1 /* Target-dependent code for the CSKY architecture, for GDB.
3 Copyright (C) 2010-2019 Free Software Foundation, Inc.
5 Contributed by C-SKY Microsystems and Mentor Graphics.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23 #include "common/gdb_assert.h"
35 #include "arch-utils.h"
39 #include "reggroups.h"
43 #include "sim-regno.h"
45 #include "frame-unwind.h"
46 #include "frame-base.h"
47 #include "trad-frame.h"
49 #include "floatformat.h"
51 #include "target-descriptions.h"
52 #include "dwarf2-frame.h"
53 #include "user-regs.h"
55 #include "csky-tdep.h"
57 #include "opcode/csky.h"
61 /* Control debugging information emitted in this file. */
62 static int csky_debug = 0;
64 static struct reggroup *cr_reggroup;
65 static struct reggroup *fr_reggroup;
66 static struct reggroup *vr_reggroup;
67 static struct reggroup *mmu_reggroup;
68 static struct reggroup *prof_reggroup;
70 /* Convenience function to print debug messages in prologue analysis. */
73 print_savedreg_msg (int regno, int offsets[], bool print_continuing)
75 fprintf_unfiltered (gdb_stdlog, "csky: r%d saved at offset 0x%x\n",
76 regno, offsets[regno]);
78 fprintf_unfiltered (gdb_stdlog, "csky: continuing\n");
81 /* Check whether the instruction at ADDR is 16-bit or not. */
84 csky_pc_is_csky16 (struct gdbarch *gdbarch, CORE_ADDR addr)
86 gdb_byte target_mem[2];
90 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
92 status = target_read_memory (addr, target_mem, 2);
93 /* Assume a 16-bit instruction if we can't read memory. */
97 /* Get instruction from memory. */
98 insn = extract_unsigned_integer (target_mem, 2, byte_order);
99 if ((insn & CSKY_32_INSN_MASK) == CSKY_32_INSN_MASK)
101 else if (insn == CSKY_BKPT_INSN)
103 /* Check for 32-bit bkpt instruction which is all 0. */
104 status = target_read_memory (addr + 2, target_mem, 2);
108 insn = extract_unsigned_integer (target_mem, 2, byte_order);
109 if (insn == CSKY_BKPT_INSN)
115 /* Get one instruction at ADDR and store it in INSN. Return 2 for
116 a 16-bit instruction or 4 for a 32-bit instruction. */
119 csky_get_insn (struct gdbarch *gdbarch, CORE_ADDR addr, unsigned int *insn)
121 gdb_byte target_mem[2];
122 unsigned int insn_type;
125 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
127 status = target_read_memory (addr, target_mem, 2);
129 memory_error (TARGET_XFER_E_IO, addr);
131 insn_type = extract_unsigned_integer (target_mem, 2, byte_order);
132 if (CSKY_32_INSN_MASK == (insn_type & CSKY_32_INSN_MASK))
134 status = target_read_memory (addr + 2, target_mem, 2);
136 memory_error (TARGET_XFER_E_IO, addr);
137 insn_type = ((insn_type << 16)
138 | extract_unsigned_integer (target_mem, 2, byte_order));
145 /* Implement the read_pc gdbarch method. */
148 csky_read_pc (readable_regcache *regcache)
151 regcache->cooked_read (CSKY_PC_REGNUM, &pc);
155 /* Implement the write_pc gdbarch method. */
158 csky_write_pc (regcache *regcache, CORE_ADDR val)
160 regcache_cooked_write_unsigned (regcache, CSKY_PC_REGNUM, val);
163 /* C-Sky ABI register names. */
165 static const char *csky_register_names[] =
167 /* General registers 0 - 31. */
168 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
169 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
170 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
171 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
173 /* DSP hilo registers 36 and 37. */
174 "", "", "", "", "hi", "lo", "", "",
176 /* FPU/VPU general registers 40 - 71. */
177 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
178 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
179 "vr0", "vr1", "vr2", "vr3", "vr4", "vr5", "vr6", "vr7",
180 "vr8", "vr9", "vr10", "vr11", "vr12", "vr13", "vr14", "vr15",
182 /* Program counter 72. */
185 /* Optional registers (ar) 73 - 88. */
186 "ar0", "ar1", "ar2", "ar3", "ar4", "ar5", "ar6", "ar7",
187 "ar8", "ar9", "ar10", "ar11", "ar12", "ar13", "ar14", "ar15",
189 /* Control registers (cr) 89 - 119. */
190 "psr", "vbr", "epsr", "fpsr", "epc", "fpc", "ss0", "ss1",
191 "ss2", "ss3", "ss4", "gcr", "gsr", "cr13", "cr14", "cr15",
192 "cr16", "cr17", "cr18", "cr19", "cr20", "cr21", "cr22", "cr23",
193 "cr24", "cr25", "cr26", "cr27", "cr28", "cr29", "cr30", "cr31",
195 /* FPU/VPU control registers 121 ~ 123. */
197 "fid", "fcr", "fesr", "", "", "", "usp",
199 /* MMU control registers: 128 - 136. */
200 "mcr0", "mcr2", "mcr3", "mcr4", "mcr6", "mcr8", "mcr29", "mcr30",
203 /* Profiling control registers 140 - 143. */
204 /* Profiling software general registers 144 - 157. */
205 "profcr0", "profcr1", "profcr2", "profcr3", "profsgr0", "profsgr1",
206 "profsgr2", "profsgr3", "profsgr4", "profsgr5", "profsgr6", "profsgr7",
207 "profsgr8", "profsgr9", "profsgr10","profsgr11","profsgr12", "profsgr13",
210 /* Profiling architecture general registers 160 - 174. */
211 "profagr0", "profagr1", "profagr2", "profagr3", "profagr4", "profagr5",
212 "profagr6", "profagr7", "profagr8", "profagr9", "profagr10","profagr11",
213 "profagr12","profagr13","profagr14", "",
215 /* Profiling extension general registers 176 - 188. */
216 "profxgr0", "profxgr1", "profxgr2", "profxgr3", "profxgr4", "profxgr5",
217 "profxgr6", "profxgr7", "profxgr8", "profxgr9", "profxgr10","profxgr11",
220 /* Control registers in bank1. */
221 "", "", "", "", "", "", "", "",
222 "", "", "", "", "", "", "", "",
223 "cp1cr16", "cp1cr17", "cp1cr18", "cp1cr19", "cp1cr20", "", "", "",
224 "", "", "", "", "", "", "", "",
226 /* Control registers in bank3 (ICE). */
227 "sepsr", "sevbr", "seepsr", "", "seepc", "", "nsssp", "seusp",
228 "sedcr", "", "", "", "", "", "", "",
229 "", "", "", "", "", "", "", "",
230 "", "", "", "", "", "", "", ""
233 /* Implement the register_name gdbarch method. */
236 csky_register_name (struct gdbarch *gdbarch, int reg_nr)
238 if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
239 return tdesc_register_name (gdbarch, reg_nr);
244 if (reg_nr >= gdbarch_num_regs (gdbarch))
247 return csky_register_names[reg_nr];
250 /* Construct vector type for vrx registers. */
253 csky_vector_type (struct gdbarch *gdbarch)
255 const struct builtin_type *bt = builtin_type (gdbarch);
259 t = arch_composite_type (gdbarch, "__gdb_builtin_type_vec128i",
262 append_composite_type_field (t, "u32",
263 init_vector_type (bt->builtin_int32, 4));
264 append_composite_type_field (t, "u16",
265 init_vector_type (bt->builtin_int16, 8));
266 append_composite_type_field (t, "u8",
267 init_vector_type (bt->builtin_int8, 16));
270 TYPE_NAME (t) = "builtin_type_vec128i";
275 /* Return the GDB type object for the "standard" data type
276 of data in register N. */
279 csky_register_type (struct gdbarch *gdbarch, int reg_nr)
281 /* PC, EPC, FPC is a text pointer. */
282 if ((reg_nr == CSKY_PC_REGNUM) || (reg_nr == CSKY_EPC_REGNUM)
283 || (reg_nr == CSKY_FPC_REGNUM))
284 return builtin_type (gdbarch)->builtin_func_ptr;
286 /* VBR is a data pointer. */
287 if (reg_nr == CSKY_VBR_REGNUM)
288 return builtin_type (gdbarch)->builtin_data_ptr;
290 /* Float register has 64 bits, and only in ck810. */
291 if ((reg_nr >=CSKY_FR0_REGNUM) && (reg_nr <= CSKY_FR0_REGNUM + 15))
292 return arch_float_type (gdbarch, 64, "builtin_type_csky_ext",
293 floatformats_ieee_double);
295 /* Vector register has 128 bits, and only in ck810. */
296 if ((reg_nr >= CSKY_VR0_REGNUM) && (reg_nr <= CSKY_VR0_REGNUM + 15))
297 return csky_vector_type (gdbarch);
299 /* Profiling general register has 48 bits, we use 64bit. */
300 if ((reg_nr >= CSKY_PROFGR_REGNUM) && (reg_nr <= CSKY_PROFGR_REGNUM + 44))
301 return builtin_type (gdbarch)->builtin_uint64;
303 if (reg_nr == CSKY_SP_REGNUM)
304 return builtin_type (gdbarch)->builtin_data_ptr;
306 /* Others are 32 bits. */
307 return builtin_type (gdbarch)->builtin_int32;
310 /* Data structure to marshall items in a dummy stack frame when
311 calling a function in the inferior. */
315 stack_item (int len_, const gdb_byte *data_)
316 : len (len_), data (data_)
320 const gdb_byte *data;
323 /* Implement the push_dummy_call gdbarch method. */
326 csky_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
327 struct regcache *regcache, CORE_ADDR bp_addr,
328 int nargs, struct value **args, CORE_ADDR sp,
329 function_call_return_method return_method,
330 CORE_ADDR struct_addr)
333 int argreg = CSKY_ABI_A0_REGNUM;
334 int last_arg_regnum = CSKY_ABI_LAST_ARG_REGNUM;
335 int need_dummy_stack = 0;
336 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
337 std::vector<stack_item> stack_items;
339 /* Set the return address. For CSKY, the return breakpoint is
340 always at BP_ADDR. */
341 regcache_cooked_write_unsigned (regcache, CSKY_LR_REGNUM, bp_addr);
343 /* The struct_return pointer occupies the first parameter
345 if (return_method == return_method_struct)
349 fprintf_unfiltered (gdb_stdlog,
350 "csky: struct return in %s = %s\n",
351 gdbarch_register_name (gdbarch, argreg),
352 paddress (gdbarch, struct_addr));
354 regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
358 /* Put parameters into argument registers in REGCACHE.
359 In ABI argument registers are r0 through r3. */
360 for (argnum = 0; argnum < nargs; argnum++)
363 struct type *arg_type;
366 arg_type = check_typedef (value_type (args[argnum]));
367 len = TYPE_LENGTH (arg_type);
368 val = value_contents (args[argnum]);
370 /* Copy the argument to argument registers or the dummy stack.
371 Large arguments are split between registers and stack.
373 If len < 4, there is no need to worry about endianness since
374 the arguments will always be stored in the low address. */
378 = extract_unsigned_integer (val, len, byte_order);
379 regcache_cooked_write_unsigned (regcache, argreg, regval);
386 int partial_len = len < 4 ? len : 4;
387 if (argreg <= last_arg_regnum)
389 /* The argument is passed in an argument register. */
391 = extract_unsigned_integer (val, partial_len,
393 if (byte_order == BFD_ENDIAN_BIG)
394 regval <<= (4 - partial_len) * 8;
396 /* Put regval into register in REGCACHE. */
397 regcache_cooked_write_unsigned (regcache, argreg,
403 /* The argument should be pushed onto the dummy stack. */
404 stack_items.emplace_back (4, val);
405 need_dummy_stack += 4;
413 /* Transfer the dummy stack frame to the target. */
414 std::vector<stack_item>::reverse_iterator iter;
415 for (iter = stack_items.rbegin (); iter != stack_items.rend (); ++iter)
418 write_memory (sp, iter->data, iter->len);
421 /* Finally, update the SP register. */
422 regcache_cooked_write_unsigned (regcache, CSKY_SP_REGNUM, sp);
426 /* Implement the return_value gdbarch method. */
428 static enum return_value_convention
429 csky_return_value (struct gdbarch *gdbarch, struct value *function,
430 struct type *valtype, struct regcache *regcache,
431 gdb_byte *readbuf, const gdb_byte *writebuf)
434 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
435 int len = TYPE_LENGTH (valtype);
436 unsigned int ret_regnum = CSKY_RET_REGNUM;
438 /* Csky abi specifies that return values larger than 8 bytes
439 are put on the stack. */
441 return RETURN_VALUE_STRUCT_CONVENTION;
447 /* By using store_unsigned_integer we avoid having to do
448 anything special for small big-endian values. */
449 regcache->cooked_read (ret_regnum, &tmp);
450 store_unsigned_integer (readbuf, (len > 4 ? 4 : len),
454 regcache->cooked_read (ret_regnum + 1, &tmp);
455 store_unsigned_integer (readbuf + 4, 4, byte_order, tmp);
458 if (writebuf != NULL)
460 regval = extract_unsigned_integer (writebuf, len > 4 ? 4 : len,
462 regcache_cooked_write_unsigned (regcache, ret_regnum, regval);
465 regval = extract_unsigned_integer ((gdb_byte *) writebuf + 4,
467 regcache_cooked_write_unsigned (regcache, ret_regnum + 1,
472 return RETURN_VALUE_REGISTER_CONVENTION;
476 /* Implement the frame_align gdbarch method.
478 Adjust the address downward (direction of stack growth) so that it
479 is correctly aligned for a new stack frame. */
482 csky_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
484 return align_down (addr, 4);
487 /* Unwind cache used for gdbarch fallback unwinder. */
489 struct csky_unwind_cache
491 /* The stack pointer at the time this frame was created; i.e. the
492 caller's stack pointer when this function was called. It is used
493 to identify this frame. */
496 /* The frame base for this frame is just prev_sp - frame size.
497 FRAMESIZE is the distance from the frame pointer to the
498 initial stack pointer. */
501 /* The register used to hold the frame pointer for this frame. */
504 /* Saved register offsets. */
505 struct trad_frame_saved_reg *saved_regs;
508 /* Do prologue analysis, returning the PC of the first instruction
509 after the function prologue. */
512 csky_analyze_prologue (struct gdbarch *gdbarch,
516 struct frame_info *this_frame,
517 struct csky_unwind_cache *this_cache,
521 unsigned int insn, rn;
524 int register_offsets[CSKY_NUM_GREGS_SAVED_GREGS];
526 /* For adjusting fp. */
530 /* REGISTER_OFFSETS will contain offsets from the top of the frame
531 (NOT the frame pointer) for the various saved registers, or -1
532 if the register is not saved. */
533 for (rn = 0; rn < CSKY_NUM_GREGS_SAVED_GREGS; rn++)
534 register_offsets[rn] = -1;
536 /* Analyze the prologue. Things we determine from analyzing the
537 prologue include the size of the frame and which registers are
538 saved (and where). */
541 fprintf_unfiltered (gdb_stdlog,
542 "csky: Scanning prologue: start_pc = 0x%x,"
543 "limit_pc = 0x%x\n", (unsigned int) start_pc,
544 (unsigned int) limit_pc);
547 /* Default to 16 bit instruction. */
550 for (addr = start_pc; addr < limit_pc; addr += insn_len)
553 insn_len = csky_get_insn (gdbarch, addr, &insn);
555 /* Check if 32 bit. */
558 /* subi32 sp,sp oimm12. */
559 if (CSKY_32_IS_SUBI0 (insn))
562 int offset = CSKY_32_SUBI_IMM (insn);
565 fprintf_unfiltered (gdb_stdlog,
566 "csky: got subi sp,%d; continuing\n",
572 /* stm32 ry-rz,(sp). */
573 else if (CSKY_32_IS_STMx0 (insn))
575 /* Spill register(s). */
580 /* BIG WARNING! The CKCore ABI does not restrict functions
581 to taking only one stack allocation. Therefore, when
582 we save a register, we record the offset of where it was
583 saved relative to the current stacksize. This will
584 then give an offset from the SP upon entry to our
585 function. Remember, stacksize is NOT constant until
586 we're done scanning the prologue. */
587 start_register = CSKY_32_STM_VAL_REGNUM (insn);
588 reg_count = CSKY_32_STM_SIZE (insn);
591 fprintf_unfiltered (gdb_stdlog,
592 "csky: got stm r%d-r%d,(sp)\n",
594 start_register + reg_count);
597 for (rn = start_register, offset = 0;
598 rn <= start_register + reg_count;
601 register_offsets[rn] = stacksize - offset;
604 fprintf_unfiltered (gdb_stdlog,
605 "csky: r%d saved at 0x%x"
607 rn, register_offsets[rn],
612 fprintf_unfiltered (gdb_stdlog, "csky: continuing\n");
615 /* stw ry,(sp,disp). */
616 else if (CSKY_32_IS_STWx0 (insn))
618 /* Spill register: see note for IS_STM above. */
621 rn = CSKY_32_ST_VAL_REGNUM (insn);
622 disp = CSKY_32_ST_OFFSET (insn);
623 register_offsets[rn] = stacksize - disp;
625 print_savedreg_msg (rn, register_offsets, true);
628 else if (CSKY_32_IS_MOV_FP_SP (insn))
630 /* SP is saved to FP reg, means code afer prologue may
633 adjust_fp = stacksize;
636 else if (CSKY_32_IS_MFCR_EPSR (insn))
640 int mfcr_regnum = insn & 0x1f;
641 insn_len = csky_get_insn (gdbarch, addr, &insn2);
644 int stw_regnum = (insn2 >> 5) & 0x7;
645 if (CSKY_16_IS_STWx0 (insn2) && (mfcr_regnum == stw_regnum))
649 /* CSKY_EPSR_REGNUM. */
651 offset = CSKY_16_STWx0_OFFSET (insn2);
652 register_offsets[rn] = stacksize - offset;
654 print_savedreg_msg (rn, register_offsets, true);
662 int stw_regnum = (insn2 >> 21) & 0x1f;
663 if (CSKY_32_IS_STWx0 (insn2) && (mfcr_regnum == stw_regnum))
667 /* CSKY_EPSR_REGNUM. */
669 offset = CSKY_32_ST_OFFSET (insn2);
670 register_offsets[rn] = framesize - offset;
672 print_savedreg_msg (rn, register_offsets, true);
678 else if (CSKY_32_IS_MFCR_FPSR (insn))
682 int mfcr_regnum = insn & 0x1f;
683 insn_len = csky_get_insn (gdbarch, addr, &insn2);
686 int stw_regnum = (insn2 >> 5) & 0x7;
687 if (CSKY_16_IS_STWx0 (insn2) && (mfcr_regnum
692 /* CSKY_FPSR_REGNUM. */
693 rn = CSKY_NUM_GREGS + 1;
694 offset = CSKY_16_STWx0_OFFSET (insn2);
695 register_offsets[rn] = stacksize - offset;
697 print_savedreg_msg (rn, register_offsets, true);
705 int stw_regnum = (insn2 >> 21) & 0x1f;
706 if (CSKY_32_IS_STWx0 (insn2) && (mfcr_regnum == stw_regnum))
710 /* CSKY_FPSR_REGNUM. */
711 rn = CSKY_NUM_GREGS + 1;
712 offset = CSKY_32_ST_OFFSET (insn2);
713 register_offsets[rn] = framesize - offset;
715 print_savedreg_msg (rn, register_offsets, true);
721 else if (CSKY_32_IS_MFCR_EPC (insn))
725 int mfcr_regnum = insn & 0x1f;
726 insn_len = csky_get_insn (gdbarch, addr, &insn2);
729 int stw_regnum = (insn2 >> 5) & 0x7;
730 if (CSKY_16_IS_STWx0 (insn2) && (mfcr_regnum == stw_regnum))
734 /* CSKY_EPC_REGNUM. */
735 rn = CSKY_NUM_GREGS + 2;
736 offset = CSKY_16_STWx0_OFFSET (insn2);
737 register_offsets[rn] = stacksize - offset;
739 print_savedreg_msg (rn, register_offsets, true);
747 int stw_regnum = (insn2 >> 21) & 0x1f;
748 if (CSKY_32_IS_STWx0 (insn2) && (mfcr_regnum == stw_regnum))
752 /* CSKY_EPC_REGNUM. */
753 rn = CSKY_NUM_GREGS + 2;
754 offset = CSKY_32_ST_OFFSET (insn2);
755 register_offsets[rn] = framesize - offset;
757 print_savedreg_msg (rn, register_offsets, true);
763 else if (CSKY_32_IS_MFCR_FPC (insn))
767 int mfcr_regnum = insn & 0x1f;
768 insn_len = csky_get_insn (gdbarch, addr, &insn2);
771 int stw_regnum = (insn2 >> 5) & 0x7;
772 if (CSKY_16_IS_STWx0 (insn2) && (mfcr_regnum == stw_regnum))
776 /* CSKY_FPC_REGNUM. */
777 rn = CSKY_NUM_GREGS + 3;
778 offset = CSKY_16_STWx0_OFFSET (insn2);
779 register_offsets[rn] = stacksize - offset;
781 print_savedreg_msg (rn, register_offsets, true);
789 int stw_regnum = (insn2 >> 21) & 0x1f;
790 if (CSKY_32_IS_STWx0 (insn2) && (mfcr_regnum == stw_regnum))
794 /* CSKY_FPC_REGNUM. */
795 rn = CSKY_NUM_GREGS + 3;
796 offset = CSKY_32_ST_OFFSET (insn2);
797 register_offsets[rn] = framesize - offset;
799 print_savedreg_msg (rn, register_offsets, true);
805 else if (CSKY_32_IS_PUSH (insn))
807 /* Push for 32_bit. */
809 if (CSKY_32_IS_PUSH_R29 (insn))
812 register_offsets[29] = stacksize;
814 print_savedreg_msg (29, register_offsets, false);
817 if (CSKY_32_PUSH_LIST2 (insn))
819 int num = CSKY_32_PUSH_LIST2 (insn);
821 stacksize += num * 4;
825 fprintf_unfiltered (gdb_stdlog,
826 "csky: push regs_array: r16-r%d\n",
829 for (rn = 16; rn <= 16 + num - 1; rn++)
831 register_offsets[rn] = stacksize - tmp;
834 fprintf_unfiltered (gdb_stdlog,
835 "csky: r%d saved at 0x%x"
836 " (offset %d)\n", rn,
837 register_offsets[rn], tmp);
842 if (CSKY_32_IS_PUSH_R15 (insn))
845 register_offsets[15] = stacksize;
847 print_savedreg_msg (15, register_offsets, false);
850 if (CSKY_32_PUSH_LIST1 (insn))
852 int num = CSKY_32_PUSH_LIST1 (insn);
854 stacksize += num * 4;
858 fprintf_unfiltered (gdb_stdlog,
859 "csky: push regs_array: r4-r%d\n",
862 for (rn = 4; rn <= 4 + num - 1; rn++)
864 register_offsets[rn] = stacksize - tmp;
867 fprintf_unfiltered (gdb_stdlog,
868 "csky: r%d saved at 0x%x"
869 " (offset %d)\n", rn,
870 register_offsets[rn], tmp);
876 framesize = stacksize;
878 fprintf_unfiltered (gdb_stdlog, "csky: continuing\n");
881 else if (CSKY_32_IS_LRW4 (insn) || CSKY_32_IS_MOVI4 (insn)
882 || CSKY_32_IS_MOVIH4 (insn) || CSKY_32_IS_BMASKI4 (insn))
890 fprintf_unfiltered (gdb_stdlog,
891 "csky: looking at large frame\n");
893 if (CSKY_32_IS_LRW4 (insn))
895 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
896 int literal_addr = (addr + ((insn & 0xffff) << 2))
898 adjust = read_memory_unsigned_integer (literal_addr, 4,
901 else if (CSKY_32_IS_MOVI4 (insn))
902 adjust = (insn & 0xffff);
903 else if (CSKY_32_IS_MOVIH4 (insn))
904 adjust = (insn & 0xffff) << 16;
907 /* CSKY_32_IS_BMASKI4 (insn). */
908 adjust = (1 << (((insn & 0x3e00000) >> 21) + 1)) - 1;
913 fprintf_unfiltered (gdb_stdlog,
914 "csky: base stacksize=0x%x\n", adjust);
916 /* May have zero or more insns which modify r4. */
917 fprintf_unfiltered (gdb_stdlog,
918 "csky: looking for r4 adjusters...\n");
922 insn_len = csky_get_insn (gdbarch, addr + offset, &insn2);
923 while (CSKY_IS_R4_ADJUSTER (insn2))
925 if (CSKY_32_IS_ADDI4 (insn2))
927 int imm = (insn2 & 0xfff) + 1;
931 fprintf_unfiltered (gdb_stdlog,
932 "csky: addi r4,%d\n", imm);
935 else if (CSKY_32_IS_SUBI4 (insn2))
937 int imm = (insn2 & 0xfff) + 1;
941 fprintf_unfiltered (gdb_stdlog,
942 "csky: subi r4,%d\n", imm);
945 else if (CSKY_32_IS_NOR4 (insn2))
950 fprintf_unfiltered (gdb_stdlog,
951 "csky: nor r4,r4,r4\n");
954 else if (CSKY_32_IS_ROTLI4 (insn2))
956 int imm = ((insn2 >> 21) & 0x1f);
957 int temp = adjust >> (32 - imm);
962 fprintf_unfiltered (gdb_stdlog,
963 "csky: rotli r4,r4,%d\n", imm);
966 else if (CSKY_32_IS_LISI4 (insn2))
968 int imm = ((insn2 >> 21) & 0x1f);
972 fprintf_unfiltered (gdb_stdlog,
973 "csky: lsli r4,r4,%d\n", imm);
976 else if (CSKY_32_IS_BSETI4 (insn2))
978 int imm = ((insn2 >> 21) & 0x1f);
979 adjust |= (1 << imm);
982 fprintf_unfiltered (gdb_stdlog,
983 "csky: bseti r4,r4 %d\n", imm);
986 else if (CSKY_32_IS_BCLRI4 (insn2))
988 int imm = ((insn2 >> 21) & 0x1f);
989 adjust &= ~(1 << imm);
992 fprintf_unfiltered (gdb_stdlog,
993 "csky: bclri r4,r4 %d\n", imm);
996 else if (CSKY_32_IS_IXH4 (insn2))
1001 fprintf_unfiltered (gdb_stdlog,
1002 "csky: ixh r4,r4,r4\n");
1005 else if (CSKY_32_IS_IXW4 (insn2))
1010 fprintf_unfiltered (gdb_stdlog,
1011 "csky: ixw r4,r4,r4\n");
1014 else if (CSKY_16_IS_ADDI4 (insn2))
1016 int imm = (insn2 & 0xff) + 1;
1020 fprintf_unfiltered (gdb_stdlog,
1021 "csky: addi r4,%d\n", imm);
1024 else if (CSKY_16_IS_SUBI4 (insn2))
1026 int imm = (insn2 & 0xff) + 1;
1030 fprintf_unfiltered (gdb_stdlog,
1031 "csky: subi r4,%d\n", imm);
1034 else if (CSKY_16_IS_NOR4 (insn2))
1039 fprintf_unfiltered (gdb_stdlog,
1040 "csky: nor r4,r4\n");
1043 else if (CSKY_16_IS_BSETI4 (insn2))
1045 int imm = (insn2 & 0x1f);
1046 adjust |= (1 << imm);
1049 fprintf_unfiltered (gdb_stdlog,
1050 "csky: bseti r4, %d\n", imm);
1053 else if (CSKY_16_IS_BCLRI4 (insn2))
1055 int imm = (insn2 & 0x1f);
1056 adjust &= ~(1 << imm);
1059 fprintf_unfiltered (gdb_stdlog,
1060 "csky: bclri r4, %d\n", imm);
1063 else if (CSKY_16_IS_LSLI4 (insn2))
1065 int imm = (insn2 & 0x1f);
1069 fprintf_unfiltered (gdb_stdlog,
1070 "csky: lsli r4,r4, %d\n", imm);
1075 insn_len = csky_get_insn (gdbarch, addr + offset, &insn2);
1080 fprintf_unfiltered (gdb_stdlog, "csky: done looking for"
1084 /* If the next insn adjusts the stack pointer, we keep
1085 everything; if not, we scrap it and we've found the
1086 end of the prologue. */
1087 if (CSKY_IS_SUBU4 (insn2))
1090 stacksize += adjust;
1093 fprintf_unfiltered (gdb_stdlog,
1094 "csky: found stack adjustment of"
1095 " 0x%x bytes.\n", adjust);
1096 fprintf_unfiltered (gdb_stdlog,
1097 "csky: skipping to new address %s\n",
1098 core_addr_to_string_nz (addr));
1099 fprintf_unfiltered (gdb_stdlog,
1100 "csky: continuing\n");
1105 /* None of these instructions are prologue, so don't touch
1109 fprintf_unfiltered (gdb_stdlog,
1110 "csky: no subu sp,sp,r4; NOT altering"
1118 /* insn_len != 4. */
1120 /* subi.sp sp,disp. */
1121 if (CSKY_16_IS_SUBI0 (insn))
1123 int offset = CSKY_16_SUBI_IMM (insn);
1126 fprintf_unfiltered (gdb_stdlog,
1127 "csky: got subi r0,%d; continuing\n",
1130 stacksize += offset;
1133 /* stw.16 rz,(sp,disp). */
1134 else if (CSKY_16_IS_STWx0 (insn))
1136 /* Spill register: see note for IS_STM above. */
1139 rn = CSKY_16_ST_VAL_REGNUM (insn);
1140 disp = CSKY_16_ST_OFFSET (insn);
1141 register_offsets[rn] = stacksize - disp;
1143 print_savedreg_msg (rn, register_offsets, true);
1146 else if (CSKY_16_IS_MOV_FP_SP (insn))
1148 /* SP is saved to FP reg, means prologue may modify SP. */
1150 adjust_fp = stacksize;
1153 else if (CSKY_16_IS_PUSH (insn))
1155 /* Push for 16_bit. */
1157 if (CSKY_16_IS_PUSH_R15 (insn))
1160 register_offsets[15] = stacksize;
1162 print_savedreg_msg (15, register_offsets, false);
1165 if (CSKY_16_PUSH_LIST1 (insn))
1167 int num = CSKY_16_PUSH_LIST1 (insn);
1169 stacksize += num * 4;
1173 fprintf_unfiltered (gdb_stdlog,
1174 "csky: push regs_array: r4-r%d\n",
1177 for (rn = 4; rn <= 4 + num - 1; rn++)
1179 register_offsets[rn] = stacksize - tmp;
1182 fprintf_unfiltered (gdb_stdlog,
1183 "csky: r%d saved at 0x%x"
1184 " (offset %d)\n", rn,
1185 register_offsets[rn], offset);
1191 framesize = stacksize;
1193 fprintf_unfiltered (gdb_stdlog, "csky: continuing\n");
1196 else if (CSKY_16_IS_LRW4 (insn) || CSKY_16_IS_MOVI4 (insn))
1203 fprintf_unfiltered (gdb_stdlog,
1204 "csky: looking at large frame\n");
1206 if (CSKY_16_IS_LRW4 (insn))
1208 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1209 int offset = ((insn & 0x300) >> 3) | (insn & 0x1f);
1210 int literal_addr = (addr + ( offset << 2)) & 0xfffffffc;
1211 adjust = read_memory_unsigned_integer (literal_addr, 4,
1216 /* CSKY_16_IS_MOVI4 (insn). */
1217 adjust = (insn & 0xff);
1222 fprintf_unfiltered (gdb_stdlog,
1223 "csky: base stacksize=0x%x\n", adjust);
1226 /* May have zero or more instructions which modify r4. */
1229 fprintf_unfiltered (gdb_stdlog,
1230 "csky: looking for r4 adjusters...\n");
1233 insn_len = csky_get_insn (gdbarch, addr + offset, &insn2);
1234 while (CSKY_IS_R4_ADJUSTER (insn2))
1236 if (CSKY_32_IS_ADDI4 (insn2))
1238 int imm = (insn2 & 0xfff) + 1;
1242 fprintf_unfiltered (gdb_stdlog,
1243 "csky: addi r4,%d\n", imm);
1246 else if (CSKY_32_IS_SUBI4 (insn2))
1248 int imm = (insn2 & 0xfff) + 1;
1252 fprintf_unfiltered (gdb_stdlog,
1253 "csky: subi r4,%d\n", imm);
1256 else if (CSKY_32_IS_NOR4 (insn2))
1261 fprintf_unfiltered (gdb_stdlog,
1262 "csky: nor r4,r4,r4\n");
1265 else if (CSKY_32_IS_ROTLI4 (insn2))
1267 int imm = ((insn2 >> 21) & 0x1f);
1268 int temp = adjust >> (32 - imm);
1273 fprintf_unfiltered (gdb_stdlog,
1274 "csky: rotli r4,r4,%d\n", imm);
1277 else if (CSKY_32_IS_LISI4 (insn2))
1279 int imm = ((insn2 >> 21) & 0x1f);
1283 fprintf_unfiltered (gdb_stdlog,
1284 "csky: lsli r4,r4,%d\n", imm);
1287 else if (CSKY_32_IS_BSETI4 (insn2))
1289 int imm = ((insn2 >> 21) & 0x1f);
1290 adjust |= (1 << imm);
1293 fprintf_unfiltered (gdb_stdlog,
1294 "csky: bseti r4,r4 %d\n", imm);
1297 else if (CSKY_32_IS_BCLRI4 (insn2))
1299 int imm = ((insn2 >> 21) & 0x1f);
1300 adjust &= ~(1 << imm);
1303 fprintf_unfiltered (gdb_stdlog,
1304 "csky: bclri r4,r4 %d\n", imm);
1307 else if (CSKY_32_IS_IXH4 (insn2))
1312 fprintf_unfiltered (gdb_stdlog,
1313 "csky: ixh r4,r4,r4\n");
1316 else if (CSKY_32_IS_IXW4 (insn2))
1321 fprintf_unfiltered (gdb_stdlog,
1322 "csky: ixw r4,r4,r4\n");
1325 else if (CSKY_16_IS_ADDI4 (insn2))
1327 int imm = (insn2 & 0xff) + 1;
1331 fprintf_unfiltered (gdb_stdlog,
1332 "csky: addi r4,%d\n", imm);
1335 else if (CSKY_16_IS_SUBI4 (insn2))
1337 int imm = (insn2 & 0xff) + 1;
1341 fprintf_unfiltered (gdb_stdlog,
1342 "csky: subi r4,%d\n", imm);
1345 else if (CSKY_16_IS_NOR4 (insn2))
1350 fprintf_unfiltered (gdb_stdlog,
1351 "csky: nor r4,r4\n");
1354 else if (CSKY_16_IS_BSETI4 (insn2))
1356 int imm = (insn2 & 0x1f);
1357 adjust |= (1 << imm);
1360 fprintf_unfiltered (gdb_stdlog,
1361 "csky: bseti r4, %d\n", imm);
1364 else if (CSKY_16_IS_BCLRI4 (insn2))
1366 int imm = (insn2 & 0x1f);
1367 adjust &= ~(1 << imm);
1370 fprintf_unfiltered (gdb_stdlog,
1371 "csky: bclri r4, %d\n", imm);
1374 else if (CSKY_16_IS_LSLI4 (insn2))
1376 int imm = (insn2 & 0x1f);
1380 fprintf_unfiltered (gdb_stdlog,
1381 "csky: lsli r4,r4, %d\n", imm);
1386 insn_len = csky_get_insn (gdbarch, addr + offset, &insn2);
1391 fprintf_unfiltered (gdb_stdlog, "csky: "
1392 "done looking for r4 adjusters\n");
1395 /* If the next instruction adjusts the stack pointer, we keep
1396 everything; if not, we scrap it and we've found the end
1398 if (CSKY_IS_SUBU4 (insn2))
1401 stacksize += adjust;
1404 fprintf_unfiltered (gdb_stdlog, "csky: "
1405 "found stack adjustment of 0x%x"
1406 " bytes.\n", adjust);
1407 fprintf_unfiltered (gdb_stdlog, "csky: "
1408 "skipping to new address %s\n",
1409 core_addr_to_string_nz (addr));
1410 fprintf_unfiltered (gdb_stdlog, "csky: continuing\n");
1415 /* None of these instructions are prologue, so don't touch
1419 fprintf_unfiltered (gdb_stdlog, "csky: no subu sp,r4; "
1420 "NOT altering stacksize.\n");
1426 /* This is not a prologue instruction, so stop here. */
1429 fprintf_unfiltered (gdb_stdlog, "csky: insn is not a prologue"
1430 " insn -- ending scan\n");
1437 CORE_ADDR unwound_fp;
1438 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1439 this_cache->framesize = framesize;
1443 this_cache->framereg = CSKY_FP_REGNUM;
1444 unwound_fp = get_frame_register_unsigned (this_frame,
1445 this_cache->framereg);
1446 this_cache->prev_sp = unwound_fp + adjust_fp;
1450 this_cache->framereg = CSKY_SP_REGNUM;
1451 unwound_fp = get_frame_register_unsigned (this_frame,
1452 this_cache->framereg);
1453 this_cache->prev_sp = unwound_fp + stacksize;
1456 /* Note where saved registers are stored. The offsets in
1457 REGISTER_OFFSETS are computed relative to the top of the frame. */
1458 for (rn = 0; rn < CSKY_NUM_GREGS; rn++)
1460 if (register_offsets[rn] >= 0)
1462 this_cache->saved_regs[rn].addr
1463 = this_cache->prev_sp - register_offsets[rn];
1466 CORE_ADDR rn_value = read_memory_unsigned_integer (
1467 this_cache->saved_regs[rn].addr, 4, byte_order);
1468 fprintf_unfiltered (gdb_stdlog, "Saved register %s "
1469 "stored at 0x%08lx, value=0x%08lx\n",
1470 csky_register_names[rn],
1472 this_cache->saved_regs[rn].addr,
1473 (unsigned long) rn_value);
1477 if (lr_type == LR_TYPE_EPC)
1480 this_cache->saved_regs[CSKY_PC_REGNUM]
1481 = this_cache->saved_regs[CSKY_EPC_REGNUM];
1483 else if (lr_type == LR_TYPE_FPC)
1486 this_cache->saved_regs[CSKY_PC_REGNUM]
1487 = this_cache->saved_regs[CSKY_FPC_REGNUM];
1491 this_cache->saved_regs[CSKY_PC_REGNUM]
1492 = this_cache->saved_regs[CSKY_LR_REGNUM];
1499 /* Detect whether PC is at a point where the stack frame has been
1503 csky_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1507 CORE_ADDR func_start, func_end;
1509 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
1512 bool fp_saved = false;
1514 for (addr = func_start; addr < func_end; addr += insn_len)
1516 /* Get next insn. */
1517 insn_len = csky_get_insn (gdbarch, addr, &insn);
1521 /* Is sp is saved to fp. */
1522 if (CSKY_16_IS_MOV_FP_SP (insn))
1524 /* If sp was saved to fp and now being restored from
1525 fp then it indicates the start of epilog. */
1526 else if (fp_saved && CSKY_16_IS_MOV_SP_FP (insn))
1533 /* Implement the skip_prologue gdbarch hook. */
1536 csky_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1538 CORE_ADDR func_addr, func_end;
1539 struct symtab_and_line sal;
1540 const int default_search_limit = 128;
1542 /* See if we can find the end of the prologue using the symbol table. */
1543 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1545 CORE_ADDR post_prologue_pc
1546 = skip_prologue_using_sal (gdbarch, func_addr);
1548 if (post_prologue_pc != 0)
1549 return std::max (pc, post_prologue_pc);
1552 func_end = pc + default_search_limit;
1554 /* Find the end of prologue. Default lr_type. */
1555 return csky_analyze_prologue (gdbarch, pc, func_end, func_end,
1556 NULL, NULL, LR_TYPE_R15);
1559 /* Implement the breakpoint_kind_from_pc gdbarch method. */
1562 csky_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
1564 if (csky_pc_is_csky16 (gdbarch, *pcptr))
1565 return CSKY_INSN_SIZE16;
1567 return CSKY_INSN_SIZE32;
1570 /* Implement the sw_breakpoint_from_kind gdbarch method. */
1572 static const gdb_byte *
1573 csky_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
1576 if (kind == CSKY_INSN_SIZE16)
1578 static gdb_byte csky_16_breakpoint[] = { 0, 0 };
1579 return csky_16_breakpoint;
1583 static gdb_byte csky_32_breakpoint[] = { 0, 0, 0, 0 };
1584 return csky_32_breakpoint;
1588 /* Implement the memory_insert_breakpoint gdbarch method. */
1591 csky_memory_insert_breakpoint (struct gdbarch *gdbarch,
1592 struct bp_target_info *bp_tgt)
1595 const unsigned char *bp;
1596 gdb_byte bp_write_record1[] = { 0, 0, 0, 0 };
1597 gdb_byte bp_write_record2[] = { 0, 0, 0, 0 };
1598 gdb_byte bp_record[] = { 0, 0, 0, 0 };
1600 /* Sanity-check bp_address. */
1601 if (bp_tgt->reqstd_address % 2)
1602 warning (_("Invalid breakpoint address 0x%x is an odd number."),
1603 (unsigned int) bp_tgt->reqstd_address);
1604 scoped_restore restore_memory
1605 = make_scoped_restore_show_memory_breakpoints (1);
1607 /* Determine appropriate breakpoint_kind for this address. */
1608 bp_tgt->kind = csky_breakpoint_kind_from_pc (gdbarch,
1609 &bp_tgt->reqstd_address);
1611 /* Save the memory contents. */
1612 bp_tgt->shadow_len = bp_tgt->kind;
1614 /* Fill bp_tgt->placed_address. */
1615 bp_tgt->placed_address = bp_tgt->reqstd_address;
1617 if (bp_tgt->kind == CSKY_INSN_SIZE16)
1619 if ((bp_tgt->reqstd_address % 4) == 0)
1621 /* Read two bytes. */
1622 val = target_read_memory (bp_tgt->reqstd_address,
1623 bp_tgt->shadow_contents, 2);
1627 /* Read two bytes. */
1628 val = target_read_memory (bp_tgt->reqstd_address + 2,
1633 /* Write the breakpoint. */
1634 bp_write_record1[2] = bp_record[0];
1635 bp_write_record1[3] = bp_record[1];
1636 bp = bp_write_record1;
1637 val = target_write_raw_memory (bp_tgt->reqstd_address, bp,
1642 val = target_read_memory (bp_tgt->reqstd_address,
1643 bp_tgt->shadow_contents, 2);
1647 val = target_read_memory (bp_tgt->reqstd_address - 2,
1652 /* Write the breakpoint. */
1653 bp_write_record1[0] = bp_record[0];
1654 bp_write_record1[1] = bp_record[1];
1655 bp = bp_write_record1;
1656 val = target_write_raw_memory (bp_tgt->reqstd_address - 2,
1657 bp, CSKY_WR_BKPT_MODE);
1662 if (bp_tgt->placed_address % 4 == 0)
1664 val = target_read_memory (bp_tgt->reqstd_address,
1665 bp_tgt->shadow_contents,
1670 /* Write the breakpoint. */
1671 bp = bp_write_record1;
1672 val = target_write_raw_memory (bp_tgt->reqstd_address,
1673 bp, CSKY_WR_BKPT_MODE);
1677 val = target_read_memory (bp_tgt->reqstd_address,
1678 bp_tgt->shadow_contents,
1683 val = target_read_memory (bp_tgt->reqstd_address - 2,
1688 val = target_read_memory (bp_tgt->reqstd_address + 4,
1693 bp_write_record1[0] = bp_record[0];
1694 bp_write_record1[1] = bp_record[1];
1695 bp_write_record2[2] = bp_record[2];
1696 bp_write_record2[3] = bp_record[3];
1698 /* Write the breakpoint. */
1699 bp = bp_write_record1;
1700 val = target_write_raw_memory (bp_tgt->reqstd_address - 2, bp,
1705 /* Write the breakpoint. */
1706 bp = bp_write_record2;
1707 val = target_write_raw_memory (bp_tgt->reqstd_address + 2, bp,
1714 /* Restore the breakpoint shadow_contents to the target. */
1717 csky_memory_remove_breakpoint (struct gdbarch *gdbarch,
1718 struct bp_target_info *bp_tgt)
1721 gdb_byte bp_record[] = { 0, 0, 0, 0, 0, 0, 0, 0 };
1722 /* Different for shadow_len 2 or 4. */
1723 if (bp_tgt->shadow_len == 2)
1725 /* Do word-sized writes on word-aligned boundaries and read
1726 padding bytes as necessary. */
1727 if (bp_tgt->reqstd_address % 4 == 0)
1729 val = target_read_memory (bp_tgt->reqstd_address + 2,
1733 bp_record[0] = bp_tgt->shadow_contents[0];
1734 bp_record[1] = bp_tgt->shadow_contents[1];
1735 return target_write_raw_memory (bp_tgt->reqstd_address,
1736 bp_record, CSKY_WR_BKPT_MODE);
1740 val = target_read_memory (bp_tgt->reqstd_address - 2,
1744 bp_record[2] = bp_tgt->shadow_contents[0];
1745 bp_record[3] = bp_tgt->shadow_contents[1];
1746 return target_write_raw_memory (bp_tgt->reqstd_address - 2,
1747 bp_record, CSKY_WR_BKPT_MODE);
1752 /* Do word-sized writes on word-aligned boundaries and read
1753 padding bytes as necessary. */
1754 if (bp_tgt->placed_address % 4 == 0)
1756 return target_write_raw_memory (bp_tgt->reqstd_address,
1757 bp_tgt->shadow_contents,
1762 val = target_read_memory (bp_tgt->reqstd_address - 2,
1766 val = target_read_memory (bp_tgt->reqstd_address + 4,
1771 bp_record[2] = bp_tgt->shadow_contents[0];
1772 bp_record[3] = bp_tgt->shadow_contents[1];
1773 bp_record[4] = bp_tgt->shadow_contents[2];
1774 bp_record[5] = bp_tgt->shadow_contents[3];
1776 return target_write_raw_memory (bp_tgt->reqstd_address - 2,
1778 CSKY_WR_BKPT_MODE * 2);
1783 /* Determine link register type. */
1786 csky_analyze_lr_type (struct gdbarch *gdbarch,
1787 CORE_ADDR start_pc, CORE_ADDR end_pc)
1790 unsigned int insn, insn_len;
1793 for (addr = start_pc; addr < end_pc; addr += insn_len)
1795 insn_len = csky_get_insn (gdbarch, addr, &insn);
1798 if (CSKY_32_IS_MFCR_EPSR (insn) || CSKY_32_IS_MFCR_EPC (insn)
1799 || CSKY_32_IS_RTE (insn))
1802 else if (CSKY_32_IS_MFCR_FPSR (insn) || CSKY_32_IS_MFCR_FPC (insn)
1803 || CSKY_32_IS_RFI (insn))
1805 else if (CSKY_32_IS_JMP (insn) || CSKY_32_IS_BR (insn)
1806 || CSKY_32_IS_JMPIX (insn) || CSKY_32_IS_JMPI (insn))
1810 /* 16 bit instruction. */
1811 if (CSKY_16_IS_JMP (insn) || CSKY_16_IS_BR (insn)
1812 || CSKY_16_IS_JMPIX (insn))
1819 /* Heuristic unwinder. */
1821 static struct csky_unwind_cache *
1822 csky_frame_unwind_cache (struct frame_info *this_frame)
1824 CORE_ADDR prologue_start, prologue_end, func_end, prev_pc, block_addr;
1825 struct csky_unwind_cache *cache;
1826 const struct block *bl;
1827 unsigned long func_size = 0;
1828 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1829 unsigned int sp_regnum = CSKY_SP_REGNUM;
1831 /* Default lr type is r15. */
1832 lr_type_t lr_type = LR_TYPE_R15;
1834 cache = FRAME_OBSTACK_ZALLOC (struct csky_unwind_cache);
1835 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1837 /* Assume there is no frame until proven otherwise. */
1838 cache->framereg = sp_regnum;
1840 cache->framesize = 0;
1842 prev_pc = get_frame_pc (this_frame);
1843 block_addr = get_frame_address_in_block (this_frame);
1844 if (find_pc_partial_function (block_addr, NULL, &prologue_start,
1846 /* We couldn't find a function containing block_addr, so bail out
1847 and hope for the best. */
1850 /* Get the (function) symbol matching prologue_start. */
1851 bl = block_for_pc (prologue_start);
1853 func_size = bl->endaddr - bl->startaddr;
1856 struct bound_minimal_symbol msymbol
1857 = lookup_minimal_symbol_by_pc (prologue_start);
1858 if (msymbol.minsym != NULL)
1859 func_size = MSYMBOL_SIZE (msymbol.minsym);
1862 /* If FUNC_SIZE is 0 we may have a special-case use of lr
1863 e.g. exception or interrupt. */
1865 lr_type = csky_analyze_lr_type (gdbarch, prologue_start, func_end);
1867 prologue_end = std::min (func_end, prev_pc);
1869 /* Analyze the function prologue. */
1870 csky_analyze_prologue (gdbarch, prologue_start, prologue_end,
1871 func_end, this_frame, cache, lr_type);
1873 /* gdbarch_sp_regnum contains the value and not the address. */
1874 trad_frame_set_value (cache->saved_regs, sp_regnum, cache->prev_sp);
1878 /* Implement the this_id function for the normal unwinder. */
1881 csky_frame_this_id (struct frame_info *this_frame,
1882 void **this_prologue_cache, struct frame_id *this_id)
1884 struct csky_unwind_cache *cache;
1887 if (*this_prologue_cache == NULL)
1888 *this_prologue_cache = csky_frame_unwind_cache (this_frame);
1889 cache = (struct csky_unwind_cache *) *this_prologue_cache;
1891 /* This marks the outermost frame. */
1892 if (cache->prev_sp == 0)
1895 id = frame_id_build (cache->prev_sp, get_frame_func (this_frame));
1899 /* Implement the prev_register function for the normal unwinder. */
1901 static struct value *
1902 csky_frame_prev_register (struct frame_info *this_frame,
1903 void **this_prologue_cache, int regnum)
1905 struct csky_unwind_cache *cache;
1907 if (*this_prologue_cache == NULL)
1908 *this_prologue_cache = csky_frame_unwind_cache (this_frame);
1909 cache = (struct csky_unwind_cache *) *this_prologue_cache;
1911 return trad_frame_get_prev_register (this_frame, cache->saved_regs,
1915 /* Data structures for the normal prologue-analysis-based
1918 static const struct frame_unwind csky_unwind_cache = {
1920 default_frame_unwind_stop_reason,
1922 csky_frame_prev_register,
1924 default_frame_sniffer,
1932 csky_stub_unwind_sniffer (const struct frame_unwind *self,
1933 struct frame_info *this_frame,
1934 void **this_prologue_cache)
1936 CORE_ADDR addr_in_block;
1938 addr_in_block = get_frame_address_in_block (this_frame);
1940 if (find_pc_partial_function (addr_in_block, NULL, NULL, NULL) == 0
1941 || in_plt_section (addr_in_block))
1947 static struct csky_unwind_cache *
1948 csky_make_stub_cache (struct frame_info *this_frame)
1950 struct csky_unwind_cache *cache;
1952 cache = FRAME_OBSTACK_ZALLOC (struct csky_unwind_cache);
1953 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1954 cache->prev_sp = get_frame_register_unsigned (this_frame, CSKY_SP_REGNUM);
1960 csky_stub_this_id (struct frame_info *this_frame,
1962 struct frame_id *this_id)
1964 struct csky_unwind_cache *cache;
1966 if (*this_cache == NULL)
1967 *this_cache = csky_make_stub_cache (this_frame);
1968 cache = (struct csky_unwind_cache *) *this_cache;
1970 /* Our frame ID for a stub frame is the current SP and LR. */
1971 *this_id = frame_id_build (cache->prev_sp, get_frame_pc (this_frame));
1974 static struct value *
1975 csky_stub_prev_register (struct frame_info *this_frame,
1979 struct csky_unwind_cache *cache;
1981 if (*this_cache == NULL)
1982 *this_cache = csky_make_stub_cache (this_frame);
1983 cache = (struct csky_unwind_cache *) *this_cache;
1985 /* If we are asked to unwind the PC, then return the LR. */
1986 if (prev_regnum == CSKY_PC_REGNUM)
1990 lr = frame_unwind_register_unsigned (this_frame, CSKY_LR_REGNUM);
1991 return frame_unwind_got_constant (this_frame, prev_regnum, lr);
1994 if (prev_regnum == CSKY_SP_REGNUM)
1995 return frame_unwind_got_constant (this_frame, prev_regnum, cache->prev_sp);
1997 return trad_frame_get_prev_register (this_frame, cache->saved_regs,
2001 struct frame_unwind csky_stub_unwind = {
2003 default_frame_unwind_stop_reason,
2005 csky_stub_prev_register,
2007 csky_stub_unwind_sniffer
2010 /* Implement the this_base, this_locals, and this_args hooks
2011 for the normal unwinder. */
2014 csky_frame_base_address (struct frame_info *this_frame, void **this_cache)
2016 struct csky_unwind_cache *cache;
2018 if (*this_cache == NULL)
2019 *this_cache = csky_frame_unwind_cache (this_frame);
2020 cache = (struct csky_unwind_cache *) *this_cache;
2022 return cache->prev_sp - cache->framesize;
2025 static const struct frame_base csky_frame_base = {
2027 csky_frame_base_address,
2028 csky_frame_base_address,
2029 csky_frame_base_address
2032 /* Initialize register access method. */
2035 csky_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
2036 struct dwarf2_frame_state_reg *reg,
2037 struct frame_info *this_frame)
2039 if (regnum == gdbarch_pc_regnum (gdbarch))
2040 reg->how = DWARF2_FRAME_REG_RA;
2041 else if (regnum == gdbarch_sp_regnum (gdbarch))
2042 reg->how = DWARF2_FRAME_REG_CFA;
2045 /* Create csky register groups. */
2048 csky_init_reggroup ()
2050 cr_reggroup = reggroup_new ("cr", USER_REGGROUP);
2051 fr_reggroup = reggroup_new ("fr", USER_REGGROUP);
2052 vr_reggroup = reggroup_new ("vr", USER_REGGROUP);
2053 mmu_reggroup = reggroup_new ("mmu", USER_REGGROUP);
2054 prof_reggroup = reggroup_new ("profiling", USER_REGGROUP);
2057 /* Add register groups into reggroup list. */
2060 csky_add_reggroups (struct gdbarch *gdbarch)
2062 reggroup_add (gdbarch, all_reggroup);
2063 reggroup_add (gdbarch, general_reggroup);
2064 reggroup_add (gdbarch, cr_reggroup);
2065 reggroup_add (gdbarch, fr_reggroup);
2066 reggroup_add (gdbarch, vr_reggroup);
2067 reggroup_add (gdbarch, mmu_reggroup);
2068 reggroup_add (gdbarch, prof_reggroup);
2071 /* Return the groups that a CSKY register can be categorised into. */
2074 csky_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2075 struct reggroup *reggroup)
2079 if (gdbarch_register_name (gdbarch, regnum) == NULL
2080 || gdbarch_register_name (gdbarch, regnum)[0] == '\0')
2083 if (reggroup == all_reggroup)
2086 raw_p = regnum < gdbarch_num_regs (gdbarch);
2087 if (reggroup == save_reggroup || reggroup == restore_reggroup)
2090 if (((regnum >= CSKY_R0_REGNUM) && (regnum <= CSKY_R0_REGNUM + 31))
2091 && (reggroup == general_reggroup))
2094 if (((regnum == CSKY_PC_REGNUM)
2095 || ((regnum >= CSKY_CR0_REGNUM)
2096 && (regnum <= CSKY_CR0_REGNUM + 30)))
2097 && (reggroup == cr_reggroup))
2100 if ((((regnum >= CSKY_VR0_REGNUM) && (regnum <= CSKY_VR0_REGNUM + 15))
2101 || ((regnum >= CSKY_VCR0_REGNUM)
2102 && (regnum <= CSKY_VCR0_REGNUM + 2)))
2103 && (reggroup == vr_reggroup))
2106 if (((regnum >= CSKY_MMU_REGNUM) && (regnum <= CSKY_MMU_REGNUM + 8))
2107 && (reggroup == mmu_reggroup))
2110 if (((regnum >= CSKY_PROFCR_REGNUM)
2111 && (regnum <= CSKY_PROFCR_REGNUM + 48))
2112 && (reggroup == prof_reggroup))
2115 if ((((regnum >= CSKY_FR0_REGNUM) && (regnum <= CSKY_FR0_REGNUM + 15))
2116 || ((regnum >= CSKY_VCR0_REGNUM) && (regnum <= CSKY_VCR0_REGNUM + 2)))
2117 && (reggroup == fr_reggroup))
2123 /* Implement the dwarf2_reg_to_regnum gdbarch method. */
2126 csky_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int dw_reg)
2128 if (dw_reg < 0 || dw_reg >= CSKY_NUM_REGS)
2133 /* Override interface for command: info register. */
2136 csky_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2137 struct frame_info *frame, int regnum, int all)
2139 /* Call default print_registers_info function. */
2140 default_print_registers_info (gdbarch, file, frame, regnum, all);
2142 /* For command: info register. */
2143 if (regnum == -1 && all == 0)
2145 default_print_registers_info (gdbarch, file, frame,
2147 default_print_registers_info (gdbarch, file, frame,
2148 CSKY_EPC_REGNUM, 0);
2149 default_print_registers_info (gdbarch, file, frame,
2150 CSKY_CR0_REGNUM, 0);
2151 default_print_registers_info (gdbarch, file, frame,
2152 CSKY_EPSR_REGNUM, 0);
2157 /* Initialize the current architecture based on INFO. If possible,
2158 re-use an architecture from ARCHES, which is a list of
2159 architectures already created during this debugging session.
2161 Called at program startup, when reading a core file, and when
2162 reading a binary file. */
2164 static struct gdbarch *
2165 csky_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2167 struct gdbarch *gdbarch;
2168 struct gdbarch_tdep *tdep;
2170 /* Find a candidate among the list of pre-declared architectures. */
2171 arches = gdbarch_list_lookup_by_info (arches, &info);
2173 return arches->gdbarch;
2175 /* None found, create a new architecture from the information
2177 tdep = XCNEW (struct gdbarch_tdep);
2178 gdbarch = gdbarch_alloc (&info, tdep);
2180 /* Target data types. */
2181 set_gdbarch_ptr_bit (gdbarch, 32);
2182 set_gdbarch_addr_bit (gdbarch, 32);
2183 set_gdbarch_short_bit (gdbarch, 16);
2184 set_gdbarch_int_bit (gdbarch, 32);
2185 set_gdbarch_long_bit (gdbarch, 32);
2186 set_gdbarch_long_long_bit (gdbarch, 64);
2187 set_gdbarch_float_bit (gdbarch, 32);
2188 set_gdbarch_double_bit (gdbarch, 64);
2189 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
2190 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
2192 /* Information about the target architecture. */
2193 set_gdbarch_return_value (gdbarch, csky_return_value);
2194 set_gdbarch_breakpoint_kind_from_pc (gdbarch, csky_breakpoint_kind_from_pc);
2195 set_gdbarch_sw_breakpoint_from_kind (gdbarch, csky_sw_breakpoint_from_kind);
2197 /* Register architecture. */
2198 set_gdbarch_num_regs (gdbarch, CSKY_NUM_REGS);
2199 set_gdbarch_pc_regnum (gdbarch, CSKY_PC_REGNUM);
2200 set_gdbarch_sp_regnum (gdbarch, CSKY_SP_REGNUM);
2201 set_gdbarch_register_name (gdbarch, csky_register_name);
2202 set_gdbarch_register_type (gdbarch, csky_register_type);
2203 set_gdbarch_read_pc (gdbarch, csky_read_pc);
2204 set_gdbarch_write_pc (gdbarch, csky_write_pc);
2205 set_gdbarch_print_registers_info (gdbarch, csky_print_registers_info);
2206 csky_add_reggroups (gdbarch);
2207 set_gdbarch_register_reggroup_p (gdbarch, csky_register_reggroup_p);
2208 set_gdbarch_stab_reg_to_regnum (gdbarch, csky_dwarf_reg_to_regnum);
2209 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, csky_dwarf_reg_to_regnum);
2210 dwarf2_frame_set_init_reg (gdbarch, csky_dwarf2_frame_init_reg);
2212 /* Functions to analyze frames. */
2213 frame_base_set_default (gdbarch, &csky_frame_base);
2214 set_gdbarch_skip_prologue (gdbarch, csky_skip_prologue);
2215 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2216 set_gdbarch_frame_align (gdbarch, csky_frame_align);
2217 set_gdbarch_stack_frame_destroyed_p (gdbarch, csky_stack_frame_destroyed_p);
2219 /* Functions handling dummy frames. */
2220 set_gdbarch_push_dummy_call (gdbarch, csky_push_dummy_call);
2222 /* Frame unwinders. Use DWARF debug info if available,
2223 otherwise use our own unwinder. */
2224 dwarf2_append_unwinders (gdbarch);
2225 frame_unwind_append_unwinder (gdbarch, &csky_stub_unwind);
2226 frame_unwind_append_unwinder (gdbarch, &csky_unwind_cache);
2229 set_gdbarch_memory_insert_breakpoint (gdbarch,
2230 csky_memory_insert_breakpoint);
2231 set_gdbarch_memory_remove_breakpoint (gdbarch,
2232 csky_memory_remove_breakpoint);
2234 /* Hook in ABI-specific overrides, if they have been registered. */
2235 gdbarch_init_osabi (info, gdbarch);
2237 /* Support simple overlay manager. */
2238 set_gdbarch_overlay_update (gdbarch, simple_overlay_update);
2239 set_gdbarch_char_signed (gdbarch, 0);
2244 _initialize_csky_tdep (void)
2247 register_gdbarch_init (bfd_arch_csky, csky_gdbarch_init);
2249 csky_init_reggroup ();
2251 /* Allow debugging this file's internals. */
2252 add_setshow_boolean_cmd ("csky", class_maintenance, &csky_debug,
2253 _("Set C-Sky debugging."),
2254 _("Show C-Sky debugging."),
2255 _("When on, C-Sky specific debugging is enabled."),
2258 &setdebuglist, &showdebuglist);