1 /* Target dependent code for CRIS, for GDB, the GNU debugger.
3 Copyright 2001, 2002, 2003, 2004, 2005 Free Software Foundation,
6 Contributed by Axis Communications AB.
7 Written by Hendrik Ruijter, Stefan Andersson, and Orjan Friberg.
9 This file is part of GDB.
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
27 #include "frame-unwind.h"
28 #include "frame-base.h"
29 #include "trad-frame.h"
30 #include "dwarf2-frame.h"
38 #include "opcode/cris.h"
39 #include "arch-utils.h"
41 #include "gdb_assert.h"
43 /* To get entry_point_address. */
46 #include "solib.h" /* Support for shared libraries. */
47 #include "solib-svr4.h" /* For struct link_map_offsets. */
48 #include "gdb_string.h"
53 /* There are no floating point registers. Used in gdbserver low-linux.c. */
56 /* There are 16 general registers. */
59 /* There are 16 special registers. */
62 /* CRISv32 has a pseudo PC register, not noted here. */
64 /* CRISv32 has 16 support registers. */
68 /* Register numbers of various important registers.
69 CRIS_FP_REGNUM Contains address of executing stack frame.
70 STR_REGNUM Contains the address of structure return values.
71 RET_REGNUM Contains the return value when shorter than or equal to 32 bits
72 ARG1_REGNUM Contains the first parameter to a function.
73 ARG2_REGNUM Contains the second parameter to a function.
74 ARG3_REGNUM Contains the third parameter to a function.
75 ARG4_REGNUM Contains the fourth parameter to a function. Rest on stack.
76 SP_REGNUM Contains address of top of stack.
77 PC_REGNUM Contains address of next instruction.
78 SRP_REGNUM Subroutine return pointer register.
79 BRP_REGNUM Breakpoint return pointer register. */
83 /* Enums with respect to the general registers, valid for all
84 CRIS versions. The frame pointer is always in R8. */
86 /* ABI related registers. */
94 /* Registers which happen to be common. */
99 /* CRISv10 et. al. specific registers. */
111 /* CRISv32 specific registers. */
124 CRISV32USP_REGNUM = 30, /* Shares name but not number with CRISv10. */
126 CRISV32PC_REGNUM = 32, /* Shares name but not number with CRISv10. */
146 extern const struct cris_spec_reg cris_spec_regs[];
148 /* CRIS version, set via the user command 'set cris-version'. Affects
149 register names and sizes. */
150 static int usr_cmd_cris_version;
152 /* Indicates whether to trust the above variable. */
153 static int usr_cmd_cris_version_valid = 0;
155 static const char cris_mode_normal[] = "CRIS_MODE_NORMAL";
156 static const char cris_mode_guru[] = "CRIS_MODE_GURU";
157 static const char *cris_modes[] = {
163 /* CRIS mode, set via the user command 'set cris-mode'. Affects
164 type of break instruction among other things. */
165 static const char *usr_cmd_cris_mode = cris_mode_normal;
167 /* Whether to make use of Dwarf-2 CFI (default on). */
168 static int usr_cmd_cris_dwarf2_cfi = 1;
170 /* CRIS architecture specific information. */
174 const char *cris_mode;
178 /* Functions for accessing target dependent data. */
183 return (gdbarch_tdep (current_gdbarch)->cris_version);
189 return (gdbarch_tdep (current_gdbarch)->cris_mode);
192 /* Sigtramp identification code copied from i386-linux-tdep.c. */
194 #define SIGTRAMP_INSN0 0x9c5f /* movu.w 0xXX, $r9 */
195 #define SIGTRAMP_OFFSET0 0
196 #define SIGTRAMP_INSN1 0xe93d /* break 13 */
197 #define SIGTRAMP_OFFSET1 4
199 static const unsigned short sigtramp_code[] =
201 SIGTRAMP_INSN0, 0x0077, /* movu.w $0x77, $r9 */
202 SIGTRAMP_INSN1 /* break 13 */
205 #define SIGTRAMP_LEN (sizeof sigtramp_code)
207 /* Note: same length as normal sigtramp code. */
209 static const unsigned short rt_sigtramp_code[] =
211 SIGTRAMP_INSN0, 0x00ad, /* movu.w $0xad, $r9 */
212 SIGTRAMP_INSN1 /* break 13 */
215 /* If PC is in a sigtramp routine, return the address of the start of
216 the routine. Otherwise, return 0. */
219 cris_sigtramp_start (struct frame_info *next_frame)
221 CORE_ADDR pc = frame_pc_unwind (next_frame);
222 unsigned short buf[SIGTRAMP_LEN];
224 if (!safe_frame_unwind_memory (next_frame, pc, buf, SIGTRAMP_LEN))
227 if (buf[0] != SIGTRAMP_INSN0)
229 if (buf[0] != SIGTRAMP_INSN1)
232 pc -= SIGTRAMP_OFFSET1;
233 if (!safe_frame_unwind_memory (next_frame, pc, buf, SIGTRAMP_LEN))
237 if (memcmp (buf, sigtramp_code, SIGTRAMP_LEN) != 0)
243 /* If PC is in a RT sigtramp routine, return the address of the start of
244 the routine. Otherwise, return 0. */
247 cris_rt_sigtramp_start (struct frame_info *next_frame)
249 CORE_ADDR pc = frame_pc_unwind (next_frame);
250 unsigned short buf[SIGTRAMP_LEN];
252 if (!safe_frame_unwind_memory (next_frame, pc, buf, SIGTRAMP_LEN))
255 if (buf[0] != SIGTRAMP_INSN0)
257 if (buf[0] != SIGTRAMP_INSN1)
260 pc -= SIGTRAMP_OFFSET1;
261 if (!safe_frame_unwind_memory (next_frame, pc, buf, SIGTRAMP_LEN))
265 if (memcmp (buf, rt_sigtramp_code, SIGTRAMP_LEN) != 0)
271 /* Assuming NEXT_FRAME is a frame following a GNU/Linux sigtramp
272 routine, return the address of the associated sigcontext structure. */
275 cris_sigcontext_addr (struct frame_info *next_frame)
281 frame_unwind_register (next_frame, SP_REGNUM, buf);
282 sp = extract_unsigned_integer (buf, 4);
284 /* Look for normal sigtramp frame first. */
285 pc = cris_sigtramp_start (next_frame);
288 /* struct signal_frame (arch/cris/kernel/signal.c) contains
289 struct sigcontext as its first member, meaning the SP points to
294 pc = cris_rt_sigtramp_start (next_frame);
297 /* struct rt_signal_frame (arch/cris/kernel/signal.c) contains
298 a struct ucontext, which in turn contains a struct sigcontext.
300 4 + 4 + 128 to struct ucontext, then
301 4 + 4 + 12 to struct sigcontext. */
305 error (_("Couldn't recognize signal trampoline."));
309 struct cris_unwind_cache
311 /* The previous frame's inner most stack address. Used as this
312 frame ID's stack_addr. */
314 /* The frame's base, optionally used by the high-level debug info. */
317 /* How far the SP and r8 (FP) have been offset from the start of
318 the stack frame (as defined by the previous frame's stack
324 /* From old frame_extra_info struct. */
328 /* Table indicating the location of each and every register. */
329 struct trad_frame_saved_reg *saved_regs;
332 static struct cris_unwind_cache *
333 cris_sigtramp_frame_unwind_cache (struct frame_info *next_frame,
336 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
337 struct cris_unwind_cache *info;
345 return (*this_cache);
347 info = FRAME_OBSTACK_ZALLOC (struct cris_unwind_cache);
348 (*this_cache) = info;
349 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
351 /* Zero all fields. */
357 info->uses_frame = 0;
359 info->leaf_function = 0;
361 frame_unwind_register (next_frame, SP_REGNUM, buf);
362 info->base = extract_unsigned_integer (buf, 4);
364 addr = cris_sigcontext_addr (next_frame);
366 /* Layout of the sigcontext struct:
369 unsigned long oldmask;
373 if (tdep->cris_version == 10)
375 /* R0 to R13 are stored in reverse order at offset (2 * 4) in
377 for (i = 0; i <= 13; i++)
378 info->saved_regs[i].addr = addr + ((15 - i) * 4);
380 info->saved_regs[MOF_REGNUM].addr = addr + (16 * 4);
381 info->saved_regs[DCCR_REGNUM].addr = addr + (17 * 4);
382 info->saved_regs[SRP_REGNUM].addr = addr + (18 * 4);
383 /* Note: IRP is off by 2 at this point. There's no point in correcting
384 it though since that will mean that the backtrace will show a PC
385 different from what is shown when stopped. */
386 info->saved_regs[IRP_REGNUM].addr = addr + (19 * 4);
387 info->saved_regs[PC_REGNUM] = info->saved_regs[IRP_REGNUM];
388 info->saved_regs[SP_REGNUM].addr = addr + (24 * 4);
393 /* R0 to R13 are stored in order at offset (1 * 4) in
395 for (i = 0; i <= 13; i++)
396 info->saved_regs[i].addr = addr + ((i + 1) * 4);
398 info->saved_regs[ACR_REGNUM].addr = addr + (15 * 4);
399 info->saved_regs[SRS_REGNUM].addr = addr + (16 * 4);
400 info->saved_regs[MOF_REGNUM].addr = addr + (17 * 4);
401 info->saved_regs[SPC_REGNUM].addr = addr + (18 * 4);
402 info->saved_regs[CCS_REGNUM].addr = addr + (19 * 4);
403 info->saved_regs[SRP_REGNUM].addr = addr + (20 * 4);
404 info->saved_regs[ERP_REGNUM].addr = addr + (21 * 4);
405 info->saved_regs[EXS_REGNUM].addr = addr + (22 * 4);
406 info->saved_regs[EDA_REGNUM].addr = addr + (23 * 4);
408 /* FIXME: If ERP is in a delay slot at this point then the PC will
409 be wrong at this point. This problem manifests itself in the
410 sigaltstack.exp test case, which occasionally generates FAILs when
411 the signal is received while in a delay slot.
413 This could be solved by a couple of read_memory_unsigned_integer and a
414 trad_frame_set_value. */
415 info->saved_regs[PC_REGNUM] = info->saved_regs[ERP_REGNUM];
417 info->saved_regs[SP_REGNUM].addr = addr + (25 * 4);
424 cris_sigtramp_frame_this_id (struct frame_info *next_frame, void **this_cache,
425 struct frame_id *this_id)
427 struct cris_unwind_cache *cache =
428 cris_sigtramp_frame_unwind_cache (next_frame, this_cache);
429 (*this_id) = frame_id_build (cache->base, frame_pc_unwind (next_frame));
432 /* Forward declaration. */
434 static void cris_frame_prev_register (struct frame_info *next_frame,
435 void **this_prologue_cache,
436 int regnum, int *optimizedp,
437 enum lval_type *lvalp, CORE_ADDR *addrp,
438 int *realnump, void *bufferp);
440 cris_sigtramp_frame_prev_register (struct frame_info *next_frame,
442 int regnum, int *optimizedp,
443 enum lval_type *lvalp, CORE_ADDR *addrp,
444 int *realnump, void *valuep)
446 /* Make sure we've initialized the cache. */
447 cris_sigtramp_frame_unwind_cache (next_frame, this_cache);
448 cris_frame_prev_register (next_frame, this_cache, regnum,
449 optimizedp, lvalp, addrp, realnump, valuep);
452 static const struct frame_unwind cris_sigtramp_frame_unwind =
455 cris_sigtramp_frame_this_id,
456 cris_sigtramp_frame_prev_register
459 static const struct frame_unwind *
460 cris_sigtramp_frame_sniffer (struct frame_info *next_frame)
462 if (cris_sigtramp_start (next_frame)
463 || cris_rt_sigtramp_start (next_frame))
464 return &cris_sigtramp_frame_unwind;
470 crisv32_single_step_through_delay (struct gdbarch *gdbarch,
471 struct frame_info *this_frame)
473 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
478 if (cris_mode () == cris_mode_guru)
480 frame_unwind_register (this_frame, NRP_REGNUM, buf);
484 frame_unwind_register (this_frame, ERP_REGNUM, buf);
487 erp = extract_unsigned_integer (buf, 4);
491 /* In delay slot - check if there's a breakpoint at the preceding
493 if (breakpoint_here_p (erp & ~0x1))
499 /* Hardware watchpoint support. */
501 /* We support 6 hardware data watchpoints, but cannot trigger on execute
502 (any combination of read/write is fine). */
505 cris_can_use_hardware_watchpoint (int type, int count, int other)
507 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
509 /* No bookkeeping is done here; it is handled by the remote debug agent. */
511 if (tdep->cris_version != 32)
514 /* CRISv32: Six data watchpoints, one for instructions. */
515 return (((type == bp_read_watchpoint || type == bp_access_watchpoint
516 || type == bp_hardware_watchpoint) && count <= 6)
517 || (type == bp_hardware_breakpoint && count <= 1));
520 /* The CRISv32 hardware data watchpoints work by specifying ranges,
521 which have no alignment or length restrictions. */
524 cris_region_ok_for_watchpoint (CORE_ADDR addr, int len)
529 /* If the inferior has some watchpoint that triggered, return the
530 address associated with that watchpoint. Otherwise, return
534 cris_stopped_data_address (void)
537 eda = read_register (EDA_REGNUM);
541 /* The instruction environment needed to find single-step breakpoints. */
544 struct instruction_environment
546 unsigned long reg[NUM_GENREGS];
547 unsigned long preg[NUM_SPECREGS];
548 unsigned long branch_break_address;
549 unsigned long delay_slot_pc;
550 unsigned long prefix_value;
555 int delay_slot_pc_active;
557 int disable_interrupt;
560 /* Save old breakpoints in order to restore the state before a single_step.
561 At most, two breakpoints will have to be remembered. */
563 char binsn_quantum[BREAKPOINT_MAX];
564 static binsn_quantum break_mem[2];
565 static CORE_ADDR next_pc = 0;
566 static CORE_ADDR branch_target_address = 0;
567 static unsigned char branch_break_inserted = 0;
569 /* Machine-dependencies in CRIS for opcodes. */
571 /* Instruction sizes. */
572 enum cris_instruction_sizes
579 /* Addressing modes. */
580 enum cris_addressing_modes
587 /* Prefix addressing modes. */
588 enum cris_prefix_addressing_modes
590 PREFIX_INDEX_MODE = 2,
591 PREFIX_ASSIGN_MODE = 3,
593 /* Handle immediate byte offset addressing mode prefix format. */
594 PREFIX_OFFSET_MODE = 2
597 /* Masks for opcodes. */
598 enum cris_opcode_masks
600 BRANCH_SIGNED_SHORT_OFFSET_MASK = 0x1,
601 SIGNED_EXTEND_BIT_MASK = 0x2,
602 SIGNED_BYTE_MASK = 0x80,
603 SIGNED_BYTE_EXTEND_MASK = 0xFFFFFF00,
604 SIGNED_WORD_MASK = 0x8000,
605 SIGNED_WORD_EXTEND_MASK = 0xFFFF0000,
606 SIGNED_DWORD_MASK = 0x80000000,
607 SIGNED_QUICK_VALUE_MASK = 0x20,
608 SIGNED_QUICK_VALUE_EXTEND_MASK = 0xFFFFFFC0
611 /* Functions for opcodes. The general form of the ETRAX 16-bit instruction:
619 cris_get_operand2 (unsigned short insn)
621 return ((insn & 0xF000) >> 12);
625 cris_get_mode (unsigned short insn)
627 return ((insn & 0x0C00) >> 10);
631 cris_get_opcode (unsigned short insn)
633 return ((insn & 0x03C0) >> 6);
637 cris_get_size (unsigned short insn)
639 return ((insn & 0x0030) >> 4);
643 cris_get_operand1 (unsigned short insn)
645 return (insn & 0x000F);
648 /* Additional functions in order to handle opcodes. */
651 cris_get_quick_value (unsigned short insn)
653 return (insn & 0x003F);
657 cris_get_bdap_quick_offset (unsigned short insn)
659 return (insn & 0x00FF);
663 cris_get_branch_short_offset (unsigned short insn)
665 return (insn & 0x00FF);
669 cris_get_asr_shift_steps (unsigned long value)
671 return (value & 0x3F);
675 cris_get_clear_size (unsigned short insn)
677 return ((insn) & 0xC000);
681 cris_is_signed_extend_bit_on (unsigned short insn)
683 return (((insn) & 0x20) == 0x20);
687 cris_is_xflag_bit_on (unsigned short insn)
689 return (((insn) & 0x1000) == 0x1000);
693 cris_set_size_to_dword (unsigned short *insn)
700 cris_get_signed_offset (unsigned short insn)
702 return ((signed char) (insn & 0x00FF));
705 /* Calls an op function given the op-type, working on the insn and the
707 static void cris_gdb_func (enum cris_op_type, unsigned short, inst_env_type *);
709 static struct gdbarch *cris_gdbarch_init (struct gdbarch_info,
710 struct gdbarch_list *);
712 static void cris_dump_tdep (struct gdbarch *, struct ui_file *);
714 static void set_cris_version (char *ignore_args, int from_tty,
715 struct cmd_list_element *c);
717 static void set_cris_mode (char *ignore_args, int from_tty,
718 struct cmd_list_element *c);
720 static void set_cris_dwarf2_cfi (char *ignore_args, int from_tty,
721 struct cmd_list_element *c);
723 static CORE_ADDR cris_scan_prologue (CORE_ADDR pc,
724 struct frame_info *next_frame,
725 struct cris_unwind_cache *info);
727 static CORE_ADDR cris_unwind_pc (struct gdbarch *gdbarch,
728 struct frame_info *next_frame);
730 static CORE_ADDR cris_unwind_sp (struct gdbarch *gdbarch,
731 struct frame_info *next_frame);
733 /* When arguments must be pushed onto the stack, they go on in reverse
734 order. The below implements a FILO (stack) to do this.
735 Copied from d10v-tdep.c. */
740 struct stack_item *prev;
744 static struct stack_item *
745 push_stack_item (struct stack_item *prev, void *contents, int len)
747 struct stack_item *si;
748 si = xmalloc (sizeof (struct stack_item));
749 si->data = xmalloc (len);
752 memcpy (si->data, contents, len);
756 static struct stack_item *
757 pop_stack_item (struct stack_item *si)
759 struct stack_item *dead = si;
766 /* Put here the code to store, into fi->saved_regs, the addresses of
767 the saved registers of frame described by FRAME_INFO. This
768 includes special registers such as pc and fp saved in special ways
769 in the stack frame. sp is even more special: the address we return
770 for it IS the sp for the next frame. */
772 struct cris_unwind_cache *
773 cris_frame_unwind_cache (struct frame_info *next_frame,
774 void **this_prologue_cache)
777 struct cris_unwind_cache *info;
780 if ((*this_prologue_cache))
781 return (*this_prologue_cache);
783 info = FRAME_OBSTACK_ZALLOC (struct cris_unwind_cache);
784 (*this_prologue_cache) = info;
785 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
787 /* Zero all fields. */
793 info->uses_frame = 0;
795 info->leaf_function = 0;
797 /* Prologue analysis does the rest... */
798 cris_scan_prologue (frame_func_unwind (next_frame), next_frame, info);
803 /* Given a GDB frame, determine the address of the calling function's
804 frame. This will be used to create a new GDB frame struct. */
807 cris_frame_this_id (struct frame_info *next_frame,
808 void **this_prologue_cache,
809 struct frame_id *this_id)
811 struct cris_unwind_cache *info
812 = cris_frame_unwind_cache (next_frame, this_prologue_cache);
817 /* The FUNC is easy. */
818 func = frame_func_unwind (next_frame);
820 /* Hopefully the prologue analysis either correctly determined the
821 frame's base (which is the SP from the previous frame), or set
822 that base to "NULL". */
823 base = info->prev_sp;
827 id = frame_id_build (base, func);
833 cris_frame_prev_register (struct frame_info *next_frame,
834 void **this_prologue_cache,
835 int regnum, int *optimizedp,
836 enum lval_type *lvalp, CORE_ADDR *addrp,
837 int *realnump, void *bufferp)
839 struct cris_unwind_cache *info
840 = cris_frame_unwind_cache (next_frame, this_prologue_cache);
841 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
842 optimizedp, lvalp, addrp, realnump, bufferp);
845 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
846 dummy frame. The frame ID's base needs to match the TOS value
847 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
850 static struct frame_id
851 cris_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
853 return frame_id_build (cris_unwind_sp (gdbarch, next_frame),
854 frame_pc_unwind (next_frame));
858 cris_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
860 /* Align to the size of an instruction (so that they can safely be
861 pushed onto the stack). */
866 cris_push_dummy_code (struct gdbarch *gdbarch,
867 CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc,
868 struct value **args, int nargs,
869 struct type *value_type,
870 CORE_ADDR *real_pc, CORE_ADDR *bp_addr)
872 /* Allocate space sufficient for a breakpoint. */
874 /* Store the address of that breakpoint */
876 /* CRIS always starts the call at the callee's entry point. */
882 cris_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
883 struct regcache *regcache, CORE_ADDR bp_addr,
884 int nargs, struct value **args, CORE_ADDR sp,
885 int struct_return, CORE_ADDR struct_addr)
894 /* The function's arguments and memory allocated by gdb for the arguments to
895 point at reside in separate areas on the stack.
896 Both frame pointers grow toward higher addresses. */
900 struct stack_item *si = NULL;
902 /* Push the return address. */
903 regcache_cooked_write_unsigned (regcache, SRP_REGNUM, bp_addr);
905 /* Are we returning a value using a structure return or a normal value
906 return? struct_addr is the address of the reserved space for the return
907 structure to be written on the stack. */
910 regcache_cooked_write_unsigned (regcache, STR_REGNUM, struct_addr);
913 /* Now load as many as possible of the first arguments into registers,
914 and push the rest onto the stack. */
915 argreg = ARG1_REGNUM;
918 for (argnum = 0; argnum < nargs; argnum++)
925 len = TYPE_LENGTH (value_type (args[argnum]));
926 val = (char *) value_contents (args[argnum]);
928 /* How may registers worth of storage do we need for this argument? */
929 reg_demand = (len / 4) + (len % 4 != 0 ? 1 : 0);
931 if (len <= (2 * 4) && (argreg + reg_demand - 1 <= ARG4_REGNUM))
933 /* Data passed by value. Fits in available register(s). */
934 for (i = 0; i < reg_demand; i++)
936 regcache_cooked_write_unsigned (regcache, argreg,
937 *(unsigned long *) val);
942 else if (len <= (2 * 4) && argreg <= ARG4_REGNUM)
944 /* Data passed by value. Does not fit in available register(s).
945 Use the register(s) first, then the stack. */
946 for (i = 0; i < reg_demand; i++)
948 if (argreg <= ARG4_REGNUM)
950 regcache_cooked_write_unsigned (regcache, argreg,
951 *(unsigned long *) val);
957 /* Push item for later so that pushed arguments
958 come in the right order. */
959 si = push_stack_item (si, val, 4);
964 else if (len > (2 * 4))
967 internal_error (__FILE__, __LINE__, _("We don't do this"));
971 /* Data passed by value. No available registers. Put it on
973 si = push_stack_item (si, val, len);
979 /* fp_arg must be word-aligned (i.e., don't += len) to match
980 the function prologue. */
981 sp = (sp - si->len) & ~3;
982 write_memory (sp, si->data, si->len);
983 si = pop_stack_item (si);
986 /* Finally, update the SP register. */
987 regcache_cooked_write_unsigned (regcache, SP_REGNUM, sp);
992 static const struct frame_unwind cris_frame_unwind = {
995 cris_frame_prev_register
998 const struct frame_unwind *
999 cris_frame_sniffer (struct frame_info *next_frame)
1001 return &cris_frame_unwind;
1005 cris_frame_base_address (struct frame_info *next_frame, void **this_cache)
1007 struct cris_unwind_cache *info
1008 = cris_frame_unwind_cache (next_frame, this_cache);
1012 static const struct frame_base cris_frame_base = {
1014 cris_frame_base_address,
1015 cris_frame_base_address,
1016 cris_frame_base_address
1019 /* Frames information. The definition of the struct frame_info is
1023 enum frame_type type;
1027 If the compilation option -fno-omit-frame-pointer is present the
1028 variable frame will be set to the content of R8 which is the frame
1031 The variable pc contains the address where execution is performed
1032 in the present frame. The innermost frame contains the current content
1033 of the register PC. All other frames contain the content of the
1034 register PC in the next frame.
1036 The variable `type' indicates the frame's type: normal, SIGTRAMP
1037 (associated with a signal handler), dummy (associated with a dummy
1040 The variable return_pc contains the address where execution should be
1041 resumed when the present frame has finished, the return address.
1043 The variable leaf_function is 1 if the return address is in the register
1044 SRP, and 0 if it is on the stack.
1046 Prologue instructions C-code.
1047 The prologue may consist of (-fno-omit-frame-pointer)
1051 move.d sp,r8 move.d sp,r8
1053 movem rY,[sp] movem rY,[sp]
1054 move.S rZ,[r8-U] move.S rZ,[r8-U]
1056 where 1 is a non-terminal function, and 2 is a leaf-function.
1058 Note that this assumption is extremely brittle, and will break at the
1059 slightest change in GCC's prologue.
1061 If local variables are declared or register contents are saved on stack
1062 the subq-instruction will be present with X as the number of bytes
1063 needed for storage. The reshuffle with respect to r8 may be performed
1064 with any size S (b, w, d) and any of the general registers Z={0..13}.
1065 The offset U should be representable by a signed 8-bit value in all cases.
1066 Thus, the prefix word is assumed to be immediate byte offset mode followed
1067 by another word containing the instruction.
1076 Prologue instructions C++-code.
1077 Case 1) and 2) in the C-code may be followed by
1079 move.d r10,rS ; this
1083 move.S [r8+U],rZ ; P4
1085 if any of the call parameters are stored. The host expects these
1086 instructions to be executed in order to get the call parameters right. */
1088 /* Examine the prologue of a function. The variable ip is the address of
1089 the first instruction of the prologue. The variable limit is the address
1090 of the first instruction after the prologue. The variable fi contains the
1091 information in struct frame_info. The variable frameless_p controls whether
1092 the entire prologue is examined (0) or just enough instructions to
1093 determine that it is a prologue (1). */
1096 cris_scan_prologue (CORE_ADDR pc, struct frame_info *next_frame,
1097 struct cris_unwind_cache *info)
1099 /* Present instruction. */
1100 unsigned short insn;
1102 /* Next instruction, lookahead. */
1103 unsigned short insn_next;
1106 /* Is there a push fp? */
1109 /* Number of byte on stack used for local variables and movem. */
1112 /* Highest register number in a movem. */
1115 /* move.d r<source_register>,rS */
1116 short source_register;
1121 /* This frame is with respect to a leaf until a push srp is found. */
1124 info->leaf_function = 1;
1127 /* Assume nothing on stack. */
1131 /* If we were called without a next_frame, that means we were called
1132 from cris_skip_prologue which already tried to find the end of the
1133 prologue through the symbol information. 64 instructions past current
1134 pc is arbitrarily chosen, but at least it means we'll stop eventually. */
1135 limit = next_frame ? frame_pc_unwind (next_frame) : pc + 64;
1137 /* Find the prologue instructions. */
1138 while (pc > 0 && pc < limit)
1140 insn = read_memory_unsigned_integer (pc, 2);
1144 /* push <reg> 32 bit instruction */
1145 insn_next = read_memory_unsigned_integer (pc, 2);
1147 regno = cris_get_operand2 (insn_next);
1150 info->sp_offset += 4;
1152 /* This check, meant to recognize srp, used to be regno ==
1153 (SRP_REGNUM - NUM_GENREGS), but that covers r11 also. */
1154 if (insn_next == 0xBE7E)
1158 info->leaf_function = 0;
1161 else if (insn_next == 0x8FEE)
1166 info->r8_offset = info->sp_offset;
1170 else if (insn == 0x866E)
1175 info->uses_frame = 1;
1179 else if (cris_get_operand2 (insn) == SP_REGNUM
1180 && cris_get_mode (insn) == 0x0000
1181 && cris_get_opcode (insn) == 0x000A)
1186 info->sp_offset += cris_get_quick_value (insn);
1189 else if (cris_get_mode (insn) == 0x0002
1190 && cris_get_opcode (insn) == 0x000F
1191 && cris_get_size (insn) == 0x0003
1192 && cris_get_operand1 (insn) == SP_REGNUM)
1194 /* movem r<regsave>,[sp] */
1195 regsave = cris_get_operand2 (insn);
1197 else if (cris_get_operand2 (insn) == SP_REGNUM
1198 && ((insn & 0x0F00) >> 8) == 0x0001
1199 && (cris_get_signed_offset (insn) < 0))
1201 /* Immediate byte offset addressing prefix word with sp as base
1202 register. Used for CRIS v8 i.e. ETRAX 100 and newer if <val>
1203 is between 64 and 128.
1204 movem r<regsave>,[sp=sp-<val>] */
1207 info->sp_offset += -cris_get_signed_offset (insn);
1209 insn_next = read_memory_unsigned_integer (pc, 2);
1211 if (cris_get_mode (insn_next) == PREFIX_ASSIGN_MODE
1212 && cris_get_opcode (insn_next) == 0x000F
1213 && cris_get_size (insn_next) == 0x0003
1214 && cris_get_operand1 (insn_next) == SP_REGNUM)
1216 regsave = cris_get_operand2 (insn_next);
1220 /* The prologue ended before the limit was reached. */
1225 else if (cris_get_mode (insn) == 0x0001
1226 && cris_get_opcode (insn) == 0x0009
1227 && cris_get_size (insn) == 0x0002)
1229 /* move.d r<10..13>,r<0..15> */
1230 source_register = cris_get_operand1 (insn);
1232 /* FIXME? In the glibc solibs, the prologue might contain something
1233 like (this example taken from relocate_doit):
1235 sub.d 0xfffef426,$r0
1236 which isn't covered by the source_register check below. Question
1237 is whether to add a check for this combo, or make better use of
1238 the limit variable instead. */
1239 if (source_register < ARG1_REGNUM || source_register > ARG4_REGNUM)
1241 /* The prologue ended before the limit was reached. */
1246 else if (cris_get_operand2 (insn) == CRIS_FP_REGNUM
1247 /* The size is a fixed-size. */
1248 && ((insn & 0x0F00) >> 8) == 0x0001
1249 /* A negative offset. */
1250 && (cris_get_signed_offset (insn) < 0))
1252 /* move.S rZ,[r8-U] (?) */
1253 insn_next = read_memory_unsigned_integer (pc, 2);
1255 regno = cris_get_operand2 (insn_next);
1256 if ((regno >= 0 && regno < SP_REGNUM)
1257 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
1258 && cris_get_opcode (insn_next) == 0x000F)
1260 /* move.S rZ,[r8-U] */
1265 /* The prologue ended before the limit was reached. */
1270 else if (cris_get_operand2 (insn) == CRIS_FP_REGNUM
1271 /* The size is a fixed-size. */
1272 && ((insn & 0x0F00) >> 8) == 0x0001
1273 /* A positive offset. */
1274 && (cris_get_signed_offset (insn) > 0))
1276 /* move.S [r8+U],rZ (?) */
1277 insn_next = read_memory_unsigned_integer (pc, 2);
1279 regno = cris_get_operand2 (insn_next);
1280 if ((regno >= 0 && regno < SP_REGNUM)
1281 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
1282 && cris_get_opcode (insn_next) == 0x0009
1283 && cris_get_operand1 (insn_next) == regno)
1285 /* move.S [r8+U],rZ */
1290 /* The prologue ended before the limit was reached. */
1297 /* The prologue ended before the limit was reached. */
1303 /* We only want to know the end of the prologue when next_frame and info
1304 are NULL (called from cris_skip_prologue i.e.). */
1305 if (next_frame == NULL && info == NULL)
1310 info->size = info->sp_offset;
1312 /* Compute the previous frame's stack pointer (which is also the
1313 frame's ID's stack address), and this frame's base pointer. */
1314 if (info->uses_frame)
1317 /* The SP was moved to the FP. This indicates that a new frame
1318 was created. Get THIS frame's FP value by unwinding it from
1320 frame_unwind_unsigned_register (next_frame, CRIS_FP_REGNUM,
1322 info->base = this_base;
1323 info->saved_regs[CRIS_FP_REGNUM].addr = info->base;
1325 /* The FP points at the last saved register. Adjust the FP back
1326 to before the first saved register giving the SP. */
1327 info->prev_sp = info->base + info->r8_offset;
1332 /* Assume that the FP is this frame's SP but with that pushed
1333 stack space added back. */
1334 frame_unwind_unsigned_register (next_frame, SP_REGNUM, &this_base);
1335 info->base = this_base;
1336 info->prev_sp = info->base + info->size;
1339 /* Calculate the addresses for the saved registers on the stack. */
1340 /* FIXME: The address calculation should really be done on the fly while
1341 we're analyzing the prologue (we only hold one regsave value as it is
1343 val = info->sp_offset;
1345 for (regno = regsave; regno >= 0; regno--)
1347 info->saved_regs[regno].addr = info->base + info->r8_offset - val;
1351 /* The previous frame's SP needed to be computed. Save the computed
1353 trad_frame_set_value (info->saved_regs, SP_REGNUM, info->prev_sp);
1355 if (!info->leaf_function)
1357 /* SRP saved on the stack. But where? */
1358 if (info->r8_offset == 0)
1360 /* R8 not pushed yet. */
1361 info->saved_regs[SRP_REGNUM].addr = info->base;
1365 /* R8 pushed, but SP may or may not be moved to R8 yet. */
1366 info->saved_regs[SRP_REGNUM].addr = info->base + 4;
1370 /* The PC is found in SRP (the actual register or located on the stack). */
1371 info->saved_regs[PC_REGNUM] = info->saved_regs[SRP_REGNUM];
1376 /* Advance pc beyond any function entry prologue instructions at pc
1377 to reach some "real" code. */
1379 /* Given a PC value corresponding to the start of a function, return the PC
1380 of the first instruction after the function prologue. */
1383 cris_skip_prologue (CORE_ADDR pc)
1385 CORE_ADDR func_addr, func_end;
1386 struct symtab_and_line sal;
1387 CORE_ADDR pc_after_prologue;
1389 /* If we have line debugging information, then the end of the prologue
1390 should the first assembly instruction of the first source line. */
1391 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1393 sal = find_pc_line (func_addr, 0);
1394 if (sal.end > 0 && sal.end < func_end)
1398 pc_after_prologue = cris_scan_prologue (pc, NULL, NULL);
1399 return pc_after_prologue;
1403 cris_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1406 frame_unwind_unsigned_register (next_frame, PC_REGNUM, &pc);
1411 cris_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1414 frame_unwind_unsigned_register (next_frame, SP_REGNUM, &sp);
1418 /* Use the program counter to determine the contents and size of a breakpoint
1419 instruction. It returns a pointer to a string of bytes that encode a
1420 breakpoint instruction, stores the length of the string to *lenptr, and
1421 adjusts pcptr (if necessary) to point to the actual memory location where
1422 the breakpoint should be inserted. */
1424 static const unsigned char *
1425 cris_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
1427 static unsigned char break8_insn[] = {0x38, 0xe9};
1428 static unsigned char break15_insn[] = {0x3f, 0xe9};
1431 if (cris_mode () == cris_mode_guru)
1432 return break15_insn;
1437 /* Returns 1 if spec_reg is applicable to the current gdbarch's CRIS version,
1441 cris_spec_reg_applicable (struct cris_spec_reg spec_reg)
1443 int version = cris_version ();
1445 switch (spec_reg.applicable_version)
1447 case cris_ver_version_all:
1449 case cris_ver_warning:
1450 /* Indeterminate/obsolete. */
1453 return (version >= 0 && version <= 3);
1455 return (version >= 3);
1457 return (version == 8 || version == 9);
1459 return (version >= 8);
1460 case cris_ver_v0_10:
1461 return (version >= 0 && version <= 10);
1462 case cris_ver_v3_10:
1463 return (version >= 3 && version <= 10);
1464 case cris_ver_v8_10:
1465 return (version >= 8 && version <= 10);
1467 return (version == 10);
1469 return (version >= 10);
1471 return (version >= 32);
1473 /* Invalid cris version. */
1478 /* Returns the register size in unit byte. Returns 0 for an unimplemented
1479 register, -1 for an invalid register. */
1482 cris_register_size (int regno)
1484 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1488 if (regno >= 0 && regno < NUM_GENREGS)
1490 /* General registers (R0 - R15) are 32 bits. */
1493 else if (regno >= NUM_GENREGS && regno < (NUM_GENREGS + NUM_SPECREGS))
1495 /* Special register (R16 - R31). cris_spec_regs is zero-based.
1496 Adjust regno accordingly. */
1497 spec_regno = regno - NUM_GENREGS;
1499 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1501 if (cris_spec_regs[i].number == spec_regno
1502 && cris_spec_reg_applicable (cris_spec_regs[i]))
1503 /* Go with the first applicable register. */
1504 return cris_spec_regs[i].reg_size;
1506 /* Special register not applicable to this CRIS version. */
1509 else if (regno >= PC_REGNUM && regno < NUM_REGS)
1511 /* This will apply to CRISv32 only where there are additional registers
1512 after the special registers (pseudo PC and support registers). */
1520 /* Nonzero if regno should not be fetched from the target. This is the case
1521 for unimplemented (size 0) and non-existant registers. */
1524 cris_cannot_fetch_register (int regno)
1526 return ((regno < 0 || regno >= NUM_REGS)
1527 || (cris_register_size (regno) == 0));
1530 /* Nonzero if regno should not be written to the target, for various
1534 cris_cannot_store_register (int regno)
1536 /* There are three kinds of registers we refuse to write to.
1537 1. Those that not implemented.
1538 2. Those that are read-only (depends on the processor mode).
1539 3. Those registers to which a write has no effect.
1542 if (regno < 0 || regno >= NUM_REGS || cris_register_size (regno) == 0)
1543 /* Not implemented. */
1546 else if (regno == VR_REGNUM)
1550 else if (regno == P0_REGNUM || regno == P4_REGNUM || regno == P8_REGNUM)
1551 /* Writing has no effect. */
1554 /* IBR, BAR, BRP and IRP are read-only in user mode. Let the debug
1555 agent decide whether they are writable. */
1560 /* Nonzero if regno should not be fetched from the target. This is the case
1561 for unimplemented (size 0) and non-existant registers. */
1564 crisv32_cannot_fetch_register (int regno)
1566 return ((regno < 0 || regno >= NUM_REGS)
1567 || (cris_register_size (regno) == 0));
1570 /* Nonzero if regno should not be written to the target, for various
1574 crisv32_cannot_store_register (int regno)
1576 /* There are three kinds of registers we refuse to write to.
1577 1. Those that not implemented.
1578 2. Those that are read-only (depends on the processor mode).
1579 3. Those registers to which a write has no effect.
1582 if (regno < 0 || regno >= NUM_REGS || cris_register_size (regno) == 0)
1583 /* Not implemented. */
1586 else if (regno == VR_REGNUM)
1590 else if (regno == BZ_REGNUM || regno == WZ_REGNUM || regno == DZ_REGNUM)
1591 /* Writing has no effect. */
1594 /* Many special registers are read-only in user mode. Let the debug
1595 agent decide whether they are writable. */
1600 /* Return the GDB type (defined in gdbtypes.c) for the "standard" data type
1601 of data in register regno. */
1603 static struct type *
1604 cris_register_type (struct gdbarch *gdbarch, int regno)
1606 if (regno == PC_REGNUM)
1607 return builtin_type_void_func_ptr;
1608 else if (regno == SP_REGNUM || regno == CRIS_FP_REGNUM)
1609 return builtin_type_void_data_ptr;
1610 else if ((regno >= 0 && regno < SP_REGNUM)
1611 || (regno >= MOF_REGNUM && regno <= USP_REGNUM))
1612 /* Note: R8 taken care of previous clause. */
1613 return builtin_type_uint32;
1614 else if (regno >= P4_REGNUM && regno <= CCR_REGNUM)
1615 return builtin_type_uint16;
1616 else if (regno >= P0_REGNUM && regno <= VR_REGNUM)
1617 return builtin_type_uint8;
1619 /* Invalid (unimplemented) register. */
1620 return builtin_type_int0;
1623 static struct type *
1624 crisv32_register_type (struct gdbarch *gdbarch, int regno)
1626 if (regno == PC_REGNUM)
1627 return builtin_type_void_func_ptr;
1628 else if (regno == SP_REGNUM || regno == CRIS_FP_REGNUM)
1629 return builtin_type_void_data_ptr;
1630 else if ((regno >= 0 && regno <= ACR_REGNUM)
1631 || (regno >= EXS_REGNUM && regno <= SPC_REGNUM)
1632 || (regno == PID_REGNUM)
1633 || (regno >= S0_REGNUM && regno <= S15_REGNUM))
1634 /* Note: R8 and SP taken care of by previous clause. */
1635 return builtin_type_uint32;
1636 else if (regno == WZ_REGNUM)
1637 return builtin_type_uint16;
1638 else if (regno == BZ_REGNUM || regno == VR_REGNUM || regno == SRS_REGNUM)
1639 return builtin_type_uint8;
1642 /* Invalid (unimplemented) register. Should not happen as there are
1643 no unimplemented CRISv32 registers. */
1644 warning (_("crisv32_register_type: unknown regno %d"), regno);
1645 return builtin_type_int0;
1649 /* Stores a function return value of type type, where valbuf is the address
1650 of the value to be stored. */
1652 /* In the CRIS ABI, R10 and R11 are used to store return values. */
1655 cris_store_return_value (struct type *type, struct regcache *regcache,
1659 int len = TYPE_LENGTH (type);
1663 /* Put the return value in R10. */
1664 val = extract_unsigned_integer (valbuf, len);
1665 regcache_cooked_write_unsigned (regcache, ARG1_REGNUM, val);
1669 /* Put the return value in R10 and R11. */
1670 val = extract_unsigned_integer (valbuf, 4);
1671 regcache_cooked_write_unsigned (regcache, ARG1_REGNUM, val);
1672 val = extract_unsigned_integer ((char *)valbuf + 4, len - 4);
1673 regcache_cooked_write_unsigned (regcache, ARG2_REGNUM, val);
1676 error (_("cris_store_return_value: type length too large."));
1679 /* Return the name of register regno as a string. Return NULL for an invalid or
1680 unimplemented register. */
1683 cris_special_register_name (int regno)
1688 /* Special register (R16 - R31). cris_spec_regs is zero-based.
1689 Adjust regno accordingly. */
1690 spec_regno = regno - NUM_GENREGS;
1692 /* Assume nothing about the layout of the cris_spec_regs struct
1694 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1696 if (cris_spec_regs[i].number == spec_regno
1697 && cris_spec_reg_applicable (cris_spec_regs[i]))
1698 /* Go with the first applicable register. */
1699 return cris_spec_regs[i].name;
1701 /* Special register not applicable to this CRIS version. */
1706 cris_register_name (int regno)
1708 static char *cris_genreg_names[] =
1709 { "r0", "r1", "r2", "r3", \
1710 "r4", "r5", "r6", "r7", \
1711 "r8", "r9", "r10", "r11", \
1712 "r12", "r13", "sp", "pc" };
1714 if (regno >= 0 && regno < NUM_GENREGS)
1716 /* General register. */
1717 return cris_genreg_names[regno];
1719 else if (regno >= NUM_GENREGS && regno < NUM_REGS)
1721 return cris_special_register_name (regno);
1725 /* Invalid register. */
1731 crisv32_register_name (int regno)
1733 static char *crisv32_genreg_names[] =
1734 { "r0", "r1", "r2", "r3", \
1735 "r4", "r5", "r6", "r7", \
1736 "r8", "r9", "r10", "r11", \
1737 "r12", "r13", "sp", "acr"
1740 static char *crisv32_sreg_names[] =
1741 { "s0", "s1", "s2", "s3", \
1742 "s4", "s5", "s6", "s7", \
1743 "s8", "s9", "s10", "s11", \
1744 "s12", "s13", "s14", "s15"
1747 if (regno >= 0 && regno < NUM_GENREGS)
1749 /* General register. */
1750 return crisv32_genreg_names[regno];
1752 else if (regno >= NUM_GENREGS && regno < (NUM_GENREGS + NUM_SPECREGS))
1754 return cris_special_register_name (regno);
1756 else if (regno == PC_REGNUM)
1760 else if (regno >= S0_REGNUM && regno <= S15_REGNUM)
1762 return crisv32_sreg_names[regno - S0_REGNUM];
1766 /* Invalid register. */
1771 /* Convert DWARF register number REG to the appropriate register
1772 number used by GDB. */
1775 cris_dwarf2_reg_to_regnum (int reg)
1777 /* We need to re-map a couple of registers (SRP is 16 in Dwarf-2 register
1778 numbering, MOF is 18).
1779 Adapted from gcc/config/cris/cris.h. */
1780 static int cris_dwarf_regmap[] = {
1792 if (reg >= 0 && reg < ARRAY_SIZE (cris_dwarf_regmap))
1793 regnum = cris_dwarf_regmap[reg];
1796 warning (_("Unmapped DWARF Register #%d encountered."), reg);
1801 /* DWARF-2 frame support. */
1804 cris_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1805 struct dwarf2_frame_state_reg *reg)
1807 /* The return address column. */
1808 if (regnum == PC_REGNUM)
1809 reg->how = DWARF2_FRAME_REG_RA;
1811 /* The call frame address. */
1812 else if (regnum == SP_REGNUM)
1813 reg->how = DWARF2_FRAME_REG_CFA;
1816 /* Extract from an array regbuf containing the raw register state a function
1817 return value of type type, and copy that, in virtual format, into
1820 /* In the CRIS ABI, R10 and R11 are used to store return values. */
1823 cris_extract_return_value (struct type *type, struct regcache *regcache,
1827 int len = TYPE_LENGTH (type);
1831 /* Get the return value from R10. */
1832 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &val);
1833 store_unsigned_integer (valbuf, len, val);
1837 /* Get the return value from R10 and R11. */
1838 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &val);
1839 store_unsigned_integer (valbuf, 4, val);
1840 regcache_cooked_read_unsigned (regcache, ARG2_REGNUM, &val);
1841 store_unsigned_integer ((char *)valbuf + 4, len - 4, val);
1844 error (_("cris_extract_return_value: type length too large"));
1847 /* Handle the CRIS return value convention. */
1849 static enum return_value_convention
1850 cris_return_value (struct gdbarch *gdbarch, struct type *type,
1851 struct regcache *regcache, void *readbuf,
1852 const void *writebuf)
1854 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1855 || TYPE_CODE (type) == TYPE_CODE_UNION
1856 || TYPE_LENGTH (type) > 8)
1857 /* Structs, unions, and anything larger than 8 bytes (2 registers)
1858 goes on the stack. */
1859 return RETURN_VALUE_STRUCT_CONVENTION;
1862 cris_extract_return_value (type, regcache, readbuf);
1864 cris_store_return_value (type, regcache, writebuf);
1866 return RETURN_VALUE_REGISTER_CONVENTION;
1869 /* Returns 1 if the given type will be passed by pointer rather than
1872 /* In the CRIS ABI, arguments shorter than or equal to 64 bits are passed
1876 cris_reg_struct_has_addr (int gcc_p, struct type *type)
1878 return (TYPE_LENGTH (type) > 8);
1881 /* Calculates a value that measures how good inst_args constraints an
1882 instruction. It stems from cris_constraint, found in cris-dis.c. */
1885 constraint (unsigned int insn, const signed char *inst_args,
1886 inst_env_type *inst_env)
1891 const char *s = inst_args;
1897 if ((insn & 0x30) == 0x30)
1902 /* A prefix operand. */
1903 if (inst_env->prefix_found)
1909 /* A "push" prefix. (This check was REMOVED by san 970921.) Check for
1910 valid "push" size. In case of special register, it may be != 4. */
1911 if (inst_env->prefix_found)
1917 retval = (((insn >> 0xC) & 0xF) == (insn & 0xF));
1925 tmp = (insn >> 0xC) & 0xF;
1927 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1929 /* Since we match four bits, we will give a value of
1930 4 - 1 = 3 in a match. If there is a corresponding
1931 exact match of a special register in another pattern, it
1932 will get a value of 4, which will be higher. This should
1933 be correct in that an exact pattern would match better that
1935 Note that there is a reason for not returning zero; the
1936 pattern for "clear" is partly matched in the bit-pattern
1937 (the two lower bits must be zero), while the bit-pattern
1938 for a move from a special register is matched in the
1939 register constraint.
1940 This also means we will will have a race condition if
1941 there is a partly match in three bits in the bit pattern. */
1942 if (tmp == cris_spec_regs[i].number)
1949 if (cris_spec_regs[i].name == NULL)
1956 /* Returns the number of bits set in the variable value. */
1959 number_of_bits (unsigned int value)
1961 int number_of_bits = 0;
1965 number_of_bits += 1;
1966 value &= (value - 1);
1968 return number_of_bits;
1971 /* Finds the address that should contain the single step breakpoint(s).
1972 It stems from code in cris-dis.c. */
1975 find_cris_op (unsigned short insn, inst_env_type *inst_env)
1978 int max_level_of_match = -1;
1979 int max_matched = -1;
1982 for (i = 0; cris_opcodes[i].name != NULL; i++)
1984 if (((cris_opcodes[i].match & insn) == cris_opcodes[i].match)
1985 && ((cris_opcodes[i].lose & insn) == 0)
1986 /* Only CRISv10 instructions, please. */
1987 && (cris_opcodes[i].applicable_version != cris_ver_v32p))
1989 level_of_match = constraint (insn, cris_opcodes[i].args, inst_env);
1990 if (level_of_match >= 0)
1993 number_of_bits (cris_opcodes[i].match | cris_opcodes[i].lose);
1994 if (level_of_match > max_level_of_match)
1997 max_level_of_match = level_of_match;
1998 if (level_of_match == 16)
2000 /* All bits matched, cannot find better. */
2010 /* Attempts to find single-step breakpoints. Returns -1 on failure which is
2011 actually an internal error. */
2014 find_step_target (inst_env_type *inst_env)
2018 unsigned short insn;
2020 /* Create a local register image and set the initial state. */
2021 for (i = 0; i < NUM_GENREGS; i++)
2023 inst_env->reg[i] = (unsigned long) read_register (i);
2025 offset = NUM_GENREGS;
2026 for (i = 0; i < NUM_SPECREGS; i++)
2028 inst_env->preg[i] = (unsigned long) read_register (offset + i);
2030 inst_env->branch_found = 0;
2031 inst_env->slot_needed = 0;
2032 inst_env->delay_slot_pc_active = 0;
2033 inst_env->prefix_found = 0;
2034 inst_env->invalid = 0;
2035 inst_env->xflag_found = 0;
2036 inst_env->disable_interrupt = 0;
2038 /* Look for a step target. */
2041 /* Read an instruction from the client. */
2042 insn = read_memory_unsigned_integer (inst_env->reg[PC_REGNUM], 2);
2044 /* If the instruction is not in a delay slot the new content of the
2045 PC is [PC] + 2. If the instruction is in a delay slot it is not
2046 that simple. Since a instruction in a delay slot cannot change
2047 the content of the PC, it does not matter what value PC will have.
2048 Just make sure it is a valid instruction. */
2049 if (!inst_env->delay_slot_pc_active)
2051 inst_env->reg[PC_REGNUM] += 2;
2055 inst_env->delay_slot_pc_active = 0;
2056 inst_env->reg[PC_REGNUM] = inst_env->delay_slot_pc;
2058 /* Analyse the present instruction. */
2059 i = find_cris_op (insn, inst_env);
2062 inst_env->invalid = 1;
2066 cris_gdb_func (cris_opcodes[i].op, insn, inst_env);
2068 } while (!inst_env->invalid
2069 && (inst_env->prefix_found || inst_env->xflag_found
2070 || inst_env->slot_needed));
2074 /* There is no hardware single-step support. The function find_step_target
2075 digs through the opcodes in order to find all possible targets.
2076 Either one ordinary target or two targets for branches may be found. */
2079 cris_software_single_step (enum target_signal ignore, int insert_breakpoints)
2081 inst_env_type inst_env;
2083 if (insert_breakpoints)
2085 /* Analyse the present instruction environment and insert
2087 int status = find_step_target (&inst_env);
2090 /* Could not find a target. Things are likely to go downhill
2092 warning (_("CRIS software single step could not find a step target."));
2096 /* Insert at most two breakpoints. One for the next PC content
2097 and possibly another one for a branch, jump, etc. */
2098 next_pc = (CORE_ADDR) inst_env.reg[PC_REGNUM];
2099 target_insert_breakpoint (next_pc, break_mem[0]);
2100 if (inst_env.branch_found
2101 && (CORE_ADDR) inst_env.branch_break_address != next_pc)
2103 branch_target_address =
2104 (CORE_ADDR) inst_env.branch_break_address;
2105 target_insert_breakpoint (branch_target_address, break_mem[1]);
2106 branch_break_inserted = 1;
2112 /* Remove breakpoints. */
2113 target_remove_breakpoint (next_pc, break_mem[0]);
2114 if (branch_break_inserted)
2116 target_remove_breakpoint (branch_target_address, break_mem[1]);
2117 branch_break_inserted = 0;
2122 /* Calculates the prefix value for quick offset addressing mode. */
2125 quick_mode_bdap_prefix (unsigned short inst, inst_env_type *inst_env)
2127 /* It's invalid to be in a delay slot. You can't have a prefix to this
2128 instruction (not 100% sure). */
2129 if (inst_env->slot_needed || inst_env->prefix_found)
2131 inst_env->invalid = 1;
2135 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
2136 inst_env->prefix_value += cris_get_bdap_quick_offset (inst);
2138 /* A prefix doesn't change the xflag_found. But the rest of the flags
2140 inst_env->slot_needed = 0;
2141 inst_env->prefix_found = 1;
2144 /* Updates the autoincrement register. The size of the increment is derived
2145 from the size of the operation. The PC is always kept aligned on even
2149 process_autoincrement (int size, unsigned short inst, inst_env_type *inst_env)
2151 if (size == INST_BYTE_SIZE)
2153 inst_env->reg[cris_get_operand1 (inst)] += 1;
2155 /* The PC must be word aligned, so increase the PC with one
2156 word even if the size is byte. */
2157 if (cris_get_operand1 (inst) == REG_PC)
2159 inst_env->reg[REG_PC] += 1;
2162 else if (size == INST_WORD_SIZE)
2164 inst_env->reg[cris_get_operand1 (inst)] += 2;
2166 else if (size == INST_DWORD_SIZE)
2168 inst_env->reg[cris_get_operand1 (inst)] += 4;
2173 inst_env->invalid = 1;
2177 /* Just a forward declaration. */
2179 static unsigned long get_data_from_address (unsigned short *inst,
2182 /* Calculates the prefix value for the general case of offset addressing
2186 bdap_prefix (unsigned short inst, inst_env_type *inst_env)
2191 /* It's invalid to be in a delay slot. */
2192 if (inst_env->slot_needed || inst_env->prefix_found)
2194 inst_env->invalid = 1;
2198 /* The calculation of prefix_value used to be after process_autoincrement,
2199 but that fails for an instruction such as jsr [$r0+12] which is encoded
2200 as 5f0d 0c00 30b9 when compiled with -fpic. Since PC is operand1 it
2201 mustn't be incremented until we have read it and what it points at. */
2202 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
2204 /* The offset is an indirection of the contents of the operand1 register. */
2205 inst_env->prefix_value +=
2206 get_data_from_address (&inst, inst_env->reg[cris_get_operand1 (inst)]);
2208 if (cris_get_mode (inst) == AUTOINC_MODE)
2210 process_autoincrement (cris_get_size (inst), inst, inst_env);
2213 /* A prefix doesn't change the xflag_found. But the rest of the flags
2215 inst_env->slot_needed = 0;
2216 inst_env->prefix_found = 1;
2219 /* Calculates the prefix value for the index addressing mode. */
2222 biap_prefix (unsigned short inst, inst_env_type *inst_env)
2224 /* It's invalid to be in a delay slot. I can't see that it's possible to
2225 have a prefix to this instruction. So I will treat this as invalid. */
2226 if (inst_env->slot_needed || inst_env->prefix_found)
2228 inst_env->invalid = 1;
2232 inst_env->prefix_value = inst_env->reg[cris_get_operand1 (inst)];
2234 /* The offset is the operand2 value shifted the size of the instruction
2236 inst_env->prefix_value +=
2237 inst_env->reg[cris_get_operand2 (inst)] << cris_get_size (inst);
2239 /* If the PC is operand1 (base) the address used is the address after
2240 the main instruction, i.e. address + 2 (the PC is already compensated
2241 for the prefix operation). */
2242 if (cris_get_operand1 (inst) == REG_PC)
2244 inst_env->prefix_value += 2;
2247 /* A prefix doesn't change the xflag_found. But the rest of the flags
2249 inst_env->slot_needed = 0;
2250 inst_env->xflag_found = 0;
2251 inst_env->prefix_found = 1;
2254 /* Calculates the prefix value for the double indirect addressing mode. */
2257 dip_prefix (unsigned short inst, inst_env_type *inst_env)
2262 /* It's invalid to be in a delay slot. */
2263 if (inst_env->slot_needed || inst_env->prefix_found)
2265 inst_env->invalid = 1;
2269 /* The prefix value is one dereference of the contents of the operand1
2271 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
2272 inst_env->prefix_value = read_memory_unsigned_integer (address, 4);
2274 /* Check if the mode is autoincrement. */
2275 if (cris_get_mode (inst) == AUTOINC_MODE)
2277 inst_env->reg[cris_get_operand1 (inst)] += 4;
2280 /* A prefix doesn't change the xflag_found. But the rest of the flags
2282 inst_env->slot_needed = 0;
2283 inst_env->xflag_found = 0;
2284 inst_env->prefix_found = 1;
2287 /* Finds the destination for a branch with 8-bits offset. */
2290 eight_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
2295 /* If we have a prefix or are in a delay slot it's bad. */
2296 if (inst_env->slot_needed || inst_env->prefix_found)
2298 inst_env->invalid = 1;
2302 /* We have a branch, find out where the branch will land. */
2303 offset = cris_get_branch_short_offset (inst);
2305 /* Check if the offset is signed. */
2306 if (offset & BRANCH_SIGNED_SHORT_OFFSET_MASK)
2311 /* The offset ends with the sign bit, set it to zero. The address
2312 should always be word aligned. */
2313 offset &= ~BRANCH_SIGNED_SHORT_OFFSET_MASK;
2315 inst_env->branch_found = 1;
2316 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2318 inst_env->slot_needed = 1;
2319 inst_env->prefix_found = 0;
2320 inst_env->xflag_found = 0;
2321 inst_env->disable_interrupt = 1;
2324 /* Finds the destination for a branch with 16-bits offset. */
2327 sixteen_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
2331 /* If we have a prefix or is in a delay slot it's bad. */
2332 if (inst_env->slot_needed || inst_env->prefix_found)
2334 inst_env->invalid = 1;
2338 /* We have a branch, find out the offset for the branch. */
2339 offset = read_memory_integer (inst_env->reg[REG_PC], 2);
2341 /* The instruction is one word longer than normal, so add one word
2343 inst_env->reg[REG_PC] += 2;
2345 inst_env->branch_found = 1;
2346 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2349 inst_env->slot_needed = 1;
2350 inst_env->prefix_found = 0;
2351 inst_env->xflag_found = 0;
2352 inst_env->disable_interrupt = 1;
2355 /* Handles the ABS instruction. */
2358 abs_op (unsigned short inst, inst_env_type *inst_env)
2363 /* ABS can't have a prefix, so it's bad if it does. */
2364 if (inst_env->prefix_found)
2366 inst_env->invalid = 1;
2370 /* Check if the operation affects the PC. */
2371 if (cris_get_operand2 (inst) == REG_PC)
2374 /* It's invalid to change to the PC if we are in a delay slot. */
2375 if (inst_env->slot_needed)
2377 inst_env->invalid = 1;
2381 value = (long) inst_env->reg[REG_PC];
2383 /* The value of abs (SIGNED_DWORD_MASK) is SIGNED_DWORD_MASK. */
2384 if (value != SIGNED_DWORD_MASK)
2387 inst_env->reg[REG_PC] = (long) value;
2391 inst_env->slot_needed = 0;
2392 inst_env->prefix_found = 0;
2393 inst_env->xflag_found = 0;
2394 inst_env->disable_interrupt = 0;
2397 /* Handles the ADDI instruction. */
2400 addi_op (unsigned short inst, inst_env_type *inst_env)
2402 /* It's invalid to have the PC as base register. And ADDI can't have
2404 if (inst_env->prefix_found || (cris_get_operand1 (inst) == REG_PC))
2406 inst_env->invalid = 1;
2410 inst_env->slot_needed = 0;
2411 inst_env->prefix_found = 0;
2412 inst_env->xflag_found = 0;
2413 inst_env->disable_interrupt = 0;
2416 /* Handles the ASR instruction. */
2419 asr_op (unsigned short inst, inst_env_type *inst_env)
2422 unsigned long value;
2423 unsigned long signed_extend_mask = 0;
2425 /* ASR can't have a prefix, so check that it doesn't. */
2426 if (inst_env->prefix_found)
2428 inst_env->invalid = 1;
2432 /* Check if the PC is the target register. */
2433 if (cris_get_operand2 (inst) == REG_PC)
2435 /* It's invalid to change the PC in a delay slot. */
2436 if (inst_env->slot_needed)
2438 inst_env->invalid = 1;
2441 /* Get the number of bits to shift. */
2442 shift_steps = cris_get_asr_shift_steps (inst_env->reg[cris_get_operand1 (inst)]);
2443 value = inst_env->reg[REG_PC];
2445 /* Find out how many bits the operation should apply to. */
2446 if (cris_get_size (inst) == INST_BYTE_SIZE)
2448 if (value & SIGNED_BYTE_MASK)
2450 signed_extend_mask = 0xFF;
2451 signed_extend_mask = signed_extend_mask >> shift_steps;
2452 signed_extend_mask = ~signed_extend_mask;
2454 value = value >> shift_steps;
2455 value |= signed_extend_mask;
2457 inst_env->reg[REG_PC] &= 0xFFFFFF00;
2458 inst_env->reg[REG_PC] |= value;
2460 else if (cris_get_size (inst) == INST_WORD_SIZE)
2462 if (value & SIGNED_WORD_MASK)
2464 signed_extend_mask = 0xFFFF;
2465 signed_extend_mask = signed_extend_mask >> shift_steps;
2466 signed_extend_mask = ~signed_extend_mask;
2468 value = value >> shift_steps;
2469 value |= signed_extend_mask;
2471 inst_env->reg[REG_PC] &= 0xFFFF0000;
2472 inst_env->reg[REG_PC] |= value;
2474 else if (cris_get_size (inst) == INST_DWORD_SIZE)
2476 if (value & SIGNED_DWORD_MASK)
2478 signed_extend_mask = 0xFFFFFFFF;
2479 signed_extend_mask = signed_extend_mask >> shift_steps;
2480 signed_extend_mask = ~signed_extend_mask;
2482 value = value >> shift_steps;
2483 value |= signed_extend_mask;
2484 inst_env->reg[REG_PC] = value;
2487 inst_env->slot_needed = 0;
2488 inst_env->prefix_found = 0;
2489 inst_env->xflag_found = 0;
2490 inst_env->disable_interrupt = 0;
2493 /* Handles the ASRQ instruction. */
2496 asrq_op (unsigned short inst, inst_env_type *inst_env)
2500 unsigned long value;
2501 unsigned long signed_extend_mask = 0;
2503 /* ASRQ can't have a prefix, so check that it doesn't. */
2504 if (inst_env->prefix_found)
2506 inst_env->invalid = 1;
2510 /* Check if the PC is the target register. */
2511 if (cris_get_operand2 (inst) == REG_PC)
2514 /* It's invalid to change the PC in a delay slot. */
2515 if (inst_env->slot_needed)
2517 inst_env->invalid = 1;
2520 /* The shift size is given as a 5 bit quick value, i.e. we don't
2521 want the the sign bit of the quick value. */
2522 shift_steps = cris_get_asr_shift_steps (inst);
2523 value = inst_env->reg[REG_PC];
2524 if (value & SIGNED_DWORD_MASK)
2526 signed_extend_mask = 0xFFFFFFFF;
2527 signed_extend_mask = signed_extend_mask >> shift_steps;
2528 signed_extend_mask = ~signed_extend_mask;
2530 value = value >> shift_steps;
2531 value |= signed_extend_mask;
2532 inst_env->reg[REG_PC] = value;
2534 inst_env->slot_needed = 0;
2535 inst_env->prefix_found = 0;
2536 inst_env->xflag_found = 0;
2537 inst_env->disable_interrupt = 0;
2540 /* Handles the AX, EI and SETF instruction. */
2543 ax_ei_setf_op (unsigned short inst, inst_env_type *inst_env)
2545 if (inst_env->prefix_found)
2547 inst_env->invalid = 1;
2550 /* Check if the instruction is setting the X flag. */
2551 if (cris_is_xflag_bit_on (inst))
2553 inst_env->xflag_found = 1;
2557 inst_env->xflag_found = 0;
2559 inst_env->slot_needed = 0;
2560 inst_env->prefix_found = 0;
2561 inst_env->disable_interrupt = 1;
2564 /* Checks if the instruction is in assign mode. If so, it updates the assign
2565 register. Note that check_assign assumes that the caller has checked that
2566 there is a prefix to this instruction. The mode check depends on this. */
2569 check_assign (unsigned short inst, inst_env_type *inst_env)
2571 /* Check if it's an assign addressing mode. */
2572 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2574 /* Assign the prefix value to operand 1. */
2575 inst_env->reg[cris_get_operand1 (inst)] = inst_env->prefix_value;
2579 /* Handles the 2-operand BOUND instruction. */
2582 two_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2584 /* It's invalid to have the PC as the index operand. */
2585 if (cris_get_operand2 (inst) == REG_PC)
2587 inst_env->invalid = 1;
2590 /* Check if we have a prefix. */
2591 if (inst_env->prefix_found)
2593 check_assign (inst, inst_env);
2595 /* Check if this is an autoincrement mode. */
2596 else if (cris_get_mode (inst) == AUTOINC_MODE)
2598 /* It's invalid to change the PC in a delay slot. */
2599 if (inst_env->slot_needed)
2601 inst_env->invalid = 1;
2604 process_autoincrement (cris_get_size (inst), inst, inst_env);
2606 inst_env->slot_needed = 0;
2607 inst_env->prefix_found = 0;
2608 inst_env->xflag_found = 0;
2609 inst_env->disable_interrupt = 0;
2612 /* Handles the 3-operand BOUND instruction. */
2615 three_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2617 /* It's an error if we haven't got a prefix. And it's also an error
2618 if the PC is the destination register. */
2619 if ((!inst_env->prefix_found) || (cris_get_operand1 (inst) == REG_PC))
2621 inst_env->invalid = 1;
2624 inst_env->slot_needed = 0;
2625 inst_env->prefix_found = 0;
2626 inst_env->xflag_found = 0;
2627 inst_env->disable_interrupt = 0;
2630 /* Clears the status flags in inst_env. */
2633 btst_nop_op (unsigned short inst, inst_env_type *inst_env)
2635 /* It's an error if we have got a prefix. */
2636 if (inst_env->prefix_found)
2638 inst_env->invalid = 1;
2642 inst_env->slot_needed = 0;
2643 inst_env->prefix_found = 0;
2644 inst_env->xflag_found = 0;
2645 inst_env->disable_interrupt = 0;
2648 /* Clears the status flags in inst_env. */
2651 clearf_di_op (unsigned short inst, inst_env_type *inst_env)
2653 /* It's an error if we have got a prefix. */
2654 if (inst_env->prefix_found)
2656 inst_env->invalid = 1;
2660 inst_env->slot_needed = 0;
2661 inst_env->prefix_found = 0;
2662 inst_env->xflag_found = 0;
2663 inst_env->disable_interrupt = 1;
2666 /* Handles the CLEAR instruction if it's in register mode. */
2669 reg_mode_clear_op (unsigned short inst, inst_env_type *inst_env)
2671 /* Check if the target is the PC. */
2672 if (cris_get_operand2 (inst) == REG_PC)
2674 /* The instruction will clear the instruction's size bits. */
2675 int clear_size = cris_get_clear_size (inst);
2676 if (clear_size == INST_BYTE_SIZE)
2678 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFFFF00;
2680 if (clear_size == INST_WORD_SIZE)
2682 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFF0000;
2684 if (clear_size == INST_DWORD_SIZE)
2686 inst_env->delay_slot_pc = 0x0;
2688 /* The jump will be delayed with one delay slot. So we need a delay
2690 inst_env->slot_needed = 1;
2691 inst_env->delay_slot_pc_active = 1;
2695 /* The PC will not change => no delay slot. */
2696 inst_env->slot_needed = 0;
2698 inst_env->prefix_found = 0;
2699 inst_env->xflag_found = 0;
2700 inst_env->disable_interrupt = 0;
2703 /* Handles the TEST instruction if it's in register mode. */
2706 reg_mode_test_op (unsigned short inst, inst_env_type *inst_env)
2708 /* It's an error if we have got a prefix. */
2709 if (inst_env->prefix_found)
2711 inst_env->invalid = 1;
2714 inst_env->slot_needed = 0;
2715 inst_env->prefix_found = 0;
2716 inst_env->xflag_found = 0;
2717 inst_env->disable_interrupt = 0;
2721 /* Handles the CLEAR and TEST instruction if the instruction isn't
2722 in register mode. */
2725 none_reg_mode_clear_test_op (unsigned short inst, inst_env_type *inst_env)
2727 /* Check if we are in a prefix mode. */
2728 if (inst_env->prefix_found)
2730 /* The only way the PC can change is if this instruction is in
2731 assign addressing mode. */
2732 check_assign (inst, inst_env);
2734 /* Indirect mode can't change the PC so just check if the mode is
2736 else if (cris_get_mode (inst) == AUTOINC_MODE)
2738 process_autoincrement (cris_get_size (inst), inst, inst_env);
2740 inst_env->slot_needed = 0;
2741 inst_env->prefix_found = 0;
2742 inst_env->xflag_found = 0;
2743 inst_env->disable_interrupt = 0;
2746 /* Checks that the PC isn't the destination register or the instructions has
2750 dstep_logshift_mstep_neg_not_op (unsigned short inst, inst_env_type *inst_env)
2752 /* It's invalid to have the PC as the destination. The instruction can't
2754 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2756 inst_env->invalid = 1;
2760 inst_env->slot_needed = 0;
2761 inst_env->prefix_found = 0;
2762 inst_env->xflag_found = 0;
2763 inst_env->disable_interrupt = 0;
2766 /* Checks that the instruction doesn't have a prefix. */
2769 break_op (unsigned short inst, inst_env_type *inst_env)
2771 /* The instruction can't have a prefix. */
2772 if (inst_env->prefix_found)
2774 inst_env->invalid = 1;
2778 inst_env->slot_needed = 0;
2779 inst_env->prefix_found = 0;
2780 inst_env->xflag_found = 0;
2781 inst_env->disable_interrupt = 1;
2784 /* Checks that the PC isn't the destination register and that the instruction
2785 doesn't have a prefix. */
2788 scc_op (unsigned short inst, inst_env_type *inst_env)
2790 /* It's invalid to have the PC as the destination. The instruction can't
2792 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2794 inst_env->invalid = 1;
2798 inst_env->slot_needed = 0;
2799 inst_env->prefix_found = 0;
2800 inst_env->xflag_found = 0;
2801 inst_env->disable_interrupt = 1;
2804 /* Handles the register mode JUMP instruction. */
2807 reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
2809 /* It's invalid to do a JUMP in a delay slot. The mode is register, so
2810 you can't have a prefix. */
2811 if ((inst_env->slot_needed) || (inst_env->prefix_found))
2813 inst_env->invalid = 1;
2817 /* Just change the PC. */
2818 inst_env->reg[REG_PC] = inst_env->reg[cris_get_operand1 (inst)];
2819 inst_env->slot_needed = 0;
2820 inst_env->prefix_found = 0;
2821 inst_env->xflag_found = 0;
2822 inst_env->disable_interrupt = 1;
2825 /* Handles the JUMP instruction for all modes except register. */
2828 none_reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
2830 unsigned long newpc;
2833 /* It's invalid to do a JUMP in a delay slot. */
2834 if (inst_env->slot_needed)
2836 inst_env->invalid = 1;
2840 /* Check if we have a prefix. */
2841 if (inst_env->prefix_found)
2843 check_assign (inst, inst_env);
2845 /* Get the new value for the the PC. */
2847 read_memory_unsigned_integer ((CORE_ADDR) inst_env->prefix_value,
2852 /* Get the new value for the PC. */
2853 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
2854 newpc = read_memory_unsigned_integer (address, 4);
2856 /* Check if we should increment a register. */
2857 if (cris_get_mode (inst) == AUTOINC_MODE)
2859 inst_env->reg[cris_get_operand1 (inst)] += 4;
2862 inst_env->reg[REG_PC] = newpc;
2864 inst_env->slot_needed = 0;
2865 inst_env->prefix_found = 0;
2866 inst_env->xflag_found = 0;
2867 inst_env->disable_interrupt = 1;
2870 /* Handles moves to special registers (aka P-register) for all modes. */
2873 move_to_preg_op (unsigned short inst, inst_env_type *inst_env)
2875 if (inst_env->prefix_found)
2877 /* The instruction has a prefix that means we are only interested if
2878 the instruction is in assign mode. */
2879 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2881 /* The prefix handles the problem if we are in a delay slot. */
2882 if (cris_get_operand1 (inst) == REG_PC)
2884 /* Just take care of the assign. */
2885 check_assign (inst, inst_env);
2889 else if (cris_get_mode (inst) == AUTOINC_MODE)
2891 /* The instruction doesn't have a prefix, the only case left that we
2892 are interested in is the autoincrement mode. */
2893 if (cris_get_operand1 (inst) == REG_PC)
2895 /* If the PC is to be incremented it's invalid to be in a
2897 if (inst_env->slot_needed)
2899 inst_env->invalid = 1;
2903 /* The increment depends on the size of the special register. */
2904 if (cris_register_size (cris_get_operand2 (inst)) == 1)
2906 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
2908 else if (cris_register_size (cris_get_operand2 (inst)) == 2)
2910 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
2914 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
2918 inst_env->slot_needed = 0;
2919 inst_env->prefix_found = 0;
2920 inst_env->xflag_found = 0;
2921 inst_env->disable_interrupt = 1;
2924 /* Handles moves from special registers (aka P-register) for all modes
2928 none_reg_mode_move_from_preg_op (unsigned short inst, inst_env_type *inst_env)
2930 if (inst_env->prefix_found)
2932 /* The instruction has a prefix that means we are only interested if
2933 the instruction is in assign mode. */
2934 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2936 /* The prefix handles the problem if we are in a delay slot. */
2937 if (cris_get_operand1 (inst) == REG_PC)
2939 /* Just take care of the assign. */
2940 check_assign (inst, inst_env);
2944 /* The instruction doesn't have a prefix, the only case left that we
2945 are interested in is the autoincrement mode. */
2946 else if (cris_get_mode (inst) == AUTOINC_MODE)
2948 if (cris_get_operand1 (inst) == REG_PC)
2950 /* If the PC is to be incremented it's invalid to be in a
2952 if (inst_env->slot_needed)
2954 inst_env->invalid = 1;
2958 /* The increment depends on the size of the special register. */
2959 if (cris_register_size (cris_get_operand2 (inst)) == 1)
2961 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
2963 else if (cris_register_size (cris_get_operand2 (inst)) == 2)
2965 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
2969 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
2973 inst_env->slot_needed = 0;
2974 inst_env->prefix_found = 0;
2975 inst_env->xflag_found = 0;
2976 inst_env->disable_interrupt = 1;
2979 /* Handles moves from special registers (aka P-register) when the mode
2983 reg_mode_move_from_preg_op (unsigned short inst, inst_env_type *inst_env)
2985 /* Register mode move from special register can't have a prefix. */
2986 if (inst_env->prefix_found)
2988 inst_env->invalid = 1;
2992 if (cris_get_operand1 (inst) == REG_PC)
2994 /* It's invalid to change the PC in a delay slot. */
2995 if (inst_env->slot_needed)
2997 inst_env->invalid = 1;
3000 /* The destination is the PC, the jump will have a delay slot. */
3001 inst_env->delay_slot_pc = inst_env->preg[cris_get_operand2 (inst)];
3002 inst_env->slot_needed = 1;
3003 inst_env->delay_slot_pc_active = 1;
3007 /* If the destination isn't PC, there will be no jump. */
3008 inst_env->slot_needed = 0;
3010 inst_env->prefix_found = 0;
3011 inst_env->xflag_found = 0;
3012 inst_env->disable_interrupt = 1;
3015 /* Handles the MOVEM from memory to general register instruction. */
3018 move_mem_to_reg_movem_op (unsigned short inst, inst_env_type *inst_env)
3020 if (inst_env->prefix_found)
3022 /* The prefix handles the problem if we are in a delay slot. Is the
3023 MOVEM instruction going to change the PC? */
3024 if (cris_get_operand2 (inst) >= REG_PC)
3026 inst_env->reg[REG_PC] =
3027 read_memory_unsigned_integer (inst_env->prefix_value, 4);
3029 /* The assign value is the value after the increment. Normally, the
3030 assign value is the value before the increment. */
3031 if ((cris_get_operand1 (inst) == REG_PC)
3032 && (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
3034 inst_env->reg[REG_PC] = inst_env->prefix_value;
3035 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3040 /* Is the MOVEM instruction going to change the PC? */
3041 if (cris_get_operand2 (inst) == REG_PC)
3043 /* It's invalid to change the PC in a delay slot. */
3044 if (inst_env->slot_needed)
3046 inst_env->invalid = 1;
3049 inst_env->reg[REG_PC] =
3050 read_memory_unsigned_integer (inst_env->reg[cris_get_operand1 (inst)],
3053 /* The increment is not depending on the size, instead it's depending
3054 on the number of registers loaded from memory. */
3055 if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE))
3057 /* It's invalid to change the PC in a delay slot. */
3058 if (inst_env->slot_needed)
3060 inst_env->invalid = 1;
3063 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3066 inst_env->slot_needed = 0;
3067 inst_env->prefix_found = 0;
3068 inst_env->xflag_found = 0;
3069 inst_env->disable_interrupt = 0;
3072 /* Handles the MOVEM to memory from general register instruction. */
3075 move_reg_to_mem_movem_op (unsigned short inst, inst_env_type *inst_env)
3077 if (inst_env->prefix_found)
3079 /* The assign value is the value after the increment. Normally, the
3080 assign value is the value before the increment. */
3081 if ((cris_get_operand1 (inst) == REG_PC) &&
3082 (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
3084 /* The prefix handles the problem if we are in a delay slot. */
3085 inst_env->reg[REG_PC] = inst_env->prefix_value;
3086 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3091 /* The increment is not depending on the size, instead it's depending
3092 on the number of registers loaded to memory. */
3093 if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE))
3095 /* It's invalid to change the PC in a delay slot. */
3096 if (inst_env->slot_needed)
3098 inst_env->invalid = 1;
3101 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3104 inst_env->slot_needed = 0;
3105 inst_env->prefix_found = 0;
3106 inst_env->xflag_found = 0;
3107 inst_env->disable_interrupt = 0;
3110 /* Handles the intructions that's not yet implemented, by setting
3111 inst_env->invalid to true. */
3114 not_implemented_op (unsigned short inst, inst_env_type *inst_env)
3116 inst_env->invalid = 1;
3119 /* Handles the XOR instruction. */
3122 xor_op (unsigned short inst, inst_env_type *inst_env)
3124 /* XOR can't have a prefix. */
3125 if (inst_env->prefix_found)
3127 inst_env->invalid = 1;
3131 /* Check if the PC is the target. */
3132 if (cris_get_operand2 (inst) == REG_PC)
3134 /* It's invalid to change the PC in a delay slot. */
3135 if (inst_env->slot_needed)
3137 inst_env->invalid = 1;
3140 inst_env->reg[REG_PC] ^= inst_env->reg[cris_get_operand1 (inst)];
3142 inst_env->slot_needed = 0;
3143 inst_env->prefix_found = 0;
3144 inst_env->xflag_found = 0;
3145 inst_env->disable_interrupt = 0;
3148 /* Handles the MULS instruction. */
3151 muls_op (unsigned short inst, inst_env_type *inst_env)
3153 /* MULS/U can't have a prefix. */
3154 if (inst_env->prefix_found)
3156 inst_env->invalid = 1;
3160 /* Consider it invalid if the PC is the target. */
3161 if (cris_get_operand2 (inst) == REG_PC)
3163 inst_env->invalid = 1;
3166 inst_env->slot_needed = 0;
3167 inst_env->prefix_found = 0;
3168 inst_env->xflag_found = 0;
3169 inst_env->disable_interrupt = 0;
3172 /* Handles the MULU instruction. */
3175 mulu_op (unsigned short inst, inst_env_type *inst_env)
3177 /* MULS/U can't have a prefix. */
3178 if (inst_env->prefix_found)
3180 inst_env->invalid = 1;
3184 /* Consider it invalid if the PC is the target. */
3185 if (cris_get_operand2 (inst) == REG_PC)
3187 inst_env->invalid = 1;
3190 inst_env->slot_needed = 0;
3191 inst_env->prefix_found = 0;
3192 inst_env->xflag_found = 0;
3193 inst_env->disable_interrupt = 0;
3196 /* Calculate the result of the instruction for ADD, SUB, CMP AND, OR and MOVE.
3197 The MOVE instruction is the move from source to register. */
3200 add_sub_cmp_and_or_move_action (unsigned short inst, inst_env_type *inst_env,
3201 unsigned long source1, unsigned long source2)
3203 unsigned long pc_mask;
3204 unsigned long operation_mask;
3206 /* Find out how many bits the operation should apply to. */
3207 if (cris_get_size (inst) == INST_BYTE_SIZE)
3209 pc_mask = 0xFFFFFF00;
3210 operation_mask = 0xFF;
3212 else if (cris_get_size (inst) == INST_WORD_SIZE)
3214 pc_mask = 0xFFFF0000;
3215 operation_mask = 0xFFFF;
3217 else if (cris_get_size (inst) == INST_DWORD_SIZE)
3220 operation_mask = 0xFFFFFFFF;
3224 /* The size is out of range. */
3225 inst_env->invalid = 1;
3229 /* The instruction just works on uw_operation_mask bits. */
3230 source2 &= operation_mask;
3231 source1 &= operation_mask;
3233 /* Now calculate the result. The opcode's 3 first bits separates
3234 the different actions. */
3235 switch (cris_get_opcode (inst) & 7)
3245 case 2: /* subtract */
3249 case 3: /* compare */
3261 inst_env->invalid = 1;
3267 /* Make sure that the result doesn't contain more than the instruction
3269 source2 &= operation_mask;
3271 /* Calculate the new breakpoint address. */
3272 inst_env->reg[REG_PC] &= pc_mask;
3273 inst_env->reg[REG_PC] |= source1;
3277 /* Extends the value from either byte or word size to a dword. If the mode
3278 is zero extend then the value is extended with zero. If instead the mode
3279 is signed extend the sign bit of the value is taken into consideration. */
3281 static unsigned long
3282 do_sign_or_zero_extend (unsigned long value, unsigned short *inst)
3284 /* The size can be either byte or word, check which one it is.
3285 Don't check the highest bit, it's indicating if it's a zero
3287 if (cris_get_size (*inst) & INST_WORD_SIZE)
3292 /* Check if the instruction is signed extend. If so, check if value has
3294 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_WORD_MASK))
3296 value |= SIGNED_WORD_EXTEND_MASK;
3304 /* Check if the instruction is signed extend. If so, check if value has
3306 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_BYTE_MASK))
3308 value |= SIGNED_BYTE_EXTEND_MASK;
3311 /* The size should now be dword. */
3312 cris_set_size_to_dword (inst);
3316 /* Handles the register mode for the ADD, SUB, CMP, AND, OR and MOVE
3317 instruction. The MOVE instruction is the move from source to register. */
3320 reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3321 inst_env_type *inst_env)
3323 unsigned long operand1;
3324 unsigned long operand2;
3326 /* It's invalid to have a prefix to the instruction. This is a register
3327 mode instruction and can't have a prefix. */
3328 if (inst_env->prefix_found)
3330 inst_env->invalid = 1;
3333 /* Check if the instruction has PC as its target. */
3334 if (cris_get_operand2 (inst) == REG_PC)
3336 if (inst_env->slot_needed)
3338 inst_env->invalid = 1;
3341 /* The instruction has the PC as its target register. */
3342 operand1 = inst_env->reg[cris_get_operand1 (inst)];
3343 operand2 = inst_env->reg[REG_PC];
3345 /* Check if it's a extend, signed or zero instruction. */
3346 if (cris_get_opcode (inst) < 4)
3348 operand1 = do_sign_or_zero_extend (operand1, &inst);
3350 /* Calculate the PC value after the instruction, i.e. where the
3351 breakpoint should be. The order of the udw_operands is vital. */
3352 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3354 inst_env->slot_needed = 0;
3355 inst_env->prefix_found = 0;
3356 inst_env->xflag_found = 0;
3357 inst_env->disable_interrupt = 0;
3360 /* Returns the data contained at address. The size of the data is derived from
3361 the size of the operation. If the instruction is a zero or signed
3362 extend instruction, the size field is changed in instruction. */
3364 static unsigned long
3365 get_data_from_address (unsigned short *inst, CORE_ADDR address)
3367 int size = cris_get_size (*inst);
3368 unsigned long value;
3370 /* If it's an extend instruction we don't want the signed extend bit,
3371 because it influences the size. */
3372 if (cris_get_opcode (*inst) < 4)
3374 size &= ~SIGNED_EXTEND_BIT_MASK;
3376 /* Is there a need for checking the size? Size should contain the number of
3379 value = read_memory_unsigned_integer (address, size);
3381 /* Check if it's an extend, signed or zero instruction. */
3382 if (cris_get_opcode (*inst) < 4)
3384 value = do_sign_or_zero_extend (value, inst);
3389 /* Handles the assign addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3390 instructions. The MOVE instruction is the move from source to register. */
3393 handle_prefix_assign_mode_for_aritm_op (unsigned short inst,
3394 inst_env_type *inst_env)
3396 unsigned long operand2;
3397 unsigned long operand3;
3399 check_assign (inst, inst_env);
3400 if (cris_get_operand2 (inst) == REG_PC)
3402 operand2 = inst_env->reg[REG_PC];
3404 /* Get the value of the third operand. */
3405 operand3 = get_data_from_address (&inst, inst_env->prefix_value);
3407 /* Calculate the PC value after the instruction, i.e. where the
3408 breakpoint should be. The order of the udw_operands is vital. */
3409 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3411 inst_env->slot_needed = 0;
3412 inst_env->prefix_found = 0;
3413 inst_env->xflag_found = 0;
3414 inst_env->disable_interrupt = 0;
3417 /* Handles the three-operand addressing mode for the ADD, SUB, CMP, AND and
3418 OR instructions. Note that for this to work as expected, the calling
3419 function must have made sure that there is a prefix to this instruction. */
3422 three_operand_add_sub_cmp_and_or_op (unsigned short inst,
3423 inst_env_type *inst_env)
3425 unsigned long operand2;
3426 unsigned long operand3;
3428 if (cris_get_operand1 (inst) == REG_PC)
3430 /* The PC will be changed by the instruction. */
3431 operand2 = inst_env->reg[cris_get_operand2 (inst)];
3433 /* Get the value of the third operand. */
3434 operand3 = get_data_from_address (&inst, inst_env->prefix_value);
3436 /* Calculate the PC value after the instruction, i.e. where the
3437 breakpoint should be. */
3438 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3440 inst_env->slot_needed = 0;
3441 inst_env->prefix_found = 0;
3442 inst_env->xflag_found = 0;
3443 inst_env->disable_interrupt = 0;
3446 /* Handles the index addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3447 instructions. The MOVE instruction is the move from source to register. */
3450 handle_prefix_index_mode_for_aritm_op (unsigned short inst,
3451 inst_env_type *inst_env)
3453 if (cris_get_operand1 (inst) != cris_get_operand2 (inst))
3455 /* If the instruction is MOVE it's invalid. If the instruction is ADD,
3456 SUB, AND or OR something weird is going on (if everything works these
3457 instructions should end up in the three operand version). */
3458 inst_env->invalid = 1;
3463 /* three_operand_add_sub_cmp_and_or does the same as we should do here
3465 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3467 inst_env->slot_needed = 0;
3468 inst_env->prefix_found = 0;
3469 inst_env->xflag_found = 0;
3470 inst_env->disable_interrupt = 0;
3473 /* Handles the autoincrement and indirect addresing mode for the ADD, SUB,
3474 CMP, AND OR and MOVE instruction. The MOVE instruction is the move from
3475 source to register. */
3478 handle_inc_and_index_mode_for_aritm_op (unsigned short inst,
3479 inst_env_type *inst_env)
3481 unsigned long operand1;
3482 unsigned long operand2;
3483 unsigned long operand3;
3486 /* The instruction is either an indirect or autoincrement addressing mode.
3487 Check if the destination register is the PC. */
3488 if (cris_get_operand2 (inst) == REG_PC)
3490 /* Must be done here, get_data_from_address may change the size
3492 size = cris_get_size (inst);
3493 operand2 = inst_env->reg[REG_PC];
3495 /* Get the value of the third operand, i.e. the indirect operand. */
3496 operand1 = inst_env->reg[cris_get_operand1 (inst)];
3497 operand3 = get_data_from_address (&inst, operand1);
3499 /* Calculate the PC value after the instruction, i.e. where the
3500 breakpoint should be. The order of the udw_operands is vital. */
3501 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3503 /* If this is an autoincrement addressing mode, check if the increment
3505 if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE))
3507 /* Get the size field. */
3508 size = cris_get_size (inst);
3510 /* If it's an extend instruction we don't want the signed extend bit,
3511 because it influences the size. */
3512 if (cris_get_opcode (inst) < 4)
3514 size &= ~SIGNED_EXTEND_BIT_MASK;
3516 process_autoincrement (size, inst, inst_env);
3518 inst_env->slot_needed = 0;
3519 inst_env->prefix_found = 0;
3520 inst_env->xflag_found = 0;
3521 inst_env->disable_interrupt = 0;
3524 /* Handles the two-operand addressing mode, all modes except register, for
3525 the ADD, SUB CMP, AND and OR instruction. */
3528 none_reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3529 inst_env_type *inst_env)
3531 if (inst_env->prefix_found)
3533 if (cris_get_mode (inst) == PREFIX_INDEX_MODE)
3535 handle_prefix_index_mode_for_aritm_op (inst, inst_env);
3537 else if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
3539 handle_prefix_assign_mode_for_aritm_op (inst, inst_env);
3543 /* The mode is invalid for a prefixed base instruction. */
3544 inst_env->invalid = 1;
3550 handle_inc_and_index_mode_for_aritm_op (inst, inst_env);
3554 /* Handles the quick addressing mode for the ADD and SUB instruction. */
3557 quick_mode_add_sub_op (unsigned short inst, inst_env_type *inst_env)
3559 unsigned long operand1;
3560 unsigned long operand2;
3562 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3563 instruction and can't have a prefix. */
3564 if (inst_env->prefix_found)
3566 inst_env->invalid = 1;
3570 /* Check if the instruction has PC as its target. */
3571 if (cris_get_operand2 (inst) == REG_PC)
3573 if (inst_env->slot_needed)
3575 inst_env->invalid = 1;
3578 operand1 = cris_get_quick_value (inst);
3579 operand2 = inst_env->reg[REG_PC];
3581 /* The size should now be dword. */
3582 cris_set_size_to_dword (&inst);
3584 /* Calculate the PC value after the instruction, i.e. where the
3585 breakpoint should be. */
3586 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3588 inst_env->slot_needed = 0;
3589 inst_env->prefix_found = 0;
3590 inst_env->xflag_found = 0;
3591 inst_env->disable_interrupt = 0;
3594 /* Handles the quick addressing mode for the CMP, AND and OR instruction. */
3597 quick_mode_and_cmp_move_or_op (unsigned short inst, inst_env_type *inst_env)
3599 unsigned long operand1;
3600 unsigned long operand2;
3602 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3603 instruction and can't have a prefix. */
3604 if (inst_env->prefix_found)
3606 inst_env->invalid = 1;
3609 /* Check if the instruction has PC as its target. */
3610 if (cris_get_operand2 (inst) == REG_PC)
3612 if (inst_env->slot_needed)
3614 inst_env->invalid = 1;
3617 /* The instruction has the PC as its target register. */
3618 operand1 = cris_get_quick_value (inst);
3619 operand2 = inst_env->reg[REG_PC];
3621 /* The quick value is signed, so check if we must do a signed extend. */
3622 if (operand1 & SIGNED_QUICK_VALUE_MASK)
3625 operand1 |= SIGNED_QUICK_VALUE_EXTEND_MASK;
3627 /* The size should now be dword. */
3628 cris_set_size_to_dword (&inst);
3630 /* Calculate the PC value after the instruction, i.e. where the
3631 breakpoint should be. */
3632 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3634 inst_env->slot_needed = 0;
3635 inst_env->prefix_found = 0;
3636 inst_env->xflag_found = 0;
3637 inst_env->disable_interrupt = 0;
3640 /* Translate op_type to a function and call it. */
3643 cris_gdb_func (enum cris_op_type op_type, unsigned short inst,
3644 inst_env_type *inst_env)
3648 case cris_not_implemented_op:
3649 not_implemented_op (inst, inst_env);
3653 abs_op (inst, inst_env);
3657 addi_op (inst, inst_env);
3661 asr_op (inst, inst_env);
3665 asrq_op (inst, inst_env);
3668 case cris_ax_ei_setf_op:
3669 ax_ei_setf_op (inst, inst_env);
3672 case cris_bdap_prefix:
3673 bdap_prefix (inst, inst_env);
3676 case cris_biap_prefix:
3677 biap_prefix (inst, inst_env);
3681 break_op (inst, inst_env);
3684 case cris_btst_nop_op:
3685 btst_nop_op (inst, inst_env);
3688 case cris_clearf_di_op:
3689 clearf_di_op (inst, inst_env);
3692 case cris_dip_prefix:
3693 dip_prefix (inst, inst_env);
3696 case cris_dstep_logshift_mstep_neg_not_op:
3697 dstep_logshift_mstep_neg_not_op (inst, inst_env);
3700 case cris_eight_bit_offset_branch_op:
3701 eight_bit_offset_branch_op (inst, inst_env);
3704 case cris_move_mem_to_reg_movem_op:
3705 move_mem_to_reg_movem_op (inst, inst_env);
3708 case cris_move_reg_to_mem_movem_op:
3709 move_reg_to_mem_movem_op (inst, inst_env);
3712 case cris_move_to_preg_op:
3713 move_to_preg_op (inst, inst_env);
3717 muls_op (inst, inst_env);
3721 mulu_op (inst, inst_env);
3724 case cris_none_reg_mode_add_sub_cmp_and_or_move_op:
3725 none_reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3728 case cris_none_reg_mode_clear_test_op:
3729 none_reg_mode_clear_test_op (inst, inst_env);
3732 case cris_none_reg_mode_jump_op:
3733 none_reg_mode_jump_op (inst, inst_env);
3736 case cris_none_reg_mode_move_from_preg_op:
3737 none_reg_mode_move_from_preg_op (inst, inst_env);
3740 case cris_quick_mode_add_sub_op:
3741 quick_mode_add_sub_op (inst, inst_env);
3744 case cris_quick_mode_and_cmp_move_or_op:
3745 quick_mode_and_cmp_move_or_op (inst, inst_env);
3748 case cris_quick_mode_bdap_prefix:
3749 quick_mode_bdap_prefix (inst, inst_env);
3752 case cris_reg_mode_add_sub_cmp_and_or_move_op:
3753 reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3756 case cris_reg_mode_clear_op:
3757 reg_mode_clear_op (inst, inst_env);
3760 case cris_reg_mode_jump_op:
3761 reg_mode_jump_op (inst, inst_env);
3764 case cris_reg_mode_move_from_preg_op:
3765 reg_mode_move_from_preg_op (inst, inst_env);
3768 case cris_reg_mode_test_op:
3769 reg_mode_test_op (inst, inst_env);
3773 scc_op (inst, inst_env);
3776 case cris_sixteen_bit_offset_branch_op:
3777 sixteen_bit_offset_branch_op (inst, inst_env);
3780 case cris_three_operand_add_sub_cmp_and_or_op:
3781 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3784 case cris_three_operand_bound_op:
3785 three_operand_bound_op (inst, inst_env);
3788 case cris_two_operand_bound_op:
3789 two_operand_bound_op (inst, inst_env);
3793 xor_op (inst, inst_env);
3798 /* This wrapper is to avoid cris_get_assembler being called before
3799 exec_bfd has been set. */
3802 cris_delayed_get_disassembler (bfd_vma addr, struct disassemble_info *info)
3804 int (*print_insn) (bfd_vma addr, struct disassemble_info *info);
3805 /* FIXME: cagney/2003-08-27: It should be possible to select a CRIS
3806 disassembler, even when there is no BFD. Does something like
3807 "gdb; target remote; disassmeble *0x123" work? */
3808 gdb_assert (exec_bfd != NULL);
3809 print_insn = cris_get_disassembler (exec_bfd);
3810 gdb_assert (print_insn != NULL);
3811 return print_insn (addr, info);
3814 /* Copied from <asm/elf.h>. */
3815 typedef unsigned long elf_greg_t;
3817 /* Same as user_regs_struct struct in <asm/user.h>. */
3818 #define CRISV10_ELF_NGREG 35
3819 typedef elf_greg_t elf_gregset_t[CRISV10_ELF_NGREG];
3821 #define CRISV32_ELF_NGREG 32
3822 typedef elf_greg_t crisv32_elf_gregset_t[CRISV32_ELF_NGREG];
3824 /* Unpack an elf_gregset_t into GDB's register cache. */
3827 supply_gregset (elf_gregset_t *gregsetp)
3829 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3831 elf_greg_t *regp = *gregsetp;
3832 static char zerobuf[4] = {0};
3834 /* The kernel dumps all 32 registers as unsigned longs, but supply_register
3835 knows about the actual size of each register so that's no problem. */
3836 for (i = 0; i < NUM_GENREGS + NUM_SPECREGS; i++)
3838 regcache_raw_supply (current_regcache, i, (char *)®p[i]);
3841 if (tdep->cris_version == 32)
3843 /* Needed to set pseudo-register PC for CRISv32. */
3844 /* FIXME: If ERP is in a delay slot at this point then the PC will
3845 be wrong. Issue a warning to alert the user. */
3846 regcache_raw_supply (current_regcache, PC_REGNUM,
3847 (char *)®p[ERP_REGNUM]);
3849 if (*(char *)®p[ERP_REGNUM] & 0x1)
3850 fprintf_unfiltered (gdb_stderr, "Warning: PC in delay slot\n");
3854 /* Use a local version of this function to get the correct types for
3855 regsets, until multi-arch core support is ready. */
3858 fetch_core_registers (char *core_reg_sect, unsigned core_reg_size,
3859 int which, CORE_ADDR reg_addr)
3861 elf_gregset_t gregset;
3866 if (core_reg_size != sizeof (elf_gregset_t)
3867 && core_reg_size != sizeof (crisv32_elf_gregset_t))
3869 warning (_("wrong size gregset struct in core file"));
3873 memcpy (&gregset, core_reg_sect, sizeof (gregset));
3874 supply_gregset (&gregset);
3878 /* We've covered all the kinds of registers we know about here,
3879 so this must be something we wouldn't know what to do with
3880 anyway. Just ignore it. */
3885 static struct core_fns cris_elf_core_fns =
3887 bfd_target_elf_flavour, /* core_flavour */
3888 default_check_format, /* check_format */
3889 default_core_sniffer, /* core_sniffer */
3890 fetch_core_registers, /* core_read_registers */
3894 /* Fetch (and possibly build) an appropriate link_map_offsets
3895 structure for native GNU/Linux CRIS targets using the struct
3896 offsets defined in link.h (but without actual reference to that
3899 This makes it possible to access GNU/Linux CRIS shared libraries
3900 from a GDB that was not built on an GNU/Linux CRIS host (for cross
3903 See gdb/solib-svr4.h for an explanation of these fields. */
3905 static struct link_map_offsets *
3906 cris_linux_svr4_fetch_link_map_offsets (void)
3908 static struct link_map_offsets lmo;
3909 static struct link_map_offsets *lmp = NULL;
3915 lmo.r_debug_size = 8; /* The actual size is 20 bytes, but
3916 this is all we need. */
3917 lmo.r_map_offset = 4;
3920 lmo.link_map_size = 20;
3922 lmo.l_addr_offset = 0;
3923 lmo.l_addr_size = 4;
3925 lmo.l_name_offset = 4;
3926 lmo.l_name_size = 4;
3928 lmo.l_next_offset = 12;
3929 lmo.l_next_size = 4;
3931 lmo.l_prev_offset = 16;
3932 lmo.l_prev_size = 4;
3938 extern initialize_file_ftype _initialize_cris_tdep; /* -Wmissing-prototypes */
3941 _initialize_cris_tdep (void)
3943 static struct cmd_list_element *cris_set_cmdlist;
3944 static struct cmd_list_element *cris_show_cmdlist;
3946 struct cmd_list_element *c;
3948 gdbarch_register (bfd_arch_cris, cris_gdbarch_init, cris_dump_tdep);
3950 /* CRIS-specific user-commands. */
3951 add_setshow_uinteger_cmd ("cris-version", class_support,
3952 &usr_cmd_cris_version,
3953 _("Set the current CRIS version."),
3954 _("Show the current CRIS version."),
3955 _("Set if autodetection fails."),
3957 NULL, /* FIXME: i18n: Current CRIS version is %s. */
3958 &setlist, &showlist);
3960 add_setshow_enum_cmd ("cris-mode", class_support,
3961 cris_modes, &usr_cmd_cris_mode,
3962 _("Set the current CRIS mode."),
3963 _("Show the current CRIS mode."),
3964 _("Set if autodetection fails."),
3966 NULL, /* FIXME: i18n: Current CRIS version is %s. */
3967 &setlist, &showlist);
3969 add_setshow_boolean_cmd ("cris-dwarf2-cfi", class_support,
3970 &usr_cmd_cris_dwarf2_cfi,
3971 _("Set the usage of Dwarf-2 CFI for CRIS."),
3972 _("Show the usage of Dwarf-2 CFI for CRIS."),
3973 _("Set to \"off\" if using gcc-cris < R59."),
3974 set_cris_dwarf2_cfi,
3975 NULL, /* FIXME: i18n: Usage of Dwarf-2 CFI for CRIS is %d. */
3976 &setlist, &showlist);
3978 deprecated_add_core_fns (&cris_elf_core_fns);
3981 /* Prints out all target specific values. */
3984 cris_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3986 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3989 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_version = %i\n",
3990 tdep->cris_version);
3991 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_mode = %s\n",
3993 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_dwarf2_cfi = %i\n",
3994 tdep->cris_dwarf2_cfi);
3999 set_cris_version (char *ignore_args, int from_tty,
4000 struct cmd_list_element *c)
4002 struct gdbarch_info info;
4004 usr_cmd_cris_version_valid = 1;
4006 /* Update the current architecture, if needed. */
4007 gdbarch_info_init (&info);
4008 if (!gdbarch_update_p (info))
4009 internal_error (__FILE__, __LINE__,
4010 _("cris_gdbarch_update: failed to update architecture."));
4014 set_cris_mode (char *ignore_args, int from_tty,
4015 struct cmd_list_element *c)
4017 struct gdbarch_info info;
4019 /* Update the current architecture, if needed. */
4020 gdbarch_info_init (&info);
4021 if (!gdbarch_update_p (info))
4022 internal_error (__FILE__, __LINE__,
4023 "cris_gdbarch_update: failed to update architecture.");
4027 set_cris_dwarf2_cfi (char *ignore_args, int from_tty,
4028 struct cmd_list_element *c)
4030 struct gdbarch_info info;
4032 /* Update the current architecture, if needed. */
4033 gdbarch_info_init (&info);
4034 if (!gdbarch_update_p (info))
4035 internal_error (__FILE__, __LINE__,
4036 _("cris_gdbarch_update: failed to update architecture."));
4039 static struct gdbarch *
4040 cris_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
4042 struct gdbarch *gdbarch;
4043 struct gdbarch_tdep *tdep;
4046 if (usr_cmd_cris_version_valid)
4048 /* Trust the user's CRIS version setting. */
4049 cris_version = usr_cmd_cris_version;
4051 else if (info.abfd && bfd_get_mach (info.abfd) == bfd_mach_cris_v32)
4057 /* Assume it's CRIS version 10. */
4061 /* Make the current settings visible to the user. */
4062 usr_cmd_cris_version = cris_version;
4064 /* Find a candidate among the list of pre-declared architectures. */
4065 for (arches = gdbarch_list_lookup_by_info (arches, &info);
4067 arches = gdbarch_list_lookup_by_info (arches->next, &info))
4069 if ((gdbarch_tdep (arches->gdbarch)->cris_version
4070 == usr_cmd_cris_version)
4071 && (gdbarch_tdep (arches->gdbarch)->cris_mode
4072 == usr_cmd_cris_mode)
4073 && (gdbarch_tdep (arches->gdbarch)->cris_dwarf2_cfi
4074 == usr_cmd_cris_dwarf2_cfi))
4075 return arches->gdbarch;
4078 /* No matching architecture was found. Create a new one. */
4079 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
4080 gdbarch = gdbarch_alloc (&info, tdep);
4082 tdep->cris_version = usr_cmd_cris_version;
4083 tdep->cris_mode = usr_cmd_cris_mode;
4084 tdep->cris_dwarf2_cfi = usr_cmd_cris_dwarf2_cfi;
4086 /* INIT shall ensure that the INFO.BYTE_ORDER is non-zero. */
4087 switch (info.byte_order)
4089 case BFD_ENDIAN_LITTLE:
4093 case BFD_ENDIAN_BIG:
4094 internal_error (__FILE__, __LINE__, _("cris_gdbarch_init: big endian byte order in info"));
4098 internal_error (__FILE__, __LINE__, _("cris_gdbarch_init: unknown byte order in info"));
4101 set_gdbarch_return_value (gdbarch, cris_return_value);
4102 set_gdbarch_deprecated_reg_struct_has_addr (gdbarch,
4103 cris_reg_struct_has_addr);
4104 set_gdbarch_deprecated_use_struct_convention (gdbarch, always_use_struct_convention);
4106 set_gdbarch_sp_regnum (gdbarch, 14);
4108 /* Length of ordinary registers used in push_word and a few other
4109 places. register_size() is the real way to know how big a
4112 set_gdbarch_double_bit (gdbarch, 64);
4113 /* The default definition of a long double is 2 * TARGET_DOUBLE_BIT,
4114 which means we have to set this explicitly. */
4115 set_gdbarch_long_double_bit (gdbarch, 64);
4117 /* The total amount of space needed to store (in an array called registers)
4118 GDB's copy of the machine's register state. Note: We can not use
4119 cris_register_size at this point, since it relies on current_gdbarch
4121 switch (tdep->cris_version)
4129 /* Old versions; not supported. */
4130 internal_error (__FILE__, __LINE__,
4131 _("cris_gdbarch_init: unsupported CRIS version"));
4136 /* CRIS v10 and v11, a.k.a. ETRAX 100LX. In addition to ETRAX 100,
4137 P7 (32 bits), and P15 (32 bits) have been implemented. */
4138 set_gdbarch_pc_regnum (gdbarch, 15);
4139 set_gdbarch_register_type (gdbarch, cris_register_type);
4140 /* There are 32 registers (some of which may not be implemented). */
4141 set_gdbarch_num_regs (gdbarch, 32);
4142 set_gdbarch_register_name (gdbarch, cris_register_name);
4143 set_gdbarch_cannot_store_register (gdbarch, cris_cannot_store_register);
4144 set_gdbarch_cannot_fetch_register (gdbarch, cris_cannot_fetch_register);
4146 set_gdbarch_software_single_step (gdbarch, cris_software_single_step);
4150 /* CRIS v32. General registers R0 - R15 (32 bits), special registers
4151 P0 - P15 (32 bits) except P0, P1, P3 (8 bits) and P4 (16 bits)
4152 and pseudo-register PC (32 bits). */
4153 set_gdbarch_pc_regnum (gdbarch, 32);
4154 set_gdbarch_register_type (gdbarch, crisv32_register_type);
4155 /* 32 registers + pseudo-register PC + 16 support registers. */
4156 set_gdbarch_num_regs (gdbarch, 32 + 1 + 16);
4157 set_gdbarch_register_name (gdbarch, crisv32_register_name);
4159 set_gdbarch_cannot_store_register
4160 (gdbarch, crisv32_cannot_store_register);
4161 set_gdbarch_cannot_fetch_register
4162 (gdbarch, crisv32_cannot_fetch_register);
4164 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
4166 set_gdbarch_single_step_through_delay
4167 (gdbarch, crisv32_single_step_through_delay);
4172 internal_error (__FILE__, __LINE__,
4173 _("cris_gdbarch_init: unknown CRIS version"));
4176 /* Dummy frame functions (shared between CRISv10 and CRISv32 since they
4177 have the same ABI). */
4178 set_gdbarch_push_dummy_code (gdbarch, cris_push_dummy_code);
4179 set_gdbarch_push_dummy_call (gdbarch, cris_push_dummy_call);
4180 set_gdbarch_frame_align (gdbarch, cris_frame_align);
4181 set_gdbarch_skip_prologue (gdbarch, cris_skip_prologue);
4183 /* The stack grows downward. */
4184 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
4186 set_gdbarch_breakpoint_from_pc (gdbarch, cris_breakpoint_from_pc);
4188 set_gdbarch_unwind_pc (gdbarch, cris_unwind_pc);
4189 set_gdbarch_unwind_sp (gdbarch, cris_unwind_sp);
4190 set_gdbarch_unwind_dummy_id (gdbarch, cris_unwind_dummy_id);
4192 if (tdep->cris_dwarf2_cfi == 1)
4194 /* Hook in the Dwarf-2 frame sniffer. */
4195 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, cris_dwarf2_reg_to_regnum);
4196 dwarf2_frame_set_init_reg (gdbarch, cris_dwarf2_frame_init_reg);
4197 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
4200 if (tdep->cris_mode != cris_mode_guru)
4202 frame_unwind_append_sniffer (gdbarch, cris_sigtramp_frame_sniffer);
4205 frame_unwind_append_sniffer (gdbarch, cris_frame_sniffer);
4206 frame_base_set_default (gdbarch, &cris_frame_base);
4208 /* Use target_specific function to define link map offsets. */
4209 set_solib_svr4_fetch_link_map_offsets
4210 (gdbarch, cris_linux_svr4_fetch_link_map_offsets);
4212 /* FIXME: cagney/2003-08-27: It should be possible to select a CRIS
4213 disassembler, even when there is no BFD. Does something like
4214 "gdb; target remote; disassmeble *0x123" work? */
4215 set_gdbarch_print_insn (gdbarch, cris_delayed_get_disassembler);