample
4479 @samp{-fomit-frame-pointer}
4480 @end smallexample
4481 generates functions without a frame.)
4482 This is occasionally done with heavily used library functions to save
4483 the frame setup time.  @value{GDBN} has limited facilities for dealing
4484 with these function invocations.  If the innermost function invocation
4485 has no stack frame, @value{GDBN} nevertheless regards it as though
4486 it had a separate frame, which is numbered zero as usual, allowing
4487 correct tracing of the function call chain.  However, @value{GDBN} has
4488 no provision for frameless functions elsewhere in the stack.
4489
4490 @table @code
4491 @kindex frame@r{, command}
4492 @cindex current stack frame
4493 @item frame @var{args}
4494 The @code{frame} command allows you to move from one stack frame to another,
4495 and to print the stack frame you select.  @var{args} may be either the
4496 address of the frame or the stack frame number.  Without an argument,
4497 @code{frame} prints the current stack frame.
4498
4499 @kindex select-frame
4500 @cindex selecting frame silently
4501 @item select-frame
4502 The @code{select-frame} command allows you to move from one stack frame
4503 to another without printing the frame.  This is the silent version of
4504 @code{frame}.
4505 @end table
4506
4507 @node Backtrace
4508 @section Backtraces
4509
4510 @cindex traceback
4511 @cindex call stack traces
4512 A backtrace is a summary of how your program got where it is.  It shows one
4513 line per frame, for many frames, starting with the currently executing
4514 frame (frame zero), followed by its caller (frame one), and on up the
4515 stack.
4516
4517 @table @code
4518 @kindex backtrace
4519 @kindex bt @r{(@code{backtrace})}
4520 @item backtrace
4521 @itemx bt
4522 Print a backtrace of the entire stack: one line per frame for all
4523 frames in the stack.
4524
4525 You can stop the backtrace at any time by typing the system interrupt
4526 character, normally @kbd{Ctrl-c}.
4527
4528 @item backtrace @var{n}
4529 @itemx bt @var{n}
4530 Similar, but print only the innermost @var{n} frames.
4531
4532 @item backtrace -@var{n}
4533 @itemx bt -@var{n}
4534 Similar, but print only the outermost @var{n} frames.
4535
4536 @item backtrace full
4537 @itemx bt full
4538 @itemx bt full @var{n}
4539 @itemx bt full -@var{n}
4540 Print the values of the local variables also.  @var{n} specifies the
4541 number of frames to print, as described above.
4542 @end table
4543
4544 @kindex where
4545 @kindex info stack
4546 The names @code{where} and @code{info stack} (abbreviated @code{info s})
4547 are additional aliases for @code{backtrace}.
4548
4549 @cindex multiple threads, backtrace
4550 In a multi-threaded program, @value{GDBN} by default shows the
4551 backtrace only for the current thread.  To display the backtrace for
4552 several or all of the threads, use the command @code{thread apply}
4553 (@pxref{Threads, thread apply}).  For example, if you type @kbd{thread
4554 apply all backtrace}, @value{GDBN} will display the backtrace for all
4555 the threads; this is handy when you debug a core dump of a
4556 multi-threaded program.
4557
4558 Each line in the backtrace shows the frame number and the function name.
4559 The program counter value is also shown---unless you use @code{set
4560 print address off}.  The backtrace also shows the source file name and
4561 line number, as well as the arguments to the function.  The program
4562 counter value is omitted if it is at the beginning of the code for that
4563 line number.
4564
4565 Here is an example of a backtrace.  It was made with the command
4566 @samp{bt 3}, so it shows the innermost three frames.
4567
4568 @smallexample
4569 @group
4570 #0  m4_traceon (obs=0x24eb0, argc=1, argv=0x2b8c8)
4571     at builtin.c:993
4572 #1  0x6e38 in expand_macro (sym=0x2b600) at macro.c:242
4573 #2  0x6840 in expand_token (obs=0x0, t=177664, td=0xf7fffb08)
4574     at macro.c:71
4575 (More stack frames follow...)
4576 @end group
4577 @end smallexample
4578
4579 @noindent
4580 The display for frame zero does not begin with a program counter
4581 value, indicating that your program has stopped at the beginning of the
4582 code for line @code{993} of @code{builtin.c}.
4583
4584 @cindex value optimized out, in backtrace
4585 @cindex function call arguments, optimized out
4586 If your program was compiled with optimizations, some compilers will
4587 optimize away arguments passed to functions if those arguments are
4588 never used after the call.  Such optimizations generate code that
4589 passes arguments through registers, but doesn't store those arguments
4590 in the stack frame.  @value{GDBN} has no way of displaying such
4591 arguments in stack frames other than the innermost one.  Here's what
4592 such a backtrace might look like:
4593
4594 @smallexample
4595 @group
4596 #0  m4_traceon (obs=0x24eb0, argc=1, argv=0x2b8c8)
4597     at builtin.c:993
4598 #1  0x6e38 in expand_macro (sym=<value optimized out>) at macro.c:242
4599 #2  0x6840 in expand_token (obs=0x0, t=<value optimized out>, td=0xf7fffb08)
4600     at macro.c:71
4601 (More stack frames follow...)
4602 @end group
4603 @end smallexample
4604
4605 @noindent
4606 The values of arguments that were not saved in their stack frames are
4607 shown as @samp{<value optimized out>}.
4608
4609 If you need to display the values of such optimized-out arguments,
4610 either deduce that from other variables whose values depend on the one
4611 you are interested in, or recompile without optimizations.
4612
4613 @cindex backtrace beyond @code{main} function
4614 @cindex program entry point
4615 @cindex startup code, and backtrace
4616 Most programs have a standard user entry point---a place where system
4617 libraries and startup code transition into user code.  For C this is
4618 @code{main}@footnote{
4619 Note that embedded programs (the so-called ``free-standing''
4620 environment) are not required to have a @code{main} function as the
4621 entry point.  They could even have multiple entry points.}.
4622 When @value{GDBN} finds the entry function in a backtrace
4623 it will terminate the backtrace, to avoid tracing into highly
4624 system-specific (and generally uninteresting) code.
4625
4626 If you need to examine the startup code, or limit the number of levels
4627 in a backtrace, you can change this behavior:
4628
4629 @table @code
4630 @item set backtrace past-main
4631 @itemx set backtrace past-main on
4632 @kindex set backtrace
4633 Backtraces will continue past the user entry point.
4634
4635 @item set backtrace past-main off
4636 Backtraces will stop when they encounter the user entry point.  This is the
4637 default.
4638
4639 @item show backtrace past-main
4640 @kindex show backtrace
4641 Display the current user entry point backtrace policy.
4642
4643 @item set backtrace past-entry
4644 @itemx set backtrace past-entry on
4645 Backtraces will continue past the internal entry point of an application.
4646 This entry point is encoded by the linker when the application is built,
4647 and is likely before the user entry point @code{main} (or equivalent) is called.
4648
4649 @item set backtrace past-entry off
4650 Backtraces will stop when they encounter the internal entry point of an
4651 application.  This is the default.
4652
4653 @item show backtrace past-entry
4654 Display the current internal entry point backtrace policy.
4655
4656 @item set backtrace limit @var{n}
4657 @itemx set backtrace limit 0
4658 @cindex backtrace limit
4659 Limit the backtrace to @var{n} levels.  A value of zero means
4660 unlimited.
4661
4662 @item show backtrace limit
4663 Display the current limit on backtrace levels.
4664 @end table
4665
4666 @node Selection
4667 @section Selecting a Frame
4668
4669 Most commands for examining the stack and other data in your program work on
4670 whichever stack frame is selected at the moment.  Here are the commands for
4671 selecting a stack frame; all of them finish by printing a brief description
4672 of the stack frame just selected.
4673
4674 @table @code
4675 @kindex frame@r{, selecting}
4676 @kindex f @r{(@code{frame})}
4677 @item frame @var{n}
4678 @itemx f @var{n}
4679 Select frame number @var{n}.  Recall that frame zero is the innermost
4680 (currently executing) frame, frame one is the frame that called the
4681 innermost one, and so on.  The highest-numbered frame is the one for
4682 @code{main}.
4683
4684 @item frame @var{addr}
4685 @itemx f @var{addr}
4686 Select the frame at address @var{addr}.  This is useful mainly if the
4687 chaining of stack frames has been damaged by a bug, making it
4688 impossible for @value{GDBN} to assign numbers properly to all frames.  In
4689 addition, this can be useful when your program has multiple stacks and
4690 switches between them.
4691
4692 On the SPARC architecture, @code{frame} needs two addresses to
4693 select an arbitrary frame: a frame pointer and a stack pointer.
4694
4695 On the MIPS and Alpha architecture, it needs two addresses: a stack
4696 pointer and a program counter.
4697
4698 On the 29k architecture, it needs three addresses: a register stack
4699 pointer, a program counter, and a memory stack pointer.
4700
4701 @kindex up
4702 @item up @var{n}
4703 Move @var{n} frames up the stack.  For positive numbers @var{n}, this
4704 advances toward the outermost frame, to higher frame numbers, to frames
4705 that have existed longer.  @var{n} defaults to one.
4706
4707 @kindex down
4708 @kindex do @r{(@code{down})}
4709 @item down @var{n}
4710 Move @var{n} frames down the stack.  For positive numbers @var{n}, this
4711 advances toward the innermost frame, to lower frame numbers, to frames
4712 that were created more recently.  @var{n} defaults to one.  You may
4713 abbreviate @code{down} as @code{do}.
4714 @end table
4715
4716 All of these commands end by printing two lines of output describing the
4717 frame.  The first line shows the frame number, the function name, the
4718 arguments, and the source file and line number of execution in that
4719 frame.  The second line shows the text of that source line.
4720
4721 @need 1000
4722 For example:
4723
4724 @smallexample
4725 @group
4726 (@value{GDBP}) up
4727 #1  0x22f0 in main (argc=1, argv=0xf7fffbf4, env=0xf7fffbfc)
4728     at env.c:10
4729 10              read_input_file (argv[i]);
4730 @end group
4731 @end smallexample
4732
4733 After such a printout, the @code{list} command with no arguments
4734 prints ten lines centered on the point of execution in the frame.
4735 You can also edit the program at the point of execution with your favorite
4736 editing program by typing @code{edit}.
4737 @xref{List, ,Printing Source Lines},
4738 for details.
4739
4740 @table @code
4741 @kindex down-silently
4742 @kindex up-silently
4743 @item up-silently @var{n}
4744 @itemx down-silently @var{n}
4745 These two commands are variants of @code{up} and @code{down},
4746 respectively; they differ in that they do their work silently, without
4747 causing display of the new frame.  They are intended primarily for use
4748 in @value{GDBN} command scripts, where the output might be unnecessary and
4749 distracting.
4750 @end table
4751
4752 @node Frame Info
4753 @section Information About a Frame
4754
4755 There are several other commands to print information about the selected
4756 stack frame.
4757
4758 @table @code
4759 @item frame
4760 @itemx f
4761 When used without any argument, this command does not change which
4762 frame is selected, but prints a brief description of the currently
4763 selected stack frame.  It can be abbreviated @code{f}.  With an
4764 argument, this command is used to select a stack frame.
4765 @xref{Selection, ,Selecting a Frame}.
4766
4767 @kindex info frame
4768 @kindex info f @r{(@code{info frame})}
4769 @item info frame
4770 @itemx info f
4771 This command prints a verbose description of the selected stack frame,
4772 including:
4773
4774 @itemize @bullet
4775 @item
4776 the address of the frame
4777 @item
4778 the address of the next frame down (called by this frame)
4779 @item
4780 the address of the next frame up (caller of this frame)
4781 @item
4782 the language in which the source code corresponding to this frame is written
4783 @item
4784 the address of the frame's arguments
4785 @item
4786 the address of the frame's local variables
4787 @item
4788 the program counter saved in it (the address of execution in the caller frame)
4789 @item
4790 which registers were saved in the frame
4791 @end itemize
4792
4793 @noindent The verbose description is useful when
4794 something has gone wrong that has made the stack format fail to fit
4795 the usual conventions.
4796
4797 @item info frame @var{addr}
4798 @itemx info f @var{addr}
4799 Print a verbose description of the frame at address @var{addr}, without
4800 selecting that frame.  The selected frame remains unchanged by this
4801 command.  This requires the same kind of address (more than one for some
4802 architectures) that you specify in the @code{frame} command.
4803 @xref{Selection, ,Selecting a Frame}.
4804
4805 @kindex info args
4806 @item info args
4807 Print the arguments of the selected frame, each on a separate line.
4808
4809 @item info locals
4810 @kindex info locals
4811 Print the local variables of the selected frame, each on a separate
4812 line.  These are all variables (declared either static or automatic)
4813 accessible at the point of execution of the selected frame.
4814
4815 @kindex info catch
4816 @cindex catch exceptions, list active handlers
4817 @cindex exception handlers, how to list
4818 @item info catch
4819 Print a list of all the exception handlers that are active in the
4820 current stack frame at the current point of execution.  To see other
4821 exception handlers, visit the associated frame (using the @code{up},
4822 @code{down}, or @code{frame} commands); then type @code{info catch}.
4823 @xref{Set Catchpoints, , Setting Catchpoints}.
4824
4825 @end table
4826
4827
4828 @node Source
4829 @chapter Examining Source Files
4830
4831 @value{GDBN} can print parts of your program's source, since the debugging
4832 information recorded in the program tells @value{GDBN} what source files were
4833 used to build it.  When your program stops, @value{GDBN} spontaneously prints
4834 the line where it stopped.  Likewise, when you select a stack frame
4835 (@pxref{Selection, ,Selecting a Frame}), @value{GDBN} prints the line where
4836 execution in that frame has stopped.  You can print other portions of
4837 source files by explicit command.
4838
4839 If you use @value{GDBN} through its @sc{gnu} Emacs interface, you may
4840 prefer to use Emacs facilities to view source; see @ref{Emacs, ,Using
4841 @value{GDBN} under @sc{gnu} Emacs}.
4842
4843 @menu
4844 * List::                        Printing source lines
4845 * Edit::                        Editing source files
4846 * Search::                      Searching source files
4847 * Source Path::                 Specifying source directories
4848 * Machine Code::                Source and machine code
4849 @end menu
4850
4851 @node List
4852 @section Printing Source Lines
4853
4854 @kindex list
4855 @kindex l @r{(@code{list})}
4856 To print lines from a source file, use the @code{list} command
4857 (abbreviated @code{l}).  By default, ten lines are printed.
4858 There are several ways to specify what part of the file you want to print.
4859
4860 Here are the forms of the @code{list} command most commonly used:
4861
4862 @table @code
4863 @item list @var{linenum}
4864 Print lines centered around line number @var{linenum} in the
4865 current source file.
4866
4867 @item list @var{function}
4868 Print lines centered around the beginning of function
4869 @var{function}.
4870
4871 @item list
4872 Print more lines.  If the last lines printed were printed with a
4873 @code{list} command, this prints lines following the last lines
4874 printed; however, if the last line printed was a solitary line printed
4875 as part of displaying a stack frame (@pxref{Stack, ,Examining the
4876 Stack}), this prints lines centered around that line.
4877
4878 @item list -
4879 Print lines just before the lines last printed.
4880 @end table
4881
4882 @cindex @code{list}, how many lines to display
4883 By default, @value{GDBN} prints ten source lines with any of these forms of
4884 the @code{list} command.  You can change this using @code{set listsize}:
4885
4886 @table @code
4887 @kindex set listsize
4888 @item set listsize @var{count}
4889 Make the @code{list} command display @var{count} source lines (unless
4890 the @code{list} argument explicitly specifies some other number).
4891
4892 @kindex show listsize
4893 @item show listsize
4894 Display the number of lines that @code{list} prints.
4895 @end table
4896
4897 Repeating a @code{list} command with @key{RET} discards the argument,
4898 so it is equivalent to typing just @code{list}.  This is more useful
4899 than listing the same lines again.  An exception is made for an
4900 argument of @samp{-}; that argument is preserved in repetition so that
4901 each repetition moves up in the source file.
4902
4903 @cindex linespec
4904 In general, the @code{list} command expects you to supply zero, one or two
4905 @dfn{linespecs}.  Linespecs specify source lines; there are several ways
4906 of writing them, but the effect is always to specify some source line.
4907 Here is a complete description of the possible arguments for @code{list}:
4908
4909 @table @code
4910 @item list @var{linespec}
4911 Print lines centered around the line specified by @var{linespec}.
4912
4913 @item list @var{first},@var{last}
4914 Print lines from @var{first} to @var{last}.  Both arguments are
4915 linespecs.
4916
4917 @item list ,@var{last}
4918 Print lines ending with @var{last}.
4919
4920 @item list @var{first},
4921 Print lines starting with @var{first}.
4922
4923 @item list +
4924 Print lines just after the lines last printed.
4925
4926 @item list -
4927 Print lines just before the lines last printed.
4928
4929 @item list
4930 As described in the preceding table.
4931 @end table
4932
4933 Here are the ways of specifying a single source line---all the
4934 kinds of linespec.
4935
4936 @table @code
4937 @item @var{number}
4938 Specifies line @var{number} of the current source file.
4939 When a @code{list} command has two linespecs, this refers to
4940 the same source file as the first linespec.
4941
4942 @item +@var{offset}
4943 Specifies the line @var{offset} lines after the last line printed.
4944 When used as the second linespec in a @code{list} command that has
4945 two, this specifies the line @var{offset} lines down from the
4946 first linespec.
4947
4948 @item -@var{offset}
4949 Specifies the line @var{offset} lines before the last line printed.
4950
4951 @item @var{filename}:@var{number}
4952 Specifies line @var{number} in the source file @var{filename}.
4953
4954 @item @var{function}
4955 Specifies the line that begins the body of the function @var{function}.
4956 For example: in C, this is the line with the open brace.
4957
4958 @item @var{filename}:@var{function}
4959 Specifies the line of the open-brace that begins the body of the
4960 function @var{function} in the file @var{filename}.  You only need the
4961 file name with a function name to avoid ambiguity when there are
4962 identically named functions in different source files.
4963
4964 @item *@var{address}
4965 Specifies the line containing the program address @var{address}.
4966 @var{address} may be any expression.
4967 @end table
4968
4969 @node Edit
4970 @section Editing Source Files
4971 @cindex editing source files
4972
4973 @kindex edit
4974 @kindex e @r{(@code{edit})}
4975 To edit the lines in a source file, use the @code{edit} command.
4976 The editing program of your choice
4977 is invoked with the current line set to
4978 the active line in the program.
4979 Alternatively, there are several ways to specify what part of the file you
4980 want to print if you want to see other parts of the program.
4981
4982 Here are the forms of the @code{edit} command most commonly used:
4983
4984 @table @code
4985 @item edit
4986 Edit the current source file at the active line number in the program.
4987
4988 @item edit @var{number}
4989 Edit the current source file with @var{number} as the active line number.
4990
4991 @item edit @var{function}
4992 Edit the file containing @var{function} at the beginning of its definition.
4993
4994 @item edit @var{filename}:@var{number}
4995 Specifies line @var{number} in the source file @var{filename}.
4996
4997 @item edit @var{filename}:@var{function}
4998 Specifies the line that begins the body of the
4999 function @var{function} in the file @var{filename}.  You only need the
5000 file name with a function name to avoid ambiguity when there are
5001 identically named functions in different source files.
5002
5003 @item edit *@var{address}
5004 Specifies the line containing the program address @var{address}.
5005 @var{address} may be any expression.
5006 @end table
5007
5008 @subsection Choosing your Editor
5009 You can customize @value{GDBN} to use any editor you want
5010 @footnote{
5011 The only restriction is that your editor (say @code{ex}), recognizes the
5012 following command-line syntax:
5013 @smallexample
5014 ex +@var{number} file
5015 @end smallexample
5016 The optional numeric value +@var{number} specifies the number of the line in
5017 the file where to start editing.}.
5018 By default, it is @file{@value{EDITOR}}, but you can change this
5019 by setting the environment variable @code{EDITOR} before using
5020 @value{GDBN}.  For example, to configure @value{GDBN} to use the
5021 @code{vi} editor, you could use these commands with the @code{sh} shell:
5022 @smallexample
5023 EDITOR=/usr/bin/vi
5024 export EDITOR
5025 gdb @dots{}
5026 @end smallexample
5027 or in the @code{csh} shell,
5028 @smallexample
5029 setenv EDITOR /usr/bin/vi
5030 gdb @dots{}
5031 @end smallexample
5032
5033 @node Search
5034 @section Searching Source Files
5035 @cindex searching source files
5036
5037 There are two commands for searching through the current source file for a
5038 regular expression.
5039
5040 @table @code
5041 @kindex search
5042 @kindex forward-search
5043 @item forward-search @var{regexp}
5044 @itemx search @var{regexp}
5045 The command @samp{forward-search @var{regexp}} checks each line,
5046 starting with the one following the last line listed, for a match for
5047 @var{regexp}.  It lists the line that is found.  You can use the
5048 synonym @samp{search @var{regexp}} or abbreviate the command name as
5049 @code{fo}.
5050
5051 @kindex reverse-search
5052 @item reverse-search @var{regexp}
5053 The command @samp{reverse-search @var{regexp}} checks each line, starting
5054 with the one before the last line listed and going backward, for a match
5055 for @var{regexp}.  It lists the line that is found.  You can abbreviate
5056 this command as @code{rev}.
5057 @end table
5058
5059 @node Source Path
5060 @section Specifying Source Directories
5061
5062 @cindex source path
5063 @cindex directories for source files
5064 Executable programs sometimes do not record the directories of the source
5065 files from which they were compiled, just the names.  Even when they do,
5066 the directories could be moved between the compilation and your debugging
5067 session.  @value{GDBN} has a list of directories to search for source files;
5068 this is called the @dfn{source path}.  Each time @value{GDBN} wants a source file,
5069 it tries all the directories in the list, in the order they are present
5070 in the list, until it finds a file with the desired name.
5071
5072 For example, suppose an executable references the file
5073 @file{/usr/src/foo-1.0/lib/foo.c}, and our source path is
5074 @file{/mnt/cross}.  The file is first looked up literally; if this
5075 fails, @file{/mnt/cross/usr/src/foo-1.0/lib/foo.c} is tried; if this
5076 fails, @file{/mnt/cross/foo.c} is opened; if this fails, an error
5077 message is printed.  @value{GDBN} does not look up the parts of the
5078 source file name, such as @file{/mnt/cross/src/foo-1.0/lib/foo.c}.
5079 Likewise, the subdirectories of the source path are not searched: if
5080 the source path is @file{/mnt/cross}, and the binary refers to
5081 @file{foo.c}, @value{GDBN} would not find it under
5082 @file{/mnt/cross/usr/src/foo-1.0/lib}.
5083
5084 Plain file names, relative file names with leading directories, file
5085 names containing dots, etc.@: are all treated as described above; for
5086 instance, if the source path is @file{/mnt/cross}, and the source file
5087 is recorded as @file{../lib/foo.c}, @value{GDBN} would first try
5088 @file{../lib/foo.c}, then @file{/mnt/cross/../lib/foo.c}, and after
5089 that---@file{/mnt/cross/foo.c}.
5090
5091 Note that the executable search path is @emph{not} used to locate the
5092 source files.
5093
5094 Whenever you reset or rearrange the source path, @value{GDBN} clears out
5095 any information it has cached about where source files are found and where
5096 each line is in the file.
5097
5098 @kindex directory
5099 @kindex dir
5100 When you start @value{GDBN}, its source path includes only @samp{cdir}
5101 and @samp{cwd}, in that order.
5102 To add other directories, use the @code{directory} command.
5103
5104 The search path is used to find both program source files and @value{GDBN}
5105 script files (read using the @samp{-command} option and @samp{source} command).
5106
5107 In addition to the source path, @value{GDBN} provides a set of commands
5108 that manage a list of source path substitution rules.  A @dfn{substitution
5109 rule} specifies how to rewrite source directories stored in the program's
5110 debug information in case the sources were moved to a different
5111 directory between compilation and debugging.  A rule is made of
5112 two strings, the first specifying what needs to be rewritten in
5113 the path, and the second specifying how it should be rewritten.
5114 In @ref{set substitute-path}, we name these two parts @var{from} and
5115 @var{to} respectively.  @value{GDBN} does a simple string replacement
5116 of @var{from} with @var{to} at the start of the directory part of the
5117 source file name, and uses that result instead of the original file
5118 name to look up the sources.
5119
5120 Using the previous example, suppose the @file{foo-1.0} tree has been
5121 moved from @file{/usr/src} to @file{/mnt/cross}, then you can tell
5122 @value{GDBN} to replace @file{/usr/src} in all source path names with
5123 @file{/mnt/cross}.  The first lookup will then be
5124 @file{/mnt/cross/foo-1.0/lib/foo.c} in place of the original location
5125 of @file{/usr/src/foo-1.0/lib/foo.c}.  To define a source path
5126 substitution rule, use the @code{set substitute-path} command
5127 (@pxref{set substitute-path}).
5128
5129 To avoid unexpected substitution results, a rule is applied only if the
5130 @var{from} part of the directory name ends at a directory separator.
5131 For instance, a rule substituting  @file{/usr/source} into
5132 @file{/mnt/cross} will be applied to @file{/usr/source/foo-1.0} but
5133 not to @file{/usr/sourceware/foo-2.0}.  And because the substitution
5134 is applied only at the beginning of the directory name, this rule will
5135 not be applied to @file{/root/usr/source/baz.c} either.
5136
5137 In many cases, you can achieve the same result using the @code{directory}
5138 command.  However, @code{set substitute-path} can be more efficient in
5139 the case where the sources are organized in a complex tree with multiple
5140 subdirectories.  With the @code{directory} command, you need to add each
5141 subdirectory of your project.  If you moved the entire tree while
5142 preserving its internal organization, then @code{set substitute-path}
5143 allows you to direct the debugger to all the sources with one single
5144 command.
5145
5146 @code{set substitute-path} is also more than just a shortcut command.
5147 The source path is only used if the file at the original location no
5148 longer exists.  On the other hand, @code{set substitute-path} modifies
5149 the debugger behavior to look at the rewritten location instead.  So, if
5150 for any reason a source file that is not relevant to your executable is
5151 located at the original location, a substitution rule is the only
5152 method available to point @value{GDBN} at the new location.
5153
5154 @table @code
5155 @item directory @var{dirname} @dots{}
5156 @item dir @var{dirname} @dots{}
5157 Add directory @var{dirname} to the front of the source path.  Several
5158 directory names may be given to this command, separated by @samp{:}
5159 (@samp{;} on MS-DOS and MS-Windows, where @samp{:} usually appears as
5160 part of absolute file names) or
5161 whitespace.  You may specify a directory that is already in the source
5162 path; this moves it forward, so @value{GDBN} searches it sooner.
5163
5164 @kindex cdir
5165 @kindex cwd
5166 @vindex $cdir@r{, convenience variable}
5167 @vindex $cwd@r{, convenience variable}
5168 @cindex compilation directory
5169 @cindex current directory
5170 @cindex working directory
5171 @cindex directory, current
5172 @cindex directory, compilation
5173 You can use the string @samp{$cdir} to refer to the compilation
5174 directory (if one is recorded), and @samp{$cwd} to refer to the current
5175 working directory.  @samp{$cwd} is not the same as @samp{.}---the former
5176 tracks the current working directory as it changes during your @value{GDBN}
5177 session, while the latter is immediately expanded to the current
5178 directory at the time you add an entry to the source path.
5179
5180 @item directory
5181 Reset the source path to its default value (@samp{$cdir:$cwd} on Unix systems).  This requires confirmation.
5182
5183 @c RET-repeat for @code{directory} is explicitly disabled, but since
5184 @c repeating it would be a no-op we do not say that.  (thanks to RMS)
5185
5186 @item show directories
5187 @kindex show directories
5188 Print the source path: show which directories it contains.
5189
5190 @anchor{set substitute-path}
5191 @item set substitute-path @var{from} @var{to}
5192 @kindex set substitute-path
5193 Define a source path substitution rule, and add it at the end of the
5194 current list of existing substitution rules.  If a rule with the same
5195 @var{from} was already defined, then the old rule is also deleted.
5196
5197 For example, if the file @file{/foo/bar/baz.c} was moved to
5198 @file{/mnt/cross/baz.c}, then the command
5199
5200 @smallexample
5201 (@value{GDBP}) set substitute-path /usr/src /mnt/cross
5202 @end smallexample
5203
5204 @noindent
5205 will tell @value{GDBN} to replace @samp{/usr/src} with
5206 @samp{/mnt/cross}, which will allow @value{GDBN} to find the file
5207 @file{baz.c} even though it was moved.
5208
5209 In the case when more than one substitution rule have been defined,
5210 the rules are evaluated one by one in the order where they have been
5211 defined.  The first one matching, if any, is selected to perform
5212 the substitution.
5213
5214 For instance, if we had entered the following commands:
5215
5216 @smallexample
5217 (@value{GDBP}) set substitute-path /usr/src/include /mnt/include
5218 (@value{GDBP}) set substitute-path /usr/src /mnt/src
5219 @end smallexample
5220
5221 @noindent
5222 @value{GDBN} would then rewrite @file{/usr/src/include/defs.h} into
5223 @file{/mnt/include/defs.h} by using the first rule.  However, it would
5224 use the second rule to rewrite @file{/usr/src/lib/foo.c} into
5225 @file{/mnt/src/lib/foo.c}.
5226
5227
5228 @item unset substitute-path [path]
5229 @kindex unset substitute-path
5230 If a path is specified, search the current list of substitution rules
5231 for a rule that would rewrite that path.  Delete that rule if found.
5232 A warning is emitted by the debugger if no rule could be found.
5233
5234 If no path is specified, then all substitution rules are deleted.
5235
5236 @item show substitute-path [path]
5237 @kindex show substitute-path
5238 If a path is specified, then print the source path substitution rule
5239 which would rewrite that path, if any.
5240
5241 If no path is specified, then print all existing source path substitution
5242 rules.
5243
5244 @end table
5245
5246 If your source path is cluttered with directories that are no longer of
5247 interest, @value{GDBN} may sometimes cause confusion by finding the wrong
5248 versions of source.  You can correct the situation as follows:
5249
5250 @enumerate
5251 @item
5252 Use @code{directory} with no argument to reset the source path to its default value.
5253
5254 @item
5255 Use @code{directory} with suitable arguments to reinstall the
5256 directories you want in the source path.  You can add all the
5257 directories in one command.
5258 @end enumerate
5259
5260 @node Machine Code
5261 @section Source and Machine Code
5262 @cindex source line and its code address
5263
5264 You can use the command @code{info line} to map source lines to program
5265 addresses (and vice versa), and the command @code{disassemble} to display
5266 a range of addresses as machine instructions.  When run under @sc{gnu} Emacs
5267 mode, the @code{info line} command causes the arrow to point to the
5268 line specified.  Also, @code{info line} prints addresses in symbolic form as
5269 well as hex.
5270
5271 @table @code
5272 @kindex info line
5273 @item info line @var{linespec}
5274 Print the starting and ending addresses of the compiled code for
5275 source line @var{linespec}.  You can specify source lines in any of
5276 the ways understood by the @code{list} command (@pxref{List, ,Printing
5277 Source Lines}).
5278 @end table
5279
5280 For example, we can use @code{info line} to discover the location of
5281 the object code for the first line of function
5282 @code{m4_changequote}:
5283
5284 @c FIXME: I think this example should also show the addresses in
5285 @c symbolic form, as they usually would be displayed.
5286 @smallexample
5287 (@value{GDBP}) info line m4_changequote
5288 Line 895 of "builtin.c" starts at pc 0x634c and ends at 0x6350.
5289 @end smallexample
5290
5291 @noindent
5292 @cindex code address and its source line
5293 We can also inquire (using @code{*@var{addr}} as the form for
5294 @var{linespec}) what source line covers a particular address:
5295 @smallexample
5296 (@value{GDBP}) info line *0x63ff
5297 Line 926 of "builtin.c" starts at pc 0x63e4 and ends at 0x6404.
5298 @end smallexample
5299
5300 @cindex @code{$_} and @code{info line}
5301 @cindex @code{x} command, default address
5302 @kindex x@r{(examine), and} info line
5303 After @code{info line}, the default address for the @code{x} command
5304 is changed to the starting address of the line, so that @samp{x/i} is
5305 sufficient to begin examining the machine code (@pxref{Memory,
5306 ,Examining Memory}).  Also, this address is saved as the value of the
5307 convenience variable @code{$_} (@pxref{Convenience Vars, ,Convenience
5308 Variables}).
5309
5310 @table @code
5311 @kindex disassemble
5312 @cindex assembly instructions
5313 @cindex instructions, assembly
5314 @cindex machine instructions
5315 @cindex listing machine instructions
5316 @item disassemble
5317 This specialized command dumps a range of memory as machine
5318 instructions.  The default memory range is the function surrounding the
5319 program counter of the selected frame.  A single argument to this
5320 command is a program counter value; @value{GDBN} dumps the function
5321 surrounding this value.  Two arguments specify a range of addresses
5322 (first inclusive, second exclusive) to dump.
5323 @end table
5324
5325 The following example shows the disassembly of a range of addresses of
5326 HP PA-RISC 2.0 code:
5327
5328 @smallexample
5329 (@value{GDBP}) disas 0x32c4 0x32e4
5330 Dump of assembler code from 0x32c4 to 0x32e4:
5331 0x32c4 <main+204>:      addil 0,dp
5332 0x32c8 <main+208>:      ldw 0x22c(sr0,r1),r26
5333 0x32cc <main+212>:      ldil 0x3000,r31
5334 0x32d0 <main+216>:      ble 0x3f8(sr4,r31)
5335 0x32d4 <main+220>:      ldo 0(r31),rp
5336 0x32d8 <main+224>:      addil -0x800,dp
5337 0x32dc <main+228>:      ldo 0x588(r1),r26
5338 0x32e0 <main+232>:      ldil 0x3000,r31
5339 End of assembler dump.
5340 @end smallexample
5341
5342 Some architectures have more than one commonly-used set of instruction
5343 mnemonics or other syntax.
5344
5345 For programs that were dynamically linked and use shared libraries,
5346 instructions that call functions or branch to locations in the shared
5347 libraries might show a seemingly bogus location---it's actually a
5348 location of the relocation table.  On some architectures, @value{GDBN}
5349 might be able to resolve these to actual function names.
5350
5351 @table @code
5352 @kindex set disassembly-flavor
5353 @cindex Intel disassembly flavor
5354 @cindex AT&T disassembly flavor
5355 @item set disassembly-flavor @var{instruction-set}
5356 Select the instruction set to use when disassembling the
5357 program via the @code{disassemble} or @code{x/i} commands.
5358
5359 Currently this command is only defined for the Intel x86 family.  You
5360 can set @var{instruction-set} to either @code{intel} or @code{att}.
5361 The default is @code{att}, the AT&T flavor used by default by Unix
5362 assemblers for x86-based targets.
5363
5364 @kindex show disassembly-flavor
5365 @item show disassembly-flavor
5366 Show the current setting of the disassembly flavor.
5367 @end table
5368
5369
5370 @node Data
5371 @chapter Examining Data
5372
5373 @cindex printing data
5374 @cindex examining data
5375 @kindex print
5376 @kindex inspect
5377 @c "inspect" is not quite a synonym if you are using Epoch, which we do not
5378 @c document because it is nonstandard...  Under Epoch it displays in a
5379 @c different window or something like that.
5380 The usual way to examine data in your program is with the @code{print}
5381 command (abbreviated @code{p}), or its synonym @code{inspect}.  It
5382 evaluates and prints the value of an expression of the language your
5383 program is written in (@pxref{Languages, ,Using @value{GDBN} with
5384 Different Languages}).
5385
5386 @table @code
5387 @item print @var{expr}
5388 @itemx print /@var{f} @var{expr}
5389 @var{expr} is an expression (in the source language).  By default the
5390 value of @var{expr} is printed in a format appropriate to its data type;
5391 you can choose a different format by specifying @samp{/@var{f}}, where
5392 @var{f} is a letter specifying the format; see @ref{Output Formats,,Output
5393 Formats}.
5394
5395 @item print
5396 @itemx print /@var{f}
5397 @cindex reprint the last value
5398 If you omit @var{expr}, @value{GDBN} displays the last value again (from the
5399 @dfn{value history}; @pxref{Value History, ,Value History}).  This allows you to
5400 conveniently inspect the same value in an alternative format.
5401 @end table
5402
5403 A more low-level way of examining data is with the @code{x} command.
5404 It examines data in memory at a specified address and prints it in a
5405 specified format.  @xref{Memory, ,Examining Memory}.
5406
5407 If you are interested in information about types, or about how the
5408 fields of a struct or a class are declared, use the @code{ptype @var{exp}}
5409 command rather than @code{print}.  @xref{Symbols, ,Examining the Symbol
5410 Table}.
5411
5412 @menu
5413 * Expressions::                 Expressions
5414 * Variables::                   Program variables
5415 * Arrays::                      Artificial arrays
5416 * Output Formats::              Output formats
5417 * Memory::                      Examining memory
5418 * Auto Display::                Automatic display
5419 * Print Settings::              Print settings
5420 * Value History::               Value history
5421 * Convenience Vars::            Convenience variables
5422 * Registers::                   Registers
5423 * Floating Point Hardware::     Floating point hardware
5424 * Vector Unit::                 Vector Unit
5425 * OS Information::              Auxiliary data provided by operating system
5426 * Memory Region Attributes::    Memory region attributes
5427 * Dump/Restore Files::          Copy between memory and a file
5428 * Core File Generation::        Cause a program dump its core
5429 * Character Sets::              Debugging programs that use a different
5430                                 character set than GDB does
5431 * Caching Remote Data::         Data caching for remote targets
5432 @end menu
5433
5434 @node Expressions
5435 @section Expressions
5436
5437 @cindex expressions
5438 @code{print} and many other @value{GDBN} commands accept an expression and
5439 compute its value.  Any kind of constant, variable or operator defined
5440 by the programming language you are using is valid in an expression in
5441 @value{GDBN}.  This includes conditional expressions, function calls,
5442 casts, and string constants.  It also includes preprocessor macros, if
5443 you compiled your program to include this information; see
5444 @ref{Compilation}.
5445
5446 @cindex arrays in expressions
5447 @value{GDBN} supports array constants in expressions input by
5448 the user.  The syntax is @{@var{element}, @var{element}@dots{}@}.  For example,
5449 you can use the command @code{print @{1, 2, 3@}} to build up an array in
5450 memory that is @code{malloc}ed in the target program.
5451
5452 Because C is so widespread, most of the expressions shown in examples in
5453 this manual are in C.  @xref{Languages, , Using @value{GDBN} with Different
5454 Languages}, for information on how to use expressions in other
5455 languages.
5456
5457 In this section, we discuss operators that you can use in @value{GDBN}
5458 expressions regardless of your programming language.
5459
5460 @cindex casts, in expressions
5461 Casts are supported in all languages, not just in C, because it is so
5462 useful to cast a number into a pointer in order to examine a structure
5463 at that address in memory.
5464 @c FIXME: casts supported---Mod2 true?
5465
5466 @value{GDBN} supports these operators, in addition to those common
5467 to programming languages:
5468
5469 @table @code
5470 @item @@
5471 @samp{@@} is a binary operator for treating parts of memory as arrays.
5472 @xref{Arrays, ,Artificial Arrays}, for more information.
5473
5474 @item ::
5475 @samp{::} allows you to specify a variable in terms of the file or
5476 function where it is defined.  @xref{Variables, ,Program Variables}.
5477
5478 @cindex @{@var{type}@}
5479 @cindex type casting memory
5480 @cindex memory, viewing as typed object
5481 @cindex casts, to view memory
5482 @item @{@var{type}@} @var{addr}
5483 Refers to an object of type @var{type} stored at address @var{addr} in
5484 memory.  @var{addr} may be any expression whose value is an integer or
5485 pointer (but parentheses are required around binary operators, just as in
5486 a cast).  This construct is allowed regardless of what kind of data is
5487 normally supposed to reside at @var{addr}.
5488 @end table
5489
5490 @node Variables
5491 @section Program Variables
5492
5493 The most common kind of expression to use is the name of a variable
5494 in your program.
5495
5496 Variables in expressions are understood in the selected stack frame
5497 (@pxref{Selection, ,Selecting a Frame}); they must be either:
5498
5499 @itemize @bullet
5500 @item
5501 global (or file-static)
5502 @end itemize
5503
5504 @noindent or
5505
5506 @itemize @bullet
5507 @item
5508 visible according to the scope rules of the
5509 programming language from the point of execution in that frame
5510 @end itemize
5511
5512 @noindent This means that in the function
5513
5514 @smallexample
5515 foo (a)
5516      int a;
5517 @{
5518   bar (a);
5519   @{
5520     int b = test ();
5521     bar (b);
5522   @}
5523 @}
5524 @end smallexample
5525
5526 @noindent
5527 you can examine and use the variable @code{a} whenever your program is
5528 executing within the function @code{foo}, but you can only use or
5529 examine the variable @code{b} while your program is executing inside
5530 the block where @code{b} is declared.
5531
5532 @cindex variable name conflict
5533 There is an exception: you can refer to a variable or function whose
5534 scope is a single source file even if the current execution point is not
5535 in this file.  But it is possible to have more than one such variable or
5536 function with the same name (in different source files).  If that
5537 happens, referring to that name has unpredictable effects.  If you wish,
5538 you can specify a static variable in a particular function or file,
5539 using the colon-colon (@code{::}) notation:
5540
5541 @cindex colon-colon, context for variables/functions
5542 @ifnotinfo
5543 @c info cannot cope with a :: index entry, but why deprive hard copy readers?
5544 @cindex @code{::}, context for variables/functions
5545 @end ifnotinfo
5546 @smallexample
5547 @var{file}::@var{variable}
5548 @var{function}::@var{variable}
5549 @end smallexample
5550
5551 @noindent
5552 Here @var{file} or @var{function} is the name of the context for the
5553 static @var{variable}.  In the case of file names, you can use quotes to
5554 make sure @value{GDBN} parses the file name as a single word---for example,
5555 to print a global value of @code{x} defined in @file{f2.c}:
5556
5557 @smallexample
5558 (@value{GDBP}) p 'f2.c'::x
5559 @end smallexample
5560
5561 @cindex C@t{++} scope resolution
5562 This use of @samp{::} is very rarely in conflict with the very similar
5563 use of the same notation in C@t{++}.  @value{GDBN} also supports use of the C@t{++}
5564 scope resolution operator in @value{GDBN} expressions.
5565 @c FIXME: Um, so what happens in one of those rare cases where it's in
5566 @c conflict??  --mew
5567
5568 @cindex wrong values
5569 @cindex variable values, wrong
5570 @cindex function entry/exit, wrong values of variables
5571 @cindex optimized code, wrong values of variables
5572 @quotation
5573 @emph{Warning:} Occasionally, a local variable may appear to have the
5574 wrong value at certain points in a function---just after entry to a new
5575 scope, and just before exit.
5576 @end quotation
5577 You may see this problem when you are stepping by machine instructions.
5578 This is because, on most machines, it takes more than one instruction to
5579 set up a stack frame (including local variable definitions); if you are
5580 stepping by machine instructions, variables may appear to have the wrong
5581 values until the stack frame is completely built.  On exit, it usually
5582 also takes more than one machine instruction to destroy a stack frame;
5583 after you begin stepping through that group of instructions, local
5584 variable definitions may be gone.
5585
5586 This may also happen when the compiler does significant optimizations.
5587 To be sure of always seeing accurate values, turn off all optimization
5588 when compiling.
5589
5590 @cindex ``No symbol "foo" in current context''
5591 Another possible effect of compiler optimizations is to optimize
5592 unused variables out of existence, or assign variables to registers (as
5593 opposed to memory addresses).  Depending on the support for such cases
5594 offered by the debug info format used by the compiler, @value{GDBN}
5595 might not be able to display values for such local variables.  If that
5596 happens, @value{GDBN} will print a message like this:
5597
5598 @smallexample
5599 No symbol "foo" in current context.
5600 @end smallexample
5601
5602 To solve such problems, either recompile without optimizations, or use a
5603 different debug info format, if the compiler supports several such
5604 formats.  For example, @value{NGCC}, the @sc{gnu} C/C@t{++} compiler,
5605 usually supports the @option{-gstabs+} option.  @option{-gstabs+}
5606 produces debug info in a format that is superior to formats such as
5607 COFF.  You may be able to use DWARF 2 (@option{-gdwarf-2}), which is also
5608 an effective form for debug info.  @xref{Debugging Options,,Options
5609 for Debugging Your Program or GCC, gcc.info, Using the @sc{gnu}
5610 Compiler Collection (GCC)}.
5611 @xref{C, ,C and C@t{++}}, for more information about debug info formats
5612 that are best suited to C@t{++} programs.
5613
5614 If you ask to print an object whose contents are unknown to
5615 @value{GDBN}, e.g., because its data type is not completely specified
5616 by the debug information, @value{GDBN} will say @samp{<incomplete
5617 type>}.  @xref{Symbols, incomplete type}, for more about this.
5618
5619 Strings are identified as arrays of @code{char} values without specified
5620 signedness.  Arrays of either @code{signed char} or @code{unsigned char} get
5621 printed as arrays of 1 byte sized integers.  @code{-fsigned-char} or
5622 @code{-funsigned-char} @value{NGCC} options have no effect as @value{GDBN}
5623 defines literal string type @code{"char"} as @code{char} without a sign.
5624 For program code
5625
5626 @smallexample
5627 char var0[] = "A";
5628 signed char var1[] = "A";
5629 @end smallexample
5630
5631 You get during debugging
5632 @smallexample
5633 (gdb) print var0
5634 $1 = "A"
5635 (gdb) print var1
5636 $2 = @{65 'A', 0 '\0'@}
5637 @end smallexample
5638
5639 @node Arrays
5640 @section Artificial Arrays
5641
5642 @cindex artificial array
5643 @cindex arrays
5644 @kindex @@@r{, referencing memory as an array}
5645 It is often useful to print out several successive objects of the
5646 same type in memory; a section of an array, or an array of
5647 dynamically determined size for which only a pointer exists in the
5648 program.
5649
5650 You can do this by referring to a contiguous span of memory as an
5651 @dfn{artificial array}, using the binary operator @samp{@@}.  The left
5652 operand of @samp{@@} should be the first element of the desired array
5653 and be an individual object.  The right operand should be the desired length
5654 of the array.  The result is an array value whose elements are all of
5655 the type of the left argument.  The first element is actually the left
5656 argument; the second element comes from bytes of memory immediately
5657 following those that hold the first element, and so on.  Here is an
5658 example.  If a program says
5659
5660 @smallexample
5661 int *array = (int *) malloc (len * sizeof (int));
5662 @end smallexample
5663
5664 @noindent
5665 you can print the contents of @code{array} with
5666
5667 @smallexample
5668 p *array@@len
5669 @end smallexample
5670
5671 The left operand of @samp{@@} must reside in memory.  Array values made
5672 with @samp{@@} in this way behave just like other arrays in terms of
5673 subscripting, and are coerced to pointers when used in expressions.
5674 Artificial arrays most often appear in expressions via the value history
5675 (@pxref{Value History, ,Value History}), after printing one out.
5676
5677 Another way to create an artificial array is to use a cast.
5678 This re-interprets a value as if it were an array.
5679 The value need not be in memory:
5680 @smallexample
5681 (@value{GDBP}) p/x (short[2])0x12345678
5682 $1 = @{0x1234, 0x5678@}
5683 @end smallexample
5684
5685 As a convenience, if you leave the array length out (as in
5686 @samp{(@var{type}[])@var{value}}) @value{GDBN} calculates the size to fill
5687 the value (as @samp{sizeof(@var{value})/sizeof(@var{type})}:
5688 @smallexample
5689 (@value{GDBP}) p/x (short[])0x12345678
5690 $2 = @{0x1234, 0x5678@}
5691 @end smallexample
5692
5693 Sometimes the artificial array mechanism is not quite enough; in
5694 moderately complex data structures, the elements of interest may not
5695 actually be adjacent---for example, if you are interested in the values
5696 of pointers in an array.  One useful work-around in this situation is
5697 to use a convenience variable (@pxref{Convenience Vars, ,Convenience
5698 Variables}) as a counter in an expression that prints the first
5699 interesting value, and then repeat that expression via @key{RET}.  For
5700 instance, suppose you have an array @code{dtab} of pointers to
5701 structures, and you are interested in the values of a field @code{fv}
5702 in each structure.  Here is an example of what you might type:
5703
5704 @smallexample
5705 set $i = 0
5706 p dtab[$i++]->fv
5707 @key{RET}
5708 @key{RET}
5709 @dots{}
5710 @end smallexample
5711
5712 @node Output Formats
5713 @section Output Formats
5714
5715 @cindex formatted output
5716 @cindex output formats
5717 By default, @value{GDBN} prints a value according to its data type.  Sometimes
5718 this is not what you want.  For example, you might want to print a number
5719 in hex, or a pointer in decimal.  Or you might want to view data in memory
5720 at a certain address as a character string or as an instruction.  To do
5721 these things, specify an @dfn{output format} when you print a value.
5722
5723 The simplest use of output formats is to say how to print a value
5724 already computed.  This is done by starting the arguments of the
5725 @code{print} command with a slash and a format letter.  The format
5726 letters supported are:
5727
5728 @table @code
5729 @item x
5730 Regard the bits of the value as an integer, and print the integer in
5731 hexadecimal.
5732
5733 @item d
5734 Print as integer in signed decimal.
5735
5736 @item u
5737 Print as integer in unsigned decimal.
5738
5739 @item o
5740 Print as integer in octal.
5741
5742 @item t
5743 Print as integer in binary.  The letter @samp{t} stands for ``two''.
5744 @footnote{@samp{b} cannot be used because these format letters are also
5745 used with the @code{x} command, where @samp{b} stands for ``byte'';
5746 see @ref{Memory,,Examining Memory}.}
5747
5748 @item a
5749 @cindex unknown address, locating
5750 @cindex locate address
5751 Print as an address, both absolute in hexadecimal and as an offset from
5752 the nearest preceding symbol.  You can use this format used to discover
5753 where (in what function) an unknown address is located:
5754
5755 @smallexample
5756 (@value{GDBP}) p/a 0x54320
5757 $3 = 0x54320 <_initialize_vx+396>
5758 @end smallexample
5759
5760 @noindent
5761 The command @code{info symbol 0x54320} yields similar results.
5762 @xref{Symbols, info symbol}.
5763
5764 @item c
5765 Regard as an integer and print it as a character constant.  This
5766 prints both the numerical value and its character representation.  The
5767 character representation is replaced with the octal escape @samp{\nnn}
5768 for characters outside the 7-bit @sc{ascii} range.
5769
5770 @item f
5771 Regard the bits of the value as a floating point number and print
5772 using typical floating point syntax.
5773 @end table
5774
5775 For example, to print the program counter in hex (@pxref{Registers}), type
5776
5777 @smallexample
5778 p/x $pc
5779 @end smallexample
5780
5781 @noindent
5782 Note that no space is required before the slash; this is because command
5783 names in @value{GDBN} cannot contain a slash.
5784
5785 To reprint the last value in the value history with a different format,
5786 you can use the @code{print} command with just a format and no
5787 expression.  For example, @samp{p/x} reprints the last value in hex.
5788
5789 @node Memory
5790 @section Examining Memory
5791
5792 You can use the command @code{x} (for ``examine'') to examine memory in
5793 any of several formats, independently of your program's data types.
5794
5795 @cindex examining memory
5796 @table @code
5797 @kindex x @r{(examine memory)}
5798 @item x/@var{nfu} @var{addr}
5799 @itemx x @var{addr}
5800 @itemx x
5801 Use the @code{x} command to examine memory.
5802 @end table
5803
5804 @var{n}, @var{f}, and @var{u} are all optional parameters that specify how
5805 much memory to display and how to format it; @var{addr} is an
5806 expression giving the address where you want to start displaying memory.
5807 If you use defaults for @var{nfu}, you need not type the slash @samp{/}.
5808 Several commands set convenient defaults for @var{addr}.
5809
5810 @table @r
5811 @item @var{n}, the repeat count
5812 The repeat count is a decimal integer; the default is 1.  It specifies
5813 how much memory (counting by units @var{u}) to display.
5814 @c This really is **decimal**; unaffected by 'set radix' as of GDB
5815 @c 4.1.2.
5816
5817 @item @var{f}, the display format
5818 The display format is one of the formats used by @code{print}
5819 (@samp{x}, @samp{d}, @samp{u}, @samp{o}, @samp{t}, @samp{a}, @samp{c},
5820 @samp{f}), and in addition @samp{s} (for null-terminated strings) and
5821 @samp{i} (for machine instructions).  The default is @samp{x}
5822 (hexadecimal) initially.  The default changes each time you use either
5823 @code{x} or @code{print}.
5824
5825 @item @var{u}, the unit size
5826 The unit size is any of
5827
5828 @table @code
5829 @item b
5830 Bytes.
5831 @item h
5832 Halfwords (two bytes).
5833 @item w
5834 Words (four bytes).  This is the initial default.
5835 @item g
5836 Giant words (eight bytes).
5837 @end table
5838
5839 Each time you specify a unit size with @code{x}, that size becomes the
5840 default unit the next time you use @code{x}.  (For the @samp{s} and
5841 @samp{i} formats, the unit size is ignored and is normally not written.)
5842
5843 @item @var{addr}, starting display address
5844 @var{addr} is the address where you want @value{GDBN} to begin displaying
5845 memory.  The expression need not have a pointer value (though it may);
5846 it is always interpreted as an integer address of a byte of memory.
5847 @xref{Expressions, ,Expressions}, for more information on expressions.  The default for
5848 @var{addr} is usually just after the last address examined---but several
5849 other commands also set the default address: @code{info breakpoints} (to
5850 the address of the last breakpoint listed), @code{info line} (to the
5851 starting address of a line), and @code{print} (if you use it to display
5852 a value from memory).
5853 @end table
5854
5855 For example, @samp{x/3uh 0x54320} is a request to display three halfwords
5856 (@code{h}) of memory, formatted as unsigned decimal integers (@samp{u}),
5857 starting at address @code{0x54320}.  @samp{x/4xw $sp} prints the four
5858 words (@samp{w}) of memory above the stack pointer (here, @samp{$sp};
5859 @pxref{Registers, ,Registers}) in hexadecimal (@samp{x}).
5860
5861 Since the letters indicating unit sizes are all distinct from the
5862 letters specifying output formats, you do not have to remember whether
5863 unit size or format comes first; either order works.  The output
5864 specifications @samp{4xw} and @samp{4wx} mean exactly the same thing.
5865 (However, the count @var{n} must come first; @samp{wx4} does not work.)
5866
5867 Even though the unit size @var{u} is ignored for the formats @samp{s}
5868 and @samp{i}, you might still want to use a count @var{n}; for example,
5869 @samp{3i} specifies that you want to see three machine instructions,
5870 including any operands.  For convenience, especially when used with
5871 the @code{display} command, the @samp{i} format also prints branch delay
5872 slot instructions, if any, beyond the count specified, which immediately
5873 follow the last instruction that is within the count.  The command
5874 @code{disassemble} gives an alternative way of inspecting machine
5875 instructions; see @ref{Machine Code,,Source and Machine Code}.
5876
5877 All the defaults for the arguments to @code{x} are designed to make it
5878 easy to continue scanning memory with minimal specifications each time
5879 you use @code{x}.  For example, after you have inspected three machine
5880 instructions with @samp{x/3i @var{addr}}, you can inspect the next seven
5881 with just @samp{x/7}.  If you use @key{RET} to repeat the @code{x} command,
5882 the repeat count @var{n} is used again; the other arguments default as
5883 for successive uses of @code{x}.
5884
5885 @cindex @code{$_}, @code{$__}, and value history
5886 The addresses and contents printed by the @code{x} command are not saved
5887 in the value history because there is often too much of them and they
5888 would get in the way.  Instead, @value{GDBN} makes these values available for
5889 subsequent use in expressions as values of the convenience variables
5890 @code{$_} and @code{$__}.  After an @code{x} command, the last address
5891 examined is available for use in expressions in the convenience variable
5892 @code{$_}.  The contents of that address, as examined, are available in
5893 the convenience variable @code{$__}.
5894
5895 If the @code{x} command has a repeat count, the address and contents saved
5896 are from the last memory unit printed; this is not the same as the last
5897 address printed if several units were printed on the last line of output.
5898
5899 @cindex remote memory comparison
5900 @cindex verify remote memory image
5901 When you are debugging a program running on a remote target machine
5902 (@pxref{Remote Debugging}), you may wish to verify the program's image in the
5903 remote machine's memory against the executable file you downloaded to
5904 the target.  The @code{compare-sections} command is provided for such
5905 situations.
5906
5907 @table @code
5908 @kindex compare-sections
5909 @item compare-sections @r{[}@var{section-name}@r{]}
5910 Compare the data of a loadable section @var{section-name} in the
5911 executable file of the program being debugged with the same section in
5912 the remote machine's memory, and report any mismatches.  With no
5913 arguments, compares all loadable sections.  This command's
5914 availability depends on the target's support for the @code{"qCRC"}
5915 remote request.
5916 @end table
5917
5918 @node Auto Display
5919 @section Automatic Display
5920 @cindex automatic display
5921 @cindex display of expressions
5922
5923 If you find that you want to print the value of an expression frequently
5924 (to see how it changes), you might want to add it to the @dfn{automatic
5925 display list} so that @value{GDBN} prints its value each time your program stops.
5926 Each expression added to the list is given a number to identify it;
5927 to remove an expression from the list, you specify that number.
5928 The automatic display looks like this:
5929
5930 @smallexample
5931 2: foo = 38
5932 3: bar[5] = (struct hack *) 0x3804
5933 @end smallexample
5934
5935 @noindent
5936 This display shows item numbers, expressions and their current values.  As with
5937 displays you request manually using @code{x} or @code{print}, you can
5938 specify the output format you prefer; in fact, @code{display} decides
5939 whether to use @code{print} or @code{x} depending on how elaborate your
5940 format specification is---it uses @code{x} if you specify a unit size,
5941 or one of the two formats (@samp{i} and @samp{s}) that are only
5942 supported by @code{x}; otherwise it uses @code{print}.
5943
5944 @table @code
5945 @kindex display
5946 @item display @var{expr}
5947 Add the expression @var{expr} to the list of expressions to display
5948 each time your program stops.  @xref{Expressions, ,Expressions}.
5949
5950 @code{display} does not repeat if you press @key{RET} again after using it.
5951
5952 @item display/@var{fmt} @var{expr}
5953 For @var{fmt} specifying only a display format and not a size or
5954 count, add the expression @var{expr} to the auto-display list but
5955 arrange to display it each time in the specified format @var{fmt}.
5956 @xref{Output Formats,,Output Formats}.
5957
5958 @item display/@var{fmt} @var{addr}
5959 For @var{fmt} @samp{i} or @samp{s}, or including a unit-size or a
5960 number of units, add the expression @var{addr} as a memory address to
5961 be examined each time your program stops.  Examining means in effect
5962 doing @samp{x/@var{fmt} @var{addr}}.  @xref{Memory, ,Examining Memory}.
5963 @end table
5964
5965 For example, @samp{display/i $pc} can be helpful, to see the machine
5966 instruction about to be executed each time execution stops (@samp{$pc}
5967 is a common name for the program counter; @pxref{Registers, ,Registers}).
5968
5969 @table @code
5970 @kindex delete display
5971 @kindex undisplay
5972 @item undisplay @var{dnums}@dots{}
5973 @itemx delete display @var{dnums}@dots{}
5974 Remove item numbers @var{dnums} from the list of expressions to display.
5975
5976 @code{undisplay} does not repeat if you press @key{RET} after using it.
5977 (Otherwise you would just get the error @samp{No display number @dots{}}.)
5978
5979 @kindex disable display
5980 @item disable display @var{dnums}@dots{}
5981 Disable the display of item numbers @var{dnums}.  A disabled display
5982 item is not printed automatically, but is not forgotten.  It may be
5983 enabled again later.
5984
5985 @kindex enable display
5986 @item enable display @var{dnums}@dots{}
5987 Enable display of item numbers @var{dnums}.  It becomes effective once
5988 again in auto display of its expression, until you specify otherwise.
5989
5990 @item display
5991 Display the current values of the expressions on the list, just as is
5992 done when your program stops.
5993
5994 @kindex info display
5995 @item info display
5996 Print the list of expressions previously set up to display
5997 automatically, each one with its item number, but without showing the
5998 values.  This includes disabled expressions, which are marked as such.
5999 It also includes expressions which would not be displayed right now
6000 because they refer to automatic variables not currently available.
6001 @end table
6002
6003 @cindex display disabled out of scope
6004 If a display expression refers to local variables, then it does not make
6005 sense outside the lexical context for which it was set up.  Such an
6006 expression is disabled when execution enters a context where one of its
6007 variables is not defined.  For example, if you give the command
6008 @code{display last_char} while inside a function with an argument
6009 @code{last_char}, @value{GDBN} displays this argument while your program
6010 continues to stop inside that function.  When it stops elsewhere---where
6011 there is no variable @code{last_char}---the display is disabled
6012 automatically.  The next time your program stops where @code{last_char}
6013 is meaningful, you can enable the display expression once again.
6014
6015 @node Print Settings
6016 @section Print Settings
6017
6018 @cindex format options
6019 @cindex print settings
6020 @value{GDBN} provides the following ways to control how arrays, structures,
6021 and symbols are printed.
6022
6023 @noindent
6024 These settings are useful for debugging programs in any language:
6025
6026 @table @code
6027 @kindex set print
6028 @item set print address
6029 @itemx set print address on
6030 @cindex print/don't print memory addresses
6031 @value{GDBN} prints memory addresses showing the location of stack
6032 traces, structure values, pointer values, breakpoints, and so forth,
6033 even when it also displays the contents of those addresses.  The default
6034 is @code{on}.  For example, this is what a stack frame display looks like with
6035 @code{set print address on}:
6036
6037 @smallexample
6038 @group
6039 (@value{GDBP}) f
6040 #0  set_quotes (lq=0x34c78 "<<", rq=0x34c88 ">>")
6041     at input.c:530
6042 530         if (lquote != def_lquote)
6043 @end group
6044 @end smallexample
6045
6046 @item set print address off
6047 Do not print addresses when displaying their contents.  For example,
6048 this is the same stack frame displayed with @code{set print address off}:
6049
6050 @smallexample
6051 @group
6052 (@value{GDBP}) set print addr off
6053 (@value{GDBP}) f
6054 #0  set_quotes (lq="<<", rq=">>") at input.c:530
6055 530         if (lquote != def_lquote)
6056 @end group
6057 @end smallexample
6058
6059 You can use @samp{set print address off} to eliminate all machine
6060 dependent displays from the @value{GDBN} interface.  For example, with
6061 @code{print address off}, you should get the same text for backtraces on
6062 all machines---whether or not they involve pointer arguments.
6063
6064 @kindex show print
6065 @item show print address
6066 Show whether or not addresses are to be printed.
6067 @end table
6068
6069 When @value{GDBN} prints a symbolic address, it normally prints the
6070 closest earlier symbol plus an offset.  If that symbol does not uniquely
6071 identify the address (for example, it is a name whose scope is a single
6072 source file), you may need to clarify.  One way to do this is with
6073 @code{info line}, for example @samp{info line *0x4537}.  Alternately,
6074 you can set @value{GDBN} to print the source file and line number when
6075 it prints a symbolic address:
6076
6077 @table @code
6078 @item set print symbol-filename on
6079 @cindex source file and line of a symbol
6080 @cindex symbol, source file and line
6081 Tell @value{GDBN} to print the source file name and line number of a
6082 symbol in the symbolic form of an address.
6083
6084 @item set print symbol-filename off
6085 Do not print source file name and line number of a symbol.  This is the
6086 default.
6087
6088 @item show print symbol-filename
6089 Show whether or not @value{GDBN} will print the source file name and
6090 line number of a symbol in the symbolic form of an address.
6091 @end table
6092
6093 Another situation where it is helpful to show symbol filenames and line
6094 numbers is when disassembling code; @value{GDBN} shows you the line
6095 number and source file that corresponds to each instruction.
6096
6097 Also, you may wish to see the symbolic form only if the address being
6098 printed is reasonably close to the closest earlier symbol:
6099
6100 @table @code
6101 @item set print max-symbolic-offset @var{max-offset}
6102 @cindex maximum value for offset of closest symbol
6103 Tell @value{GDBN} to only display the symbolic form of an address if the
6104 offset between the closest earlier symbol and the address is less than
6105 @var{max-offset}.  The default is 0, which tells @value{GDBN}
6106 to always print the symbolic form of an address if any symbol precedes it.
6107
6108 @item show print max-symbolic-offset
6109 Ask how large the maximum offset is that @value{GDBN} prints in a
6110 symbolic address.
6111 @end table
6112
6113 @cindex wild pointer, interpreting
6114 @cindex pointer, finding referent
6115 If you have a pointer and you are not sure where it points, try
6116 @samp{set print symbol-filename on}.  Then you can determine the name
6117 and source file location of the variable where it points, using
6118 @samp{p/a @var{pointer}}.  This interprets the address in symbolic form.
6119 For example, here @value{GDBN} shows that a variable @code{ptt} points
6120 at another variable @code{t}, defined in @file{hi2.c}:
6121
6122 @smallexample
6123 (@value{GDBP}) set print symbol-filename on
6124 (@value{GDBP}) p/a ptt
6125 $4 = 0xe008 <t in hi2.c>
6126 @end smallexample
6127
6128 @quotation
6129 @emph{Warning:} For pointers that point to a local variable, @samp{p/a}
6130 does not show the symbol name and filename of the referent, even with
6131 the appropriate @code{set print} options turned on.
6132 @end quotation
6133
6134 Other settings control how different kinds of objects are printed:
6135
6136 @table @code
6137 @item set print array
6138 @itemx set print array on
6139 @cindex pretty print arrays
6140 Pretty print arrays.  This format is more convenient to read,
6141 but uses more space.  The default is off.
6142
6143 @item set print array off
6144 Return to compressed format for arrays.
6145
6146 @item show print array
6147 Show whether compressed or pretty format is selected for displaying
6148 arrays.
6149
6150 @cindex print array indexes
6151 @item set print array-indexes
6152 @itemx set print array-indexes on
6153 Print the index of each element when displaying arrays.  May be more
6154 convenient to locate a given element in the array or quickly find the
6155 index of a given element in that printed array.  The default is off.
6156
6157 @item set print array-indexes off
6158 Stop printing element indexes when displaying arrays.
6159
6160 @item show print array-indexes
6161 Show whether the index of each element is printed when displaying
6162 arrays.
6163
6164 @item set print elements @var{number-of-elements}
6165 @cindex number of array elements to print
6166 @cindex limit on number of printed array elements
6167 Set a limit on how many elements of an array @value{GDBN} will print.
6168 If @value{GDBN} is printing a large array, it stops printing after it has
6169 printed the number of elements set by the @code{set print elements} command.
6170 This limit also applies to the display of strings.
6171 When @value{GDBN} starts, this limit is set to 200.
6172 Setting  @var{number-of-elements} to zero means that the printing is unlimited.
6173
6174 @item show print elements
6175 Display the number of elements of a large array that @value{GDBN} will print.
6176 If the number is 0, then the printing is unlimited.
6177
6178 @item set print repeats
6179 @cindex repeated array elements
6180 Set the threshold for suppressing display of repeated array
6181 elements.  When the number of consecutive identical elements of an
6182 array exceeds the threshold, @value{GDBN} prints the string
6183 @code{"<repeats @var{n} times>"}, where @var{n} is the number of
6184 identical repetitions, instead of displaying the identical elements
6185 themselves.  Setting the threshold to zero will cause all elements to
6186 be individually printed.  The default threshold is 10.
6187
6188 @item show print repeats
6189 Display the current threshold for printing repeated identical
6190 elements.
6191
6192 @item set print null-stop
6193 @cindex @sc{null} elements in arrays
6194 Cause @value{GDBN} to stop printing the characters of an array when the first
6195 @sc{null} is encountered.  This is useful when large arrays actually
6196 contain only short strings.
6197 The default is off.
6198
6199 @item show print null-stop
6200 Show whether @value{GDBN} stops printing an array on the first
6201 @sc{null} character.
6202
6203 @item set print pretty on
6204 @cindex print structures in indented form
6205 @cindex indentation in structure display
6206 Cause @value{GDBN} to print structures in an indented format with one member
6207 per line, like this:
6208
6209 @smallexample
6210 @group
6211 $1 = @{
6212   next = 0x0,
6213   flags = @{
6214     sweet = 1,
6215     sour = 1
6216   @},
6217   meat = 0x54 "Pork"
6218 @}
6219 @end group
6220 @end smallexample
6221
6222 @item set print pretty off
6223 Cause @value{GDBN} to print structures in a compact format, like this:
6224
6225 @smallexample
6226 @group
6227 $1 = @{next = 0x0, flags = @{sweet = 1, sour = 1@}, \
6228 meat = 0x54 "Pork"@}
6229 @end group
6230 @end smallexample
6231
6232 @noindent
6233 This is the default format.
6234
6235 @item show print pretty
6236 Show which format @value{GDBN} is using to print structures.
6237
6238 @item set print sevenbit-strings on
6239 @cindex eight-bit characters in strings
6240 @cindex octal escapes in strings
6241 Print using only seven-bit characters; if this option is set,
6242 @value{GDBN} displays any eight-bit characters (in strings or
6243 character values) using the notation @code{\}@var{nnn}.  This setting is
6244 best if you are working in English (@sc{ascii}) and you use the
6245 high-order bit of characters as a marker or ``meta'' bit.
6246
6247 @item set print sevenbit-strings off
6248 Print full eight-bit characters.  This allows the use of more
6249 international character sets, and is the default.
6250
6251 @item show print sevenbit-strings
6252 Show whether or not @value{GDBN} is printing only seven-bit characters.
6253
6254 @item set print union on
6255 @cindex unions in structures, printing
6256 Tell @value{GDBN} to print unions which are contained in structures
6257 and other unions.  This is the default setting.
6258
6259 @item set print union off
6260 Tell @value{GDBN} not to print unions which are contained in
6261 structures and other unions.  @value{GDBN} will print @code{"@{...@}"}
6262 instead.
6263
6264 @item show print union
6265 Ask @value{GDBN} whether or not it will print unions which are contained in
6266 structures and other unions.
6267
6268 For example, given the declarations
6269
6270 @smallexample
6271 typedef enum @{Tree, Bug@} Species;
6272 typedef enum @{Big_tree, Acorn, Seedling@} Tree_forms;
6273 typedef enum @{Caterpillar, Cocoon, Butterfly@}
6274               Bug_forms;
6275
6276 struct thing @{
6277   Species it;
6278   union @{
6279     Tree_forms tree;
6280     Bug_forms bug;
6281   @} form;
6282 @};
6283
6284 struct thing foo = @{Tree, @{Acorn@}@};
6285 @end smallexample
6286
6287 @noindent
6288 with @code{set print union on} in effect @samp{p foo} would print
6289
6290 @smallexample
6291 $1 = @{it = Tree, form = @{tree = Acorn, bug = Cocoon@}@}
6292 @end smallexample
6293
6294 @noindent
6295 and with @code{set print union off} in effect it would print
6296
6297 @smallexample
6298 $1 = @{it = Tree, form = @{...@}@}
6299 @end smallexample
6300
6301 @noindent
6302 @code{set print union} affects programs written in C-like languages
6303 and in Pascal.
6304 @end table
6305
6306 @need 1000
6307 @noindent
6308 These settings are of interest when debugging C@t{++} programs:
6309
6310 @table @code
6311 @cindex demangling C@t{++} names
6312 @item set print demangle
6313 @itemx set print demangle on
6314 Print C@t{++} names in their source form rather than in the encoded
6315 (``mangled'') form passed to the assembler and linker for type-safe
6316 linkage.  The default is on.
6317
6318 @item show print demangle
6319 Show whether C@t{++} names are printed in mangled or demangled form.
6320
6321 @item set print asm-demangle
6322 @itemx set print asm-demangle on
6323 Print C@t{++} names in their source form rather than their mangled form, even
6324 in assembler code printouts such as instruction disassemblies.
6325 The default is off.
6326
6327 @item show print asm-demangle
6328 Show whether C@t{++} names in assembly listings are printed in mangled
6329 or demangled form.
6330
6331 @cindex C@t{++} symbol decoding style
6332 @cindex symbol decoding style, C@t{++}
6333 @kindex set demangle-style
6334 @item set demangle-style @var{style}
6335 Choose among several encoding schemes used by different compilers to
6336 represent C@t{++} names.  The choices for @var{style} are currently:
6337
6338 @table @code
6339 @item auto
6340 Allow @value{GDBN} to choose a decoding style by inspecting your program.
6341
6342 @item gnu
6343 Decode based on the @sc{gnu} C@t{++} compiler (@code{g++}) encoding algorithm.
6344 This is the default.
6345
6346 @item hp
6347 Decode based on the HP ANSI C@t{++} (@code{aCC}) encoding algorithm.
6348
6349 @item lucid
6350 Decode based on the Lucid C@t{++} compiler (@code{lcc}) encoding algorithm.
6351
6352 @item arm
6353 Decode using the algorithm in the @cite{C@t{++} Annotated Reference Manual}.
6354 @strong{Warning:} this setting alone is not sufficient to allow
6355 debugging @code{cfront}-generated executables.  @value{GDBN} would
6356 require further enhancement to permit that.
6357
6358 @end table
6359 If you omit @var{style}, you will see a list of possible formats.
6360
6361 @item show demangle-style
6362 Display the encoding style currently in use for decoding C@t{++} symbols.
6363
6364 @item set print object
6365 @itemx set print object on
6366 @cindex derived type of an object, printing
6367 @cindex display derived types
6368 When displaying a pointer to an object, identify the @emph{actual}
6369 (derived) type of the object rather than the @emph{declared} type, using
6370 the virtual function table.
6371
6372 @item set print object off
6373 Display only the declared type of objects, without reference to the
6374 virtual function table.  This is the default setting.
6375
6376 @item show print object
6377 Show whether actual, or declared, object types are displayed.
6378
6379 @item set print static-members
6380 @itemx set print static-members on
6381 @cindex static members of C@t{++} objects
6382 Print static members when displaying a C@t{++} object.  The default is on.
6383
6384 @item set print static-members off
6385 Do not print static members when displaying a C@t{++} object.
6386
6387 @item show print static-members
6388 Show whether C@t{++} static members are printed or not.
6389
6390 @item set print pascal_static-members
6391 @itemx set print pascal_static-members on
6392 @cindex static members of Pascal objects
6393 @cindex Pascal objects, static members display
6394 Print static members when displaying a Pascal object.  The default is on.
6395
6396 @item set print pascal_static-members off
6397 Do not print static members when displaying a Pascal object.
6398
6399 @item show print pascal_static-members
6400 Show whether Pascal static members are printed or not.
6401
6402 @c These don't work with HP ANSI C++ yet.
6403 @item set print vtbl
6404 @itemx set print vtbl on
6405 @cindex pretty print C@t{++} virtual function tables
6406 @cindex virtual functions (C@t{++}) display
6407 @cindex VTBL display
6408 Pretty print C@t{++} virtual function tables.  The default is off.
6409 (The @code{vtbl} commands do not work on programs compiled with the HP
6410 ANSI C@t{++} compiler (@code{aCC}).)
6411
6412 @item set print vtbl off
6413 Do not pretty print C@t{++} virtual function tables.
6414
6415 @item show print vtbl
6416 Show whether C@t{++} virtual function tables are pretty printed, or not.
6417 @end table
6418
6419 @node Value History
6420 @section Value History
6421
6422 @cindex value history
6423 @cindex history of values printed by @value{GDBN}
6424 Values printed by the @code{print} command are saved in the @value{GDBN}
6425 @dfn{value history}.  This allows you to refer to them in other expressions.
6426 Values are kept until the symbol table is re-read or discarded
6427 (for example with the @code{file} or @code{symbol-file} commands).
6428 When the symbol table changes, the value history is discarded,
6429 since the values may contain pointers back to the types defined in the
6430 symbol table.
6431
6432 @cindex @code{$}
6433 @cindex @code{$$}
6434 @cindex history number
6435 The values printed are given @dfn{history numbers} by which you can
6436 refer to them.  These are successive integers starting with one.
6437 @code{print} shows you the history number assigned to a value by
6438 printing @samp{$@var{num} = } before the value; here @var{num} is the
6439 history number.
6440
6441 To refer to any previous value, use @samp{$} followed by the value's
6442 history number.  The way @code{print} labels its output is designed to
6443 remind you of this.  Just @code{$} refers to the most recent value in
6444 the history, and @code{$$} refers to the value before that.
6445 @code{$$@var{n}} refers to the @var{n}th value from the end; @code{$$2}
6446 is the value just prior to @code{$$}, @code{$$1} is equivalent to
6447 @code{$$}, and @code{$$0} is equivalent to @code{$}.
6448
6449 For example, suppose you have just printed a pointer to a structure and
6450 want to see the contents of the structure.  It suffices to type
6451
6452 @smallexample
6453 p *$
6454 @end smallexample
6455
6456 If you have a chain of structures where the component @code{next} points
6457 to the next one, you can print the contents of the next one with this:
6458
6459 @smallexample
6460 p *$.next
6461 @end smallexample
6462
6463 @noindent
6464 You can print successive links in the chain by repeating this
6465 command---which you can do by just typing @key{RET}.
6466
6467 Note that the history records values, not expressions.  If the value of
6468 @code{x} is 4 and you type these commands:
6469
6470 @smallexample
6471 print x
6472 set x=5
6473 @end smallexample
6474
6475 @noindent
6476 then the value recorded in the value history by the @code{print} command
6477 remains 4 even though the value of @code{x} has changed.
6478
6479 @table @code
6480 @kindex show values
6481 @item show values
6482 Print the last ten values in the value history, with their item numbers.
6483 This is like @samp{p@ $$9} repeated ten times, except that @code{show
6484 values} does not change the history.
6485
6486 @item show values @var{n}
6487 Print ten history values centered on history item number @var{n}.
6488
6489 @item show values +
6490 Print ten history values just after the values last printed.  If no more
6491 values are available, @code{show values +} produces no display.
6492 @end table
6493
6494 Pressing @key{RET} to repeat @code{show values @var{n}} has exactly the
6495 same effect as @samp{show values +}.
6496
6497 @node Convenience Vars
6498 @section Convenience Variables
6499
6500 @cindex convenience variables
6501 @cindex user-defined variables
6502 @value{GDBN} provides @dfn{convenience variables} that you can use within
6503 @value{GDBN} to hold on to a value and refer to it later.  These variables
6504 exist entirely within @value{GDBN}; they are not part of your program, and
6505 setting a convenience variable has no direct effect on further execution
6506 of your program.  That is why you can use them freely.
6507
6508 Convenience variables are prefixed with @samp{$}.  Any name preceded by
6509 @samp{$} can be used for a convenience variable, unless it is one of
6510 the predefined machine-specific register names (@pxref{Registers, ,Registers}).
6511 (Value history references, in contrast, are @emph{numbers} preceded
6512 by @samp{$}.  @xref{Value History, ,Value History}.)
6513
6514 You can save a value in a convenience variable with an assignment
6515 expression, just as you would set a variable in your program.
6516 For example:
6517
6518 @smallexample
6519 set $foo = *object_ptr
6520 @end smallexample
6521
6522 @noindent
6523 would save in @code{$foo} the value contained in the object pointed to by
6524 @code{object_ptr}.
6525
6526 Using a convenience variable for the first time creates it, but its
6527 value is @code{void} until you assign a new value.  You can alter the
6528 value with another assignment at any time.
6529
6530 Convenience variables have no fixed types.  You can assign a convenience
6531 variable any type of value, including structures and arrays, even if
6532 that variable already has a value of a different type.  The convenience
6533 variable, when used as an expression, has the type of its current value.
6534
6535 @table @code
6536 @kindex show convenience
6537 @cindex show all user variables
6538 @item show convenience
6539 Print a list of convenience variables used so far, and their values.
6540 Abbreviated @code{show conv}.
6541
6542 @kindex init-if-undefined
6543 @cindex convenience variables, initializing
6544 @item init-if-undefined $@var{variable} = @var{expression}
6545 Set a convenience variable if it has not already been set.  This is useful
6546 for user-defined commands that keep some state.  It is similar, in concept,
6547 to using local static variables with initializers in C (except that
6548 convenience variables are global).  It can also be used to allow users to
6549 override default values used in a command script.
6550
6551 If the variable is already defined then the expression is not evaluated so
6552 any side-effects do not occur.
6553 @end table
6554
6555 One of the ways to use a convenience variable is as a counter to be
6556 incremented or a pointer to be advanced.  For example, to print
6557 a field from successive elements of an array of structures:
6558
6559 @smallexample
6560 set $i = 0
6561 print bar[$i++]->contents
6562 @end smallexample
6563
6564 @noindent
6565 Repeat that command by typing @key{RET}.
6566
6567 Some convenience variables are created automatically by @value{GDBN} and given
6568 values likely to be useful.
6569
6570 @table @code
6571 @vindex $_@r{, convenience variable}
6572 @item $_
6573 The variable @code{$_} is automatically set by the @code{x} command to
6574 the last address examined (@pxref{Memory, ,Examining Memory}).  Other
6575 commands which provide a default address for @code{x} to examine also
6576 set @code{$_} to that address; these commands include @code{info line}
6577 and @code{info breakpoint}.  The type of @code{$_} is @code{void *}
6578 except when set by the @code{x} command, in which case it is a pointer
6579 to the type of @code{$__}.
6580
6581 @vindex $__@r{, convenience variable}
6582 @item $__
6583 The variable @code{$__} is automatically set by the @code{x} command
6584 to the value found in the last address examined.  Its type is chosen
6585 to match the format in which the data was printed.
6586
6587 @item $_exitcode
6588 @vindex $_exitcode@r{, convenience variable}
6589 The variable @code{$_exitcode} is automatically set to the exit code when
6590 the program being debugged terminates.
6591 @end table
6592
6593 On HP-UX systems, if you refer to a function or variable name that
6594 begins with a dollar sign, @value{GDBN} searches for a user or system
6595 name first, before it searches for a convenience variable.
6596
6597 @node Registers
6598 @section Registers
6599
6600 @cindex registers
6601 You can refer to machine register contents, in expressions, as variables
6602 with names starting with @samp{$}.  The names of registers are different
6603 for each machine; use @code{info registers} to see the names used on
6604 your machine.
6605
6606 @table @code
6607 @kindex info registers
6608 @item info registers
6609 Print the names and values of all registers except floating-point
6610 and vector registers (in the selected stack frame).
6611
6612 @kindex info all-registers
6613 @cindex floating point registers
6614 @item info all-registers
6615 Print the names and values of all registers, including floating-point
6616 and vector registers (in the selected stack frame).
6617
6618 @item info registers @var{regname} @dots{}
6619 Print the @dfn{relativized} value of each specified register @var{regname}.
6620 As discussed in detail below, register values are normally relative to
6621 the selected stack frame.  @var{regname} may be any register name valid on
6622 the machine you are using, with or without the initial @samp{$}.
6623 @end table
6624
6625 @cindex stack pointer register
6626 @cindex program counter register
6627 @cindex process status register
6628 @cindex frame pointer register
6629 @cindex standard registers
6630 @value{GDBN} has four ``standard'' register names that are available (in
6631 expressions) on most machines---whenever they do not conflict with an
6632 architecture's canonical mnemonics for registers.  The register names
6633 @code{$pc} and @code{$sp} are used for the program counter register and
6634 the stack pointer.  @code{$fp} is used for a register that contains a
6635 pointer to the current stack frame, and @code{$ps} is used for a
6636 register that contains the processor status.  For example,
6637 you could print the program counter in hex with
6638
6639 @smallexample
6640 p/x $pc
6641 @end smallexample
6642
6643 @noindent
6644 or print the instruction to be executed next with
6645
6646 @smallexample
6647 x/i $pc
6648 @end smallexample
6649
6650 @noindent
6651 or add four to the stack pointer@footnote{This is a way of removing
6652 one word from the stack, on machines where stacks grow downward in
6653 memory (most machines, nowadays).  This assumes that the innermost
6654 stack frame is selected; setting @code{$sp} is not allowed when other
6655 stack frames are selected.  To pop entire frames off the stack,
6656 regardless of machine architecture, use @code{return};
6657 see @ref{Returning, ,Returning from a Function}.} with
6658
6659 @smallexample
6660 set $sp += 4
6661 @end smallexample
6662
6663 Whenever possible, these four standard register names are available on
6664 your machine even though the machine has different canonical mnemonics,
6665 so long as there is no conflict.  The @code{info registers} command
6666 shows the canonical names.  For example, on the SPARC, @code{info
6667 registers} displays the processor status register as @code{$psr} but you
6668 can also refer to it as @code{$ps}; and on x86-based machines @code{$ps}
6669 is an alias for the @sc{eflags} register.
6670
6671 @value{GDBN} always considers the contents of an ordinary register as an
6672 integer when the register is examined in this way.  Some machines have
6673 special registers which can hold nothing but floating point; these
6674 registers are considered to have floating point values.  There is no way
6675 to refer to the contents of an ordinary register as floating point value
6676 (although you can @emph{print} it as a floating point value with
6677 @samp{print/f $@var{regname}}).
6678
6679 Some registers have distinct ``raw'' and ``virtual'' data formats.  This
6680 means that the data format in which the register contents are saved by
6681 the operating system is not the same one that your program normally
6682 sees.  For example, the registers of the 68881 floating point
6683 coprocessor are always saved in ``extended'' (raw) format, but all C
6684 programs expect to work with ``double'' (virtual) format.  In such
6685 cases, @value{GDBN} normally works with the virtual format only (the format
6686 that makes sense for your program), but the @code{info registers} command
6687 prints the data in both formats.
6688
6689 @cindex SSE registers (x86)
6690 @cindex MMX registers (x86)
6691 Some machines have special registers whose contents can be interpreted
6692 in several different ways.  For example, modern x86-based machines
6693 have SSE and MMX registers that can hold several values packed
6694 together in several different formats.  @value{GDBN} refers to such
6695 registers in @code{struct} notation:
6696
6697 @smallexample
6698 (@value{GDBP}) print $xmm1
6699 $1 = @{
6700   v4_float = @{0, 3.43859137e-038, 1.54142831e-044, 1.821688e-044@},
6701   v2_double = @{9.92129282474342e-303, 2.7585945287983262e-313@},
6702   v16_int8 = "\000\000\000\000\3706;\001\v\000\000\000\r\000\000",
6703   v8_int16 = @{0, 0, 14072, 315, 11, 0, 13, 0@},
6704   v4_int32 = @{0, 20657912, 11, 13@},
6705   v2_int64 = @{88725056443645952, 55834574859@},
6706   uint128 = 0x0000000d0000000b013b36f800000000
6707 @}
6708 @end smallexample
6709
6710 @noindent
6711 To set values of such registers, you need to tell @value{GDBN} which
6712 view of the register you wish to change, as if you were assigning
6713 value to a @code{struct} member:
6714
6715 @smallexample
6716  (@value{GDBP}) set $xmm1.uint128 = 0x000000000000000000000000FFFFFFFF
6717 @end smallexample
6718
6719 Normally, register values are relative to the selected stack frame
6720 (@pxref{Selection, ,Selecting a Frame}).  This means that you get the
6721 value that the register would contain if all stack frames farther in
6722 were exited and their saved registers restored.  In order to see the
6723 true contents of hardware registers, you must select the innermost
6724 frame (with @samp{frame 0}).
6725
6726 However, @value{GDBN} must deduce where registers are saved, from the machine
6727 code generated by your compiler.  If some registers are not saved, or if
6728 @value{GDBN} is unable to locate the saved registers, the selected stack
6729 frame makes no difference.
6730
6731 @node Floating Point Hardware
6732 @section Floating Point Hardware
6733 @cindex floating point
6734
6735 Depending on the configuration, @value{GDBN} may be able to give
6736 you more information about the status of the floating point hardware.
6737
6738 @table @code
6739 @kindex info float
6740 @item info float
6741 Display hardware-dependent information about the floating
6742 point unit.  The exact contents and layout vary depending on the
6743 floating point chip.  Currently, @samp{info float} is supported on
6744 the ARM and x86 machines.
6745 @end table
6746
6747 @node Vector Unit
6748 @section Vector Unit
6749 @cindex vector unit
6750
6751 Depending on the configuration, @value{GDBN} may be able to give you
6752 more information about the status of the vector unit.
6753
6754 @table @code
6755 @kindex info vector
6756 @item info vector
6757 Display information about the vector unit.  The exact contents and
6758 layout vary depending on the hardware.
6759 @end table
6760
6761 @node OS Information
6762 @section Operating System Auxiliary Information
6763 @cindex OS information
6764
6765 @value{GDBN} provides interfaces to useful OS facilities that can help
6766 you debug your program.
6767
6768 @cindex @code{ptrace} system call
6769 @cindex @code{struct user} contents
6770 When @value{GDBN} runs on a @dfn{Posix system} (such as GNU or Unix
6771 machines), it interfaces with the inferior via the @code{ptrace}
6772 system call.  The operating system creates a special sata structure,
6773 called @code{struct user}, for this interface.  You can use the
6774 command @code{info udot} to display the contents of this data
6775 structure.
6776
6777 @table @code
6778 @item info udot
6779 @kindex info udot
6780 Display the contents of the @code{struct user} maintained by the OS
6781 kernel for the program being debugged.  @value{GDBN} displays the
6782 contents of @code{struct user} as a list of hex numbers, similar to
6783 the @code{examine} command.
6784 @end table
6785
6786 @cindex auxiliary vector
6787 @cindex vector, auxiliary
6788 Some operating systems supply an @dfn{auxiliary vector} to programs at
6789 startup.  This is akin to the arguments and environment that you
6790 specify for a program, but contains a system-dependent variety of
6791 binary values that tell system libraries important details about the
6792 hardware, operating system, and process.  Each value's purpose is
6793 identified by an integer tag; the meanings are well-known but system-specific.
6794 Depending on the configuration and operating system facilities,
6795 @value{GDBN} may be able to show you this information.  For remote
6796 targets, this functionality may further depend on the remote stub's
6797 support of the @samp{qXfer:auxv:read} packet, see
6798 @ref{qXfer auxiliary vector read}.
6799
6800 @table @code
6801 @kindex info auxv
6802 @item info auxv
6803 Display the auxiliary vector of the inferior, which can be either a
6804 live process or a core dump file.  @value{GDBN} prints each tag value
6805 numerically, and also shows names and text descriptions for recognized
6806 tags.  Some values in the vector are numbers, some bit masks, and some
6807 pointers to strings or other data.  @value{GDBN} displays each value in the
6808 most appropriate form for a recognized tag, and in hexadecimal for
6809 an unrecognized tag.
6810 @end table
6811
6812
6813 @node Memory Region Attributes
6814 @section Memory Region Attributes
6815 @cindex memory region attributes
6816
6817 @dfn{Memory region attributes} allow you to describe special handling
6818 required by regions of your target's memory.  @value{GDBN} uses
6819 attributes to determine whether to allow certain types of memory
6820 accesses; whether to use specific width accesses; and whether to cache
6821 target memory.  By default the description of memory regions is
6822 fetched from the target (if the current target supports this), but the
6823 user can override the fetched regions.
6824
6825 Defined memory regions can be individually enabled and disabled.  When a
6826 memory region is disabled, @value{GDBN} uses the default attributes when
6827 accessing memory in that region.  Similarly, if no memory regions have
6828 been defined, @value{GDBN} uses the default attributes when accessing
6829 all memory.
6830
6831 When a memory region is defined, it is given a number to identify it;
6832 to enable, disable, or remove a memory region, you specify that number.
6833
6834 @table @code
6835 @kindex mem
6836 @item mem @var{lower} @var{upper} @var{attributes}@dots{}
6837 Define a memory region bounded by @var{lower} and @var{upper} with
6838 attributes @var{attributes}@dots{}, and add it to the list of regions
6839 monitored by @value{GDBN}.  Note that @var{upper} == 0 is a special
6840 case: it is treated as the target's maximum memory address.
6841 (0xffff on 16 bit targets, 0xffffffff on 32 bit targets, etc.)
6842
6843 @item mem auto
6844 Discard any user changes to the memory regions and use target-supplied
6845 regions, if available, or no regions if the target does not support.
6846
6847 @kindex delete mem
6848 @item delete mem @var{nums}@dots{}
6849 Remove memory regions @var{nums}@dots{} from the list of regions
6850 monitored by @value{GDBN}.
6851
6852 @kindex disable mem
6853 @item disable mem @var{nums}@dots{}
6854 Disable monitoring of memory regions @var{nums}@dots{}.
6855 A disabled memory region is not forgotten.
6856 It may be enabled again later.
6857
6858 @kindex enable mem
6859 @item enable mem @var{nums}@dots{}
6860 Enable monitoring of memory regions @var{nums}@dots{}.
6861
6862 @kindex info mem
6863 @item info mem
6864 Print a table of all defined memory regions, with the following columns
6865 for each region:
6866
6867 @table @emph
6868 @item Memory Region Number
6869 @item Enabled or Disabled.
6870 Enabled memory regions are marked with @samp{y}.
6871 Disabled memory regions are marked with @samp{n}.
6872
6873 @item Lo Address
6874 The address defining the inclusive lower bound of the memory region.
6875
6876 @item Hi Address
6877 The address defining the exclusive upper bound of the memory region.
6878
6879 @item Attributes
6880 The list of attributes set for this memory region.
6881 @end table
6882 @end table
6883
6884
6885 @subsection Attributes
6886
6887 @subsubsection Memory Access Mode
6888 The access mode attributes set whether @value{GDBN} may make read or
6889 write accesses to a memory region.
6890
6891 While these attributes prevent @value{GDBN} from performing invalid
6892 memory accesses, they do nothing to prevent the target system, I/O DMA,
6893 etc.@: from accessing memory.
6894
6895 @table @code
6896 @item ro
6897 Memory is read only.
6898 @item wo
6899 Memory is write only.
6900 @item rw
6901 Memory is read/write.  This is the default.
6902 @end table
6903
6904 @subsubsection Memory Access Size
6905 The access size attribute tells @value{GDBN} to use specific sized
6906 accesses in the memory region.  Often memory mapped device registers
6907 require specific sized accesses.  If no access size attribute is
6908 specified, @value{GDBN} may use accesses of any size.
6909
6910 @table @code
6911 @item 8
6912 Use 8 bit memory accesses.
6913 @item 16
6914 Use 16 bit memory accesses.
6915 @item 32
6916 Use 32 bit memory accesses.
6917 @item 64
6918 Use 64 bit memory accesses.
6919 @end table
6920
6921 @c @subsubsection Hardware/Software Breakpoints
6922 @c The hardware/software breakpoint attributes set whether @value{GDBN}
6923 @c will use hardware or software breakpoints for the internal breakpoints
6924 @c used by the step, next, finish, until, etc. commands.
6925 @c
6926 @c @table @code
6927 @c @item hwbreak
6928 @c Always use hardware breakpoints
6929 @c @item swbreak (default)
6930 @c @end table
6931
6932 @subsubsection Data Cache
6933 The data cache attributes set whether @value{GDBN} will cache target
6934 memory.  While this generally improves performance by reducing debug
6935 protocol overhead, it can lead to incorrect results because @value{GDBN}
6936 does not know about volatile variables or memory mapped device
6937 registers.
6938
6939 @table @code
6940 @item cache
6941 Enable @value{GDBN} to cache target memory.
6942 @item nocache
6943 Disable @value{GDBN} from caching target memory.  This is the default.
6944 @end table
6945
6946 @subsection Memory Access Checking
6947 @value{GDBN} can be instructed to refuse accesses to memory that is
6948 not explicitly described.  This can be useful if accessing such
6949 regions has undesired effects for a specific target, or to provide
6950 better error checking.  The following commands control this behaviour.
6951
6952 @table @code
6953 @kindex set mem inaccessible-by-default
6954 @item set mem inaccessible-by-default [on|off]
6955 If @code{on} is specified, make  @value{GDBN} treat memory not
6956 explicitly described by the memory ranges as non-existent and refuse accesses
6957 to such memory.  The checks are only performed if there's at least one
6958 memory range defined.  If @code{off} is specified, make @value{GDBN}
6959 treat the memory not explicitly described by the memory ranges as RAM.
6960 The default value is @code{off}.
6961 @kindex show mem inaccessible-by-default
6962 @item show mem inaccessible-by-default
6963 Show the current handling of accesses to unknown memory.
6964 @end table
6965
6966
6967 @c @subsubsection Memory Write Verification
6968 @c The memory write verification attributes set whether @value{GDBN}
6969 @c will re-reads data after each write to verify the write was successful.
6970 @c
6971 @c @table @code
6972 @c @item verify
6973 @c @item noverify (default)
6974 @c @end table
6975
6976 @node Dump/Restore Files
6977 @section Copy Between Memory and a File
6978 @cindex dump/restore files
6979 @cindex append data to a file
6980 @cindex dump data to a file
6981 @cindex restore data from a file
6982
6983 You can use the commands @code{dump}, @code{append}, and
6984 @code{restore} to copy data between target memory and a file.  The
6985 @code{dump} and @code{append} commands write data to a file, and the
6986 @code{restore} command reads data from a file back into the inferior's
6987 memory.  Files may be in binary, Motorola S-record, Intel hex, or
6988 Tektronix Hex format; however, @value{GDBN} can only append to binary
6989 files.
6990
6991 @table @code
6992
6993 @kindex dump
6994 @item dump @r{[}@var{format}@r{]} memory @var{filename} @var{start_addr} @var{end_addr}
6995 @itemx dump @r{[}@var{format}@r{]} value @var{filename} @var{expr}
6996 Dump the contents of memory from @var{start_addr} to @var{end_addr},
6997 or the value of @var{expr}, to @var{filename} in the given format.
6998
6999 The @var{format} parameter may be any one of:
7000 @table @code
7001 @item binary
7002 Raw binary form.
7003 @item ihex
7004 Intel hex format.
7005 @item srec
7006 Motorola S-record format.
7007 @item tekhex
7008 Tektronix Hex format.
7009 @end table
7010
7011 @value{GDBN} uses the same definitions of these formats as the
7012 @sc{gnu} binary utilities, like @samp{objdump} and @samp{objcopy}.  If
7013 @var{format} is omitted, @value{GDBN} dumps the data in raw binary
7014 form.
7015
7016 @kindex append
7017 @item append @r{[}binary@r{]} memory @var{filename} @var{start_addr} @var{end_addr}
7018 @itemx append @r{[}binary@r{]} value @var{filename} @var{expr}
7019 Append the contents of memory from @var{start_addr} to @var{end_addr},
7020 or the value of @var{expr}, to the file @var{filename}, in raw binary form.
7021 (@value{GDBN} can only append data to files in raw binary form.)
7022
7023 @kindex restore
7024 @item restore @var{filename} @r{[}binary@r{]} @var{bias} @var{start} @var{end}
7025 Restore the contents of file @var{filename} into memory.  The
7026 @code{restore} command can automatically recognize any known @sc{bfd}
7027 file format, except for raw binary.  To restore a raw binary file you
7028 must specify the optional keyword @code{binary} after the filename.
7029
7030 If @var{bias} is non-zero, its value will be added to the addresses
7031 contained in the file.  Binary files always start at address zero, so
7032 they will be restored at address @var{bias}.  Other bfd files have
7033 a built-in location; they will be restored at offset @var{bias}
7034 from that location.
7035
7036 If @var{start} and/or @var{end} are non-zero, then only data between
7037 file offset @var{start} and file offset @var{end} will be restored.
7038 These offsets are relative to the addresses in the file, before
7039 the @var{bias} argument is applied.
7040
7041 @end table
7042
7043 @node Core File Generation
7044 @section How to Produce a Core File from Your Program
7045 @cindex dump core from inferior
7046
7047 A @dfn{core file} or @dfn{core dump} is a file that records the memory
7048 image of a running process and its process status (register values
7049 etc.).  Its primary use is post-mortem debugging of a program that
7050 crashed while it ran outside a debugger.  A program that crashes
7051 automatically produces a core file, unless this feature is disabled by
7052 the user.  @xref{Files}, for information on invoking @value{GDBN} in
7053 the post-mortem debugging mode.
7054
7055 Occasionally, you may wish to produce a core file of the program you
7056 are debugging in order to preserve a snapshot of its state.
7057 @value{GDBN} has a special command for that.
7058
7059 @table @code
7060 @kindex gcore
7061 @kindex generate-core-file
7062 @item generate-core-file [@var{file}]
7063 @itemx gcore [@var{file}]
7064 Produce a core dump of the inferior process.  The optional argument
7065 @var{file} specifies the file name where to put the core dump.  If not
7066 specified, the file name defaults to @file{core.@var{pid}}, where
7067 @var{pid} is the inferior process ID.
7068
7069 Note that this command is implemented only for some systems (as of
7070 this writing, @sc{gnu}/Linux, FreeBSD, Solaris, Unixware, and S390).
7071 @end table
7072
7073 @node Character Sets
7074 @section Character Sets
7075 @cindex character sets
7076 @cindex charset
7077 @cindex translating between character sets
7078 @cindex host character set
7079 @cindex target character set
7080
7081 If the program you are debugging uses a different character set to
7082 represent characters and strings than the one @value{GDBN} uses itself,
7083 @value{GDBN} can automatically translate between the character sets for
7084 you.  The character set @value{GDBN} uses we call the @dfn{host
7085 character set}; the one the inferior program uses we call the
7086 @dfn{target character set}.
7087
7088 For example, if you are running @value{GDBN} on a @sc{gnu}/Linux system, which
7089 uses the ISO Latin 1 character set, but you are using @value{GDBN}'s
7090 remote protocol (@pxref{Remote Debugging}) to debug a program
7091 running on an IBM mainframe, which uses the @sc{ebcdic} character set,
7092 then the host character set is Latin-1, and the target character set is
7093 @sc{ebcdic}.  If you give @value{GDBN} the command @code{set
7094 target-charset EBCDIC-US}, then @value{GDBN} translates between
7095 @sc{ebcdic} and Latin 1 as you print character or string values, or use
7096 character and string literals in expressions.
7097
7098 @value{GDBN} has no way to automatically recognize which character set
7099 the inferior program uses; you must tell it, using the @code{set
7100 target-charset} command, described below.
7101
7102 Here are the commands for controlling @value{GDBN}'s character set
7103 support:
7104
7105 @table @code
7106 @item set target-charset @var{charset}
7107 @kindex set target-charset
7108 Set the current target character set to @var{charset}.  We list the
7109 character set names @value{GDBN} recognizes below, but if you type
7110 @code{set target-charset} followed by @key{TAB}@key{TAB}, @value{GDBN} will
7111 list the target character sets it supports.
7112 @end table
7113
7114 @table @code
7115 @item set host-charset @var{charset}
7116 @kindex set host-charset
7117 Set the current host character set to @var{charset}.
7118
7119 By default, @value{GDBN} uses a host character set appropriate to the
7120 system it is running on; you can override that default using the
7121 @code{set host-charset} command.
7122
7123 @value{GDBN} can only use certain character sets as its host character
7124 set.  We list the character set names @value{GDBN} recognizes below, and
7125 indicate which can be host character sets, but if you type
7126 @code{set target-charset} followed by @key{TAB}@key{TAB}, @value{GDBN} will
7127 list the host character sets it supports.
7128
7129 @item set charset @var{charset}
7130 @kindex set charset
7131 Set the current host and target character sets to @var{charset}.  As
7132 above, if you type @code{set charset} followed by @key{TAB}@key{TAB},
7133 @value{GDBN} will list the name of the character sets that can be used
7134 for both host and target.
7135
7136
7137 @item show charset
7138 @kindex show charset
7139 Show the names of the current host and target charsets.
7140
7141 @itemx show host-charset
7142 @kindex show host-charset
7143 Show the name of the current host charset.
7144
7145 @itemx show target-charset
7146 @kindex show target-charset
7147 Show the name of the current target charset.
7148
7149 @end table
7150
7151 @value{GDBN} currently includes support for the following character
7152 sets:
7153
7154 @table @code
7155
7156 @item ASCII
7157 @cindex ASCII character set
7158 Seven-bit U.S. @sc{ascii}.  @value{GDBN} can use this as its host
7159 character set.
7160
7161 @item ISO-8859-1
7162 @cindex ISO 8859-1 character set
7163 @cindex ISO Latin 1 character set
7164 The ISO Latin 1 character set.  This extends @sc{ascii} with accented
7165 characters needed for French, German, and Spanish.  @value{GDBN} can use
7166 this as its host character set.
7167
7168 @item EBCDIC-US
7169 @itemx IBM1047
7170 @cindex EBCDIC character set
7171 @cindex IBM1047 character set
7172 Variants of the @sc{ebcdic} character set, used on some of IBM's
7173 mainframe operating systems.  (@sc{gnu}/Linux on the S/390 uses U.S. @sc{ascii}.)
7174 @value{GDBN} cannot use these as its host character set.
7175
7176 @end table
7177
7178 Note that these are all single-byte character sets.  More work inside
7179 @value{GDBN} is needed to support multi-byte or variable-width character
7180 encodings, like the UTF-8 and UCS-2 encodings of Unicode.
7181
7182 Here is an example of @value{GDBN}'s character set support in action.
7183 Assume that the following source code has been placed in the file
7184 @file{charset-test.c}:
7185
7186 @smallexample
7187 #include <stdio.h>
7188
7189 char ascii_hello[]
7190   = @{72, 101, 108, 108, 111, 44, 32, 119,
7191      111, 114, 108, 100, 33, 10, 0@};
7192 char ibm1047_hello[]
7193   = @{200, 133, 147, 147, 150, 107, 64, 166,
7194      150, 153, 147, 132, 90, 37, 0@};
7195
7196 main ()
7197 @{
7198   printf ("Hello, world!\n");
7199 @}
7200 @end smallexample
7201
7202 In this program, @code{ascii_hello} and @code{ibm1047_hello} are arrays
7203 containing the string @samp{Hello, world!} followed by a newline,
7204 encoded in the @sc{ascii} and @sc{ibm1047} character sets.
7205
7206 We compile the program, and invoke the debugger on it:
7207
7208 @smallexample
7209 $ gcc -g charset-test.c -o charset-test
7210 $ gdb -nw charset-test
7211 GNU gdb 2001-12-19-cvs
7212 Copyright 2001 Free Software Foundation, Inc.
7213 @dots{}
7214 (@value{GDBP})
7215 @end smallexample
7216
7217 We can use the @code{show charset} command to see what character sets
7218 @value{GDBN} is currently using to interpret and display characters and
7219 strings:
7220
7221 @smallexample
7222 (@value{GDBP}) show charset
7223 The current host and target character set is `ISO-8859-1'.
7224 (@value{GDBP})
7225 @end smallexample
7226
7227 For the sake of printing this manual, let's use @sc{ascii} as our
7228 initial character set:
7229 @smallexample
7230 (@value{GDBP}) set charset ASCII
7231 (@value{GDBP}) show charset
7232 The current host and target character set is `ASCII'.
7233 (@value{GDBP})
7234 @end smallexample
7235
7236 Let's assume that @sc{ascii} is indeed the correct character set for our
7237 host system --- in other words, let's assume that if @value{GDBN} prints
7238 characters using the @sc{ascii} character set, our terminal will display
7239 them properly.  Since our current target character set is also
7240 @sc{ascii}, the contents of @code{ascii_hello} print legibly:
7241
7242 @smallexample
7243 (@value{GDBP}) print ascii_hello
7244 $1 = 0x401698 "Hello, world!\n"
7245 (@value{GDBP}) print ascii_hello[0]
7246 $2 = 72 'H'
7247 (@value{GDBP})
7248 @end smallexample
7249
7250 @value{GDBN} uses the target character set for character and string
7251 literals you use in expressions:
7252
7253 @smallexample
7254 (@value{GDBP}) print '+'
7255 $3 = 43 '+'
7256 (@value{GDBP})
7257 @end smallexample
7258
7259 The @sc{ascii} character set uses the number 43 to encode the @samp{+}
7260 character.
7261
7262 @value{GDBN} relies on the user to tell it which character set the
7263 target program uses.  If we print @code{ibm1047_hello} while our target
7264 character set is still @sc{ascii}, we get jibberish:
7265
7266 @smallexample
7267 (@value{GDBP}) print ibm1047_hello
7268 $4 = 0x4016a8 "\310\205\223\223\226k@@\246\226\231\223\204Z%"
7269 (@value{GDBP}) print ibm1047_hello[0]
7270 $5 = 200 '\310'
7271 (@value{GDBP})
7272 @end smallexample
7273
7274 If we invoke the @code{set target-charset} followed by @key{TAB}@key{TAB},
7275 @value{GDBN} tells us the character sets it supports:
7276
7277 @smallexample
7278 (@value{GDBP}) set target-charset
7279 ASCII       EBCDIC-US   IBM1047     ISO-8859-1
7280 (@value{GDBP}) set target-charset
7281 @end smallexample
7282
7283 We can select @sc{ibm1047} as our target character set, and examine the
7284 program's strings again.  Now the @sc{ascii} string is wrong, but
7285 @value{GDBN} translates the contents of @code{ibm1047_hello} from the
7286 target character set, @sc{ibm1047}, to the host character set,
7287 @sc{ascii}, and they display correctly:
7288
7289 @smallexample
7290 (@value{GDBP}) set target-charset IBM1047
7291 (@value{GDBP}) show charset
7292 The current host character set is `ASCII'.
7293 The current target character set is `IBM1047'.
7294 (@value{GDBP}) print ascii_hello
7295 $6 = 0x401698 "\110\145%%?\054\040\167?\162%\144\041\012"
7296 (@value{GDBP}) print ascii_hello[0]
7297 $7 = 72 '\110'
7298 (@value{GDBP}) print ibm1047_hello
7299 $8 = 0x4016a8 "Hello, world!\n"
7300 (@value{GDBP}) print ibm1047_hello[0]
7301 $9 = 200 'H'
7302 (@value{GDBP})
7303 @end smallexample
7304
7305 As above, @value{GDBN} uses the target character set for character and
7306 string literals you use in expressions:
7307
7308 @smallexample
7309 (@value{GDBP}) print '+'
7310 $10 = 78 '+'
7311 (@value{GDBP})
7312 @end smallexample
7313
7314 The @sc{ibm1047} character set uses the number 78 to encode the @samp{+}
7315 character.
7316
7317 @node Caching Remote Data
7318 @section Caching Data of Remote Targets
7319 @cindex caching data of remote targets
7320
7321 @value{GDBN} can cache data exchanged between the debugger and a
7322 remote target (@pxref{Remote Debugging}).  Such caching generally improves
7323 performance, because it reduces the overhead of the remote protocol by
7324 bundling memory reads and writes into large chunks.  Unfortunately,
7325 @value{GDBN} does not currently know anything about volatile
7326 registers, and thus data caching will produce incorrect results when
7327 volatile registers are in use.
7328
7329 @table @code
7330 @kindex set remotecache
7331 @item set remotecache on
7332 @itemx set remotecache off
7333 Set caching state for remote targets.  When @code{ON}, use data
7334 caching.  By default, this option is @code{OFF}.
7335
7336 @kindex show remotecache
7337 @item show remotecache
7338 Show the current state of data caching for remote targets.
7339
7340 @kindex info dcache
7341 @item info dcache
7342 Print the information about the data cache performance.  The
7343 information displayed includes: the dcache width and depth; and for
7344 each cache line, how many times it was referenced, and its data and
7345 state (dirty, bad, ok, etc.).  This command is useful for debugging
7346 the data cache operation.
7347 @end table
7348
7349
7350 @node Macros
7351 @chapter C Preprocessor Macros
7352
7353 Some languages, such as C and C@t{++}, provide a way to define and invoke
7354 ``preprocessor macros'' which expand into strings of tokens.
7355 @value{GDBN} can evaluate expressions containing macro invocations, show
7356 the result of macro expansion, and show a macro's definition, including
7357 where it was defined.
7358
7359 You may need to compile your program specially to provide @value{GDBN}
7360 with information about preprocessor macros.  Most compilers do not
7361 include macros in their debugging information, even when you compile
7362 with the @option{-g} flag.  @xref{Compilation}.
7363
7364 A program may define a macro at one point, remove that definition later,
7365 and then provide a different definition after that.  Thus, at different
7366 points in the program, a macro may have different definitions, or have
7367 no definition at all.  If there is a current stack frame, @value{GDBN}
7368 uses the macros in scope at that frame's source code line.  Otherwise,
7369 @value{GDBN} uses the macros in scope at the current listing location;
7370 see @ref{List}.
7371
7372 At the moment, @value{GDBN} does not support the @code{##}
7373 token-splicing operator, the @code{#} stringification operator, or
7374 variable-arity macros.
7375
7376 Whenever @value{GDBN} evaluates an expression, it always expands any
7377 macro invocations present in the expression.  @value{GDBN} also provides
7378 the following commands for working with macros explicitly.
7379
7380 @table @code
7381
7382 @kindex macro expand
7383 @cindex macro expansion, showing the results of preprocessor
7384 @cindex preprocessor macro expansion, showing the results of
7385 @cindex expanding preprocessor macros
7386 @item macro expand @var{expression}
7387 @itemx macro exp @var{expression}
7388 Show the results of expanding all preprocessor macro invocations in
7389 @var{expression}.  Since @value{GDBN} simply expands macros, but does
7390 not parse the result, @var{expression} need not be a valid expression;
7391 it can be any string of tokens.
7392
7393 @kindex macro exp1
7394 @item macro expand-once @var{expression}
7395 @itemx macro exp1 @var{expression}
7396 @cindex expand macro once
7397 @i{(This command is not yet implemented.)}  Show the results of
7398 expanding those preprocessor macro invocations that appear explicitly in
7399 @var{expression}.  Macro invocations appearing in that expansion are
7400 left unchanged.  This command allows you to see the effect of a
7401 particular macro more clearly, without being confused by further
7402 expansions.  Since @value{GDBN} simply expands macros, but does not
7403 parse the result, @var{expression} need not be a valid expression; it
7404 can be any string of tokens.
7405
7406 @kindex info macro
7407 @cindex macro definition, showing
7408 @cindex definition, showing a macro's
7409 @item info macro @var{macro}
7410 Show the definition of the macro named @var{macro}, and describe the
7411 source location where that definition was established.
7412
7413 @kindex macro define
7414 @cindex user-defined macros
7415 @cindex defining macros interactively
7416 @cindex macros, user-defined
7417 @item macro define @var{macro} @var{replacement-list}
7418 @itemx macro define @var{macro}(@var{arglist}) @var{replacement-list}
7419 @i{(This command is not yet implemented.)}  Introduce a definition for a
7420 preprocessor macro named @var{macro}, invocations of which are replaced
7421 by the tokens given in @var{replacement-list}.  The first form of this
7422 command defines an ``object-like'' macro, which takes no arguments; the
7423 second form defines a ``function-like'' macro, which takes the arguments
7424 given in @var{arglist}.
7425
7426 A definition introduced by this command is in scope in every expression
7427 evaluated in @value{GDBN}, until it is removed with the @command{macro
7428 undef} command, described below.  The definition overrides all
7429 definitions for @var{macro} present in the program being debugged, as
7430 well as any previous user-supplied definition.
7431
7432 @kindex macro undef
7433 @item macro undef @var{macro}
7434 @i{(This command is not yet implemented.)}  Remove any user-supplied
7435 definition for the macro named @var{macro}.  This command only affects
7436 definitions provided with the @command{macro define} command, described
7437 above; it cannot remove definitions present in the program being
7438 debugged.
7439
7440 @kindex macro list
7441 @item macro list
7442 @i{(This command is not yet implemented.)}  List all the macros
7443 defined using the @code{macro define} command.
7444 @end table
7445
7446 @cindex macros, example of debugging with
7447 Here is a transcript showing the above commands in action.  First, we
7448 show our source files:
7449
7450 @smallexample
7451 $ cat sample.c
7452 #include <stdio.h>
7453 #include "sample.h"
7454
7455 #define M 42
7456 #define ADD(x) (M + x)
7457
7458 main ()
7459 @{
7460 #define N 28
7461   printf ("Hello, world!\n");
7462 #undef N
7463   printf ("We're so creative.\n");
7464 #define N 1729
7465   printf ("Goodbye, world!\n");
7466 @}
7467 $ cat sample.h
7468 #define Q <
7469 $
7470 @end smallexample
7471
7472 Now, we compile the program using the @sc{gnu} C compiler, @value{NGCC}.
7473 We pass the @option{-gdwarf-2} and @option{-g3} flags to ensure the
7474 compiler includes information about preprocessor macros in the debugging
7475 information.
7476
7477 @smallexample
7478 $ gcc -gdwarf-2 -g3 sample.c -o sample
7479 $
7480 @end smallexample
7481
7482 Now, we start @value{GDBN} on our sample program:
7483
7484 @smallexample
7485 $ gdb -nw sample
7486 GNU gdb 2002-05-06-cvs
7487 Copyright 2002 Free Software Foundation, Inc.
7488 GDB is free software, @dots{}
7489 (@value{GDBP})
7490 @end smallexample
7491
7492 We can expand macros and examine their definitions, even when the
7493 program is not running.  @value{GDBN} uses the current listing position
7494 to decide which macro definitions are in scope:
7495
7496 @smallexample
7497 (@value{GDBP}) list main
7498 3
7499 4       #define M 42
7500 5       #define ADD(x) (M + x)
7501 6
7502 7       main ()
7503 8       @{
7504 9       #define N 28
7505 10        printf ("Hello, world!\n");
7506 11      #undef N
7507 12        printf ("We're so creative.\n");
7508 (@value{GDBP}) info macro ADD
7509 Defined at /home/jimb/gdb/macros/play/sample.c:5
7510 #define ADD(x) (M + x)
7511 (@value{GDBP}) info macro Q
7512 Defined at /home/jimb/gdb/macros/play/sample.h:1
7513   included at /home/jimb/gdb/macros/play/sample.c:2
7514 #define Q <
7515 (@value{GDBP}) macro expand ADD(1)
7516 expands to: (42 + 1)
7517 (@value{GDBP}) macro expand-once ADD(1)
7518 expands to: once (M + 1)
7519 (@value{GDBP})
7520 @end smallexample
7521
7522 In the example above, note that @command{macro expand-once} expands only
7523 the macro invocation explicit in the original text --- the invocation of
7524 @code{ADD} --- but does not expand the invocation of the macro @code{M},
7525 which was introduced by @code{ADD}.
7526
7527 Once the program is running, @value{GDBN} uses the macro definitions in
7528 force at the source line of the current stack frame:
7529
7530 @smallexample
7531 (@value{GDBP}) break main
7532 Breakpoint 1 at 0x8048370: file sample.c, line 10.
7533 (@value{GDBP}) run
7534 Starting program: /home/jimb/gdb/macros/play/sample
7535
7536 Breakpoint 1, main () at sample.c:10
7537 10        printf ("Hello, world!\n");
7538 (@value{GDBP})
7539 @end smallexample
7540
7541 At line 10, the definition of the macro @code{N} at line 9 is in force:
7542
7543 @smallexample
7544 (@value{GDBP}) info macro N
7545 Defined at /home/jimb/gdb/macros/play/sample.c:9
7546 #define N 28
7547 (@value{GDBP}) macro expand N Q M
7548 expands to: 28 < 42
7549 (@value{GDBP}) print N Q M
7550 $1 = 1
7551 (@value{GDBP})
7552 @end smallexample
7553
7554 As we step over directives that remove @code{N}'s definition, and then
7555 give it a new definition, @value{GDBN} finds the definition (or lack
7556 thereof) in force at each point:
7557
7558 @smallexample
7559 (@value{GDBP}) next
7560 Hello, world!
7561 12        printf ("We're so creative.\n");
7562 (@value{GDBP}) info macro N
7563 The symbol `N' has no definition as a C/C++ preprocessor macro
7564 at /home/jimb/gdb/macros/play/sample.c:12
7565 (@value{GDBP}) next
7566 We're so creative.
7567 14        printf ("Goodbye, world!\n");
7568 (@value{GDBP}) info macro N
7569 Defined at /home/jimb/gdb/macros/play/sample.c:13
7570 #define N 1729
7571 (@value{GDBP}) macro expand N Q M
7572 expands to: 1729 < 42
7573 (@value{GDBP}) print N Q M
7574 $2 = 0
7575 (@value{GDBP})
7576 @end smallexample
7577
7578
7579 @node Tracepoints
7580 @chapter Tracepoints
7581 @c This chapter is based on the documentation written by Michael
7582 @c Snyder, David Taylor, Jim Blandy, and Elena Zannoni.
7583
7584 @cindex tracepoints
7585 In some applications, it is not feasible for the debugger to interrupt
7586 the program's execution long enough for the developer to learn
7587 anything helpful about its behavior.  If the program's correctness
7588 depends on its real-time behavior, delays introduced by a debugger
7589 might cause the program to change its behavior drastically, or perhaps
7590 fail, even when the code itself is correct.  It is useful to be able
7591 to observe the program's behavior without interrupting it.
7592
7593 Using @value{GDBN}'s @code{trace} and @code{collect} commands, you can
7594 specify locations in the program, called @dfn{tracepoints}, and
7595 arbitrary expressions to evaluate when those tracepoints are reached.
7596 Later, using the @code{tfind} command, you can examine the values
7597 those expressions had when the program hit the tracepoints.  The
7598 expressions may also denote objects in memory---structures or arrays,
7599 for example---whose values @value{GDBN} should record; while visiting
7600 a particular tracepoint, you may inspect those objects as if they were
7601 in memory at that moment.  However, because @value{GDBN} records these
7602 values without interacting with you, it can do so quickly and
7603 unobtrusively, hopefully not disturbing the program's behavior.
7604
7605 The tracepoint facility is currently available only for remote
7606 targets.  @xref{Targets}.  In addition, your remote target must know
7607 how to collect trace data.  This functionality is implemented in the
7608 remote stub; however, none of the stubs distributed with @value{GDBN}
7609 support tracepoints as of this writing.  The format of the remote
7610 packets used to implement tracepoints are described in @ref{Tracepoint
7611 Packets}.
7612
7613 This chapter describes the tracepoint commands and features.
7614
7615 @menu
7616 * Set Tracepoints::
7617 * Analyze Collected Data::
7618 * Tracepoint Variables::
7619 @end menu
7620
7621 @node Set Tracepoints
7622 @section Commands to Set Tracepoints
7623
7624 Before running such a @dfn{trace experiment}, an arbitrary number of
7625 tracepoints can be set.  Like a breakpoint (@pxref{Set Breaks}), a
7626 tracepoint has a number assigned to it by @value{GDBN}.  Like with
7627 breakpoints, tracepoint numbers are successive integers starting from
7628 one.  Many of the commands associated with tracepoints take the
7629 tracepoint number as their argument, to identify which tracepoint to
7630 work on.
7631
7632 For each tracepoint, you can specify, in advance, some arbitrary set
7633 of data that you want the target to collect in the trace buffer when
7634 it hits that tracepoint.  The collected data can include registers,
7635 local variables, or global data.  Later, you can use @value{GDBN}
7636 commands to examine the values these data had at the time the
7637 tracepoint was hit.
7638
7639 This section describes commands to set tracepoints and associated
7640 conditions and actions.
7641
7642 @menu
7643 * Create and Delete Tracepoints::
7644 * Enable and Disable Tracepoints::
7645 * Tracepoint Passcounts::
7646 * Tracepoint Actions::
7647 * Listing Tracepoints::
7648 * Starting and Stopping Trace Experiments::
7649 @end menu
7650
7651 @node Create and Delete Tracepoints
7652 @subsection Create and Delete Tracepoints
7653
7654 @table @code
7655 @cindex set tracepoint
7656 @kindex trace
7657 @item trace
7658 The @code{trace} command is very similar to the @code{break} command.
7659 Its argument can be a source line, a function name, or an address in
7660 the target program.  @xref{Set Breaks}.  The @code{trace} command
7661 defines a tracepoint, which is a point in the target program where the
7662 debugger will briefly stop, collect some data, and then allow the
7663 program to continue.  Setting a tracepoint or changing its commands
7664 doesn't take effect until the next @code{tstart} command; thus, you
7665 cannot change the tracepoint attributes once a trace experiment is
7666 running.
7667
7668 Here are some examples of using the @code{trace} command:
7669
7670 @smallexample
7671 (@value{GDBP}) @b{trace foo.c:121}    // a source file and line number
7672
7673 (@value{GDBP}) @b{trace +2}           // 2 lines forward
7674
7675 (@value{GDBP}) @b{trace my_function}  // first source line of function
7676
7677 (@value{GDBP}) @b{trace *my_function} // EXACT start address of function
7678
7679 (@value{GDBP}) @b{trace *0x2117c4}    // an address
7680 @end smallexample
7681
7682 @noindent
7683 You can abbreviate @code{trace} as @code{tr}.
7684
7685 @vindex $tpnum
7686 @cindex last tracepoint number
7687 @cindex recent tracepoint number
7688 @cindex tracepoint number
7689 The convenience variable @code{$tpnum} records the tracepoint number
7690 of the most recently set tracepoint.
7691
7692 @kindex delete tracepoint
7693 @cindex tracepoint deletion
7694 @item delete tracepoint @r{[}@var{num}@r{]}
7695 Permanently delete one or more tracepoints.  With no argument, the
7696 default is to delete all tracepoints.
7697
7698 Examples:
7699
7700 @smallexample
7701 (@value{GDBP}) @b{delete trace 1 2 3} // remove three tracepoints
7702
7703 (@value{GDBP}) @b{delete trace}       // remove all tracepoints
7704 @end smallexample
7705
7706 @noindent
7707 You can abbreviate this command as @code{del tr}.
7708 @end table
7709
7710 @node Enable and Disable Tracepoints
7711 @subsection Enable and Disable Tracepoints
7712
7713 @table @code
7714 @kindex disable tracepoint
7715 @item disable tracepoint @r{[}@var{num}@r{]}
7716 Disable tracepoint @var{num}, or all tracepoints if no argument
7717 @var{num} is given.  A disabled tracepoint will have no effect during
7718 the next trace experiment, but it is not forgotten.  You can re-enable
7719 a disabled tracepoint using the @code{enable tracepoint} command.
7720
7721 @kindex enable tracepoint
7722 @item enable tracepoint @r{[}@var{num}@r{]}
7723 Enable tracepoint @var{num}, or all tracepoints.  The enabled
7724 tracepoints will become effective the next time a trace experiment is
7725 run.
7726 @end table
7727
7728 @node Tracepoint Passcounts
7729 @subsection Tracepoint Passcounts
7730
7731 @table @code
7732 @kindex passcount
7733 @cindex tracepoint pass count
7734 @item passcount @r{[}@var{n} @r{[}@var{num}@r{]]}
7735 Set the @dfn{passcount} of a tracepoint.  The passcount is a way to
7736 automatically stop a trace experiment.  If a tracepoint's passcount is
7737 @var{n}, then the trace experiment will be automatically stopped on
7738 the @var{n}'th time that tracepoint is hit.  If the tracepoint number
7739 @var{num} is not specified, the @code{passcount} command sets the
7740 passcount of the most recently defined tracepoint.  If no passcount is
7741 given, the trace experiment will run until stopped explicitly by the
7742 user.
7743
7744 Examples:
7745
7746 @smallexample
7747 (@value{GDBP}) @b{passcount 5 2} // Stop on the 5th execution of
7748 @exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// tracepoint 2}
7749
7750 (@value{GDBP}) @b{passcount 12}  // Stop on the 12th execution of the
7751 @exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// most recently defined tracepoint.}
7752 (@value{GDBP}) @b{trace foo}
7753 (@value{GDBP}) @b{pass 3}
7754 (@value{GDBP}) @b{trace bar}
7755 (@value{GDBP}) @b{pass 2}
7756 (@value{GDBP}) @b{trace baz}
7757 (@value{GDBP}) @b{pass 1}        // Stop tracing when foo has been
7758 @exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// executed 3 times OR when bar has}
7759 @exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// been executed 2 times}
7760 @exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// OR when baz has been executed 1 time.}
7761 @end smallexample
7762 @end table
7763
7764 @node Tracepoint Actions
7765 @subsection Tracepoint Action Lists
7766
7767 @table @code
7768 @kindex actions
7769 @cindex tracepoint actions
7770 @item actions @r{[}@var{num}@r{]}
7771 This command will prompt for a list of actions to be taken when the
7772 tracepoint is hit.  If the tracepoint number @var{num} is not
7773 specified, this command sets the actions for the one that was most
7774 recently defined (so that you can define a tracepoint and then say
7775 @code{actions} without bothering about its number).  You specify the
7776 actions themselves on the following lines, one action at a time, and
7777 terminate the actions list with a line containing just @code{end}.  So
7778 far, the only defined actions are @code{collect} and
7779 @code{while-stepping}.
7780
7781 @cindex remove actions from a tracepoint
7782 To remove all actions from a tracepoint, type @samp{actions @var{num}}
7783 and follow it immediately with @samp{end}.
7784
7785 @smallexample
7786 (@value{GDBP}) @b{collect @var{data}} // collect some data
7787
7788 (@value{GDBP}) @b{while-stepping 5} // single-step 5 times, collect data
7789
7790 (@value{GDBP}) @b{end}              // signals the end of actions.
7791 @end smallexample
7792
7793 In the following example, the action list begins with @code{collect}
7794 commands indicating the things to be collected when the tracepoint is
7795 hit.  Then, in order to single-step and collect additional data
7796 following the tracepoint, a @code{while-stepping} command is used,
7797 followed by the list of things to be collected while stepping.  The
7798 @code{while-stepping} command is terminated by its own separate
7799 @code{end} command.  Lastly, the action list is terminated by an
7800 @code{end} command.
7801
7802 @smallexample
7803 (@value{GDBP}) @b{trace foo}
7804 (@value{GDBP}) @b{actions}
7805 Enter actions for tracepoint 1, one per line:
7806 > collect bar,baz
7807 > collect $regs
7808 > while-stepping 12
7809   > collect $fp, $sp
7810   > end
7811 end
7812 @end smallexample
7813
7814 @kindex collect @r{(tracepoints)}
7815 @item collect @var{expr1}, @var{expr2}, @dots{}
7816 Collect values of the given expressions when the tracepoint is hit.
7817 This command accepts a comma-separated list of any valid expressions.
7818 In addition to global, static, or local variables, the following
7819 special arguments are supported:
7820
7821 @table @code
7822 @item $regs
7823 collect all registers
7824
7825 @item $args
7826 collect all function arguments
7827
7828 @item $locals
7829 collect all local variables.
7830 @end table
7831
7832 You can give several consecutive @code{collect} commands, each one
7833 with a single argument, or one @code{collect} command with several
7834 arguments separated by commas: the effect is the same.
7835
7836 The command @code{info scope} (@pxref{Symbols, info scope}) is
7837 particularly useful for figuring out what data to collect.
7838
7839 @kindex while-stepping @r{(tracepoints)}
7840 @item while-stepping @var{n}
7841 Perform @var{n} single-step traces after the tracepoint, collecting
7842 new data at each step.  The @code{while-stepping} command is
7843 followed by the list of what to collect while stepping (followed by
7844 its own @code{end} command):
7845
7846 @smallexample
7847 > while-stepping 12
7848   > collect $regs, myglobal
7849   > end
7850 >
7851 @end smallexample
7852
7853 @noindent
7854 You may abbreviate @code{while-stepping} as @code{ws} or
7855 @code{stepping}.
7856 @end table
7857
7858 @node Listing Tracepoints
7859 @subsection Listing Tracepoints
7860
7861 @table @code
7862 @kindex info tracepoints
7863 @kindex info tp
7864 @cindex information about tracepoints
7865 @item info tracepoints @r{[}@var{num}@r{]}
7866 Display information about the tracepoint @var{num}.  If you don't specify
7867 a tracepoint number, displays information about all the tracepoints
7868 defined so far.  For each tracepoint, the following information is
7869 shown:
7870
7871 @itemize @bullet
7872 @item
7873 its number
7874 @item
7875 whether it is enabled or disabled
7876 @item
7877 its address
7878 @item
7879 its passcount as given by the @code{passcount @var{n}} command
7880 @item
7881 its step count as given by the @code{while-stepping @var{n}} command
7882 @item
7883 where in the source files is the tracepoint set
7884 @item
7885 its action list as given by the @code{actions} command
7886 @end itemize
7887
7888 @smallexample
7889 (@value{GDBP}) @b{info trace}
7890 Num Enb Address    PassC StepC What
7891 1   y   0x002117c4 0     0     <gdb_asm>
7892 2   y   0x0020dc64 0     0     in g_test at g_test.c:1375
7893 3   y   0x0020b1f4 0     0     in get_data at ../foo.c:41
7894 (@value{GDBP})
7895 @end smallexample
7896
7897 @noindent
7898 This command can be abbreviated @code{info tp}.
7899 @end table
7900
7901 @node Starting and Stopping Trace Experiments
7902 @subsection Starting and Stopping Trace Experiments
7903
7904 @table @code
7905 @kindex tstart
7906 @cindex start a new trace experiment
7907 @cindex collected data discarded
7908 @item tstart
7909 This command takes no arguments.  It starts the trace experiment, and
7910 begins collecting data.  This has the side effect of discarding all
7911 the data collected in the trace buffer during the previous trace
7912 experiment.
7913
7914 @kindex tstop
7915 @cindex stop a running trace experiment
7916 @item tstop
7917 This command takes no arguments.  It ends the trace experiment, and
7918 stops collecting data.
7919
7920 @strong{Note}: a trace experiment and data collection may stop
7921 automatically if any tracepoint's passcount is reached
7922 (@pxref{Tracepoint Passcounts}), or if the trace buffer becomes full.
7923
7924 @kindex tstatus
7925 @cindex status of trace data collection
7926 @cindex trace experiment, status of
7927 @item tstatus
7928 This command displays the status of the current trace data
7929 collection.
7930 @end table
7931
7932 Here is an example of the commands we described so far:
7933
7934 @smallexample
7935 (@value{GDBP}) @b{trace gdb_c_test}
7936 (@value{GDBP}) @b{actions}
7937 Enter actions for tracepoint #1, one per line.
7938 > collect $regs,$locals,$args
7939 > while-stepping 11
7940   > collect $regs
7941   > end
7942 > end
7943 (@value{GDBP}) @b{tstart}
7944         [time passes @dots{}]
7945 (@value{GDBP}) @b{tstop}
7946 @end smallexample
7947
7948
7949 @node Analyze Collected Data
7950 @section Using the Collected Data
7951
7952 After the tracepoint experiment ends, you use @value{GDBN} commands
7953 for examining the trace data.  The basic idea is that each tracepoint
7954 collects a trace @dfn{snapshot} every time it is hit and another
7955 snapshot every time it single-steps.  All these snapshots are
7956 consecutively numbered from zero and go into a buffer, and you can
7957 examine them later.  The way you examine them is to @dfn{focus} on a
7958 specific trace snapshot.  When the remote stub is focused on a trace
7959 snapshot, it will respond to all @value{GDBN} requests for memory and
7960 registers by reading from the buffer which belongs to that snapshot,
7961 rather than from @emph{real} memory or registers of the program being
7962 debugged.  This means that @strong{all} @value{GDBN} commands
7963 (@code{print}, @code{info registers}, @code{backtrace}, etc.) will
7964 behave as if we were currently debugging the program state as it was
7965 when the tracepoint occurred.  Any requests for data that are not in
7966 the buffer will fail.
7967
7968 @menu
7969 * tfind::                       How to select a trace snapshot
7970 * tdump::                       How to display all data for a snapshot
7971 * save-tracepoints::            How to save tracepoints for a future run
7972 @end menu
7973
7974 @node tfind
7975 @subsection @code{tfind @var{n}}
7976
7977 @kindex tfind
7978 @cindex select trace snapshot
7979 @cindex find trace snapshot
7980 The basic command for selecting a trace snapshot from the buffer is
7981 @code{tfind @var{n}}, which finds trace snapshot number @var{n},
7982 counting from zero.  If no argument @var{n} is given, the next
7983 snapshot is selected.
7984
7985 Here are the various forms of using the @code{tfind} command.
7986
7987 @table @code
7988 @item tfind start
7989 Find the first snapshot in the buffer.  This is a synonym for
7990 @code{tfind 0} (since 0 is the number of the first snapshot).
7991
7992 @item tfind none
7993 Stop debugging trace snapshots, resume @emph{live} debugging.
7994
7995 @item tfind end
7996 Same as @samp{tfind none}.
7997
7998 @item tfind
7999 No argument means find the next trace snapshot.
8000
8001 @item tfind -
8002 Find the previous trace snapshot before the current one.  This permits
8003 retracing earlier steps.
8004
8005 @item tfind tracepoint @var{num}
8006 Find the next snapshot associated with tracepoint @var{num}.  Search
8007 proceeds forward from the last examined trace snapshot.  If no
8008 argument @var{num} is given, it means find the next snapshot collected
8009 for the same tracepoint as the current snapshot.
8010
8011 @item tfind pc @var{addr}
8012 Find the next snapshot associated with the value @var{addr} of the
8013 program counter.  Search proceeds forward from the last examined trace
8014 snapshot.  If no argument @var{addr} is given, it means find the next
8015 snapshot with the same value of PC as the current snapshot.
8016
8017 @item tfind outside @var{addr1}, @var{addr2}
8018 Find the next snapshot whose PC is outside the given range of
8019 addresses.
8020
8021 @item tfind range @var{addr1}, @var{addr2}
8022 Find the next snapshot whose PC is between @var{addr1} and
8023 @var{addr2}.  @c FIXME: Is the range inclusive or exclusive?
8024
8025 @item tfind line @r{[}@var{file}:@r{]}@var{n}
8026 Find the next snapshot associated with the source line @var{n}.  If
8027 the optional argument @var{file} is given, refer to line @var{n} in
8028 that source file.  Search proceeds forward from the last examined
8029 trace snapshot.  If no argument @var{n} is given, it means find the
8030 next line other than the one currently being examined; thus saying
8031 @code{tfind line} repeatedly can appear to have the same effect as
8032 stepping from line to line in a @emph{live} debugging session.
8033 @end table
8034
8035 The default arguments for the @code{tfind} commands are specifically
8036 designed to make it easy to scan through the trace buffer.  For
8037 instance, @code{tfind} with no argument selects the next trace
8038 snapshot, and @code{tfind -} with no argument selects the previous
8039 trace snapshot.  So, by giving one @code{tfind} command, and then
8040 simply hitting @key{RET} repeatedly you can examine all the trace
8041 snapshots in order.  Or, by saying @code{tfind -} and then hitting
8042 @key{RET} repeatedly you can examine the snapshots in reverse order.
8043 The @code{tfind line} command with no argument selects the snapshot
8044 for the next source line executed.  The @code{tfind pc} command with
8045 no argument selects the next snapshot with the same program counter
8046 (PC) as the current frame.  The @code{tfind tracepoint} command with
8047 no argument selects the next trace snapshot collected by the same
8048 tracepoint as the current one.
8049
8050 In addition to letting you scan through the trace buffer manually,
8051 these commands make it easy to construct @value{GDBN} scripts that
8052 scan through the trace buffer and print out whatever collected data
8053 you are interested in.  Thus, if we want to examine the PC, FP, and SP
8054 registers from each trace frame in the buffer, we can say this:
8055
8056 @smallexample
8057 (@value{GDBP}) @b{tfind start}
8058 (@value{GDBP}) @b{while ($trace_frame != -1)}
8059 > printf "Frame %d, PC = %08X, SP = %08X, FP = %08X\n", \
8060           $trace_frame, $pc, $sp, $fp
8061 > tfind
8062 > end
8063
8064 Frame 0, PC = 0020DC64, SP = 0030BF3C, FP = 0030BF44
8065 Frame 1, PC = 0020DC6C, SP = 0030BF38, FP = 0030BF44
8066 Frame 2, PC = 0020DC70, SP = 0030BF34, FP = 0030BF44
8067 Frame 3, PC = 0020DC74, SP = 0030BF30, FP = 0030BF44
8068 Frame 4, PC = 0020DC78, SP = 0030BF2C, FP = 0030BF44
8069 Frame 5, PC = 0020DC7C, SP = 0030BF28, FP = 0030BF44
8070 Frame 6, PC = 0020DC80, SP = 0030BF24, FP = 0030BF44
8071 Frame 7, PC = 0020DC84, SP = 0030BF20, FP = 0030BF44
8072 Frame 8, PC = 0020DC88, SP = 0030BF1C, FP = 0030BF44
8073 Frame 9, PC = 0020DC8E, SP = 0030BF18, FP = 0030BF44
8074 Frame 10, PC = 00203F6C, SP = 0030BE3C, FP = 0030BF14
8075 @end smallexample
8076
8077 Or, if we want to examine the variable @code{X} at each source line in
8078 the buffer:
8079
8080 @smallexample
8081 (@value{GDBP}) @b{tfind start}
8082 (@value{GDBP}) @b{while ($trace_frame != -1)}
8083 > printf "Frame %d, X == %d\n", $trace_frame, X
8084 > tfind line
8085 > end
8086
8087 Frame 0, X = 1
8088 Frame 7, X = 2
8089 Frame 13, X = 255
8090 @end smallexample
8091
8092 @node tdump
8093 @subsection @code{tdump}
8094 @kindex tdump
8095 @cindex dump all data collected at tracepoint
8096 @cindex tracepoint data, display
8097
8098 This command takes no arguments.  It prints all the data collected at
8099 the current trace snapshot.
8100
8101 @smallexample
8102 (@value{GDBP}) @b{trace 444}
8103 (@value{GDBP}) @b{actions}
8104 Enter actions for tracepoint #2, one per line:
8105 > collect $regs, $locals, $args, gdb_long_test
8106 > end
8107
8108 (@value{GDBP}) @b{tstart}
8109
8110 (@value{GDBP}) @b{tfind line 444}
8111 #0  gdb_test (p1=0x11, p2=0x22, p3=0x33, p4=0x44, p5=0x55, p6=0x66)
8112 at gdb_test.c:444
8113 444        printp( "%s: arguments = 0x%X 0x%X 0x%X 0x%X 0x%X 0x%X\n", )
8114
8115 (@value{GDBP}) @b{tdump}
8116 Data collected at tracepoint 2, trace frame 1:
8117 d0             0xc4aa0085       -995491707
8118 d1             0x18     24
8119 d2             0x80     128
8120 d3             0x33     51
8121 d4             0x71aea3d        119204413
8122 d5             0x22     34
8123 d6             0xe0     224
8124 d7             0x380035 3670069
8125 a0             0x19e24a 1696330
8126 a1             0x3000668        50333288
8127 a2             0x100    256
8128 a3             0x322000 3284992
8129 a4             0x3000698        50333336
8130 a5             0x1ad3cc 1758156
8131 fp             0x30bf3c 0x30bf3c
8132 sp             0x30bf34 0x30bf34
8133 ps             0x0      0
8134 pc             0x20b2c8 0x20b2c8
8135 fpcontrol      0x0      0
8136 fpstatus       0x0      0
8137 fpiaddr        0x0      0
8138 p = 0x20e5b4 "gdb-test"
8139 p1 = (void *) 0x11
8140 p2 = (void *) 0x22
8141 p3 = (void *) 0x33
8142 p4 = (void *) 0x44
8143 p5 = (void *) 0x55
8144 p6 = (void *) 0x66
8145 gdb_long_test = 17 '\021'
8146
8147 (@value{GDBP})
8148 @end smallexample
8149
8150 @node save-tracepoints
8151 @subsection @code{save-tracepoints @var{filename}}
8152 @kindex save-tracepoints
8153 @cindex save tracepoints for future sessions
8154
8155 This command saves all current tracepoint definitions together with
8156 their actions and passcounts, into a file @file{@var{filename}}
8157 suitable for use in a later debugging session.  To read the saved
8158 tracepoint definitions, use the @code{source} command (@pxref{Command
8159 Files}).
8160
8161 @node Tracepoint Variables
8162 @section Convenience Variables for Tracepoints
8163 @cindex tracepoint variables
8164 @cindex convenience variables for tracepoints
8165
8166 @table @code
8167 @vindex $trace_frame
8168 @item (int) $trace_frame
8169 The current trace snapshot (a.k.a.@: @dfn{frame}) number, or -1 if no
8170 snapshot is selected.
8171
8172 @vindex $tracepoint
8173 @item (int) $tracepoint
8174 The tracepoint for the current trace snapshot.
8175
8176 @vindex $trace_line
8177 @item (int) $trace_line
8178 The line number for the current trace snapshot.
8179
8180 @vindex $trace_file
8181 @item (char []) $trace_file
8182 The source file for the current trace snapshot.
8183
8184 @vindex $trace_func
8185 @item (char []) $trace_func
8186 The name of the function containing @code{$tracepoint}.
8187 @end table
8188
8189 Note: @code{$trace_file} is not suitable for use in @code{printf},
8190 use @code{output} instead.
8191
8192 Here's a simple example of using these convenience variables for
8193 stepping through all the trace snapshots and printing some of their
8194 data.
8195
8196 @smallexample
8197 (@value{GDBP}) @b{tfind start}
8198
8199 (@value{GDBP}) @b{while $trace_frame != -1}
8200 > output $trace_file
8201 > printf ", line %d (tracepoint #%d)\n", $trace_line, $tracepoint
8202 > tfind
8203 > end
8204 @end smallexample
8205
8206 @node Overlays
8207 @chapter Debugging Programs That Use Overlays
8208 @cindex overlays
8209
8210 If your program is too large to fit completely in your target system's
8211 memory, you can sometimes use @dfn{overlays} to work around this
8212 problem.  @value{GDBN} provides some support for debugging programs that
8213 use overlays.
8214
8215 @menu
8216 * How Overlays Work::              A general explanation of overlays.
8217 * Overlay Commands::               Managing overlays in @value{GDBN}.
8218 * Automatic Overlay Debugging::    @value{GDBN} can find out which overlays are
8219                                    mapped by asking the inferior.
8220 * Overlay Sample Program::         A sample program using overlays.
8221 @end menu
8222
8223 @node How Overlays Work
8224 @section How Overlays Work
8225 @cindex mapped overlays
8226 @cindex unmapped overlays
8227 @cindex load address, overlay's
8228 @cindex mapped address
8229 @cindex overlay area
8230
8231 Suppose you have a computer whose instruction address space is only 64
8232 kilobytes long, but which has much more memory which can be accessed by
8233 other means: special instructions, segment registers, or memory
8234 management hardware, for example.  Suppose further that you want to
8235 adapt a program which is larger than 64 kilobytes to run on this system.
8236
8237 One solution is to identify modules of your program which are relatively
8238 independent, and need not call each other directly; call these modules
8239 @dfn{overlays}.  Separate the overlays from the main program, and place
8240 their machine code in the larger memory.  Place your main program in
8241 instruction memory, but leave at least enough space there to hold the
8242 largest overlay as well.
8243
8244 Now, to call a function located in an overlay, you must first copy that
8245 overlay's machine code from the large memory into the space set aside
8246 for it in the instruction memory, and then jump to its entry point
8247 there.
8248
8249 @c NB:  In the below the mapped area's size is greater or equal to the
8250 @c size of all overlays.  This is intentional to remind the developer
8251 @c that overlays don't necessarily need to be the same size.
8252
8253 @smallexample
8254 @group
8255     Data             Instruction            Larger
8256 Address Space       Address Space        Address Space
8257 +-----------+       +-----------+        +-----------+
8258 |           |       |           |        |           |
8259 +-----------+       +-----------+        +-----------+<-- overlay 1
8260 | program   |       |   main    |   .----| overlay 1 | load address
8261 | variables |       |  program  |   |    +-----------+
8262 | and heap  |       |           |   |    |           |
8263 +-----------+       |           |   |    +-----------+<-- overlay 2
8264 |           |       +-----------+   |    |           | load address
8265 +-----------+       |           |   |  .-| overlay 2 |
8266                     |           |   |  | |           |
8267          mapped --->+-----------+   |  | +-----------+
8268          address    |           |   |  | |           |
8269                     |  overlay  | <-'  | |           |
8270                     |   area    |  <---' +-----------+<-- overlay 3
8271                     |           | <---.  |           | load address
8272                     +-----------+     `--| overlay 3 |
8273                     |           |        |           |
8274                     +-----------+        |           |
8275                                          +-----------+
8276                                          |           |
8277                                          +-----------+
8278
8279                     @anchor{A code overlay}A code overlay
8280 @end group
8281 @end smallexample
8282
8283 The diagram (@pxref{A code overlay}) shows a system with separate data
8284 and instruction address spaces.  To map an overlay, the program copies
8285 its code from the larger address space to the instruction address space.
8286 Since the overlays shown here all use the same mapped address, only one
8287 may be mapped at a time.  For a system with a single address space for
8288 data and instructions, the diagram would be similar, except that the
8289 program variables and heap would share an address space with the main
8290 program and the overlay area.
8291
8292 An overlay loaded into instruction memory and ready for use is called a
8293 @dfn{mapped} overlay; its @dfn{mapped address} is its address in the
8294 instruction memory.  An overlay not present (or only partially present)
8295 in instruction memory is called @dfn{unmapped}; its @dfn{load address}
8296 is its address in the larger memory.  The mapped address is also called
8297 the @dfn{virtual memory address}, or @dfn{VMA}; the load address is also
8298 called the @dfn{load memory address}, or @dfn{LMA}.
8299
8300 Unfortunately, overlays are not a completely transparent way to adapt a
8301 program to limited instruction memory.  They introduce a new set of
8302 global constraints you must keep in mind as you design your program:
8303
8304 @itemize @bullet
8305
8306 @item
8307 Before calling or returning to a function in an overlay, your program
8308 must make sure that overlay is actually mapped.  Otherwise, the call or
8309 return will transfer control to the right address, but in the wrong
8310 overlay, and your program will probably crash.
8311
8312 @item
8313 If the process of mapping an overlay is expensive on your system, you
8314 will need to choose your overlays carefully to minimize their effect on
8315 your program's performance.
8316
8317 @item
8318 The executable file you load onto your system must contain each
8319 overlay's instructions, appearing at the overlay's load address, not its
8320 mapped address.  However, each overlay's instructions must be relocated
8321 and its symbols defined as if the overlay were at its mapped address.
8322 You can use GNU linker scripts to specify different load and relocation
8323 addresses for pieces of your program; see @ref{Overlay Description,,,
8324 ld.info, Using ld: the GNU linker}.
8325
8326 @item
8327 The procedure for loading executable files onto your system must be able
8328 to load their contents into the larger address space as well as the
8329 instruction and data spaces.
8330
8331 @end itemize
8332
8333 The overlay system described above is rather simple, and could be
8334 improved in many ways:
8335
8336 @itemize @bullet
8337
8338 @item
8339 If your system has suitable bank switch registers or memory management
8340 hardware, you could use those facilities to make an overlay's load area
8341 contents simply appear at their mapped address in instruction space.
8342 This would probably be faster than copying the overlay to its mapped
8343 area in the usual way.
8344
8345 @item
8346 If your overlays are small enough, you could set aside more than one
8347 overlay area, and have more than one overlay mapped at a time.
8348
8349 @item
8350 You can use overlays to manage data, as well as instructions.  In
8351 general, data overlays are even less transparent to your design than
8352 code overlays: whereas code overlays only require care when you call or
8353 return to functions, data overlays require care every time you access
8354 the data.  Also, if you change the contents of a data overlay, you
8355 must copy its contents back out to its load address before you can copy a
8356 different data overlay into the same mapped area.
8357
8358 @end itemize
8359
8360
8361 @node Overlay Commands
8362 @section Overlay Commands
8363
8364 To use @value{GDBN}'s overlay support, each overlay in your program must
8365 correspond to a separate section of the executable file.  The section's
8366 virtual memory address and load memory address must be the overlay's
8367 mapped and load addresses.  Identifying overlays with sections allows
8368 @value{GDBN} to determine the appropriate address of a function or
8369 variable, depending on whether the overlay is mapped or not.
8370
8371 @value{GDBN}'s overlay commands all start with the word @code{overlay};
8372 you can abbreviate this as @code{ov} or @code{ovly}.  The commands are:
8373
8374 @table @code
8375 @item overlay off
8376 @kindex overlay
8377 Disable @value{GDBN}'s overlay support.  When overlay support is
8378 disabled, @value{GDBN} assumes that all functions and variables are
8379 always present at their mapped addresses.  By default, @value{GDBN}'s
8380 overlay support is disabled.
8381
8382 @item overlay manual
8383 @cindex manual overlay debugging
8384 Enable @dfn{manual} overlay debugging.  In this mode, @value{GDBN}
8385 relies on you to tell it which overlays are mapped, and which are not,
8386 using the @code{overlay map-overlay} and @code{overlay unmap-overlay}
8387 commands described below.
8388
8389 @item overlay map-overlay @var{overlay}
8390 @itemx overlay map @var{overlay}
8391 @cindex map an overlay
8392 Tell @value{GDBN} that @var{overlay} is now mapped; @var{overlay} must
8393 be the name of the object file section containing the overlay.  When an
8394 overlay is mapped, @value{GDBN} assumes it can find the overlay's
8395 functions and variables at their mapped addresses.  @value{GDBN} assumes
8396 that any other overlays whose mapped ranges overlap that of
8397 @var{overlay} are now unmapped.
8398
8399 @item overlay unmap-overlay @var{overlay}
8400 @itemx overlay unmap @var{overlay}
8401 @cindex unmap an overlay
8402 Tell @value{GDBN} that @var{overlay} is no longer mapped; @var{overlay}
8403 must be the name of the object file section containing the overlay.
8404 When an overlay is unmapped, @value{GDBN} assumes it can find the
8405 overlay's functions and variables at their load addresses.
8406
8407 @item overlay auto
8408 Enable @dfn{automatic} overlay debugging.  In this mode, @value{GDBN}
8409 consults a data structure the overlay manager maintains in the inferior
8410 to see which overlays are mapped.  For details, see @ref{Automatic
8411 Overlay Debugging}.
8412
8413 @item overlay load-target
8414 @itemx overlay load
8415 @cindex reloading the overlay table
8416 Re-read the overlay table from the inferior.  Normally, @value{GDBN}
8417 re-reads the table @value{GDBN} automatically each time the inferior
8418 stops, so this command should only be necessary if you have changed the
8419 overlay mapping yourself using @value{GDBN}.  This command is only
8420 useful when using automatic overlay debugging.
8421
8422 @item overlay list-overlays
8423 @itemx overlay list
8424 @cindex listing mapped overlays
8425 Display a list of the overlays currently mapped, along with their mapped
8426 addresses, load addresses, and sizes.
8427
8428 @end table
8429
8430 Normally, when @value{GDBN} prints a code address, it includes the name
8431 of the function the address falls in:
8432
8433 @smallexample
8434 (@value{GDBP}) print main
8435 $3 = @{int ()@} 0x11a0 <main>
8436 @end smallexample
8437 @noindent
8438 When overlay debugging is enabled, @value{GDBN} recognizes code in
8439 unmapped overlays, and prints the names of unmapped functions with
8440 asterisks around them.  For example, if @code{foo} is a function in an
8441 unmapped overlay, @value{GDBN} prints it this way:
8442
8443 @smallexample
8444 (@value{GDBP}) overlay list
8445 No sections are mapped.
8446 (@value{GDBP}) print foo
8447 $5 = @{int (int)@} 0x100000 <*foo*>
8448 @end smallexample
8449 @noindent
8450 When @code{foo}'s overlay is mapped, @value{GDBN} prints the function's
8451 name normally:
8452
8453 @smallexample
8454 (@value{GDBP}) overlay list
8455 Section .ov.foo.text, loaded at 0x100000 - 0x100034,
8456         mapped at 0x1016 - 0x104a
8457 (@value{GDBP}) print foo
8458 $6 = @{int (int)@} 0x1016 <foo>
8459 @end smallexample
8460
8461 When overlay debugging is enabled, @value{GDBN} can find the correct
8462 address for functions and variables in an overlay, whether or not the
8463 overlay is mapped.  This allows most @value{GDBN} commands, like
8464 @code{break} and @code{disassemble}, to work normally, even on unmapped
8465 code.  However, @value{GDBN}'s breakpoint support has some limitations:
8466
8467 @itemize @bullet
8468 @item
8469 @cindex breakpoints in overlays
8470 @cindex overlays, setting breakpoints in
8471 You can set breakpoints in functions in unmapped overlays, as long as
8472 @value{GDBN} can write to the overlay at its load address.
8473 @item
8474 @value{GDBN} can not set hardware or simulator-based breakpoints in
8475 unmapped overlays.  However, if you set a breakpoint at the end of your
8476 overlay manager (and tell @value{GDBN} which overlays are now mapped, if
8477 you are using manual overlay management), @value{GDBN} will re-set its
8478 breakpoints properly.
8479 @end itemize
8480
8481
8482 @node Automatic Overlay Debugging
8483 @section Automatic Overlay Debugging
8484 @cindex automatic overlay debugging
8485
8486 @value{GDBN} can automatically track which overlays are mapped and which
8487 are not, given some simple co-operation from the overlay manager in the
8488 inferior.  If you enable automatic overlay debugging with the
8489 @code{overlay auto} command (@pxref{Overlay Commands}), @value{GDBN}
8490 looks in the inferior's memory for certain variables describing the
8491 current state of the overlays.
8492
8493 Here are the variables your overlay manager must define to support
8494 @value{GDBN}'s automatic overlay debugging:
8495
8496 @table @asis
8497
8498 @item @code{_ovly_table}:
8499 This variable must be an array of the following structures:
8500
8501 @smallexample
8502 struct
8503 @{
8504   /* The overlay's mapped address.  */
8505   unsigned long vma;
8506
8507   /* The size of the overlay, in bytes.  */
8508   unsigned long size;
8509
8510   /* The overlay's load address.  */
8511   unsigned long lma;
8512
8513   /* Non-zero if the overlay is currently mapped;
8514      zero otherwise.  */
8515   unsigned long mapped;
8516 @}
8517 @end smallexample
8518
8519 @item @code{_novlys}:
8520 This variable must be a four-byte signed integer, holding the total
8521 number of elements in @code{_ovly_table}.
8522
8523 @end table
8524
8525 To decide whether a particular overlay is mapped or not, @value{GDBN}
8526 looks for an entry in @w{@code{_ovly_table}} whose @code{vma} and
8527 @code{lma} members equal the VMA and LMA of the overlay's section in the
8528 executable file.  When @value{GDBN} finds a matching entry, it consults
8529 the entry's @code{mapped} member to determine whether the overlay is
8530 currently mapped.
8531
8532 In addition, your overlay manager may define a function called
8533 @code{_ovly_debug_event}.  If this function is defined, @value{GDBN}
8534 will silently set a breakpoint there.  If the overlay manager then
8535 calls this function whenever it has changed the overlay table, this
8536 will enable @value{GDBN} to accurately keep track of which overlays
8537 are in program memory, and update any breakpoints that may be set
8538 in overlays.  This will allow breakpoints to work even if the
8539 overlays are kept in ROM or other non-writable memory while they
8540 are not being executed.
8541
8542 @node Overlay Sample Program
8543 @section Overlay Sample Program
8544 @cindex overlay example program
8545
8546 When linking a program which uses overlays, you must place the overlays
8547 at their load addresses, while relocating them to run at their mapped
8548 addresses.  To do this, you must write a linker script (@pxref{Overlay
8549 Description,,, ld.info, Using ld: the GNU linker}).  Unfortunately,
8550 since linker scripts are specific to a particular host system, target
8551 architecture, and target memory layout, this manual cannot provide
8552 portable sample code demonstrating @value{GDBN}'s overlay support.
8553
8554 However, the @value{GDBN} source distribution does contain an overlaid
8555 program, with linker scripts for a few systems, as part of its test
8556 suite.  The program consists of the following files from
8557 @file{gdb/testsuite/gdb.base}:
8558
8559 @table @file
8560 @item overlays.c
8561 The main program file.
8562 @item ovlymgr.c
8563 A simple overlay manager, used by @file{overlays.c}.
8564 @item foo.c
8565 @itemx bar.c
8566 @itemx baz.c
8567 @itemx grbx.c
8568 Overlay modules, loaded and used by @file{overlays.c}.
8569 @item d10v.ld
8570 @itemx m32r.ld
8571 Linker scripts for linking the test program on the @code{d10v-elf}
8572 and @code{m32r-elf} targets.
8573 @end table
8574
8575 You can build the test program using the @code{d10v-elf} GCC
8576 cross-compiler like this:
8577
8578 @smallexample
8579 $ d10v-elf-gcc -g -c overlays.c
8580 $ d10v-elf-gcc -g -c ovlymgr.c
8581 $ d10v-elf-gcc -g -c foo.c
8582 $ d10v-elf-gcc -g -c bar.c
8583 $ d10v-elf-gcc -g -c baz.c
8584 $ d10v-elf-gcc -g -c grbx.c
8585 $ d10v-elf-gcc -g overlays.o ovlymgr.o foo.o bar.o \
8586                   baz.o grbx.o -Wl,-Td10v.ld -o overlays
8587 @end smallexample
8588
8589 The build process is identical for any other architecture, except that
8590 you must substitute the appropriate compiler and linker script for the
8591 target system for @code{d10v-elf-gcc} and @code{d10v.ld}.
8592
8593
8594 @node Languages
8595 @chapter Using @value{GDBN} with Different Languages
8596 @cindex languages
8597
8598 Although programming languages generally have common aspects, they are
8599 rarely expressed in the same manner.  For instance, in ANSI C,
8600 dereferencing a pointer @code{p} is accomplished by @code{*p}, but in
8601 Modula-2, it is accomplished by @code{p^}.  Values can also be
8602 represented (and displayed) differently.  Hex numbers in C appear as
8603 @samp{0x1ae}, while in Modula-2 they appear as @samp{1AEH}.
8604
8605 @cindex working language
8606 Language-specific information is built into @value{GDBN} for some languages,
8607 allowing you to express operations like the above in your program's
8608 native language, and allowing @value{GDBN} to output values in a manner
8609 consistent with the syntax of your program's native language.  The
8610 language you use to build expressions is called the @dfn{working
8611 language}.
8612
8613 @menu
8614 * Setting::                     Switching between source languages
8615 * Show::                        Displaying the language
8616 * Checks::                      Type and range checks
8617 * Supported Languages::         Supported languages
8618 * Unsupported Languages::       Unsupported languages
8619 @end menu
8620
8621 @node Setting
8622 @section Switching Between Source Languages
8623
8624 There are two ways to control the working language---either have @value{GDBN}
8625 set it automatically, or select it manually yourself.  You can use the
8626 @code{set language} command for either purpose.  On startup, @value{GDBN}
8627 defaults to setting the language automatically.  The working language is
8628 used to determine how expressions you type are interpreted, how values
8629 are printed, etc.
8630
8631 In addition to the working language, every source file that
8632 @value{GDBN} knows about has its own working language.  For some object
8633 file formats, the compiler might indicate which language a particular
8634 source file is in.  However, most of the time @value{GDBN} infers the
8635 language from the name of the file.  The language of a source file
8636 controls whether C@t{++} names are demangled---this way @code{backtrace} can
8637 show each frame appropriately for its own language.  There is no way to
8638 set the language of a source file from within @value{GDBN}, but you can
8639 set the language associated with a filename extension.  @xref{Show, ,
8640 Displaying the Language}.
8641
8642 This is most commonly a problem when you use a program, such
8643 as @code{cfront} or @code{f2c}, that generates C but is written in
8644 another language.  In that case, make the
8645 program use @code{#line} directives in its C output; that way
8646 @value{GDBN} will know the correct language of the source code of the original
8647 program, and will display that source code, not the generated C code.
8648
8649 @menu
8650 * Filenames::                   Filename extensions and languages.
8651 * Manually::                    Setting the working language manually
8652 * Automatically::               Having @value{GDBN} infer the source language
8653 @end menu
8654
8655 @node Filenames
8656 @subsection List of Filename Extensions and Languages
8657
8658 If a source file name ends in one of the following extensions, then
8659 @value{GDBN} infers that its language is the one indicated.
8660
8661 @table @file
8662 @item .ada
8663 @itemx .ads
8664 @itemx .adb
8665 @itemx .a
8666 Ada source file.
8667
8668 @item .c
8669 C source file
8670
8671 @item .C
8672 @itemx .cc
8673 @itemx .cp
8674 @itemx .cpp
8675 @itemx .cxx
8676 @itemx .c++
8677 C@t{++} source file
8678
8679 @item .m
8680 Objective-C source file
8681
8682 @item .f
8683 @itemx .F
8684 Fortran source file
8685
8686 @item .mod
8687 Modula-2 source file
8688
8689 @item .s
8690 @itemx .S
8691 Assembler source file.  This actually behaves almost like C, but
8692 @value{GDBN} does not skip over function prologues when stepping.
8693 @end table
8694
8695 In addition, you may set the language associated with a filename
8696 extension.  @xref{Show, , Displaying the Language}.
8697
8698 @node Manually
8699 @subsection Setting the Working Language
8700
8701 If you allow @value{GDBN} to set the language automatically,
8702 expressions are interpreted the same way in your debugging session and
8703 your program.
8704
8705 @kindex set language
8706 If you wish, you may set the language manually.  To do this, issue the
8707 command @samp{set language @var{lang}}, where @var{lang} is the name of
8708 a language, such as
8709 @code{c} or @code{modula-2}.
8710 For a list of the supported languages, type @samp{set language}.
8711
8712 Setting the language manually prevents @value{GDBN} from updating the working
8713 language automatically.  This can lead to confusion if you try
8714 to debug a program when the working language is not the same as the
8715 source language, when an expression is acceptable to both
8716 languages---but means different things.  For instance, if the current
8717 source file were written in C, and @value{GDBN} was parsing Modula-2, a
8718 command such as:
8719
8720 @smallexample
8721 print a = b + c
8722 @end smallexample
8723
8724 @noindent
8725 might not have the effect you intended.  In C, this means to add
8726 @code{b} and @code{c} and place the result in @code{a}.  The result
8727 printed would be the value of @code{a}.  In Modula-2, this means to compare
8728 @code{a} to the result of @code{b+c}, yielding a @code{BOOLEAN} value.
8729
8730 @node Automatically
8731 @subsection Having @value{GDBN} Infer the Source Language
8732
8733 To have @value{GDBN} set the working language automatically, use
8734 @samp{set language local} or @samp{set language auto}.  @value{GDBN}
8735 then infers the working language.  That is, when your program stops in a
8736 frame (usually by encountering a breakpoint), @value{GDBN} sets the
8737 working language to the language recorded for the function in that
8738 frame.  If the language for a frame is unknown (that is, if the function
8739 or block corresponding to the frame was defined in a source file that
8740 does not have a recognized extension), the current working language is
8741 not changed, and @value{GDBN} issues a warning.
8742
8743 This may not seem necessary for most programs, which are written
8744 entirely in one source language.  However, program modules and libraries
8745 written in one source language can be used by a main program written in
8746 a different source language.  Using @samp{set language auto} in this
8747 case frees you from having to set the working language manually.
8748
8749 @node Show
8750 @section Displaying the Language
8751
8752 The following commands help you find out which language is the
8753 working language, and also what language source files were written in.
8754
8755 @table @code
8756 @item show language
8757 @kindex show language
8758 Display the current working language.  This is the
8759 language you can use with commands such as @code{print} to
8760 build and compute expressions that may involve variables in your program.
8761
8762 @item info frame
8763 @kindex info frame@r{, show the source language}
8764 Display the source language for this frame.  This language becomes the
8765 working language if you use an identifier from this frame.
8766 @xref{Frame Info, ,Information about a Frame}, to identify the other
8767 information listed here.
8768
8769 @item info source
8770 @kindex info source@r{, show the source language}
8771 Display the source language of this source file.
8772 @xref{Symbols, ,Examining the Symbol Table}, to identify the other
8773 information listed here.
8774 @end table
8775
8776 In unusual circumstances, you may have source files with extensions
8777 not in the standard list.  You can then set the extension associated
8778 with a language explicitly:
8779
8780 @table @code
8781 @item set extension-language @var{ext} @var{language}
8782 @kindex set extension-language
8783 Tell @value{GDBN} that source files with extension @var{ext} are to be
8784 assumed as written in the source language @var{language}.
8785
8786 @item info extensions
8787 @kindex info extensions
8788 List all the filename extensions and the associated languages.
8789 @end table
8790
8791 @node Checks
8792 @section Type and Range Checking
8793
8794 @quotation
8795 @emph{Warning:} In this release, the @value{GDBN} commands for type and range
8796 checking are included, but they do not yet have any effect.  This
8797 section documents the intended facilities.
8798 @end quotation
8799 @c FIXME remove warning when type/range code added
8800
8801 Some languages are designed to guard you against making seemingly common
8802 errors through a series of compile- and run-time checks.  These include
8803 checking the type of arguments to functions and operators, and making
8804 sure mathematical overflows are caught at run time.  Checks such as
8805 these help to ensure a program's correctness once it has been compiled
8806 by eliminating type mismatches, and providing active checks for range
8807 errors when your program is running.
8808
8809 @value{GDBN} can check for conditions like the above if you wish.
8810 Although @value{GDBN} does not check the statements in your program,
8811 it can check expressions entered directly into @value{GDBN} for
8812 evaluation via the @code{print} command, for example.  As with the
8813 working language, @value{GDBN} can also decide whether or not to check
8814 automatically based on your program's source language.
8815 @xref{Supported Languages, ,Supported Languages}, for the default
8816 settings of supported languages.
8817
8818 @menu
8819 * Type Checking::               An overview of type checking
8820 * Range Checking::              An overview of range checking
8821 @end menu
8822
8823 @cindex type checking
8824 @cindex checks, type
8825 @node Type Checking
8826 @subsection An Overview of Type Checking
8827
8828 Some languages, such as Modula-2, are strongly typed, meaning that the
8829 arguments to operators and functions have to be of the correct type,
8830 otherwise an error occurs.  These checks prevent type mismatch
8831 errors from ever causing any run-time problems.  For example,
8832
8833 @smallexample
8834 1 + 2 @result{} 3
8835 @exdent but
8836 @error{} 1 + 2.3
8837 @end smallexample
8838
8839 The second example fails because the @code{CARDINAL} 1 is not
8840 type-compatible with the @code{REAL} 2.3.
8841
8842 For the expressions you use in @value{GDBN} commands, you can tell the
8843 @value{GDBN} type checker to skip checking;
8844 to treat any mismatches as errors and abandon the expression;
8845 or to only issue warnings when type mismatches occur,
8846 but evaluate the expression anyway.  When you choose the last of
8847 these, @value{GDBN} evaluates expressions like the second example above, but
8848 also issues a warning.
8849
8850 Even if you turn type checking off, there may be other reasons
8851 related to type that prevent @value{GDBN} from evaluating an expression.
8852 For instance, @value{GDBN} does not know how to add an @code{int} and
8853 a @code{struct foo}.  These particular type errors have nothing to do
8854 with the language in use, and usually arise from expressions, such as
8855 the one described above, which make little sense to evaluate anyway.
8856
8857 Each language defines to what degree it is strict about type.  For
8858 instance, both Modula-2 and C require the arguments to arithmetical
8859 operators to be numbers.  In C, enumerated types and pointers can be
8860 represented as numbers, so that they are valid arguments to mathematical
8861 operators.  @xref{Supported Languages, ,Supported Languages}, for further
8862 details on specific languages.
8863
8864 @value{GDBN} provides some additional commands for controlling the type checker:
8865
8866 @kindex set check type
8867 @kindex show check type
8868 @table @code
8869 @item set check type auto
8870 Set type checking on or off based on the current working language.
8871 @xref{Supported Languages, ,Supported Languages}, for the default settings for
8872 each language.
8873
8874 @item set check type on
8875 @itemx set check type off
8876 Set type checking on or off, overriding the default setting for the
8877 current working language.  Issue a warning if the setting does not
8878 match the language default.  If any type mismatches occur in
8879 evaluating an expression while type checking is on, @value{GDBN} prints a
8880 message and aborts evaluation of the expression.
8881
8882 @item set check type warn
8883 Cause the type checker to issue warnings, but to always attempt to
8884 evaluate the expression.  Evaluating the expression may still
8885 be impossible for other reasons.  For example, @value{GDBN} cannot add
8886 numbers and structures.
8887
8888 @item show type
8889 Show the current setting of the type checker, and whether or not @value{GDBN}
8890 is setting it automatically.
8891 @end table
8892
8893 @cindex range checking
8894 @cindex checks, range
8895 @node Range Checking
8896 @subsection An Overview of Range Checking
8897
8898 In some languages (such as Modula-2), it is an error to exceed the
8899 bounds of a type; this is enforced with run-time checks.  Such range
8900 checking is meant to ensure program correctness by making sure
8901 computations do not overflow, or indices on an array element access do
8902 not exceed the bounds of the array.
8903
8904 For expressions you use in @value{GDBN} commands, you can tell
8905 @value{GDBN} to treat range errors in one of three ways: ignore them,
8906 always treat them as errors and abandon the expression, or issue
8907 warnings but evaluate the expression anyway.
8908
8909 A range error can result from numerical overflow, from exceeding an
8910 array index bound, or when you type a constant that is not a member
8911 of any type.  Some languages, however, do not treat overflows as an
8912 error.  In many implementations of C, mathematical overflow causes the
8913 result to ``wrap around'' to lower values---for example, if @var{m} is
8914 the largest integer value, and @var{s} is the smallest, then
8915
8916 @smallexample
8917 @var{m} + 1 @result{} @var{s}
8918 @end smallexample
8919
8920 This, too, is specific to individual languages, and in some cases
8921 specific to individual compilers or machines.  @xref{Supported Languages, ,
8922 Supported Languages}, for further details on specific languages.
8923
8924 @value{GDBN} provides some additional commands for controlling the range checker:
8925
8926 @kindex set check range
8927 @kindex show check range
8928 @table @code
8929 @item set check range auto
8930 Set range checking on or off based on the current working language.
8931 @xref{Supported Languages, ,Supported Languages}, for the default settings for
8932 each language.
8933
8934 @item set check range on
8935 @itemx set check range off
8936 Set range checking on or off, overriding the default setting for the
8937 current working language.  A warning is issued if the setting does not
8938 match the language default.  If a range error occurs and range checking is on,
8939 then a message is printed and evaluation of the expression is aborted.
8940
8941 @item set check range warn
8942 Output messages when the @value{GDBN} range checker detects a range error,
8943 but attempt to evaluate the expression anyway.  Evaluating the
8944 expression may still be impossible for other reasons, such as accessing
8945 memory that the process does not own (a typical example from many Unix
8946 systems).
8947
8948 @item show range
8949 Show the current setting of the range checker, and whether or not it is
8950 being set automatically by @value{GDBN}.
8951 @end table
8952
8953 @node Supported Languages
8954 @section Supported Languages
8955
8956 @value{GDBN} supports C, C@t{++}, Objective-C, Fortran, Java, Pascal,
8957 assembly, Modula-2, and Ada.
8958 @c This is false ...
8959 Some @value{GDBN} features may be used in expressions regardless of the
8960 language you use: the @value{GDBN} @code{@@} and @code{::} operators,
8961 and the @samp{@{type@}addr} construct (@pxref{Expressions,
8962 ,Expressions}) can be used with the constructs of any supported
8963 language.
8964
8965 The following sections detail to what degree each source language is
8966 supported by @value{GDBN}.  These sections are not meant to be language
8967 tutorials or references, but serve only as a reference guide to what the
8968 @value{GDBN} expression parser accepts, and what input and output
8969 formats should look like for different languages.  There are many good
8970 books written on each of these languages; please look to these for a
8971 language reference or tutorial.
8972
8973 @menu
8974 * C::                           C and C@t{++}
8975 * Objective-C::                 Objective-C
8976 * Fortran::                     Fortran
8977 * Pascal::                      Pascal
8978 * Modula-2::                    Modula-2
8979 * Ada::                         Ada
8980 @end menu
8981
8982 @node C
8983 @subsection C and C@t{++}
8984
8985 @cindex C and C@t{++}
8986 @cindex expressions in C or C@t{++}
8987
8988 Since C and C@t{++} are so closely related, many features of @value{GDBN} apply
8989 to both languages.  Whenever this is the case, we discuss those languages
8990 together.
8991
8992 @cindex C@t{++}
8993 @cindex @code{g++}, @sc{gnu} C@t{++} compiler
8994 @cindex @sc{gnu} C@t{++}
8995 The C@t{++} debugging facilities are jointly implemented by the C@t{++}
8996 compiler and @value{GDBN}.  Therefore, to debug your C@t{++} code
8997 effectively, you must compile your C@t{++} programs with a supported
8998 C@t{++} compiler, such as @sc{gnu} @code{g++}, or the HP ANSI C@t{++}
8999 compiler (@code{aCC}).
9000
9001 For best results when using @sc{gnu} C@t{++}, use the DWARF 2 debugging
9002 format; if it doesn't work on your system, try the stabs+ debugging
9003 format.  You can select those formats explicitly with the @code{g++}
9004 command-line options @option{-gdwarf-2} and @option{-gstabs+}.
9005 @xref{Debugging Options,,Options for Debugging Your Program or GCC,
9006 gcc.info, Using the @sc{gnu} Compiler Collection (GCC)}.
9007
9008 @menu
9009 * C Operators::                 C and C@t{++} operators
9010 * C Constants::                 C and C@t{++} constants
9011 * C Plus Plus Expressions::     C@t{++} expressions
9012 * C Defaults::                  Default settings for C and C@t{++}
9013 * C Checks::                    C and C@t{++} type and range checks
9014 * Debugging C::                 @value{GDBN} and C
9015 * Debugging C Plus Plus::       @value{GDBN} features for C@t{++}
9016 @end menu
9017
9018 @node C Operators
9019 @subsubsection C and C@t{++} Operators
9020
9021 @cindex C and C@t{++} operators
9022
9023 Operators must be defined on values of specific types.  For instance,
9024 @code{+} is defined on numbers, but not on structures.  Operators are
9025 often defined on groups of types.
9026
9027 For the purposes of C and C@t{++}, the following definitions hold:
9028
9029 @itemize @bullet
9030
9031 @item
9032 @emph{Integral types} include @code{int} with any of its storage-class
9033 specifiers; @code{char}; @code{enum}; and, for C@t{++}, @code{bool}.
9034
9035 @item
9036 @emph{Floating-point types} include @code{float}, @code{double}, and
9037 @code{long double} (if supported by the target platform).
9038
9039 @item
9040 @emph{Pointer types} include all types defined as @code{(@var{type} *)}.
9041
9042 @item
9043 @emph{Scalar types} include all of the above.
9044
9045 @end itemize
9046
9047 @noindent
9048 The following operators are supported.  They are listed here
9049 in order of increasing precedence:
9050
9051 @table @code
9052 @item ,
9053 The comma or sequencing operator.  Expressions in a comma-separated list
9054 are evaluated from left to right, with the result of the entire
9055 expression being the last expression evaluated.
9056
9057 @item =
9058 Assignment.  The value of an assignment expression is the value
9059 assigned.  Defined on scalar types.
9060
9061 @item @var{op}=
9062 Used in an expression of the form @w{@code{@var{a} @var{op}= @var{b}}},
9063 and translated to @w{@code{@var{a} = @var{a op b}}}.
9064 @w{@code{@var{op}=}} and @code{=} have the same precedence.
9065 @var{op} is any one of the operators @code{|}, @code{^}, @code{&},
9066 @code{<<}, @code{>>}, @code{+}, @code{-}, @code{*}, @code{/}, @code{%}.
9067
9068 @item ?:
9069 The ternary operator.  @code{@var{a} ? @var{b} : @var{c}} can be thought
9070 of as:  if @var{a} then @var{b} else @var{c}.  @var{a} should be of an
9071 integral type.
9072
9073 @item ||
9074 Logical @sc{or}.  Defined on integral types.
9075
9076 @item &&
9077 Logical @sc{and}.  Defined on integral types.
9078
9079 @item |
9080 Bitwise @sc{or}.  Defined on integral types.
9081
9082 @item ^
9083 Bitwise exclusive-@sc{or}.  Defined on integral types.
9084
9085 @item &
9086 Bitwise @sc{and}.  Defined on integral types.
9087
9088 @item ==@r{, }!=
9089 Equality and inequality.  Defined on scalar types.  The value of these
9090 expressions is 0 for false and non-zero for true.
9091
9092 @item <@r{, }>@r{, }<=@r{, }>=
9093 Less than, greater than, less than or equal, greater than or equal.
9094 Defined on scalar types.  The value of these expressions is 0 for false
9095 and non-zero for true.
9096
9097 @item <<@r{, }>>
9098 left shift, and right shift.  Defined on integral types.
9099
9100 @item @@
9101 The @value{GDBN} ``artificial array'' operator (@pxref{Expressions, ,Expressions}).
9102
9103 @item +@r{, }-
9104 Addition and subtraction.  Defined on integral types, floating-point types and
9105 pointer types.
9106
9107 @item *@r{, }/@r{, }%
9108 Multiplication, division, and modulus.  Multiplication and division are
9109 defined on integral and floating-point types.  Modulus is defined on
9110 integral types.
9111
9112 @item ++@r{, }--
9113 Increment and decrement.  When appearing before a variable, the
9114 operation is performed before the variable is used in an expression;
9115 when appearing after it, the variable's value is used before the
9116 operation takes place.
9117
9118 @item *
9119 Pointer dereferencing.  Defined on pointer types.  Same precedence as
9120 @code{++}.
9121
9122 @item &
9123 Address operator.  Defined on variables.  Same precedence as @code{++}.
9124
9125 For debugging C@t{++}, @value{GDBN} implements a use of @samp{&} beyond what is
9126 allowed in the C@t{++} language itself: you can use @samp{&(&@var{ref})}
9127 (or, if you prefer, simply @samp{&&@var{ref}}) to examine the address
9128 where a C@t{++} reference variable (declared with @samp{&@var{ref}}) is
9129 stored.
9130
9131 @item -
9132 Negative.  Defined on integral and floating-point types.  Same
9133 precedence as @code{++}.
9134
9135 @item !
9136 Logical negation.  Defined on integral types.  Same precedence as
9137 @code{++}.
9138
9139 @item ~
9140 Bitwise complement operator.  Defined on integral types.  Same precedence as
9141 @code{++}.
9142
9143
9144 @item .@r{, }->
9145 Structure member, and pointer-to-structure member.  For convenience,
9146 @value{GDBN} regards the two as equivalent, choosing whether to dereference a
9147 pointer based on the stored type information.
9148 Defined on @code{struct} and @code{union} data.
9149
9150 @item .*@r{, }->*
9151 Dereferences of pointers to members.
9152
9153 @item []
9154 Array indexing.  @code{@var{a}[@var{i}]} is defined as
9155 @code{*(@var{a}+@var{i})}.  Same precedence as @code{->}.
9156
9157 @item ()
9158 Function parameter list.  Same precedence as @code{->}.
9159
9160 @item ::
9161 C@t{++} scope resolution operator.  Defined on @code{struct}, @code{union},
9162 and @code{class} types.
9163
9164 @item ::
9165 Doubled colons also represent the @value{GDBN} scope operator
9166 (@pxref{Expressions, ,Expressions}).  Same precedence as @code{::},
9167 above.
9168 @end table
9169
9170 If an operator is redefined in the user code, @value{GDBN} usually
9171 attempts to invoke the redefined version instead of using the operator's
9172 predefined meaning.
9173
9174 @node C Constants
9175 @subsubsection C and C@t{++} Constants
9176
9177 @cindex C and C@t{++} constants
9178
9179 @value{GDBN} allows you to express the constants of C and C@t{++} in the
9180 following ways:
9181
9182 @itemize @bullet
9183 @item
9184 Integer constants are a sequence of digits.  Octal constants are
9185 specified by a leading @samp{0} (i.e.@: zero), and hexadecimal constants
9186 by a leading @samp{0x} or @samp{0X}.  Constants may also end with a letter
9187 @samp{l}, specifying that the constant should be treated as a
9188 @code{long} value.
9189
9190 @item
9191 Floating point constants are a sequence of digits, followed by a decimal
9192 point, followed by a sequence of digits, and optionally followed by an
9193 exponent.  An exponent is of the form:
9194 @samp{@w{e@r{[[}+@r{]|}-@r{]}@var{nnn}}}, where @var{nnn} is another
9195 sequence of digits.  The @samp{+} is optional for positive exponents.
9196 A floating-point constant may also end with a letter @samp{f} or
9197 @samp{F}, specifying that the constant should be treated as being of
9198 the @code{float} (as opposed to the default @code{double}) type; or with
9199 a letter @samp{l} or @samp{L}, which specifies a @code{long double}
9200 constant.
9201
9202 @item
9203 Enumerated constants consist of enumerated identifiers, or their
9204 integral equivalents.
9205
9206 @item
9207 Character constants are a single character surrounded by single quotes
9208 (@code{'}), or a number---the ordinal value of the corresponding character
9209 (usually its @sc{ascii} value).  Within quotes, the single character may
9210 be represented by a letter or by @dfn{escape sequences}, which are of
9211 the form @samp{\@var{nnn}}, where @var{nnn} is the octal representation
9212 of the character's ordinal value; or of the form @samp{\@var{x}}, where
9213 @samp{@var{x}} is a predefined special character---for example,
9214 @samp{\n} for newline.
9215
9216 @item
9217 String constants are a sequence of character constants surrounded by
9218 double quotes (@code{"}).  Any valid character constant (as described
9219 above) may appear.  Double quotes within the string must be preceded by
9220 a backslash, so for instance @samp{"a\"b'c"} is a string of five
9221 characters.
9222
9223 @item
9224 Pointer constants are an integral value.  You can also write pointers
9225 to constants using the C operator @samp{&}.
9226
9227 @item
9228 Array constants are comma-separated lists surrounded by braces @samp{@{}
9229 and @samp{@}}; for example, @samp{@{1,2,3@}} is a three-element array of
9230 integers, @samp{@{@{1,2@}, @{3,4@}, @{5,6@}@}} is a three-by-two array,
9231 and @samp{@{&"hi", &"there", &"fred"@}} is a three-element array of pointers.
9232 @end itemize
9233
9234 @node C Plus Plus Expressions
9235 @subsubsection C@t{++} Expressions
9236
9237 @cindex expressions in C@t{++}
9238 @value{GDBN} expression handling can interpret most C@t{++} expressions.
9239
9240 @cindex debugging C@t{++} programs
9241 @cindex C@t{++} compilers
9242 @cindex debug formats and C@t{++}
9243 @cindex @value{NGCC} and C@t{++}
9244 @quotation
9245 @emph{Warning:} @value{GDBN} can only debug C@t{++} code if you use the
9246 proper compiler and the proper debug format.  Currently, @value{GDBN}
9247 works best when debugging C@t{++} code that is compiled with
9248 @value{NGCC} 2.95.3 or with @value{NGCC} 3.1 or newer, using the options
9249 @option{-gdwarf-2} or @option{-gstabs+}.  DWARF 2 is preferred over
9250 stabs+.  Most configurations of @value{NGCC} emit either DWARF 2 or
9251 stabs+ as their default debug format, so you usually don't need to
9252 specify a debug format explicitly.  Other compilers and/or debug formats
9253 are likely to work badly or not at all when using @value{GDBN} to debug
9254 C@t{++} code.
9255 @end quotation
9256
9257 @enumerate
9258
9259 @cindex member functions
9260 @item
9261 Member function calls are allowed; you can use expressions like
9262
9263 @smallexample
9264 count = aml->GetOriginal(x, y)
9265 @end smallexample
9266
9267 @vindex this@r{, inside C@t{++} member functions}
9268 @cindex namespace in C@t{++}
9269 @item
9270 While a member function is active (in the selected stack frame), your
9271 expressions have the same namespace available as the member function;
9272 that is, @value{GDBN} allows implicit references to the class instance
9273 pointer @code{this} following the same rules as C@t{++}.
9274
9275 @cindex call overloaded functions
9276 @cindex overloaded functions, calling
9277 @cindex type conversions in C@t{++}
9278 @item
9279 You can call overloaded functions; @value{GDBN} resolves the function
9280 call to the right definition, with some restrictions.  @value{GDBN} does not
9281 perform overload resolution involving user-defined type conversions,
9282 calls to constructors, or instantiations of templates that do not exist
9283 in the program.  It also cannot handle ellipsis argument lists or
9284 default arguments.
9285
9286 It does perform integral conversions and promotions, floating-point
9287 promotions, arithmetic conversions, pointer conversions, conversions of
9288 class objects to base classes, and standard conversions such as those of
9289 functions or arrays to pointers; it requires an exact match on the
9290 number of function arguments.
9291
9292 Overload resolution is always performed, unless you have specified
9293 @code{set overload-resolution off}.  @xref{Debugging C Plus Plus,
9294 ,@value{GDBN} Features for C@t{++}}.
9295
9296 You must specify @code{set overload-resolution off} in order to use an
9297 explicit function signature to call an overloaded function, as in
9298 @smallexample
9299 p 'foo(char,int)'('x', 13)
9300 @end smallexample
9301
9302 The @value{GDBN} command-completion facility can simplify this;
9303 see @ref{Completion, ,Command Completion}.
9304
9305 @cindex reference declarations
9306 @item
9307 @value{GDBN} understands variables declared as C@t{++} references; you can use
9308 them in expressions just as you do in C@t{++} source---they are automatically
9309 dereferenced.
9310
9311 In the parameter list shown when @value{GDBN} displays a frame, the values of
9312 reference variables are not displayed (unlike other variables); this
9313 avoids clutter, since references are often used for large structures.
9314 The @emph{address} of a reference variable is always shown, unless
9315 you have specified @samp{set print address off}.
9316
9317 @item
9318 @value{GDBN} supports the C@t{++} name resolution operator @code{::}---your
9319 expressions can use it just as expressions in your program do.  Since
9320 one scope may be defined in another, you can use @code{::} repeatedly if
9321 necessary, for example in an expression like
9322 @samp{@var{scope1}::@var{scope2}::@var{name}}.  @value{GDBN} also allows
9323 resolving name scope by reference to source files, in both C and C@t{++}
9324 debugging (@pxref{Variables, ,Program Variables}).
9325 @end enumerate
9326
9327 In addition, when used with HP's C@t{++} compiler, @value{GDBN} supports
9328 calling virtual functions correctly, printing out virtual bases of
9329 objects, calling functions in a base subobject, casting objects, and
9330 invoking user-defined operators.
9331
9332 @node C Defaults
9333 @subsubsection C and C@t{++} Defaults
9334
9335 @cindex C and C@t{++} defaults
9336
9337 If you allow @value{GDBN} to set type and range checking automatically, they
9338 both default to @code{off} whenever the working language changes to
9339 C or C@t{++}.  This happens regardless of whether you or @value{GDBN}
9340 selects the working language.
9341
9342 If you allow @value{GDBN} to set the language automatically, it
9343 recognizes source files whose names end with @file{.c}, @file{.C}, or
9344 @file{.cc}, etc, and when @value{GDBN} enters code compiled from one of
9345 these files, it sets the working language to C or C@t{++}.
9346 @xref{Automatically, ,Having @value{GDBN} Infer the Source Language},
9347 for further details.
9348
9349 @c Type checking is (a) primarily motivated by Modula-2, and (b)
9350 @c unimplemented.  If (b) changes, it might make sense to let this node
9351 @c appear even if Mod-2 does not, but meanwhile ignore it. roland 16jul93.
9352
9353 @node C Checks
9354 @subsubsection C and C@t{++} Type and Range Checks
9355
9356 @cindex C and C@t{++} checks
9357
9358 By default, when @value{GDBN} parses C or C@t{++} expressions, type checking
9359 is not used.  However, if you turn type checking on, @value{GDBN}
9360 considers two variables type equivalent if:
9361
9362 @itemize @bullet
9363 @item
9364 The two variables are structured and have the same structure, union, or
9365 enumerated tag.
9366
9367 @item
9368 The two variables have the same type name, or types that have been
9369 declared equivalent through @code{typedef}.
9370
9371 @ignore
9372 @c leaving this out because neither J Gilmore nor R Pesch understand it.
9373 @c FIXME--beers?
9374 @item
9375 The two @code{struct}, @code{union}, or @code{enum} variables are
9376 declared in the same declaration.  (Note: this may not be true for all C
9377 compilers.)
9378 @end ignore
9379 @end itemize
9380
9381 Range checking, if turned on, is done on mathematical operations.  Array
9382 indices are not checked, since they are often used to index a pointer
9383 that is not itself an array.
9384
9385 @node Debugging C
9386 @subsubsection @value{GDBN} and C
9387
9388 The @code{set print union} and @code{show print union} commands apply to
9389 the @code{union} type.  When set to @samp{on}, any @code{union} that is
9390 inside a @code{struct} or @code{class} is also printed.  Otherwise, it
9391 appears as @samp{@{...@}}.
9392
9393 The @code{@@} operator aids in the debugging of dynamic arrays, formed
9394 with pointers and a memory allocation function.  @xref{Expressions,
9395 ,Expressions}.
9396
9397 @node Debugging C Plus Plus
9398 @subsubsection @value{GDBN} Features for C@t{++}
9399
9400 @cindex commands for C@t{++}
9401
9402 Some @value{GDBN} commands are particularly useful with C@t{++}, and some are
9403 designed specifically for use with C@t{++}.  Here is a summary:
9404
9405 @table @code
9406 @cindex break in overloaded functions
9407 @item @r{breakpoint menus}
9408 When you want a breakpoint in a function whose name is overloaded,
9409 @value{GDBN} breakpoint menus help you specify which function definition
9410 you want.  @xref{Breakpoint Menus,,Breakpoint Menus}.
9411
9412 @cindex overloading in C@t{++}
9413 @item rbreak @var{regex}
9414 Setting breakpoints using regular expressions is helpful for setting
9415 breakpoints on overloaded functions that are not members of any special
9416 classes.
9417 @xref{Set Breaks, ,Setting Breakpoints}.
9418
9419 @cindex C@t{++} exception handling
9420 @item catch throw
9421 @itemx catch catch
9422 Debug C@t{++} exception handling using these commands.  @xref{Set
9423 Catchpoints, , Setting Catchpoints}.
9424
9425 @cindex inheritance
9426 @item ptype @var{typename}
9427 Print inheritance relationships as well as other information for type
9428 @var{typename}.
9429 @xref{Symbols, ,Examining the Symbol Table}.
9430
9431 @cindex C@t{++} symbol display
9432 @item set print demangle
9433 @itemx show print demangle
9434 @itemx set print asm-demangle
9435 @itemx show print asm-demangle
9436 Control whether C@t{++} symbols display in their source form, both when
9437 displaying code as C@t{++} source and when displaying disassemblies.
9438 @xref{Print Settings, ,Print Settings}.
9439
9440 @item set print object
9441 @itemx show print object
9442 Choose whether to print derived (actual) or declared types of objects.
9443 @xref{Print Settings, ,Print Settings}.
9444
9445 @item set print vtbl
9446 @itemx show print vtbl
9447 Control the format for printing virtual function tables.
9448 @xref{Print Settings, ,Print Settings}.
9449 (The @code{vtbl} commands do not work on programs compiled with the HP
9450 ANSI C@t{++} compiler (@code{aCC}).)
9451
9452 @kindex set overload-resolution
9453 @cindex overloaded functions, overload resolution
9454 @item set overload-resolution on
9455 Enable overload resolution for C@t{++} expression evaluation.  The default
9456 is on.  For overloaded functions, @value{GDBN} evaluates the arguments
9457 and searches for a function whose signature matches the argument types,
9458 using the standard C@t{++} conversion rules (see @ref{C Plus Plus
9459 Expressions, ,C@t{++} Expressions}, for details).
9460 If it cannot find a match, it emits a message.
9461
9462 @item set overload-resolution off
9463 Disable overload resolution for C@t{++} expression evaluation.  For
9464 overloaded functions that are not class member functions, @value{GDBN}
9465 chooses the first function of the specified name that it finds in the
9466 symbol table, whether or not its arguments are of the correct type.  For
9467 overloaded functions that are class member functions, @value{GDBN}
9468 searches for a function whose signature @emph{exactly} matches the
9469 argument types.
9470
9471 @kindex show overload-resolution
9472 @item show overload-resolution
9473 Show the current setting of overload resolution.
9474
9475 @item @r{Overloaded symbol names}
9476 You can specify a particular definition of an overloaded symbol, using
9477 the same notation that is used to declare such symbols in C@t{++}: type
9478 @code{@var{symbol}(@var{types})} rather than just @var{symbol}.  You can
9479 also use the @value{GDBN} command-line word completion facilities to list the
9480 available choices, or to finish the type list for you.
9481 @xref{Completion,, Command Completion}, for details on how to do this.
9482 @end table
9483
9484 @node Objective-C
9485 @subsection Objective-C
9486
9487 @cindex Objective-C
9488 This section provides information about some commands and command
9489 options that are useful for debugging Objective-C code.  See also
9490 @ref{Symbols, info classes}, and @ref{Symbols, info selectors}, for a
9491 few more commands specific to Objective-C support.
9492
9493 @menu
9494 * Method Names in Commands::
9495 * The Print Command with Objective-C::
9496 @end menu
9497
9498 @node Method Names in Commands
9499 @subsubsection Method Names in Commands
9500
9501 The following commands have been extended to accept Objective-C method
9502 names as line specifications:
9503
9504 @kindex clear@r{, and Objective-C}
9505 @kindex break@r{, and Objective-C}
9506 @kindex info line@r{, and Objective-C}
9507 @kindex jump@r{, and Objective-C}
9508 @kindex list@r{, and Objective-C}
9509 @itemize
9510 @item @code{clear}
9511 @item @code{break}
9512 @item @code{info line}
9513 @item @code{jump}
9514 @item @code{list}
9515 @end itemize
9516
9517 A fully qualified Objective-C method name is specified as
9518
9519 @smallexample
9520 -[@var{Class} @var{methodName}]
9521 @end smallexample
9522
9523 where the minus sign is used to indicate an instance method and a
9524 plus sign (not shown) is used to indicate a class method.  The class
9525 name @var{Class} and method name @var{methodName} are enclosed in
9526 brackets, similar to the way messages are specified in Objective-C
9527 source code.  For example, to set a breakpoint at the @code{create}
9528 instance method of class @code{Fruit} in the program currently being
9529 debugged, enter:
9530
9531 @smallexample
9532 break -[Fruit create]
9533 @end smallexample
9534
9535 To list ten program lines around the @code{initialize} class method,
9536 enter:
9537
9538 @smallexample
9539 list +[NSText initialize]
9540 @end smallexample
9541
9542 In the current version of @value{GDBN}, the plus or minus sign is
9543 required.  In future versions of @value{GDBN}, the plus or minus
9544 sign will be optional, but you can use it to narrow the search.  It
9545 is also possible to specify just a method name:
9546
9547 @smallexample
9548 break create
9549 @end smallexample
9550
9551 You must specify the complete method name, including any colons.  If
9552 your program's source files contain more than one @code{create} method,
9553 you'll be presented with a numbered list of classes that implement that
9554 method.  Indicate your choice by number, or type @samp{0} to exit if
9555 none apply.
9556
9557 As another example, to clear a breakpoint established at the
9558 @code{makeKeyAndOrderFront:} method of the @code{NSWindow} class, enter:
9559
9560 @smallexample
9561 clear -[NSWindow makeKeyAndOrderFront:]
9562 @end smallexample
9563
9564 @node The Print Command with Objective-C
9565 @subsubsection The Print Command With Objective-C
9566 @cindex Objective-C, print objects
9567 @kindex print-object
9568 @kindex po @r{(@code{print-object})}
9569
9570 The print command has also been extended to accept methods.  For example:
9571
9572 @smallexample
9573 print -[@var{object} hash]
9574 @end smallexample
9575
9576 @cindex print an Objective-C object description
9577 @cindex @code{_NSPrintForDebugger}, and printing Objective-C objects
9578 @noindent
9579 will tell @value{GDBN} to send the @code{hash} message to @var{object}
9580 and print the result.  Also, an additional command has been added,
9581 @code{print-object} or @code{po} for short, which is meant to print
9582 the description of an object.  However, this command may only work
9583 with certain Objective-C libraries that have a particular hook
9584 function, @code{_NSPrintForDebugger}, defined.
9585
9586 @node Fortran
9587 @subsection Fortran
9588 @cindex Fortran-specific support in @value{GDBN}
9589
9590 @value{GDBN} can be used to debug programs written in Fortran, but it
9591 currently supports only the features of Fortran 77 language.
9592
9593 @cindex trailing underscore, in Fortran symbols
9594 Some Fortran compilers (@sc{gnu} Fortran 77 and Fortran 95 compilers
9595 among them) append an underscore to the names of variables and
9596 functions.  When you debug programs compiled by those compilers, you
9597 will need to refer to variables and functions with a trailing
9598 underscore.
9599
9600 @menu
9601 * Fortran Operators::           Fortran operators and expressions
9602 * Fortran Defaults::            Default settings for Fortran
9603 * Special Fortran Commands::    Special @value{GDBN} commands for Fortran
9604 @end menu
9605
9606 @node Fortran Operators
9607 @subsubsection Fortran Operators and Expressions
9608
9609 @cindex Fortran operators and expressions
9610
9611 Operators must be defined on values of specific types.  For instance,
9612 @code{+} is defined on numbers, but not on characters or other non-
9613 arithmetic types.  Operators are often defined on groups of types.
9614
9615 @table @code
9616 @item **
9617 The exponentiation operator. It raises the first operand to the power
9618 of the second one.
9619
9620 @item :
9621 The range operator.  Normally used in the form of array(low:high) to
9622 represent a section of array.
9623 @end table
9624
9625 @node Fortran Defaults
9626 @subsubsection Fortran Defaults
9627
9628 @cindex Fortran Defaults
9629
9630 Fortran symbols are usually case-insensitive, so @value{GDBN} by
9631 default uses case-insensitive matches for Fortran symbols.  You can
9632 change that with the @samp{set case-insensitive} command, see
9633 @ref{Symbols}, for the details.
9634
9635 @node Special Fortran Commands
9636 @subsubsection Special Fortran Commands
9637
9638 @cindex Special Fortran commands
9639
9640 @value{GDBN} has some commands to support Fortran-specific features,
9641 such as displaying common blocks.
9642
9643 @table @code
9644 @cindex @code{COMMON} blocks, Fortran
9645 @kindex info common
9646 @item info common @r{[}@var{common-name}@r{]}
9647 This command prints the values contained in the Fortran @code{COMMON}
9648 block whose name is @var{common-name}.  With no argument, the names of
9649 all @code{COMMON} blocks visible at the current program location are
9650 printed.
9651 @end table
9652
9653 @node Pascal
9654 @subsection Pascal
9655
9656 @cindex Pascal support in @value{GDBN}, limitations
9657 Debugging Pascal programs which use sets, subranges, file variables, or
9658 nested functions does not currently work.  @value{GDBN} does not support
9659 entering expressions, printing values, or similar features using Pascal
9660 syntax.
9661
9662 The Pascal-specific command @code{set print pascal_static-members}
9663 controls whether static members of Pascal objects are displayed.
9664 @xref{Print Settings, pascal_static-members}.
9665
9666 @node Modula-2
9667 @subsection Modula-2
9668
9669 @cindex Modula-2, @value{GDBN} support
9670
9671 The extensions made to @value{GDBN} to support Modula-2 only support
9672 output from the @sc{gnu} Modula-2 compiler (which is currently being
9673 developed).  Other Modula-2 compilers are not currently supported, and
9674 attempting to debug executables produced by them is most likely
9675 to give an error as @value{GDBN} reads in the executable's symbol
9676 table.
9677
9678 @cindex expressions in Modula-2
9679 @menu
9680 * M2 Operators::                Built-in operators
9681 * Built-In Func/Proc::          Built-in functions and procedures
9682 * M2 Constants::                Modula-2 constants
9683 * M2 Types::                    Modula-2 types
9684 * M2 Defaults::                 Default settings for Modula-2
9685 * Deviations::                  Deviations from standard Modula-2
9686 * M2 Checks::                   Modula-2 type and range checks
9687 * M2 Scope::                    The scope operators @code{::} and @code{.}
9688 * GDB/M2::                      @value{GDBN} and Modula-2
9689 @end menu
9690
9691 @node M2 Operators
9692 @subsubsection Operators
9693 @cindex Modula-2 operators
9694
9695 Operators must be defined on values of specific types.  For instance,
9696 @code{+} is defined on numbers, but not on structures.  Operators are
9697 often defined on groups of types.  For the purposes of Modula-2, the
9698 following definitions hold:
9699
9700 @itemize @bullet
9701
9702 @item
9703 @emph{Integral types} consist of @code{INTEGER}, @code{CARDINAL}, and
9704 their subranges.
9705
9706 @item
9707 @emph{Character types} consist of @code{CHAR} and its subranges.
9708
9709 @item
9710 @emph{Floating-point types} consist of @code{REAL}.
9711
9712 @item
9713 @emph{Pointer types} consist of anything declared as @code{POINTER TO
9714 @var{type}}.
9715
9716 @item
9717 @emph{Scalar types} consist of all of the above.
9718
9719 @item
9720 @emph{Set types} consist of @code{SET} and @code{BITSET} types.
9721
9722 @item
9723 @emph{Boolean types} consist of @code{BOOLEAN}.
9724 @end itemize
9725
9726 @noindent
9727 The following operators are supported, and appear in order of
9728 increasing precedence:
9729
9730 @table @code
9731 @item ,
9732 Function argument or array index separator.
9733
9734 @item :=
9735 Assignment.  The value of @var{var} @code{:=} @var{value} is
9736 @var{value}.
9737
9738 @item <@r{, }>
9739 Less than, greater than on integral, floating-point, or enumerated
9740 types.
9741
9742 @item <=@r{, }>=
9743 Less than or equal to, greater than or equal to
9744 on integral, floating-point and enumerated types, or set inclusion on
9745 set types.  Same precedence as @code{<}.
9746
9747 @item =@r{, }<>@r{, }#
9748 Equality and two ways of expressing inequality, valid on scalar types.
9749 Same precedence as @code{<}.  In @value{GDBN} scripts, only @code{<>} is
9750 available for inequality, since @code{#} conflicts with the script
9751 comment character.
9752
9753 @item IN
9754 Set membership.  Defined on set types and the types of their members.
9755 Same precedence as @code{<}.
9756
9757 @item OR
9758 Boolean disjunction.  Defined on boolean types.
9759
9760 @item AND@r{, }&
9761 Boolean conjunction.  Defined on boolean types.
9762
9763 @item @@
9764 The @value{GDBN} ``artificial array'' operator (@pxref{Expressions, ,Expressions}).
9765
9766 @item +@r{, }-
9767 Addition and subtraction on integral and floating-point types, or union
9768 and difference on set types.
9769
9770 @item *
9771 Multiplication on integral and floating-point types, or set intersection
9772 on set types.
9773
9774 @item /
9775 Division on floating-point types, or symmetric set difference on set
9776 types.  Same precedence as @code{*}.
9777
9778 @item DIV@r{, }MOD
9779 Integer division and remainder.  Defined on integral types.  Same
9780 precedence as @code{*}.
9781
9782 @item -
9783 Negative. Defined on @code{INTEGER} and @code{REAL} data.
9784
9785 @item ^
9786 Pointer dereferencing.  Defined on pointer types.
9787
9788 @item NOT
9789 Boolean negation.  Defined on boolean types.  Same precedence as
9790 @code{^}.
9791
9792 @item .
9793 @code{RECORD} field selector.  Defined on @code{RECORD} data.  Same
9794 precedence as @code{^}.
9795
9796 @item []
9797 Array indexing.  Defined on @code{ARRAY} data.  Same precedence as @code{^}.
9798
9799 @item ()
9800 Procedure argument list.  Defined on @code{PROCEDURE} objects.  Same precedence
9801 as @code{^}.
9802
9803 @item ::@r{, }.
9804 @value{GDBN} and Modula-2 scope operators.
9805 @end table
9806
9807 @quotation
9808 @emph{Warning:} Set expressions and their operations are not yet supported, so @value{GDBN}
9809 treats the use of the operator @code{IN}, or the use of operators
9810 @code{+}, @code{-}, @code{*}, @code{/}, @code{=}, , @code{<>}, @code{#},
9811 @code{<=}, and @code{>=} on sets as an error.
9812 @end quotation
9813
9814
9815 @node Built-In Func/Proc
9816 @subsubsection Built-in Functions and Procedures
9817 @cindex Modula-2 built-ins
9818
9819 Modula-2 also makes available several built-in procedures and functions.
9820 In describing these, the following metavariables are used:
9821
9822 @table @var
9823
9824 @item a
9825 represents an @code{ARRAY} variable.
9826
9827 @item c
9828 represents a @code{CHAR} constant or variable.
9829
9830 @item i
9831 represents a variable or constant of integral type.
9832
9833 @item m
9834 represents an identifier that belongs to a set.  Generally used in the
9835 same function with the metavariable @var{s}.  The type of @var{s} should
9836 be @code{SET OF @var{mtype}} (where @var{mtype} is the type of @var{m}).
9837
9838 @item n
9839 represents a variable or constant of integral or floating-point type.
9840
9841 @item r
9842 represents a variable or constant of floating-point type.
9843
9844 @item t
9845 represents a type.
9846
9847 @item v
9848 represents a variable.
9849
9850 @item x
9851 represents a variable or constant of one of many types.  See the
9852 explanation of the function for details.
9853 @end table
9854
9855 All Modula-2 built-in procedures also return a result, described below.
9856
9857 @table @code
9858 @item ABS(@var{n})
9859 Returns the absolute value of @var{n}.
9860
9861 @item CAP(@var{c})
9862 If @var{c} is a lower case letter, it returns its upper case
9863 equivalent, otherwise it returns its argument.
9864
9865 @item CHR(@var{i})
9866 Returns the character whose ordinal value is @var{i}.
9867
9868 @item DEC(@var{v})
9869 Decrements the value in the variable @var{v} by one.  Returns the new value.
9870
9871 @item DEC(@var{v},@var{i})
9872 Decrements the value in the variable @var{v} by @var{i}.  Returns the
9873 new value.
9874
9875 @item EXCL(@var{m},@var{s})
9876 Removes the element @var{m} from the set @var{s}.  Returns the new
9877 set.
9878
9879 @item FLOAT(@var{i})
9880 Returns the floating point equivalent of the integer @var{i}.
9881
9882 @item HIGH(@var{a})
9883 Returns the index of the last member of @var{a}.
9884
9885 @item INC(@var{v})
9886 Increments the value in the variable @var{v} by one.  Returns the new value.
9887
9888 @item INC(@var{v},@var{i})
9889 Increments the value in the variable @var{v} by @var{i}.  Returns the
9890 new value.
9891
9892 @item INCL(@var{m},@var{s})
9893 Adds the element @var{m} to the set @var{s} if it is not already
9894 there.  Returns the new set.
9895
9896 @item MAX(@var{t})
9897 Returns the maximum value of the type @var{t}.
9898
9899 @item MIN(@var{t})
9900 Returns the minimum value of the type @var{t}.
9901
9902 @item ODD(@var{i})
9903 Returns boolean TRUE if @var{i} is an odd number.
9904
9905 @item ORD(@var{x})
9906 Returns the ordinal value of its argument.  For example, the ordinal
9907 value of a character is its @sc{ascii} value (on machines supporting the
9908 @sc{ascii} character set).  @var{x} must be of an ordered type, which include
9909 integral, character and enumerated types.
9910
9911 @item SIZE(@var{x})
9912 Returns the size of its argument.  @var{x} can be a variable or a type.
9913
9914 @item TRUNC(@var{r})
9915 Returns the integral part of @var{r}.
9916
9917 @item VAL(@var{t},@var{i})
9918 Returns the member of the type @var{t} whose ordinal value is @var{i}.
9919 @end table
9920
9921 @quotation
9922 @emph{Warning:}  Sets and their operations are not yet supported, so
9923 @value{GDBN} treats the use of procedures @code{INCL} and @code{EXCL} as
9924 an error.
9925 @end quotation
9926
9927 @cindex Modula-2 constants
9928 @node M2 Constants
9929 @subsubsection Constants
9930
9931 @value{GDBN} allows you to express the constants of Modula-2 in the following
9932 ways:
9933
9934 @itemize @bullet
9935
9936 @item
9937 Integer constants are simply a sequence of digits.  When used in an
9938 expression, a constant is interpreted to be type-compatible with the
9939 rest of the expression.  Hexadecimal integers are specified by a
9940 trailing @samp{H}, and octal integers by a trailing @samp{B}.
9941
9942 @item
9943 Floating point constants appear as a sequence of digits, followed by a
9944 decimal point and another sequence of digits.  An optional exponent can
9945 then be specified, in the form @samp{E@r{[}+@r{|}-@r{]}@var{nnn}}, where
9946 @samp{@r{[}+@r{|}-@r{]}@var{nnn}} is the desired exponent.  All of the
9947 digits of the floating point constant must be valid decimal (base 10)
9948 digits.
9949
9950 @item
9951 Character constants consist of a single character enclosed by a pair of
9952 like quotes, either single (@code{'}) or double (@code{"}).  They may
9953 also be expressed by their ordinal value (their @sc{ascii} value, usually)
9954 followed by a @samp{C}.
9955
9956 @item
9957 String constants consist of a sequence of characters enclosed by a
9958 pair of like quotes, either single (@code{'}) or double (@code{"}).
9959 Escape sequences in the style of C are also allowed.  @xref{C
9960 Constants, ,C and C@t{++} Constants}, for a brief explanation of escape
9961 sequences.
9962
9963 @item
9964 Enumerated constants consist of an enumerated identifier.
9965
9966 @item
9967 Boolean constants consist of the identifiers @code{TRUE} and
9968 @code{FALSE}.
9969
9970 @item
9971 Pointer constants consist of integral values only.
9972
9973 @item
9974 Set constants are not yet supported.
9975 @end itemize
9976
9977 @node M2 Types
9978 @subsubsection Modula-2 Types
9979 @cindex Modula-2 types
9980
9981 Currently @value{GDBN} can print the following data types in Modula-2
9982 syntax: array types, record types, set types, pointer types, procedure
9983 types, enumerated types, subrange types and base types.  You can also
9984 print the contents of variables declared using these type.
9985 This section gives a number of simple source code examples together with
9986 sample @value{GDBN} sessions.
9987
9988 The first example contains the following section of code:
9989
9990 @smallexample
9991 VAR
9992    s: SET OF CHAR ;
9993    r: [20..40] ;
9994 @end smallexample
9995
9996 @noindent
9997 and you can request @value{GDBN} to interrogate the type and value of
9998 @code{r} and @code{s}.
9999
10000 @smallexample
10001 (@value{GDBP}) print s
10002 @{'A'..'C', 'Z'@}
10003 (@value{GDBP}) ptype s
10004 SET OF CHAR
10005 (@value{GDBP}) print r
10006 21
10007 (@value{GDBP}) ptype r
10008 [20..40]
10009 @end smallexample
10010
10011 @noindent
10012 Likewise if your source code declares @code{s} as:
10013
10014 @smallexample
10015 VAR
10016    s: SET ['A'..'Z'] ;
10017 @end smallexample
10018
10019 @noindent
10020 then you may query the type of @code{s} by:
10021
10022 @smallexample
10023 (@value{GDBP}) ptype s
10024 type = SET ['A'..'Z']
10025 @end smallexample
10026
10027 @noindent
10028 Note that at present you cannot interactively manipulate set
10029 expressions using the debugger.
10030
10031 The following example shows how you might declare an array in Modula-2
10032 and how you can interact with @value{GDBN} to print its type and contents:
10033
10034 @smallexample
10035 VAR
10036    s: ARRAY [-10..10] OF CHAR ;
10037 @end smallexample
10038
10039 @smallexample
10040 (@value{GDBP}) ptype s
10041 ARRAY [-10..10] OF CHAR
10042 @end smallexample
10043
10044 Note that the array handling is not yet complete and although the type
10045 is printed correctly, expression handling still assumes that all
10046 arrays have a lower bound of zero and not @code{-10} as in the example
10047 above.  Unbounded arrays are also not yet recognized in @value{GDBN}.
10048
10049 Here are some more type related Modula-2 examples:
10050
10051 @smallexample
10052 TYPE
10053    colour = (blue, red, yellow, green) ;
10054    t = [blue..yellow] ;
10055 VAR
10056    s: t ;
10057 BEGIN
10058    s := blue ;
10059 @end smallexample
10060
10061 @noindent
10062 The @value{GDBN} interaction shows how you can query the data type
10063 and value of a variable.
10064
10065 @smallexample
10066 (@value{GDBP}) print s
10067 $1 = blue
10068 (@value{GDBP}) ptype t
10069 type = [blue..yellow]
10070 @end smallexample
10071
10072 @noindent
10073 In this example a Modula-2 array is declared and its contents
10074 displayed.  Observe that the contents are written in the same way as
10075 their @code{C} counterparts.
10076
10077 @smallexample
10078 VAR
10079    s: ARRAY [1..5] OF CARDINAL ;
10080 BEGIN
10081    s[1] := 1 ;
10082 @end smallexample
10083
10084 @smallexample
10085 (@value{GDBP}) print s
10086 $1 = @{1, 0, 0, 0, 0@}
10087 (@value{GDBP}) ptype s
10088 type = ARRAY [1..5] OF CARDINAL
10089 @end smallexample
10090
10091 The Modula-2 language interface to @value{GDBN} also understands
10092 pointer types as shown in this example:
10093
10094 @smallexample
10095 VAR
10096    s: POINTER TO ARRAY [1..5] OF CARDINAL ;
10097 BEGIN
10098    NEW(s) ;
10099    s^[1] := 1 ;
10100 @end smallexample
10101
10102 @noindent
10103 and you can request that @value{GDBN} describes the type of @code{s}.
10104
10105 @smallexample
10106 (@value{GDBP}) ptype s
10107 type = POINTER TO ARRAY [1..5] OF CARDINAL
10108 @end smallexample
10109
10110 @value{GDBN} handles compound types as we can see in this example.
10111 Here we combine array types, record types, pointer types and subrange
10112 types:
10113
10114 @smallexample
10115 TYPE
10116    foo = RECORD
10117             f1: CARDINAL ;
10118             f2: CHAR ;
10119             f3: myarray ;
10120          END ;
10121
10122    myarray = ARRAY myrange OF CARDINAL ;
10123    myrange = [-2..2] ;
10124 VAR
10125    s: POINTER TO ARRAY myrange OF foo ;
10126 @end smallexample
10127
10128 @noindent
10129 and you can ask @value{GDBN} to describe the type of @code{s} as shown
10130 below.
10131
10132 @smallexample
10133 (@value{GDBP}) ptype s
10134 type = POINTER TO ARRAY [-2..2] OF foo = RECORD
10135     f1 : CARDINAL;
10136     f2 : CHAR;
10137     f3 : ARRAY [-2..2] OF CARDINAL;
10138 END 
10139 @end smallexample
10140
10141 @node M2 Defaults
10142 @subsubsection Modula-2 Defaults
10143 @cindex Modula-2 defaults
10144
10145 If type and range checking are set automatically by @value{GDBN}, they
10146 both default to @code{on} whenever the working language changes to
10147 Modula-2.  This happens regardless of whether you or @value{GDBN}
10148 selected the working language.
10149
10150 If you allow @value{GDBN} to set the language automatically, then entering
10151 code compiled from a file whose name ends with @file{.mod} sets the
10152 working language to Modula-2.  @xref{Automatically, ,Having @value{GDBN}
10153 Infer the Source Language}, for further details.
10154
10155 @node Deviations
10156 @subsubsection Deviations from Standard Modula-2
10157 @cindex Modula-2, deviations from
10158
10159 A few changes have been made to make Modula-2 programs easier to debug.
10160 This is done primarily via loosening its type strictness:
10161
10162 @itemize @bullet
10163 @item
10164 Unlike in standard Modula-2, pointer constants can be formed by
10165 integers.  This allows you to modify pointer variables during
10166 debugging.  (In standard Modula-2, the actual address contained in a
10167 pointer variable is hidden from you; it can only be modified
10168 through direct assignment to another pointer variable or expression that
10169 returned a pointer.)
10170
10171 @item
10172 C escape sequences can be used in strings and characters to represent
10173 non-printable characters.  @value{GDBN} prints out strings with these
10174 escape sequences embedded.  Single non-printable characters are
10175 printed using the @samp{CHR(@var{nnn})} format.
10176
10177 @item
10178 The assignment operator (@code{:=}) returns the value of its right-hand
10179 argument.
10180
10181 @item
10182 All built-in procedures both modify @emph{and} return their argument.
10183 @end itemize
10184
10185 @node M2 Checks
10186 @subsubsection Modula-2 Type and Range Checks
10187 @cindex Modula-2 checks
10188
10189 @quotation
10190 @emph{Warning:} in this release, @value{GDBN} does not yet perform type or
10191 range checking.
10192 @end quotation
10193 @c FIXME remove warning when type/range checks added
10194
10195 @value{GDBN} considers two Modula-2 variables type equivalent if:
10196
10197 @itemize @bullet
10198 @item
10199 They are of types that have been declared equivalent via a @code{TYPE
10200 @var{t1} = @var{t2}} statement
10201
10202 @item
10203 They have been declared on the same line.  (Note:  This is true of the
10204 @sc{gnu} Modula-2 compiler, but it may not be true of other compilers.)
10205 @end itemize
10206
10207 As long as type checking is enabled, any attempt to combine variables
10208 whose types are not equivalent is an error.
10209
10210 Range checking is done on all mathematical operations, assignment, array
10211 index bounds, and all built-in functions and procedures.
10212
10213 @node M2 Scope
10214 @subsubsection The Scope Operators @code{::} and @code{.}
10215 @cindex scope
10216 @cindex @code{.}, Modula-2 scope operator
10217 @cindex colon, doubled as scope operator
10218 @ifinfo
10219 @vindex colon-colon@r{, in Modula-2}
10220 @c Info cannot handle :: but TeX can.
10221 @end ifinfo
10222 @iftex
10223 @vindex ::@r{, in Modula-2}
10224 @end iftex
10225
10226 There are a few subtle differences between the Modula-2 scope operator
10227 (@code{.}) and the @value{GDBN} scope operator (@code{::}).  The two have
10228 similar syntax:
10229
10230 @smallexample
10231
10232 @var{module} . @var{id}
10233 @var{scope} :: @var{id}
10234 @end smallexample
10235
10236 @noindent
10237 where @var{scope} is the name of a module or a procedure,
10238 @var{module} the name of a module, and @var{id} is any declared
10239 identifier within your program, except another module.
10240
10241 Using the @code{::} operator makes @value{GDBN} search the scope
10242 specified by @var{scope} for the identifier @var{id}.  If it is not
10243 found in the specified scope, then @value{GDBN} searches all scopes
10244 enclosing the one specified by @var{scope}.
10245
10246 Using the @code{.} operator makes @value{GDBN} search the current scope for
10247 the identifier specified by @var{id} that was imported from the
10248 definition module specified by @var{module}.  With this operator, it is
10249 an error if the identifier @var{id} was not imported from definition
10250 module @var{module}, or if @var{id} is not an identifier in
10251 @var{module}.
10252
10253 @node GDB/M2
10254 @subsubsection @value{GDBN} and Modula-2
10255
10256 Some @value{GDBN} commands have little use when debugging Modula-2 programs.
10257 Five subcommands of @code{set print} and @code{show print} apply
10258 specifically to C and C@t{++}: @samp{vtbl}, @samp{demangle},
10259 @samp{asm-demangle}, @samp{object}, and @samp{union}.  The first four
10260 apply to C@t{++}, and the last to the C @code{union} type, which has no direct
10261 analogue in Modula-2.
10262
10263 The @code{@@} operator (@pxref{Expressions, ,Expressions}), while available
10264 with any language, is not useful with Modula-2.  Its
10265 intent is to aid the debugging of @dfn{dynamic arrays}, which cannot be
10266 created in Modula-2 as they can in C or C@t{++}.  However, because an
10267 address can be specified by an integral constant, the construct
10268 @samp{@{@var{type}@}@var{adrexp}} is still useful.
10269
10270 @cindex @code{#} in Modula-2
10271 In @value{GDBN} scripts, the Modula-2 inequality operator @code{#} is
10272 interpreted as the beginning of a comment.  Use @code{<>} instead.
10273
10274 @node Ada
10275 @subsection Ada
10276 @cindex Ada
10277
10278 The extensions made to @value{GDBN} for Ada only support
10279 output from the @sc{gnu} Ada (GNAT) compiler.
10280 Other Ada compilers are not currently supported, and
10281 attempting to debug executables produced by them is most likely
10282 to be difficult.
10283
10284
10285 @cindex expressions in Ada
10286 @menu
10287 * Ada Mode Intro::              General remarks on the Ada syntax 
10288                                    and semantics supported by Ada mode 
10289                                    in @value{GDBN}.
10290 * Omissions from Ada::          Restrictions on the Ada expression syntax.
10291 * Additions to Ada::            Extensions of the Ada expression syntax.
10292 * Stopping Before Main Program:: Debugging the program during elaboration.
10293 * Ada Glitches::                Known peculiarities of Ada mode.
10294 @end menu
10295
10296 @node Ada Mode Intro
10297 @subsubsection Introduction
10298 @cindex Ada mode, general
10299
10300 The Ada mode of @value{GDBN} supports a fairly large subset of Ada expression 
10301 syntax, with some extensions.
10302 The philosophy behind the design of this subset is 
10303
10304 @itemize @bullet
10305 @item
10306 That @value{GDBN} should provide basic literals and access to operations for 
10307 arithmetic, dereferencing, field selection, indexing, and subprogram calls, 
10308 leaving more sophisticated computations to subprograms written into the
10309 program (which therefore may be called from @value{GDBN}).
10310
10311 @item 
10312 That type safety and strict adherence to Ada language restrictions
10313 are not particularly important to the @value{GDBN} user.
10314
10315 @item 
10316 That brevity is important to the @value{GDBN} user.
10317 @end itemize
10318
10319 Thus, for brevity, the debugger acts as if there were 
10320 implicit @code{with} and @code{use} clauses in effect for all user-written 
10321 packages, making it unnecessary to fully qualify most names with 
10322 their packages, regardless of context.  Where this causes ambiguity, 
10323 @value{GDBN} asks the user's intent.
10324
10325 The debugger will start in Ada mode if it detects an Ada main program. 
10326 As for other languages, it will enter Ada mode when stopped in a program that
10327 was translated from an Ada source file.
10328
10329 While in Ada mode, you may use `@t{--}' for comments.  This is useful 
10330 mostly for documenting command files.  The standard @value{GDBN} comment 
10331 (@samp{#}) still works at the beginning of a line in Ada mode, but not in the 
10332 middle (to allow based literals).
10333
10334 The debugger supports limited overloading.  Given a subprogram call in which
10335 the function symbol has multiple definitions, it will use the number of 
10336 actual parameters and some information about their types to attempt to narrow
10337 the set of definitions.  It also makes very limited use of context, preferring
10338 procedures to functions in the context of the @code{call} command, and
10339 functions to procedures elsewhere. 
10340
10341 @node Omissions from Ada
10342 @subsubsection Omissions from Ada
10343 @cindex Ada, omissions from
10344
10345 Here are the notable omissions from the subset:
10346
10347 @itemize @bullet
10348 @item
10349 Only a subset of the attributes are supported:
10350
10351 @itemize @minus
10352 @item
10353 @t{'First}, @t{'Last}, and @t{'Length}
10354  on array objects (not on types and subtypes).
10355
10356 @item
10357 @t{'Min} and @t{'Max}.  
10358
10359 @item 
10360 @t{'Pos} and @t{'Val}. 
10361
10362 @item
10363 @t{'Tag}.
10364
10365 @item
10366 @t{'Range} on array objects (not subtypes), but only as the right
10367 operand of the membership (@code{in}) operator.
10368
10369 @item 
10370 @t{'Access}, @t{'Unchecked_Access}, and 
10371 @t{'Unrestricted_Access} (a GNAT extension).
10372
10373 @item
10374 @t{'Address}.
10375 @end itemize
10376
10377 @item
10378 The names in
10379 @code{Characters.Latin_1} are not available and
10380 concatenation is not implemented.  Thus, escape characters in strings are 
10381 not currently available.
10382
10383 @item
10384 Equality tests (@samp{=} and @samp{/=}) on arrays test for bitwise
10385 equality of representations.  They will generally work correctly
10386 for strings and arrays whose elements have integer or enumeration types.
10387 They may not work correctly for arrays whose element
10388 types have user-defined equality, for arrays of real values 
10389 (in particular, IEEE-conformant floating point, because of negative
10390 zeroes and NaNs), and for arrays whose elements contain unused bits with
10391 indeterminate values.  
10392
10393 @item
10394 The other component-by-component array operations (@code{and}, @code{or}, 
10395 @code{xor}, @code{not}, and relational tests other than equality)
10396 are not implemented. 
10397
10398 @item 
10399 @cindex array aggregates (Ada)
10400 @cindex record aggregates (Ada)
10401 @cindex aggregates (Ada) 
10402 There is limited support for array and record aggregates.  They are
10403 permitted only on the right sides of assignments, as in these examples:
10404
10405 @smallexample
10406 set An_Array := (1, 2, 3, 4, 5, 6)
10407 set An_Array := (1, others => 0)
10408 set An_Array := (0|4 => 1, 1..3 => 2, 5 => 6)
10409 set A_2D_Array := ((1, 2, 3), (4, 5, 6), (7, 8, 9))
10410 set A_Record := (1, "Peter", True);
10411 set A_Record := (Name => "Peter", Id => 1, Alive => True)
10412 @end smallexample
10413
10414 Changing a
10415 discriminant's value by assigning an aggregate has an
10416 undefined effect if that discriminant is used within the record.
10417 However, you can first modify discriminants by directly assigning to
10418 them (which normally would not be allowed in Ada), and then performing an
10419 aggregate assignment.  For example, given a variable @code{A_Rec} 
10420 declared to have a type such as:
10421
10422 @smallexample
10423 type Rec (Len : Small_Integer := 0) is record
10424     Id : Integer;
10425     Vals : IntArray (1 .. Len);
10426 end record;
10427 @end smallexample
10428
10429 you can assign a value with a different size of @code{Vals} with two
10430 assignments:
10431
10432 @smallexample
10433 set A_Rec.Len := 4
10434 set A_Rec := (Id => 42, Vals => (1, 2, 3, 4))
10435 @end smallexample
10436
10437 As this example also illustrates, @value{GDBN} is very loose about the usual
10438 rules concerning aggregates.  You may leave out some of the
10439 components of an array or record aggregate (such as the @code{Len} 
10440 component in the assignment to @code{A_Rec} above); they will retain their
10441 original values upon assignment.  You may freely use dynamic values as
10442 indices in component associations.  You may even use overlapping or
10443 redundant component associations, although which component values are
10444 assigned in such cases is not defined.
10445
10446 @item
10447 Calls to dispatching subprograms are not implemented.
10448
10449 @item
10450 The overloading algorithm is much more limited (i.e., less selective)
10451 than that of real Ada.  It makes only limited use of the context in
10452 which a subexpression appears to resolve its meaning, and it is much
10453 looser in its rules for allowing type matches.  As a result, some
10454 function calls will be ambiguous, and the user will be asked to choose
10455 the proper resolution.
10456
10457 @item
10458 The @code{new} operator is not implemented.
10459
10460 @item
10461 Entry calls are not implemented.
10462
10463 @item 
10464 Aside from printing, arithmetic operations on the native VAX floating-point 
10465 formats are not supported.
10466
10467 @item
10468 It is not possible to slice a packed array.
10469 @end itemize
10470
10471 @node Additions to Ada
10472 @subsubsection Additions to Ada
10473 @cindex Ada, deviations from 
10474
10475 As it does for other languages, @value{GDBN} makes certain generic
10476 extensions to Ada (@pxref{Expressions}):
10477
10478 @itemize @bullet
10479 @item
10480 If the expression @var{E} is a variable residing in memory (typically
10481 a local variable or array element) and @var{N} is a positive integer,
10482 then @code{@var{E}@@@var{N}} displays the values of @var{E} and the
10483 @var{N}-1 adjacent variables following it in memory as an array.  In
10484 Ada, this operator is generally not necessary, since its prime use is
10485 in displaying parts of an array, and slicing will usually do this in
10486 Ada.  However, there are occasional uses when debugging programs in
10487 which certain debugging information has been optimized away.
10488
10489 @item
10490 @code{@var{B}::@var{var}} means ``the variable named @var{var} that
10491 appears in function or file @var{B}.''  When @var{B} is a file name,
10492 you must typically surround it in single quotes.
10493
10494 @item 
10495 The expression @code{@{@var{type}@} @var{addr}} means ``the variable of type
10496 @var{type} that appears at address @var{addr}.''
10497
10498 @item
10499 A name starting with @samp{$} is a convenience variable 
10500 (@pxref{Convenience Vars}) or a machine register (@pxref{Registers}).
10501 @end itemize
10502
10503 In addition, @value{GDBN} provides a few other shortcuts and outright
10504 additions specific to Ada:
10505
10506 @itemize @bullet
10507 @item 
10508 The assignment statement is allowed as an expression, returning
10509 its right-hand operand as its value.  Thus, you may enter
10510
10511 @smallexample
10512 set x := y + 3
10513 print A(tmp := y + 1)
10514 @end smallexample
10515
10516 @item 
10517 The semicolon is allowed as an ``operator,''  returning as its value 
10518 the value of its right-hand operand.
10519 This allows, for example,
10520 complex conditional breaks:
10521
10522 @smallexample
10523 break f
10524 condition 1 (report(i); k += 1; A(k) > 100)
10525 @end smallexample
10526
10527 @item 
10528 Rather than use catenation and symbolic character names to introduce special 
10529 characters into strings, one may instead use a special bracket notation, 
10530 which is also used to print strings.  A sequence of characters of the form 
10531 @samp{["@var{XX}"]} within a string or character literal denotes the 
10532 (single) character whose numeric encoding is @var{XX} in hexadecimal.  The
10533 sequence of characters @samp{["""]} also denotes a single quotation mark 
10534 in strings.   For example,
10535 @smallexample
10536    "One line.["0a"]Next line.["0a"]"
10537 @end smallexample
10538 @noindent
10539 contains an ASCII newline character (@code{Ada.Characters.Latin_1.LF})
10540 after each period.
10541
10542 @item
10543 The subtype used as a prefix for the attributes @t{'Pos}, @t{'Min}, and
10544 @t{'Max} is optional (and is ignored in any case).  For example, it is valid
10545 to write
10546
10547 @smallexample
10548 print 'max(x, y)
10549 @end smallexample
10550
10551 @item
10552 When printing arrays, @value{GDBN} uses positional notation when the 
10553 array has a lower bound of 1, and uses a modified named notation otherwise.
10554 For example, a one-dimensional array of three integers with a lower bound
10555 of 3 might print as
10556
10557 @smallexample
10558 (3 => 10, 17, 1)
10559 @end smallexample
10560
10561 @noindent
10562 That is, in contrast to valid Ada, only the first component has a @code{=>} 
10563 clause.
10564
10565 @item
10566 You may abbreviate attributes in expressions with any unique,
10567 multi-character subsequence of 
10568 their names (an exact match gets preference).
10569 For example, you may use @t{a'len}, @t{a'gth}, or @t{a'lh}
10570 in place of  @t{a'length}.
10571
10572 @item
10573 @cindex quoting Ada internal identifiers
10574 Since Ada is case-insensitive, the debugger normally maps identifiers you type 
10575 to lower case.  The GNAT compiler uses upper-case characters for 
10576 some of its internal identifiers, which are normally of no interest to users.
10577 For the rare occasions when you actually have to look at them,
10578 enclose them in angle brackets to avoid the lower-case mapping. 
10579 For example,
10580 @smallexample
10581 @value{GDBP} print <JMPBUF_SAVE>[0]
10582 @end smallexample
10583
10584 @item
10585 Printing an object of class-wide type or dereferencing an 
10586 access-to-class-wide value will display all the components of the object's
10587 specific type (as indicated by its run-time tag).  Likewise, component
10588 selection on such a value will operate on the specific type of the
10589 object.
10590
10591 @end itemize
10592
10593 @node Stopping Before Main Program
10594 @subsubsection Stopping at the Very Beginning
10595
10596 @cindex breakpointing Ada elaboration code
10597 It is sometimes necessary to debug the program during elaboration, and
10598 before reaching the main procedure.
10599 As defined in the Ada Reference
10600 Manual, the elaboration code is invoked from a procedure called
10601 @code{adainit}.  To run your program up to the beginning of
10602 elaboration, simply use the following two commands:
10603 @code{tbreak adainit} and @code{run}.
10604
10605 @node Ada Glitches
10606 @subsubsection Known Peculiarities of Ada Mode
10607 @cindex Ada, problems
10608
10609 Besides the omissions listed previously (@pxref{Omissions from Ada}),
10610 we know of several problems with and limitations of Ada mode in
10611 @value{GDBN},
10612 some of which will be fixed with planned future releases of the debugger 
10613 and the GNU Ada compiler.
10614
10615 @itemize @bullet
10616 @item
10617 Currently, the debugger 
10618 has insufficient information to determine whether certain pointers represent
10619 pointers to objects or the objects themselves.
10620 Thus, the user may have to tack an extra @code{.all} after an expression
10621 to get it printed properly.
10622
10623 @item 
10624 Static constants that the compiler chooses not to materialize as objects in 
10625 storage are invisible to the debugger.
10626
10627 @item
10628 Named parameter associations in function argument lists are ignored (the
10629 argument lists are treated as positional).
10630
10631 @item
10632 Many useful library packages are currently invisible to the debugger.
10633
10634 @item
10635 Fixed-point arithmetic, conversions, input, and output is carried out using 
10636 floating-point arithmetic, and may give results that only approximate those on 
10637 the host machine.
10638
10639 @item
10640 The type of the @t{'Address} attribute may not be @code{System.Address}.
10641
10642 @item
10643 The GNAT compiler never generates the prefix @code{Standard} for any of 
10644 the standard symbols defined by the Ada language.  @value{GDBN} knows about 
10645 this: it will strip the prefix from names when you use it, and will never
10646 look for a name you have so qualified among local symbols, nor match against
10647 symbols in other packages or subprograms.  If you have 
10648 defined entities anywhere in your program other than parameters and 
10649 local variables whose simple names match names in @code{Standard}, 
10650 GNAT's lack of qualification here can cause confusion.  When this happens,
10651 you can usually resolve the confusion 
10652 by qualifying the problematic names with package
10653 @code{Standard} explicitly.  
10654 @end itemize
10655
10656 @node Unsupported Languages
10657 @section Unsupported Languages
10658
10659 @cindex unsupported languages
10660 @cindex minimal language
10661 In addition to the other fully-supported programming languages,
10662 @value{GDBN} also provides a pseudo-language, called @code{minimal}.
10663 It does not represent a real programming language, but provides a set
10664 of capabilities close to what the C or assembly languages provide.
10665 This should allow most simple operations to be performed while debugging
10666 an application that uses a language currently not supported by @value{GDBN}.
10667
10668 If the language is set to @code{auto}, @value{GDBN} will automatically
10669 select this language if the current frame corresponds to an unsupported
10670 language.
10671
10672 @node Symbols
10673 @chapter Examining the Symbol Table
10674
10675 The commands described in this chapter allow you to inquire about the
10676 symbols (names of variables, functions and types) defined in your
10677 program.  This information is inherent in the text of your program and
10678 does not change as your program executes.  @value{GDBN} finds it in your
10679 program's symbol table, in the file indicated when you started @value{GDBN}
10680 (@pxref{File Options, ,Choosing Files}), or by one of the
10681 file-management commands (@pxref{Files, ,Commands to Specify Files}).
10682
10683 @cindex symbol names
10684 @cindex names of symbols
10685 @cindex quoting names
10686 Occasionally, you may need to refer to symbols that contain unusual
10687 characters, which @value{GDBN} ordinarily treats as word delimiters.  The
10688 most frequent case is in referring to static variables in other
10689 source files (@pxref{Variables,,Program Variables}).  File names
10690 are recorded in object files as debugging symbols, but @value{GDBN} would
10691 ordinarily parse a typical file name, like @file{foo.c}, as the three words
10692 @samp{foo} @samp{.} @samp{c}.  To allow @value{GDBN} to recognize
10693 @samp{foo.c} as a single symbol, enclose it in single quotes; for example,
10694
10695 @smallexample
10696 p 'foo.c'::x
10697 @end smallexample
10698
10699 @noindent
10700 looks up the value of @code{x} in the scope of the file @file{foo.c}.
10701
10702 @table @code
10703 @cindex case-insensitive symbol names
10704 @cindex case sensitivity in symbol names
10705 @kindex set case-sensitive
10706 @item set case-sensitive on
10707 @itemx set case-sensitive off
10708 @itemx set case-sensitive auto
10709 Normally, when @value{GDBN} looks up symbols, it matches their names
10710 with case sensitivity determined by the current source language.
10711 Occasionally, you may wish to control that.  The command @code{set
10712 case-sensitive} lets you do that by specifying @code{on} for
10713 case-sensitive matches or @code{off} for case-insensitive ones.  If
10714 you specify @code{auto}, case sensitivity is reset to the default
10715 suitable for the source language.  The default is case-sensitive
10716 matches for all languages except for Fortran, for which the default is
10717 case-insensitive matches.
10718
10719 @kindex show case-sensitive
10720 @item show case-sensitive
10721 This command shows the current setting of case sensitivity for symbols
10722 lookups.
10723
10724 @kindex info address
10725 @cindex address of a symbol
10726 @item info address @var{symbol}
10727 Describe where the data for @var{symbol} is stored.  For a register
10728 variable, this says which register it is kept in.  For a non-register
10729 local variable, this prints the stack-frame offset at which the variable
10730 is always stored.
10731
10732 Note the contrast with @samp{print &@var{symbol}}, which does not work
10733 at all for a register variable, and for a stack local variable prints
10734 the exact address of the current instantiation of the variable.
10735
10736 @kindex info symbol
10737 @cindex symbol from address
10738 @cindex closest symbol and offset for an address
10739 @item info symbol @var{addr}
10740 Print the name of a symbol which is stored at the address @var{addr}.
10741 If no symbol is stored exactly at @var{addr}, @value{GDBN} prints the
10742 nearest symbol and an offset from it:
10743
10744 @smallexample
10745 (@value{GDBP}) info symbol 0x54320
10746 _initialize_vx + 396 in section .text
10747 @end smallexample
10748
10749 @noindent
10750 This is the opposite of the @code{info address} command.  You can use
10751 it to find out the name of a variable or a function given its address.
10752
10753 @kindex whatis
10754 @item whatis [@var{arg}]
10755 Print the data type of @var{arg}, which can be either an expression or
10756 a data type.  With no argument, print the data type of @code{$}, the
10757 last value in the value history.  If @var{arg} is an expression, it is
10758 not actually evaluated, and any side-effecting operations (such as
10759 assignments or function calls) inside it do not take place.  If
10760 @var{arg} is a type name, it may be the name of a type or typedef, or
10761 for C code it may have the form @samp{class @var{class-name}},
10762 @samp{struct @var{struct-tag}}, @samp{union @var{union-tag}} or
10763 @samp{enum @var{enum-tag}}.
10764 @xref{Expressions, ,Expressions}.
10765
10766 @kindex ptype
10767 @item ptype [@var{arg}]
10768 @code{ptype} accepts the same arguments as @code{whatis}, but prints a
10769 detailed description of the type, instead of just the name of the type.
10770 @xref{Expressions, ,Expressions}.
10771
10772 For example, for this variable declaration:
10773
10774 @smallexample
10775 struct complex @{double real; double imag;@} v;
10776 @end smallexample
10777
10778 @noindent
10779 the two commands give this output:
10780
10781 @smallexample
10782 @group
10783 (@value{GDBP}) whatis v
10784 type = struct complex
10785 (@value{GDBP}) ptype v
10786 type = struct complex @{
10787     double real;
10788     double imag;
10789 @}
10790 @end group
10791 @end smallexample
10792
10793 @noindent
10794 As with @code{whatis}, using @code{ptype} without an argument refers to
10795 the type of @code{$}, the last value in the value history.
10796
10797 @cindex incomplete type
10798 Sometimes, programs use opaque data types or incomplete specifications
10799 of complex data structure.  If the debug information included in the
10800 program does not allow @value{GDBN} to display a full declaration of
10801 the data type, it will say @samp{<incomplete type>}.  For example,
10802 given these declarations:
10803
10804 @smallexample
10805     struct foo;
10806     struct foo *fooptr;
10807 @end smallexample
10808
10809 @noindent
10810 but no definition for @code{struct foo} itself, @value{GDBN} will say:
10811
10812 @smallexample
10813   (@value{GDBP}) ptype foo
10814   $1 = <incomplete type>
10815 @end smallexample
10816
10817 @noindent
10818 ``Incomplete type'' is C terminology for data types that are not
10819 completely specified.
10820
10821 @kindex info types
10822 @item info types @var{regexp}
10823 @itemx info types
10824 Print a brief description of all types whose names match the regular
10825 expression @var{regexp} (or all types in your program, if you supply
10826 no argument).  Each complete typename is matched as though it were a
10827 complete line; thus, @samp{i type value} gives information on all
10828 types in your program whose names include the string @code{value}, but
10829 @samp{i type ^value$} gives information only on types whose complete
10830 name is @code{value}.
10831
10832 This command differs from @code{ptype} in two ways: first, like
10833 @code{whatis}, it does not print a detailed description; second, it
10834 lists all source files where a type is defined.
10835
10836 @kindex info scope
10837 @cindex local variables
10838 @item info scope @var{location}
10839 List all the variables local to a particular scope.  This command
10840 accepts a @var{location} argument---a function name, a source line, or
10841 an address preceded by a @samp{*}, and prints all the variables local
10842 to the scope defined by that location.  For example:
10843
10844 @smallexample
10845 (@value{GDBP}) @b{info scope command_line_handler}
10846 Scope for command_line_handler:
10847 Symbol rl is an argument at stack/frame offset 8, length 4.
10848 Symbol linebuffer is in static storage at address 0x150a18, length 4.
10849 Symbol linelength is in static storage at address 0x150a1c, length 4.
10850 Symbol p is a local variable in register $esi, length 4.
10851 Symbol p1 is a local variable in register $ebx, length 4.
10852 Symbol nline is a local variable in register $edx, length 4.
10853 Symbol repeat is a local variable at frame offset -8, length 4.
10854 @end smallexample
10855
10856 @noindent
10857 This command is especially useful for determining what data to collect
10858 during a @dfn{trace experiment}, see @ref{Tracepoint Actions,
10859 collect}.
10860
10861 @kindex info source
10862 @item info source
10863 Show information about the current source file---that is, the source file for
10864 the function containing the current point of execution:
10865 @itemize @bullet
10866 @item
10867 the name of the source file, and the directory containing it,
10868 @item
10869 the directory it was compiled in,
10870 @item
10871 its length, in lines,
10872 @item
10873 which programming language it is written in,
10874 @item
10875 whether the executable includes debugging information for that file, and
10876 if so, what format the information is in (e.g., STABS, Dwarf 2, etc.), and
10877 @item
10878 whether the debugging information includes information about
10879 preprocessor macros.
10880 @end itemize
10881
10882
10883 @kindex info sources
10884 @item info sources
10885 Print the names of all source files in your program for which there is
10886 debugging information, organized into two lists: files whose symbols
10887 have already been read, and files whose symbols will be read when needed.
10888
10889 @kindex info functions
10890 @item info functions
10891 Print the names and data types of all defined functions.
10892
10893 @item info functions @var{regexp}
10894 Print the names and data types of all defined functions
10895 whose names contain a match for regular expression @var{regexp}.
10896 Thus, @samp{info fun step} finds all functions whose names
10897 include @code{step}; @samp{info fun ^step} finds those whose names
10898 start with @code{step}.  If a function name contains characters
10899 that conflict with the regular expression language (e.g.@:
10900 @samp{operator*()}), they may be quoted with a backslash.
10901
10902 @kindex info variables
10903 @item info variables
10904 Print the names and data types of all variables that are declared
10905 outside of functions (i.e.@: excluding local variables).
10906
10907 @item info variables @var{regexp}
10908 Print the names and data types of all variables (except for local
10909 variables) whose names contain a match for regular expression
10910 @var{regexp}.
10911
10912 @kindex info classes
10913 @cindex Objective-C, classes and selectors
10914 @item info classes
10915 @itemx info classes @var{regexp}
10916 Display all Objective-C classes in your program, or
10917 (with the @var{regexp} argument) all those matching a particular regular
10918 expression.
10919
10920 @kindex info selectors
10921 @item info selectors
10922 @itemx info selectors @var{regexp}
10923 Display all Objective-C selectors in your program, or
10924 (with the @var{regexp} argument) all those matching a particular regular
10925 expression.
10926
10927 @ignore
10928 This was never implemented.
10929 @kindex info methods
10930 @item info methods
10931 @itemx info methods @var{regexp}
10932 The @code{info methods} command permits the user to examine all defined
10933 methods within C@t{++} program, or (with the @var{regexp} argument) a
10934 specific set of methods found in the various C@t{++} classes.  Many
10935 C@t{++} classes provide a large number of methods.  Thus, the output
10936 from the @code{ptype} command can be overwhelming and hard to use.  The
10937 @code{info-methods} command filters the methods, printing only those
10938 which match the regular-expression @var{regexp}.
10939 @end ignore
10940
10941 @cindex reloading symbols
10942 Some systems allow individual object files that make up your program to
10943 be replaced without stopping and restarting your program.  For example,
10944 in VxWorks you can simply recompile a defective object file and keep on
10945 running.  If you are running on one of these systems, you can allow
10946 @value{GDBN} to reload the symbols for automatically relinked modules:
10947
10948 @table @code
10949 @kindex set symbol-reloading
10950 @item set symbol-reloading on
10951 Replace symbol definitions for the corresponding source file when an
10952 object file with a particular name is seen again.
10953
10954 @item set symbol-reloading off
10955 Do not replace symbol definitions when encountering object files of the
10956 same name more than once.  This is the default state; if you are not
10957 running on a system that permits automatic relinking of modules, you
10958 should leave @code{symbol-reloading} off, since otherwise @value{GDBN}
10959 may discard symbols when linking large programs, that may contain
10960 several modules (from different directories or libraries) with the same
10961 name.
10962
10963 @kindex show symbol-reloading
10964 @item show symbol-reloading
10965 Show the current @code{on} or @code{off} setting.
10966 @end table
10967
10968 @cindex opaque data types
10969 @kindex set opaque-type-resolution
10970 @item set opaque-type-resolution on
10971 Tell @value{GDBN} to resolve opaque types.  An opaque type is a type
10972 declared as a pointer to a @code{struct}, @code{class}, or
10973 @code{union}---for example, @code{struct MyType *}---that is used in one
10974 source file although the full declaration of @code{struct MyType} is in
10975 another source file.  The default is on.
10976
10977 A change in the setting of this subcommand will not take effect until
10978 the next time symbols for a file are loaded.
10979
10980 @item set opaque-type-resolution off
10981 Tell @value{GDBN} not to resolve opaque types.  In this case, the type
10982 is printed as follows:
10983 @smallexample
10984 @{<no data fields>@}
10985 @end smallexample
10986
10987 @kindex show opaque-type-resolution
10988 @item show opaque-type-resolution
10989 Show whether opaque types are resolved or not.
10990
10991 @kindex maint print symbols
10992 @cindex symbol dump
10993 @kindex maint print psymbols
10994 @cindex partial symbol dump
10995 @item maint print symbols @var{filename}
10996 @itemx maint print psymbols @var{filename}
10997 @itemx maint print msymbols @var{filename}
10998 Write a dump of debugging symbol data into the file @var{filename}.
10999 These commands are used to debug the @value{GDBN} symbol-reading code.  Only
11000 symbols with debugging data are included.  If you use @samp{maint print
11001 symbols}, @value{GDBN} includes all the symbols for which it has already
11002 collected full details: that is, @var{filename} reflects symbols for
11003 only those files whose symbols @value{GDBN} has read.  You can use the
11004 command @code{info sources} to find out which files these are.  If you
11005 use @samp{maint print psymbols} instead, the dump shows information about
11006 symbols that @value{GDBN} only knows partially---that is, symbols defined in
11007 files that @value{GDBN} has skimmed, but not yet read completely.  Finally,
11008 @samp{maint print msymbols} dumps just the minimal symbol information
11009 required for each object file from which @value{GDBN} has read some symbols.
11010 @xref{Files, ,Commands to Specify Files}, for a discussion of how
11011 @value{GDBN} reads symbols (in the description of @code{symbol-file}).
11012
11013 @kindex maint info symtabs
11014 @kindex maint info psymtabs
11015 @cindex listing @value{GDBN}'s internal symbol tables
11016 @cindex symbol tables, listing @value{GDBN}'s internal
11017 @cindex full symbol tables, listing @value{GDBN}'s internal
11018 @cindex partial symbol tables, listing @value{GDBN}'s internal
11019 @item maint info symtabs @r{[} @var{regexp} @r{]}
11020 @itemx maint info psymtabs @r{[} @var{regexp} @r{]}
11021
11022 List the @code{struct symtab} or @code{struct partial_symtab}
11023 structures whose names match @var{regexp}.  If @var{regexp} is not
11024 given, list them all.  The output includes expressions which you can
11025 copy into a @value{GDBN} debugging this one to examine a particular
11026 structure in more detail.  For example:
11027
11028 @smallexample
11029 (@value{GDBP}) maint info psymtabs dwarf2read
11030 @{ objfile /home/gnu/build/gdb/gdb
11031   ((struct objfile *) 0x82e69d0)
11032   @{ psymtab /home/gnu/src/gdb/dwarf2read.c
11033     ((struct partial_symtab *) 0x8474b10)
11034     readin no
11035     fullname (null)
11036     text addresses 0x814d3c8 -- 0x8158074
11037     globals (* (struct partial_symbol **) 0x8507a08 @@ 9)
11038     statics (* (struct partial_symbol **) 0x40e95b78 @@ 2882)
11039     dependencies (none)
11040   @}
11041 @}
11042 (@value{GDBP}) maint info symtabs
11043 (@value{GDBP})
11044 @end smallexample
11045 @noindent
11046 We see that there is one partial symbol table whose filename contains
11047 the string @samp{dwarf2read}, belonging to the @samp{gdb} executable;
11048 and we see that @value{GDBN} has not read in any symtabs yet at all.
11049 If we set a breakpoint on a function, that will cause @value{GDBN} to
11050 read the symtab for the compilation unit containing that function:
11051
11052 @smallexample
11053 (@value{GDBP}) break dwarf2_psymtab_to_symtab
11054 Breakpoint 1 at 0x814e5da: file /home/gnu/src/gdb/dwarf2read.c,
11055 line 1574.
11056 (@value{GDBP}) maint info symtabs
11057 @{ objfile /home/gnu/build/gdb/gdb
11058   ((struct objfile *) 0x82e69d0)
11059   @{ symtab /home/gnu/src/gdb/dwarf2read.c
11060     ((struct symtab *) 0x86c1f38)
11061     dirname (null)
11062     fullname (null)
11063     blockvector ((struct blockvector *) 0x86c1bd0) (primary)
11064     debugformat DWARF 2
11065   @}
11066 @}
11067 (@value{GDBP})
11068 @end smallexample
11069 @end table
11070
11071
11072 @node Altering
11073 @chapter Altering Execution
11074
11075 Once you think you have found an error in your program, you might want to
11076 find out for certain whether correcting the apparent error would lead to
11077 correct results in the rest of the run.  You can find the answer by
11078 experiment, using the @value{GDBN} features for altering execution of the
11079 program.
11080
11081 For example, you can store new values into variables or memory
11082 locations, give your program a signal, restart it at a different
11083 address, or even return prematurely from a function.
11084
11085 @menu
11086 * Assignment::                  Assignment to variables
11087 * Jumping::                     Continuing at a different address
11088 * Signaling::                   Giving your program a signal
11089 * Returning::                   Returning from a function
11090 * Calling::                     Calling your program's functions
11091 * Patching::                    Patching your program
11092 @end menu
11093
11094 @node Assignment
11095 @section Assignment to Variables
11096
11097 @cindex assignment
11098 @cindex setting variables
11099 To alter the value of a variable, evaluate an assignment expression.
11100 @xref{Expressions, ,Expressions}.  For example,
11101
11102 @smallexample
11103 print x=4
11104 @end smallexample
11105
11106 @noindent
11107 stores the value 4 into the variable @code{x}, and then prints the
11108 value of the assignment expression (which is 4).
11109 @xref{Languages, ,Using @value{GDBN} with Different Languages}, for more
11110 information on operators in supported languages.
11111
11112 @kindex set variable
11113 @cindex variables, setting
11114 If you are not interested in seeing the value of the assignment, use the
11115 @code{set} command instead of the @code{print} command.  @code{set} is
11116 really the same as @code{print} except that the expression's value is
11117 not printed and is not put in the value history (@pxref{Value History,
11118 ,Value History}).  The expression is evaluated only for its effects.
11119
11120 If the beginning of the argument string of the @code{set} command
11121 appears identical to a @code{set} subcommand, use the @code{set
11122 variable} command instead of just @code{set}.  This command is identical
11123 to @code{set} except for its lack of subcommands.  For example, if your
11124 program has a variable @code{width}, you get an error if you try to set
11125 a new value with just @samp{set width=13}, because @value{GDBN} has the
11126 command @code{set width}:
11127
11128 @smallexample
11129 (@value{GDBP}) whatis width
11130 type = double
11131 (@value{GDBP}) p width
11132 $4 = 13
11133 (@value{GDBP}) set width=47
11134 Invalid syntax in expression.
11135 @end smallexample
11136
11137 @noindent
11138 The invalid expression, of course, is @samp{=47}.  In
11139 order to actually set the program's variable @code{width}, use
11140
11141 @smallexample
11142 (@value{GDBP}) set var width=47
11143 @end smallexample
11144
11145 Because the @code{set} command has many subcommands that can conflict
11146 with the names of program variables, it is a good idea to use the
11147 @code{set variable} command instead of just @code{set}.  For example, if
11148 your program has a variable @code{g}, you run into problems if you try
11149 to set a new value with just @samp{set g=4}, because @value{GDBN} has
11150 the command @code{set gnutarget}, abbreviated @code{set g}:
11151
11152 @smallexample
11153 @group
11154 (@value{GDBP}) whatis g
11155 type = double
11156 (@value{GDBP}) p g
11157 $1 = 1
11158 (@value{GDBP}) set g=4
11159 (@value{GDBP}) p g
11160 $2 = 1
11161 (@value{GDBP}) r
11162 The program being debugged has been started already.
11163 Start it from the beginning? (y or n) y
11164 Starting program: /home/smith/cc_progs/a.out
11165 "/home/smith/cc_progs/a.out": can't open to read symbols:
11166                                  Invalid bfd target.
11167 (@value{GDBP}) show g
11168 The current BFD target is "=4".
11169 @end group
11170 @end smallexample
11171
11172 @noindent
11173 The program variable @code{g} did not change, and you silently set the
11174 @code{gnutarget} to an invalid value.  In order to set the variable
11175 @code{g}, use
11176
11177 @smallexample
11178 (@value{GDBP}) set var g=4
11179 @end smallexample
11180
11181 @value{GDBN} allows more implicit conversions in assignments than C; you can
11182 freely store an integer value into a pointer variable or vice versa,
11183 and you can convert any structure to any other structure that is the
11184 same length or shorter.
11185 @comment FIXME: how do structs align/pad in these conversions?
11186 @comment        /doc@cygnus.com 18dec1990
11187
11188 To store values into arbitrary places in memory, use the @samp{@{@dots{}@}}
11189 construct to generate a value of specified type at a specified address
11190 (@pxref{Expressions, ,Expressions}).  For example, @code{@{int@}0x83040} refers
11191 to memory location @code{0x83040} as an integer (which implies a certain size
11192 and representation in memory), and
11193
11194 @smallexample
11195 set @{int@}0x83040 = 4
11196 @end smallexample
11197
11198 @noindent
11199 stores the value 4 into that memory location.
11200
11201 @node Jumping
11202 @section Continuing at a Different Address
11203
11204 Ordinarily, when you continue your program, you do so at the place where
11205 it stopped, with the @code{continue} command.  You can instead continue at
11206 an address of your own choosing, with the following commands:
11207
11208 @table @code
11209 @kindex jump
11210 @item jump @var{linespec}
11211 Resume execution at line @var{linespec}.  Execution stops again
11212 immediately if there is a breakpoint there.  @xref{List, ,Printing
11213 Source Lines}, for a description of the different forms of
11214 @var{linespec}.  It is common practice to use the @code{tbreak} command
11215 in conjunction with @code{jump}.  @xref{Set Breaks, ,Setting
11216 Breakpoints}.
11217
11218 The @code{jump} command does not change the current stack frame, or
11219 the stack pointer, or the contents of any memory location or any
11220 register other than the program counter.  If line @var{linespec} is in
11221 a different function from the one currently executing, the results may
11222 be bizarre if the two functions expect different patterns of arguments or
11223 of local variables.  For this reason, the @code{jump} command requests
11224 confirmation if the specified line is not in the function currently
11225 executing.  However, even bizarre results are predictable if you are
11226 well acquainted with the machine-language code of your program.
11227
11228 @item jump *@var{address}
11229 Resume execution at the instruction at address @var{address}.
11230 @end table
11231
11232 @c Doesn't work on HP-UX; have to set $pcoqh and $pcoqt.
11233 On many systems, you can get much the same effect as the @code{jump}
11234 command by storing a new value into the register @code{$pc}.  The
11235 difference is that this does not start your program running; it only
11236 changes the address of where it @emph{will} run when you continue.  For
11237 example,
11238
11239 @smallexample
11240 set $pc = 0x485
11241 @end smallexample
11242
11243 @noindent
11244 makes the next @code{continue} command or stepping command execute at
11245 address @code{0x485}, rather than at the address where your program stopped.
11246 @xref{Continuing and Stepping, ,Continuing and Stepping}.
11247
11248 The most common occasion to use the @code{jump} command is to back
11249 up---perhaps with more breakpoints set---over a portion of a program
11250 that has already executed, in order to examine its execution in more
11251 detail.
11252
11253 @c @group
11254 @node Signaling
11255 @section Giving your Program a Signal
11256 @cindex deliver a signal to a program
11257
11258 @table @code
11259 @kindex signal
11260 @item signal @var{signal}
11261 Resume execution where your program stopped, but immediately give it the
11262 signal @var{signal}.  @var{signal} can be the name or the number of a
11263 signal.  For example, on many systems @code{signal 2} and @code{signal
11264 SIGINT} are both ways of sending an interrupt signal.
11265
11266 Alternatively, if @var{signal} is zero, continue execution without
11267 giving a signal.  This is useful when your program stopped on account of
11268 a signal and would ordinary see the signal when resumed with the
11269 @code{continue} command; @samp{signal 0} causes it to resume without a
11270 signal.
11271
11272 @code{signal} does not repeat when you press @key{RET} a second time
11273 after executing the command.
11274 @end table
11275 @c @end group
11276
11277 Invoking the @code{signal} command is not the same as invoking the
11278 @code{kill} utility from the shell.  Sending a signal with @code{kill}
11279 causes @value{GDBN} to decide what to do with the signal depending on
11280 the signal handling tables (@pxref{Signals}).  The @code{signal} command
11281 passes the signal directly to your program.
11282
11283
11284 @node Returning
11285 @section Returning from a Function
11286
11287 @table @code
11288 @cindex returning from a function
11289 @kindex return
11290 @item return
11291 @itemx return @var{expression}
11292 You can cancel execution of a function call with the @code{return}
11293 command.  If you give an
11294 @var{expression} argument, its value is used as the function's return
11295 value.
11296 @end table
11297
11298 When you use @code{return}, @value{GDBN} discards the selected stack frame
11299 (and all frames within it).  You can think of this as making the
11300 discarded frame return prematurely.  If you wish to specify a value to
11301 be returned, give that value as the argument to @code{return}.
11302
11303 This pops the selected stack frame (@pxref{Selection, ,Selecting a
11304 Frame}), and any other frames inside of it, leaving its caller as the
11305 innermost remaining frame.  That frame becomes selected.  The
11306 specified value is stored in the registers used for returning values
11307 of functions.
11308
11309 The @code{return} command does not resume execution; it leaves the
11310 program stopped in the state that would exist if the function had just
11311 returned.  In contrast, the @code{finish} command (@pxref{Continuing
11312 and Stepping, ,Continuing and Stepping}) resumes execution until the
11313 selected stack frame returns naturally.
11314
11315 @node Calling
11316 @section Calling Program Functions
11317
11318 @table @code
11319 @cindex calling functions
11320 @cindex inferior functions, calling
11321 @item print @var{expr}
11322 Evaluate the expression @var{expr} and display the resulting value.
11323 @var{expr} may include calls to functions in the program being
11324 debugged.
11325
11326 @kindex call
11327 @item call @var{expr}
11328 Evaluate the expression @var{expr} without displaying @code{void}
11329 returned values.
11330
11331 You can use this variant of the @code{print} command if you want to
11332 execute a function from your program that does not return anything
11333 (a.k.a.@: @dfn{a void function}), but without cluttering the output
11334 with @code{void} returned values that @value{GDBN} will otherwise
11335 print.  If the result is not void, it is printed and saved in the
11336 value history.
11337 @end table
11338
11339 It is possible for the function you call via the @code{print} or
11340 @code{call} command to generate a signal (e.g., if there's a bug in
11341 the function, or if you passed it incorrect arguments).  What happens
11342 in that case is controlled by the @code{set unwindonsignal} command.
11343
11344 @table @code
11345 @item set unwindonsignal
11346 @kindex set unwindonsignal
11347 @cindex unwind stack in called functions
11348 @cindex call dummy stack unwinding
11349 Set unwinding of the stack if a signal is received while in a function
11350 that @value{GDBN} called in the program being debugged.  If set to on,
11351 @value{GDBN} unwinds the stack it created for the call and restores
11352 the context to what it was before the call.  If set to off (the
11353 default), @value{GDBN} stops in the frame where the signal was
11354 received.
11355
11356 @item show unwindonsignal
11357 @kindex show unwindonsignal
11358 Show the current setting of stack unwinding in the functions called by
11359 @value{GDBN}.
11360 @end table
11361
11362 @cindex weak alias functions
11363 Sometimes, a function you wish to call is actually a @dfn{weak alias}
11364 for another function.  In such case, @value{GDBN} might not pick up
11365 the type information, including the types of the function arguments,
11366 which causes @value{GDBN} to call the inferior function incorrectly.
11367 As a result, the called function will function erroneously and may
11368 even crash.  A solution to that is to use the name of the aliased
11369 function instead.
11370
11371 @node Patching
11372 @section Patching Programs
11373
11374 @cindex patching binaries
11375 @cindex writing into executables
11376 @cindex writing into corefiles
11377
11378 By default, @value{GDBN} opens the file containing your program's
11379 executable code (or the corefile) read-only.  This prevents accidental
11380 alterations to machine code; but it also prevents you from intentionally
11381 patching your program's binary.
11382
11383 If you'd like to be able to patch the binary, you can specify that
11384 explicitly with the @code{set write} command.  For example, you might
11385 want to turn on internal debugging flags, or even to make emergency
11386 repairs.
11387
11388 @table @code
11389 @kindex set write
11390 @item set write on
11391 @itemx set write off
11392 If you specify @samp{set write on}, @value{GDBN} opens executable and
11393 core files for both reading and writing; if you specify @samp{set write
11394 off} (the default), @value{GDBN} opens them read-only.
11395
11396 If you have already loaded a file, you must load it again (using the
11397 @code{exec-file} or @code{core-file} command) after changing @code{set
11398 write}, for your new setting to take effect.
11399
11400 @item show write
11401 @kindex show write
11402 Display whether executable files and core files are opened for writing
11403 as well as reading.
11404 @end table
11405
11406 @node GDB Files
11407 @chapter @value{GDBN} Files
11408
11409 @value{GDBN} needs to know the file name of the program to be debugged,
11410 both in order to read its symbol table and in order to start your
11411 program.  To debug a core dump of a previous run, you must also tell
11412 @value{GDBN} the name of the core dump file.
11413
11414 @menu
11415 * Files::                       Commands to specify files
11416 * Separate Debug Files::        Debugging information in separate files
11417 * Symbol Errors::               Errors reading symbol files
11418 @end menu
11419
11420 @node Files
11421 @section Commands to Specify Files
11422
11423 @cindex symbol table
11424 @cindex core dump file
11425
11426 You may want to specify executable and core dump file names.  The usual
11427 way to do this is at start-up time, using the arguments to
11428 @value{GDBN}'s start-up commands (@pxref{Invocation, , Getting In and
11429 Out of @value{GDBN}}).
11430
11431 Occasionally it is necessary to change to a different file during a
11432 @value{GDBN} session.  Or you may run @value{GDBN} and forget to
11433 specify a file you want to use.  Or you are debugging a remote target
11434 via @code{gdbserver} (@pxref{Server, file, Using the @code{gdbserver}
11435 Program}).  In these situations the @value{GDBN} commands to specify
11436 new files are useful.
11437
11438 @table @code
11439 @cindex executable file
11440 @kindex file
11441 @item file @var{filename}
11442 Use @var{filename} as the program to be debugged.  It is read for its
11443 symbols and for the contents of pure memory.  It is also the program
11444 executed when you use the @code{run} command.  If you do not specify a
11445 directory and the file is not found in the @value{GDBN} working directory,
11446 @value{GDBN} uses the environment variable @code{PATH} as a list of
11447 directories to search, just as the shell does when looking for a program
11448 to run.  You can change the value of this variable, for both @value{GDBN}
11449 and your program, using the @code{path} command.
11450
11451 @cindex unlinked object files
11452 @cindex patching object files
11453 You can load unlinked object @file{.o} files into @value{GDBN} using
11454 the @code{file} command.  You will not be able to ``run'' an object
11455 file, but you can disassemble functions and inspect variables.  Also,
11456 if the underlying BFD functionality supports it, you could use
11457 @kbd{gdb -write} to patch object files using this technique.  Note
11458 that @value{GDBN} can neither interpret nor modify relocations in this
11459 case, so branches and some initialized variables will appear to go to
11460 the wrong place.  But this feature is still handy from time to time.
11461
11462 @item file
11463 @code{file} with no argument makes @value{GDBN} discard any information it
11464 has on both executable file and the symbol table.
11465
11466 @kindex exec-file
11467 @item exec-file @r{[} @var{filename} @r{]}
11468 Specify that the program to be run (but not the symbol table) is found
11469 in @var{filename}.  @value{GDBN} searches the environment variable @code{PATH}
11470 if necessary to locate your program.  Omitting @var{filename} means to
11471 discard information on the executable file.
11472
11473 @kindex symbol-file
11474 @item symbol-file @r{[} @var{filename} @r{]}
11475 Read symbol table information from file @var{filename}.  @code{PATH} is
11476 searched when necessary.  Use the @code{file} command to get both symbol
11477 table and program to run from the same file.
11478
11479 @code{symbol-file} with no argument clears out @value{GDBN} information on your
11480 program's symbol table.
11481
11482 The @code{symbol-file} command causes @value{GDBN} to forget the contents of
11483 some breakpoints and auto-display expressions.  This is because they may
11484 contain pointers to the internal data recording symbols and data types,
11485 which are part of the old symbol table data being discarded inside
11486 @value{GDBN}.
11487
11488 @code{symbol-file} does not repeat if you press @key{RET} again after
11489 executing it once.
11490
11491 When @value{GDBN} is configured for a particular environment, it
11492 understands debugging information in whatever format is the standard
11493 generated for that environment; you may use either a @sc{gnu} compiler, or
11494 other compilers that adhere to the local conventions.
11495 Best results are usually obtained from @sc{gnu} compilers; for example,
11496 using @code{@value{NGCC}} you can generate debugging information for
11497 optimized code.
11498
11499 For most kinds of object files, with the exception of old SVR3 systems
11500 using COFF, the @code{symbol-file} command does not normally read the
11501 symbol table in full right away.  Instead, it scans the symbol table
11502 quickly to find which source files and which symbols are present.  The
11503 details are read later, one source file at a time, as they are needed.
11504
11505 The purpose of this two-stage reading strategy is to make @value{GDBN}
11506 start up faster.  For the most part, it is invisible except for
11507 occasional pauses while the symbol table details for a particular source
11508 file are being read.  (The @code{set verbose} command can turn these
11509 pauses into messages if desired.  @xref{Messages/Warnings, ,Optional
11510 Warnings and Messages}.)
11511
11512 We have not implemented the two-stage strategy for COFF yet.  When the
11513 symbol table is stored in COFF format, @code{symbol-file} reads the
11514 symbol table data in full right away.  Note that ``stabs-in-COFF''
11515 still does the two-stage strategy, since the debug info is actually
11516 in stabs format.
11517
11518 @kindex readnow
11519 @cindex reading symbols immediately
11520 @cindex symbols, reading immediately
11521 @item symbol-file @var{filename} @r{[} -readnow @r{]}
11522 @itemx file @var{filename} @r{[} -readnow @r{]}
11523 You can override the @value{GDBN} two-stage strategy for reading symbol
11524 tables by using the @samp{-readnow} option with any of the commands that
11525 load symbol table information, if you want to be sure @value{GDBN} has the
11526 entire symbol table available.
11527
11528 @c FIXME: for now no mention of directories, since this seems to be in
11529 @c flux.  13mar1992 status is that in theory GDB would look either in
11530 @c current dir or in same dir as myprog; but issues like competing
11531 @c GDB's, or clutter in system dirs, mean that in practice right now
11532 @c only current dir is used.  FFish says maybe a special GDB hierarchy
11533 @c (eg rooted in val of env var GDBSYMS) could exist for mappable symbol
11534 @c files.
11535
11536 @kindex core-file
11537 @item core-file @r{[}@var{filename}@r{]}
11538 @itemx core
11539 Specify the whereabouts of a core dump file to be used as the ``contents
11540 of memory''.  Traditionally, core files contain only some parts of the
11541 address space of the process that generated them; @value{GDBN} can access the
11542 executable file itself for other parts.
11543
11544 @code{core-file} with no argument specifies that no core file is
11545 to be used.
11546
11547 Note that the core file is ignored when your program is actually running
11548 under @value{GDBN}.  So, if you have been running your program and you
11549 wish to debug a core file instead, you must kill the subprocess in which
11550 the program is running.  To do this, use the @code{kill} command
11551 (@pxref{Kill Process, ,Killing the Child Process}).
11552
11553 @kindex add-symbol-file
11554 @cindex dynamic linking
11555 @item add-symbol-file @var{filename} @var{address}
11556 @itemx add-symbol-file @var{filename} @var{address} @r{[} -readnow @r{]}
11557 @itemx add-symbol-file @var{filename} @r{-s}@var{section} @var{address} @dots{}
11558 The @code{add-symbol-file} command reads additional symbol table
11559 information from the file @var{filename}.  You would use this command
11560 when @var{filename} has been dynamically loaded (by some other means)
11561 into the program that is running.  @var{address} should be the memory
11562 address at which the file has been loaded; @value{GDBN} cannot figure
11563 this out for itself.  You can additionally specify an arbitrary number
11564 of @samp{@r{-s}@var{section} @var{address}} pairs, to give an explicit
11565 section name and base address for that section.  You can specify any
11566 @var{address} as an expression.
11567
11568 The symbol table of the file @var{filename} is added to the symbol table
11569 originally read with the @code{symbol-file} command.  You can use the
11570 @code{add-symbol-file} command any number of times; the new symbol data
11571 thus read keeps adding to the old.  To discard all old symbol data
11572 instead, use the @code{symbol-file} command without any arguments.
11573
11574 @cindex relocatable object files, reading symbols from
11575 @cindex object files, relocatable, reading symbols from
11576 @cindex reading symbols from relocatable object files
11577 @cindex symbols, reading from relocatable object files
11578 @cindex @file{.o} files, reading symbols from
11579 Although @var{filename} is typically a shared library file, an
11580 executable file, or some other object file which has been fully
11581 relocated for loading into a process, you can also load symbolic
11582 information from relocatable @file{.o} files, as long as:
11583
11584 @itemize @bullet
11585 @item
11586 the file's symbolic information refers only to linker symbols defined in
11587 that file, not to symbols defined by other object files,
11588 @item
11589 every section the file's symbolic information refers to has actually
11590 been loaded into the inferior, as it appears in the file, and
11591 @item
11592 you can determine the address at which every section was loaded, and
11593 provide these to the @code{add-symbol-file} command.
11594 @end itemize
11595
11596 @noindent
11597 Some embedded operating systems, like Sun Chorus and VxWorks, can load
11598 relocatable files into an already running program; such systems
11599 typically make the requirements above easy to meet.  However, it's
11600 important to recognize that many native systems use complex link
11601 procedures (@code{.linkonce} section factoring and C@t{++} constructor table
11602 assembly, for example) that make the requirements difficult to meet.  In
11603 general, one cannot assume that using @code{add-symbol-file} to read a
11604 relocatable object file's symbolic information will have the same effect
11605 as linking the relocatable object file into the program in the normal
11606 way.
11607
11608 @code{add-symbol-file} does not repeat if you press @key{RET} after using it.
11609
11610 @kindex add-symbol-file-from-memory
11611 @cindex @code{syscall DSO}
11612 @cindex load symbols from memory
11613 @item add-symbol-file-from-memory @var{address}
11614 Load symbols from the given @var{address} in a dynamically loaded
11615 object file whose image is mapped directly into the inferior's memory.
11616 For example, the Linux kernel maps a @code{syscall DSO} into each
11617 process's address space; this DSO provides kernel-specific code for
11618 some system calls.  The argument can be any expression whose
11619 evaluation yields the address of the file's shared object file header.
11620 For this command to work, you must have used @code{symbol-file} or
11621 @code{exec-file} commands in advance.
11622
11623 @kindex add-shared-symbol-files
11624 @kindex assf
11625 @item add-shared-symbol-files @var{library-file}
11626 @itemx assf @var{library-file}
11627 The @code{add-shared-symbol-files} command can currently be used only
11628 in the Cygwin build of @value{GDBN} on MS-Windows OS, where it is an
11629 alias for the @code{dll-symbols} command (@pxref{Cygwin Native}).
11630 @value{GDBN} automatically looks for shared libraries, however if
11631 @value{GDBN} does not find yours, you can invoke
11632 @code{add-shared-symbol-files}.  It takes one argument: the shared
11633 library's file name.  @code{assf} is a shorthand alias for
11634 @code{add-shared-symbol-files}.
11635
11636 @kindex section
11637 @item section @var{section} @var{addr}
11638 The @code{section} command changes the base address of the named
11639 @var{section} of the exec file to @var{addr}.  This can be used if the
11640 exec file does not contain section addresses, (such as in the
11641 @code{a.out} format), or when the addresses specified in the file
11642 itself are wrong.  Each section must be changed separately.  The
11643 @code{info files} command, described below, lists all the sections and
11644 their addresses.
11645
11646 @kindex info files
11647 @kindex info target
11648 @item info files
11649 @itemx info target
11650 @code{info files} and @code{info target} are synonymous; both print the
11651 current target (@pxref{Targets, ,Specifying a Debugging Target}),
11652 including the names of the executable and core dump files currently in
11653 use by @value{GDBN}, and the files from which symbols were loaded.  The
11654 command @code{help target} lists all possible targets rather than
11655 current ones.
11656
11657 @kindex maint info sections
11658 @item maint info sections
11659 Another command that can give you extra information about program sections
11660 is @code{maint info sections}.  In addition to the section information
11661 displayed by @code{info files}, this command displays the flags and file
11662 offset of each section in the executable and core dump files.  In addition,
11663 @code{maint info sections} provides the following command options (which
11664 may be arbitrarily combined):
11665
11666 @table @code
11667 @item ALLOBJ
11668 Display sections for all loaded object files, including shared libraries.
11669 @item @var{sections}
11670 Display info only for named @var{sections}.
11671 @item @var{section-flags}
11672 Display info only for sections for which @var{section-flags} are true.
11673 The section flags that @value{GDBN} currently knows about are:
11674 @table @code
11675 @item ALLOC
11676 Section will have space allocated in the process when loaded.
11677 Set for all sections except those containing debug information.
11678 @item LOAD
11679 Section will be loaded from the file into the child process memory.
11680 Set for pre-initialized code and data, clear for @code{.bss} sections.
11681 @item RELOC
11682 Section needs to be relocated before loading.
11683 @item READONLY
11684 Section cannot be modified by the child process.
11685 @item CODE
11686 Section contains executable code only.
11687 @item DATA
11688 Section contains data only (no executable code).
11689 @item ROM
11690 Section will reside in ROM.
11691 @item CONSTRUCTOR
11692 Section contains data for constructor/destructor lists.
11693 @item HAS_CONTENTS
11694 Section is not empty.
11695 @item NEVER_LOAD
11696 An instruction to the linker to not output the section.
11697 @item COFF_SHARED_LIBRARY
11698 A notification to the linker that the section contains
11699 COFF shared library information.
11700 @item IS_COMMON
11701 Section contains common symbols.
11702 @end table
11703 @end table
11704 @kindex set trust-readonly-sections
11705 @cindex read-only sections
11706 @item set trust-readonly-sections on
11707 Tell @value{GDBN} that readonly sections in your object file
11708 really are read-only (i.e.@: that their contents will not change).
11709 In that case, @value{GDBN} can fetch values from these sections
11710 out of the object file, rather than from the target program.
11711 For some targets (notably embedded ones), this can be a significant
11712 enhancement to debugging performance.
11713
11714 The default is off.
11715
11716 @item set trust-readonly-sections off
11717 Tell @value{GDBN} not to trust readonly sections.  This means that
11718 the contents of the section might change while the program is running,
11719 and must therefore be fetched from the target when needed.
11720
11721 @item show trust-readonly-sections
11722 Show the current setting of trusting readonly sections.
11723 @end table
11724
11725 All file-specifying commands allow both absolute and relative file names
11726 as arguments.  @value{GDBN} always converts the file name to an absolute file
11727 name and remembers it that way.
11728
11729 @cindex shared libraries
11730 @value{GDBN} supports GNU/Linux, MS-Windows, HP-UX, SunOS, SVr4, Irix,
11731 and IBM RS/6000 AIX shared libraries.
11732
11733 @value{GDBN} automatically loads symbol definitions from shared libraries
11734 when you use the @code{run} command, or when you examine a core file.
11735 (Before you issue the @code{run} command, @value{GDBN} does not understand
11736 references to a function in a shared library, however---unless you are
11737 debugging a core file).
11738
11739 On HP-UX, if the program loads a library explicitly, @value{GDBN}
11740 automatically loads the symbols at the time of the @code{shl_load} call.
11741
11742 @c FIXME: some @value{GDBN} release may permit some refs to undef
11743 @c FIXME...symbols---eg in a break cmd---assuming they are from a shared
11744 @c FIXME...lib; check this from time to time when updating manual
11745
11746 There are times, however, when you may wish to not automatically load
11747 symbol definitions from shared libraries, such as when they are
11748 particularly large or there are many of them.
11749
11750 To control the automatic loading of shared library symbols, use the
11751 commands:
11752
11753 @table @code
11754 @kindex set auto-solib-add
11755 @item set auto-solib-add @var{mode}
11756 If @var{mode} is @code{on}, symbols from all shared object libraries
11757 will be loaded automatically when the inferior begins execution, you
11758 attach to an independently started inferior, or when the dynamic linker
11759 informs @value{GDBN} that a new library has been loaded.  If @var{mode}
11760 is @code{off}, symbols must be loaded manually, using the
11761 @code{sharedlibrary} command.  The default value is @code{on}.
11762
11763 @cindex memory used for symbol tables
11764 If your program uses lots of shared libraries with debug info that
11765 takes large amounts of memory, you can decrease the @value{GDBN}
11766 memory footprint by preventing it from automatically loading the
11767 symbols from shared libraries.  To that end, type @kbd{set
11768 auto-solib-add off} before running the inferior, then load each
11769 library whose debug symbols you do need with @kbd{sharedlibrary
11770 @var{regexp}}, where @var{regexp} is a regular expression that matches
11771 the libraries whose symbols you want to be loaded.
11772
11773 @kindex show auto-solib-add
11774 @item show auto-solib-add
11775 Display the current autoloading mode.
11776 @end table
11777
11778 @cindex load shared library
11779 To explicitly load shared library symbols, use the @code{sharedlibrary}
11780 command:
11781
11782 @table @code
11783 @kindex info sharedlibrary
11784 @kindex info share
11785 @item info share
11786 @itemx info sharedlibrary
11787 Print the names of the shared libraries which are currently loaded.
11788
11789 @kindex sharedlibrary
11790 @kindex share
11791 @item sharedlibrary @var{regex}
11792 @itemx share @var{regex}
11793 Load shared object library symbols for files matching a
11794 Unix regular expression.
11795 As with files loaded automatically, it only loads shared libraries
11796 required by your program for a core file or after typing @code{run}.  If
11797 @var{regex} is omitted all shared libraries required by your program are
11798 loaded.
11799
11800 @item nosharedlibrary
11801 @kindex nosharedlibrary
11802 @cindex unload symbols from shared libraries
11803 Unload all shared object library symbols.  This discards all symbols
11804 that have been loaded from all shared libraries.  Symbols from shared
11805 libraries that were loaded by explicit user requests are not
11806 discarded.
11807 @end table
11808
11809 Sometimes you may wish that @value{GDBN} stops and gives you control
11810 when any of shared library events happen.  Use the @code{set
11811 stop-on-solib-events} command for this:
11812
11813 @table @code
11814 @item set stop-on-solib-events
11815 @kindex set stop-on-solib-events
11816 This command controls whether @value{GDBN} should give you control
11817 when the dynamic linker notifies it about some shared library event.
11818 The most common event of interest is loading or unloading of a new
11819 shared library.
11820
11821 @item show stop-on-solib-events
11822 @kindex show stop-on-solib-events
11823 Show whether @value{GDBN} stops and gives you control when shared
11824 library events happen.
11825 @end table
11826
11827 Shared libraries are also supported in many cross or remote debugging
11828 configurations.  A copy of the target's libraries need to be present on the
11829 host system; they need to be the same as the target libraries, although the
11830 copies on the target can be stripped as long as the copies on the host are
11831 not.
11832
11833 @cindex where to look for shared libraries
11834 For remote debugging, you need to tell @value{GDBN} where the target
11835 libraries are, so that it can load the correct copies---otherwise, it
11836 may try to load the host's libraries.  @value{GDBN} has two variables
11837 to specify the search directories for target libraries.
11838
11839 @table @code
11840 @cindex prefix for shared library file names
11841 @cindex system root, alternate
11842 @kindex set solib-absolute-prefix
11843 @kindex set sysroot
11844 @item set sysroot @var{path}
11845 Use @var{path} as the system root for the program being debugged.  Any
11846 absolute shared library paths will be prefixed with @var{path}; many
11847 runtime loaders store the absolute paths to the shared library in the
11848 target program's memory.  If you use @code{set sysroot} to find shared
11849 libraries, they need to be laid out in the same way that they are on
11850 the target, with e.g.@: a @file{/lib} and @file{/usr/lib} hierarchy
11851 under @var{path}.
11852
11853 The @code{set solib-absolute-prefix} command is an alias for @code{set
11854 sysroot}.
11855
11856 @cindex default system root
11857 @cindex @samp{--with-sysroot}
11858 You can set the default system root by using the configure-time
11859 @samp{--with-sysroot} option.  If the system root is inside
11860 @value{GDBN}'s configured binary prefix (set with @samp{--prefix} or
11861 @samp{--exec-prefix}), then the default system root will be updated
11862 automatically if the installed @value{GDBN} is moved to a new
11863 location.
11864
11865 @kindex show sysroot
11866 @item show sysroot
11867 Display the current shared library prefix.
11868
11869 @kindex set solib-search-path
11870 @item set solib-search-path @var{path}
11871 If this variable is set, @var{path} is a colon-separated list of
11872 directories to search for shared libraries.  @samp{solib-search-path}
11873 is used after @samp{sysroot} fails to locate the library, or if the
11874 path to the library is relative instead of absolute.  If you want to
11875 use @samp{solib-search-path} instead of @samp{sysroot}, be sure to set
11876 @samp{sysroot} to a nonexistent directory to prevent @value{GDBN} from
11877 finding your host's libraries.  @samp{sysroot} is preferred; setting
11878 it to a nonexistent directory may interfere with automatic loading
11879 of shared library symbols.
11880
11881 @kindex show solib-search-path
11882 @item show solib-search-path
11883 Display the current shared library search path.
11884 @end table
11885
11886
11887 @node Separate Debug Files
11888 @section Debugging Information in Separate Files
11889 @cindex separate debugging information files
11890 @cindex debugging information in separate files
11891 @cindex @file{.debug} subdirectories
11892 @cindex debugging information directory, global
11893 @cindex global debugging information directory
11894 @cindex build ID, and separate debugging files
11895 @cindex @file{.build-id} directory
11896
11897 @value{GDBN} allows you to put a program's debugging information in a
11898 file separate from the executable itself, in a way that allows
11899 @value{GDBN} to find and load the debugging information automatically.
11900 Since debugging information can be very large---sometimes larger
11901 than the executable code itself---some systems distribute debugging
11902 information for their executables in separate files, which users can
11903 install only when they need to debug a problem.
11904
11905 @value{GDBN} supports two ways of specifying the separate debug info
11906 file:
11907
11908 @itemize @bullet
11909 @item
11910 The executable contains a @dfn{debug link} that specifies the name of
11911 the separate debug info file.  The separate debug file's name is
11912 usually @file{@var{executable}.debug}, where @var{executable} is the
11913 name of the corresponding executable file without leading directories
11914 (e.g., @file{ls.debug} for @file{/usr/bin/ls}).  In addition, the
11915 debug link specifies a CRC32 checksum for the debug file, which
11916 @value{GDBN} uses to validate that the executable and the debug file
11917 came from the same build.
11918
11919 @item
11920 The executable contains a @dfn{build ID}, a unique signature that is
11921 also present in the corresponding debug info file.  (This is supported
11922 only on some operating systems, notably on @sc{gnu}/Linux.  For more
11923 details about this feature, see
11924 @uref{http://fedoraproject.org/wiki/Releases/FeatureBuildId, the
11925 Fedora Project's description of the buid ID feature}.)  The debug info
11926 file's name is not specified explicitly by the build ID, but can be
11927 computed from the build ID, see below.
11928 @end itemize
11929
11930 Depending on the way the debug info file is specified, @value{GDBN}
11931 uses two different methods of looking for the debug file:
11932
11933 @itemize @bullet
11934 @item
11935 For the ``debug link'' method, @value{GDBN} looks up the named file in
11936 the directory of the executable file, then in a subdirectory of that
11937 directory named @file{.debug}, and finally under the global debug
11938 directory, in a subdirectory whose name is identical to the leading
11939 directories of the executable's absolute file name.
11940
11941 @item
11942 For the ``build ID'' method, @value{GDBN} looks in the
11943 @file{.build-id} subdirectory of the global debug directory for a file
11944 named @file{@var{nn}/@var{nnnnnnnn}.debug}, where @var{nn} are the
11945 first 2 hex characters of the build ID signature, and @var{nnnnnnnn}
11946 are the rest of the signature.  (Real signatures are 32 or more
11947 characters, not 10.)
11948 @end itemize
11949
11950 So, for example, suppose you ask @value{GDBN} to debug
11951 @file{/usr/bin/ls}, which has a @dfn{debug link} that specifies the
11952 file @file{ls.debug}, and a @dfn{build id} whose value in hex is
11953 @code{abcdef1234}.  If the global debug directory is
11954 @file{/usr/lib/debug}, then @value{GDBN} will look for the following
11955 debug information files, in the indicated order:
11956
11957 @itemize @minus
11958 @item
11959 @file{/usr/lib/debug/.build-id/ab/cdef1234.debug}
11960 @item
11961 @file{/usr/bin/ls.debug}
11962 @item
11963 @file{/usr/bin/.debug/ls.debug}
11964 @item
11965 @file{/usr/lib/debug/usr/bin/ls.debug}.
11966 @end itemize
11967
11968 You can set the global debugging info directory's name, and view the
11969 name @value{GDBN} is currently using.
11970
11971 @table @code
11972
11973 @kindex set debug-file-directory
11974 @item set debug-file-directory @var{directory}
11975 Set the directory which @value{GDBN} searches for separate debugging
11976 information files to @var{directory}.
11977
11978 @kindex show debug-file-directory
11979 @item show debug-file-directory
11980 Show the directory @value{GDBN} searches for separate debugging
11981 information files.
11982
11983 @end table
11984
11985 @cindex @code{.gnu_debuglink} sections
11986 @cindex debug link sections
11987 A debug link is a special section of the executable file named
11988 @code{.gnu_debuglink}.  The section must contain:
11989
11990 @itemize
11991 @item
11992 A filename, with any leading directory components removed, followed by
11993 a zero byte,
11994 @item
11995 zero to three bytes of padding, as needed to reach the next four-byte
11996 boundary within the section, and
11997 @item
11998 a four-byte CRC checksum, stored in the same endianness used for the
11999 executable file itself.  The checksum is computed on the debugging
12000 information file's full contents by the function given below, passing
12001 zero as the @var{crc} argument.
12002 @end itemize
12003
12004 Any executable file format can carry a debug link, as long as it can
12005 contain a section named @code{.gnu_debuglink} with the contents
12006 described above.
12007
12008 @cindex @code{.note.gnu.build-id} sections
12009 @cindex build ID sections
12010 A build ID is a special section of the executable file named
12011 @code{.note.gnu.build-id}.  This section contains unique
12012 identification for the built files---it remains the same across
12013 multiple builds of the same build tree.  The default algorithm SHA1
12014 produces 160 bits (40 hexadecimal characters) of the content.  The
12015 same section with an identical value is present in the original built
12016 binary with symbols, in its stripped variant, and in the separate
12017 debugging information file.
12018
12019 The debugging information file itself should be an ordinary
12020 executable, containing a full set of linker symbols, sections, and
12021 debugging information.  The sections of the debugging information file
12022 should have the same names, addresses, and sizes as the original file,
12023 but they need not contain any data---much like a @code{.bss} section
12024 in an ordinary executable.
12025
12026 @sc{gnu} binary utilities (Binutils) package includes the
12027 @samp{objcopy} utility that can produce
12028 the separated executable / debugging information file pairs using the
12029 following commands:
12030
12031 @smallexample
12032 @kbd{objcopy --only-keep-debug foo foo.debug}
12033 @kbd{strip -g foo}
12034 @end smallexample
12035
12036 @noindent
12037 These commands remove the debugging
12038 information from the executable file @file{foo} and place it in the file
12039 @file{foo.debug}.  You can use the first, second or both methods to link the
12040 two files:
12041
12042 @itemize @bullet
12043 @item
12044 The debug link method needs the following additional command to also leave
12045 behind a debug link in @file{foo}:
12046
12047 @smallexample
12048 @kbd{objcopy --add-gnu-debuglink=foo.debug foo}
12049 @end smallexample
12050
12051 Ulrich Drepper's @file{elfutils} package, starting with version 0.53, contains
12052 a version of the @code{strip} command such that the command @kbd{strip foo -f
12053 foo.debug} has the same functionality as the two @code{objcopy} commands and
12054 the @code{ln -s} command above, together.
12055
12056 @item
12057 Build ID gets embedded into the main executable using @code{ld --build-id} or
12058 the @value{NGCC} counterpart @code{gcc -Wl,--build-id}.  Build ID support plus
12059 compatibility fixes for debug files separation are present in @sc{gnu} binary
12060 utilities (Binutils) since version 2.18.
12061 @end itemize
12062
12063 @noindent
12064
12065 Since there are many different ways to compute CRC's for the debug
12066 link (different polynomials, reversals, byte ordering, etc.), the
12067 simplest way to describe the CRC used in @code{.gnu_debuglink}
12068 sections is to give the complete code for a function that computes it:
12069
12070 @kindex gnu_debuglink_crc32
12071 @smallexample
12072 unsigned long
12073 gnu_debuglink_crc32 (unsigned long crc,
12074                      unsigned char *buf, size_t len)
12075 @{
12076   static const unsigned long crc32_table[256] =
12077     @{
12078       0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419,
12079       0x706af48f, 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4,
12080       0xe0d5e91e, 0x97d2d988, 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07,
12081       0x90bf1d91, 0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de,
12082       0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 0x136c9856,
12083       0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,
12084       0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4,
12085       0xa2677172, 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b,
12086       0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3,
12087       0x45df5c75, 0xdcd60dcf, 0xabd13d59, 0x26d930ac, 0x51de003a,
12088       0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 0xcfba9599,
12089       0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
12090       0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190,
12091       0x01db7106, 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f,
12092       0x9fbfe4a5, 0xe8b8d433, 0x7807c9a2, 0x0f00f934, 0x9609a88e,
12093       0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01,
12094       0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 0x6c0695ed,
12095       0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,
12096       0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3,
12097       0xfbd44c65, 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2,
12098       0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a,
12099       0x346ed9fc, 0xad678846, 0xda60b8d0, 0x44042d73, 0x33031de5,
12100       0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 0xbe0b1010,
12101       0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
12102       0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17,
12103       0x2eb40d81, 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6,
12104       0x03b6e20c, 0x74b1d29a, 0xead54739, 0x9dd277af, 0x04db2615,
12105       0x73dc1683, 0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8,
12106       0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 0xf00f9344,
12107       0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
12108       0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a,
12109       0x67dd4acc, 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5,
12110       0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1,
12111       0xa6bc5767, 0x3fb506dd, 0x48b2364b, 0xd80d2bda, 0xaf0a1b4c,
12112       0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 0x316e8eef,
12113       0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
12114       0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe,
12115       0xb2bd0b28, 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31,
12116       0x2cd99e8b, 0x5bdeae1d, 0x9b64c2b0, 0xec63f226, 0x756aa39c,
12117       0x026d930a, 0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713,
12118       0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 0x92d28e9b,
12119       0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,
12120       0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1,
12121       0x18b74777, 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c,
12122       0x8f659eff, 0xf862ae69, 0x616bffd3, 0x166ccf45, 0xa00ae278,
12123       0xd70dd2ee, 0x4e048354, 0x3903b3c2, 0xa7672661, 0xd06016f7,
12124       0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 0x40df0b66,
12125       0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
12126       0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605,
12127       0xcdd70693, 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8,
12128       0x5d681b02, 0x2a6f2b94, 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b,
12129       0x2d02ef8d
12130     @};
12131   unsigned char *end;
12132
12133   crc = ~crc & 0xffffffff;
12134   for (end = buf + len; buf < end; ++buf)
12135     crc = crc32_table[(crc ^ *buf) & 0xff] ^ (crc >> 8);
12136   return ~crc & 0xffffffff;
12137 @}
12138 @end smallexample
12139
12140 @noindent
12141 This computation does not apply to the ``build ID'' method.
12142
12143
12144 @node Symbol Errors
12145 @section Errors Reading Symbol Files
12146
12147 While reading a symbol file, @value{GDBN} occasionally encounters problems,
12148 such as symbol types it does not recognize, or known bugs in compiler
12149 output.  By default, @value{GDBN} does not notify you of such problems, since
12150 they are relatively common and primarily of interest to people
12151 debugging compilers.  If you are interested in seeing information
12152 about ill-constructed symbol tables, you can either ask @value{GDBN} to print
12153 only one message about each such type of problem, no matter how many
12154 times the problem occurs; or you can ask @value{GDBN} to print more messages,
12155 to see how many times the problems occur, with the @code{set
12156 complaints} command (@pxref{Messages/Warnings, ,Optional Warnings and
12157 Messages}).
12158
12159 The messages currently printed, and their meanings, include:
12160
12161 @table @code
12162 @item inner block not inside outer block in @var{symbol}
12163
12164 The symbol information shows where symbol scopes begin and end
12165 (such as at the start of a function or a block of statements).  This
12166 error indicates that an inner scope block is not fully contained
12167 in its outer scope blocks.
12168
12169 @value{GDBN} circumvents the problem by treating the inner block as if it had
12170 the same scope as the outer block.  In the error message, @var{symbol}
12171 may be shown as ``@code{(don't know)}'' if the outer block is not a
12172 function.
12173
12174 @item block at @var{address} out of order
12175
12176 The symbol information for symbol scope blocks should occur in
12177 order of increasing addresses.  This error indicates that it does not
12178 do so.
12179
12180 @value{GDBN} does not circumvent this problem, and has trouble
12181 locating symbols in the source file whose symbols it is reading.  (You
12182 can often determine what source file is affected by specifying
12183 @code{set verbose on}.  @xref{Messages/Warnings, ,Optional Warnings and
12184 Messages}.)
12185
12186 @item bad block start address patched
12187
12188 The symbol information for a symbol scope block has a start address
12189 smaller than the address of the preceding source line.  This is known
12190 to occur in the SunOS 4.1.1 (and earlier) C compiler.
12191
12192 @value{GDBN} circumvents the problem by treating the symbol scope block as
12193 starting on the previous source line.
12194
12195 @item bad string table offset in symbol @var{n}
12196
12197 @cindex foo
12198 Symbol number @var{n} contains a pointer into the string table which is
12199 larger than the size of the string table.
12200
12201 @value{GDBN} circumvents the problem by considering the symbol to have the
12202 name @code{foo}, which may cause other problems if many symbols end up
12203 with this name.
12204
12205 @item unknown symbol type @code{0x@var{nn}}
12206
12207 The symbol information contains new data types that @value{GDBN} does
12208 not yet know how to read.  @code{0x@var{nn}} is the symbol type of the
12209 uncomprehended information, in hexadecimal.
12210
12211 @value{GDBN} circumvents the error by ignoring this symbol information.
12212 This usually allows you to debug your program, though certain symbols
12213 are not accessible.  If you encounter such a problem and feel like
12214 debugging it, you can debug @code{@value{GDBP}} with itself, breakpoint
12215 on @code{complain}, then go up to the function @code{read_dbx_symtab}
12216 and examine @code{*bufp} to see the symbol.
12217
12218 @item stub type has NULL name
12219
12220 @value{GDBN} could not find the full definition for a struct or class.
12221
12222 @item const/volatile indicator missing (ok if using g++ v1.x), got@dots{}
12223 The symbol information for a C@t{++} member function is missing some
12224 information that recent versions of the compiler should have output for
12225 it.
12226
12227 @item info mismatch between compiler and debugger
12228
12229 @value{GDBN} could not parse a type specification output by the compiler.
12230
12231 @end table
12232
12233 @node Targets
12234 @chapter Specifying a Debugging Target
12235
12236 @cindex debugging target
12237 A @dfn{target} is the execution environment occupied by your program.
12238
12239 Often, @value{GDBN} runs in the same host environment as your program;
12240 in that case, the debugging target is specified as a side effect when
12241 you use the @code{file} or @code{core} commands.  When you need more
12242 flexibility---for example, running @value{GDBN} on a physically separate
12243 host, or controlling a standalone system over a serial port or a
12244 realtime system over a TCP/IP connection---you can use the @code{target}
12245 command to specify one of the target types configured for @value{GDBN}
12246 (@pxref{Target Commands, ,Commands for Managing Targets}).
12247
12248 @cindex target architecture
12249 It is possible to build @value{GDBN} for several different @dfn{target
12250 architectures}.  When @value{GDBN} is built like that, you can choose
12251 one of the available architectures with the @kbd{set architecture}
12252 command.
12253
12254 @table @code
12255 @kindex set architecture
12256 @kindex show architecture
12257 @item set architecture @var{arch}
12258 This command sets the current target architecture to @var{arch}.  The
12259 value of @var{arch} can be @code{"auto"}, in addition to one of the
12260 supported architectures.
12261
12262 @item show architecture
12263 Show the current target architecture.
12264
12265 @item set processor
12266 @itemx processor
12267 @kindex set processor
12268 @kindex show processor
12269 These are alias commands for, respectively, @code{set architecture}
12270 and @code{show architecture}.
12271 @end table
12272
12273 @menu
12274 * Active Targets::              Active targets
12275 * Target Commands::             Commands for managing targets
12276 * Byte Order::                  Choosing target byte order
12277 @end menu
12278
12279 @node Active Targets
12280 @section Active Targets
12281
12282 @cindex stacking targets
12283 @cindex active targets
12284 @cindex multiple targets
12285
12286 There are three classes of targets: processes, core files, and
12287 executable files.  @value{GDBN} can work concurrently on up to three
12288 active targets, one in each class.  This allows you to (for example)
12289 start a process and inspect its activity without abandoning your work on
12290 a core file.
12291
12292 For example, if you execute @samp{gdb a.out}, then the executable file
12293 @code{a.out} is the only active target.  If you designate a core file as
12294 well---presumably from a prior run that crashed and coredumped---then
12295 @value{GDBN} has two active targets and uses them in tandem, looking
12296 first in the corefile target, then in the executable file, to satisfy
12297 requests for memory addresses.  (Typically, these two classes of target
12298 are complementary, since core files contain only a program's
12299 read-write memory---variables and so on---plus machine status, while
12300 executable files contain only the program text and initialized data.)
12301
12302 When you type @code{run}, your executable file becomes an active process
12303 target as well.  When a process target is active, all @value{GDBN}
12304 commands requesting memory addresses refer to that target; addresses in
12305 an active core file or executable file target are obscured while the
12306 process target is active.
12307
12308 Use the @code{core-file} and @code{exec-file} commands to select a new
12309 core file or executable target (@pxref{Files, ,Commands to Specify
12310 Files}).  To specify as a target a process that is already running, use
12311 the @code{attach} command (@pxref{Attach, ,Debugging an Already-running
12312 Process}).
12313
12314 @node Target Commands
12315 @section Commands for Managing Targets
12316
12317 @table @code
12318 @item target @var{type} @var{parameters}
12319 Connects the @value{GDBN} host environment to a target machine or
12320 process.  A target is typically a protocol for talking to debugging
12321 facilities.  You use the argument @var{type} to specify the type or
12322 protocol of the target machine.
12323
12324 Further @var{parameters} are interpreted by the target protocol, but
12325 typically include things like device names or host names to connect
12326 with, process numbers, and baud rates.
12327
12328 The @code{target} command does not repeat if you press @key{RET} again
12329 after executing the command.
12330
12331 @kindex help target
12332 @item help target
12333 Displays the names of all targets available.  To display targets
12334 currently selected, use either @code{info target} or @code{info files}
12335 (@pxref{Files, ,Commands to Specify Files}).
12336
12337 @item help target @var{name}
12338 Describe a particular target, including any parameters necessary to
12339 select it.
12340
12341 @kindex set gnutarget
12342 @item set gnutarget @var{args}
12343 @value{GDBN} uses its own library BFD to read your files.  @value{GDBN}
12344 knows whether it is reading an @dfn{executable},
12345 a @dfn{core}, or a @dfn{.o} file; however, you can specify the file format
12346 with the @code{set gnutarget} command.  Unlike most @code{target} commands,
12347 with @code{gnutarget} the @code{target} refers to a program, not a machine.
12348
12349 @quotation
12350 @emph{Warning:} To specify a file format with @code{set gnutarget},
12351 you must know the actual BFD name.
12352 @end quotation
12353
12354 @noindent
12355 @xref{Files, , Commands to Specify Files}.
12356
12357 @kindex show gnutarget
12358 @item show gnutarget
12359 Use the @code{show gnutarget} command to display what file format
12360 @code{gnutarget} is set to read.  If you have not set @code{gnutarget},
12361 @value{GDBN} will determine the file format for each file automatically,
12362 and @code{show gnutarget} displays @samp{The current BDF target is "auto"}.
12363 @end table
12364
12365 @cindex common targets
12366 Here are some common targets (available, or not, depending on the GDB
12367 configuration):
12368
12369 @table @code
12370 @kindex target
12371 @item target exec @var{program}
12372 @cindex executable file target
12373 An executable file.  @samp{target exec @var{program}} is the same as
12374 @samp{exec-file @var{program}}.
12375
12376 @item target core @var{filename}
12377 @cindex core dump file target
12378 A core dump file.  @samp{target core @var{filename}} is the same as
12379 @samp{core-file @var{filename}}.
12380
12381 @item target remote @var{medium}
12382 @cindex remote target
12383 A remote system connected to @value{GDBN} via a serial line or network
12384 connection.  This command tells @value{GDBN} to use its own remote
12385 protocol over @var{medium} for debugging.  @xref{Remote Debugging}.
12386
12387 For example, if you have a board connected to @file{/dev/ttya} on the
12388 machine running @value{GDBN}, you could say:
12389
12390 @smallexample
12391 target remote /dev/ttya
12392 @end smallexample
12393
12394 @code{target remote} supports the @code{load} command.  This is only
12395 useful if you have some other way of getting the stub to the target
12396 system, and you can put it somewhere in memory where it won't get
12397 clobbered by the download.
12398
12399 @item target sim
12400 @cindex built-in simulator target
12401 Builtin CPU simulator.  @value{GDBN} includes simulators for most architectures.
12402 In general,
12403 @smallexample
12404         target sim
12405         load
12406         run
12407 @end smallexample
12408 @noindent
12409 works; however, you cannot assume that a specific memory map, device
12410 drivers, or even basic I/O is available, although some simulators do
12411 provide these.  For info about any processor-specific simulator details,
12412 see the appropriate section in @ref{Embedded Processors, ,Embedded
12413 Processors}.
12414
12415 @end table
12416
12417 Some configurations may include these targets as well:
12418
12419 @table @code
12420
12421 @item target nrom @var{dev}
12422 @cindex NetROM ROM emulator target
12423 NetROM ROM emulator.  This target only supports downloading.
12424
12425 @end table
12426
12427 Different targets are available on different configurations of @value{GDBN};
12428 your configuration may have more or fewer targets.
12429
12430 Many remote targets require you to download the executable's code once
12431 you've successfully established a connection.  You may wish to control
12432 various aspects of this process.
12433
12434 @table @code
12435
12436 @item set hash
12437 @kindex set hash@r{, for remote monitors}
12438 @cindex hash mark while downloading
12439 This command controls whether a hash mark @samp{#} is displayed while
12440 downloading a file to the remote monitor.  If on, a hash mark is
12441 displayed after each S-record is successfully downloaded to the
12442 monitor.
12443
12444 @item show hash
12445 @kindex show hash@r{, for remote monitors}
12446 Show the current status of displaying the hash mark.
12447
12448 @item set debug monitor
12449 @kindex set debug monitor
12450 @cindex display remote monitor communications
12451 Enable or disable display of communications messages between
12452 @value{GDBN} and the remote monitor.
12453
12454 @item show debug monitor
12455 @kindex show debug monitor
12456 Show the current status of displaying communications between
12457 @value{GDBN} and the remote monitor.
12458 @end table
12459
12460 @table @code
12461
12462 @kindex load @var{filename}
12463 @item load @var{filename}
12464 Depending on what remote debugging facilities are configured into
12465 @value{GDBN}, the @code{load} command may be available.  Where it exists, it
12466 is meant to make @var{filename} (an executable) available for debugging
12467 on the remote system---by downloading, or dynamic linking, for example.
12468 @code{load} also records the @var{filename} symbol table in @value{GDBN}, like
12469 the @code{add-symbol-file} command.
12470
12471 If your @value{GDBN} does not have a @code{load} command, attempting to
12472 execute it gets the error message ``@code{You can't do that when your
12473 target is @dots{}}''
12474
12475 The file is loaded at whatever address is specified in the executable.
12476 For some object file formats, you can specify the load address when you
12477 link the program; for other formats, like a.out, the object file format
12478 specifies a fixed address.
12479 @c FIXME! This would be a good place for an xref to the GNU linker doc.
12480
12481 Depending on the remote side capabilities, @value{GDBN} may be able to
12482 load programs into flash memory.
12483
12484 @code{load} does not repeat if you press @key{RET} again after using it.
12485 @end table
12486
12487 @node Byte Order
12488 @section Choosing Target Byte Order
12489
12490 @cindex choosing target byte order
12491 @cindex target byte order
12492
12493 Some types of processors, such as the MIPS, PowerPC, and Renesas SH,
12494 offer the ability to run either big-endian or little-endian byte
12495 orders.  Usually the executable or symbol will include a bit to
12496 designate the endian-ness, and you will not need to worry about
12497 which to use.  However, you may still find it useful to adjust
12498 @value{GDBN}'s idea of processor endian-ness manually.
12499
12500 @table @code
12501 @kindex set endian
12502 @item set endian big
12503 Instruct @value{GDBN} to assume the target is big-endian.
12504
12505 @item set endian little
12506 Instruct @value{GDBN} to assume the target is little-endian.
12507
12508 @item set endian auto
12509 Instruct @value{GDBN} to use the byte order associated with the
12510 executable.
12511
12512 @item show endian
12513 Display @value{GDBN}'s current idea of the target byte order.
12514
12515 @end table
12516
12517 Note that these commands merely adjust interpretation of symbolic
12518 data on the host, and that they have absolutely no effect on the
12519 target system.
12520
12521
12522 @node Remote Debugging
12523 @chapter Debugging Remote Programs
12524 @cindex remote debugging
12525
12526 If you are trying to debug a program running on a machine that cannot run
12527 @value{GDBN} in the usual way, it is often useful to use remote debugging.
12528 For example, you might use remote debugging on an operating system kernel,
12529 or on a small system which does not have a general purpose operating system
12530 powerful enough to run a full-featured debugger.
12531
12532 Some configurations of @value{GDBN} have special serial or TCP/IP interfaces
12533 to make this work with particular debugging targets.  In addition,
12534 @value{GDBN} comes with a generic serial protocol (specific to @value{GDBN},
12535 but not specific to any particular target system) which you can use if you
12536 write the remote stubs---the code that runs on the remote system to
12537 communicate with @value{GDBN}.
12538
12539 Other remote targets may be available in your
12540 configuration of @value{GDBN}; use @code{help target} to list them.
12541
12542 @menu
12543 * Connecting::                  Connecting to a remote target
12544 * Server::                      Using the gdbserver program
12545 * Remote Configuration::        Remote configuration
12546 * Remote Stub::                 Implementing a remote stub
12547 @end menu
12548
12549 @node Connecting
12550 @section Connecting to a Remote Target
12551
12552 On the @value{GDBN} host machine, you will need an unstripped copy of
12553 your program, since @value{GDBN} needs symbol and debugging information.
12554 Start up @value{GDBN} as usual, using the name of the local copy of your
12555 program as the first argument.
12556
12557 @cindex @code{target remote}
12558 @value{GDBN} can communicate with the target over a serial line, or
12559 over an @acronym{IP} network using @acronym{TCP} or @acronym{UDP}.  In
12560 each case, @value{GDBN} uses the same protocol for debugging your
12561 program; only the medium carrying the debugging packets varies.  The
12562 @code{target remote} command establishes a connection to the target.
12563 Its arguments indicate which medium to use:
12564
12565 @table @code
12566
12567 @item target remote @var{serial-device}
12568 @cindex serial line, @code{target remote}
12569 Use @var{serial-device} to communicate with the target.  For example,
12570 to use a serial line connected to the device named @file{/dev/ttyb}:
12571
12572 @smallexample
12573 target remote /dev/ttyb
12574 @end smallexample
12575
12576 If you're using a serial line, you may want to give @value{GDBN} the
12577 @w{@samp{--baud}} option, or use the @code{set remotebaud} command
12578 (@pxref{Remote Configuration, set remotebaud}) before the
12579 @code{target} command.
12580
12581 @item target remote @code{@var{host}:@var{port}}
12582 @itemx target remote @code{tcp:@var{host}:@var{port}}
12583 @cindex @acronym{TCP} port, @code{target remote}
12584 Debug using a @acronym{TCP} connection to @var{port} on @var{host}.
12585 The @var{host} may be either a host name or a numeric @acronym{IP}
12586 address; @var{port} must be a decimal number.  The @var{host} could be
12587 the target machine itself, if it is directly connected to the net, or
12588 it might be a terminal server which in turn has a serial line to the
12589 target.
12590
12591 For example, to connect to port 2828 on a terminal server named
12592 @code{manyfarms}:
12593
12594 @smallexample
12595 target remote manyfarms:2828
12596 @end smallexample
12597
12598 If your remote target is actually running on the same machine as your
12599 debugger session (e.g.@: a simulator for your target running on the
12600 same host), you can omit the hostname.  For example, to connect to
12601 port 1234 on your local machine:
12602
12603 @smallexample
12604 target remote :1234
12605 @end smallexample
12606 @noindent
12607
12608 Note that the colon is still required here.
12609
12610 @item target remote @code{udp:@var{host}:@var{port}}
12611 @cindex @acronym{UDP} port, @code{target remote}
12612 Debug using @acronym{UDP} packets to @var{port} on @var{host}.  For example, to
12613 connect to @acronym{UDP} port 2828 on a terminal server named @code{manyfarms}:
12614
12615 @smallexample
12616 target remote udp:manyfarms:2828
12617 @end smallexample
12618
12619 When using a @acronym{UDP} connection for remote debugging, you should
12620 keep in mind that the `U' stands for ``Unreliable''.  @acronym{UDP}
12621 can silently drop packets on busy or unreliable networks, which will
12622 cause havoc with your debugging session.
12623
12624 @item target remote | @var{command}
12625 @cindex pipe, @code{target remote} to
12626 Run @var{command} in the background and communicate with it using a
12627 pipe.  The @var{command} is a shell command, to be parsed and expanded
12628 by the system's command shell, @code{/bin/sh}; it should expect remote
12629 protocol packets on its standard input, and send replies on its
12630 standard output.  You could use this to run a stand-alone simulator
12631 that speaks the remote debugging protocol, to make net connections
12632 using programs like @code{ssh}, or for other similar tricks.
12633
12634 If @var{command} closes its standard output (perhaps by exiting),
12635 @value{GDBN} will try to send it a @code{SIGTERM} signal.  (If the
12636 program has already exited, this will have no effect.)
12637
12638 @end table
12639
12640 Once the connection has been established, you can use all the usual
12641 commands to examine and change data and to step and continue the
12642 remote program.
12643
12644 @cindex interrupting remote programs
12645 @cindex remote programs, interrupting
12646 Whenever @value{GDBN} is waiting for the remote program, if you type the
12647 interrupt character (often @kbd{Ctrl-c}), @value{GDBN} attempts to stop the
12648 program.  This may or may not succeed, depending in part on the hardware
12649 and the serial drivers the remote system uses.  If you type the
12650 interrupt character once again, @value{GDBN} displays this prompt:
12651
12652 @smallexample
12653 Interrupted while waiting for the program.
12654 Give up (and stop debugging it)?  (y or n)
12655 @end smallexample
12656
12657 If you type @kbd{y}, @value{GDBN} abandons the remote debugging session.
12658 (If you decide you want to try again later, you can use @samp{target
12659 remote} again to connect once more.)  If you type @kbd{n}, @value{GDBN}
12660 goes back to waiting.
12661
12662 @table @code
12663 @kindex detach (remote)
12664 @item detach
12665 When you have finished debugging the remote program, you can use the
12666 @code{detach} command to release it from @value{GDBN} control.
12667 Detaching from the target normally resumes its execution, but the results
12668 will depend on your particular remote stub.  After the @code{detach}
12669 command, @value{GDBN} is free to connect to another target.
12670
12671 @kindex disconnect
12672 @item disconnect
12673 The @code{disconnect} command behaves like @code{detach}, except that
12674 the target is generally not resumed.  It will wait for @value{GDBN}
12675 (this instance or another one) to connect and continue debugging.  After
12676 the @code{disconnect} command, @value{GDBN} is again free to connect to
12677 another target.
12678
12679 @cindex send command to remote monitor
12680 @cindex extend @value{GDBN} for remote targets
12681 @cindex add new commands for external monitor
12682 @kindex monitor
12683 @item monitor @var{cmd}
12684 This command allows you to send arbitrary commands directly to the
12685 remote monitor.  Since @value{GDBN} doesn't care about the commands it
12686 sends like this, this command is the way to extend @value{GDBN}---you
12687 can add new commands that only the external monitor will understand
12688 and implement.
12689 @end table
12690
12691 @node Server
12692 @section Using the @code{gdbserver} Program
12693
12694 @kindex gdbserver
12695 @cindex remote connection without stubs
12696 @code{gdbserver} is a control program for Unix-like systems, which
12697 allows you to connect your program with a remote @value{GDBN} via
12698 @code{target remote}---but without linking in the usual debugging stub.
12699
12700 @code{gdbserver} is not a complete replacement for the debugging stubs,
12701 because it requires essentially the same operating-system facilities
12702 that @value{GDBN} itself does.  In fact, a system that can run
12703 @code{gdbserver} to connect to a remote @value{GDBN} could also run
12704 @value{GDBN} locally!  @code{gdbserver} is sometimes useful nevertheless,
12705 because it is a much smaller program than @value{GDBN} itself.  It is
12706 also easier to port than all of @value{GDBN}, so you may be able to get
12707 started more quickly on a new system by using @code{gdbserver}.
12708 Finally, if you develop code for real-time systems, you may find that
12709 the tradeoffs involved in real-time operation make it more convenient to
12710 do as much development work as possible on another system, for example
12711 by cross-compiling.  You can use @code{gdbserver} to make a similar
12712 choice for debugging.
12713
12714 @value{GDBN} and @code{gdbserver} communicate via either a serial line
12715 or a TCP connection, using the standard @value{GDBN} remote serial
12716 protocol.
12717
12718 @table @emph
12719 @item On the target machine,
12720 you need to have a copy of the program you want to debug.
12721 @code{gdbserver} does not need your program's symbol table, so you can
12722 strip the program if necessary to save space.  @value{GDBN} on the host
12723 system does all the symbol handling.
12724
12725 To use the server, you must tell it how to communicate with @value{GDBN};
12726 the name of your program; and the arguments for your program.  The usual
12727 syntax is:
12728
12729 @smallexample
12730 target> gdbserver @var{comm} @var{program} [ @var{args} @dots{} ]
12731 @end smallexample
12732
12733 @var{comm} is either a device name (to use a serial line) or a TCP
12734 hostname and portnumber.  For example, to debug Emacs with the argument
12735 @samp{foo.txt} and communicate with @value{GDBN} over the serial port
12736 @file{/dev/com1}:
12737
12738 @smallexample
12739 target> gdbserver /dev/com1 emacs foo.txt
12740 @end smallexample
12741
12742 @code{gdbserver} waits passively for the host @value{GDBN} to communicate
12743 with it.
12744
12745 To use a TCP connection instead of a serial line:
12746
12747 @smallexample
12748 target> gdbserver host:2345 emacs foo.txt
12749 @end smallexample
12750
12751 The only difference from the previous example is the first argument,
12752 specifying that you are communicating with the host @value{GDBN} via
12753 TCP.  The @samp{host:2345} argument means that @code{gdbserver} is to
12754 expect a TCP connection from machine @samp{host} to local TCP port 2345.
12755 (Currently, the @samp{host} part is ignored.)  You can choose any number
12756 you want for the port number as long as it does not conflict with any
12757 TCP ports already in use on the target system (for example, @code{23} is
12758 reserved for @code{telnet}).@footnote{If you choose a port number that
12759 conflicts with another service, @code{gdbserver} prints an error message
12760 and exits.}  You must use the same port number with the host @value{GDBN}
12761 @code{target remote} command.
12762
12763 On some targets, @code{gdbserver} can also attach to running programs.
12764 This is accomplished via the @code{--attach} argument.  The syntax is:
12765
12766 @smallexample
12767 target> gdbserver @var{comm} --attach @var{pid}
12768 @end smallexample
12769
12770 @var{pid} is the process ID of a currently running process.  It isn't necessary
12771 to point @code{gdbserver} at a binary for the running process.
12772
12773 @pindex pidof
12774 @cindex attach to a program by name
12775 You can debug processes by name instead of process ID if your target has the
12776 @code{pidof} utility:
12777
12778 @smallexample
12779 target> gdbserver @var{comm} --attach `pidof @var{program}`
12780 @end smallexample
12781
12782 In case more than one copy of @var{program} is running, or @var{program}
12783 has multiple threads, most versions of @code{pidof} support the
12784 @code{-s} option to only return the first process ID.
12785
12786 @item On the host machine,
12787 first make sure you have the necessary symbol files.  Load symbols for
12788 your application using the @code{file} command before you connect.  Use
12789 @code{set sysroot} to locate target libraries (unless your @value{GDBN}
12790 was compiled with the correct sysroot using @code{--with-system-root}).
12791
12792 The symbol file and target libraries must exactly match the executable
12793 and libraries on the target, with one exception: the files on the host
12794 system should not be stripped, even if the files on the target system
12795 are.  Mismatched or missing files will lead to confusing results
12796 during debugging.  On @sc{gnu}/Linux targets, mismatched or missing
12797 files may also prevent @code{gdbserver} from debugging multi-threaded
12798 programs.
12799
12800 Connect to your target (@pxref{Connecting,,Connecting to a Remote Target}).
12801 For TCP connections, you must start up @code{gdbserver} prior to using
12802 the @code{target remote} command.  Otherwise you may get an error whose
12803 text depends on the host system, but which usually looks something like
12804 @samp{Connection refused}.  You don't need to use the @code{load}
12805 command in @value{GDBN} when using @code{gdbserver}, since the program is
12806 already on the target.
12807
12808 @end table
12809
12810 @subsection Monitor Commands for @code{gdbserver}
12811 @cindex monitor commands, for @code{gdbserver}
12812
12813 During a @value{GDBN} session using @code{gdbserver}, you can use the
12814 @code{monitor} command to send special requests to @code{gdbserver}.
12815 Here are the available commands; they are only of interest when
12816 debugging @value{GDBN} or @code{gdbserver}.
12817
12818 @table @code
12819 @item monitor help
12820 List the available monitor commands.
12821
12822 @item monitor set debug 0
12823 @itemx monitor set debug 1
12824 Disable or enable general debugging messages.
12825
12826 @item monitor set remote-debug 0
12827 @itemx monitor set remote-debug 1
12828 Disable or enable specific debugging messages associated with the remote
12829 protocol (@pxref{Remote Protocol}).
12830
12831 @end table
12832
12833 @node Remote Configuration
12834 @section Remote Configuration
12835
12836 @kindex set remote
12837 @kindex show remote
12838 This section documents the configuration options available when
12839 debugging remote programs.  For the options related to the File I/O
12840 extensions of the remote protocol, see @ref{system,
12841 system-call-allowed}.
12842
12843 @table @code
12844 @item set remoteaddresssize @var{bits}
12845 @cindex address size for remote targets
12846 @cindex bits in remote address
12847 Set the maximum size of address in a memory packet to the specified
12848 number of bits.  @value{GDBN} will mask off the address bits above
12849 that number, when it passes addresses to the remote target.  The
12850 default value is the number of bits in the target's address.
12851
12852 @item show remoteaddresssize
12853 Show the current value of remote address size in bits.
12854
12855 @item set remotebaud @var{n}
12856 @cindex baud rate for remote targets
12857 Set the baud rate for the remote serial I/O to @var{n} baud.  The
12858 value is used to set the speed of the serial port used for debugging
12859 remote targets.
12860
12861 @item show remotebaud
12862 Show the current speed of the remote connection.
12863
12864 @item set remotebreak
12865 @cindex interrupt remote programs
12866 @cindex BREAK signal instead of Ctrl-C
12867 @anchor{set remotebreak}
12868 If set to on, @value{GDBN} sends a @code{BREAK} signal to the remote
12869 when you type @kbd{Ctrl-c} to interrupt the program running
12870 on the remote.  If set to off, @value{GDBN} sends the @samp{Ctrl-C}
12871 character instead.  The default is off, since most remote systems
12872 expect to see @samp{Ctrl-C} as the interrupt signal.
12873
12874 @item show remotebreak
12875 Show whether @value{GDBN} sends @code{BREAK} or @samp{Ctrl-C} to
12876 interrupt the remote program.
12877
12878 @item set remoteflow on
12879 @itemx set remoteflow off
12880 @kindex set remoteflow
12881 Enable or disable hardware flow control (@code{RTS}/@code{CTS})
12882 on the serial port used to communicate to the remote target.
12883
12884 @item show remoteflow
12885 @kindex show remoteflow
12886 Show the current setting of hardware flow control.
12887
12888 @item set remotelogbase @var{base}
12889 Set the base (a.k.a.@: radix) of logging serial protocol
12890 communications to @var{base}.  Supported values of @var{base} are:
12891 @code{ascii}, @code{octal}, and @code{hex}.  The default is
12892 @code{ascii}.
12893
12894 @item show remotelogbase
12895 Show the current setting of the radix for logging remote serial
12896 protocol.
12897
12898 @item set remotelogfile @var{file}
12899 @cindex record serial communications on file
12900 Record remote serial communications on the named @var{file}.  The
12901 default is not to record at all.
12902
12903 @item show remotelogfile.
12904 Show the current setting  of the file name on which to record the
12905 serial communications.
12906
12907 @item set remotetimeout @var{num}
12908 @cindex timeout for serial communications
12909 @cindex remote timeout
12910 Set the timeout limit to wait for the remote target to respond to
12911 @var{num} seconds.  The default is 2 seconds.
12912
12913 @item show remotetimeout
12914 Show the current number of seconds to wait for the remote target
12915 responses.
12916
12917 @cindex limit hardware breakpoints and watchpoints
12918 @cindex remote target, limit break- and watchpoints
12919 @anchor{set remote hardware-watchpoint-limit}
12920 @anchor{set remote hardware-breakpoint-limit}
12921 @item set remote hardware-watchpoint-limit @var{limit}
12922 @itemx set remote hardware-breakpoint-limit @var{limit}
12923 Restrict @value{GDBN} to using @var{limit} remote hardware breakpoint or
12924 watchpoints.  A limit of -1, the default, is treated as unlimited.
12925 @end table
12926
12927 @cindex remote packets, enabling and disabling
12928 The @value{GDBN} remote protocol autodetects the packets supported by
12929 your debugging stub.  If you need to override the autodetection, you
12930 can use these commands to enable or disable individual packets.  Each
12931 packet can be set to @samp{on} (the remote target supports this
12932 packet), @samp{off} (the remote target does not support this packet),
12933 or @samp{auto} (detect remote target support for this packet).  They
12934 all default to @samp{auto}.  For more information about each packet,
12935 see @ref{Remote Protocol}.
12936
12937 During normal use, you should not have to use any of these commands.
12938 If you do, that may be a bug in your remote debugging stub, or a bug
12939 in @value{GDBN}.  You may want to report the problem to the
12940 @value{GDBN} developers.
12941
12942 For each packet @var{name}, the command to enable or disable the
12943 packet is @code{set remote @var{name}-packet}.  The available settings
12944 are:
12945
12946 @multitable @columnfractions 0.28 0.32 0.25
12947 @item Command Name
12948 @tab Remote Packet
12949 @tab Related Features
12950
12951 @item @code{fetch-register}
12952 @tab @code{p}
12953 @tab @code{info registers}
12954
12955 @item @code{set-register}
12956 @tab @code{P}
12957 @tab @code{set}
12958
12959 @item @code{binary-download}
12960 @tab @code{X}
12961 @tab @code{load}, @code{set}
12962
12963 @item @code{read-aux-vector}
12964 @tab @code{qXfer:auxv:read}
12965 @tab @code{info auxv}
12966
12967 @item @code{symbol-lookup}
12968 @tab @code{qSymbol}
12969 @tab Detecting multiple threads
12970
12971 @item @code{verbose-resume}
12972 @tab @code{vCont}
12973 @tab Stepping or resuming multiple threads
12974
12975 @item @code{software-breakpoint}
12976 @tab @code{Z0}
12977 @tab @code{break}
12978
12979 @item @code{hardware-breakpoint}
12980 @tab @code{Z1}
12981 @tab @code{hbreak}
12982
12983 @item @code{write-watchpoint}
12984 @tab @code{Z2}
12985 @tab @code{watch}
12986
12987 @item @code{read-watchpoint}
12988 @tab @code{Z3}
12989 @tab @code{rwatch}
12990
12991 @item @code{access-watchpoint}
12992 @tab @code{Z4}
12993 @tab @code{awatch}
12994
12995 @item @code{target-features}
12996 @tab @code{qXfer:features:read}
12997 @tab @code{set architecture}
12998
12999 @item @code{library-info}
13000 @tab @code{qXfer:libraries:read}
13001 @tab @code{info sharedlibrary}
13002
13003 @item @code{memory-map}
13004 @tab @code{qXfer:memory-map:read}
13005 @tab @code{info mem}
13006
13007 @item @code{read-spu-object}
13008 @tab @code{qXfer:spu:read}
13009 @tab @code{info spu}
13010
13011 @item @code{write-spu-object}
13012 @tab @code{qXfer:spu:write}
13013 @tab @code{info spu}
13014
13015 @item @code{get-thread-local-@*storage-address}
13016 @tab @code{qGetTLSAddr}
13017 @tab Displaying @code{__thread} variables
13018
13019 @item @code{supported-packets}
13020 @tab @code{qSupported}
13021 @tab Remote communications parameters
13022
13023 @item @code{pass-signals}
13024 @tab @code{QPassSignals}
13025 @tab @code{handle @var{signal}}
13026
13027 @end multitable
13028
13029 @node Remote Stub
13030 @section Implementing a Remote Stub
13031
13032 @cindex debugging stub, example
13033 @cindex remote stub, example
13034 @cindex stub example, remote debugging
13035 The stub files provided with @value{GDBN} implement the target side of the
13036 communication protocol, and the @value{GDBN} side is implemented in the
13037 @value{GDBN} source file @file{remote.c}.  Normally, you can simply allow
13038 these subroutines to communicate, and ignore the details.  (If you're
13039 implementing your own stub file, you can still ignore the details: start
13040 with one of the existing stub files.  @file{sparc-stub.c} is the best
13041 organized, and therefore the easiest to read.)
13042
13043 @cindex remote serial debugging, overview
13044 To debug a program running on another machine (the debugging
13045 @dfn{target} machine), you must first arrange for all the usual
13046 prerequisites for the program to run by itself.  For example, for a C
13047 program, you need:
13048
13049 @enumerate
13050 @item
13051 A startup routine to set up the C runtime environment; these usually
13052 have a name like @file{crt0}.  The startup routine may be supplied by
13053 your hardware supplier, or you may have to write your own.
13054
13055 @item
13056 A C subroutine library to support your program's
13057 subroutine calls, notably managing input and output.
13058
13059 @item
13060 A way of getting your program to the other machine---for example, a
13061 download program.  These are often supplied by the hardware
13062 manufacturer, but you may have to write your own from hardware
13063 documentation.
13064 @end enumerate
13065
13066 The next step is to arrange for your program to use a serial port to
13067 communicate with the machine where @value{GDBN} is running (the @dfn{host}
13068 machine).  In general terms, the scheme looks like this:
13069
13070 @table @emph
13071 @item On the host,
13072 @value{GDBN} already understands how to use this protocol; when everything
13073 else is set up, you can simply use the @samp{target remote} command
13074 (@pxref{Targets,,Specifying a Debugging Target}).
13075
13076 @item On the target,
13077 you must link with your program a few special-purpose subroutines that
13078 implement the @value{GDBN} remote serial protocol.  The file containing these
13079 subroutines is called  a @dfn{debugging stub}.
13080
13081 On certain remote targets, you can use an auxiliary program
13082 @code{gdbserver} instead of linking a stub into your program.
13083 @xref{Server,,Using the @code{gdbserver} Program}, for details.
13084 @end table
13085
13086 The debugging stub is specific to the architecture of the remote
13087 machine; for example, use @file{sparc-stub.c} to debug programs on
13088 @sc{sparc} boards.
13089
13090 @cindex remote serial stub list
13091 These working remote stubs are distributed with @value{GDBN}:
13092
13093 @table @code
13094
13095 @item i386-stub.c
13096 @cindex @file{i386-stub.c}
13097 @cindex Intel
13098 @cindex i386
13099 For Intel 386 and compatible architectures.
13100
13101 @item m68k-stub.c
13102 @cindex @file{m68k-stub.c}
13103 @cindex Motorola 680x0
13104 @cindex m680x0
13105 For Motorola 680x0 architectures.
13106
13107 @item sh-stub.c
13108 @cindex @file{sh-stub.c}
13109 @cindex Renesas
13110 @cindex SH
13111 For Renesas SH architectures.
13112
13113 @item sparc-stub.c
13114 @cindex @file{sparc-stub.c}
13115 @cindex Sparc
13116 For @sc{sparc} architectures.
13117
13118 @item sparcl-stub.c
13119 @cindex @file{sparcl-stub.c}
13120 @cindex Fujitsu
13121 @cindex SparcLite
13122 For Fujitsu @sc{sparclite} architectures.
13123
13124 @end table
13125
13126 The @file{README} file in the @value{GDBN} distribution may list other
13127 recently added stubs.
13128
13129 @menu
13130 * Stub Contents::       What the stub can do for you
13131 * Bootstrapping::       What you must do for the stub
13132 * Debug Session::       Putting it all together
13133 @end menu
13134
13135 @node Stub Contents
13136 @subsection What the Stub Can Do for You
13137
13138 @cindex remote serial stub
13139 The debugging stub for your architecture supplies these three
13140 subroutines:
13141
13142 @table @code
13143 @item set_debug_traps
13144 @findex set_debug_traps
13145 @cindex remote serial stub, initialization
13146 This routine arranges for @code{handle_exception} to run when your
13147 program stops.  You must call this subroutine explicitly near the
13148 beginning of your program.
13149
13150 @item handle_exception
13151 @findex handle_exception
13152 @cindex remote serial stub, main routine
13153 This is the central workhorse, but your program never calls it
13154 explicitly---the setup code arranges for @code{handle_exception} to
13155 run when a trap is triggered.
13156
13157 @code{handle_exception} takes control when your program stops during
13158 execution (for example, on a breakpoint), and mediates communications
13159 with @value{GDBN} on the host machine.  This is where the communications
13160 protocol is implemented; @code{handle_exception} acts as the @value{GDBN}
13161 representative on the target machine.  It begins by sending summary
13162 information on the state of your program, then continues to execute,
13163 retrieving and transmitting any information @value{GDBN} needs, until you
13164 execute a @value{GDBN} command that makes your program resume; at that point,
13165 @code{handle_exception} returns control to your own code on the target
13166 machine.
13167
13168 @item breakpoint
13169 @cindex @code{breakpoint} subroutine, remote
13170 Use this auxiliary subroutine to make your program contain a
13171 breakpoint.  Depending on the particular situation, this may be the only
13172 way for @value{GDBN} to get control.  For instance, if your target
13173 machine has some sort of interrupt button, you won't need to call this;
13174 pressing the interrupt button transfers control to
13175 @code{handle_exception}---in effect, to @value{GDBN}.  On some machines,
13176 simply receiving characters on the serial port may also trigger a trap;
13177 again, in that situation, you don't need to call @code{breakpoint} from
13178 your own program---simply running @samp{target remote} from the host
13179 @value{GDBN} session gets control.
13180
13181 Call @code{breakpoint} if none of these is true, or if you simply want
13182 to make certain your program stops at a predetermined point for the
13183 start of your debugging session.
13184 @end table
13185
13186 @node Bootstrapping
13187 @subsection What You Must Do for the Stub
13188
13189 @cindex remote stub, support routines
13190 The debugging stubs that come with @value{GDBN} are set up for a particular
13191 chip architecture, but they have no information about the rest of your
13192 debugging target machine.
13193
13194 First of all you need to tell the stub how to communicate with the
13195 serial port.
13196
13197 @table @code
13198 @item int getDebugChar()
13199 @findex getDebugChar
13200 Write this subroutine to read a single character from the serial port.
13201 It may be identical to @code{getchar} for your target system; a
13202 different name is used to allow you to distinguish the two if you wish.
13203
13204 @item void putDebugChar(int)
13205 @findex putDebugChar
13206 Write this subroutine to write a single character to the serial port.
13207 It may be identical to @code{putchar} for your target system; a
13208 different name is used to allow you to distinguish the two if you wish.
13209 @end table
13210
13211 @cindex control C, and remote debugging
13212 @cindex interrupting remote targets
13213 If you want @value{GDBN} to be able to stop your program while it is
13214 running, you need to use an interrupt-driven serial driver, and arrange
13215 for it to stop when it receives a @code{^C} (@samp{\003}, the control-C
13216 character).  That is the character which @value{GDBN} uses to tell the
13217 remote system to stop.
13218
13219 Getting the debugging target to return the proper status to @value{GDBN}
13220 probably requires changes to the standard stub; one quick and dirty way
13221 is to just execute a breakpoint instruction (the ``dirty'' part is that
13222 @value{GDBN} reports a @code{SIGTRAP} instead of a @code{SIGINT}).
13223
13224 Other routines you need to supply are:
13225
13226 @table @code
13227 @item void exceptionHandler (int @var{exception_number}, void *@var{exception_address})
13228 @findex exceptionHandler
13229 Write this function to install @var{exception_address} in the exception
13230 handling tables.  You need to do this because the stub does not have any
13231 way of knowing what the exception handling tables on your target system
13232 are like (for example, the processor's table might be in @sc{rom},
13233 containing entries which point to a table in @sc{ram}).
13234 @var{exception_number} is the exception number which should be changed;
13235 its meaning is architecture-dependent (for example, different numbers
13236 might represent divide by zero, misaligned access, etc).  When this
13237 exception occurs, control should be transferred directly to
13238 @var{exception_address}, and the processor state (stack, registers,
13239 and so on) should be just as it is when a processor exception occurs.  So if
13240 you want to use a jump instruction to reach @var{exception_address}, it
13241 should be a simple jump, not a jump to subroutine.
13242
13243 For the 386, @var{exception_address} should be installed as an interrupt
13244 gate so that interrupts are masked while the handler runs.  The gate
13245 should be at privilege level 0 (the most privileged level).  The
13246 @sc{sparc} and 68k stubs are able to mask interrupts themselves without
13247 help from @code{exceptionHandler}.
13248
13249 @item void flush_i_cache()
13250 @findex flush_i_cache
13251 On @sc{sparc} and @sc{sparclite} only, write this subroutine to flush the
13252 instruction cache, if any, on your target machine.  If there is no
13253 instruction cache, this subroutine may be a no-op.
13254
13255 On target machines that have instruction caches, @value{GDBN} requires this
13256 function to make certain that the state of your program is stable.
13257 @end table
13258
13259 @noindent
13260 You must also make sure this library routine is available:
13261
13262 @table @code
13263 @item void *memset(void *, int, int)
13264 @findex memset
13265 This is the standard library function @code{memset} that sets an area of
13266 memory to a known value.  If you have one of the free versions of
13267 @code{libc.a}, @code{memset} can be found there; otherwise, you must
13268 either obtain it from your hardware manufacturer, or write your own.
13269 @end table
13270
13271 If you do not use the GNU C compiler, you may need other standard
13272 library subroutines as well; this varies from one stub to another,
13273 but in general the stubs are likely to use any of the common library
13274 subroutines which @code{@value{NGCC}} generates as inline code.
13275
13276
13277 @node Debug Session
13278 @subsection Putting it All Together
13279
13280 @cindex remote serial debugging summary
13281 In summary, when your program is ready to debug, you must follow these
13282 steps.
13283
13284 @enumerate
13285 @item
13286 Make sure you have defined the supporting low-level routines
13287 (@pxref{Bootstrapping,,What You Must Do for the Stub}):
13288 @display
13289 @code{getDebugChar}, @code{putDebugChar},
13290 @code{flush_i_cache}, @code{memset}, @code{exceptionHandler}.
13291 @end display
13292
13293 @item
13294 Insert these lines near the top of your program:
13295
13296 @smallexample
13297 set_debug_traps();
13298 breakpoint();
13299 @end smallexample
13300
13301 @item
13302 For the 680x0 stub only, you need to provide a variable called
13303 @code{exceptionHook}.  Normally you just use:
13304
13305 @smallexample
13306 void (*exceptionHook)() = 0;
13307 @end smallexample
13308
13309 @noindent
13310 but if before calling @code{set_debug_traps}, you set it to point to a
13311 function in your program, that function is called when
13312 @code{@value{GDBN}} continues after stopping on a trap (for example, bus
13313 error).  The function indicated by @code{exceptionHook} is called with
13314 one parameter: an @code{int} which is the exception number.
13315
13316 @item
13317 Compile and link together: your program, the @value{GDBN} debugging stub for
13318 your target architecture, and the supporting subroutines.
13319
13320 @item
13321 Make sure you have a serial connection between your target machine and
13322 the @value{GDBN} host, and identify the serial port on the host.
13323
13324 @item
13325 @c The "remote" target now provides a `load' command, so we should
13326 @c document that.  FIXME.
13327 Download your program to your target machine (or get it there by
13328 whatever means the manufacturer provides), and start it.
13329
13330 @item
13331 Start @value{GDBN} on the host, and connect to the target
13332 (@pxref{Connecting,,Connecting to a Remote Target}).
13333
13334 @end enumerate
13335
13336 @node Configurations
13337 @chapter Configuration-Specific Information
13338
13339 While nearly all @value{GDBN} commands are available for all native and
13340 cross versions of the debugger, there are some exceptions.  This chapter
13341 describes things that are only available in certain configurations.
13342
13343 There are three major categories of configurations: native
13344 configurations, where the host and target are the same, embedded
13345 operating system configurations, which are usually the same for several
13346 different processor architectures, and bare embedded processors, which
13347 are quite different from each other.
13348
13349 @menu
13350 * Native::
13351 * Embedded OS::
13352 * Embedded Processors::
13353 * Architectures::
13354 @end menu
13355
13356 @node Native
13357 @section Native
13358
13359 This section describes details specific to particular native
13360 configurations.
13361
13362 @menu
13363 * HP-UX::                       HP-UX
13364 * BSD libkvm Interface::        Debugging BSD kernel memory images
13365 * SVR4 Process Information::    SVR4 process information
13366 * DJGPP Native::                Features specific to the DJGPP port
13367 * Cygwin Native::               Features specific to the Cygwin port
13368 * Hurd Native::                 Features specific to @sc{gnu} Hurd
13369 * Neutrino::                    Features specific to QNX Neutrino
13370 @end menu
13371
13372 @node HP-UX
13373 @subsection HP-UX
13374
13375 On HP-UX systems, if you refer to a function or variable name that
13376 begins with a dollar sign, @value{GDBN} searches for a user or system
13377 name first, before it searches for a convenience variable.
13378
13379
13380 @node BSD libkvm Interface
13381 @subsection BSD libkvm Interface
13382
13383 @cindex libkvm
13384 @cindex kernel memory image
13385 @cindex kernel crash dump
13386
13387 BSD-derived systems (FreeBSD/NetBSD/OpenBSD) have a kernel memory
13388 interface that provides a uniform interface for accessing kernel virtual
13389 memory images, including live systems and crash dumps.  @value{GDBN}
13390 uses this interface to allow you to debug live kernels and kernel crash
13391 dumps on many native BSD configurations.  This is implemented as a
13392 special @code{kvm} debugging target.  For debugging a live system, load
13393 the currently running kernel into @value{GDBN} and connect to the
13394 @code{kvm} target:
13395
13396 @smallexample
13397 (@value{GDBP}) @b{target kvm}
13398 @end smallexample
13399
13400 For debugging crash dumps, provide the file name of the crash dump as an
13401 argument:
13402
13403 @smallexample
13404 (@value{GDBP}) @b{target kvm /var/crash/bsd.0}
13405 @end smallexample
13406
13407 Once connected to the @code{kvm} target, the following commands are
13408 available:
13409
13410 @table @code
13411 @kindex kvm
13412 @item kvm pcb
13413 Set current context from the @dfn{Process Control Block} (PCB) address.
13414
13415 @item kvm proc
13416 Set current context from proc address.  This command isn't available on
13417 modern FreeBSD systems.
13418 @end table
13419
13420 @node SVR4 Process Information
13421 @subsection SVR4 Process Information
13422 @cindex /proc
13423 @cindex examine process image
13424 @cindex process info via @file{/proc}
13425
13426 Many versions of SVR4 and compatible systems provide a facility called
13427 @samp{/proc} that can be used to examine the image of a running
13428 process using file-system subroutines.  If @value{GDBN} is configured
13429 for an operating system with this facility, the command @code{info
13430 proc} is available to report information about the process running
13431 your program, or about any process running on your system.  @code{info
13432 proc} works only on SVR4 systems that include the @code{procfs} code.
13433 This includes, as of this writing, @sc{gnu}/Linux, OSF/1 (Digital
13434 Unix), Solaris, Irix, and Unixware, but not HP-UX, for example.
13435
13436 @table @code
13437 @kindex info proc
13438 @cindex process ID
13439 @item info proc
13440 @itemx info proc @var{process-id}
13441 Summarize available information about any running process.  If a
13442 process ID is specified by @var{process-id}, display information about
13443 that process; otherwise display information about the program being
13444 debugged.  The summary includes the debugged process ID, the command
13445 line used to invoke it, its current working directory, and its
13446 executable file's absolute file name.
13447
13448 On some systems, @var{process-id} can be of the form
13449 @samp{[@var{pid}]/@var{tid}} which specifies a certain thread ID
13450 within a process.  If the optional @var{pid} part is missing, it means
13451 a thread from the process being debugged (the leading @samp{/} still
13452 needs to be present, or else @value{GDBN} will interpret the number as
13453 a process ID rather than a thread ID).
13454
13455 @item info proc mappings
13456 @cindex memory address space mappings
13457 Report the memory address space ranges accessible in the program, with
13458 information on whether the process has read, write, or execute access
13459 rights to each range.  On @sc{gnu}/Linux systems, each memory range
13460 includes the object file which is mapped to that range, instead of the
13461 memory access rights to that range.
13462
13463 @item info proc stat
13464 @itemx info proc status
13465 @cindex process detailed status information
13466 These subcommands are specific to @sc{gnu}/Linux systems.  They show
13467 the process-related information, including the user ID and group ID;
13468 how many threads are there in the process; its virtual memory usage;
13469 the signals that are pending, blocked, and ignored; its TTY; its
13470 consumption of system and user time; its stack size; its @samp{nice}
13471 value; etc.  For more information, see the @samp{proc} man page
13472 (type @kbd{man 5 proc} from your shell prompt).
13473
13474 @item info proc all
13475 Show all the information about the process described under all of the
13476 above @code{info proc} subcommands.
13477
13478 @ignore
13479 @comment These sub-options of 'info proc' were not included when
13480 @comment procfs.c was re-written.  Keep their descriptions around
13481 @comment against the day when someone finds the time to put them back in.
13482 @kindex info proc times
13483 @item info proc times
13484 Starting time, user CPU time, and system CPU time for your program and
13485 its children.
13486
13487 @kindex info proc id
13488 @item info proc id
13489 Report on the process IDs related to your program: its own process ID,
13490 the ID of its parent, the process group ID, and the session ID.
13491 @end ignore
13492
13493 @item set procfs-trace
13494 @kindex set procfs-trace
13495 @cindex @code{procfs} API calls
13496 This command enables and disables tracing of @code{procfs} API calls.
13497
13498 @item show procfs-trace
13499 @kindex show procfs-trace
13500 Show the current state of @code{procfs} API call tracing.
13501
13502 @item set procfs-file @var{file}
13503 @kindex set procfs-file
13504 Tell @value{GDBN} to write @code{procfs} API trace to the named
13505 @var{file}.  @value{GDBN} appends the trace info to the previous
13506 contents of the file.  The default is to display the trace on the
13507 standard output.
13508
13509 @item show procfs-file
13510 @kindex show procfs-file
13511 Show the file to which @code{procfs} API trace is written.
13512
13513 @item proc-trace-entry
13514 @itemx proc-trace-exit
13515 @itemx proc-untrace-entry
13516 @itemx proc-untrace-exit
13517 @kindex proc-trace-entry
13518 @kindex proc-trace-exit
13519 @kindex proc-untrace-entry
13520 @kindex proc-untrace-exit
13521 These commands enable and disable tracing of entries into and exits
13522 from the @code{syscall} interface.
13523
13524 @item info pidlist
13525 @kindex info pidlist
13526 @cindex process list, QNX Neutrino
13527 For QNX Neutrino only, this command displays the list of all the
13528 processes and all the threads within each process.
13529
13530 @item info meminfo
13531 @kindex info meminfo
13532 @cindex mapinfo list, QNX Neutrino
13533 For QNX Neutrino only, this command displays the list of all mapinfos.
13534 @end table
13535
13536 @node DJGPP Native
13537 @subsection Features for Debugging @sc{djgpp} Programs
13538 @cindex @sc{djgpp} debugging
13539 @cindex native @sc{djgpp} debugging
13540 @cindex MS-DOS-specific commands
13541
13542 @cindex DPMI
13543 @sc{djgpp} is a port of the @sc{gnu} development tools to MS-DOS and
13544 MS-Windows.  @sc{djgpp} programs are 32-bit protected-mode programs
13545 that use the @dfn{DPMI} (DOS Protected-Mode Interface) API to run on
13546 top of real-mode DOS systems and their emulations.
13547
13548 @value{GDBN} supports native debugging of @sc{djgpp} programs, and
13549 defines a few commands specific to the @sc{djgpp} port.  This
13550 subsection describes those commands.
13551
13552 @table @code
13553 @kindex info dos
13554 @item info dos
13555 This is a prefix of @sc{djgpp}-specific commands which print
13556 information about the target system and important OS structures.
13557
13558 @kindex sysinfo
13559 @cindex MS-DOS system info
13560 @cindex free memory information (MS-DOS)
13561 @item info dos sysinfo
13562 This command displays assorted information about the underlying
13563 platform: the CPU type and features, the OS version and flavor, the
13564 DPMI version, and the available conventional and DPMI memory.
13565
13566 @cindex GDT
13567 @cindex LDT
13568 @cindex IDT
13569 @cindex segment descriptor tables
13570 @cindex descriptor tables display
13571 @item info dos gdt
13572 @itemx info dos ldt
13573 @itemx info dos idt
13574 These 3 commands display entries from, respectively, Global, Local,
13575 and Interrupt Descriptor Tables (GDT, LDT, and IDT).  The descriptor
13576 tables are data structures which store a descriptor for each segment
13577 that is currently in use.  The segment's selector is an index into a
13578 descriptor table; the table entry for that index holds the
13579 descriptor's base address and limit, and its attributes and access
13580 rights.
13581
13582 A typical @sc{djgpp} program uses 3 segments: a code segment, a data
13583 segment (used for both data and the stack), and a DOS segment (which
13584 allows access to DOS/BIOS data structures and absolute addresses in
13585 conventional memory).  However, the DPMI host will usually define
13586 additional segments in order to support the DPMI environment.
13587
13588 @cindex garbled pointers
13589 These commands allow to display entries from the descriptor tables.
13590 Without an argument, all entries from the specified table are
13591 displayed.  An argument, which should be an integer expression, means
13592 display a single entry whose index is given by the argument.  For
13593 example, here's a convenient way to display information about the
13594 debugged program's data segment:
13595
13596 @smallexample
13597 @exdent @code{(@value{GDBP}) info dos ldt $ds}
13598 @exdent @code{0x13f: base=0x11970000 limit=0x0009ffff 32-Bit Data (Read/Write, Exp-up)}
13599 @end smallexample
13600
13601 @noindent
13602 This comes in handy when you want to see whether a pointer is outside
13603 the data segment's limit (i.e.@: @dfn{garbled}).
13604
13605 @cindex page tables display (MS-DOS)
13606 @item info dos pde
13607 @itemx info dos pte
13608 These two commands display entries from, respectively, the Page
13609 Directory and the Page Tables.  Page Directories and Page Tables are
13610 data structures which control how virtual memory addresses are mapped
13611 into physical addresses.  A Page Table includes an entry for every
13612 page of memory that is mapped into the program's address space; there
13613 may be several Page Tables, each one holding up to 4096 entries.  A
13614 Page Directory has up to 4096 entries, one each for every Page Table
13615 that is currently in use.
13616
13617 Without an argument, @kbd{info dos pde} displays the entire Page
13618 Directory, and @kbd{info dos pte} displays all the entries in all of
13619 the Page Tables.  An argument, an integer expression, given to the
13620 @kbd{info dos pde} command means display only that entry from the Page
13621 Directory table.  An argument given to the @kbd{info dos pte} command
13622 means display entries from a single Page Table, the one pointed to by
13623 the specified entry in the Page Directory.
13624
13625 @cindex direct memory access (DMA) on MS-DOS
13626 These commands are useful when your program uses @dfn{DMA} (Direct
13627 Memory Access), which needs physical addresses to program the DMA
13628 controller.
13629
13630 These commands are supported only with some DPMI servers.
13631
13632 @cindex physical address from linear address
13633 @item info dos address-pte @var{addr}
13634 This command displays the Page Table entry for a specified linear
13635 address.  The argument @var{addr} is a linear address which should
13636 already have the appropriate segment's base address added to it,
13637 because this command accepts addresses which may belong to @emph{any}
13638 segment.  For example, here's how to display the Page Table entry for
13639 the page where a variable @code{i} is stored:
13640
13641 @smallexample
13642 @exdent @code{(@value{GDBP}) info dos address-pte __djgpp_base_address + (char *)&i}
13643 @exdent @code{Page Table entry for address 0x11a00d30:}
13644 @exdent @code{Base=0x02698000 Dirty Acc. Not-Cached Write-Back Usr Read-Write +0xd30}
13645 @end smallexample
13646
13647 @noindent
13648 This says that @code{i} is stored at offset @code{0xd30} from the page
13649 whose physical base address is @code{0x02698000}, and shows all the
13650 attributes of that page.
13651
13652 Note that you must cast the addresses of variables to a @code{char *},
13653 since otherwise the value of @code{__djgpp_base_address}, the base
13654 address of all variables and functions in a @sc{djgpp} program, will
13655 be added using the rules of C pointer arithmetics: if @code{i} is
13656 declared an @code{int}, @value{GDBN} will add 4 times the value of
13657 @code{__djgpp_base_address} to the address of @code{i}.
13658
13659 Here's another example, it displays the Page Table entry for the
13660 transfer buffer:
13661
13662 @smallexample
13663 @exdent @code{(@value{GDBP}) info dos address-pte *((unsigned *)&_go32_info_block + 3)}
13664 @exdent @code{Page Table entry for address 0x29110:}
13665 @exdent @code{Base=0x00029000 Dirty Acc. Not-Cached Write-Back Usr Read-Write +0x110}
13666 @end smallexample
13667
13668 @noindent
13669 (The @code{+ 3} offset is because the transfer buffer's address is the
13670 3rd member of the @code{_go32_info_block} structure.)  The output
13671 clearly shows that this DPMI server maps the addresses in conventional
13672 memory 1:1, i.e.@: the physical (@code{0x00029000} + @code{0x110}) and
13673 linear (@code{0x29110}) addresses are identical.
13674
13675 This command is supported only with some DPMI servers.
13676 @end table
13677
13678 @cindex DOS serial data link, remote debugging
13679 In addition to native debugging, the DJGPP port supports remote
13680 debugging via a serial data link.  The following commands are specific
13681 to remote serial debugging in the DJGPP port of @value{GDBN}.
13682
13683 @table @code
13684 @kindex set com1base
13685 @kindex set com1irq
13686 @kindex set com2base
13687 @kindex set com2irq
13688 @kindex set com3base
13689 @kindex set com3irq
13690 @kindex set com4base
13691 @kindex set com4irq
13692 @item set com1base @var{addr}
13693 This command sets the base I/O port address of the @file{COM1} serial
13694 port.
13695
13696 @item set com1irq @var{irq}
13697 This command sets the @dfn{Interrupt Request} (@code{IRQ}) line to use
13698 for the @file{COM1} serial port.
13699
13700 There are similar commands @samp{set com2base}, @samp{set com3irq},
13701 etc.@: for setting the port address and the @code{IRQ} lines for the
13702 other 3 COM ports.
13703
13704 @kindex show com1base
13705 @kindex show com1irq
13706 @kindex show com2base
13707 @kindex show com2irq
13708 @kindex show com3base
13709 @kindex show com3irq
13710 @kindex show com4base
13711 @kindex show com4irq
13712 The related commands @samp{show com1base}, @samp{show com1irq} etc.@:
13713 display the current settings of the base address and the @code{IRQ}
13714 lines used by the COM ports.
13715
13716 @item info serial
13717 @kindex info serial
13718 @cindex DOS serial port status
13719 This command prints the status of the 4 DOS serial ports.  For each
13720 port, it prints whether it's active or not, its I/O base address and
13721 IRQ number, whether it uses a 16550-style FIFO, its baudrate, and the
13722 counts of various errors encountered so far.
13723 @end table
13724
13725
13726 @node Cygwin Native
13727 @subsection Features for Debugging MS Windows PE Executables
13728 @cindex MS Windows debugging
13729 @cindex native Cygwin debugging
13730 @cindex Cygwin-specific commands
13731
13732 @value{GDBN} supports native debugging of MS Windows programs, including
13733 DLLs with and without symbolic debugging information.  There are various
13734 additional Cygwin-specific commands, described in this section.
13735 Working with DLLs that have no debugging symbols is described in
13736 @ref{Non-debug DLL Symbols}.
13737
13738 @table @code
13739 @kindex info w32
13740 @item info w32
13741 This is a prefix of MS Windows-specific commands which print
13742 information about the target system and important OS structures.
13743
13744 @item info w32 selector
13745 This command displays information returned by
13746 the Win32 API @code{GetThreadSelectorEntry} function.
13747 It takes an optional argument that is evaluated to
13748 a long value to give the information about this given selector.
13749 Without argument, this command displays information
13750 about the six segment registers.
13751
13752 @kindex info dll
13753 @item info dll
13754 This is a Cygwin-specific alias of @code{info shared}.
13755
13756 @kindex dll-symbols
13757 @item dll-symbols
13758 This command loads symbols from a dll similarly to
13759 add-sym command but without the need to specify a base address.
13760
13761 @kindex set cygwin-exceptions
13762 @cindex debugging the Cygwin DLL
13763 @cindex Cygwin DLL, debugging
13764 @item set cygwin-exceptions @var{mode}
13765 If @var{mode} is @code{on}, @value{GDBN} will break on exceptions that
13766 happen inside the Cygwin DLL.  If @var{mode} is @code{off},
13767 @value{GDBN} will delay recognition of exceptions, and may ignore some
13768 exceptions which seem to be caused by internal Cygwin DLL
13769 ``bookkeeping''.  This option is meant primarily for debugging the
13770 Cygwin DLL itself; the default value is @code{off} to avoid annoying
13771 @value{GDBN} users with false @code{SIGSEGV} signals.
13772
13773 @kindex show cygwin-exceptions
13774 @item show cygwin-exceptions
13775 Displays whether @value{GDBN} will break on exceptions that happen
13776 inside the Cygwin DLL itself.
13777
13778 @kindex set new-console
13779 @item set new-console @var{mode}
13780 If @var{mode} is @code{on} the debuggee will
13781 be started in a new console on next start.
13782 If @var{mode} is @code{off}i, the debuggee will
13783 be started in the same console as the debugger.
13784
13785 @kindex show new-console
13786 @item show new-console
13787 Displays whether a new console is used
13788 when the debuggee is started.
13789
13790 @kindex set new-group
13791 @item set new-group @var{mode}
13792 This boolean value controls whether the debuggee should
13793 start a new group or stay in the same group as the debugger.
13794 This affects the way the Windows OS handles
13795 @samp{Ctrl-C}.
13796
13797 @kindex show new-group
13798 @item show new-group
13799 Displays current value of new-group boolean.
13800
13801 @kindex set debugevents
13802 @item set debugevents
13803 This boolean value adds debug output concerning kernel events related
13804 to the debuggee seen by the debugger.  This includes events that
13805 signal thread and process creation and exit, DLL loading and
13806 unloading, console interrupts, and debugging messages produced by the
13807 Windows @code{OutputDebugString} API call.
13808
13809 @kindex set debugexec
13810 @item set debugexec
13811 This boolean value adds debug output concerning execute events
13812 (such as resume thread) seen by the debugger.
13813
13814 @kindex set debugexceptions
13815 @item set debugexceptions
13816 This boolean value adds debug output concerning exceptions in the
13817 debuggee seen by the debugger.
13818
13819 @kindex set debugmemory
13820 @item set debugmemory
13821 This boolean value adds debug output concerning debuggee memory reads
13822 and writes by the debugger.
13823
13824 @kindex set shell
13825 @item set shell
13826 This boolean values specifies whether the debuggee is called
13827 via a shell or directly (default value is on).
13828
13829 @kindex show shell
13830 @item show shell
13831 Displays if the debuggee will be started with a shell.
13832
13833 @end table
13834
13835 @menu
13836 * Non-debug DLL Symbols::  Support for DLLs without debugging symbols
13837 @end menu
13838
13839 @node Non-debug DLL Symbols
13840 @subsubsection Support for DLLs without Debugging Symbols
13841 @cindex DLLs with no debugging symbols
13842 @cindex Minimal symbols and DLLs
13843
13844 Very often on windows, some of the DLLs that your program relies on do
13845 not include symbolic debugging information (for example,
13846 @file{kernel32.dll}).  When @value{GDBN} doesn't recognize any debugging
13847 symbols in a DLL, it relies on the minimal amount of symbolic
13848 information contained in the DLL's export table.  This section
13849 describes working with such symbols, known internally to @value{GDBN} as
13850 ``minimal symbols''.
13851
13852 Note that before the debugged program has started execution, no DLLs
13853 will have been loaded.  The easiest way around this problem is simply to
13854 start the program --- either by setting a breakpoint or letting the
13855 program run once to completion.  It is also possible to force
13856 @value{GDBN} to load a particular DLL before starting the executable ---
13857 see the shared library information in @ref{Files}, or the
13858 @code{dll-symbols} command in @ref{Cygwin Native}.  Currently,
13859 explicitly loading symbols from a DLL with no debugging information will
13860 cause the symbol names to be duplicated in @value{GDBN}'s lookup table,
13861 which may adversely affect symbol lookup performance.
13862
13863 @subsubsection DLL Name Prefixes
13864
13865 In keeping with the naming conventions used by the Microsoft debugging
13866 tools, DLL export symbols are made available with a prefix based on the
13867 DLL name, for instance @code{KERNEL32!CreateFileA}.  The plain name is
13868 also entered into the symbol table, so @code{CreateFileA} is often
13869 sufficient. In some cases there will be name clashes within a program
13870 (particularly if the executable itself includes full debugging symbols)
13871 necessitating the use of the fully qualified name when referring to the
13872 contents of the DLL. Use single-quotes around the name to avoid the
13873 exclamation mark (``!'')  being interpreted as a language operator.
13874
13875 Note that the internal name of the DLL may be all upper-case, even
13876 though the file name of the DLL is lower-case, or vice-versa. Since
13877 symbols within @value{GDBN} are @emph{case-sensitive} this may cause
13878 some confusion. If in doubt, try the @code{info functions} and
13879 @code{info variables} commands or even @code{maint print msymbols}
13880 (@pxref{Symbols}). Here's an example:
13881
13882 @smallexample
13883 (@value{GDBP}) info function CreateFileA
13884 All functions matching regular expression "CreateFileA":
13885
13886 Non-debugging symbols:
13887 0x77e885f4  CreateFileA
13888 0x77e885f4  KERNEL32!CreateFileA
13889 @end smallexample
13890
13891 @smallexample
13892 (@value{GDBP}) info function !
13893 All functions matching regular expression "!":
13894
13895 Non-debugging symbols:
13896 0x6100114c  cygwin1!__assert
13897 0x61004034  cygwin1!_dll_crt0@@0
13898 0x61004240  cygwin1!dll_crt0(per_process *)
13899 [etc...]
13900 @end smallexample
13901
13902 @subsubsection Working with Minimal Symbols
13903
13904 Symbols extracted from a DLL's export table do not contain very much
13905 type information. All that @value{GDBN} can do is guess whether a symbol
13906 refers to a function or variable depending on the linker section that
13907 contains the symbol. Also note that the actual contents of the memory
13908 contained in a DLL are not available unless the program is running. This
13909 means that you cannot examine the contents of a variable or disassemble
13910 a function within a DLL without a running program.
13911
13912 Variables are generally treated as pointers and dereferenced
13913 automatically. For this reason, it is often necessary to prefix a
13914 variable name with the address-of operator (``&'') and provide explicit
13915 type information in the command. Here's an example of the type of
13916 problem:
13917
13918 @smallexample
13919 (@value{GDBP}) print 'cygwin1!__argv'
13920 $1 = 268572168
13921 @end smallexample
13922
13923 @smallexample
13924 (@value{GDBP}) x 'cygwin1!__argv'
13925 0x10021610:      "\230y\""
13926 @end smallexample
13927
13928 And two possible solutions:
13929
13930 @smallexample
13931 (@value{GDBP}) print ((char **)'cygwin1!__argv')[0]
13932 $2 = 0x22fd98 "/cygdrive/c/mydirectory/myprogram"
13933 @end smallexample
13934
13935 @smallexample
13936 (@value{GDBP}) x/2x &'cygwin1!__argv'
13937 0x610c0aa8 <cygwin1!__argv>:    0x10021608      0x00000000
13938 (@value{GDBP}) x/x 0x10021608
13939 0x10021608:     0x0022fd98
13940 (@value{GDBP}) x/s 0x0022fd98
13941 0x22fd98:        "/cygdrive/c/mydirectory/myprogram"
13942 @end smallexample
13943
13944 Setting a break point within a DLL is possible even before the program
13945 starts execution. However, under these circumstances, @value{GDBN} can't
13946 examine the initial instructions of the function in order to skip the
13947 function's frame set-up code. You can work around this by using ``*&''
13948 to set the breakpoint at a raw memory address:
13949
13950 @smallexample
13951 (@value{GDBP}) break *&'python22!PyOS_Readline'
13952 Breakpoint 1 at 0x1e04eff0
13953 @end smallexample
13954
13955 The author of these extensions is not entirely convinced that setting a
13956 break point within a shared DLL like @file{kernel32.dll} is completely
13957 safe.
13958
13959 @node Hurd Native
13960 @subsection Commands Specific to @sc{gnu} Hurd Systems
13961 @cindex @sc{gnu} Hurd debugging
13962
13963 This subsection describes @value{GDBN} commands specific to the
13964 @sc{gnu} Hurd native debugging.
13965
13966 @table @code
13967 @item set signals
13968 @itemx set sigs
13969 @kindex set signals@r{, Hurd command}
13970 @kindex set sigs@r{, Hurd command}
13971 This command toggles the state of inferior signal interception by
13972 @value{GDBN}.  Mach exceptions, such as breakpoint traps, are not
13973 affected by this command.  @code{sigs} is a shorthand alias for
13974 @code{signals}.
13975
13976 @item show signals
13977 @itemx show sigs
13978 @kindex show signals@r{, Hurd command}
13979 @kindex show sigs@r{, Hurd command}
13980 Show the current state of intercepting inferior's signals.
13981
13982 @item set signal-thread
13983 @itemx set sigthread
13984 @kindex set signal-thread
13985 @kindex set sigthread
13986 This command tells @value{GDBN} which thread is the @code{libc} signal
13987 thread.  That thread is run when a signal is delivered to a running
13988 process.  @code{set sigthread} is the shorthand alias of @code{set
13989 signal-thread}.
13990
13991 @item show signal-thread
13992 @itemx show sigthread
13993 @kindex show signal-thread
13994 @kindex show sigthread
13995 These two commands show which thread will run when the inferior is
13996 delivered a signal.
13997
13998 @item set stopped
13999 @kindex set stopped@r{, Hurd command}
14000 This commands tells @value{GDBN} that the inferior process is stopped,
14001 as with the @code{SIGSTOP} signal.  The stopped process can be
14002 continued by delivering a signal to it.
14003
14004 @item show stopped
14005 @kindex show stopped@r{, Hurd command}
14006 This command shows whether @value{GDBN} thinks the debuggee is
14007 stopped.
14008
14009 @item set exceptions
14010 @kindex set exceptions@r{, Hurd command}
14011 Use this command to turn off trapping of exceptions in the inferior.
14012 When exception trapping is off, neither breakpoints nor
14013 single-stepping will work.  To restore the default, set exception
14014 trapping on.
14015
14016 @item show exceptions
14017 @kindex show exceptions@r{, Hurd command}
14018 Show the current state of trapping exceptions in the inferior.
14019
14020 @item set task pause
14021 @kindex set task@r{, Hurd commands}
14022 @cindex task attributes (@sc{gnu} Hurd)
14023 @cindex pause current task (@sc{gnu} Hurd)
14024 This command toggles task suspension when @value{GDBN} has control.
14025 Setting it to on takes effect immediately, and the task is suspended
14026 whenever @value{GDBN} gets control.  Setting it to off will take
14027 effect the next time the inferior is continued.  If this option is set
14028 to off, you can use @code{set thread default pause on} or @code{set
14029 thread pause on} (see below) to pause individual threads.
14030
14031 @item show task pause
14032 @kindex show task@r{, Hurd commands}
14033 Show the current state of task suspension.
14034
14035 @item set task detach-suspend-count
14036 @cindex task suspend count
14037 @cindex detach from task, @sc{gnu} Hurd
14038 This command sets the suspend count the task will be left with when
14039 @value{GDBN} detaches from it.
14040
14041 @item show task detach-suspend-count
14042 Show the suspend count the task will be left with when detaching.
14043
14044 @item set task exception-port
14045 @itemx set task excp
14046 @cindex task exception port, @sc{gnu} Hurd
14047 This command sets the task exception port to which @value{GDBN} will
14048 forward exceptions.  The argument should be the value of the @dfn{send
14049 rights} of the task.  @code{set task excp} is a shorthand alias.
14050
14051 @item set noninvasive
14052 @cindex noninvasive task options
14053 This command switches @value{GDBN} to a mode that is the least
14054 invasive as far as interfering with the inferior is concerned.  This
14055 is the same as using @code{set task pause}, @code{set exceptions}, and
14056 @code{set signals} to values opposite to the defaults.
14057
14058 @item info send-rights
14059 @itemx info receive-rights
14060 @itemx info port-rights
14061 @itemx info port-sets
14062 @itemx info dead-names
14063 @itemx info ports
14064 @itemx info psets
14065 @cindex send rights, @sc{gnu} Hurd
14066 @cindex receive rights, @sc{gnu} Hurd
14067 @cindex port rights, @sc{gnu} Hurd
14068 @cindex port sets, @sc{gnu} Hurd
14069 @cindex dead names, @sc{gnu} Hurd
14070 These commands display information about, respectively, send rights,
14071 receive rights, port rights, port sets, and dead names of a task.
14072 There are also shorthand aliases: @code{info ports} for @code{info
14073 port-rights} and @code{info psets} for @code{info port-sets}.
14074
14075 @item set thread pause
14076 @kindex set thread@r{, Hurd command}
14077 @cindex thread properties, @sc{gnu} Hurd
14078 @cindex pause current thread (@sc{gnu} Hurd)
14079 This command toggles current thread suspension when @value{GDBN} has
14080 control.  Setting it to on takes effect immediately, and the current
14081 thread is suspended whenever @value{GDBN} gets control.  Setting it to
14082 off will take effect the next time the inferior is continued.
14083 Normally, this command has no effect, since when @value{GDBN} has
14084 control, the whole task is suspended.  However, if you used @code{set
14085 task pause off} (see above), this command comes in handy to suspend
14086 only the current thread.
14087
14088 @item show thread pause
14089 @kindex show thread@r{, Hurd command}
14090 This command shows the state of current thread suspension.
14091
14092 @item set thread run
14093 This command sets whether the current thread is allowed to run.
14094
14095 @item show thread run
14096 Show whether the current thread is allowed to run.
14097
14098 @item set thread detach-suspend-count
14099 @cindex thread suspend count, @sc{gnu} Hurd
14100 @cindex detach from thread, @sc{gnu} Hurd
14101 This command sets the suspend count @value{GDBN} will leave on a
14102 thread when detaching.  This number is relative to the suspend count
14103 found by @value{GDBN} when it notices the thread; use @code{set thread
14104 takeover-suspend-count} to force it to an absolute value.
14105
14106 @item show thread detach-suspend-count
14107 Show the suspend count @value{GDBN} will leave on the thread when
14108 detaching.
14109
14110 @item set thread exception-port
14111 @itemx set thread excp
14112 Set the thread exception port to which to forward exceptions.  This
14113 overrides the port set by @code{set task exception-port} (see above).
14114 @code{set thread excp} is the shorthand alias.
14115
14116 @item set thread takeover-suspend-count
14117 Normally, @value{GDBN}'s thread suspend counts are relative to the
14118 value @value{GDBN} finds when it notices each thread.  This command
14119 changes the suspend counts to be absolute instead.
14120
14121 @item set thread default
14122 @itemx show thread default
14123 @cindex thread default settings, @sc{gnu} Hurd
14124 Each of the above @code{set thread} commands has a @code{set thread
14125 default} counterpart (e.g., @code{set thread default pause}, @code{set
14126 thread default exception-port}, etc.).  The @code{thread default}
14127 variety of commands sets the default thread properties for all
14128 threads; you can then change the properties of individual threads with
14129 the non-default commands.
14130 @end table
14131
14132
14133 @node Neutrino
14134 @subsection QNX Neutrino
14135 @cindex QNX Neutrino
14136
14137 @value{GDBN} provides the following commands specific to the QNX
14138 Neutrino target:
14139
14140 @table @code
14141 @item set debug nto-debug
14142 @kindex set debug nto-debug
14143 When set to on, enables debugging messages specific to the QNX
14144 Neutrino support.
14145
14146 @item show debug nto-debug
14147 @kindex show debug nto-debug
14148 Show the current state of QNX Neutrino messages.
14149 @end table
14150
14151
14152 @node Embedded OS
14153 @section Embedded Operating Systems
14154
14155 This section describes configurations involving the debugging of
14156 embedded operating systems that are available for several different
14157 architectures.
14158
14159 @menu
14160 * VxWorks::                     Using @value{GDBN} with VxWorks
14161 @end menu
14162
14163 @value{GDBN} includes the ability to debug programs running on
14164 various real-time operating systems.
14165
14166 @node VxWorks
14167 @subsection Using @value{GDBN} with VxWorks
14168
14169 @cindex VxWorks
14170
14171 @table @code
14172
14173 @kindex target vxworks
14174 @item target vxworks @var{machinename}
14175 A VxWorks system, attached via TCP/IP.  The argument @var{machinename}
14176 is the target system's machine name or IP address.
14177
14178 @end table
14179
14180 On VxWorks, @code{load} links @var{filename} dynamically on the
14181 current target system as well as adding its symbols in @value{GDBN}.
14182
14183 @value{GDBN} enables developers to spawn and debug tasks running on networked
14184 VxWorks targets from a Unix host.  Already-running tasks spawned from
14185 the VxWorks shell can also be debugged.  @value{GDBN} uses code that runs on
14186 both the Unix host and on the VxWorks target.  The program
14187 @code{@value{GDBP}} is installed and executed on the Unix host.  (It may be
14188 installed with the name @code{vxgdb}, to distinguish it from a
14189 @value{GDBN} for debugging programs on the host itself.)
14190
14191 @table @code
14192 @item VxWorks-timeout @var{args}
14193 @kindex vxworks-timeout
14194 All VxWorks-based targets now support the option @code{vxworks-timeout}.
14195 This option is set by the user, and  @var{args} represents the number of
14196 seconds @value{GDBN} waits for responses to rpc's.  You might use this if
14197 your VxWorks target is a slow software simulator or is on the far side
14198 of a thin network line.
14199 @end table
14200
14201 The following information on connecting to VxWorks was current when
14202 this manual was produced; newer releases of VxWorks may use revised
14203 procedures.
14204
14205 @findex INCLUDE_RDB
14206 To use @value{GDBN} with VxWorks, you must rebuild your VxWorks kernel
14207 to include the remote debugging interface routines in the VxWorks
14208 library @file{rdb.a}.  To do this, define @code{INCLUDE_RDB} in the
14209 VxWorks configuration file @file{configAll.h} and rebuild your VxWorks
14210 kernel.  The resulting kernel contains @file{rdb.a}, and spawns the
14211 source debugging task @code{tRdbTask} when VxWorks is booted.  For more
14212 information on configuring and remaking VxWorks, see the manufacturer's
14213 manual.
14214 @c VxWorks, see the @cite{VxWorks Programmer's Guide}.
14215
14216 Once you have included @file{rdb.a} in your VxWorks system image and set
14217 your Unix execution search path to find @value{GDBN}, you are ready to
14218 run @value{GDBN}.  From your Unix host, run @code{@value{GDBP}} (or
14219 @code{vxgdb}, depending on your installation).
14220
14221 @value{GDBN} comes up showing the prompt:
14222
14223 @smallexample
14224 (vxgdb)
14225 @end smallexample
14226
14227 @menu
14228 * VxWorks Connection::          Connecting to VxWorks
14229 * VxWorks Download::            VxWorks download
14230 * VxWorks Attach::              Running tasks
14231 @end menu
14232
14233 @node VxWorks Connection
14234 @subsubsection Connecting to VxWorks
14235
14236 The @value{GDBN} command @code{target} lets you connect to a VxWorks target on the
14237 network.  To connect to a target whose host name is ``@code{tt}'', type:
14238
14239 @smallexample
14240 (vxgdb) target vxworks tt
14241 @end smallexample
14242
14243 @need 750
14244 @value{GDBN} displays messages like these:
14245
14246 @smallexample
14247 Attaching remote machine across net...
14248 Connected to tt.
14249 @end smallexample
14250
14251 @need 1000
14252 @value{GDBN} then attempts to read the symbol tables of any object modules
14253 loaded into the VxWorks target since it was last booted.  @value{GDBN} locates
14254 these files by searching the directories listed in the command search
14255 path (@pxref{Environment, ,Your Program's Environment}); if it fails
14256 to find an object file, it displays a message such as:
14257
14258 @smallexample
14259 prog.o: No such file or directory.
14260 @end smallexample
14261
14262 When this happens, add the appropriate directory to the search path with
14263 the @value{GDBN} command @code{path}, and execute the @code{target}
14264 command again.
14265
14266 @node VxWorks Download
14267 @subsubsection VxWorks Download
14268
14269 @cindex download to VxWorks
14270 If you have connected to the VxWorks target and you want to debug an
14271 object that has not yet been loaded, you can use the @value{GDBN}
14272 @code{load} command to download a file from Unix to VxWorks
14273 incrementally.  The object file given as an argument to the @code{load}
14274 command is actually opened twice: first by the VxWorks target in order
14275 to download the code, then by @value{GDBN} in order to read the symbol
14276 table.  This can lead to problems if the current working directories on
14277 the two systems differ.  If both systems have NFS mounted the same
14278 filesystems, you can avoid these problems by using absolute paths.
14279 Otherwise, it is simplest to set the working directory on both systems
14280 to the directory in which the object file resides, and then to reference
14281 the file by its name, without any path.  For instance, a program
14282 @file{prog.o} may reside in @file{@var{vxpath}/vw/demo/rdb} in VxWorks
14283 and in @file{@var{hostpath}/vw/demo/rdb} on the host.  To load this
14284 program, type this on VxWorks:
14285
14286 @smallexample
14287 -> cd "@var{vxpath}/vw/demo/rdb"
14288 @end smallexample
14289
14290 @noindent
14291 Then, in @value{GDBN}, type:
14292
14293 @smallexample
14294 (vxgdb) cd @var{hostpath}/vw/demo/rdb
14295 (vxgdb) load prog.o
14296 @end smallexample
14297
14298 @value{GDBN} displays a response similar to this:
14299
14300 @smallexample
14301 Reading symbol data from wherever/vw/demo/rdb/prog.o... done.
14302 @end smallexample
14303
14304 You can also use the @code{load} command to reload an object module
14305 after editing and recompiling the corresponding source file.  Note that
14306 this makes @value{GDBN} delete all currently-defined breakpoints,
14307 auto-displays, and convenience variables, and to clear the value
14308 history.  (This is necessary in order to preserve the integrity of
14309 debugger's data structures that reference the target system's symbol
14310 table.)
14311
14312 @node VxWorks Attach
14313 @subsubsection Running Tasks
14314
14315 @cindex running VxWorks tasks
14316 You can also attach to an existing task using the @code{attach} command as
14317 follows:
14318
14319 @smallexample
14320 (vxgdb) attach @var{task}
14321 @end smallexample
14322
14323 @noindent
14324 where @var{task} is the VxWorks hexadecimal task ID.  The task can be running
14325 or suspended when you attach to it.  Running tasks are suspended at
14326 the time of attachment.
14327
14328 @node Embedded Processors
14329 @section Embedded Processors
14330
14331 This section goes into details specific to particular embedded
14332 configurations.
14333
14334 @cindex send command to simulator
14335 Whenever a specific embedded processor has a simulator, @value{GDBN}
14336 allows to send an arbitrary command to the simulator.
14337
14338 @table @code
14339 @item sim @var{command}
14340 @kindex sim@r{, a command}
14341 Send an arbitrary @var{command} string to the simulator.  Consult the
14342 documentation for the specific simulator in use for information about
14343 acceptable commands.
14344 @end table
14345
14346
14347 @menu
14348 * ARM::                         ARM RDI
14349 * M32R/D::                      Renesas M32R/D
14350 * M68K::                        Motorola M68K
14351 * MIPS Embedded::               MIPS Embedded
14352 * OpenRISC 1000::               OpenRisc 1000
14353 * PA::                          HP PA Embedded
14354 * PowerPC::                     PowerPC
14355 * Sparclet::                    Tsqware Sparclet
14356 * Sparclite::                   Fujitsu Sparclite
14357 * Z8000::                       Zilog Z8000
14358 * AVR::                         Atmel AVR
14359 * CRIS::                        CRIS
14360 * Super-H::                     Renesas Super-H
14361 @end menu
14362
14363 @node ARM
14364 @subsection ARM
14365 @cindex ARM RDI
14366
14367 @table @code
14368 @kindex target rdi
14369 @item target rdi @var{dev}
14370 ARM Angel monitor, via RDI library interface to ADP protocol.  You may
14371 use this target to communicate with both boards running the Angel
14372 monitor, or with the EmbeddedICE JTAG debug device.
14373
14374 @kindex target rdp
14375 @item target rdp @var{dev}
14376 ARM Demon monitor.
14377
14378 @end table
14379
14380 @value{GDBN} provides the following ARM-specific commands:
14381
14382 @table @code
14383 @item set arm disassembler
14384 @kindex set arm
14385 This commands selects from a list of disassembly styles.  The
14386 @code{"std"} style is the standard style.
14387
14388 @item show arm disassembler
14389 @kindex show arm
14390 Show the current disassembly style.
14391
14392 @item set arm apcs32
14393 @cindex ARM 32-bit mode
14394 This command toggles ARM operation mode between 32-bit and 26-bit.
14395
14396 @item show arm apcs32
14397 Display the current usage of the ARM 32-bit mode.
14398
14399 @item set arm fpu @var{fputype}
14400 This command sets the ARM floating-point unit (FPU) type.  The
14401 argument @var{fputype} can be one of these:
14402
14403 @table @code
14404 @item auto
14405 Determine the FPU type by querying the OS ABI.
14406 @item softfpa
14407 Software FPU, with mixed-endian doubles on little-endian ARM
14408 processors.
14409 @item fpa
14410 GCC-compiled FPA co-processor.
14411 @item softvfp
14412 Software FPU with pure-endian doubles.
14413 @item vfp
14414 VFP co-processor.
14415 @end table
14416
14417 @item show arm fpu
14418 Show the current type of the FPU.
14419
14420 @item set arm abi
14421 This command forces @value{GDBN} to use the specified ABI.
14422
14423 @item show arm abi
14424 Show the currently used ABI.
14425
14426 @item set debug arm
14427 Toggle whether to display ARM-specific debugging messages from the ARM
14428 target support subsystem.
14429
14430 @item show debug arm
14431 Show whether ARM-specific debugging messages are enabled.
14432 @end table
14433
14434 The following commands are available when an ARM target is debugged
14435 using the RDI interface:
14436
14437 @table @code
14438 @item rdilogfile @r{[}@var{file}@r{]}
14439 @kindex rdilogfile
14440 @cindex ADP (Angel Debugger Protocol) logging
14441 Set the filename for the ADP (Angel Debugger Protocol) packet log.
14442 With an argument, sets the log file to the specified @var{file}.  With
14443 no argument, show the current log file name.  The default log file is
14444 @file{rdi.log}.
14445
14446 @item rdilogenable @r{[}@var{arg}@r{]}
14447 @kindex rdilogenable
14448 Control logging of ADP packets.  With an argument of 1 or @code{"yes"}
14449 enables logging, with an argument 0 or @code{"no"} disables it.  With
14450 no arguments displays the current setting.  When logging is enabled,
14451 ADP packets exchanged between @value{GDBN} and the RDI target device
14452 are logged to a file.
14453
14454 @item set rdiromatzero
14455 @kindex set rdiromatzero
14456 @cindex ROM at zero address, RDI
14457 Tell @value{GDBN} whether the target has ROM at address 0.  If on,
14458 vector catching is disabled, so that zero address can be used.  If off
14459 (the default), vector catching is enabled.  For this command to take
14460 effect, it needs to be invoked prior to the @code{target rdi} command.
14461
14462 @item show rdiromatzero
14463 @kindex show rdiromatzero
14464 Show the current setting of ROM at zero address.
14465
14466 @item set rdiheartbeat
14467 @kindex set rdiheartbeat
14468 @cindex RDI heartbeat
14469 Enable or disable RDI heartbeat packets.  It is not recommended to
14470 turn on this option, since it confuses ARM and EPI JTAG interface, as
14471 well as the Angel monitor.
14472
14473 @item show rdiheartbeat
14474 @kindex show rdiheartbeat
14475 Show the setting of RDI heartbeat packets.
14476 @end table
14477
14478
14479 @node M32R/D
14480 @subsection Renesas M32R/D and M32R/SDI
14481
14482 @table @code
14483 @kindex target m32r
14484 @item target m32r @var{dev}
14485 Renesas M32R/D ROM monitor.
14486
14487 @kindex target m32rsdi
14488 @item target m32rsdi @var{dev}
14489 Renesas M32R SDI server, connected via parallel port to the board.
14490 @end table
14491
14492 The following @value{GDBN} commands are specific to the M32R monitor:
14493
14494 @table @code
14495 @item set download-path @var{path}
14496 @kindex set download-path
14497 @cindex find downloadable @sc{srec} files (M32R)
14498 Set the default path for finding downloadable @sc{srec} files.
14499
14500 @item show download-path
14501 @kindex show download-path
14502 Show the default path for downloadable @sc{srec} files.
14503
14504 @item set board-address @var{addr}
14505 @kindex set board-address
14506 @cindex M32-EVA target board address
14507 Set the IP address for the M32R-EVA target board.
14508
14509 @item show board-address
14510 @kindex show board-address
14511 Show the current IP address of the target board.
14512
14513 @item set server-address @var{addr}
14514 @kindex set server-address
14515 @cindex download server address (M32R)
14516 Set the IP address for the download server, which is the @value{GDBN}'s
14517 host machine.
14518
14519 @item show server-address
14520 @kindex show server-address
14521 Display the IP address of the download server.
14522
14523 @item upload @r{[}@var{file}@r{]}
14524 @kindex upload@r{, M32R}
14525 Upload the specified @sc{srec} @var{file} via the monitor's Ethernet
14526 upload capability.  If no @var{file} argument is given, the current
14527 executable file is uploaded.
14528
14529 @item tload @r{[}@var{file}@r{]}
14530 @kindex tload@r{, M32R}
14531 Test the @code{upload} command.
14532 @end table
14533
14534 The following commands are available for M32R/SDI:
14535
14536 @table @code
14537 @item sdireset
14538 @kindex sdireset
14539 @cindex reset SDI connection, M32R
14540 This command resets the SDI connection.
14541
14542 @item sdistatus
14543 @kindex sdistatus
14544 This command shows the SDI connection status.
14545
14546 @item debug_chaos
14547 @kindex debug_chaos
14548 @cindex M32R/Chaos debugging
14549 Instructs the remote that M32R/Chaos debugging is to be used.
14550
14551 @item use_debug_dma
14552 @kindex use_debug_dma
14553 Instructs the remote to use the DEBUG_DMA method of accessing memory.
14554
14555 @item use_mon_code
14556 @kindex use_mon_code
14557 Instructs the remote to use the MON_CODE method of accessing memory.
14558
14559 @item use_ib_break
14560 @kindex use_ib_break
14561 Instructs the remote to set breakpoints by IB break.
14562
14563 @item use_dbt_break
14564 @kindex use_dbt_break
14565 Instructs the remote to set breakpoints by DBT.
14566 @end table
14567
14568 @node M68K
14569 @subsection M68k
14570
14571 The Motorola m68k configuration includes ColdFire support, and a
14572 target command for the following ROM monitor.
14573
14574 @table @code
14575
14576 @kindex target dbug
14577 @item target dbug @var{dev}
14578 dBUG ROM monitor for Motorola ColdFire.
14579
14580 @end table
14581
14582 @node MIPS Embedded
14583 @subsection MIPS Embedded
14584
14585 @cindex MIPS boards
14586 @value{GDBN} can use the MIPS remote debugging protocol to talk to a
14587 MIPS board attached to a serial line.  This is available when
14588 you configure @value{GDBN} with @samp{--target=mips-idt-ecoff}.
14589
14590 @need 1000
14591 Use these @value{GDBN} commands to specify the connection to your target board:
14592
14593 @table @code
14594 @item target mips @var{port}
14595 @kindex target mips @var{port}
14596 To run a program on the board, start up @code{@value{GDBP}} with the
14597 name of your program as the argument.  To connect to the board, use the
14598 command @samp{target mips @var{port}}, where @var{port} is the name of
14599 the serial port connected to the board.  If the program has not already
14600 been downloaded to the board, you may use the @code{load} command to
14601 download it.  You can then use all the usual @value{GDBN} commands.
14602
14603 For example, this sequence connects to the target board through a serial
14604 port, and loads and runs a program called @var{prog} through the
14605 debugger:
14606
14607 @smallexample
14608 host$ @value{GDBP} @var{prog}
14609 @value{GDBN} is free software and @dots{}
14610 (@value{GDBP}) target mips /dev/ttyb
14611 (@value{GDBP}) load @var{prog}
14612 (@value{GDBP}) run
14613 @end smallexample
14614
14615 @item target mips @var{hostname}:@var{portnumber}
14616 On some @value{GDBN} host configurations, you can specify a TCP
14617 connection (for instance, to a serial line managed by a terminal
14618 concentrator) instead of a serial port, using the syntax
14619 @samp{@var{hostname}:@var{portnumber}}.
14620
14621 @item target pmon @var{port}
14622 @kindex target pmon @var{port}
14623 PMON ROM monitor.
14624
14625 @item target ddb @var{port}
14626 @kindex target ddb @var{port}
14627 NEC's DDB variant of PMON for Vr4300.
14628
14629 @item target lsi @var{port}
14630 @kindex target lsi @var{port}
14631 LSI variant of PMON.
14632
14633 @kindex target r3900
14634 @item target r3900 @var{dev}
14635 Densan DVE-R3900 ROM monitor for Toshiba R3900 Mips.
14636
14637 @kindex target array
14638 @item target array @var{dev}
14639 Array Tech LSI33K RAID controller board.
14640
14641 @end table
14642
14643
14644 @noindent
14645 @value{GDBN} also supports these special commands for MIPS targets:
14646
14647 @table @code
14648 @item set mipsfpu double
14649 @itemx set mipsfpu single
14650 @itemx set mipsfpu none
14651 @itemx set mipsfpu auto
14652 @itemx show mipsfpu
14653 @kindex set mipsfpu
14654 @kindex show mipsfpu
14655 @cindex MIPS remote floating point
14656 @cindex floating point, MIPS remote
14657 If your target board does not support the MIPS floating point
14658 coprocessor, you should use the command @samp{set mipsfpu none} (if you
14659 need this, you may wish to put the command in your @value{GDBN} init
14660 file).  This tells @value{GDBN} how to find the return value of
14661 functions which return floating point values.  It also allows
14662 @value{GDBN} to avoid saving the floating point registers when calling
14663 functions on the board.  If you are using a floating point coprocessor
14664 with only single precision floating point support, as on the @sc{r4650}
14665 processor, use the command @samp{set mipsfpu single}.  The default
14666 double precision floating point coprocessor may be selected using
14667 @samp{set mipsfpu double}.
14668
14669 In previous versions the only choices were double precision or no
14670 floating point, so @samp{set mipsfpu on} will select double precision
14671 and @samp{set mipsfpu off} will select no floating point.
14672
14673 As usual, you can inquire about the @code{mipsfpu} variable with
14674 @samp{show mipsfpu}.
14675
14676 @item set timeout @var{seconds}
14677 @itemx set retransmit-timeout @var{seconds}
14678 @itemx show timeout
14679 @itemx show retransmit-timeout
14680 @cindex @code{timeout}, MIPS protocol
14681 @cindex @code{retransmit-timeout}, MIPS protocol
14682 @kindex set timeout
14683 @kindex show timeout
14684 @kindex set retransmit-timeout
14685 @kindex show retransmit-timeout
14686 You can control the timeout used while waiting for a packet, in the MIPS
14687 remote protocol, with the @code{set timeout @var{seconds}} command.  The
14688 default is 5 seconds.  Similarly, you can control the timeout used while
14689 waiting for an acknowledgement of a packet with the @code{set
14690 retransmit-timeout @var{seconds}} command.  The default is 3 seconds.
14691 You can inspect both values with @code{show timeout} and @code{show
14692 retransmit-timeout}.  (These commands are @emph{only} available when
14693 @value{GDBN} is configured for @samp{--target=mips-idt-ecoff}.)
14694
14695 The timeout set by @code{set timeout} does not apply when @value{GDBN}
14696 is waiting for your program to stop.  In that case, @value{GDBN} waits
14697 forever because it has no way of knowing how long the program is going
14698 to run before stopping.
14699
14700 @item set syn-garbage-limit @var{num}
14701 @kindex set syn-garbage-limit@r{, MIPS remote}
14702 @cindex synchronize with remote MIPS target
14703 Limit the maximum number of characters @value{GDBN} should ignore when
14704 it tries to synchronize with the remote target.  The default is 10
14705 characters.  Setting the limit to -1 means there's no limit.
14706
14707 @item show syn-garbage-limit
14708 @kindex show syn-garbage-limit@r{, MIPS remote}
14709 Show the current limit on the number of characters to ignore when
14710 trying to synchronize with the remote system.
14711
14712 @item set monitor-prompt @var{prompt}
14713 @kindex set monitor-prompt@r{, MIPS remote}
14714 @cindex remote monitor prompt
14715 Tell @value{GDBN} to expect the specified @var{prompt} string from the
14716 remote monitor.  The default depends on the target:
14717 @table @asis
14718 @item pmon target
14719 @samp{PMON}
14720 @item ddb target
14721 @samp{NEC010}
14722 @item lsi target
14723 @samp{PMON>}
14724 @end table
14725
14726 @item show monitor-prompt
14727 @kindex show monitor-prompt@r{, MIPS remote}
14728 Show the current strings @value{GDBN} expects as the prompt from the
14729 remote monitor.
14730
14731 @item set monitor-warnings
14732 @kindex set monitor-warnings@r{, MIPS remote}
14733 Enable or disable monitor warnings about hardware breakpoints.  This
14734 has effect only for the @code{lsi} target.  When on, @value{GDBN} will
14735 display warning messages whose codes are returned by the @code{lsi}
14736 PMON monitor for breakpoint commands.
14737
14738 @item show monitor-warnings
14739 @kindex show monitor-warnings@r{, MIPS remote}
14740 Show the current setting of printing monitor warnings.
14741
14742 @item pmon @var{command}
14743 @kindex pmon@r{, MIPS remote}
14744 @cindex send PMON command
14745 This command allows sending an arbitrary @var{command} string to the
14746 monitor.  The monitor must be in debug mode for this to work.
14747 @end table
14748
14749 @node OpenRISC 1000
14750 @subsection OpenRISC 1000
14751 @cindex OpenRISC 1000
14752
14753 @cindex or1k boards
14754 See OR1k Architecture document (@uref{www.opencores.org}) for more information
14755 about platform and commands.
14756
14757 @table @code
14758
14759 @kindex target jtag
14760 @item target jtag jtag://@var{host}:@var{port}
14761
14762 Connects to remote JTAG server.
14763 JTAG remote server can be either an or1ksim or JTAG server,
14764 connected via parallel port to the board.
14765
14766 Example: @code{target jtag jtag://localhost:9999}
14767
14768 @kindex or1ksim
14769 @item or1ksim @var{command}
14770 If connected to @code{or1ksim} OpenRISC 1000 Architectural
14771 Simulator, proprietary commands can be executed.
14772
14773 @kindex info or1k spr
14774 @item info or1k spr
14775 Displays spr groups.
14776
14777 @item info or1k spr @var{group}
14778 @itemx info or1k spr @var{groupno}
14779 Displays register names in selected group.
14780
14781 @item info or1k spr @var{group} @var{register}
14782 @itemx info or1k spr @var{register}
14783 @itemx info or1k spr @var{groupno} @var{registerno}
14784 @itemx info or1k spr @var{registerno}
14785 Shows information about specified spr register.
14786
14787 @kindex spr
14788 @item spr @var{group} @var{register} @var{value}
14789 @itemx spr @var{register @var{value}}
14790 @itemx spr @var{groupno} @var{registerno @var{value}}
14791 @itemx spr @var{registerno @var{value}}
14792 Writes @var{value} to specified spr register.
14793 @end table
14794
14795 Some implementations of OpenRISC 1000 Architecture also have hardware trace.
14796 It is very similar to @value{GDBN} trace, except it does not interfere with normal
14797 program execution and is thus much faster.  Hardware breakpoints/watchpoint
14798 triggers can be set using:
14799 @table @code
14800 @item $LEA/$LDATA
14801 Load effective address/data
14802 @item $SEA/$SDATA
14803 Store effective address/data
14804 @item $AEA/$ADATA
14805 Access effective address ($SEA or $LEA) or data ($SDATA/$LDATA)
14806 @item $FETCH
14807 Fetch data
14808 @end table
14809
14810 When triggered, it can capture low level data, like: @code{PC}, @code{LSEA},
14811 @code{LDATA}, @code{SDATA}, @code{READSPR}, @code{WRITESPR}, @code{INSTR}.
14812
14813 @code{htrace} commands:
14814 @cindex OpenRISC 1000 htrace
14815 @table @code
14816 @kindex hwatch
14817 @item hwatch @var{conditional}
14818 Set hardware watchpoint on combination of Load/Store Effective Address(es)
14819 or Data.  For example:
14820
14821 @code{hwatch ($LEA == my_var) && ($LDATA < 50) || ($SEA == my_var) && ($SDATA >= 50)}
14822
14823 @code{hwatch ($LEA == my_var) && ($LDATA < 50) || ($SEA == my_var) && ($SDATA >= 50)}
14824
14825 @kindex htrace
14826 @item htrace info
14827 Display information about current HW trace configuration.
14828
14829 @item htrace trigger @var{conditional}
14830 Set starting criteria for HW trace.
14831
14832 @item htrace qualifier @var{conditional}
14833 Set acquisition qualifier for HW trace.
14834
14835 @item htrace stop @var{conditional}
14836 Set HW trace stopping criteria.
14837
14838 @item htrace record [@var{data}]*
14839 Selects the data to be recorded, when qualifier is met and HW trace was
14840 triggered.
14841
14842 @item htrace enable
14843 @itemx htrace disable
14844 Enables/disables the HW trace.
14845
14846 @item htrace rewind [@var{filename}]
14847 Clears currently recorded trace data.
14848
14849 If filename is specified, new trace file is made and any newly collected data
14850 will be written there.
14851
14852 @item htrace print [@var{start} [@var{len}]]
14853 Prints trace buffer, using current record configuration.
14854
14855 @item htrace mode continuous
14856 Set continuous trace mode.
14857
14858 @item htrace mode suspend
14859 Set suspend trace mode.
14860
14861 @end table
14862
14863 @node PowerPC
14864 @subsection PowerPC
14865
14866 @table @code
14867 @kindex target dink32
14868 @item target dink32 @var{dev}
14869 DINK32 ROM monitor.
14870
14871 @kindex target ppcbug
14872 @item target ppcbug @var{dev}
14873 @kindex target ppcbug1
14874 @item target ppcbug1 @var{dev}
14875 PPCBUG ROM monitor for PowerPC.
14876
14877 @kindex target sds
14878 @item target sds @var{dev}
14879 SDS monitor, running on a PowerPC board (such as Motorola's ADS).
14880 @end table
14881
14882 @cindex SDS protocol
14883 The following commands specific to the SDS protocol are supported
14884 by@value{GDBN}:
14885
14886 @table @code
14887 @item set sdstimeout @var{nsec}
14888 @kindex set sdstimeout
14889 Set the timeout for SDS protocol reads to be @var{nsec} seconds.  The
14890 default is 2 seconds.
14891
14892 @item show sdstimeout
14893 @kindex show sdstimeout
14894 Show the current value of the SDS timeout.
14895
14896 @item sds @var{command}
14897 @kindex sds@r{, a command}
14898 Send the specified @var{command} string to the SDS monitor.
14899 @end table
14900
14901
14902 @node PA
14903 @subsection HP PA Embedded
14904
14905 @table @code
14906
14907 @kindex target op50n
14908 @item target op50n @var{dev}
14909 OP50N monitor, running on an OKI HPPA board.
14910
14911 @kindex target w89k
14912 @item target w89k @var{dev}
14913 W89K monitor, running on a Winbond HPPA board.
14914
14915 @end table
14916
14917 @node Sparclet
14918 @subsection Tsqware Sparclet
14919
14920 @cindex Sparclet
14921
14922 @value{GDBN} enables developers to debug tasks running on
14923 Sparclet targets from a Unix host.
14924 @value{GDBN} uses code that runs on
14925 both the Unix host and on the Sparclet target.  The program
14926 @code{@value{GDBP}} is installed and executed on the Unix host.
14927
14928 @table @code
14929 @item remotetimeout @var{args}
14930 @kindex remotetimeout
14931 @value{GDBN} supports the option @code{remotetimeout}.
14932 This option is set by the user, and  @var{args} represents the number of
14933 seconds @value{GDBN} waits for responses.
14934 @end table
14935
14936 @cindex compiling, on Sparclet
14937 When compiling for debugging, include the options @samp{-g} to get debug
14938 information and @samp{-Ttext} to relocate the program to where you wish to
14939 load it on the target.  You may also want to add the options @samp{-n} or
14940 @samp{-N} in order to reduce the size of the sections.  Example:
14941
14942 @smallexample
14943 sparclet-aout-gcc prog.c -Ttext 0x12010000 -g -o prog -N
14944 @end smallexample
14945
14946 You can use @code{objdump} to verify that the addresses are what you intended:
14947
14948 @smallexample
14949 sparclet-aout-objdump --headers --syms prog
14950 @end smallexample
14951
14952 @cindex running, on Sparclet
14953 Once you have set
14954 your Unix execution search path to find @value{GDBN}, you are ready to
14955 run @value{GDBN}.  From your Unix host, run @code{@value{GDBP}}
14956 (or @code{sparclet-aout-gdb}, depending on your installation).
14957
14958 @value{GDBN} comes up showing the prompt:
14959
14960 @smallexample
14961 (gdbslet)
14962 @end smallexample
14963
14964 @menu
14965 * Sparclet File::                Setting the file to debug
14966 * Sparclet Connection::          Connecting to Sparclet
14967 * Sparclet Download::            Sparclet download
14968 * Sparclet Execution::           Running and debugging
14969 @end menu
14970
14971 @node Sparclet File
14972 @subsubsection Setting File to Debug
14973
14974 The @value{GDBN} command @code{file} lets you choose with program to debug.
14975
14976 @smallexample
14977 (gdbslet) file prog
14978 @end smallexample
14979
14980 @need 1000
14981 @value{GDBN} then attempts to read the symbol table of @file{prog}.
14982 @value{GDBN} locates
14983 the file by searching the directories listed in the command search
14984 path.
14985 If the file was compiled with debug information (option @samp{-g}), source
14986 files will be searched as well.
14987 @value{GDBN} locates
14988 the source files by searching the directories listed in the directory search
14989 path (@pxref{Environment, ,Your Program's Environment}).
14990 If it fails
14991 to find a file, it displays a message such as:
14992
14993 @smallexample
14994 prog: No such file or directory.
14995 @end smallexample
14996
14997 When this happens, add the appropriate directories to the search paths with
14998 the @value{GDBN} commands @code{path} and @code{dir}, and execute the
14999 @code{target} command again.
15000
15001 @node Sparclet Connection
15002 @subsubsection Connecting to Sparclet
15003
15004 The @value{GDBN} command @code{target} lets you connect to a Sparclet target.
15005 To connect to a target on serial port ``@code{ttya}'', type:
15006
15007 @smallexample
15008 (gdbslet) target sparclet /dev/ttya
15009 Remote target sparclet connected to /dev/ttya
15010 main () at ../prog.c:3
15011 @end smallexample
15012
15013 @need 750
15014 @value{GDBN} displays messages like these:
15015
15016 @smallexample
15017 Connected to ttya.
15018 @end smallexample
15019
15020 @node Sparclet Download
15021 @subsubsection Sparclet Download
15022
15023 @cindex download to Sparclet
15024 Once connected to the Sparclet target,
15025 you can use the @value{GDBN}
15026 @code{load} command to download the file from the host to the target.
15027 The file name and load offset should be given as arguments to the @code{load}
15028 command.
15029 Since the file format is aout, the program must be loaded to the starting
15030 address.  You can use @code{objdump} to find out what this value is.  The load
15031 offset is an offset which is added to the VMA (virtual memory address)
15032 of each of the file's sections.
15033 For instance, if the program
15034 @file{prog} was linked to text address 0x1201000, with data at 0x12010160
15035 and bss at 0x12010170, in @value{GDBN}, type:
15036
15037 @smallexample
15038 (gdbslet) load prog 0x12010000
15039 Loading section .text, size 0xdb0 vma 0x12010000
15040 @end smallexample
15041
15042 If the code is loaded at a different address then what the program was linked
15043 to, you may need to use the @code{section} and @code{add-symbol-file} commands
15044 to tell @value{GDBN} where to map the symbol table.
15045
15046 @node Sparclet Execution
15047 @subsubsection Running and Debugging
15048
15049 @cindex running and debugging Sparclet programs
15050 You can now begin debugging the task using @value{GDBN}'s execution control
15051 commands, @code{b}, @code{step}, @code{run}, etc.  See the @value{GDBN}
15052 manual for the list of commands.
15053
15054 @smallexample
15055 (gdbslet) b main
15056 Breakpoint 1 at 0x12010000: file prog.c, line 3.
15057 (gdbslet) run
15058 Starting program: prog
15059 Breakpoint 1, main (argc=1, argv=0xeffff21c) at prog.c:3
15060 3        char *symarg = 0;
15061 (gdbslet) step
15062 4        char *execarg = "hello!";
15063 (gdbslet)
15064 @end smallexample
15065
15066 @node Sparclite
15067 @subsection Fujitsu Sparclite
15068
15069 @table @code
15070
15071 @kindex target sparclite
15072 @item target sparclite @var{dev}
15073 Fujitsu sparclite boards, used only for the purpose of loading.
15074 You must use an additional command to debug the program.
15075 For example: target remote @var{dev} using @value{GDBN} standard
15076 remote protocol.
15077
15078 @end table
15079
15080 @node Z8000
15081 @subsection Zilog Z8000
15082
15083 @cindex Z8000
15084 @cindex simulator, Z8000
15085 @cindex Zilog Z8000 simulator
15086
15087 When configured for debugging Zilog Z8000 targets, @value{GDBN} includes
15088 a Z8000 simulator.
15089
15090 For the Z8000 family, @samp{target sim} simulates either the Z8002 (the
15091 unsegmented variant of the Z8000 architecture) or the Z8001 (the
15092 segmented variant).  The simulator recognizes which architecture is
15093 appropriate by inspecting the object code.
15094
15095 @table @code
15096 @item target sim @var{args}
15097 @kindex sim
15098 @kindex target sim@r{, with Z8000}
15099 Debug programs on a simulated CPU.  If the simulator supports setup
15100 options, specify them via @var{args}.
15101 @end table
15102
15103 @noindent
15104 After specifying this target, you can debug programs for the simulated
15105 CPU in the same style as programs for your host computer; use the
15106 @code{file} command to load a new program image, the @code{run} command
15107 to run your program, and so on.
15108
15109 As well as making available all the usual machine registers
15110 (@pxref{Registers, ,Registers}), the Z8000 simulator provides three
15111 additional items of information as specially named registers:
15112
15113 @table @code
15114
15115 @item cycles
15116 Counts clock-ticks in the simulator.
15117
15118 @item insts
15119 Counts instructions run in the simulator.
15120
15121 @item time
15122 Execution time in 60ths of a second.
15123
15124 @end table
15125
15126 You can refer to these values in @value{GDBN} expressions with the usual
15127 conventions; for example, @w{@samp{b fputc if $cycles>5000}} sets a
15128 conditional breakpoint that suspends only after at least 5000
15129 simulated clock ticks.
15130
15131 @node AVR
15132 @subsection Atmel AVR
15133 @cindex AVR
15134
15135 When configured for debugging the Atmel AVR, @value{GDBN} supports the
15136 following AVR-specific commands:
15137
15138 @table @code
15139 @item info io_registers
15140 @kindex info io_registers@r{, AVR}
15141 @cindex I/O registers (Atmel AVR)
15142 This command displays information about the AVR I/O registers.  For
15143 each register, @value{GDBN} prints its number and value.
15144 @end table
15145
15146 @node CRIS
15147 @subsection CRIS
15148 @cindex CRIS
15149
15150 When configured for debugging CRIS, @value{GDBN} provides the
15151 following CRIS-specific commands:
15152
15153 @table @code
15154 @item set cris-version @var{ver}
15155 @cindex CRIS version
15156 Set the current CRIS version to @var{ver}, either @samp{10} or @samp{32}.
15157 The CRIS version affects register names and sizes.  This command is useful in
15158 case autodetection of the CRIS version fails.
15159
15160 @item show cris-version
15161 Show the current CRIS version.
15162
15163 @item set cris-dwarf2-cfi
15164 @cindex DWARF-2 CFI and CRIS
15165 Set the usage of DWARF-2 CFI for CRIS debugging.  The default is @samp{on}.
15166 Change to @samp{off} when using @code{gcc-cris} whose version is below 
15167 @code{R59}.
15168
15169 @item show cris-dwarf2-cfi
15170 Show the current state of using DWARF-2 CFI.
15171
15172 @item set cris-mode @var{mode}
15173 @cindex CRIS mode
15174 Set the current CRIS mode to @var{mode}.  It should only be changed when
15175 debugging in guru mode, in which case it should be set to 
15176 @samp{guru} (the default is @samp{normal}).
15177
15178 @item show cris-mode
15179 Show the current CRIS mode.
15180 @end table
15181
15182 @node Super-H
15183 @subsection Renesas Super-H
15184 @cindex Super-H
15185
15186 For the Renesas Super-H processor, @value{GDBN} provides these
15187 commands:
15188
15189 @table @code
15190 @item regs
15191 @kindex regs@r{, Super-H}
15192 Show the values of all Super-H registers.
15193 @end table
15194
15195
15196 @node Architectures
15197 @section Architectures
15198
15199 This section describes characteristics of architectures that affect
15200 all uses of @value{GDBN} with the architecture, both native and cross.
15201
15202 @menu
15203 * i386::
15204 * A29K::
15205 * Alpha::
15206 * MIPS::
15207 * HPPA::               HP PA architecture
15208 * SPU::                Cell Broadband Engine SPU architecture
15209 @end menu
15210
15211 @node i386
15212 @subsection x86 Architecture-specific Issues
15213
15214 @table @code
15215 @item set struct-convention @var{mode}
15216 @kindex set struct-convention
15217 @cindex struct return convention
15218 @cindex struct/union returned in registers
15219 Set the convention used by the inferior to return @code{struct}s and
15220 @code{union}s from functions to @var{mode}.  Possible values of
15221 @var{mode} are @code{"pcc"}, @code{"reg"}, and @code{"default"} (the
15222 default).  @code{"default"} or @code{"pcc"} means that @code{struct}s
15223 are returned on the stack, while @code{"reg"} means that a
15224 @code{struct} or a @code{union} whose size is 1, 2, 4, or 8 bytes will
15225 be returned in a register.
15226
15227 @item show struct-convention
15228 @kindex show struct-convention
15229 Show the current setting of the convention to return @code{struct}s
15230 from functions.
15231 @end table
15232
15233 @node A29K
15234 @subsection A29K
15235
15236 @table @code
15237
15238 @kindex set rstack_high_address
15239 @cindex AMD 29K register stack
15240 @cindex register stack, AMD29K
15241 @item set rstack_high_address @var{address}
15242 On AMD 29000 family processors, registers are saved in a separate
15243 @dfn{register stack}.  There is no way for @value{GDBN} to determine the
15244 extent of this stack.  Normally, @value{GDBN} just assumes that the
15245 stack is ``large enough''.  This may result in @value{GDBN} referencing
15246 memory locations that do not exist.  If necessary, you can get around
15247 this problem by specifying the ending address of the register stack with
15248 the @code{set rstack_high_address} command.  The argument should be an
15249 address, which you probably want to precede with @samp{0x} to specify in
15250 hexadecimal.
15251
15252 @kindex show rstack_high_address
15253 @item show rstack_high_address
15254 Display the current limit of the register stack, on AMD 29000 family
15255 processors.
15256
15257 @end table
15258
15259 @node Alpha
15260 @subsection Alpha
15261
15262 See the following section.
15263
15264 @node MIPS
15265 @subsection MIPS
15266
15267 @cindex stack on Alpha
15268 @cindex stack on MIPS
15269 @cindex Alpha stack
15270 @cindex MIPS stack
15271 Alpha- and MIPS-based computers use an unusual stack frame, which
15272 sometimes requires @value{GDBN} to search backward in the object code to
15273 find the beginning of a function.
15274
15275 @cindex response time, MIPS debugging
15276 To improve response time (especially for embedded applications, where
15277 @value{GDBN} may be restricted to a slow serial line for this search)
15278 you may want to limit the size of this search, using one of these
15279 commands:
15280
15281 @table @code
15282 @cindex @code{heuristic-fence-post} (Alpha, MIPS)
15283 @item set heuristic-fence-post @var{limit}
15284 Restrict @value{GDBN} to examining at most @var{limit} bytes in its
15285 search for the beginning of a function.  A value of @var{0} (the
15286 default) means there is no limit.  However, except for @var{0}, the
15287 larger the limit the more bytes @code{heuristic-fence-post} must search
15288 and therefore the longer it takes to run.  You should only need to use
15289 this command when debugging a stripped executable.
15290
15291 @item show heuristic-fence-post
15292 Display the current limit.
15293 @end table
15294
15295 @noindent
15296 These commands are available @emph{only} when @value{GDBN} is configured
15297 for debugging programs on Alpha or MIPS processors.
15298
15299 Several MIPS-specific commands are available when debugging MIPS
15300 programs:
15301
15302 @table @code
15303 @item set mips abi @var{arg}
15304 @kindex set mips abi
15305 @cindex set ABI for MIPS
15306 Tell @value{GDBN} which MIPS ABI is used by the inferior.  Possible
15307 values of @var{arg} are:
15308
15309 @table @samp
15310 @item auto
15311 The default ABI associated with the current binary (this is the
15312 default).
15313 @item o32
15314 @item o64
15315 @item n32
15316 @item n64
15317 @item eabi32
15318 @item eabi64
15319 @item auto
15320 @end table
15321
15322 @item show mips abi
15323 @kindex show mips abi
15324 Show the MIPS ABI used by @value{GDBN} to debug the inferior.
15325
15326 @item set mipsfpu
15327 @itemx show mipsfpu
15328 @xref{MIPS Embedded, set mipsfpu}.
15329
15330 @item set mips mask-address @var{arg}
15331 @kindex set mips mask-address
15332 @cindex MIPS addresses, masking
15333 This command determines whether the most-significant 32 bits of 64-bit
15334 MIPS addresses are masked off.  The argument @var{arg} can be
15335 @samp{on}, @samp{off}, or @samp{auto}.  The latter is the default
15336 setting, which lets @value{GDBN} determine the correct value.
15337
15338 @item show mips mask-address
15339 @kindex show mips mask-address
15340 Show whether the upper 32 bits of MIPS addresses are masked off or
15341 not.
15342
15343 @item set remote-mips64-transfers-32bit-regs
15344 @kindex set remote-mips64-transfers-32bit-regs
15345 This command controls compatibility with 64-bit MIPS targets that
15346 transfer data in 32-bit quantities.  If you have an old MIPS 64 target
15347 that transfers 32 bits for some registers, like @sc{sr} and @sc{fsr},
15348 and 64 bits for other registers, set this option to @samp{on}.
15349
15350 @item show remote-mips64-transfers-32bit-regs
15351 @kindex show remote-mips64-transfers-32bit-regs
15352 Show the current setting of compatibility with older MIPS 64 targets.
15353
15354 @item set debug mips
15355 @kindex set debug mips
15356 This command turns on and off debugging messages for the MIPS-specific
15357 target code in @value{GDBN}.
15358
15359 @item show debug mips
15360 @kindex show debug mips
15361 Show the current setting of MIPS debugging messages.
15362 @end table
15363
15364
15365 @node HPPA
15366 @subsection HPPA
15367 @cindex HPPA support
15368
15369 When @value{GDBN} is debugging the HP PA architecture, it provides the
15370 following special commands:
15371
15372 @table @code
15373 @item set debug hppa
15374 @kindex set debug hppa
15375 This command determines whether HPPA architecture-specific debugging
15376 messages are to be displayed.
15377
15378 @item show debug hppa
15379 Show whether HPPA debugging messages are displayed.
15380
15381 @item maint print unwind @var{address}
15382 @kindex maint print unwind@r{, HPPA}
15383 This command displays the contents of the unwind table entry at the
15384 given @var{address}.
15385
15386 @end table
15387
15388
15389 @node SPU
15390 @subsection Cell Broadband Engine SPU architecture
15391 @cindex Cell Broadband Engine
15392 @cindex SPU
15393
15394 When @value{GDBN} is debugging the Cell Broadband Engine SPU architecture,
15395 it provides the following special commands:
15396
15397 @table @code
15398 @item info spu event
15399 @kindex info spu
15400 Display SPU event facility status.  Shows current event mask
15401 and pending event status.
15402
15403 @item info spu signal
15404 Display SPU signal notification facility status.  Shows pending
15405 signal-control word and signal notification mode of both signal
15406 notification channels.
15407
15408 @item info spu mailbox
15409 Display SPU mailbox facility status.  Shows all pending entries,
15410 in order of processing, in each of the SPU Write Outbound,
15411 SPU Write Outbound Interrupt, and SPU Read Inbound mailboxes.
15412
15413 @item info spu dma
15414 Display MFC DMA status.  Shows all pending commands in the MFC
15415 DMA queue.  For each entry, opcode, tag, class IDs, effective
15416 and local store addresses and transfer size are shown.
15417
15418 @item info spu proxydma
15419 Display MFC Proxy-DMA status.  Shows all pending commands in the MFC
15420 Proxy-DMA queue.  For each entry, opcode, tag, class IDs, effective
15421 and local store addresses and transfer size are shown.
15422
15423 @end table
15424  
15425
15426 @node Controlling GDB
15427 @chapter Controlling @value{GDBN}
15428
15429 You can alter the way @value{GDBN} interacts with you by using the
15430 @code{set} command.  For commands controlling how @value{GDBN} displays
15431 data, see @ref{Print Settings, ,Print Settings}.  Other settings are
15432 described here.
15433
15434 @menu
15435 * Prompt::                      Prompt
15436 * Editing::                     Command editing
15437 * Command History::             Command history
15438 * Screen Size::                 Screen size
15439 * Numbers::                     Numbers
15440 * ABI::                         Configuring the current ABI
15441 * Messages/Warnings::           Optional warnings and messages
15442 * Debugging Output::            Optional messages about internal happenings
15443 @end menu
15444
15445 @node Prompt
15446 @section Prompt
15447
15448 @cindex prompt
15449
15450 @value{GDBN} indicates its readiness to read a command by printing a string
15451 called the @dfn{prompt}.  This string is normally @samp{(@value{GDBP})}.  You
15452 can change the prompt string with the @code{set prompt} command.  For
15453 instance, when debugging @value{GDBN} with @value{GDBN}, it is useful to change
15454 the prompt in one of the @value{GDBN} sessions so that you can always tell
15455 which one you are talking to.
15456
15457 @emph{Note:}  @code{set prompt} does not add a space for you after the
15458 prompt you set.  This allows you to set a prompt which ends in a space
15459 or a prompt that does not.
15460
15461 @table @code
15462 @kindex set prompt
15463 @item set prompt @var{newprompt}
15464 Directs @value{GDBN} to use @var{newprompt} as its prompt string henceforth.
15465
15466 @kindex show prompt
15467 @item show prompt
15468 Prints a line of the form: @samp{Gdb's prompt is: @var{your-prompt}}
15469 @end table
15470
15471 @node Editing
15472 @section Command Editing
15473 @cindex readline
15474 @cindex command line editing
15475
15476 @value{GDBN} reads its input commands via the @dfn{Readline} interface.  This
15477 @sc{gnu} library provides consistent behavior for programs which provide a
15478 command line interface to the user.  Advantages are @sc{gnu} Emacs-style
15479 or @dfn{vi}-style inline editing of commands, @code{csh}-like history
15480 substitution, and a storage and recall of command history across
15481 debugging sessions.
15482
15483 You may control the behavior of command line editing in @value{GDBN} with the
15484 command @code{set}.
15485
15486 @table @code
15487 @kindex set editing
15488 @cindex editing
15489 @item set editing
15490 @itemx set editing on
15491 Enable command line editing (enabled by default).
15492
15493 @item set editing off
15494 Disable command line editing.
15495
15496 @kindex show editing
15497 @item show editing
15498 Show whether command line editing is enabled.
15499 @end table
15500
15501 @xref{Command Line Editing}, for more details about the Readline
15502 interface.  Users unfamiliar with @sc{gnu} Emacs or @code{vi} are
15503 encouraged to read that chapter.
15504
15505 @node Command History
15506 @section Command History
15507 @cindex command history
15508
15509 @value{GDBN} can keep track of the commands you type during your
15510 debugging sessions, so that you can be certain of precisely what
15511 happened.  Use these commands to manage the @value{GDBN} command
15512 history facility.
15513
15514 @value{GDBN} uses the @sc{gnu} History library, a part of the Readline
15515 package, to provide the history facility.  @xref{Using History
15516 Interactively}, for the detailed description of the History library.
15517
15518 To issue a command to @value{GDBN} without affecting certain aspects of
15519 the state which is seen by users, prefix it with @samp{server }
15520 (@pxref{Server Prefix}).  This
15521 means that this command will not affect the command history, nor will it
15522 affect @value{GDBN}'s notion of which command to repeat if @key{RET} is
15523 pressed on a line by itself.
15524
15525 @cindex @code{server}, command prefix
15526 The server prefix does not affect the recording of values into the value
15527 history; to print a value without recording it into the value history,
15528 use the @code{output} command instead of the @code{print} command.
15529
15530 Here is the description of @value{GDBN} commands related to command
15531 history.
15532
15533 @table @code
15534 @cindex history substitution
15535 @cindex history file
15536 @kindex set history filename
15537 @cindex @env{GDBHISTFILE}, environment variable
15538 @item set history filename @var{fname}
15539 Set the name of the @value{GDBN} command history file to @var{fname}.
15540 This is the file where @value{GDBN} reads an initial command history
15541 list, and where it writes the command history from this session when it
15542 exits.  You can access this list through history expansion or through
15543 the history command editing characters listed below.  This file defaults
15544 to the value of the environment variable @code{GDBHISTFILE}, or to
15545 @file{./.gdb_history} (@file{./_gdb_history} on MS-DOS) if this variable
15546 is not set.
15547
15548 @cindex save command history
15549 @kindex set history save
15550 @item set history save
15551 @itemx set history save on
15552 Record command history in a file, whose name may be specified with the
15553 @code{set history filename} command.  By default, this option is disabled.
15554
15555 @item set history save off
15556 Stop recording command history in a file.
15557
15558 @cindex history size
15559 @kindex set history size
15560 @cindex @env{HISTSIZE}, environment variable
15561 @item set history size @var{size}
15562 Set the number of commands which @value{GDBN} keeps in its history list.
15563 This defaults to the value of the environment variable
15564 @code{HISTSIZE}, or to 256 if this variable is not set.
15565 @end table
15566
15567 History expansion assigns special meaning to the character @kbd{!}.
15568 @xref{Event Designators}, for more details.
15569
15570 @cindex history expansion, turn on/off
15571 Since @kbd{!} is also the logical not operator in C, history expansion
15572 is off by default. If you decide to enable history expansion with the
15573 @code{set history expansion on} command, you may sometimes need to
15574 follow @kbd{!} (when it is used as logical not, in an expression) with
15575 a space or a tab to prevent it from being expanded.  The readline
15576 history facilities do not attempt substitution on the strings
15577 @kbd{!=} and @kbd{!(}, even when history expansion is enabled.
15578
15579 The commands to control history expansion are:
15580
15581 @table @code
15582 @item set history expansion on
15583 @itemx set history expansion
15584 @kindex set history expansion
15585 Enable history expansion.  History expansion is off by default.
15586
15587 @item set history expansion off
15588 Disable history expansion.
15589
15590 @c @group
15591 @kindex show history
15592 @item show history
15593 @itemx show history filename
15594 @itemx show history save
15595 @itemx show history size
15596 @itemx show history expansion
15597 These commands display the state of the @value{GDBN} history parameters.
15598 @code{show history} by itself displays all four states.
15599 @c @end group
15600 @end table
15601
15602 @table @code
15603 @kindex show commands
15604 @cindex show last commands
15605 @cindex display command history
15606 @item show commands
15607 Display the last ten commands in the command history.
15608
15609 @item show commands @var{n}
15610 Print ten commands centered on command number @var{n}.
15611
15612 @item show commands +
15613 Print ten commands just after the commands last printed.
15614 @end table
15615
15616 @node Screen Size
15617 @section Screen Size
15618 @cindex size of screen
15619 @cindex pauses in output
15620
15621 Certain commands to @value{GDBN} may produce large amounts of
15622 information output to the screen.  To help you read all of it,
15623 @value{GDBN} pauses and asks you for input at the end of each page of
15624 output.  Type @key{RET} when you want to continue the output, or @kbd{q}
15625 to discard the remaining output.  Also, the screen width setting
15626 determines when to wrap lines of output.  Depending on what is being
15627 printed, @value{GDBN} tries to break the line at a readable place,
15628 rather than simply letting it overflow onto the following line.
15629
15630 Normally @value{GDBN} knows the size of the screen from the terminal
15631 driver software.  For example, on Unix @value{GDBN} uses the termcap data base
15632 together with the value of the @code{TERM} environment variable and the
15633 @code{stty rows} and @code{stty cols} settings.  If this is not correct,
15634 you can override it with the @code{set height} and @code{set
15635 width} commands:
15636
15637 @table @code
15638 @kindex set height
15639 @kindex set width
15640 @kindex show width
15641 @kindex show height
15642 @item set height @var{lpp}
15643 @itemx show height
15644 @itemx set width @var{cpl}
15645 @itemx show width
15646 These @code{set} commands specify a screen height of @var{lpp} lines and
15647 a screen width of @var{cpl} characters.  The associated @code{show}
15648 commands display the current settings.
15649
15650 If you specify a height of zero lines, @value{GDBN} does not pause during
15651 output no matter how long the output is.  This is useful if output is to a
15652 file or to an editor buffer.
15653
15654 Likewise, you can specify @samp{set width 0} to prevent @value{GDBN}
15655 from wrapping its output.
15656
15657 @item set pagination on
15658 @itemx set pagination off
15659 @kindex set pagination
15660 Turn the output pagination on or off; the default is on.  Turning
15661 pagination off is the alternative to @code{set height 0}.
15662
15663 @item show pagination
15664 @kindex show pagination
15665 Show the current pagination mode.
15666 @end table
15667
15668 @node Numbers
15669 @section Numbers
15670 @cindex number representation
15671 @cindex entering numbers
15672
15673 You can always enter numbers in octal, decimal, or hexadecimal in
15674 @value{GDBN} by the usual conventions: octal numbers begin with
15675 @samp{0}, decimal numbers end with @samp{.}, and hexadecimal numbers
15676 begin with @samp{0x}.  Numbers that neither begin with @samp{0} or
15677 @samp{0x}, nor end with a @samp{.} are, by default, entered in base
15678 10; likewise, the default display for numbers---when no particular
15679 format is specified---is base 10.  You can change the default base for
15680 both input and output with the commands described below.
15681
15682 @table @code
15683 @kindex set input-radix
15684 @item set input-radix @var{base}
15685 Set the default base for numeric input.  Supported choices
15686 for @var{base} are decimal 8, 10, or 16.  @var{base} must itself be
15687 specified either unambiguously or using the current input radix; for
15688 example, any of
15689
15690 @smallexample
15691 set input-radix 012
15692 set input-radix 10.
15693 set input-radix 0xa
15694 @end smallexample
15695
15696 @noindent
15697 sets the input base to decimal.  On the other hand, @samp{set input-radix 10}
15698 leaves the input radix unchanged, no matter what it was, since
15699 @samp{10}, being without any leading or trailing signs of its base, is
15700 interpreted in the current radix.  Thus, if the current radix is 16,
15701 @samp{10} is interpreted in hex, i.e.@: as 16 decimal, which doesn't
15702 change the radix.
15703
15704 @kindex set output-radix
15705 @item set output-radix @var{base}
15706 Set the default base for numeric display.  Supported choices
15707 for @var{base} are decimal 8, 10, or 16.  @var{base} must itself be
15708 specified either unambiguously or using the current input radix.
15709
15710 @kindex show input-radix
15711 @item show input-radix
15712 Display the current default base for numeric input.
15713
15714 @kindex show output-radix
15715 @item show output-radix
15716 Display the current default base for numeric display.
15717
15718 @item set radix @r{[}@var{base}@r{]}
15719 @itemx show radix
15720 @kindex set radix
15721 @kindex show radix
15722 These commands set and show the default base for both input and output
15723 of numbers.  @code{set radix} sets the radix of input and output to
15724 the same base; without an argument, it resets the radix back to its
15725 default value of 10.
15726
15727 @end table
15728
15729 @node ABI
15730 @section Configuring the Current ABI
15731
15732 @value{GDBN} can determine the @dfn{ABI} (Application Binary Interface) of your
15733 application automatically.  However, sometimes you need to override its
15734 conclusions.  Use these commands to manage @value{GDBN}'s view of the
15735 current ABI.
15736
15737 @cindex OS ABI
15738 @kindex set osabi
15739 @kindex show osabi
15740
15741 One @value{GDBN} configuration can debug binaries for multiple operating
15742 system targets, either via remote debugging or native emulation.
15743 @value{GDBN} will autodetect the @dfn{OS ABI} (Operating System ABI) in use,
15744 but you can override its conclusion using the @code{set osabi} command.
15745 One example where this is useful is in debugging of binaries which use
15746 an alternate C library (e.g.@: @sc{uClibc} for @sc{gnu}/Linux) which does
15747 not have the same identifying marks that the standard C library for your
15748 platform provides.
15749
15750 @table @code
15751 @item show osabi
15752 Show the OS ABI currently in use.
15753
15754 @item set osabi
15755 With no argument, show the list of registered available OS ABI's.
15756
15757 @item set osabi @var{abi}
15758 Set the current OS ABI to @var{abi}.
15759 @end table
15760
15761 @cindex float promotion
15762
15763 Generally, the way that an argument of type @code{float} is passed to a
15764 function depends on whether the function is prototyped.  For a prototyped
15765 (i.e.@: ANSI/ISO style) function, @code{float} arguments are passed unchanged,
15766 according to the architecture's convention for @code{float}.  For unprototyped
15767 (i.e.@: K&R style) functions, @code{float} arguments are first promoted to type
15768 @code{double} and then passed.
15769
15770 Unfortunately, some forms of debug information do not reliably indicate whether
15771 a function is prototyped.  If @value{GDBN} calls a function that is not marked
15772 as prototyped, it consults @kbd{set coerce-float-to-double}.
15773
15774 @table @code
15775 @kindex set coerce-float-to-double
15776 @item set coerce-float-to-double
15777 @itemx set coerce-float-to-double on
15778 Arguments of type @code{float} will be promoted to @code{double} when passed
15779 to an unprototyped function.  This is the default setting.
15780
15781 @item set coerce-float-to-double off
15782 Arguments of type @code{float} will be passed directly to unprototyped
15783 functions.
15784
15785 @kindex show coerce-float-to-double
15786 @item show coerce-float-to-double
15787 Show the current setting of promoting @code{float} to @code{double}.
15788 @end table
15789
15790 @kindex set cp-abi
15791 @kindex show cp-abi
15792 @value{GDBN} needs to know the ABI used for your program's C@t{++}
15793 objects.  The correct C@t{++} ABI depends on which C@t{++} compiler was
15794 used to build your application.  @value{GDBN} only fully supports
15795 programs with a single C@t{++} ABI; if your program contains code using
15796 multiple C@t{++} ABI's or if @value{GDBN} can not identify your
15797 program's ABI correctly, you can tell @value{GDBN} which ABI to use.
15798 Currently supported ABI's include ``gnu-v2'', for @code{g++} versions
15799 before 3.0, ``gnu-v3'', for @code{g++} versions 3.0 and later, and
15800 ``hpaCC'' for the HP ANSI C@t{++} compiler.  Other C@t{++} compilers may
15801 use the ``gnu-v2'' or ``gnu-v3'' ABI's as well.  The default setting is
15802 ``auto''.
15803
15804 @table @code
15805 @item show cp-abi
15806 Show the C@t{++} ABI currently in use.
15807
15808 @item set cp-abi
15809 With no argument, show the list of supported C@t{++} ABI's.
15810
15811 @item set cp-abi @var{abi}
15812 @itemx set cp-abi auto
15813 Set the current C@t{++} ABI to @var{abi}, or return to automatic detection.
15814 @end table
15815
15816 @node Messages/Warnings
15817 @section Optional Warnings and Messages
15818
15819 @cindex verbose operation
15820 @cindex optional warnings
15821 By default, @value{GDBN} is silent about its inner workings.  If you are
15822 running on a slow machine, you may want to use the @code{set verbose}
15823 command.  This makes @value{GDBN} tell you when it does a lengthy
15824 internal operation, so you will not think it has crashed.
15825
15826 Currently, the messages controlled by @code{set verbose} are those
15827 which announce that the symbol table for a source file is being read;
15828 see @code{symbol-file} in @ref{Files, ,Commands to Specify Files}.
15829
15830 @table @code
15831 @kindex set verbose
15832 @item set verbose on
15833 Enables @value{GDBN} output of certain informational messages.
15834
15835 @item set verbose off
15836 Disables @value{GDBN} output of certain informational messages.
15837
15838 @kindex show verbose
15839 @item show verbose
15840 Displays whether @code{set verbose} is on or off.
15841 @end table
15842
15843 By default, if @value{GDBN} encounters bugs in the symbol table of an
15844 object file, it is silent; but if you are debugging a compiler, you may
15845 find this information useful (@pxref{Symbol Errors, ,Errors Reading
15846 Symbol Files}).
15847
15848 @table @code
15849
15850 @kindex set complaints
15851 @item set complaints @var{limit}
15852 Permits @value{GDBN} to output @var{limit} complaints about each type of
15853 unusual symbols before becoming silent about the problem.  Set
15854 @var{limit} to zero to suppress all complaints; set it to a large number
15855 to prevent complaints from being suppressed.
15856
15857 @kindex show complaints
15858 @item show complaints
15859 Displays how many symbol complaints @value{GDBN} is permitted to produce.
15860
15861 @end table
15862
15863 By default, @value{GDBN} is cautious, and asks what sometimes seems to be a
15864 lot of stupid questions to confirm certain commands.  For example, if
15865 you try to run a program which is already running:
15866
15867 @smallexample
15868 (@value{GDBP}) run
15869 The program being debugged has been started already.
15870 Start it from the beginning? (y or n)
15871 @end smallexample
15872
15873 If you are willing to unflinchingly face the consequences of your own
15874 commands, you can disable this ``feature'':
15875
15876 @table @code
15877
15878 @kindex set confirm
15879 @cindex flinching
15880 @cindex confirmation
15881 @cindex stupid questions
15882 @item set confirm off
15883 Disables confirmation requests.
15884
15885 @item set confirm on
15886 Enables confirmation requests (the default).
15887
15888 @kindex show confirm
15889 @item show confirm
15890 Displays state of confirmation requests.
15891
15892 @end table
15893
15894 @cindex command tracing
15895 If you need to debug user-defined commands or sourced files you may find it
15896 useful to enable @dfn{command tracing}.  In this mode each command will be
15897 printed as it is executed, prefixed with one or more @samp{+} symbols, the
15898 quantity denoting the call depth of each command.
15899
15900 @table @code
15901 @kindex set trace-commands
15902 @cindex command scripts, debugging
15903 @item set trace-commands on
15904 Enable command tracing.
15905 @item set trace-commands off
15906 Disable command tracing.
15907 @item show trace-commands
15908 Display the current state of command tracing.
15909 @end table
15910
15911 @node Debugging Output
15912 @section Optional Messages about Internal Happenings
15913 @cindex optional debugging messages
15914
15915 @value{GDBN} has commands that enable optional debugging messages from
15916 various @value{GDBN} subsystems; normally these commands are of
15917 interest to @value{GDBN} maintainers, or when reporting a bug.  This
15918 section documents those commands.
15919
15920 @table @code
15921 @kindex set exec-done-display
15922 @item set exec-done-display
15923 Turns on or off the notification of asynchronous commands'
15924 completion.  When on, @value{GDBN} will print a message when an
15925 asynchronous command finishes its execution.  The default is off.
15926 @kindex show exec-done-display
15927 @item show exec-done-display
15928 Displays the current setting of asynchronous command completion
15929 notification.
15930 @kindex set debug
15931 @cindex gdbarch debugging info
15932 @cindex architecture debugging info
15933 @item set debug arch
15934 Turns on or off display of gdbarch debugging info.  The default is off
15935 @kindex show debug
15936 @item show debug arch
15937 Displays the current state of displaying gdbarch debugging info.
15938 @item set debug aix-thread
15939 @cindex AIX threads
15940 Display debugging messages about inner workings of the AIX thread
15941 module.
15942 @item show debug aix-thread
15943 Show the current state of AIX thread debugging info display.
15944 @item set debug event
15945 @cindex event debugging info
15946 Turns on or off display of @value{GDBN} event debugging info.  The
15947 default is off.
15948 @item show debug event
15949 Displays the current state of displaying @value{GDBN} event debugging
15950 info.
15951 @item set debug expression
15952 @cindex expression debugging info
15953 Turns on or off display of debugging info about @value{GDBN}
15954 expression parsing.  The default is off.
15955 @item show debug expression
15956 Displays the current state of displaying debugging info about
15957 @value{GDBN} expression parsing.
15958 @item set debug frame
15959 @cindex frame debugging info
15960 Turns on or off display of @value{GDBN} frame debugging info.  The
15961 default is off.
15962 @item show debug frame
15963 Displays the current state of displaying @value{GDBN} frame debugging
15964 info.
15965 @item set debug infrun
15966 @cindex inferior debugging info
15967 Turns on or off display of @value{GDBN} debugging info for running the inferior.
15968 The default is off.  @file{infrun.c} contains GDB's runtime state machine used 
15969 for implementing operations such as single-stepping the inferior.
15970 @item show debug infrun
15971 Displays the current state of @value{GDBN} inferior debugging.
15972 @item set debug lin-lwp
15973 @cindex @sc{gnu}/Linux LWP debug messages
15974 @cindex Linux lightweight processes
15975 Turns on or off debugging messages from the Linux LWP debug support.
15976 @item show debug lin-lwp
15977 Show the current state of Linux LWP debugging messages.
15978 @item set debug observer
15979 @cindex observer debugging info
15980 Turns on or off display of @value{GDBN} observer debugging.  This
15981 includes info such as the notification of observable events.
15982 @item show debug observer
15983 Displays the current state of observer debugging.
15984 @item set debug overload
15985 @cindex C@t{++} overload debugging info
15986 Turns on or off display of @value{GDBN} C@t{++} overload debugging
15987 info. This includes info such as ranking of functions, etc.  The default
15988 is off.
15989 @item show debug overload
15990 Displays the current state of displaying @value{GDBN} C@t{++} overload
15991 debugging info.
15992 @cindex packets, reporting on stdout
15993 @cindex serial connections, debugging
15994 @cindex debug remote protocol
15995 @cindex remote protocol debugging
15996 @cindex display remote packets
15997 @item set debug remote
15998 Turns on or off display of reports on all packets sent back and forth across
15999 the serial line to the remote machine.  The info is printed on the
16000 @value{GDBN} standard output stream. The default is off.
16001 @item show debug remote
16002 Displays the state of display of remote packets.
16003 @item set debug serial
16004 Turns on or off display of @value{GDBN} serial debugging info. The
16005 default is off.
16006 @item show debug serial
16007 Displays the current state of displaying @value{GDBN} serial debugging
16008 info.
16009 @item set debug solib-frv
16010 @cindex FR-V shared-library debugging
16011 Turns on or off debugging messages for FR-V shared-library code.
16012 @item show debug solib-frv
16013 Display the current state of FR-V shared-library code debugging
16014 messages.
16015 @item set debug target
16016 @cindex target debugging info
16017 Turns on or off display of @value{GDBN} target debugging info. This info
16018 includes what is going on at the target level of GDB, as it happens. The
16019 default is 0.  Set it to 1 to track events, and to 2 to also track the
16020 value of large memory transfers.  Changes to this flag do not take effect
16021 until the next time you connect to a target or use the @code{run} command.
16022 @item show debug target
16023 Displays the current state of displaying @value{GDBN} target debugging
16024 info.
16025 @item set debugvarobj
16026 @cindex variable object debugging info
16027 Turns on or off display of @value{GDBN} variable object debugging
16028 info. The default is off.
16029 @item show debugvarobj
16030 Displays the current state of displaying @value{GDBN} variable object
16031 debugging info.
16032 @item set debug xml
16033 @cindex XML parser debugging
16034 Turns on or off debugging messages for built-in XML parsers.
16035 @item show debug xml
16036 Displays the current state of XML debugging messages.
16037 @end table
16038
16039 @node Sequences
16040 @chapter Canned Sequences of Commands
16041
16042 Aside from breakpoint commands (@pxref{Break Commands, ,Breakpoint
16043 Command Lists}), @value{GDBN} provides two ways to store sequences of
16044 commands for execution as a unit: user-defined commands and command
16045 files.
16046
16047 @menu
16048 * Define::             How to define your own commands
16049 * Hooks::              Hooks for user-defined commands
16050 * Command Files::      How to write scripts of commands to be stored in a file
16051 * Output::             Commands for controlled output
16052 @end menu
16053
16054 @node Define
16055 @section User-defined Commands
16056
16057 @cindex user-defined command
16058 @cindex arguments, to user-defined commands
16059 A @dfn{user-defined command} is a sequence of @value{GDBN} commands to
16060 which you assign a new name as a command.  This is done with the
16061 @code{define} command.  User commands may accept up to 10 arguments
16062 separated by whitespace.  Arguments are accessed within the user command
16063 via @code{$arg0@dots{}$arg9}.  A trivial example:
16064
16065 @smallexample
16066 define adder
16067   print $arg0 + $arg1 + $arg2
16068 end
16069 @end smallexample
16070
16071 @noindent
16072 To execute the command use:
16073
16074 @smallexample
16075 adder 1 2 3
16076 @end smallexample
16077
16078 @noindent
16079 This defines the command @code{adder}, which prints the sum of
16080 its three arguments.  Note the arguments are text substitutions, so they may
16081 reference variables, use complex expressions, or even perform inferior
16082 functions calls.
16083
16084 @cindex argument count in user-defined commands
16085 @cindex how many arguments (user-defined commands)
16086 In addition, @code{$argc} may be used to find out how many arguments have
16087 been passed.  This expands to a number in the range 0@dots{}10.
16088
16089 @smallexample
16090 define adder
16091   if $argc == 2
16092     print $arg0 + $arg1
16093   end
16094   if $argc == 3
16095     print $arg0 + $arg1 + $arg2
16096   end
16097 end
16098 @end smallexample
16099
16100 @table @code
16101
16102 @kindex define
16103 @item define @var{commandname}
16104 Define a command named @var{commandname}.  If there is already a command
16105 by that name, you are asked to confirm that you want to redefine it.
16106
16107 The definition of the command is made up of other @value{GDBN} command lines,
16108 which are given following the @code{define} command.  The end of these
16109 commands is marked by a line containing @code{end}.
16110
16111 @kindex document
16112 @kindex end@r{ (user-defined commands)}
16113 @item document @var{commandname}
16114 Document the user-defined command @var{commandname}, so that it can be
16115 accessed by @code{help}.  The command @var{commandname} must already be
16116 defined.  This command reads lines of documentation just as @code{define}
16117 reads the lines of the command definition, ending with @code{end}.
16118 After the @code{document} command is finished, @code{help} on command
16119 @var{commandname} displays the documentation you have written.
16120
16121 You may use the @code{document} command again to change the
16122 documentation of a command.  Redefining the command with @code{define}
16123 does not change the documentation.
16124
16125 @kindex dont-repeat
16126 @cindex don't repeat command
16127 @item dont-repeat
16128 Used inside a user-defined command, this tells @value{GDBN} that this
16129 command should not be repeated when the user hits @key{RET}
16130 (@pxref{Command Syntax, repeat last command}).
16131
16132 @kindex help user-defined
16133 @item help user-defined
16134 List all user-defined commands, with the first line of the documentation
16135 (if any) for each.
16136
16137 @kindex show user
16138 @item show user
16139 @itemx show user @var{commandname}
16140 Display the @value{GDBN} commands used to define @var{commandname} (but
16141 not its documentation).  If no @var{commandname} is given, display the
16142 definitions for all user-defined commands.
16143
16144 @cindex infinite recursion in user-defined commands
16145 @kindex show max-user-call-depth
16146 @kindex set max-user-call-depth
16147 @item show max-user-call-depth
16148 @itemx set max-user-call-depth
16149 The value of @code{max-user-call-depth} controls how many recursion
16150 levels are allowed in user-defined commands before @value{GDBN} suspects an
16151 infinite recursion and aborts the command.
16152 @end table
16153
16154 In addition to the above commands, user-defined commands frequently
16155 use control flow commands, described in @ref{Command Files}.
16156
16157 When user-defined commands are executed, the
16158 commands of the definition are not printed.  An error in any command
16159 stops execution of the user-defined command.
16160
16161 If used interactively, commands that would ask for confirmation proceed
16162 without asking when used inside a user-defined command.  Many @value{GDBN}
16163 commands that normally print messages to say what they are doing omit the
16164 messages when used in a user-defined command.
16165
16166 @node Hooks
16167 @section User-defined Command Hooks
16168 @cindex command hooks
16169 @cindex hooks, for commands
16170 @cindex hooks, pre-command
16171
16172 @kindex hook
16173 You may define @dfn{hooks}, which are a special kind of user-defined
16174 command.  Whenever you run the command @samp{foo}, if the user-defined
16175 command @samp{hook-foo} exists, it is executed (with no arguments)
16176 before that command.
16177
16178 @cindex hooks, post-command
16179 @kindex hookpost
16180 A hook may also be defined which is run after the command you executed.
16181 Whenever you run the command @samp{foo}, if the user-defined command
16182 @samp{hookpost-foo} exists, it is executed (with no arguments) after
16183 that command.  Post-execution hooks may exist simultaneously with
16184 pre-execution hooks, for the same command.
16185
16186 It is valid for a hook to call the command which it hooks.  If this
16187 occurs, the hook is not re-executed, thereby avoiding infinite recursion.
16188
16189 @c It would be nice if hookpost could be passed a parameter indicating
16190 @c if the command it hooks executed properly or not.  FIXME!
16191
16192 @kindex stop@r{, a pseudo-command}
16193 In addition, a pseudo-command, @samp{stop} exists.  Defining
16194 (@samp{hook-stop}) makes the associated commands execute every time
16195 execution stops in your program: before breakpoint commands are run,
16196 displays are printed, or the stack frame is printed.
16197
16198 For example, to ignore @code{SIGALRM} signals while
16199 single-stepping, but treat them normally during normal execution,
16200 you could define:
16201
16202 @smallexample
16203 define hook-stop
16204 handle SIGALRM nopass
16205 end
16206
16207 define hook-run
16208 handle SIGALRM pass
16209 end
16210
16211 define hook-continue
16212 handle SIGALRM pass
16213 end
16214 @end smallexample
16215
16216 As a further example, to hook at the beginning and end of the @code{echo}
16217 command, and to add extra text to the beginning and end of the message,
16218 you could define:
16219
16220 @smallexample
16221 define hook-echo
16222 echo <<<---
16223 end
16224
16225 define hookpost-echo
16226 echo --->>>\n
16227 end
16228
16229 (@value{GDBP}) echo Hello World
16230 <<<---Hello World--->>>
16231 (@value{GDBP})
16232
16233 @end smallexample
16234
16235 You can define a hook for any single-word command in @value{GDBN}, but
16236 not for command aliases; you should define a hook for the basic command
16237 name, e.g.@:  @code{backtrace} rather than @code{bt}.
16238 @c FIXME!  So how does Joe User discover whether a command is an alias
16239 @c or not?
16240 If an error occurs during the execution of your hook, execution of
16241 @value{GDBN} commands stops and @value{GDBN} issues a prompt
16242 (before the command that you actually typed had a chance to run).
16243
16244 If you try to define a hook which does not match any known command, you
16245 get a warning from the @code{define} command.
16246
16247 @node Command Files
16248 @section Command Files
16249
16250 @cindex command files
16251 @cindex scripting commands
16252 A command file for @value{GDBN} is a text file made of lines that are
16253 @value{GDBN} commands.  Comments (lines starting with @kbd{#}) may
16254 also be included.  An empty line in a command file does nothing; it
16255 does not mean to repeat the last command, as it would from the
16256 terminal.
16257
16258 You can request the execution of a command file with the @code{source}
16259 command:
16260
16261 @table @code
16262 @kindex source
16263 @cindex execute commands from a file
16264 @item source [@code{-v}] @var{filename}
16265 Execute the command file @var{filename}.
16266 @end table
16267
16268 The lines in a command file are generally executed sequentially,
16269 unless the order of execution is changed by one of the
16270 @emph{flow-control commands} described below.  The commands are not
16271 printed as they are executed.  An error in any command terminates
16272 execution of the command file and control is returned to the console.
16273
16274 @value{GDBN} searches for @var{filename} in the current directory and then
16275 on the search path (specified with the @samp{directory} command).
16276
16277 If @code{-v}, for verbose mode, is given then @value{GDBN} displays
16278 each command as it is executed.  The option must be given before
16279 @var{filename}, and is interpreted as part of the filename anywhere else.
16280
16281 Commands that would ask for confirmation if used interactively proceed
16282 without asking when used in a command file.  Many @value{GDBN} commands that
16283 normally print messages to say what they are doing omit the messages
16284 when called from command files.
16285
16286 @value{GDBN} also accepts command input from standard input.  In this
16287 mode, normal output goes to standard output and error output goes to
16288 standard error.  Errors in a command file supplied on standard input do
16289 not terminate execution of the command file---execution continues with
16290 the next command.
16291
16292 @smallexample
16293 gdb < cmds > log 2>&1
16294 @end smallexample
16295
16296 (The syntax above will vary depending on the shell used.) This example
16297 will execute commands from the file @file{cmds}. All output and errors
16298 would be directed to @file{log}.
16299
16300 Since commands stored on command files tend to be more general than
16301 commands typed interactively, they frequently need to deal with
16302 complicated situations, such as different or unexpected values of
16303 variables and symbols, changes in how the program being debugged is
16304 built, etc.  @value{GDBN} provides a set of flow-control commands to
16305 deal with these complexities.  Using these commands, you can write
16306 complex scripts that loop over data structures, execute commands
16307 conditionally, etc.
16308
16309 @table @code
16310 @kindex if
16311 @kindex else
16312 @item if
16313 @itemx else
16314 This command allows to include in your script conditionally executed
16315 commands. The @code{if} command takes a single argument, which is an
16316 expression to evaluate.  It is followed by a series of commands that
16317 are executed only if the expression is true (its value is nonzero).
16318 There can then optionally be an @code{else} line, followed by a series
16319 of commands that are only executed if the expression was false.  The
16320 end of the list is marked by a line containing @code{end}.
16321
16322 @kindex while
16323 @item while
16324 This command allows to write loops.  Its syntax is similar to
16325 @code{if}: the command takes a single argument, which is an expression
16326 to evaluate, and must be followed by the commands to execute, one per
16327 line, terminated by an @code{end}.  These commands are called the
16328 @dfn{body} of the loop.  The commands in the body of @code{while} are
16329 executed repeatedly as long as the expression evaluates to true.
16330
16331 @kindex loop_break
16332 @item loop_break
16333 This command exits the @code{while} loop in whose body it is included.
16334 Execution of the script continues after that @code{while}s @code{end}
16335 line.
16336
16337 @kindex loop_continue
16338 @item loop_continue
16339 This command skips the execution of the rest of the body of commands
16340 in the @code{while} loop in whose body it is included.  Execution
16341 branches to the beginning of the @code{while} loop, where it evaluates
16342 the controlling expression.
16343
16344 @kindex end@r{ (if/else/while commands)}
16345 @item end
16346 Terminate the block of commands that are the body of @code{if},
16347 @code{else}, or @code{while} flow-control commands.
16348 @end table
16349
16350
16351 @node Output
16352 @section Commands for Controlled Output
16353
16354 During the execution of a command file or a user-defined command, normal
16355 @value{GDBN} output is suppressed; the only output that appears is what is
16356 explicitly printed by the commands in the definition.  This section
16357 describes three commands useful for generating exactly the output you
16358 want.
16359
16360 @table @code
16361 @kindex echo
16362 @item echo @var{text}
16363 @c I do not consider backslash-space a standard C escape sequence
16364 @c because it is not in ANSI.
16365 Print @var{text}.  Nonprinting characters can be included in
16366 @var{text} using C escape sequences, such as @samp{\n} to print a
16367 newline.  @strong{No newline is printed unless you specify one.}
16368 In addition to the standard C escape sequences, a backslash followed
16369 by a space stands for a space.  This is useful for displaying a
16370 string with spaces at the beginning or the end, since leading and
16371 trailing spaces are otherwise trimmed from all arguments.
16372 To print @samp{@w{ }and foo =@w{ }}, use the command
16373 @samp{echo \@w{ }and foo = \@w{ }}.
16374
16375 A backslash at the end of @var{text} can be used, as in C, to continue
16376 the command onto subsequent lines.  For example,
16377
16378 @smallexample
16379 echo This is some text\n\
16380 which is continued\n\
16381 onto several lines.\n
16382 @end smallexample
16383
16384 produces the same output as
16385
16386 @smallexample
16387 echo This is some text\n
16388 echo which is continued\n
16389 echo onto several lines.\n
16390 @end smallexample
16391
16392 @kindex output
16393 @item output @var{expression}
16394 Print the value of @var{expression} and nothing but that value: no
16395 newlines, no @samp{$@var{nn} = }.  The value is not entered in the
16396 value history either.  @xref{Expressions, ,Expressions}, for more information
16397 on expressions.
16398
16399 @item output/@var{fmt} @var{expression}
16400 Print the value of @var{expression} in format @var{fmt}.  You can use
16401 the same formats as for @code{print}.  @xref{Output Formats,,Output
16402 Formats}, for more information.
16403
16404 @kindex printf
16405 @item printf @var{string}, @var{expressions}@dots{}
16406 Print the values of the @var{expressions} under the control of
16407 @var{string}.  The @var{expressions} are separated by commas and may be
16408 either numbers or pointers.  Their values are printed as specified by
16409 @var{string}, exactly as if your program were to execute the C
16410 subroutine
16411 @c FIXME: the above implies that at least all ANSI C formats are
16412 @c supported, but it isn't true: %E and %G don't work (or so it seems).
16413 @c Either this is a bug, or the manual should document what formats are
16414 @c supported.
16415
16416 @smallexample
16417 printf (@var{string}, @var{expressions}@dots{});
16418 @end smallexample
16419
16420 For example, you can print two values in hex like this:
16421
16422 @smallexample
16423 printf "foo, bar-foo = 0x%x, 0x%x\n", foo, bar-foo
16424 @end smallexample
16425
16426 The only backslash-escape sequences that you can use in the format
16427 string are the simple ones that consist of backslash followed by a
16428 letter.
16429 @end table
16430
16431 @node Interpreters
16432 @chapter Command Interpreters
16433 @cindex command interpreters
16434
16435 @value{GDBN} supports multiple command interpreters, and some command
16436 infrastructure to allow users or user interface writers to switch
16437 between interpreters or run commands in other interpreters.
16438
16439 @value{GDBN} currently supports two command interpreters, the console
16440 interpreter (sometimes called the command-line interpreter or @sc{cli})
16441 and the machine interface interpreter (or @sc{gdb/mi}).  This manual
16442 describes both of these interfaces in great detail.
16443
16444 By default, @value{GDBN} will start with the console interpreter.
16445 However, the user may choose to start @value{GDBN} with another
16446 interpreter by specifying the @option{-i} or @option{--interpreter}
16447 startup options.  Defined interpreters include:
16448
16449 @table @code
16450 @item console
16451 @cindex console interpreter
16452 The traditional console or command-line interpreter.  This is the most often
16453 used interpreter with @value{GDBN}. With no interpreter specified at runtime,
16454 @value{GDBN} will use this interpreter.
16455
16456 @item mi
16457 @cindex mi interpreter
16458 The newest @sc{gdb/mi} interface (currently @code{mi2}).  Used primarily
16459 by programs wishing to use @value{GDBN} as a backend for a debugger GUI
16460 or an IDE.  For more information, see @ref{GDB/MI, ,The @sc{gdb/mi}
16461 Interface}.
16462
16463 @item mi2
16464 @cindex mi2 interpreter
16465 The current @sc{gdb/mi} interface.
16466
16467 @item mi1
16468 @cindex mi1 interpreter
16469 The @sc{gdb/mi} interface included in @value{GDBN} 5.1, 5.2, and 5.3.
16470
16471 @end table
16472
16473 @cindex invoke another interpreter
16474 The interpreter being used by @value{GDBN} may not be dynamically
16475 switched at runtime.  Although possible, this could lead to a very
16476 precarious situation.  Consider an IDE using @sc{gdb/mi}.  If a user
16477 enters the command "interpreter-set console" in a console view,
16478 @value{GDBN} would switch to using the console interpreter, rendering
16479 the IDE inoperable!
16480
16481 @kindex interpreter-exec
16482 Although you may only choose a single interpreter at startup, you may execute
16483 commands in any interpreter from the current interpreter using the appropriate
16484 command.  If you are running the console interpreter, simply use the
16485 @code{interpreter-exec} command:
16486
16487 @smallexample
16488 interpreter-exec mi "-data-list-register-names"
16489 @end smallexample
16490
16491 @sc{gdb/mi} has a similar command, although it is only available in versions of
16492 @value{GDBN} which support @sc{gdb/mi} version 2 (or greater).
16493
16494 @node TUI
16495 @chapter @value{GDBN} Text User Interface
16496 @cindex TUI
16497 @cindex Text User Interface
16498
16499 @menu
16500 * TUI Overview::                TUI overview
16501 * TUI Keys::                    TUI key bindings
16502 * TUI Single Key Mode::         TUI single key mode
16503 * TUI Commands::                TUI-specific commands
16504 * TUI Configuration::           TUI configuration variables
16505 @end menu
16506
16507 The @value{GDBN} Text User Interface (TUI) is a terminal
16508 interface which uses the @code{curses} library to show the source
16509 file, the assembly output, the program registers and @value{GDBN}
16510 commands in separate text windows.  The TUI mode is supported only
16511 on platforms where a suitable version of the @code{curses} library
16512 is available.
16513
16514 @pindex @value{GDBTUI}
16515 The TUI mode is enabled by default when you invoke @value{GDBN} as
16516 either @samp{@value{GDBTUI}} or @samp{@value{GDBP} -tui}.
16517 You can also switch in and out of TUI mode while @value{GDBN} runs by
16518 using various TUI commands and key bindings, such as @kbd{C-x C-a}. 
16519 @xref{TUI Keys, ,TUI Key Bindings}.
16520
16521 @node TUI Overview
16522 @section TUI Overview
16523
16524 In TUI mode, @value{GDBN} can display several text windows:
16525
16526 @table @emph
16527 @item command
16528 This window is the @value{GDBN} command window with the @value{GDBN}
16529 prompt and the @value{GDBN} output.  The @value{GDBN} input is still
16530 managed using readline.
16531
16532 @item source
16533 The source window shows the source file of the program.  The current
16534 line and active breakpoints are displayed in this window.
16535
16536 @item assembly
16537 The assembly window shows the disassembly output of the program.
16538
16539 @item register
16540 This window shows the processor registers.  Registers are highlighted
16541 when their values change.
16542 @end table
16543
16544 The source and assembly windows show the current program position
16545 by highlighting the current line and marking it with a @samp{>} marker.
16546 Breakpoints are indicated with two markers.  The first marker
16547 indicates the breakpoint type:
16548
16549 @table @code
16550 @item B
16551 Breakpoint which was hit at least once.
16552
16553 @item b
16554 Breakpoint which was never hit.
16555
16556 @item H
16557 Hardware breakpoint which was hit at least once.
16558
16559 @item h
16560 Hardware breakpoint which was never hit.
16561 @end table
16562
16563 The second marker indicates whether the breakpoint is enabled or not:
16564
16565 @table @code
16566 @item +
16567 Breakpoint is enabled.
16568
16569 @item -
16570 Breakpoint is disabled.
16571 @end table
16572
16573 The source, assembly and register windows are updated when the current
16574 thread changes, when the frame changes, or when the program counter
16575 changes.
16576
16577 These windows are not all visible at the same time.  The command
16578 window is always visible.  The others can be arranged in several
16579 layouts:
16580
16581 @itemize @bullet
16582 @item
16583 source only,
16584
16585 @item
16586 assembly only,
16587
16588 @item
16589 source and assembly,
16590
16591 @item
16592 source and registers, or
16593
16594 @item
16595 assembly and registers.
16596 @end itemize
16597
16598 A status line above the command window shows the following information:
16599
16600 @table @emph
16601 @item target
16602 Indicates the current @value{GDBN} target.
16603 (@pxref{Targets, ,Specifying a Debugging Target}).
16604
16605 @item process
16606 Gives the current process or thread number.
16607 When no process is being debugged, this field is set to @code{No process}.
16608
16609 @item function
16610 Gives the current function name for the selected frame.
16611 The name is demangled if demangling is turned on (@pxref{Print Settings}).
16612 When there is no symbol corresponding to the current program counter,
16613 the string @code{??} is displayed.
16614
16615 @item line
16616 Indicates the current line number for the selected frame.
16617 When the current line number is not known, the string @code{??} is displayed.
16618
16619 @item pc
16620 Indicates the current program counter address.
16621 @end table
16622
16623 @node TUI Keys
16624 @section TUI Key Bindings
16625 @cindex TUI key bindings
16626
16627 The TUI installs several key bindings in the readline keymaps
16628 (@pxref{Command Line Editing}).  The following key bindings
16629 are installed for both TUI mode and the @value{GDBN} standard mode.
16630
16631 @table @kbd
16632 @kindex C-x C-a
16633 @item C-x C-a
16634 @kindex C-x a
16635 @itemx C-x a
16636 @kindex C-x A
16637 @itemx C-x A
16638 Enter or leave the TUI mode.  When leaving the TUI mode,
16639 the curses window management stops and @value{GDBN} operates using
16640 its standard mode, writing on the terminal directly.  When reentering
16641 the TUI mode, control is given back to the curses windows.
16642 The screen is then refreshed.
16643
16644 @kindex C-x 1
16645 @item C-x 1
16646 Use a TUI layout with only one window.  The layout will
16647 either be @samp{source} or @samp{assembly}.  When the TUI mode
16648 is not active, it will switch to the TUI mode.
16649
16650 Think of this key binding as the Emacs @kbd{C-x 1} binding.
16651
16652 @kindex C-x 2
16653 @item C-x 2
16654 Use a TUI layout with at least two windows.  When the current
16655 layout already has two windows, the next layout with two windows is used.
16656 When a new layout is chosen, one window will always be common to the
16657 previous layout and the new one.
16658
16659 Think of it as the Emacs @kbd{C-x 2} binding.
16660
16661 @kindex C-x o
16662 @item C-x o
16663 Change the active window.  The TUI associates several key bindings
16664 (like scrolling and arrow keys) with the active window.  This command
16665 gives the focus to the next TUI window.
16666
16667 Think of it as the Emacs @kbd{C-x o} binding.
16668
16669 @kindex C-x s
16670 @item C-x s
16671 Switch in and out of the TUI SingleKey mode that binds single
16672 keys to @value{GDBN} commands (@pxref{TUI Single Key Mode}).
16673 @end table
16674
16675 The following key bindings only work in the TUI mode:
16676
16677 @table @asis
16678 @kindex PgUp
16679 @item @key{PgUp}
16680 Scroll the active window one page up.
16681
16682 @kindex PgDn
16683 @item @key{PgDn}
16684 Scroll the active window one page down.
16685
16686 @kindex Up
16687 @item @key{Up}
16688 Scroll the active window one line up.
16689
16690 @kindex Down
16691 @item @key{Down}
16692 Scroll the active window one line down.
16693
16694 @kindex Left
16695 @item @key{Left}
16696 Scroll the active window one column left.
16697
16698 @kindex Right
16699 @item @key{Right}
16700 Scroll the active window one column right.
16701
16702 @kindex C-L
16703 @item @kbd{C-L}
16704 Refresh the screen.
16705 @end table
16706
16707 Because the arrow keys scroll the active window in the TUI mode, they
16708 are not available for their normal use by readline unless the command
16709 window has the focus.  When another window is active, you must use
16710 other readline key bindings such as @kbd{C-p}, @kbd{C-n}, @kbd{C-b}
16711 and @kbd{C-f} to control the command window.
16712
16713 @node TUI Single Key Mode
16714 @section TUI Single Key Mode
16715 @cindex TUI single key mode
16716
16717 The TUI also provides a @dfn{SingleKey} mode, which binds several
16718 frequently used @value{GDBN} commands to single keys.  Type @kbd{C-x s} to
16719 switch into this mode, where the following key bindings are used:
16720
16721 @table @kbd
16722 @kindex c @r{(SingleKey TUI key)}
16723 @item c
16724 continue
16725
16726 @kindex d @r{(SingleKey TUI key)}
16727 @item d
16728 down
16729
16730 @kindex f @r{(SingleKey TUI key)}
16731 @item f
16732 finish
16733
16734 @kindex n @r{(SingleKey TUI key)}
16735 @item n
16736 next
16737
16738 @kindex q @r{(SingleKey TUI key)}
16739 @item q
16740 exit the SingleKey mode.
16741
16742 @kindex r @r{(SingleKey TUI key)}
16743 @item r
16744 run
16745
16746 @kindex s @r{(SingleKey TUI key)}
16747 @item s
16748 step
16749
16750 @kindex u @r{(SingleKey TUI key)}
16751 @item u
16752 up
16753
16754 @kindex v @r{(SingleKey TUI key)}
16755 @item v
16756 info locals
16757
16758 @kindex w @r{(SingleKey TUI key)}
16759 @item w
16760 where
16761 @end table
16762
16763 Other keys temporarily switch to the @value{GDBN} command prompt.
16764 The key that was pressed is inserted in the editing buffer so that
16765 it is possible to type most @value{GDBN} commands without interaction
16766 with the TUI SingleKey mode.  Once the command is entered the TUI
16767 SingleKey mode is restored.  The only way to permanently leave
16768 this mode is by typing @kbd{q} or @kbd{C-x s}.
16769
16770
16771 @node TUI Commands
16772 @section TUI-specific Commands
16773 @cindex TUI commands
16774
16775 The TUI has specific commands to control the text windows.
16776 These commands are always available, even when @value{GDBN} is not in
16777 the TUI mode.  When @value{GDBN} is in the standard mode, most
16778 of these commands will automatically switch to the TUI mode.
16779
16780 @table @code
16781 @item info win
16782 @kindex info win
16783 List and give the size of all displayed windows.
16784
16785 @item layout next
16786 @kindex layout
16787 Display the next layout.
16788
16789 @item layout prev
16790 Display the previous layout.
16791
16792 @item layout src
16793 Display the source window only.
16794
16795 @item layout asm
16796 Display the assembly window only.
16797
16798 @item layout split
16799 Display the source and assembly window.
16800
16801 @item layout regs
16802 Display the register window together with the source or assembly window.
16803
16804 @item focus next
16805 @kindex focus
16806 Make the next window active for scrolling.
16807
16808 @item focus prev
16809 Make the previous window active for scrolling.
16810
16811 @item focus src
16812 Make the source window active for scrolling.
16813
16814 @item focus asm
16815 Make the assembly window active for scrolling.
16816
16817 @item focus regs
16818 Make the register window active for scrolling.
16819
16820 @item focus cmd
16821 Make the command window active for scrolling.
16822
16823 @item refresh
16824 @kindex refresh
16825 Refresh the screen.  This is similar to typing @kbd{C-L}.
16826
16827 @item tui reg float
16828 @kindex tui reg
16829 Show the floating point registers in the register window.
16830
16831 @item tui reg general
16832 Show the general registers in the register window.
16833
16834 @item tui reg next
16835 Show the next register group.  The list of register groups as well as
16836 their order is target specific.  The predefined register groups are the
16837 following: @code{general}, @code{float}, @code{system}, @code{vector},
16838 @code{all}, @code{save}, @code{restore}.
16839
16840 @item tui reg system
16841 Show the system registers in the register window.
16842
16843 @item update
16844 @kindex update
16845 Update the source window and the current execution point.
16846
16847 @item winheight @var{name} +@var{count}
16848 @itemx winheight @var{name} -@var{count}
16849 @kindex winheight
16850 Change the height of the window @var{name} by @var{count}
16851 lines.  Positive counts increase the height, while negative counts
16852 decrease it.
16853
16854 @item tabset @var{nchars}
16855 @kindex tabset
16856 Set the width of tab stops to be @var{nchars} characters.
16857 @end table
16858
16859 @node TUI Configuration
16860 @section TUI Configuration Variables
16861 @cindex TUI configuration variables
16862
16863 Several configuration variables control the appearance of TUI windows.
16864
16865 @table @code
16866 @item set tui border-kind @var{kind}
16867 @kindex set tui border-kind
16868 Select the border appearance for the source, assembly and register windows.
16869 The possible values are the following:
16870 @table @code
16871 @item space
16872 Use a space character to draw the border.
16873
16874 @item ascii
16875 Use @sc{ascii} characters @samp{+}, @samp{-} and @samp{|} to draw the border.
16876
16877 @item acs
16878 Use the Alternate Character Set to draw the border.  The border is
16879 drawn using character line graphics if the terminal supports them.
16880 @end table
16881
16882 @item set tui border-mode @var{mode}
16883 @kindex set tui border-mode
16884 @itemx set tui active-border-mode @var{mode}
16885 @kindex set tui active-border-mode
16886 Select the display attributes for the borders of the inactive windows
16887 or the active window.  The @var{mode} can be one of the following:
16888 @table @code
16889 @item normal
16890 Use normal attributes to display the border.
16891
16892 @item standout
16893 Use standout mode.
16894
16895 @item reverse
16896 Use reverse video mode.
16897
16898 @item half
16899 Use half bright mode.
16900
16901 @item half-standout
16902 Use half bright and standout mode.
16903
16904 @item bold
16905 Use extra bright or bold mode.
16906
16907 @item bold-standout
16908 Use extra bright or bold and standout mode.
16909 @end table
16910 @end table
16911
16912 @node Emacs
16913 @chapter Using @value{GDBN} under @sc{gnu} Emacs
16914
16915 @cindex Emacs
16916 @cindex @sc{gnu} Emacs
16917 A special interface allows you to use @sc{gnu} Emacs to view (and
16918 edit) the source files for the program you are debugging with
16919 @value{GDBN}.
16920
16921 To use this interface, use the command @kbd{M-x gdb} in Emacs.  Give the
16922 executable file you want to debug as an argument.  This command starts
16923 @value{GDBN} as a subprocess of Emacs, with input and output through a newly
16924 created Emacs buffer.
16925 @c (Do not use the @code{-tui} option to run @value{GDBN} from Emacs.)
16926
16927 Running @value{GDBN} under Emacs can be just like running @value{GDBN} normally except for two
16928 things:
16929
16930 @itemize @bullet
16931 @item
16932 All ``terminal'' input and output goes through an Emacs buffer, called
16933 the GUD buffer.
16934
16935 This applies both to @value{GDBN} commands and their output, and to the input
16936 and output done by the program you are debugging.
16937
16938 This is useful because it means that you can copy the text of previous
16939 commands and input them again; you can even use parts of the output
16940 in this way.
16941
16942 All the facilities of Emacs' Shell mode are available for interacting
16943 with your program.  In particular, you can send signals the usual
16944 way---for example, @kbd{C-c C-c} for an interrupt, @kbd{C-c C-z} for a
16945 stop.
16946
16947 @item
16948 @value{GDBN} displays source code through Emacs.
16949
16950 Each time @value{GDBN} displays a stack frame, Emacs automatically finds the
16951 source file for that frame and puts an arrow (@samp{=>}) at the
16952 left margin of the current line.  Emacs uses a separate buffer for
16953 source display, and splits the screen to show both your @value{GDBN} session
16954 and the source.
16955
16956 Explicit @value{GDBN} @code{list} or search commands still produce output as
16957 usual, but you probably have no reason to use them from Emacs.
16958 @end itemize
16959
16960 We call this @dfn{text command mode}.  Emacs 22.1, and later, also uses
16961 a graphical mode, enabled by default, which provides further buffers
16962 that can control the execution and describe the state of your program.
16963 @xref{GDB Graphical Interface,,, Emacs, The @sc{gnu} Emacs Manual}.
16964
16965 If you specify an absolute file name when prompted for the @kbd{M-x
16966 gdb} argument, then Emacs sets your current working directory to where
16967 your program resides.  If you only specify the file name, then Emacs
16968 sets your current working directory to to the directory associated
16969 with the previous buffer.  In this case, @value{GDBN} may find your
16970 program by searching your environment's @code{PATH} variable, but on
16971 some operating systems it might not find the source.  So, although the
16972 @value{GDBN} input and output session proceeds normally, the auxiliary
16973 buffer does not display the current source and line of execution.
16974
16975 The initial working directory of @value{GDBN} is printed on the top
16976 line of the GUD buffer and this serves as a default for the commands
16977 that specify files for @value{GDBN} to operate on.  @xref{Files,
16978 ,Commands to Specify Files}.
16979
16980 By default, @kbd{M-x gdb} calls the program called @file{gdb}.  If you
16981 need to call @value{GDBN} by a different name (for example, if you
16982 keep several configurations around, with different names) you can
16983 customize the Emacs variable @code{gud-gdb-command-name} to run the
16984 one you want.
16985
16986 In the GUD buffer, you can use these special Emacs commands in
16987 addition to the standard Shell mode commands:
16988
16989 @table @kbd
16990 @item C-h m
16991 Describe the features of Emacs' GUD Mode.
16992
16993 @item C-c C-s
16994 Execute to another source line, like the @value{GDBN} @code{step} command; also
16995 update the display window to show the current file and location.
16996
16997 @item C-c C-n
16998 Execute to next source line in this function, skipping all function
16999 calls, like the @value{GDBN} @code{next} command.  Then update the display window
17000 to show the current file and location.
17001
17002 @item C-c C-i
17003 Execute one instruction, like the @value{GDBN} @code{stepi} command; update
17004 display window accordingly.
17005
17006 @item C-c C-f
17007 Execute until exit from the selected stack frame, like the @value{GDBN}
17008 @code{finish} command.
17009
17010 @item C-c C-r
17011 Continue execution of your program, like the @value{GDBN} @code{continue}
17012 command.
17013
17014 @item C-c <
17015 Go up the number of frames indicated by the numeric argument
17016 (@pxref{Arguments, , Numeric Arguments, Emacs, The @sc{gnu} Emacs Manual}),
17017 like the @value{GDBN} @code{up} command.
17018
17019 @item C-c >
17020 Go down the number of frames indicated by the numeric argument, like the
17021 @value{GDBN} @code{down} command.
17022 @end table
17023
17024 In any source file, the Emacs command @kbd{C-x @key{SPC}} (@code{gud-break})
17025 tells @value{GDBN} to set a breakpoint on the source line point is on.
17026
17027 In text command mode, if you type @kbd{M-x speedbar}, Emacs displays a
17028 separate frame which shows a backtrace when the GUD buffer is current.
17029 Move point to any frame in the stack and type @key{RET} to make it
17030 become the current frame and display the associated source in the
17031 source buffer.  Alternatively, click @kbd{Mouse-2} to make the
17032 selected frame become the current one.  In graphical mode, the
17033 speedbar displays watch expressions.
17034
17035 If you accidentally delete the source-display buffer, an easy way to get
17036 it back is to type the command @code{f} in the @value{GDBN} buffer, to
17037 request a frame display; when you run under Emacs, this recreates
17038 the source buffer if necessary to show you the context of the current
17039 frame.
17040
17041 The source files displayed in Emacs are in ordinary Emacs buffers
17042 which are visiting the source files in the usual way.  You can edit
17043 the files with these buffers if you wish; but keep in mind that @value{GDBN}
17044 communicates with Emacs in terms of line numbers.  If you add or
17045 delete lines from the text, the line numbers that @value{GDBN} knows cease
17046 to correspond properly with the code.
17047
17048 A more detailed description of Emacs' interaction with @value{GDBN} is
17049 given in the Emacs manual (@pxref{Debuggers,,, Emacs, The @sc{gnu}
17050 Emacs Manual}).
17051
17052 @c The following dropped because Epoch is nonstandard.  Reactivate
17053 @c if/when v19 does something similar. ---doc@cygnus.com 19dec1990
17054 @ignore
17055 @kindex Emacs Epoch environment
17056 @kindex Epoch
17057 @kindex inspect
17058
17059 Version 18 of @sc{gnu} Emacs has a built-in window system
17060 called the @code{epoch}
17061 environment.  Users of this environment can use a new command,
17062 @code{inspect} which performs identically to @code{print} except that
17063 each value is printed in its own window.
17064 @end ignore
17065
17066
17067 @node GDB/MI
17068 @chapter The @sc{gdb/mi} Interface
17069
17070 @unnumberedsec Function and Purpose
17071
17072 @cindex @sc{gdb/mi}, its purpose
17073 @sc{gdb/mi} is a line based machine oriented text interface to
17074 @value{GDBN} and is activated by specifying using the
17075 @option{--interpreter} command line option (@pxref{Mode Options}).  It
17076 is specifically intended to support the development of systems which
17077 use the debugger as just one small component of a larger system.
17078
17079 This chapter is a specification of the @sc{gdb/mi} interface.  It is written
17080 in the form of a reference manual.
17081
17082 Note that @sc{gdb/mi} is still under construction, so some of the
17083 features described below are incomplete and subject to change
17084 (@pxref{GDB/MI Development and Front Ends, , @sc{gdb/mi} Development and Front Ends}).  
17085
17086 @unnumberedsec Notation and Terminology
17087
17088 @cindex notational conventions, for @sc{gdb/mi}
17089 This chapter uses the following notation:
17090
17091 @itemize @bullet
17092 @item
17093 @code{|} separates two alternatives.
17094
17095 @item
17096 @code{[ @var{something} ]} indicates that @var{something} is optional:
17097 it may or may not be given.
17098
17099 @item
17100 @code{( @var{group} )*} means that @var{group} inside the parentheses
17101 may repeat zero or more times.
17102
17103 @item
17104 @code{( @var{group} )+} means that @var{group} inside the parentheses
17105 may repeat one or more times.
17106
17107 @item
17108 @code{"@var{string}"} means a literal @var{string}.
17109 @end itemize
17110
17111 @ignore
17112 @heading Dependencies
17113 @end ignore
17114
17115 @menu
17116 * GDB/MI Command Syntax::
17117 * GDB/MI Compatibility with CLI::
17118 * GDB/MI Development and Front Ends::
17119 * GDB/MI Output Records::
17120 * GDB/MI Simple Examples::
17121 * GDB/MI Command Description Format::
17122 * GDB/MI Breakpoint Commands::
17123 * GDB/MI Program Context::
17124 * GDB/MI Thread Commands::
17125 * GDB/MI Program Execution::
17126 * GDB/MI Stack Manipulation::
17127 * GDB/MI Variable Objects::
17128 * GDB/MI Data Manipulation::
17129 * GDB/MI Tracepoint Commands::
17130 * GDB/MI Symbol Query::
17131 * GDB/MI File Commands::
17132 @ignore
17133 * GDB/MI Kod Commands::
17134 * GDB/MI Memory Overlay Commands::
17135 * GDB/MI Signal Handling Commands::
17136 @end ignore
17137 * GDB/MI Target Manipulation::
17138 * GDB/MI Miscellaneous Commands::
17139 @end menu
17140
17141 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17142 @node GDB/MI Command Syntax
17143 @section @sc{gdb/mi} Command Syntax
17144
17145 @menu
17146 * GDB/MI Input Syntax::
17147 * GDB/MI Output Syntax::
17148 @end menu
17149
17150 @node GDB/MI Input Syntax
17151 @subsection @sc{gdb/mi} Input Syntax
17152
17153 @cindex input syntax for @sc{gdb/mi}
17154 @cindex @sc{gdb/mi}, input syntax
17155 @table @code
17156 @item @var{command} @expansion{}
17157 @code{@var{cli-command} | @var{mi-command}}
17158
17159 @item @var{cli-command} @expansion{}
17160 @code{[ @var{token} ] @var{cli-command} @var{nl}}, where
17161 @var{cli-command} is any existing @value{GDBN} CLI command.
17162
17163 @item @var{mi-command} @expansion{}
17164 @code{[ @var{token} ] "-" @var{operation} ( " " @var{option} )*
17165 @code{[} " --" @code{]} ( " " @var{parameter} )* @var{nl}}
17166
17167 @item @var{token} @expansion{}
17168 "any sequence of digits"
17169
17170 @item @var{option} @expansion{}
17171 @code{"-" @var{parameter} [ " " @var{parameter} ]}
17172
17173 @item @var{parameter} @expansion{}
17174 @code{@var{non-blank-sequence} | @var{c-string}}
17175
17176 @item @var{operation} @expansion{}
17177 @emph{any of the operations described in this chapter}
17178
17179 @item @var{non-blank-sequence} @expansion{}
17180 @emph{anything, provided it doesn't contain special characters such as
17181 "-", @var{nl}, """ and of course " "}
17182
17183 @item @var{c-string} @expansion{}
17184 @code{""" @var{seven-bit-iso-c-string-content} """}
17185
17186 @item @var{nl} @expansion{}
17187 @code{CR | CR-LF}
17188 @end table
17189
17190 @noindent
17191 Notes:
17192
17193 @itemize @bullet
17194 @item
17195 The CLI commands are still handled by the @sc{mi} interpreter; their
17196 output is described below.
17197
17198 @item
17199 The @code{@var{token}}, when present, is passed back when the command
17200 finishes.
17201
17202 @item
17203 Some @sc{mi} commands accept optional arguments as part of the parameter
17204 list.  Each option is identified by a leading @samp{-} (dash) and may be
17205 followed by an optional argument parameter.  Options occur first in the
17206 parameter list and can be delimited from normal parameters using
17207 @samp{--} (this is useful when some parameters begin with a dash).
17208 @end itemize
17209
17210 Pragmatics:
17211
17212 @itemize @bullet
17213 @item
17214 We want easy access to the existing CLI syntax (for debugging).
17215
17216 @item
17217 We want it to be easy to spot a @sc{mi} operation.
17218 @end itemize
17219
17220 @node GDB/MI Output Syntax
17221 @subsection @sc{gdb/mi} Output Syntax
17222
17223 @cindex output syntax of @sc{gdb/mi}
17224 @cindex @sc{gdb/mi}, output syntax
17225 The output from @sc{gdb/mi} consists of zero or more out-of-band records
17226 followed, optionally, by a single result record.  This result record
17227 is for the most recent command.  The sequence of output records is
17228 terminated by @samp{(gdb)}.
17229
17230 If an input command was prefixed with a @code{@var{token}} then the
17231 corresponding output for that command will also be prefixed by that same
17232 @var{token}.
17233
17234 @table @code
17235 @item @var{output} @expansion{}
17236 @code{( @var{out-of-band-record} )* [ @var{result-record} ] "(gdb)" @var{nl}}
17237
17238 @item @var{result-record} @expansion{}
17239 @code{ [ @var{token} ] "^" @var{result-class} ( "," @var{result} )* @var{nl}}
17240
17241 @item @var{out-of-band-record} @expansion{}
17242 @code{@var{async-record} | @var{stream-record}}
17243
17244 @item @var{async-record} @expansion{}
17245 @code{@var{exec-async-output} | @var{status-async-output} | @var{notify-async-output}}
17246
17247 @item @var{exec-async-output} @expansion{}
17248 @code{[ @var{token} ] "*" @var{async-output}}
17249
17250 @item @var{status-async-output} @expansion{}
17251 @code{[ @var{token} ] "+" @var{async-output}}
17252
17253 @item @var{notify-async-output} @expansion{}
17254 @code{[ @var{token} ] "=" @var{async-output}}
17255
17256 @item @var{async-output} @expansion{}
17257 @code{@var{async-class} ( "," @var{result} )* @var{nl}}
17258
17259 @item @var{result-class} @expansion{}
17260 @code{"done" | "running" | "connected" | "error" | "exit"}
17261
17262 @item @var{async-class} @expansion{}
17263 @code{"stopped" | @var{others}} (where @var{others} will be added
17264 depending on the needs---this is still in development).
17265
17266 @item @var{result} @expansion{}
17267 @code{ @var{variable} "=" @var{value}}
17268
17269 @item @var{variable} @expansion{}
17270 @code{ @var{string} }
17271
17272 @item @var{value} @expansion{}
17273 @code{ @var{const} | @var{tuple} | @var{list} }
17274
17275 @item @var{const} @expansion{}
17276 @code{@var{c-string}}
17277
17278 @item @var{tuple} @expansion{}
17279 @code{ "@{@}" | "@{" @var{result} ( "," @var{result} )* "@}" }
17280
17281 @item @var{list} @expansion{}
17282 @code{ "[]" | "[" @var{value} ( "," @var{value} )* "]" | "["
17283 @var{result} ( "," @var{result} )* "]" }
17284
17285 @item @var{stream-record} @expansion{}
17286 @code{@var{console-stream-output} | @var{target-stream-output} | @var{log-stream-output}}
17287
17288 @item @var{console-stream-output} @expansion{}
17289 @code{"~" @var{c-string}}
17290
17291 @item @var{target-stream-output} @expansion{}
17292 @code{"@@" @var{c-string}}
17293
17294 @item @var{log-stream-output} @expansion{}
17295 @code{"&" @var{c-string}}
17296
17297 @item @var{nl} @expansion{}
17298 @code{CR | CR-LF}
17299
17300 @item @var{token} @expansion{}
17301 @emph{any sequence of digits}.
17302 @end table
17303
17304 @noindent
17305 Notes:
17306
17307 @itemize @bullet
17308 @item
17309 All output sequences end in a single line containing a period.
17310
17311 @item
17312 The @code{@var{token}} is from the corresponding request.  If an execution
17313 command is interrupted by the @samp{-exec-interrupt} command, the
17314 @var{token} associated with the @samp{*stopped} message is the one of the
17315 original execution command, not the one of the interrupt command.
17316
17317 @item
17318 @cindex status output in @sc{gdb/mi}
17319 @var{status-async-output} contains on-going status information about the
17320 progress of a slow operation.  It can be discarded.  All status output is
17321 prefixed by @samp{+}.
17322
17323 @item
17324 @cindex async output in @sc{gdb/mi}
17325 @var{exec-async-output} contains asynchronous state change on the target
17326 (stopped, started, disappeared).  All async output is prefixed by
17327 @samp{*}.
17328
17329 @item
17330 @cindex notify output in @sc{gdb/mi}
17331 @var{notify-async-output} contains supplementary information that the
17332 client should handle (e.g., a new breakpoint information).  All notify
17333 output is prefixed by @samp{=}.
17334
17335 @item
17336 @cindex console output in @sc{gdb/mi}
17337 @var{console-stream-output} is output that should be displayed as is in the
17338 console.  It is the textual response to a CLI command.  All the console
17339 output is prefixed by @samp{~}.
17340
17341 @item
17342 @cindex target output in @sc{gdb/mi}
17343 @var{target-stream-output} is the output produced by the target program.
17344 All the target output is prefixed by @samp{@@}.
17345
17346 @item
17347 @cindex log output in @sc{gdb/mi}
17348 @var{log-stream-output} is output text coming from @value{GDBN}'s internals, for
17349 instance messages that should be displayed as part of an error log.  All
17350 the log output is prefixed by @samp{&}.
17351
17352 @item
17353 @cindex list output in @sc{gdb/mi}
17354 New @sc{gdb/mi} commands should only output @var{lists} containing
17355 @var{values}.
17356
17357
17358 @end itemize
17359
17360 @xref{GDB/MI Stream Records, , @sc{gdb/mi} Stream Records}, for more
17361 details about the various output records.
17362
17363 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17364 @node GDB/MI Compatibility with CLI
17365 @section @sc{gdb/mi} Compatibility with CLI
17366
17367 @cindex compatibility, @sc{gdb/mi} and CLI
17368 @cindex @sc{gdb/mi}, compatibility with CLI
17369
17370 For the developers convenience CLI commands can be entered directly,
17371 but there may be some unexpected behaviour.  For example, commands
17372 that query the user will behave as if the user replied yes, breakpoint
17373 command lists are not executed and some CLI commands, such as
17374 @code{if}, @code{when} and @code{define}, prompt for further input with
17375 @samp{>}, which is not valid MI output.
17376
17377 This feature may be removed at some stage in the future and it is
17378 recommended that front ends use the @code{-interpreter-exec} command
17379 (@pxref{-interpreter-exec}).
17380
17381 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17382 @node GDB/MI Development and Front Ends
17383 @section @sc{gdb/mi} Development and Front Ends
17384 @cindex @sc{gdb/mi} development
17385
17386 The application which takes the MI output and presents the state of the
17387 program being debugged to the user is called a @dfn{front end}.
17388
17389 Although @sc{gdb/mi} is still incomplete, it is currently being used
17390 by a variety of front ends to @value{GDBN}.  This makes it difficult
17391 to introduce new functionality without breaking existing usage.  This
17392 section tries to minimize the problems by describing how the protocol
17393 might change.
17394
17395 Some changes in MI need not break a carefully designed front end, and
17396 for these the MI version will remain unchanged.  The following is a
17397 list of changes that may occur within one level, so front ends should
17398 parse MI output in a way that can handle them:
17399
17400 @itemize @bullet
17401 @item
17402 New MI commands may be added.
17403
17404 @item
17405 New fields may be added to the output of any MI command.
17406
17407 @item
17408 The range of values for fields with specified values, e.g.,
17409 @code{in_scope} (@pxref{-var-update}) may be extended.
17410
17411 @c The format of field's content e.g type prefix, may change so parse it
17412 @c   at your own risk.  Yes, in general?
17413
17414 @c The order of fields may change?  Shouldn't really matter but it might
17415 @c resolve inconsistencies.
17416 @end itemize
17417
17418 If the changes are likely to break front ends, the MI version level
17419 will be increased by one.  This will allow the front end to parse the
17420 output according to the MI version.  Apart from mi0, new versions of
17421 @value{GDBN} will not support old versions of MI and it will be the
17422 responsibility of the front end to work with the new one.
17423
17424 @c Starting with mi3, add a new command -mi-version that prints the MI
17425 @c version?
17426
17427 The best way to avoid unexpected changes in MI that might break your front
17428 end is to make your project known to @value{GDBN} developers and
17429 follow development on @email{gdb@@sourceware.org} and
17430 @email{gdb-patches@@sourceware.org}.  There is also the mailing list
17431 @email{dmi-discuss@@lists.freestandards.org}, hosted by the Free Standards
17432 Group, which has the aim of creating a more general MI protocol
17433 called Debugger Machine Interface (DMI) that will become a standard
17434 for all debuggers, not just @value{GDBN}.
17435 @cindex mailing lists
17436
17437 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17438 @node GDB/MI Output Records
17439 @section @sc{gdb/mi} Output Records
17440
17441 @menu
17442 * GDB/MI Result Records::
17443 * GDB/MI Stream Records::
17444 * GDB/MI Out-of-band Records::
17445 @end menu
17446
17447 @node GDB/MI Result Records
17448 @subsection @sc{gdb/mi} Result Records
17449
17450 @cindex result records in @sc{gdb/mi}
17451 @cindex @sc{gdb/mi}, result records
17452 In addition to a number of out-of-band notifications, the response to a
17453 @sc{gdb/mi} command includes one of the following result indications:
17454
17455 @table @code
17456 @findex ^done
17457 @item "^done" [ "," @var{results} ]
17458 The synchronous operation was successful, @code{@var{results}} are the return
17459 values.
17460
17461 @item "^running"
17462 @findex ^running
17463 @c Is this one correct?  Should it be an out-of-band notification?
17464 The asynchronous operation was successfully started.  The target is
17465 running.
17466
17467 @item "^connected"
17468 @findex ^connected
17469 @value{GDBN} has connected to a remote target.
17470
17471 @item "^error" "," @var{c-string}
17472 @findex ^error
17473 The operation failed.  The @code{@var{c-string}} contains the corresponding
17474 error message.
17475
17476 @item "^exit"
17477 @findex ^exit
17478 @value{GDBN} has terminated.
17479
17480 @end table
17481
17482 @node GDB/MI Stream Records
17483 @subsection @sc{gdb/mi} Stream Records
17484
17485 @cindex @sc{gdb/mi}, stream records
17486 @cindex stream records in @sc{gdb/mi}
17487 @value{GDBN} internally maintains a number of output streams: the console, the
17488 target, and the log.  The output intended for each of these streams is
17489 funneled through the @sc{gdb/mi} interface using @dfn{stream records}.
17490
17491 Each stream record begins with a unique @dfn{prefix character} which
17492 identifies its stream (@pxref{GDB/MI Output Syntax, , @sc{gdb/mi} Output
17493 Syntax}).  In addition to the prefix, each stream record contains a
17494 @code{@var{string-output}}.  This is either raw text (with an implicit new
17495 line) or a quoted C string (which does not contain an implicit newline).
17496
17497 @table @code
17498 @item "~" @var{string-output}
17499 The console output stream contains text that should be displayed in the
17500 CLI console window.  It contains the textual responses to CLI commands.
17501
17502 @item "@@" @var{string-output}
17503 The target output stream contains any textual output from the running
17504 target.  This is only present when GDB's event loop is truly
17505 asynchronous, which is currently only the case for remote targets.
17506
17507 @item "&" @var{string-output}
17508 The log stream contains debugging messages being produced by @value{GDBN}'s
17509 internals.
17510 @end table
17511
17512 @node GDB/MI Out-of-band Records
17513 @subsection @sc{gdb/mi} Out-of-band Records
17514
17515 @cindex out-of-band records in @sc{gdb/mi}
17516 @cindex @sc{gdb/mi}, out-of-band records
17517 @dfn{Out-of-band} records are used to notify the @sc{gdb/mi} client of
17518 additional changes that have occurred.  Those changes can either be a
17519 consequence of @sc{gdb/mi} (e.g., a breakpoint modified) or a result of
17520 target activity (e.g., target stopped).
17521
17522 The following is a preliminary list of possible out-of-band records.
17523 In particular, the @var{exec-async-output} records.
17524
17525 @table @code
17526 @item *stopped,reason="@var{reason}"
17527 @end table
17528
17529 @var{reason} can be one of the following:
17530
17531 @table @code
17532 @item breakpoint-hit
17533 A breakpoint was reached.
17534 @item watchpoint-trigger
17535 A watchpoint was triggered.
17536 @item read-watchpoint-trigger
17537 A read watchpoint was triggered.
17538 @item access-watchpoint-trigger 
17539 An access watchpoint was triggered.
17540 @item function-finished
17541 An -exec-finish or similar CLI command was accomplished.
17542 @item location-reached
17543 An -exec-until or similar CLI command was accomplished.
17544 @item watchpoint-scope
17545 A watchpoint has gone out of scope.
17546 @item end-stepping-range
17547 An -exec-next, -exec-next-instruction, -exec-step, -exec-step-instruction or 
17548 similar CLI command was accomplished.
17549 @item exited-signalled 
17550 The inferior exited because of a signal.
17551 @item exited 
17552 The inferior exited.
17553 @item exited-normally 
17554 The inferior exited normally.
17555 @item signal-received 
17556 A signal was received by the inferior.
17557 @end table
17558
17559
17560 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17561 @node GDB/MI Simple Examples
17562 @section Simple Examples of @sc{gdb/mi} Interaction
17563 @cindex @sc{gdb/mi}, simple examples
17564
17565 This subsection presents several simple examples of interaction using
17566 the @sc{gdb/mi} interface.  In these examples, @samp{->} means that the
17567 following line is passed to @sc{gdb/mi} as input, while @samp{<-} means
17568 the output received from @sc{gdb/mi}.
17569
17570 Note the line breaks shown in the examples are here only for
17571 readability, they don't appear in the real output.
17572
17573 @subheading Setting a Breakpoint
17574
17575 Setting a breakpoint generates synchronous output which contains detailed
17576 information of the breakpoint.
17577
17578 @smallexample
17579 -> -break-insert main
17580 <- ^done,bkpt=@{number="1",type="breakpoint",disp="keep",
17581     enabled="y",addr="0x08048564",func="main",file="myprog.c",
17582     fullname="/home/nickrob/myprog.c",line="68",times="0"@}
17583 <- (gdb)
17584 @end smallexample
17585
17586 @subheading Program Execution
17587
17588 Program execution generates asynchronous records and MI gives the
17589 reason that execution stopped.
17590
17591 @smallexample
17592 -> -exec-run
17593 <- ^running
17594 <- (gdb)
17595 <- *stopped,reason="breakpoint-hit",bkptno="1",thread-id="0",
17596    frame=@{addr="0x08048564",func="main",
17597    args=[@{name="argc",value="1"@},@{name="argv",value="0xbfc4d4d4"@}],
17598    file="myprog.c",fullname="/home/nickrob/myprog.c",line="68"@}
17599 <- (gdb)
17600 -> -exec-continue
17601 <- ^running
17602 <- (gdb)
17603 <- *stopped,reason="exited-normally"
17604 <- (gdb)
17605 @end smallexample
17606
17607 @subheading Quitting @value{GDBN}
17608
17609 Quitting @value{GDBN} just prints the result class @samp{^exit}.
17610
17611 @smallexample
17612 -> (gdb)
17613 <- -gdb-exit
17614 <- ^exit
17615 @end smallexample
17616
17617 @subheading A Bad Command
17618
17619 Here's what happens if you pass a non-existent command:
17620
17621 @smallexample
17622 -> -rubbish
17623 <- ^error,msg="Undefined MI command: rubbish"
17624 <- (gdb)
17625 @end smallexample
17626
17627
17628 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17629 @node GDB/MI Command Description Format
17630 @section @sc{gdb/mi} Command Description Format
17631
17632 The remaining sections describe blocks of commands.  Each block of
17633 commands is laid out in a fashion similar to this section.
17634
17635 @subheading Motivation
17636
17637 The motivation for this collection of commands.
17638
17639 @subheading Introduction
17640
17641 A brief introduction to this collection of commands as a whole.
17642
17643 @subheading Commands
17644
17645 For each command in the block, the following is described:
17646
17647 @subsubheading Synopsis
17648
17649 @smallexample
17650  -command @var{args}@dots{}
17651 @end smallexample
17652
17653 @subsubheading Result
17654
17655 @subsubheading @value{GDBN} Command
17656
17657 The corresponding @value{GDBN} CLI command(s), if any.
17658
17659 @subsubheading Example
17660
17661 Example(s) formatted for readability.  Some of the described commands  have
17662 not been implemented yet and these are labeled N.A.@: (not available).
17663
17664
17665 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17666 @node GDB/MI Breakpoint Commands
17667 @section @sc{gdb/mi} Breakpoint Commands
17668
17669 @cindex breakpoint commands for @sc{gdb/mi}
17670 @cindex @sc{gdb/mi}, breakpoint commands
17671 This section documents @sc{gdb/mi} commands for manipulating
17672 breakpoints.
17673
17674 @subheading The @code{-break-after} Command
17675 @findex -break-after
17676
17677 @subsubheading Synopsis
17678
17679 @smallexample
17680  -break-after @var{number} @var{count}
17681 @end smallexample
17682
17683 The breakpoint number @var{number} is not in effect until it has been
17684 hit @var{count} times.  To see how this is reflected in the output of
17685 the @samp{-break-list} command, see the description of the
17686 @samp{-break-list} command below.
17687
17688 @subsubheading @value{GDBN} Command
17689
17690 The corresponding @value{GDBN} command is @samp{ignore}.
17691
17692 @subsubheading Example
17693
17694 @smallexample
17695 (gdb)
17696 -break-insert main
17697 ^done,bkpt=@{number="1",addr="0x000100d0",file="hello.c",
17698 fullname="/home/foo/hello.c",line="5",times="0"@}
17699 (gdb)
17700 -break-after 1 3
17701 ~
17702 ^done
17703 (gdb)
17704 -break-list
17705 ^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
17706 hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
17707 @{width="14",alignment="-1",col_name="type",colhdr="Type"@},
17708 @{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
17709 @{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
17710 @{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
17711 @{width="40",alignment="2",col_name="what",colhdr="What"@}],
17712 body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
17713 addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
17714 line="5",times="0",ignore="3"@}]@}
17715 (gdb)
17716 @end smallexample
17717
17718 @ignore
17719 @subheading The @code{-break-catch} Command
17720 @findex -break-catch
17721
17722 @subheading The @code{-break-commands} Command
17723 @findex -break-commands
17724 @end ignore
17725
17726
17727 @subheading The @code{-break-condition} Command
17728 @findex -break-condition
17729
17730 @subsubheading Synopsis
17731
17732 @smallexample
17733  -break-condition @var{number} @var{expr}
17734 @end smallexample
17735
17736 Breakpoint @var{number} will stop the program only if the condition in
17737 @var{expr} is true.  The condition becomes part of the
17738 @samp{-break-list} output (see the description of the @samp{-break-list}
17739 command below).
17740
17741 @subsubheading @value{GDBN} Command
17742
17743 The corresponding @value{GDBN} command is @samp{condition}.
17744
17745 @subsubheading Example
17746
17747 @smallexample
17748 (gdb)
17749 -break-condition 1 1
17750 ^done
17751 (gdb)
17752 -break-list
17753 ^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
17754 hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
17755 @{width="14",alignment="-1",col_name="type",colhdr="Type"@},
17756 @{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
17757 @{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
17758 @{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
17759 @{width="40",alignment="2",col_name="what",colhdr="What"@}],
17760 body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
17761 addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
17762 line="5",cond="1",times="0",ignore="3"@}]@}
17763 (gdb)
17764 @end smallexample
17765
17766 @subheading The @code{-break-delete} Command
17767 @findex -break-delete
17768
17769 @subsubheading Synopsis
17770
17771 @smallexample
17772  -break-delete ( @var{breakpoint} )+
17773 @end smallexample
17774
17775 Delete the breakpoint(s) whose number(s) are specified in the argument
17776 list.  This is obviously reflected in the breakpoint list.
17777
17778 @subsubheading @value{GDBN} Command
17779
17780 The corresponding @value{GDBN} command is @samp{delete}.
17781
17782 @subsubheading Example
17783
17784 @smallexample
17785 (gdb)
17786 -break-delete 1
17787 ^done
17788 (gdb)
17789 -break-list
17790 ^done,BreakpointTable=@{nr_rows="0",nr_cols="6",
17791 hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
17792 @{width="14",alignment="-1",col_name="type",colhdr="Type"@},
17793 @{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
17794 @{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
17795 @{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
17796 @{width="40",alignment="2",col_name="what",colhdr="What"@}],
17797 body=[]@}
17798 (gdb)
17799 @end smallexample
17800
17801 @subheading The @code{-break-disable} Command
17802 @findex -break-disable
17803
17804 @subsubheading Synopsis
17805
17806 @smallexample
17807  -break-disable ( @var{breakpoint} )+
17808 @end smallexample
17809
17810 Disable the named @var{breakpoint}(s).  The field @samp{enabled} in the
17811 break list is now set to @samp{n} for the named @var{breakpoint}(s).
17812
17813 @subsubheading @value{GDBN} Command
17814
17815 The corresponding @value{GDBN} command is @samp{disable}.
17816
17817 @subsubheading Example
17818
17819 @smallexample
17820 (gdb)
17821 -break-disable 2
17822 ^done
17823 (gdb)
17824 -break-list
17825 ^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
17826 hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
17827 @{width="14",alignment="-1",col_name="type",colhdr="Type"@},
17828 @{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
17829 @{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
17830 @{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
17831 @{width="40",alignment="2",col_name="what",colhdr="What"@}],
17832 body=[bkpt=@{number="2",type="breakpoint",disp="keep",enabled="n",
17833 addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
17834 line="5",times="0"@}]@}
17835 (gdb)
17836 @end smallexample
17837
17838 @subheading The @code{-break-enable} Command
17839 @findex -break-enable
17840
17841 @subsubheading Synopsis
17842
17843 @smallexample
17844  -break-enable ( @var{breakpoint} )+
17845 @end smallexample
17846
17847 Enable (previously disabled) @var{breakpoint}(s).
17848
17849 @subsubheading @value{GDBN} Command
17850
17851 The corresponding @value{GDBN} command is @samp{enable}.
17852
17853 @subsubheading Example
17854
17855 @smallexample
17856 (gdb)
17857 -break-enable 2
17858 ^done
17859 (gdb)
17860 -break-list
17861 ^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
17862 hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
17863 @{width="14",alignment="-1",col_name="type",colhdr="Type"@},
17864 @{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
17865 @{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
17866 @{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
17867 @{width="40",alignment="2",col_name="what",colhdr="What"@}],
17868 body=[bkpt=@{number="2",type="breakpoint",disp="keep",enabled="y",
17869 addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
17870 line="5",times="0"@}]@}
17871 (gdb)
17872 @end smallexample
17873
17874 @subheading The @code{-break-info} Command
17875 @findex -break-info
17876
17877 @subsubheading Synopsis
17878
17879 @smallexample
17880  -break-info @var{breakpoint}
17881 @end smallexample
17882
17883 @c REDUNDANT???
17884 Get information about a single breakpoint.
17885
17886 @subsubheading @value{GDBN} Command
17887
17888 The corresponding @value{GDBN} command is @samp{info break @var{breakpoint}}.
17889
17890 @subsubheading Example
17891 N.A.
17892
17893 @subheading The @code{-break-insert} Command
17894 @findex -break-insert
17895
17896 @subsubheading Synopsis
17897
17898 @smallexample
17899  -break-insert [ -t ] [ -h ] [ -r ]
17900     [ -c @var{condition} ] [ -i @var{ignore-count} ]
17901     [ -p @var{thread} ] [ @var{line} | @var{addr} ]
17902 @end smallexample
17903
17904 @noindent
17905 If specified, @var{line}, can be one of:
17906
17907 @itemize @bullet
17908 @item function
17909 @c @item +offset
17910 @c @item -offset
17911 @c @item linenum
17912 @item filename:linenum
17913 @item filename:function
17914 @item *address
17915 @end itemize
17916
17917 The possible optional parameters of this command are:
17918
17919 @table @samp
17920 @item -t
17921 Insert a temporary breakpoint.
17922 @item -h
17923 Insert a hardware breakpoint.
17924 @item -c @var{condition}
17925 Make the breakpoint conditional on @var{condition}.
17926 @item -i @var{ignore-count}
17927 Initialize the @var{ignore-count}.
17928 @item -r
17929 Insert a regular breakpoint in all the functions whose names match the
17930 given regular expression.  Other flags are not applicable to regular
17931 expressions.
17932 @end table
17933
17934 @subsubheading Result
17935
17936 The result is in the form:
17937
17938 @smallexample
17939 ^done,bkpt=@{number="@var{number}",type="@var{type}",disp="del"|"keep",
17940 enabled="y"|"n",addr="@var{hex}",func="@var{funcname}",file="@var{filename}",
17941 fullname="@var{full_filename}",line="@var{lineno}",[thread="@var{threadno},]
17942 times="@var{times}"@}
17943 @end smallexample
17944
17945 @noindent
17946 where @var{number} is the @value{GDBN} number for this breakpoint,
17947 @var{funcname} is the name of the function where the breakpoint was
17948 inserted, @var{filename} is the name of the source file which contains
17949 this function, @var{lineno} is the source line number within that file
17950 and @var{times} the number of times that the breakpoint has been hit
17951 (always 0 for -break-insert but may be greater for -break-info or -break-list
17952 which use the same output).
17953
17954 Note: this format is open to change.
17955 @c An out-of-band breakpoint instead of part of the result?
17956
17957 @subsubheading @value{GDBN} Command
17958
17959 The corresponding @value{GDBN} commands are @samp{break}, @samp{tbreak},
17960 @samp{hbreak}, @samp{thbreak}, and @samp{rbreak}.
17961
17962 @subsubheading Example
17963
17964 @smallexample
17965 (gdb)
17966 -break-insert main
17967 ^done,bkpt=@{number="1",addr="0x0001072c",file="recursive2.c",
17968 fullname="/home/foo/recursive2.c,line="4",times="0"@}
17969 (gdb)
17970 -break-insert -t foo
17971 ^done,bkpt=@{number="2",addr="0x00010774",file="recursive2.c",
17972 fullname="/home/foo/recursive2.c,line="11",times="0"@}
17973 (gdb)
17974 -break-list
17975 ^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
17976 hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
17977 @{width="14",alignment="-1",col_name="type",colhdr="Type"@},
17978 @{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
17979 @{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
17980 @{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
17981 @{width="40",alignment="2",col_name="what",colhdr="What"@}],
17982 body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
17983 addr="0x0001072c", func="main",file="recursive2.c",
17984 fullname="/home/foo/recursive2.c,"line="4",times="0"@},
17985 bkpt=@{number="2",type="breakpoint",disp="del",enabled="y",
17986 addr="0x00010774",func="foo",file="recursive2.c",
17987 fullname="/home/foo/recursive2.c",line="11",times="0"@}]@}
17988 (gdb)
17989 -break-insert -r foo.*
17990 ~int foo(int, int);
17991 ^done,bkpt=@{number="3",addr="0x00010774",file="recursive2.c,
17992 "fullname="/home/foo/recursive2.c",line="11",times="0"@}
17993 (gdb)
17994 @end smallexample
17995
17996 @subheading The @code{-break-list} Command
17997 @findex -break-list
17998
17999 @subsubheading Synopsis
18000
18001 @smallexample
18002  -break-list
18003 @end smallexample
18004
18005 Displays the list of inserted breakpoints, showing the following fields:
18006
18007 @table @samp
18008 @item Number
18009 number of the breakpoint
18010 @item Type
18011 type of the breakpoint: @samp{breakpoint} or @samp{watchpoint}
18012 @item Disposition
18013 should the breakpoint be deleted or disabled when it is hit: @samp{keep}
18014 or @samp{nokeep}
18015 @item Enabled
18016 is the breakpoint enabled or no: @samp{y} or @samp{n}
18017 @item Address
18018 memory location at which the breakpoint is set
18019 @item What
18020 logical location of the breakpoint, expressed by function name, file
18021 name, line number
18022 @item Times
18023 number of times the breakpoint has been hit
18024 @end table
18025
18026 If there are no breakpoints or watchpoints, the @code{BreakpointTable}
18027 @code{body} field is an empty list.
18028
18029 @subsubheading @value{GDBN} Command
18030
18031 The corresponding @value{GDBN} command is @samp{info break}.
18032
18033 @subsubheading Example
18034
18035 @smallexample
18036 (gdb)
18037 -break-list
18038 ^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
18039 hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18040 @{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18041 @{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18042 @{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18043 @{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18044 @{width="40",alignment="2",col_name="what",colhdr="What"@}],
18045 body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
18046 addr="0x000100d0",func="main",file="hello.c",line="5",times="0"@},
18047 bkpt=@{number="2",type="breakpoint",disp="keep",enabled="y",
18048 addr="0x00010114",func="foo",file="hello.c",fullname="/home/foo/hello.c",
18049 line="13",times="0"@}]@}
18050 (gdb)
18051 @end smallexample
18052
18053 Here's an example of the result when there are no breakpoints:
18054
18055 @smallexample
18056 (gdb)
18057 -break-list
18058 ^done,BreakpointTable=@{nr_rows="0",nr_cols="6",
18059 hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18060 @{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18061 @{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18062 @{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18063 @{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18064 @{width="40",alignment="2",col_name="what",colhdr="What"@}],
18065 body=[]@}
18066 (gdb)
18067 @end smallexample
18068
18069 @subheading The @code{-break-watch} Command
18070 @findex -break-watch
18071
18072 @subsubheading Synopsis
18073
18074 @smallexample
18075  -break-watch [ -a | -r ]
18076 @end smallexample
18077
18078 Create a watchpoint.  With the @samp{-a} option it will create an
18079 @dfn{access} watchpoint, i.e., a watchpoint that triggers either on a
18080 read from or on a write to the memory location.  With the @samp{-r}
18081 option, the watchpoint created is a @dfn{read} watchpoint, i.e., it will
18082 trigger only when the memory location is accessed for reading.  Without
18083 either of the options, the watchpoint created is a regular watchpoint,
18084 i.e., it will trigger when the memory location is accessed for writing.
18085 @xref{Set Watchpoints, , Setting Watchpoints}.
18086
18087 Note that @samp{-break-list} will report a single list of watchpoints and
18088 breakpoints inserted.
18089
18090 @subsubheading @value{GDBN} Command
18091
18092 The corresponding @value{GDBN} commands are @samp{watch}, @samp{awatch}, and
18093 @samp{rwatch}.
18094
18095 @subsubheading Example
18096
18097 Setting a watchpoint on a variable in the @code{main} function:
18098
18099 @smallexample
18100 (gdb)
18101 -break-watch x
18102 ^done,wpt=@{number="2",exp="x"@}
18103 (gdb)
18104 -exec-continue
18105 ^running
18106 (gdb)
18107 *stopped,reason="watchpoint-trigger",wpt=@{number="2",exp="x"@},
18108 value=@{old="-268439212",new="55"@},
18109 frame=@{func="main",args=[],file="recursive2.c",
18110 fullname="/home/foo/bar/recursive2.c",line="5"@}
18111 (gdb)
18112 @end smallexample
18113
18114 Setting a watchpoint on a variable local to a function.  @value{GDBN} will stop
18115 the program execution twice: first for the variable changing value, then
18116 for the watchpoint going out of scope.
18117
18118 @smallexample
18119 (gdb)
18120 -break-watch C
18121 ^done,wpt=@{number="5",exp="C"@}
18122 (gdb)
18123 -exec-continue
18124 ^running
18125 (gdb)
18126 *stopped,reason="watchpoint-trigger",
18127 wpt=@{number="5",exp="C"@},value=@{old="-276895068",new="3"@},
18128 frame=@{func="callee4",args=[],
18129 file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18130 fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="13"@}
18131 (gdb)
18132 -exec-continue
18133 ^running
18134 (gdb)
18135 *stopped,reason="watchpoint-scope",wpnum="5",
18136 frame=@{func="callee3",args=[@{name="strarg",
18137 value="0x11940 \"A string argument.\""@}],
18138 file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18139 fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="18"@}
18140 (gdb)
18141 @end smallexample
18142
18143 Listing breakpoints and watchpoints, at different points in the program
18144 execution.  Note that once the watchpoint goes out of scope, it is
18145 deleted.
18146
18147 @smallexample
18148 (gdb)
18149 -break-watch C
18150 ^done,wpt=@{number="2",exp="C"@}
18151 (gdb)
18152 -break-list
18153 ^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
18154 hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18155 @{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18156 @{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18157 @{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18158 @{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18159 @{width="40",alignment="2",col_name="what",colhdr="What"@}],
18160 body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
18161 addr="0x00010734",func="callee4",
18162 file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18163 fullname="/home/foo/devo/gdb/testsuite/gdb.mi/basics.c"line="8",times="1"@},
18164 bkpt=@{number="2",type="watchpoint",disp="keep",
18165 enabled="y",addr="",what="C",times="0"@}]@}
18166 (gdb)
18167 -exec-continue
18168 ^running
18169 (gdb)
18170 *stopped,reason="watchpoint-trigger",wpt=@{number="2",exp="C"@},
18171 value=@{old="-276895068",new="3"@},
18172 frame=@{func="callee4",args=[],
18173 file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18174 fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="13"@}
18175 (gdb)
18176 -break-list
18177 ^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
18178 hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18179 @{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18180 @{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18181 @{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18182 @{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18183 @{width="40",alignment="2",col_name="what",colhdr="What"@}],
18184 body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
18185 addr="0x00010734",func="callee4",
18186 file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18187 fullname="/home/foo/devo/gdb/testsuite/gdb.mi/basics.c",line="8",times="1"@},
18188 bkpt=@{number="2",type="watchpoint",disp="keep",
18189 enabled="y",addr="",what="C",times="-5"@}]@}
18190 (gdb)
18191 -exec-continue
18192 ^running
18193 ^done,reason="watchpoint-scope",wpnum="2",
18194 frame=@{func="callee3",args=[@{name="strarg",
18195 value="0x11940 \"A string argument.\""@}],
18196 file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18197 fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="18"@}
18198 (gdb)
18199 -break-list
18200 ^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18201 hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18202 @{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18203 @{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18204 @{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18205 @{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18206 @{width="40",alignment="2",col_name="what",colhdr="What"@}],
18207 body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
18208 addr="0x00010734",func="callee4",
18209 file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18210 fullname="/home/foo/devo/gdb/testsuite/gdb.mi/basics.c",line="8",
18211 times="1"@}]@}
18212 (gdb)
18213 @end smallexample
18214
18215 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18216 @node GDB/MI Program Context
18217 @section @sc{gdb/mi}  Program Context
18218
18219 @subheading The @code{-exec-arguments} Command
18220 @findex -exec-arguments
18221
18222
18223 @subsubheading Synopsis
18224
18225 @smallexample
18226  -exec-arguments @var{args}
18227 @end smallexample
18228
18229 Set the inferior program arguments, to be used in the next
18230 @samp{-exec-run}.
18231
18232 @subsubheading @value{GDBN} Command
18233
18234 The corresponding @value{GDBN} command is @samp{set args}.
18235
18236 @subsubheading Example
18237
18238 @c FIXME!
18239 Don't have one around.
18240
18241
18242 @subheading The @code{-exec-show-arguments} Command
18243 @findex -exec-show-arguments
18244
18245 @subsubheading Synopsis
18246
18247 @smallexample
18248  -exec-show-arguments
18249 @end smallexample
18250
18251 Print the arguments of the program.
18252
18253 @subsubheading @value{GDBN} Command
18254
18255 The corresponding @value{GDBN} command is @samp{show args}.
18256
18257 @subsubheading Example
18258 N.A.
18259
18260
18261 @subheading The @code{-environment-cd} Command
18262 @findex -environment-cd
18263
18264 @subsubheading Synopsis
18265
18266 @smallexample
18267  -environment-cd @var{pathdir}
18268 @end smallexample
18269
18270 Set @value{GDBN}'s working directory.
18271
18272 @subsubheading @value{GDBN} Command
18273
18274 The corresponding @value{GDBN} command is @samp{cd}.
18275
18276 @subsubheading Example
18277
18278 @smallexample
18279 (gdb)
18280 -environment-cd /kwikemart/marge/ezannoni/flathead-dev/devo/gdb
18281 ^done
18282 (gdb)
18283 @end smallexample
18284
18285
18286 @subheading The @code{-environment-directory} Command
18287 @findex -environment-directory
18288
18289 @subsubheading Synopsis
18290
18291 @smallexample
18292  -environment-directory [ -r ] [ @var{pathdir} ]+
18293 @end smallexample
18294
18295 Add directories @var{pathdir} to beginning of search path for source files.
18296 If the @samp{-r} option is used, the search path is reset to the default
18297 search path.  If directories @var{pathdir} are supplied in addition to the
18298 @samp{-r} option, the search path is first reset and then addition
18299 occurs as normal.
18300 Multiple directories may be specified, separated by blanks.  Specifying
18301 multiple directories in a single command
18302 results in the directories added to the beginning of the
18303 search path in the same order they were presented in the command.
18304 If blanks are needed as
18305 part of a directory name, double-quotes should be used around
18306 the name.  In the command output, the path will show up separated
18307 by the system directory-separator character.  The directory-separator
18308 character must not be used
18309 in any directory name.
18310 If no directories are specified, the current search path is displayed.
18311
18312 @subsubheading @value{GDBN} Command
18313
18314 The corresponding @value{GDBN} command is @samp{dir}.
18315
18316 @subsubheading Example
18317
18318 @smallexample
18319 (gdb)
18320 -environment-directory /kwikemart/marge/ezannoni/flathead-dev/devo/gdb
18321 ^done,source-path="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb:$cdir:$cwd"
18322 (gdb)
18323 -environment-directory ""
18324 ^done,source-path="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb:$cdir:$cwd"
18325 (gdb)
18326 -environment-directory -r /home/jjohnstn/src/gdb /usr/src
18327 ^done,source-path="/home/jjohnstn/src/gdb:/usr/src:$cdir:$cwd"
18328 (gdb)
18329 -environment-directory -r
18330 ^done,source-path="$cdir:$cwd"
18331 (gdb)
18332 @end smallexample
18333
18334
18335 @subheading The @code{-environment-path} Command
18336 @findex -environment-path
18337
18338 @subsubheading Synopsis
18339
18340 @smallexample
18341  -environment-path [ -r ] [ @var{pathdir} ]+
18342 @end smallexample
18343
18344 Add directories @var{pathdir} to beginning of search path for object files.
18345 If the @samp{-r} option is used, the search path is reset to the original
18346 search path that existed at gdb start-up.  If directories @var{pathdir} are
18347 supplied in addition to the
18348 @samp{-r} option, the search path is first reset and then addition
18349 occurs as normal.
18350 Multiple directories may be specified, separated by blanks.  Specifying
18351 multiple directories in a single command
18352 results in the directories added to the beginning of the
18353 search path in the same order they were presented in the command.
18354 If blanks are needed as
18355 part of a directory name, double-quotes should be used around
18356 the name.  In the command output, the path will show up separated
18357 by the system directory-separator character.  The directory-separator
18358 character must not be used
18359 in any directory name.
18360 If no directories are specified, the current path is displayed.
18361
18362
18363 @subsubheading @value{GDBN} Command
18364
18365 The corresponding @value{GDBN} command is @samp{path}.
18366
18367 @subsubheading Example
18368
18369 @smallexample
18370 (gdb)
18371 -environment-path
18372 ^done,path="/usr/bin"
18373 (gdb)
18374 -environment-path /kwikemart/marge/ezannoni/flathead-dev/ppc-eabi/gdb /bin
18375 ^done,path="/kwikemart/marge/ezannoni/flathead-dev/ppc-eabi/gdb:/bin:/usr/bin"
18376 (gdb)
18377 -environment-path -r /usr/local/bin
18378 ^done,path="/usr/local/bin:/usr/bin"
18379 (gdb)
18380 @end smallexample
18381
18382
18383 @subheading The @code{-environment-pwd} Command
18384 @findex -environment-pwd
18385
18386 @subsubheading Synopsis
18387
18388 @smallexample
18389  -environment-pwd
18390 @end smallexample
18391
18392 Show the current working directory.
18393
18394 @subsubheading @value{GDBN} Command
18395
18396 The corresponding @value{GDBN} command is @samp{pwd}.
18397
18398 @subsubheading Example
18399
18400 @smallexample
18401 (gdb)
18402 -environment-pwd
18403 ^done,cwd="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb"
18404 (gdb)
18405 @end smallexample
18406
18407 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18408 @node GDB/MI Thread Commands
18409 @section @sc{gdb/mi} Thread Commands
18410
18411
18412 @subheading The @code{-thread-info} Command
18413 @findex -thread-info
18414
18415 @subsubheading Synopsis
18416
18417 @smallexample
18418  -thread-info
18419 @end smallexample
18420
18421 @subsubheading @value{GDBN} Command
18422
18423 No equivalent.
18424
18425 @subsubheading Example
18426 N.A.
18427
18428
18429 @subheading The @code{-thread-list-all-threads} Command
18430 @findex -thread-list-all-threads
18431
18432 @subsubheading Synopsis
18433
18434 @smallexample
18435  -thread-list-all-threads
18436 @end smallexample
18437
18438 @subsubheading @value{GDBN} Command
18439
18440 The equivalent @value{GDBN} command is @samp{info threads}.
18441
18442 @subsubheading Example
18443 N.A.
18444
18445
18446 @subheading The @code{-thread-list-ids} Command
18447 @findex -thread-list-ids
18448
18449 @subsubheading Synopsis
18450
18451 @smallexample
18452  -thread-list-ids
18453 @end smallexample
18454
18455 Produces a list of the currently known @value{GDBN} thread ids.  At the
18456 end of the list it also prints the total number of such threads.
18457
18458 @subsubheading @value{GDBN} Command
18459
18460 Part of @samp{info threads} supplies the same information.
18461
18462 @subsubheading Example
18463
18464 No threads present, besides the main process:
18465
18466 @smallexample
18467 (gdb)
18468 -thread-list-ids
18469 ^done,thread-ids=@{@},number-of-threads="0"
18470 (gdb)
18471 @end smallexample
18472
18473
18474 Several threads:
18475
18476 @smallexample
18477 (gdb)
18478 -thread-list-ids
18479 ^done,thread-ids=@{thread-id="3",thread-id="2",thread-id="1"@},
18480 number-of-threads="3"
18481 (gdb)
18482 @end smallexample
18483
18484
18485 @subheading The @code{-thread-select} Command
18486 @findex -thread-select
18487
18488 @subsubheading Synopsis
18489
18490 @smallexample
18491  -thread-select @var{threadnum}
18492 @end smallexample
18493
18494 Make @var{threadnum} the current thread.  It prints the number of the new
18495 current thread, and the topmost frame for that thread.
18496
18497 @subsubheading @value{GDBN} Command
18498
18499 The corresponding @value{GDBN} command is @samp{thread}.
18500
18501 @subsubheading Example
18502
18503 @smallexample
18504 (gdb)
18505 -exec-next
18506 ^running
18507 (gdb)
18508 *stopped,reason="end-stepping-range",thread-id="2",line="187",
18509 file="../../../devo/gdb/testsuite/gdb.threads/linux-dp.c"
18510 (gdb)
18511 -thread-list-ids
18512 ^done,
18513 thread-ids=@{thread-id="3",thread-id="2",thread-id="1"@},
18514 number-of-threads="3"
18515 (gdb)
18516 -thread-select 3
18517 ^done,new-thread-id="3",
18518 frame=@{level="0",func="vprintf",
18519 args=[@{name="format",value="0x8048e9c \"%*s%c %d %c\\n\""@},
18520 @{name="arg",value="0x2"@}],file="vprintf.c",line="31"@}
18521 (gdb)
18522 @end smallexample
18523
18524 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18525 @node GDB/MI Program Execution
18526 @section @sc{gdb/mi} Program Execution
18527
18528 These are the asynchronous commands which generate the out-of-band
18529 record @samp{*stopped}.  Currently @value{GDBN} only really executes
18530 asynchronously with remote targets and this interaction is mimicked in
18531 other cases.
18532
18533 @subheading The @code{-exec-continue} Command
18534 @findex -exec-continue
18535
18536 @subsubheading Synopsis
18537
18538 @smallexample
18539  -exec-continue
18540 @end smallexample
18541
18542 Resumes the execution of the inferior program until a breakpoint is
18543 encountered, or until the inferior exits.
18544
18545 @subsubheading @value{GDBN} Command
18546
18547 The corresponding @value{GDBN} corresponding is @samp{continue}.
18548
18549 @subsubheading Example
18550
18551 @smallexample
18552 -exec-continue
18553 ^running
18554 (gdb)
18555 @@Hello world
18556 *stopped,reason="breakpoint-hit",bkptno="2",frame=@{func="foo",args=[],
18557 file="hello.c",fullname="/home/foo/bar/hello.c",line="13"@}
18558 (gdb)
18559 @end smallexample
18560
18561
18562 @subheading The @code{-exec-finish} Command
18563 @findex -exec-finish
18564
18565 @subsubheading Synopsis
18566
18567 @smallexample
18568  -exec-finish
18569 @end smallexample
18570
18571 Resumes the execution of the inferior program until the current
18572 function is exited.  Displays the results returned by the function.
18573
18574 @subsubheading @value{GDBN} Command
18575
18576 The corresponding @value{GDBN} command is @samp{finish}.
18577
18578 @subsubheading Example
18579
18580 Function returning @code{void}.
18581
18582 @smallexample
18583 -exec-finish
18584 ^running
18585 (gdb)
18586 @@hello from foo
18587 *stopped,reason="function-finished",frame=@{func="main",args=[],
18588 file="hello.c",fullname="/home/foo/bar/hello.c",line="7"@}
18589 (gdb)
18590 @end smallexample
18591
18592 Function returning other than @code{void}.  The name of the internal
18593 @value{GDBN} variable storing the result is printed, together with the
18594 value itself.
18595
18596 @smallexample
18597 -exec-finish
18598 ^running
18599 (gdb)
18600 *stopped,reason="function-finished",frame=@{addr="0x000107b0",func="foo",
18601 args=[@{name="a",value="1"],@{name="b",value="9"@}@},
18602 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
18603 gdb-result-var="$1",return-value="0"
18604 (gdb)
18605 @end smallexample
18606
18607
18608 @subheading The @code{-exec-interrupt} Command
18609 @findex -exec-interrupt
18610
18611 @subsubheading Synopsis
18612
18613 @smallexample
18614  -exec-interrupt
18615 @end smallexample
18616
18617 Interrupts the background execution of the target.  Note how the token
18618 associated with the stop message is the one for the execution command
18619 that has been interrupted.  The token for the interrupt itself only
18620 appears in the @samp{^done} output.  If the user is trying to
18621 interrupt a non-running program, an error message will be printed.
18622
18623 @subsubheading @value{GDBN} Command
18624
18625 The corresponding @value{GDBN} command is @samp{interrupt}.
18626
18627 @subsubheading Example
18628
18629 @smallexample
18630 (gdb)
18631 111-exec-continue
18632 111^running
18633
18634 (gdb)
18635 222-exec-interrupt
18636 222^done
18637 (gdb)
18638 111*stopped,signal-name="SIGINT",signal-meaning="Interrupt",
18639 frame=@{addr="0x00010140",func="foo",args=[],file="try.c",
18640 fullname="/home/foo/bar/try.c",line="13"@}
18641 (gdb)
18642
18643 (gdb)
18644 -exec-interrupt
18645 ^error,msg="mi_cmd_exec_interrupt: Inferior not executing."
18646 (gdb)
18647 @end smallexample
18648
18649
18650 @subheading The @code{-exec-next} Command
18651 @findex -exec-next
18652
18653 @subsubheading Synopsis
18654
18655 @smallexample
18656  -exec-next
18657 @end smallexample
18658
18659 Resumes execution of the inferior program, stopping when the beginning
18660 of the next source line is reached.
18661
18662 @subsubheading @value{GDBN} Command
18663
18664 The corresponding @value{GDBN} command is @samp{next}.
18665
18666 @subsubheading Example
18667
18668 @smallexample
18669 -exec-next
18670 ^running
18671 (gdb)
18672 *stopped,reason="end-stepping-range",line="8",file="hello.c"
18673 (gdb)
18674 @end smallexample
18675
18676
18677 @subheading The @code{-exec-next-instruction} Command
18678 @findex -exec-next-instruction
18679
18680 @subsubheading Synopsis
18681
18682 @smallexample
18683  -exec-next-instruction
18684 @end smallexample
18685
18686 Executes one machine instruction.  If the instruction is a function
18687 call, continues until the function returns.  If the program stops at an
18688 instruction in the middle of a source line, the address will be
18689 printed as well.
18690
18691 @subsubheading @value{GDBN} Command
18692
18693 The corresponding @value{GDBN} command is @samp{nexti}.
18694
18695 @subsubheading Example
18696
18697 @smallexample
18698 (gdb)
18699 -exec-next-instruction
18700 ^running
18701
18702 (gdb)
18703 *stopped,reason="end-stepping-range",
18704 addr="0x000100d4",line="5",file="hello.c"
18705 (gdb)
18706 @end smallexample
18707
18708
18709 @subheading The @code{-exec-return} Command
18710 @findex -exec-return
18711
18712 @subsubheading Synopsis
18713
18714 @smallexample
18715  -exec-return
18716 @end smallexample
18717
18718 Makes current function return immediately.  Doesn't execute the inferior.
18719 Displays the new current frame.
18720
18721 @subsubheading @value{GDBN} Command
18722
18723 The corresponding @value{GDBN} command is @samp{return}.
18724
18725 @subsubheading Example
18726
18727 @smallexample
18728 (gdb)
18729 200-break-insert callee4
18730 200^done,bkpt=@{number="1",addr="0x00010734",
18731 file="../../../devo/gdb/testsuite/gdb.mi/basics.c",line="8"@}
18732 (gdb)
18733 000-exec-run
18734 000^running
18735 (gdb)
18736 000*stopped,reason="breakpoint-hit",bkptno="1",
18737 frame=@{func="callee4",args=[],
18738 file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18739 fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="8"@}
18740 (gdb)
18741 205-break-delete
18742 205^done
18743 (gdb)
18744 111-exec-return
18745 111^done,frame=@{level="0",func="callee3",
18746 args=[@{name="strarg",
18747 value="0x11940 \"A string argument.\""@}],
18748 file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18749 fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="18"@}
18750 (gdb)
18751 @end smallexample
18752
18753
18754 @subheading The @code{-exec-run} Command
18755 @findex -exec-run
18756
18757 @subsubheading Synopsis
18758
18759 @smallexample
18760  -exec-run
18761 @end smallexample
18762
18763 Starts execution of the inferior from the beginning.  The inferior
18764 executes until either a breakpoint is encountered or the program
18765 exits.  In the latter case the output will include an exit code, if
18766 the program has exited exceptionally.
18767
18768 @subsubheading @value{GDBN} Command
18769
18770 The corresponding @value{GDBN} command is @samp{run}.
18771
18772 @subsubheading Examples
18773
18774 @smallexample
18775 (gdb)
18776 -break-insert main
18777 ^done,bkpt=@{number="1",addr="0x0001072c",file="recursive2.c",line="4"@}
18778 (gdb)
18779 -exec-run
18780 ^running
18781 (gdb)
18782 *stopped,reason="breakpoint-hit",bkptno="1",
18783 frame=@{func="main",args=[],file="recursive2.c",
18784 fullname="/home/foo/bar/recursive2.c",line="4"@}
18785 (gdb)
18786 @end smallexample
18787
18788 @noindent
18789 Program exited normally:
18790
18791 @smallexample
18792 (gdb)
18793 -exec-run
18794 ^running
18795 (gdb)
18796 x = 55
18797 *stopped,reason="exited-normally"
18798 (gdb)
18799 @end smallexample
18800
18801 @noindent
18802 Program exited exceptionally:
18803
18804 @smallexample
18805 (gdb)
18806 -exec-run
18807 ^running
18808 (gdb)
18809 x = 55
18810 *stopped,reason="exited",exit-code="01"
18811 (gdb)
18812 @end smallexample
18813
18814 Another way the program can terminate is if it receives a signal such as
18815 @code{SIGINT}.  In this case, @sc{gdb/mi} displays this:
18816
18817 @smallexample
18818 (gdb)
18819 *stopped,reason="exited-signalled",signal-name="SIGINT",
18820 signal-meaning="Interrupt"
18821 @end smallexample
18822
18823
18824 @c @subheading -exec-signal
18825
18826
18827 @subheading The @code{-exec-step} Command
18828 @findex -exec-step
18829
18830 @subsubheading Synopsis
18831
18832 @smallexample
18833  -exec-step
18834 @end smallexample
18835
18836 Resumes execution of the inferior program, stopping when the beginning
18837 of the next source line is reached, if the next source line is not a
18838 function call.  If it is, stop at the first instruction of the called
18839 function.
18840
18841 @subsubheading @value{GDBN} Command
18842
18843 The corresponding @value{GDBN} command is @samp{step}.
18844
18845 @subsubheading Example
18846
18847 Stepping into a function:
18848
18849 @smallexample
18850 -exec-step
18851 ^running
18852 (gdb)
18853 *stopped,reason="end-stepping-range",
18854 frame=@{func="foo",args=[@{name="a",value="10"@},
18855 @{name="b",value="0"@}],file="recursive2.c",
18856 fullname="/home/foo/bar/recursive2.c",line="11"@}
18857 (gdb)
18858 @end smallexample
18859
18860 Regular stepping:
18861
18862 @smallexample
18863 -exec-step
18864 ^running
18865 (gdb)
18866 *stopped,reason="end-stepping-range",line="14",file="recursive2.c"
18867 (gdb)
18868 @end smallexample
18869
18870
18871 @subheading The @code{-exec-step-instruction} Command
18872 @findex -exec-step-instruction
18873
18874 @subsubheading Synopsis
18875
18876 @smallexample
18877  -exec-step-instruction
18878 @end smallexample
18879
18880 Resumes the inferior which executes one machine instruction.  The
18881 output, once @value{GDBN} has stopped, will vary depending on whether
18882 we have stopped in the middle of a source line or not.  In the former
18883 case, the address at which the program stopped will be printed as
18884 well.
18885
18886 @subsubheading @value{GDBN} Command
18887
18888 The corresponding @value{GDBN} command is @samp{stepi}.
18889
18890 @subsubheading Example
18891
18892 @smallexample
18893 (gdb)
18894 -exec-step-instruction
18895 ^running
18896
18897 (gdb)
18898 *stopped,reason="end-stepping-range",
18899 frame=@{func="foo",args=[],file="try.c",
18900 fullname="/home/foo/bar/try.c",line="10"@}
18901 (gdb)
18902 -exec-step-instruction
18903 ^running
18904
18905 (gdb)
18906 *stopped,reason="end-stepping-range",
18907 frame=@{addr="0x000100f4",func="foo",args=[],file="try.c",
18908 fullname="/home/foo/bar/try.c",line="10"@}
18909 (gdb)
18910 @end smallexample
18911
18912
18913 @subheading The @code{-exec-until} Command
18914 @findex -exec-until
18915
18916 @subsubheading Synopsis
18917
18918 @smallexample
18919  -exec-until [ @var{location} ]
18920 @end smallexample
18921
18922 Executes the inferior until the @var{location} specified in the
18923 argument is reached.  If there is no argument, the inferior executes
18924 until a source line greater than the current one is reached.  The
18925 reason for stopping in this case will be @samp{location-reached}.
18926
18927 @subsubheading @value{GDBN} Command
18928
18929 The corresponding @value{GDBN} command is @samp{until}.
18930
18931 @subsubheading Example
18932
18933 @smallexample
18934 (gdb)
18935 -exec-until recursive2.c:6
18936 ^running
18937 (gdb)
18938 x = 55
18939 *stopped,reason="location-reached",frame=@{func="main",args=[],
18940 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="6"@}
18941 (gdb)
18942 @end smallexample
18943
18944 @ignore
18945 @subheading -file-clear
18946 Is this going away????
18947 @end ignore
18948
18949 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18950 @node GDB/MI Stack Manipulation
18951 @section @sc{gdb/mi} Stack Manipulation Commands
18952
18953
18954 @subheading The @code{-stack-info-frame} Command
18955 @findex -stack-info-frame
18956
18957 @subsubheading Synopsis
18958
18959 @smallexample
18960  -stack-info-frame
18961 @end smallexample
18962
18963 Get info on the selected frame.
18964
18965 @subsubheading @value{GDBN} Command
18966
18967 The corresponding @value{GDBN} command is @samp{info frame} or @samp{frame}
18968 (without arguments).
18969
18970 @subsubheading Example
18971
18972 @smallexample
18973 (gdb)
18974 -stack-info-frame
18975 ^done,frame=@{level="1",addr="0x0001076c",func="callee3",
18976 file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18977 fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="17"@}
18978 (gdb)
18979 @end smallexample
18980
18981 @subheading The @code{-stack-info-depth} Command
18982 @findex -stack-info-depth
18983
18984 @subsubheading Synopsis
18985
18986 @smallexample
18987  -stack-info-depth [ @var{max-depth} ]
18988 @end smallexample
18989
18990 Return the depth of the stack.  If the integer argument @var{max-depth}
18991 is specified, do not count beyond @var{max-depth} frames.
18992
18993 @subsubheading @value{GDBN} Command
18994
18995 There's no equivalent @value{GDBN} command.
18996
18997 @subsubheading Example
18998
18999 For a stack with frame levels 0 through 11:
19000
19001 @smallexample
19002 (gdb)
19003 -stack-info-depth
19004 ^done,depth="12"
19005 (gdb)
19006 -stack-info-depth 4
19007 ^done,depth="4"
19008 (gdb)
19009 -stack-info-depth 12
19010 ^done,depth="12"
19011 (gdb)
19012 -stack-info-depth 11
19013 ^done,depth="11"
19014 (gdb)
19015 -stack-info-depth 13
19016 ^done,depth="12"
19017 (gdb)
19018 @end smallexample
19019
19020 @subheading The @code{-stack-list-arguments} Command
19021 @findex -stack-list-arguments
19022
19023 @subsubheading Synopsis
19024
19025 @smallexample
19026  -stack-list-arguments @var{show-values}
19027     [ @var{low-frame} @var{high-frame} ]
19028 @end smallexample
19029
19030 Display a list of the arguments for the frames between @var{low-frame}
19031 and @var{high-frame} (inclusive).  If @var{low-frame} and
19032 @var{high-frame} are not provided, list the arguments for the whole
19033 call stack.  If the two arguments are equal, show the single frame
19034 at the corresponding level.  It is an error if @var{low-frame} is
19035 larger than the actual number of frames.  On the other hand,
19036 @var{high-frame} may be larger than the actual number of frames, in
19037 which case only existing frames will be returned.
19038
19039 The @var{show-values} argument must have a value of 0 or 1.  A value of
19040 0 means that only the names of the arguments are listed, a value of 1
19041 means that both names and values of the arguments are printed.
19042
19043 @subsubheading @value{GDBN} Command
19044
19045 @value{GDBN} does not have an equivalent command.  @code{gdbtk} has a
19046 @samp{gdb_get_args} command which partially overlaps with the
19047 functionality of @samp{-stack-list-arguments}.
19048
19049 @subsubheading Example
19050
19051 @smallexample
19052 (gdb)
19053 -stack-list-frames
19054 ^done,
19055 stack=[
19056 frame=@{level="0",addr="0x00010734",func="callee4",
19057 file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19058 fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="8"@},
19059 frame=@{level="1",addr="0x0001076c",func="callee3",
19060 file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19061 fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="17"@},
19062 frame=@{level="2",addr="0x0001078c",func="callee2",
19063 file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19064 fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="22"@},
19065 frame=@{level="3",addr="0x000107b4",func="callee1",
19066 file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19067 fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="27"@},
19068 frame=@{level="4",addr="0x000107e0",func="main",
19069 file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19070 fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="32"@}]
19071 (gdb)
19072 -stack-list-arguments 0
19073 ^done,
19074 stack-args=[
19075 frame=@{level="0",args=[]@},
19076 frame=@{level="1",args=[name="strarg"]@},
19077 frame=@{level="2",args=[name="intarg",name="strarg"]@},
19078 frame=@{level="3",args=[name="intarg",name="strarg",name="fltarg"]@},
19079 frame=@{level="4",args=[]@}]
19080 (gdb)
19081 -stack-list-arguments 1
19082 ^done,
19083 stack-args=[
19084 frame=@{level="0",args=[]@},
19085 frame=@{level="1",
19086  args=[@{name="strarg",value="0x11940 \"A string argument.\""@}]@},
19087 frame=@{level="2",args=[
19088 @{name="intarg",value="2"@},
19089 @{name="strarg",value="0x11940 \"A string argument.\""@}]@},
19090 @{frame=@{level="3",args=[
19091 @{name="intarg",value="2"@},
19092 @{name="strarg",value="0x11940 \"A string argument.\""@},
19093 @{name="fltarg",value="3.5"@}]@},
19094 frame=@{level="4",args=[]@}]
19095 (gdb)
19096 -stack-list-arguments 0 2 2
19097 ^done,stack-args=[frame=@{level="2",args=[name="intarg",name="strarg"]@}]
19098 (gdb)
19099 -stack-list-arguments 1 2 2
19100 ^done,stack-args=[frame=@{level="2",
19101 args=[@{name="intarg",value="2"@},
19102 @{name="strarg",value="0x11940 \"A string argument.\""@}]@}]
19103 (gdb)
19104 @end smallexample
19105
19106 @c @subheading -stack-list-exception-handlers
19107
19108
19109 @subheading The @code{-stack-list-frames} Command
19110 @findex -stack-list-frames
19111
19112 @subsubheading Synopsis
19113
19114 @smallexample
19115  -stack-list-frames [ @var{low-frame} @var{high-frame} ]
19116 @end smallexample
19117
19118 List the frames currently on the stack.  For each frame it displays the
19119 following info:
19120
19121 @table @samp
19122 @item @var{level}
19123 The frame number, 0 being the topmost frame, i.e., the innermost function.
19124 @item @var{addr}
19125 The @code{$pc} value for that frame.
19126 @item @var{func}
19127 Function name.
19128 @item @var{file}
19129 File name of the source file where the function lives.
19130 @item @var{line}
19131 Line number corresponding to the @code{$pc}.
19132 @end table
19133
19134 If invoked without arguments, this command prints a backtrace for the
19135 whole stack.  If given two integer arguments, it shows the frames whose
19136 levels are between the two arguments (inclusive).  If the two arguments
19137 are equal, it shows the single frame at the corresponding level.  It is
19138 an error if @var{low-frame} is larger than the actual number of
19139 frames.  On the other hand, @var{high-frame} may be larger than the
19140 actual number of frames, in which case only existing frames will be returned.
19141
19142 @subsubheading @value{GDBN} Command
19143
19144 The corresponding @value{GDBN} commands are @samp{backtrace} and @samp{where}.
19145
19146 @subsubheading Example
19147
19148 Full stack backtrace:
19149
19150 @smallexample
19151 (gdb)
19152 -stack-list-frames
19153 ^done,stack=
19154 [frame=@{level="0",addr="0x0001076c",func="foo",
19155   file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="11"@},
19156 frame=@{level="1",addr="0x000107a4",func="foo",
19157   file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19158 frame=@{level="2",addr="0x000107a4",func="foo",
19159   file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19160 frame=@{level="3",addr="0x000107a4",func="foo",
19161   file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19162 frame=@{level="4",addr="0x000107a4",func="foo",
19163   file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19164 frame=@{level="5",addr="0x000107a4",func="foo",
19165   file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19166 frame=@{level="6",addr="0x000107a4",func="foo",
19167   file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19168 frame=@{level="7",addr="0x000107a4",func="foo",
19169   file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19170 frame=@{level="8",addr="0x000107a4",func="foo",
19171   file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19172 frame=@{level="9",addr="0x000107a4",func="foo",
19173   file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19174 frame=@{level="10",addr="0x000107a4",func="foo",
19175   file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19176 frame=@{level="11",addr="0x00010738",func="main",
19177   file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="4"@}]
19178 (gdb)
19179 @end smallexample
19180
19181 Show frames between @var{low_frame} and @var{high_frame}:
19182
19183 @smallexample
19184 (gdb)
19185 -stack-list-frames 3 5
19186 ^done,stack=
19187 [frame=@{level="3",addr="0x000107a4",func="foo",
19188   file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19189 frame=@{level="4",addr="0x000107a4",func="foo",
19190   file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19191 frame=@{level="5",addr="0x000107a4",func="foo",
19192   file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@}]
19193 (gdb)
19194 @end smallexample
19195
19196 Show a single frame:
19197
19198 @smallexample
19199 (gdb)
19200 -stack-list-frames 3 3
19201 ^done,stack=
19202 [frame=@{level="3",addr="0x000107a4",func="foo",
19203   file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@}]
19204 (gdb)
19205 @end smallexample
19206
19207
19208 @subheading The @code{-stack-list-locals} Command
19209 @findex -stack-list-locals
19210
19211 @subsubheading Synopsis
19212
19213 @smallexample
19214  -stack-list-locals @var{print-values}
19215 @end smallexample
19216
19217 Display the local variable names for the selected frame.  If
19218 @var{print-values} is 0 or @code{--no-values}, print only the names of
19219 the variables; if it is 1 or @code{--all-values}, print also their
19220 values; and if it is 2 or @code{--simple-values}, print the name,
19221 type and value for simple data types and the name and type for arrays,
19222 structures and unions.  In this last case, a frontend can immediately
19223 display the value of simple data types and create variable objects for
19224 other data types when the user wishes to explore their values in
19225 more detail.
19226
19227 @subsubheading @value{GDBN} Command
19228
19229 @samp{info locals} in @value{GDBN}, @samp{gdb_get_locals} in @code{gdbtk}.
19230
19231 @subsubheading Example
19232
19233 @smallexample
19234 (gdb)
19235 -stack-list-locals 0
19236 ^done,locals=[name="A",name="B",name="C"]
19237 (gdb)
19238 -stack-list-locals --all-values
19239 ^done,locals=[@{name="A",value="1"@},@{name="B",value="2"@},
19240   @{name="C",value="@{1, 2, 3@}"@}]
19241 -stack-list-locals --simple-values
19242 ^done,locals=[@{name="A",type="int",value="1"@},
19243   @{name="B",type="int",value="2"@},@{name="C",type="int [3]"@}]
19244 (gdb)
19245 @end smallexample
19246
19247
19248 @subheading The @code{-stack-select-frame} Command
19249 @findex -stack-select-frame
19250
19251 @subsubheading Synopsis
19252
19253 @smallexample
19254  -stack-select-frame @var{framenum}
19255 @end smallexample
19256
19257 Change the selected frame.  Select a different frame @var{framenum} on
19258 the stack.
19259
19260 @subsubheading @value{GDBN} Command
19261
19262 The corresponding @value{GDBN} commands are @samp{frame}, @samp{up},
19263 @samp{down}, @samp{select-frame}, @samp{up-silent}, and @samp{down-silent}.
19264
19265 @subsubheading Example
19266
19267 @smallexample
19268 (gdb)
19269 -stack-select-frame 2
19270 ^done
19271 (gdb)
19272 @end smallexample
19273
19274 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
19275 @node GDB/MI Variable Objects
19276 @section @sc{gdb/mi} Variable Objects
19277
19278 @ignore
19279
19280 @subheading Motivation for Variable Objects in @sc{gdb/mi}
19281
19282 For the implementation of a variable debugger window (locals, watched
19283 expressions, etc.), we are proposing the adaptation of the existing code
19284 used by @code{Insight}.
19285
19286 The two main reasons for that are:
19287
19288 @enumerate 1
19289 @item
19290 It has been proven in practice (it is already on its second generation).
19291
19292 @item
19293 It will shorten development time (needless to say how important it is
19294 now).
19295 @end enumerate
19296
19297 The original interface was designed to be used by Tcl code, so it was
19298 slightly changed so it could be used through @sc{gdb/mi}.  This section
19299 describes the @sc{gdb/mi} operations that will be available and gives some
19300 hints about their use.
19301
19302 @emph{Note}: In addition to the set of operations described here, we
19303 expect the @sc{gui} implementation of a variable window to require, at
19304 least, the following operations:
19305
19306 @itemize @bullet
19307 @item @code{-gdb-show} @code{output-radix}
19308 @item @code{-stack-list-arguments}
19309 @item @code{-stack-list-locals}
19310 @item @code{-stack-select-frame}
19311 @end itemize
19312
19313 @end ignore
19314
19315 @subheading Introduction to Variable Objects
19316
19317 @cindex variable objects in @sc{gdb/mi}
19318
19319 Variable objects are "object-oriented" MI interface for examining and
19320 changing values of expressions.  Unlike some other MI interfaces that
19321 work with expressions, variable objects are specifically designed for
19322 simple and efficient presentation in the frontend.  A variable object
19323 is identified by string name.  When a variable object is created, the
19324 frontend specifies the expression for that variable object.  The
19325 expression can be a simple variable, or it can be an arbitrary complex
19326 expression, and can even involve CPU registers.  After creating a
19327 variable object, the frontend can invoke other variable object
19328 operations---for example to obtain or change the value of a variable
19329 object, or to change display format.
19330
19331 Variable objects have hierarchical tree structure.  Any variable object
19332 that corresponds to a composite type, such as structure in C, has
19333 a number of child variable objects, for example corresponding to each
19334 element of a structure.  A child variable object can itself have 
19335 children, recursively.  Recursion ends when we reach 
19336 leaf variable objects, which always have built-in types.  Child variable
19337 objects are created only by explicit request, so if a frontend 
19338 is not interested in the children of a particular variable object, no
19339 child will be created.
19340
19341 For a leaf variable object it is possible to obtain its value as a
19342 string, or set the value from a string.  String value can be also
19343 obtained for a non-leaf variable object, but it's generally a string
19344 that only indicates the type of the object, and does not list its
19345 contents.  Assignment to a non-leaf variable object is not allowed.
19346  
19347 A frontend does not need to read the values of all variable objects each time
19348 the program stops.  Instead, MI provides an update command that lists all
19349 variable objects whose values has changed since the last update
19350 operation.  This considerably reduces the amount of data that must
19351 be transferred to the frontend.  As noted above, children variable
19352 objects are created on demand, and only leaf variable objects have a
19353 real value.  As result, gdb will read target memory only for leaf
19354 variables that frontend has created.
19355
19356 The automatic update is not always desirable.  For example, a frontend
19357 might want to keep a value of some expression for future reference,
19358 and never update it.  For another example,  fetching memory is
19359 relatively slow for embedded targets, so a frontend might want
19360 to disable automatic update for the variables that are either not
19361 visible on the screen, or ``closed''.  This is possible using so
19362 called ``frozen variable objects''.  Such variable objects are never
19363 implicitly updated.  
19364
19365 The following is the complete set of @sc{gdb/mi} operations defined to
19366 access this functionality:
19367
19368 @multitable @columnfractions .4 .6
19369 @item @strong{Operation}
19370 @tab @strong{Description}
19371
19372 @item @code{-var-create}
19373 @tab create a variable object
19374 @item @code{-var-delete}
19375 @tab delete the variable object and/or its children
19376 @item @code{-var-set-format}
19377 @tab set the display format of this variable
19378 @item @code{-var-show-format}
19379 @tab show the display format of this variable
19380 @item @code{-var-info-num-children}
19381 @tab tells how many children this object has
19382 @item @code{-var-list-children}
19383 @tab return a list of the object's children
19384 @item @code{-var-info-type}
19385 @tab show the type of this variable object
19386 @item @code{-var-info-expression}
19387 @tab print parent-relative expression that this variable object represents
19388 @item @code{-var-info-path-expression}
19389 @tab print full expression that this variable object represents
19390 @item @code{-var-show-attributes}
19391 @tab is this variable editable? does it exist here?
19392 @item @code{-var-evaluate-expression}
19393 @tab get the value of this variable
19394 @item @code{-var-assign}
19395 @tab set the value of this variable
19396 @item @code{-var-update}
19397 @tab update the variable and its children
19398 @item @code{-var-set-frozen}
19399 @tab set frozeness attribute
19400 @end multitable
19401
19402 In the next subsection we describe each operation in detail and suggest
19403 how it can be used.
19404
19405 @subheading Description And Use of Operations on Variable Objects
19406
19407 @subheading The @code{-var-create} Command
19408 @findex -var-create
19409
19410 @subsubheading Synopsis
19411
19412 @smallexample
19413  -var-create @{@var{name} | "-"@}
19414     @{@var{frame-addr} | "*"@} @var{expression}
19415 @end smallexample
19416
19417 This operation creates a variable object, which allows the monitoring of
19418 a variable, the result of an expression, a memory cell or a CPU
19419 register.
19420
19421 The @var{name} parameter is the string by which the object can be
19422 referenced.  It must be unique.  If @samp{-} is specified, the varobj
19423 system will generate a string ``varNNNNNN'' automatically.  It will be
19424 unique provided that one does not specify @var{name} on that format.
19425 The command fails if a duplicate name is found.
19426
19427 The frame under which the expression should be evaluated can be
19428 specified by @var{frame-addr}.  A @samp{*} indicates that the current
19429 frame should be used.
19430
19431 @var{expression} is any expression valid on the current language set (must not
19432 begin with a @samp{*}), or one of the following:
19433
19434 @itemize @bullet
19435 @item
19436 @samp{*@var{addr}}, where @var{addr} is the address of a memory cell
19437
19438 @item
19439 @samp{*@var{addr}-@var{addr}} --- a memory address range (TBD)
19440
19441 @item
19442 @samp{$@var{regname}} --- a CPU register name
19443 @end itemize
19444
19445 @subsubheading Result
19446
19447 This operation returns the name, number of children and the type of the
19448 object created.  Type is returned as a string as the ones generated by
19449 the @value{GDBN} CLI:
19450
19451 @smallexample
19452  name="@var{name}",numchild="N",type="@var{type}"
19453 @end smallexample
19454
19455
19456 @subheading The @code{-var-delete} Command
19457 @findex -var-delete
19458
19459 @subsubheading Synopsis
19460
19461 @smallexample
19462  -var-delete [ -c ] @var{name}
19463 @end smallexample
19464
19465 Deletes a previously created variable object and all of its children.
19466 With the @samp{-c} option, just deletes the children.
19467
19468 Returns an error if the object @var{name} is not found.
19469
19470
19471 @subheading The @code{-var-set-format} Command
19472 @findex -var-set-format
19473
19474 @subsubheading Synopsis
19475
19476 @smallexample
19477  -var-set-format @var{name} @var{format-spec}
19478 @end smallexample
19479
19480 Sets the output format for the value of the object @var{name} to be
19481 @var{format-spec}.
19482
19483 The syntax for the @var{format-spec} is as follows:
19484
19485 @smallexample
19486  @var{format-spec} @expansion{}
19487  @{binary | decimal | hexadecimal | octal | natural@}
19488 @end smallexample
19489
19490 The natural format is the default format choosen automatically
19491 based on the variable type (like decimal for an @code{int}, hex
19492 for pointers, etc.).
19493
19494 For a variable with children, the format is set only on the 
19495 variable itself, and the children are not affected.  
19496
19497 @subheading The @code{-var-show-format} Command
19498 @findex -var-show-format
19499
19500 @subsubheading Synopsis
19501
19502 @smallexample
19503  -var-show-format @var{name}
19504 @end smallexample
19505
19506 Returns the format used to display the value of the object @var{name}.
19507
19508 @smallexample
19509  @var{format} @expansion{}
19510  @var{format-spec}
19511 @end smallexample
19512
19513
19514 @subheading The @code{-var-info-num-children} Command
19515 @findex -var-info-num-children
19516
19517 @subsubheading Synopsis
19518
19519 @smallexample
19520  -var-info-num-children @var{name}
19521 @end smallexample
19522
19523 Returns the number of children of a variable object @var{name}:
19524
19525 @smallexample
19526  numchild=@var{n}
19527 @end smallexample
19528
19529
19530 @subheading The @code{-var-list-children} Command
19531 @findex -var-list-children
19532
19533 @subsubheading Synopsis
19534
19535 @smallexample
19536  -var-list-children [@var{print-values}] @var{name}
19537 @end smallexample
19538 @anchor{-var-list-children} 
19539
19540 Return a list of the children of the specified variable object and
19541 create variable objects for them, if they do not already exist.  With
19542 a single argument or if @var{print-values} has a value for of 0 or
19543 @code{--no-values}, print only the names of the variables; if
19544 @var{print-values} is 1 or @code{--all-values}, also print their
19545 values; and if it is 2 or @code{--simple-values} print the name and
19546 value for simple data types and just the name for arrays, structures
19547 and unions.
19548
19549 @subsubheading Example
19550
19551 @smallexample
19552 (gdb)
19553  -var-list-children n
19554  ^done,numchild=@var{n},children=[@{name=@var{name},
19555  numchild=@var{n},type=@var{type}@},@r{(repeats N times)}]
19556 (gdb)
19557  -var-list-children --all-values n
19558  ^done,numchild=@var{n},children=[@{name=@var{name},
19559  numchild=@var{n},value=@var{value},type=@var{type}@},@r{(repeats N times)}]
19560 @end smallexample
19561
19562
19563 @subheading The @code{-var-info-type} Command
19564 @findex -var-info-type
19565
19566 @subsubheading Synopsis
19567
19568 @smallexample
19569  -var-info-type @var{name}
19570 @end smallexample
19571
19572 Returns the type of the specified variable @var{name}.  The type is
19573 returned as a string in the same format as it is output by the
19574 @value{GDBN} CLI:
19575
19576 @smallexample
19577  type=@var{typename}
19578 @end smallexample
19579
19580
19581 @subheading The @code{-var-info-expression} Command
19582 @findex -var-info-expression
19583
19584 @subsubheading Synopsis
19585
19586 @smallexample
19587  -var-info-expression @var{name}
19588 @end smallexample
19589
19590 Returns a string that is suitable for presenting this
19591 variable object in user interface.  The string is generally
19592 not valid expression in the current language, and cannot be evaluated.
19593
19594 For example, if @code{a} is an array, and variable object
19595 @code{A} was created for @code{a}, then we'll get this output:
19596
19597 @smallexample
19598 (gdb) -var-info-expression A.1
19599 ^done,lang="C",exp="1"
19600 @end smallexample
19601
19602 @noindent
19603 Here, the values of @code{lang} can be @code{@{"C" | "C++" | "Java"@}}.
19604
19605 Note that the output of the @code{-var-list-children} command also
19606 includes those expressions, so the @code{-var-info-expression} command
19607 is of limited use.
19608
19609 @subheading The @code{-var-info-path-expression} Command
19610 @findex -var-info-path-expression
19611
19612 @subsubheading Synopsis
19613
19614 @smallexample
19615  -var-info-path-expression @var{name}
19616 @end smallexample
19617
19618 Returns an expression that can be evaluated in the current
19619 context and will yield the same value that a variable object has.
19620 Compare this with the @code{-var-info-expression} command, which
19621 result can be used only for UI presentation.  Typical use of
19622 the @code{-var-info-path-expression} command is creating a 
19623 watchpoint from a variable object.
19624
19625 For example, suppose @code{C} is a C@t{++} class, derived from class
19626 @code{Base}, and that the @code{Base} class has a member called
19627 @code{m_size}.  Assume a variable @code{c} is has the type of
19628 @code{C} and a variable object @code{C} was created for variable
19629 @code{c}.  Then, we'll get this output:
19630 @smallexample
19631 (gdb) -var-info-path-expression C.Base.public.m_size
19632 ^done,path_expr=((Base)c).m_size)
19633 @end smallexample
19634
19635 @subheading The @code{-var-show-attributes} Command
19636 @findex -var-show-attributes
19637
19638 @subsubheading Synopsis
19639
19640 @smallexample
19641  -var-show-attributes @var{name}
19642 @end smallexample
19643
19644 List attributes of the specified variable object @var{name}:
19645
19646 @smallexample
19647  status=@var{attr} [ ( ,@var{attr} )* ]
19648 @end smallexample
19649
19650 @noindent
19651 where @var{attr} is @code{@{ @{ editable | noneditable @} | TBD @}}.
19652
19653 @subheading The @code{-var-evaluate-expression} Command
19654 @findex -var-evaluate-expression
19655
19656 @subsubheading Synopsis
19657
19658 @smallexample
19659  -var-evaluate-expression @var{name}
19660 @end smallexample
19661
19662 Evaluates the expression that is represented by the specified variable
19663 object and returns its value as a string.  The format of the
19664 string can be changed using the @code{-var-set-format} command.
19665
19666 @smallexample
19667  value=@var{value}
19668 @end smallexample
19669
19670 Note that one must invoke @code{-var-list-children} for a variable
19671 before the value of a child variable can be evaluated.
19672
19673 @subheading The @code{-var-assign} Command
19674 @findex -var-assign
19675
19676 @subsubheading Synopsis
19677
19678 @smallexample
19679  -var-assign @var{name} @var{expression}
19680 @end smallexample
19681
19682 Assigns the value of @var{expression} to the variable object specified
19683 by @var{name}.  The object must be @samp{editable}.  If the variable's
19684 value is altered by the assign, the variable will show up in any
19685 subsequent @code{-var-update} list.
19686
19687 @subsubheading Example
19688
19689 @smallexample
19690 (gdb)
19691 -var-assign var1 3
19692 ^done,value="3"
19693 (gdb)
19694 -var-update *
19695 ^done,changelist=[@{name="var1",in_scope="true",type_changed="false"@}]
19696 (gdb)
19697 @end smallexample
19698
19699 @subheading The @code{-var-update} Command
19700 @findex -var-update
19701
19702 @subsubheading Synopsis
19703
19704 @smallexample
19705  -var-update [@var{print-values}] @{@var{name} | "*"@}
19706 @end smallexample
19707
19708 Reevaluate the expressions corresponding to the variable object
19709 @var{name} and all its direct and indirect children, and return the
19710 list of variable objects whose values have changed; @var{name} must
19711 be a root variable object.  Here, ``changed'' means that the result of
19712 @code{-var-evaluate-expression} before and after the
19713 @code{-var-update} is different.  If @samp{*} is used as the variable
19714 object names, all existing variable objects are updated, except
19715 for frozen ones (@pxref{-var-set-frozen}).  The option
19716 @var{print-values} determines whether both names and values, or just
19717 names are printed.  The possible values of this options are the same
19718 as for @code{-var-list-children} (@pxref{-var-list-children}).  It is
19719 recommended to use the @samp{--all-values} option, to reduce the
19720 number of MI commands needed on each program stop.
19721
19722
19723 @subsubheading Example
19724
19725 @smallexample
19726 (gdb)
19727 -var-assign var1 3
19728 ^done,value="3"
19729 (gdb)
19730 -var-update --all-values var1
19731 ^done,changelist=[@{name="var1",value="3",in_scope="true",
19732 type_changed="false"@}]
19733 (gdb)
19734 @end smallexample
19735
19736 @anchor{-var-update}
19737 The field in_scope may take three values:
19738
19739 @table @code
19740 @item "true"
19741 The variable object's current value is valid.
19742
19743 @item "false"
19744 The variable object does not currently hold a valid value but it may
19745 hold one in the future if its associated expression comes back into
19746 scope.
19747
19748 @item "invalid"
19749 The variable object no longer holds a valid value.
19750 This can occur when the executable file being debugged has changed,
19751 either through recompilation or by using the @value{GDBN} @code{file}
19752 command.  The front end should normally choose to delete these variable
19753 objects.
19754 @end table
19755
19756 In the future new values may be added to this list so the front should
19757 be prepared for this possibility.  @xref{GDB/MI Development and Front Ends, ,@sc{GDB/MI} Development and Front Ends}.
19758
19759 @subheading The @code{-var-set-frozen} Command
19760 @findex -var-set-frozen
19761 @anchor{-var-set-frozen}
19762
19763 @subsubheading Synopsis
19764
19765 @smallexample
19766  -var-set-frozen @var{name} @var{flag}
19767 @end smallexample
19768
19769 Set the frozenness flag on the variable object @var{name}.  The
19770 @var{flag} parameter should be either @samp{1} to make the variable
19771 frozen or @samp{0} to make it unfrozen.  If a variable object is
19772 frozen, then neither itself, nor any of its children, are 
19773 implicitly updated by @code{-var-update} of 
19774 a parent variable or by @code{-var-update *}.  Only
19775 @code{-var-update} of the variable itself will update its value and
19776 values of its children.  After a variable object is unfrozen, it is
19777 implicitly updated by all subsequent @code{-var-update} operations.  
19778 Unfreezing a variable does not update it, only subsequent
19779 @code{-var-update} does.
19780
19781 @subsubheading Example
19782
19783 @smallexample
19784 (gdb)
19785 -var-set-frozen V 1
19786 ^done
19787 (gdb)
19788 @end smallexample
19789
19790
19791 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
19792 @node GDB/MI Data Manipulation
19793 @section @sc{gdb/mi} Data Manipulation
19794
19795 @cindex data manipulation, in @sc{gdb/mi}
19796 @cindex @sc{gdb/mi}, data manipulation
19797 This section describes the @sc{gdb/mi} commands that manipulate data:
19798 examine memory and registers, evaluate expressions, etc.
19799
19800 @c REMOVED FROM THE INTERFACE.
19801 @c @subheading -data-assign
19802 @c Change the value of a program variable. Plenty of side effects.
19803 @c @subsubheading GDB Command
19804 @c set variable
19805 @c @subsubheading Example
19806 @c N.A.
19807
19808 @subheading The @code{-data-disassemble} Command
19809 @findex -data-disassemble
19810
19811 @subsubheading Synopsis
19812
19813 @smallexample
19814  -data-disassemble
19815     [ -s @var{start-addr} -e @var{end-addr} ]
19816   | [ -f @var{filename} -l @var{linenum} [ -n @var{lines} ] ]
19817   -- @var{mode}
19818 @end smallexample
19819
19820 @noindent
19821 Where:
19822
19823 @table @samp
19824 @item @var{start-addr}
19825 is the beginning address (or @code{$pc})
19826 @item @var{end-addr}
19827 is the end address
19828 @item @var{filename}
19829 is the name of the file to disassemble
19830 @item @var{linenum}
19831 is the line number to disassemble around
19832 @item @var{lines}
19833 is the number of disassembly lines to be produced.  If it is -1,
19834 the whole function will be disassembled, in case no @var{end-addr} is
19835 specified.  If @var{end-addr} is specified as a non-zero value, and
19836 @var{lines} is lower than the number of disassembly lines between
19837 @var{start-addr} and @var{end-addr}, only @var{lines} lines are
19838 displayed; if @var{lines} is higher than the number of lines between
19839 @var{start-addr} and @var{end-addr}, only the lines up to @var{end-addr}
19840 are displayed.
19841 @item @var{mode}
19842 is either 0 (meaning only disassembly) or 1 (meaning mixed source and
19843 disassembly).
19844 @end table
19845
19846 @subsubheading Result
19847
19848 The output for each instruction is composed of four fields:
19849
19850 @itemize @bullet
19851 @item Address
19852 @item Func-name
19853 @item Offset
19854 @item Instruction
19855 @end itemize
19856
19857 Note that whatever included in the instruction field, is not manipulated
19858 directly by @sc{gdb/mi}, i.e., it is not possible to adjust its format.
19859
19860 @subsubheading @value{GDBN} Command
19861
19862 There's no direct mapping from this command to the CLI.
19863
19864 @subsubheading Example
19865
19866 Disassemble from the current value of @code{$pc} to @code{$pc + 20}:
19867
19868 @smallexample
19869 (gdb)
19870 -data-disassemble -s $pc -e "$pc + 20" -- 0
19871 ^done,
19872 asm_insns=[
19873 @{address="0x000107c0",func-name="main",offset="4",
19874 inst="mov  2, %o0"@},
19875 @{address="0x000107c4",func-name="main",offset="8",
19876 inst="sethi  %hi(0x11800), %o2"@},
19877 @{address="0x000107c8",func-name="main",offset="12",
19878 inst="or  %o2, 0x140, %o1\t! 0x11940 <_lib_version+8>"@},
19879 @{address="0x000107cc",func-name="main",offset="16",
19880 inst="sethi  %hi(0x11800), %o2"@},
19881 @{address="0x000107d0",func-name="main",offset="20",
19882 inst="or  %o2, 0x168, %o4\t! 0x11968 <_lib_version+48>"@}]
19883 (gdb)
19884 @end smallexample
19885
19886 Disassemble the whole @code{main} function.  Line 32 is part of
19887 @code{main}.
19888
19889 @smallexample
19890 -data-disassemble -f basics.c -l 32 -- 0
19891 ^done,asm_insns=[
19892 @{address="0x000107bc",func-name="main",offset="0",
19893 inst="save  %sp, -112, %sp"@},
19894 @{address="0x000107c0",func-name="main",offset="4",
19895 inst="mov   2, %o0"@},
19896 @{address="0x000107c4",func-name="main",offset="8",
19897 inst="sethi %hi(0x11800), %o2"@},
19898 [@dots{}]
19899 @{address="0x0001081c",func-name="main",offset="96",inst="ret "@},
19900 @{address="0x00010820",func-name="main",offset="100",inst="restore "@}]
19901 (gdb)
19902 @end smallexample
19903
19904 Disassemble 3 instructions from the start of @code{main}:
19905
19906 @smallexample
19907 (gdb)
19908 -data-disassemble -f basics.c -l 32 -n 3 -- 0
19909 ^done,asm_insns=[
19910 @{address="0x000107bc",func-name="main",offset="0",
19911 inst="save  %sp, -112, %sp"@},
19912 @{address="0x000107c0",func-name="main",offset="4",
19913 inst="mov  2, %o0"@},
19914 @{address="0x000107c4",func-name="main",offset="8",
19915 inst="sethi  %hi(0x11800), %o2"@}]
19916 (gdb)
19917 @end smallexample
19918
19919 Disassemble 3 instructions from the start of @code{main} in mixed mode:
19920
19921 @smallexample
19922 (gdb)
19923 -data-disassemble -f basics.c -l 32 -n 3 -- 1
19924 ^done,asm_insns=[
19925 src_and_asm_line=@{line="31",
19926 file="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb/ \
19927   testsuite/gdb.mi/basics.c",line_asm_insn=[
19928 @{address="0x000107bc",func-name="main",offset="0",
19929 inst="save  %sp, -112, %sp"@}]@},
19930 src_and_asm_line=@{line="32",
19931 file="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb/ \
19932   testsuite/gdb.mi/basics.c",line_asm_insn=[
19933 @{address="0x000107c0",func-name="main",offset="4",
19934 inst="mov  2, %o0"@},
19935 @{address="0x000107c4",func-name="main",offset="8",
19936 inst="sethi  %hi(0x11800), %o2"@}]@}]
19937 (gdb)
19938 @end smallexample
19939
19940
19941 @subheading The @code{-data-evaluate-expression} Command
19942 @findex -data-evaluate-expression
19943
19944 @subsubheading Synopsis
19945
19946 @smallexample
19947  -data-evaluate-expression @var{expr}
19948 @end smallexample
19949
19950 Evaluate @var{expr} as an expression.  The expression could contain an
19951 inferior function call.  The function call will execute synchronously.
19952 If the expression contains spaces, it must be enclosed in double quotes.
19953
19954 @subsubheading @value{GDBN} Command
19955
19956 The corresponding @value{GDBN} commands are @samp{print}, @samp{output}, and
19957 @samp{call}.  In @code{gdbtk} only, there's a corresponding
19958 @samp{gdb_eval} command.
19959
19960 @subsubheading Example
19961
19962 In the following example, the numbers that precede the commands are the
19963 @dfn{tokens} described in @ref{GDB/MI Command Syntax, ,@sc{gdb/mi}
19964 Command Syntax}.  Notice how @sc{gdb/mi} returns the same tokens in its
19965 output.
19966
19967 @smallexample
19968 211-data-evaluate-expression A
19969 211^done,value="1"
19970 (gdb)
19971 311-data-evaluate-expression &A
19972 311^done,value="0xefffeb7c"
19973 (gdb)
19974 411-data-evaluate-expression A+3
19975 411^done,value="4"
19976 (gdb)
19977 511-data-evaluate-expression "A + 3"
19978 511^done,value="4"
19979 (gdb)
19980 @end smallexample
19981
19982
19983 @subheading The @code{-data-list-changed-registers} Command
19984 @findex -data-list-changed-registers
19985
19986 @subsubheading Synopsis
19987
19988 @smallexample
19989  -data-list-changed-registers
19990 @end smallexample
19991
19992 Display a list of the registers that have changed.
19993
19994 @subsubheading @value{GDBN} Command
19995
19996 @value{GDBN} doesn't have a direct analog for this command; @code{gdbtk}
19997 has the corresponding command @samp{gdb_changed_register_list}.
19998
19999 @subsubheading Example
20000
20001 On a PPC MBX board:
20002
20003 @smallexample
20004 (gdb)
20005 -exec-continue
20006 ^running
20007
20008 (gdb)
20009 *stopped,reason="breakpoint-hit",bkptno="1",frame=@{func="main",
20010 args=[],file="try.c",fullname="/home/foo/bar/try.c",line="5"@}
20011 (gdb)
20012 -data-list-changed-registers
20013 ^done,changed-registers=["0","1","2","4","5","6","7","8","9",
20014 "10","11","13","14","15","16","17","18","19","20","21","22","23",
20015 "24","25","26","27","28","30","31","64","65","66","67","69"]
20016 (gdb)
20017 @end smallexample
20018
20019
20020 @subheading The @code{-data-list-register-names} Command
20021 @findex -data-list-register-names
20022
20023 @subsubheading Synopsis
20024
20025 @smallexample
20026  -data-list-register-names [ ( @var{regno} )+ ]
20027 @end smallexample
20028
20029 Show a list of register names for the current target.  If no arguments
20030 are given, it shows a list of the names of all the registers.  If
20031 integer numbers are given as arguments, it will print a list of the
20032 names of the registers corresponding to the arguments.  To ensure
20033 consistency between a register name and its number, the output list may
20034 include empty register names.
20035
20036 @subsubheading @value{GDBN} Command
20037
20038 @value{GDBN} does not have a command which corresponds to
20039 @samp{-data-list-register-names}.  In @code{gdbtk} there is a
20040 corresponding command @samp{gdb_regnames}.
20041
20042 @subsubheading Example
20043
20044 For the PPC MBX board:
20045 @smallexample
20046 (gdb)
20047 -data-list-register-names
20048 ^done,register-names=["r0","r1","r2","r3","r4","r5","r6","r7",
20049 "r8","r9","r10","r11","r12","r13","r14","r15","r16","r17","r18",
20050 "r19","r20","r21","r22","r23","r24","r25","r26","r27","r28","r29",
20051 "r30","r31","f0","f1","f2","f3","f4","f5","f6","f7","f8","f9",
20052 "f10","f11","f12","f13","f14","f15","f16","f17","f18","f19","f20",
20053 "f21","f22","f23","f24","f25","f26","f27","f28","f29","f30","f31",
20054 "", "pc","ps","cr","lr","ctr","xer"]
20055 (gdb)
20056 -data-list-register-names 1 2 3
20057 ^done,register-names=["r1","r2","r3"]
20058 (gdb)
20059 @end smallexample
20060
20061 @subheading The @code{-data-list-register-values} Command
20062 @findex -data-list-register-values
20063
20064 @subsubheading Synopsis
20065
20066 @smallexample
20067  -data-list-register-values @var{fmt} [ ( @var{regno} )*]
20068 @end smallexample
20069
20070 Display the registers' contents.  @var{fmt} is the format according to
20071 which the registers' contents are to be returned, followed by an optional
20072 list of numbers specifying the registers to display.  A missing list of
20073 numbers indicates that the contents of all the registers must be returned.
20074
20075 Allowed formats for @var{fmt} are:
20076
20077 @table @code
20078 @item x
20079 Hexadecimal
20080 @item o
20081 Octal
20082 @item t
20083 Binary
20084 @item d
20085 Decimal
20086 @item r
20087 Raw
20088 @item N
20089 Natural
20090 @end table
20091
20092 @subsubheading @value{GDBN} Command
20093
20094 The corresponding @value{GDBN} commands are @samp{info reg}, @samp{info
20095 all-reg}, and (in @code{gdbtk}) @samp{gdb_fetch_registers}.
20096
20097 @subsubheading Example
20098
20099 For a PPC MBX board (note: line breaks are for readability only, they
20100 don't appear in the actual output):
20101
20102 @smallexample
20103 (gdb)
20104 -data-list-register-values r 64 65
20105 ^done,register-values=[@{number="64",value="0xfe00a300"@},
20106 @{number="65",value="0x00029002"@}]
20107 (gdb)
20108 -data-list-register-values x
20109 ^done,register-values=[@{number="0",value="0xfe0043c8"@},
20110 @{number="1",value="0x3fff88"@},@{number="2",value="0xfffffffe"@},
20111 @{number="3",value="0x0"@},@{number="4",value="0xa"@},
20112 @{number="5",value="0x3fff68"@},@{number="6",value="0x3fff58"@},
20113 @{number="7",value="0xfe011e98"@},@{number="8",value="0x2"@},
20114 @{number="9",value="0xfa202820"@},@{number="10",value="0xfa202808"@},
20115 @{number="11",value="0x1"@},@{number="12",value="0x0"@},
20116 @{number="13",value="0x4544"@},@{number="14",value="0xffdfffff"@},
20117 @{number="15",value="0xffffffff"@},@{number="16",value="0xfffffeff"@},
20118 @{number="17",value="0xefffffed"@},@{number="18",value="0xfffffffe"@},
20119 @{number="19",value="0xffffffff"@},@{number="20",value="0xffffffff"@},
20120 @{number="21",value="0xffffffff"@},@{number="22",value="0xfffffff7"@},
20121 @{number="23",value="0xffffffff"@},@{number="24",value="0xffffffff"@},
20122 @{number="25",value="0xffffffff"@},@{number="26",value="0xfffffffb"@},
20123 @{number="27",value="0xffffffff"@},@{number="28",value="0xf7bfffff"@},
20124 @{number="29",value="0x0"@},@{number="30",value="0xfe010000"@},
20125 @{number="31",value="0x0"@},@{number="32",value="0x0"@},
20126 @{number="33",value="0x0"@},@{number="34",value="0x0"@},
20127 @{number="35",value="0x0"@},@{number="36",value="0x0"@},
20128 @{number="37",value="0x0"@},@{number="38",value="0x0"@},
20129 @{number="39",value="0x0"@},@{number="40",value="0x0"@},
20130 @{number="41",value="0x0"@},@{number="42",value="0x0"@},
20131 @{number="43",value="0x0"@},@{number="44",value="0x0"@},
20132 @{number="45",value="0x0"@},@{number="46",value="0x0"@},
20133 @{number="47",value="0x0"@},@{number="48",value="0x0"@},
20134 @{number="49",value="0x0"@},@{number="50",value="0x0"@},
20135 @{number="51",value="0x0"@},@{number="52",value="0x0"@},
20136 @{number="53",value="0x0"@},@{number="54",value="0x0"@},
20137 @{number="55",value="0x0"@},@{number="56",value="0x0"@},
20138 @{number="57",value="0x0"@},@{number="58",value="0x0"@},
20139 @{number="59",value="0x0"@},@{number="60",value="0x0"@},
20140 @{number="61",value="0x0"@},@{number="62",value="0x0"@},
20141 @{number="63",value="0x0"@},@{number="64",value="0xfe00a300"@},
20142 @{number="65",value="0x29002"@},@{number="66",value="0x202f04b5"@},
20143 @{number="67",value="0xfe0043b0"@},@{number="68",value="0xfe00b3e4"@},
20144 @{number="69",value="0x20002b03"@}]
20145 (gdb)
20146 @end smallexample
20147
20148
20149 @subheading The @code{-data-read-memory} Command
20150 @findex -data-read-memory
20151
20152 @subsubheading Synopsis
20153
20154 @smallexample
20155  -data-read-memory [ -o @var{byte-offset} ]
20156    @var{address} @var{word-format} @var{word-size}
20157    @var{nr-rows} @var{nr-cols} [ @var{aschar} ]
20158 @end smallexample
20159
20160 @noindent
20161 where:
20162
20163 @table @samp
20164 @item @var{address}
20165 An expression specifying the address of the first memory word to be
20166 read.  Complex expressions containing embedded white space should be
20167 quoted using the C convention.
20168
20169 @item @var{word-format}
20170 The format to be used to print the memory words.  The notation is the
20171 same as for @value{GDBN}'s @code{print} command (@pxref{Output Formats,
20172 ,Output Formats}).
20173
20174 @item @var{word-size}
20175 The size of each memory word in bytes.
20176
20177 @item @var{nr-rows}
20178 The number of rows in the output table.
20179
20180 @item @var{nr-cols}
20181 The number of columns in the output table.
20182
20183 @item @var{aschar}
20184 If present, indicates that each row should include an @sc{ascii} dump.  The
20185 value of @var{aschar} is used as a padding character when a byte is not a
20186 member of the printable @sc{ascii} character set (printable @sc{ascii}
20187 characters are those whose code is between 32 and 126, inclusively).
20188
20189 @item @var{byte-offset}
20190 An offset to add to the @var{address} before fetching memory.
20191 @end table
20192
20193 This command displays memory contents as a table of @var{nr-rows} by
20194 @var{nr-cols} words, each word being @var{word-size} bytes.  In total,
20195 @code{@var{nr-rows} * @var{nr-cols} * @var{word-size}} bytes are read
20196 (returned as @samp{total-bytes}).  Should less than the requested number
20197 of bytes be returned by the target, the missing words are identified
20198 using @samp{N/A}.  The number of bytes read from the target is returned
20199 in @samp{nr-bytes} and the starting address used to read memory in
20200 @samp{addr}.
20201
20202 The address of the next/previous row or page is available in
20203 @samp{next-row} and @samp{prev-row}, @samp{next-page} and
20204 @samp{prev-page}.
20205
20206 @subsubheading @value{GDBN} Command
20207
20208 The corresponding @value{GDBN} command is @samp{x}.  @code{gdbtk} has
20209 @samp{gdb_get_mem} memory read command.
20210
20211 @subsubheading Example
20212
20213 Read six bytes of memory starting at @code{bytes+6} but then offset by
20214 @code{-6} bytes.  Format as three rows of two columns.  One byte per
20215 word.  Display each word in hex.
20216
20217 @smallexample
20218 (gdb)
20219 9-data-read-memory -o -6 -- bytes+6 x 1 3 2
20220 9^done,addr="0x00001390",nr-bytes="6",total-bytes="6",
20221 next-row="0x00001396",prev-row="0x0000138e",next-page="0x00001396",
20222 prev-page="0x0000138a",memory=[
20223 @{addr="0x00001390",data=["0x00","0x01"]@},
20224 @{addr="0x00001392",data=["0x02","0x03"]@},
20225 @{addr="0x00001394",data=["0x04","0x05"]@}]
20226 (gdb)
20227 @end smallexample
20228
20229 Read two bytes of memory starting at address @code{shorts + 64} and
20230 display as a single word formatted in decimal.
20231
20232 @smallexample
20233 (gdb)
20234 5-data-read-memory shorts+64 d 2 1 1
20235 5^done,addr="0x00001510",nr-bytes="2",total-bytes="2",
20236 next-row="0x00001512",prev-row="0x0000150e",
20237 next-page="0x00001512",prev-page="0x0000150e",memory=[
20238 @{addr="0x00001510",data=["128"]@}]
20239 (gdb)
20240 @end smallexample
20241
20242 Read thirty two bytes of memory starting at @code{bytes+16} and format
20243 as eight rows of four columns.  Include a string encoding with @samp{x}
20244 used as the non-printable character.
20245
20246 @smallexample
20247 (gdb)
20248 4-data-read-memory bytes+16 x 1 8 4 x
20249 4^done,addr="0x000013a0",nr-bytes="32",total-bytes="32",
20250 next-row="0x000013c0",prev-row="0x0000139c",
20251 next-page="0x000013c0",prev-page="0x00001380",memory=[
20252 @{addr="0x000013a0",data=["0x10","0x11","0x12","0x13"],ascii="xxxx"@},
20253 @{addr="0x000013a4",data=["0x14","0x15","0x16","0x17"],ascii="xxxx"@},
20254 @{addr="0x000013a8",data=["0x18","0x19","0x1a","0x1b"],ascii="xxxx"@},
20255 @{addr="0x000013ac",data=["0x1c","0x1d","0x1e","0x1f"],ascii="xxxx"@},
20256 @{addr="0x000013b0",data=["0x20","0x21","0x22","0x23"],ascii=" !\"#"@},
20257 @{addr="0x000013b4",data=["0x24","0x25","0x26","0x27"],ascii="$%&'"@},
20258 @{addr="0x000013b8",data=["0x28","0x29","0x2a","0x2b"],ascii="()*+"@},
20259 @{addr="0x000013bc",data=["0x2c","0x2d","0x2e","0x2f"],ascii=",-./"@}]
20260 (gdb)
20261 @end smallexample
20262
20263 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20264 @node GDB/MI Tracepoint Commands
20265 @section @sc{gdb/mi} Tracepoint Commands
20266
20267 The tracepoint commands are not yet implemented.
20268
20269 @c @subheading -trace-actions
20270
20271 @c @subheading -trace-delete
20272
20273 @c @subheading -trace-disable
20274
20275 @c @subheading -trace-dump
20276
20277 @c @subheading -trace-enable
20278
20279 @c @subheading -trace-exists
20280
20281 @c @subheading -trace-find
20282
20283 @c @subheading -trace-frame-number
20284
20285 @c @subheading -trace-info
20286
20287 @c @subheading -trace-insert
20288
20289 @c @subheading -trace-list
20290
20291 @c @subheading -trace-pass-count
20292
20293 @c @subheading -trace-save
20294
20295 @c @subheading -trace-start
20296
20297 @c @subheading -trace-stop
20298
20299
20300 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20301 @node GDB/MI Symbol Query
20302 @section @sc{gdb/mi} Symbol Query Commands
20303
20304
20305 @subheading The @code{-symbol-info-address} Command
20306 @findex -symbol-info-address
20307
20308 @subsubheading Synopsis
20309
20310 @smallexample
20311  -symbol-info-address @var{symbol}
20312 @end smallexample
20313
20314 Describe where @var{symbol} is stored.
20315
20316 @subsubheading @value{GDBN} Command
20317
20318 The corresponding @value{GDBN} command is @samp{info address}.
20319
20320 @subsubheading Example
20321 N.A.
20322
20323
20324 @subheading The @code{-symbol-info-file} Command
20325 @findex -symbol-info-file
20326
20327 @subsubheading Synopsis
20328
20329 @smallexample
20330  -symbol-info-file
20331 @end smallexample
20332
20333 Show the file for the symbol.
20334
20335 @subsubheading @value{GDBN} Command
20336
20337 There's no equivalent @value{GDBN} command.  @code{gdbtk} has
20338 @samp{gdb_find_file}.
20339
20340 @subsubheading Example
20341 N.A.
20342
20343
20344 @subheading The @code{-symbol-info-function} Command
20345 @findex -symbol-info-function
20346
20347 @subsubheading Synopsis
20348
20349 @smallexample
20350  -symbol-info-function
20351 @end smallexample
20352
20353 Show which function the symbol lives in.
20354
20355 @subsubheading @value{GDBN} Command
20356
20357 @samp{gdb_get_function} in @code{gdbtk}.
20358
20359 @subsubheading Example
20360 N.A.
20361
20362
20363 @subheading The @code{-symbol-info-line} Command
20364 @findex -symbol-info-line
20365
20366 @subsubheading Synopsis
20367
20368 @smallexample
20369  -symbol-info-line
20370 @end smallexample
20371
20372 Show the core addresses of the code for a source line.
20373
20374 @subsubheading @value{GDBN} Command
20375
20376 The corresponding @value{GDBN} command is @samp{info line}.
20377 @code{gdbtk} has the @samp{gdb_get_line} and @samp{gdb_get_file} commands.
20378
20379 @subsubheading Example
20380 N.A.
20381
20382
20383 @subheading The @code{-symbol-info-symbol} Command
20384 @findex -symbol-info-symbol
20385
20386 @subsubheading Synopsis
20387
20388 @smallexample
20389  -symbol-info-symbol @var{addr}
20390 @end smallexample
20391
20392 Describe what symbol is at location @var{addr}.
20393
20394 @subsubheading @value{GDBN} Command
20395
20396 The corresponding @value{GDBN} command is @samp{info symbol}.
20397
20398 @subsubheading Example
20399 N.A.
20400
20401
20402 @subheading The @code{-symbol-list-functions} Command
20403 @findex -symbol-list-functions
20404
20405 @subsubheading Synopsis
20406
20407 @smallexample
20408  -symbol-list-functions
20409 @end smallexample
20410
20411 List the functions in the executable.
20412
20413 @subsubheading @value{GDBN} Command
20414
20415 @samp{info functions} in @value{GDBN}, @samp{gdb_listfunc} and
20416 @samp{gdb_search} in @code{gdbtk}.
20417
20418 @subsubheading Example
20419 N.A.
20420
20421
20422 @subheading The @code{-symbol-list-lines} Command
20423 @findex -symbol-list-lines
20424
20425 @subsubheading Synopsis
20426
20427 @smallexample
20428  -symbol-list-lines @var{filename}
20429 @end smallexample
20430
20431 Print the list of lines that contain code and their associated program
20432 addresses for the given source filename.  The entries are sorted in
20433 ascending PC order.
20434
20435 @subsubheading @value{GDBN} Command
20436
20437 There is no corresponding @value{GDBN} command.
20438
20439 @subsubheading Example
20440 @smallexample
20441 (gdb)
20442 -symbol-list-lines basics.c
20443 ^done,lines=[@{pc="0x08048554",line="7"@},@{pc="0x0804855a",line="8"@}]
20444 (gdb)
20445 @end smallexample
20446
20447
20448 @subheading The @code{-symbol-list-types} Command
20449 @findex -symbol-list-types
20450
20451 @subsubheading Synopsis
20452
20453 @smallexample
20454  -symbol-list-types
20455 @end smallexample
20456
20457 List all the type names.
20458
20459 @subsubheading @value{GDBN} Command
20460
20461 The corresponding commands are @samp{info types} in @value{GDBN},
20462 @samp{gdb_search} in @code{gdbtk}.
20463
20464 @subsubheading Example
20465 N.A.
20466
20467
20468 @subheading The @code{-symbol-list-variables} Command
20469 @findex -symbol-list-variables
20470
20471 @subsubheading Synopsis
20472
20473 @smallexample
20474  -symbol-list-variables
20475 @end smallexample
20476
20477 List all the global and static variable names.
20478
20479 @subsubheading @value{GDBN} Command
20480
20481 @samp{info variables} in @value{GDBN}, @samp{gdb_search} in @code{gdbtk}.
20482
20483 @subsubheading Example
20484 N.A.
20485
20486
20487 @subheading The @code{-symbol-locate} Command
20488 @findex -symbol-locate
20489
20490 @subsubheading Synopsis
20491
20492 @smallexample
20493  -symbol-locate
20494 @end smallexample
20495
20496 @subsubheading @value{GDBN} Command
20497
20498 @samp{gdb_loc} in @code{gdbtk}.
20499
20500 @subsubheading Example
20501 N.A.
20502
20503
20504 @subheading The @code{-symbol-type} Command
20505 @findex -symbol-type
20506
20507 @subsubheading Synopsis
20508
20509 @smallexample
20510  -symbol-type @var{variable}
20511 @end smallexample
20512
20513 Show type of @var{variable}.
20514
20515 @subsubheading @value{GDBN} Command
20516
20517 The corresponding @value{GDBN} command is @samp{ptype}, @code{gdbtk} has
20518 @samp{gdb_obj_variable}.
20519
20520 @subsubheading Example
20521 N.A.
20522
20523
20524 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20525 @node GDB/MI File Commands
20526 @section @sc{gdb/mi} File Commands
20527
20528 This section describes the GDB/MI commands to specify executable file names
20529 and to read in and obtain symbol table information.
20530
20531 @subheading The @code{-file-exec-and-symbols} Command
20532 @findex -file-exec-and-symbols
20533
20534 @subsubheading Synopsis
20535
20536 @smallexample
20537  -file-exec-and-symbols @var{file}
20538 @end smallexample
20539
20540 Specify the executable file to be debugged.  This file is the one from
20541 which the symbol table is also read.  If no file is specified, the
20542 command clears the executable and symbol information.  If breakpoints
20543 are set when using this command with no arguments, @value{GDBN} will produce
20544 error messages.  Otherwise, no output is produced, except a completion
20545 notification.
20546
20547 @subsubheading @value{GDBN} Command
20548
20549 The corresponding @value{GDBN} command is @samp{file}.
20550
20551 @subsubheading Example
20552
20553 @smallexample
20554 (gdb)
20555 -file-exec-and-symbols /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
20556 ^done
20557 (gdb)
20558 @end smallexample
20559
20560
20561 @subheading The @code{-file-exec-file} Command
20562 @findex -file-exec-file
20563
20564 @subsubheading Synopsis
20565
20566 @smallexample
20567  -file-exec-file @var{file}
20568 @end smallexample
20569
20570 Specify the executable file to be debugged.  Unlike
20571 @samp{-file-exec-and-symbols}, the symbol table is @emph{not} read
20572 from this file.  If used without argument, @value{GDBN} clears the information
20573 about the executable file.  No output is produced, except a completion
20574 notification.
20575
20576 @subsubheading @value{GDBN} Command
20577
20578 The corresponding @value{GDBN} command is @samp{exec-file}.
20579
20580 @subsubheading Example
20581
20582 @smallexample
20583 (gdb)
20584 -file-exec-file /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
20585 ^done
20586 (gdb)
20587 @end smallexample
20588
20589
20590 @subheading The @code{-file-list-exec-sections} Command
20591 @findex -file-list-exec-sections
20592
20593 @subsubheading Synopsis
20594
20595 @smallexample
20596  -file-list-exec-sections
20597 @end smallexample
20598
20599 List the sections of the current executable file.
20600
20601 @subsubheading @value{GDBN} Command
20602
20603 The @value{GDBN} command @samp{info file} shows, among the rest, the same
20604 information as this command.  @code{gdbtk} has a corresponding command
20605 @samp{gdb_load_info}.
20606
20607 @subsubheading Example
20608 N.A.
20609
20610
20611 @subheading The @code{-file-list-exec-source-file} Command
20612 @findex -file-list-exec-source-file
20613
20614 @subsubheading Synopsis
20615
20616 @smallexample
20617  -file-list-exec-source-file
20618 @end smallexample
20619
20620 List the line number, the current source file, and the absolute path
20621 to the current source file for the current executable.
20622
20623 @subsubheading @value{GDBN} Command
20624
20625 The @value{GDBN} equivalent is @samp{info source}
20626
20627 @subsubheading Example
20628
20629 @smallexample
20630 (gdb)
20631 123-file-list-exec-source-file
20632 123^done,line="1",file="foo.c",fullname="/home/bar/foo.c"
20633 (gdb)
20634 @end smallexample
20635
20636
20637 @subheading The @code{-file-list-exec-source-files} Command
20638 @findex -file-list-exec-source-files
20639
20640 @subsubheading Synopsis
20641
20642 @smallexample
20643  -file-list-exec-source-files
20644 @end smallexample
20645
20646 List the source files for the current executable.
20647
20648 It will always output the filename, but only when @value{GDBN} can find
20649 the absolute file name of a source file, will it output the fullname.
20650
20651 @subsubheading @value{GDBN} Command
20652
20653 The @value{GDBN} equivalent is @samp{info sources}.
20654 @code{gdbtk} has an analogous command @samp{gdb_listfiles}.
20655
20656 @subsubheading Example
20657 @smallexample
20658 (gdb)
20659 -file-list-exec-source-files
20660 ^done,files=[
20661 @{file=foo.c,fullname=/home/foo.c@},
20662 @{file=/home/bar.c,fullname=/home/bar.c@},
20663 @{file=gdb_could_not_find_fullpath.c@}]
20664 (gdb)
20665 @end smallexample
20666
20667 @subheading The @code{-file-list-shared-libraries} Command
20668 @findex -file-list-shared-libraries
20669
20670 @subsubheading Synopsis
20671
20672 @smallexample
20673  -file-list-shared-libraries
20674 @end smallexample
20675
20676 List the shared libraries in the program.
20677
20678 @subsubheading @value{GDBN} Command
20679
20680 The corresponding @value{GDBN} command is @samp{info shared}.
20681
20682 @subsubheading Example
20683 N.A.
20684
20685
20686 @subheading The @code{-file-list-symbol-files} Command
20687 @findex -file-list-symbol-files
20688
20689 @subsubheading Synopsis
20690
20691 @smallexample
20692  -file-list-symbol-files
20693 @end smallexample
20694
20695 List symbol files.
20696
20697 @subsubheading @value{GDBN} Command
20698
20699 The corresponding @value{GDBN} command is @samp{info file} (part of it).
20700
20701 @subsubheading Example
20702 N.A.
20703
20704
20705 @subheading The @code{-file-symbol-file} Command
20706 @findex -file-symbol-file
20707
20708 @subsubheading Synopsis
20709
20710 @smallexample
20711  -file-symbol-file @var{file}
20712 @end smallexample
20713
20714 Read symbol table info from the specified @var{file} argument.  When
20715 used without arguments, clears @value{GDBN}'s symbol table info.  No output is
20716 produced, except for a completion notification.
20717
20718 @subsubheading @value{GDBN} Command
20719
20720 The corresponding @value{GDBN} command is @samp{symbol-file}.
20721
20722 @subsubheading Example
20723
20724 @smallexample
20725 (gdb)
20726 -file-symbol-file /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
20727 ^done
20728 (gdb)
20729 @end smallexample
20730
20731 @ignore
20732 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20733 @node GDB/MI Memory Overlay Commands
20734 @section @sc{gdb/mi} Memory Overlay Commands
20735
20736 The memory overlay commands are not implemented.
20737
20738 @c @subheading -overlay-auto
20739
20740 @c @subheading -overlay-list-mapping-state
20741
20742 @c @subheading -overlay-list-overlays
20743
20744 @c @subheading -overlay-map
20745
20746 @c @subheading -overlay-off
20747
20748 @c @subheading -overlay-on
20749
20750 @c @subheading -overlay-unmap
20751
20752 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20753 @node GDB/MI Signal Handling Commands
20754 @section @sc{gdb/mi} Signal Handling Commands
20755
20756 Signal handling commands are not implemented.
20757
20758 @c @subheading -signal-handle
20759
20760 @c @subheading -signal-list-handle-actions
20761
20762 @c @subheading -signal-list-signal-types
20763 @end ignore
20764
20765
20766 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20767 @node GDB/MI Target Manipulation
20768 @section @sc{gdb/mi} Target Manipulation Commands
20769
20770
20771 @subheading The @code{-target-attach} Command
20772 @findex -target-attach
20773
20774 @subsubheading Synopsis
20775
20776 @smallexample
20777  -target-attach @var{pid} | @var{file}
20778 @end smallexample
20779
20780 Attach to a process @var{pid} or a file @var{file} outside of @value{GDBN}.
20781
20782 @subsubheading @value{GDBN} Command
20783
20784 The corresponding @value{GDBN} command is @samp{attach}.
20785
20786 @subsubheading Example
20787 N.A.
20788
20789
20790 @subheading The @code{-target-compare-sections} Command
20791 @findex -target-compare-sections
20792
20793 @subsubheading Synopsis
20794
20795 @smallexample
20796  -target-compare-sections [ @var{section} ]
20797 @end smallexample
20798
20799 Compare data of section @var{section} on target to the exec file.
20800 Without the argument, all sections are compared.
20801
20802 @subsubheading @value{GDBN} Command
20803
20804 The @value{GDBN} equivalent is @samp{compare-sections}.
20805
20806 @subsubheading Example
20807 N.A.
20808
20809
20810 @subheading The @code{-target-detach} Command
20811 @findex -target-detach
20812
20813 @subsubheading Synopsis
20814
20815 @smallexample
20816  -target-detach
20817 @end smallexample
20818
20819 Detach from the remote target which normally resumes its execution.
20820 There's no output.
20821
20822 @subsubheading @value{GDBN} Command
20823
20824 The corresponding @value{GDBN} command is @samp{detach}.
20825
20826 @subsubheading Example
20827
20828 @smallexample
20829 (gdb)
20830 -target-detach
20831 ^done
20832 (gdb)
20833 @end smallexample
20834
20835
20836 @subheading The @code{-target-disconnect} Command
20837 @findex -target-disconnect
20838
20839 @subsubheading Synopsis
20840
20841 @smallexample
20842  -target-disconnect
20843 @end smallexample
20844
20845 Disconnect from the remote target.  There's no output and the target is
20846 generally not resumed.
20847
20848 @subsubheading @value{GDBN} Command
20849
20850 The corresponding @value{GDBN} command is @samp{disconnect}.
20851
20852 @subsubheading Example
20853
20854 @smallexample
20855 (gdb)
20856 -target-disconnect
20857 ^done
20858 (gdb)
20859 @end smallexample
20860
20861
20862 @subheading The @code{-target-download} Command
20863 @findex -target-download
20864
20865 @subsubheading Synopsis
20866
20867 @smallexample
20868  -target-download
20869 @end smallexample
20870
20871 Loads the executable onto the remote target.
20872 It prints out an update message every half second, which includes the fields:
20873
20874 @table @samp
20875 @item section
20876 The name of the section.
20877 @item section-sent
20878 The size of what has been sent so far for that section.
20879 @item section-size
20880 The size of the section.
20881 @item total-sent
20882 The total size of what was sent so far (the current and the previous sections).
20883 @item total-size
20884 The size of the overall executable to download.
20885 @end table
20886
20887 @noindent
20888 Each message is sent as status record (@pxref{GDB/MI Output Syntax, ,
20889 @sc{gdb/mi} Output Syntax}).
20890
20891 In addition, it prints the name and size of the sections, as they are
20892 downloaded.  These messages include the following fields:
20893
20894 @table @samp
20895 @item section
20896 The name of the section.
20897 @item section-size
20898 The size of the section.
20899 @item total-size
20900 The size of the overall executable to download.
20901 @end table
20902
20903 @noindent
20904 At the end, a summary is printed.
20905
20906 @subsubheading @value{GDBN} Command
20907
20908 The corresponding @value{GDBN} command is @samp{load}.
20909
20910 @subsubheading Example
20911
20912 Note: each status message appears on a single line.  Here the messages
20913 have been broken down so that they can fit onto a page.
20914
20915 @smallexample
20916 (gdb)
20917 -target-download
20918 +download,@{section=".text",section-size="6668",total-size="9880"@}
20919 +download,@{section=".text",section-sent="512",section-size="6668",
20920 total-sent="512",total-size="9880"@}
20921 +download,@{section=".text",section-sent="1024",section-size="6668",
20922 total-sent="1024",total-size="9880"@}
20923 +download,@{section=".text",section-sent="1536",section-size="6668",
20924 total-sent="1536",total-size="9880"@}
20925 +download,@{section=".text",section-sent="2048",section-size="6668",
20926 total-sent="2048",total-size="9880"@}
20927 +download,@{section=".text",section-sent="2560",section-size="6668",
20928 total-sent="2560",total-size="9880"@}
20929 +download,@{section=".text",section-sent="3072",section-size="6668",
20930 total-sent="3072",total-size="9880"@}
20931 +download,@{section=".text",section-sent="3584",section-size="6668",
20932 total-sent="3584",total-size="9880"@}
20933 +download,@{section=".text",section-sent="4096",section-size="6668",
20934 total-sent="4096",total-size="9880"@}
20935 +download,@{section=".text",section-sent="4608",section-size="6668",
20936 total-sent="4608",total-size="9880"@}
20937 +download,@{section=".text",section-sent="5120",section-size="6668",
20938 total-sent="5120",total-size="9880"@}
20939 +download,@{section=".text",section-sent="5632",section-size="6668",
20940 total-sent="5632",total-size="9880"@}
20941 +download,@{section=".text",section-sent="6144",section-size="6668",
20942 total-sent="6144",total-size="9880"@}
20943 +download,@{section=".text",section-sent="6656",section-size="6668",
20944 total-sent="6656",total-size="9880"@}
20945 +download,@{section=".init",section-size="28",total-size="9880"@}
20946 +download,@{section=".fini",section-size="28",total-size="9880"@}
20947 +download,@{section=".data",section-size="3156",total-size="9880"@}
20948 +download,@{section=".data",section-sent="512",section-size="3156",
20949 total-sent="7236",total-size="9880"@}
20950 +download,@{section=".data",section-sent="1024",section-size="3156",
20951 total-sent="7748",total-size="9880"@}
20952 +download,@{section=".data",section-sent="1536",section-size="3156",
20953 total-sent="8260",total-size="9880"@}
20954 +download,@{section=".data",section-sent="2048",section-size="3156",
20955 total-sent="8772",total-size="9880"@}
20956 +download,@{section=".data",section-sent="2560",section-size="3156",
20957 total-sent="9284",total-size="9880"@}
20958 +download,@{section=".data",section-sent="3072",section-size="3156",
20959 total-sent="9796",total-size="9880"@}
20960 ^done,address="0x10004",load-size="9880",transfer-rate="6586",
20961 write-rate="429"
20962 (gdb)
20963 @end smallexample
20964
20965
20966 @subheading The @code{-target-exec-status} Command
20967 @findex -target-exec-status
20968
20969 @subsubheading Synopsis
20970
20971 @smallexample
20972  -target-exec-status
20973 @end smallexample
20974
20975 Provide information on the state of the target (whether it is running or
20976 not, for instance).
20977
20978 @subsubheading @value{GDBN} Command
20979
20980 There's no equivalent @value{GDBN} command.
20981
20982 @subsubheading Example
20983 N.A.
20984
20985
20986 @subheading The @code{-target-list-available-targets} Command
20987 @findex -target-list-available-targets
20988
20989 @subsubheading Synopsis
20990
20991 @smallexample
20992  -target-list-available-targets
20993 @end smallexample
20994
20995 List the possible targets to connect to.
20996
20997 @subsubheading @value{GDBN} Command
20998
20999 The corresponding @value{GDBN} command is @samp{help target}.
21000
21001 @subsubheading Example
21002 N.A.
21003
21004
21005 @subheading The @code{-target-list-current-targets} Command
21006 @findex -target-list-current-targets
21007
21008 @subsubheading Synopsis
21009
21010 @smallexample
21011  -target-list-current-targets
21012 @end smallexample
21013
21014 Describe the current target.
21015
21016 @subsubheading @value{GDBN} Command
21017
21018 The corresponding information is printed by @samp{info file} (among
21019 other things).
21020
21021 @subsubheading Example
21022 N.A.
21023
21024
21025 @subheading The @code{-target-list-parameters} Command
21026 @findex -target-list-parameters
21027
21028 @subsubheading Synopsis
21029
21030 @smallexample
21031  -target-list-parameters
21032 @end smallexample
21033
21034 @c ????
21035
21036 @subsubheading @value{GDBN} Command
21037
21038 No equivalent.
21039
21040 @subsubheading Example
21041 N.A.
21042
21043
21044 @subheading The @code{-target-select} Command
21045 @findex -target-select
21046
21047 @subsubheading Synopsis
21048
21049 @smallexample
21050  -target-select @var{type} @var{parameters @dots{}}
21051 @end smallexample
21052
21053 Connect @value{GDBN} to the remote target.  This command takes two args:
21054
21055 @table @samp
21056 @item @var{type}
21057 The type of target, for instance @samp{async}, @samp{remote}, etc.
21058 @item @var{parameters}
21059 Device names, host names and the like.  @xref{Target Commands, ,
21060 Commands for Managing Targets}, for more details.
21061 @end table
21062
21063 The output is a connection notification, followed by the address at
21064 which the target program is, in the following form:
21065
21066 @smallexample
21067 ^connected,addr="@var{address}",func="@var{function name}",
21068   args=[@var{arg list}]
21069 @end smallexample
21070
21071 @subsubheading @value{GDBN} Command
21072
21073 The corresponding @value{GDBN} command is @samp{target}.
21074
21075 @subsubheading Example
21076
21077 @smallexample
21078 (gdb)
21079 -target-select async /dev/ttya
21080 ^connected,addr="0xfe00a300",func="??",args=[]
21081 (gdb)
21082 @end smallexample
21083
21084 @c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21085 @node GDB/MI Miscellaneous Commands
21086 @section Miscellaneous @sc{gdb/mi} Commands
21087
21088 @c @subheading -gdb-complete
21089
21090 @subheading The @code{-gdb-exit} Command
21091 @findex -gdb-exit
21092
21093 @subsubheading Synopsis
21094
21095 @smallexample
21096  -gdb-exit
21097 @end smallexample
21098
21099 Exit @value{GDBN} immediately.
21100
21101 @subsubheading @value{GDBN} Command
21102
21103 Approximately corresponds to @samp{quit}.
21104
21105 @subsubheading Example
21106
21107 @smallexample
21108 (gdb)
21109 -gdb-exit
21110 ^exit
21111 @end smallexample
21112
21113
21114 @subheading The @code{-exec-abort} Command
21115 @findex -exec-abort
21116
21117 @subsubheading Synopsis
21118
21119 @smallexample
21120  -exec-abort
21121 @end smallexample
21122
21123 Kill the inferior running program.
21124
21125 @subsubheading @value{GDBN} Command
21126
21127 The corresponding @value{GDBN} command is @samp{kill}.
21128
21129 @subsubheading Example
21130 N.A.
21131
21132
21133 @subheading The @code{-gdb-set} Command
21134 @findex -gdb-set
21135
21136 @subsubheading Synopsis
21137
21138 @smallexample
21139  -gdb-set
21140 @end smallexample
21141
21142 Set an internal @value{GDBN} variable.
21143 @c IS THIS A DOLLAR VARIABLE? OR SOMETHING LIKE ANNOTATE ?????
21144
21145 @subsubheading @value{GDBN} Command
21146
21147 The corresponding @value{GDBN} command is @samp{set}.
21148
21149 @subsubheading Example
21150
21151 @smallexample
21152 (gdb)
21153 -gdb-set $foo=3
21154 ^done
21155 (gdb)
21156 @end smallexample
21157
21158
21159 @subheading The @code{-gdb-show} Command
21160 @findex -gdb-show
21161
21162 @subsubheading Synopsis
21163
21164 @smallexample
21165  -gdb-show
21166 @end smallexample
21167
21168 Show the current value of a @value{GDBN} variable.
21169
21170 @subsubheading @value{GDBN} Command
21171
21172 The corresponding @value{GDBN} command is @samp{show}.
21173
21174 @subsubheading Example
21175
21176 @smallexample
21177 (gdb)
21178 -gdb-show annotate
21179 ^done,value="0"
21180 (gdb)
21181 @end smallexample
21182
21183 @c @subheading -gdb-source
21184
21185
21186 @subheading The @code{-gdb-version} Command
21187 @findex -gdb-version
21188
21189 @subsubheading Synopsis
21190
21191 @smallexample
21192  -gdb-version
21193 @end smallexample
21194
21195 Show version information for @value{GDBN}.  Used mostly in testing.
21196
21197 @subsubheading @value{GDBN} Command
21198
21199 The @value{GDBN} equivalent is @samp{show version}.  @value{GDBN} by
21200 default shows this information when you start an interactive session.
21201
21202 @subsubheading Example
21203
21204 @c This example modifies the actual output from GDB to avoid overfull
21205 @c box in TeX.
21206 @smallexample
21207 (gdb)
21208 -gdb-version
21209 ~GNU gdb 5.2.1
21210 ~Copyright 2000 Free Software Foundation, Inc.
21211 ~GDB is free software, covered by the GNU General Public License, and
21212 ~you are welcome to change it and/or distribute copies of it under
21213 ~ certain conditions.
21214 ~Type "show copying" to see the conditions.
21215 ~There is absolutely no warranty for GDB.  Type "show warranty" for
21216 ~ details.
21217 ~This GDB was configured as
21218  "--host=sparc-sun-solaris2.5.1 --target=ppc-eabi".
21219 ^done
21220 (gdb)
21221 @end smallexample
21222
21223 @subheading The @code{-interpreter-exec} Command
21224 @findex -interpreter-exec
21225
21226 @subheading Synopsis
21227
21228 @smallexample
21229 -interpreter-exec @var{interpreter} @var{command}
21230 @end smallexample
21231 @anchor{-interpreter-exec} 
21232
21233 Execute the specified @var{command} in the given @var{interpreter}.
21234
21235 @subheading @value{GDBN} Command
21236
21237 The corresponding @value{GDBN} command is @samp{interpreter-exec}.
21238
21239 @subheading Example
21240
21241 @smallexample
21242 (gdb)
21243 -interpreter-exec console "break main"
21244 &"During symbol reading, couldn't parse type; debugger out of date?.\n"
21245 &"During symbol reading, bad structure-type format.\n"
21246 ~"Breakpoint 1 at 0x8074fc6: file ../../src/gdb/main.c, line 743.\n"
21247 ^done
21248 (gdb)
21249 @end smallexample
21250
21251 @subheading The @code{-inferior-tty-set} Command
21252 @findex -inferior-tty-set
21253
21254 @subheading Synopsis
21255
21256 @smallexample
21257 -inferior-tty-set /dev/pts/1
21258 @end smallexample
21259
21260 Set terminal for future runs of the program being debugged.
21261
21262 @subheading @value{GDBN} Command
21263
21264 The corresponding @value{GDBN} command is @samp{set inferior-tty} /dev/pts/1.
21265
21266 @subheading Example
21267
21268 @smallexample
21269 (gdb)
21270 -inferior-tty-set /dev/pts/1
21271 ^done
21272 (gdb)
21273 @end smallexample
21274
21275 @subheading The @code{-inferior-tty-show} Command
21276 @findex -inferior-tty-show
21277
21278 @subheading Synopsis
21279
21280 @smallexample
21281 -inferior-tty-show
21282 @end smallexample
21283
21284 Show terminal for future runs of program being debugged.
21285
21286 @subheading @value{GDBN} Command
21287
21288 The corresponding @value{GDBN} command is @samp{show inferior-tty}.
21289
21290 @subheading Example
21291
21292 @smallexample
21293 (gdb)
21294 -inferior-tty-set /dev/pts/1
21295 ^done
21296 (gdb)
21297 -inferior-tty-show
21298 ^done,inferior_tty_terminal="/dev/pts/1"
21299 (gdb)
21300 @end smallexample
21301
21302 @subheading The @code{-enable-timings} Command
21303 @findex -enable-timings
21304
21305 @subheading Synopsis
21306
21307 @smallexample
21308 -enable-timings [yes | no]
21309 @end smallexample
21310
21311 Toggle the printing of the wallclock, user and system times for an MI
21312 command as a field in its output.  This command is to help frontend
21313 developers optimize the performance of their code.  No argument is
21314 equivalent to @samp{yes}.
21315
21316 @subheading @value{GDBN} Command
21317
21318 No equivalent.
21319
21320 @subheading Example
21321
21322 @smallexample
21323 (gdb)
21324 -enable-timings
21325 ^done
21326 (gdb)
21327 -break-insert main
21328 ^done,bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
21329 addr="0x080484ed",func="main",file="myprog.c",
21330 fullname="/home/nickrob/myprog.c",line="73",times="0"@},
21331 time=@{wallclock="0.05185",user="0.00800",system="0.00000"@}
21332 (gdb)
21333 -enable-timings no
21334 ^done
21335 (gdb)
21336 -exec-run
21337 ^running
21338 (gdb)
21339 *stopped,reason="breakpoint-hit",bkptno="1",thread-id="0",
21340 frame=@{addr="0x080484ed",func="main",args=[@{name="argc",value="1"@},
21341 @{name="argv",value="0xbfb60364"@}],file="myprog.c",
21342 fullname="/home/nickrob/myprog.c",line="73"@}
21343 (gdb)
21344 @end smallexample
21345
21346 @node Annotations
21347 @chapter @value{GDBN} Annotations
21348
21349 This chapter describes annotations in @value{GDBN}.  Annotations were
21350 designed to interface @value{GDBN} to graphical user interfaces or other
21351 similar programs which want to interact with @value{GDBN} at a
21352 relatively high level.
21353
21354 The annotation mechanism has largely been superseded by @sc{gdb/mi}
21355 (@pxref{GDB/MI}).
21356
21357 @ignore
21358 This is Edition @value{EDITION}, @value{DATE}.
21359 @end ignore
21360
21361 @menu
21362 * Annotations Overview::  What annotations are; the general syntax.
21363 * Server Prefix::       Issuing a command without affecting user state.
21364 * Prompting::           Annotations marking @value{GDBN}'s need for input.
21365 * Errors::              Annotations for error messages.
21366 * Invalidation::        Some annotations describe things now invalid.
21367 * Annotations for Running::
21368                         Whether the program is running, how it stopped, etc.
21369 * Source Annotations::  Annotations describing source code.
21370 @end menu
21371
21372 @node Annotations Overview
21373 @section What is an Annotation?
21374 @cindex annotations
21375
21376 Annotations start with a newline character, two @samp{control-z}
21377 characters, and the name of the annotation.  If there is no additional
21378 information associated with this annotation, the name of the annotation
21379 is followed immediately by a newline.  If there is additional
21380 information, the name of the annotation is followed by a space, the
21381 additional information, and a newline.  The additional information
21382 cannot contain newline characters.
21383
21384 Any output not beginning with a newline and two @samp{control-z}
21385 characters denotes literal output from @value{GDBN}.  Currently there is
21386 no need for @value{GDBN} to output a newline followed by two
21387 @samp{control-z} characters, but if there was such a need, the
21388 annotations could be extended with an @samp{escape} annotation which
21389 means those three characters as output.
21390
21391 The annotation @var{level}, which is specified using the
21392 @option{--annotate} command line option (@pxref{Mode Options}), controls
21393 how much information @value{GDBN} prints together with its prompt,
21394 values of expressions, source lines, and other types of output.  Level 0
21395 is for no annotations, level 1 is for use when @value{GDBN} is run as a
21396 subprocess of @sc{gnu} Emacs, level 3 is the maximum annotation suitable
21397 for programs that control @value{GDBN}, and level 2 annotations have
21398 been made obsolete (@pxref{Limitations, , Limitations of the Annotation
21399 Interface, annotate, GDB's Obsolete Annotations}).
21400
21401 @table @code
21402 @kindex set annotate
21403 @item set annotate @var{level}
21404 The @value{GDBN} command @code{set annotate} sets the level of
21405 annotations to the specified @var{level}.
21406
21407 @item show annotate
21408 @kindex show annotate
21409 Show the current annotation level.
21410 @end table
21411
21412 This chapter describes level 3 annotations.
21413
21414 A simple example of starting up @value{GDBN} with annotations is:
21415
21416 @smallexample
21417 $ @kbd{gdb --annotate=3}
21418 GNU gdb 6.0
21419 Copyright 2003 Free Software Foundation, Inc.
21420 GDB is free software, covered by the GNU General Public License,
21421 and you are welcome to change it and/or distribute copies of it
21422 under certain conditions.
21423 Type "show copying" to see the conditions.
21424 There is absolutely no warranty for GDB.  Type "show warranty"
21425 for details.
21426 This GDB was configured as "i386-pc-linux-gnu"
21427
21428 ^Z^Zpre-prompt
21429 (@value{GDBP})
21430 ^Z^Zprompt
21431 @kbd{quit}
21432
21433 ^Z^Zpost-prompt
21434 $
21435 @end smallexample
21436
21437 Here @samp{quit} is input to @value{GDBN}; the rest is output from
21438 @value{GDBN}.  The three lines beginning @samp{^Z^Z} (where @samp{^Z}
21439 denotes a @samp{control-z} character) are annotations; the rest is
21440 output from @value{GDBN}.
21441
21442 @node Server Prefix
21443 @section The Server Prefix
21444 @cindex server prefix
21445
21446 If you prefix a command with @samp{server } then it will not affect
21447 the command history, nor will it affect @value{GDBN}'s notion of which
21448 command to repeat if @key{RET} is pressed on a line by itself.  This
21449 means that commands can be run behind a user's back by a front-end in
21450 a transparent manner.
21451
21452 The server prefix does not affect the recording of values into the value
21453 history; to print a value without recording it into the value history,
21454 use the @code{output} command instead of the @code{print} command.
21455
21456 @node Prompting
21457 @section Annotation for @value{GDBN} Input
21458
21459 @cindex annotations for prompts
21460 When @value{GDBN} prompts for input, it annotates this fact so it is possible
21461 to know when to send output, when the output from a given command is
21462 over, etc.
21463
21464 Different kinds of input each have a different @dfn{input type}.  Each
21465 input type has three annotations: a @code{pre-} annotation, which
21466 denotes the beginning of any prompt which is being output, a plain
21467 annotation, which denotes the end of the prompt, and then a @code{post-}
21468 annotation which denotes the end of any echo which may (or may not) be
21469 associated with the input.  For example, the @code{prompt} input type
21470 features the following annotations:
21471
21472 @smallexample
21473 ^Z^Zpre-prompt
21474 ^Z^Zprompt
21475 ^Z^Zpost-prompt
21476 @end smallexample
21477
21478 The input types are
21479
21480 @table @code
21481 @findex pre-prompt annotation
21482 @findex prompt annotation
21483 @findex post-prompt annotation
21484 @item prompt
21485 When @value{GDBN} is prompting for a command (the main @value{GDBN} prompt).
21486
21487 @findex pre-commands annotation
21488 @findex commands annotation
21489 @findex post-commands annotation
21490 @item commands
21491 When @value{GDBN} prompts for a set of commands, like in the @code{commands}
21492 command.  The annotations are repeated for each command which is input.
21493
21494 @findex pre-overload-choice annotation
21495 @findex overload-choice annotation
21496 @findex post-overload-choice annotation
21497 @item overload-choice
21498 When @value{GDBN} wants the user to select between various overloaded functions.
21499
21500 @findex pre-query annotation
21501 @findex query annotation
21502 @findex post-query annotation
21503 @item query
21504 When @value{GDBN} wants the user to confirm a potentially dangerous operation.
21505
21506 @findex pre-prompt-for-continue annotation
21507 @findex prompt-for-continue annotation
21508 @findex post-prompt-for-continue annotation
21509 @item prompt-for-continue
21510 When @value{GDBN} is asking the user to press return to continue.  Note: Don't
21511 expect this to work well; instead use @code{set height 0} to disable
21512 prompting.  This is because the counting of lines is buggy in the
21513 presence of annotations.
21514 @end table
21515
21516 @node Errors
21517 @section Errors
21518 @cindex annotations for errors, warnings and interrupts
21519
21520 @findex quit annotation
21521 @smallexample
21522 ^Z^Zquit
21523 @end smallexample
21524
21525 This annotation occurs right before @value{GDBN} responds to an interrupt.
21526
21527 @findex error annotation
21528 @smallexample
21529 ^Z^Zerror
21530 @end smallexample
21531
21532 This annotation occurs right before @value{GDBN} responds to an error.
21533
21534 Quit and error annotations indicate that any annotations which @value{GDBN} was
21535 in the middle of may end abruptly.  For example, if a
21536 @code{value-history-begin} annotation is followed by a @code{error}, one
21537 cannot expect to receive the matching @code{value-history-end}.  One
21538 cannot expect not to receive it either, however; an error annotation
21539 does not necessarily mean that @value{GDBN} is immediately returning all the way
21540 to the top level.
21541
21542 @findex error-begin annotation
21543 A quit or error annotation may be preceded by
21544
21545 @smallexample
21546 ^Z^Zerror-begin
21547 @end smallexample
21548
21549 Any output between that and the quit or error annotation is the error
21550 message.
21551
21552 Warning messages are not yet annotated.
21553 @c If we want to change that, need to fix warning(), type_error(),
21554 @c range_error(), and possibly other places.
21555
21556 @node Invalidation
21557 @section Invalidation Notices
21558
21559 @cindex annotations for invalidation messages
21560 The following annotations say that certain pieces of state may have
21561 changed.
21562
21563 @table @code
21564 @findex frames-invalid annotation
21565 @item ^Z^Zframes-invalid
21566
21567 The frames (for example, output from the @code{backtrace} command) may
21568 have changed.
21569
21570 @findex breakpoints-invalid annotation
21571 @item ^Z^Zbreakpoints-invalid
21572
21573 The breakpoints may have changed.  For example, the user just added or
21574 deleted a breakpoint.
21575 @end table
21576
21577 @node Annotations for Running
21578 @section Running the Program
21579 @cindex annotations for running programs
21580
21581 @findex starting annotation
21582 @findex stopping annotation
21583 When the program starts executing due to a @value{GDBN} command such as
21584 @code{step} or @code{continue},
21585
21586 @smallexample
21587 ^Z^Zstarting
21588 @end smallexample
21589
21590 is output.  When the program stops,
21591
21592 @smallexample
21593 ^Z^Zstopped
21594 @end smallexample
21595
21596 is output.  Before the @code{stopped} annotation, a variety of
21597 annotations describe how the program stopped.
21598
21599 @table @code
21600 @findex exited annotation
21601 @item ^Z^Zexited @var{exit-status}
21602 The program exited, and @var{exit-status} is the exit status (zero for
21603 successful exit, otherwise nonzero).
21604
21605 @findex signalled annotation
21606 @findex signal-name annotation
21607 @findex signal-name-end annotation
21608 @findex signal-string annotation
21609 @findex signal-string-end annotation
21610 @item ^Z^Zsignalled
21611 The program exited with a signal.  After the @code{^Z^Zsignalled}, the
21612 annotation continues:
21613
21614 @smallexample
21615 @var{intro-text}
21616 ^Z^Zsignal-name
21617 @var{name}
21618 ^Z^Zsignal-name-end
21619 @var{middle-text}
21620 ^Z^Zsignal-string
21621 @var{string}
21622 ^Z^Zsignal-string-end
21623 @var{end-text}
21624 @end smallexample
21625
21626 @noindent
21627 where @var{name} is the name of the signal, such as @code{SIGILL} or
21628 @code{SIGSEGV}, and @var{string} is the explanation of the signal, such
21629 as @code{Illegal Instruction} or @code{Segmentation fault}.
21630 @var{intro-text}, @var{middle-text}, and @var{end-text} are for the
21631 user's benefit and have no particular format.
21632
21633 @findex signal annotation
21634 @item ^Z^Zsignal
21635 The syntax of this annotation is just like @code{signalled}, but @value{GDBN} is
21636 just saying that the program received the signal, not that it was
21637 terminated with it.
21638
21639 @findex breakpoint annotation
21640 @item ^Z^Zbreakpoint @var{number}
21641 The program hit breakpoint number @var{number}.
21642
21643 @findex watchpoint annotation
21644 @item ^Z^Zwatchpoint @var{number}
21645 The program hit watchpoint number @var{number}.
21646 @end table
21647
21648 @node Source Annotations
21649 @section Displaying Source
21650 @cindex annotations for source display
21651
21652 @findex source annotation
21653 The following annotation is used instead of displaying source code:
21654
21655 @smallexample
21656 ^Z^Zsource @var{filename}:@var{line}:@var{character}:@var{middle}:@var{addr}
21657 @end smallexample
21658
21659 where @var{filename} is an absolute file name indicating which source
21660 file, @var{line} is the line number within that file (where 1 is the
21661 first line in the file), @var{character} is the character position
21662 within the file (where 0 is the first character in the file) (for most
21663 debug formats this will necessarily point to the beginning of a line),
21664 @var{middle} is @samp{middle} if @var{addr} is in the middle of the
21665 line, or @samp{beg} if @var{addr} is at the beginning of the line, and
21666 @var{addr} is the address in the target program associated with the
21667 source which is being displayed.  @var{addr} is in the form @samp{0x}
21668 followed by one or more lowercase hex digits (note that this does not
21669 depend on the language).
21670
21671 @node GDB Bugs
21672 @chapter Reporting Bugs in @value{GDBN}
21673 @cindex bugs in @value{GDBN}
21674 @cindex reporting bugs in @value{GDBN}
21675
21676 Your bug reports play an essential role in making @value{GDBN} reliable.
21677
21678 Reporting a bug may help you by bringing a solution to your problem, or it
21679 may not.  But in any case the principal function of a bug report is to help
21680 the entire community by making the next version of @value{GDBN} work better.  Bug
21681 reports are your contribution to the maintenance of @value{GDBN}.
21682
21683 In order for a bug report to serve its purpose, you must include the
21684 information that enables us to fix the bug.
21685
21686 @menu
21687 * Bug Criteria::                Have you found a bug?
21688 * Bug Reporting::               How to report bugs
21689 @end menu
21690
21691 @node Bug Criteria
21692 @section Have You Found a Bug?
21693 @cindex bug criteria
21694
21695 If you are not sure whether you have found a bug, here are some guidelines:
21696
21697 @itemize @bullet
21698 @cindex fatal signal
21699 @cindex debugger crash
21700 @cindex crash of debugger
21701 @item
21702 If the debugger gets a fatal signal, for any input whatever, that is a
21703 @value{GDBN} bug.  Reliable debuggers never crash.
21704
21705 @cindex error on valid input
21706 @item
21707 If @value{GDBN} produces an error message for valid input, that is a
21708 bug.  (Note that if you're cross debugging, the problem may also be
21709 somewhere in the connection to the target.)
21710
21711 @cindex invalid input
21712 @item
21713 If @value{GDBN} does not produce an error message for invalid input,
21714 that is a bug.  However, you should note that your idea of
21715 ``invalid input'' might be our idea of ``an extension'' or ``support
21716 for traditional practice''.
21717
21718 @item
21719 If you are an experienced user of debugging tools, your suggestions
21720 for improvement of @value{GDBN} are welcome in any case.
21721 @end itemize
21722
21723 @node Bug Reporting
21724 @section How to Report Bugs
21725 @cindex bug reports
21726 @cindex @value{GDBN} bugs, reporting
21727
21728 A number of companies and individuals offer support for @sc{gnu} products.
21729 If you obtained @value{GDBN} from a support organization, we recommend you
21730 contact that organization first.
21731
21732 You can find contact information for many support companies and
21733 individuals in the file @file{etc/SERVICE} in the @sc{gnu} Emacs
21734 distribution.
21735 @c should add a web page ref...
21736
21737 In any event, we also recommend that you submit bug reports for
21738 @value{GDBN}.  The preferred method is to submit them directly using
21739 @uref{http://www.gnu.org/software/gdb/bugs/, @value{GDBN}'s Bugs web
21740 page}.  Alternatively, the @email{bug-gdb@@gnu.org, e-mail gateway} can
21741 be used.
21742
21743 @strong{Do not send bug reports to @samp{info-gdb}, or to
21744 @samp{help-gdb}, or to any newsgroups.}  Most users of @value{GDBN} do
21745 not want to receive bug reports.  Those that do have arranged to receive
21746 @samp{bug-gdb}.
21747
21748 The mailing list @samp{bug-gdb} has a newsgroup @samp{gnu.gdb.bug} which
21749 serves as a repeater.  The mailing list and the newsgroup carry exactly
21750 the same messages.  Often people think of posting bug reports to the
21751 newsgroup instead of mailing them.  This appears to work, but it has one
21752 problem which can be crucial: a newsgroup posting often lacks a mail
21753 path back to the sender.  Thus, if we need to ask for more information,
21754 we may be unable to reach you.  For this reason, it is better to send
21755 bug reports to the mailing list.
21756
21757 The fundamental principle of reporting bugs usefully is this:
21758 @strong{report all the facts}.  If you are not sure whether to state a
21759 fact or leave it out, state it!
21760
21761 Often people omit facts because they think they know what causes the
21762 problem and assume that some details do not matter.  Thus, you might
21763 assume that the name of the variable you use in an example does not matter.
21764 Well, probably it does not, but one cannot be sure.  Perhaps the bug is a
21765 stray memory reference which happens to fetch from the location where that
21766 name is stored in memory; perhaps, if the name were different, the contents
21767 of that location would fool the debugger into doing the right thing despite
21768 the bug.  Play it safe and give a specific, complete example.  That is the
21769 easiest thing for you to do, and the most helpful.
21770
21771 Keep in mind that the purpose of a bug report is to enable us to fix the
21772 bug.  It may be that the bug has been reported previously, but neither
21773 you nor we can know that unless your bug report is complete and
21774 self-contained.
21775
21776 Sometimes people give a few sketchy facts and ask, ``Does this ring a
21777 bell?''  Those bug reports are useless, and we urge everyone to
21778 @emph{refuse to respond to them} except to chide the sender to report
21779 bugs properly.
21780
21781 To enable us to fix the bug, you should include all these things:
21782
21783 @itemize @bullet
21784 @item
21785 The version of @value{GDBN}.  @value{GDBN} announces it if you start
21786 with no arguments; you can also print it at any time using @code{show
21787 version}.
21788
21789 Without this, we will not know whether there is any point in looking for
21790 the bug in the current version of @value{GDBN}.
21791
21792 @item
21793 The type of machine you are using, and the operating system name and
21794 version number.
21795
21796 @item
21797 What compiler (and its version) was used to compile @value{GDBN}---e.g.@:
21798 ``@value{GCC}--2.8.1''.
21799
21800 @item
21801 What compiler (and its version) was used to compile the program you are
21802 debugging---e.g.@:  ``@value{GCC}--2.8.1'', or ``HP92453-01 A.10.32.03 HP
21803 C Compiler''.  For @value{NGCC}, you can say @kbd{@value{GCC} --version}
21804 to get this information; for other compilers, see the documentation for
21805 those compilers.
21806
21807 @item
21808 The command arguments you gave the compiler to compile your example and
21809 observe the bug.  For example, did you use @samp{-O}?  To guarantee
21810 you will not omit something important, list them all.  A copy of the
21811 Makefile (or the output from make) is sufficient.
21812
21813 If we were to try to guess the arguments, we would probably guess wrong
21814 and then we might not encounter the bug.
21815
21816 @item
21817 A complete input script, and all necessary source files, that will
21818 reproduce the bug.
21819
21820 @item
21821 A description of what behavior you observe that you believe is
21822 incorrect.  For example, ``It gets a fatal signal.''
21823
21824 Of course, if the bug is that @value{GDBN} gets a fatal signal, then we
21825 will certainly notice it.  But if the bug is incorrect output, we might
21826 not notice unless it is glaringly wrong.  You might as well not give us
21827 a chance to make a mistake.
21828
21829 Even if the problem you experience is a fatal signal, you should still
21830 say so explicitly.  Suppose something strange is going on, such as, your
21831 copy of @value{GDBN} is out of synch, or you have encountered a bug in
21832 the C library on your system.  (This has happened!)  Your copy might
21833 crash and ours would not.  If you told us to expect a crash, then when
21834 ours fails to crash, we would know that the bug was not happening for
21835 us.  If you had not told us to expect a crash, then we would not be able
21836 to draw any conclusion from our observations.
21837
21838 @pindex script
21839 @cindex recording a session script
21840 To collect all this information, you can use a session recording program
21841 such as @command{script}, which is available on many Unix systems.
21842 Just run your @value{GDBN} session inside @command{script} and then
21843 include the @file{typescript} file with your bug report.
21844
21845 Another way to record a @value{GDBN} session is to run @value{GDBN}
21846 inside Emacs and then save the entire buffer to a file.
21847
21848 @item
21849 If you wish to suggest changes to the @value{GDBN} source, send us context
21850 diffs.  If you even discuss something in the @value{GDBN} source, refer to
21851 it by context, not by line number.
21852
21853 The line numbers in our development sources will not match those in your
21854 sources.  Your line numbers would convey no useful information to us.
21855
21856 @end itemize
21857
21858 Here are some things that are not necessary:
21859
21860 @itemize @bullet
21861 @item
21862 A description of the envelope of the bug.
21863
21864 Often people who encounter a bug spend a lot of time investigating
21865 which changes to the input file will make the bug go away and which
21866 changes will not affect it.
21867
21868 This is often time consuming and not very useful, because the way we
21869 will find the bug is by running a single example under the debugger
21870 with breakpoints, not by pure deduction from a series of examples.
21871 We recommend that you save your time for something else.
21872
21873 Of course, if you can find a simpler example to report @emph{instead}
21874 of the original one, that is a convenience for us.  Errors in the
21875 output will be easier to spot, running under the debugger will take
21876 less time, and so on.
21877
21878 However, simplification is not vital; if you do not want to do this,
21879 report the bug anyway and send us the entire test case you used.
21880
21881 @item
21882 A patch for the bug.
21883
21884 A patch for the bug does help us if it is a good one.  But do not omit
21885 the necessary information, such as the test case, on the assumption that
21886 a patch is all we need.  We might see problems with your patch and decide
21887 to fix the problem another way, or we might not understand it at all.
21888
21889 Sometimes with a program as complicated as @value{GDBN} it is very hard to
21890 construct an example that will make the program follow a certain path
21891 through the code.  If you do not send us the example, we will not be able
21892 to construct one, so we will not be able to verify that the bug is fixed.
21893
21894 And if we cannot understand what bug you are trying to fix, or why your
21895 patch should be an improvement, we will not install it.  A test case will
21896 help us to understand.
21897
21898 @item
21899 A guess about what the bug is or what it depends on.
21900
21901 Such guesses are usually wrong.  Even we cannot guess right about such
21902 things without first using the debugger to find the facts.
21903 @end itemize
21904
21905 @c The readline documentation is distributed with the readline code
21906 @c and consists of the two following files:
21907 @c     rluser.texinfo
21908 @c     inc-hist.texinfo
21909 @c Use -I with makeinfo to point to the appropriate directory,
21910 @c environment var TEXINPUTS with TeX.
21911 @include rluser.texi
21912 @include inc-hist.texinfo
21913
21914
21915 @node Formatting Documentation
21916 @appendix Formatting Documentation
21917
21918 @cindex @value{GDBN} reference card
21919 @cindex reference card
21920 The @value{GDBN} 4 release includes an already-formatted reference card, ready
21921 for printing with PostScript or Ghostscript, in the @file{gdb}
21922 subdirectory of the main source directory@footnote{In
21923 @file{gdb-@value{GDBVN}/gdb/refcard.ps} of the version @value{GDBVN}
21924 release.}.  If you can use PostScript or Ghostscript with your printer,
21925 you can print the reference card immediately with @file{refcard.ps}.
21926
21927 The release also includes the source for the reference card.  You
21928 can format it, using @TeX{}, by typing:
21929
21930 @smallexample
21931 make refcard.dvi
21932 @end smallexample
21933
21934 The @value{GDBN} reference card is designed to print in @dfn{landscape}
21935 mode on US ``letter'' size paper;
21936 that is, on a sheet 11 inches wide by 8.5 inches
21937 high.  You will need to specify this form of printing as an option to
21938 your @sc{dvi} output program.
21939
21940 @cindex documentation
21941
21942 All the documentation for @value{GDBN} comes as part of the machine-readable
21943 distribution.  The documentation is written in Texinfo format, which is
21944 a documentation system that uses a single source file to produce both
21945 on-line information and a printed manual.  You can use one of the Info
21946 formatting commands to create the on-line version of the documentation
21947 and @TeX{} (or @code{texi2roff}) to typeset the printed version.
21948
21949 @value{GDBN} includes an already formatted copy of the on-line Info
21950 version of this manual in the @file{gdb} subdirectory.  The main Info
21951 file is @file{gdb-@value{GDBVN}/gdb/gdb.info}, and it refers to
21952 subordinate files matching @samp{gdb.info*} in the same directory.  If
21953 necessary, you can print out these files, or read them with any editor;
21954 but they are easier to read using the @code{info} subsystem in @sc{gnu}
21955 Emacs or the standalone @code{info} program, available as part of the
21956 @sc{gnu} Texinfo distribution.
21957
21958 If you want to format these Info files yourself, you need one of the
21959 Info formatting programs, such as @code{texinfo-format-buffer} or
21960 @code{makeinfo}.
21961
21962 If you have @code{makeinfo} installed, and are in the top level
21963 @value{GDBN} source directory (@file{gdb-@value{GDBVN}}, in the case of
21964 version @value{GDBVN}), you can make the Info file by typing:
21965
21966 @smallexample
21967 cd gdb
21968 make gdb.info
21969 @end smallexample
21970
21971 If you want to typeset and print copies of this manual, you need @TeX{},
21972 a program to print its @sc{dvi} output files, and @file{texinfo.tex}, the
21973 Texinfo definitions file.
21974
21975 @TeX{} is a typesetting program; it does not print files directly, but
21976 produces output files called @sc{dvi} files.  To print a typeset
21977 document, you need a program to print @sc{dvi} files.  If your system
21978 has @TeX{} installed, chances are it has such a program.  The precise
21979 command to use depends on your system; @kbd{lpr -d} is common; another
21980 (for PostScript devices) is @kbd{dvips}.  The @sc{dvi} print command may
21981 require a file name without any extension or a @samp{.dvi} extension.
21982
21983 @TeX{} also requires a macro definitions file called
21984 @file{texinfo.tex}.  This file tells @TeX{} how to typeset a document
21985 written in Texinfo format.  On its own, @TeX{} cannot either read or
21986 typeset a Texinfo file.  @file{texinfo.tex} is distributed with GDB
21987 and is located in the @file{gdb-@var{version-number}/texinfo}
21988 directory.
21989
21990 If you have @TeX{} and a @sc{dvi} printer program installed, you can
21991 typeset and print this manual.  First switch to the @file{gdb}
21992 subdirectory of the main source directory (for example, to
21993 @file{gdb-@value{GDBVN}/gdb}) and type:
21994
21995 @smallexample
21996 make gdb.dvi
21997 @end smallexample
21998
21999 Then give @file{gdb.dvi} to your @sc{dvi} printing program.
22000
22001 @node Installing GDB
22002 @appendix Installing @value{GDBN}
22003 @cindex installation
22004
22005 @menu
22006 * Requirements::                Requirements for building @value{GDBN}
22007 * Running Configure::           Invoking the @value{GDBN} @file{configure} script
22008 * Separate Objdir::             Compiling @value{GDBN} in another directory
22009 * Config Names::                Specifying names for hosts and targets
22010 * Configure Options::           Summary of options for configure
22011 @end menu
22012
22013 @node Requirements
22014 @section Requirements for Building @value{GDBN}
22015 @cindex building @value{GDBN}, requirements for
22016
22017 Building @value{GDBN} requires various tools and packages to be available.
22018 Other packages will be used only if they are found.
22019
22020 @heading Tools/Packages Necessary for Building @value{GDBN}
22021 @table @asis
22022 @item ISO C90 compiler
22023 @value{GDBN} is written in ISO C90.  It should be buildable with any
22024 working C90 compiler, e.g.@: GCC.
22025
22026 @end table
22027
22028 @heading Tools/Packages Optional for Building @value{GDBN}
22029 @table @asis
22030 @item Expat
22031 @anchor{Expat}
22032 @value{GDBN} can use the Expat XML parsing library.  This library may be
22033 included with your operating system distribution; if it is not, you
22034 can get the latest version from @url{http://expat.sourceforge.net}.
22035 The @file{configure} script will search for this library in several
22036 standard locations; if it is installed in an unusual path, you can
22037 use the @option{--with-libexpat-prefix} option to specify its location.
22038
22039 Expat is used for remote protocol memory maps (@pxref{Memory Map Format})
22040 and for target descriptions (@pxref{Target Descriptions}).
22041
22042 @end table
22043
22044 @node Running Configure
22045 @section Invoking the @value{GDBN} @file{configure} Script
22046 @cindex configuring @value{GDBN}
22047 @value{GDBN} comes with a @file{configure} script that automates the process
22048 of preparing @value{GDBN} for installation; you can then use @code{make} to
22049 build the @code{gdb} program.
22050 @iftex
22051 @c irrelevant in info file; it's as current as the code it lives with.
22052 @footnote{If you have a more recent version of @value{GDBN} than @value{GDBVN},
22053 look at the @file{README} file in the sources; we may have improved the
22054 installation procedures since publishing this manual.}
22055 @end iftex
22056
22057 The @value{GDBN} distribution includes all the source code you need for
22058 @value{GDBN} in a single directory, whose name is usually composed by
22059 appending the version number to @samp{gdb}.
22060
22061 For example, the @value{GDBN} version @value{GDBVN} distribution is in the
22062 @file{gdb-@value{GDBVN}} directory.  That directory contains:
22063
22064 @table @code
22065 @item gdb-@value{GDBVN}/configure @r{(and supporting files)}
22066 script for configuring @value{GDBN} and all its supporting libraries
22067
22068 @item gdb-@value{GDBVN}/gdb
22069 the source specific to @value{GDBN} itself
22070
22071 @item gdb-@value{GDBVN}/bfd
22072 source for the Binary File Descriptor library
22073
22074 @item gdb-@value{GDBVN}/include
22075 @sc{gnu} include files
22076
22077 @item gdb-@value{GDBVN}/libiberty
22078 source for the @samp{-liberty} free software library
22079
22080 @item gdb-@value{GDBVN}/opcodes
22081 source for the library of opcode tables and disassemblers
22082
22083 @item gdb-@value{GDBVN}/readline
22084 source for the @sc{gnu} command-line interface
22085
22086 @item gdb-@value{GDBVN}/glob
22087 source for the @sc{gnu} filename pattern-matching subroutine
22088
22089 @item gdb-@value{GDBVN}/mmalloc
22090 source for the @sc{gnu} memory-mapped malloc package
22091 @end table
22092
22093 The simplest way to configure and build @value{GDBN} is to run @file{configure}
22094 from the @file{gdb-@var{version-number}} source directory, which in
22095 this example is the @file{gdb-@value{GDBVN}} directory.
22096
22097 First switch to the @file{gdb-@var{version-number}} source directory
22098 if you are not already in it; then run @file{configure}.  Pass the
22099 identifier for the platform on which @value{GDBN} will run as an
22100 argument.
22101
22102 For example:
22103
22104 @smallexample
22105 cd gdb-@value{GDBVN}
22106 ./configure @var{host}
22107 make
22108 @end smallexample
22109
22110 @noindent
22111 where @var{host} is an identifier such as @samp{sun4} or
22112 @samp{decstation}, that identifies the platform where @value{GDBN} will run.
22113 (You can often leave off @var{host}; @file{configure} tries to guess the
22114 correct value by examining your system.)
22115
22116 Running @samp{configure @var{host}} and then running @code{make} builds the
22117 @file{bfd}, @file{readline}, @file{mmalloc}, and @file{libiberty}
22118 libraries, then @code{gdb} itself.  The configured source files, and the
22119 binaries, are left in the corresponding source directories.
22120
22121 @need 750
22122 @file{configure} is a Bourne-shell (@code{/bin/sh}) script; if your
22123 system does not recognize this automatically when you run a different
22124 shell, you may need to run @code{sh} on it explicitly:
22125
22126 @smallexample
22127 sh configure @var{host}
22128 @end smallexample
22129
22130 If you run @file{configure} from a directory that contains source
22131 directories for multiple libraries or programs, such as the
22132 @file{gdb-@value{GDBVN}} source directory for version @value{GDBVN},
22133 @file{configure}
22134 creates configuration files for every directory level underneath (unless
22135 you tell it not to, with the @samp{--norecursion} option).
22136
22137 You should run the @file{configure} script from the top directory in the
22138 source tree, the @file{gdb-@var{version-number}} directory.  If you run
22139 @file{configure} from one of the subdirectories, you will configure only
22140 that subdirectory.  That is usually not what you want.  In particular,
22141 if you run the first @file{configure} from the @file{gdb} subdirectory
22142 of the @file{gdb-@var{version-number}} directory, you will omit the
22143 configuration of @file{bfd}, @file{readline}, and other sibling
22144 directories of the @file{gdb} subdirectory.  This leads to build errors
22145 about missing include files such as @file{bfd/bfd.h}.
22146
22147 You can install @code{@value{GDBP}} anywhere; it has no hardwired paths.
22148 However, you should make sure that the shell on your path (named by
22149 the @samp{SHELL} environment variable) is publicly readable.  Remember
22150 that @value{GDBN} uses the shell to start your program---some systems refuse to
22151 let @value{GDBN} debug child processes whose programs are not readable.
22152
22153 @node Separate Objdir
22154 @section Compiling @value{GDBN} in Another Directory
22155
22156 If you want to run @value{GDBN} versions for several host or target machines,
22157 you need a different @code{gdb} compiled for each combination of
22158 host and target.  @file{configure} is designed to make this easy by
22159 allowing you to generate each configuration in a separate subdirectory,
22160 rather than in the source directory.  If your @code{make} program
22161 handles the @samp{VPATH} feature (@sc{gnu} @code{make} does), running
22162 @code{make} in each of these directories builds the @code{gdb}
22163 program specified there.
22164
22165 To build @code{gdb} in a separate directory, run @file{configure}
22166 with the @samp{--srcdir} option to specify where to find the source.
22167 (You also need to specify a path to find @file{configure}
22168 itself from your working directory.  If the path to @file{configure}
22169 would be the same as the argument to @samp{--srcdir}, you can leave out
22170 the @samp{--srcdir} option; it is assumed.)
22171
22172 For example, with version @value{GDBVN}, you can build @value{GDBN} in a
22173 separate directory for a Sun 4 like this:
22174
22175 @smallexample
22176 @group
22177 cd gdb-@value{GDBVN}
22178 mkdir ../gdb-sun4
22179 cd ../gdb-sun4
22180 ../gdb-@value{GDBVN}/configure sun4
22181 make
22182 @end group
22183 @end smallexample
22184
22185 When @file{configure} builds a configuration using a remote source
22186 directory, it creates a tree for the binaries with the same structure
22187 (and using the same names) as the tree under the source directory.  In
22188 the example, you'd find the Sun 4 library @file{libiberty.a} in the
22189 directory @file{gdb-sun4/libiberty}, and @value{GDBN} itself in
22190 @file{gdb-sun4/gdb}.
22191
22192 Make sure that your path to the @file{configure} script has just one
22193 instance of @file{gdb} in it.  If your path to @file{configure} looks
22194 like @file{../gdb-@value{GDBVN}/gdb/configure}, you are configuring only
22195 one subdirectory of @value{GDBN}, not the whole package.  This leads to
22196 build errors about missing include files such as @file{bfd/bfd.h}.
22197
22198 One popular reason to build several @value{GDBN} configurations in separate
22199 directories is to configure @value{GDBN} for cross-compiling (where
22200 @value{GDBN} runs on one machine---the @dfn{host}---while debugging
22201 programs that run on another machine---the @dfn{target}).
22202 You specify a cross-debugging target by
22203 giving the @samp{--target=@var{target}} option to @file{configure}.
22204
22205 When you run @code{make} to build a program or library, you must run
22206 it in a configured directory---whatever directory you were in when you
22207 called @file{configure} (or one of its subdirectories).
22208
22209 The @code{Makefile} that @file{configure} generates in each source
22210 directory also runs recursively.  If you type @code{make} in a source
22211 directory such as @file{gdb-@value{GDBVN}} (or in a separate configured
22212 directory configured with @samp{--srcdir=@var{dirname}/gdb-@value{GDBVN}}), you
22213 will build all the required libraries, and then build GDB.
22214
22215 When you have multiple hosts or targets configured in separate
22216 directories, you can run @code{make} on them in parallel (for example,
22217 if they are NFS-mounted on each of the hosts); they will not interfere
22218 with each other.
22219
22220 @node Config Names
22221 @section Specifying Names for Hosts and Targets
22222
22223 The specifications used for hosts and targets in the @file{configure}
22224 script are based on a three-part naming scheme, but some short predefined
22225 aliases are also supported.  The full naming scheme encodes three pieces
22226 of information in the following pattern:
22227
22228 @smallexample
22229 @var{architecture}-@var{vendor}-@var{os}
22230 @end smallexample
22231
22232 For example, you can use the alias @code{sun4} as a @var{host} argument,
22233 or as the value for @var{target} in a @code{--target=@var{target}}
22234 option.  The equivalent full name is @samp{sparc-sun-sunos4}.
22235
22236 The @file{configure} script accompanying @value{GDBN} does not provide
22237 any query facility to list all supported host and target names or
22238 aliases.  @file{configure} calls the Bourne shell script
22239 @code{config.sub} to map abbreviations to full names; you can read the
22240 script, if you wish, or you can use it to test your guesses on
22241 abbreviations---for example:
22242
22243 @smallexample
22244 % sh config.sub i386-linux
22245 i386-pc-linux-gnu
22246 % sh config.sub alpha-linux
22247 alpha-unknown-linux-gnu
22248 % sh config.sub hp9k700
22249 hppa1.1-hp-hpux
22250 % sh config.sub sun4
22251 sparc-sun-sunos4.1.1
22252 % sh config.sub sun3
22253 m68k-sun-sunos4.1.1
22254 % sh config.sub i986v
22255 Invalid configuration `i986v': machine `i986v' not recognized
22256 @end smallexample
22257
22258 @noindent
22259 @code{config.sub} is also distributed in the @value{GDBN} source
22260 directory (@file{gdb-@value{GDBVN}}, for version @value{GDBVN}).
22261
22262 @node Configure Options
22263 @section @file{configure} Options
22264
22265 Here is a summary of the @file{configure} options and arguments that
22266 are most often useful for building @value{GDBN}.  @file{configure} also has
22267 several other options not listed here.  @inforef{What Configure
22268 Does,,configure.info}, for a full explanation of @file{configure}.
22269
22270 @smallexample
22271 configure @r{[}--help@r{]}
22272           @r{[}--prefix=@var{dir}@r{]}
22273           @r{[}--exec-prefix=@var{dir}@r{]}
22274           @r{[}--srcdir=@var{dirname}@r{]}
22275           @r{[}--norecursion@r{]} @r{[}--rm@r{]}
22276           @r{[}--target=@var{target}@r{]}
22277           @var{host}
22278 @end smallexample
22279
22280 @noindent
22281 You may introduce options with a single @samp{-} rather than
22282 @samp{--} if you prefer; but you may abbreviate option names if you use
22283 @samp{--}.
22284
22285 @table @code
22286 @item --help
22287 Display a quick summary of how to invoke @file{configure}.
22288
22289 @item --prefix=@var{dir}
22290 Configure the source to install programs and files under directory
22291 @file{@var{dir}}.
22292
22293 @item --exec-prefix=@var{dir}
22294 Configure the source to install programs under directory
22295 @file{@var{dir}}.
22296
22297 @c avoid splitting the warning from the explanation:
22298 @need 2000
22299 @item --srcdir=@var{dirname}
22300 @strong{Warning: using this option requires @sc{gnu} @code{make}, or another
22301 @code{make} that implements the @code{VPATH} feature.}@*
22302 Use this option to make configurations in directories separate from the
22303 @value{GDBN} source directories.  Among other things, you can use this to
22304 build (or maintain) several configurations simultaneously, in separate
22305 directories.  @file{configure} writes configuration-specific files in
22306 the current directory, but arranges for them to use the source in the
22307 directory @var{dirname}.  @file{configure} creates directories under
22308 the working directory in parallel to the source directories below
22309 @var{dirname}.
22310
22311 @item --norecursion
22312 Configure only the directory level where @file{configure} is executed; do not
22313 propagate configuration to subdirectories.
22314
22315 @item --target=@var{target}
22316 Configure @value{GDBN} for cross-debugging programs running on the specified
22317 @var{target}.  Without this option, @value{GDBN} is configured to debug
22318 programs that run on the same machine (@var{host}) as @value{GDBN} itself.
22319
22320 There is no convenient way to generate a list of all available targets.
22321
22322 @item @var{host} @dots{}
22323 Configure @value{GDBN} to run on the specified @var{host}.
22324
22325 There is no convenient way to generate a list of all available hosts.
22326 @end table
22327
22328 There are many other options available as well, but they are generally
22329 needed for special purposes only.
22330
22331 @node Maintenance Commands
22332 @appendix Maintenance Commands
22333 @cindex maintenance commands
22334 @cindex internal commands
22335
22336 In addition to commands intended for @value{GDBN} users, @value{GDBN}
22337 includes a number of commands intended for @value{GDBN} developers,
22338 that are not documented elsewhere in this manual.  These commands are
22339 provided here for reference.  (For commands that turn on debugging
22340 messages, see @ref{Debugging Output}.)
22341
22342 @table @code
22343 @kindex maint agent
22344 @item maint agent @var{expression}
22345 Translate the given @var{expression} into remote agent bytecodes.
22346 This command is useful for debugging the Agent Expression mechanism
22347 (@pxref{Agent Expressions}).
22348
22349 @kindex maint info breakpoints
22350 @item @anchor{maint info breakpoints}maint info breakpoints
22351 Using the same format as @samp{info breakpoints}, display both the
22352 breakpoints you've set explicitly, and those @value{GDBN} is using for
22353 internal purposes.  Internal breakpoints are shown with negative
22354 breakpoint numbers.  The type column identifies what kind of breakpoint
22355 is shown:
22356
22357 @table @code
22358 @item breakpoint
22359 Normal, explicitly set breakpoint.
22360
22361 @item watchpoint
22362 Normal, explicitly set watchpoint.
22363
22364 @item longjmp
22365 Internal breakpoint, used to handle correctly stepping through
22366 @code{longjmp} calls.
22367
22368 @item longjmp resume
22369 Internal breakpoint at the target of a @code{longjmp}.
22370
22371 @item until
22372 Temporary internal breakpoint used by the @value{GDBN} @code{until} command.
22373
22374 @item finish
22375 Temporary internal breakpoint used by the @value{GDBN} @code{finish} command.
22376
22377 @item shlib events
22378 Shared library events.
22379
22380 @end table
22381
22382 @kindex maint check-symtabs
22383 @item maint check-symtabs
22384 Check the consistency of psymtabs and symtabs.
22385
22386 @kindex maint cplus first_component
22387 @item maint cplus first_component @var{name}
22388 Print the first C@t{++} class/namespace component of @var{name}.
22389
22390 @kindex maint cplus namespace
22391 @item maint cplus namespace
22392 Print the list of possible C@t{++} namespaces.
22393
22394 @kindex maint demangle
22395 @item maint demangle @var{name}
22396 Demangle a C@t{++} or Objective-C mangled @var{name}.
22397
22398 @kindex maint deprecate
22399 @kindex maint undeprecate
22400 @cindex deprecated commands
22401 @item maint deprecate @var{command} @r{[}@var{replacement}@r{]}
22402 @itemx maint undeprecate @var{command}
22403 Deprecate or undeprecate the named @var{command}.  Deprecated commands
22404 cause @value{GDBN} to issue a warning when you use them.  The optional
22405 argument @var{replacement} says which newer command should be used in
22406 favor of the deprecated one; if it is given, @value{GDBN} will mention
22407 the replacement as part of the warning.
22408
22409 @kindex maint dump-me
22410 @item maint dump-me
22411 @cindex @code{SIGQUIT} signal, dump core of @value{GDBN}
22412 Cause a fatal signal in the debugger and force it to dump its core.
22413 This is supported only on systems which support aborting a program
22414 with the @code{SIGQUIT} signal.
22415
22416 @kindex maint internal-error
22417 @kindex maint internal-warning
22418 @item maint internal-error @r{[}@var{message-text}@r{]}
22419 @itemx maint internal-warning @r{[}@var{message-text}@r{]}
22420 Cause @value{GDBN} to call the internal function @code{internal_error}
22421 or @code{internal_warning} and hence behave as though an internal error
22422 or internal warning has been detected.  In addition to reporting the
22423 internal problem, these functions give the user the opportunity to
22424 either quit @value{GDBN} or create a core file of the current
22425 @value{GDBN} session.
22426
22427 These commands take an optional parameter @var{message-text} that is
22428 used as the text of the error or warning message.
22429
22430 Here's an example of using @code{internal-error}:
22431
22432 @smallexample
22433 (@value{GDBP}) @kbd{maint internal-error testing, 1, 2}
22434 @dots{}/maint.c:121: internal-error: testing, 1, 2
22435 A problem internal to GDB has been detected.  Further
22436 debugging may prove unreliable.
22437 Quit this debugging session? (y or n) @kbd{n}
22438 Create a core file? (y or n) @kbd{n}
22439 (@value{GDBP})
22440 @end smallexample
22441
22442 @kindex maint packet
22443 @item maint packet @var{text}
22444 If @value{GDBN} is talking to an inferior via the serial protocol,
22445 then this command sends the string @var{text} to the inferior, and
22446 displays the response packet.  @value{GDBN} supplies the initial
22447 @samp{$} character, the terminating @samp{#} character, and the
22448 checksum.
22449
22450 @kindex maint print architecture
22451 @item maint print architecture @r{[}@var{file}@r{]}
22452 Print the entire architecture configuration.  The optional argument
22453 @var{file} names the file where the output goes.
22454
22455 @kindex maint print dummy-frames
22456 @item maint print dummy-frames
22457 Prints the contents of @value{GDBN}'s internal dummy-frame stack.
22458
22459 @smallexample
22460 (@value{GDBP}) @kbd{b add}
22461 @dots{}
22462 (@value{GDBP}) @kbd{print add(2,3)}
22463 Breakpoint 2, add (a=2, b=3) at @dots{}
22464 58        return (a + b);
22465 The program being debugged stopped while in a function called from GDB.
22466 @dots{}
22467 (@value{GDBP}) @kbd{maint print dummy-frames}
22468 0x1a57c80: pc=0x01014068 fp=0x0200bddc sp=0x0200bdd6
22469  top=0x0200bdd4 id=@{stack=0x200bddc,code=0x101405c@}
22470  call_lo=0x01014000 call_hi=0x01014001
22471 (@value{GDBP})
22472 @end smallexample
22473
22474 Takes an optional file parameter.
22475
22476 @kindex maint print registers
22477 @kindex maint print raw-registers
22478 @kindex maint print cooked-registers
22479 @kindex maint print register-groups
22480 @item maint print registers @r{[}@var{file}@r{]}
22481 @itemx maint print raw-registers @r{[}@var{file}@r{]}
22482 @itemx maint print cooked-registers @r{[}@var{file}@r{]}
22483 @itemx maint print register-groups @r{[}@var{file}@r{]}
22484 Print @value{GDBN}'s internal register data structures.
22485
22486 The command @code{maint print raw-registers} includes the contents of
22487 the raw register cache; the command @code{maint print cooked-registers}
22488 includes the (cooked) value of all registers; and the command
22489 @code{maint print register-groups} includes the groups that each
22490 register is a member of.  @xref{Registers,, Registers, gdbint,
22491 @value{GDBN} Internals}.
22492
22493 These commands take an optional parameter, a file name to which to
22494 write the information.
22495
22496 @kindex maint print reggroups
22497 @item maint print reggroups @r{[}@var{file}@r{]}
22498 Print @value{GDBN}'s internal register group data structures.  The
22499 optional argument @var{file} tells to what file to write the
22500 information.
22501
22502 The register groups info looks like this:
22503
22504 @smallexample
22505 (@value{GDBP}) @kbd{maint print reggroups}
22506  Group      Type
22507  general    user
22508  float      user
22509  all        user
22510  vector     user
22511  system     user
22512  save       internal
22513  restore    internal
22514 @end smallexample
22515
22516 @kindex flushregs
22517 @item flushregs
22518 This command forces @value{GDBN} to flush its internal register cache.
22519
22520 @kindex maint print objfiles
22521 @cindex info for known object files
22522 @item maint print objfiles
22523 Print a dump of all known object files.  For each object file, this
22524 command prints its name, address in memory, and all of its psymtabs
22525 and symtabs.
22526
22527 @kindex maint print statistics
22528 @cindex bcache statistics
22529 @item maint print statistics
22530 This command prints, for each object file in the program, various data
22531 about that object file followed by the byte cache (@dfn{bcache})
22532 statistics for the object file.  The objfile data includes the number
22533 of minimal, partial, full, and stabs symbols, the number of types
22534 defined by the objfile, the number of as yet unexpanded psym tables,
22535 the number of line tables and string tables, and the amount of memory
22536 used by the various tables.  The bcache statistics include the counts,
22537 sizes, and counts of duplicates of all and unique objects, max,
22538 average, and median entry size, total memory used and its overhead and
22539 savings, and various measures of the hash table size and chain
22540 lengths.
22541
22542 @kindex maint print target-stack
22543 @cindex target stack description
22544 @item maint print target-stack
22545 A @dfn{target} is an interface between the debugger and a particular
22546 kind of file or process.  Targets can be stacked in @dfn{strata},
22547 so that more than one target can potentially respond to a request.
22548 In particular, memory accesses will walk down the stack of targets
22549 until they find a target that is interested in handling that particular
22550 address.
22551
22552 This command prints a short description of each layer that was pushed on
22553 the @dfn{target stack}, starting from the top layer down to the bottom one.
22554
22555 @kindex maint print type
22556 @cindex type chain of a data type
22557 @item maint print type @var{expr}
22558 Print the type chain for a type specified by @var{expr}.  The argument
22559 can be either a type name or a symbol.  If it is a symbol, the type of
22560 that symbol is described.  The type chain produced by this command is
22561 a recursive definition of the data type as stored in @value{GDBN}'s
22562 data structures, including its flags and contained types.
22563
22564 @kindex maint set dwarf2 max-cache-age
22565 @kindex maint show dwarf2 max-cache-age
22566 @item maint set dwarf2 max-cache-age
22567 @itemx maint show dwarf2 max-cache-age
22568 Control the DWARF 2 compilation unit cache.
22569
22570 @cindex DWARF 2 compilation units cache
22571 In object files with inter-compilation-unit references, such as those
22572 produced by the GCC option @samp{-feliminate-dwarf2-dups}, the DWARF 2
22573 reader needs to frequently refer to previously read compilation units.
22574 This setting controls how long a compilation unit will remain in the
22575 cache if it is not referenced.  A higher limit means that cached
22576 compilation units will be stored in memory longer, and more total
22577 memory will be used.  Setting it to zero disables caching, which will
22578 slow down @value{GDBN} startup, but reduce memory consumption.
22579
22580 @kindex maint set profile
22581 @kindex maint show profile
22582 @cindex profiling GDB
22583 @item maint set profile
22584 @itemx maint show profile
22585 Control profiling of @value{GDBN}.
22586
22587 Profiling will be disabled until you use the @samp{maint set profile}
22588 command to enable it.  When you enable profiling, the system will begin
22589 collecting timing and execution count data; when you disable profiling or
22590 exit @value{GDBN}, the results will be written to a log file.  Remember that
22591 if you use profiling, @value{GDBN} will overwrite the profiling log file
22592 (often called @file{gmon.out}).  If you have a record of important profiling
22593 data in a @file{gmon.out} file, be sure to move it to a safe location.
22594
22595 Configuring with @samp{--enable-profiling} arranges for @value{GDBN} to be
22596 compiled with the @samp{-pg} compiler option.
22597
22598 @kindex maint show-debug-regs
22599 @cindex x86 hardware debug registers
22600 @item maint show-debug-regs
22601 Control whether to show variables that mirror the x86 hardware debug
22602 registers.  Use @code{ON} to enable, @code{OFF} to disable.  If
22603 enabled, the debug registers values are shown when @value{GDBN} inserts or
22604 removes a hardware breakpoint or watchpoint, and when the inferior
22605 triggers a hardware-assisted breakpoint or watchpoint.
22606
22607 @kindex maint space
22608 @cindex memory used by commands
22609 @item maint space
22610 Control whether to display memory usage for each command.  If set to a
22611 nonzero value, @value{GDBN} will display how much memory each command
22612 took, following the command's own output.  This can also be requested
22613 by invoking @value{GDBN} with the @option{--statistics} command-line
22614 switch (@pxref{Mode Options}).
22615
22616 @kindex maint time
22617 @cindex time of command execution
22618 @item maint time
22619 Control whether to display the execution time for each command.  If
22620 set to a nonzero value, @value{GDBN} will display how much time it
22621 took to execute each command, following the command's own output.
22622 This can also be requested by invoking @value{GDBN} with the
22623 @option{--statistics} command-line switch (@pxref{Mode Options}).
22624
22625 @kindex maint translate-address
22626 @item maint translate-address @r{[}@var{section}@r{]} @var{addr}
22627 Find the symbol stored at the location specified by the address
22628 @var{addr} and an optional section name @var{section}.  If found,
22629 @value{GDBN} prints the name of the closest symbol and an offset from
22630 the symbol's location to the specified address.  This is similar to
22631 the @code{info address} command (@pxref{Symbols}), except that this
22632 command also allows to find symbols in other sections.
22633
22634 @end table
22635
22636 The following command is useful for non-interactive invocations of
22637 @value{GDBN}, such as in the test suite.
22638
22639 @table @code
22640 @item set watchdog @var{nsec}
22641 @kindex set watchdog
22642 @cindex watchdog timer
22643 @cindex timeout for commands
22644 Set the maximum number of seconds @value{GDBN} will wait for the
22645 target operation to finish.  If this time expires, @value{GDBN}
22646 reports and error and the command is aborted.
22647
22648 @item show watchdog
22649 Show the current setting of the target wait timeout.
22650 @end table
22651
22652 @node Remote Protocol
22653 @appendix @value{GDBN} Remote Serial Protocol
22654
22655 @menu
22656 * Overview::
22657 * Packets::
22658 * Stop Reply Packets::
22659 * General Query Packets::
22660 * Register Packet Format::
22661 * Tracepoint Packets::
22662 * Interrupts::
22663 * Examples::
22664 * File-I/O Remote Protocol Extension::
22665 * Library List Format::
22666 * Memory Map Format::
22667 @end menu
22668
22669 @node Overview
22670 @section Overview
22671
22672 There may be occasions when you need to know something about the
22673 protocol---for example, if there is only one serial port to your target
22674 machine, you might want your program to do something special if it
22675 recognizes a packet meant for @value{GDBN}.
22676
22677 In the examples below, @samp{->} and @samp{<-} are used to indicate
22678 transmitted and received data, respectively.
22679
22680 @cindex protocol, @value{GDBN} remote serial
22681 @cindex serial protocol, @value{GDBN} remote
22682 @cindex remote serial protocol
22683 All @value{GDBN} commands and responses (other than acknowledgments) are
22684 sent as a @var{packet}.  A @var{packet} is introduced with the character
22685 @samp{$}, the actual @var{packet-data}, and the terminating character
22686 @samp{#} followed by a two-digit @var{checksum}:
22687
22688 @smallexample
22689 @code{$}@var{packet-data}@code{#}@var{checksum}
22690 @end smallexample
22691 @noindent
22692
22693 @cindex checksum, for @value{GDBN} remote
22694 @noindent
22695 The two-digit @var{checksum} is computed as the modulo 256 sum of all
22696 characters between the leading @samp{$} and the trailing @samp{#} (an
22697 eight bit unsigned checksum).
22698
22699 Implementors should note that prior to @value{GDBN} 5.0 the protocol
22700 specification also included an optional two-digit @var{sequence-id}:
22701
22702 @smallexample
22703 @code{$}@var{sequence-id}@code{:}@var{packet-data}@code{#}@var{checksum}
22704 @end smallexample
22705
22706 @cindex sequence-id, for @value{GDBN} remote
22707 @noindent
22708 That @var{sequence-id} was appended to the acknowledgment.  @value{GDBN}
22709 has never output @var{sequence-id}s.  Stubs that handle packets added
22710 since @value{GDBN} 5.0 must not accept @var{sequence-id}.
22711
22712 @cindex acknowledgment, for @value{GDBN} remote
22713 When either the host or the target machine receives a packet, the first
22714 response expected is an acknowledgment: either @samp{+} (to indicate
22715 the package was received correctly) or @samp{-} (to request
22716 retransmission):
22717
22718 @smallexample
22719 -> @code{$}@var{packet-data}@code{#}@var{checksum}
22720 <- @code{+}
22721 @end smallexample
22722 @noindent
22723
22724 The host (@value{GDBN}) sends @var{command}s, and the target (the
22725 debugging stub incorporated in your program) sends a @var{response}.  In
22726 the case of step and continue @var{command}s, the response is only sent
22727 when the operation has completed (the target has again stopped).
22728
22729 @var{packet-data} consists of a sequence of characters with the
22730 exception of @samp{#} and @samp{$} (see @samp{X} packet for additional
22731 exceptions).
22732
22733 @cindex remote protocol, field separator
22734 Fields within the packet should be separated using @samp{,} @samp{;} or
22735 @samp{:}.  Except where otherwise noted all numbers are represented in
22736 @sc{hex} with leading zeros suppressed.
22737
22738 Implementors should note that prior to @value{GDBN} 5.0, the character
22739 @samp{:} could not appear as the third character in a packet (as it
22740 would potentially conflict with the @var{sequence-id}).
22741
22742 @cindex remote protocol, binary data
22743 @anchor{Binary Data}
22744 Binary data in most packets is encoded either as two hexadecimal
22745 digits per byte of binary data.  This allowed the traditional remote
22746 protocol to work over connections which were only seven-bit clean.
22747 Some packets designed more recently assume an eight-bit clean
22748 connection, and use a more efficient encoding to send and receive
22749 binary data.
22750
22751 The binary data representation uses @code{7d} (@sc{ascii} @samp{@}})
22752 as an escape character.  Any escaped byte is transmitted as the escape
22753 character followed by the original character XORed with @code{0x20}.
22754 For example, the byte @code{0x7d} would be transmitted as the two
22755 bytes @code{0x7d 0x5d}.  The bytes @code{0x23} (@sc{ascii} @samp{#}),
22756 @code{0x24} (@sc{ascii} @samp{$}), and @code{0x7d} (@sc{ascii}
22757 @samp{@}}) must always be escaped.  Responses sent by the stub
22758 must also escape @code{0x2a} (@sc{ascii} @samp{*}), so that it
22759 is not interpreted as the start of a run-length encoded sequence
22760 (described next).
22761
22762 Response @var{data} can be run-length encoded to save space.  A @samp{*}
22763 means that the next character is an @sc{ascii} encoding giving a repeat count
22764 which stands for that many repetitions of the character preceding the
22765 @samp{*}.  The encoding is @code{n+29}, yielding a printable character
22766 where @code{n >=3} (which is where rle starts to win).  The printable
22767 characters @samp{$}, @samp{#}, @samp{+} and @samp{-} or with a numeric
22768 value greater than 126 should not be used.
22769
22770 So:
22771 @smallexample
22772 "@code{0* }"
22773 @end smallexample
22774 @noindent
22775 means the same as "0000".
22776
22777 The error response returned for some packets includes a two character
22778 error number.  That number is not well defined.
22779
22780 @cindex empty response, for unsupported packets
22781 For any @var{command} not supported by the stub, an empty response
22782 (@samp{$#00}) should be returned.  That way it is possible to extend the
22783 protocol.  A newer @value{GDBN} can tell if a packet is supported based
22784 on that response.
22785
22786 A stub is required to support the @samp{g}, @samp{G}, @samp{m}, @samp{M},
22787 @samp{c}, and @samp{s} @var{command}s.  All other @var{command}s are
22788 optional.
22789
22790 @node Packets
22791 @section Packets
22792
22793 The following table provides a complete list of all currently defined
22794 @var{command}s and their corresponding response @var{data}.
22795 @xref{File-I/O Remote Protocol Extension}, for details about the File
22796 I/O extension of the remote protocol.
22797
22798 Each packet's description has a template showing the packet's overall
22799 syntax, followed by an explanation of the packet's meaning.  We
22800 include spaces in some of the templates for clarity; these are not
22801 part of the packet's syntax.  No @value{GDBN} packet uses spaces to
22802 separate its components.  For example, a template like @samp{foo
22803 @var{bar} @var{baz}} describes a packet beginning with the three ASCII
22804 bytes @samp{foo}, followed by a @var{bar}, followed directly by a
22805 @var{baz}.  @value{GDBN} does not transmit a space character between the
22806 @samp{foo} and the @var{bar}, or between the @var{bar} and the
22807 @var{baz}.
22808
22809 Note that all packet forms beginning with an upper- or lower-case
22810 letter, other than those described here, are reserved for future use.
22811
22812 Here are the packet descriptions.
22813
22814 @table @samp
22815
22816 @item !
22817 @cindex @samp{!} packet
22818 Enable extended mode.  In extended mode, the remote server is made
22819 persistent.  The @samp{R} packet is used to restart the program being
22820 debugged.
22821
22822 Reply:
22823 @table @samp
22824 @item OK
22825 The remote target both supports and has enabled extended mode.
22826 @end table
22827
22828 @item ?
22829 @cindex @samp{?} packet
22830 Indicate the reason the target halted.  The reply is the same as for
22831 step and continue.
22832
22833 Reply:
22834 @xref{Stop Reply Packets}, for the reply specifications.
22835
22836 @item A @var{arglen},@var{argnum},@var{arg},@dots{}
22837 @cindex @samp{A} packet
22838 Initialized @code{argv[]} array passed into program. @var{arglen}
22839 specifies the number of bytes in the hex encoded byte stream
22840 @var{arg}.  See @code{gdbserver} for more details.
22841
22842 Reply:
22843 @table @samp
22844 @item OK
22845 The arguments were set.
22846 @item E @var{NN}
22847 An error occurred.
22848 @end table
22849
22850 @item b @var{baud}
22851 @cindex @samp{b} packet
22852 (Don't use this packet; its behavior is not well-defined.)
22853 Change the serial line speed to @var{baud}.
22854
22855 JTC: @emph{When does the transport layer state change?  When it's
22856 received, or after the ACK is transmitted.  In either case, there are
22857 problems if the command or the acknowledgment packet is dropped.}
22858
22859 Stan: @emph{If people really wanted to add something like this, and get
22860 it working for the first time, they ought to modify ser-unix.c to send
22861 some kind of out-of-band message to a specially-setup stub and have the
22862 switch happen "in between" packets, so that from remote protocol's point
22863 of view, nothing actually happened.}
22864
22865 @item B @var{addr},@var{mode}
22866 @cindex @samp{B} packet
22867 Set (@var{mode} is @samp{S}) or clear (@var{mode} is @samp{C}) a
22868 breakpoint at @var{addr}.
22869
22870 Don't use this packet.  Use the @samp{Z} and @samp{z} packets instead
22871 (@pxref{insert breakpoint or watchpoint packet}).
22872
22873 @item c @r{[}@var{addr}@r{]}
22874 @cindex @samp{c} packet
22875 Continue.  @var{addr} is address to resume.  If @var{addr} is omitted,
22876 resume at current address.
22877
22878 Reply:
22879 @xref{Stop Reply Packets}, for the reply specifications.
22880
22881 @item C @var{sig}@r{[};@var{addr}@r{]}
22882 @cindex @samp{C} packet
22883 Continue with signal @var{sig} (hex signal number).  If
22884 @samp{;@var{addr}} is omitted, resume at same address.
22885
22886 Reply:
22887 @xref{Stop Reply Packets}, for the reply specifications.
22888
22889 @item d
22890 @cindex @samp{d} packet
22891 Toggle debug flag.
22892
22893 Don't use this packet; instead, define a general set packet
22894 (@pxref{General Query Packets}).
22895
22896 @item D
22897 @cindex @samp{D} packet
22898 Detach @value{GDBN} from the remote system.  Sent to the remote target
22899 before @value{GDBN} disconnects via the @code{detach} command.
22900
22901 Reply:
22902 @table @samp
22903 @item OK
22904 for success
22905 @item E @var{NN}
22906 for an error
22907 @end table
22908
22909 @item F @var{RC},@var{EE},@var{CF};@var{XX}
22910 @cindex @samp{F} packet
22911 A reply from @value{GDBN} to an @samp{F} packet sent by the target.
22912 This is part of the File-I/O protocol extension.  @xref{File-I/O
22913 Remote Protocol Extension}, for the specification.
22914
22915 @item g
22916 @anchor{read registers packet}
22917 @cindex @samp{g} packet
22918 Read general registers.
22919
22920 Reply:
22921 @table @samp
22922 @item @var{XX@dots{}}
22923 Each byte of register data is described by two hex digits.  The bytes
22924 with the register are transmitted in target byte order.  The size of
22925 each register and their position within the @samp{g} packet are
22926 determined by the @value{GDBN} internal gdbarch functions
22927 @code{DEPRECATED_REGISTER_RAW_SIZE} and @code{gdbarch_register_name}.  The
22928 specification of several standard @samp{g} packets is specified below.
22929 @item E @var{NN}
22930 for an error.
22931 @end table
22932
22933 @item G @var{XX@dots{}}
22934 @cindex @samp{G} packet
22935 Write general registers.  @xref{read registers packet}, for a
22936 description of the @var{XX@dots{}} data.
22937
22938 Reply:
22939 @table @samp
22940 @item OK
22941 for success
22942 @item E @var{NN}
22943 for an error
22944 @end table
22945
22946 @item H @var{c} @var{t}
22947 @cindex @samp{H} packet
22948 Set thread for subsequent operations (@samp{m}, @samp{M}, @samp{g},
22949 @samp{G}, et.al.).  @var{c} depends on the operation to be performed: it
22950 should be @samp{c} for step and continue operations, @samp{g} for other
22951 operations.  The thread designator @var{t} may be @samp{-1}, meaning all
22952 the threads, a thread number, or @samp{0} which means pick any thread.
22953
22954 Reply:
22955 @table @samp
22956 @item OK
22957 for success
22958 @item E @var{NN}
22959 for an error
22960 @end table
22961
22962 @c FIXME: JTC:
22963 @c   'H': How restrictive (or permissive) is the thread model.  If a
22964 @c        thread is selected and stopped, are other threads allowed
22965 @c        to continue to execute?  As I mentioned above, I think the
22966 @c        semantics of each command when a thread is selected must be
22967 @c        described.  For example:
22968 @c
22969 @c        'g':    If the stub supports threads and a specific thread is
22970 @c                selected, returns the register block from that thread;
22971 @c                otherwise returns current registers.
22972 @c
22973 @c        'G'     If the stub supports threads and a specific thread is
22974 @c                selected, sets the registers of the register block of
22975 @c                that thread; otherwise sets current registers.
22976
22977 @item i @r{[}@var{addr}@r{[},@var{nnn}@r{]]}
22978 @anchor{cycle step packet}
22979 @cindex @samp{i} packet
22980 Step the remote target by a single clock cycle.  If @samp{,@var{nnn}} is
22981 present, cycle step @var{nnn} cycles.  If @var{addr} is present, cycle
22982 step starting at that address.
22983
22984 @item I
22985 @cindex @samp{I} packet
22986 Signal, then cycle step.  @xref{step with signal packet}.  @xref{cycle
22987 step packet}.
22988
22989 @item k
22990 @cindex @samp{k} packet
22991 Kill request.
22992
22993 FIXME: @emph{There is no description of how to operate when a specific
22994 thread context has been selected (i.e.@: does 'k' kill only that
22995 thread?)}.
22996
22997 @item m @var{addr},@var{length}
22998 @cindex @samp{m} packet
22999 Read @var{length} bytes of memory starting at address @var{addr}.
23000 Note that @var{addr} may not be aligned to any particular boundary.
23001
23002 The stub need not use any particular size or alignment when gathering
23003 data from memory for the response; even if @var{addr} is word-aligned
23004 and @var{length} is a multiple of the word size, the stub is free to
23005 use byte accesses, or not.  For this reason, this packet may not be
23006 suitable for accessing memory-mapped I/O devices.
23007 @cindex alignment of remote memory accesses
23008 @cindex size of remote memory accesses
23009 @cindex memory, alignment and size of remote accesses
23010
23011 Reply:
23012 @table @samp
23013 @item @var{XX@dots{}}
23014 Memory contents; each byte is transmitted as a two-digit hexadecimal
23015 number.  The reply may contain fewer bytes than requested if the
23016 server was able to read only part of the region of memory.
23017 @item E @var{NN}
23018 @var{NN} is errno
23019 @end table
23020
23021 @item M @var{addr},@var{length}:@var{XX@dots{}}
23022 @cindex @samp{M} packet
23023 Write @var{length} bytes of memory starting at address @var{addr}.
23024 @var{XX@dots{}} is the data; each byte is transmitted as a two-digit
23025 hexadecimal number.
23026
23027 Reply:
23028 @table @samp
23029 @item OK
23030 for success
23031 @item E @var{NN}
23032 for an error (this includes the case where only part of the data was
23033 written).
23034 @end table
23035
23036 @item p @var{n}
23037 @cindex @samp{p} packet
23038 Read the value of register @var{n}; @var{n} is in hex.
23039 @xref{read registers packet}, for a description of how the returned
23040 register value is encoded.
23041
23042 Reply:
23043 @table @samp
23044 @item @var{XX@dots{}}
23045 the register's value
23046 @item E @var{NN}
23047 for an error
23048 @item
23049 Indicating an unrecognized @var{query}.
23050 @end table
23051
23052 @item P @var{n@dots{}}=@var{r@dots{}}
23053 @anchor{write register packet}
23054 @cindex @samp{P} packet
23055 Write register @var{n@dots{}} with value @var{r@dots{}}.  The register
23056 number @var{n} is in hexadecimal, and @var{r@dots{}} contains two hex
23057 digits for each byte in the register (target byte order).
23058
23059 Reply:
23060 @table @samp
23061 @item OK
23062 for success
23063 @item E @var{NN}
23064 for an error
23065 @end table
23066
23067 @item q @var{name} @var{params}@dots{}
23068 @itemx Q @var{name} @var{params}@dots{}
23069 @cindex @samp{q} packet
23070 @cindex @samp{Q} packet
23071 General query (@samp{q}) and set (@samp{Q}).  These packets are
23072 described fully in @ref{General Query Packets}.
23073
23074 @item r
23075 @cindex @samp{r} packet
23076 Reset the entire system.
23077
23078 Don't use this packet; use the @samp{R} packet instead.
23079
23080 @item R @var{XX}
23081 @cindex @samp{R} packet
23082 Restart the program being debugged.  @var{XX}, while needed, is ignored.
23083 This packet is only available in extended mode.
23084
23085 The @samp{R} packet has no reply.
23086
23087 @item s @r{[}@var{addr}@r{]}
23088 @cindex @samp{s} packet
23089 Single step.  @var{addr} is the address at which to resume.  If
23090 @var{addr} is omitted, resume at same address.
23091
23092 Reply:
23093 @xref{Stop Reply Packets}, for the reply specifications.
23094
23095 @item S @var{sig}@r{[};@var{addr}@r{]}
23096 @anchor{step with signal packet}
23097 @cindex @samp{S} packet
23098 Step with signal.  This is analogous to the @samp{C} packet, but
23099 requests a single-step, rather than a normal resumption of execution.
23100
23101 Reply:
23102 @xref{Stop Reply Packets}, for the reply specifications.
23103
23104 @item t @var{addr}:@var{PP},@var{MM}
23105 @cindex @samp{t} packet
23106 Search backwards starting at address @var{addr} for a match with pattern
23107 @var{PP} and mask @var{MM}.  @var{PP} and @var{MM} are 4 bytes.
23108 @var{addr} must be at least 3 digits.
23109
23110 @item T @var{XX}
23111 @cindex @samp{T} packet
23112 Find out if the thread XX is alive.
23113
23114 Reply:
23115 @table @samp
23116 @item OK
23117 thread is still alive
23118 @item E @var{NN}
23119 thread is dead
23120 @end table
23121
23122 @item v
23123 Packets starting with @samp{v} are identified by a multi-letter name,
23124 up to the first @samp{;} or @samp{?} (or the end of the packet).
23125
23126 @item vCont@r{[};@var{action}@r{[}:@var{tid}@r{]]}@dots{}
23127 @cindex @samp{vCont} packet
23128 Resume the inferior, specifying different actions for each thread.
23129 If an action is specified with no @var{tid}, then it is applied to any
23130 threads that don't have a specific action specified; if no default action is
23131 specified then other threads should remain stopped.  Specifying multiple
23132 default actions is an error; specifying no actions is also an error.
23133 Thread IDs are specified in hexadecimal.  Currently supported actions are:
23134
23135 @table @samp
23136 @item c
23137 Continue.
23138 @item C @var{sig}
23139 Continue with signal @var{sig}.  @var{sig} should be two hex digits.
23140 @item s
23141 Step.
23142 @item S @var{sig}
23143 Step with signal @var{sig}.  @var{sig} should be two hex digits.
23144 @end table
23145
23146 The optional @var{addr} argument normally associated with these packets is
23147 not supported in @samp{vCont}.
23148
23149 Reply:
23150 @xref{Stop Reply Packets}, for the reply specifications.
23151
23152 @item vCont?
23153 @cindex @samp{vCont?} packet
23154 Request a list of actions supported by the @samp{vCont} packet.
23155
23156 Reply:
23157 @table @samp
23158 @item vCont@r{[};@var{action}@dots{}@r{]}
23159 The @samp{vCont} packet is supported.  Each @var{action} is a supported
23160 command in the @samp{vCont} packet.
23161 @item
23162 The @samp{vCont} packet is not supported.
23163 @end table
23164
23165 @item vFlashErase:@var{addr},@var{length}
23166 @cindex @samp{vFlashErase} packet
23167 Direct the stub to erase @var{length} bytes of flash starting at
23168 @var{addr}.  The region may enclose any number of flash blocks, but
23169 its start and end must fall on block boundaries, as indicated by the
23170 flash block size appearing in the memory map (@pxref{Memory Map
23171 Format}).  @value{GDBN} groups flash memory programming operations
23172 together, and sends a @samp{vFlashDone} request after each group; the
23173 stub is allowed to delay erase operation until the @samp{vFlashDone}
23174 packet is received.
23175
23176 Reply:
23177 @table @samp
23178 @item OK
23179 for success
23180 @item E @var{NN}
23181 for an error
23182 @end table
23183
23184 @item vFlashWrite:@var{addr}:@var{XX@dots{}}
23185 @cindex @samp{vFlashWrite} packet
23186 Direct the stub to write data to flash address @var{addr}.  The data
23187 is passed in binary form using the same encoding as for the @samp{X}
23188 packet (@pxref{Binary Data}).  The memory ranges specified by
23189 @samp{vFlashWrite} packets preceding a @samp{vFlashDone} packet must
23190 not overlap, and must appear in order of increasing addresses
23191 (although @samp{vFlashErase} packets for higher addresses may already
23192 have been received; the ordering is guaranteed only between
23193 @samp{vFlashWrite} packets).  If a packet writes to an address that was
23194 neither erased by a preceding @samp{vFlashErase} packet nor by some other
23195 target-specific method, the results are unpredictable.
23196
23197
23198 Reply:
23199 @table @samp
23200 @item OK
23201 for success
23202 @item E.memtype
23203 for vFlashWrite addressing non-flash memory
23204 @item E @var{NN}
23205 for an error
23206 @end table
23207
23208 @item vFlashDone
23209 @cindex @samp{vFlashDone} packet
23210 Indicate to the stub that flash programming operation is finished.
23211 The stub is permitted to delay or batch the effects of a group of
23212 @samp{vFlashErase} and @samp{vFlashWrite} packets until a
23213 @samp{vFlashDone} packet is received.  The contents of the affected
23214 regions of flash memory are unpredictable until the @samp{vFlashDone}
23215 request is completed.
23216
23217 @item X @var{addr},@var{length}:@var{XX@dots{}}
23218 @anchor{X packet}
23219 @cindex @samp{X} packet
23220 Write data to memory, where the data is transmitted in binary.
23221 @var{addr} is address, @var{length} is number of bytes,
23222 @samp{@var{XX}@dots{}} is binary data (@pxref{Binary Data}).
23223
23224 Reply:
23225 @table @samp
23226 @item OK
23227 for success
23228 @item E @var{NN}
23229 for an error
23230 @end table
23231
23232 @item z @var{type},@var{addr},@var{length}
23233 @itemx Z @var{type},@var{addr},@var{length}
23234 @anchor{insert breakpoint or watchpoint packet}
23235 @cindex @samp{z} packet
23236 @cindex @samp{Z} packets
23237 Insert (@samp{Z}) or remove (@samp{z}) a @var{type} breakpoint or
23238 watchpoint starting at address @var{address} and covering the next
23239 @var{length} bytes.
23240
23241 Each breakpoint and watchpoint packet @var{type} is documented
23242 separately.
23243
23244 @emph{Implementation notes: A remote target shall return an empty string
23245 for an unrecognized breakpoint or watchpoint packet @var{type}.  A
23246 remote target shall support either both or neither of a given
23247 @samp{Z@var{type}@dots{}} and @samp{z@var{type}@dots{}} packet pair.  To
23248 avoid potential problems with duplicate packets, the operations should
23249 be implemented in an idempotent way.}
23250
23251 @item z0,@var{addr},@var{length}
23252 @itemx Z0,@var{addr},@var{length}
23253 @cindex @samp{z0} packet
23254 @cindex @samp{Z0} packet
23255 Insert (@samp{Z0}) or remove (@samp{z0}) a memory breakpoint at address
23256 @var{addr} of size @var{length}.
23257
23258 A memory breakpoint is implemented by replacing the instruction at
23259 @var{addr} with a software breakpoint or trap instruction.  The
23260 @var{length} is used by targets that indicates the size of the
23261 breakpoint (in bytes) that should be inserted (e.g., the @sc{arm} and
23262 @sc{mips} can insert either a 2 or 4 byte breakpoint).
23263
23264 @emph{Implementation note: It is possible for a target to copy or move
23265 code that contains memory breakpoints (e.g., when implementing
23266 overlays).  The behavior of this packet, in the presence of such a
23267 target, is not defined.}
23268
23269 Reply:
23270 @table @samp
23271 @item OK
23272 success
23273 @item
23274 not supported
23275 @item E @var{NN}
23276 for an error
23277 @end table
23278
23279 @item z1,@var{addr},@var{length}
23280 @itemx Z1,@var{addr},@var{length}
23281 @cindex @samp{z1} packet
23282 @cindex @samp{Z1} packet
23283 Insert (@samp{Z1}) or remove (@samp{z1}) a hardware breakpoint at
23284 address @var{addr} of size @var{length}.
23285
23286 A hardware breakpoint is implemented using a mechanism that is not
23287 dependant on being able to modify the target's memory.
23288
23289 @emph{Implementation note: A hardware breakpoint is not affected by code
23290 movement.}
23291
23292 Reply:
23293 @table @samp
23294 @item OK
23295 success
23296 @item
23297 not supported
23298 @item E @var{NN}
23299 for an error
23300 @end table
23301
23302 @item z2,@var{addr},@var{length}
23303 @itemx Z2,@var{addr},@var{length}
23304 @cindex @samp{z2} packet
23305 @cindex @samp{Z2} packet
23306 Insert (@samp{Z2}) or remove (@samp{z2}) a write watchpoint.
23307
23308 Reply:
23309 @table @samp
23310 @item OK
23311 success
23312 @item
23313 not supported
23314 @item E @var{NN}
23315 for an error
23316 @end table
23317
23318 @item z3,@var{addr},@var{length}
23319 @itemx Z3,@var{addr},@var{length}
23320 @cindex @samp{z3} packet
23321 @cindex @samp{Z3} packet
23322 Insert (@samp{Z3}) or remove (@samp{z3}) a read watchpoint.
23323
23324 Reply:
23325 @table @samp
23326 @item OK
23327 success
23328 @item
23329 not supported
23330 @item E @var{NN}
23331 for an error
23332 @end table
23333
23334 @item z4,@var{addr},@var{length}
23335 @itemx Z4,@var{addr},@var{length}
23336 @cindex @samp{z4} packet
23337 @cindex @samp{Z4} packet
23338 Insert (@samp{Z4}) or remove (@samp{z4}) an access watchpoint.
23339
23340 Reply:
23341 @table @samp
23342 @item OK
23343 success
23344 @item
23345 not supported
23346 @item E @var{NN}
23347 for an error
23348 @end table
23349
23350 @end table
23351
23352 @node Stop Reply Packets
23353 @section Stop Reply Packets
23354 @cindex stop reply packets
23355
23356 The @samp{C}, @samp{c}, @samp{S}, @samp{s} and @samp{?} packets can
23357 receive any of the below as a reply.  In the case of the @samp{C},
23358 @samp{c}, @samp{S} and @samp{s} packets, that reply is only returned
23359 when the target halts.  In the below the exact meaning of @dfn{signal
23360 number} is defined by the header @file{include/gdb/signals.h} in the
23361 @value{GDBN} source code.
23362
23363 As in the description of request packets, we include spaces in the
23364 reply templates for clarity; these are not part of the reply packet's
23365 syntax.  No @value{GDBN} stop reply packet uses spaces to separate its
23366 components.
23367
23368 @table @samp
23369
23370 @item S @var{AA}
23371 The program received signal number @var{AA} (a two-digit hexadecimal
23372 number).  This is equivalent to a @samp{T} response with no
23373 @var{n}:@var{r} pairs.
23374
23375 @item T @var{AA} @var{n1}:@var{r1};@var{n2}:@var{r2};@dots{}
23376 @cindex @samp{T} packet reply
23377 The program received signal number @var{AA} (a two-digit hexadecimal
23378 number).  This is equivalent to an @samp{S} response, except that the
23379 @samp{@var{n}:@var{r}} pairs can carry values of important registers
23380 and other information directly in the stop reply packet, reducing
23381 round-trip latency.  Single-step and breakpoint traps are reported
23382 this way.  Each @samp{@var{n}:@var{r}} pair is interpreted as follows:
23383
23384 @itemize @bullet
23385 @item
23386 If @var{n} is a hexadecimal number, it is a register number, and the
23387 corresponding @var{r} gives that register's value.  @var{r} is a
23388 series of bytes in target byte order, with each byte given by a
23389 two-digit hex number.
23390
23391 @item
23392 If @var{n} is @samp{thread}, then @var{r} is the thread process ID, in
23393 hex.
23394
23395 @item
23396 If @var{n} is a recognized @dfn{stop reason}, it describes a more
23397 specific event that stopped the target.  The currently defined stop
23398 reasons are listed below.  @var{aa} should be @samp{05}, the trap
23399 signal.  At most one stop reason should be present.
23400
23401 @item
23402 Otherwise, @value{GDBN} should ignore this @samp{@var{n}:@var{r}} pair
23403 and go on to the next; this allows us to extend the protocol in the
23404 future.
23405 @end itemize
23406
23407 The currently defined stop reasons are:
23408
23409 @table @samp
23410 @item watch
23411 @itemx rwatch
23412 @itemx awatch
23413 The packet indicates a watchpoint hit, and @var{r} is the data address, in
23414 hex.
23415
23416 @cindex shared library events, remote reply
23417 @item library
23418 The packet indicates that the loaded libraries have changed.
23419 @value{GDBN} should use @samp{qXfer:libraries:read} to fetch a new
23420 list of loaded libraries.  @var{r} is ignored.
23421 @end table
23422
23423 @item W @var{AA}
23424 The process exited, and @var{AA} is the exit status.  This is only
23425 applicable to certain targets.
23426
23427 @item X @var{AA}
23428 The process terminated with signal @var{AA}.
23429
23430 @item O @var{XX}@dots{}
23431 @samp{@var{XX}@dots{}} is hex encoding of @sc{ascii} data, to be
23432 written as the program's console output.  This can happen at any time
23433 while the program is running and the debugger should continue to wait
23434 for @samp{W}, @samp{T}, etc.
23435
23436 @item F @var{call-id},@var{parameter}@dots{}
23437 @var{call-id} is the identifier which says which host system call should
23438 be called.  This is just the name of the function.  Translation into the
23439 correct system call is only applicable as it's defined in @value{GDBN}.
23440 @xref{File-I/O Remote Protocol Extension}, for a list of implemented
23441 system calls.
23442
23443 @samp{@var{parameter}@dots{}} is a list of parameters as defined for
23444 this very system call.
23445
23446 The target replies with this packet when it expects @value{GDBN} to
23447 call a host system call on behalf of the target.  @value{GDBN} replies
23448 with an appropriate @samp{F} packet and keeps up waiting for the next
23449 reply packet from the target.  The latest @samp{C}, @samp{c}, @samp{S}
23450 or @samp{s} action is expected to be continued.  @xref{File-I/O Remote
23451 Protocol Extension}, for more details.
23452
23453 @end table
23454
23455 @node General Query Packets
23456 @section General Query Packets
23457 @cindex remote query requests
23458
23459 Packets starting with @samp{q} are @dfn{general query packets};
23460 packets starting with @samp{Q} are @dfn{general set packets}.  General
23461 query and set packets are a semi-unified form for retrieving and
23462 sending information to and from the stub.
23463
23464 The initial letter of a query or set packet is followed by a name
23465 indicating what sort of thing the packet applies to.  For example,
23466 @value{GDBN} may use a @samp{qSymbol} packet to exchange symbol
23467 definitions with the stub.  These packet names follow some
23468 conventions:
23469
23470 @itemize @bullet
23471 @item
23472 The name must not contain commas, colons or semicolons.
23473 @item
23474 Most @value{GDBN} query and set packets have a leading upper case
23475 letter.
23476 @item
23477 The names of custom vendor packets should use a company prefix, in
23478 lower case, followed by a period.  For example, packets designed at
23479 the Acme Corporation might begin with @samp{qacme.foo} (for querying
23480 foos) or @samp{Qacme.bar} (for setting bars).
23481 @end itemize
23482
23483 The name of a query or set packet should be separated from any
23484 parameters by a @samp{:}; the parameters themselves should be
23485 separated by @samp{,} or @samp{;}.  Stubs must be careful to match the
23486 full packet name, and check for a separator or the end of the packet,
23487 in case two packet names share a common prefix.  New packets should not begin
23488 with @samp{qC}, @samp{qP}, or @samp{qL}@footnote{The @samp{qP} and @samp{qL}
23489 packets predate these conventions, and have arguments without any terminator
23490 for the packet name; we suspect they are in widespread use in places that
23491 are difficult to upgrade.  The @samp{qC} packet has no arguments, but some
23492 existing stubs (e.g.@: RedBoot) are known to not check for the end of the
23493 packet.}.
23494
23495 Like the descriptions of the other packets, each description here
23496 has a template showing the packet's overall syntax, followed by an
23497 explanation of the packet's meaning.  We include spaces in some of the
23498 templates for clarity; these are not part of the packet's syntax.  No
23499 @value{GDBN} packet uses spaces to separate its components.
23500
23501 Here are the currently defined query and set packets:
23502
23503 @table @samp
23504
23505 @item qC
23506 @cindex current thread, remote request
23507 @cindex @samp{qC} packet
23508 Return the current thread id.
23509
23510 Reply:
23511 @table @samp
23512 @item QC @var{pid}
23513 Where @var{pid} is an unsigned hexadecimal process id.
23514 @item @r{(anything else)}
23515 Any other reply implies the old pid.
23516 @end table
23517
23518 @item qCRC:@var{addr},@var{length}
23519 @cindex CRC of memory block, remote request
23520 @cindex @samp{qCRC} packet
23521 Compute the CRC checksum of a block of memory.
23522 Reply:
23523 @table @samp
23524 @item E @var{NN}
23525 An error (such as memory fault)
23526 @item C @var{crc32}
23527 The specified memory region's checksum is @var{crc32}.
23528 @end table
23529
23530 @item qfThreadInfo
23531 @itemx qsThreadInfo
23532 @cindex list active threads, remote request
23533 @cindex @samp{qfThreadInfo} packet
23534 @cindex @samp{qsThreadInfo} packet
23535 Obtain a list of all active thread ids from the target (OS).  Since there
23536 may be too many active threads to fit into one reply packet, this query
23537 works iteratively: it may require more than one query/reply sequence to
23538 obtain the entire list of threads.  The first query of the sequence will
23539 be the @samp{qfThreadInfo} query; subsequent queries in the
23540 sequence will be the @samp{qsThreadInfo} query.
23541
23542 NOTE: This packet replaces the @samp{qL} query (see below).
23543
23544 Reply:
23545 @table @samp
23546 @item m @var{id}
23547 A single thread id
23548 @item m @var{id},@var{id}@dots{}
23549 a comma-separated list of thread ids
23550 @item l
23551 (lower case letter @samp{L}) denotes end of list.
23552 @end table
23553
23554 In response to each query, the target will reply with a list of one or
23555 more thread ids, in big-endian unsigned hex, separated by commas.
23556 @value{GDBN} will respond to each reply with a request for more thread
23557 ids (using the @samp{qs} form of the query), until the target responds
23558 with @samp{l} (lower-case el, for @dfn{last}).
23559
23560 @item qGetTLSAddr:@var{thread-id},@var{offset},@var{lm}
23561 @cindex get thread-local storage address, remote request
23562 @cindex @samp{qGetTLSAddr} packet
23563 Fetch the address associated with thread local storage specified
23564 by @var{thread-id}, @var{offset}, and @var{lm}.
23565
23566 @var{thread-id} is the (big endian, hex encoded) thread id associated with the
23567 thread for which to fetch the TLS address.
23568
23569 @var{offset} is the (big endian, hex encoded) offset associated with the
23570 thread local variable.  (This offset is obtained from the debug
23571 information associated with the variable.)
23572
23573 @var{lm} is the (big endian, hex encoded) OS/ABI-specific encoding of the
23574 the load module associated with the thread local storage.  For example,
23575 a @sc{gnu}/Linux system will pass the link map address of the shared
23576 object associated with the thread local storage under consideration. 
23577 Other operating environments may choose to represent the load module
23578 differently, so the precise meaning of this parameter will vary.
23579
23580 Reply:
23581 @table @samp
23582 @item @var{XX}@dots{}
23583 Hex encoded (big endian) bytes representing the address of the thread
23584 local storage requested.
23585
23586 @item E @var{nn}
23587 An error occurred.  @var{nn} are hex digits.
23588
23589 @item
23590 An empty reply indicates that @samp{qGetTLSAddr} is not supported by the stub.
23591 @end table
23592
23593 @item qL @var{startflag} @var{threadcount} @var{nextthread}
23594 Obtain thread information from RTOS.  Where: @var{startflag} (one hex
23595 digit) is one to indicate the first query and zero to indicate a
23596 subsequent query; @var{threadcount} (two hex digits) is the maximum
23597 number of threads the response packet can contain; and @var{nextthread}
23598 (eight hex digits), for subsequent queries (@var{startflag} is zero), is
23599 returned in the response as @var{argthread}.
23600
23601 Don't use this packet; use the @samp{qfThreadInfo} query instead (see above).
23602
23603 Reply:
23604 @table @samp
23605 @item qM @var{count} @var{done} @var{argthread} @var{thread}@dots{}
23606 Where: @var{count} (two hex digits) is the number of threads being
23607 returned; @var{done} (one hex digit) is zero to indicate more threads
23608 and one indicates no further threads; @var{argthreadid} (eight hex
23609 digits) is @var{nextthread} from the request packet; @var{thread}@dots{}
23610 is a sequence of thread IDs from the target.  @var{threadid} (eight hex
23611 digits).  See @code{remote.c:parse_threadlist_response()}.
23612 @end table
23613
23614 @item qOffsets
23615 @cindex section offsets, remote request
23616 @cindex @samp{qOffsets} packet
23617 Get section offsets that the target used when relocating the downloaded
23618 image.
23619
23620 Reply:
23621 @table @samp
23622 @item Text=@var{xxx};Data=@var{yyy}@r{[};Bss=@var{zzz}@r{]}
23623 Relocate the @code{Text} section by @var{xxx} from its original address.
23624 Relocate the @code{Data} section by @var{yyy} from its original address.
23625 If the object file format provides segment information (e.g.@: @sc{elf}
23626 @samp{PT_LOAD} program headers), @value{GDBN} will relocate entire
23627 segments by the supplied offsets.
23628
23629 @emph{Note: while a @code{Bss} offset may be included in the response,
23630 @value{GDBN} ignores this and instead applies the @code{Data} offset
23631 to the @code{Bss} section.}
23632
23633 @item TextSeg=@var{xxx}@r{[};DataSeg=@var{yyy}@r{]}
23634 Relocate the first segment of the object file, which conventionally
23635 contains program code, to a starting address of @var{xxx}.  If
23636 @samp{DataSeg} is specified, relocate the second segment, which
23637 conventionally contains modifiable data, to a starting address of
23638 @var{yyy}.  @value{GDBN} will report an error if the object file
23639 does not contain segment information, or does not contain at least
23640 as many segments as mentioned in the reply.  Extra segments are
23641 kept at fixed offsets relative to the last relocated segment.
23642 @end table
23643
23644 @item qP @var{mode} @var{threadid}
23645 @cindex thread information, remote request
23646 @cindex @samp{qP} packet
23647 Returns information on @var{threadid}.  Where: @var{mode} is a hex
23648 encoded 32 bit mode; @var{threadid} is a hex encoded 64 bit thread ID.
23649
23650 Don't use this packet; use the @samp{qThreadExtraInfo} query instead
23651 (see below).
23652
23653 Reply: see @code{remote.c:remote_unpack_thread_info_response()}.
23654
23655 @item QPassSignals: @var{signal} @r{[};@var{signal}@r{]}@dots{}
23656 @cindex pass signals to inferior, remote request
23657 @cindex @samp{QPassSignals} packet
23658 @anchor{QPassSignals}
23659 Each listed @var{signal} should be passed directly to the inferior process. 
23660 Signals are numbered identically to continue packets and stop replies
23661 (@pxref{Stop Reply Packets}).  Each @var{signal} list item should be
23662 strictly greater than the previous item.  These signals do not need to stop
23663 the inferior, or be reported to @value{GDBN}.  All other signals should be
23664 reported to @value{GDBN}.  Multiple @samp{QPassSignals} packets do not
23665 combine; any earlier @samp{QPassSignals} list is completely replaced by the
23666 new list.  This packet improves performance when using @samp{handle
23667 @var{signal} nostop noprint pass}.
23668
23669 Reply:
23670 @table @samp
23671 @item OK
23672 The request succeeded.
23673
23674 @item E @var{nn}
23675 An error occurred.  @var{nn} are hex digits.
23676
23677 @item
23678 An empty reply indicates that @samp{QPassSignals} is not supported by
23679 the stub.
23680 @end table
23681
23682 Use of this packet is controlled by the @code{set remote pass-signals}
23683 command (@pxref{Remote Configuration, set remote pass-signals}).
23684 This packet is not probed by default; the remote stub must request it,
23685 by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
23686
23687 @item qRcmd,@var{command}
23688 @cindex execute remote command, remote request
23689 @cindex @samp{qRcmd} packet
23690 @var{command} (hex encoded) is passed to the local interpreter for
23691 execution.  Invalid commands should be reported using the output
23692 string.  Before the final result packet, the target may also respond
23693 with a number of intermediate @samp{O@var{output}} console output
23694 packets.  @emph{Implementors should note that providing access to a
23695 stubs's interpreter may have security implications}.
23696
23697 Reply:
23698 @table @samp
23699 @item OK
23700 A command response with no output.
23701 @item @var{OUTPUT}
23702 A command response with the hex encoded output string @var{OUTPUT}.
23703 @item E @var{NN}
23704 Indicate a badly formed request.
23705 @item
23706 An empty reply indicates that @samp{qRcmd} is not recognized.
23707 @end table
23708
23709 (Note that the @code{qRcmd} packet's name is separated from the
23710 command by a @samp{,}, not a @samp{:}, contrary to the naming
23711 conventions above.  Please don't use this packet as a model for new
23712 packets.)
23713
23714 @item qSupported @r{[}:@var{gdbfeature} @r{[};@var{gdbfeature}@r{]}@dots{} @r{]}
23715 @cindex supported packets, remote query
23716 @cindex features of the remote protocol
23717 @cindex @samp{qSupported} packet
23718 @anchor{qSupported}
23719 Tell the remote stub about features supported by @value{GDBN}, and
23720 query the stub for features it supports.  This packet allows
23721 @value{GDBN} and the remote stub to take advantage of each others'
23722 features.  @samp{qSupported} also consolidates multiple feature probes
23723 at startup, to improve @value{GDBN} performance---a single larger
23724 packet performs better than multiple smaller probe packets on
23725 high-latency links.  Some features may enable behavior which must not
23726 be on by default, e.g.@: because it would confuse older clients or
23727 stubs.  Other features may describe packets which could be
23728 automatically probed for, but are not.  These features must be
23729 reported before @value{GDBN} will use them.  This ``default
23730 unsupported'' behavior is not appropriate for all packets, but it
23731 helps to keep the initial connection time under control with new
23732 versions of @value{GDBN} which support increasing numbers of packets.
23733
23734 Reply:
23735 @table @samp
23736 @item @var{stubfeature} @r{[};@var{stubfeature}@r{]}@dots{}
23737 The stub supports or does not support each returned @var{stubfeature},
23738 depending on the form of each @var{stubfeature} (see below for the
23739 possible forms).
23740 @item
23741 An empty reply indicates that @samp{qSupported} is not recognized,
23742 or that no features needed to be reported to @value{GDBN}.
23743 @end table
23744
23745 The allowed forms for each feature (either a @var{gdbfeature} in the
23746 @samp{qSupported} packet, or a @var{stubfeature} in the response)
23747 are:
23748
23749 @table @samp
23750 @item @var{name}=@var{value}
23751 The remote protocol feature @var{name} is supported, and associated
23752 with the specified @var{value}.  The format of @var{value} depends
23753 on the feature, but it must not include a semicolon.
23754 @item @var{name}+
23755 The remote protocol feature @var{name} is supported, and does not
23756 need an associated value.
23757 @item @var{name}-
23758 The remote protocol feature @var{name} is not supported.
23759 @item @var{name}?
23760 The remote protocol feature @var{name} may be supported, and
23761 @value{GDBN} should auto-detect support in some other way when it is
23762 needed.  This form will not be used for @var{gdbfeature} notifications,
23763 but may be used for @var{stubfeature} responses.
23764 @end table
23765
23766 Whenever the stub receives a @samp{qSupported} request, the
23767 supplied set of @value{GDBN} features should override any previous
23768 request.  This allows @value{GDBN} to put the stub in a known
23769 state, even if the stub had previously been communicating with
23770 a different version of @value{GDBN}.
23771
23772 No values of @var{gdbfeature} (for the packet sent by @value{GDBN})
23773 are defined yet.  Stubs should ignore any unknown values for
23774 @var{gdbfeature}.  Any @value{GDBN} which sends a @samp{qSupported}
23775 packet supports receiving packets of unlimited length (earlier
23776 versions of @value{GDBN} may reject overly long responses).  Values
23777 for @var{gdbfeature} may be defined in the future to let the stub take
23778 advantage of new features in @value{GDBN}, e.g.@: incompatible
23779 improvements in the remote protocol---support for unlimited length
23780 responses would be a @var{gdbfeature} example, if it were not implied by
23781 the @samp{qSupported} query.  The stub's reply should be independent
23782 of the @var{gdbfeature} entries sent by @value{GDBN}; first @value{GDBN}
23783 describes all the features it supports, and then the stub replies with
23784 all the features it supports.
23785
23786 Similarly, @value{GDBN} will silently ignore unrecognized stub feature
23787 responses, as long as each response uses one of the standard forms.
23788
23789 Some features are flags.  A stub which supports a flag feature
23790 should respond with a @samp{+} form response.  Other features
23791 require values, and the stub should respond with an @samp{=}
23792 form response.
23793
23794 Each feature has a default value, which @value{GDBN} will use if
23795 @samp{qSupported} is not available or if the feature is not mentioned
23796 in the @samp{qSupported} response.  The default values are fixed; a
23797 stub is free to omit any feature responses that match the defaults.
23798
23799 Not all features can be probed, but for those which can, the probing
23800 mechanism is useful: in some cases, a stub's internal
23801 architecture may not allow the protocol layer to know some information
23802 about the underlying target in advance.  This is especially common in
23803 stubs which may be configured for multiple targets.
23804
23805 These are the currently defined stub features and their properties:
23806
23807 @multitable @columnfractions 0.35 0.2 0.12 0.2
23808 @c NOTE: The first row should be @headitem, but we do not yet require
23809 @c a new enough version of Texinfo (4.7) to use @headitem.
23810 @item Feature Name
23811 @tab Value Required
23812 @tab Default
23813 @tab Probe Allowed
23814
23815 @item @samp{PacketSize}
23816 @tab Yes
23817 @tab @samp{-}
23818 @tab No
23819
23820 @item @samp{qXfer:auxv:read}
23821 @tab No
23822 @tab @samp{-}
23823 @tab Yes
23824
23825 @item @samp{qXfer:features:read}
23826 @tab No
23827 @tab @samp{-}
23828 @tab Yes
23829
23830 @item @samp{qXfer:libraries:read}
23831 @tab No
23832 @tab @samp{-}
23833 @tab Yes
23834
23835 @item @samp{qXfer:memory-map:read}
23836 @tab No
23837 @tab @samp{-}
23838 @tab Yes
23839
23840 @item @samp{qXfer:spu:read}
23841 @tab No
23842 @tab @samp{-}
23843 @tab Yes
23844
23845 @item @samp{qXfer:spu:write}
23846 @tab No
23847 @tab @samp{-}
23848 @tab Yes
23849
23850 @item @samp{QPassSignals}
23851 @tab No
23852 @tab @samp{-}
23853 @tab Yes
23854
23855 @end multitable
23856
23857 These are the currently defined stub features, in more detail:
23858
23859 @table @samp
23860 @cindex packet size, remote protocol
23861 @item PacketSize=@var{bytes}
23862 The remote stub can accept packets up to at least @var{bytes} in
23863 length.  @value{GDBN} will send packets up to this size for bulk
23864 transfers, and will never send larger packets.  This is a limit on the
23865 data characters in the packet, including the frame and checksum.
23866 There is no trailing NUL byte in a remote protocol packet; if the stub
23867 stores packets in a NUL-terminated format, it should allow an extra
23868 byte in its buffer for the NUL.  If this stub feature is not supported,
23869 @value{GDBN} guesses based on the size of the @samp{g} packet response.
23870
23871 @item qXfer:auxv:read
23872 The remote stub understands the @samp{qXfer:auxv:read} packet
23873 (@pxref{qXfer auxiliary vector read}).
23874
23875 @item qXfer:features:read
23876 The remote stub understands the @samp{qXfer:features:read} packet
23877 (@pxref{qXfer target description read}).
23878
23879 @item qXfer:libraries:read
23880 The remote stub understands the @samp{qXfer:libraries:read} packet
23881 (@pxref{qXfer library list read}).
23882
23883 @item qXfer:memory-map:read
23884 The remote stub understands the @samp{qXfer:memory-map:read} packet
23885 (@pxref{qXfer memory map read}).
23886
23887 @item qXfer:spu:read
23888 The remote stub understands the @samp{qXfer:spu:read} packet
23889 (@pxref{qXfer spu read}).
23890
23891 @item qXfer:spu:write
23892 The remote stub understands the @samp{qXfer:spu:write} packet
23893 (@pxref{qXfer spu write}).
23894
23895 @item QPassSignals
23896 The remote stub understands the @samp{QPassSignals} packet
23897 (@pxref{QPassSignals}).
23898
23899 @end table
23900
23901 @item qSymbol::
23902 @cindex symbol lookup, remote request
23903 @cindex @samp{qSymbol} packet
23904 Notify the target that @value{GDBN} is prepared to serve symbol lookup
23905 requests.  Accept requests from the target for the values of symbols.
23906
23907 Reply:
23908 @table @samp
23909 @item OK
23910 The target does not need to look up any (more) symbols.
23911 @item qSymbol:@var{sym_name}
23912 The target requests the value of symbol @var{sym_name} (hex encoded).
23913 @value{GDBN} may provide the value by using the
23914 @samp{qSymbol:@var{sym_value}:@var{sym_name}} message, described
23915 below.
23916 @end table
23917
23918 @item qSymbol:@var{sym_value}:@var{sym_name}
23919 Set the value of @var{sym_name} to @var{sym_value}.
23920
23921 @var{sym_name} (hex encoded) is the name of a symbol whose value the
23922 target has previously requested.
23923
23924 @var{sym_value} (hex) is the value for symbol @var{sym_name}.  If
23925 @value{GDBN} cannot supply a value for @var{sym_name}, then this field
23926 will be empty.
23927
23928 Reply:
23929 @table @samp
23930 @item OK
23931 The target does not need to look up any (more) symbols.
23932 @item qSymbol:@var{sym_name}
23933 The target requests the value of a new symbol @var{sym_name} (hex
23934 encoded).  @value{GDBN} will continue to supply the values of symbols
23935 (if available), until the target ceases to request them.
23936 @end table
23937
23938 @item QTDP
23939 @itemx QTFrame
23940 @xref{Tracepoint Packets}.
23941
23942 @item qThreadExtraInfo,@var{id}
23943 @cindex thread attributes info, remote request
23944 @cindex @samp{qThreadExtraInfo} packet
23945 Obtain a printable string description of a thread's attributes from
23946 the target OS.  @var{id} is a thread-id in big-endian hex.  This
23947 string may contain anything that the target OS thinks is interesting
23948 for @value{GDBN} to tell the user about the thread.  The string is
23949 displayed in @value{GDBN}'s @code{info threads} display.  Some
23950 examples of possible thread extra info strings are @samp{Runnable}, or
23951 @samp{Blocked on Mutex}.
23952
23953 Reply:
23954 @table @samp
23955 @item @var{XX}@dots{}
23956 Where @samp{@var{XX}@dots{}} is a hex encoding of @sc{ascii} data,
23957 comprising the printable string containing the extra information about
23958 the thread's attributes.
23959 @end table
23960
23961 (Note that the @code{qThreadExtraInfo} packet's name is separated from
23962 the command by a @samp{,}, not a @samp{:}, contrary to the naming
23963 conventions above.  Please don't use this packet as a model for new
23964 packets.)
23965
23966 @item QTStart    
23967 @itemx QTStop     
23968 @itemx QTinit     
23969 @itemx QTro       
23970 @itemx qTStatus   
23971 @xref{Tracepoint Packets}.
23972
23973 @item qXfer:@var{object}:read:@var{annex}:@var{offset},@var{length}
23974 @cindex read special object, remote request
23975 @cindex @samp{qXfer} packet
23976 @anchor{qXfer read}
23977 Read uninterpreted bytes from the target's special data area
23978 identified by the keyword @var{object}.  Request @var{length} bytes
23979 starting at @var{offset} bytes into the data.  The content and
23980 encoding of @var{annex} is specific to @var{object}; it can supply
23981 additional details about what data to access.
23982
23983 Here are the specific requests of this form defined so far.  All
23984 @samp{qXfer:@var{object}:read:@dots{}} requests use the same reply
23985 formats, listed below.
23986
23987 @table @samp
23988 @item qXfer:auxv:read::@var{offset},@var{length}
23989 @anchor{qXfer auxiliary vector read}
23990 Access the target's @dfn{auxiliary vector}.  @xref{OS Information,
23991 auxiliary vector}.  Note @var{annex} must be empty.
23992
23993 This packet is not probed by default; the remote stub must request it,
23994 by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
23995
23996 @item qXfer:features:read:@var{annex}:@var{offset},@var{length}
23997 @anchor{qXfer target description read}
23998 Access the @dfn{target description}.  @xref{Target Descriptions}.  The
23999 annex specifies which XML document to access.  The main description is
24000 always loaded from the @samp{target.xml} annex.
24001
24002 This packet is not probed by default; the remote stub must request it,
24003 by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24004
24005 @item qXfer:libraries:read:@var{annex}:@var{offset},@var{length}
24006 @anchor{qXfer library list read}
24007 Access the target's list of loaded libraries.  @xref{Library List Format}.
24008 The annex part of the generic @samp{qXfer} packet must be empty
24009 (@pxref{qXfer read}).
24010
24011 Targets which maintain a list of libraries in the program's memory do
24012 not need to implement this packet; it is designed for platforms where
24013 the operating system manages the list of loaded libraries.
24014
24015 This packet is not probed by default; the remote stub must request it,
24016 by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24017
24018 @item qXfer:memory-map:read::@var{offset},@var{length}
24019 @anchor{qXfer memory map read}
24020 Access the target's @dfn{memory-map}.  @xref{Memory Map Format}.  The
24021 annex part of the generic @samp{qXfer} packet must be empty
24022 (@pxref{qXfer read}).
24023
24024 This packet is not probed by default; the remote stub must request it,
24025 by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24026
24027 @item qXfer:spu:read:@var{annex}:@var{offset},@var{length}
24028 @anchor{qXfer spu read}
24029 Read contents of an @code{spufs} file on the target system.  The
24030 annex specifies which file to read; it must be of the form 
24031 @file{@var{id}/@var{name}}, where @var{id} specifies an SPU context ID
24032 in the target process, and @var{name} identifes the @code{spufs} file
24033 in that context to be accessed.
24034
24035 This packet is not probed by default; the remote stub must request it,
24036 by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24037 @end table
24038
24039 Reply:
24040 @table @samp
24041 @item m @var{data}
24042 Data @var{data} (@pxref{Binary Data}) has been read from the
24043 target.  There may be more data at a higher address (although
24044 it is permitted to return @samp{m} even for the last valid
24045 block of data, as long as at least one byte of data was read).
24046 @var{data} may have fewer bytes than the @var{length} in the
24047 request.
24048
24049 @item l @var{data}
24050 Data @var{data} (@pxref{Binary Data}) has been read from the target.
24051 There is no more data to be read.  @var{data} may have fewer bytes
24052 than the @var{length} in the request.
24053
24054 @item l
24055 The @var{offset} in the request is at the end of the data.
24056 There is no more data to be read.
24057
24058 @item E00
24059 The request was malformed, or @var{annex} was invalid.
24060
24061 @item E @var{nn}
24062 The offset was invalid, or there was an error encountered reading the data.
24063 @var{nn} is a hex-encoded @code{errno} value.
24064
24065 @item
24066 An empty reply indicates the @var{object} string was not recognized by
24067 the stub, or that the object does not support reading.
24068 @end table
24069
24070 @item qXfer:@var{object}:write:@var{annex}:@var{offset}:@var{data}@dots{}
24071 @cindex write data into object, remote request
24072 Write uninterpreted bytes into the target's special data area
24073 identified by the keyword @var{object}, starting at @var{offset} bytes
24074 into the data.  @var{data}@dots{} is the binary-encoded data
24075 (@pxref{Binary Data}) to be written.  The content and encoding of @var{annex}
24076 is specific to @var{object}; it can supply additional details about what data
24077 to access.
24078
24079 Here are the specific requests of this form defined so far.  All
24080 @samp{qXfer:@var{object}:write:@dots{}} requests use the same reply
24081 formats, listed below.
24082
24083 @table @samp
24084 @item qXfer:@var{spu}:write:@var{annex}:@var{offset}:@var{data}@dots{}
24085 @anchor{qXfer spu write}
24086 Write @var{data} to an @code{spufs} file on the target system.  The
24087 annex specifies which file to write; it must be of the form
24088 @file{@var{id}/@var{name}}, where @var{id} specifies an SPU context ID
24089 in the target process, and @var{name} identifes the @code{spufs} file
24090 in that context to be accessed.
24091
24092 This packet is not probed by default; the remote stub must request it,
24093 by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24094 @end table
24095
24096 Reply:
24097 @table @samp
24098 @item @var{nn}
24099 @var{nn} (hex encoded) is the number of bytes written.
24100 This may be fewer bytes than supplied in the request.
24101
24102 @item E00
24103 The request was malformed, or @var{annex} was invalid.
24104
24105 @item E @var{nn}
24106 The offset was invalid, or there was an error encountered writing the data.
24107 @var{nn} is a hex-encoded @code{errno} value.
24108
24109 @item
24110 An empty reply indicates the @var{object} string was not
24111 recognized by the stub, or that the object does not support writing.
24112 @end table
24113
24114 @item qXfer:@var{object}:@var{operation}:@dots{}
24115 Requests of this form may be added in the future.  When a stub does
24116 not recognize the @var{object} keyword, or its support for
24117 @var{object} does not recognize the @var{operation} keyword, the stub
24118 must respond with an empty packet.
24119
24120 @end table
24121
24122 @node Register Packet Format
24123 @section Register Packet Format
24124
24125 The following @code{g}/@code{G} packets have previously been defined.
24126 In the below, some thirty-two bit registers are transferred as
24127 sixty-four bits.  Those registers should be zero/sign extended (which?)
24128 to fill the space allocated.  Register bytes are transferred in target
24129 byte order.  The two nibbles within a register byte are transferred
24130 most-significant - least-significant.
24131
24132 @table @r
24133
24134 @item MIPS32
24135
24136 All registers are transferred as thirty-two bit quantities in the order:
24137 32 general-purpose; sr; lo; hi; bad; cause; pc; 32 floating-point
24138 registers; fsr; fir; fp.
24139
24140 @item MIPS64
24141
24142 All registers are transferred as sixty-four bit quantities (including
24143 thirty-two bit registers such as @code{sr}).  The ordering is the same
24144 as @code{MIPS32}.
24145
24146 @end table
24147
24148 @node Tracepoint Packets
24149 @section Tracepoint Packets
24150 @cindex tracepoint packets
24151 @cindex packets, tracepoint
24152
24153 Here we describe the packets @value{GDBN} uses to implement
24154 tracepoints (@pxref{Tracepoints}).
24155
24156 @table @samp
24157
24158 @item QTDP:@var{n}:@var{addr}:@var{ena}:@var{step}:@var{pass}@r{[}-@r{]}
24159 Create a new tracepoint, number @var{n}, at @var{addr}.  If @var{ena}
24160 is @samp{E}, then the tracepoint is enabled; if it is @samp{D}, then
24161 the tracepoint is disabled.  @var{step} is the tracepoint's step
24162 count, and @var{pass} is its pass count.  If the trailing @samp{-} is
24163 present, further @samp{QTDP} packets will follow to specify this
24164 tracepoint's actions.
24165
24166 Replies:
24167 @table @samp
24168 @item OK
24169 The packet was understood and carried out.
24170 @item 
24171 The packet was not recognized.
24172 @end table
24173
24174 @item QTDP:-@var{n}:@var{addr}:@r{[}S@r{]}@var{action}@dots{}@r{[}-@r{]}
24175 Define actions to be taken when a tracepoint is hit.  @var{n} and
24176 @var{addr} must be the same as in the initial @samp{QTDP} packet for
24177 this tracepoint.  This packet may only be sent immediately after
24178 another @samp{QTDP} packet that ended with a @samp{-}.  If the
24179 trailing @samp{-} is present, further @samp{QTDP} packets will follow,
24180 specifying more actions for this tracepoint.
24181
24182 In the series of action packets for a given tracepoint, at most one
24183 can have an @samp{S} before its first @var{action}.  If such a packet
24184 is sent, it and the following packets define ``while-stepping''
24185 actions.  Any prior packets define ordinary actions --- that is, those
24186 taken when the tracepoint is first hit.  If no action packet has an
24187 @samp{S}, then all the packets in the series specify ordinary
24188 tracepoint actions.
24189
24190 The @samp{@var{action}@dots{}} portion of the packet is a series of
24191 actions, concatenated without separators.  Each action has one of the
24192 following forms:
24193
24194 @table @samp
24195
24196 @item R @var{mask}
24197 Collect the registers whose bits are set in @var{mask}.  @var{mask} is
24198 a hexadecimal number whose @var{i}'th bit is set if register number
24199 @var{i} should be collected.  (The least significant bit is numbered
24200 zero.)  Note that @var{mask} may be any number of digits long; it may
24201 not fit in a 32-bit word.
24202
24203 @item M @var{basereg},@var{offset},@var{len}
24204 Collect @var{len} bytes of memory starting at the address in register
24205 number @var{basereg}, plus @var{offset}.  If @var{basereg} is
24206 @samp{-1}, then the range has a fixed address: @var{offset} is the
24207 address of the lowest byte to collect.  The @var{basereg},
24208 @var{offset}, and @var{len} parameters are all unsigned hexadecimal
24209 values (the @samp{-1} value for @var{basereg} is a special case).
24210
24211 @item X @var{len},@var{expr}
24212 Evaluate @var{expr}, whose length is @var{len}, and collect memory as
24213 it directs.  @var{expr} is an agent expression, as described in
24214 @ref{Agent Expressions}.  Each byte of the expression is encoded as a
24215 two-digit hex number in the packet; @var{len} is the number of bytes
24216 in the expression (and thus one-half the number of hex digits in the
24217 packet).
24218
24219 @end table
24220
24221 Any number of actions may be packed together in a single @samp{QTDP}
24222 packet, as long as the packet does not exceed the maximum packet
24223 length (400 bytes, for many stubs).  There may be only one @samp{R}
24224 action per tracepoint, and it must precede any @samp{M} or @samp{X}
24225 actions.  Any registers referred to by @samp{M} and @samp{X} actions
24226 must be collected by a preceding @samp{R} action.  (The
24227 ``while-stepping'' actions are treated as if they were attached to a
24228 separate tracepoint, as far as these restrictions are concerned.)
24229
24230 Replies:
24231 @table @samp
24232 @item OK
24233 The packet was understood and carried out.
24234 @item 
24235 The packet was not recognized.
24236 @end table
24237
24238 @item QTFrame:@var{n}
24239 Select the @var{n}'th tracepoint frame from the buffer, and use the
24240 register and memory contents recorded there to answer subsequent
24241 request packets from @value{GDBN}.
24242
24243 A successful reply from the stub indicates that the stub has found the
24244 requested frame.  The response is a series of parts, concatenated
24245 without separators, describing the frame we selected.  Each part has
24246 one of the following forms:
24247
24248 @table @samp
24249 @item F @var{f}
24250 The selected frame is number @var{n} in the trace frame buffer;
24251 @var{f} is a hexadecimal number.  If @var{f} is @samp{-1}, then there
24252 was no frame matching the criteria in the request packet.
24253
24254 @item T @var{t}
24255 The selected trace frame records a hit of tracepoint number @var{t};
24256 @var{t} is a hexadecimal number.
24257
24258 @end table
24259
24260 @item QTFrame:pc:@var{addr}
24261 Like @samp{QTFrame:@var{n}}, but select the first tracepoint frame after the
24262 currently selected frame whose PC is @var{addr};
24263 @var{addr} is a hexadecimal number.
24264
24265 @item QTFrame:tdp:@var{t}
24266 Like @samp{QTFrame:@var{n}}, but select the first tracepoint frame after the
24267 currently selected frame that is a hit of tracepoint @var{t}; @var{t}
24268 is a hexadecimal number.
24269
24270 @item QTFrame:range:@var{start}:@var{end}
24271 Like @samp{QTFrame:@var{n}}, but select the first tracepoint frame after the
24272 currently selected frame whose PC is between @var{start} (inclusive)
24273 and @var{end} (exclusive); @var{start} and @var{end} are hexadecimal
24274 numbers.
24275
24276 @item QTFrame:outside:@var{start}:@var{end}
24277 Like @samp{QTFrame:range:@var{start}:@var{end}}, but select the first
24278 frame @emph{outside} the given range of addresses.
24279
24280 @item QTStart
24281 Begin the tracepoint experiment.  Begin collecting data from tracepoint
24282 hits in the trace frame buffer.
24283
24284 @item QTStop
24285 End the tracepoint experiment.  Stop collecting trace frames.
24286
24287 @item QTinit
24288 Clear the table of tracepoints, and empty the trace frame buffer.
24289
24290 @item QTro:@var{start1},@var{end1}:@var{start2},@var{end2}:@dots{}
24291 Establish the given ranges of memory as ``transparent''.  The stub
24292 will answer requests for these ranges from memory's current contents,
24293 if they were not collected as part of the tracepoint hit.
24294
24295 @value{GDBN} uses this to mark read-only regions of memory, like those
24296 containing program code.  Since these areas never change, they should
24297 still have the same contents they did when the tracepoint was hit, so
24298 there's no reason for the stub to refuse to provide their contents.
24299
24300 @item qTStatus
24301 Ask the stub if there is a trace experiment running right now.
24302
24303 Replies:
24304 @table @samp
24305 @item T0
24306 There is no trace experiment running.
24307 @item T1
24308 There is a trace experiment running.
24309 @end table
24310
24311 @end table
24312
24313
24314 @node Interrupts
24315 @section Interrupts
24316 @cindex interrupts (remote protocol)
24317
24318 When a program on the remote target is running, @value{GDBN} may
24319 attempt to interrupt it by sending a @samp{Ctrl-C} or a @code{BREAK},
24320 control of which is specified via @value{GDBN}'s @samp{remotebreak}
24321 setting (@pxref{set remotebreak}).
24322
24323 The precise meaning of @code{BREAK} is defined by the transport
24324 mechanism and may, in fact, be undefined.  @value{GDBN} does
24325 not currently define a @code{BREAK} mechanism for any of the network
24326 interfaces.
24327
24328 @samp{Ctrl-C}, on the other hand, is defined and implemented for all
24329 transport mechanisms.  It is represented by sending the single byte
24330 @code{0x03} without any of the usual packet overhead described in
24331 the Overview section (@pxref{Overview}).  When a @code{0x03} byte is
24332 transmitted as part of a packet, it is considered to be packet data
24333 and does @emph{not} represent an interrupt.  E.g., an @samp{X} packet
24334 (@pxref{X packet}), used for binary downloads, may include an unescaped
24335 @code{0x03} as part of its packet.
24336
24337 Stubs are not required to recognize these interrupt mechanisms and the
24338 precise meaning associated with receipt of the interrupt is
24339 implementation defined.  If the stub is successful at interrupting the
24340 running program, it is expected that it will send one of the Stop
24341 Reply Packets (@pxref{Stop Reply Packets}) to @value{GDBN} as a result
24342 of successfully stopping the program.  Interrupts received while the
24343 program is stopped will be discarded.
24344
24345 @node Examples
24346 @section Examples
24347
24348 Example sequence of a target being re-started.  Notice how the restart
24349 does not get any direct output:
24350
24351 @smallexample
24352 -> @code{R00}
24353 <- @code{+}
24354 @emph{target restarts}
24355 -> @code{?}
24356 <- @code{+}
24357 <- @code{T001:1234123412341234}
24358 -> @code{+}
24359 @end smallexample
24360
24361 Example sequence of a target being stepped by a single instruction:
24362
24363 @smallexample
24364 -> @code{G1445@dots{}}
24365 <- @code{+}
24366 -> @code{s}
24367 <- @code{+}
24368 @emph{time passes}
24369 <- @code{T001:1234123412341234}
24370 -> @code{+}
24371 -> @code{g}
24372 <- @code{+}
24373 <- @code{1455@dots{}}
24374 -> @code{+}
24375 @end smallexample
24376
24377 @node File-I/O Remote Protocol Extension
24378 @section File-I/O Remote Protocol Extension
24379 @cindex File-I/O remote protocol extension
24380
24381 @menu
24382 * File-I/O Overview::
24383 * Protocol Basics::
24384 * The F Request Packet::
24385 * The F Reply Packet::
24386 * The Ctrl-C Message::
24387 * Console I/O::
24388 * List of Supported Calls::
24389 * Protocol-specific Representation of Datatypes::
24390 * Constants::
24391 * File-I/O Examples::
24392 @end menu
24393
24394 @node File-I/O Overview
24395 @subsection File-I/O Overview
24396 @cindex file-i/o overview
24397
24398 The @dfn{File I/O remote protocol extension} (short: File-I/O) allows the
24399 target to use the host's file system and console I/O to perform various
24400 system calls.  System calls on the target system are translated into a
24401 remote protocol packet to the host system, which then performs the needed
24402 actions and returns a response packet to the target system.
24403 This simulates file system operations even on targets that lack file systems.
24404
24405 The protocol is defined to be independent of both the host and target systems.
24406 It uses its own internal representation of datatypes and values.  Both
24407 @value{GDBN} and the target's @value{GDBN} stub are responsible for
24408 translating the system-dependent value representations into the internal
24409 protocol representations when data is transmitted.
24410
24411 The communication is synchronous.  A system call is possible only when 
24412 @value{GDBN} is waiting for a response from the @samp{C}, @samp{c}, @samp{S} 
24413 or @samp{s} packets.  While @value{GDBN} handles the request for a system call,
24414 the target is stopped to allow deterministic access to the target's
24415 memory.  Therefore File-I/O is not interruptible by target signals.  On
24416 the other hand, it is possible to interrupt File-I/O by a user interrupt 
24417 (@samp{Ctrl-C}) within @value{GDBN}.
24418
24419 The target's request to perform a host system call does not finish
24420 the latest @samp{C}, @samp{c}, @samp{S} or @samp{s} action.  That means,
24421 after finishing the system call, the target returns to continuing the
24422 previous activity (continue, step).  No additional continue or step
24423 request from @value{GDBN} is required.
24424
24425 @smallexample
24426 (@value{GDBP}) continue
24427   <- target requests 'system call X'
24428   target is stopped, @value{GDBN} executes system call
24429   -> @value{GDBN} returns result
24430   ... target continues, @value{GDBN} returns to wait for the target
24431   <- target hits breakpoint and sends a Txx packet
24432 @end smallexample
24433
24434 The protocol only supports I/O on the console and to regular files on 
24435 the host file system.  Character or block special devices, pipes,
24436 named pipes, sockets or any other communication method on the host
24437 system are not supported by this protocol.
24438
24439 @node Protocol Basics
24440 @subsection Protocol Basics
24441 @cindex protocol basics, file-i/o
24442
24443 The File-I/O protocol uses the @code{F} packet as the request as well
24444 as reply packet.  Since a File-I/O system call can only occur when
24445 @value{GDBN} is waiting for a response from the continuing or stepping target, 
24446 the File-I/O request is a reply that @value{GDBN} has to expect as a result
24447 of a previous @samp{C}, @samp{c}, @samp{S} or @samp{s} packet.
24448 This @code{F} packet contains all information needed to allow @value{GDBN}
24449 to call the appropriate host system call:
24450
24451 @itemize @bullet
24452 @item
24453 A unique identifier for the requested system call.
24454
24455 @item
24456 All parameters to the system call.  Pointers are given as addresses
24457 in the target memory address space.  Pointers to strings are given as
24458 pointer/length pair.  Numerical values are given as they are.
24459 Numerical control flags are given in a protocol-specific representation.
24460
24461 @end itemize
24462
24463 At this point, @value{GDBN} has to perform the following actions.
24464
24465 @itemize @bullet
24466 @item
24467 If the parameters include pointer values to data needed as input to a 
24468 system call, @value{GDBN} requests this data from the target with a
24469 standard @code{m} packet request.  This additional communication has to be
24470 expected by the target implementation and is handled as any other @code{m}
24471 packet.
24472
24473 @item
24474 @value{GDBN} translates all value from protocol representation to host
24475 representation as needed.  Datatypes are coerced into the host types.
24476
24477 @item
24478 @value{GDBN} calls the system call.
24479
24480 @item
24481 It then coerces datatypes back to protocol representation.
24482
24483 @item
24484 If the system call is expected to return data in buffer space specified
24485 by pointer parameters to the call, the data is transmitted to the
24486 target using a @code{M} or @code{X} packet.  This packet has to be expected
24487 by the target implementation and is handled as any other @code{M} or @code{X}
24488 packet.
24489
24490 @end itemize
24491
24492 Eventually @value{GDBN} replies with another @code{F} packet which contains all
24493 necessary information for the target to continue.  This at least contains
24494
24495 @itemize @bullet
24496 @item
24497 Return value.
24498
24499 @item
24500 @code{errno}, if has been changed by the system call.
24501
24502 @item
24503 ``Ctrl-C'' flag.
24504
24505 @end itemize
24506
24507 After having done the needed type and value coercion, the target continues
24508 the latest continue or step action.
24509
24510 @node The F Request Packet
24511 @subsection The @code{F} Request Packet
24512 @cindex file-i/o request packet
24513 @cindex @code{F} request packet
24514
24515 The @code{F} request packet has the following format:
24516
24517 @table @samp
24518 @item F@var{call-id},@var{parameter@dots{}}
24519
24520 @var{call-id} is the identifier to indicate the host system call to be called.
24521 This is just the name of the function.
24522
24523 @var{parameter@dots{}} are the parameters to the system call.  
24524 Parameters are hexadecimal integer values, either the actual values in case
24525 of scalar datatypes, pointers to target buffer space in case of compound
24526 datatypes and unspecified memory areas, or pointer/length pairs in case
24527 of string parameters.  These are appended to the @var{call-id} as a 
24528 comma-delimited list.  All values are transmitted in ASCII
24529 string representation, pointer/length pairs separated by a slash.
24530
24531 @end table
24532
24533
24534
24535 @node The F Reply Packet
24536 @subsection The @code{F} Reply Packet
24537 @cindex file-i/o reply packet
24538 @cindex @code{F} reply packet
24539
24540 The @code{F} reply packet has the following format:
24541
24542 @table @samp
24543
24544 @item F@var{retcode},@var{errno},@var{Ctrl-C flag};@var{call-specific attachment}
24545
24546 @var{retcode} is the return code of the system call as hexadecimal value.
24547
24548 @var{errno} is the @code{errno} set by the call, in protocol-specific
24549 representation.
24550 This parameter can be omitted if the call was successful.
24551
24552 @var{Ctrl-C flag} is only sent if the user requested a break.  In this
24553 case, @var{errno} must be sent as well, even if the call was successful.
24554 The @var{Ctrl-C flag} itself consists of the character @samp{C}:
24555
24556 @smallexample
24557 F0,0,C
24558 @end smallexample
24559
24560 @noindent
24561 or, if the call was interrupted before the host call has been performed:
24562
24563 @smallexample
24564 F-1,4,C
24565 @end smallexample
24566
24567 @noindent
24568 assuming 4 is the protocol-specific representation of @code{EINTR}.
24569
24570 @end table
24571
24572
24573 @node The Ctrl-C Message
24574 @subsection The @samp{Ctrl-C} Message
24575 @cindex ctrl-c message, in file-i/o protocol
24576
24577 If the @samp{Ctrl-C} flag is set in the @value{GDBN}
24578 reply packet (@pxref{The F Reply Packet}),
24579 the target should behave as if it had
24580 gotten a break message.  The meaning for the target is ``system call
24581 interrupted by @code{SIGINT}''.  Consequentially, the target should actually stop
24582 (as with a break message) and return to @value{GDBN} with a @code{T02}
24583 packet.
24584
24585 It's important for the target to know in which
24586 state the system call was interrupted.  There are two possible cases:
24587
24588 @itemize @bullet
24589 @item
24590 The system call hasn't been performed on the host yet.
24591
24592 @item
24593 The system call on the host has been finished.
24594
24595 @end itemize
24596
24597 These two states can be distinguished by the target by the value of the
24598 returned @code{errno}.  If it's the protocol representation of @code{EINTR}, the system
24599 call hasn't been performed.  This is equivalent to the @code{EINTR} handling
24600 on POSIX systems.  In any other case, the target may presume that the
24601 system call has been finished --- successfully or not --- and should behave
24602 as if the break message arrived right after the system call.
24603
24604 @value{GDBN} must behave reliably.  If the system call has not been called
24605 yet, @value{GDBN} may send the @code{F} reply immediately, setting @code{EINTR} as
24606 @code{errno} in the packet.  If the system call on the host has been finished
24607 before the user requests a break, the full action must be finished by
24608 @value{GDBN}.  This requires sending @code{M} or @code{X} packets as necessary.
24609 The @code{F} packet may only be sent when either nothing has happened
24610 or the full action has been completed.
24611
24612 @node Console I/O
24613 @subsection Console I/O
24614 @cindex console i/o as part of file-i/o
24615
24616 By default and if not explicitly closed by the target system, the file
24617 descriptors 0, 1 and 2 are connected to the @value{GDBN} console.  Output
24618 on the @value{GDBN} console is handled as any other file output operation
24619 (@code{write(1, @dots{})} or @code{write(2, @dots{})}).  Console input is handled
24620 by @value{GDBN} so that after the target read request from file descriptor
24621 0 all following typing is buffered until either one of the following
24622 conditions is met:
24623
24624 @itemize @bullet
24625 @item
24626 The user types @kbd{Ctrl-c}.  The behaviour is as explained above, and the
24627 @code{read}
24628 system call is treated as finished.
24629
24630 @item
24631 The user presses @key{RET}.  This is treated as end of input with a trailing
24632 newline.
24633
24634 @item
24635 The user types @kbd{Ctrl-d}.  This is treated as end of input.  No trailing
24636 character (neither newline nor @samp{Ctrl-D}) is appended to the input.
24637
24638 @end itemize
24639
24640 If the user has typed more characters than fit in the buffer given to
24641 the @code{read} call, the trailing characters are buffered in @value{GDBN} until
24642 either another @code{read(0, @dots{})} is requested by the target, or debugging
24643 is stopped at the user's request.
24644
24645
24646 @node List of Supported Calls
24647 @subsection List of Supported Calls
24648 @cindex list of supported file-i/o calls
24649
24650 @menu
24651 * open::
24652 * close::
24653 * read::
24654 * write::
24655 * lseek::
24656 * rename::
24657 * unlink::
24658 * stat/fstat::
24659 * gettimeofday::
24660 * isatty::
24661 * system::
24662 @end menu
24663
24664 @node open
24665 @unnumberedsubsubsec open
24666 @cindex open, file-i/o system call
24667
24668 @table @asis
24669 @item Synopsis:
24670 @smallexample
24671 int open(const char *pathname, int flags);
24672 int open(const char *pathname, int flags, mode_t mode);
24673 @end smallexample
24674
24675 @item Request:
24676 @samp{Fopen,@var{pathptr}/@var{len},@var{flags},@var{mode}}
24677
24678 @noindent
24679 @var{flags} is the bitwise @code{OR} of the following values:
24680
24681 @table @code
24682 @item O_CREAT
24683 If the file does not exist it will be created.  The host
24684 rules apply as far as file ownership and time stamps
24685 are concerned.
24686
24687 @item O_EXCL
24688 When used with @code{O_CREAT}, if the file already exists it is
24689 an error and open() fails.
24690
24691 @item O_TRUNC
24692 If the file already exists and the open mode allows
24693 writing (@code{O_RDWR} or @code{O_WRONLY} is given) it will be
24694 truncated to zero length.
24695
24696 @item O_APPEND
24697 The file is opened in append mode.
24698
24699 @item O_RDONLY
24700 The file is opened for reading only.
24701
24702 @item O_WRONLY
24703 The file is opened for writing only.
24704
24705 @item O_RDWR
24706 The file is opened for reading and writing.
24707 @end table
24708
24709 @noindent
24710 Other bits are silently ignored.
24711
24712
24713 @noindent
24714 @var{mode} is the bitwise @code{OR} of the following values:
24715
24716 @table @code
24717 @item S_IRUSR
24718 User has read permission.
24719
24720 @item S_IWUSR
24721 User has write permission.
24722
24723 @item S_IRGRP
24724 Group has read permission.
24725
24726 @item S_IWGRP
24727 Group has write permission.
24728
24729 @item S_IROTH
24730 Others have read permission.
24731
24732 @item S_IWOTH
24733 Others have write permission.
24734 @end table
24735
24736 @noindent
24737 Other bits are silently ignored.
24738
24739
24740 @item Return value:
24741 @code{open} returns the new file descriptor or -1 if an error
24742 occurred.
24743
24744 @item Errors:
24745
24746 @table @code
24747 @item EEXIST
24748 @var{pathname} already exists and @code{O_CREAT} and @code{O_EXCL} were used.
24749
24750 @item EISDIR
24751 @var{pathname} refers to a directory.
24752
24753 @item EACCES
24754 The requested access is not allowed.
24755
24756 @item ENAMETOOLONG
24757 @var{pathname} was too long.
24758
24759 @item ENOENT
24760 A directory component in @var{pathname} does not exist.
24761
24762 @item ENODEV
24763 @var{pathname} refers to a device, pipe, named pipe or socket.
24764
24765 @item EROFS
24766 @var{pathname} refers to a file on a read-only filesystem and
24767 write access was requested.
24768
24769 @item EFAULT
24770 @var{pathname} is an invalid pointer value.
24771
24772 @item ENOSPC
24773 No space on device to create the file.
24774
24775 @item EMFILE
24776 The process already has the maximum number of files open.
24777
24778 @item ENFILE
24779 The limit on the total number of files open on the system
24780 has been reached.
24781
24782 @item EINTR
24783 The call was interrupted by the user.
24784 @end table
24785
24786 @end table
24787
24788 @node close
24789 @unnumberedsubsubsec close
24790 @cindex close, file-i/o system call
24791
24792 @table @asis
24793 @item Synopsis:
24794 @smallexample
24795 int close(int fd);
24796 @end smallexample
24797
24798 @item Request:
24799 @samp{Fclose,@var{fd}}
24800
24801 @item Return value:
24802 @code{close} returns zero on success, or -1 if an error occurred.
24803
24804 @item Errors:
24805
24806 @table @code
24807 @item EBADF
24808 @var{fd} isn't a valid open file descriptor.
24809
24810 @item EINTR
24811 The call was interrupted by the user.
24812 @end table
24813
24814 @end table
24815
24816 @node read
24817 @unnumberedsubsubsec read
24818 @cindex read, file-i/o system call
24819
24820 @table @asis
24821 @item Synopsis:
24822 @smallexample
24823 int read(int fd, void *buf, unsigned int count);
24824 @end smallexample
24825
24826 @item Request:
24827 @samp{Fread,@var{fd},@var{bufptr},@var{count}}
24828
24829 @item Return value:
24830 On success, the number of bytes read is returned.
24831 Zero indicates end of file.  If count is zero, read
24832 returns zero as well.  On error, -1 is returned.
24833
24834 @item Errors:
24835
24836 @table @code
24837 @item EBADF
24838 @var{fd} is not a valid file descriptor or is not open for
24839 reading.
24840
24841 @item EFAULT
24842 @var{bufptr} is an invalid pointer value.
24843
24844 @item EINTR
24845 The call was interrupted by the user.
24846 @end table
24847
24848 @end table
24849
24850 @node write
24851 @unnumberedsubsubsec write
24852 @cindex write, file-i/o system call
24853
24854 @table @asis
24855 @item Synopsis:
24856 @smallexample
24857 int write(int fd, const void *buf, unsigned int count);
24858 @end smallexample
24859
24860 @item Request:
24861 @samp{Fwrite,@var{fd},@var{bufptr},@var{count}}
24862
24863 @item Return value:
24864 On success, the number of bytes written are returned.
24865 Zero indicates nothing was written.  On error, -1
24866 is returned.
24867
24868 @item Errors:
24869
24870 @table @code
24871 @item EBADF
24872 @var{fd} is not a valid file descriptor or is not open for
24873 writing.
24874
24875 @item EFAULT
24876 @var{bufptr} is an invalid pointer value.
24877
24878 @item EFBIG
24879 An attempt was made to write a file that exceeds the
24880 host-specific maximum file size allowed.
24881
24882 @item ENOSPC
24883 No space on device to write the data.
24884
24885 @item EINTR
24886 The call was interrupted by the user.
24887 @end table
24888
24889 @end table
24890
24891 @node lseek
24892 @unnumberedsubsubsec lseek
24893 @cindex lseek, file-i/o system call
24894
24895 @table @asis
24896 @item Synopsis:
24897 @smallexample
24898 long lseek (int fd, long offset, int flag);
24899 @end smallexample
24900
24901 @item Request:
24902 @samp{Flseek,@var{fd},@var{offset},@var{flag}}
24903
24904 @var{flag} is one of:
24905
24906 @table @code
24907 @item SEEK_SET
24908 The offset is set to @var{offset} bytes.
24909
24910 @item SEEK_CUR
24911 The offset is set to its current location plus @var{offset}
24912 bytes.
24913
24914 @item SEEK_END
24915 The offset is set to the size of the file plus @var{offset}
24916 bytes.
24917 @end table
24918
24919 @item Return value:
24920 On success, the resulting unsigned offset in bytes from
24921 the beginning of the file is returned.  Otherwise, a
24922 value of -1 is returned.
24923
24924 @item Errors:
24925
24926 @table @code
24927 @item EBADF
24928 @var{fd} is not a valid open file descriptor.
24929
24930 @item ESPIPE
24931 @var{fd} is associated with the @value{GDBN} console.
24932
24933 @item EINVAL
24934 @var{flag} is not a proper value.
24935
24936 @item EINTR
24937 The call was interrupted by the user.
24938 @end table
24939
24940 @end table
24941
24942 @node rename
24943 @unnumberedsubsubsec rename
24944 @cindex rename, file-i/o system call
24945
24946 @table @asis
24947 @item Synopsis:
24948 @smallexample
24949 int rename(const char *oldpath, const char *newpath);
24950 @end smallexample
24951
24952 @item Request:
24953 @samp{Frename,@var{oldpathptr}/@var{len},@var{newpathptr}/@var{len}}
24954
24955 @item Return value:
24956 On success, zero is returned.  On error, -1 is returned.
24957
24958 @item Errors:
24959
24960 @table @code
24961 @item EISDIR
24962 @var{newpath} is an existing directory, but @var{oldpath} is not a
24963 directory.
24964
24965 @item EEXIST
24966 @var{newpath} is a non-empty directory.
24967
24968 @item EBUSY
24969 @var{oldpath} or @var{newpath} is a directory that is in use by some
24970 process.
24971
24972 @item EINVAL
24973 An attempt was made to make a directory a subdirectory
24974 of itself.
24975
24976 @item ENOTDIR
24977 A  component used as a directory in @var{oldpath} or new
24978 path is not a directory.  Or @var{oldpath} is a directory
24979 and @var{newpath} exists but is not a directory.
24980
24981 @item EFAULT
24982 @var{oldpathptr} or @var{newpathptr} are invalid pointer values.
24983
24984 @item EACCES
24985 No access to the file or the path of the file.
24986
24987 @item ENAMETOOLONG
24988
24989 @var{oldpath} or @var{newpath} was too long.
24990
24991 @item ENOENT
24992 A directory component in @var{oldpath} or @var{newpath} does not exist.
24993
24994 @item EROFS
24995 The file is on a read-only filesystem.
24996
24997 @item ENOSPC
24998 The device containing the file has no room for the new
24999 directory entry.
25000
25001 @item EINTR
25002 The call was interrupted by the user.
25003 @end table
25004
25005 @end table
25006
25007 @node unlink
25008 @unnumberedsubsubsec unlink
25009 @cindex unlink, file-i/o system call
25010
25011 @table @asis
25012 @item Synopsis:
25013 @smallexample
25014 int unlink(const char *pathname);
25015 @end smallexample
25016
25017 @item Request:
25018 @samp{Funlink,@var{pathnameptr}/@var{len}}
25019
25020 @item Return value:
25021 On success, zero is returned.  On error, -1 is returned.
25022
25023 @item Errors:
25024
25025 @table @code
25026 @item EACCES
25027 No access to the file or the path of the file.
25028
25029 @item EPERM
25030 The system does not allow unlinking of directories.
25031
25032 @item EBUSY
25033 The file @var{pathname} cannot be unlinked because it's
25034 being used by another process.
25035
25036 @item EFAULT
25037 @var{pathnameptr} is an invalid pointer value.
25038
25039 @item ENAMETOOLONG
25040 @var{pathname} was too long.
25041
25042 @item ENOENT
25043 A directory component in @var{pathname} does not exist.
25044
25045 @item ENOTDIR
25046 A component of the path is not a directory.
25047
25048 @item EROFS
25049 The file is on a read-only filesystem.
25050
25051 @item EINTR
25052 The call was interrupted by the user.
25053 @end table
25054
25055 @end table
25056
25057 @node stat/fstat
25058 @unnumberedsubsubsec stat/fstat
25059 @cindex fstat, file-i/o system call
25060 @cindex stat, file-i/o system call
25061
25062 @table @asis
25063 @item Synopsis:
25064 @smallexample
25065 int stat(const char *pathname, struct stat *buf);
25066 int fstat(int fd, struct stat *buf);
25067 @end smallexample
25068
25069 @item Request:
25070 @samp{Fstat,@var{pathnameptr}/@var{len},@var{bufptr}}@*
25071 @samp{Ffstat,@var{fd},@var{bufptr}}
25072
25073 @item Return value:
25074 On success, zero is returned.  On error, -1 is returned.
25075
25076 @item Errors:
25077
25078 @table @code
25079 @item EBADF
25080 @var{fd} is not a valid open file.
25081
25082 @item ENOENT
25083 A directory component in @var{pathname} does not exist or the
25084 path is an empty string.
25085
25086 @item ENOTDIR
25087 A component of the path is not a directory.
25088
25089 @item EFAULT
25090 @var{pathnameptr} is an invalid pointer value.
25091
25092 @item EACCES
25093 No access to the file or the path of the file.
25094
25095 @item ENAMETOOLONG
25096 @var{pathname} was too long.
25097
25098 @item EINTR
25099 The call was interrupted by the user.
25100 @end table
25101
25102 @end table
25103
25104 @node gettimeofday
25105 @unnumberedsubsubsec gettimeofday
25106 @cindex gettimeofday, file-i/o system call
25107
25108 @table @asis
25109 @item Synopsis:
25110 @smallexample
25111 int gettimeofday(struct timeval *tv, void *tz);
25112 @end smallexample
25113
25114 @item Request:
25115 @samp{Fgettimeofday,@var{tvptr},@var{tzptr}}
25116
25117 @item Return value:
25118 On success, 0 is returned, -1 otherwise.
25119
25120 @item Errors:
25121
25122 @table @code
25123 @item EINVAL
25124 @var{tz} is a non-NULL pointer.
25125
25126 @item EFAULT
25127 @var{tvptr} and/or @var{tzptr} is an invalid pointer value.
25128 @end table
25129
25130 @end table
25131
25132 @node isatty
25133 @unnumberedsubsubsec isatty
25134 @cindex isatty, file-i/o system call
25135
25136 @table @asis
25137 @item Synopsis:
25138 @smallexample
25139 int isatty(int fd);
25140 @end smallexample
25141
25142 @item Request:
25143 @samp{Fisatty,@var{fd}}
25144
25145 @item Return value:
25146 Returns 1 if @var{fd} refers to the @value{GDBN} console, 0 otherwise.
25147
25148 @item Errors:
25149
25150 @table @code
25151 @item EINTR
25152 The call was interrupted by the user.
25153 @end table
25154
25155 @end table
25156
25157 Note that the @code{isatty} call is treated as a special case: it returns
25158 1 to the target if the file descriptor is attached
25159 to the @value{GDBN} console, 0 otherwise.  Implementing through system calls
25160 would require implementing @code{ioctl} and would be more complex than
25161 needed.
25162
25163
25164 @node system
25165 @unnumberedsubsubsec system
25166 @cindex system, file-i/o system call
25167
25168 @table @asis
25169 @item Synopsis:
25170 @smallexample
25171 int system(const char *command);
25172 @end smallexample
25173
25174 @item Request:
25175 @samp{Fsystem,@var{commandptr}/@var{len}}
25176
25177 @item Return value:
25178 If @var{len} is zero, the return value indicates whether a shell is
25179 available.  A zero return value indicates a shell is not available.
25180 For non-zero @var{len}, the value returned is -1 on error and the
25181 return status of the command otherwise.  Only the exit status of the
25182 command is returned, which is extracted from the host's @code{system}
25183 return value by calling @code{WEXITSTATUS(retval)}.  In case
25184 @file{/bin/sh} could not be executed, 127 is returned.
25185
25186 @item Errors:
25187
25188 @table @code
25189 @item EINTR
25190 The call was interrupted by the user.
25191 @end table
25192
25193 @end table
25194
25195 @value{GDBN} takes over the full task of calling the necessary host calls 
25196 to perform the @code{system} call.  The return value of @code{system} on 
25197 the host is simplified before it's returned
25198 to the target.  Any termination signal information from the child process 
25199 is discarded, and the return value consists
25200 entirely of the exit status of the called command.
25201
25202 Due to security concerns, the @code{system} call is by default refused
25203 by @value{GDBN}.  The user has to allow this call explicitly with the
25204 @code{set remote system-call-allowed 1} command.
25205
25206 @table @code
25207 @item set remote system-call-allowed
25208 @kindex set remote system-call-allowed
25209 Control whether to allow the @code{system} calls in the File I/O
25210 protocol for the remote target.  The default is zero (disabled).
25211
25212 @item show remote system-call-allowed
25213 @kindex show remote system-call-allowed
25214 Show whether the @code{system} calls are allowed in the File I/O
25215 protocol.
25216 @end table
25217
25218 @node Protocol-specific Representation of Datatypes
25219 @subsection Protocol-specific Representation of Datatypes
25220 @cindex protocol-specific representation of datatypes, in file-i/o protocol
25221
25222 @menu
25223 * Integral Datatypes::
25224 * Pointer Values::
25225 * Memory Transfer::
25226 * struct stat::
25227 * struct timeval::
25228 @end menu
25229
25230 @node Integral Datatypes
25231 @unnumberedsubsubsec Integral Datatypes
25232 @cindex integral datatypes, in file-i/o protocol
25233
25234 The integral datatypes used in the system calls are @code{int}, 
25235 @code{unsigned int}, @code{long}, @code{unsigned long},
25236 @code{mode_t}, and @code{time_t}.  
25237
25238 @code{int}, @code{unsigned int}, @code{mode_t} and @code{time_t} are
25239 implemented as 32 bit values in this protocol.
25240
25241 @code{long} and @code{unsigned long} are implemented as 64 bit types.
25242
25243 @xref{Limits}, for corresponding MIN and MAX values (similar to those
25244 in @file{limits.h}) to allow range checking on host and target.
25245
25246 @code{time_t} datatypes are defined as seconds since the Epoch.
25247
25248 All integral datatypes transferred as part of a memory read or write of a
25249 structured datatype e.g.@: a @code{struct stat} have to be given in big endian
25250 byte order.
25251
25252 @node Pointer Values
25253 @unnumberedsubsubsec Pointer Values
25254 @cindex pointer values, in file-i/o protocol
25255
25256 Pointers to target data are transmitted as they are.  An exception
25257 is made for pointers to buffers for which the length isn't
25258 transmitted as part of the function call, namely strings.  Strings
25259 are transmitted as a pointer/length pair, both as hex values, e.g.@:
25260
25261 @smallexample
25262 @code{1aaf/12}
25263 @end smallexample
25264
25265 @noindent
25266 which is a pointer to data of length 18 bytes at position 0x1aaf.
25267 The length is defined as the full string length in bytes, including
25268 the trailing null byte.  For example, the string @code{"hello world"}
25269 at address 0x123456 is transmitted as
25270
25271 @smallexample
25272 @code{123456/d}
25273 @end smallexample
25274
25275 @node Memory Transfer
25276 @unnumberedsubsubsec Memory Transfer
25277 @cindex memory transfer, in file-i/o protocol
25278
25279 Structured data which is transferred using a memory read or write (for
25280 example, a @code{struct stat}) is expected to be in a protocol-specific format 
25281 with all scalar multibyte datatypes being big endian.  Translation to
25282 this representation needs to be done both by the target before the @code{F} 
25283 packet is sent, and by @value{GDBN} before 
25284 it transfers memory to the target.  Transferred pointers to structured
25285 data should point to the already-coerced data at any time.
25286
25287
25288 @node struct stat
25289 @unnumberedsubsubsec struct stat
25290 @cindex struct stat, in file-i/o protocol
25291
25292 The buffer of type @code{struct stat} used by the target and @value{GDBN} 
25293 is defined as follows:
25294
25295 @smallexample
25296 struct stat @{
25297     unsigned int  st_dev;      /* device */
25298     unsigned int  st_ino;      /* inode */
25299     mode_t        st_mode;     /* protection */
25300     unsigned int  st_nlink;    /* number of hard links */
25301     unsigned int  st_uid;      /* user ID of owner */
25302     unsigned int  st_gid;      /* group ID of owner */
25303     unsigned int  st_rdev;     /* device type (if inode device) */
25304     unsigned long st_size;     /* total size, in bytes */
25305     unsigned long st_blksize;  /* blocksize for filesystem I/O */
25306     unsigned long st_blocks;   /* number of blocks allocated */
25307     time_t        st_atime;    /* time of last access */
25308     time_t        st_mtime;    /* time of last modification */
25309     time_t        st_ctime;    /* time of last change */
25310 @};
25311 @end smallexample
25312
25313 The integral datatypes conform to the definitions given in the
25314 appropriate section (see @ref{Integral Datatypes}, for details) so this
25315 structure is of size 64 bytes.
25316
25317 The values of several fields have a restricted meaning and/or
25318 range of values.
25319
25320 @table @code
25321
25322 @item st_dev
25323 A value of 0 represents a file, 1 the console.
25324
25325 @item st_ino
25326 No valid meaning for the target.  Transmitted unchanged.
25327
25328 @item st_mode
25329 Valid mode bits are described in @ref{Constants}.  Any other
25330 bits have currently no meaning for the target.
25331
25332 @item st_uid
25333 @itemx st_gid
25334 @itemx st_rdev
25335 No valid meaning for the target.  Transmitted unchanged.
25336
25337 @item st_atime
25338 @itemx st_mtime
25339 @itemx st_ctime
25340 These values have a host and file system dependent
25341 accuracy.  Especially on Windows hosts, the file system may not
25342 support exact timing values.
25343 @end table
25344
25345 The target gets a @code{struct stat} of the above representation and is
25346 responsible for coercing it to the target representation before
25347 continuing.
25348
25349 Note that due to size differences between the host, target, and protocol
25350 representations of @code{struct stat} members, these members could eventually
25351 get truncated on the target.
25352
25353 @node struct timeval
25354 @unnumberedsubsubsec struct timeval
25355 @cindex struct timeval, in file-i/o protocol
25356
25357 The buffer of type @code{struct timeval} used by the File-I/O protocol
25358 is defined as follows:
25359
25360 @smallexample
25361 struct timeval @{
25362     time_t tv_sec;  /* second */
25363     long   tv_usec; /* microsecond */
25364 @};
25365 @end smallexample
25366
25367 The integral datatypes conform to the definitions given in the
25368 appropriate section (see @ref{Integral Datatypes}, for details) so this
25369 structure is of size 8 bytes.
25370
25371 @node Constants
25372 @subsection Constants
25373 @cindex constants, in file-i/o protocol
25374
25375 The following values are used for the constants inside of the
25376 protocol.  @value{GDBN} and target are responsible for translating these
25377 values before and after the call as needed.
25378
25379 @menu
25380 * Open Flags::
25381 * mode_t Values::
25382 * Errno Values::
25383 * Lseek Flags::
25384 * Limits::
25385 @end menu
25386
25387 @node Open Flags
25388 @unnumberedsubsubsec Open Flags
25389 @cindex open flags, in file-i/o protocol
25390
25391 All values are given in hexadecimal representation.
25392
25393 @smallexample
25394   O_RDONLY        0x0
25395   O_WRONLY        0x1
25396   O_RDWR          0x2
25397   O_APPEND        0x8
25398   O_CREAT       0x200
25399   O_TRUNC       0x400
25400   O_EXCL        0x800
25401 @end smallexample
25402
25403 @node mode_t Values
25404 @unnumberedsubsubsec mode_t Values
25405 @cindex mode_t values, in file-i/o protocol
25406
25407 All values are given in octal representation.
25408
25409 @smallexample
25410   S_IFREG       0100000
25411   S_IFDIR        040000
25412   S_IRUSR          0400
25413   S_IWUSR          0200
25414   S_IXUSR          0100
25415   S_IRGRP           040
25416   S_IWGRP           020
25417   S_IXGRP           010
25418   S_IROTH            04
25419   S_IWOTH            02
25420   S_IXOTH            01
25421 @end smallexample
25422
25423 @node Errno Values
25424 @unnumberedsubsubsec Errno Values
25425 @cindex errno values, in file-i/o protocol
25426
25427 All values are given in decimal representation.
25428
25429 @smallexample
25430   EPERM           1
25431   ENOENT          2
25432   EINTR           4
25433   EBADF           9
25434   EACCES         13
25435   EFAULT         14
25436   EBUSY          16
25437   EEXIST         17
25438   ENODEV         19
25439   ENOTDIR        20
25440   EISDIR         21
25441   EINVAL         22
25442   ENFILE         23
25443   EMFILE         24
25444   EFBIG          27
25445   ENOSPC         28
25446   ESPIPE         29
25447   EROFS          30
25448   ENAMETOOLONG   91
25449   EUNKNOWN       9999
25450 @end smallexample
25451
25452   @code{EUNKNOWN} is used as a fallback error value if a host system returns
25453   any error value not in the list of supported error numbers.
25454
25455 @node Lseek Flags
25456 @unnumberedsubsubsec Lseek Flags
25457 @cindex lseek flags, in file-i/o protocol
25458
25459 @smallexample
25460   SEEK_SET      0
25461   SEEK_CUR      1
25462   SEEK_END      2
25463 @end smallexample
25464
25465 @node Limits
25466 @unnumberedsubsubsec Limits
25467 @cindex limits, in file-i/o protocol
25468
25469 All values are given in decimal representation.
25470
25471 @smallexample
25472   INT_MIN       -2147483648
25473   INT_MAX        2147483647
25474   UINT_MAX       4294967295
25475   LONG_MIN      -9223372036854775808
25476   LONG_MAX       9223372036854775807
25477   ULONG_MAX      18446744073709551615
25478 @end smallexample
25479
25480 @node File-I/O Examples
25481 @subsection File-I/O Examples
25482 @cindex file-i/o examples
25483
25484 Example sequence of a write call, file descriptor 3, buffer is at target
25485 address 0x1234, 6 bytes should be written:
25486
25487 @smallexample
25488 <- @code{Fwrite,3,1234,6}
25489 @emph{request memory read from target}
25490 -> @code{m1234,6}
25491 <- XXXXXX
25492 @emph{return "6 bytes written"}
25493 -> @code{F6}
25494 @end smallexample
25495
25496 Example sequence of a read call, file descriptor 3, buffer is at target
25497 address 0x1234, 6 bytes should be read:
25498
25499 @smallexample
25500 <- @code{Fread,3,1234,6}
25501 @emph{request memory write to target}
25502 -> @code{X1234,6:XXXXXX}
25503 @emph{return "6 bytes read"}
25504 -> @code{F6}
25505 @end smallexample
25506
25507 Example sequence of a read call, call fails on the host due to invalid
25508 file descriptor (@code{EBADF}):
25509
25510 @smallexample
25511 <- @code{Fread,3,1234,6}
25512 -> @code{F-1,9}
25513 @end smallexample
25514
25515 Example sequence of a read call, user presses @kbd{Ctrl-c} before syscall on
25516 host is called:
25517
25518 @smallexample
25519 <- @code{Fread,3,1234,6}
25520 -> @code{F-1,4,C}
25521 <- @code{T02}
25522 @end smallexample
25523
25524 Example sequence of a read call, user presses @kbd{Ctrl-c} after syscall on
25525 host is called:
25526
25527 @smallexample
25528 <- @code{Fread,3,1234,6}
25529 -> @code{X1234,6:XXXXXX}
25530 <- @code{T02}
25531 @end smallexample
25532
25533 @node Library List Format
25534 @section Library List Format
25535 @cindex library list format, remote protocol
25536
25537 On some platforms, a dynamic loader (e.g.@: @file{ld.so}) runs in the
25538 same process as your application to manage libraries.  In this case,
25539 @value{GDBN} can use the loader's symbol table and normal memory
25540 operations to maintain a list of shared libraries.  On other
25541 platforms, the operating system manages loaded libraries.
25542 @value{GDBN} can not retrieve the list of currently loaded libraries
25543 through memory operations, so it uses the @samp{qXfer:libraries:read}
25544 packet (@pxref{qXfer library list read}) instead.  The remote stub
25545 queries the target's operating system and reports which libraries
25546 are loaded.
25547
25548 The @samp{qXfer:libraries:read} packet returns an XML document which
25549 lists loaded libraries and their offsets.  Each library has an
25550 associated name and one or more segment base addresses, which report
25551 where the library was loaded in memory.  The segment bases are start
25552 addresses, not relocation offsets; they do not depend on the library's
25553 link-time base addresses.
25554
25555 A simple memory map, with one loaded library relocated by a single
25556 offset, looks like this:
25557
25558 @smallexample
25559 <library-list>
25560   <library name="/lib/libc.so.6">
25561     <segment address="0x10000000"/>
25562   </library>
25563 </library-list>
25564 @end smallexample
25565
25566 The format of a library list is described by this DTD:
25567
25568 @smallexample
25569 <!-- library-list: Root element with versioning -->
25570 <!ELEMENT library-list  (library)*>
25571 <!ATTLIST library-list  version CDATA   #FIXED  "1.0">
25572 <!ELEMENT library       (segment)*>
25573 <!ATTLIST library       name    CDATA   #REQUIRED>
25574 <!ELEMENT segment       EMPTY>
25575 <!ATTLIST segment       address CDATA   #REQUIRED>
25576 @end smallexample
25577
25578 @node Memory Map Format
25579 @section Memory Map Format
25580 @cindex memory map format
25581
25582 To be able to write into flash memory, @value{GDBN} needs to obtain a
25583 memory map from the target.  This section describes the format of the
25584 memory map.
25585
25586 The memory map is obtained using the @samp{qXfer:memory-map:read}
25587 (@pxref{qXfer memory map read}) packet and is an XML document that
25588 lists memory regions.  The top-level structure of the document is shown below:
25589
25590 @smallexample
25591 <?xml version="1.0"?>
25592 <!DOCTYPE memory-map
25593           PUBLIC "+//IDN gnu.org//DTD GDB Memory Map V1.0//EN"
25594                  "http://sourceware.org/gdb/gdb-memory-map.dtd">
25595 <memory-map>
25596     region...
25597 </memory-map>
25598 @end smallexample
25599
25600 Each region can be either:
25601
25602 @itemize
25603
25604 @item
25605 A region of RAM starting at @var{addr} and extending for @var{length}
25606 bytes from there:
25607
25608 @smallexample
25609 <memory type="ram" start="@var{addr}" length="@var{length}"/>
25610 @end smallexample
25611
25612
25613 @item
25614 A region of read-only memory:
25615
25616 @smallexample
25617 <memory type="rom" start="@var{addr}" length="@var{length}"/>
25618 @end smallexample
25619
25620
25621 @item
25622 A region of flash memory, with erasure blocks @var{blocksize}
25623 bytes in length:
25624
25625 @smallexample
25626 <memory type="flash" start="@var{addr}" length="@var{length}">
25627   <property name="blocksize">@var{blocksize}</property>
25628 </memory>
25629 @end smallexample
25630
25631 @end itemize
25632
25633 Regions must not overlap.  @value{GDBN} assumes that areas of memory not covered
25634 by the memory map are RAM, and uses the ordinary @samp{M} and @samp{X}
25635 packets to write to addresses in such ranges.
25636
25637 The formal DTD for memory map format is given below:
25638
25639 @smallexample
25640 <!-- ................................................... -->
25641 <!-- Memory Map XML DTD ................................ -->
25642 <!-- File: memory-map.dtd .............................. -->
25643 <!-- .................................... .............. -->
25644 <!-- memory-map.dtd -->
25645 <!-- memory-map: Root element with versioning -->
25646 <!ELEMENT memory-map (memory | property)>
25647 <!ATTLIST memory-map    version CDATA   #FIXED  "1.0.0">
25648 <!ELEMENT memory (property)>
25649 <!-- memory: Specifies a memory region,
25650              and its type, or device. -->
25651 <!ATTLIST memory        type    CDATA   #REQUIRED
25652                         start   CDATA   #REQUIRED
25653                         length  CDATA   #REQUIRED
25654                         device  CDATA   #IMPLIED>
25655 <!-- property: Generic attribute tag -->
25656 <!ELEMENT property (#PCDATA | property)*>
25657 <!ATTLIST property      name    CDATA   #REQUIRED>
25658 @end smallexample
25659
25660 @include agentexpr.texi
25661
25662 @node Target Descriptions
25663 @appendix Target Descriptions
25664 @cindex target descriptions
25665
25666 @strong{Warning:} target descriptions are still under active development,
25667 and the contents and format may change between @value{GDBN} releases.
25668 The format is expected to stabilize in the future.
25669
25670 One of the challenges of using @value{GDBN} to debug embedded systems
25671 is that there are so many minor variants of each processor
25672 architecture in use.  It is common practice for vendors to start with
25673 a standard processor core --- ARM, PowerPC, or MIPS, for example ---
25674 and then make changes to adapt it to a particular market niche.  Some
25675 architectures have hundreds of variants, available from dozens of
25676 vendors.  This leads to a number of problems:
25677
25678 @itemize @bullet
25679 @item
25680 With so many different customized processors, it is difficult for
25681 the @value{GDBN} maintainers to keep up with the changes.
25682 @item
25683 Since individual variants may have short lifetimes or limited
25684 audiences, it may not be worthwhile to carry information about every
25685 variant in the @value{GDBN} source tree.
25686 @item
25687 When @value{GDBN} does support the architecture of the embedded system
25688 at hand, the task of finding the correct architecture name to give the
25689 @command{set architecture} command can be error-prone.
25690 @end itemize
25691
25692 To address these problems, the @value{GDBN} remote protocol allows a
25693 target system to not only identify itself to @value{GDBN}, but to
25694 actually describe its own features.  This lets @value{GDBN} support
25695 processor variants it has never seen before --- to the extent that the
25696 descriptions are accurate, and that @value{GDBN} understands them.
25697
25698 @value{GDBN} must be compiled with Expat support to support XML target
25699 descriptions.  @xref{Expat}.
25700
25701 @menu
25702 * Retrieving Descriptions::         How descriptions are fetched from a target.
25703 * Target Description Format::       The contents of a target description.
25704 * Predefined Target Types::         Standard types available for target
25705                                     descriptions.
25706 * Standard Target Features::        Features @value{GDBN} knows about.
25707 @end menu
25708
25709 @node Retrieving Descriptions
25710 @section Retrieving Descriptions
25711
25712 Target descriptions can be read from the target automatically, or
25713 specified by the user manually.  The default behavior is to read the
25714 description from the target.  @value{GDBN} retrieves it via the remote
25715 protocol using @samp{qXfer} requests (@pxref{General Query Packets,
25716 qXfer}).  The @var{annex} in the @samp{qXfer} packet will be
25717 @samp{target.xml}.  The contents of the @samp{target.xml} annex are an
25718 XML document, of the form described in @ref{Target Description
25719 Format}.
25720
25721 Alternatively, you can specify a file to read for the target description.
25722 If a file is set, the target will not be queried.  The commands to
25723 specify a file are:
25724
25725 @table @code
25726 @cindex set tdesc filename
25727 @item set tdesc filename @var{path}
25728 Read the target description from @var{path}.
25729
25730 @cindex unset tdesc filename
25731 @item unset tdesc filename
25732 Do not read the XML target description from a file.  @value{GDBN}
25733 will use the description supplied by the current target.
25734
25735 @cindex show tdesc filename
25736 @item show tdesc filename
25737 Show the filename to read for a target description, if any.
25738 @end table
25739
25740
25741 @node Target Description Format
25742 @section Target Description Format
25743 @cindex target descriptions, XML format
25744
25745 A target description annex is an @uref{http://www.w3.org/XML/, XML}
25746 document which complies with the Document Type Definition provided in
25747 the @value{GDBN} sources in @file{gdb/features/gdb-target.dtd}.  This
25748 means you can use generally available tools like @command{xmllint} to
25749 check that your feature descriptions are well-formed and valid.
25750 However, to help people unfamiliar with XML write descriptions for
25751 their targets, we also describe the grammar here.
25752
25753 Target descriptions can identify the architecture of the remote target
25754 and (for some architectures) provide information about custom register
25755 sets.  @value{GDBN} can use this information to autoconfigure for your
25756 target, or to warn you if you connect to an unsupported target.
25757
25758 Here is a simple target description:
25759
25760 @smallexample
25761 <target version="1.0">
25762   <architecture>i386:x86-64</architecture>
25763 </target>
25764 @end smallexample
25765
25766 @noindent
25767 This minimal description only says that the target uses
25768 the x86-64 architecture.
25769
25770 A target description has the following overall form, with [ ] marking
25771 optional elements and @dots{} marking repeatable elements.  The elements
25772 are explained further below.
25773
25774 @smallexample
25775 <?xml version="1.0"?>
25776 <!DOCTYPE target SYSTEM "gdb-target.dtd">
25777 <target version="1.0">
25778   @r{[}@var{architecture}@r{]}
25779   @r{[}@var{feature}@dots{}@r{]}
25780 </target>
25781 @end smallexample
25782
25783 @noindent
25784 The description is generally insensitive to whitespace and line
25785 breaks, under the usual common-sense rules.  The XML version
25786 declaration and document type declaration can generally be omitted
25787 (@value{GDBN} does not require them), but specifying them may be
25788 useful for XML validation tools.  The @samp{version} attribute for
25789 @samp{<target>} may also be omitted, but we recommend
25790 including it; if future versions of @value{GDBN} use an incompatible
25791 revision of @file{gdb-target.dtd}, they will detect and report
25792 the version mismatch.
25793
25794 @subsection Inclusion
25795 @cindex target descriptions, inclusion
25796 @cindex XInclude
25797 @ifnotinfo
25798 @cindex <xi:include>
25799 @end ifnotinfo
25800
25801 It can sometimes be valuable to split a target description up into
25802 several different annexes, either for organizational purposes, or to
25803 share files between different possible target descriptions.  You can
25804 divide a description into multiple files by replacing any element of
25805 the target description with an inclusion directive of the form:
25806
25807 @smallexample
25808 <xi:include href="@var{document}"/>
25809 @end smallexample
25810
25811 @noindent
25812 When @value{GDBN} encounters an element of this form, it will retrieve
25813 the named XML @var{document}, and replace the inclusion directive with
25814 the contents of that document.  If the current description was read
25815 using @samp{qXfer}, then so will be the included document;
25816 @var{document} will be interpreted as the name of an annex.  If the
25817 current description was read from a file, @value{GDBN} will look for
25818 @var{document} as a file in the same directory where it found the
25819 original description.
25820
25821 @subsection Architecture
25822 @cindex <architecture>
25823
25824 An @samp{<architecture>} element has this form:
25825
25826 @smallexample
25827   <architecture>@var{arch}</architecture>
25828 @end smallexample
25829
25830 @var{arch} is an architecture name from the same selection
25831 accepted by @code{set architecture} (@pxref{Targets, ,Specifying a
25832 Debugging Target}).
25833
25834 @subsection Features
25835 @cindex <feature>
25836
25837 Each @samp{<feature>} describes some logical portion of the target
25838 system.  Features are currently used to describe available CPU
25839 registers and the types of their contents.  A @samp{<feature>} element
25840 has this form:
25841
25842 @smallexample
25843 <feature name="@var{name}">
25844   @r{[}@var{type}@dots{}@r{]}
25845   @var{reg}@dots{}
25846 </feature>
25847 @end smallexample
25848
25849 @noindent
25850 Each feature's name should be unique within the description.  The name
25851 of a feature does not matter unless @value{GDBN} has some special
25852 knowledge of the contents of that feature; if it does, the feature
25853 should have its standard name.  @xref{Standard Target Features}.
25854
25855 @subsection Types
25856
25857 Any register's value is a collection of bits which @value{GDBN} must
25858 interpret.  The default interpretation is a two's complement integer,
25859 but other types can be requested by name in the register description.
25860 Some predefined types are provided by @value{GDBN} (@pxref{Predefined
25861 Target Types}), and the description can define additional composite types.
25862
25863 Each type element must have an @samp{id} attribute, which gives
25864 a unique (within the containing @samp{<feature>}) name to the type.
25865 Types must be defined before they are used.
25866
25867 @cindex <vector>
25868 Some targets offer vector registers, which can be treated as arrays
25869 of scalar elements.  These types are written as @samp{<vector>} elements,
25870 specifying the array element type, @var{type}, and the number of elements,
25871 @var{count}:
25872
25873 @smallexample
25874 <vector id="@var{id}" type="@var{type}" count="@var{count}"/>
25875 @end smallexample
25876
25877 @cindex <union>
25878 If a register's value is usefully viewed in multiple ways, define it
25879 with a union type containing the useful representations.  The
25880 @samp{<union>} element contains one or more @samp{<field>} elements,
25881 each of which has a @var{name} and a @var{type}:
25882
25883 @smallexample
25884 <union id="@var{id}">
25885   <field name="@var{name}" type="@var{type}"/>
25886   @dots{}
25887 </union>
25888 @end smallexample
25889
25890 @subsection Registers
25891 @cindex <reg>
25892
25893 Each register is represented as an element with this form:
25894
25895 @smallexample
25896 <reg name="@var{name}"
25897      bitsize="@var{size}"
25898      @r{[}regnum="@var{num}"@r{]}
25899      @r{[}save-restore="@var{save-restore}"@r{]}
25900      @r{[}type="@var{type}"@r{]}
25901      @r{[}group="@var{group}"@r{]}/>
25902 @end smallexample
25903
25904 @noindent
25905 The components are as follows:
25906
25907 @table @var
25908
25909 @item name
25910 The register's name; it must be unique within the target description.
25911
25912 @item bitsize
25913 The register's size, in bits.
25914
25915 @item regnum
25916 The register's number.  If omitted, a register's number is one greater
25917 than that of the previous register (either in the current feature or in
25918 a preceeding feature); the first register in the target description
25919 defaults to zero.  This register number is used to read or write
25920 the register; e.g.@: it is used in the remote @code{p} and @code{P}
25921 packets, and registers appear in the @code{g} and @code{G} packets
25922 in order of increasing register number.
25923
25924 @item save-restore
25925 Whether the register should be preserved across inferior function
25926 calls; this must be either @code{yes} or @code{no}.  The default is
25927 @code{yes}, which is appropriate for most registers except for
25928 some system control registers; this is not related to the target's
25929 ABI.
25930
25931 @item type
25932 The type of the register.  @var{type} may be a predefined type, a type
25933 defined in the current feature, or one of the special types @code{int}
25934 and @code{float}.  @code{int} is an integer type of the correct size
25935 for @var{bitsize}, and @code{float} is a floating point type (in the
25936 architecture's normal floating point format) of the correct size for
25937 @var{bitsize}.  The default is @code{int}.
25938
25939 @item group
25940 The register group to which this register belongs.  @var{group} must
25941 be either @code{general}, @code{float}, or @code{vector}.  If no
25942 @var{group} is specified, @value{GDBN} will not display the register
25943 in @code{info registers}.
25944
25945 @end table
25946
25947 @node Predefined Target Types
25948 @section Predefined Target Types
25949 @cindex target descriptions, predefined types
25950
25951 Type definitions in the self-description can build up composite types
25952 from basic building blocks, but can not define fundamental types.  Instead,
25953 standard identifiers are provided by @value{GDBN} for the fundamental
25954 types.  The currently supported types are:
25955
25956 @table @code
25957
25958 @item int8
25959 @itemx int16
25960 @itemx int32
25961 @itemx int64
25962 Signed integer types holding the specified number of bits.
25963
25964 @item uint8
25965 @itemx uint16
25966 @itemx uint32
25967 @itemx uint64
25968 Unsigned integer types holding the specified number of bits.
25969
25970 @item code_ptr
25971 @itemx data_ptr
25972 Pointers to unspecified code and data.  The program counter and
25973 any dedicated return address register may be marked as code
25974 pointers; printing a code pointer converts it into a symbolic
25975 address.  The stack pointer and any dedicated address registers
25976 may be marked as data pointers.
25977
25978 @item ieee_single
25979 Single precision IEEE floating point.
25980
25981 @item ieee_double
25982 Double precision IEEE floating point.
25983
25984 @item arm_fpa_ext
25985 The 12-byte extended precision format used by ARM FPA registers.
25986
25987 @end table
25988
25989 @node Standard Target Features
25990 @section Standard Target Features
25991 @cindex target descriptions, standard features
25992
25993 A target description must contain either no registers or all the
25994 target's registers.  If the description contains no registers, then
25995 @value{GDBN} will assume a default register layout, selected based on
25996 the architecture.  If the description contains any registers, the
25997 default layout will not be used; the standard registers must be
25998 described in the target description, in such a way that @value{GDBN}
25999 can recognize them.
26000
26001 This is accomplished by giving specific names to feature elements
26002 which contain standard registers.  @value{GDBN} will look for features
26003 with those names and verify that they contain the expected registers;
26004 if any known feature is missing required registers, or if any required
26005 feature is missing, @value{GDBN} will reject the target
26006 description.  You can add additional registers to any of the
26007 standard features --- @value{GDBN} will display them just as if
26008 they were added to an unrecognized feature.
26009
26010 This section lists the known features and their expected contents.
26011 Sample XML documents for these features are included in the
26012 @value{GDBN} source tree, in the directory @file{gdb/features}.
26013
26014 Names recognized by @value{GDBN} should include the name of the
26015 company or organization which selected the name, and the overall
26016 architecture to which the feature applies; so e.g.@: the feature
26017 containing ARM core registers is named @samp{org.gnu.gdb.arm.core}.
26018
26019 The names of registers are not case sensitive for the purpose
26020 of recognizing standard features, but @value{GDBN} will only display
26021 registers using the capitalization used in the description.
26022
26023 @menu
26024 * ARM Features::
26025 * M68K Features::
26026 @end menu
26027
26028
26029 @node ARM Features
26030 @subsection ARM Features
26031 @cindex target descriptions, ARM features
26032
26033 The @samp{org.gnu.gdb.arm.core} feature is required for ARM targets.
26034 It should contain registers @samp{r0} through @samp{r13}, @samp{sp},
26035 @samp{lr}, @samp{pc}, and @samp{cpsr}.
26036
26037 The @samp{org.gnu.gdb.arm.fpa} feature is optional.  If present, it
26038 should contain registers @samp{f0} through @samp{f7} and @samp{fps}.
26039
26040 The @samp{org.gnu.gdb.xscale.iwmmxt} feature is optional.  If present,
26041 it should contain at least registers @samp{wR0} through @samp{wR15} and
26042 @samp{wCGR0} through @samp{wCGR3}.  The @samp{wCID}, @samp{wCon},
26043 @samp{wCSSF}, and @samp{wCASF} registers are optional.
26044
26045 @subsection MIPS Features
26046 @cindex target descriptions, MIPS features
26047
26048 The @samp{org.gnu.gdb.mips.cpu} feature is required for MIPS targets.
26049 It should contain registers @samp{r0} through @samp{r31}, @samp{lo},
26050 @samp{hi}, and @samp{pc}.  They may be 32-bit or 64-bit depending
26051 on the target.
26052
26053 The @samp{org.gnu.gdb.mips.cp0} feature is also required.  It should
26054 contain at least the @samp{status}, @samp{badvaddr}, and @samp{cause}
26055 registers.  They may be 32-bit or 64-bit depending on the target.
26056
26057 The @samp{org.gnu.gdb.mips.fpu} feature is currently required, though
26058 it may be optional in a future version of @value{GDBN}.  It should
26059 contain registers @samp{f0} through @samp{f31}, @samp{fcsr}, and
26060 @samp{fir}.  They may be 32-bit or 64-bit depending on the target.
26061
26062 The @samp{org.gnu.gdb.mips.linux} feature is optional.  It should
26063 contain a single register, @samp{restart}, which is used by the
26064 Linux kernel to control restartable syscalls.
26065
26066 @node M68K Features
26067 @subsection M68K Features
26068 @cindex target descriptions, M68K features
26069
26070 @table @code
26071 @item @samp{org.gnu.gdb.m68k.core}
26072 @itemx @samp{org.gnu.gdb.coldfire.core}
26073 @itemx @samp{org.gnu.gdb.fido.core}
26074 One of those features must be always present. 
26075 The feature that is present determines which flavor of m86k is
26076 used.  The feature that is present should contain registers
26077 @samp{d0} through @samp{d7}, @samp{a0} through @samp{a5}, @samp{fp},
26078 @samp{sp}, @samp{ps} and @samp{pc}.
26079
26080 @item @samp{org.gnu.gdb.coldfire.fp}
26081 This feature is optional.  If present, it should contain registers
26082 @samp{fp0} through @samp{fp7}, @samp{fpcontrol}, @samp{fpstatus} and
26083 @samp{fpiaddr}.
26084 @end table
26085
26086 @include gpl.texi
26087
26088 @raisesections
26089 @include fdl.texi
26090 @lowersections
26091
26092 @node Index
26093 @unnumbered Index
26094
26095 @printindex cp
26096
26097 @tex
26098 % I think something like @colophon should be in texinfo.  In the
26099 % meantime:
26100 \long\def\colophon{\hbox to0pt{}\vfill
26101 \centerline{The body of this manual is set in}
26102 \centerline{\fontname\tenrm,}
26103 \centerline{with headings in {\bf\fontname\tenbf}}
26104 \centerline{and examples in {\tt\fontname\tentt}.}
26105 \centerline{{\it\fontname\tenit\/},}
26106 \centerline{{\bf\fontname\tenbf}, and}
26107 \centerline{{\sl\fontname\tensl\/}}
26108 \centerline{are used for emphasis.}\vfill}
26109 \page\colophon
26110 % Blame: doc@cygnus.com, 1991.
26111 @end tex
26112
26113 @bye