1 /* Target dependent code for CRIS, for GDB, the GNU debugger.
3 Copyright (C) 2001, 2002, 2003, 2004, 2005 Free Software Foundation,
6 Contributed by Axis Communications AB.
7 Written by Hendrik Ruijter, Stefan Andersson, and Orjan Friberg.
9 This file is part of GDB.
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 51 Franklin Street, Fifth Floor,
24 Boston, MA 02110-1301, USA. */
28 #include "frame-unwind.h"
29 #include "frame-base.h"
30 #include "trad-frame.h"
31 #include "dwarf2-frame.h"
39 #include "opcode/cris.h"
40 #include "arch-utils.h"
42 #include "gdb_assert.h"
44 /* To get entry_point_address. */
47 #include "solib.h" /* Support for shared libraries. */
48 #include "solib-svr4.h" /* For struct link_map_offsets. */
49 #include "gdb_string.h"
54 /* There are no floating point registers. Used in gdbserver low-linux.c. */
57 /* There are 16 general registers. */
60 /* There are 16 special registers. */
63 /* CRISv32 has a pseudo PC register, not noted here. */
65 /* CRISv32 has 16 support registers. */
69 /* Register numbers of various important registers.
70 CRIS_FP_REGNUM Contains address of executing stack frame.
71 STR_REGNUM Contains the address of structure return values.
72 RET_REGNUM Contains the return value when shorter than or equal to 32 bits
73 ARG1_REGNUM Contains the first parameter to a function.
74 ARG2_REGNUM Contains the second parameter to a function.
75 ARG3_REGNUM Contains the third parameter to a function.
76 ARG4_REGNUM Contains the fourth parameter to a function. Rest on stack.
77 SP_REGNUM Contains address of top of stack.
78 PC_REGNUM Contains address of next instruction.
79 SRP_REGNUM Subroutine return pointer register.
80 BRP_REGNUM Breakpoint return pointer register. */
84 /* Enums with respect to the general registers, valid for all
85 CRIS versions. The frame pointer is always in R8. */
87 /* ABI related registers. */
95 /* Registers which happen to be common. */
100 /* CRISv10 et. al. specific registers. */
112 /* CRISv32 specific registers. */
125 CRISV32USP_REGNUM = 30, /* Shares name but not number with CRISv10. */
127 CRISV32PC_REGNUM = 32, /* Shares name but not number with CRISv10. */
147 extern const struct cris_spec_reg cris_spec_regs[];
149 /* CRIS version, set via the user command 'set cris-version'. Affects
150 register names and sizes. */
151 static int usr_cmd_cris_version;
153 /* Indicates whether to trust the above variable. */
154 static int usr_cmd_cris_version_valid = 0;
156 static const char cris_mode_normal[] = "normal";
157 static const char cris_mode_guru[] = "guru";
158 static const char *cris_modes[] = {
164 /* CRIS mode, set via the user command 'set cris-mode'. Affects
165 type of break instruction among other things. */
166 static const char *usr_cmd_cris_mode = cris_mode_normal;
168 /* Whether to make use of Dwarf-2 CFI (default on). */
169 static int usr_cmd_cris_dwarf2_cfi = 1;
171 /* CRIS architecture specific information. */
175 const char *cris_mode;
179 /* Functions for accessing target dependent data. */
184 return (gdbarch_tdep (current_gdbarch)->cris_version);
190 return (gdbarch_tdep (current_gdbarch)->cris_mode);
193 /* Sigtramp identification code copied from i386-linux-tdep.c. */
195 #define SIGTRAMP_INSN0 0x9c5f /* movu.w 0xXX, $r9 */
196 #define SIGTRAMP_OFFSET0 0
197 #define SIGTRAMP_INSN1 0xe93d /* break 13 */
198 #define SIGTRAMP_OFFSET1 4
200 static const unsigned short sigtramp_code[] =
202 SIGTRAMP_INSN0, 0x0077, /* movu.w $0x77, $r9 */
203 SIGTRAMP_INSN1 /* break 13 */
206 #define SIGTRAMP_LEN (sizeof sigtramp_code)
208 /* Note: same length as normal sigtramp code. */
210 static const unsigned short rt_sigtramp_code[] =
212 SIGTRAMP_INSN0, 0x00ad, /* movu.w $0xad, $r9 */
213 SIGTRAMP_INSN1 /* break 13 */
216 /* If PC is in a sigtramp routine, return the address of the start of
217 the routine. Otherwise, return 0. */
220 cris_sigtramp_start (struct frame_info *next_frame)
222 CORE_ADDR pc = frame_pc_unwind (next_frame);
223 gdb_byte buf[SIGTRAMP_LEN];
225 if (!safe_frame_unwind_memory (next_frame, pc, buf, SIGTRAMP_LEN))
228 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN0)
230 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN1)
233 pc -= SIGTRAMP_OFFSET1;
234 if (!safe_frame_unwind_memory (next_frame, pc, buf, SIGTRAMP_LEN))
238 if (memcmp (buf, sigtramp_code, SIGTRAMP_LEN) != 0)
244 /* If PC is in a RT sigtramp routine, return the address of the start of
245 the routine. Otherwise, return 0. */
248 cris_rt_sigtramp_start (struct frame_info *next_frame)
250 CORE_ADDR pc = frame_pc_unwind (next_frame);
251 gdb_byte buf[SIGTRAMP_LEN];
253 if (!safe_frame_unwind_memory (next_frame, pc, buf, SIGTRAMP_LEN))
256 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN0)
258 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN1)
261 pc -= SIGTRAMP_OFFSET1;
262 if (!safe_frame_unwind_memory (next_frame, pc, buf, SIGTRAMP_LEN))
266 if (memcmp (buf, rt_sigtramp_code, SIGTRAMP_LEN) != 0)
272 /* Assuming NEXT_FRAME is a frame following a GNU/Linux sigtramp
273 routine, return the address of the associated sigcontext structure. */
276 cris_sigcontext_addr (struct frame_info *next_frame)
282 frame_unwind_register (next_frame, SP_REGNUM, buf);
283 sp = extract_unsigned_integer (buf, 4);
285 /* Look for normal sigtramp frame first. */
286 pc = cris_sigtramp_start (next_frame);
289 /* struct signal_frame (arch/cris/kernel/signal.c) contains
290 struct sigcontext as its first member, meaning the SP points to
295 pc = cris_rt_sigtramp_start (next_frame);
298 /* struct rt_signal_frame (arch/cris/kernel/signal.c) contains
299 a struct ucontext, which in turn contains a struct sigcontext.
301 4 + 4 + 128 to struct ucontext, then
302 4 + 4 + 12 to struct sigcontext. */
306 error (_("Couldn't recognize signal trampoline."));
310 struct cris_unwind_cache
312 /* The previous frame's inner most stack address. Used as this
313 frame ID's stack_addr. */
315 /* The frame's base, optionally used by the high-level debug info. */
318 /* How far the SP and r8 (FP) have been offset from the start of
319 the stack frame (as defined by the previous frame's stack
325 /* From old frame_extra_info struct. */
329 /* Table indicating the location of each and every register. */
330 struct trad_frame_saved_reg *saved_regs;
333 static struct cris_unwind_cache *
334 cris_sigtramp_frame_unwind_cache (struct frame_info *next_frame,
337 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
338 struct cris_unwind_cache *info;
346 return (*this_cache);
348 info = FRAME_OBSTACK_ZALLOC (struct cris_unwind_cache);
349 (*this_cache) = info;
350 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
352 /* Zero all fields. */
358 info->uses_frame = 0;
360 info->leaf_function = 0;
362 frame_unwind_register (next_frame, SP_REGNUM, buf);
363 info->base = extract_unsigned_integer (buf, 4);
365 addr = cris_sigcontext_addr (next_frame);
367 /* Layout of the sigcontext struct:
370 unsigned long oldmask;
374 if (tdep->cris_version == 10)
376 /* R0 to R13 are stored in reverse order at offset (2 * 4) in
378 for (i = 0; i <= 13; i++)
379 info->saved_regs[i].addr = addr + ((15 - i) * 4);
381 info->saved_regs[MOF_REGNUM].addr = addr + (16 * 4);
382 info->saved_regs[DCCR_REGNUM].addr = addr + (17 * 4);
383 info->saved_regs[SRP_REGNUM].addr = addr + (18 * 4);
384 /* Note: IRP is off by 2 at this point. There's no point in correcting
385 it though since that will mean that the backtrace will show a PC
386 different from what is shown when stopped. */
387 info->saved_regs[IRP_REGNUM].addr = addr + (19 * 4);
388 info->saved_regs[PC_REGNUM] = info->saved_regs[IRP_REGNUM];
389 info->saved_regs[SP_REGNUM].addr = addr + (24 * 4);
394 /* R0 to R13 are stored in order at offset (1 * 4) in
396 for (i = 0; i <= 13; i++)
397 info->saved_regs[i].addr = addr + ((i + 1) * 4);
399 info->saved_regs[ACR_REGNUM].addr = addr + (15 * 4);
400 info->saved_regs[SRS_REGNUM].addr = addr + (16 * 4);
401 info->saved_regs[MOF_REGNUM].addr = addr + (17 * 4);
402 info->saved_regs[SPC_REGNUM].addr = addr + (18 * 4);
403 info->saved_regs[CCS_REGNUM].addr = addr + (19 * 4);
404 info->saved_regs[SRP_REGNUM].addr = addr + (20 * 4);
405 info->saved_regs[ERP_REGNUM].addr = addr + (21 * 4);
406 info->saved_regs[EXS_REGNUM].addr = addr + (22 * 4);
407 info->saved_regs[EDA_REGNUM].addr = addr + (23 * 4);
409 /* FIXME: If ERP is in a delay slot at this point then the PC will
410 be wrong at this point. This problem manifests itself in the
411 sigaltstack.exp test case, which occasionally generates FAILs when
412 the signal is received while in a delay slot.
414 This could be solved by a couple of read_memory_unsigned_integer and a
415 trad_frame_set_value. */
416 info->saved_regs[PC_REGNUM] = info->saved_regs[ERP_REGNUM];
418 info->saved_regs[SP_REGNUM].addr = addr + (25 * 4);
425 cris_sigtramp_frame_this_id (struct frame_info *next_frame, void **this_cache,
426 struct frame_id *this_id)
428 struct cris_unwind_cache *cache =
429 cris_sigtramp_frame_unwind_cache (next_frame, this_cache);
430 (*this_id) = frame_id_build (cache->base, frame_pc_unwind (next_frame));
433 /* Forward declaration. */
435 static void cris_frame_prev_register (struct frame_info *next_frame,
436 void **this_prologue_cache,
437 int regnum, int *optimizedp,
438 enum lval_type *lvalp, CORE_ADDR *addrp,
439 int *realnump, gdb_byte *bufferp);
441 cris_sigtramp_frame_prev_register (struct frame_info *next_frame,
443 int regnum, int *optimizedp,
444 enum lval_type *lvalp, CORE_ADDR *addrp,
445 int *realnump, gdb_byte *valuep)
447 /* Make sure we've initialized the cache. */
448 cris_sigtramp_frame_unwind_cache (next_frame, this_cache);
449 cris_frame_prev_register (next_frame, this_cache, regnum,
450 optimizedp, lvalp, addrp, realnump, valuep);
453 static const struct frame_unwind cris_sigtramp_frame_unwind =
456 cris_sigtramp_frame_this_id,
457 cris_sigtramp_frame_prev_register
460 static const struct frame_unwind *
461 cris_sigtramp_frame_sniffer (struct frame_info *next_frame)
463 if (cris_sigtramp_start (next_frame)
464 || cris_rt_sigtramp_start (next_frame))
465 return &cris_sigtramp_frame_unwind;
471 crisv32_single_step_through_delay (struct gdbarch *gdbarch,
472 struct frame_info *this_frame)
474 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
479 if (cris_mode () == cris_mode_guru)
481 frame_unwind_register (this_frame, NRP_REGNUM, buf);
485 frame_unwind_register (this_frame, ERP_REGNUM, buf);
488 erp = extract_unsigned_integer (buf, 4);
492 /* In delay slot - check if there's a breakpoint at the preceding
494 if (breakpoint_here_p (erp & ~0x1))
500 /* Hardware watchpoint support. */
502 /* We support 6 hardware data watchpoints, but cannot trigger on execute
503 (any combination of read/write is fine). */
506 cris_can_use_hardware_watchpoint (int type, int count, int other)
508 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
510 /* No bookkeeping is done here; it is handled by the remote debug agent. */
512 if (tdep->cris_version != 32)
515 /* CRISv32: Six data watchpoints, one for instructions. */
516 return (((type == bp_read_watchpoint || type == bp_access_watchpoint
517 || type == bp_hardware_watchpoint) && count <= 6)
518 || (type == bp_hardware_breakpoint && count <= 1));
521 /* The CRISv32 hardware data watchpoints work by specifying ranges,
522 which have no alignment or length restrictions. */
525 cris_region_ok_for_watchpoint (CORE_ADDR addr, int len)
530 /* If the inferior has some watchpoint that triggered, return the
531 address associated with that watchpoint. Otherwise, return
535 cris_stopped_data_address (void)
538 eda = read_register (EDA_REGNUM);
542 /* The instruction environment needed to find single-step breakpoints. */
545 struct instruction_environment
547 unsigned long reg[NUM_GENREGS];
548 unsigned long preg[NUM_SPECREGS];
549 unsigned long branch_break_address;
550 unsigned long delay_slot_pc;
551 unsigned long prefix_value;
556 int delay_slot_pc_active;
558 int disable_interrupt;
561 /* Save old breakpoints in order to restore the state before a single_step.
562 At most, two breakpoints will have to be remembered. */
564 char binsn_quantum[BREAKPOINT_MAX];
565 static binsn_quantum break_mem[2];
566 static CORE_ADDR next_pc = 0;
567 static CORE_ADDR branch_target_address = 0;
568 static unsigned char branch_break_inserted = 0;
570 /* Machine-dependencies in CRIS for opcodes. */
572 /* Instruction sizes. */
573 enum cris_instruction_sizes
580 /* Addressing modes. */
581 enum cris_addressing_modes
588 /* Prefix addressing modes. */
589 enum cris_prefix_addressing_modes
591 PREFIX_INDEX_MODE = 2,
592 PREFIX_ASSIGN_MODE = 3,
594 /* Handle immediate byte offset addressing mode prefix format. */
595 PREFIX_OFFSET_MODE = 2
598 /* Masks for opcodes. */
599 enum cris_opcode_masks
601 BRANCH_SIGNED_SHORT_OFFSET_MASK = 0x1,
602 SIGNED_EXTEND_BIT_MASK = 0x2,
603 SIGNED_BYTE_MASK = 0x80,
604 SIGNED_BYTE_EXTEND_MASK = 0xFFFFFF00,
605 SIGNED_WORD_MASK = 0x8000,
606 SIGNED_WORD_EXTEND_MASK = 0xFFFF0000,
607 SIGNED_DWORD_MASK = 0x80000000,
608 SIGNED_QUICK_VALUE_MASK = 0x20,
609 SIGNED_QUICK_VALUE_EXTEND_MASK = 0xFFFFFFC0
612 /* Functions for opcodes. The general form of the ETRAX 16-bit instruction:
620 cris_get_operand2 (unsigned short insn)
622 return ((insn & 0xF000) >> 12);
626 cris_get_mode (unsigned short insn)
628 return ((insn & 0x0C00) >> 10);
632 cris_get_opcode (unsigned short insn)
634 return ((insn & 0x03C0) >> 6);
638 cris_get_size (unsigned short insn)
640 return ((insn & 0x0030) >> 4);
644 cris_get_operand1 (unsigned short insn)
646 return (insn & 0x000F);
649 /* Additional functions in order to handle opcodes. */
652 cris_get_quick_value (unsigned short insn)
654 return (insn & 0x003F);
658 cris_get_bdap_quick_offset (unsigned short insn)
660 return (insn & 0x00FF);
664 cris_get_branch_short_offset (unsigned short insn)
666 return (insn & 0x00FF);
670 cris_get_asr_shift_steps (unsigned long value)
672 return (value & 0x3F);
676 cris_get_clear_size (unsigned short insn)
678 return ((insn) & 0xC000);
682 cris_is_signed_extend_bit_on (unsigned short insn)
684 return (((insn) & 0x20) == 0x20);
688 cris_is_xflag_bit_on (unsigned short insn)
690 return (((insn) & 0x1000) == 0x1000);
694 cris_set_size_to_dword (unsigned short *insn)
701 cris_get_signed_offset (unsigned short insn)
703 return ((signed char) (insn & 0x00FF));
706 /* Calls an op function given the op-type, working on the insn and the
708 static void cris_gdb_func (enum cris_op_type, unsigned short, inst_env_type *);
710 static struct gdbarch *cris_gdbarch_init (struct gdbarch_info,
711 struct gdbarch_list *);
713 static void cris_dump_tdep (struct gdbarch *, struct ui_file *);
715 static void set_cris_version (char *ignore_args, int from_tty,
716 struct cmd_list_element *c);
718 static void set_cris_mode (char *ignore_args, int from_tty,
719 struct cmd_list_element *c);
721 static void set_cris_dwarf2_cfi (char *ignore_args, int from_tty,
722 struct cmd_list_element *c);
724 static CORE_ADDR cris_scan_prologue (CORE_ADDR pc,
725 struct frame_info *next_frame,
726 struct cris_unwind_cache *info);
728 static CORE_ADDR crisv32_scan_prologue (CORE_ADDR pc,
729 struct frame_info *next_frame,
730 struct cris_unwind_cache *info);
732 static CORE_ADDR cris_unwind_pc (struct gdbarch *gdbarch,
733 struct frame_info *next_frame);
735 static CORE_ADDR cris_unwind_sp (struct gdbarch *gdbarch,
736 struct frame_info *next_frame);
738 /* When arguments must be pushed onto the stack, they go on in reverse
739 order. The below implements a FILO (stack) to do this.
740 Copied from d10v-tdep.c. */
745 struct stack_item *prev;
749 static struct stack_item *
750 push_stack_item (struct stack_item *prev, void *contents, int len)
752 struct stack_item *si;
753 si = xmalloc (sizeof (struct stack_item));
754 si->data = xmalloc (len);
757 memcpy (si->data, contents, len);
761 static struct stack_item *
762 pop_stack_item (struct stack_item *si)
764 struct stack_item *dead = si;
771 /* Put here the code to store, into fi->saved_regs, the addresses of
772 the saved registers of frame described by FRAME_INFO. This
773 includes special registers such as pc and fp saved in special ways
774 in the stack frame. sp is even more special: the address we return
775 for it IS the sp for the next frame. */
777 struct cris_unwind_cache *
778 cris_frame_unwind_cache (struct frame_info *next_frame,
779 void **this_prologue_cache)
782 struct cris_unwind_cache *info;
785 if ((*this_prologue_cache))
786 return (*this_prologue_cache);
788 info = FRAME_OBSTACK_ZALLOC (struct cris_unwind_cache);
789 (*this_prologue_cache) = info;
790 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
792 /* Zero all fields. */
798 info->uses_frame = 0;
800 info->leaf_function = 0;
802 /* Prologue analysis does the rest... */
803 if (cris_version () == 32)
804 crisv32_scan_prologue (frame_func_unwind (next_frame), next_frame, info);
806 cris_scan_prologue (frame_func_unwind (next_frame), next_frame, info);
811 /* Given a GDB frame, determine the address of the calling function's
812 frame. This will be used to create a new GDB frame struct. */
815 cris_frame_this_id (struct frame_info *next_frame,
816 void **this_prologue_cache,
817 struct frame_id *this_id)
819 struct cris_unwind_cache *info
820 = cris_frame_unwind_cache (next_frame, this_prologue_cache);
825 /* The FUNC is easy. */
826 func = frame_func_unwind (next_frame);
828 /* Hopefully the prologue analysis either correctly determined the
829 frame's base (which is the SP from the previous frame), or set
830 that base to "NULL". */
831 base = info->prev_sp;
835 id = frame_id_build (base, func);
841 cris_frame_prev_register (struct frame_info *next_frame,
842 void **this_prologue_cache,
843 int regnum, int *optimizedp,
844 enum lval_type *lvalp, CORE_ADDR *addrp,
845 int *realnump, gdb_byte *bufferp)
847 struct cris_unwind_cache *info
848 = cris_frame_unwind_cache (next_frame, this_prologue_cache);
849 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
850 optimizedp, lvalp, addrp, realnump, bufferp);
853 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
854 dummy frame. The frame ID's base needs to match the TOS value
855 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
858 static struct frame_id
859 cris_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
861 return frame_id_build (cris_unwind_sp (gdbarch, next_frame),
862 frame_pc_unwind (next_frame));
866 cris_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
868 /* Align to the size of an instruction (so that they can safely be
869 pushed onto the stack). */
874 cris_push_dummy_code (struct gdbarch *gdbarch,
875 CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc,
876 struct value **args, int nargs,
877 struct type *value_type,
878 CORE_ADDR *real_pc, CORE_ADDR *bp_addr)
880 /* Allocate space sufficient for a breakpoint. */
882 /* Store the address of that breakpoint */
884 /* CRIS always starts the call at the callee's entry point. */
890 cris_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
891 struct regcache *regcache, CORE_ADDR bp_addr,
892 int nargs, struct value **args, CORE_ADDR sp,
893 int struct_return, CORE_ADDR struct_addr)
902 /* The function's arguments and memory allocated by gdb for the arguments to
903 point at reside in separate areas on the stack.
904 Both frame pointers grow toward higher addresses. */
908 struct stack_item *si = NULL;
910 /* Push the return address. */
911 regcache_cooked_write_unsigned (regcache, SRP_REGNUM, bp_addr);
913 /* Are we returning a value using a structure return or a normal value
914 return? struct_addr is the address of the reserved space for the return
915 structure to be written on the stack. */
918 regcache_cooked_write_unsigned (regcache, STR_REGNUM, struct_addr);
921 /* Now load as many as possible of the first arguments into registers,
922 and push the rest onto the stack. */
923 argreg = ARG1_REGNUM;
926 for (argnum = 0; argnum < nargs; argnum++)
933 len = TYPE_LENGTH (value_type (args[argnum]));
934 val = (char *) value_contents (args[argnum]);
936 /* How may registers worth of storage do we need for this argument? */
937 reg_demand = (len / 4) + (len % 4 != 0 ? 1 : 0);
939 if (len <= (2 * 4) && (argreg + reg_demand - 1 <= ARG4_REGNUM))
941 /* Data passed by value. Fits in available register(s). */
942 for (i = 0; i < reg_demand; i++)
944 regcache_cooked_write_unsigned (regcache, argreg,
945 *(unsigned long *) val);
950 else if (len <= (2 * 4) && argreg <= ARG4_REGNUM)
952 /* Data passed by value. Does not fit in available register(s).
953 Use the register(s) first, then the stack. */
954 for (i = 0; i < reg_demand; i++)
956 if (argreg <= ARG4_REGNUM)
958 regcache_cooked_write_unsigned (regcache, argreg,
959 *(unsigned long *) val);
965 /* Push item for later so that pushed arguments
966 come in the right order. */
967 si = push_stack_item (si, val, 4);
972 else if (len > (2 * 4))
975 internal_error (__FILE__, __LINE__, _("We don't do this"));
979 /* Data passed by value. No available registers. Put it on
981 si = push_stack_item (si, val, len);
987 /* fp_arg must be word-aligned (i.e., don't += len) to match
988 the function prologue. */
989 sp = (sp - si->len) & ~3;
990 write_memory (sp, si->data, si->len);
991 si = pop_stack_item (si);
994 /* Finally, update the SP register. */
995 regcache_cooked_write_unsigned (regcache, SP_REGNUM, sp);
1000 static const struct frame_unwind cris_frame_unwind =
1004 cris_frame_prev_register
1007 const struct frame_unwind *
1008 cris_frame_sniffer (struct frame_info *next_frame)
1010 return &cris_frame_unwind;
1014 cris_frame_base_address (struct frame_info *next_frame, void **this_cache)
1016 struct cris_unwind_cache *info
1017 = cris_frame_unwind_cache (next_frame, this_cache);
1021 static const struct frame_base cris_frame_base =
1024 cris_frame_base_address,
1025 cris_frame_base_address,
1026 cris_frame_base_address
1029 /* Frames information. The definition of the struct frame_info is
1033 enum frame_type type;
1037 If the compilation option -fno-omit-frame-pointer is present the
1038 variable frame will be set to the content of R8 which is the frame
1041 The variable pc contains the address where execution is performed
1042 in the present frame. The innermost frame contains the current content
1043 of the register PC. All other frames contain the content of the
1044 register PC in the next frame.
1046 The variable `type' indicates the frame's type: normal, SIGTRAMP
1047 (associated with a signal handler), dummy (associated with a dummy
1050 The variable return_pc contains the address where execution should be
1051 resumed when the present frame has finished, the return address.
1053 The variable leaf_function is 1 if the return address is in the register
1054 SRP, and 0 if it is on the stack.
1056 Prologue instructions C-code.
1057 The prologue may consist of (-fno-omit-frame-pointer)
1061 move.d sp,r8 move.d sp,r8
1063 movem rY,[sp] movem rY,[sp]
1064 move.S rZ,[r8-U] move.S rZ,[r8-U]
1066 where 1 is a non-terminal function, and 2 is a leaf-function.
1068 Note that this assumption is extremely brittle, and will break at the
1069 slightest change in GCC's prologue.
1071 If local variables are declared or register contents are saved on stack
1072 the subq-instruction will be present with X as the number of bytes
1073 needed for storage. The reshuffle with respect to r8 may be performed
1074 with any size S (b, w, d) and any of the general registers Z={0..13}.
1075 The offset U should be representable by a signed 8-bit value in all cases.
1076 Thus, the prefix word is assumed to be immediate byte offset mode followed
1077 by another word containing the instruction.
1086 Prologue instructions C++-code.
1087 Case 1) and 2) in the C-code may be followed by
1089 move.d r10,rS ; this
1093 move.S [r8+U],rZ ; P4
1095 if any of the call parameters are stored. The host expects these
1096 instructions to be executed in order to get the call parameters right. */
1098 /* Examine the prologue of a function. The variable ip is the address of
1099 the first instruction of the prologue. The variable limit is the address
1100 of the first instruction after the prologue. The variable fi contains the
1101 information in struct frame_info. The variable frameless_p controls whether
1102 the entire prologue is examined (0) or just enough instructions to
1103 determine that it is a prologue (1). */
1106 cris_scan_prologue (CORE_ADDR pc, struct frame_info *next_frame,
1107 struct cris_unwind_cache *info)
1109 /* Present instruction. */
1110 unsigned short insn;
1112 /* Next instruction, lookahead. */
1113 unsigned short insn_next;
1116 /* Is there a push fp? */
1119 /* Number of byte on stack used for local variables and movem. */
1122 /* Highest register number in a movem. */
1125 /* move.d r<source_register>,rS */
1126 short source_register;
1131 /* This frame is with respect to a leaf until a push srp is found. */
1134 info->leaf_function = 1;
1137 /* Assume nothing on stack. */
1141 /* If we were called without a next_frame, that means we were called
1142 from cris_skip_prologue which already tried to find the end of the
1143 prologue through the symbol information. 64 instructions past current
1144 pc is arbitrarily chosen, but at least it means we'll stop eventually. */
1145 limit = next_frame ? frame_pc_unwind (next_frame) : pc + 64;
1147 /* Find the prologue instructions. */
1148 while (pc > 0 && pc < limit)
1150 insn = read_memory_unsigned_integer (pc, 2);
1154 /* push <reg> 32 bit instruction */
1155 insn_next = read_memory_unsigned_integer (pc, 2);
1157 regno = cris_get_operand2 (insn_next);
1160 info->sp_offset += 4;
1162 /* This check, meant to recognize srp, used to be regno ==
1163 (SRP_REGNUM - NUM_GENREGS), but that covers r11 also. */
1164 if (insn_next == 0xBE7E)
1168 info->leaf_function = 0;
1171 else if (insn_next == 0x8FEE)
1176 info->r8_offset = info->sp_offset;
1180 else if (insn == 0x866E)
1185 info->uses_frame = 1;
1189 else if (cris_get_operand2 (insn) == SP_REGNUM
1190 && cris_get_mode (insn) == 0x0000
1191 && cris_get_opcode (insn) == 0x000A)
1196 info->sp_offset += cris_get_quick_value (insn);
1199 else if (cris_get_mode (insn) == 0x0002
1200 && cris_get_opcode (insn) == 0x000F
1201 && cris_get_size (insn) == 0x0003
1202 && cris_get_operand1 (insn) == SP_REGNUM)
1204 /* movem r<regsave>,[sp] */
1205 regsave = cris_get_operand2 (insn);
1207 else if (cris_get_operand2 (insn) == SP_REGNUM
1208 && ((insn & 0x0F00) >> 8) == 0x0001
1209 && (cris_get_signed_offset (insn) < 0))
1211 /* Immediate byte offset addressing prefix word with sp as base
1212 register. Used for CRIS v8 i.e. ETRAX 100 and newer if <val>
1213 is between 64 and 128.
1214 movem r<regsave>,[sp=sp-<val>] */
1217 info->sp_offset += -cris_get_signed_offset (insn);
1219 insn_next = read_memory_unsigned_integer (pc, 2);
1221 if (cris_get_mode (insn_next) == PREFIX_ASSIGN_MODE
1222 && cris_get_opcode (insn_next) == 0x000F
1223 && cris_get_size (insn_next) == 0x0003
1224 && cris_get_operand1 (insn_next) == SP_REGNUM)
1226 regsave = cris_get_operand2 (insn_next);
1230 /* The prologue ended before the limit was reached. */
1235 else if (cris_get_mode (insn) == 0x0001
1236 && cris_get_opcode (insn) == 0x0009
1237 && cris_get_size (insn) == 0x0002)
1239 /* move.d r<10..13>,r<0..15> */
1240 source_register = cris_get_operand1 (insn);
1242 /* FIXME? In the glibc solibs, the prologue might contain something
1243 like (this example taken from relocate_doit):
1245 sub.d 0xfffef426,$r0
1246 which isn't covered by the source_register check below. Question
1247 is whether to add a check for this combo, or make better use of
1248 the limit variable instead. */
1249 if (source_register < ARG1_REGNUM || source_register > ARG4_REGNUM)
1251 /* The prologue ended before the limit was reached. */
1256 else if (cris_get_operand2 (insn) == CRIS_FP_REGNUM
1257 /* The size is a fixed-size. */
1258 && ((insn & 0x0F00) >> 8) == 0x0001
1259 /* A negative offset. */
1260 && (cris_get_signed_offset (insn) < 0))
1262 /* move.S rZ,[r8-U] (?) */
1263 insn_next = read_memory_unsigned_integer (pc, 2);
1265 regno = cris_get_operand2 (insn_next);
1266 if ((regno >= 0 && regno < SP_REGNUM)
1267 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
1268 && cris_get_opcode (insn_next) == 0x000F)
1270 /* move.S rZ,[r8-U] */
1275 /* The prologue ended before the limit was reached. */
1280 else if (cris_get_operand2 (insn) == CRIS_FP_REGNUM
1281 /* The size is a fixed-size. */
1282 && ((insn & 0x0F00) >> 8) == 0x0001
1283 /* A positive offset. */
1284 && (cris_get_signed_offset (insn) > 0))
1286 /* move.S [r8+U],rZ (?) */
1287 insn_next = read_memory_unsigned_integer (pc, 2);
1289 regno = cris_get_operand2 (insn_next);
1290 if ((regno >= 0 && regno < SP_REGNUM)
1291 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
1292 && cris_get_opcode (insn_next) == 0x0009
1293 && cris_get_operand1 (insn_next) == regno)
1295 /* move.S [r8+U],rZ */
1300 /* The prologue ended before the limit was reached. */
1307 /* The prologue ended before the limit was reached. */
1313 /* We only want to know the end of the prologue when next_frame and info
1314 are NULL (called from cris_skip_prologue i.e.). */
1315 if (next_frame == NULL && info == NULL)
1320 info->size = info->sp_offset;
1322 /* Compute the previous frame's stack pointer (which is also the
1323 frame's ID's stack address), and this frame's base pointer. */
1324 if (info->uses_frame)
1327 /* The SP was moved to the FP. This indicates that a new frame
1328 was created. Get THIS frame's FP value by unwinding it from
1330 frame_unwind_unsigned_register (next_frame, CRIS_FP_REGNUM,
1332 info->base = this_base;
1333 info->saved_regs[CRIS_FP_REGNUM].addr = info->base;
1335 /* The FP points at the last saved register. Adjust the FP back
1336 to before the first saved register giving the SP. */
1337 info->prev_sp = info->base + info->r8_offset;
1342 /* Assume that the FP is this frame's SP but with that pushed
1343 stack space added back. */
1344 frame_unwind_unsigned_register (next_frame, SP_REGNUM, &this_base);
1345 info->base = this_base;
1346 info->prev_sp = info->base + info->size;
1349 /* Calculate the addresses for the saved registers on the stack. */
1350 /* FIXME: The address calculation should really be done on the fly while
1351 we're analyzing the prologue (we only hold one regsave value as it is
1353 val = info->sp_offset;
1355 for (regno = regsave; regno >= 0; regno--)
1357 info->saved_regs[regno].addr = info->base + info->r8_offset - val;
1361 /* The previous frame's SP needed to be computed. Save the computed
1363 trad_frame_set_value (info->saved_regs, SP_REGNUM, info->prev_sp);
1365 if (!info->leaf_function)
1367 /* SRP saved on the stack. But where? */
1368 if (info->r8_offset == 0)
1370 /* R8 not pushed yet. */
1371 info->saved_regs[SRP_REGNUM].addr = info->base;
1375 /* R8 pushed, but SP may or may not be moved to R8 yet. */
1376 info->saved_regs[SRP_REGNUM].addr = info->base + 4;
1380 /* The PC is found in SRP (the actual register or located on the stack). */
1381 info->saved_regs[PC_REGNUM] = info->saved_regs[SRP_REGNUM];
1387 crisv32_scan_prologue (CORE_ADDR pc, struct frame_info *next_frame,
1388 struct cris_unwind_cache *info)
1392 /* Unlike the CRISv10 prologue scanner (cris_scan_prologue), this is not
1393 meant to be a full-fledged prologue scanner. It is only needed for
1394 the cases where we end up in code always lacking DWARF-2 CFI, notably:
1396 * PLT stubs (library calls)
1398 * signal trampolines
1400 For those cases, it is assumed that there is no actual prologue; that
1401 the stack pointer is not adjusted, and (as a consequence) the return
1402 address is not pushed onto the stack. */
1404 /* We only want to know the end of the prologue when next_frame and info
1405 are NULL (called from cris_skip_prologue i.e.). */
1406 if (next_frame == NULL && info == NULL)
1411 /* The SP is assumed to be unaltered. */
1412 frame_unwind_unsigned_register (next_frame, SP_REGNUM, &this_base);
1413 info->base = this_base;
1414 info->prev_sp = this_base;
1416 /* The PC is assumed to be found in SRP. */
1417 info->saved_regs[PC_REGNUM] = info->saved_regs[SRP_REGNUM];
1422 /* Advance pc beyond any function entry prologue instructions at pc
1423 to reach some "real" code. */
1425 /* Given a PC value corresponding to the start of a function, return the PC
1426 of the first instruction after the function prologue. */
1429 cris_skip_prologue (CORE_ADDR pc)
1431 CORE_ADDR func_addr, func_end;
1432 struct symtab_and_line sal;
1433 CORE_ADDR pc_after_prologue;
1435 /* If we have line debugging information, then the end of the prologue
1436 should the first assembly instruction of the first source line. */
1437 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1439 sal = find_pc_line (func_addr, 0);
1440 if (sal.end > 0 && sal.end < func_end)
1444 if (cris_version () == 32)
1445 pc_after_prologue = crisv32_scan_prologue (pc, NULL, NULL);
1447 pc_after_prologue = cris_scan_prologue (pc, NULL, NULL);
1449 return pc_after_prologue;
1453 cris_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1456 frame_unwind_unsigned_register (next_frame, PC_REGNUM, &pc);
1461 cris_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1464 frame_unwind_unsigned_register (next_frame, SP_REGNUM, &sp);
1468 /* Use the program counter to determine the contents and size of a breakpoint
1469 instruction. It returns a pointer to a string of bytes that encode a
1470 breakpoint instruction, stores the length of the string to *lenptr, and
1471 adjusts pcptr (if necessary) to point to the actual memory location where
1472 the breakpoint should be inserted. */
1474 static const unsigned char *
1475 cris_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
1477 static unsigned char break8_insn[] = {0x38, 0xe9};
1478 static unsigned char break15_insn[] = {0x3f, 0xe9};
1481 if (cris_mode () == cris_mode_guru)
1482 return break15_insn;
1487 /* Returns 1 if spec_reg is applicable to the current gdbarch's CRIS version,
1491 cris_spec_reg_applicable (struct cris_spec_reg spec_reg)
1493 int version = cris_version ();
1495 switch (spec_reg.applicable_version)
1497 case cris_ver_version_all:
1499 case cris_ver_warning:
1500 /* Indeterminate/obsolete. */
1503 return (version >= 0 && version <= 3);
1505 return (version >= 3);
1507 return (version == 8 || version == 9);
1509 return (version >= 8);
1510 case cris_ver_v0_10:
1511 return (version >= 0 && version <= 10);
1512 case cris_ver_v3_10:
1513 return (version >= 3 && version <= 10);
1514 case cris_ver_v8_10:
1515 return (version >= 8 && version <= 10);
1517 return (version == 10);
1519 return (version >= 10);
1521 return (version >= 32);
1523 /* Invalid cris version. */
1528 /* Returns the register size in unit byte. Returns 0 for an unimplemented
1529 register, -1 for an invalid register. */
1532 cris_register_size (int regno)
1534 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1538 if (regno >= 0 && regno < NUM_GENREGS)
1540 /* General registers (R0 - R15) are 32 bits. */
1543 else if (regno >= NUM_GENREGS && regno < (NUM_GENREGS + NUM_SPECREGS))
1545 /* Special register (R16 - R31). cris_spec_regs is zero-based.
1546 Adjust regno accordingly. */
1547 spec_regno = regno - NUM_GENREGS;
1549 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1551 if (cris_spec_regs[i].number == spec_regno
1552 && cris_spec_reg_applicable (cris_spec_regs[i]))
1553 /* Go with the first applicable register. */
1554 return cris_spec_regs[i].reg_size;
1556 /* Special register not applicable to this CRIS version. */
1559 else if (regno >= PC_REGNUM && regno < NUM_REGS)
1561 /* This will apply to CRISv32 only where there are additional registers
1562 after the special registers (pseudo PC and support registers). */
1570 /* Nonzero if regno should not be fetched from the target. This is the case
1571 for unimplemented (size 0) and non-existant registers. */
1574 cris_cannot_fetch_register (int regno)
1576 return ((regno < 0 || regno >= NUM_REGS)
1577 || (cris_register_size (regno) == 0));
1580 /* Nonzero if regno should not be written to the target, for various
1584 cris_cannot_store_register (int regno)
1586 /* There are three kinds of registers we refuse to write to.
1587 1. Those that not implemented.
1588 2. Those that are read-only (depends on the processor mode).
1589 3. Those registers to which a write has no effect.
1592 if (regno < 0 || regno >= NUM_REGS || cris_register_size (regno) == 0)
1593 /* Not implemented. */
1596 else if (regno == VR_REGNUM)
1600 else if (regno == P0_REGNUM || regno == P4_REGNUM || regno == P8_REGNUM)
1601 /* Writing has no effect. */
1604 /* IBR, BAR, BRP and IRP are read-only in user mode. Let the debug
1605 agent decide whether they are writable. */
1610 /* Nonzero if regno should not be fetched from the target. This is the case
1611 for unimplemented (size 0) and non-existant registers. */
1614 crisv32_cannot_fetch_register (int regno)
1616 return ((regno < 0 || regno >= NUM_REGS)
1617 || (cris_register_size (regno) == 0));
1620 /* Nonzero if regno should not be written to the target, for various
1624 crisv32_cannot_store_register (int regno)
1626 /* There are three kinds of registers we refuse to write to.
1627 1. Those that not implemented.
1628 2. Those that are read-only (depends on the processor mode).
1629 3. Those registers to which a write has no effect.
1632 if (regno < 0 || regno >= NUM_REGS || cris_register_size (regno) == 0)
1633 /* Not implemented. */
1636 else if (regno == VR_REGNUM)
1640 else if (regno == BZ_REGNUM || regno == WZ_REGNUM || regno == DZ_REGNUM)
1641 /* Writing has no effect. */
1644 /* Many special registers are read-only in user mode. Let the debug
1645 agent decide whether they are writable. */
1650 /* Return the GDB type (defined in gdbtypes.c) for the "standard" data type
1651 of data in register regno. */
1653 static struct type *
1654 cris_register_type (struct gdbarch *gdbarch, int regno)
1656 if (regno == PC_REGNUM)
1657 return builtin_type_void_func_ptr;
1658 else if (regno == SP_REGNUM || regno == CRIS_FP_REGNUM)
1659 return builtin_type_void_data_ptr;
1660 else if ((regno >= 0 && regno < SP_REGNUM)
1661 || (regno >= MOF_REGNUM && regno <= USP_REGNUM))
1662 /* Note: R8 taken care of previous clause. */
1663 return builtin_type_uint32;
1664 else if (regno >= P4_REGNUM && regno <= CCR_REGNUM)
1665 return builtin_type_uint16;
1666 else if (regno >= P0_REGNUM && regno <= VR_REGNUM)
1667 return builtin_type_uint8;
1669 /* Invalid (unimplemented) register. */
1670 return builtin_type_int0;
1673 static struct type *
1674 crisv32_register_type (struct gdbarch *gdbarch, int regno)
1676 if (regno == PC_REGNUM)
1677 return builtin_type_void_func_ptr;
1678 else if (regno == SP_REGNUM || regno == CRIS_FP_REGNUM)
1679 return builtin_type_void_data_ptr;
1680 else if ((regno >= 0 && regno <= ACR_REGNUM)
1681 || (regno >= EXS_REGNUM && regno <= SPC_REGNUM)
1682 || (regno == PID_REGNUM)
1683 || (regno >= S0_REGNUM && regno <= S15_REGNUM))
1684 /* Note: R8 and SP taken care of by previous clause. */
1685 return builtin_type_uint32;
1686 else if (regno == WZ_REGNUM)
1687 return builtin_type_uint16;
1688 else if (regno == BZ_REGNUM || regno == VR_REGNUM || regno == SRS_REGNUM)
1689 return builtin_type_uint8;
1692 /* Invalid (unimplemented) register. Should not happen as there are
1693 no unimplemented CRISv32 registers. */
1694 warning (_("crisv32_register_type: unknown regno %d"), regno);
1695 return builtin_type_int0;
1699 /* Stores a function return value of type type, where valbuf is the address
1700 of the value to be stored. */
1702 /* In the CRIS ABI, R10 and R11 are used to store return values. */
1705 cris_store_return_value (struct type *type, struct regcache *regcache,
1709 int len = TYPE_LENGTH (type);
1713 /* Put the return value in R10. */
1714 val = extract_unsigned_integer (valbuf, len);
1715 regcache_cooked_write_unsigned (regcache, ARG1_REGNUM, val);
1719 /* Put the return value in R10 and R11. */
1720 val = extract_unsigned_integer (valbuf, 4);
1721 regcache_cooked_write_unsigned (regcache, ARG1_REGNUM, val);
1722 val = extract_unsigned_integer ((char *)valbuf + 4, len - 4);
1723 regcache_cooked_write_unsigned (regcache, ARG2_REGNUM, val);
1726 error (_("cris_store_return_value: type length too large."));
1729 /* Return the name of register regno as a string. Return NULL for an invalid or
1730 unimplemented register. */
1733 cris_special_register_name (int regno)
1738 /* Special register (R16 - R31). cris_spec_regs is zero-based.
1739 Adjust regno accordingly. */
1740 spec_regno = regno - NUM_GENREGS;
1742 /* Assume nothing about the layout of the cris_spec_regs struct
1744 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1746 if (cris_spec_regs[i].number == spec_regno
1747 && cris_spec_reg_applicable (cris_spec_regs[i]))
1748 /* Go with the first applicable register. */
1749 return cris_spec_regs[i].name;
1751 /* Special register not applicable to this CRIS version. */
1756 cris_register_name (int regno)
1758 static char *cris_genreg_names[] =
1759 { "r0", "r1", "r2", "r3", \
1760 "r4", "r5", "r6", "r7", \
1761 "r8", "r9", "r10", "r11", \
1762 "r12", "r13", "sp", "pc" };
1764 if (regno >= 0 && regno < NUM_GENREGS)
1766 /* General register. */
1767 return cris_genreg_names[regno];
1769 else if (regno >= NUM_GENREGS && regno < NUM_REGS)
1771 return cris_special_register_name (regno);
1775 /* Invalid register. */
1781 crisv32_register_name (int regno)
1783 static char *crisv32_genreg_names[] =
1784 { "r0", "r1", "r2", "r3", \
1785 "r4", "r5", "r6", "r7", \
1786 "r8", "r9", "r10", "r11", \
1787 "r12", "r13", "sp", "acr"
1790 static char *crisv32_sreg_names[] =
1791 { "s0", "s1", "s2", "s3", \
1792 "s4", "s5", "s6", "s7", \
1793 "s8", "s9", "s10", "s11", \
1794 "s12", "s13", "s14", "s15"
1797 if (regno >= 0 && regno < NUM_GENREGS)
1799 /* General register. */
1800 return crisv32_genreg_names[regno];
1802 else if (regno >= NUM_GENREGS && regno < (NUM_GENREGS + NUM_SPECREGS))
1804 return cris_special_register_name (regno);
1806 else if (regno == PC_REGNUM)
1810 else if (regno >= S0_REGNUM && regno <= S15_REGNUM)
1812 return crisv32_sreg_names[regno - S0_REGNUM];
1816 /* Invalid register. */
1821 /* Convert DWARF register number REG to the appropriate register
1822 number used by GDB. */
1825 cris_dwarf2_reg_to_regnum (int reg)
1827 /* We need to re-map a couple of registers (SRP is 16 in Dwarf-2 register
1828 numbering, MOF is 18).
1829 Adapted from gcc/config/cris/cris.h. */
1830 static int cris_dwarf_regmap[] = {
1842 if (reg >= 0 && reg < ARRAY_SIZE (cris_dwarf_regmap))
1843 regnum = cris_dwarf_regmap[reg];
1846 warning (_("Unmapped DWARF Register #%d encountered."), reg);
1851 /* DWARF-2 frame support. */
1854 cris_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1855 struct dwarf2_frame_state_reg *reg)
1857 /* The return address column. */
1858 if (regnum == PC_REGNUM)
1859 reg->how = DWARF2_FRAME_REG_RA;
1861 /* The call frame address. */
1862 else if (regnum == SP_REGNUM)
1863 reg->how = DWARF2_FRAME_REG_CFA;
1866 /* Extract from an array regbuf containing the raw register state a function
1867 return value of type type, and copy that, in virtual format, into
1870 /* In the CRIS ABI, R10 and R11 are used to store return values. */
1873 cris_extract_return_value (struct type *type, struct regcache *regcache,
1877 int len = TYPE_LENGTH (type);
1881 /* Get the return value from R10. */
1882 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &val);
1883 store_unsigned_integer (valbuf, len, val);
1887 /* Get the return value from R10 and R11. */
1888 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &val);
1889 store_unsigned_integer (valbuf, 4, val);
1890 regcache_cooked_read_unsigned (regcache, ARG2_REGNUM, &val);
1891 store_unsigned_integer ((char *)valbuf + 4, len - 4, val);
1894 error (_("cris_extract_return_value: type length too large"));
1897 /* Handle the CRIS return value convention. */
1899 static enum return_value_convention
1900 cris_return_value (struct gdbarch *gdbarch, struct type *type,
1901 struct regcache *regcache, gdb_byte *readbuf,
1902 const gdb_byte *writebuf)
1904 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1905 || TYPE_CODE (type) == TYPE_CODE_UNION
1906 || TYPE_LENGTH (type) > 8)
1907 /* Structs, unions, and anything larger than 8 bytes (2 registers)
1908 goes on the stack. */
1909 return RETURN_VALUE_STRUCT_CONVENTION;
1912 cris_extract_return_value (type, regcache, readbuf);
1914 cris_store_return_value (type, regcache, writebuf);
1916 return RETURN_VALUE_REGISTER_CONVENTION;
1919 /* Returns 1 if the given type will be passed by pointer rather than
1922 /* In the CRIS ABI, arguments shorter than or equal to 64 bits are passed
1926 cris_reg_struct_has_addr (int gcc_p, struct type *type)
1928 return (TYPE_LENGTH (type) > 8);
1931 /* Calculates a value that measures how good inst_args constraints an
1932 instruction. It stems from cris_constraint, found in cris-dis.c. */
1935 constraint (unsigned int insn, const signed char *inst_args,
1936 inst_env_type *inst_env)
1941 const char *s = inst_args;
1947 if ((insn & 0x30) == 0x30)
1952 /* A prefix operand. */
1953 if (inst_env->prefix_found)
1959 /* A "push" prefix. (This check was REMOVED by san 970921.) Check for
1960 valid "push" size. In case of special register, it may be != 4. */
1961 if (inst_env->prefix_found)
1967 retval = (((insn >> 0xC) & 0xF) == (insn & 0xF));
1975 tmp = (insn >> 0xC) & 0xF;
1977 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1979 /* Since we match four bits, we will give a value of
1980 4 - 1 = 3 in a match. If there is a corresponding
1981 exact match of a special register in another pattern, it
1982 will get a value of 4, which will be higher. This should
1983 be correct in that an exact pattern would match better that
1985 Note that there is a reason for not returning zero; the
1986 pattern for "clear" is partly matched in the bit-pattern
1987 (the two lower bits must be zero), while the bit-pattern
1988 for a move from a special register is matched in the
1989 register constraint.
1990 This also means we will will have a race condition if
1991 there is a partly match in three bits in the bit pattern. */
1992 if (tmp == cris_spec_regs[i].number)
1999 if (cris_spec_regs[i].name == NULL)
2006 /* Returns the number of bits set in the variable value. */
2009 number_of_bits (unsigned int value)
2011 int number_of_bits = 0;
2015 number_of_bits += 1;
2016 value &= (value - 1);
2018 return number_of_bits;
2021 /* Finds the address that should contain the single step breakpoint(s).
2022 It stems from code in cris-dis.c. */
2025 find_cris_op (unsigned short insn, inst_env_type *inst_env)
2028 int max_level_of_match = -1;
2029 int max_matched = -1;
2032 for (i = 0; cris_opcodes[i].name != NULL; i++)
2034 if (((cris_opcodes[i].match & insn) == cris_opcodes[i].match)
2035 && ((cris_opcodes[i].lose & insn) == 0)
2036 /* Only CRISv10 instructions, please. */
2037 && (cris_opcodes[i].applicable_version != cris_ver_v32p))
2039 level_of_match = constraint (insn, cris_opcodes[i].args, inst_env);
2040 if (level_of_match >= 0)
2043 number_of_bits (cris_opcodes[i].match | cris_opcodes[i].lose);
2044 if (level_of_match > max_level_of_match)
2047 max_level_of_match = level_of_match;
2048 if (level_of_match == 16)
2050 /* All bits matched, cannot find better. */
2060 /* Attempts to find single-step breakpoints. Returns -1 on failure which is
2061 actually an internal error. */
2064 find_step_target (inst_env_type *inst_env)
2068 unsigned short insn;
2070 /* Create a local register image and set the initial state. */
2071 for (i = 0; i < NUM_GENREGS; i++)
2073 inst_env->reg[i] = (unsigned long) read_register (i);
2075 offset = NUM_GENREGS;
2076 for (i = 0; i < NUM_SPECREGS; i++)
2078 inst_env->preg[i] = (unsigned long) read_register (offset + i);
2080 inst_env->branch_found = 0;
2081 inst_env->slot_needed = 0;
2082 inst_env->delay_slot_pc_active = 0;
2083 inst_env->prefix_found = 0;
2084 inst_env->invalid = 0;
2085 inst_env->xflag_found = 0;
2086 inst_env->disable_interrupt = 0;
2088 /* Look for a step target. */
2091 /* Read an instruction from the client. */
2092 insn = read_memory_unsigned_integer (inst_env->reg[PC_REGNUM], 2);
2094 /* If the instruction is not in a delay slot the new content of the
2095 PC is [PC] + 2. If the instruction is in a delay slot it is not
2096 that simple. Since a instruction in a delay slot cannot change
2097 the content of the PC, it does not matter what value PC will have.
2098 Just make sure it is a valid instruction. */
2099 if (!inst_env->delay_slot_pc_active)
2101 inst_env->reg[PC_REGNUM] += 2;
2105 inst_env->delay_slot_pc_active = 0;
2106 inst_env->reg[PC_REGNUM] = inst_env->delay_slot_pc;
2108 /* Analyse the present instruction. */
2109 i = find_cris_op (insn, inst_env);
2112 inst_env->invalid = 1;
2116 cris_gdb_func (cris_opcodes[i].op, insn, inst_env);
2118 } while (!inst_env->invalid
2119 && (inst_env->prefix_found || inst_env->xflag_found
2120 || inst_env->slot_needed));
2124 /* There is no hardware single-step support. The function find_step_target
2125 digs through the opcodes in order to find all possible targets.
2126 Either one ordinary target or two targets for branches may be found. */
2129 cris_software_single_step (enum target_signal ignore, int insert_breakpoints)
2131 inst_env_type inst_env;
2133 if (insert_breakpoints)
2135 /* Analyse the present instruction environment and insert
2137 int status = find_step_target (&inst_env);
2140 /* Could not find a target. Things are likely to go downhill
2142 warning (_("CRIS software single step could not find a step target."));
2146 /* Insert at most two breakpoints. One for the next PC content
2147 and possibly another one for a branch, jump, etc. */
2148 next_pc = (CORE_ADDR) inst_env.reg[PC_REGNUM];
2149 target_insert_breakpoint (next_pc, break_mem[0]);
2150 if (inst_env.branch_found
2151 && (CORE_ADDR) inst_env.branch_break_address != next_pc)
2153 branch_target_address =
2154 (CORE_ADDR) inst_env.branch_break_address;
2155 target_insert_breakpoint (branch_target_address, break_mem[1]);
2156 branch_break_inserted = 1;
2162 /* Remove breakpoints. */
2163 target_remove_breakpoint (next_pc, break_mem[0]);
2164 if (branch_break_inserted)
2166 target_remove_breakpoint (branch_target_address, break_mem[1]);
2167 branch_break_inserted = 0;
2172 /* Calculates the prefix value for quick offset addressing mode. */
2175 quick_mode_bdap_prefix (unsigned short inst, inst_env_type *inst_env)
2177 /* It's invalid to be in a delay slot. You can't have a prefix to this
2178 instruction (not 100% sure). */
2179 if (inst_env->slot_needed || inst_env->prefix_found)
2181 inst_env->invalid = 1;
2185 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
2186 inst_env->prefix_value += cris_get_bdap_quick_offset (inst);
2188 /* A prefix doesn't change the xflag_found. But the rest of the flags
2190 inst_env->slot_needed = 0;
2191 inst_env->prefix_found = 1;
2194 /* Updates the autoincrement register. The size of the increment is derived
2195 from the size of the operation. The PC is always kept aligned on even
2199 process_autoincrement (int size, unsigned short inst, inst_env_type *inst_env)
2201 if (size == INST_BYTE_SIZE)
2203 inst_env->reg[cris_get_operand1 (inst)] += 1;
2205 /* The PC must be word aligned, so increase the PC with one
2206 word even if the size is byte. */
2207 if (cris_get_operand1 (inst) == REG_PC)
2209 inst_env->reg[REG_PC] += 1;
2212 else if (size == INST_WORD_SIZE)
2214 inst_env->reg[cris_get_operand1 (inst)] += 2;
2216 else if (size == INST_DWORD_SIZE)
2218 inst_env->reg[cris_get_operand1 (inst)] += 4;
2223 inst_env->invalid = 1;
2227 /* Just a forward declaration. */
2229 static unsigned long get_data_from_address (unsigned short *inst,
2232 /* Calculates the prefix value for the general case of offset addressing
2236 bdap_prefix (unsigned short inst, inst_env_type *inst_env)
2241 /* It's invalid to be in a delay slot. */
2242 if (inst_env->slot_needed || inst_env->prefix_found)
2244 inst_env->invalid = 1;
2248 /* The calculation of prefix_value used to be after process_autoincrement,
2249 but that fails for an instruction such as jsr [$r0+12] which is encoded
2250 as 5f0d 0c00 30b9 when compiled with -fpic. Since PC is operand1 it
2251 mustn't be incremented until we have read it and what it points at. */
2252 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
2254 /* The offset is an indirection of the contents of the operand1 register. */
2255 inst_env->prefix_value +=
2256 get_data_from_address (&inst, inst_env->reg[cris_get_operand1 (inst)]);
2258 if (cris_get_mode (inst) == AUTOINC_MODE)
2260 process_autoincrement (cris_get_size (inst), inst, inst_env);
2263 /* A prefix doesn't change the xflag_found. But the rest of the flags
2265 inst_env->slot_needed = 0;
2266 inst_env->prefix_found = 1;
2269 /* Calculates the prefix value for the index addressing mode. */
2272 biap_prefix (unsigned short inst, inst_env_type *inst_env)
2274 /* It's invalid to be in a delay slot. I can't see that it's possible to
2275 have a prefix to this instruction. So I will treat this as invalid. */
2276 if (inst_env->slot_needed || inst_env->prefix_found)
2278 inst_env->invalid = 1;
2282 inst_env->prefix_value = inst_env->reg[cris_get_operand1 (inst)];
2284 /* The offset is the operand2 value shifted the size of the instruction
2286 inst_env->prefix_value +=
2287 inst_env->reg[cris_get_operand2 (inst)] << cris_get_size (inst);
2289 /* If the PC is operand1 (base) the address used is the address after
2290 the main instruction, i.e. address + 2 (the PC is already compensated
2291 for the prefix operation). */
2292 if (cris_get_operand1 (inst) == REG_PC)
2294 inst_env->prefix_value += 2;
2297 /* A prefix doesn't change the xflag_found. But the rest of the flags
2299 inst_env->slot_needed = 0;
2300 inst_env->xflag_found = 0;
2301 inst_env->prefix_found = 1;
2304 /* Calculates the prefix value for the double indirect addressing mode. */
2307 dip_prefix (unsigned short inst, inst_env_type *inst_env)
2312 /* It's invalid to be in a delay slot. */
2313 if (inst_env->slot_needed || inst_env->prefix_found)
2315 inst_env->invalid = 1;
2319 /* The prefix value is one dereference of the contents of the operand1
2321 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
2322 inst_env->prefix_value = read_memory_unsigned_integer (address, 4);
2324 /* Check if the mode is autoincrement. */
2325 if (cris_get_mode (inst) == AUTOINC_MODE)
2327 inst_env->reg[cris_get_operand1 (inst)] += 4;
2330 /* A prefix doesn't change the xflag_found. But the rest of the flags
2332 inst_env->slot_needed = 0;
2333 inst_env->xflag_found = 0;
2334 inst_env->prefix_found = 1;
2337 /* Finds the destination for a branch with 8-bits offset. */
2340 eight_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
2345 /* If we have a prefix or are in a delay slot it's bad. */
2346 if (inst_env->slot_needed || inst_env->prefix_found)
2348 inst_env->invalid = 1;
2352 /* We have a branch, find out where the branch will land. */
2353 offset = cris_get_branch_short_offset (inst);
2355 /* Check if the offset is signed. */
2356 if (offset & BRANCH_SIGNED_SHORT_OFFSET_MASK)
2361 /* The offset ends with the sign bit, set it to zero. The address
2362 should always be word aligned. */
2363 offset &= ~BRANCH_SIGNED_SHORT_OFFSET_MASK;
2365 inst_env->branch_found = 1;
2366 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2368 inst_env->slot_needed = 1;
2369 inst_env->prefix_found = 0;
2370 inst_env->xflag_found = 0;
2371 inst_env->disable_interrupt = 1;
2374 /* Finds the destination for a branch with 16-bits offset. */
2377 sixteen_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
2381 /* If we have a prefix or is in a delay slot it's bad. */
2382 if (inst_env->slot_needed || inst_env->prefix_found)
2384 inst_env->invalid = 1;
2388 /* We have a branch, find out the offset for the branch. */
2389 offset = read_memory_integer (inst_env->reg[REG_PC], 2);
2391 /* The instruction is one word longer than normal, so add one word
2393 inst_env->reg[REG_PC] += 2;
2395 inst_env->branch_found = 1;
2396 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2399 inst_env->slot_needed = 1;
2400 inst_env->prefix_found = 0;
2401 inst_env->xflag_found = 0;
2402 inst_env->disable_interrupt = 1;
2405 /* Handles the ABS instruction. */
2408 abs_op (unsigned short inst, inst_env_type *inst_env)
2413 /* ABS can't have a prefix, so it's bad if it does. */
2414 if (inst_env->prefix_found)
2416 inst_env->invalid = 1;
2420 /* Check if the operation affects the PC. */
2421 if (cris_get_operand2 (inst) == REG_PC)
2424 /* It's invalid to change to the PC if we are in a delay slot. */
2425 if (inst_env->slot_needed)
2427 inst_env->invalid = 1;
2431 value = (long) inst_env->reg[REG_PC];
2433 /* The value of abs (SIGNED_DWORD_MASK) is SIGNED_DWORD_MASK. */
2434 if (value != SIGNED_DWORD_MASK)
2437 inst_env->reg[REG_PC] = (long) value;
2441 inst_env->slot_needed = 0;
2442 inst_env->prefix_found = 0;
2443 inst_env->xflag_found = 0;
2444 inst_env->disable_interrupt = 0;
2447 /* Handles the ADDI instruction. */
2450 addi_op (unsigned short inst, inst_env_type *inst_env)
2452 /* It's invalid to have the PC as base register. And ADDI can't have
2454 if (inst_env->prefix_found || (cris_get_operand1 (inst) == REG_PC))
2456 inst_env->invalid = 1;
2460 inst_env->slot_needed = 0;
2461 inst_env->prefix_found = 0;
2462 inst_env->xflag_found = 0;
2463 inst_env->disable_interrupt = 0;
2466 /* Handles the ASR instruction. */
2469 asr_op (unsigned short inst, inst_env_type *inst_env)
2472 unsigned long value;
2473 unsigned long signed_extend_mask = 0;
2475 /* ASR can't have a prefix, so check that it doesn't. */
2476 if (inst_env->prefix_found)
2478 inst_env->invalid = 1;
2482 /* Check if the PC is the target register. */
2483 if (cris_get_operand2 (inst) == REG_PC)
2485 /* It's invalid to change the PC in a delay slot. */
2486 if (inst_env->slot_needed)
2488 inst_env->invalid = 1;
2491 /* Get the number of bits to shift. */
2492 shift_steps = cris_get_asr_shift_steps (inst_env->reg[cris_get_operand1 (inst)]);
2493 value = inst_env->reg[REG_PC];
2495 /* Find out how many bits the operation should apply to. */
2496 if (cris_get_size (inst) == INST_BYTE_SIZE)
2498 if (value & SIGNED_BYTE_MASK)
2500 signed_extend_mask = 0xFF;
2501 signed_extend_mask = signed_extend_mask >> shift_steps;
2502 signed_extend_mask = ~signed_extend_mask;
2504 value = value >> shift_steps;
2505 value |= signed_extend_mask;
2507 inst_env->reg[REG_PC] &= 0xFFFFFF00;
2508 inst_env->reg[REG_PC] |= value;
2510 else if (cris_get_size (inst) == INST_WORD_SIZE)
2512 if (value & SIGNED_WORD_MASK)
2514 signed_extend_mask = 0xFFFF;
2515 signed_extend_mask = signed_extend_mask >> shift_steps;
2516 signed_extend_mask = ~signed_extend_mask;
2518 value = value >> shift_steps;
2519 value |= signed_extend_mask;
2521 inst_env->reg[REG_PC] &= 0xFFFF0000;
2522 inst_env->reg[REG_PC] |= value;
2524 else if (cris_get_size (inst) == INST_DWORD_SIZE)
2526 if (value & SIGNED_DWORD_MASK)
2528 signed_extend_mask = 0xFFFFFFFF;
2529 signed_extend_mask = signed_extend_mask >> shift_steps;
2530 signed_extend_mask = ~signed_extend_mask;
2532 value = value >> shift_steps;
2533 value |= signed_extend_mask;
2534 inst_env->reg[REG_PC] = value;
2537 inst_env->slot_needed = 0;
2538 inst_env->prefix_found = 0;
2539 inst_env->xflag_found = 0;
2540 inst_env->disable_interrupt = 0;
2543 /* Handles the ASRQ instruction. */
2546 asrq_op (unsigned short inst, inst_env_type *inst_env)
2550 unsigned long value;
2551 unsigned long signed_extend_mask = 0;
2553 /* ASRQ can't have a prefix, so check that it doesn't. */
2554 if (inst_env->prefix_found)
2556 inst_env->invalid = 1;
2560 /* Check if the PC is the target register. */
2561 if (cris_get_operand2 (inst) == REG_PC)
2564 /* It's invalid to change the PC in a delay slot. */
2565 if (inst_env->slot_needed)
2567 inst_env->invalid = 1;
2570 /* The shift size is given as a 5 bit quick value, i.e. we don't
2571 want the the sign bit of the quick value. */
2572 shift_steps = cris_get_asr_shift_steps (inst);
2573 value = inst_env->reg[REG_PC];
2574 if (value & SIGNED_DWORD_MASK)
2576 signed_extend_mask = 0xFFFFFFFF;
2577 signed_extend_mask = signed_extend_mask >> shift_steps;
2578 signed_extend_mask = ~signed_extend_mask;
2580 value = value >> shift_steps;
2581 value |= signed_extend_mask;
2582 inst_env->reg[REG_PC] = value;
2584 inst_env->slot_needed = 0;
2585 inst_env->prefix_found = 0;
2586 inst_env->xflag_found = 0;
2587 inst_env->disable_interrupt = 0;
2590 /* Handles the AX, EI and SETF instruction. */
2593 ax_ei_setf_op (unsigned short inst, inst_env_type *inst_env)
2595 if (inst_env->prefix_found)
2597 inst_env->invalid = 1;
2600 /* Check if the instruction is setting the X flag. */
2601 if (cris_is_xflag_bit_on (inst))
2603 inst_env->xflag_found = 1;
2607 inst_env->xflag_found = 0;
2609 inst_env->slot_needed = 0;
2610 inst_env->prefix_found = 0;
2611 inst_env->disable_interrupt = 1;
2614 /* Checks if the instruction is in assign mode. If so, it updates the assign
2615 register. Note that check_assign assumes that the caller has checked that
2616 there is a prefix to this instruction. The mode check depends on this. */
2619 check_assign (unsigned short inst, inst_env_type *inst_env)
2621 /* Check if it's an assign addressing mode. */
2622 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2624 /* Assign the prefix value to operand 1. */
2625 inst_env->reg[cris_get_operand1 (inst)] = inst_env->prefix_value;
2629 /* Handles the 2-operand BOUND instruction. */
2632 two_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2634 /* It's invalid to have the PC as the index operand. */
2635 if (cris_get_operand2 (inst) == REG_PC)
2637 inst_env->invalid = 1;
2640 /* Check if we have a prefix. */
2641 if (inst_env->prefix_found)
2643 check_assign (inst, inst_env);
2645 /* Check if this is an autoincrement mode. */
2646 else if (cris_get_mode (inst) == AUTOINC_MODE)
2648 /* It's invalid to change the PC in a delay slot. */
2649 if (inst_env->slot_needed)
2651 inst_env->invalid = 1;
2654 process_autoincrement (cris_get_size (inst), inst, inst_env);
2656 inst_env->slot_needed = 0;
2657 inst_env->prefix_found = 0;
2658 inst_env->xflag_found = 0;
2659 inst_env->disable_interrupt = 0;
2662 /* Handles the 3-operand BOUND instruction. */
2665 three_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2667 /* It's an error if we haven't got a prefix. And it's also an error
2668 if the PC is the destination register. */
2669 if ((!inst_env->prefix_found) || (cris_get_operand1 (inst) == REG_PC))
2671 inst_env->invalid = 1;
2674 inst_env->slot_needed = 0;
2675 inst_env->prefix_found = 0;
2676 inst_env->xflag_found = 0;
2677 inst_env->disable_interrupt = 0;
2680 /* Clears the status flags in inst_env. */
2683 btst_nop_op (unsigned short inst, inst_env_type *inst_env)
2685 /* It's an error if we have got a prefix. */
2686 if (inst_env->prefix_found)
2688 inst_env->invalid = 1;
2692 inst_env->slot_needed = 0;
2693 inst_env->prefix_found = 0;
2694 inst_env->xflag_found = 0;
2695 inst_env->disable_interrupt = 0;
2698 /* Clears the status flags in inst_env. */
2701 clearf_di_op (unsigned short inst, inst_env_type *inst_env)
2703 /* It's an error if we have got a prefix. */
2704 if (inst_env->prefix_found)
2706 inst_env->invalid = 1;
2710 inst_env->slot_needed = 0;
2711 inst_env->prefix_found = 0;
2712 inst_env->xflag_found = 0;
2713 inst_env->disable_interrupt = 1;
2716 /* Handles the CLEAR instruction if it's in register mode. */
2719 reg_mode_clear_op (unsigned short inst, inst_env_type *inst_env)
2721 /* Check if the target is the PC. */
2722 if (cris_get_operand2 (inst) == REG_PC)
2724 /* The instruction will clear the instruction's size bits. */
2725 int clear_size = cris_get_clear_size (inst);
2726 if (clear_size == INST_BYTE_SIZE)
2728 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFFFF00;
2730 if (clear_size == INST_WORD_SIZE)
2732 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFF0000;
2734 if (clear_size == INST_DWORD_SIZE)
2736 inst_env->delay_slot_pc = 0x0;
2738 /* The jump will be delayed with one delay slot. So we need a delay
2740 inst_env->slot_needed = 1;
2741 inst_env->delay_slot_pc_active = 1;
2745 /* The PC will not change => no delay slot. */
2746 inst_env->slot_needed = 0;
2748 inst_env->prefix_found = 0;
2749 inst_env->xflag_found = 0;
2750 inst_env->disable_interrupt = 0;
2753 /* Handles the TEST instruction if it's in register mode. */
2756 reg_mode_test_op (unsigned short inst, inst_env_type *inst_env)
2758 /* It's an error if we have got a prefix. */
2759 if (inst_env->prefix_found)
2761 inst_env->invalid = 1;
2764 inst_env->slot_needed = 0;
2765 inst_env->prefix_found = 0;
2766 inst_env->xflag_found = 0;
2767 inst_env->disable_interrupt = 0;
2771 /* Handles the CLEAR and TEST instruction if the instruction isn't
2772 in register mode. */
2775 none_reg_mode_clear_test_op (unsigned short inst, inst_env_type *inst_env)
2777 /* Check if we are in a prefix mode. */
2778 if (inst_env->prefix_found)
2780 /* The only way the PC can change is if this instruction is in
2781 assign addressing mode. */
2782 check_assign (inst, inst_env);
2784 /* Indirect mode can't change the PC so just check if the mode is
2786 else if (cris_get_mode (inst) == AUTOINC_MODE)
2788 process_autoincrement (cris_get_size (inst), inst, inst_env);
2790 inst_env->slot_needed = 0;
2791 inst_env->prefix_found = 0;
2792 inst_env->xflag_found = 0;
2793 inst_env->disable_interrupt = 0;
2796 /* Checks that the PC isn't the destination register or the instructions has
2800 dstep_logshift_mstep_neg_not_op (unsigned short inst, inst_env_type *inst_env)
2802 /* It's invalid to have the PC as the destination. The instruction can't
2804 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2806 inst_env->invalid = 1;
2810 inst_env->slot_needed = 0;
2811 inst_env->prefix_found = 0;
2812 inst_env->xflag_found = 0;
2813 inst_env->disable_interrupt = 0;
2816 /* Checks that the instruction doesn't have a prefix. */
2819 break_op (unsigned short inst, inst_env_type *inst_env)
2821 /* The instruction can't have a prefix. */
2822 if (inst_env->prefix_found)
2824 inst_env->invalid = 1;
2828 inst_env->slot_needed = 0;
2829 inst_env->prefix_found = 0;
2830 inst_env->xflag_found = 0;
2831 inst_env->disable_interrupt = 1;
2834 /* Checks that the PC isn't the destination register and that the instruction
2835 doesn't have a prefix. */
2838 scc_op (unsigned short inst, inst_env_type *inst_env)
2840 /* It's invalid to have the PC as the destination. The instruction can't
2842 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2844 inst_env->invalid = 1;
2848 inst_env->slot_needed = 0;
2849 inst_env->prefix_found = 0;
2850 inst_env->xflag_found = 0;
2851 inst_env->disable_interrupt = 1;
2854 /* Handles the register mode JUMP instruction. */
2857 reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
2859 /* It's invalid to do a JUMP in a delay slot. The mode is register, so
2860 you can't have a prefix. */
2861 if ((inst_env->slot_needed) || (inst_env->prefix_found))
2863 inst_env->invalid = 1;
2867 /* Just change the PC. */
2868 inst_env->reg[REG_PC] = inst_env->reg[cris_get_operand1 (inst)];
2869 inst_env->slot_needed = 0;
2870 inst_env->prefix_found = 0;
2871 inst_env->xflag_found = 0;
2872 inst_env->disable_interrupt = 1;
2875 /* Handles the JUMP instruction for all modes except register. */
2878 none_reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
2880 unsigned long newpc;
2883 /* It's invalid to do a JUMP in a delay slot. */
2884 if (inst_env->slot_needed)
2886 inst_env->invalid = 1;
2890 /* Check if we have a prefix. */
2891 if (inst_env->prefix_found)
2893 check_assign (inst, inst_env);
2895 /* Get the new value for the the PC. */
2897 read_memory_unsigned_integer ((CORE_ADDR) inst_env->prefix_value,
2902 /* Get the new value for the PC. */
2903 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
2904 newpc = read_memory_unsigned_integer (address, 4);
2906 /* Check if we should increment a register. */
2907 if (cris_get_mode (inst) == AUTOINC_MODE)
2909 inst_env->reg[cris_get_operand1 (inst)] += 4;
2912 inst_env->reg[REG_PC] = newpc;
2914 inst_env->slot_needed = 0;
2915 inst_env->prefix_found = 0;
2916 inst_env->xflag_found = 0;
2917 inst_env->disable_interrupt = 1;
2920 /* Handles moves to special registers (aka P-register) for all modes. */
2923 move_to_preg_op (unsigned short inst, inst_env_type *inst_env)
2925 if (inst_env->prefix_found)
2927 /* The instruction has a prefix that means we are only interested if
2928 the instruction is in assign mode. */
2929 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2931 /* The prefix handles the problem if we are in a delay slot. */
2932 if (cris_get_operand1 (inst) == REG_PC)
2934 /* Just take care of the assign. */
2935 check_assign (inst, inst_env);
2939 else if (cris_get_mode (inst) == AUTOINC_MODE)
2941 /* The instruction doesn't have a prefix, the only case left that we
2942 are interested in is the autoincrement mode. */
2943 if (cris_get_operand1 (inst) == REG_PC)
2945 /* If the PC is to be incremented it's invalid to be in a
2947 if (inst_env->slot_needed)
2949 inst_env->invalid = 1;
2953 /* The increment depends on the size of the special register. */
2954 if (cris_register_size (cris_get_operand2 (inst)) == 1)
2956 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
2958 else if (cris_register_size (cris_get_operand2 (inst)) == 2)
2960 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
2964 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
2968 inst_env->slot_needed = 0;
2969 inst_env->prefix_found = 0;
2970 inst_env->xflag_found = 0;
2971 inst_env->disable_interrupt = 1;
2974 /* Handles moves from special registers (aka P-register) for all modes
2978 none_reg_mode_move_from_preg_op (unsigned short inst, inst_env_type *inst_env)
2980 if (inst_env->prefix_found)
2982 /* The instruction has a prefix that means we are only interested if
2983 the instruction is in assign mode. */
2984 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2986 /* The prefix handles the problem if we are in a delay slot. */
2987 if (cris_get_operand1 (inst) == REG_PC)
2989 /* Just take care of the assign. */
2990 check_assign (inst, inst_env);
2994 /* The instruction doesn't have a prefix, the only case left that we
2995 are interested in is the autoincrement mode. */
2996 else if (cris_get_mode (inst) == AUTOINC_MODE)
2998 if (cris_get_operand1 (inst) == REG_PC)
3000 /* If the PC is to be incremented it's invalid to be in a
3002 if (inst_env->slot_needed)
3004 inst_env->invalid = 1;
3008 /* The increment depends on the size of the special register. */
3009 if (cris_register_size (cris_get_operand2 (inst)) == 1)
3011 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
3013 else if (cris_register_size (cris_get_operand2 (inst)) == 2)
3015 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
3019 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
3023 inst_env->slot_needed = 0;
3024 inst_env->prefix_found = 0;
3025 inst_env->xflag_found = 0;
3026 inst_env->disable_interrupt = 1;
3029 /* Handles moves from special registers (aka P-register) when the mode
3033 reg_mode_move_from_preg_op (unsigned short inst, inst_env_type *inst_env)
3035 /* Register mode move from special register can't have a prefix. */
3036 if (inst_env->prefix_found)
3038 inst_env->invalid = 1;
3042 if (cris_get_operand1 (inst) == REG_PC)
3044 /* It's invalid to change the PC in a delay slot. */
3045 if (inst_env->slot_needed)
3047 inst_env->invalid = 1;
3050 /* The destination is the PC, the jump will have a delay slot. */
3051 inst_env->delay_slot_pc = inst_env->preg[cris_get_operand2 (inst)];
3052 inst_env->slot_needed = 1;
3053 inst_env->delay_slot_pc_active = 1;
3057 /* If the destination isn't PC, there will be no jump. */
3058 inst_env->slot_needed = 0;
3060 inst_env->prefix_found = 0;
3061 inst_env->xflag_found = 0;
3062 inst_env->disable_interrupt = 1;
3065 /* Handles the MOVEM from memory to general register instruction. */
3068 move_mem_to_reg_movem_op (unsigned short inst, inst_env_type *inst_env)
3070 if (inst_env->prefix_found)
3072 /* The prefix handles the problem if we are in a delay slot. Is the
3073 MOVEM instruction going to change the PC? */
3074 if (cris_get_operand2 (inst) >= REG_PC)
3076 inst_env->reg[REG_PC] =
3077 read_memory_unsigned_integer (inst_env->prefix_value, 4);
3079 /* The assign value is the value after the increment. Normally, the
3080 assign value is the value before the increment. */
3081 if ((cris_get_operand1 (inst) == REG_PC)
3082 && (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
3084 inst_env->reg[REG_PC] = inst_env->prefix_value;
3085 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3090 /* Is the MOVEM instruction going to change the PC? */
3091 if (cris_get_operand2 (inst) == REG_PC)
3093 /* It's invalid to change the PC in a delay slot. */
3094 if (inst_env->slot_needed)
3096 inst_env->invalid = 1;
3099 inst_env->reg[REG_PC] =
3100 read_memory_unsigned_integer (inst_env->reg[cris_get_operand1 (inst)],
3103 /* The increment is not depending on the size, instead it's depending
3104 on the number of registers loaded from memory. */
3105 if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE))
3107 /* It's invalid to change the PC in a delay slot. */
3108 if (inst_env->slot_needed)
3110 inst_env->invalid = 1;
3113 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3116 inst_env->slot_needed = 0;
3117 inst_env->prefix_found = 0;
3118 inst_env->xflag_found = 0;
3119 inst_env->disable_interrupt = 0;
3122 /* Handles the MOVEM to memory from general register instruction. */
3125 move_reg_to_mem_movem_op (unsigned short inst, inst_env_type *inst_env)
3127 if (inst_env->prefix_found)
3129 /* The assign value is the value after the increment. Normally, the
3130 assign value is the value before the increment. */
3131 if ((cris_get_operand1 (inst) == REG_PC) &&
3132 (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
3134 /* The prefix handles the problem if we are in a delay slot. */
3135 inst_env->reg[REG_PC] = inst_env->prefix_value;
3136 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3141 /* The increment is not depending on the size, instead it's depending
3142 on the number of registers loaded to memory. */
3143 if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE))
3145 /* It's invalid to change the PC in a delay slot. */
3146 if (inst_env->slot_needed)
3148 inst_env->invalid = 1;
3151 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3154 inst_env->slot_needed = 0;
3155 inst_env->prefix_found = 0;
3156 inst_env->xflag_found = 0;
3157 inst_env->disable_interrupt = 0;
3160 /* Handles the intructions that's not yet implemented, by setting
3161 inst_env->invalid to true. */
3164 not_implemented_op (unsigned short inst, inst_env_type *inst_env)
3166 inst_env->invalid = 1;
3169 /* Handles the XOR instruction. */
3172 xor_op (unsigned short inst, inst_env_type *inst_env)
3174 /* XOR can't have a prefix. */
3175 if (inst_env->prefix_found)
3177 inst_env->invalid = 1;
3181 /* Check if the PC is the target. */
3182 if (cris_get_operand2 (inst) == REG_PC)
3184 /* It's invalid to change the PC in a delay slot. */
3185 if (inst_env->slot_needed)
3187 inst_env->invalid = 1;
3190 inst_env->reg[REG_PC] ^= inst_env->reg[cris_get_operand1 (inst)];
3192 inst_env->slot_needed = 0;
3193 inst_env->prefix_found = 0;
3194 inst_env->xflag_found = 0;
3195 inst_env->disable_interrupt = 0;
3198 /* Handles the MULS instruction. */
3201 muls_op (unsigned short inst, inst_env_type *inst_env)
3203 /* MULS/U can't have a prefix. */
3204 if (inst_env->prefix_found)
3206 inst_env->invalid = 1;
3210 /* Consider it invalid if the PC is the target. */
3211 if (cris_get_operand2 (inst) == REG_PC)
3213 inst_env->invalid = 1;
3216 inst_env->slot_needed = 0;
3217 inst_env->prefix_found = 0;
3218 inst_env->xflag_found = 0;
3219 inst_env->disable_interrupt = 0;
3222 /* Handles the MULU instruction. */
3225 mulu_op (unsigned short inst, inst_env_type *inst_env)
3227 /* MULS/U can't have a prefix. */
3228 if (inst_env->prefix_found)
3230 inst_env->invalid = 1;
3234 /* Consider it invalid if the PC is the target. */
3235 if (cris_get_operand2 (inst) == REG_PC)
3237 inst_env->invalid = 1;
3240 inst_env->slot_needed = 0;
3241 inst_env->prefix_found = 0;
3242 inst_env->xflag_found = 0;
3243 inst_env->disable_interrupt = 0;
3246 /* Calculate the result of the instruction for ADD, SUB, CMP AND, OR and MOVE.
3247 The MOVE instruction is the move from source to register. */
3250 add_sub_cmp_and_or_move_action (unsigned short inst, inst_env_type *inst_env,
3251 unsigned long source1, unsigned long source2)
3253 unsigned long pc_mask;
3254 unsigned long operation_mask;
3256 /* Find out how many bits the operation should apply to. */
3257 if (cris_get_size (inst) == INST_BYTE_SIZE)
3259 pc_mask = 0xFFFFFF00;
3260 operation_mask = 0xFF;
3262 else if (cris_get_size (inst) == INST_WORD_SIZE)
3264 pc_mask = 0xFFFF0000;
3265 operation_mask = 0xFFFF;
3267 else if (cris_get_size (inst) == INST_DWORD_SIZE)
3270 operation_mask = 0xFFFFFFFF;
3274 /* The size is out of range. */
3275 inst_env->invalid = 1;
3279 /* The instruction just works on uw_operation_mask bits. */
3280 source2 &= operation_mask;
3281 source1 &= operation_mask;
3283 /* Now calculate the result. The opcode's 3 first bits separates
3284 the different actions. */
3285 switch (cris_get_opcode (inst) & 7)
3295 case 2: /* subtract */
3299 case 3: /* compare */
3311 inst_env->invalid = 1;
3317 /* Make sure that the result doesn't contain more than the instruction
3319 source2 &= operation_mask;
3321 /* Calculate the new breakpoint address. */
3322 inst_env->reg[REG_PC] &= pc_mask;
3323 inst_env->reg[REG_PC] |= source1;
3327 /* Extends the value from either byte or word size to a dword. If the mode
3328 is zero extend then the value is extended with zero. If instead the mode
3329 is signed extend the sign bit of the value is taken into consideration. */
3331 static unsigned long
3332 do_sign_or_zero_extend (unsigned long value, unsigned short *inst)
3334 /* The size can be either byte or word, check which one it is.
3335 Don't check the highest bit, it's indicating if it's a zero
3337 if (cris_get_size (*inst) & INST_WORD_SIZE)
3342 /* Check if the instruction is signed extend. If so, check if value has
3344 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_WORD_MASK))
3346 value |= SIGNED_WORD_EXTEND_MASK;
3354 /* Check if the instruction is signed extend. If so, check if value has
3356 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_BYTE_MASK))
3358 value |= SIGNED_BYTE_EXTEND_MASK;
3361 /* The size should now be dword. */
3362 cris_set_size_to_dword (inst);
3366 /* Handles the register mode for the ADD, SUB, CMP, AND, OR and MOVE
3367 instruction. The MOVE instruction is the move from source to register. */
3370 reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3371 inst_env_type *inst_env)
3373 unsigned long operand1;
3374 unsigned long operand2;
3376 /* It's invalid to have a prefix to the instruction. This is a register
3377 mode instruction and can't have a prefix. */
3378 if (inst_env->prefix_found)
3380 inst_env->invalid = 1;
3383 /* Check if the instruction has PC as its target. */
3384 if (cris_get_operand2 (inst) == REG_PC)
3386 if (inst_env->slot_needed)
3388 inst_env->invalid = 1;
3391 /* The instruction has the PC as its target register. */
3392 operand1 = inst_env->reg[cris_get_operand1 (inst)];
3393 operand2 = inst_env->reg[REG_PC];
3395 /* Check if it's a extend, signed or zero instruction. */
3396 if (cris_get_opcode (inst) < 4)
3398 operand1 = do_sign_or_zero_extend (operand1, &inst);
3400 /* Calculate the PC value after the instruction, i.e. where the
3401 breakpoint should be. The order of the udw_operands is vital. */
3402 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3404 inst_env->slot_needed = 0;
3405 inst_env->prefix_found = 0;
3406 inst_env->xflag_found = 0;
3407 inst_env->disable_interrupt = 0;
3410 /* Returns the data contained at address. The size of the data is derived from
3411 the size of the operation. If the instruction is a zero or signed
3412 extend instruction, the size field is changed in instruction. */
3414 static unsigned long
3415 get_data_from_address (unsigned short *inst, CORE_ADDR address)
3417 int size = cris_get_size (*inst);
3418 unsigned long value;
3420 /* If it's an extend instruction we don't want the signed extend bit,
3421 because it influences the size. */
3422 if (cris_get_opcode (*inst) < 4)
3424 size &= ~SIGNED_EXTEND_BIT_MASK;
3426 /* Is there a need for checking the size? Size should contain the number of
3429 value = read_memory_unsigned_integer (address, size);
3431 /* Check if it's an extend, signed or zero instruction. */
3432 if (cris_get_opcode (*inst) < 4)
3434 value = do_sign_or_zero_extend (value, inst);
3439 /* Handles the assign addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3440 instructions. The MOVE instruction is the move from source to register. */
3443 handle_prefix_assign_mode_for_aritm_op (unsigned short inst,
3444 inst_env_type *inst_env)
3446 unsigned long operand2;
3447 unsigned long operand3;
3449 check_assign (inst, inst_env);
3450 if (cris_get_operand2 (inst) == REG_PC)
3452 operand2 = inst_env->reg[REG_PC];
3454 /* Get the value of the third operand. */
3455 operand3 = get_data_from_address (&inst, inst_env->prefix_value);
3457 /* Calculate the PC value after the instruction, i.e. where the
3458 breakpoint should be. The order of the udw_operands is vital. */
3459 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3461 inst_env->slot_needed = 0;
3462 inst_env->prefix_found = 0;
3463 inst_env->xflag_found = 0;
3464 inst_env->disable_interrupt = 0;
3467 /* Handles the three-operand addressing mode for the ADD, SUB, CMP, AND and
3468 OR instructions. Note that for this to work as expected, the calling
3469 function must have made sure that there is a prefix to this instruction. */
3472 three_operand_add_sub_cmp_and_or_op (unsigned short inst,
3473 inst_env_type *inst_env)
3475 unsigned long operand2;
3476 unsigned long operand3;
3478 if (cris_get_operand1 (inst) == REG_PC)
3480 /* The PC will be changed by the instruction. */
3481 operand2 = inst_env->reg[cris_get_operand2 (inst)];
3483 /* Get the value of the third operand. */
3484 operand3 = get_data_from_address (&inst, inst_env->prefix_value);
3486 /* Calculate the PC value after the instruction, i.e. where the
3487 breakpoint should be. */
3488 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3490 inst_env->slot_needed = 0;
3491 inst_env->prefix_found = 0;
3492 inst_env->xflag_found = 0;
3493 inst_env->disable_interrupt = 0;
3496 /* Handles the index addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3497 instructions. The MOVE instruction is the move from source to register. */
3500 handle_prefix_index_mode_for_aritm_op (unsigned short inst,
3501 inst_env_type *inst_env)
3503 if (cris_get_operand1 (inst) != cris_get_operand2 (inst))
3505 /* If the instruction is MOVE it's invalid. If the instruction is ADD,
3506 SUB, AND or OR something weird is going on (if everything works these
3507 instructions should end up in the three operand version). */
3508 inst_env->invalid = 1;
3513 /* three_operand_add_sub_cmp_and_or does the same as we should do here
3515 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3517 inst_env->slot_needed = 0;
3518 inst_env->prefix_found = 0;
3519 inst_env->xflag_found = 0;
3520 inst_env->disable_interrupt = 0;
3523 /* Handles the autoincrement and indirect addresing mode for the ADD, SUB,
3524 CMP, AND OR and MOVE instruction. The MOVE instruction is the move from
3525 source to register. */
3528 handle_inc_and_index_mode_for_aritm_op (unsigned short inst,
3529 inst_env_type *inst_env)
3531 unsigned long operand1;
3532 unsigned long operand2;
3533 unsigned long operand3;
3536 /* The instruction is either an indirect or autoincrement addressing mode.
3537 Check if the destination register is the PC. */
3538 if (cris_get_operand2 (inst) == REG_PC)
3540 /* Must be done here, get_data_from_address may change the size
3542 size = cris_get_size (inst);
3543 operand2 = inst_env->reg[REG_PC];
3545 /* Get the value of the third operand, i.e. the indirect operand. */
3546 operand1 = inst_env->reg[cris_get_operand1 (inst)];
3547 operand3 = get_data_from_address (&inst, operand1);
3549 /* Calculate the PC value after the instruction, i.e. where the
3550 breakpoint should be. The order of the udw_operands is vital. */
3551 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3553 /* If this is an autoincrement addressing mode, check if the increment
3555 if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE))
3557 /* Get the size field. */
3558 size = cris_get_size (inst);
3560 /* If it's an extend instruction we don't want the signed extend bit,
3561 because it influences the size. */
3562 if (cris_get_opcode (inst) < 4)
3564 size &= ~SIGNED_EXTEND_BIT_MASK;
3566 process_autoincrement (size, inst, inst_env);
3568 inst_env->slot_needed = 0;
3569 inst_env->prefix_found = 0;
3570 inst_env->xflag_found = 0;
3571 inst_env->disable_interrupt = 0;
3574 /* Handles the two-operand addressing mode, all modes except register, for
3575 the ADD, SUB CMP, AND and OR instruction. */
3578 none_reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3579 inst_env_type *inst_env)
3581 if (inst_env->prefix_found)
3583 if (cris_get_mode (inst) == PREFIX_INDEX_MODE)
3585 handle_prefix_index_mode_for_aritm_op (inst, inst_env);
3587 else if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
3589 handle_prefix_assign_mode_for_aritm_op (inst, inst_env);
3593 /* The mode is invalid for a prefixed base instruction. */
3594 inst_env->invalid = 1;
3600 handle_inc_and_index_mode_for_aritm_op (inst, inst_env);
3604 /* Handles the quick addressing mode for the ADD and SUB instruction. */
3607 quick_mode_add_sub_op (unsigned short inst, inst_env_type *inst_env)
3609 unsigned long operand1;
3610 unsigned long operand2;
3612 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3613 instruction and can't have a prefix. */
3614 if (inst_env->prefix_found)
3616 inst_env->invalid = 1;
3620 /* Check if the instruction has PC as its target. */
3621 if (cris_get_operand2 (inst) == REG_PC)
3623 if (inst_env->slot_needed)
3625 inst_env->invalid = 1;
3628 operand1 = cris_get_quick_value (inst);
3629 operand2 = inst_env->reg[REG_PC];
3631 /* The size should now be dword. */
3632 cris_set_size_to_dword (&inst);
3634 /* Calculate the PC value after the instruction, i.e. where the
3635 breakpoint should be. */
3636 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3638 inst_env->slot_needed = 0;
3639 inst_env->prefix_found = 0;
3640 inst_env->xflag_found = 0;
3641 inst_env->disable_interrupt = 0;
3644 /* Handles the quick addressing mode for the CMP, AND and OR instruction. */
3647 quick_mode_and_cmp_move_or_op (unsigned short inst, inst_env_type *inst_env)
3649 unsigned long operand1;
3650 unsigned long operand2;
3652 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3653 instruction and can't have a prefix. */
3654 if (inst_env->prefix_found)
3656 inst_env->invalid = 1;
3659 /* Check if the instruction has PC as its target. */
3660 if (cris_get_operand2 (inst) == REG_PC)
3662 if (inst_env->slot_needed)
3664 inst_env->invalid = 1;
3667 /* The instruction has the PC as its target register. */
3668 operand1 = cris_get_quick_value (inst);
3669 operand2 = inst_env->reg[REG_PC];
3671 /* The quick value is signed, so check if we must do a signed extend. */
3672 if (operand1 & SIGNED_QUICK_VALUE_MASK)
3675 operand1 |= SIGNED_QUICK_VALUE_EXTEND_MASK;
3677 /* The size should now be dword. */
3678 cris_set_size_to_dword (&inst);
3680 /* Calculate the PC value after the instruction, i.e. where the
3681 breakpoint should be. */
3682 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3684 inst_env->slot_needed = 0;
3685 inst_env->prefix_found = 0;
3686 inst_env->xflag_found = 0;
3687 inst_env->disable_interrupt = 0;
3690 /* Translate op_type to a function and call it. */
3693 cris_gdb_func (enum cris_op_type op_type, unsigned short inst,
3694 inst_env_type *inst_env)
3698 case cris_not_implemented_op:
3699 not_implemented_op (inst, inst_env);
3703 abs_op (inst, inst_env);
3707 addi_op (inst, inst_env);
3711 asr_op (inst, inst_env);
3715 asrq_op (inst, inst_env);
3718 case cris_ax_ei_setf_op:
3719 ax_ei_setf_op (inst, inst_env);
3722 case cris_bdap_prefix:
3723 bdap_prefix (inst, inst_env);
3726 case cris_biap_prefix:
3727 biap_prefix (inst, inst_env);
3731 break_op (inst, inst_env);
3734 case cris_btst_nop_op:
3735 btst_nop_op (inst, inst_env);
3738 case cris_clearf_di_op:
3739 clearf_di_op (inst, inst_env);
3742 case cris_dip_prefix:
3743 dip_prefix (inst, inst_env);
3746 case cris_dstep_logshift_mstep_neg_not_op:
3747 dstep_logshift_mstep_neg_not_op (inst, inst_env);
3750 case cris_eight_bit_offset_branch_op:
3751 eight_bit_offset_branch_op (inst, inst_env);
3754 case cris_move_mem_to_reg_movem_op:
3755 move_mem_to_reg_movem_op (inst, inst_env);
3758 case cris_move_reg_to_mem_movem_op:
3759 move_reg_to_mem_movem_op (inst, inst_env);
3762 case cris_move_to_preg_op:
3763 move_to_preg_op (inst, inst_env);
3767 muls_op (inst, inst_env);
3771 mulu_op (inst, inst_env);
3774 case cris_none_reg_mode_add_sub_cmp_and_or_move_op:
3775 none_reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3778 case cris_none_reg_mode_clear_test_op:
3779 none_reg_mode_clear_test_op (inst, inst_env);
3782 case cris_none_reg_mode_jump_op:
3783 none_reg_mode_jump_op (inst, inst_env);
3786 case cris_none_reg_mode_move_from_preg_op:
3787 none_reg_mode_move_from_preg_op (inst, inst_env);
3790 case cris_quick_mode_add_sub_op:
3791 quick_mode_add_sub_op (inst, inst_env);
3794 case cris_quick_mode_and_cmp_move_or_op:
3795 quick_mode_and_cmp_move_or_op (inst, inst_env);
3798 case cris_quick_mode_bdap_prefix:
3799 quick_mode_bdap_prefix (inst, inst_env);
3802 case cris_reg_mode_add_sub_cmp_and_or_move_op:
3803 reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3806 case cris_reg_mode_clear_op:
3807 reg_mode_clear_op (inst, inst_env);
3810 case cris_reg_mode_jump_op:
3811 reg_mode_jump_op (inst, inst_env);
3814 case cris_reg_mode_move_from_preg_op:
3815 reg_mode_move_from_preg_op (inst, inst_env);
3818 case cris_reg_mode_test_op:
3819 reg_mode_test_op (inst, inst_env);
3823 scc_op (inst, inst_env);
3826 case cris_sixteen_bit_offset_branch_op:
3827 sixteen_bit_offset_branch_op (inst, inst_env);
3830 case cris_three_operand_add_sub_cmp_and_or_op:
3831 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3834 case cris_three_operand_bound_op:
3835 three_operand_bound_op (inst, inst_env);
3838 case cris_two_operand_bound_op:
3839 two_operand_bound_op (inst, inst_env);
3843 xor_op (inst, inst_env);
3848 /* This wrapper is to avoid cris_get_assembler being called before
3849 exec_bfd has been set. */
3852 cris_delayed_get_disassembler (bfd_vma addr, struct disassemble_info *info)
3854 int (*print_insn) (bfd_vma addr, struct disassemble_info *info);
3855 /* FIXME: cagney/2003-08-27: It should be possible to select a CRIS
3856 disassembler, even when there is no BFD. Does something like
3857 "gdb; target remote; disassmeble *0x123" work? */
3858 gdb_assert (exec_bfd != NULL);
3859 print_insn = cris_get_disassembler (exec_bfd);
3860 gdb_assert (print_insn != NULL);
3861 return print_insn (addr, info);
3864 /* Copied from <asm/elf.h>. */
3865 typedef unsigned long elf_greg_t;
3867 /* Same as user_regs_struct struct in <asm/user.h>. */
3868 #define CRISV10_ELF_NGREG 35
3869 typedef elf_greg_t elf_gregset_t[CRISV10_ELF_NGREG];
3871 #define CRISV32_ELF_NGREG 32
3872 typedef elf_greg_t crisv32_elf_gregset_t[CRISV32_ELF_NGREG];
3874 /* Unpack an elf_gregset_t into GDB's register cache. */
3877 supply_gregset (elf_gregset_t *gregsetp)
3879 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3881 elf_greg_t *regp = *gregsetp;
3882 static char zerobuf[4] = {0};
3884 /* The kernel dumps all 32 registers as unsigned longs, but supply_register
3885 knows about the actual size of each register so that's no problem. */
3886 for (i = 0; i < NUM_GENREGS + NUM_SPECREGS; i++)
3888 regcache_raw_supply (current_regcache, i, (char *)®p[i]);
3891 if (tdep->cris_version == 32)
3893 /* Needed to set pseudo-register PC for CRISv32. */
3894 /* FIXME: If ERP is in a delay slot at this point then the PC will
3895 be wrong. Issue a warning to alert the user. */
3896 regcache_raw_supply (current_regcache, PC_REGNUM,
3897 (char *)®p[ERP_REGNUM]);
3899 if (*(char *)®p[ERP_REGNUM] & 0x1)
3900 fprintf_unfiltered (gdb_stderr, "Warning: PC in delay slot\n");
3904 /* Use a local version of this function to get the correct types for
3905 regsets, until multi-arch core support is ready. */
3908 fetch_core_registers (char *core_reg_sect, unsigned core_reg_size,
3909 int which, CORE_ADDR reg_addr)
3911 elf_gregset_t gregset;
3916 if (core_reg_size != sizeof (elf_gregset_t)
3917 && core_reg_size != sizeof (crisv32_elf_gregset_t))
3919 warning (_("wrong size gregset struct in core file"));
3923 memcpy (&gregset, core_reg_sect, sizeof (gregset));
3924 supply_gregset (&gregset);
3928 /* We've covered all the kinds of registers we know about here,
3929 so this must be something we wouldn't know what to do with
3930 anyway. Just ignore it. */
3935 static struct core_fns cris_elf_core_fns =
3937 bfd_target_elf_flavour, /* core_flavour */
3938 default_check_format, /* check_format */
3939 default_core_sniffer, /* core_sniffer */
3940 fetch_core_registers, /* core_read_registers */
3944 /* Fetch (and possibly build) an appropriate link_map_offsets
3945 structure for native GNU/Linux CRIS targets using the struct
3946 offsets defined in link.h (but without actual reference to that
3949 This makes it possible to access GNU/Linux CRIS shared libraries
3950 from a GDB that was not built on an GNU/Linux CRIS host (for cross
3953 See gdb/solib-svr4.h for an explanation of these fields. */
3955 static struct link_map_offsets *
3956 cris_linux_svr4_fetch_link_map_offsets (void)
3958 static struct link_map_offsets lmo;
3959 static struct link_map_offsets *lmp = NULL;
3965 lmo.r_debug_size = 8; /* The actual size is 20 bytes, but
3966 this is all we need. */
3967 lmo.r_map_offset = 4;
3970 lmo.link_map_size = 20;
3972 lmo.l_addr_offset = 0;
3973 lmo.l_addr_size = 4;
3975 lmo.l_name_offset = 4;
3976 lmo.l_name_size = 4;
3978 lmo.l_next_offset = 12;
3979 lmo.l_next_size = 4;
3981 lmo.l_prev_offset = 16;
3982 lmo.l_prev_size = 4;
3988 extern initialize_file_ftype _initialize_cris_tdep; /* -Wmissing-prototypes */
3991 _initialize_cris_tdep (void)
3993 static struct cmd_list_element *cris_set_cmdlist;
3994 static struct cmd_list_element *cris_show_cmdlist;
3996 struct cmd_list_element *c;
3998 gdbarch_register (bfd_arch_cris, cris_gdbarch_init, cris_dump_tdep);
4000 /* CRIS-specific user-commands. */
4001 add_setshow_uinteger_cmd ("cris-version", class_support,
4002 &usr_cmd_cris_version,
4003 _("Set the current CRIS version."),
4004 _("Show the current CRIS version."),
4006 Set to 10 for CRISv10 or 32 for CRISv32 if autodetection fails.\n\
4009 NULL, /* FIXME: i18n: Current CRIS version is %s. */
4010 &setlist, &showlist);
4012 add_setshow_enum_cmd ("cris-mode", class_support,
4013 cris_modes, &usr_cmd_cris_mode,
4014 _("Set the current CRIS mode."),
4015 _("Show the current CRIS mode."),
4017 Set to CRIS_MODE_GURU when debugging in guru mode.\n\
4018 Makes GDB use the NRP register instead of the ERP register in certain cases."),
4020 NULL, /* FIXME: i18n: Current CRIS version is %s. */
4021 &setlist, &showlist);
4023 add_setshow_boolean_cmd ("cris-dwarf2-cfi", class_support,
4024 &usr_cmd_cris_dwarf2_cfi,
4025 _("Set the usage of Dwarf-2 CFI for CRIS."),
4026 _("Show the usage of Dwarf-2 CFI for CRIS."),
4027 _("Set this to \"off\" if using gcc-cris < R59."),
4028 set_cris_dwarf2_cfi,
4029 NULL, /* FIXME: i18n: Usage of Dwarf-2 CFI for CRIS is %d. */
4030 &setlist, &showlist);
4032 deprecated_add_core_fns (&cris_elf_core_fns);
4035 /* Prints out all target specific values. */
4038 cris_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
4040 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4043 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_version = %i\n",
4044 tdep->cris_version);
4045 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_mode = %s\n",
4047 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_dwarf2_cfi = %i\n",
4048 tdep->cris_dwarf2_cfi);
4053 set_cris_version (char *ignore_args, int from_tty,
4054 struct cmd_list_element *c)
4056 struct gdbarch_info info;
4058 usr_cmd_cris_version_valid = 1;
4060 /* Update the current architecture, if needed. */
4061 gdbarch_info_init (&info);
4062 if (!gdbarch_update_p (info))
4063 internal_error (__FILE__, __LINE__,
4064 _("cris_gdbarch_update: failed to update architecture."));
4068 set_cris_mode (char *ignore_args, int from_tty,
4069 struct cmd_list_element *c)
4071 struct gdbarch_info info;
4073 /* Update the current architecture, if needed. */
4074 gdbarch_info_init (&info);
4075 if (!gdbarch_update_p (info))
4076 internal_error (__FILE__, __LINE__,
4077 "cris_gdbarch_update: failed to update architecture.");
4081 set_cris_dwarf2_cfi (char *ignore_args, int from_tty,
4082 struct cmd_list_element *c)
4084 struct gdbarch_info info;
4086 /* Update the current architecture, if needed. */
4087 gdbarch_info_init (&info);
4088 if (!gdbarch_update_p (info))
4089 internal_error (__FILE__, __LINE__,
4090 _("cris_gdbarch_update: failed to update architecture."));
4093 static struct gdbarch *
4094 cris_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
4096 struct gdbarch *gdbarch;
4097 struct gdbarch_tdep *tdep;
4100 if (usr_cmd_cris_version_valid)
4102 /* Trust the user's CRIS version setting. */
4103 cris_version = usr_cmd_cris_version;
4105 else if (info.abfd && bfd_get_mach (info.abfd) == bfd_mach_cris_v32)
4111 /* Assume it's CRIS version 10. */
4115 /* Make the current settings visible to the user. */
4116 usr_cmd_cris_version = cris_version;
4118 /* Find a candidate among the list of pre-declared architectures. */
4119 for (arches = gdbarch_list_lookup_by_info (arches, &info);
4121 arches = gdbarch_list_lookup_by_info (arches->next, &info))
4123 if ((gdbarch_tdep (arches->gdbarch)->cris_version
4124 == usr_cmd_cris_version)
4125 && (gdbarch_tdep (arches->gdbarch)->cris_mode
4126 == usr_cmd_cris_mode)
4127 && (gdbarch_tdep (arches->gdbarch)->cris_dwarf2_cfi
4128 == usr_cmd_cris_dwarf2_cfi))
4129 return arches->gdbarch;
4132 /* No matching architecture was found. Create a new one. */
4133 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
4134 gdbarch = gdbarch_alloc (&info, tdep);
4136 tdep->cris_version = usr_cmd_cris_version;
4137 tdep->cris_mode = usr_cmd_cris_mode;
4138 tdep->cris_dwarf2_cfi = usr_cmd_cris_dwarf2_cfi;
4140 /* INIT shall ensure that the INFO.BYTE_ORDER is non-zero. */
4141 switch (info.byte_order)
4143 case BFD_ENDIAN_LITTLE:
4147 case BFD_ENDIAN_BIG:
4148 internal_error (__FILE__, __LINE__, _("cris_gdbarch_init: big endian byte order in info"));
4152 internal_error (__FILE__, __LINE__, _("cris_gdbarch_init: unknown byte order in info"));
4155 set_gdbarch_return_value (gdbarch, cris_return_value);
4156 set_gdbarch_deprecated_reg_struct_has_addr (gdbarch,
4157 cris_reg_struct_has_addr);
4158 set_gdbarch_deprecated_use_struct_convention (gdbarch, always_use_struct_convention);
4160 set_gdbarch_sp_regnum (gdbarch, 14);
4162 /* Length of ordinary registers used in push_word and a few other
4163 places. register_size() is the real way to know how big a
4166 set_gdbarch_double_bit (gdbarch, 64);
4167 /* The default definition of a long double is 2 * TARGET_DOUBLE_BIT,
4168 which means we have to set this explicitly. */
4169 set_gdbarch_long_double_bit (gdbarch, 64);
4171 /* The total amount of space needed to store (in an array called registers)
4172 GDB's copy of the machine's register state. Note: We can not use
4173 cris_register_size at this point, since it relies on current_gdbarch
4175 switch (tdep->cris_version)
4183 /* Old versions; not supported. */
4184 internal_error (__FILE__, __LINE__,
4185 _("cris_gdbarch_init: unsupported CRIS version"));
4190 /* CRIS v10 and v11, a.k.a. ETRAX 100LX. In addition to ETRAX 100,
4191 P7 (32 bits), and P15 (32 bits) have been implemented. */
4192 set_gdbarch_pc_regnum (gdbarch, 15);
4193 set_gdbarch_register_type (gdbarch, cris_register_type);
4194 /* There are 32 registers (some of which may not be implemented). */
4195 set_gdbarch_num_regs (gdbarch, 32);
4196 set_gdbarch_register_name (gdbarch, cris_register_name);
4197 set_gdbarch_cannot_store_register (gdbarch, cris_cannot_store_register);
4198 set_gdbarch_cannot_fetch_register (gdbarch, cris_cannot_fetch_register);
4200 set_gdbarch_software_single_step (gdbarch, cris_software_single_step);
4204 /* CRIS v32. General registers R0 - R15 (32 bits), special registers
4205 P0 - P15 (32 bits) except P0, P1, P3 (8 bits) and P4 (16 bits)
4206 and pseudo-register PC (32 bits). */
4207 set_gdbarch_pc_regnum (gdbarch, 32);
4208 set_gdbarch_register_type (gdbarch, crisv32_register_type);
4209 /* 32 registers + pseudo-register PC + 16 support registers. */
4210 set_gdbarch_num_regs (gdbarch, 32 + 1 + 16);
4211 set_gdbarch_register_name (gdbarch, crisv32_register_name);
4213 set_gdbarch_cannot_store_register
4214 (gdbarch, crisv32_cannot_store_register);
4215 set_gdbarch_cannot_fetch_register
4216 (gdbarch, crisv32_cannot_fetch_register);
4218 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
4220 set_gdbarch_single_step_through_delay
4221 (gdbarch, crisv32_single_step_through_delay);
4226 internal_error (__FILE__, __LINE__,
4227 _("cris_gdbarch_init: unknown CRIS version"));
4230 /* Dummy frame functions (shared between CRISv10 and CRISv32 since they
4231 have the same ABI). */
4232 set_gdbarch_push_dummy_code (gdbarch, cris_push_dummy_code);
4233 set_gdbarch_push_dummy_call (gdbarch, cris_push_dummy_call);
4234 set_gdbarch_frame_align (gdbarch, cris_frame_align);
4235 set_gdbarch_skip_prologue (gdbarch, cris_skip_prologue);
4237 /* The stack grows downward. */
4238 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
4240 set_gdbarch_breakpoint_from_pc (gdbarch, cris_breakpoint_from_pc);
4242 set_gdbarch_unwind_pc (gdbarch, cris_unwind_pc);
4243 set_gdbarch_unwind_sp (gdbarch, cris_unwind_sp);
4244 set_gdbarch_unwind_dummy_id (gdbarch, cris_unwind_dummy_id);
4246 if (tdep->cris_dwarf2_cfi == 1)
4248 /* Hook in the Dwarf-2 frame sniffer. */
4249 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, cris_dwarf2_reg_to_regnum);
4250 dwarf2_frame_set_init_reg (gdbarch, cris_dwarf2_frame_init_reg);
4251 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
4254 if (tdep->cris_mode != cris_mode_guru)
4256 frame_unwind_append_sniffer (gdbarch, cris_sigtramp_frame_sniffer);
4259 frame_unwind_append_sniffer (gdbarch, cris_frame_sniffer);
4260 frame_base_set_default (gdbarch, &cris_frame_base);
4262 /* Use target_specific function to define link map offsets. */
4263 set_solib_svr4_fetch_link_map_offsets
4264 (gdbarch, cris_linux_svr4_fetch_link_map_offsets);
4266 /* FIXME: cagney/2003-08-27: It should be possible to select a CRIS
4267 disassembler, even when there is no BFD. Does something like
4268 "gdb; target remote; disassmeble *0x123" work? */
4269 set_gdbarch_print_insn (gdbarch, cris_delayed_get_disassembler);