packaging: Add python3-base dependency
[platform/upstream/gdb.git] / gdb / cris-tdep.c
1 /* Target dependent code for CRIS, for GDB, the GNU debugger.
2
3    Copyright (C) 2001-2023 Free Software Foundation, Inc.
4
5    Contributed by Axis Communications AB.
6    Written by Hendrik Ruijter, Stefan Andersson, and Orjan Friberg.
7
8    This file is part of GDB.
9
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation; either version 3 of the License, or
13    (at your option) any later version.
14
15    This program is distributed in the hope that it will be useful,
16    but WITHOUT ANY WARRANTY; without even the implied warranty of
17    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18    GNU General Public License for more details.
19
20    You should have received a copy of the GNU General Public License
21    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "frame-unwind.h"
26 #include "frame-base.h"
27 #include "trad-frame.h"
28 #include "dwarf2/frame.h"
29 #include "symtab.h"
30 #include "inferior.h"
31 #include "gdbtypes.h"
32 #include "gdbcore.h"
33 #include "gdbcmd.h"
34 #include "target.h"
35 #include "value.h"
36 #include "opcode/cris.h"
37 #include "osabi.h"
38 #include "arch-utils.h"
39 #include "regcache.h"
40 #include "regset.h"
41
42 #include "objfiles.h"
43
44 #include "solib.h"              /* Support for shared libraries.  */
45 #include "solib-svr4.h"
46 #include "dis-asm.h"
47
48 #include "cris-tdep.h"
49
50 enum cris_num_regs
51 {
52   /* There are no floating point registers.  Used in gdbserver low-linux.c.  */
53   NUM_FREGS = 0,
54   
55   /* There are 16 general registers.  */
56   NUM_GENREGS = 16,
57   
58   /* There are 16 special registers.  */
59   NUM_SPECREGS = 16,
60
61   /* CRISv32 has a pseudo PC register, not noted here.  */
62   
63   /* CRISv32 has 16 support registers.  */
64   NUM_SUPPREGS = 16
65 };
66
67 /* Register numbers of various important registers.
68    CRIS_FP_REGNUM   Contains address of executing stack frame.
69    STR_REGNUM  Contains the address of structure return values.
70    RET_REGNUM  Contains the return value when shorter than or equal to 32 bits
71    ARG1_REGNUM Contains the first parameter to a function.
72    ARG2_REGNUM Contains the second parameter to a function.
73    ARG3_REGNUM Contains the third parameter to a function.
74    ARG4_REGNUM Contains the fourth parameter to a function.  Rest on stack.
75    gdbarch_sp_regnum Contains address of top of stack.
76    gdbarch_pc_regnum Contains address of next instruction.
77    SRP_REGNUM  Subroutine return pointer register.
78    BRP_REGNUM  Breakpoint return pointer register.  */
79
80 enum cris_regnums
81 {
82   /* Enums with respect to the general registers, valid for all 
83      CRIS versions.  The frame pointer is always in R8.  */
84   CRIS_FP_REGNUM = 8,
85   /* ABI related registers.  */
86   STR_REGNUM  = 9,
87   RET_REGNUM  = 10,
88   ARG1_REGNUM = 10,
89   ARG2_REGNUM = 11,
90   ARG3_REGNUM = 12,
91   ARG4_REGNUM = 13,
92   
93   /* Registers which happen to be common.  */
94   VR_REGNUM   = 17,
95   MOF_REGNUM  = 23,
96   SRP_REGNUM  = 27,
97
98   /* CRISv10 et al. specific registers.  */
99   P0_REGNUM   = 16,
100   P4_REGNUM   = 20,
101   CCR_REGNUM  = 21,
102   P8_REGNUM   = 24,
103   IBR_REGNUM  = 25,
104   IRP_REGNUM  = 26,
105   BAR_REGNUM  = 28,
106   DCCR_REGNUM = 29,
107   BRP_REGNUM  = 30,
108   USP_REGNUM  = 31,
109
110   /* CRISv32 specific registers.  */
111   ACR_REGNUM  = 15,
112   BZ_REGNUM   = 16,
113   PID_REGNUM  = 18,
114   SRS_REGNUM  = 19,
115   WZ_REGNUM   = 20,
116   EXS_REGNUM  = 21,
117   EDA_REGNUM  = 22,
118   DZ_REGNUM   = 24,
119   EBP_REGNUM  = 25,
120   ERP_REGNUM  = 26,
121   NRP_REGNUM  = 28,
122   CCS_REGNUM  = 29,
123   CRISV32USP_REGNUM  = 30, /* Shares name but not number with CRISv10.  */
124   SPC_REGNUM  = 31,
125   CRISV32PC_REGNUM   = 32, /* Shares name but not number with CRISv10.  */
126
127   S0_REGNUM = 33,
128   S1_REGNUM = 34,
129   S2_REGNUM = 35,
130   S3_REGNUM = 36,
131   S4_REGNUM = 37,
132   S5_REGNUM = 38,
133   S6_REGNUM = 39,
134   S7_REGNUM = 40,
135   S8_REGNUM = 41,
136   S9_REGNUM = 42,
137   S10_REGNUM = 43,
138   S11_REGNUM = 44,
139   S12_REGNUM = 45,
140   S13_REGNUM = 46,
141   S14_REGNUM = 47,
142   S15_REGNUM = 48,
143 };
144
145 extern const struct cris_spec_reg cris_spec_regs[];
146
147 /* CRIS version, set via the user command 'set cris-version'.  Affects
148    register names and sizes.  */
149 static unsigned int usr_cmd_cris_version;
150
151 /* Indicates whether to trust the above variable.  */
152 static bool usr_cmd_cris_version_valid = false;
153
154 static const char cris_mode_normal[] = "normal";
155 static const char cris_mode_guru[] = "guru";
156 static const char *const cris_modes[] = {
157   cris_mode_normal,
158   cris_mode_guru,
159   0
160 };
161
162 /* CRIS mode, set via the user command 'set cris-mode'.  Affects
163    type of break instruction among other things.  */
164 static const char *usr_cmd_cris_mode = cris_mode_normal;
165
166 /* Whether to make use of Dwarf-2 CFI (default on).  */
167 static bool usr_cmd_cris_dwarf2_cfi = true;
168
169 /* Sigtramp identification code copied from i386-linux-tdep.c.  */
170
171 #define SIGTRAMP_INSN0    0x9c5f  /* movu.w 0xXX, $r9 */
172 #define SIGTRAMP_OFFSET0  0
173 #define SIGTRAMP_INSN1    0xe93d  /* break 13 */
174 #define SIGTRAMP_OFFSET1  4
175
176 static const unsigned short sigtramp_code[] =
177 {
178   SIGTRAMP_INSN0, 0x0077,  /* movu.w $0x77, $r9 */
179   SIGTRAMP_INSN1           /* break 13 */
180 };
181
182 #define SIGTRAMP_LEN (sizeof sigtramp_code)
183
184 /* Note: same length as normal sigtramp code.  */
185
186 static const unsigned short rt_sigtramp_code[] =
187 {
188   SIGTRAMP_INSN0, 0x00ad,  /* movu.w $0xad, $r9 */
189   SIGTRAMP_INSN1           /* break 13 */
190 };
191
192 /* If PC is in a sigtramp routine, return the address of the start of
193    the routine.  Otherwise, return 0.  */
194
195 static CORE_ADDR
196 cris_sigtramp_start (frame_info_ptr this_frame)
197 {
198   CORE_ADDR pc = get_frame_pc (this_frame);
199   gdb_byte buf[SIGTRAMP_LEN];
200
201   if (!safe_frame_unwind_memory (this_frame, pc, buf))
202     return 0;
203
204   if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN0)
205     {
206       if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN1)
207         return 0;
208
209       pc -= SIGTRAMP_OFFSET1;
210       if (!safe_frame_unwind_memory (this_frame, pc, buf))
211         return 0;
212     }
213
214   if (memcmp (buf, sigtramp_code, SIGTRAMP_LEN) != 0)
215     return 0;
216
217   return pc;
218 }
219
220 /* If PC is in a RT sigtramp routine, return the address of the start of
221    the routine.  Otherwise, return 0.  */
222
223 static CORE_ADDR
224 cris_rt_sigtramp_start (frame_info_ptr this_frame)
225 {
226   CORE_ADDR pc = get_frame_pc (this_frame);
227   gdb_byte buf[SIGTRAMP_LEN];
228
229   if (!safe_frame_unwind_memory (this_frame, pc, buf))
230     return 0;
231
232   if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN0)
233     {
234       if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN1)
235         return 0;
236
237       pc -= SIGTRAMP_OFFSET1;
238       if (!safe_frame_unwind_memory (this_frame, pc, buf))
239         return 0;
240     }
241
242   if (memcmp (buf, rt_sigtramp_code, SIGTRAMP_LEN) != 0)
243     return 0;
244
245   return pc;
246 }
247
248 /* Assuming THIS_FRAME is a frame for a GNU/Linux sigtramp routine,
249    return the address of the associated sigcontext structure.  */
250
251 static CORE_ADDR
252 cris_sigcontext_addr (frame_info_ptr this_frame)
253 {
254   struct gdbarch *gdbarch = get_frame_arch (this_frame);
255   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
256   CORE_ADDR pc;
257   CORE_ADDR sp;
258   gdb_byte buf[4];
259
260   get_frame_register (this_frame, gdbarch_sp_regnum (gdbarch), buf);
261   sp = extract_unsigned_integer (buf, 4, byte_order);
262
263   /* Look for normal sigtramp frame first.  */
264   pc = cris_sigtramp_start (this_frame);
265   if (pc)
266     {
267       /* struct signal_frame (arch/cris/kernel/signal.c) contains
268          struct sigcontext as its first member, meaning the SP points to
269          it already.  */
270       return sp;
271     }
272
273   pc = cris_rt_sigtramp_start (this_frame);
274   if (pc)
275     {
276       /* struct rt_signal_frame (arch/cris/kernel/signal.c) contains
277          a struct ucontext, which in turn contains a struct sigcontext.
278          Magic digging:
279          4 + 4 + 128 to struct ucontext, then
280          4 + 4 + 12 to struct sigcontext.  */
281       return (sp + 156);
282     }
283
284   error (_("Couldn't recognize signal trampoline."));
285   return 0;
286 }
287
288 struct cris_unwind_cache
289 {
290   /* The previous frame's inner most stack address.  Used as this
291      frame ID's stack_addr.  */
292   CORE_ADDR prev_sp;
293   /* The frame's base, optionally used by the high-level debug info.  */
294   CORE_ADDR base;
295   int size;
296   /* How far the SP and r8 (FP) have been offset from the start of
297      the stack frame (as defined by the previous frame's stack
298      pointer).  */
299   LONGEST sp_offset;
300   LONGEST r8_offset;
301   int uses_frame;
302
303   /* From old frame_extra_info struct.  */
304   CORE_ADDR return_pc;
305   int leaf_function;
306
307   /* Table indicating the location of each and every register.  */
308   trad_frame_saved_reg *saved_regs;
309 };
310
311 static struct cris_unwind_cache *
312 cris_sigtramp_frame_unwind_cache (frame_info_ptr this_frame,
313                                   void **this_cache)
314 {
315   struct gdbarch *gdbarch = get_frame_arch (this_frame);
316   cris_gdbarch_tdep *tdep = gdbarch_tdep<cris_gdbarch_tdep> (gdbarch);
317   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
318   struct cris_unwind_cache *info;
319   CORE_ADDR addr;
320   gdb_byte buf[4];
321   int i;
322
323   if ((*this_cache))
324     return (struct cris_unwind_cache *) (*this_cache);
325
326   info = FRAME_OBSTACK_ZALLOC (struct cris_unwind_cache);
327   (*this_cache) = info;
328   info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
329
330   /* Zero all fields.  */
331   info->prev_sp = 0;
332   info->base = 0;
333   info->size = 0;
334   info->sp_offset = 0;
335   info->r8_offset = 0;
336   info->uses_frame = 0;
337   info->return_pc = 0;
338   info->leaf_function = 0;
339
340   get_frame_register (this_frame, gdbarch_sp_regnum (gdbarch), buf);
341   info->base = extract_unsigned_integer (buf, 4, byte_order);
342
343   addr = cris_sigcontext_addr (this_frame);
344   
345   /* Layout of the sigcontext struct:
346      struct sigcontext {
347         struct pt_regs regs;
348         unsigned long oldmask;
349         unsigned long usp;
350      }; */
351   
352   if (tdep->cris_version == 10)
353     {
354       /* R0 to R13 are stored in reverse order at offset (2 * 4) in 
355          struct pt_regs.  */
356       for (i = 0; i <= 13; i++)
357         info->saved_regs[i].set_addr (addr + ((15 - i) * 4));
358
359       info->saved_regs[MOF_REGNUM].set_addr (addr + (16 * 4));
360       info->saved_regs[DCCR_REGNUM].set_addr (addr + (17 * 4));
361       info->saved_regs[SRP_REGNUM].set_addr (addr + (18 * 4));
362       /* Note: IRP is off by 2 at this point.  There's no point in correcting
363          it though since that will mean that the backtrace will show a PC 
364          different from what is shown when stopped.  */
365       info->saved_regs[IRP_REGNUM].set_addr (addr + (19 * 4));
366       info->saved_regs[gdbarch_pc_regnum (gdbarch)]
367         = info->saved_regs[IRP_REGNUM];
368       info->saved_regs[gdbarch_sp_regnum (gdbarch)].set_addr (addr + (24 * 4));
369     }
370   else
371     {
372       /* CRISv32.  */
373       /* R0 to R13 are stored in order at offset (1 * 4) in 
374          struct pt_regs.  */
375       for (i = 0; i <= 13; i++)
376         info->saved_regs[i].set_addr (addr + ((i + 1) * 4));
377
378       info->saved_regs[ACR_REGNUM].set_addr (addr + (15 * 4));
379       info->saved_regs[SRS_REGNUM].set_addr (addr + (16 * 4));
380       info->saved_regs[MOF_REGNUM].set_addr (addr + (17 * 4));
381       info->saved_regs[SPC_REGNUM].set_addr (addr + (18 * 4));
382       info->saved_regs[CCS_REGNUM].set_addr (addr + (19 * 4));
383       info->saved_regs[SRP_REGNUM].set_addr (addr + (20 * 4));
384       info->saved_regs[ERP_REGNUM].set_addr (addr + (21 * 4));
385       info->saved_regs[EXS_REGNUM].set_addr (addr + (22 * 4));
386       info->saved_regs[EDA_REGNUM].set_addr (addr + (23 * 4));
387
388       /* FIXME: If ERP is in a delay slot at this point then the PC will
389          be wrong at this point.  This problem manifests itself in the
390          sigaltstack.exp test case, which occasionally generates FAILs when
391          the signal is received while in a delay slot.
392          
393          This could be solved by a couple of read_memory_unsigned_integer and a
394          trad_frame_set_value.  */
395       info->saved_regs[gdbarch_pc_regnum (gdbarch)]
396         = info->saved_regs[ERP_REGNUM];
397
398       info->saved_regs[gdbarch_sp_regnum (gdbarch)].set_addr (addr + (25 * 4));
399     }
400   
401   return info;
402 }
403
404 static void
405 cris_sigtramp_frame_this_id (frame_info_ptr this_frame, void **this_cache,
406                              struct frame_id *this_id)
407 {
408   struct cris_unwind_cache *cache =
409     cris_sigtramp_frame_unwind_cache (this_frame, this_cache);
410   (*this_id) = frame_id_build (cache->base, get_frame_pc (this_frame));
411 }
412
413 /* Forward declaration.  */
414
415 static struct value *cris_frame_prev_register (frame_info_ptr this_frame,
416                                                void **this_cache, int regnum);
417 static struct value *
418 cris_sigtramp_frame_prev_register (frame_info_ptr this_frame,
419                                    void **this_cache, int regnum)
420 {
421   /* Make sure we've initialized the cache.  */
422   cris_sigtramp_frame_unwind_cache (this_frame, this_cache);
423   return cris_frame_prev_register (this_frame, this_cache, regnum);
424 }
425
426 static int
427 cris_sigtramp_frame_sniffer (const struct frame_unwind *self,
428                              frame_info_ptr this_frame,
429                              void **this_cache)
430 {
431   if (cris_sigtramp_start (this_frame) 
432       || cris_rt_sigtramp_start (this_frame))
433     return 1;
434
435   return 0;
436 }
437
438 static const struct frame_unwind cris_sigtramp_frame_unwind =
439 {
440   "cris sigtramp",
441   SIGTRAMP_FRAME,
442   default_frame_unwind_stop_reason,
443   cris_sigtramp_frame_this_id,
444   cris_sigtramp_frame_prev_register,
445   NULL,
446   cris_sigtramp_frame_sniffer
447 };
448
449 static int
450 crisv32_single_step_through_delay (struct gdbarch *gdbarch,
451                                    frame_info_ptr this_frame)
452 {
453   cris_gdbarch_tdep *tdep = gdbarch_tdep<cris_gdbarch_tdep> (gdbarch);
454   ULONGEST erp;
455   int ret = 0;
456
457   if (tdep->cris_mode == cris_mode_guru)
458     erp = get_frame_register_unsigned (this_frame, NRP_REGNUM);
459   else
460     erp = get_frame_register_unsigned (this_frame, ERP_REGNUM);
461
462   if (erp & 0x1)
463     {
464       /* In delay slot - check if there's a breakpoint at the preceding
465          instruction.  */
466       if (breakpoint_here_p (get_frame_address_space (this_frame), erp & ~0x1))
467         ret = 1;
468     }
469   return ret;
470 }
471
472 /* The instruction environment needed to find single-step breakpoints.  */
473
474 typedef 
475 struct instruction_environment
476 {
477   unsigned long reg[NUM_GENREGS];
478   unsigned long preg[NUM_SPECREGS];
479   unsigned long branch_break_address;
480   unsigned long delay_slot_pc;
481   unsigned long prefix_value;
482   int   branch_found;
483   int   prefix_found;
484   int   invalid;
485   int   slot_needed;
486   int   delay_slot_pc_active;
487   int   xflag_found;
488   int   disable_interrupt;
489   enum bfd_endian byte_order;
490 } inst_env_type;
491
492 /* Machine-dependencies in CRIS for opcodes.  */
493
494 /* Instruction sizes.  */
495 enum cris_instruction_sizes
496 {
497   INST_BYTE_SIZE  = 0,
498   INST_WORD_SIZE  = 1,
499   INST_DWORD_SIZE = 2
500 };
501
502 /* Addressing modes.  */
503 enum cris_addressing_modes
504 {
505   REGISTER_MODE = 1,
506   INDIRECT_MODE = 2,
507   AUTOINC_MODE  = 3
508 };
509
510 /* Prefix addressing modes.  */
511 enum cris_prefix_addressing_modes
512 {
513   PREFIX_INDEX_MODE  = 2,
514   PREFIX_ASSIGN_MODE = 3,
515
516   /* Handle immediate byte offset addressing mode prefix format.  */
517   PREFIX_OFFSET_MODE = 2
518 };
519
520 /* Masks for opcodes.  */
521 enum cris_opcode_masks
522 {
523   BRANCH_SIGNED_SHORT_OFFSET_MASK = 0x1,
524   SIGNED_EXTEND_BIT_MASK          = 0x2,
525   SIGNED_BYTE_MASK                = 0x80,
526   SIGNED_BYTE_EXTEND_MASK         = 0xFFFFFF00,
527   SIGNED_WORD_MASK                = 0x8000,
528   SIGNED_WORD_EXTEND_MASK         = 0xFFFF0000,
529   SIGNED_DWORD_MASK               = 0x80000000,
530   SIGNED_QUICK_VALUE_MASK         = 0x20,
531   SIGNED_QUICK_VALUE_EXTEND_MASK  = 0xFFFFFFC0
532 };
533
534 /* Functions for opcodes.  The general form of the ETRAX 16-bit instruction:
535    Bit 15 - 12   Operand2
536        11 - 10   Mode
537         9 -  6   Opcode
538         5 -  4   Size
539         3 -  0   Operand1  */
540
541 static int 
542 cris_get_operand2 (unsigned short insn)
543 {
544   return ((insn & 0xF000) >> 12);
545 }
546
547 static int
548 cris_get_mode (unsigned short insn)
549 {
550   return ((insn & 0x0C00) >> 10);
551 }
552
553 static int
554 cris_get_opcode (unsigned short insn)
555 {
556   return ((insn & 0x03C0) >> 6);
557 }
558
559 static int
560 cris_get_size (unsigned short insn)
561 {
562   return ((insn & 0x0030) >> 4);
563 }
564
565 static int
566 cris_get_operand1 (unsigned short insn)
567 {
568   return (insn & 0x000F);
569 }
570
571 /* Additional functions in order to handle opcodes.  */
572
573 static int
574 cris_get_quick_value (unsigned short insn)
575 {
576   return (insn & 0x003F);
577 }
578
579 static int
580 cris_get_bdap_quick_offset (unsigned short insn)
581 {
582   return (insn & 0x00FF);
583 }
584
585 static int
586 cris_get_branch_short_offset (unsigned short insn)
587 {
588   return (insn & 0x00FF);
589 }
590
591 static int
592 cris_get_asr_shift_steps (unsigned long value)
593 {
594   return (value & 0x3F);
595 }
596
597 static int
598 cris_get_clear_size (unsigned short insn)
599 {
600   return ((insn) & 0xC000);
601 }
602
603 static int
604 cris_is_signed_extend_bit_on (unsigned short insn)
605 {
606   return (((insn) & 0x20) == 0x20);
607 }
608
609 static int
610 cris_is_xflag_bit_on (unsigned short insn)
611 {
612   return (((insn) & 0x1000) == 0x1000);
613 }
614
615 static void
616 cris_set_size_to_dword (unsigned short *insn)
617 {
618   *insn &= 0xFFCF; 
619   *insn |= 0x20; 
620 }
621
622 static signed char
623 cris_get_signed_offset (unsigned short insn)
624 {
625   return ((signed char) (insn & 0x00FF));
626 }
627
628 /* Calls an op function given the op-type, working on the insn and the
629    inst_env.  */
630 static void cris_gdb_func (struct gdbarch *, enum cris_op_type, unsigned short,
631                            inst_env_type *);
632
633 static struct gdbarch *cris_gdbarch_init (struct gdbarch_info,
634                                           struct gdbarch_list *);
635
636 static void cris_dump_tdep (struct gdbarch *, struct ui_file *);
637
638 static void set_cris_version (const char *ignore_args, int from_tty, 
639                               struct cmd_list_element *c);
640
641 static void set_cris_mode (const char *ignore_args, int from_tty, 
642                            struct cmd_list_element *c);
643
644 static void set_cris_dwarf2_cfi (const char *ignore_args, int from_tty, 
645                                  struct cmd_list_element *c);
646
647 static CORE_ADDR cris_scan_prologue (CORE_ADDR pc, 
648                                      frame_info_ptr this_frame,
649                                      struct cris_unwind_cache *info);
650
651 static CORE_ADDR crisv32_scan_prologue (CORE_ADDR pc, 
652                                         frame_info_ptr this_frame,
653                                         struct cris_unwind_cache *info);
654
655 /* When arguments must be pushed onto the stack, they go on in reverse
656    order.  The below implements a FILO (stack) to do this.
657    Copied from d10v-tdep.c.  */
658
659 struct cris_stack_item
660 {
661   int len;
662   struct cris_stack_item *prev;
663   gdb_byte *data;
664 };
665
666 static struct cris_stack_item *
667 push_stack_item (struct cris_stack_item *prev, const gdb_byte *contents,
668                  int len)
669 {
670   struct cris_stack_item *si = XNEW (struct cris_stack_item);
671   si->data = (gdb_byte *) xmalloc (len);
672   si->len = len;
673   si->prev = prev;
674   memcpy (si->data, contents, len);
675   return si;
676 }
677
678 static struct cris_stack_item *
679 pop_stack_item (struct cris_stack_item *si)
680 {
681   struct cris_stack_item *dead = si;
682   si = si->prev;
683   xfree (dead->data);
684   xfree (dead);
685   return si;
686 }
687
688 /* Put here the code to store, into fi->saved_regs, the addresses of
689    the saved registers of frame described by FRAME_INFO.  This
690    includes special registers such as pc and fp saved in special ways
691    in the stack frame.  sp is even more special: the address we return
692    for it IS the sp for the next frame.  */
693
694 static struct cris_unwind_cache *
695 cris_frame_unwind_cache (frame_info_ptr this_frame,
696                          void **this_prologue_cache)
697 {
698   struct gdbarch *gdbarch = get_frame_arch (this_frame);
699   cris_gdbarch_tdep *tdep = gdbarch_tdep<cris_gdbarch_tdep> (gdbarch);
700   struct cris_unwind_cache *info;
701
702   if ((*this_prologue_cache))
703     return (struct cris_unwind_cache *) (*this_prologue_cache);
704
705   info = FRAME_OBSTACK_ZALLOC (struct cris_unwind_cache);
706   (*this_prologue_cache) = info;
707   info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
708
709   /* Zero all fields.  */
710   info->prev_sp = 0;
711   info->base = 0;
712   info->size = 0;
713   info->sp_offset = 0;
714   info->r8_offset = 0;
715   info->uses_frame = 0;
716   info->return_pc = 0;
717   info->leaf_function = 0;
718
719   /* Prologue analysis does the rest...  */
720   if (tdep->cris_version == 32)
721     crisv32_scan_prologue (get_frame_func (this_frame), this_frame, info);
722   else
723     cris_scan_prologue (get_frame_func (this_frame), this_frame, info);
724
725   return info;
726 }
727
728 /* Given a GDB frame, determine the address of the calling function's
729    frame.  This will be used to create a new GDB frame struct.  */
730
731 static void
732 cris_frame_this_id (frame_info_ptr this_frame,
733                     void **this_prologue_cache,
734                     struct frame_id *this_id)
735 {
736   struct cris_unwind_cache *info
737     = cris_frame_unwind_cache (this_frame, this_prologue_cache);
738   CORE_ADDR base;
739   CORE_ADDR func;
740   struct frame_id id;
741
742   /* The FUNC is easy.  */
743   func = get_frame_func (this_frame);
744
745   /* Hopefully the prologue analysis either correctly determined the
746      frame's base (which is the SP from the previous frame), or set
747      that base to "NULL".  */
748   base = info->prev_sp;
749   if (base == 0)
750     return;
751
752   id = frame_id_build (base, func);
753
754   (*this_id) = id;
755 }
756
757 static struct value *
758 cris_frame_prev_register (frame_info_ptr this_frame,
759                           void **this_prologue_cache, int regnum)
760 {
761   struct cris_unwind_cache *info
762     = cris_frame_unwind_cache (this_frame, this_prologue_cache);
763   return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
764 }
765
766 static CORE_ADDR
767 cris_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
768 {
769   /* Align to the size of an instruction (so that they can safely be
770      pushed onto the stack).  */
771   return sp & ~3;
772 }
773
774 static CORE_ADDR
775 cris_push_dummy_code (struct gdbarch *gdbarch,
776                       CORE_ADDR sp, CORE_ADDR funaddr,
777                       struct value **args, int nargs,
778                       struct type *value_type,
779                       CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
780                       struct regcache *regcache)
781 {
782   /* Allocate space sufficient for a breakpoint.  */
783   sp = (sp - 4) & ~3;
784   /* Store the address of that breakpoint */
785   *bp_addr = sp;
786   /* CRIS always starts the call at the callee's entry point.  */
787   *real_pc = funaddr;
788   return sp;
789 }
790
791 static CORE_ADDR
792 cris_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
793                       struct regcache *regcache, CORE_ADDR bp_addr,
794                       int nargs, struct value **args, CORE_ADDR sp,
795                       function_call_return_method return_method,
796                       CORE_ADDR struct_addr)
797 {
798   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
799   int argreg;
800   int argnum;
801
802   struct cris_stack_item *si = NULL;
803
804   /* Push the return address.  */
805   regcache_cooked_write_unsigned (regcache, SRP_REGNUM, bp_addr);
806
807   /* Are we returning a value using a structure return or a normal value
808      return?  struct_addr is the address of the reserved space for the return
809      structure to be written on the stack.  */
810   if (return_method == return_method_struct)
811     regcache_cooked_write_unsigned (regcache, STR_REGNUM, struct_addr);
812
813   /* Now load as many as possible of the first arguments into registers,
814      and push the rest onto the stack.  */
815   argreg = ARG1_REGNUM;
816
817   for (argnum = 0; argnum < nargs; argnum++)
818     {
819       int len;
820       const gdb_byte *val;
821       int reg_demand;
822       int i;
823       
824       len = value_type (args[argnum])->length ();
825       val = value_contents (args[argnum]).data ();
826       
827       /* How may registers worth of storage do we need for this argument?  */
828       reg_demand = (len / 4) + (len % 4 != 0 ? 1 : 0);
829         
830       if (len <= (2 * 4) && (argreg + reg_demand - 1 <= ARG4_REGNUM))
831         {
832           /* Data passed by value.  Fits in available register(s).  */
833           for (i = 0; i < reg_demand; i++)
834             {
835               regcache->cooked_write (argreg, val);
836               argreg++;
837               val += 4;
838             }
839         }
840       else if (len <= (2 * 4) && argreg <= ARG4_REGNUM)
841         {
842           /* Data passed by value. Does not fit in available register(s).
843              Use the register(s) first, then the stack.  */
844           for (i = 0; i < reg_demand; i++)
845             {
846               if (argreg <= ARG4_REGNUM)
847                 {
848                   regcache->cooked_write (argreg, val);
849                   argreg++;
850                   val += 4;
851                 }
852               else
853                 {
854                   /* Push item for later so that pushed arguments
855                      come in the right order.  */
856                   si = push_stack_item (si, val, 4);
857                   val += 4;
858                 }
859             }
860         }
861       else if (len > (2 * 4))
862         {
863           /* Data passed by reference.  Push copy of data onto stack
864              and pass pointer to this copy as argument.  */
865           sp = (sp - len) & ~3;
866           write_memory (sp, val, len);
867
868           if (argreg <= ARG4_REGNUM)
869             {
870               regcache_cooked_write_unsigned (regcache, argreg, sp);
871               argreg++;
872             }
873           else
874             {
875               gdb_byte buf[4];
876               store_unsigned_integer (buf, 4, byte_order, sp);
877               si = push_stack_item (si, buf, 4);
878             }
879         }
880       else
881         {
882           /* Data passed by value.  No available registers.  Put it on
883              the stack.  */
884            si = push_stack_item (si, val, len);
885         }
886     }
887
888   while (si)
889     {
890       /* fp_arg must be word-aligned (i.e., don't += len) to match
891          the function prologue.  */
892       sp = (sp - si->len) & ~3;
893       write_memory (sp, si->data, si->len);
894       si = pop_stack_item (si);
895     }
896
897   /* Finally, update the SP register.  */
898   regcache_cooked_write_unsigned (regcache, gdbarch_sp_regnum (gdbarch), sp);
899
900   return sp;
901 }
902
903 static const struct frame_unwind cris_frame_unwind = 
904 {
905   "cris prologue",
906   NORMAL_FRAME,
907   default_frame_unwind_stop_reason,
908   cris_frame_this_id,
909   cris_frame_prev_register,
910   NULL,
911   default_frame_sniffer
912 };
913
914 static CORE_ADDR
915 cris_frame_base_address (frame_info_ptr this_frame, void **this_cache)
916 {
917   struct cris_unwind_cache *info
918     = cris_frame_unwind_cache (this_frame, this_cache);
919   return info->base;
920 }
921
922 static const struct frame_base cris_frame_base = 
923 {
924   &cris_frame_unwind,
925   cris_frame_base_address,
926   cris_frame_base_address,
927   cris_frame_base_address
928 };
929
930 /* Frames information. The definition of the struct frame_info is
931
932    CORE_ADDR frame
933    CORE_ADDR pc
934    enum frame_type type;
935    CORE_ADDR return_pc
936    int leaf_function
937
938    If the compilation option -fno-omit-frame-pointer is present the
939    variable frame will be set to the content of R8 which is the frame
940    pointer register.
941
942    The variable pc contains the address where execution is performed
943    in the present frame.  The innermost frame contains the current content
944    of the register PC.  All other frames contain the content of the
945    register PC in the next frame.
946
947    The variable `type' indicates the frame's type: normal, SIGTRAMP
948    (associated with a signal handler), dummy (associated with a dummy
949    frame).
950
951    The variable return_pc contains the address where execution should be
952    resumed when the present frame has finished, the return address.
953
954    The variable leaf_function is 1 if the return address is in the register
955    SRP, and 0 if it is on the stack.
956
957    Prologue instructions C-code.
958    The prologue may consist of (-fno-omit-frame-pointer)
959    1)                2)
960    push   srp
961    push   r8         push   r8
962    move.d sp,r8      move.d sp,r8
963    subq   X,sp       subq   X,sp
964    movem  rY,[sp]    movem  rY,[sp]
965    move.S rZ,[r8-U]  move.S rZ,[r8-U]
966
967    where 1 is a non-terminal function, and 2 is a leaf-function.
968
969    Note that this assumption is extremely brittle, and will break at the
970    slightest change in GCC's prologue.
971
972    If local variables are declared or register contents are saved on stack
973    the subq-instruction will be present with X as the number of bytes
974    needed for storage.  The reshuffle with respect to r8 may be performed
975    with any size S (b, w, d) and any of the general registers Z={0..13}. 
976    The offset U should be representable by a signed 8-bit value in all cases.
977    Thus, the prefix word is assumed to be immediate byte offset mode followed
978    by another word containing the instruction.
979
980    Degenerate cases:
981    3)
982    push   r8
983    move.d sp,r8
984    move.d r8,sp
985    pop    r8   
986
987    Prologue instructions C++-code.
988    Case 1) and 2) in the C-code may be followed by
989
990    move.d r10,rS    ; this
991    move.d r11,rT    ; P1
992    move.d r12,rU    ; P2
993    move.d r13,rV    ; P3
994    move.S [r8+U],rZ ; P4
995
996    if any of the call parameters are stored.  The host expects these 
997    instructions to be executed in order to get the call parameters right.  */
998
999 /* Examine the prologue of a function.  The variable ip is the address of 
1000    the first instruction of the prologue.  The variable limit is the address 
1001    of the first instruction after the prologue.  The variable fi contains the 
1002    information in struct frame_info.  The variable frameless_p controls whether
1003    the entire prologue is examined (0) or just enough instructions to 
1004    determine that it is a prologue (1).  */
1005
1006 static CORE_ADDR 
1007 cris_scan_prologue (CORE_ADDR pc, frame_info_ptr this_frame,
1008                     struct cris_unwind_cache *info)
1009 {
1010   struct gdbarch *gdbarch = get_frame_arch (this_frame);
1011   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1012
1013   /* Present instruction.  */
1014   unsigned short insn;
1015
1016   /* Next instruction, lookahead.  */
1017   unsigned short insn_next; 
1018   int regno;
1019
1020   /* Number of byte on stack used for local variables and movem.  */
1021   int val; 
1022
1023   /* Highest register number in a movem.  */
1024   int regsave;
1025
1026   /* move.d r<source_register>,rS */
1027   short source_register; 
1028
1029   /* Scan limit.  */
1030   int limit;
1031
1032   /* This frame is with respect to a leaf until a push srp is found.  */
1033   if (info)
1034     {
1035       info->leaf_function = 1;
1036     }
1037
1038   /* Assume nothing on stack.  */
1039   val = 0;
1040   regsave = -1;
1041
1042   /* If we were called without a this_frame, that means we were called
1043      from cris_skip_prologue which already tried to find the end of the
1044      prologue through the symbol information.  64 instructions past current
1045      pc is arbitrarily chosen, but at least it means we'll stop eventually.  */
1046   limit = this_frame ? get_frame_pc (this_frame) : pc + 64;
1047
1048   /* Find the prologue instructions.  */
1049   while (pc > 0 && pc < limit)
1050     {
1051       insn = read_memory_unsigned_integer (pc, 2, byte_order);
1052       pc += 2;
1053       if (insn == 0xE1FC)
1054         {
1055           /* push <reg> 32 bit instruction.  */
1056           insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
1057           pc += 2;
1058           regno = cris_get_operand2 (insn_next);
1059           if (info)
1060             {
1061               info->sp_offset += 4;
1062             }
1063           /* This check, meant to recognize srp, used to be regno == 
1064              (SRP_REGNUM - NUM_GENREGS), but that covers r11 also.  */
1065           if (insn_next == 0xBE7E)
1066             {
1067               if (info)
1068                 {
1069                   info->leaf_function = 0;
1070                 }
1071             }
1072           else if (insn_next == 0x8FEE)
1073             {
1074               /* push $r8 */
1075               if (info)
1076                 {
1077                   info->r8_offset = info->sp_offset;
1078                 }
1079             }
1080         }
1081       else if (insn == 0x866E)
1082         {
1083           /* move.d sp,r8 */
1084           if (info)
1085             {
1086               info->uses_frame = 1;
1087             }
1088           continue;
1089         }
1090       else if (cris_get_operand2 (insn) == gdbarch_sp_regnum (gdbarch)
1091                && cris_get_mode (insn) == 0x0000
1092                && cris_get_opcode (insn) == 0x000A)
1093         {
1094           /* subq <val>,sp */
1095           if (info)
1096             {
1097               info->sp_offset += cris_get_quick_value (insn);
1098             }
1099         }
1100       else if (cris_get_mode (insn) == 0x0002 
1101                && cris_get_opcode (insn) == 0x000F
1102                && cris_get_size (insn) == 0x0003
1103                && cris_get_operand1 (insn) == gdbarch_sp_regnum (gdbarch))
1104         {
1105           /* movem r<regsave>,[sp] */
1106           regsave = cris_get_operand2 (insn);
1107         }
1108       else if (cris_get_operand2 (insn) == gdbarch_sp_regnum (gdbarch)
1109                && ((insn & 0x0F00) >> 8) == 0x0001
1110                && (cris_get_signed_offset (insn) < 0))
1111         {
1112           /* Immediate byte offset addressing prefix word with sp as base 
1113              register.  Used for CRIS v8 i.e. ETRAX 100 and newer if <val> 
1114              is between 64 and 128. 
1115              movem r<regsave>,[sp=sp-<val>] */
1116           if (info)
1117             {
1118               info->sp_offset += -cris_get_signed_offset (insn);
1119             }
1120           insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
1121           pc += 2;
1122           if (cris_get_mode (insn_next) == PREFIX_ASSIGN_MODE
1123               && cris_get_opcode (insn_next) == 0x000F
1124               && cris_get_size (insn_next) == 0x0003
1125               && cris_get_operand1 (insn_next) == gdbarch_sp_regnum
1126                                                   (gdbarch))
1127             {
1128               regsave = cris_get_operand2 (insn_next);
1129             }
1130           else
1131             {
1132               /* The prologue ended before the limit was reached.  */
1133               pc -= 4;
1134               break;
1135             }
1136         }
1137       else if (cris_get_mode (insn) == 0x0001
1138                && cris_get_opcode (insn) == 0x0009
1139                && cris_get_size (insn) == 0x0002)
1140         {
1141           /* move.d r<10..13>,r<0..15> */
1142           source_register = cris_get_operand1 (insn);
1143
1144           /* FIXME?  In the glibc solibs, the prologue might contain something
1145              like (this example taken from relocate_doit):
1146              move.d $pc,$r0
1147              sub.d 0xfffef426,$r0
1148              which isn't covered by the source_register check below.  Question
1149              is whether to add a check for this combo, or make better use of
1150              the limit variable instead.  */
1151           if (source_register < ARG1_REGNUM || source_register > ARG4_REGNUM)
1152             {
1153               /* The prologue ended before the limit was reached.  */
1154               pc -= 2;
1155               break;
1156             }
1157         }
1158       else if (cris_get_operand2 (insn) == CRIS_FP_REGNUM 
1159                /* The size is a fixed-size.  */
1160                && ((insn & 0x0F00) >> 8) == 0x0001 
1161                /* A negative offset.  */
1162                && (cris_get_signed_offset (insn) < 0))  
1163         {
1164           /* move.S rZ,[r8-U] (?) */
1165           insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
1166           pc += 2;
1167           regno = cris_get_operand2 (insn_next);
1168           if ((regno >= 0 && regno < gdbarch_sp_regnum (gdbarch))
1169               && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
1170               && cris_get_opcode (insn_next) == 0x000F)
1171             {
1172               /* move.S rZ,[r8-U] */
1173               continue;
1174             }
1175           else
1176             {
1177               /* The prologue ended before the limit was reached.  */
1178               pc -= 4;
1179               break;
1180             }
1181         }
1182       else if (cris_get_operand2 (insn) == CRIS_FP_REGNUM 
1183                /* The size is a fixed-size.  */
1184                && ((insn & 0x0F00) >> 8) == 0x0001 
1185                /* A positive offset.  */
1186                && (cris_get_signed_offset (insn) > 0))  
1187         {
1188           /* move.S [r8+U],rZ (?) */
1189           insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
1190           pc += 2;
1191           regno = cris_get_operand2 (insn_next);
1192           if ((regno >= 0 && regno < gdbarch_sp_regnum (gdbarch))
1193               && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
1194               && cris_get_opcode (insn_next) == 0x0009
1195               && cris_get_operand1 (insn_next) == regno)
1196             {
1197               /* move.S [r8+U],rZ */
1198               continue;
1199             }
1200           else
1201             {
1202               /* The prologue ended before the limit was reached.  */
1203               pc -= 4;
1204               break;
1205             }
1206         }
1207       else
1208         {
1209           /* The prologue ended before the limit was reached.  */
1210           pc -= 2;
1211           break;
1212         }
1213     }
1214
1215   /* We only want to know the end of the prologue when this_frame and info
1216      are NULL (called from cris_skip_prologue i.e.).  */
1217   if (this_frame == NULL && info == NULL)
1218     {
1219       return pc;
1220     }
1221
1222   info->size = info->sp_offset;
1223
1224   /* Compute the previous frame's stack pointer (which is also the
1225      frame's ID's stack address), and this frame's base pointer.  */
1226   if (info->uses_frame)
1227     {
1228       ULONGEST this_base;
1229       /* The SP was moved to the FP.  This indicates that a new frame
1230          was created.  Get THIS frame's FP value by unwinding it from
1231          the next frame.  */
1232       this_base = get_frame_register_unsigned (this_frame, CRIS_FP_REGNUM);
1233       info->base = this_base;
1234       info->saved_regs[CRIS_FP_REGNUM].set_addr (info->base);
1235   
1236       /* The FP points at the last saved register.  Adjust the FP back
1237          to before the first saved register giving the SP.  */
1238       info->prev_sp = info->base + info->r8_offset;
1239     }
1240   else
1241     {
1242       ULONGEST this_base;      
1243       /* Assume that the FP is this frame's SP but with that pushed
1244          stack space added back.  */
1245       this_base = get_frame_register_unsigned (this_frame,
1246                                                gdbarch_sp_regnum (gdbarch));
1247       info->base = this_base;
1248       info->prev_sp = info->base + info->size;
1249     }
1250       
1251   /* Calculate the addresses for the saved registers on the stack.  */
1252   /* FIXME: The address calculation should really be done on the fly while
1253      we're analyzing the prologue (we only hold one regsave value as it is 
1254      now).  */
1255   val = info->sp_offset;
1256
1257   for (regno = regsave; regno >= 0; regno--)
1258     {
1259       info->saved_regs[regno].set_addr (info->base + info->r8_offset - val);
1260       val -= 4;
1261     }
1262
1263   /* The previous frame's SP needed to be computed.  Save the computed
1264      value.  */
1265   info->saved_regs[gdbarch_sp_regnum (gdbarch)].set_value (info->prev_sp);
1266
1267   if (!info->leaf_function)
1268     {
1269       /* SRP saved on the stack.  But where?  */
1270       if (info->r8_offset == 0)
1271         {
1272           /* R8 not pushed yet.  */
1273           info->saved_regs[SRP_REGNUM].set_addr (info->base);
1274         }
1275       else
1276         {
1277           /* R8 pushed, but SP may or may not be moved to R8 yet.  */
1278           info->saved_regs[SRP_REGNUM].set_addr (info->base + 4);
1279         }
1280     }
1281
1282   /* The PC is found in SRP (the actual register or located on the stack).  */
1283   info->saved_regs[gdbarch_pc_regnum (gdbarch)]
1284     = info->saved_regs[SRP_REGNUM];
1285
1286   return pc;
1287 }
1288
1289 static CORE_ADDR 
1290 crisv32_scan_prologue (CORE_ADDR pc, frame_info_ptr this_frame,
1291                     struct cris_unwind_cache *info)
1292 {
1293   struct gdbarch *gdbarch = get_frame_arch (this_frame);
1294   ULONGEST this_base;
1295
1296   /* Unlike the CRISv10 prologue scanner (cris_scan_prologue), this is not
1297      meant to be a full-fledged prologue scanner.  It is only needed for 
1298      the cases where we end up in code always lacking DWARF-2 CFI, notably:
1299
1300        * PLT stubs (library calls)
1301        * call dummys
1302        * signal trampolines
1303
1304      For those cases, it is assumed that there is no actual prologue; that 
1305      the stack pointer is not adjusted, and (as a consequence) the return
1306      address is not pushed onto the stack.  */
1307
1308   /* We only want to know the end of the prologue when this_frame and info
1309      are NULL (called from cris_skip_prologue i.e.).  */
1310   if (this_frame == NULL && info == NULL)
1311     {
1312       return pc;
1313     }
1314
1315   /* The SP is assumed to be unaltered.  */
1316   this_base = get_frame_register_unsigned (this_frame,
1317                                            gdbarch_sp_regnum (gdbarch));
1318   info->base = this_base;
1319   info->prev_sp = this_base;
1320       
1321   /* The PC is assumed to be found in SRP.  */
1322   info->saved_regs[gdbarch_pc_regnum (gdbarch)]
1323     = info->saved_regs[SRP_REGNUM];
1324
1325   return pc;
1326 }
1327
1328 /* Advance pc beyond any function entry prologue instructions at pc
1329    to reach some "real" code.  */
1330
1331 /* Given a PC value corresponding to the start of a function, return the PC
1332    of the first instruction after the function prologue.  */
1333
1334 static CORE_ADDR
1335 cris_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1336 {
1337   cris_gdbarch_tdep *tdep = gdbarch_tdep<cris_gdbarch_tdep> (gdbarch);
1338   CORE_ADDR func_addr, func_end;
1339   struct symtab_and_line sal;
1340   CORE_ADDR pc_after_prologue;
1341   
1342   /* If we have line debugging information, then the end of the prologue
1343      should the first assembly instruction of the first source line.  */
1344   if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1345     {
1346       sal = find_pc_line (func_addr, 0);
1347       if (sal.end > 0 && sal.end < func_end)
1348         return sal.end;
1349     }
1350
1351   if (tdep->cris_version == 32)
1352     pc_after_prologue = crisv32_scan_prologue (pc, NULL, NULL);
1353   else
1354     pc_after_prologue = cris_scan_prologue (pc, NULL, NULL);
1355
1356   return pc_after_prologue;
1357 }
1358
1359 /* Implement the breakpoint_kind_from_pc gdbarch method.  */
1360
1361 static int
1362 cris_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
1363 {
1364   return 2;
1365 }
1366
1367 /* Implement the sw_breakpoint_from_kind gdbarch method.  */
1368
1369 static const gdb_byte *
1370 cris_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
1371 {
1372   cris_gdbarch_tdep *tdep = gdbarch_tdep<cris_gdbarch_tdep> (gdbarch);
1373   static unsigned char break8_insn[] = {0x38, 0xe9};
1374   static unsigned char break15_insn[] = {0x3f, 0xe9};
1375
1376   *size = kind;
1377
1378   if (tdep->cris_mode == cris_mode_guru)
1379     return break15_insn;
1380   else
1381     return break8_insn;
1382 }
1383
1384 /* Returns 1 if spec_reg is applicable to the current gdbarch's CRIS version,
1385    0 otherwise.  */
1386
1387 static int
1388 cris_spec_reg_applicable (struct gdbarch *gdbarch,
1389                           struct cris_spec_reg spec_reg)
1390 {
1391   cris_gdbarch_tdep *tdep = gdbarch_tdep<cris_gdbarch_tdep> (gdbarch);
1392   unsigned int version = tdep->cris_version;
1393   
1394   switch (spec_reg.applicable_version)
1395     {
1396     case cris_ver_version_all:
1397       return 1;
1398     case cris_ver_warning:
1399       /* Indeterminate/obsolete.  */
1400       return 0;
1401     case cris_ver_v0_3:
1402       return in_inclusive_range (version, 0U, 3U);
1403     case cris_ver_v3p:
1404       return (version >= 3);
1405     case cris_ver_v8:
1406       return in_inclusive_range (version, 8U, 9U);
1407     case cris_ver_v8p:
1408       return (version >= 8);
1409     case cris_ver_v0_10:
1410       return in_inclusive_range (version, 0U, 10U);
1411     case cris_ver_v3_10:
1412       return in_inclusive_range (version, 3U, 10U);
1413     case cris_ver_v8_10:
1414       return in_inclusive_range (version, 8U, 10U);
1415     case cris_ver_v10:
1416       return (version == 10);
1417     case cris_ver_v10p:
1418       return (version >= 10);
1419     case cris_ver_v32p:
1420       return (version >= 32);
1421     default:
1422       /* Invalid cris version.  */
1423       return 0;
1424     }
1425 }
1426
1427 /* Returns the register size in unit byte.  Returns 0 for an unimplemented
1428    register, -1 for an invalid register.  */
1429
1430 static int
1431 cris_register_size (struct gdbarch *gdbarch, int regno)
1432 {
1433   int i;
1434   int spec_regno;
1435   
1436   if (regno >= 0 && regno < NUM_GENREGS)
1437     {
1438       /* General registers (R0 - R15) are 32 bits.  */
1439       return 4;
1440     }
1441   else if (regno >= NUM_GENREGS && regno < (NUM_GENREGS + NUM_SPECREGS))
1442     {
1443       /* Special register (R16 - R31).  cris_spec_regs is zero-based. 
1444          Adjust regno accordingly.  */
1445       spec_regno = regno - NUM_GENREGS;
1446       
1447       for (i = 0; cris_spec_regs[i].name != NULL; i++)
1448         {
1449           if (cris_spec_regs[i].number == spec_regno 
1450               && cris_spec_reg_applicable (gdbarch, cris_spec_regs[i]))
1451             /* Go with the first applicable register.  */
1452             return cris_spec_regs[i].reg_size;
1453         }
1454       /* Special register not applicable to this CRIS version.  */
1455       return 0;
1456     }
1457   else if (regno >= gdbarch_pc_regnum (gdbarch)
1458            && regno < gdbarch_num_regs (gdbarch))
1459     {
1460       /* This will apply to CRISv32 only where there are additional registers
1461          after the special registers (pseudo PC and support registers).  */
1462       return 4;
1463     }
1464
1465   
1466   return -1;
1467 }
1468
1469 /* Nonzero if regno should not be fetched from the target.  This is the case
1470    for unimplemented (size 0) and non-existant registers.  */
1471
1472 static int
1473 cris_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
1474 {
1475   return ((regno < 0 || regno >= gdbarch_num_regs (gdbarch))
1476           || (cris_register_size (gdbarch, regno) == 0));
1477 }
1478
1479 /* Nonzero if regno should not be written to the target, for various 
1480    reasons.  */
1481
1482 static int
1483 cris_cannot_store_register (struct gdbarch *gdbarch, int regno)
1484 {
1485   /* There are three kinds of registers we refuse to write to.
1486      1. Those that not implemented.
1487      2. Those that are read-only (depends on the processor mode).
1488      3. Those registers to which a write has no effect.  */
1489
1490   if (regno < 0
1491       || regno >= gdbarch_num_regs (gdbarch)
1492       || cris_register_size (gdbarch, regno) == 0)
1493     /* Not implemented.  */
1494     return 1;
1495
1496   else if  (regno == VR_REGNUM)
1497     /* Read-only.  */
1498     return 1;
1499
1500   else if  (regno == P0_REGNUM || regno == P4_REGNUM || regno == P8_REGNUM)
1501     /* Writing has no effect.  */
1502     return 1;
1503
1504   /* IBR, BAR, BRP and IRP are read-only in user mode.  Let the debug
1505      agent decide whether they are writable.  */
1506   
1507   return 0;
1508 }
1509
1510 /* Nonzero if regno should not be fetched from the target.  This is the case
1511    for unimplemented (size 0) and non-existant registers.  */
1512
1513 static int
1514 crisv32_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
1515 {
1516   return ((regno < 0 || regno >= gdbarch_num_regs (gdbarch))
1517           || (cris_register_size (gdbarch, regno) == 0));
1518 }
1519
1520 /* Nonzero if regno should not be written to the target, for various 
1521    reasons.  */
1522
1523 static int
1524 crisv32_cannot_store_register (struct gdbarch *gdbarch, int regno)
1525 {
1526   /* There are three kinds of registers we refuse to write to.
1527      1. Those that not implemented.
1528      2. Those that are read-only (depends on the processor mode).
1529      3. Those registers to which a write has no effect.  */
1530
1531   if (regno < 0
1532       || regno >= gdbarch_num_regs (gdbarch)
1533       || cris_register_size (gdbarch, regno) == 0)
1534     /* Not implemented.  */
1535     return 1;
1536
1537   else if  (regno == VR_REGNUM)
1538     /* Read-only.  */
1539     return 1;
1540
1541   else if  (regno == BZ_REGNUM || regno == WZ_REGNUM || regno == DZ_REGNUM)
1542     /* Writing has no effect.  */
1543     return 1;
1544
1545   /* Many special registers are read-only in user mode.  Let the debug
1546      agent decide whether they are writable.  */
1547   
1548   return 0;
1549 }
1550
1551 /* Return the GDB type (defined in gdbtypes.c) for the "standard" data type
1552    of data in register regno.  */
1553
1554 static struct type *
1555 cris_register_type (struct gdbarch *gdbarch, int regno)
1556 {
1557   if (regno == gdbarch_pc_regnum (gdbarch))
1558     return builtin_type (gdbarch)->builtin_func_ptr;
1559   else if (regno == gdbarch_sp_regnum (gdbarch)
1560            || regno == CRIS_FP_REGNUM)
1561     return builtin_type (gdbarch)->builtin_data_ptr;
1562   else if ((regno >= 0 && regno < gdbarch_sp_regnum (gdbarch))
1563            || (regno >= MOF_REGNUM && regno <= USP_REGNUM))
1564     /* Note: R8 taken care of previous clause.  */
1565     return builtin_type (gdbarch)->builtin_uint32;
1566   else if (regno >= P4_REGNUM && regno <= CCR_REGNUM)
1567       return builtin_type (gdbarch)->builtin_uint16;
1568   else if (regno >= P0_REGNUM && regno <= VR_REGNUM)
1569       return builtin_type (gdbarch)->builtin_uint8;
1570   else
1571       /* Invalid (unimplemented) register.  */
1572       return builtin_type (gdbarch)->builtin_int0;
1573 }
1574
1575 static struct type *
1576 crisv32_register_type (struct gdbarch *gdbarch, int regno)
1577 {
1578   if (regno == gdbarch_pc_regnum (gdbarch))
1579     return builtin_type (gdbarch)->builtin_func_ptr;
1580   else if (regno == gdbarch_sp_regnum (gdbarch)
1581            || regno == CRIS_FP_REGNUM)
1582     return builtin_type (gdbarch)->builtin_data_ptr;
1583   else if ((regno >= 0 && regno <= ACR_REGNUM)
1584            || (regno >= EXS_REGNUM && regno <= SPC_REGNUM)
1585            || (regno == PID_REGNUM)
1586            || (regno >= S0_REGNUM && regno <= S15_REGNUM))
1587     /* Note: R8 and SP taken care of by previous clause.  */
1588     return builtin_type (gdbarch)->builtin_uint32;
1589   else if (regno == WZ_REGNUM)
1590       return builtin_type (gdbarch)->builtin_uint16;
1591   else if (regno == BZ_REGNUM || regno == VR_REGNUM || regno == SRS_REGNUM)
1592       return builtin_type (gdbarch)->builtin_uint8;
1593   else
1594     {
1595       /* Invalid (unimplemented) register.  Should not happen as there are
1596          no unimplemented CRISv32 registers.  */
1597       warning (_("crisv32_register_type: unknown regno %d"), regno);
1598       return builtin_type (gdbarch)->builtin_int0;
1599     }
1600 }
1601
1602 /* Stores a function return value of type type, where valbuf is the address 
1603    of the value to be stored.  */
1604
1605 /* In the CRIS ABI, R10 and R11 are used to store return values.  */
1606
1607 static void
1608 cris_store_return_value (struct type *type, struct regcache *regcache,
1609                          const gdb_byte *valbuf)
1610 {
1611   struct gdbarch *gdbarch = regcache->arch ();
1612   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1613   ULONGEST val;
1614   int len = type->length ();
1615   
1616   if (len <= 4)
1617     {
1618       /* Put the return value in R10.  */
1619       val = extract_unsigned_integer (valbuf, len, byte_order);
1620       regcache_cooked_write_unsigned (regcache, ARG1_REGNUM, val);
1621     }
1622   else if (len <= 8)
1623     {
1624       /* Put the return value in R10 and R11.  */
1625       val = extract_unsigned_integer (valbuf, 4, byte_order);
1626       regcache_cooked_write_unsigned (regcache, ARG1_REGNUM, val);
1627       val = extract_unsigned_integer (valbuf + 4, len - 4, byte_order);
1628       regcache_cooked_write_unsigned (regcache, ARG2_REGNUM, val);
1629     }
1630   else
1631     error (_("cris_store_return_value: type length too large."));
1632 }
1633
1634 /* Return the name of register regno as a string.  Return NULL for an
1635    invalid or unimplemented register.  */
1636
1637 static const char *
1638 cris_special_register_name (struct gdbarch *gdbarch, int regno)
1639 {
1640   int spec_regno;
1641   int i;
1642
1643   /* Special register (R16 - R31).  cris_spec_regs is zero-based. 
1644      Adjust regno accordingly.  */
1645   spec_regno = regno - NUM_GENREGS;
1646   
1647   /* Assume nothing about the layout of the cris_spec_regs struct
1648      when searching.  */
1649   for (i = 0; cris_spec_regs[i].name != NULL; i++)
1650     {
1651       if (cris_spec_regs[i].number == spec_regno 
1652           && cris_spec_reg_applicable (gdbarch, cris_spec_regs[i]))
1653         /* Go with the first applicable register.  */
1654         return cris_spec_regs[i].name;
1655     }
1656   /* Special register not applicable to this CRIS version.  */
1657   return "";
1658 }
1659
1660 static const char *
1661 cris_register_name (struct gdbarch *gdbarch, int regno)
1662 {
1663   static const char *cris_genreg_names[] =
1664   { "r0",  "r1",  "r2",  "r3", \
1665     "r4",  "r5",  "r6",  "r7", \
1666     "r8",  "r9",  "r10", "r11", \
1667     "r12", "r13", "sp",  "pc" };
1668
1669   if (regno < NUM_GENREGS)
1670     {
1671       /* General register.  */
1672       gdb_static_assert (ARRAY_SIZE (cris_genreg_names) == NUM_GENREGS);
1673       return cris_genreg_names[regno];
1674     }
1675   else if (regno >= NUM_GENREGS && regno < gdbarch_num_regs (gdbarch))
1676     {
1677       return cris_special_register_name (gdbarch, regno);
1678     }
1679   else
1680     {
1681       /* Invalid register.  */
1682       return "";
1683     }
1684 }
1685
1686 static const char *
1687 crisv32_register_name (struct gdbarch *gdbarch, int regno)
1688 {
1689   static const char *crisv32_genreg_names[] =
1690     { "r0",  "r1",  "r2",  "r3", \
1691       "r4",  "r5",  "r6",  "r7", \
1692       "r8",  "r9",  "r10", "r11", \
1693       "r12", "r13", "sp",  "acr"
1694     };
1695
1696   static const char *crisv32_sreg_names[] =
1697     { "s0",  "s1",  "s2",  "s3", \
1698       "s4",  "s5",  "s6",  "s7", \
1699       "s8",  "s9",  "s10", "s11", \
1700       "s12", "s13", "s14",  "s15"
1701     };
1702
1703   if (regno >= 0 && regno < NUM_GENREGS)
1704     {
1705       /* General register.  */
1706       return crisv32_genreg_names[regno];
1707     }
1708   else if (regno >= NUM_GENREGS && regno < (NUM_GENREGS + NUM_SPECREGS))
1709     {
1710       return cris_special_register_name (gdbarch, regno);
1711     }
1712   else if (regno == gdbarch_pc_regnum (gdbarch))
1713     {
1714       return "pc";
1715     }
1716   else if (regno >= S0_REGNUM && regno <= S15_REGNUM)
1717     {
1718       return crisv32_sreg_names[regno - S0_REGNUM];
1719     }
1720   else
1721     {
1722       /* Invalid register.  */
1723       return NULL;
1724     }
1725 }
1726
1727 /* Convert DWARF register number REG to the appropriate register
1728    number used by GDB.  */
1729
1730 static int
1731 cris_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1732 {
1733   /* We need to re-map a couple of registers (SRP is 16 in Dwarf-2 register
1734      numbering, MOF is 18).
1735      Adapted from gcc/config/cris/cris.h.  */
1736   static int cris_dwarf_regmap[] = {
1737     0,  1,  2,  3,
1738     4,  5,  6,  7,
1739     8,  9,  10, 11,
1740     12, 13, 14, 15,
1741     27, -1, -1, -1,
1742     -1, -1, -1, 23,
1743     -1, -1, -1, 27,
1744     -1, -1, -1, -1
1745   };
1746   int regnum = -1;
1747
1748   if (reg >= 0 && reg < ARRAY_SIZE (cris_dwarf_regmap))
1749     regnum = cris_dwarf_regmap[reg];
1750
1751   return regnum;
1752 }
1753
1754 /* DWARF-2 frame support.  */
1755
1756 static void
1757 cris_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1758                             struct dwarf2_frame_state_reg *reg,
1759                             frame_info_ptr this_frame)
1760 {
1761   /* The return address column.  */
1762   if (regnum == gdbarch_pc_regnum (gdbarch))
1763     reg->how = DWARF2_FRAME_REG_RA;
1764
1765   /* The call frame address.  */
1766   else if (regnum == gdbarch_sp_regnum (gdbarch))
1767     reg->how = DWARF2_FRAME_REG_CFA;
1768 }
1769
1770 /* Extract from an array regbuf containing the raw register state a function
1771    return value of type type, and copy that, in virtual format, into 
1772    valbuf.  */
1773
1774 /* In the CRIS ABI, R10 and R11 are used to store return values.  */
1775
1776 static void
1777 cris_extract_return_value (struct type *type, struct regcache *regcache,
1778                            gdb_byte *valbuf)
1779 {
1780   struct gdbarch *gdbarch = regcache->arch ();
1781   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1782   ULONGEST val;
1783   int len = type->length ();
1784   
1785   if (len <= 4)
1786     {
1787       /* Get the return value from R10.  */
1788       regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &val);
1789       store_unsigned_integer (valbuf, len, byte_order, val);
1790     }
1791   else if (len <= 8)
1792     {
1793       /* Get the return value from R10 and R11.  */
1794       regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &val);
1795       store_unsigned_integer (valbuf, 4, byte_order, val);
1796       regcache_cooked_read_unsigned (regcache, ARG2_REGNUM, &val);
1797       store_unsigned_integer (valbuf + 4, len - 4, byte_order, val);
1798     }
1799   else
1800     error (_("cris_extract_return_value: type length too large"));
1801 }
1802
1803 /* Handle the CRIS return value convention.  */
1804
1805 static enum return_value_convention
1806 cris_return_value (struct gdbarch *gdbarch, struct value *function,
1807                    struct type *type, struct regcache *regcache,
1808                    gdb_byte *readbuf, const gdb_byte *writebuf)
1809 {
1810   if (type->code () == TYPE_CODE_STRUCT
1811       || type->code () == TYPE_CODE_UNION
1812       || type->length () > 8)
1813     /* Structs, unions, and anything larger than 8 bytes (2 registers)
1814        goes on the stack.  */
1815     return RETURN_VALUE_STRUCT_CONVENTION;
1816
1817   if (readbuf)
1818     cris_extract_return_value (type, regcache, readbuf);
1819   if (writebuf)
1820     cris_store_return_value (type, regcache, writebuf);
1821
1822   return RETURN_VALUE_REGISTER_CONVENTION;
1823 }
1824
1825 /* Calculates a value that measures how good inst_args constraints an 
1826    instruction.  It stems from cris_constraint, found in cris-dis.c.  */
1827
1828 static int
1829 constraint (unsigned int insn, const char *inst_args,
1830             inst_env_type *inst_env)
1831 {
1832   int retval = 0;
1833   int tmp, i;
1834
1835   const gdb_byte *s = (const gdb_byte *) inst_args;
1836
1837   for (; *s; s++)
1838     switch (*s) 
1839       {
1840       case 'm':
1841         if ((insn & 0x30) == 0x30)
1842           return -1;
1843         break;
1844         
1845       case 'S':
1846         /* A prefix operand.  */
1847         if (inst_env->prefix_found)
1848           break;
1849         else
1850           return -1;
1851
1852       case 'B':
1853         /* A "push" prefix.  (This check was REMOVED by san 970921.)  Check for
1854            valid "push" size.  In case of special register, it may be != 4.  */
1855         if (inst_env->prefix_found)
1856           break;
1857         else
1858           return -1;
1859
1860       case 'D':
1861         retval = (((insn >> 0xC) & 0xF) == (insn & 0xF));
1862         if (!retval)
1863           return -1;
1864         else 
1865           retval += 4;
1866         break;
1867
1868       case 'P':
1869         tmp = (insn >> 0xC) & 0xF;
1870
1871         for (i = 0; cris_spec_regs[i].name != NULL; i++)
1872           {
1873             /* Since we match four bits, we will give a value of
1874                4 - 1 = 3 in a match.  If there is a corresponding
1875                exact match of a special register in another pattern, it
1876                will get a value of 4, which will be higher.  This should
1877                be correct in that an exact pattern would match better that
1878                a general pattern.
1879                Note that there is a reason for not returning zero; the
1880                pattern for "clear" is partly  matched in the bit-pattern
1881                (the two lower bits must be zero), while the bit-pattern
1882                for a move from a special register is matched in the
1883                register constraint.
1884                This also means we will will have a race condition if
1885                there is a partly match in three bits in the bit pattern.  */
1886             if (tmp == cris_spec_regs[i].number)
1887               {
1888                 retval += 3;
1889                 break;
1890               }
1891           }
1892         
1893         if (cris_spec_regs[i].name == NULL)
1894           return -1;
1895         break;
1896       }
1897   return retval;
1898 }
1899
1900 /* Returns the number of bits set in the variable value.  */
1901
1902 static int
1903 number_of_bits (unsigned int value)
1904 {
1905   int number_of_bits = 0;
1906   
1907   while (value != 0)
1908     {
1909       number_of_bits += 1;
1910       value &= (value - 1);
1911     }
1912   return number_of_bits;
1913 }
1914
1915 /* Finds the address that should contain the single step breakpoint(s). 
1916    It stems from code in cris-dis.c.  */
1917
1918 static int
1919 find_cris_op (unsigned short insn, inst_env_type *inst_env)
1920 {
1921   int i;
1922   int max_level_of_match = -1;
1923   int max_matched = -1;
1924   int level_of_match;
1925
1926   for (i = 0; cris_opcodes[i].name != NULL; i++)
1927     {
1928       if (((cris_opcodes[i].match & insn) == cris_opcodes[i].match) 
1929           && ((cris_opcodes[i].lose & insn) == 0)
1930           /* Only CRISv10 instructions, please.  */
1931           && (cris_opcodes[i].applicable_version != cris_ver_v32p))
1932         {
1933           level_of_match = constraint (insn, cris_opcodes[i].args, inst_env);
1934           if (level_of_match >= 0)
1935             {
1936               level_of_match +=
1937                 number_of_bits (cris_opcodes[i].match | cris_opcodes[i].lose);
1938               if (level_of_match > max_level_of_match)
1939                 {
1940                   max_matched = i;
1941                   max_level_of_match = level_of_match;
1942                   if (level_of_match == 16)
1943                     {
1944                       /* All bits matched, cannot find better.  */
1945                       break;
1946                     }
1947                 }
1948             }
1949         }
1950     }
1951   return max_matched;
1952 }
1953
1954 /* Attempts to find single-step breakpoints.  Returns -1 on failure which is
1955    actually an internal error.  */
1956
1957 static int
1958 find_step_target (struct regcache *regcache, inst_env_type *inst_env)
1959 {
1960   int i;
1961   int offset;
1962   unsigned short insn;
1963   struct gdbarch *gdbarch = regcache->arch ();
1964   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1965
1966   /* Create a local register image and set the initial state.  */
1967   for (i = 0; i < NUM_GENREGS; i++)
1968     {
1969       inst_env->reg[i] = 
1970         (unsigned long) regcache_raw_get_unsigned (regcache, i);
1971     }
1972   offset = NUM_GENREGS;
1973   for (i = 0; i < NUM_SPECREGS; i++)
1974     {
1975       inst_env->preg[i] = 
1976         (unsigned long) regcache_raw_get_unsigned (regcache, offset + i);
1977     }
1978   inst_env->branch_found = 0;
1979   inst_env->slot_needed = 0;
1980   inst_env->delay_slot_pc_active = 0;
1981   inst_env->prefix_found = 0;
1982   inst_env->invalid = 0;
1983   inst_env->xflag_found = 0;
1984   inst_env->disable_interrupt = 0;
1985   inst_env->byte_order = byte_order;
1986
1987   /* Look for a step target.  */
1988   do
1989     {
1990       /* Read an instruction from the client.  */
1991       insn = read_memory_unsigned_integer
1992              (inst_env->reg[gdbarch_pc_regnum (gdbarch)], 2, byte_order);
1993
1994       /* If the instruction is not in a delay slot the new content of the
1995          PC is [PC] + 2.  If the instruction is in a delay slot it is not
1996          that simple.  Since a instruction in a delay slot cannot change 
1997          the content of the PC, it does not matter what value PC will have. 
1998          Just make sure it is a valid instruction.  */
1999       if (!inst_env->delay_slot_pc_active)
2000         {
2001           inst_env->reg[gdbarch_pc_regnum (gdbarch)] += 2;
2002         }
2003       else
2004         {
2005           inst_env->delay_slot_pc_active = 0;
2006           inst_env->reg[gdbarch_pc_regnum (gdbarch)]
2007             = inst_env->delay_slot_pc;
2008         }
2009       /* Analyse the present instruction.  */
2010       i = find_cris_op (insn, inst_env);
2011       if (i == -1)
2012         {
2013           inst_env->invalid = 1;
2014         }
2015       else
2016         {
2017           cris_gdb_func (gdbarch, cris_opcodes[i].op, insn, inst_env);
2018         }
2019     } while (!inst_env->invalid 
2020              && (inst_env->prefix_found || inst_env->xflag_found 
2021                  || inst_env->slot_needed));
2022   return i;
2023 }
2024
2025 /* There is no hardware single-step support.  The function find_step_target
2026    digs through the opcodes in order to find all possible targets.
2027    Either one ordinary target or two targets for branches may be found.  */
2028
2029 static std::vector<CORE_ADDR>
2030 cris_software_single_step (struct regcache *regcache)
2031 {
2032   struct gdbarch *gdbarch = regcache->arch ();
2033   inst_env_type inst_env;
2034   std::vector<CORE_ADDR> next_pcs;
2035
2036   /* Analyse the present instruction environment and insert 
2037      breakpoints.  */
2038   int status = find_step_target (regcache, &inst_env);
2039   if (status == -1)
2040     {
2041       /* Could not find a target.  Things are likely to go downhill 
2042          from here.  */
2043       warning (_("CRIS software single step could not find a step target."));
2044     }
2045   else
2046     {
2047       /* Insert at most two breakpoints.  One for the next PC content
2048          and possibly another one for a branch, jump, etc.  */
2049       CORE_ADDR next_pc
2050         = (CORE_ADDR) inst_env.reg[gdbarch_pc_regnum (gdbarch)];
2051
2052       next_pcs.push_back (next_pc);
2053       if (inst_env.branch_found 
2054           && (CORE_ADDR) inst_env.branch_break_address != next_pc)
2055         {
2056           CORE_ADDR branch_target_address
2057                 = (CORE_ADDR) inst_env.branch_break_address;
2058
2059           next_pcs.push_back (branch_target_address);
2060         }
2061     }
2062
2063   return next_pcs;
2064 }
2065
2066 /* Calculates the prefix value for quick offset addressing mode.  */
2067
2068 static void
2069 quick_mode_bdap_prefix (unsigned short inst, inst_env_type *inst_env)
2070 {
2071   /* It's invalid to be in a delay slot.  You can't have a prefix to this
2072      instruction (not 100% sure).  */
2073   if (inst_env->slot_needed || inst_env->prefix_found)
2074     {
2075       inst_env->invalid = 1;
2076       return; 
2077     }
2078  
2079   inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
2080   inst_env->prefix_value += cris_get_bdap_quick_offset (inst);
2081
2082   /* A prefix doesn't change the xflag_found.  But the rest of the flags
2083      need updating.  */
2084   inst_env->slot_needed = 0;
2085   inst_env->prefix_found = 1;
2086 }
2087
2088 /* Updates the autoincrement register.  The size of the increment is derived 
2089    from the size of the operation.  The PC is always kept aligned on even
2090    word addresses.  */
2091
2092 static void 
2093 process_autoincrement (int size, unsigned short inst, inst_env_type *inst_env)
2094 {
2095   if (size == INST_BYTE_SIZE)
2096     {
2097       inst_env->reg[cris_get_operand1 (inst)] += 1;
2098
2099       /* The PC must be word aligned, so increase the PC with one
2100          word even if the size is byte.  */
2101       if (cris_get_operand1 (inst) == REG_PC)
2102         {
2103           inst_env->reg[REG_PC] += 1;
2104         }
2105     }
2106   else if (size == INST_WORD_SIZE)
2107     {
2108       inst_env->reg[cris_get_operand1 (inst)] += 2;
2109     }
2110   else if (size == INST_DWORD_SIZE)
2111     {
2112       inst_env->reg[cris_get_operand1 (inst)] += 4;
2113     }
2114   else
2115     {
2116       /* Invalid size.  */
2117       inst_env->invalid = 1;
2118     }
2119 }
2120
2121 /* Just a forward declaration.  */
2122
2123 static unsigned long get_data_from_address (unsigned short *inst,
2124                                             CORE_ADDR address,
2125                                             enum bfd_endian byte_order);
2126
2127 /* Calculates the prefix value for the general case of offset addressing 
2128    mode.  */
2129
2130 static void
2131 bdap_prefix (unsigned short inst, inst_env_type *inst_env)
2132 {
2133   /* It's invalid to be in a delay slot.  */
2134   if (inst_env->slot_needed || inst_env->prefix_found)
2135     {
2136       inst_env->invalid = 1;
2137       return; 
2138     }
2139
2140   /* The calculation of prefix_value used to be after process_autoincrement,
2141      but that fails for an instruction such as jsr [$r0+12] which is encoded
2142      as 5f0d 0c00 30b9 when compiled with -fpic.  Since PC is operand1 it
2143      mustn't be incremented until we have read it and what it points at.  */
2144   inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
2145
2146   /* The offset is an indirection of the contents of the operand1 register.  */
2147   inst_env->prefix_value += 
2148     get_data_from_address (&inst, inst_env->reg[cris_get_operand1 (inst)],
2149                            inst_env->byte_order);
2150   
2151   if (cris_get_mode (inst) == AUTOINC_MODE)
2152     {
2153       process_autoincrement (cris_get_size (inst), inst, inst_env); 
2154     }
2155    
2156   /* A prefix doesn't change the xflag_found.  But the rest of the flags
2157      need updating.  */
2158   inst_env->slot_needed = 0;
2159   inst_env->prefix_found = 1;
2160 }
2161
2162 /* Calculates the prefix value for the index addressing mode.  */
2163
2164 static void
2165 biap_prefix (unsigned short inst, inst_env_type *inst_env)
2166 {
2167   /* It's invalid to be in a delay slot.  I can't see that it's possible to
2168      have a prefix to this instruction.  So I will treat this as invalid.  */
2169   if (inst_env->slot_needed || inst_env->prefix_found)
2170     {
2171       inst_env->invalid = 1;
2172       return;
2173     }
2174   
2175   inst_env->prefix_value = inst_env->reg[cris_get_operand1 (inst)];
2176
2177   /* The offset is the operand2 value shifted the size of the instruction 
2178      to the left.  */
2179   inst_env->prefix_value += 
2180     inst_env->reg[cris_get_operand2 (inst)] << cris_get_size (inst);
2181   
2182   /* If the PC is operand1 (base) the address used is the address after 
2183      the main instruction, i.e. address + 2 (the PC is already compensated
2184      for the prefix operation).  */
2185   if (cris_get_operand1 (inst) == REG_PC)
2186     {
2187       inst_env->prefix_value += 2;
2188     }
2189
2190   /* A prefix doesn't change the xflag_found.  But the rest of the flags
2191      need updating.  */
2192   inst_env->slot_needed = 0;
2193   inst_env->xflag_found = 0;
2194   inst_env->prefix_found = 1;
2195 }
2196
2197 /* Calculates the prefix value for the double indirect addressing mode.  */
2198
2199 static void 
2200 dip_prefix (unsigned short inst, inst_env_type *inst_env)
2201 {
2202
2203   CORE_ADDR address;
2204
2205   /* It's invalid to be in a delay slot.  */
2206   if (inst_env->slot_needed || inst_env->prefix_found)
2207     {
2208       inst_env->invalid = 1;
2209       return;
2210     }
2211   
2212   /* The prefix value is one dereference of the contents of the operand1
2213      register.  */
2214   address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
2215   inst_env->prefix_value
2216     = read_memory_unsigned_integer (address, 4, inst_env->byte_order);
2217     
2218   /* Check if the mode is autoincrement.  */
2219   if (cris_get_mode (inst) == AUTOINC_MODE)
2220     {
2221       inst_env->reg[cris_get_operand1 (inst)] += 4;
2222     }
2223
2224   /* A prefix doesn't change the xflag_found.  But the rest of the flags
2225      need updating.  */
2226   inst_env->slot_needed = 0;
2227   inst_env->xflag_found = 0;
2228   inst_env->prefix_found = 1;
2229 }
2230
2231 /* Finds the destination for a branch with 8-bits offset.  */
2232
2233 static void
2234 eight_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
2235 {
2236
2237   short offset;
2238
2239   /* If we have a prefix or are in a delay slot it's bad.  */
2240   if (inst_env->slot_needed || inst_env->prefix_found)
2241     {
2242       inst_env->invalid = 1;
2243       return;
2244     }
2245   
2246   /* We have a branch, find out where the branch will land.  */
2247   offset = cris_get_branch_short_offset (inst);
2248
2249   /* Check if the offset is signed.  */
2250   if (offset & BRANCH_SIGNED_SHORT_OFFSET_MASK)
2251     {
2252       offset |= 0xFF00;
2253     }
2254   
2255   /* The offset ends with the sign bit, set it to zero.  The address
2256      should always be word aligned.  */
2257   offset &= ~BRANCH_SIGNED_SHORT_OFFSET_MASK;
2258   
2259   inst_env->branch_found = 1;
2260   inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2261
2262   inst_env->slot_needed = 1;
2263   inst_env->prefix_found = 0;
2264   inst_env->xflag_found = 0;
2265   inst_env->disable_interrupt = 1;
2266 }
2267
2268 /* Finds the destination for a branch with 16-bits offset.  */
2269
2270 static void 
2271 sixteen_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
2272 {
2273   short offset;
2274
2275   /* If we have a prefix or is in a delay slot it's bad.  */
2276   if (inst_env->slot_needed || inst_env->prefix_found)
2277     {
2278       inst_env->invalid = 1;
2279       return;
2280     }
2281
2282   /* We have a branch, find out the offset for the branch.  */
2283   offset = read_memory_integer (inst_env->reg[REG_PC], 2,
2284                                 inst_env->byte_order);
2285
2286   /* The instruction is one word longer than normal, so add one word
2287      to the PC.  */
2288   inst_env->reg[REG_PC] += 2;
2289
2290   inst_env->branch_found = 1;
2291   inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2292
2293
2294   inst_env->slot_needed = 1;
2295   inst_env->prefix_found = 0;
2296   inst_env->xflag_found = 0;
2297   inst_env->disable_interrupt = 1;
2298 }
2299
2300 /* Handles the ABS instruction.  */
2301
2302 static void 
2303 abs_op (unsigned short inst, inst_env_type *inst_env)
2304 {
2305
2306   long value;
2307   
2308   /* ABS can't have a prefix, so it's bad if it does.  */
2309   if (inst_env->prefix_found)
2310     {
2311       inst_env->invalid = 1;
2312       return;
2313     }
2314
2315   /* Check if the operation affects the PC.  */
2316   if (cris_get_operand2 (inst) == REG_PC)
2317     {
2318     
2319       /* It's invalid to change to the PC if we are in a delay slot.  */
2320       if (inst_env->slot_needed)
2321         {
2322           inst_env->invalid = 1;
2323           return;
2324         }
2325
2326       value = (long) inst_env->reg[REG_PC];
2327
2328       /* The value of abs (SIGNED_DWORD_MASK) is SIGNED_DWORD_MASK.  */
2329       if (value != SIGNED_DWORD_MASK)
2330         {
2331           value = -value;
2332           inst_env->reg[REG_PC] = (long) value;
2333         }
2334     }
2335
2336   inst_env->slot_needed = 0;
2337   inst_env->prefix_found = 0;
2338   inst_env->xflag_found = 0;
2339   inst_env->disable_interrupt = 0;
2340 }
2341
2342 /* Handles the ADDI instruction.  */
2343
2344 static void 
2345 addi_op (unsigned short inst, inst_env_type *inst_env)
2346 {
2347   /* It's invalid to have the PC as base register.  And ADDI can't have
2348      a prefix.  */
2349   if (inst_env->prefix_found || (cris_get_operand1 (inst) == REG_PC))
2350     {
2351       inst_env->invalid = 1;
2352       return;
2353     }
2354
2355   inst_env->slot_needed = 0;
2356   inst_env->prefix_found = 0;
2357   inst_env->xflag_found = 0;
2358   inst_env->disable_interrupt = 0;
2359 }
2360
2361 /* Handles the ASR instruction.  */
2362
2363 static void 
2364 asr_op (unsigned short inst, inst_env_type *inst_env)
2365 {
2366   int shift_steps;
2367   unsigned long value;
2368   unsigned long signed_extend_mask = 0;
2369
2370   /* ASR can't have a prefix, so check that it doesn't.  */
2371   if (inst_env->prefix_found)
2372     {
2373       inst_env->invalid = 1;
2374       return;
2375     }
2376
2377   /* Check if the PC is the target register.  */
2378   if (cris_get_operand2 (inst) == REG_PC)
2379     {
2380       /* It's invalid to change the PC in a delay slot.  */
2381       if (inst_env->slot_needed)
2382         {
2383           inst_env->invalid = 1;
2384           return;
2385         }
2386       /* Get the number of bits to shift.  */
2387       shift_steps
2388         = cris_get_asr_shift_steps (inst_env->reg[cris_get_operand1 (inst)]);
2389       value = inst_env->reg[REG_PC];
2390
2391       /* Find out how many bits the operation should apply to.  */
2392       if (cris_get_size (inst) == INST_BYTE_SIZE)
2393         {
2394           if (value & SIGNED_BYTE_MASK)
2395             {
2396               signed_extend_mask = 0xFF;
2397               signed_extend_mask = signed_extend_mask >> shift_steps;
2398               signed_extend_mask = ~signed_extend_mask;
2399             }
2400           value = value >> shift_steps;
2401           value |= signed_extend_mask;
2402           value &= 0xFF;
2403           inst_env->reg[REG_PC] &= 0xFFFFFF00;
2404           inst_env->reg[REG_PC] |= value;
2405         }
2406       else if (cris_get_size (inst) == INST_WORD_SIZE)
2407         {
2408           if (value & SIGNED_WORD_MASK)
2409             {
2410               signed_extend_mask = 0xFFFF;
2411               signed_extend_mask = signed_extend_mask >> shift_steps;
2412               signed_extend_mask = ~signed_extend_mask;
2413             }
2414           value = value >> shift_steps;
2415           value |= signed_extend_mask;
2416           value &= 0xFFFF;
2417           inst_env->reg[REG_PC] &= 0xFFFF0000;
2418           inst_env->reg[REG_PC] |= value;
2419         }
2420       else if (cris_get_size (inst) == INST_DWORD_SIZE)
2421         {
2422           if (value & SIGNED_DWORD_MASK)
2423             {
2424               signed_extend_mask = 0xFFFFFFFF;
2425               signed_extend_mask = signed_extend_mask >> shift_steps;
2426               signed_extend_mask = ~signed_extend_mask;
2427             }
2428           value = value >> shift_steps;
2429           value |= signed_extend_mask;
2430           inst_env->reg[REG_PC]  = value;
2431         }
2432     }
2433   inst_env->slot_needed = 0;
2434   inst_env->prefix_found = 0;
2435   inst_env->xflag_found = 0;
2436   inst_env->disable_interrupt = 0;
2437 }
2438
2439 /* Handles the ASRQ instruction.  */
2440
2441 static void 
2442 asrq_op (unsigned short inst, inst_env_type *inst_env)
2443 {
2444
2445   int shift_steps;
2446   unsigned long value;
2447   unsigned long signed_extend_mask = 0;
2448   
2449   /* ASRQ can't have a prefix, so check that it doesn't.  */
2450   if (inst_env->prefix_found)
2451     {
2452       inst_env->invalid = 1;
2453       return;
2454     }
2455
2456   /* Check if the PC is the target register.  */
2457   if (cris_get_operand2 (inst) == REG_PC)
2458     {
2459
2460       /* It's invalid to change the PC in a delay slot.  */
2461       if (inst_env->slot_needed)
2462         {
2463           inst_env->invalid = 1;
2464           return;
2465         }
2466       /* The shift size is given as a 5 bit quick value, i.e. we don't
2467          want the sign bit of the quick value.  */
2468       shift_steps = cris_get_asr_shift_steps (inst);
2469       value = inst_env->reg[REG_PC];
2470       if (value & SIGNED_DWORD_MASK)
2471         {
2472           signed_extend_mask = 0xFFFFFFFF;
2473           signed_extend_mask = signed_extend_mask >> shift_steps;
2474           signed_extend_mask = ~signed_extend_mask;
2475         }
2476       value = value >> shift_steps;
2477       value |= signed_extend_mask;
2478       inst_env->reg[REG_PC]  = value;
2479     }
2480   inst_env->slot_needed = 0;
2481   inst_env->prefix_found = 0;
2482   inst_env->xflag_found = 0;
2483   inst_env->disable_interrupt = 0;
2484 }
2485
2486 /* Handles the AX, EI and SETF instruction.  */
2487
2488 static void 
2489 ax_ei_setf_op (unsigned short inst, inst_env_type *inst_env)
2490 {
2491   if (inst_env->prefix_found)
2492     {
2493       inst_env->invalid = 1;
2494       return;
2495     }
2496   /* Check if the instruction is setting the X flag.  */
2497   if (cris_is_xflag_bit_on (inst))
2498     {
2499       inst_env->xflag_found = 1;
2500     }
2501   else
2502     {
2503       inst_env->xflag_found = 0;
2504     }
2505   inst_env->slot_needed = 0;
2506   inst_env->prefix_found = 0;
2507   inst_env->disable_interrupt = 1;
2508 }
2509
2510 /* Checks if the instruction is in assign mode.  If so, it updates the assign 
2511    register.  Note that check_assign assumes that the caller has checked that
2512    there is a prefix to this instruction.  The mode check depends on this.  */
2513
2514 static void 
2515 check_assign (unsigned short inst, inst_env_type *inst_env)
2516 {
2517   /* Check if it's an assign addressing mode.  */
2518   if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2519     {
2520       /* Assign the prefix value to operand 1.  */
2521       inst_env->reg[cris_get_operand1 (inst)] = inst_env->prefix_value;
2522     }
2523 }
2524
2525 /* Handles the 2-operand BOUND instruction.  */
2526
2527 static void 
2528 two_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2529 {
2530   /* It's invalid to have the PC as the index operand.  */
2531   if (cris_get_operand2 (inst) == REG_PC)
2532     {
2533       inst_env->invalid = 1;
2534       return;
2535     }
2536   /* Check if we have a prefix.  */
2537   if (inst_env->prefix_found)
2538     {
2539       check_assign (inst, inst_env);
2540     }
2541   /* Check if this is an autoincrement mode.  */
2542   else if (cris_get_mode (inst) == AUTOINC_MODE)
2543     {
2544       /* It's invalid to change the PC in a delay slot.  */
2545       if (inst_env->slot_needed)
2546         {
2547           inst_env->invalid = 1;
2548           return;
2549         }
2550       process_autoincrement (cris_get_size (inst), inst, inst_env);
2551     }
2552   inst_env->slot_needed = 0;
2553   inst_env->prefix_found = 0;
2554   inst_env->xflag_found = 0;
2555   inst_env->disable_interrupt = 0;
2556 }
2557
2558 /* Handles the 3-operand BOUND instruction.  */
2559
2560 static void 
2561 three_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2562 {
2563   /* It's an error if we haven't got a prefix.  And it's also an error
2564      if the PC is the destination register.  */
2565   if ((!inst_env->prefix_found) || (cris_get_operand1 (inst) == REG_PC))
2566     {
2567       inst_env->invalid = 1;
2568       return;
2569     }
2570   inst_env->slot_needed = 0;
2571   inst_env->prefix_found = 0;
2572   inst_env->xflag_found = 0;
2573   inst_env->disable_interrupt = 0;
2574 }
2575
2576 /* Clears the status flags in inst_env.  */
2577
2578 static void 
2579 btst_nop_op (unsigned short inst, inst_env_type *inst_env)
2580 {
2581   /* It's an error if we have got a prefix.  */
2582   if (inst_env->prefix_found)
2583     {
2584       inst_env->invalid = 1;
2585       return;
2586     }
2587
2588   inst_env->slot_needed = 0;
2589   inst_env->prefix_found = 0;
2590   inst_env->xflag_found = 0;
2591   inst_env->disable_interrupt = 0;
2592 }
2593
2594 /* Clears the status flags in inst_env.  */
2595
2596 static void 
2597 clearf_di_op (unsigned short inst, inst_env_type *inst_env)
2598 {
2599   /* It's an error if we have got a prefix.  */
2600   if (inst_env->prefix_found)
2601     {
2602       inst_env->invalid = 1;
2603       return;
2604     }
2605
2606   inst_env->slot_needed = 0;
2607   inst_env->prefix_found = 0;
2608   inst_env->xflag_found = 0;
2609   inst_env->disable_interrupt = 1;
2610 }
2611
2612 /* Handles the CLEAR instruction if it's in register mode.  */
2613
2614 static void 
2615 reg_mode_clear_op (unsigned short inst, inst_env_type *inst_env)
2616 {
2617   /* Check if the target is the PC.  */
2618   if (cris_get_operand2 (inst) == REG_PC)
2619     {
2620       /* The instruction will clear the instruction's size bits.  */
2621       int clear_size = cris_get_clear_size (inst);
2622       if (clear_size == INST_BYTE_SIZE)
2623         {
2624           inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFFFF00;
2625         }
2626       if (clear_size == INST_WORD_SIZE)
2627         {
2628           inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFF0000;
2629         }
2630       if (clear_size == INST_DWORD_SIZE)
2631         {
2632           inst_env->delay_slot_pc = 0x0;
2633         }
2634       /* The jump will be delayed with one delay slot.  So we need a delay 
2635          slot.  */
2636       inst_env->slot_needed = 1;
2637       inst_env->delay_slot_pc_active = 1;
2638     }
2639   else
2640     {
2641       /* The PC will not change => no delay slot.  */
2642       inst_env->slot_needed = 0;
2643     }
2644   inst_env->prefix_found = 0;
2645   inst_env->xflag_found = 0;
2646   inst_env->disable_interrupt = 0;
2647 }
2648
2649 /* Handles the TEST instruction if it's in register mode.  */
2650
2651 static void
2652 reg_mode_test_op (unsigned short inst, inst_env_type *inst_env)
2653 {
2654   /* It's an error if we have got a prefix.  */
2655   if (inst_env->prefix_found)
2656     {
2657       inst_env->invalid = 1;
2658       return;
2659     }
2660   inst_env->slot_needed = 0;
2661   inst_env->prefix_found = 0;
2662   inst_env->xflag_found = 0;
2663   inst_env->disable_interrupt = 0;
2664
2665 }
2666
2667 /* Handles the CLEAR and TEST instruction if the instruction isn't 
2668    in register mode.  */
2669
2670 static void 
2671 none_reg_mode_clear_test_op (unsigned short inst, inst_env_type *inst_env)
2672 {
2673   /* Check if we are in a prefix mode.  */
2674   if (inst_env->prefix_found)
2675     {
2676       /* The only way the PC can change is if this instruction is in
2677          assign addressing mode.  */
2678       check_assign (inst, inst_env);
2679     }
2680   /* Indirect mode can't change the PC so just check if the mode is
2681      autoincrement.  */
2682   else if (cris_get_mode (inst) == AUTOINC_MODE)
2683     {
2684       process_autoincrement (cris_get_size (inst), inst, inst_env);
2685     }
2686   inst_env->slot_needed = 0;
2687   inst_env->prefix_found = 0;
2688   inst_env->xflag_found = 0;
2689   inst_env->disable_interrupt = 0;
2690 }
2691
2692 /* Checks that the PC isn't the destination register or the instructions has
2693    a prefix.  */
2694
2695 static void 
2696 dstep_logshift_mstep_neg_not_op (unsigned short inst, inst_env_type *inst_env)
2697 {
2698   /* It's invalid to have the PC as the destination.  The instruction can't
2699      have a prefix.  */
2700   if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2701     {
2702       inst_env->invalid = 1;
2703       return;
2704     }
2705
2706   inst_env->slot_needed = 0;
2707   inst_env->prefix_found = 0;
2708   inst_env->xflag_found = 0;
2709   inst_env->disable_interrupt = 0;
2710 }
2711
2712 /* Checks that the instruction doesn't have a prefix.  */
2713
2714 static void
2715 break_op (unsigned short inst, inst_env_type *inst_env)
2716 {
2717   /* The instruction can't have a prefix.  */
2718   if (inst_env->prefix_found)
2719     {
2720       inst_env->invalid = 1;
2721       return;
2722     }
2723
2724   inst_env->slot_needed = 0;
2725   inst_env->prefix_found = 0;
2726   inst_env->xflag_found = 0;
2727   inst_env->disable_interrupt = 1;
2728 }
2729
2730 /* Checks that the PC isn't the destination register and that the instruction
2731    doesn't have a prefix.  */
2732
2733 static void
2734 scc_op (unsigned short inst, inst_env_type *inst_env)
2735 {
2736   /* It's invalid to have the PC as the destination.  The instruction can't
2737      have a prefix.  */
2738   if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2739     {
2740       inst_env->invalid = 1;
2741       return;
2742     }
2743
2744   inst_env->slot_needed = 0;
2745   inst_env->prefix_found = 0;
2746   inst_env->xflag_found = 0;
2747   inst_env->disable_interrupt = 1;
2748 }
2749
2750 /* Handles the register mode JUMP instruction.  */
2751
2752 static void 
2753 reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
2754 {
2755   /* It's invalid to do a JUMP in a delay slot.  The mode is register, so 
2756      you can't have a prefix.  */
2757   if ((inst_env->slot_needed) || (inst_env->prefix_found))
2758     {
2759       inst_env->invalid = 1;
2760       return;
2761     }
2762   
2763   /* Just change the PC.  */
2764   inst_env->reg[REG_PC] = inst_env->reg[cris_get_operand1 (inst)];
2765   inst_env->slot_needed = 0;
2766   inst_env->prefix_found = 0;
2767   inst_env->xflag_found = 0;
2768   inst_env->disable_interrupt = 1;
2769 }
2770
2771 /* Handles the JUMP instruction for all modes except register.  */
2772
2773 static void
2774 none_reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
2775 {
2776   unsigned long newpc;
2777   CORE_ADDR address;
2778
2779   /* It's invalid to do a JUMP in a delay slot.  */
2780   if (inst_env->slot_needed)
2781     {
2782       inst_env->invalid = 1;
2783     }
2784   else
2785     {
2786       /* Check if we have a prefix.  */
2787       if (inst_env->prefix_found)
2788         {
2789           check_assign (inst, inst_env);
2790
2791           /* Get the new value for the PC.  */
2792           newpc = 
2793             read_memory_unsigned_integer ((CORE_ADDR) inst_env->prefix_value,
2794                                           4, inst_env->byte_order);
2795         }
2796       else
2797         {
2798           /* Get the new value for the PC.  */
2799           address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
2800           newpc = read_memory_unsigned_integer (address,
2801                                                 4, inst_env->byte_order);
2802
2803           /* Check if we should increment a register.  */
2804           if (cris_get_mode (inst) == AUTOINC_MODE)
2805             {
2806               inst_env->reg[cris_get_operand1 (inst)] += 4;
2807             }
2808         }
2809       inst_env->reg[REG_PC] = newpc;
2810     }
2811   inst_env->slot_needed = 0;
2812   inst_env->prefix_found = 0;
2813   inst_env->xflag_found = 0;
2814   inst_env->disable_interrupt = 1;
2815 }
2816
2817 /* Handles moves to special registers (aka P-register) for all modes.  */
2818
2819 static void 
2820 move_to_preg_op (struct gdbarch *gdbarch, unsigned short inst,
2821                  inst_env_type *inst_env)
2822 {
2823   if (inst_env->prefix_found)
2824     {
2825       /* The instruction has a prefix that means we are only interested if
2826          the instruction is in assign mode.  */
2827       if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2828         {
2829           /* The prefix handles the problem if we are in a delay slot.  */
2830           if (cris_get_operand1 (inst) == REG_PC)
2831             {
2832               /* Just take care of the assign.  */
2833               check_assign (inst, inst_env);
2834             }
2835         }
2836     }
2837   else if (cris_get_mode (inst) == AUTOINC_MODE)
2838     {
2839       /* The instruction doesn't have a prefix, the only case left that we
2840          are interested in is the autoincrement mode.  */
2841       if (cris_get_operand1 (inst) == REG_PC)
2842         {
2843           /* If the PC is to be incremented it's invalid to be in a 
2844              delay slot.  */
2845           if (inst_env->slot_needed)
2846             {
2847               inst_env->invalid = 1;
2848               return;
2849             }
2850
2851           /* The increment depends on the size of the special register.  */
2852           if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 1)
2853             {
2854               process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
2855             }
2856           else if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 2)
2857             {
2858               process_autoincrement (INST_WORD_SIZE, inst, inst_env);
2859             }
2860           else
2861             {
2862               process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
2863             }
2864         }
2865     }
2866   inst_env->slot_needed = 0;
2867   inst_env->prefix_found = 0;
2868   inst_env->xflag_found = 0;
2869   inst_env->disable_interrupt = 1;
2870 }
2871
2872 /* Handles moves from special registers (aka P-register) for all modes
2873    except register.  */
2874
2875 static void 
2876 none_reg_mode_move_from_preg_op (struct gdbarch *gdbarch, unsigned short inst,
2877                                  inst_env_type *inst_env)
2878 {
2879   if (inst_env->prefix_found)
2880     {
2881       /* The instruction has a prefix that means we are only interested if
2882          the instruction is in assign mode.  */
2883       if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2884         {
2885           /* The prefix handles the problem if we are in a delay slot.  */
2886           if (cris_get_operand1 (inst) == REG_PC)
2887             {
2888               /* Just take care of the assign.  */
2889               check_assign (inst, inst_env);
2890             }
2891         }
2892     }    
2893   /* The instruction doesn't have a prefix, the only case left that we
2894      are interested in is the autoincrement mode.  */
2895   else if (cris_get_mode (inst) == AUTOINC_MODE)
2896     {
2897       if (cris_get_operand1 (inst) == REG_PC)
2898         {
2899           /* If the PC is to be incremented it's invalid to be in a 
2900              delay slot.  */
2901           if (inst_env->slot_needed)
2902             {
2903               inst_env->invalid = 1;
2904               return;
2905             }
2906           
2907           /* The increment depends on the size of the special register.  */
2908           if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 1)
2909             {
2910               process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
2911             }
2912           else if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 2)
2913             {
2914               process_autoincrement (INST_WORD_SIZE, inst, inst_env);
2915             }
2916           else
2917             {
2918               process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
2919             }
2920         }
2921     }
2922   inst_env->slot_needed = 0;
2923   inst_env->prefix_found = 0;
2924   inst_env->xflag_found = 0;
2925   inst_env->disable_interrupt = 1;
2926 }
2927
2928 /* Handles moves from special registers (aka P-register) when the mode
2929    is register.  */
2930
2931 static void 
2932 reg_mode_move_from_preg_op (unsigned short inst, inst_env_type *inst_env)
2933 {
2934   /* Register mode move from special register can't have a prefix.  */
2935   if (inst_env->prefix_found)
2936     {
2937       inst_env->invalid = 1;
2938       return;
2939     }
2940
2941   if (cris_get_operand1 (inst) == REG_PC)
2942     {
2943       /* It's invalid to change the PC in a delay slot.  */
2944       if (inst_env->slot_needed)
2945         {
2946           inst_env->invalid = 1;
2947           return;
2948         }
2949       /* The destination is the PC, the jump will have a delay slot.  */
2950       inst_env->delay_slot_pc = inst_env->preg[cris_get_operand2 (inst)];
2951       inst_env->slot_needed = 1;
2952       inst_env->delay_slot_pc_active = 1;
2953     }
2954   else
2955     {
2956       /* If the destination isn't PC, there will be no jump.  */
2957       inst_env->slot_needed = 0;
2958     }
2959   inst_env->prefix_found = 0;
2960   inst_env->xflag_found = 0;
2961   inst_env->disable_interrupt = 1;
2962 }
2963
2964 /* Handles the MOVEM from memory to general register instruction.  */
2965
2966 static void 
2967 move_mem_to_reg_movem_op (unsigned short inst, inst_env_type *inst_env)
2968 {
2969   if (inst_env->prefix_found)
2970     {
2971       /* The prefix handles the problem if we are in a delay slot.  Is the
2972          MOVEM instruction going to change the PC?  */
2973       if (cris_get_operand2 (inst) >= REG_PC)
2974         {
2975           inst_env->reg[REG_PC] = 
2976             read_memory_unsigned_integer (inst_env->prefix_value,
2977                                           4, inst_env->byte_order);
2978         }
2979       /* The assign value is the value after the increment.  Normally, the   
2980          assign value is the value before the increment.  */
2981       if ((cris_get_operand1 (inst) == REG_PC) 
2982           && (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
2983         {
2984           inst_env->reg[REG_PC] = inst_env->prefix_value;
2985           inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
2986         }
2987     }
2988   else
2989     {
2990       /* Is the MOVEM instruction going to change the PC?  */
2991       if (cris_get_operand2 (inst) == REG_PC)
2992         {
2993           /* It's invalid to change the PC in a delay slot.  */
2994           if (inst_env->slot_needed)
2995             {
2996               inst_env->invalid = 1;
2997               return;
2998             }
2999           inst_env->reg[REG_PC] =
3000             read_memory_unsigned_integer (inst_env->reg[cris_get_operand1 (inst)], 
3001                                           4, inst_env->byte_order);
3002         }
3003       /* The increment is not depending on the size, instead it's depending
3004          on the number of registers loaded from memory.  */
3005       if ((cris_get_operand1 (inst) == REG_PC)
3006           && (cris_get_mode (inst) == AUTOINC_MODE))
3007         {
3008           /* It's invalid to change the PC in a delay slot.  */
3009           if (inst_env->slot_needed)
3010             {
3011               inst_env->invalid = 1;
3012               return;
3013             }
3014           inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1); 
3015         }
3016     }
3017   inst_env->slot_needed = 0;
3018   inst_env->prefix_found = 0;
3019   inst_env->xflag_found = 0;
3020   inst_env->disable_interrupt = 0;
3021 }
3022
3023 /* Handles the MOVEM to memory from general register instruction.  */
3024
3025 static void 
3026 move_reg_to_mem_movem_op (unsigned short inst, inst_env_type *inst_env)
3027 {
3028   if (inst_env->prefix_found)
3029     {
3030       /* The assign value is the value after the increment.  Normally, the
3031          assign value is the value before the increment.  */
3032       if ((cris_get_operand1 (inst) == REG_PC)
3033           && (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
3034         {
3035           /* The prefix handles the problem if we are in a delay slot.  */
3036           inst_env->reg[REG_PC] = inst_env->prefix_value;
3037           inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3038         }
3039     }
3040   else
3041     {
3042       /* The increment is not depending on the size, instead it's depending
3043          on the number of registers loaded to memory.  */
3044       if ((cris_get_operand1 (inst) == REG_PC)
3045           && (cris_get_mode (inst) == AUTOINC_MODE))
3046         {
3047           /* It's invalid to change the PC in a delay slot.  */
3048           if (inst_env->slot_needed)
3049             {
3050               inst_env->invalid = 1;
3051               return;
3052             }
3053           inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3054         }
3055     }
3056   inst_env->slot_needed = 0;
3057   inst_env->prefix_found = 0;
3058   inst_env->xflag_found = 0;
3059   inst_env->disable_interrupt = 0;
3060 }
3061
3062 /* Handles the instructions that's not yet implemented, by setting
3063    inst_env->invalid to true.  */
3064
3065 static void 
3066 not_implemented_op (unsigned short inst, inst_env_type *inst_env)
3067 {
3068   inst_env->invalid = 1;
3069 }
3070
3071 /* Handles the XOR instruction.  */
3072
3073 static void 
3074 xor_op (unsigned short inst, inst_env_type *inst_env)
3075 {
3076   /* XOR can't have a prefix.  */
3077   if (inst_env->prefix_found)
3078     {
3079       inst_env->invalid = 1;
3080       return;
3081     }
3082
3083   /* Check if the PC is the target.  */
3084   if (cris_get_operand2 (inst) == REG_PC)
3085     {
3086       /* It's invalid to change the PC in a delay slot.  */
3087       if (inst_env->slot_needed)
3088         {
3089           inst_env->invalid = 1;
3090           return;
3091         }
3092       inst_env->reg[REG_PC] ^= inst_env->reg[cris_get_operand1 (inst)];
3093     }
3094   inst_env->slot_needed = 0;
3095   inst_env->prefix_found = 0;
3096   inst_env->xflag_found = 0;
3097   inst_env->disable_interrupt = 0;
3098 }
3099
3100 /* Handles the MULS instruction.  */
3101
3102 static void 
3103 muls_op (unsigned short inst, inst_env_type *inst_env)
3104 {
3105   /* MULS/U can't have a prefix.  */
3106   if (inst_env->prefix_found)
3107     {
3108       inst_env->invalid = 1;
3109       return;
3110     }
3111
3112   /* Consider it invalid if the PC is the target.  */
3113   if (cris_get_operand2 (inst) == REG_PC)
3114     {
3115       inst_env->invalid = 1;
3116       return;
3117     }
3118   inst_env->slot_needed = 0;
3119   inst_env->prefix_found = 0;
3120   inst_env->xflag_found = 0;
3121   inst_env->disable_interrupt = 0;
3122 }
3123
3124 /* Handles the MULU instruction.  */
3125
3126 static void 
3127 mulu_op (unsigned short inst, inst_env_type *inst_env)
3128 {
3129   /* MULS/U can't have a prefix.  */
3130   if (inst_env->prefix_found)
3131     {
3132       inst_env->invalid = 1;
3133       return;
3134     }
3135
3136   /* Consider it invalid if the PC is the target.  */
3137   if (cris_get_operand2 (inst) == REG_PC)
3138     {
3139       inst_env->invalid = 1;
3140       return;
3141     }
3142   inst_env->slot_needed = 0;
3143   inst_env->prefix_found = 0;
3144   inst_env->xflag_found = 0;
3145   inst_env->disable_interrupt = 0;
3146 }
3147
3148 /* Calculate the result of the instruction for ADD, SUB, CMP AND, OR and MOVE.
3149    The MOVE instruction is the move from source to register.  */
3150
3151 static void 
3152 add_sub_cmp_and_or_move_action (unsigned short inst, inst_env_type *inst_env, 
3153                                 unsigned long source1, unsigned long source2)
3154 {
3155   unsigned long pc_mask;
3156   unsigned long operation_mask;
3157   
3158   /* Find out how many bits the operation should apply to.  */
3159   if (cris_get_size (inst) == INST_BYTE_SIZE)
3160     {
3161       pc_mask = 0xFFFFFF00; 
3162       operation_mask = 0xFF;
3163     }
3164   else if (cris_get_size (inst) == INST_WORD_SIZE)
3165     {
3166       pc_mask = 0xFFFF0000;
3167       operation_mask = 0xFFFF;
3168     }
3169   else if (cris_get_size (inst) == INST_DWORD_SIZE)
3170     {
3171       pc_mask = 0x0;
3172       operation_mask = 0xFFFFFFFF;
3173     }
3174   else
3175     {
3176       /* The size is out of range.  */
3177       inst_env->invalid = 1;
3178       return;
3179     }
3180
3181   /* The instruction just works on uw_operation_mask bits.  */
3182   source2 &= operation_mask;
3183   source1 &= operation_mask;
3184
3185   /* Now calculate the result.  The opcode's 3 first bits separates
3186      the different actions.  */
3187   switch (cris_get_opcode (inst) & 7)
3188     {
3189     case 0:  /* add */
3190       source1 += source2;
3191       break;
3192
3193     case 1:  /* move */
3194       source1 = source2;
3195       break;
3196
3197     case 2:  /* subtract */
3198       source1 -= source2;
3199       break;
3200
3201     case 3:  /* compare */
3202       break;
3203
3204     case 4:  /* and */
3205       source1 &= source2;
3206       break;
3207
3208     case 5:  /* or */
3209       source1 |= source2;
3210       break;
3211
3212     default:
3213       inst_env->invalid = 1;
3214       return;
3215
3216       break;
3217     }
3218
3219   /* Make sure that the result doesn't contain more than the instruction
3220      size bits.  */
3221   source2 &= operation_mask;
3222
3223   /* Calculate the new breakpoint address.  */
3224   inst_env->reg[REG_PC] &= pc_mask;
3225   inst_env->reg[REG_PC] |= source1;
3226
3227 }
3228
3229 /* Extends the value from either byte or word size to a dword.  If the mode
3230    is zero extend then the value is extended with zero.  If instead the mode
3231    is signed extend the sign bit of the value is taken into consideration.  */
3232
3233 static unsigned long 
3234 do_sign_or_zero_extend (unsigned long value, unsigned short *inst)
3235 {
3236   /* The size can be either byte or word, check which one it is. 
3237      Don't check the highest bit, it's indicating if it's a zero
3238      or sign extend.  */
3239   if (cris_get_size (*inst) & INST_WORD_SIZE)
3240     {
3241       /* Word size.  */
3242       value &= 0xFFFF;
3243
3244       /* Check if the instruction is signed extend.  If so, check if value has
3245          the sign bit on.  */
3246       if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_WORD_MASK))
3247         {
3248           value |= SIGNED_WORD_EXTEND_MASK;
3249         } 
3250     }
3251   else
3252     {
3253       /* Byte size.  */
3254       value &= 0xFF;
3255
3256       /* Check if the instruction is signed extend.  If so, check if value has
3257          the sign bit on.  */
3258       if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_BYTE_MASK))
3259         {
3260           value |= SIGNED_BYTE_EXTEND_MASK;
3261         }
3262     }
3263   /* The size should now be dword.  */
3264   cris_set_size_to_dword (inst);
3265   return value;
3266 }
3267
3268 /* Handles the register mode for the ADD, SUB, CMP, AND, OR and MOVE
3269    instruction.  The MOVE instruction is the move from source to register.  */
3270
3271 static void 
3272 reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3273                                      inst_env_type *inst_env)
3274 {
3275   unsigned long operand1;
3276   unsigned long operand2;
3277
3278   /* It's invalid to have a prefix to the instruction.  This is a register 
3279      mode instruction and can't have a prefix.  */
3280   if (inst_env->prefix_found)
3281     {
3282       inst_env->invalid = 1;
3283       return;
3284     }
3285   /* Check if the instruction has PC as its target.  */
3286   if (cris_get_operand2 (inst) == REG_PC)
3287     {
3288       if (inst_env->slot_needed)
3289         {
3290           inst_env->invalid = 1;
3291           return;
3292         }
3293       /* The instruction has the PC as its target register.  */
3294       operand1 = inst_env->reg[cris_get_operand1 (inst)]; 
3295       operand2 = inst_env->reg[REG_PC];
3296
3297       /* Check if it's a extend, signed or zero instruction.  */
3298       if (cris_get_opcode (inst) < 4)
3299         {
3300           operand1 = do_sign_or_zero_extend (operand1, &inst);
3301         }
3302       /* Calculate the PC value after the instruction, i.e. where the
3303          breakpoint should be.  The order of the udw_operands is vital.  */
3304       add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1); 
3305     }
3306   inst_env->slot_needed = 0;
3307   inst_env->prefix_found = 0;
3308   inst_env->xflag_found = 0;
3309   inst_env->disable_interrupt = 0;
3310 }
3311
3312 /* Returns the data contained at address.  The size of the data is derived from
3313    the size of the operation.  If the instruction is a zero or signed
3314    extend instruction, the size field is changed in instruction.  */
3315
3316 static unsigned long 
3317 get_data_from_address (unsigned short *inst, CORE_ADDR address,
3318                        enum bfd_endian byte_order)
3319 {
3320   int size = cris_get_size (*inst);
3321   unsigned long value;
3322
3323   /* If it's an extend instruction we don't want the signed extend bit,
3324      because it influences the size.  */
3325   if (cris_get_opcode (*inst) < 4)
3326     {
3327       size &= ~SIGNED_EXTEND_BIT_MASK;
3328     }
3329   /* Is there a need for checking the size?  Size should contain the number of
3330      bytes to read.  */
3331   size = 1 << size;
3332   value = read_memory_unsigned_integer (address, size, byte_order);
3333
3334   /* Check if it's an extend, signed or zero instruction.  */
3335   if (cris_get_opcode (*inst) < 4)
3336     {
3337       value = do_sign_or_zero_extend (value, inst);
3338     }
3339   return value;
3340 }
3341
3342 /* Handles the assign addresing mode for the ADD, SUB, CMP, AND, OR and MOVE 
3343    instructions.  The MOVE instruction is the move from source to register.  */
3344
3345 static void 
3346 handle_prefix_assign_mode_for_aritm_op (unsigned short inst, 
3347                                         inst_env_type *inst_env)
3348 {
3349   unsigned long operand2;
3350   unsigned long operand3;
3351
3352   check_assign (inst, inst_env);
3353   if (cris_get_operand2 (inst) == REG_PC)
3354     {
3355       operand2 = inst_env->reg[REG_PC];
3356
3357       /* Get the value of the third operand.  */
3358       operand3 = get_data_from_address (&inst, inst_env->prefix_value,
3359                                         inst_env->byte_order);
3360
3361       /* Calculate the PC value after the instruction, i.e. where the
3362          breakpoint should be.  The order of the udw_operands is vital.  */
3363       add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3364     }
3365   inst_env->slot_needed = 0;
3366   inst_env->prefix_found = 0;
3367   inst_env->xflag_found = 0;
3368   inst_env->disable_interrupt = 0;
3369 }
3370
3371 /* Handles the three-operand addressing mode for the ADD, SUB, CMP, AND and
3372    OR instructions.  Note that for this to work as expected, the calling
3373    function must have made sure that there is a prefix to this instruction.  */
3374
3375 static void 
3376 three_operand_add_sub_cmp_and_or_op (unsigned short inst, 
3377                                      inst_env_type *inst_env)
3378 {
3379   unsigned long operand2;
3380   unsigned long operand3;
3381
3382   if (cris_get_operand1 (inst) == REG_PC)
3383     {
3384       /* The PC will be changed by the instruction.  */
3385       operand2 = inst_env->reg[cris_get_operand2 (inst)];
3386
3387       /* Get the value of the third operand.  */
3388       operand3 = get_data_from_address (&inst, inst_env->prefix_value,
3389                                         inst_env->byte_order);
3390
3391       /* Calculate the PC value after the instruction, i.e. where the
3392          breakpoint should be.  */
3393       add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3394     }
3395   inst_env->slot_needed = 0;
3396   inst_env->prefix_found = 0;
3397   inst_env->xflag_found = 0;
3398   inst_env->disable_interrupt = 0;
3399 }
3400
3401 /* Handles the index addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3402    instructions.  The MOVE instruction is the move from source to register.  */
3403
3404 static void 
3405 handle_prefix_index_mode_for_aritm_op (unsigned short inst, 
3406                                        inst_env_type *inst_env)
3407 {
3408   if (cris_get_operand1 (inst) != cris_get_operand2 (inst))
3409     {
3410       /* If the instruction is MOVE it's invalid.  If the instruction is ADD,
3411          SUB, AND or OR something weird is going on (if everything works these
3412          instructions should end up in the three operand version).  */
3413       inst_env->invalid = 1;
3414       return;
3415     }
3416   else
3417     {
3418       /* three_operand_add_sub_cmp_and_or does the same as we should do here
3419          so use it.  */
3420       three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3421     }
3422   inst_env->slot_needed = 0;
3423   inst_env->prefix_found = 0;
3424   inst_env->xflag_found = 0;
3425   inst_env->disable_interrupt = 0;
3426 }
3427
3428 /* Handles the autoincrement and indirect addresing mode for the ADD, SUB,
3429    CMP, AND OR and MOVE instruction.  The MOVE instruction is the move from
3430    source to register.  */
3431
3432 static void 
3433 handle_inc_and_index_mode_for_aritm_op (unsigned short inst, 
3434                                         inst_env_type *inst_env)
3435 {
3436   unsigned long operand1;
3437   unsigned long operand2;
3438   unsigned long operand3;
3439   int size;
3440
3441   /* The instruction is either an indirect or autoincrement addressing mode.
3442      Check if the destination register is the PC.  */
3443   if (cris_get_operand2 (inst) == REG_PC)
3444     {
3445       /* Must be done here, get_data_from_address may change the size 
3446          field.  */
3447       size = cris_get_size (inst);
3448       operand2 = inst_env->reg[REG_PC];
3449
3450       /* Get the value of the third operand, i.e. the indirect operand.  */
3451       operand1 = inst_env->reg[cris_get_operand1 (inst)];
3452       operand3 = get_data_from_address (&inst, operand1, inst_env->byte_order);
3453
3454       /* Calculate the PC value after the instruction, i.e. where the
3455          breakpoint should be.  The order of the udw_operands is vital.  */
3456       add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3); 
3457     }
3458   /* If this is an autoincrement addressing mode, check if the increment
3459      changes the PC.  */
3460   if ((cris_get_operand1 (inst) == REG_PC)
3461       && (cris_get_mode (inst) == AUTOINC_MODE))
3462     {
3463       /* Get the size field.  */
3464       size = cris_get_size (inst);
3465
3466       /* If it's an extend instruction we don't want the signed extend bit,
3467          because it influences the size.  */
3468       if (cris_get_opcode (inst) < 4)
3469         {
3470           size &= ~SIGNED_EXTEND_BIT_MASK;
3471         }
3472       process_autoincrement (size, inst, inst_env);
3473     } 
3474   inst_env->slot_needed = 0;
3475   inst_env->prefix_found = 0;
3476   inst_env->xflag_found = 0;
3477   inst_env->disable_interrupt = 0;
3478 }
3479
3480 /* Handles the two-operand addressing mode, all modes except register, for
3481    the ADD, SUB CMP, AND and OR instruction.  */
3482
3483 static void 
3484 none_reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst, 
3485                                           inst_env_type *inst_env)
3486 {
3487   if (inst_env->prefix_found)
3488     {
3489       if (cris_get_mode (inst) == PREFIX_INDEX_MODE)
3490         {
3491           handle_prefix_index_mode_for_aritm_op (inst, inst_env);
3492         }
3493       else if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
3494         {
3495           handle_prefix_assign_mode_for_aritm_op (inst, inst_env);
3496         }
3497       else
3498         {
3499           /* The mode is invalid for a prefixed base instruction.  */
3500           inst_env->invalid = 1;
3501           return;
3502         }
3503     }
3504   else
3505     {
3506       handle_inc_and_index_mode_for_aritm_op (inst, inst_env);
3507     }
3508 }
3509
3510 /* Handles the quick addressing mode for the ADD and SUB instruction.  */
3511
3512 static void 
3513 quick_mode_add_sub_op (unsigned short inst, inst_env_type *inst_env)
3514 {
3515   unsigned long operand1;
3516   unsigned long operand2;
3517
3518   /* It's a bad idea to be in a prefix instruction now.  This is a quick mode
3519      instruction and can't have a prefix.  */
3520   if (inst_env->prefix_found)
3521     {
3522       inst_env->invalid = 1;
3523       return;
3524     }
3525
3526   /* Check if the instruction has PC as its target.  */
3527   if (cris_get_operand2 (inst) == REG_PC)
3528     {
3529       if (inst_env->slot_needed)
3530         {
3531           inst_env->invalid = 1;
3532           return;
3533         }
3534       operand1 = cris_get_quick_value (inst);
3535       operand2 = inst_env->reg[REG_PC];
3536
3537       /* The size should now be dword.  */
3538       cris_set_size_to_dword (&inst);
3539
3540       /* Calculate the PC value after the instruction, i.e. where the
3541          breakpoint should be.  */
3542       add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3543     }
3544   inst_env->slot_needed = 0;
3545   inst_env->prefix_found = 0;
3546   inst_env->xflag_found = 0;
3547   inst_env->disable_interrupt = 0;
3548 }
3549
3550 /* Handles the quick addressing mode for the CMP, AND and OR instruction.  */
3551
3552 static void 
3553 quick_mode_and_cmp_move_or_op (unsigned short inst, inst_env_type *inst_env)
3554 {
3555   unsigned long operand1;
3556   unsigned long operand2;
3557
3558   /* It's a bad idea to be in a prefix instruction now.  This is a quick mode
3559      instruction and can't have a prefix.  */
3560   if (inst_env->prefix_found)
3561     {
3562       inst_env->invalid = 1;
3563       return;
3564     }
3565   /* Check if the instruction has PC as its target.  */
3566   if (cris_get_operand2 (inst) == REG_PC)
3567     {
3568       if (inst_env->slot_needed)
3569         {
3570           inst_env->invalid = 1;
3571           return;
3572         }
3573       /* The instruction has the PC as its target register.  */
3574       operand1 = cris_get_quick_value (inst);
3575       operand2 = inst_env->reg[REG_PC];
3576
3577       /* The quick value is signed, so check if we must do a signed extend.  */
3578       if (operand1 & SIGNED_QUICK_VALUE_MASK)
3579         {
3580           /* sign extend  */
3581           operand1 |= SIGNED_QUICK_VALUE_EXTEND_MASK;
3582         }
3583       /* The size should now be dword.  */
3584       cris_set_size_to_dword (&inst);
3585
3586       /* Calculate the PC value after the instruction, i.e. where the
3587          breakpoint should be.  */
3588       add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3589     }
3590   inst_env->slot_needed = 0;
3591   inst_env->prefix_found = 0;
3592   inst_env->xflag_found = 0;
3593   inst_env->disable_interrupt = 0;
3594 }
3595
3596 /* Translate op_type to a function and call it.  */
3597
3598 static void
3599 cris_gdb_func (struct gdbarch *gdbarch, enum cris_op_type op_type,
3600                unsigned short inst, inst_env_type *inst_env)
3601 {
3602   switch (op_type)
3603     {
3604     case cris_not_implemented_op:
3605       not_implemented_op (inst, inst_env);
3606       break;
3607
3608     case cris_abs_op:
3609       abs_op (inst, inst_env);
3610       break;
3611
3612     case cris_addi_op:
3613       addi_op (inst, inst_env);
3614       break;
3615
3616     case cris_asr_op:
3617       asr_op (inst, inst_env);
3618       break;
3619
3620     case cris_asrq_op:
3621       asrq_op (inst, inst_env);
3622       break;
3623
3624     case cris_ax_ei_setf_op:
3625       ax_ei_setf_op (inst, inst_env);
3626       break;
3627
3628     case cris_bdap_prefix:
3629       bdap_prefix (inst, inst_env);
3630       break;
3631
3632     case cris_biap_prefix:
3633       biap_prefix (inst, inst_env);
3634       break;
3635
3636     case cris_break_op:
3637       break_op (inst, inst_env);
3638       break;
3639
3640     case cris_btst_nop_op:
3641       btst_nop_op (inst, inst_env);
3642       break;
3643
3644     case cris_clearf_di_op:
3645       clearf_di_op (inst, inst_env);
3646       break;
3647
3648     case cris_dip_prefix:
3649       dip_prefix (inst, inst_env);
3650       break;
3651
3652     case cris_dstep_logshift_mstep_neg_not_op:
3653       dstep_logshift_mstep_neg_not_op (inst, inst_env);
3654       break;
3655
3656     case cris_eight_bit_offset_branch_op:
3657       eight_bit_offset_branch_op (inst, inst_env);
3658       break;
3659
3660     case cris_move_mem_to_reg_movem_op:
3661       move_mem_to_reg_movem_op (inst, inst_env);
3662       break;
3663
3664     case cris_move_reg_to_mem_movem_op:
3665       move_reg_to_mem_movem_op (inst, inst_env);
3666       break;
3667
3668     case cris_move_to_preg_op:
3669       move_to_preg_op (gdbarch, inst, inst_env);
3670       break;
3671
3672     case cris_muls_op:
3673       muls_op (inst, inst_env);
3674       break;
3675
3676     case cris_mulu_op:
3677       mulu_op (inst, inst_env);
3678       break;
3679
3680     case cris_none_reg_mode_add_sub_cmp_and_or_move_op:
3681       none_reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3682       break;
3683
3684     case cris_none_reg_mode_clear_test_op:
3685       none_reg_mode_clear_test_op (inst, inst_env);
3686       break;
3687
3688     case cris_none_reg_mode_jump_op:
3689       none_reg_mode_jump_op (inst, inst_env);
3690       break;
3691
3692     case cris_none_reg_mode_move_from_preg_op:
3693       none_reg_mode_move_from_preg_op (gdbarch, inst, inst_env);
3694       break;
3695
3696     case cris_quick_mode_add_sub_op:
3697       quick_mode_add_sub_op (inst, inst_env);
3698       break;
3699
3700     case cris_quick_mode_and_cmp_move_or_op:
3701       quick_mode_and_cmp_move_or_op (inst, inst_env);
3702       break;
3703
3704     case cris_quick_mode_bdap_prefix:
3705       quick_mode_bdap_prefix (inst, inst_env);
3706       break;
3707
3708     case cris_reg_mode_add_sub_cmp_and_or_move_op:
3709       reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3710       break;
3711
3712     case cris_reg_mode_clear_op:
3713       reg_mode_clear_op (inst, inst_env);
3714       break;
3715
3716     case cris_reg_mode_jump_op:
3717       reg_mode_jump_op (inst, inst_env);
3718       break;
3719
3720     case cris_reg_mode_move_from_preg_op:
3721       reg_mode_move_from_preg_op (inst, inst_env);
3722       break;
3723
3724     case cris_reg_mode_test_op:
3725       reg_mode_test_op (inst, inst_env);
3726       break;
3727
3728     case cris_scc_op:
3729       scc_op (inst, inst_env);
3730       break;
3731
3732     case cris_sixteen_bit_offset_branch_op:
3733       sixteen_bit_offset_branch_op (inst, inst_env);
3734       break;
3735
3736     case cris_three_operand_add_sub_cmp_and_or_op:
3737       three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3738       break;
3739
3740     case cris_three_operand_bound_op:
3741       three_operand_bound_op (inst, inst_env);
3742       break;
3743
3744     case cris_two_operand_bound_op:
3745       two_operand_bound_op (inst, inst_env);
3746       break;
3747
3748     case cris_xor_op:
3749       xor_op (inst, inst_env);
3750       break;
3751     }
3752 }
3753
3754 /* Originally from <asm/elf.h>.  */
3755 typedef unsigned char cris_elf_greg_t[4];
3756
3757 /* Same as user_regs_struct struct in <asm/user.h>.  */
3758 #define CRISV10_ELF_NGREG 35
3759 typedef cris_elf_greg_t cris_elf_gregset_t[CRISV10_ELF_NGREG];
3760
3761 #define CRISV32_ELF_NGREG 32
3762 typedef cris_elf_greg_t crisv32_elf_gregset_t[CRISV32_ELF_NGREG];
3763
3764 /* Unpack a cris_elf_gregset_t into GDB's register cache.  */
3765
3766 static void 
3767 cris_supply_gregset (const struct regset *regset, struct regcache *regcache,
3768                      int regnum, const void *gregs, size_t len)
3769 {
3770   struct gdbarch *gdbarch = regcache->arch ();
3771   cris_gdbarch_tdep *tdep = gdbarch_tdep<cris_gdbarch_tdep> (gdbarch);
3772   int i;
3773   const cris_elf_greg_t *regp = static_cast<const cris_elf_greg_t *>(gregs);
3774
3775   if (len != sizeof (cris_elf_gregset_t)
3776       && len != sizeof (crisv32_elf_gregset_t))
3777     warning (_("wrong size gregset struct in core file"));
3778   gdb_assert (len >= sizeof (crisv32_elf_gregset_t));
3779
3780   /* The kernel dumps all 32 registers as unsigned longs, but supply_register
3781      knows about the actual size of each register so that's no problem.  */
3782   for (i = 0; i < NUM_GENREGS + NUM_SPECREGS; i++)
3783     {
3784       if (regnum == -1 || regnum == i)
3785         regcache->raw_supply (i, (char *)&regp[i]);
3786     }
3787
3788   if (tdep->cris_version == 32 && (regnum == -1 || regnum == ERP_REGNUM))
3789     {
3790       /* Needed to set pseudo-register PC for CRISv32.  */
3791       /* FIXME: If ERP is in a delay slot at this point then the PC will
3792          be wrong.  Issue a warning to alert the user.  */
3793       regcache->raw_supply (gdbarch_pc_regnum (gdbarch),
3794                             (char *)&regp[ERP_REGNUM]);
3795
3796       if (*(char *)&regp[ERP_REGNUM] & 0x1)
3797         gdb_printf (gdb_stderr, "Warning: PC in delay slot\n");
3798     }
3799 }
3800
3801 static const struct regset cris_regset = {
3802   nullptr,
3803   cris_supply_gregset,
3804   /* We don't need a collect function because we only use this for core files
3805      (via iterate_over_regset_sections).  */
3806   nullptr,
3807   REGSET_VARIABLE_SIZE
3808 };
3809
3810 static void cris_iterate_over_regset_sections (struct gdbarch *gdbarch,
3811                                                iterate_over_regset_sections_cb *cb,
3812                                                void *cb_data,
3813                                                const struct regcache *regcache)
3814 {
3815   cb (".reg", sizeof (crisv32_elf_gregset_t), sizeof (crisv32_elf_gregset_t),
3816       &cris_regset, NULL, cb_data);
3817 }
3818
3819 void _initialize_cris_tdep ();
3820 void
3821 _initialize_cris_tdep ()
3822 {
3823   gdbarch_register (bfd_arch_cris, cris_gdbarch_init, cris_dump_tdep);
3824   
3825   /* CRIS-specific user-commands.  */
3826   add_setshow_zuinteger_cmd ("cris-version", class_support,
3827                              &usr_cmd_cris_version,
3828                              _("Set the current CRIS version."),
3829                              _("Show the current CRIS version."),
3830                              _("\
3831 Set to 10 for CRISv10 or 32 for CRISv32 if autodetection fails.\n\
3832 Defaults to 10. "),
3833                              set_cris_version,
3834                              NULL, /* FIXME: i18n: Current CRIS version
3835                                       is %s.  */
3836                              &setlist, &showlist);
3837
3838   add_setshow_enum_cmd ("cris-mode", class_support, 
3839                         cris_modes, &usr_cmd_cris_mode, 
3840                         _("Set the current CRIS mode."),
3841                         _("Show the current CRIS mode."),
3842                         _("\
3843 Set to CRIS_MODE_GURU when debugging in guru mode.\n\
3844 Makes GDB use the NRP register instead of the ERP register in certain cases."),
3845                         set_cris_mode,
3846                         NULL, /* FIXME: i18n: Current CRIS version is %s.  */
3847                         &setlist, &showlist);
3848   
3849   add_setshow_boolean_cmd ("cris-dwarf2-cfi", class_support,
3850                            &usr_cmd_cris_dwarf2_cfi,
3851                            _("Set the usage of Dwarf-2 CFI for CRIS."),
3852                            _("Show the usage of Dwarf-2 CFI for CRIS."),
3853                            _("Set this to \"off\" if using gcc-cris < R59."),
3854                            set_cris_dwarf2_cfi,
3855                            NULL, /* FIXME: i18n: Usage of Dwarf-2 CFI
3856                                     for CRIS is %d.  */
3857                            &setlist, &showlist);
3858 }
3859
3860 /* Prints out all target specific values.  */
3861
3862 static void
3863 cris_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3864 {
3865   cris_gdbarch_tdep *tdep = gdbarch_tdep<cris_gdbarch_tdep> (gdbarch);
3866   if (tdep != NULL)
3867     {
3868       gdb_printf (file, "cris_dump_tdep: tdep->cris_version = %i\n",
3869                   tdep->cris_version);
3870       gdb_printf (file, "cris_dump_tdep: tdep->cris_mode = %s\n",
3871                   tdep->cris_mode);
3872       gdb_printf (file, "cris_dump_tdep: tdep->cris_dwarf2_cfi = %i\n",
3873                   tdep->cris_dwarf2_cfi);
3874     }
3875 }
3876
3877 static void
3878 set_cris_version (const char *ignore_args, int from_tty, 
3879                   struct cmd_list_element *c)
3880 {
3881   struct gdbarch_info info;
3882
3883   usr_cmd_cris_version_valid = 1;
3884   
3885   /* Update the current architecture, if needed.  */
3886   if (!gdbarch_update_p (info))
3887     internal_error (_("cris_gdbarch_update: failed to update architecture."));
3888 }
3889
3890 static void
3891 set_cris_mode (const char *ignore_args, int from_tty, 
3892                struct cmd_list_element *c)
3893 {
3894   struct gdbarch_info info;
3895
3896   /* Update the current architecture, if needed.  */
3897   if (!gdbarch_update_p (info))
3898     internal_error ("cris_gdbarch_update: failed to update architecture.");
3899 }
3900
3901 static void
3902 set_cris_dwarf2_cfi (const char *ignore_args, int from_tty, 
3903                      struct cmd_list_element *c)
3904 {
3905   struct gdbarch_info info;
3906
3907   /* Update the current architecture, if needed.  */
3908   if (!gdbarch_update_p (info))
3909     internal_error (_("cris_gdbarch_update: failed to update architecture."));
3910 }
3911
3912 static struct gdbarch *
3913 cris_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3914 {
3915   struct gdbarch *gdbarch;
3916   unsigned int cris_version;
3917
3918   if (usr_cmd_cris_version_valid)
3919     {
3920       /* Trust the user's CRIS version setting.  */ 
3921       cris_version = usr_cmd_cris_version;
3922     }
3923   else if (info.abfd && bfd_get_mach (info.abfd) == bfd_mach_cris_v32)
3924     {
3925       cris_version = 32;
3926     }
3927   else
3928     {
3929       /* Assume it's CRIS version 10.  */
3930       cris_version = 10;
3931     }
3932
3933   /* Make the current settings visible to the user.  */
3934   usr_cmd_cris_version = cris_version;
3935   
3936   /* Find a candidate among the list of pre-declared architectures.  */
3937   for (arches = gdbarch_list_lookup_by_info (arches, &info); 
3938        arches != NULL;
3939        arches = gdbarch_list_lookup_by_info (arches->next, &info))
3940     {
3941       cris_gdbarch_tdep *tdep
3942         = gdbarch_tdep<cris_gdbarch_tdep> (arches->gdbarch);
3943
3944       if (tdep->cris_version == usr_cmd_cris_version
3945           && tdep->cris_mode == usr_cmd_cris_mode
3946           && tdep->cris_dwarf2_cfi == usr_cmd_cris_dwarf2_cfi)
3947         return arches->gdbarch;
3948     }
3949
3950   /* No matching architecture was found.  Create a new one.  */
3951   cris_gdbarch_tdep *tdep = new cris_gdbarch_tdep;
3952   info.byte_order = BFD_ENDIAN_LITTLE;
3953   gdbarch = gdbarch_alloc (&info, tdep);
3954
3955   tdep->cris_version = usr_cmd_cris_version;
3956   tdep->cris_mode = usr_cmd_cris_mode;
3957   tdep->cris_dwarf2_cfi = usr_cmd_cris_dwarf2_cfi;
3958
3959   set_gdbarch_return_value (gdbarch, cris_return_value);
3960   set_gdbarch_sp_regnum (gdbarch, 14);
3961   
3962   /* Length of ordinary registers used in push_word and a few other
3963      places.  register_size() is the real way to know how big a
3964      register is.  */
3965
3966   set_gdbarch_double_bit (gdbarch, 64);
3967   /* The default definition of a long double is 2 * gdbarch_double_bit,
3968      which means we have to set this explicitly.  */
3969   set_gdbarch_long_double_bit (gdbarch, 64);
3970
3971   /* The total amount of space needed to store (in an array called registers)
3972      GDB's copy of the machine's register state.  Note: We can not use
3973      cris_register_size at this point, since it relies on gdbarch
3974      being set.  */
3975   switch (tdep->cris_version)
3976     {
3977     case 0:
3978     case 1:
3979     case 2:
3980     case 3:
3981     case 8:
3982     case 9:
3983       /* Old versions; not supported.  */
3984       return 0;
3985
3986     case 10:
3987     case 11: 
3988       /* CRIS v10 and v11, a.k.a. ETRAX 100LX.  In addition to ETRAX 100, 
3989          P7 (32 bits), and P15 (32 bits) have been implemented.  */
3990       set_gdbarch_pc_regnum (gdbarch, 15);
3991       set_gdbarch_register_type (gdbarch, cris_register_type);
3992       /* There are 32 registers (some of which may not be implemented).  */
3993       set_gdbarch_num_regs (gdbarch, 32);
3994       set_gdbarch_register_name (gdbarch, cris_register_name);
3995       set_gdbarch_cannot_store_register (gdbarch, cris_cannot_store_register);
3996       set_gdbarch_cannot_fetch_register (gdbarch, cris_cannot_fetch_register);
3997
3998       set_gdbarch_software_single_step (gdbarch, cris_software_single_step);
3999       break;
4000
4001     case 32:
4002       /* CRIS v32.  General registers R0 - R15 (32 bits), special registers 
4003          P0 - P15 (32 bits) except P0, P1, P3 (8 bits) and P4 (16 bits)
4004          and pseudo-register PC (32 bits).  */
4005       set_gdbarch_pc_regnum (gdbarch, 32);
4006       set_gdbarch_register_type (gdbarch, crisv32_register_type);
4007       /* 32 registers + pseudo-register PC + 16 support registers.  */
4008       set_gdbarch_num_regs (gdbarch, 32 + 1 + 16);
4009       set_gdbarch_register_name (gdbarch, crisv32_register_name);
4010
4011       set_gdbarch_cannot_store_register 
4012         (gdbarch, crisv32_cannot_store_register);
4013       set_gdbarch_cannot_fetch_register
4014         (gdbarch, crisv32_cannot_fetch_register);
4015
4016       set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
4017
4018       set_gdbarch_single_step_through_delay 
4019         (gdbarch, crisv32_single_step_through_delay);
4020
4021       break;
4022
4023     default:
4024       /* Unknown version.  */
4025       return 0;
4026     }
4027
4028   /* Dummy frame functions (shared between CRISv10 and CRISv32 since they
4029      have the same ABI).  */
4030   set_gdbarch_push_dummy_code (gdbarch, cris_push_dummy_code);
4031   set_gdbarch_push_dummy_call (gdbarch, cris_push_dummy_call);
4032   set_gdbarch_frame_align (gdbarch, cris_frame_align);
4033   set_gdbarch_skip_prologue (gdbarch, cris_skip_prologue);
4034   
4035   /* The stack grows downward.  */
4036   set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
4037
4038   set_gdbarch_breakpoint_kind_from_pc (gdbarch, cris_breakpoint_kind_from_pc);
4039   set_gdbarch_sw_breakpoint_from_kind (gdbarch, cris_sw_breakpoint_from_kind);
4040   set_gdbarch_iterate_over_regset_sections (gdbarch, cris_iterate_over_regset_sections);
4041   
4042   if (tdep->cris_dwarf2_cfi == 1)
4043     {
4044       /* Hook in the Dwarf-2 frame sniffer.  */
4045       set_gdbarch_dwarf2_reg_to_regnum (gdbarch, cris_dwarf2_reg_to_regnum);
4046       dwarf2_frame_set_init_reg (gdbarch, cris_dwarf2_frame_init_reg);
4047       dwarf2_append_unwinders (gdbarch);
4048     }
4049
4050   if (tdep->cris_mode != cris_mode_guru)
4051     {
4052       frame_unwind_append_unwinder (gdbarch, &cris_sigtramp_frame_unwind);
4053     }
4054
4055   frame_unwind_append_unwinder (gdbarch, &cris_frame_unwind);
4056   frame_base_set_default (gdbarch, &cris_frame_base);
4057
4058   /* Hook in ABI-specific overrides, if they have been registered.  */
4059   gdbarch_init_osabi (info, gdbarch);
4060
4061   return gdbarch;
4062 }