1 /* Target dependent code for CRIS, for GDB, the GNU debugger.
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
6 Contributed by Axis Communications AB.
7 Written by Hendrik Ruijter, Stefan Andersson, and Orjan Friberg.
9 This file is part of GDB.
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 51 Franklin Street, Fifth Floor,
24 Boston, MA 02110-1301, USA. */
28 #include "frame-unwind.h"
29 #include "frame-base.h"
30 #include "trad-frame.h"
31 #include "dwarf2-frame.h"
39 #include "opcode/cris.h"
40 #include "arch-utils.h"
42 #include "gdb_assert.h"
44 /* To get entry_point_address. */
47 #include "solib.h" /* Support for shared libraries. */
48 #include "solib-svr4.h"
49 #include "gdb_string.h"
54 /* There are no floating point registers. Used in gdbserver low-linux.c. */
57 /* There are 16 general registers. */
60 /* There are 16 special registers. */
63 /* CRISv32 has a pseudo PC register, not noted here. */
65 /* CRISv32 has 16 support registers. */
69 /* Register numbers of various important registers.
70 CRIS_FP_REGNUM Contains address of executing stack frame.
71 STR_REGNUM Contains the address of structure return values.
72 RET_REGNUM Contains the return value when shorter than or equal to 32 bits
73 ARG1_REGNUM Contains the first parameter to a function.
74 ARG2_REGNUM Contains the second parameter to a function.
75 ARG3_REGNUM Contains the third parameter to a function.
76 ARG4_REGNUM Contains the fourth parameter to a function. Rest on stack.
77 SP_REGNUM Contains address of top of stack.
78 PC_REGNUM Contains address of next instruction.
79 SRP_REGNUM Subroutine return pointer register.
80 BRP_REGNUM Breakpoint return pointer register. */
84 /* Enums with respect to the general registers, valid for all
85 CRIS versions. The frame pointer is always in R8. */
87 /* ABI related registers. */
95 /* Registers which happen to be common. */
100 /* CRISv10 et. al. specific registers. */
112 /* CRISv32 specific registers. */
125 CRISV32USP_REGNUM = 30, /* Shares name but not number with CRISv10. */
127 CRISV32PC_REGNUM = 32, /* Shares name but not number with CRISv10. */
147 extern const struct cris_spec_reg cris_spec_regs[];
149 /* CRIS version, set via the user command 'set cris-version'. Affects
150 register names and sizes. */
151 static int usr_cmd_cris_version;
153 /* Indicates whether to trust the above variable. */
154 static int usr_cmd_cris_version_valid = 0;
156 static const char cris_mode_normal[] = "normal";
157 static const char cris_mode_guru[] = "guru";
158 static const char *cris_modes[] = {
164 /* CRIS mode, set via the user command 'set cris-mode'. Affects
165 type of break instruction among other things. */
166 static const char *usr_cmd_cris_mode = cris_mode_normal;
168 /* Whether to make use of Dwarf-2 CFI (default on). */
169 static int usr_cmd_cris_dwarf2_cfi = 1;
171 /* CRIS architecture specific information. */
175 const char *cris_mode;
179 /* Functions for accessing target dependent data. */
184 return (gdbarch_tdep (current_gdbarch)->cris_version);
190 return (gdbarch_tdep (current_gdbarch)->cris_mode);
193 /* Sigtramp identification code copied from i386-linux-tdep.c. */
195 #define SIGTRAMP_INSN0 0x9c5f /* movu.w 0xXX, $r9 */
196 #define SIGTRAMP_OFFSET0 0
197 #define SIGTRAMP_INSN1 0xe93d /* break 13 */
198 #define SIGTRAMP_OFFSET1 4
200 static const unsigned short sigtramp_code[] =
202 SIGTRAMP_INSN0, 0x0077, /* movu.w $0x77, $r9 */
203 SIGTRAMP_INSN1 /* break 13 */
206 #define SIGTRAMP_LEN (sizeof sigtramp_code)
208 /* Note: same length as normal sigtramp code. */
210 static const unsigned short rt_sigtramp_code[] =
212 SIGTRAMP_INSN0, 0x00ad, /* movu.w $0xad, $r9 */
213 SIGTRAMP_INSN1 /* break 13 */
216 /* If PC is in a sigtramp routine, return the address of the start of
217 the routine. Otherwise, return 0. */
220 cris_sigtramp_start (struct frame_info *next_frame)
222 CORE_ADDR pc = frame_pc_unwind (next_frame);
223 gdb_byte buf[SIGTRAMP_LEN];
225 if (!safe_frame_unwind_memory (next_frame, pc, buf, SIGTRAMP_LEN))
228 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN0)
230 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN1)
233 pc -= SIGTRAMP_OFFSET1;
234 if (!safe_frame_unwind_memory (next_frame, pc, buf, SIGTRAMP_LEN))
238 if (memcmp (buf, sigtramp_code, SIGTRAMP_LEN) != 0)
244 /* If PC is in a RT sigtramp routine, return the address of the start of
245 the routine. Otherwise, return 0. */
248 cris_rt_sigtramp_start (struct frame_info *next_frame)
250 CORE_ADDR pc = frame_pc_unwind (next_frame);
251 gdb_byte buf[SIGTRAMP_LEN];
253 if (!safe_frame_unwind_memory (next_frame, pc, buf, SIGTRAMP_LEN))
256 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN0)
258 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN1)
261 pc -= SIGTRAMP_OFFSET1;
262 if (!safe_frame_unwind_memory (next_frame, pc, buf, SIGTRAMP_LEN))
266 if (memcmp (buf, rt_sigtramp_code, SIGTRAMP_LEN) != 0)
272 /* Assuming NEXT_FRAME is a frame following a GNU/Linux sigtramp
273 routine, return the address of the associated sigcontext structure. */
276 cris_sigcontext_addr (struct frame_info *next_frame)
282 frame_unwind_register (next_frame, SP_REGNUM, buf);
283 sp = extract_unsigned_integer (buf, 4);
285 /* Look for normal sigtramp frame first. */
286 pc = cris_sigtramp_start (next_frame);
289 /* struct signal_frame (arch/cris/kernel/signal.c) contains
290 struct sigcontext as its first member, meaning the SP points to
295 pc = cris_rt_sigtramp_start (next_frame);
298 /* struct rt_signal_frame (arch/cris/kernel/signal.c) contains
299 a struct ucontext, which in turn contains a struct sigcontext.
301 4 + 4 + 128 to struct ucontext, then
302 4 + 4 + 12 to struct sigcontext. */
306 error (_("Couldn't recognize signal trampoline."));
310 struct cris_unwind_cache
312 /* The previous frame's inner most stack address. Used as this
313 frame ID's stack_addr. */
315 /* The frame's base, optionally used by the high-level debug info. */
318 /* How far the SP and r8 (FP) have been offset from the start of
319 the stack frame (as defined by the previous frame's stack
325 /* From old frame_extra_info struct. */
329 /* Table indicating the location of each and every register. */
330 struct trad_frame_saved_reg *saved_regs;
333 static struct cris_unwind_cache *
334 cris_sigtramp_frame_unwind_cache (struct frame_info *next_frame,
337 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
338 struct cris_unwind_cache *info;
346 return (*this_cache);
348 info = FRAME_OBSTACK_ZALLOC (struct cris_unwind_cache);
349 (*this_cache) = info;
350 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
352 /* Zero all fields. */
358 info->uses_frame = 0;
360 info->leaf_function = 0;
362 frame_unwind_register (next_frame, SP_REGNUM, buf);
363 info->base = extract_unsigned_integer (buf, 4);
365 addr = cris_sigcontext_addr (next_frame);
367 /* Layout of the sigcontext struct:
370 unsigned long oldmask;
374 if (tdep->cris_version == 10)
376 /* R0 to R13 are stored in reverse order at offset (2 * 4) in
378 for (i = 0; i <= 13; i++)
379 info->saved_regs[i].addr = addr + ((15 - i) * 4);
381 info->saved_regs[MOF_REGNUM].addr = addr + (16 * 4);
382 info->saved_regs[DCCR_REGNUM].addr = addr + (17 * 4);
383 info->saved_regs[SRP_REGNUM].addr = addr + (18 * 4);
384 /* Note: IRP is off by 2 at this point. There's no point in correcting
385 it though since that will mean that the backtrace will show a PC
386 different from what is shown when stopped. */
387 info->saved_regs[IRP_REGNUM].addr = addr + (19 * 4);
388 info->saved_regs[PC_REGNUM] = info->saved_regs[IRP_REGNUM];
389 info->saved_regs[SP_REGNUM].addr = addr + (24 * 4);
394 /* R0 to R13 are stored in order at offset (1 * 4) in
396 for (i = 0; i <= 13; i++)
397 info->saved_regs[i].addr = addr + ((i + 1) * 4);
399 info->saved_regs[ACR_REGNUM].addr = addr + (15 * 4);
400 info->saved_regs[SRS_REGNUM].addr = addr + (16 * 4);
401 info->saved_regs[MOF_REGNUM].addr = addr + (17 * 4);
402 info->saved_regs[SPC_REGNUM].addr = addr + (18 * 4);
403 info->saved_regs[CCS_REGNUM].addr = addr + (19 * 4);
404 info->saved_regs[SRP_REGNUM].addr = addr + (20 * 4);
405 info->saved_regs[ERP_REGNUM].addr = addr + (21 * 4);
406 info->saved_regs[EXS_REGNUM].addr = addr + (22 * 4);
407 info->saved_regs[EDA_REGNUM].addr = addr + (23 * 4);
409 /* FIXME: If ERP is in a delay slot at this point then the PC will
410 be wrong at this point. This problem manifests itself in the
411 sigaltstack.exp test case, which occasionally generates FAILs when
412 the signal is received while in a delay slot.
414 This could be solved by a couple of read_memory_unsigned_integer and a
415 trad_frame_set_value. */
416 info->saved_regs[PC_REGNUM] = info->saved_regs[ERP_REGNUM];
418 info->saved_regs[SP_REGNUM].addr = addr + (25 * 4);
425 cris_sigtramp_frame_this_id (struct frame_info *next_frame, void **this_cache,
426 struct frame_id *this_id)
428 struct cris_unwind_cache *cache =
429 cris_sigtramp_frame_unwind_cache (next_frame, this_cache);
430 (*this_id) = frame_id_build (cache->base, frame_pc_unwind (next_frame));
433 /* Forward declaration. */
435 static void cris_frame_prev_register (struct frame_info *next_frame,
436 void **this_prologue_cache,
437 int regnum, int *optimizedp,
438 enum lval_type *lvalp, CORE_ADDR *addrp,
439 int *realnump, gdb_byte *bufferp);
441 cris_sigtramp_frame_prev_register (struct frame_info *next_frame,
443 int regnum, int *optimizedp,
444 enum lval_type *lvalp, CORE_ADDR *addrp,
445 int *realnump, gdb_byte *valuep)
447 /* Make sure we've initialized the cache. */
448 cris_sigtramp_frame_unwind_cache (next_frame, this_cache);
449 cris_frame_prev_register (next_frame, this_cache, regnum,
450 optimizedp, lvalp, addrp, realnump, valuep);
453 static const struct frame_unwind cris_sigtramp_frame_unwind =
456 cris_sigtramp_frame_this_id,
457 cris_sigtramp_frame_prev_register
460 static const struct frame_unwind *
461 cris_sigtramp_frame_sniffer (struct frame_info *next_frame)
463 if (cris_sigtramp_start (next_frame)
464 || cris_rt_sigtramp_start (next_frame))
465 return &cris_sigtramp_frame_unwind;
471 crisv32_single_step_through_delay (struct gdbarch *gdbarch,
472 struct frame_info *this_frame)
474 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
479 if (cris_mode () == cris_mode_guru)
481 frame_unwind_register (this_frame, NRP_REGNUM, buf);
485 frame_unwind_register (this_frame, ERP_REGNUM, buf);
488 erp = extract_unsigned_integer (buf, 4);
492 /* In delay slot - check if there's a breakpoint at the preceding
494 if (breakpoint_here_p (erp & ~0x1))
500 /* Hardware watchpoint support. */
502 /* We support 6 hardware data watchpoints, but cannot trigger on execute
503 (any combination of read/write is fine). */
506 cris_can_use_hardware_watchpoint (int type, int count, int other)
508 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
510 /* No bookkeeping is done here; it is handled by the remote debug agent. */
512 if (tdep->cris_version != 32)
515 /* CRISv32: Six data watchpoints, one for instructions. */
516 return (((type == bp_read_watchpoint || type == bp_access_watchpoint
517 || type == bp_hardware_watchpoint) && count <= 6)
518 || (type == bp_hardware_breakpoint && count <= 1));
521 /* The CRISv32 hardware data watchpoints work by specifying ranges,
522 which have no alignment or length restrictions. */
525 cris_region_ok_for_watchpoint (CORE_ADDR addr, int len)
530 /* If the inferior has some watchpoint that triggered, return the
531 address associated with that watchpoint. Otherwise, return
535 cris_stopped_data_address (void)
538 eda = read_register (EDA_REGNUM);
542 /* The instruction environment needed to find single-step breakpoints. */
545 struct instruction_environment
547 unsigned long reg[NUM_GENREGS];
548 unsigned long preg[NUM_SPECREGS];
549 unsigned long branch_break_address;
550 unsigned long delay_slot_pc;
551 unsigned long prefix_value;
556 int delay_slot_pc_active;
558 int disable_interrupt;
561 /* Machine-dependencies in CRIS for opcodes. */
563 /* Instruction sizes. */
564 enum cris_instruction_sizes
571 /* Addressing modes. */
572 enum cris_addressing_modes
579 /* Prefix addressing modes. */
580 enum cris_prefix_addressing_modes
582 PREFIX_INDEX_MODE = 2,
583 PREFIX_ASSIGN_MODE = 3,
585 /* Handle immediate byte offset addressing mode prefix format. */
586 PREFIX_OFFSET_MODE = 2
589 /* Masks for opcodes. */
590 enum cris_opcode_masks
592 BRANCH_SIGNED_SHORT_OFFSET_MASK = 0x1,
593 SIGNED_EXTEND_BIT_MASK = 0x2,
594 SIGNED_BYTE_MASK = 0x80,
595 SIGNED_BYTE_EXTEND_MASK = 0xFFFFFF00,
596 SIGNED_WORD_MASK = 0x8000,
597 SIGNED_WORD_EXTEND_MASK = 0xFFFF0000,
598 SIGNED_DWORD_MASK = 0x80000000,
599 SIGNED_QUICK_VALUE_MASK = 0x20,
600 SIGNED_QUICK_VALUE_EXTEND_MASK = 0xFFFFFFC0
603 /* Functions for opcodes. The general form of the ETRAX 16-bit instruction:
611 cris_get_operand2 (unsigned short insn)
613 return ((insn & 0xF000) >> 12);
617 cris_get_mode (unsigned short insn)
619 return ((insn & 0x0C00) >> 10);
623 cris_get_opcode (unsigned short insn)
625 return ((insn & 0x03C0) >> 6);
629 cris_get_size (unsigned short insn)
631 return ((insn & 0x0030) >> 4);
635 cris_get_operand1 (unsigned short insn)
637 return (insn & 0x000F);
640 /* Additional functions in order to handle opcodes. */
643 cris_get_quick_value (unsigned short insn)
645 return (insn & 0x003F);
649 cris_get_bdap_quick_offset (unsigned short insn)
651 return (insn & 0x00FF);
655 cris_get_branch_short_offset (unsigned short insn)
657 return (insn & 0x00FF);
661 cris_get_asr_shift_steps (unsigned long value)
663 return (value & 0x3F);
667 cris_get_clear_size (unsigned short insn)
669 return ((insn) & 0xC000);
673 cris_is_signed_extend_bit_on (unsigned short insn)
675 return (((insn) & 0x20) == 0x20);
679 cris_is_xflag_bit_on (unsigned short insn)
681 return (((insn) & 0x1000) == 0x1000);
685 cris_set_size_to_dword (unsigned short *insn)
692 cris_get_signed_offset (unsigned short insn)
694 return ((signed char) (insn & 0x00FF));
697 /* Calls an op function given the op-type, working on the insn and the
699 static void cris_gdb_func (enum cris_op_type, unsigned short, inst_env_type *);
701 static struct gdbarch *cris_gdbarch_init (struct gdbarch_info,
702 struct gdbarch_list *);
704 static void cris_dump_tdep (struct gdbarch *, struct ui_file *);
706 static void set_cris_version (char *ignore_args, int from_tty,
707 struct cmd_list_element *c);
709 static void set_cris_mode (char *ignore_args, int from_tty,
710 struct cmd_list_element *c);
712 static void set_cris_dwarf2_cfi (char *ignore_args, int from_tty,
713 struct cmd_list_element *c);
715 static CORE_ADDR cris_scan_prologue (CORE_ADDR pc,
716 struct frame_info *next_frame,
717 struct cris_unwind_cache *info);
719 static CORE_ADDR crisv32_scan_prologue (CORE_ADDR pc,
720 struct frame_info *next_frame,
721 struct cris_unwind_cache *info);
723 static CORE_ADDR cris_unwind_pc (struct gdbarch *gdbarch,
724 struct frame_info *next_frame);
726 static CORE_ADDR cris_unwind_sp (struct gdbarch *gdbarch,
727 struct frame_info *next_frame);
729 /* When arguments must be pushed onto the stack, they go on in reverse
730 order. The below implements a FILO (stack) to do this.
731 Copied from d10v-tdep.c. */
736 struct stack_item *prev;
740 static struct stack_item *
741 push_stack_item (struct stack_item *prev, void *contents, int len)
743 struct stack_item *si;
744 si = xmalloc (sizeof (struct stack_item));
745 si->data = xmalloc (len);
748 memcpy (si->data, contents, len);
752 static struct stack_item *
753 pop_stack_item (struct stack_item *si)
755 struct stack_item *dead = si;
762 /* Put here the code to store, into fi->saved_regs, the addresses of
763 the saved registers of frame described by FRAME_INFO. This
764 includes special registers such as pc and fp saved in special ways
765 in the stack frame. sp is even more special: the address we return
766 for it IS the sp for the next frame. */
768 struct cris_unwind_cache *
769 cris_frame_unwind_cache (struct frame_info *next_frame,
770 void **this_prologue_cache)
773 struct cris_unwind_cache *info;
776 if ((*this_prologue_cache))
777 return (*this_prologue_cache);
779 info = FRAME_OBSTACK_ZALLOC (struct cris_unwind_cache);
780 (*this_prologue_cache) = info;
781 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
783 /* Zero all fields. */
789 info->uses_frame = 0;
791 info->leaf_function = 0;
793 /* Prologue analysis does the rest... */
794 if (cris_version () == 32)
795 crisv32_scan_prologue (frame_func_unwind (next_frame, NORMAL_FRAME),
798 cris_scan_prologue (frame_func_unwind (next_frame, NORMAL_FRAME),
804 /* Given a GDB frame, determine the address of the calling function's
805 frame. This will be used to create a new GDB frame struct. */
808 cris_frame_this_id (struct frame_info *next_frame,
809 void **this_prologue_cache,
810 struct frame_id *this_id)
812 struct cris_unwind_cache *info
813 = cris_frame_unwind_cache (next_frame, this_prologue_cache);
818 /* The FUNC is easy. */
819 func = frame_func_unwind (next_frame, NORMAL_FRAME);
821 /* Hopefully the prologue analysis either correctly determined the
822 frame's base (which is the SP from the previous frame), or set
823 that base to "NULL". */
824 base = info->prev_sp;
828 id = frame_id_build (base, func);
834 cris_frame_prev_register (struct frame_info *next_frame,
835 void **this_prologue_cache,
836 int regnum, int *optimizedp,
837 enum lval_type *lvalp, CORE_ADDR *addrp,
838 int *realnump, gdb_byte *bufferp)
840 struct cris_unwind_cache *info
841 = cris_frame_unwind_cache (next_frame, this_prologue_cache);
842 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
843 optimizedp, lvalp, addrp, realnump, bufferp);
846 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
847 dummy frame. The frame ID's base needs to match the TOS value
848 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
851 static struct frame_id
852 cris_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
854 return frame_id_build (cris_unwind_sp (gdbarch, next_frame),
855 frame_pc_unwind (next_frame));
859 cris_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
861 /* Align to the size of an instruction (so that they can safely be
862 pushed onto the stack). */
867 cris_push_dummy_code (struct gdbarch *gdbarch,
868 CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc,
869 struct value **args, int nargs,
870 struct type *value_type,
871 CORE_ADDR *real_pc, CORE_ADDR *bp_addr)
873 /* Allocate space sufficient for a breakpoint. */
875 /* Store the address of that breakpoint */
877 /* CRIS always starts the call at the callee's entry point. */
883 cris_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
884 struct regcache *regcache, CORE_ADDR bp_addr,
885 int nargs, struct value **args, CORE_ADDR sp,
886 int struct_return, CORE_ADDR struct_addr)
895 /* The function's arguments and memory allocated by gdb for the arguments to
896 point at reside in separate areas on the stack.
897 Both frame pointers grow toward higher addresses. */
901 struct stack_item *si = NULL;
903 /* Push the return address. */
904 regcache_cooked_write_unsigned (regcache, SRP_REGNUM, bp_addr);
906 /* Are we returning a value using a structure return or a normal value
907 return? struct_addr is the address of the reserved space for the return
908 structure to be written on the stack. */
911 regcache_cooked_write_unsigned (regcache, STR_REGNUM, struct_addr);
914 /* Now load as many as possible of the first arguments into registers,
915 and push the rest onto the stack. */
916 argreg = ARG1_REGNUM;
919 for (argnum = 0; argnum < nargs; argnum++)
926 len = TYPE_LENGTH (value_type (args[argnum]));
927 val = (char *) value_contents (args[argnum]);
929 /* How may registers worth of storage do we need for this argument? */
930 reg_demand = (len / 4) + (len % 4 != 0 ? 1 : 0);
932 if (len <= (2 * 4) && (argreg + reg_demand - 1 <= ARG4_REGNUM))
934 /* Data passed by value. Fits in available register(s). */
935 for (i = 0; i < reg_demand; i++)
937 regcache_cooked_write_unsigned (regcache, argreg,
938 *(unsigned long *) val);
943 else if (len <= (2 * 4) && argreg <= ARG4_REGNUM)
945 /* Data passed by value. Does not fit in available register(s).
946 Use the register(s) first, then the stack. */
947 for (i = 0; i < reg_demand; i++)
949 if (argreg <= ARG4_REGNUM)
951 regcache_cooked_write_unsigned (regcache, argreg,
952 *(unsigned long *) val);
958 /* Push item for later so that pushed arguments
959 come in the right order. */
960 si = push_stack_item (si, val, 4);
965 else if (len > (2 * 4))
968 internal_error (__FILE__, __LINE__, _("We don't do this"));
972 /* Data passed by value. No available registers. Put it on
974 si = push_stack_item (si, val, len);
980 /* fp_arg must be word-aligned (i.e., don't += len) to match
981 the function prologue. */
982 sp = (sp - si->len) & ~3;
983 write_memory (sp, si->data, si->len);
984 si = pop_stack_item (si);
987 /* Finally, update the SP register. */
988 regcache_cooked_write_unsigned (regcache, SP_REGNUM, sp);
993 static const struct frame_unwind cris_frame_unwind =
997 cris_frame_prev_register
1000 const struct frame_unwind *
1001 cris_frame_sniffer (struct frame_info *next_frame)
1003 return &cris_frame_unwind;
1007 cris_frame_base_address (struct frame_info *next_frame, void **this_cache)
1009 struct cris_unwind_cache *info
1010 = cris_frame_unwind_cache (next_frame, this_cache);
1014 static const struct frame_base cris_frame_base =
1017 cris_frame_base_address,
1018 cris_frame_base_address,
1019 cris_frame_base_address
1022 /* Frames information. The definition of the struct frame_info is
1026 enum frame_type type;
1030 If the compilation option -fno-omit-frame-pointer is present the
1031 variable frame will be set to the content of R8 which is the frame
1034 The variable pc contains the address where execution is performed
1035 in the present frame. The innermost frame contains the current content
1036 of the register PC. All other frames contain the content of the
1037 register PC in the next frame.
1039 The variable `type' indicates the frame's type: normal, SIGTRAMP
1040 (associated with a signal handler), dummy (associated with a dummy
1043 The variable return_pc contains the address where execution should be
1044 resumed when the present frame has finished, the return address.
1046 The variable leaf_function is 1 if the return address is in the register
1047 SRP, and 0 if it is on the stack.
1049 Prologue instructions C-code.
1050 The prologue may consist of (-fno-omit-frame-pointer)
1054 move.d sp,r8 move.d sp,r8
1056 movem rY,[sp] movem rY,[sp]
1057 move.S rZ,[r8-U] move.S rZ,[r8-U]
1059 where 1 is a non-terminal function, and 2 is a leaf-function.
1061 Note that this assumption is extremely brittle, and will break at the
1062 slightest change in GCC's prologue.
1064 If local variables are declared or register contents are saved on stack
1065 the subq-instruction will be present with X as the number of bytes
1066 needed for storage. The reshuffle with respect to r8 may be performed
1067 with any size S (b, w, d) and any of the general registers Z={0..13}.
1068 The offset U should be representable by a signed 8-bit value in all cases.
1069 Thus, the prefix word is assumed to be immediate byte offset mode followed
1070 by another word containing the instruction.
1079 Prologue instructions C++-code.
1080 Case 1) and 2) in the C-code may be followed by
1082 move.d r10,rS ; this
1086 move.S [r8+U],rZ ; P4
1088 if any of the call parameters are stored. The host expects these
1089 instructions to be executed in order to get the call parameters right. */
1091 /* Examine the prologue of a function. The variable ip is the address of
1092 the first instruction of the prologue. The variable limit is the address
1093 of the first instruction after the prologue. The variable fi contains the
1094 information in struct frame_info. The variable frameless_p controls whether
1095 the entire prologue is examined (0) or just enough instructions to
1096 determine that it is a prologue (1). */
1099 cris_scan_prologue (CORE_ADDR pc, struct frame_info *next_frame,
1100 struct cris_unwind_cache *info)
1102 /* Present instruction. */
1103 unsigned short insn;
1105 /* Next instruction, lookahead. */
1106 unsigned short insn_next;
1109 /* Is there a push fp? */
1112 /* Number of byte on stack used for local variables and movem. */
1115 /* Highest register number in a movem. */
1118 /* move.d r<source_register>,rS */
1119 short source_register;
1124 /* This frame is with respect to a leaf until a push srp is found. */
1127 info->leaf_function = 1;
1130 /* Assume nothing on stack. */
1134 /* If we were called without a next_frame, that means we were called
1135 from cris_skip_prologue which already tried to find the end of the
1136 prologue through the symbol information. 64 instructions past current
1137 pc is arbitrarily chosen, but at least it means we'll stop eventually. */
1138 limit = next_frame ? frame_pc_unwind (next_frame) : pc + 64;
1140 /* Find the prologue instructions. */
1141 while (pc > 0 && pc < limit)
1143 insn = read_memory_unsigned_integer (pc, 2);
1147 /* push <reg> 32 bit instruction */
1148 insn_next = read_memory_unsigned_integer (pc, 2);
1150 regno = cris_get_operand2 (insn_next);
1153 info->sp_offset += 4;
1155 /* This check, meant to recognize srp, used to be regno ==
1156 (SRP_REGNUM - NUM_GENREGS), but that covers r11 also. */
1157 if (insn_next == 0xBE7E)
1161 info->leaf_function = 0;
1164 else if (insn_next == 0x8FEE)
1169 info->r8_offset = info->sp_offset;
1173 else if (insn == 0x866E)
1178 info->uses_frame = 1;
1182 else if (cris_get_operand2 (insn) == SP_REGNUM
1183 && cris_get_mode (insn) == 0x0000
1184 && cris_get_opcode (insn) == 0x000A)
1189 info->sp_offset += cris_get_quick_value (insn);
1192 else if (cris_get_mode (insn) == 0x0002
1193 && cris_get_opcode (insn) == 0x000F
1194 && cris_get_size (insn) == 0x0003
1195 && cris_get_operand1 (insn) == SP_REGNUM)
1197 /* movem r<regsave>,[sp] */
1198 regsave = cris_get_operand2 (insn);
1200 else if (cris_get_operand2 (insn) == SP_REGNUM
1201 && ((insn & 0x0F00) >> 8) == 0x0001
1202 && (cris_get_signed_offset (insn) < 0))
1204 /* Immediate byte offset addressing prefix word with sp as base
1205 register. Used for CRIS v8 i.e. ETRAX 100 and newer if <val>
1206 is between 64 and 128.
1207 movem r<regsave>,[sp=sp-<val>] */
1210 info->sp_offset += -cris_get_signed_offset (insn);
1212 insn_next = read_memory_unsigned_integer (pc, 2);
1214 if (cris_get_mode (insn_next) == PREFIX_ASSIGN_MODE
1215 && cris_get_opcode (insn_next) == 0x000F
1216 && cris_get_size (insn_next) == 0x0003
1217 && cris_get_operand1 (insn_next) == SP_REGNUM)
1219 regsave = cris_get_operand2 (insn_next);
1223 /* The prologue ended before the limit was reached. */
1228 else if (cris_get_mode (insn) == 0x0001
1229 && cris_get_opcode (insn) == 0x0009
1230 && cris_get_size (insn) == 0x0002)
1232 /* move.d r<10..13>,r<0..15> */
1233 source_register = cris_get_operand1 (insn);
1235 /* FIXME? In the glibc solibs, the prologue might contain something
1236 like (this example taken from relocate_doit):
1238 sub.d 0xfffef426,$r0
1239 which isn't covered by the source_register check below. Question
1240 is whether to add a check for this combo, or make better use of
1241 the limit variable instead. */
1242 if (source_register < ARG1_REGNUM || source_register > ARG4_REGNUM)
1244 /* The prologue ended before the limit was reached. */
1249 else if (cris_get_operand2 (insn) == CRIS_FP_REGNUM
1250 /* The size is a fixed-size. */
1251 && ((insn & 0x0F00) >> 8) == 0x0001
1252 /* A negative offset. */
1253 && (cris_get_signed_offset (insn) < 0))
1255 /* move.S rZ,[r8-U] (?) */
1256 insn_next = read_memory_unsigned_integer (pc, 2);
1258 regno = cris_get_operand2 (insn_next);
1259 if ((regno >= 0 && regno < SP_REGNUM)
1260 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
1261 && cris_get_opcode (insn_next) == 0x000F)
1263 /* move.S rZ,[r8-U] */
1268 /* The prologue ended before the limit was reached. */
1273 else if (cris_get_operand2 (insn) == CRIS_FP_REGNUM
1274 /* The size is a fixed-size. */
1275 && ((insn & 0x0F00) >> 8) == 0x0001
1276 /* A positive offset. */
1277 && (cris_get_signed_offset (insn) > 0))
1279 /* move.S [r8+U],rZ (?) */
1280 insn_next = read_memory_unsigned_integer (pc, 2);
1282 regno = cris_get_operand2 (insn_next);
1283 if ((regno >= 0 && regno < SP_REGNUM)
1284 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
1285 && cris_get_opcode (insn_next) == 0x0009
1286 && cris_get_operand1 (insn_next) == regno)
1288 /* move.S [r8+U],rZ */
1293 /* The prologue ended before the limit was reached. */
1300 /* The prologue ended before the limit was reached. */
1306 /* We only want to know the end of the prologue when next_frame and info
1307 are NULL (called from cris_skip_prologue i.e.). */
1308 if (next_frame == NULL && info == NULL)
1313 info->size = info->sp_offset;
1315 /* Compute the previous frame's stack pointer (which is also the
1316 frame's ID's stack address), and this frame's base pointer. */
1317 if (info->uses_frame)
1320 /* The SP was moved to the FP. This indicates that a new frame
1321 was created. Get THIS frame's FP value by unwinding it from
1323 frame_unwind_unsigned_register (next_frame, CRIS_FP_REGNUM,
1325 info->base = this_base;
1326 info->saved_regs[CRIS_FP_REGNUM].addr = info->base;
1328 /* The FP points at the last saved register. Adjust the FP back
1329 to before the first saved register giving the SP. */
1330 info->prev_sp = info->base + info->r8_offset;
1335 /* Assume that the FP is this frame's SP but with that pushed
1336 stack space added back. */
1337 frame_unwind_unsigned_register (next_frame, SP_REGNUM, &this_base);
1338 info->base = this_base;
1339 info->prev_sp = info->base + info->size;
1342 /* Calculate the addresses for the saved registers on the stack. */
1343 /* FIXME: The address calculation should really be done on the fly while
1344 we're analyzing the prologue (we only hold one regsave value as it is
1346 val = info->sp_offset;
1348 for (regno = regsave; regno >= 0; regno--)
1350 info->saved_regs[regno].addr = info->base + info->r8_offset - val;
1354 /* The previous frame's SP needed to be computed. Save the computed
1356 trad_frame_set_value (info->saved_regs, SP_REGNUM, info->prev_sp);
1358 if (!info->leaf_function)
1360 /* SRP saved on the stack. But where? */
1361 if (info->r8_offset == 0)
1363 /* R8 not pushed yet. */
1364 info->saved_regs[SRP_REGNUM].addr = info->base;
1368 /* R8 pushed, but SP may or may not be moved to R8 yet. */
1369 info->saved_regs[SRP_REGNUM].addr = info->base + 4;
1373 /* The PC is found in SRP (the actual register or located on the stack). */
1374 info->saved_regs[PC_REGNUM] = info->saved_regs[SRP_REGNUM];
1380 crisv32_scan_prologue (CORE_ADDR pc, struct frame_info *next_frame,
1381 struct cris_unwind_cache *info)
1385 /* Unlike the CRISv10 prologue scanner (cris_scan_prologue), this is not
1386 meant to be a full-fledged prologue scanner. It is only needed for
1387 the cases where we end up in code always lacking DWARF-2 CFI, notably:
1389 * PLT stubs (library calls)
1391 * signal trampolines
1393 For those cases, it is assumed that there is no actual prologue; that
1394 the stack pointer is not adjusted, and (as a consequence) the return
1395 address is not pushed onto the stack. */
1397 /* We only want to know the end of the prologue when next_frame and info
1398 are NULL (called from cris_skip_prologue i.e.). */
1399 if (next_frame == NULL && info == NULL)
1404 /* The SP is assumed to be unaltered. */
1405 frame_unwind_unsigned_register (next_frame, SP_REGNUM, &this_base);
1406 info->base = this_base;
1407 info->prev_sp = this_base;
1409 /* The PC is assumed to be found in SRP. */
1410 info->saved_regs[PC_REGNUM] = info->saved_regs[SRP_REGNUM];
1415 /* Advance pc beyond any function entry prologue instructions at pc
1416 to reach some "real" code. */
1418 /* Given a PC value corresponding to the start of a function, return the PC
1419 of the first instruction after the function prologue. */
1422 cris_skip_prologue (CORE_ADDR pc)
1424 CORE_ADDR func_addr, func_end;
1425 struct symtab_and_line sal;
1426 CORE_ADDR pc_after_prologue;
1428 /* If we have line debugging information, then the end of the prologue
1429 should the first assembly instruction of the first source line. */
1430 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1432 sal = find_pc_line (func_addr, 0);
1433 if (sal.end > 0 && sal.end < func_end)
1437 if (cris_version () == 32)
1438 pc_after_prologue = crisv32_scan_prologue (pc, NULL, NULL);
1440 pc_after_prologue = cris_scan_prologue (pc, NULL, NULL);
1442 return pc_after_prologue;
1446 cris_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1449 frame_unwind_unsigned_register (next_frame, PC_REGNUM, &pc);
1454 cris_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1457 frame_unwind_unsigned_register (next_frame, SP_REGNUM, &sp);
1461 /* Use the program counter to determine the contents and size of a breakpoint
1462 instruction. It returns a pointer to a string of bytes that encode a
1463 breakpoint instruction, stores the length of the string to *lenptr, and
1464 adjusts pcptr (if necessary) to point to the actual memory location where
1465 the breakpoint should be inserted. */
1467 static const unsigned char *
1468 cris_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
1470 static unsigned char break8_insn[] = {0x38, 0xe9};
1471 static unsigned char break15_insn[] = {0x3f, 0xe9};
1474 if (cris_mode () == cris_mode_guru)
1475 return break15_insn;
1480 /* Returns 1 if spec_reg is applicable to the current gdbarch's CRIS version,
1484 cris_spec_reg_applicable (struct cris_spec_reg spec_reg)
1486 int version = cris_version ();
1488 switch (spec_reg.applicable_version)
1490 case cris_ver_version_all:
1492 case cris_ver_warning:
1493 /* Indeterminate/obsolete. */
1496 return (version >= 0 && version <= 3);
1498 return (version >= 3);
1500 return (version == 8 || version == 9);
1502 return (version >= 8);
1503 case cris_ver_v0_10:
1504 return (version >= 0 && version <= 10);
1505 case cris_ver_v3_10:
1506 return (version >= 3 && version <= 10);
1507 case cris_ver_v8_10:
1508 return (version >= 8 && version <= 10);
1510 return (version == 10);
1512 return (version >= 10);
1514 return (version >= 32);
1516 /* Invalid cris version. */
1521 /* Returns the register size in unit byte. Returns 0 for an unimplemented
1522 register, -1 for an invalid register. */
1525 cris_register_size (int regno)
1527 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1531 if (regno >= 0 && regno < NUM_GENREGS)
1533 /* General registers (R0 - R15) are 32 bits. */
1536 else if (regno >= NUM_GENREGS && regno < (NUM_GENREGS + NUM_SPECREGS))
1538 /* Special register (R16 - R31). cris_spec_regs is zero-based.
1539 Adjust regno accordingly. */
1540 spec_regno = regno - NUM_GENREGS;
1542 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1544 if (cris_spec_regs[i].number == spec_regno
1545 && cris_spec_reg_applicable (cris_spec_regs[i]))
1546 /* Go with the first applicable register. */
1547 return cris_spec_regs[i].reg_size;
1549 /* Special register not applicable to this CRIS version. */
1552 else if (regno >= PC_REGNUM && regno < NUM_REGS)
1554 /* This will apply to CRISv32 only where there are additional registers
1555 after the special registers (pseudo PC and support registers). */
1563 /* Nonzero if regno should not be fetched from the target. This is the case
1564 for unimplemented (size 0) and non-existant registers. */
1567 cris_cannot_fetch_register (int regno)
1569 return ((regno < 0 || regno >= NUM_REGS)
1570 || (cris_register_size (regno) == 0));
1573 /* Nonzero if regno should not be written to the target, for various
1577 cris_cannot_store_register (int regno)
1579 /* There are three kinds of registers we refuse to write to.
1580 1. Those that not implemented.
1581 2. Those that are read-only (depends on the processor mode).
1582 3. Those registers to which a write has no effect.
1585 if (regno < 0 || regno >= NUM_REGS || cris_register_size (regno) == 0)
1586 /* Not implemented. */
1589 else if (regno == VR_REGNUM)
1593 else if (regno == P0_REGNUM || regno == P4_REGNUM || regno == P8_REGNUM)
1594 /* Writing has no effect. */
1597 /* IBR, BAR, BRP and IRP are read-only in user mode. Let the debug
1598 agent decide whether they are writable. */
1603 /* Nonzero if regno should not be fetched from the target. This is the case
1604 for unimplemented (size 0) and non-existant registers. */
1607 crisv32_cannot_fetch_register (int regno)
1609 return ((regno < 0 || regno >= NUM_REGS)
1610 || (cris_register_size (regno) == 0));
1613 /* Nonzero if regno should not be written to the target, for various
1617 crisv32_cannot_store_register (int regno)
1619 /* There are three kinds of registers we refuse to write to.
1620 1. Those that not implemented.
1621 2. Those that are read-only (depends on the processor mode).
1622 3. Those registers to which a write has no effect.
1625 if (regno < 0 || regno >= NUM_REGS || cris_register_size (regno) == 0)
1626 /* Not implemented. */
1629 else if (regno == VR_REGNUM)
1633 else if (regno == BZ_REGNUM || regno == WZ_REGNUM || regno == DZ_REGNUM)
1634 /* Writing has no effect. */
1637 /* Many special registers are read-only in user mode. Let the debug
1638 agent decide whether they are writable. */
1643 /* Return the GDB type (defined in gdbtypes.c) for the "standard" data type
1644 of data in register regno. */
1646 static struct type *
1647 cris_register_type (struct gdbarch *gdbarch, int regno)
1649 if (regno == PC_REGNUM)
1650 return builtin_type_void_func_ptr;
1651 else if (regno == SP_REGNUM || regno == CRIS_FP_REGNUM)
1652 return builtin_type_void_data_ptr;
1653 else if ((regno >= 0 && regno < SP_REGNUM)
1654 || (regno >= MOF_REGNUM && regno <= USP_REGNUM))
1655 /* Note: R8 taken care of previous clause. */
1656 return builtin_type_uint32;
1657 else if (regno >= P4_REGNUM && regno <= CCR_REGNUM)
1658 return builtin_type_uint16;
1659 else if (regno >= P0_REGNUM && regno <= VR_REGNUM)
1660 return builtin_type_uint8;
1662 /* Invalid (unimplemented) register. */
1663 return builtin_type_int0;
1666 static struct type *
1667 crisv32_register_type (struct gdbarch *gdbarch, int regno)
1669 if (regno == PC_REGNUM)
1670 return builtin_type_void_func_ptr;
1671 else if (regno == SP_REGNUM || regno == CRIS_FP_REGNUM)
1672 return builtin_type_void_data_ptr;
1673 else if ((regno >= 0 && regno <= ACR_REGNUM)
1674 || (regno >= EXS_REGNUM && regno <= SPC_REGNUM)
1675 || (regno == PID_REGNUM)
1676 || (regno >= S0_REGNUM && regno <= S15_REGNUM))
1677 /* Note: R8 and SP taken care of by previous clause. */
1678 return builtin_type_uint32;
1679 else if (regno == WZ_REGNUM)
1680 return builtin_type_uint16;
1681 else if (regno == BZ_REGNUM || regno == VR_REGNUM || regno == SRS_REGNUM)
1682 return builtin_type_uint8;
1685 /* Invalid (unimplemented) register. Should not happen as there are
1686 no unimplemented CRISv32 registers. */
1687 warning (_("crisv32_register_type: unknown regno %d"), regno);
1688 return builtin_type_int0;
1692 /* Stores a function return value of type type, where valbuf is the address
1693 of the value to be stored. */
1695 /* In the CRIS ABI, R10 and R11 are used to store return values. */
1698 cris_store_return_value (struct type *type, struct regcache *regcache,
1702 int len = TYPE_LENGTH (type);
1706 /* Put the return value in R10. */
1707 val = extract_unsigned_integer (valbuf, len);
1708 regcache_cooked_write_unsigned (regcache, ARG1_REGNUM, val);
1712 /* Put the return value in R10 and R11. */
1713 val = extract_unsigned_integer (valbuf, 4);
1714 regcache_cooked_write_unsigned (regcache, ARG1_REGNUM, val);
1715 val = extract_unsigned_integer ((char *)valbuf + 4, len - 4);
1716 regcache_cooked_write_unsigned (regcache, ARG2_REGNUM, val);
1719 error (_("cris_store_return_value: type length too large."));
1722 /* Return the name of register regno as a string. Return NULL for an invalid or
1723 unimplemented register. */
1726 cris_special_register_name (int regno)
1731 /* Special register (R16 - R31). cris_spec_regs is zero-based.
1732 Adjust regno accordingly. */
1733 spec_regno = regno - NUM_GENREGS;
1735 /* Assume nothing about the layout of the cris_spec_regs struct
1737 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1739 if (cris_spec_regs[i].number == spec_regno
1740 && cris_spec_reg_applicable (cris_spec_regs[i]))
1741 /* Go with the first applicable register. */
1742 return cris_spec_regs[i].name;
1744 /* Special register not applicable to this CRIS version. */
1749 cris_register_name (int regno)
1751 static char *cris_genreg_names[] =
1752 { "r0", "r1", "r2", "r3", \
1753 "r4", "r5", "r6", "r7", \
1754 "r8", "r9", "r10", "r11", \
1755 "r12", "r13", "sp", "pc" };
1757 if (regno >= 0 && regno < NUM_GENREGS)
1759 /* General register. */
1760 return cris_genreg_names[regno];
1762 else if (regno >= NUM_GENREGS && regno < NUM_REGS)
1764 return cris_special_register_name (regno);
1768 /* Invalid register. */
1774 crisv32_register_name (int regno)
1776 static char *crisv32_genreg_names[] =
1777 { "r0", "r1", "r2", "r3", \
1778 "r4", "r5", "r6", "r7", \
1779 "r8", "r9", "r10", "r11", \
1780 "r12", "r13", "sp", "acr"
1783 static char *crisv32_sreg_names[] =
1784 { "s0", "s1", "s2", "s3", \
1785 "s4", "s5", "s6", "s7", \
1786 "s8", "s9", "s10", "s11", \
1787 "s12", "s13", "s14", "s15"
1790 if (regno >= 0 && regno < NUM_GENREGS)
1792 /* General register. */
1793 return crisv32_genreg_names[regno];
1795 else if (regno >= NUM_GENREGS && regno < (NUM_GENREGS + NUM_SPECREGS))
1797 return cris_special_register_name (regno);
1799 else if (regno == PC_REGNUM)
1803 else if (regno >= S0_REGNUM && regno <= S15_REGNUM)
1805 return crisv32_sreg_names[regno - S0_REGNUM];
1809 /* Invalid register. */
1814 /* Convert DWARF register number REG to the appropriate register
1815 number used by GDB. */
1818 cris_dwarf2_reg_to_regnum (int reg)
1820 /* We need to re-map a couple of registers (SRP is 16 in Dwarf-2 register
1821 numbering, MOF is 18).
1822 Adapted from gcc/config/cris/cris.h. */
1823 static int cris_dwarf_regmap[] = {
1835 if (reg >= 0 && reg < ARRAY_SIZE (cris_dwarf_regmap))
1836 regnum = cris_dwarf_regmap[reg];
1839 warning (_("Unmapped DWARF Register #%d encountered."), reg);
1844 /* DWARF-2 frame support. */
1847 cris_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1848 struct dwarf2_frame_state_reg *reg,
1849 struct frame_info *next_frame)
1851 /* The return address column. */
1852 if (regnum == PC_REGNUM)
1853 reg->how = DWARF2_FRAME_REG_RA;
1855 /* The call frame address. */
1856 else if (regnum == SP_REGNUM)
1857 reg->how = DWARF2_FRAME_REG_CFA;
1860 /* Extract from an array regbuf containing the raw register state a function
1861 return value of type type, and copy that, in virtual format, into
1864 /* In the CRIS ABI, R10 and R11 are used to store return values. */
1867 cris_extract_return_value (struct type *type, struct regcache *regcache,
1871 int len = TYPE_LENGTH (type);
1875 /* Get the return value from R10. */
1876 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &val);
1877 store_unsigned_integer (valbuf, len, val);
1881 /* Get the return value from R10 and R11. */
1882 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &val);
1883 store_unsigned_integer (valbuf, 4, val);
1884 regcache_cooked_read_unsigned (regcache, ARG2_REGNUM, &val);
1885 store_unsigned_integer ((char *)valbuf + 4, len - 4, val);
1888 error (_("cris_extract_return_value: type length too large"));
1891 /* Handle the CRIS return value convention. */
1893 static enum return_value_convention
1894 cris_return_value (struct gdbarch *gdbarch, struct type *type,
1895 struct regcache *regcache, gdb_byte *readbuf,
1896 const gdb_byte *writebuf)
1898 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1899 || TYPE_CODE (type) == TYPE_CODE_UNION
1900 || TYPE_LENGTH (type) > 8)
1901 /* Structs, unions, and anything larger than 8 bytes (2 registers)
1902 goes on the stack. */
1903 return RETURN_VALUE_STRUCT_CONVENTION;
1906 cris_extract_return_value (type, regcache, readbuf);
1908 cris_store_return_value (type, regcache, writebuf);
1910 return RETURN_VALUE_REGISTER_CONVENTION;
1913 /* Returns 1 if the given type will be passed by pointer rather than
1916 /* In the CRIS ABI, arguments shorter than or equal to 64 bits are passed
1920 cris_reg_struct_has_addr (int gcc_p, struct type *type)
1922 return (TYPE_LENGTH (type) > 8);
1925 /* Calculates a value that measures how good inst_args constraints an
1926 instruction. It stems from cris_constraint, found in cris-dis.c. */
1929 constraint (unsigned int insn, const signed char *inst_args,
1930 inst_env_type *inst_env)
1935 const char *s = inst_args;
1941 if ((insn & 0x30) == 0x30)
1946 /* A prefix operand. */
1947 if (inst_env->prefix_found)
1953 /* A "push" prefix. (This check was REMOVED by san 970921.) Check for
1954 valid "push" size. In case of special register, it may be != 4. */
1955 if (inst_env->prefix_found)
1961 retval = (((insn >> 0xC) & 0xF) == (insn & 0xF));
1969 tmp = (insn >> 0xC) & 0xF;
1971 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1973 /* Since we match four bits, we will give a value of
1974 4 - 1 = 3 in a match. If there is a corresponding
1975 exact match of a special register in another pattern, it
1976 will get a value of 4, which will be higher. This should
1977 be correct in that an exact pattern would match better that
1979 Note that there is a reason for not returning zero; the
1980 pattern for "clear" is partly matched in the bit-pattern
1981 (the two lower bits must be zero), while the bit-pattern
1982 for a move from a special register is matched in the
1983 register constraint.
1984 This also means we will will have a race condition if
1985 there is a partly match in three bits in the bit pattern. */
1986 if (tmp == cris_spec_regs[i].number)
1993 if (cris_spec_regs[i].name == NULL)
2000 /* Returns the number of bits set in the variable value. */
2003 number_of_bits (unsigned int value)
2005 int number_of_bits = 0;
2009 number_of_bits += 1;
2010 value &= (value - 1);
2012 return number_of_bits;
2015 /* Finds the address that should contain the single step breakpoint(s).
2016 It stems from code in cris-dis.c. */
2019 find_cris_op (unsigned short insn, inst_env_type *inst_env)
2022 int max_level_of_match = -1;
2023 int max_matched = -1;
2026 for (i = 0; cris_opcodes[i].name != NULL; i++)
2028 if (((cris_opcodes[i].match & insn) == cris_opcodes[i].match)
2029 && ((cris_opcodes[i].lose & insn) == 0)
2030 /* Only CRISv10 instructions, please. */
2031 && (cris_opcodes[i].applicable_version != cris_ver_v32p))
2033 level_of_match = constraint (insn, cris_opcodes[i].args, inst_env);
2034 if (level_of_match >= 0)
2037 number_of_bits (cris_opcodes[i].match | cris_opcodes[i].lose);
2038 if (level_of_match > max_level_of_match)
2041 max_level_of_match = level_of_match;
2042 if (level_of_match == 16)
2044 /* All bits matched, cannot find better. */
2054 /* Attempts to find single-step breakpoints. Returns -1 on failure which is
2055 actually an internal error. */
2058 find_step_target (inst_env_type *inst_env)
2062 unsigned short insn;
2064 /* Create a local register image and set the initial state. */
2065 for (i = 0; i < NUM_GENREGS; i++)
2067 inst_env->reg[i] = (unsigned long) read_register (i);
2069 offset = NUM_GENREGS;
2070 for (i = 0; i < NUM_SPECREGS; i++)
2072 inst_env->preg[i] = (unsigned long) read_register (offset + i);
2074 inst_env->branch_found = 0;
2075 inst_env->slot_needed = 0;
2076 inst_env->delay_slot_pc_active = 0;
2077 inst_env->prefix_found = 0;
2078 inst_env->invalid = 0;
2079 inst_env->xflag_found = 0;
2080 inst_env->disable_interrupt = 0;
2082 /* Look for a step target. */
2085 /* Read an instruction from the client. */
2086 insn = read_memory_unsigned_integer (inst_env->reg[PC_REGNUM], 2);
2088 /* If the instruction is not in a delay slot the new content of the
2089 PC is [PC] + 2. If the instruction is in a delay slot it is not
2090 that simple. Since a instruction in a delay slot cannot change
2091 the content of the PC, it does not matter what value PC will have.
2092 Just make sure it is a valid instruction. */
2093 if (!inst_env->delay_slot_pc_active)
2095 inst_env->reg[PC_REGNUM] += 2;
2099 inst_env->delay_slot_pc_active = 0;
2100 inst_env->reg[PC_REGNUM] = inst_env->delay_slot_pc;
2102 /* Analyse the present instruction. */
2103 i = find_cris_op (insn, inst_env);
2106 inst_env->invalid = 1;
2110 cris_gdb_func (cris_opcodes[i].op, insn, inst_env);
2112 } while (!inst_env->invalid
2113 && (inst_env->prefix_found || inst_env->xflag_found
2114 || inst_env->slot_needed));
2118 /* There is no hardware single-step support. The function find_step_target
2119 digs through the opcodes in order to find all possible targets.
2120 Either one ordinary target or two targets for branches may be found. */
2123 cris_software_single_step (enum target_signal ignore, int insert_breakpoints)
2125 inst_env_type inst_env;
2127 if (insert_breakpoints)
2129 /* Analyse the present instruction environment and insert
2131 int status = find_step_target (&inst_env);
2134 /* Could not find a target. Things are likely to go downhill
2136 warning (_("CRIS software single step could not find a step target."));
2140 /* Insert at most two breakpoints. One for the next PC content
2141 and possibly another one for a branch, jump, etc. */
2142 CORE_ADDR next_pc = (CORE_ADDR) inst_env.reg[PC_REGNUM];
2143 insert_single_step_breakpoint (next_pc);
2144 if (inst_env.branch_found
2145 && (CORE_ADDR) inst_env.branch_break_address != next_pc)
2147 CORE_ADDR branch_target_address
2148 = (CORE_ADDR) inst_env.branch_break_address;
2149 insert_single_step_breakpoint (branch_target_address);
2154 remove_single_step_breakpoints ();
2159 /* Calculates the prefix value for quick offset addressing mode. */
2162 quick_mode_bdap_prefix (unsigned short inst, inst_env_type *inst_env)
2164 /* It's invalid to be in a delay slot. You can't have a prefix to this
2165 instruction (not 100% sure). */
2166 if (inst_env->slot_needed || inst_env->prefix_found)
2168 inst_env->invalid = 1;
2172 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
2173 inst_env->prefix_value += cris_get_bdap_quick_offset (inst);
2175 /* A prefix doesn't change the xflag_found. But the rest of the flags
2177 inst_env->slot_needed = 0;
2178 inst_env->prefix_found = 1;
2181 /* Updates the autoincrement register. The size of the increment is derived
2182 from the size of the operation. The PC is always kept aligned on even
2186 process_autoincrement (int size, unsigned short inst, inst_env_type *inst_env)
2188 if (size == INST_BYTE_SIZE)
2190 inst_env->reg[cris_get_operand1 (inst)] += 1;
2192 /* The PC must be word aligned, so increase the PC with one
2193 word even if the size is byte. */
2194 if (cris_get_operand1 (inst) == REG_PC)
2196 inst_env->reg[REG_PC] += 1;
2199 else if (size == INST_WORD_SIZE)
2201 inst_env->reg[cris_get_operand1 (inst)] += 2;
2203 else if (size == INST_DWORD_SIZE)
2205 inst_env->reg[cris_get_operand1 (inst)] += 4;
2210 inst_env->invalid = 1;
2214 /* Just a forward declaration. */
2216 static unsigned long get_data_from_address (unsigned short *inst,
2219 /* Calculates the prefix value for the general case of offset addressing
2223 bdap_prefix (unsigned short inst, inst_env_type *inst_env)
2228 /* It's invalid to be in a delay slot. */
2229 if (inst_env->slot_needed || inst_env->prefix_found)
2231 inst_env->invalid = 1;
2235 /* The calculation of prefix_value used to be after process_autoincrement,
2236 but that fails for an instruction such as jsr [$r0+12] which is encoded
2237 as 5f0d 0c00 30b9 when compiled with -fpic. Since PC is operand1 it
2238 mustn't be incremented until we have read it and what it points at. */
2239 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
2241 /* The offset is an indirection of the contents of the operand1 register. */
2242 inst_env->prefix_value +=
2243 get_data_from_address (&inst, inst_env->reg[cris_get_operand1 (inst)]);
2245 if (cris_get_mode (inst) == AUTOINC_MODE)
2247 process_autoincrement (cris_get_size (inst), inst, inst_env);
2250 /* A prefix doesn't change the xflag_found. But the rest of the flags
2252 inst_env->slot_needed = 0;
2253 inst_env->prefix_found = 1;
2256 /* Calculates the prefix value for the index addressing mode. */
2259 biap_prefix (unsigned short inst, inst_env_type *inst_env)
2261 /* It's invalid to be in a delay slot. I can't see that it's possible to
2262 have a prefix to this instruction. So I will treat this as invalid. */
2263 if (inst_env->slot_needed || inst_env->prefix_found)
2265 inst_env->invalid = 1;
2269 inst_env->prefix_value = inst_env->reg[cris_get_operand1 (inst)];
2271 /* The offset is the operand2 value shifted the size of the instruction
2273 inst_env->prefix_value +=
2274 inst_env->reg[cris_get_operand2 (inst)] << cris_get_size (inst);
2276 /* If the PC is operand1 (base) the address used is the address after
2277 the main instruction, i.e. address + 2 (the PC is already compensated
2278 for the prefix operation). */
2279 if (cris_get_operand1 (inst) == REG_PC)
2281 inst_env->prefix_value += 2;
2284 /* A prefix doesn't change the xflag_found. But the rest of the flags
2286 inst_env->slot_needed = 0;
2287 inst_env->xflag_found = 0;
2288 inst_env->prefix_found = 1;
2291 /* Calculates the prefix value for the double indirect addressing mode. */
2294 dip_prefix (unsigned short inst, inst_env_type *inst_env)
2299 /* It's invalid to be in a delay slot. */
2300 if (inst_env->slot_needed || inst_env->prefix_found)
2302 inst_env->invalid = 1;
2306 /* The prefix value is one dereference of the contents of the operand1
2308 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
2309 inst_env->prefix_value = read_memory_unsigned_integer (address, 4);
2311 /* Check if the mode is autoincrement. */
2312 if (cris_get_mode (inst) == AUTOINC_MODE)
2314 inst_env->reg[cris_get_operand1 (inst)] += 4;
2317 /* A prefix doesn't change the xflag_found. But the rest of the flags
2319 inst_env->slot_needed = 0;
2320 inst_env->xflag_found = 0;
2321 inst_env->prefix_found = 1;
2324 /* Finds the destination for a branch with 8-bits offset. */
2327 eight_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
2332 /* If we have a prefix or are in a delay slot it's bad. */
2333 if (inst_env->slot_needed || inst_env->prefix_found)
2335 inst_env->invalid = 1;
2339 /* We have a branch, find out where the branch will land. */
2340 offset = cris_get_branch_short_offset (inst);
2342 /* Check if the offset is signed. */
2343 if (offset & BRANCH_SIGNED_SHORT_OFFSET_MASK)
2348 /* The offset ends with the sign bit, set it to zero. The address
2349 should always be word aligned. */
2350 offset &= ~BRANCH_SIGNED_SHORT_OFFSET_MASK;
2352 inst_env->branch_found = 1;
2353 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2355 inst_env->slot_needed = 1;
2356 inst_env->prefix_found = 0;
2357 inst_env->xflag_found = 0;
2358 inst_env->disable_interrupt = 1;
2361 /* Finds the destination for a branch with 16-bits offset. */
2364 sixteen_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
2368 /* If we have a prefix or is in a delay slot it's bad. */
2369 if (inst_env->slot_needed || inst_env->prefix_found)
2371 inst_env->invalid = 1;
2375 /* We have a branch, find out the offset for the branch. */
2376 offset = read_memory_integer (inst_env->reg[REG_PC], 2);
2378 /* The instruction is one word longer than normal, so add one word
2380 inst_env->reg[REG_PC] += 2;
2382 inst_env->branch_found = 1;
2383 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2386 inst_env->slot_needed = 1;
2387 inst_env->prefix_found = 0;
2388 inst_env->xflag_found = 0;
2389 inst_env->disable_interrupt = 1;
2392 /* Handles the ABS instruction. */
2395 abs_op (unsigned short inst, inst_env_type *inst_env)
2400 /* ABS can't have a prefix, so it's bad if it does. */
2401 if (inst_env->prefix_found)
2403 inst_env->invalid = 1;
2407 /* Check if the operation affects the PC. */
2408 if (cris_get_operand2 (inst) == REG_PC)
2411 /* It's invalid to change to the PC if we are in a delay slot. */
2412 if (inst_env->slot_needed)
2414 inst_env->invalid = 1;
2418 value = (long) inst_env->reg[REG_PC];
2420 /* The value of abs (SIGNED_DWORD_MASK) is SIGNED_DWORD_MASK. */
2421 if (value != SIGNED_DWORD_MASK)
2424 inst_env->reg[REG_PC] = (long) value;
2428 inst_env->slot_needed = 0;
2429 inst_env->prefix_found = 0;
2430 inst_env->xflag_found = 0;
2431 inst_env->disable_interrupt = 0;
2434 /* Handles the ADDI instruction. */
2437 addi_op (unsigned short inst, inst_env_type *inst_env)
2439 /* It's invalid to have the PC as base register. And ADDI can't have
2441 if (inst_env->prefix_found || (cris_get_operand1 (inst) == REG_PC))
2443 inst_env->invalid = 1;
2447 inst_env->slot_needed = 0;
2448 inst_env->prefix_found = 0;
2449 inst_env->xflag_found = 0;
2450 inst_env->disable_interrupt = 0;
2453 /* Handles the ASR instruction. */
2456 asr_op (unsigned short inst, inst_env_type *inst_env)
2459 unsigned long value;
2460 unsigned long signed_extend_mask = 0;
2462 /* ASR can't have a prefix, so check that it doesn't. */
2463 if (inst_env->prefix_found)
2465 inst_env->invalid = 1;
2469 /* Check if the PC is the target register. */
2470 if (cris_get_operand2 (inst) == REG_PC)
2472 /* It's invalid to change the PC in a delay slot. */
2473 if (inst_env->slot_needed)
2475 inst_env->invalid = 1;
2478 /* Get the number of bits to shift. */
2479 shift_steps = cris_get_asr_shift_steps (inst_env->reg[cris_get_operand1 (inst)]);
2480 value = inst_env->reg[REG_PC];
2482 /* Find out how many bits the operation should apply to. */
2483 if (cris_get_size (inst) == INST_BYTE_SIZE)
2485 if (value & SIGNED_BYTE_MASK)
2487 signed_extend_mask = 0xFF;
2488 signed_extend_mask = signed_extend_mask >> shift_steps;
2489 signed_extend_mask = ~signed_extend_mask;
2491 value = value >> shift_steps;
2492 value |= signed_extend_mask;
2494 inst_env->reg[REG_PC] &= 0xFFFFFF00;
2495 inst_env->reg[REG_PC] |= value;
2497 else if (cris_get_size (inst) == INST_WORD_SIZE)
2499 if (value & SIGNED_WORD_MASK)
2501 signed_extend_mask = 0xFFFF;
2502 signed_extend_mask = signed_extend_mask >> shift_steps;
2503 signed_extend_mask = ~signed_extend_mask;
2505 value = value >> shift_steps;
2506 value |= signed_extend_mask;
2508 inst_env->reg[REG_PC] &= 0xFFFF0000;
2509 inst_env->reg[REG_PC] |= value;
2511 else if (cris_get_size (inst) == INST_DWORD_SIZE)
2513 if (value & SIGNED_DWORD_MASK)
2515 signed_extend_mask = 0xFFFFFFFF;
2516 signed_extend_mask = signed_extend_mask >> shift_steps;
2517 signed_extend_mask = ~signed_extend_mask;
2519 value = value >> shift_steps;
2520 value |= signed_extend_mask;
2521 inst_env->reg[REG_PC] = value;
2524 inst_env->slot_needed = 0;
2525 inst_env->prefix_found = 0;
2526 inst_env->xflag_found = 0;
2527 inst_env->disable_interrupt = 0;
2530 /* Handles the ASRQ instruction. */
2533 asrq_op (unsigned short inst, inst_env_type *inst_env)
2537 unsigned long value;
2538 unsigned long signed_extend_mask = 0;
2540 /* ASRQ can't have a prefix, so check that it doesn't. */
2541 if (inst_env->prefix_found)
2543 inst_env->invalid = 1;
2547 /* Check if the PC is the target register. */
2548 if (cris_get_operand2 (inst) == REG_PC)
2551 /* It's invalid to change the PC in a delay slot. */
2552 if (inst_env->slot_needed)
2554 inst_env->invalid = 1;
2557 /* The shift size is given as a 5 bit quick value, i.e. we don't
2558 want the the sign bit of the quick value. */
2559 shift_steps = cris_get_asr_shift_steps (inst);
2560 value = inst_env->reg[REG_PC];
2561 if (value & SIGNED_DWORD_MASK)
2563 signed_extend_mask = 0xFFFFFFFF;
2564 signed_extend_mask = signed_extend_mask >> shift_steps;
2565 signed_extend_mask = ~signed_extend_mask;
2567 value = value >> shift_steps;
2568 value |= signed_extend_mask;
2569 inst_env->reg[REG_PC] = value;
2571 inst_env->slot_needed = 0;
2572 inst_env->prefix_found = 0;
2573 inst_env->xflag_found = 0;
2574 inst_env->disable_interrupt = 0;
2577 /* Handles the AX, EI and SETF instruction. */
2580 ax_ei_setf_op (unsigned short inst, inst_env_type *inst_env)
2582 if (inst_env->prefix_found)
2584 inst_env->invalid = 1;
2587 /* Check if the instruction is setting the X flag. */
2588 if (cris_is_xflag_bit_on (inst))
2590 inst_env->xflag_found = 1;
2594 inst_env->xflag_found = 0;
2596 inst_env->slot_needed = 0;
2597 inst_env->prefix_found = 0;
2598 inst_env->disable_interrupt = 1;
2601 /* Checks if the instruction is in assign mode. If so, it updates the assign
2602 register. Note that check_assign assumes that the caller has checked that
2603 there is a prefix to this instruction. The mode check depends on this. */
2606 check_assign (unsigned short inst, inst_env_type *inst_env)
2608 /* Check if it's an assign addressing mode. */
2609 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2611 /* Assign the prefix value to operand 1. */
2612 inst_env->reg[cris_get_operand1 (inst)] = inst_env->prefix_value;
2616 /* Handles the 2-operand BOUND instruction. */
2619 two_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2621 /* It's invalid to have the PC as the index operand. */
2622 if (cris_get_operand2 (inst) == REG_PC)
2624 inst_env->invalid = 1;
2627 /* Check if we have a prefix. */
2628 if (inst_env->prefix_found)
2630 check_assign (inst, inst_env);
2632 /* Check if this is an autoincrement mode. */
2633 else if (cris_get_mode (inst) == AUTOINC_MODE)
2635 /* It's invalid to change the PC in a delay slot. */
2636 if (inst_env->slot_needed)
2638 inst_env->invalid = 1;
2641 process_autoincrement (cris_get_size (inst), inst, inst_env);
2643 inst_env->slot_needed = 0;
2644 inst_env->prefix_found = 0;
2645 inst_env->xflag_found = 0;
2646 inst_env->disable_interrupt = 0;
2649 /* Handles the 3-operand BOUND instruction. */
2652 three_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2654 /* It's an error if we haven't got a prefix. And it's also an error
2655 if the PC is the destination register. */
2656 if ((!inst_env->prefix_found) || (cris_get_operand1 (inst) == REG_PC))
2658 inst_env->invalid = 1;
2661 inst_env->slot_needed = 0;
2662 inst_env->prefix_found = 0;
2663 inst_env->xflag_found = 0;
2664 inst_env->disable_interrupt = 0;
2667 /* Clears the status flags in inst_env. */
2670 btst_nop_op (unsigned short inst, inst_env_type *inst_env)
2672 /* It's an error if we have got a prefix. */
2673 if (inst_env->prefix_found)
2675 inst_env->invalid = 1;
2679 inst_env->slot_needed = 0;
2680 inst_env->prefix_found = 0;
2681 inst_env->xflag_found = 0;
2682 inst_env->disable_interrupt = 0;
2685 /* Clears the status flags in inst_env. */
2688 clearf_di_op (unsigned short inst, inst_env_type *inst_env)
2690 /* It's an error if we have got a prefix. */
2691 if (inst_env->prefix_found)
2693 inst_env->invalid = 1;
2697 inst_env->slot_needed = 0;
2698 inst_env->prefix_found = 0;
2699 inst_env->xflag_found = 0;
2700 inst_env->disable_interrupt = 1;
2703 /* Handles the CLEAR instruction if it's in register mode. */
2706 reg_mode_clear_op (unsigned short inst, inst_env_type *inst_env)
2708 /* Check if the target is the PC. */
2709 if (cris_get_operand2 (inst) == REG_PC)
2711 /* The instruction will clear the instruction's size bits. */
2712 int clear_size = cris_get_clear_size (inst);
2713 if (clear_size == INST_BYTE_SIZE)
2715 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFFFF00;
2717 if (clear_size == INST_WORD_SIZE)
2719 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFF0000;
2721 if (clear_size == INST_DWORD_SIZE)
2723 inst_env->delay_slot_pc = 0x0;
2725 /* The jump will be delayed with one delay slot. So we need a delay
2727 inst_env->slot_needed = 1;
2728 inst_env->delay_slot_pc_active = 1;
2732 /* The PC will not change => no delay slot. */
2733 inst_env->slot_needed = 0;
2735 inst_env->prefix_found = 0;
2736 inst_env->xflag_found = 0;
2737 inst_env->disable_interrupt = 0;
2740 /* Handles the TEST instruction if it's in register mode. */
2743 reg_mode_test_op (unsigned short inst, inst_env_type *inst_env)
2745 /* It's an error if we have got a prefix. */
2746 if (inst_env->prefix_found)
2748 inst_env->invalid = 1;
2751 inst_env->slot_needed = 0;
2752 inst_env->prefix_found = 0;
2753 inst_env->xflag_found = 0;
2754 inst_env->disable_interrupt = 0;
2758 /* Handles the CLEAR and TEST instruction if the instruction isn't
2759 in register mode. */
2762 none_reg_mode_clear_test_op (unsigned short inst, inst_env_type *inst_env)
2764 /* Check if we are in a prefix mode. */
2765 if (inst_env->prefix_found)
2767 /* The only way the PC can change is if this instruction is in
2768 assign addressing mode. */
2769 check_assign (inst, inst_env);
2771 /* Indirect mode can't change the PC so just check if the mode is
2773 else if (cris_get_mode (inst) == AUTOINC_MODE)
2775 process_autoincrement (cris_get_size (inst), inst, inst_env);
2777 inst_env->slot_needed = 0;
2778 inst_env->prefix_found = 0;
2779 inst_env->xflag_found = 0;
2780 inst_env->disable_interrupt = 0;
2783 /* Checks that the PC isn't the destination register or the instructions has
2787 dstep_logshift_mstep_neg_not_op (unsigned short inst, inst_env_type *inst_env)
2789 /* It's invalid to have the PC as the destination. The instruction can't
2791 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2793 inst_env->invalid = 1;
2797 inst_env->slot_needed = 0;
2798 inst_env->prefix_found = 0;
2799 inst_env->xflag_found = 0;
2800 inst_env->disable_interrupt = 0;
2803 /* Checks that the instruction doesn't have a prefix. */
2806 break_op (unsigned short inst, inst_env_type *inst_env)
2808 /* The instruction can't have a prefix. */
2809 if (inst_env->prefix_found)
2811 inst_env->invalid = 1;
2815 inst_env->slot_needed = 0;
2816 inst_env->prefix_found = 0;
2817 inst_env->xflag_found = 0;
2818 inst_env->disable_interrupt = 1;
2821 /* Checks that the PC isn't the destination register and that the instruction
2822 doesn't have a prefix. */
2825 scc_op (unsigned short inst, inst_env_type *inst_env)
2827 /* It's invalid to have the PC as the destination. The instruction can't
2829 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2831 inst_env->invalid = 1;
2835 inst_env->slot_needed = 0;
2836 inst_env->prefix_found = 0;
2837 inst_env->xflag_found = 0;
2838 inst_env->disable_interrupt = 1;
2841 /* Handles the register mode JUMP instruction. */
2844 reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
2846 /* It's invalid to do a JUMP in a delay slot. The mode is register, so
2847 you can't have a prefix. */
2848 if ((inst_env->slot_needed) || (inst_env->prefix_found))
2850 inst_env->invalid = 1;
2854 /* Just change the PC. */
2855 inst_env->reg[REG_PC] = inst_env->reg[cris_get_operand1 (inst)];
2856 inst_env->slot_needed = 0;
2857 inst_env->prefix_found = 0;
2858 inst_env->xflag_found = 0;
2859 inst_env->disable_interrupt = 1;
2862 /* Handles the JUMP instruction for all modes except register. */
2865 none_reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
2867 unsigned long newpc;
2870 /* It's invalid to do a JUMP in a delay slot. */
2871 if (inst_env->slot_needed)
2873 inst_env->invalid = 1;
2877 /* Check if we have a prefix. */
2878 if (inst_env->prefix_found)
2880 check_assign (inst, inst_env);
2882 /* Get the new value for the the PC. */
2884 read_memory_unsigned_integer ((CORE_ADDR) inst_env->prefix_value,
2889 /* Get the new value for the PC. */
2890 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
2891 newpc = read_memory_unsigned_integer (address, 4);
2893 /* Check if we should increment a register. */
2894 if (cris_get_mode (inst) == AUTOINC_MODE)
2896 inst_env->reg[cris_get_operand1 (inst)] += 4;
2899 inst_env->reg[REG_PC] = newpc;
2901 inst_env->slot_needed = 0;
2902 inst_env->prefix_found = 0;
2903 inst_env->xflag_found = 0;
2904 inst_env->disable_interrupt = 1;
2907 /* Handles moves to special registers (aka P-register) for all modes. */
2910 move_to_preg_op (unsigned short inst, inst_env_type *inst_env)
2912 if (inst_env->prefix_found)
2914 /* The instruction has a prefix that means we are only interested if
2915 the instruction is in assign mode. */
2916 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2918 /* The prefix handles the problem if we are in a delay slot. */
2919 if (cris_get_operand1 (inst) == REG_PC)
2921 /* Just take care of the assign. */
2922 check_assign (inst, inst_env);
2926 else if (cris_get_mode (inst) == AUTOINC_MODE)
2928 /* The instruction doesn't have a prefix, the only case left that we
2929 are interested in is the autoincrement mode. */
2930 if (cris_get_operand1 (inst) == REG_PC)
2932 /* If the PC is to be incremented it's invalid to be in a
2934 if (inst_env->slot_needed)
2936 inst_env->invalid = 1;
2940 /* The increment depends on the size of the special register. */
2941 if (cris_register_size (cris_get_operand2 (inst)) == 1)
2943 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
2945 else if (cris_register_size (cris_get_operand2 (inst)) == 2)
2947 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
2951 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
2955 inst_env->slot_needed = 0;
2956 inst_env->prefix_found = 0;
2957 inst_env->xflag_found = 0;
2958 inst_env->disable_interrupt = 1;
2961 /* Handles moves from special registers (aka P-register) for all modes
2965 none_reg_mode_move_from_preg_op (unsigned short inst, inst_env_type *inst_env)
2967 if (inst_env->prefix_found)
2969 /* The instruction has a prefix that means we are only interested if
2970 the instruction is in assign mode. */
2971 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2973 /* The prefix handles the problem if we are in a delay slot. */
2974 if (cris_get_operand1 (inst) == REG_PC)
2976 /* Just take care of the assign. */
2977 check_assign (inst, inst_env);
2981 /* The instruction doesn't have a prefix, the only case left that we
2982 are interested in is the autoincrement mode. */
2983 else if (cris_get_mode (inst) == AUTOINC_MODE)
2985 if (cris_get_operand1 (inst) == REG_PC)
2987 /* If the PC is to be incremented it's invalid to be in a
2989 if (inst_env->slot_needed)
2991 inst_env->invalid = 1;
2995 /* The increment depends on the size of the special register. */
2996 if (cris_register_size (cris_get_operand2 (inst)) == 1)
2998 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
3000 else if (cris_register_size (cris_get_operand2 (inst)) == 2)
3002 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
3006 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
3010 inst_env->slot_needed = 0;
3011 inst_env->prefix_found = 0;
3012 inst_env->xflag_found = 0;
3013 inst_env->disable_interrupt = 1;
3016 /* Handles moves from special registers (aka P-register) when the mode
3020 reg_mode_move_from_preg_op (unsigned short inst, inst_env_type *inst_env)
3022 /* Register mode move from special register can't have a prefix. */
3023 if (inst_env->prefix_found)
3025 inst_env->invalid = 1;
3029 if (cris_get_operand1 (inst) == REG_PC)
3031 /* It's invalid to change the PC in a delay slot. */
3032 if (inst_env->slot_needed)
3034 inst_env->invalid = 1;
3037 /* The destination is the PC, the jump will have a delay slot. */
3038 inst_env->delay_slot_pc = inst_env->preg[cris_get_operand2 (inst)];
3039 inst_env->slot_needed = 1;
3040 inst_env->delay_slot_pc_active = 1;
3044 /* If the destination isn't PC, there will be no jump. */
3045 inst_env->slot_needed = 0;
3047 inst_env->prefix_found = 0;
3048 inst_env->xflag_found = 0;
3049 inst_env->disable_interrupt = 1;
3052 /* Handles the MOVEM from memory to general register instruction. */
3055 move_mem_to_reg_movem_op (unsigned short inst, inst_env_type *inst_env)
3057 if (inst_env->prefix_found)
3059 /* The prefix handles the problem if we are in a delay slot. Is the
3060 MOVEM instruction going to change the PC? */
3061 if (cris_get_operand2 (inst) >= REG_PC)
3063 inst_env->reg[REG_PC] =
3064 read_memory_unsigned_integer (inst_env->prefix_value, 4);
3066 /* The assign value is the value after the increment. Normally, the
3067 assign value is the value before the increment. */
3068 if ((cris_get_operand1 (inst) == REG_PC)
3069 && (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
3071 inst_env->reg[REG_PC] = inst_env->prefix_value;
3072 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3077 /* Is the MOVEM instruction going to change the PC? */
3078 if (cris_get_operand2 (inst) == REG_PC)
3080 /* It's invalid to change the PC in a delay slot. */
3081 if (inst_env->slot_needed)
3083 inst_env->invalid = 1;
3086 inst_env->reg[REG_PC] =
3087 read_memory_unsigned_integer (inst_env->reg[cris_get_operand1 (inst)],
3090 /* The increment is not depending on the size, instead it's depending
3091 on the number of registers loaded from memory. */
3092 if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE))
3094 /* It's invalid to change the PC in a delay slot. */
3095 if (inst_env->slot_needed)
3097 inst_env->invalid = 1;
3100 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3103 inst_env->slot_needed = 0;
3104 inst_env->prefix_found = 0;
3105 inst_env->xflag_found = 0;
3106 inst_env->disable_interrupt = 0;
3109 /* Handles the MOVEM to memory from general register instruction. */
3112 move_reg_to_mem_movem_op (unsigned short inst, inst_env_type *inst_env)
3114 if (inst_env->prefix_found)
3116 /* The assign value is the value after the increment. Normally, the
3117 assign value is the value before the increment. */
3118 if ((cris_get_operand1 (inst) == REG_PC) &&
3119 (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
3121 /* The prefix handles the problem if we are in a delay slot. */
3122 inst_env->reg[REG_PC] = inst_env->prefix_value;
3123 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3128 /* The increment is not depending on the size, instead it's depending
3129 on the number of registers loaded to memory. */
3130 if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE))
3132 /* It's invalid to change the PC in a delay slot. */
3133 if (inst_env->slot_needed)
3135 inst_env->invalid = 1;
3138 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3141 inst_env->slot_needed = 0;
3142 inst_env->prefix_found = 0;
3143 inst_env->xflag_found = 0;
3144 inst_env->disable_interrupt = 0;
3147 /* Handles the intructions that's not yet implemented, by setting
3148 inst_env->invalid to true. */
3151 not_implemented_op (unsigned short inst, inst_env_type *inst_env)
3153 inst_env->invalid = 1;
3156 /* Handles the XOR instruction. */
3159 xor_op (unsigned short inst, inst_env_type *inst_env)
3161 /* XOR can't have a prefix. */
3162 if (inst_env->prefix_found)
3164 inst_env->invalid = 1;
3168 /* Check if the PC is the target. */
3169 if (cris_get_operand2 (inst) == REG_PC)
3171 /* It's invalid to change the PC in a delay slot. */
3172 if (inst_env->slot_needed)
3174 inst_env->invalid = 1;
3177 inst_env->reg[REG_PC] ^= inst_env->reg[cris_get_operand1 (inst)];
3179 inst_env->slot_needed = 0;
3180 inst_env->prefix_found = 0;
3181 inst_env->xflag_found = 0;
3182 inst_env->disable_interrupt = 0;
3185 /* Handles the MULS instruction. */
3188 muls_op (unsigned short inst, inst_env_type *inst_env)
3190 /* MULS/U can't have a prefix. */
3191 if (inst_env->prefix_found)
3193 inst_env->invalid = 1;
3197 /* Consider it invalid if the PC is the target. */
3198 if (cris_get_operand2 (inst) == REG_PC)
3200 inst_env->invalid = 1;
3203 inst_env->slot_needed = 0;
3204 inst_env->prefix_found = 0;
3205 inst_env->xflag_found = 0;
3206 inst_env->disable_interrupt = 0;
3209 /* Handles the MULU instruction. */
3212 mulu_op (unsigned short inst, inst_env_type *inst_env)
3214 /* MULS/U can't have a prefix. */
3215 if (inst_env->prefix_found)
3217 inst_env->invalid = 1;
3221 /* Consider it invalid if the PC is the target. */
3222 if (cris_get_operand2 (inst) == REG_PC)
3224 inst_env->invalid = 1;
3227 inst_env->slot_needed = 0;
3228 inst_env->prefix_found = 0;
3229 inst_env->xflag_found = 0;
3230 inst_env->disable_interrupt = 0;
3233 /* Calculate the result of the instruction for ADD, SUB, CMP AND, OR and MOVE.
3234 The MOVE instruction is the move from source to register. */
3237 add_sub_cmp_and_or_move_action (unsigned short inst, inst_env_type *inst_env,
3238 unsigned long source1, unsigned long source2)
3240 unsigned long pc_mask;
3241 unsigned long operation_mask;
3243 /* Find out how many bits the operation should apply to. */
3244 if (cris_get_size (inst) == INST_BYTE_SIZE)
3246 pc_mask = 0xFFFFFF00;
3247 operation_mask = 0xFF;
3249 else if (cris_get_size (inst) == INST_WORD_SIZE)
3251 pc_mask = 0xFFFF0000;
3252 operation_mask = 0xFFFF;
3254 else if (cris_get_size (inst) == INST_DWORD_SIZE)
3257 operation_mask = 0xFFFFFFFF;
3261 /* The size is out of range. */
3262 inst_env->invalid = 1;
3266 /* The instruction just works on uw_operation_mask bits. */
3267 source2 &= operation_mask;
3268 source1 &= operation_mask;
3270 /* Now calculate the result. The opcode's 3 first bits separates
3271 the different actions. */
3272 switch (cris_get_opcode (inst) & 7)
3282 case 2: /* subtract */
3286 case 3: /* compare */
3298 inst_env->invalid = 1;
3304 /* Make sure that the result doesn't contain more than the instruction
3306 source2 &= operation_mask;
3308 /* Calculate the new breakpoint address. */
3309 inst_env->reg[REG_PC] &= pc_mask;
3310 inst_env->reg[REG_PC] |= source1;
3314 /* Extends the value from either byte or word size to a dword. If the mode
3315 is zero extend then the value is extended with zero. If instead the mode
3316 is signed extend the sign bit of the value is taken into consideration. */
3318 static unsigned long
3319 do_sign_or_zero_extend (unsigned long value, unsigned short *inst)
3321 /* The size can be either byte or word, check which one it is.
3322 Don't check the highest bit, it's indicating if it's a zero
3324 if (cris_get_size (*inst) & INST_WORD_SIZE)
3329 /* Check if the instruction is signed extend. If so, check if value has
3331 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_WORD_MASK))
3333 value |= SIGNED_WORD_EXTEND_MASK;
3341 /* Check if the instruction is signed extend. If so, check if value has
3343 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_BYTE_MASK))
3345 value |= SIGNED_BYTE_EXTEND_MASK;
3348 /* The size should now be dword. */
3349 cris_set_size_to_dword (inst);
3353 /* Handles the register mode for the ADD, SUB, CMP, AND, OR and MOVE
3354 instruction. The MOVE instruction is the move from source to register. */
3357 reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3358 inst_env_type *inst_env)
3360 unsigned long operand1;
3361 unsigned long operand2;
3363 /* It's invalid to have a prefix to the instruction. This is a register
3364 mode instruction and can't have a prefix. */
3365 if (inst_env->prefix_found)
3367 inst_env->invalid = 1;
3370 /* Check if the instruction has PC as its target. */
3371 if (cris_get_operand2 (inst) == REG_PC)
3373 if (inst_env->slot_needed)
3375 inst_env->invalid = 1;
3378 /* The instruction has the PC as its target register. */
3379 operand1 = inst_env->reg[cris_get_operand1 (inst)];
3380 operand2 = inst_env->reg[REG_PC];
3382 /* Check if it's a extend, signed or zero instruction. */
3383 if (cris_get_opcode (inst) < 4)
3385 operand1 = do_sign_or_zero_extend (operand1, &inst);
3387 /* Calculate the PC value after the instruction, i.e. where the
3388 breakpoint should be. The order of the udw_operands is vital. */
3389 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3391 inst_env->slot_needed = 0;
3392 inst_env->prefix_found = 0;
3393 inst_env->xflag_found = 0;
3394 inst_env->disable_interrupt = 0;
3397 /* Returns the data contained at address. The size of the data is derived from
3398 the size of the operation. If the instruction is a zero or signed
3399 extend instruction, the size field is changed in instruction. */
3401 static unsigned long
3402 get_data_from_address (unsigned short *inst, CORE_ADDR address)
3404 int size = cris_get_size (*inst);
3405 unsigned long value;
3407 /* If it's an extend instruction we don't want the signed extend bit,
3408 because it influences the size. */
3409 if (cris_get_opcode (*inst) < 4)
3411 size &= ~SIGNED_EXTEND_BIT_MASK;
3413 /* Is there a need for checking the size? Size should contain the number of
3416 value = read_memory_unsigned_integer (address, size);
3418 /* Check if it's an extend, signed or zero instruction. */
3419 if (cris_get_opcode (*inst) < 4)
3421 value = do_sign_or_zero_extend (value, inst);
3426 /* Handles the assign addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3427 instructions. The MOVE instruction is the move from source to register. */
3430 handle_prefix_assign_mode_for_aritm_op (unsigned short inst,
3431 inst_env_type *inst_env)
3433 unsigned long operand2;
3434 unsigned long operand3;
3436 check_assign (inst, inst_env);
3437 if (cris_get_operand2 (inst) == REG_PC)
3439 operand2 = inst_env->reg[REG_PC];
3441 /* Get the value of the third operand. */
3442 operand3 = get_data_from_address (&inst, inst_env->prefix_value);
3444 /* Calculate the PC value after the instruction, i.e. where the
3445 breakpoint should be. The order of the udw_operands is vital. */
3446 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3448 inst_env->slot_needed = 0;
3449 inst_env->prefix_found = 0;
3450 inst_env->xflag_found = 0;
3451 inst_env->disable_interrupt = 0;
3454 /* Handles the three-operand addressing mode for the ADD, SUB, CMP, AND and
3455 OR instructions. Note that for this to work as expected, the calling
3456 function must have made sure that there is a prefix to this instruction. */
3459 three_operand_add_sub_cmp_and_or_op (unsigned short inst,
3460 inst_env_type *inst_env)
3462 unsigned long operand2;
3463 unsigned long operand3;
3465 if (cris_get_operand1 (inst) == REG_PC)
3467 /* The PC will be changed by the instruction. */
3468 operand2 = inst_env->reg[cris_get_operand2 (inst)];
3470 /* Get the value of the third operand. */
3471 operand3 = get_data_from_address (&inst, inst_env->prefix_value);
3473 /* Calculate the PC value after the instruction, i.e. where the
3474 breakpoint should be. */
3475 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3477 inst_env->slot_needed = 0;
3478 inst_env->prefix_found = 0;
3479 inst_env->xflag_found = 0;
3480 inst_env->disable_interrupt = 0;
3483 /* Handles the index addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3484 instructions. The MOVE instruction is the move from source to register. */
3487 handle_prefix_index_mode_for_aritm_op (unsigned short inst,
3488 inst_env_type *inst_env)
3490 if (cris_get_operand1 (inst) != cris_get_operand2 (inst))
3492 /* If the instruction is MOVE it's invalid. If the instruction is ADD,
3493 SUB, AND or OR something weird is going on (if everything works these
3494 instructions should end up in the three operand version). */
3495 inst_env->invalid = 1;
3500 /* three_operand_add_sub_cmp_and_or does the same as we should do here
3502 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3504 inst_env->slot_needed = 0;
3505 inst_env->prefix_found = 0;
3506 inst_env->xflag_found = 0;
3507 inst_env->disable_interrupt = 0;
3510 /* Handles the autoincrement and indirect addresing mode for the ADD, SUB,
3511 CMP, AND OR and MOVE instruction. The MOVE instruction is the move from
3512 source to register. */
3515 handle_inc_and_index_mode_for_aritm_op (unsigned short inst,
3516 inst_env_type *inst_env)
3518 unsigned long operand1;
3519 unsigned long operand2;
3520 unsigned long operand3;
3523 /* The instruction is either an indirect or autoincrement addressing mode.
3524 Check if the destination register is the PC. */
3525 if (cris_get_operand2 (inst) == REG_PC)
3527 /* Must be done here, get_data_from_address may change the size
3529 size = cris_get_size (inst);
3530 operand2 = inst_env->reg[REG_PC];
3532 /* Get the value of the third operand, i.e. the indirect operand. */
3533 operand1 = inst_env->reg[cris_get_operand1 (inst)];
3534 operand3 = get_data_from_address (&inst, operand1);
3536 /* Calculate the PC value after the instruction, i.e. where the
3537 breakpoint should be. The order of the udw_operands is vital. */
3538 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3540 /* If this is an autoincrement addressing mode, check if the increment
3542 if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE))
3544 /* Get the size field. */
3545 size = cris_get_size (inst);
3547 /* If it's an extend instruction we don't want the signed extend bit,
3548 because it influences the size. */
3549 if (cris_get_opcode (inst) < 4)
3551 size &= ~SIGNED_EXTEND_BIT_MASK;
3553 process_autoincrement (size, inst, inst_env);
3555 inst_env->slot_needed = 0;
3556 inst_env->prefix_found = 0;
3557 inst_env->xflag_found = 0;
3558 inst_env->disable_interrupt = 0;
3561 /* Handles the two-operand addressing mode, all modes except register, for
3562 the ADD, SUB CMP, AND and OR instruction. */
3565 none_reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3566 inst_env_type *inst_env)
3568 if (inst_env->prefix_found)
3570 if (cris_get_mode (inst) == PREFIX_INDEX_MODE)
3572 handle_prefix_index_mode_for_aritm_op (inst, inst_env);
3574 else if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
3576 handle_prefix_assign_mode_for_aritm_op (inst, inst_env);
3580 /* The mode is invalid for a prefixed base instruction. */
3581 inst_env->invalid = 1;
3587 handle_inc_and_index_mode_for_aritm_op (inst, inst_env);
3591 /* Handles the quick addressing mode for the ADD and SUB instruction. */
3594 quick_mode_add_sub_op (unsigned short inst, inst_env_type *inst_env)
3596 unsigned long operand1;
3597 unsigned long operand2;
3599 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3600 instruction and can't have a prefix. */
3601 if (inst_env->prefix_found)
3603 inst_env->invalid = 1;
3607 /* Check if the instruction has PC as its target. */
3608 if (cris_get_operand2 (inst) == REG_PC)
3610 if (inst_env->slot_needed)
3612 inst_env->invalid = 1;
3615 operand1 = cris_get_quick_value (inst);
3616 operand2 = inst_env->reg[REG_PC];
3618 /* The size should now be dword. */
3619 cris_set_size_to_dword (&inst);
3621 /* Calculate the PC value after the instruction, i.e. where the
3622 breakpoint should be. */
3623 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3625 inst_env->slot_needed = 0;
3626 inst_env->prefix_found = 0;
3627 inst_env->xflag_found = 0;
3628 inst_env->disable_interrupt = 0;
3631 /* Handles the quick addressing mode for the CMP, AND and OR instruction. */
3634 quick_mode_and_cmp_move_or_op (unsigned short inst, inst_env_type *inst_env)
3636 unsigned long operand1;
3637 unsigned long operand2;
3639 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3640 instruction and can't have a prefix. */
3641 if (inst_env->prefix_found)
3643 inst_env->invalid = 1;
3646 /* Check if the instruction has PC as its target. */
3647 if (cris_get_operand2 (inst) == REG_PC)
3649 if (inst_env->slot_needed)
3651 inst_env->invalid = 1;
3654 /* The instruction has the PC as its target register. */
3655 operand1 = cris_get_quick_value (inst);
3656 operand2 = inst_env->reg[REG_PC];
3658 /* The quick value is signed, so check if we must do a signed extend. */
3659 if (operand1 & SIGNED_QUICK_VALUE_MASK)
3662 operand1 |= SIGNED_QUICK_VALUE_EXTEND_MASK;
3664 /* The size should now be dword. */
3665 cris_set_size_to_dword (&inst);
3667 /* Calculate the PC value after the instruction, i.e. where the
3668 breakpoint should be. */
3669 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3671 inst_env->slot_needed = 0;
3672 inst_env->prefix_found = 0;
3673 inst_env->xflag_found = 0;
3674 inst_env->disable_interrupt = 0;
3677 /* Translate op_type to a function and call it. */
3680 cris_gdb_func (enum cris_op_type op_type, unsigned short inst,
3681 inst_env_type *inst_env)
3685 case cris_not_implemented_op:
3686 not_implemented_op (inst, inst_env);
3690 abs_op (inst, inst_env);
3694 addi_op (inst, inst_env);
3698 asr_op (inst, inst_env);
3702 asrq_op (inst, inst_env);
3705 case cris_ax_ei_setf_op:
3706 ax_ei_setf_op (inst, inst_env);
3709 case cris_bdap_prefix:
3710 bdap_prefix (inst, inst_env);
3713 case cris_biap_prefix:
3714 biap_prefix (inst, inst_env);
3718 break_op (inst, inst_env);
3721 case cris_btst_nop_op:
3722 btst_nop_op (inst, inst_env);
3725 case cris_clearf_di_op:
3726 clearf_di_op (inst, inst_env);
3729 case cris_dip_prefix:
3730 dip_prefix (inst, inst_env);
3733 case cris_dstep_logshift_mstep_neg_not_op:
3734 dstep_logshift_mstep_neg_not_op (inst, inst_env);
3737 case cris_eight_bit_offset_branch_op:
3738 eight_bit_offset_branch_op (inst, inst_env);
3741 case cris_move_mem_to_reg_movem_op:
3742 move_mem_to_reg_movem_op (inst, inst_env);
3745 case cris_move_reg_to_mem_movem_op:
3746 move_reg_to_mem_movem_op (inst, inst_env);
3749 case cris_move_to_preg_op:
3750 move_to_preg_op (inst, inst_env);
3754 muls_op (inst, inst_env);
3758 mulu_op (inst, inst_env);
3761 case cris_none_reg_mode_add_sub_cmp_and_or_move_op:
3762 none_reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3765 case cris_none_reg_mode_clear_test_op:
3766 none_reg_mode_clear_test_op (inst, inst_env);
3769 case cris_none_reg_mode_jump_op:
3770 none_reg_mode_jump_op (inst, inst_env);
3773 case cris_none_reg_mode_move_from_preg_op:
3774 none_reg_mode_move_from_preg_op (inst, inst_env);
3777 case cris_quick_mode_add_sub_op:
3778 quick_mode_add_sub_op (inst, inst_env);
3781 case cris_quick_mode_and_cmp_move_or_op:
3782 quick_mode_and_cmp_move_or_op (inst, inst_env);
3785 case cris_quick_mode_bdap_prefix:
3786 quick_mode_bdap_prefix (inst, inst_env);
3789 case cris_reg_mode_add_sub_cmp_and_or_move_op:
3790 reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3793 case cris_reg_mode_clear_op:
3794 reg_mode_clear_op (inst, inst_env);
3797 case cris_reg_mode_jump_op:
3798 reg_mode_jump_op (inst, inst_env);
3801 case cris_reg_mode_move_from_preg_op:
3802 reg_mode_move_from_preg_op (inst, inst_env);
3805 case cris_reg_mode_test_op:
3806 reg_mode_test_op (inst, inst_env);
3810 scc_op (inst, inst_env);
3813 case cris_sixteen_bit_offset_branch_op:
3814 sixteen_bit_offset_branch_op (inst, inst_env);
3817 case cris_three_operand_add_sub_cmp_and_or_op:
3818 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3821 case cris_three_operand_bound_op:
3822 three_operand_bound_op (inst, inst_env);
3825 case cris_two_operand_bound_op:
3826 two_operand_bound_op (inst, inst_env);
3830 xor_op (inst, inst_env);
3835 /* This wrapper is to avoid cris_get_assembler being called before
3836 exec_bfd has been set. */
3839 cris_delayed_get_disassembler (bfd_vma addr, struct disassemble_info *info)
3841 int (*print_insn) (bfd_vma addr, struct disassemble_info *info);
3842 /* FIXME: cagney/2003-08-27: It should be possible to select a CRIS
3843 disassembler, even when there is no BFD. Does something like
3844 "gdb; target remote; disassmeble *0x123" work? */
3845 gdb_assert (exec_bfd != NULL);
3846 print_insn = cris_get_disassembler (exec_bfd);
3847 gdb_assert (print_insn != NULL);
3848 return print_insn (addr, info);
3851 /* Copied from <asm/elf.h>. */
3852 typedef unsigned long elf_greg_t;
3854 /* Same as user_regs_struct struct in <asm/user.h>. */
3855 #define CRISV10_ELF_NGREG 35
3856 typedef elf_greg_t elf_gregset_t[CRISV10_ELF_NGREG];
3858 #define CRISV32_ELF_NGREG 32
3859 typedef elf_greg_t crisv32_elf_gregset_t[CRISV32_ELF_NGREG];
3861 /* Unpack an elf_gregset_t into GDB's register cache. */
3864 supply_gregset (elf_gregset_t *gregsetp)
3866 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3868 elf_greg_t *regp = *gregsetp;
3869 static char zerobuf[4] = {0};
3871 /* The kernel dumps all 32 registers as unsigned longs, but supply_register
3872 knows about the actual size of each register so that's no problem. */
3873 for (i = 0; i < NUM_GENREGS + NUM_SPECREGS; i++)
3875 regcache_raw_supply (current_regcache, i, (char *)®p[i]);
3878 if (tdep->cris_version == 32)
3880 /* Needed to set pseudo-register PC for CRISv32. */
3881 /* FIXME: If ERP is in a delay slot at this point then the PC will
3882 be wrong. Issue a warning to alert the user. */
3883 regcache_raw_supply (current_regcache, PC_REGNUM,
3884 (char *)®p[ERP_REGNUM]);
3886 if (*(char *)®p[ERP_REGNUM] & 0x1)
3887 fprintf_unfiltered (gdb_stderr, "Warning: PC in delay slot\n");
3891 /* Use a local version of this function to get the correct types for
3892 regsets, until multi-arch core support is ready. */
3895 fetch_core_registers (char *core_reg_sect, unsigned core_reg_size,
3896 int which, CORE_ADDR reg_addr)
3898 elf_gregset_t gregset;
3903 if (core_reg_size != sizeof (elf_gregset_t)
3904 && core_reg_size != sizeof (crisv32_elf_gregset_t))
3906 warning (_("wrong size gregset struct in core file"));
3910 memcpy (&gregset, core_reg_sect, sizeof (gregset));
3911 supply_gregset (&gregset);
3915 /* We've covered all the kinds of registers we know about here,
3916 so this must be something we wouldn't know what to do with
3917 anyway. Just ignore it. */
3922 static struct core_fns cris_elf_core_fns =
3924 bfd_target_elf_flavour, /* core_flavour */
3925 default_check_format, /* check_format */
3926 default_core_sniffer, /* core_sniffer */
3927 fetch_core_registers, /* core_read_registers */
3931 extern initialize_file_ftype _initialize_cris_tdep; /* -Wmissing-prototypes */
3934 _initialize_cris_tdep (void)
3936 static struct cmd_list_element *cris_set_cmdlist;
3937 static struct cmd_list_element *cris_show_cmdlist;
3939 struct cmd_list_element *c;
3941 gdbarch_register (bfd_arch_cris, cris_gdbarch_init, cris_dump_tdep);
3943 /* CRIS-specific user-commands. */
3944 add_setshow_uinteger_cmd ("cris-version", class_support,
3945 &usr_cmd_cris_version,
3946 _("Set the current CRIS version."),
3947 _("Show the current CRIS version."),
3949 Set to 10 for CRISv10 or 32 for CRISv32 if autodetection fails.\n\
3952 NULL, /* FIXME: i18n: Current CRIS version is %s. */
3953 &setlist, &showlist);
3955 add_setshow_enum_cmd ("cris-mode", class_support,
3956 cris_modes, &usr_cmd_cris_mode,
3957 _("Set the current CRIS mode."),
3958 _("Show the current CRIS mode."),
3960 Set to CRIS_MODE_GURU when debugging in guru mode.\n\
3961 Makes GDB use the NRP register instead of the ERP register in certain cases."),
3963 NULL, /* FIXME: i18n: Current CRIS version is %s. */
3964 &setlist, &showlist);
3966 add_setshow_boolean_cmd ("cris-dwarf2-cfi", class_support,
3967 &usr_cmd_cris_dwarf2_cfi,
3968 _("Set the usage of Dwarf-2 CFI for CRIS."),
3969 _("Show the usage of Dwarf-2 CFI for CRIS."),
3970 _("Set this to \"off\" if using gcc-cris < R59."),
3971 set_cris_dwarf2_cfi,
3972 NULL, /* FIXME: i18n: Usage of Dwarf-2 CFI for CRIS is %d. */
3973 &setlist, &showlist);
3975 deprecated_add_core_fns (&cris_elf_core_fns);
3978 /* Prints out all target specific values. */
3981 cris_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3983 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3986 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_version = %i\n",
3987 tdep->cris_version);
3988 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_mode = %s\n",
3990 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_dwarf2_cfi = %i\n",
3991 tdep->cris_dwarf2_cfi);
3996 set_cris_version (char *ignore_args, int from_tty,
3997 struct cmd_list_element *c)
3999 struct gdbarch_info info;
4001 usr_cmd_cris_version_valid = 1;
4003 /* Update the current architecture, if needed. */
4004 gdbarch_info_init (&info);
4005 if (!gdbarch_update_p (info))
4006 internal_error (__FILE__, __LINE__,
4007 _("cris_gdbarch_update: failed to update architecture."));
4011 set_cris_mode (char *ignore_args, int from_tty,
4012 struct cmd_list_element *c)
4014 struct gdbarch_info info;
4016 /* Update the current architecture, if needed. */
4017 gdbarch_info_init (&info);
4018 if (!gdbarch_update_p (info))
4019 internal_error (__FILE__, __LINE__,
4020 "cris_gdbarch_update: failed to update architecture.");
4024 set_cris_dwarf2_cfi (char *ignore_args, int from_tty,
4025 struct cmd_list_element *c)
4027 struct gdbarch_info info;
4029 /* Update the current architecture, if needed. */
4030 gdbarch_info_init (&info);
4031 if (!gdbarch_update_p (info))
4032 internal_error (__FILE__, __LINE__,
4033 _("cris_gdbarch_update: failed to update architecture."));
4036 static struct gdbarch *
4037 cris_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
4039 struct gdbarch *gdbarch;
4040 struct gdbarch_tdep *tdep;
4043 if (usr_cmd_cris_version_valid)
4045 /* Trust the user's CRIS version setting. */
4046 cris_version = usr_cmd_cris_version;
4048 else if (info.abfd && bfd_get_mach (info.abfd) == bfd_mach_cris_v32)
4054 /* Assume it's CRIS version 10. */
4058 /* Make the current settings visible to the user. */
4059 usr_cmd_cris_version = cris_version;
4061 /* Find a candidate among the list of pre-declared architectures. */
4062 for (arches = gdbarch_list_lookup_by_info (arches, &info);
4064 arches = gdbarch_list_lookup_by_info (arches->next, &info))
4066 if ((gdbarch_tdep (arches->gdbarch)->cris_version
4067 == usr_cmd_cris_version)
4068 && (gdbarch_tdep (arches->gdbarch)->cris_mode
4069 == usr_cmd_cris_mode)
4070 && (gdbarch_tdep (arches->gdbarch)->cris_dwarf2_cfi
4071 == usr_cmd_cris_dwarf2_cfi))
4072 return arches->gdbarch;
4075 /* No matching architecture was found. Create a new one. */
4076 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
4077 gdbarch = gdbarch_alloc (&info, tdep);
4079 tdep->cris_version = usr_cmd_cris_version;
4080 tdep->cris_mode = usr_cmd_cris_mode;
4081 tdep->cris_dwarf2_cfi = usr_cmd_cris_dwarf2_cfi;
4083 /* INIT shall ensure that the INFO.BYTE_ORDER is non-zero. */
4084 switch (info.byte_order)
4086 case BFD_ENDIAN_LITTLE:
4090 case BFD_ENDIAN_BIG:
4091 internal_error (__FILE__, __LINE__, _("cris_gdbarch_init: big endian byte order in info"));
4095 internal_error (__FILE__, __LINE__, _("cris_gdbarch_init: unknown byte order in info"));
4098 set_gdbarch_return_value (gdbarch, cris_return_value);
4099 set_gdbarch_deprecated_reg_struct_has_addr (gdbarch,
4100 cris_reg_struct_has_addr);
4101 set_gdbarch_deprecated_use_struct_convention (gdbarch, always_use_struct_convention);
4103 set_gdbarch_sp_regnum (gdbarch, 14);
4105 /* Length of ordinary registers used in push_word and a few other
4106 places. register_size() is the real way to know how big a
4109 set_gdbarch_double_bit (gdbarch, 64);
4110 /* The default definition of a long double is 2 * TARGET_DOUBLE_BIT,
4111 which means we have to set this explicitly. */
4112 set_gdbarch_long_double_bit (gdbarch, 64);
4114 /* The total amount of space needed to store (in an array called registers)
4115 GDB's copy of the machine's register state. Note: We can not use
4116 cris_register_size at this point, since it relies on current_gdbarch
4118 switch (tdep->cris_version)
4126 /* Old versions; not supported. */
4127 internal_error (__FILE__, __LINE__,
4128 _("cris_gdbarch_init: unsupported CRIS version"));
4133 /* CRIS v10 and v11, a.k.a. ETRAX 100LX. In addition to ETRAX 100,
4134 P7 (32 bits), and P15 (32 bits) have been implemented. */
4135 set_gdbarch_pc_regnum (gdbarch, 15);
4136 set_gdbarch_register_type (gdbarch, cris_register_type);
4137 /* There are 32 registers (some of which may not be implemented). */
4138 set_gdbarch_num_regs (gdbarch, 32);
4139 set_gdbarch_register_name (gdbarch, cris_register_name);
4140 set_gdbarch_cannot_store_register (gdbarch, cris_cannot_store_register);
4141 set_gdbarch_cannot_fetch_register (gdbarch, cris_cannot_fetch_register);
4143 set_gdbarch_software_single_step (gdbarch, cris_software_single_step);
4147 /* CRIS v32. General registers R0 - R15 (32 bits), special registers
4148 P0 - P15 (32 bits) except P0, P1, P3 (8 bits) and P4 (16 bits)
4149 and pseudo-register PC (32 bits). */
4150 set_gdbarch_pc_regnum (gdbarch, 32);
4151 set_gdbarch_register_type (gdbarch, crisv32_register_type);
4152 /* 32 registers + pseudo-register PC + 16 support registers. */
4153 set_gdbarch_num_regs (gdbarch, 32 + 1 + 16);
4154 set_gdbarch_register_name (gdbarch, crisv32_register_name);
4156 set_gdbarch_cannot_store_register
4157 (gdbarch, crisv32_cannot_store_register);
4158 set_gdbarch_cannot_fetch_register
4159 (gdbarch, crisv32_cannot_fetch_register);
4161 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
4163 set_gdbarch_single_step_through_delay
4164 (gdbarch, crisv32_single_step_through_delay);
4169 internal_error (__FILE__, __LINE__,
4170 _("cris_gdbarch_init: unknown CRIS version"));
4173 /* Dummy frame functions (shared between CRISv10 and CRISv32 since they
4174 have the same ABI). */
4175 set_gdbarch_push_dummy_code (gdbarch, cris_push_dummy_code);
4176 set_gdbarch_push_dummy_call (gdbarch, cris_push_dummy_call);
4177 set_gdbarch_frame_align (gdbarch, cris_frame_align);
4178 set_gdbarch_skip_prologue (gdbarch, cris_skip_prologue);
4180 /* The stack grows downward. */
4181 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
4183 set_gdbarch_breakpoint_from_pc (gdbarch, cris_breakpoint_from_pc);
4185 set_gdbarch_unwind_pc (gdbarch, cris_unwind_pc);
4186 set_gdbarch_unwind_sp (gdbarch, cris_unwind_sp);
4187 set_gdbarch_unwind_dummy_id (gdbarch, cris_unwind_dummy_id);
4189 if (tdep->cris_dwarf2_cfi == 1)
4191 /* Hook in the Dwarf-2 frame sniffer. */
4192 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, cris_dwarf2_reg_to_regnum);
4193 dwarf2_frame_set_init_reg (gdbarch, cris_dwarf2_frame_init_reg);
4194 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
4197 if (tdep->cris_mode != cris_mode_guru)
4199 frame_unwind_append_sniffer (gdbarch, cris_sigtramp_frame_sniffer);
4202 frame_unwind_append_sniffer (gdbarch, cris_frame_sniffer);
4203 frame_base_set_default (gdbarch, &cris_frame_base);
4205 set_solib_svr4_fetch_link_map_offsets
4206 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
4208 /* FIXME: cagney/2003-08-27: It should be possible to select a CRIS
4209 disassembler, even when there is no BFD. Does something like
4210 "gdb; target remote; disassmeble *0x123" work? */
4211 set_gdbarch_print_insn (gdbarch, cris_delayed_get_disassembler);