1 /* Target dependent code for CRIS, for GDB, the GNU debugger.
3 Copyright 2001, 2002, 2003, 2004, 2005 Free Software Foundation,
6 Contributed by Axis Communications AB.
7 Written by Hendrik Ruijter, Stefan Andersson, and Orjan Friberg.
9 This file is part of GDB.
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
27 #include "frame-unwind.h"
28 #include "frame-base.h"
29 #include "trad-frame.h"
30 #include "dwarf2-frame.h"
38 #include "opcode/cris.h"
39 #include "arch-utils.h"
41 #include "gdb_assert.h"
43 /* To get entry_point_address. */
46 #include "solib.h" /* Support for shared libraries. */
47 #include "solib-svr4.h" /* For struct link_map_offsets. */
48 #include "gdb_string.h"
53 /* There are no floating point registers. Used in gdbserver low-linux.c. */
56 /* There are 16 general registers. */
59 /* There are 16 special registers. */
62 /* CRISv32 has a pseudo PC register, not noted here. */
64 /* CRISv32 has 16 support registers. */
68 /* Register numbers of various important registers.
69 CRIS_FP_REGNUM Contains address of executing stack frame.
70 STR_REGNUM Contains the address of structure return values.
71 RET_REGNUM Contains the return value when shorter than or equal to 32 bits
72 ARG1_REGNUM Contains the first parameter to a function.
73 ARG2_REGNUM Contains the second parameter to a function.
74 ARG3_REGNUM Contains the third parameter to a function.
75 ARG4_REGNUM Contains the fourth parameter to a function. Rest on stack.
76 SP_REGNUM Contains address of top of stack.
77 PC_REGNUM Contains address of next instruction.
78 SRP_REGNUM Subroutine return pointer register.
79 BRP_REGNUM Breakpoint return pointer register. */
83 /* Enums with respect to the general registers, valid for all
84 CRIS versions. The frame pointer is always in R8. */
86 /* ABI related registers. */
94 /* Registers which happen to be common. */
99 /* CRISv10 et. al. specific registers. */
111 /* CRISv32 specific registers. */
124 CRISV32USP_REGNUM = 30, /* Shares name but not number with CRISv10. */
126 CRISV32PC_REGNUM = 32, /* Shares name but not number with CRISv10. */
146 extern const struct cris_spec_reg cris_spec_regs[];
148 /* CRIS version, set via the user command 'set cris-version'. Affects
149 register names and sizes. */
150 static int usr_cmd_cris_version;
152 /* Indicates whether to trust the above variable. */
153 static int usr_cmd_cris_version_valid = 0;
155 static const char cris_mode_normal[] = "normal";
156 static const char cris_mode_guru[] = "guru";
157 static const char *cris_modes[] = {
163 /* CRIS mode, set via the user command 'set cris-mode'. Affects
164 type of break instruction among other things. */
165 static const char *usr_cmd_cris_mode = cris_mode_normal;
167 /* Whether to make use of Dwarf-2 CFI (default on). */
168 static int usr_cmd_cris_dwarf2_cfi = 1;
170 /* CRIS architecture specific information. */
174 const char *cris_mode;
178 /* Functions for accessing target dependent data. */
183 return (gdbarch_tdep (current_gdbarch)->cris_version);
189 return (gdbarch_tdep (current_gdbarch)->cris_mode);
192 /* Sigtramp identification code copied from i386-linux-tdep.c. */
194 #define SIGTRAMP_INSN0 0x9c5f /* movu.w 0xXX, $r9 */
195 #define SIGTRAMP_OFFSET0 0
196 #define SIGTRAMP_INSN1 0xe93d /* break 13 */
197 #define SIGTRAMP_OFFSET1 4
199 static const unsigned short sigtramp_code[] =
201 SIGTRAMP_INSN0, 0x0077, /* movu.w $0x77, $r9 */
202 SIGTRAMP_INSN1 /* break 13 */
205 #define SIGTRAMP_LEN (sizeof sigtramp_code)
207 /* Note: same length as normal sigtramp code. */
209 static const unsigned short rt_sigtramp_code[] =
211 SIGTRAMP_INSN0, 0x00ad, /* movu.w $0xad, $r9 */
212 SIGTRAMP_INSN1 /* break 13 */
215 /* If PC is in a sigtramp routine, return the address of the start of
216 the routine. Otherwise, return 0. */
219 cris_sigtramp_start (struct frame_info *next_frame)
221 CORE_ADDR pc = frame_pc_unwind (next_frame);
222 gdb_byte buf[SIGTRAMP_LEN];
224 if (!safe_frame_unwind_memory (next_frame, pc, buf, SIGTRAMP_LEN))
227 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN0)
229 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN1)
232 pc -= SIGTRAMP_OFFSET1;
233 if (!safe_frame_unwind_memory (next_frame, pc, buf, SIGTRAMP_LEN))
237 if (memcmp (buf, sigtramp_code, SIGTRAMP_LEN) != 0)
243 /* If PC is in a RT sigtramp routine, return the address of the start of
244 the routine. Otherwise, return 0. */
247 cris_rt_sigtramp_start (struct frame_info *next_frame)
249 CORE_ADDR pc = frame_pc_unwind (next_frame);
250 gdb_byte buf[SIGTRAMP_LEN];
252 if (!safe_frame_unwind_memory (next_frame, pc, buf, SIGTRAMP_LEN))
255 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN0)
257 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN1)
260 pc -= SIGTRAMP_OFFSET1;
261 if (!safe_frame_unwind_memory (next_frame, pc, buf, SIGTRAMP_LEN))
265 if (memcmp (buf, rt_sigtramp_code, SIGTRAMP_LEN) != 0)
271 /* Assuming NEXT_FRAME is a frame following a GNU/Linux sigtramp
272 routine, return the address of the associated sigcontext structure. */
275 cris_sigcontext_addr (struct frame_info *next_frame)
281 frame_unwind_register (next_frame, SP_REGNUM, buf);
282 sp = extract_unsigned_integer (buf, 4);
284 /* Look for normal sigtramp frame first. */
285 pc = cris_sigtramp_start (next_frame);
288 /* struct signal_frame (arch/cris/kernel/signal.c) contains
289 struct sigcontext as its first member, meaning the SP points to
294 pc = cris_rt_sigtramp_start (next_frame);
297 /* struct rt_signal_frame (arch/cris/kernel/signal.c) contains
298 a struct ucontext, which in turn contains a struct sigcontext.
300 4 + 4 + 128 to struct ucontext, then
301 4 + 4 + 12 to struct sigcontext. */
305 error (_("Couldn't recognize signal trampoline."));
309 struct cris_unwind_cache
311 /* The previous frame's inner most stack address. Used as this
312 frame ID's stack_addr. */
314 /* The frame's base, optionally used by the high-level debug info. */
317 /* How far the SP and r8 (FP) have been offset from the start of
318 the stack frame (as defined by the previous frame's stack
324 /* From old frame_extra_info struct. */
328 /* Table indicating the location of each and every register. */
329 struct trad_frame_saved_reg *saved_regs;
332 static struct cris_unwind_cache *
333 cris_sigtramp_frame_unwind_cache (struct frame_info *next_frame,
336 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
337 struct cris_unwind_cache *info;
345 return (*this_cache);
347 info = FRAME_OBSTACK_ZALLOC (struct cris_unwind_cache);
348 (*this_cache) = info;
349 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
351 /* Zero all fields. */
357 info->uses_frame = 0;
359 info->leaf_function = 0;
361 frame_unwind_register (next_frame, SP_REGNUM, buf);
362 info->base = extract_unsigned_integer (buf, 4);
364 addr = cris_sigcontext_addr (next_frame);
366 /* Layout of the sigcontext struct:
369 unsigned long oldmask;
373 if (tdep->cris_version == 10)
375 /* R0 to R13 are stored in reverse order at offset (2 * 4) in
377 for (i = 0; i <= 13; i++)
378 info->saved_regs[i].addr = addr + ((15 - i) * 4);
380 info->saved_regs[MOF_REGNUM].addr = addr + (16 * 4);
381 info->saved_regs[DCCR_REGNUM].addr = addr + (17 * 4);
382 info->saved_regs[SRP_REGNUM].addr = addr + (18 * 4);
383 /* Note: IRP is off by 2 at this point. There's no point in correcting
384 it though since that will mean that the backtrace will show a PC
385 different from what is shown when stopped. */
386 info->saved_regs[IRP_REGNUM].addr = addr + (19 * 4);
387 info->saved_regs[PC_REGNUM] = info->saved_regs[IRP_REGNUM];
388 info->saved_regs[SP_REGNUM].addr = addr + (24 * 4);
393 /* R0 to R13 are stored in order at offset (1 * 4) in
395 for (i = 0; i <= 13; i++)
396 info->saved_regs[i].addr = addr + ((i + 1) * 4);
398 info->saved_regs[ACR_REGNUM].addr = addr + (15 * 4);
399 info->saved_regs[SRS_REGNUM].addr = addr + (16 * 4);
400 info->saved_regs[MOF_REGNUM].addr = addr + (17 * 4);
401 info->saved_regs[SPC_REGNUM].addr = addr + (18 * 4);
402 info->saved_regs[CCS_REGNUM].addr = addr + (19 * 4);
403 info->saved_regs[SRP_REGNUM].addr = addr + (20 * 4);
404 info->saved_regs[ERP_REGNUM].addr = addr + (21 * 4);
405 info->saved_regs[EXS_REGNUM].addr = addr + (22 * 4);
406 info->saved_regs[EDA_REGNUM].addr = addr + (23 * 4);
408 /* FIXME: If ERP is in a delay slot at this point then the PC will
409 be wrong at this point. This problem manifests itself in the
410 sigaltstack.exp test case, which occasionally generates FAILs when
411 the signal is received while in a delay slot.
413 This could be solved by a couple of read_memory_unsigned_integer and a
414 trad_frame_set_value. */
415 info->saved_regs[PC_REGNUM] = info->saved_regs[ERP_REGNUM];
417 info->saved_regs[SP_REGNUM].addr = addr + (25 * 4);
424 cris_sigtramp_frame_this_id (struct frame_info *next_frame, void **this_cache,
425 struct frame_id *this_id)
427 struct cris_unwind_cache *cache =
428 cris_sigtramp_frame_unwind_cache (next_frame, this_cache);
429 (*this_id) = frame_id_build (cache->base, frame_pc_unwind (next_frame));
432 /* Forward declaration. */
434 static void cris_frame_prev_register (struct frame_info *next_frame,
435 void **this_prologue_cache,
436 int regnum, int *optimizedp,
437 enum lval_type *lvalp, CORE_ADDR *addrp,
438 int *realnump, gdb_byte *bufferp);
440 cris_sigtramp_frame_prev_register (struct frame_info *next_frame,
442 int regnum, int *optimizedp,
443 enum lval_type *lvalp, CORE_ADDR *addrp,
444 int *realnump, gdb_byte *valuep)
446 /* Make sure we've initialized the cache. */
447 cris_sigtramp_frame_unwind_cache (next_frame, this_cache);
448 cris_frame_prev_register (next_frame, this_cache, regnum,
449 optimizedp, lvalp, addrp, realnump, valuep);
452 static const struct frame_unwind cris_sigtramp_frame_unwind =
455 cris_sigtramp_frame_this_id,
456 cris_sigtramp_frame_prev_register
459 static const struct frame_unwind *
460 cris_sigtramp_frame_sniffer (struct frame_info *next_frame)
462 if (cris_sigtramp_start (next_frame)
463 || cris_rt_sigtramp_start (next_frame))
464 return &cris_sigtramp_frame_unwind;
470 crisv32_single_step_through_delay (struct gdbarch *gdbarch,
471 struct frame_info *this_frame)
473 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
478 if (cris_mode () == cris_mode_guru)
480 frame_unwind_register (this_frame, NRP_REGNUM, buf);
484 frame_unwind_register (this_frame, ERP_REGNUM, buf);
487 erp = extract_unsigned_integer (buf, 4);
491 /* In delay slot - check if there's a breakpoint at the preceding
493 if (breakpoint_here_p (erp & ~0x1))
499 /* Hardware watchpoint support. */
501 /* We support 6 hardware data watchpoints, but cannot trigger on execute
502 (any combination of read/write is fine). */
505 cris_can_use_hardware_watchpoint (int type, int count, int other)
507 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
509 /* No bookkeeping is done here; it is handled by the remote debug agent. */
511 if (tdep->cris_version != 32)
514 /* CRISv32: Six data watchpoints, one for instructions. */
515 return (((type == bp_read_watchpoint || type == bp_access_watchpoint
516 || type == bp_hardware_watchpoint) && count <= 6)
517 || (type == bp_hardware_breakpoint && count <= 1));
520 /* The CRISv32 hardware data watchpoints work by specifying ranges,
521 which have no alignment or length restrictions. */
524 cris_region_ok_for_watchpoint (CORE_ADDR addr, int len)
529 /* If the inferior has some watchpoint that triggered, return the
530 address associated with that watchpoint. Otherwise, return
534 cris_stopped_data_address (void)
537 eda = read_register (EDA_REGNUM);
541 /* The instruction environment needed to find single-step breakpoints. */
544 struct instruction_environment
546 unsigned long reg[NUM_GENREGS];
547 unsigned long preg[NUM_SPECREGS];
548 unsigned long branch_break_address;
549 unsigned long delay_slot_pc;
550 unsigned long prefix_value;
555 int delay_slot_pc_active;
557 int disable_interrupt;
560 /* Save old breakpoints in order to restore the state before a single_step.
561 At most, two breakpoints will have to be remembered. */
563 char binsn_quantum[BREAKPOINT_MAX];
564 static binsn_quantum break_mem[2];
565 static CORE_ADDR next_pc = 0;
566 static CORE_ADDR branch_target_address = 0;
567 static unsigned char branch_break_inserted = 0;
569 /* Machine-dependencies in CRIS for opcodes. */
571 /* Instruction sizes. */
572 enum cris_instruction_sizes
579 /* Addressing modes. */
580 enum cris_addressing_modes
587 /* Prefix addressing modes. */
588 enum cris_prefix_addressing_modes
590 PREFIX_INDEX_MODE = 2,
591 PREFIX_ASSIGN_MODE = 3,
593 /* Handle immediate byte offset addressing mode prefix format. */
594 PREFIX_OFFSET_MODE = 2
597 /* Masks for opcodes. */
598 enum cris_opcode_masks
600 BRANCH_SIGNED_SHORT_OFFSET_MASK = 0x1,
601 SIGNED_EXTEND_BIT_MASK = 0x2,
602 SIGNED_BYTE_MASK = 0x80,
603 SIGNED_BYTE_EXTEND_MASK = 0xFFFFFF00,
604 SIGNED_WORD_MASK = 0x8000,
605 SIGNED_WORD_EXTEND_MASK = 0xFFFF0000,
606 SIGNED_DWORD_MASK = 0x80000000,
607 SIGNED_QUICK_VALUE_MASK = 0x20,
608 SIGNED_QUICK_VALUE_EXTEND_MASK = 0xFFFFFFC0
611 /* Functions for opcodes. The general form of the ETRAX 16-bit instruction:
619 cris_get_operand2 (unsigned short insn)
621 return ((insn & 0xF000) >> 12);
625 cris_get_mode (unsigned short insn)
627 return ((insn & 0x0C00) >> 10);
631 cris_get_opcode (unsigned short insn)
633 return ((insn & 0x03C0) >> 6);
637 cris_get_size (unsigned short insn)
639 return ((insn & 0x0030) >> 4);
643 cris_get_operand1 (unsigned short insn)
645 return (insn & 0x000F);
648 /* Additional functions in order to handle opcodes. */
651 cris_get_quick_value (unsigned short insn)
653 return (insn & 0x003F);
657 cris_get_bdap_quick_offset (unsigned short insn)
659 return (insn & 0x00FF);
663 cris_get_branch_short_offset (unsigned short insn)
665 return (insn & 0x00FF);
669 cris_get_asr_shift_steps (unsigned long value)
671 return (value & 0x3F);
675 cris_get_clear_size (unsigned short insn)
677 return ((insn) & 0xC000);
681 cris_is_signed_extend_bit_on (unsigned short insn)
683 return (((insn) & 0x20) == 0x20);
687 cris_is_xflag_bit_on (unsigned short insn)
689 return (((insn) & 0x1000) == 0x1000);
693 cris_set_size_to_dword (unsigned short *insn)
700 cris_get_signed_offset (unsigned short insn)
702 return ((signed char) (insn & 0x00FF));
705 /* Calls an op function given the op-type, working on the insn and the
707 static void cris_gdb_func (enum cris_op_type, unsigned short, inst_env_type *);
709 static struct gdbarch *cris_gdbarch_init (struct gdbarch_info,
710 struct gdbarch_list *);
712 static void cris_dump_tdep (struct gdbarch *, struct ui_file *);
714 static void set_cris_version (char *ignore_args, int from_tty,
715 struct cmd_list_element *c);
717 static void set_cris_mode (char *ignore_args, int from_tty,
718 struct cmd_list_element *c);
720 static void set_cris_dwarf2_cfi (char *ignore_args, int from_tty,
721 struct cmd_list_element *c);
723 static CORE_ADDR cris_scan_prologue (CORE_ADDR pc,
724 struct frame_info *next_frame,
725 struct cris_unwind_cache *info);
727 static CORE_ADDR crisv32_scan_prologue (CORE_ADDR pc,
728 struct frame_info *next_frame,
729 struct cris_unwind_cache *info);
731 static CORE_ADDR cris_unwind_pc (struct gdbarch *gdbarch,
732 struct frame_info *next_frame);
734 static CORE_ADDR cris_unwind_sp (struct gdbarch *gdbarch,
735 struct frame_info *next_frame);
737 /* When arguments must be pushed onto the stack, they go on in reverse
738 order. The below implements a FILO (stack) to do this.
739 Copied from d10v-tdep.c. */
744 struct stack_item *prev;
748 static struct stack_item *
749 push_stack_item (struct stack_item *prev, void *contents, int len)
751 struct stack_item *si;
752 si = xmalloc (sizeof (struct stack_item));
753 si->data = xmalloc (len);
756 memcpy (si->data, contents, len);
760 static struct stack_item *
761 pop_stack_item (struct stack_item *si)
763 struct stack_item *dead = si;
770 /* Put here the code to store, into fi->saved_regs, the addresses of
771 the saved registers of frame described by FRAME_INFO. This
772 includes special registers such as pc and fp saved in special ways
773 in the stack frame. sp is even more special: the address we return
774 for it IS the sp for the next frame. */
776 struct cris_unwind_cache *
777 cris_frame_unwind_cache (struct frame_info *next_frame,
778 void **this_prologue_cache)
781 struct cris_unwind_cache *info;
784 if ((*this_prologue_cache))
785 return (*this_prologue_cache);
787 info = FRAME_OBSTACK_ZALLOC (struct cris_unwind_cache);
788 (*this_prologue_cache) = info;
789 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
791 /* Zero all fields. */
797 info->uses_frame = 0;
799 info->leaf_function = 0;
801 /* Prologue analysis does the rest... */
802 if (cris_version () == 32)
803 crisv32_scan_prologue (frame_func_unwind (next_frame), next_frame, info);
805 cris_scan_prologue (frame_func_unwind (next_frame), next_frame, info);
810 /* Given a GDB frame, determine the address of the calling function's
811 frame. This will be used to create a new GDB frame struct. */
814 cris_frame_this_id (struct frame_info *next_frame,
815 void **this_prologue_cache,
816 struct frame_id *this_id)
818 struct cris_unwind_cache *info
819 = cris_frame_unwind_cache (next_frame, this_prologue_cache);
824 /* The FUNC is easy. */
825 func = frame_func_unwind (next_frame);
827 /* Hopefully the prologue analysis either correctly determined the
828 frame's base (which is the SP from the previous frame), or set
829 that base to "NULL". */
830 base = info->prev_sp;
834 id = frame_id_build (base, func);
840 cris_frame_prev_register (struct frame_info *next_frame,
841 void **this_prologue_cache,
842 int regnum, int *optimizedp,
843 enum lval_type *lvalp, CORE_ADDR *addrp,
844 int *realnump, gdb_byte *bufferp)
846 struct cris_unwind_cache *info
847 = cris_frame_unwind_cache (next_frame, this_prologue_cache);
848 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
849 optimizedp, lvalp, addrp, realnump, bufferp);
852 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
853 dummy frame. The frame ID's base needs to match the TOS value
854 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
857 static struct frame_id
858 cris_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
860 return frame_id_build (cris_unwind_sp (gdbarch, next_frame),
861 frame_pc_unwind (next_frame));
865 cris_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
867 /* Align to the size of an instruction (so that they can safely be
868 pushed onto the stack). */
873 cris_push_dummy_code (struct gdbarch *gdbarch,
874 CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc,
875 struct value **args, int nargs,
876 struct type *value_type,
877 CORE_ADDR *real_pc, CORE_ADDR *bp_addr)
879 /* Allocate space sufficient for a breakpoint. */
881 /* Store the address of that breakpoint */
883 /* CRIS always starts the call at the callee's entry point. */
889 cris_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
890 struct regcache *regcache, CORE_ADDR bp_addr,
891 int nargs, struct value **args, CORE_ADDR sp,
892 int struct_return, CORE_ADDR struct_addr)
901 /* The function's arguments and memory allocated by gdb for the arguments to
902 point at reside in separate areas on the stack.
903 Both frame pointers grow toward higher addresses. */
907 struct stack_item *si = NULL;
909 /* Push the return address. */
910 regcache_cooked_write_unsigned (regcache, SRP_REGNUM, bp_addr);
912 /* Are we returning a value using a structure return or a normal value
913 return? struct_addr is the address of the reserved space for the return
914 structure to be written on the stack. */
917 regcache_cooked_write_unsigned (regcache, STR_REGNUM, struct_addr);
920 /* Now load as many as possible of the first arguments into registers,
921 and push the rest onto the stack. */
922 argreg = ARG1_REGNUM;
925 for (argnum = 0; argnum < nargs; argnum++)
932 len = TYPE_LENGTH (value_type (args[argnum]));
933 val = (char *) value_contents (args[argnum]);
935 /* How may registers worth of storage do we need for this argument? */
936 reg_demand = (len / 4) + (len % 4 != 0 ? 1 : 0);
938 if (len <= (2 * 4) && (argreg + reg_demand - 1 <= ARG4_REGNUM))
940 /* Data passed by value. Fits in available register(s). */
941 for (i = 0; i < reg_demand; i++)
943 regcache_cooked_write_unsigned (regcache, argreg,
944 *(unsigned long *) val);
949 else if (len <= (2 * 4) && argreg <= ARG4_REGNUM)
951 /* Data passed by value. Does not fit in available register(s).
952 Use the register(s) first, then the stack. */
953 for (i = 0; i < reg_demand; i++)
955 if (argreg <= ARG4_REGNUM)
957 regcache_cooked_write_unsigned (regcache, argreg,
958 *(unsigned long *) val);
964 /* Push item for later so that pushed arguments
965 come in the right order. */
966 si = push_stack_item (si, val, 4);
971 else if (len > (2 * 4))
974 internal_error (__FILE__, __LINE__, _("We don't do this"));
978 /* Data passed by value. No available registers. Put it on
980 si = push_stack_item (si, val, len);
986 /* fp_arg must be word-aligned (i.e., don't += len) to match
987 the function prologue. */
988 sp = (sp - si->len) & ~3;
989 write_memory (sp, si->data, si->len);
990 si = pop_stack_item (si);
993 /* Finally, update the SP register. */
994 regcache_cooked_write_unsigned (regcache, SP_REGNUM, sp);
999 static const struct frame_unwind cris_frame_unwind =
1003 cris_frame_prev_register
1006 const struct frame_unwind *
1007 cris_frame_sniffer (struct frame_info *next_frame)
1009 return &cris_frame_unwind;
1013 cris_frame_base_address (struct frame_info *next_frame, void **this_cache)
1015 struct cris_unwind_cache *info
1016 = cris_frame_unwind_cache (next_frame, this_cache);
1020 static const struct frame_base cris_frame_base =
1023 cris_frame_base_address,
1024 cris_frame_base_address,
1025 cris_frame_base_address
1028 /* Frames information. The definition of the struct frame_info is
1032 enum frame_type type;
1036 If the compilation option -fno-omit-frame-pointer is present the
1037 variable frame will be set to the content of R8 which is the frame
1040 The variable pc contains the address where execution is performed
1041 in the present frame. The innermost frame contains the current content
1042 of the register PC. All other frames contain the content of the
1043 register PC in the next frame.
1045 The variable `type' indicates the frame's type: normal, SIGTRAMP
1046 (associated with a signal handler), dummy (associated with a dummy
1049 The variable return_pc contains the address where execution should be
1050 resumed when the present frame has finished, the return address.
1052 The variable leaf_function is 1 if the return address is in the register
1053 SRP, and 0 if it is on the stack.
1055 Prologue instructions C-code.
1056 The prologue may consist of (-fno-omit-frame-pointer)
1060 move.d sp,r8 move.d sp,r8
1062 movem rY,[sp] movem rY,[sp]
1063 move.S rZ,[r8-U] move.S rZ,[r8-U]
1065 where 1 is a non-terminal function, and 2 is a leaf-function.
1067 Note that this assumption is extremely brittle, and will break at the
1068 slightest change in GCC's prologue.
1070 If local variables are declared or register contents are saved on stack
1071 the subq-instruction will be present with X as the number of bytes
1072 needed for storage. The reshuffle with respect to r8 may be performed
1073 with any size S (b, w, d) and any of the general registers Z={0..13}.
1074 The offset U should be representable by a signed 8-bit value in all cases.
1075 Thus, the prefix word is assumed to be immediate byte offset mode followed
1076 by another word containing the instruction.
1085 Prologue instructions C++-code.
1086 Case 1) and 2) in the C-code may be followed by
1088 move.d r10,rS ; this
1092 move.S [r8+U],rZ ; P4
1094 if any of the call parameters are stored. The host expects these
1095 instructions to be executed in order to get the call parameters right. */
1097 /* Examine the prologue of a function. The variable ip is the address of
1098 the first instruction of the prologue. The variable limit is the address
1099 of the first instruction after the prologue. The variable fi contains the
1100 information in struct frame_info. The variable frameless_p controls whether
1101 the entire prologue is examined (0) or just enough instructions to
1102 determine that it is a prologue (1). */
1105 cris_scan_prologue (CORE_ADDR pc, struct frame_info *next_frame,
1106 struct cris_unwind_cache *info)
1108 /* Present instruction. */
1109 unsigned short insn;
1111 /* Next instruction, lookahead. */
1112 unsigned short insn_next;
1115 /* Is there a push fp? */
1118 /* Number of byte on stack used for local variables and movem. */
1121 /* Highest register number in a movem. */
1124 /* move.d r<source_register>,rS */
1125 short source_register;
1130 /* This frame is with respect to a leaf until a push srp is found. */
1133 info->leaf_function = 1;
1136 /* Assume nothing on stack. */
1140 /* If we were called without a next_frame, that means we were called
1141 from cris_skip_prologue which already tried to find the end of the
1142 prologue through the symbol information. 64 instructions past current
1143 pc is arbitrarily chosen, but at least it means we'll stop eventually. */
1144 limit = next_frame ? frame_pc_unwind (next_frame) : pc + 64;
1146 /* Find the prologue instructions. */
1147 while (pc > 0 && pc < limit)
1149 insn = read_memory_unsigned_integer (pc, 2);
1153 /* push <reg> 32 bit instruction */
1154 insn_next = read_memory_unsigned_integer (pc, 2);
1156 regno = cris_get_operand2 (insn_next);
1159 info->sp_offset += 4;
1161 /* This check, meant to recognize srp, used to be regno ==
1162 (SRP_REGNUM - NUM_GENREGS), but that covers r11 also. */
1163 if (insn_next == 0xBE7E)
1167 info->leaf_function = 0;
1170 else if (insn_next == 0x8FEE)
1175 info->r8_offset = info->sp_offset;
1179 else if (insn == 0x866E)
1184 info->uses_frame = 1;
1188 else if (cris_get_operand2 (insn) == SP_REGNUM
1189 && cris_get_mode (insn) == 0x0000
1190 && cris_get_opcode (insn) == 0x000A)
1195 info->sp_offset += cris_get_quick_value (insn);
1198 else if (cris_get_mode (insn) == 0x0002
1199 && cris_get_opcode (insn) == 0x000F
1200 && cris_get_size (insn) == 0x0003
1201 && cris_get_operand1 (insn) == SP_REGNUM)
1203 /* movem r<regsave>,[sp] */
1204 regsave = cris_get_operand2 (insn);
1206 else if (cris_get_operand2 (insn) == SP_REGNUM
1207 && ((insn & 0x0F00) >> 8) == 0x0001
1208 && (cris_get_signed_offset (insn) < 0))
1210 /* Immediate byte offset addressing prefix word with sp as base
1211 register. Used for CRIS v8 i.e. ETRAX 100 and newer if <val>
1212 is between 64 and 128.
1213 movem r<regsave>,[sp=sp-<val>] */
1216 info->sp_offset += -cris_get_signed_offset (insn);
1218 insn_next = read_memory_unsigned_integer (pc, 2);
1220 if (cris_get_mode (insn_next) == PREFIX_ASSIGN_MODE
1221 && cris_get_opcode (insn_next) == 0x000F
1222 && cris_get_size (insn_next) == 0x0003
1223 && cris_get_operand1 (insn_next) == SP_REGNUM)
1225 regsave = cris_get_operand2 (insn_next);
1229 /* The prologue ended before the limit was reached. */
1234 else if (cris_get_mode (insn) == 0x0001
1235 && cris_get_opcode (insn) == 0x0009
1236 && cris_get_size (insn) == 0x0002)
1238 /* move.d r<10..13>,r<0..15> */
1239 source_register = cris_get_operand1 (insn);
1241 /* FIXME? In the glibc solibs, the prologue might contain something
1242 like (this example taken from relocate_doit):
1244 sub.d 0xfffef426,$r0
1245 which isn't covered by the source_register check below. Question
1246 is whether to add a check for this combo, or make better use of
1247 the limit variable instead. */
1248 if (source_register < ARG1_REGNUM || source_register > ARG4_REGNUM)
1250 /* The prologue ended before the limit was reached. */
1255 else if (cris_get_operand2 (insn) == CRIS_FP_REGNUM
1256 /* The size is a fixed-size. */
1257 && ((insn & 0x0F00) >> 8) == 0x0001
1258 /* A negative offset. */
1259 && (cris_get_signed_offset (insn) < 0))
1261 /* move.S rZ,[r8-U] (?) */
1262 insn_next = read_memory_unsigned_integer (pc, 2);
1264 regno = cris_get_operand2 (insn_next);
1265 if ((regno >= 0 && regno < SP_REGNUM)
1266 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
1267 && cris_get_opcode (insn_next) == 0x000F)
1269 /* move.S rZ,[r8-U] */
1274 /* The prologue ended before the limit was reached. */
1279 else if (cris_get_operand2 (insn) == CRIS_FP_REGNUM
1280 /* The size is a fixed-size. */
1281 && ((insn & 0x0F00) >> 8) == 0x0001
1282 /* A positive offset. */
1283 && (cris_get_signed_offset (insn) > 0))
1285 /* move.S [r8+U],rZ (?) */
1286 insn_next = read_memory_unsigned_integer (pc, 2);
1288 regno = cris_get_operand2 (insn_next);
1289 if ((regno >= 0 && regno < SP_REGNUM)
1290 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
1291 && cris_get_opcode (insn_next) == 0x0009
1292 && cris_get_operand1 (insn_next) == regno)
1294 /* move.S [r8+U],rZ */
1299 /* The prologue ended before the limit was reached. */
1306 /* The prologue ended before the limit was reached. */
1312 /* We only want to know the end of the prologue when next_frame and info
1313 are NULL (called from cris_skip_prologue i.e.). */
1314 if (next_frame == NULL && info == NULL)
1319 info->size = info->sp_offset;
1321 /* Compute the previous frame's stack pointer (which is also the
1322 frame's ID's stack address), and this frame's base pointer. */
1323 if (info->uses_frame)
1326 /* The SP was moved to the FP. This indicates that a new frame
1327 was created. Get THIS frame's FP value by unwinding it from
1329 frame_unwind_unsigned_register (next_frame, CRIS_FP_REGNUM,
1331 info->base = this_base;
1332 info->saved_regs[CRIS_FP_REGNUM].addr = info->base;
1334 /* The FP points at the last saved register. Adjust the FP back
1335 to before the first saved register giving the SP. */
1336 info->prev_sp = info->base + info->r8_offset;
1341 /* Assume that the FP is this frame's SP but with that pushed
1342 stack space added back. */
1343 frame_unwind_unsigned_register (next_frame, SP_REGNUM, &this_base);
1344 info->base = this_base;
1345 info->prev_sp = info->base + info->size;
1348 /* Calculate the addresses for the saved registers on the stack. */
1349 /* FIXME: The address calculation should really be done on the fly while
1350 we're analyzing the prologue (we only hold one regsave value as it is
1352 val = info->sp_offset;
1354 for (regno = regsave; regno >= 0; regno--)
1356 info->saved_regs[regno].addr = info->base + info->r8_offset - val;
1360 /* The previous frame's SP needed to be computed. Save the computed
1362 trad_frame_set_value (info->saved_regs, SP_REGNUM, info->prev_sp);
1364 if (!info->leaf_function)
1366 /* SRP saved on the stack. But where? */
1367 if (info->r8_offset == 0)
1369 /* R8 not pushed yet. */
1370 info->saved_regs[SRP_REGNUM].addr = info->base;
1374 /* R8 pushed, but SP may or may not be moved to R8 yet. */
1375 info->saved_regs[SRP_REGNUM].addr = info->base + 4;
1379 /* The PC is found in SRP (the actual register or located on the stack). */
1380 info->saved_regs[PC_REGNUM] = info->saved_regs[SRP_REGNUM];
1386 crisv32_scan_prologue (CORE_ADDR pc, struct frame_info *next_frame,
1387 struct cris_unwind_cache *info)
1391 /* Unlike the CRISv10 prologue scanner (cris_scan_prologue), this is not
1392 meant to be a full-fledged prologue scanner. It is only needed for
1393 the cases where we end up in code always lacking DWARF-2 CFI, notably:
1395 * PLT stubs (library calls)
1397 * signal trampolines
1399 For those cases, it is assumed that there is no actual prologue; that
1400 the stack pointer is not adjusted, and (as a consequence) the return
1401 address is not pushed onto the stack. */
1403 /* We only want to know the end of the prologue when next_frame and info
1404 are NULL (called from cris_skip_prologue i.e.). */
1405 if (next_frame == NULL && info == NULL)
1410 /* The SP is assumed to be unaltered. */
1411 frame_unwind_unsigned_register (next_frame, SP_REGNUM, &this_base);
1412 info->base = this_base;
1413 info->prev_sp = this_base;
1415 /* The PC is assumed to be found in SRP. */
1416 info->saved_regs[PC_REGNUM] = info->saved_regs[SRP_REGNUM];
1421 /* Advance pc beyond any function entry prologue instructions at pc
1422 to reach some "real" code. */
1424 /* Given a PC value corresponding to the start of a function, return the PC
1425 of the first instruction after the function prologue. */
1428 cris_skip_prologue (CORE_ADDR pc)
1430 CORE_ADDR func_addr, func_end;
1431 struct symtab_and_line sal;
1432 CORE_ADDR pc_after_prologue;
1434 /* If we have line debugging information, then the end of the prologue
1435 should the first assembly instruction of the first source line. */
1436 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1438 sal = find_pc_line (func_addr, 0);
1439 if (sal.end > 0 && sal.end < func_end)
1443 if (cris_version () == 32)
1444 pc_after_prologue = crisv32_scan_prologue (pc, NULL, NULL);
1446 pc_after_prologue = cris_scan_prologue (pc, NULL, NULL);
1448 return pc_after_prologue;
1452 cris_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1455 frame_unwind_unsigned_register (next_frame, PC_REGNUM, &pc);
1460 cris_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1463 frame_unwind_unsigned_register (next_frame, SP_REGNUM, &sp);
1467 /* Use the program counter to determine the contents and size of a breakpoint
1468 instruction. It returns a pointer to a string of bytes that encode a
1469 breakpoint instruction, stores the length of the string to *lenptr, and
1470 adjusts pcptr (if necessary) to point to the actual memory location where
1471 the breakpoint should be inserted. */
1473 static const unsigned char *
1474 cris_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
1476 static unsigned char break8_insn[] = {0x38, 0xe9};
1477 static unsigned char break15_insn[] = {0x3f, 0xe9};
1480 if (cris_mode () == cris_mode_guru)
1481 return break15_insn;
1486 /* Returns 1 if spec_reg is applicable to the current gdbarch's CRIS version,
1490 cris_spec_reg_applicable (struct cris_spec_reg spec_reg)
1492 int version = cris_version ();
1494 switch (spec_reg.applicable_version)
1496 case cris_ver_version_all:
1498 case cris_ver_warning:
1499 /* Indeterminate/obsolete. */
1502 return (version >= 0 && version <= 3);
1504 return (version >= 3);
1506 return (version == 8 || version == 9);
1508 return (version >= 8);
1509 case cris_ver_v0_10:
1510 return (version >= 0 && version <= 10);
1511 case cris_ver_v3_10:
1512 return (version >= 3 && version <= 10);
1513 case cris_ver_v8_10:
1514 return (version >= 8 && version <= 10);
1516 return (version == 10);
1518 return (version >= 10);
1520 return (version >= 32);
1522 /* Invalid cris version. */
1527 /* Returns the register size in unit byte. Returns 0 for an unimplemented
1528 register, -1 for an invalid register. */
1531 cris_register_size (int regno)
1533 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1537 if (regno >= 0 && regno < NUM_GENREGS)
1539 /* General registers (R0 - R15) are 32 bits. */
1542 else if (regno >= NUM_GENREGS && regno < (NUM_GENREGS + NUM_SPECREGS))
1544 /* Special register (R16 - R31). cris_spec_regs is zero-based.
1545 Adjust regno accordingly. */
1546 spec_regno = regno - NUM_GENREGS;
1548 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1550 if (cris_spec_regs[i].number == spec_regno
1551 && cris_spec_reg_applicable (cris_spec_regs[i]))
1552 /* Go with the first applicable register. */
1553 return cris_spec_regs[i].reg_size;
1555 /* Special register not applicable to this CRIS version. */
1558 else if (regno >= PC_REGNUM && regno < NUM_REGS)
1560 /* This will apply to CRISv32 only where there are additional registers
1561 after the special registers (pseudo PC and support registers). */
1569 /* Nonzero if regno should not be fetched from the target. This is the case
1570 for unimplemented (size 0) and non-existant registers. */
1573 cris_cannot_fetch_register (int regno)
1575 return ((regno < 0 || regno >= NUM_REGS)
1576 || (cris_register_size (regno) == 0));
1579 /* Nonzero if regno should not be written to the target, for various
1583 cris_cannot_store_register (int regno)
1585 /* There are three kinds of registers we refuse to write to.
1586 1. Those that not implemented.
1587 2. Those that are read-only (depends on the processor mode).
1588 3. Those registers to which a write has no effect.
1591 if (regno < 0 || regno >= NUM_REGS || cris_register_size (regno) == 0)
1592 /* Not implemented. */
1595 else if (regno == VR_REGNUM)
1599 else if (regno == P0_REGNUM || regno == P4_REGNUM || regno == P8_REGNUM)
1600 /* Writing has no effect. */
1603 /* IBR, BAR, BRP and IRP are read-only in user mode. Let the debug
1604 agent decide whether they are writable. */
1609 /* Nonzero if regno should not be fetched from the target. This is the case
1610 for unimplemented (size 0) and non-existant registers. */
1613 crisv32_cannot_fetch_register (int regno)
1615 return ((regno < 0 || regno >= NUM_REGS)
1616 || (cris_register_size (regno) == 0));
1619 /* Nonzero if regno should not be written to the target, for various
1623 crisv32_cannot_store_register (int regno)
1625 /* There are three kinds of registers we refuse to write to.
1626 1. Those that not implemented.
1627 2. Those that are read-only (depends on the processor mode).
1628 3. Those registers to which a write has no effect.
1631 if (regno < 0 || regno >= NUM_REGS || cris_register_size (regno) == 0)
1632 /* Not implemented. */
1635 else if (regno == VR_REGNUM)
1639 else if (regno == BZ_REGNUM || regno == WZ_REGNUM || regno == DZ_REGNUM)
1640 /* Writing has no effect. */
1643 /* Many special registers are read-only in user mode. Let the debug
1644 agent decide whether they are writable. */
1649 /* Return the GDB type (defined in gdbtypes.c) for the "standard" data type
1650 of data in register regno. */
1652 static struct type *
1653 cris_register_type (struct gdbarch *gdbarch, int regno)
1655 if (regno == PC_REGNUM)
1656 return builtin_type_void_func_ptr;
1657 else if (regno == SP_REGNUM || regno == CRIS_FP_REGNUM)
1658 return builtin_type_void_data_ptr;
1659 else if ((regno >= 0 && regno < SP_REGNUM)
1660 || (regno >= MOF_REGNUM && regno <= USP_REGNUM))
1661 /* Note: R8 taken care of previous clause. */
1662 return builtin_type_uint32;
1663 else if (regno >= P4_REGNUM && regno <= CCR_REGNUM)
1664 return builtin_type_uint16;
1665 else if (regno >= P0_REGNUM && regno <= VR_REGNUM)
1666 return builtin_type_uint8;
1668 /* Invalid (unimplemented) register. */
1669 return builtin_type_int0;
1672 static struct type *
1673 crisv32_register_type (struct gdbarch *gdbarch, int regno)
1675 if (regno == PC_REGNUM)
1676 return builtin_type_void_func_ptr;
1677 else if (regno == SP_REGNUM || regno == CRIS_FP_REGNUM)
1678 return builtin_type_void_data_ptr;
1679 else if ((regno >= 0 && regno <= ACR_REGNUM)
1680 || (regno >= EXS_REGNUM && regno <= SPC_REGNUM)
1681 || (regno == PID_REGNUM)
1682 || (regno >= S0_REGNUM && regno <= S15_REGNUM))
1683 /* Note: R8 and SP taken care of by previous clause. */
1684 return builtin_type_uint32;
1685 else if (regno == WZ_REGNUM)
1686 return builtin_type_uint16;
1687 else if (regno == BZ_REGNUM || regno == VR_REGNUM || regno == SRS_REGNUM)
1688 return builtin_type_uint8;
1691 /* Invalid (unimplemented) register. Should not happen as there are
1692 no unimplemented CRISv32 registers. */
1693 warning (_("crisv32_register_type: unknown regno %d"), regno);
1694 return builtin_type_int0;
1698 /* Stores a function return value of type type, where valbuf is the address
1699 of the value to be stored. */
1701 /* In the CRIS ABI, R10 and R11 are used to store return values. */
1704 cris_store_return_value (struct type *type, struct regcache *regcache,
1708 int len = TYPE_LENGTH (type);
1712 /* Put the return value in R10. */
1713 val = extract_unsigned_integer (valbuf, len);
1714 regcache_cooked_write_unsigned (regcache, ARG1_REGNUM, val);
1718 /* Put the return value in R10 and R11. */
1719 val = extract_unsigned_integer (valbuf, 4);
1720 regcache_cooked_write_unsigned (regcache, ARG1_REGNUM, val);
1721 val = extract_unsigned_integer ((char *)valbuf + 4, len - 4);
1722 regcache_cooked_write_unsigned (regcache, ARG2_REGNUM, val);
1725 error (_("cris_store_return_value: type length too large."));
1728 /* Return the name of register regno as a string. Return NULL for an invalid or
1729 unimplemented register. */
1732 cris_special_register_name (int regno)
1737 /* Special register (R16 - R31). cris_spec_regs is zero-based.
1738 Adjust regno accordingly. */
1739 spec_regno = regno - NUM_GENREGS;
1741 /* Assume nothing about the layout of the cris_spec_regs struct
1743 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1745 if (cris_spec_regs[i].number == spec_regno
1746 && cris_spec_reg_applicable (cris_spec_regs[i]))
1747 /* Go with the first applicable register. */
1748 return cris_spec_regs[i].name;
1750 /* Special register not applicable to this CRIS version. */
1755 cris_register_name (int regno)
1757 static char *cris_genreg_names[] =
1758 { "r0", "r1", "r2", "r3", \
1759 "r4", "r5", "r6", "r7", \
1760 "r8", "r9", "r10", "r11", \
1761 "r12", "r13", "sp", "pc" };
1763 if (regno >= 0 && regno < NUM_GENREGS)
1765 /* General register. */
1766 return cris_genreg_names[regno];
1768 else if (regno >= NUM_GENREGS && regno < NUM_REGS)
1770 return cris_special_register_name (regno);
1774 /* Invalid register. */
1780 crisv32_register_name (int regno)
1782 static char *crisv32_genreg_names[] =
1783 { "r0", "r1", "r2", "r3", \
1784 "r4", "r5", "r6", "r7", \
1785 "r8", "r9", "r10", "r11", \
1786 "r12", "r13", "sp", "acr"
1789 static char *crisv32_sreg_names[] =
1790 { "s0", "s1", "s2", "s3", \
1791 "s4", "s5", "s6", "s7", \
1792 "s8", "s9", "s10", "s11", \
1793 "s12", "s13", "s14", "s15"
1796 if (regno >= 0 && regno < NUM_GENREGS)
1798 /* General register. */
1799 return crisv32_genreg_names[regno];
1801 else if (regno >= NUM_GENREGS && regno < (NUM_GENREGS + NUM_SPECREGS))
1803 return cris_special_register_name (regno);
1805 else if (regno == PC_REGNUM)
1809 else if (regno >= S0_REGNUM && regno <= S15_REGNUM)
1811 return crisv32_sreg_names[regno - S0_REGNUM];
1815 /* Invalid register. */
1820 /* Convert DWARF register number REG to the appropriate register
1821 number used by GDB. */
1824 cris_dwarf2_reg_to_regnum (int reg)
1826 /* We need to re-map a couple of registers (SRP is 16 in Dwarf-2 register
1827 numbering, MOF is 18).
1828 Adapted from gcc/config/cris/cris.h. */
1829 static int cris_dwarf_regmap[] = {
1841 if (reg >= 0 && reg < ARRAY_SIZE (cris_dwarf_regmap))
1842 regnum = cris_dwarf_regmap[reg];
1845 warning (_("Unmapped DWARF Register #%d encountered."), reg);
1850 /* DWARF-2 frame support. */
1853 cris_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1854 struct dwarf2_frame_state_reg *reg)
1856 /* The return address column. */
1857 if (regnum == PC_REGNUM)
1858 reg->how = DWARF2_FRAME_REG_RA;
1860 /* The call frame address. */
1861 else if (regnum == SP_REGNUM)
1862 reg->how = DWARF2_FRAME_REG_CFA;
1865 /* Extract from an array regbuf containing the raw register state a function
1866 return value of type type, and copy that, in virtual format, into
1869 /* In the CRIS ABI, R10 and R11 are used to store return values. */
1872 cris_extract_return_value (struct type *type, struct regcache *regcache,
1876 int len = TYPE_LENGTH (type);
1880 /* Get the return value from R10. */
1881 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &val);
1882 store_unsigned_integer (valbuf, len, val);
1886 /* Get the return value from R10 and R11. */
1887 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &val);
1888 store_unsigned_integer (valbuf, 4, val);
1889 regcache_cooked_read_unsigned (regcache, ARG2_REGNUM, &val);
1890 store_unsigned_integer ((char *)valbuf + 4, len - 4, val);
1893 error (_("cris_extract_return_value: type length too large"));
1896 /* Handle the CRIS return value convention. */
1898 static enum return_value_convention
1899 cris_return_value (struct gdbarch *gdbarch, struct type *type,
1900 struct regcache *regcache, gdb_byte *readbuf,
1901 const gdb_byte *writebuf)
1903 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1904 || TYPE_CODE (type) == TYPE_CODE_UNION
1905 || TYPE_LENGTH (type) > 8)
1906 /* Structs, unions, and anything larger than 8 bytes (2 registers)
1907 goes on the stack. */
1908 return RETURN_VALUE_STRUCT_CONVENTION;
1911 cris_extract_return_value (type, regcache, readbuf);
1913 cris_store_return_value (type, regcache, writebuf);
1915 return RETURN_VALUE_REGISTER_CONVENTION;
1918 /* Returns 1 if the given type will be passed by pointer rather than
1921 /* In the CRIS ABI, arguments shorter than or equal to 64 bits are passed
1925 cris_reg_struct_has_addr (int gcc_p, struct type *type)
1927 return (TYPE_LENGTH (type) > 8);
1930 /* Calculates a value that measures how good inst_args constraints an
1931 instruction. It stems from cris_constraint, found in cris-dis.c. */
1934 constraint (unsigned int insn, const signed char *inst_args,
1935 inst_env_type *inst_env)
1940 const char *s = inst_args;
1946 if ((insn & 0x30) == 0x30)
1951 /* A prefix operand. */
1952 if (inst_env->prefix_found)
1958 /* A "push" prefix. (This check was REMOVED by san 970921.) Check for
1959 valid "push" size. In case of special register, it may be != 4. */
1960 if (inst_env->prefix_found)
1966 retval = (((insn >> 0xC) & 0xF) == (insn & 0xF));
1974 tmp = (insn >> 0xC) & 0xF;
1976 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1978 /* Since we match four bits, we will give a value of
1979 4 - 1 = 3 in a match. If there is a corresponding
1980 exact match of a special register in another pattern, it
1981 will get a value of 4, which will be higher. This should
1982 be correct in that an exact pattern would match better that
1984 Note that there is a reason for not returning zero; the
1985 pattern for "clear" is partly matched in the bit-pattern
1986 (the two lower bits must be zero), while the bit-pattern
1987 for a move from a special register is matched in the
1988 register constraint.
1989 This also means we will will have a race condition if
1990 there is a partly match in three bits in the bit pattern. */
1991 if (tmp == cris_spec_regs[i].number)
1998 if (cris_spec_regs[i].name == NULL)
2005 /* Returns the number of bits set in the variable value. */
2008 number_of_bits (unsigned int value)
2010 int number_of_bits = 0;
2014 number_of_bits += 1;
2015 value &= (value - 1);
2017 return number_of_bits;
2020 /* Finds the address that should contain the single step breakpoint(s).
2021 It stems from code in cris-dis.c. */
2024 find_cris_op (unsigned short insn, inst_env_type *inst_env)
2027 int max_level_of_match = -1;
2028 int max_matched = -1;
2031 for (i = 0; cris_opcodes[i].name != NULL; i++)
2033 if (((cris_opcodes[i].match & insn) == cris_opcodes[i].match)
2034 && ((cris_opcodes[i].lose & insn) == 0)
2035 /* Only CRISv10 instructions, please. */
2036 && (cris_opcodes[i].applicable_version != cris_ver_v32p))
2038 level_of_match = constraint (insn, cris_opcodes[i].args, inst_env);
2039 if (level_of_match >= 0)
2042 number_of_bits (cris_opcodes[i].match | cris_opcodes[i].lose);
2043 if (level_of_match > max_level_of_match)
2046 max_level_of_match = level_of_match;
2047 if (level_of_match == 16)
2049 /* All bits matched, cannot find better. */
2059 /* Attempts to find single-step breakpoints. Returns -1 on failure which is
2060 actually an internal error. */
2063 find_step_target (inst_env_type *inst_env)
2067 unsigned short insn;
2069 /* Create a local register image and set the initial state. */
2070 for (i = 0; i < NUM_GENREGS; i++)
2072 inst_env->reg[i] = (unsigned long) read_register (i);
2074 offset = NUM_GENREGS;
2075 for (i = 0; i < NUM_SPECREGS; i++)
2077 inst_env->preg[i] = (unsigned long) read_register (offset + i);
2079 inst_env->branch_found = 0;
2080 inst_env->slot_needed = 0;
2081 inst_env->delay_slot_pc_active = 0;
2082 inst_env->prefix_found = 0;
2083 inst_env->invalid = 0;
2084 inst_env->xflag_found = 0;
2085 inst_env->disable_interrupt = 0;
2087 /* Look for a step target. */
2090 /* Read an instruction from the client. */
2091 insn = read_memory_unsigned_integer (inst_env->reg[PC_REGNUM], 2);
2093 /* If the instruction is not in a delay slot the new content of the
2094 PC is [PC] + 2. If the instruction is in a delay slot it is not
2095 that simple. Since a instruction in a delay slot cannot change
2096 the content of the PC, it does not matter what value PC will have.
2097 Just make sure it is a valid instruction. */
2098 if (!inst_env->delay_slot_pc_active)
2100 inst_env->reg[PC_REGNUM] += 2;
2104 inst_env->delay_slot_pc_active = 0;
2105 inst_env->reg[PC_REGNUM] = inst_env->delay_slot_pc;
2107 /* Analyse the present instruction. */
2108 i = find_cris_op (insn, inst_env);
2111 inst_env->invalid = 1;
2115 cris_gdb_func (cris_opcodes[i].op, insn, inst_env);
2117 } while (!inst_env->invalid
2118 && (inst_env->prefix_found || inst_env->xflag_found
2119 || inst_env->slot_needed));
2123 /* There is no hardware single-step support. The function find_step_target
2124 digs through the opcodes in order to find all possible targets.
2125 Either one ordinary target or two targets for branches may be found. */
2128 cris_software_single_step (enum target_signal ignore, int insert_breakpoints)
2130 inst_env_type inst_env;
2132 if (insert_breakpoints)
2134 /* Analyse the present instruction environment and insert
2136 int status = find_step_target (&inst_env);
2139 /* Could not find a target. Things are likely to go downhill
2141 warning (_("CRIS software single step could not find a step target."));
2145 /* Insert at most two breakpoints. One for the next PC content
2146 and possibly another one for a branch, jump, etc. */
2147 next_pc = (CORE_ADDR) inst_env.reg[PC_REGNUM];
2148 target_insert_breakpoint (next_pc, break_mem[0]);
2149 if (inst_env.branch_found
2150 && (CORE_ADDR) inst_env.branch_break_address != next_pc)
2152 branch_target_address =
2153 (CORE_ADDR) inst_env.branch_break_address;
2154 target_insert_breakpoint (branch_target_address, break_mem[1]);
2155 branch_break_inserted = 1;
2161 /* Remove breakpoints. */
2162 target_remove_breakpoint (next_pc, break_mem[0]);
2163 if (branch_break_inserted)
2165 target_remove_breakpoint (branch_target_address, break_mem[1]);
2166 branch_break_inserted = 0;
2171 /* Calculates the prefix value for quick offset addressing mode. */
2174 quick_mode_bdap_prefix (unsigned short inst, inst_env_type *inst_env)
2176 /* It's invalid to be in a delay slot. You can't have a prefix to this
2177 instruction (not 100% sure). */
2178 if (inst_env->slot_needed || inst_env->prefix_found)
2180 inst_env->invalid = 1;
2184 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
2185 inst_env->prefix_value += cris_get_bdap_quick_offset (inst);
2187 /* A prefix doesn't change the xflag_found. But the rest of the flags
2189 inst_env->slot_needed = 0;
2190 inst_env->prefix_found = 1;
2193 /* Updates the autoincrement register. The size of the increment is derived
2194 from the size of the operation. The PC is always kept aligned on even
2198 process_autoincrement (int size, unsigned short inst, inst_env_type *inst_env)
2200 if (size == INST_BYTE_SIZE)
2202 inst_env->reg[cris_get_operand1 (inst)] += 1;
2204 /* The PC must be word aligned, so increase the PC with one
2205 word even if the size is byte. */
2206 if (cris_get_operand1 (inst) == REG_PC)
2208 inst_env->reg[REG_PC] += 1;
2211 else if (size == INST_WORD_SIZE)
2213 inst_env->reg[cris_get_operand1 (inst)] += 2;
2215 else if (size == INST_DWORD_SIZE)
2217 inst_env->reg[cris_get_operand1 (inst)] += 4;
2222 inst_env->invalid = 1;
2226 /* Just a forward declaration. */
2228 static unsigned long get_data_from_address (unsigned short *inst,
2231 /* Calculates the prefix value for the general case of offset addressing
2235 bdap_prefix (unsigned short inst, inst_env_type *inst_env)
2240 /* It's invalid to be in a delay slot. */
2241 if (inst_env->slot_needed || inst_env->prefix_found)
2243 inst_env->invalid = 1;
2247 /* The calculation of prefix_value used to be after process_autoincrement,
2248 but that fails for an instruction such as jsr [$r0+12] which is encoded
2249 as 5f0d 0c00 30b9 when compiled with -fpic. Since PC is operand1 it
2250 mustn't be incremented until we have read it and what it points at. */
2251 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
2253 /* The offset is an indirection of the contents of the operand1 register. */
2254 inst_env->prefix_value +=
2255 get_data_from_address (&inst, inst_env->reg[cris_get_operand1 (inst)]);
2257 if (cris_get_mode (inst) == AUTOINC_MODE)
2259 process_autoincrement (cris_get_size (inst), inst, inst_env);
2262 /* A prefix doesn't change the xflag_found. But the rest of the flags
2264 inst_env->slot_needed = 0;
2265 inst_env->prefix_found = 1;
2268 /* Calculates the prefix value for the index addressing mode. */
2271 biap_prefix (unsigned short inst, inst_env_type *inst_env)
2273 /* It's invalid to be in a delay slot. I can't see that it's possible to
2274 have a prefix to this instruction. So I will treat this as invalid. */
2275 if (inst_env->slot_needed || inst_env->prefix_found)
2277 inst_env->invalid = 1;
2281 inst_env->prefix_value = inst_env->reg[cris_get_operand1 (inst)];
2283 /* The offset is the operand2 value shifted the size of the instruction
2285 inst_env->prefix_value +=
2286 inst_env->reg[cris_get_operand2 (inst)] << cris_get_size (inst);
2288 /* If the PC is operand1 (base) the address used is the address after
2289 the main instruction, i.e. address + 2 (the PC is already compensated
2290 for the prefix operation). */
2291 if (cris_get_operand1 (inst) == REG_PC)
2293 inst_env->prefix_value += 2;
2296 /* A prefix doesn't change the xflag_found. But the rest of the flags
2298 inst_env->slot_needed = 0;
2299 inst_env->xflag_found = 0;
2300 inst_env->prefix_found = 1;
2303 /* Calculates the prefix value for the double indirect addressing mode. */
2306 dip_prefix (unsigned short inst, inst_env_type *inst_env)
2311 /* It's invalid to be in a delay slot. */
2312 if (inst_env->slot_needed || inst_env->prefix_found)
2314 inst_env->invalid = 1;
2318 /* The prefix value is one dereference of the contents of the operand1
2320 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
2321 inst_env->prefix_value = read_memory_unsigned_integer (address, 4);
2323 /* Check if the mode is autoincrement. */
2324 if (cris_get_mode (inst) == AUTOINC_MODE)
2326 inst_env->reg[cris_get_operand1 (inst)] += 4;
2329 /* A prefix doesn't change the xflag_found. But the rest of the flags
2331 inst_env->slot_needed = 0;
2332 inst_env->xflag_found = 0;
2333 inst_env->prefix_found = 1;
2336 /* Finds the destination for a branch with 8-bits offset. */
2339 eight_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
2344 /* If we have a prefix or are in a delay slot it's bad. */
2345 if (inst_env->slot_needed || inst_env->prefix_found)
2347 inst_env->invalid = 1;
2351 /* We have a branch, find out where the branch will land. */
2352 offset = cris_get_branch_short_offset (inst);
2354 /* Check if the offset is signed. */
2355 if (offset & BRANCH_SIGNED_SHORT_OFFSET_MASK)
2360 /* The offset ends with the sign bit, set it to zero. The address
2361 should always be word aligned. */
2362 offset &= ~BRANCH_SIGNED_SHORT_OFFSET_MASK;
2364 inst_env->branch_found = 1;
2365 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2367 inst_env->slot_needed = 1;
2368 inst_env->prefix_found = 0;
2369 inst_env->xflag_found = 0;
2370 inst_env->disable_interrupt = 1;
2373 /* Finds the destination for a branch with 16-bits offset. */
2376 sixteen_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
2380 /* If we have a prefix or is in a delay slot it's bad. */
2381 if (inst_env->slot_needed || inst_env->prefix_found)
2383 inst_env->invalid = 1;
2387 /* We have a branch, find out the offset for the branch. */
2388 offset = read_memory_integer (inst_env->reg[REG_PC], 2);
2390 /* The instruction is one word longer than normal, so add one word
2392 inst_env->reg[REG_PC] += 2;
2394 inst_env->branch_found = 1;
2395 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2398 inst_env->slot_needed = 1;
2399 inst_env->prefix_found = 0;
2400 inst_env->xflag_found = 0;
2401 inst_env->disable_interrupt = 1;
2404 /* Handles the ABS instruction. */
2407 abs_op (unsigned short inst, inst_env_type *inst_env)
2412 /* ABS can't have a prefix, so it's bad if it does. */
2413 if (inst_env->prefix_found)
2415 inst_env->invalid = 1;
2419 /* Check if the operation affects the PC. */
2420 if (cris_get_operand2 (inst) == REG_PC)
2423 /* It's invalid to change to the PC if we are in a delay slot. */
2424 if (inst_env->slot_needed)
2426 inst_env->invalid = 1;
2430 value = (long) inst_env->reg[REG_PC];
2432 /* The value of abs (SIGNED_DWORD_MASK) is SIGNED_DWORD_MASK. */
2433 if (value != SIGNED_DWORD_MASK)
2436 inst_env->reg[REG_PC] = (long) value;
2440 inst_env->slot_needed = 0;
2441 inst_env->prefix_found = 0;
2442 inst_env->xflag_found = 0;
2443 inst_env->disable_interrupt = 0;
2446 /* Handles the ADDI instruction. */
2449 addi_op (unsigned short inst, inst_env_type *inst_env)
2451 /* It's invalid to have the PC as base register. And ADDI can't have
2453 if (inst_env->prefix_found || (cris_get_operand1 (inst) == REG_PC))
2455 inst_env->invalid = 1;
2459 inst_env->slot_needed = 0;
2460 inst_env->prefix_found = 0;
2461 inst_env->xflag_found = 0;
2462 inst_env->disable_interrupt = 0;
2465 /* Handles the ASR instruction. */
2468 asr_op (unsigned short inst, inst_env_type *inst_env)
2471 unsigned long value;
2472 unsigned long signed_extend_mask = 0;
2474 /* ASR can't have a prefix, so check that it doesn't. */
2475 if (inst_env->prefix_found)
2477 inst_env->invalid = 1;
2481 /* Check if the PC is the target register. */
2482 if (cris_get_operand2 (inst) == REG_PC)
2484 /* It's invalid to change the PC in a delay slot. */
2485 if (inst_env->slot_needed)
2487 inst_env->invalid = 1;
2490 /* Get the number of bits to shift. */
2491 shift_steps = cris_get_asr_shift_steps (inst_env->reg[cris_get_operand1 (inst)]);
2492 value = inst_env->reg[REG_PC];
2494 /* Find out how many bits the operation should apply to. */
2495 if (cris_get_size (inst) == INST_BYTE_SIZE)
2497 if (value & SIGNED_BYTE_MASK)
2499 signed_extend_mask = 0xFF;
2500 signed_extend_mask = signed_extend_mask >> shift_steps;
2501 signed_extend_mask = ~signed_extend_mask;
2503 value = value >> shift_steps;
2504 value |= signed_extend_mask;
2506 inst_env->reg[REG_PC] &= 0xFFFFFF00;
2507 inst_env->reg[REG_PC] |= value;
2509 else if (cris_get_size (inst) == INST_WORD_SIZE)
2511 if (value & SIGNED_WORD_MASK)
2513 signed_extend_mask = 0xFFFF;
2514 signed_extend_mask = signed_extend_mask >> shift_steps;
2515 signed_extend_mask = ~signed_extend_mask;
2517 value = value >> shift_steps;
2518 value |= signed_extend_mask;
2520 inst_env->reg[REG_PC] &= 0xFFFF0000;
2521 inst_env->reg[REG_PC] |= value;
2523 else if (cris_get_size (inst) == INST_DWORD_SIZE)
2525 if (value & SIGNED_DWORD_MASK)
2527 signed_extend_mask = 0xFFFFFFFF;
2528 signed_extend_mask = signed_extend_mask >> shift_steps;
2529 signed_extend_mask = ~signed_extend_mask;
2531 value = value >> shift_steps;
2532 value |= signed_extend_mask;
2533 inst_env->reg[REG_PC] = value;
2536 inst_env->slot_needed = 0;
2537 inst_env->prefix_found = 0;
2538 inst_env->xflag_found = 0;
2539 inst_env->disable_interrupt = 0;
2542 /* Handles the ASRQ instruction. */
2545 asrq_op (unsigned short inst, inst_env_type *inst_env)
2549 unsigned long value;
2550 unsigned long signed_extend_mask = 0;
2552 /* ASRQ can't have a prefix, so check that it doesn't. */
2553 if (inst_env->prefix_found)
2555 inst_env->invalid = 1;
2559 /* Check if the PC is the target register. */
2560 if (cris_get_operand2 (inst) == REG_PC)
2563 /* It's invalid to change the PC in a delay slot. */
2564 if (inst_env->slot_needed)
2566 inst_env->invalid = 1;
2569 /* The shift size is given as a 5 bit quick value, i.e. we don't
2570 want the the sign bit of the quick value. */
2571 shift_steps = cris_get_asr_shift_steps (inst);
2572 value = inst_env->reg[REG_PC];
2573 if (value & SIGNED_DWORD_MASK)
2575 signed_extend_mask = 0xFFFFFFFF;
2576 signed_extend_mask = signed_extend_mask >> shift_steps;
2577 signed_extend_mask = ~signed_extend_mask;
2579 value = value >> shift_steps;
2580 value |= signed_extend_mask;
2581 inst_env->reg[REG_PC] = value;
2583 inst_env->slot_needed = 0;
2584 inst_env->prefix_found = 0;
2585 inst_env->xflag_found = 0;
2586 inst_env->disable_interrupt = 0;
2589 /* Handles the AX, EI and SETF instruction. */
2592 ax_ei_setf_op (unsigned short inst, inst_env_type *inst_env)
2594 if (inst_env->prefix_found)
2596 inst_env->invalid = 1;
2599 /* Check if the instruction is setting the X flag. */
2600 if (cris_is_xflag_bit_on (inst))
2602 inst_env->xflag_found = 1;
2606 inst_env->xflag_found = 0;
2608 inst_env->slot_needed = 0;
2609 inst_env->prefix_found = 0;
2610 inst_env->disable_interrupt = 1;
2613 /* Checks if the instruction is in assign mode. If so, it updates the assign
2614 register. Note that check_assign assumes that the caller has checked that
2615 there is a prefix to this instruction. The mode check depends on this. */
2618 check_assign (unsigned short inst, inst_env_type *inst_env)
2620 /* Check if it's an assign addressing mode. */
2621 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2623 /* Assign the prefix value to operand 1. */
2624 inst_env->reg[cris_get_operand1 (inst)] = inst_env->prefix_value;
2628 /* Handles the 2-operand BOUND instruction. */
2631 two_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2633 /* It's invalid to have the PC as the index operand. */
2634 if (cris_get_operand2 (inst) == REG_PC)
2636 inst_env->invalid = 1;
2639 /* Check if we have a prefix. */
2640 if (inst_env->prefix_found)
2642 check_assign (inst, inst_env);
2644 /* Check if this is an autoincrement mode. */
2645 else if (cris_get_mode (inst) == AUTOINC_MODE)
2647 /* It's invalid to change the PC in a delay slot. */
2648 if (inst_env->slot_needed)
2650 inst_env->invalid = 1;
2653 process_autoincrement (cris_get_size (inst), inst, inst_env);
2655 inst_env->slot_needed = 0;
2656 inst_env->prefix_found = 0;
2657 inst_env->xflag_found = 0;
2658 inst_env->disable_interrupt = 0;
2661 /* Handles the 3-operand BOUND instruction. */
2664 three_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2666 /* It's an error if we haven't got a prefix. And it's also an error
2667 if the PC is the destination register. */
2668 if ((!inst_env->prefix_found) || (cris_get_operand1 (inst) == REG_PC))
2670 inst_env->invalid = 1;
2673 inst_env->slot_needed = 0;
2674 inst_env->prefix_found = 0;
2675 inst_env->xflag_found = 0;
2676 inst_env->disable_interrupt = 0;
2679 /* Clears the status flags in inst_env. */
2682 btst_nop_op (unsigned short inst, inst_env_type *inst_env)
2684 /* It's an error if we have got a prefix. */
2685 if (inst_env->prefix_found)
2687 inst_env->invalid = 1;
2691 inst_env->slot_needed = 0;
2692 inst_env->prefix_found = 0;
2693 inst_env->xflag_found = 0;
2694 inst_env->disable_interrupt = 0;
2697 /* Clears the status flags in inst_env. */
2700 clearf_di_op (unsigned short inst, inst_env_type *inst_env)
2702 /* It's an error if we have got a prefix. */
2703 if (inst_env->prefix_found)
2705 inst_env->invalid = 1;
2709 inst_env->slot_needed = 0;
2710 inst_env->prefix_found = 0;
2711 inst_env->xflag_found = 0;
2712 inst_env->disable_interrupt = 1;
2715 /* Handles the CLEAR instruction if it's in register mode. */
2718 reg_mode_clear_op (unsigned short inst, inst_env_type *inst_env)
2720 /* Check if the target is the PC. */
2721 if (cris_get_operand2 (inst) == REG_PC)
2723 /* The instruction will clear the instruction's size bits. */
2724 int clear_size = cris_get_clear_size (inst);
2725 if (clear_size == INST_BYTE_SIZE)
2727 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFFFF00;
2729 if (clear_size == INST_WORD_SIZE)
2731 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFF0000;
2733 if (clear_size == INST_DWORD_SIZE)
2735 inst_env->delay_slot_pc = 0x0;
2737 /* The jump will be delayed with one delay slot. So we need a delay
2739 inst_env->slot_needed = 1;
2740 inst_env->delay_slot_pc_active = 1;
2744 /* The PC will not change => no delay slot. */
2745 inst_env->slot_needed = 0;
2747 inst_env->prefix_found = 0;
2748 inst_env->xflag_found = 0;
2749 inst_env->disable_interrupt = 0;
2752 /* Handles the TEST instruction if it's in register mode. */
2755 reg_mode_test_op (unsigned short inst, inst_env_type *inst_env)
2757 /* It's an error if we have got a prefix. */
2758 if (inst_env->prefix_found)
2760 inst_env->invalid = 1;
2763 inst_env->slot_needed = 0;
2764 inst_env->prefix_found = 0;
2765 inst_env->xflag_found = 0;
2766 inst_env->disable_interrupt = 0;
2770 /* Handles the CLEAR and TEST instruction if the instruction isn't
2771 in register mode. */
2774 none_reg_mode_clear_test_op (unsigned short inst, inst_env_type *inst_env)
2776 /* Check if we are in a prefix mode. */
2777 if (inst_env->prefix_found)
2779 /* The only way the PC can change is if this instruction is in
2780 assign addressing mode. */
2781 check_assign (inst, inst_env);
2783 /* Indirect mode can't change the PC so just check if the mode is
2785 else if (cris_get_mode (inst) == AUTOINC_MODE)
2787 process_autoincrement (cris_get_size (inst), inst, inst_env);
2789 inst_env->slot_needed = 0;
2790 inst_env->prefix_found = 0;
2791 inst_env->xflag_found = 0;
2792 inst_env->disable_interrupt = 0;
2795 /* Checks that the PC isn't the destination register or the instructions has
2799 dstep_logshift_mstep_neg_not_op (unsigned short inst, inst_env_type *inst_env)
2801 /* It's invalid to have the PC as the destination. The instruction can't
2803 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2805 inst_env->invalid = 1;
2809 inst_env->slot_needed = 0;
2810 inst_env->prefix_found = 0;
2811 inst_env->xflag_found = 0;
2812 inst_env->disable_interrupt = 0;
2815 /* Checks that the instruction doesn't have a prefix. */
2818 break_op (unsigned short inst, inst_env_type *inst_env)
2820 /* The instruction can't have a prefix. */
2821 if (inst_env->prefix_found)
2823 inst_env->invalid = 1;
2827 inst_env->slot_needed = 0;
2828 inst_env->prefix_found = 0;
2829 inst_env->xflag_found = 0;
2830 inst_env->disable_interrupt = 1;
2833 /* Checks that the PC isn't the destination register and that the instruction
2834 doesn't have a prefix. */
2837 scc_op (unsigned short inst, inst_env_type *inst_env)
2839 /* It's invalid to have the PC as the destination. The instruction can't
2841 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2843 inst_env->invalid = 1;
2847 inst_env->slot_needed = 0;
2848 inst_env->prefix_found = 0;
2849 inst_env->xflag_found = 0;
2850 inst_env->disable_interrupt = 1;
2853 /* Handles the register mode JUMP instruction. */
2856 reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
2858 /* It's invalid to do a JUMP in a delay slot. The mode is register, so
2859 you can't have a prefix. */
2860 if ((inst_env->slot_needed) || (inst_env->prefix_found))
2862 inst_env->invalid = 1;
2866 /* Just change the PC. */
2867 inst_env->reg[REG_PC] = inst_env->reg[cris_get_operand1 (inst)];
2868 inst_env->slot_needed = 0;
2869 inst_env->prefix_found = 0;
2870 inst_env->xflag_found = 0;
2871 inst_env->disable_interrupt = 1;
2874 /* Handles the JUMP instruction for all modes except register. */
2877 none_reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
2879 unsigned long newpc;
2882 /* It's invalid to do a JUMP in a delay slot. */
2883 if (inst_env->slot_needed)
2885 inst_env->invalid = 1;
2889 /* Check if we have a prefix. */
2890 if (inst_env->prefix_found)
2892 check_assign (inst, inst_env);
2894 /* Get the new value for the the PC. */
2896 read_memory_unsigned_integer ((CORE_ADDR) inst_env->prefix_value,
2901 /* Get the new value for the PC. */
2902 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
2903 newpc = read_memory_unsigned_integer (address, 4);
2905 /* Check if we should increment a register. */
2906 if (cris_get_mode (inst) == AUTOINC_MODE)
2908 inst_env->reg[cris_get_operand1 (inst)] += 4;
2911 inst_env->reg[REG_PC] = newpc;
2913 inst_env->slot_needed = 0;
2914 inst_env->prefix_found = 0;
2915 inst_env->xflag_found = 0;
2916 inst_env->disable_interrupt = 1;
2919 /* Handles moves to special registers (aka P-register) for all modes. */
2922 move_to_preg_op (unsigned short inst, inst_env_type *inst_env)
2924 if (inst_env->prefix_found)
2926 /* The instruction has a prefix that means we are only interested if
2927 the instruction is in assign mode. */
2928 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2930 /* The prefix handles the problem if we are in a delay slot. */
2931 if (cris_get_operand1 (inst) == REG_PC)
2933 /* Just take care of the assign. */
2934 check_assign (inst, inst_env);
2938 else if (cris_get_mode (inst) == AUTOINC_MODE)
2940 /* The instruction doesn't have a prefix, the only case left that we
2941 are interested in is the autoincrement mode. */
2942 if (cris_get_operand1 (inst) == REG_PC)
2944 /* If the PC is to be incremented it's invalid to be in a
2946 if (inst_env->slot_needed)
2948 inst_env->invalid = 1;
2952 /* The increment depends on the size of the special register. */
2953 if (cris_register_size (cris_get_operand2 (inst)) == 1)
2955 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
2957 else if (cris_register_size (cris_get_operand2 (inst)) == 2)
2959 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
2963 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
2967 inst_env->slot_needed = 0;
2968 inst_env->prefix_found = 0;
2969 inst_env->xflag_found = 0;
2970 inst_env->disable_interrupt = 1;
2973 /* Handles moves from special registers (aka P-register) for all modes
2977 none_reg_mode_move_from_preg_op (unsigned short inst, inst_env_type *inst_env)
2979 if (inst_env->prefix_found)
2981 /* The instruction has a prefix that means we are only interested if
2982 the instruction is in assign mode. */
2983 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2985 /* The prefix handles the problem if we are in a delay slot. */
2986 if (cris_get_operand1 (inst) == REG_PC)
2988 /* Just take care of the assign. */
2989 check_assign (inst, inst_env);
2993 /* The instruction doesn't have a prefix, the only case left that we
2994 are interested in is the autoincrement mode. */
2995 else if (cris_get_mode (inst) == AUTOINC_MODE)
2997 if (cris_get_operand1 (inst) == REG_PC)
2999 /* If the PC is to be incremented it's invalid to be in a
3001 if (inst_env->slot_needed)
3003 inst_env->invalid = 1;
3007 /* The increment depends on the size of the special register. */
3008 if (cris_register_size (cris_get_operand2 (inst)) == 1)
3010 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
3012 else if (cris_register_size (cris_get_operand2 (inst)) == 2)
3014 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
3018 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
3022 inst_env->slot_needed = 0;
3023 inst_env->prefix_found = 0;
3024 inst_env->xflag_found = 0;
3025 inst_env->disable_interrupt = 1;
3028 /* Handles moves from special registers (aka P-register) when the mode
3032 reg_mode_move_from_preg_op (unsigned short inst, inst_env_type *inst_env)
3034 /* Register mode move from special register can't have a prefix. */
3035 if (inst_env->prefix_found)
3037 inst_env->invalid = 1;
3041 if (cris_get_operand1 (inst) == REG_PC)
3043 /* It's invalid to change the PC in a delay slot. */
3044 if (inst_env->slot_needed)
3046 inst_env->invalid = 1;
3049 /* The destination is the PC, the jump will have a delay slot. */
3050 inst_env->delay_slot_pc = inst_env->preg[cris_get_operand2 (inst)];
3051 inst_env->slot_needed = 1;
3052 inst_env->delay_slot_pc_active = 1;
3056 /* If the destination isn't PC, there will be no jump. */
3057 inst_env->slot_needed = 0;
3059 inst_env->prefix_found = 0;
3060 inst_env->xflag_found = 0;
3061 inst_env->disable_interrupt = 1;
3064 /* Handles the MOVEM from memory to general register instruction. */
3067 move_mem_to_reg_movem_op (unsigned short inst, inst_env_type *inst_env)
3069 if (inst_env->prefix_found)
3071 /* The prefix handles the problem if we are in a delay slot. Is the
3072 MOVEM instruction going to change the PC? */
3073 if (cris_get_operand2 (inst) >= REG_PC)
3075 inst_env->reg[REG_PC] =
3076 read_memory_unsigned_integer (inst_env->prefix_value, 4);
3078 /* The assign value is the value after the increment. Normally, the
3079 assign value is the value before the increment. */
3080 if ((cris_get_operand1 (inst) == REG_PC)
3081 && (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
3083 inst_env->reg[REG_PC] = inst_env->prefix_value;
3084 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3089 /* Is the MOVEM instruction going to change the PC? */
3090 if (cris_get_operand2 (inst) == REG_PC)
3092 /* It's invalid to change the PC in a delay slot. */
3093 if (inst_env->slot_needed)
3095 inst_env->invalid = 1;
3098 inst_env->reg[REG_PC] =
3099 read_memory_unsigned_integer (inst_env->reg[cris_get_operand1 (inst)],
3102 /* The increment is not depending on the size, instead it's depending
3103 on the number of registers loaded from memory. */
3104 if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE))
3106 /* It's invalid to change the PC in a delay slot. */
3107 if (inst_env->slot_needed)
3109 inst_env->invalid = 1;
3112 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3115 inst_env->slot_needed = 0;
3116 inst_env->prefix_found = 0;
3117 inst_env->xflag_found = 0;
3118 inst_env->disable_interrupt = 0;
3121 /* Handles the MOVEM to memory from general register instruction. */
3124 move_reg_to_mem_movem_op (unsigned short inst, inst_env_type *inst_env)
3126 if (inst_env->prefix_found)
3128 /* The assign value is the value after the increment. Normally, the
3129 assign value is the value before the increment. */
3130 if ((cris_get_operand1 (inst) == REG_PC) &&
3131 (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
3133 /* The prefix handles the problem if we are in a delay slot. */
3134 inst_env->reg[REG_PC] = inst_env->prefix_value;
3135 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3140 /* The increment is not depending on the size, instead it's depending
3141 on the number of registers loaded to memory. */
3142 if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE))
3144 /* It's invalid to change the PC in a delay slot. */
3145 if (inst_env->slot_needed)
3147 inst_env->invalid = 1;
3150 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3153 inst_env->slot_needed = 0;
3154 inst_env->prefix_found = 0;
3155 inst_env->xflag_found = 0;
3156 inst_env->disable_interrupt = 0;
3159 /* Handles the intructions that's not yet implemented, by setting
3160 inst_env->invalid to true. */
3163 not_implemented_op (unsigned short inst, inst_env_type *inst_env)
3165 inst_env->invalid = 1;
3168 /* Handles the XOR instruction. */
3171 xor_op (unsigned short inst, inst_env_type *inst_env)
3173 /* XOR can't have a prefix. */
3174 if (inst_env->prefix_found)
3176 inst_env->invalid = 1;
3180 /* Check if the PC is the target. */
3181 if (cris_get_operand2 (inst) == REG_PC)
3183 /* It's invalid to change the PC in a delay slot. */
3184 if (inst_env->slot_needed)
3186 inst_env->invalid = 1;
3189 inst_env->reg[REG_PC] ^= inst_env->reg[cris_get_operand1 (inst)];
3191 inst_env->slot_needed = 0;
3192 inst_env->prefix_found = 0;
3193 inst_env->xflag_found = 0;
3194 inst_env->disable_interrupt = 0;
3197 /* Handles the MULS instruction. */
3200 muls_op (unsigned short inst, inst_env_type *inst_env)
3202 /* MULS/U can't have a prefix. */
3203 if (inst_env->prefix_found)
3205 inst_env->invalid = 1;
3209 /* Consider it invalid if the PC is the target. */
3210 if (cris_get_operand2 (inst) == REG_PC)
3212 inst_env->invalid = 1;
3215 inst_env->slot_needed = 0;
3216 inst_env->prefix_found = 0;
3217 inst_env->xflag_found = 0;
3218 inst_env->disable_interrupt = 0;
3221 /* Handles the MULU instruction. */
3224 mulu_op (unsigned short inst, inst_env_type *inst_env)
3226 /* MULS/U can't have a prefix. */
3227 if (inst_env->prefix_found)
3229 inst_env->invalid = 1;
3233 /* Consider it invalid if the PC is the target. */
3234 if (cris_get_operand2 (inst) == REG_PC)
3236 inst_env->invalid = 1;
3239 inst_env->slot_needed = 0;
3240 inst_env->prefix_found = 0;
3241 inst_env->xflag_found = 0;
3242 inst_env->disable_interrupt = 0;
3245 /* Calculate the result of the instruction for ADD, SUB, CMP AND, OR and MOVE.
3246 The MOVE instruction is the move from source to register. */
3249 add_sub_cmp_and_or_move_action (unsigned short inst, inst_env_type *inst_env,
3250 unsigned long source1, unsigned long source2)
3252 unsigned long pc_mask;
3253 unsigned long operation_mask;
3255 /* Find out how many bits the operation should apply to. */
3256 if (cris_get_size (inst) == INST_BYTE_SIZE)
3258 pc_mask = 0xFFFFFF00;
3259 operation_mask = 0xFF;
3261 else if (cris_get_size (inst) == INST_WORD_SIZE)
3263 pc_mask = 0xFFFF0000;
3264 operation_mask = 0xFFFF;
3266 else if (cris_get_size (inst) == INST_DWORD_SIZE)
3269 operation_mask = 0xFFFFFFFF;
3273 /* The size is out of range. */
3274 inst_env->invalid = 1;
3278 /* The instruction just works on uw_operation_mask bits. */
3279 source2 &= operation_mask;
3280 source1 &= operation_mask;
3282 /* Now calculate the result. The opcode's 3 first bits separates
3283 the different actions. */
3284 switch (cris_get_opcode (inst) & 7)
3294 case 2: /* subtract */
3298 case 3: /* compare */
3310 inst_env->invalid = 1;
3316 /* Make sure that the result doesn't contain more than the instruction
3318 source2 &= operation_mask;
3320 /* Calculate the new breakpoint address. */
3321 inst_env->reg[REG_PC] &= pc_mask;
3322 inst_env->reg[REG_PC] |= source1;
3326 /* Extends the value from either byte or word size to a dword. If the mode
3327 is zero extend then the value is extended with zero. If instead the mode
3328 is signed extend the sign bit of the value is taken into consideration. */
3330 static unsigned long
3331 do_sign_or_zero_extend (unsigned long value, unsigned short *inst)
3333 /* The size can be either byte or word, check which one it is.
3334 Don't check the highest bit, it's indicating if it's a zero
3336 if (cris_get_size (*inst) & INST_WORD_SIZE)
3341 /* Check if the instruction is signed extend. If so, check if value has
3343 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_WORD_MASK))
3345 value |= SIGNED_WORD_EXTEND_MASK;
3353 /* Check if the instruction is signed extend. If so, check if value has
3355 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_BYTE_MASK))
3357 value |= SIGNED_BYTE_EXTEND_MASK;
3360 /* The size should now be dword. */
3361 cris_set_size_to_dword (inst);
3365 /* Handles the register mode for the ADD, SUB, CMP, AND, OR and MOVE
3366 instruction. The MOVE instruction is the move from source to register. */
3369 reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3370 inst_env_type *inst_env)
3372 unsigned long operand1;
3373 unsigned long operand2;
3375 /* It's invalid to have a prefix to the instruction. This is a register
3376 mode instruction and can't have a prefix. */
3377 if (inst_env->prefix_found)
3379 inst_env->invalid = 1;
3382 /* Check if the instruction has PC as its target. */
3383 if (cris_get_operand2 (inst) == REG_PC)
3385 if (inst_env->slot_needed)
3387 inst_env->invalid = 1;
3390 /* The instruction has the PC as its target register. */
3391 operand1 = inst_env->reg[cris_get_operand1 (inst)];
3392 operand2 = inst_env->reg[REG_PC];
3394 /* Check if it's a extend, signed or zero instruction. */
3395 if (cris_get_opcode (inst) < 4)
3397 operand1 = do_sign_or_zero_extend (operand1, &inst);
3399 /* Calculate the PC value after the instruction, i.e. where the
3400 breakpoint should be. The order of the udw_operands is vital. */
3401 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3403 inst_env->slot_needed = 0;
3404 inst_env->prefix_found = 0;
3405 inst_env->xflag_found = 0;
3406 inst_env->disable_interrupt = 0;
3409 /* Returns the data contained at address. The size of the data is derived from
3410 the size of the operation. If the instruction is a zero or signed
3411 extend instruction, the size field is changed in instruction. */
3413 static unsigned long
3414 get_data_from_address (unsigned short *inst, CORE_ADDR address)
3416 int size = cris_get_size (*inst);
3417 unsigned long value;
3419 /* If it's an extend instruction we don't want the signed extend bit,
3420 because it influences the size. */
3421 if (cris_get_opcode (*inst) < 4)
3423 size &= ~SIGNED_EXTEND_BIT_MASK;
3425 /* Is there a need for checking the size? Size should contain the number of
3428 value = read_memory_unsigned_integer (address, size);
3430 /* Check if it's an extend, signed or zero instruction. */
3431 if (cris_get_opcode (*inst) < 4)
3433 value = do_sign_or_zero_extend (value, inst);
3438 /* Handles the assign addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3439 instructions. The MOVE instruction is the move from source to register. */
3442 handle_prefix_assign_mode_for_aritm_op (unsigned short inst,
3443 inst_env_type *inst_env)
3445 unsigned long operand2;
3446 unsigned long operand3;
3448 check_assign (inst, inst_env);
3449 if (cris_get_operand2 (inst) == REG_PC)
3451 operand2 = inst_env->reg[REG_PC];
3453 /* Get the value of the third operand. */
3454 operand3 = get_data_from_address (&inst, inst_env->prefix_value);
3456 /* Calculate the PC value after the instruction, i.e. where the
3457 breakpoint should be. The order of the udw_operands is vital. */
3458 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3460 inst_env->slot_needed = 0;
3461 inst_env->prefix_found = 0;
3462 inst_env->xflag_found = 0;
3463 inst_env->disable_interrupt = 0;
3466 /* Handles the three-operand addressing mode for the ADD, SUB, CMP, AND and
3467 OR instructions. Note that for this to work as expected, the calling
3468 function must have made sure that there is a prefix to this instruction. */
3471 three_operand_add_sub_cmp_and_or_op (unsigned short inst,
3472 inst_env_type *inst_env)
3474 unsigned long operand2;
3475 unsigned long operand3;
3477 if (cris_get_operand1 (inst) == REG_PC)
3479 /* The PC will be changed by the instruction. */
3480 operand2 = inst_env->reg[cris_get_operand2 (inst)];
3482 /* Get the value of the third operand. */
3483 operand3 = get_data_from_address (&inst, inst_env->prefix_value);
3485 /* Calculate the PC value after the instruction, i.e. where the
3486 breakpoint should be. */
3487 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3489 inst_env->slot_needed = 0;
3490 inst_env->prefix_found = 0;
3491 inst_env->xflag_found = 0;
3492 inst_env->disable_interrupt = 0;
3495 /* Handles the index addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3496 instructions. The MOVE instruction is the move from source to register. */
3499 handle_prefix_index_mode_for_aritm_op (unsigned short inst,
3500 inst_env_type *inst_env)
3502 if (cris_get_operand1 (inst) != cris_get_operand2 (inst))
3504 /* If the instruction is MOVE it's invalid. If the instruction is ADD,
3505 SUB, AND or OR something weird is going on (if everything works these
3506 instructions should end up in the three operand version). */
3507 inst_env->invalid = 1;
3512 /* three_operand_add_sub_cmp_and_or does the same as we should do here
3514 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3516 inst_env->slot_needed = 0;
3517 inst_env->prefix_found = 0;
3518 inst_env->xflag_found = 0;
3519 inst_env->disable_interrupt = 0;
3522 /* Handles the autoincrement and indirect addresing mode for the ADD, SUB,
3523 CMP, AND OR and MOVE instruction. The MOVE instruction is the move from
3524 source to register. */
3527 handle_inc_and_index_mode_for_aritm_op (unsigned short inst,
3528 inst_env_type *inst_env)
3530 unsigned long operand1;
3531 unsigned long operand2;
3532 unsigned long operand3;
3535 /* The instruction is either an indirect or autoincrement addressing mode.
3536 Check if the destination register is the PC. */
3537 if (cris_get_operand2 (inst) == REG_PC)
3539 /* Must be done here, get_data_from_address may change the size
3541 size = cris_get_size (inst);
3542 operand2 = inst_env->reg[REG_PC];
3544 /* Get the value of the third operand, i.e. the indirect operand. */
3545 operand1 = inst_env->reg[cris_get_operand1 (inst)];
3546 operand3 = get_data_from_address (&inst, operand1);
3548 /* Calculate the PC value after the instruction, i.e. where the
3549 breakpoint should be. The order of the udw_operands is vital. */
3550 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3552 /* If this is an autoincrement addressing mode, check if the increment
3554 if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE))
3556 /* Get the size field. */
3557 size = cris_get_size (inst);
3559 /* If it's an extend instruction we don't want the signed extend bit,
3560 because it influences the size. */
3561 if (cris_get_opcode (inst) < 4)
3563 size &= ~SIGNED_EXTEND_BIT_MASK;
3565 process_autoincrement (size, inst, inst_env);
3567 inst_env->slot_needed = 0;
3568 inst_env->prefix_found = 0;
3569 inst_env->xflag_found = 0;
3570 inst_env->disable_interrupt = 0;
3573 /* Handles the two-operand addressing mode, all modes except register, for
3574 the ADD, SUB CMP, AND and OR instruction. */
3577 none_reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3578 inst_env_type *inst_env)
3580 if (inst_env->prefix_found)
3582 if (cris_get_mode (inst) == PREFIX_INDEX_MODE)
3584 handle_prefix_index_mode_for_aritm_op (inst, inst_env);
3586 else if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
3588 handle_prefix_assign_mode_for_aritm_op (inst, inst_env);
3592 /* The mode is invalid for a prefixed base instruction. */
3593 inst_env->invalid = 1;
3599 handle_inc_and_index_mode_for_aritm_op (inst, inst_env);
3603 /* Handles the quick addressing mode for the ADD and SUB instruction. */
3606 quick_mode_add_sub_op (unsigned short inst, inst_env_type *inst_env)
3608 unsigned long operand1;
3609 unsigned long operand2;
3611 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3612 instruction and can't have a prefix. */
3613 if (inst_env->prefix_found)
3615 inst_env->invalid = 1;
3619 /* Check if the instruction has PC as its target. */
3620 if (cris_get_operand2 (inst) == REG_PC)
3622 if (inst_env->slot_needed)
3624 inst_env->invalid = 1;
3627 operand1 = cris_get_quick_value (inst);
3628 operand2 = inst_env->reg[REG_PC];
3630 /* The size should now be dword. */
3631 cris_set_size_to_dword (&inst);
3633 /* Calculate the PC value after the instruction, i.e. where the
3634 breakpoint should be. */
3635 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3637 inst_env->slot_needed = 0;
3638 inst_env->prefix_found = 0;
3639 inst_env->xflag_found = 0;
3640 inst_env->disable_interrupt = 0;
3643 /* Handles the quick addressing mode for the CMP, AND and OR instruction. */
3646 quick_mode_and_cmp_move_or_op (unsigned short inst, inst_env_type *inst_env)
3648 unsigned long operand1;
3649 unsigned long operand2;
3651 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3652 instruction and can't have a prefix. */
3653 if (inst_env->prefix_found)
3655 inst_env->invalid = 1;
3658 /* Check if the instruction has PC as its target. */
3659 if (cris_get_operand2 (inst) == REG_PC)
3661 if (inst_env->slot_needed)
3663 inst_env->invalid = 1;
3666 /* The instruction has the PC as its target register. */
3667 operand1 = cris_get_quick_value (inst);
3668 operand2 = inst_env->reg[REG_PC];
3670 /* The quick value is signed, so check if we must do a signed extend. */
3671 if (operand1 & SIGNED_QUICK_VALUE_MASK)
3674 operand1 |= SIGNED_QUICK_VALUE_EXTEND_MASK;
3676 /* The size should now be dword. */
3677 cris_set_size_to_dword (&inst);
3679 /* Calculate the PC value after the instruction, i.e. where the
3680 breakpoint should be. */
3681 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3683 inst_env->slot_needed = 0;
3684 inst_env->prefix_found = 0;
3685 inst_env->xflag_found = 0;
3686 inst_env->disable_interrupt = 0;
3689 /* Translate op_type to a function and call it. */
3692 cris_gdb_func (enum cris_op_type op_type, unsigned short inst,
3693 inst_env_type *inst_env)
3697 case cris_not_implemented_op:
3698 not_implemented_op (inst, inst_env);
3702 abs_op (inst, inst_env);
3706 addi_op (inst, inst_env);
3710 asr_op (inst, inst_env);
3714 asrq_op (inst, inst_env);
3717 case cris_ax_ei_setf_op:
3718 ax_ei_setf_op (inst, inst_env);
3721 case cris_bdap_prefix:
3722 bdap_prefix (inst, inst_env);
3725 case cris_biap_prefix:
3726 biap_prefix (inst, inst_env);
3730 break_op (inst, inst_env);
3733 case cris_btst_nop_op:
3734 btst_nop_op (inst, inst_env);
3737 case cris_clearf_di_op:
3738 clearf_di_op (inst, inst_env);
3741 case cris_dip_prefix:
3742 dip_prefix (inst, inst_env);
3745 case cris_dstep_logshift_mstep_neg_not_op:
3746 dstep_logshift_mstep_neg_not_op (inst, inst_env);
3749 case cris_eight_bit_offset_branch_op:
3750 eight_bit_offset_branch_op (inst, inst_env);
3753 case cris_move_mem_to_reg_movem_op:
3754 move_mem_to_reg_movem_op (inst, inst_env);
3757 case cris_move_reg_to_mem_movem_op:
3758 move_reg_to_mem_movem_op (inst, inst_env);
3761 case cris_move_to_preg_op:
3762 move_to_preg_op (inst, inst_env);
3766 muls_op (inst, inst_env);
3770 mulu_op (inst, inst_env);
3773 case cris_none_reg_mode_add_sub_cmp_and_or_move_op:
3774 none_reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3777 case cris_none_reg_mode_clear_test_op:
3778 none_reg_mode_clear_test_op (inst, inst_env);
3781 case cris_none_reg_mode_jump_op:
3782 none_reg_mode_jump_op (inst, inst_env);
3785 case cris_none_reg_mode_move_from_preg_op:
3786 none_reg_mode_move_from_preg_op (inst, inst_env);
3789 case cris_quick_mode_add_sub_op:
3790 quick_mode_add_sub_op (inst, inst_env);
3793 case cris_quick_mode_and_cmp_move_or_op:
3794 quick_mode_and_cmp_move_or_op (inst, inst_env);
3797 case cris_quick_mode_bdap_prefix:
3798 quick_mode_bdap_prefix (inst, inst_env);
3801 case cris_reg_mode_add_sub_cmp_and_or_move_op:
3802 reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3805 case cris_reg_mode_clear_op:
3806 reg_mode_clear_op (inst, inst_env);
3809 case cris_reg_mode_jump_op:
3810 reg_mode_jump_op (inst, inst_env);
3813 case cris_reg_mode_move_from_preg_op:
3814 reg_mode_move_from_preg_op (inst, inst_env);
3817 case cris_reg_mode_test_op:
3818 reg_mode_test_op (inst, inst_env);
3822 scc_op (inst, inst_env);
3825 case cris_sixteen_bit_offset_branch_op:
3826 sixteen_bit_offset_branch_op (inst, inst_env);
3829 case cris_three_operand_add_sub_cmp_and_or_op:
3830 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3833 case cris_three_operand_bound_op:
3834 three_operand_bound_op (inst, inst_env);
3837 case cris_two_operand_bound_op:
3838 two_operand_bound_op (inst, inst_env);
3842 xor_op (inst, inst_env);
3847 /* This wrapper is to avoid cris_get_assembler being called before
3848 exec_bfd has been set. */
3851 cris_delayed_get_disassembler (bfd_vma addr, struct disassemble_info *info)
3853 int (*print_insn) (bfd_vma addr, struct disassemble_info *info);
3854 /* FIXME: cagney/2003-08-27: It should be possible to select a CRIS
3855 disassembler, even when there is no BFD. Does something like
3856 "gdb; target remote; disassmeble *0x123" work? */
3857 gdb_assert (exec_bfd != NULL);
3858 print_insn = cris_get_disassembler (exec_bfd);
3859 gdb_assert (print_insn != NULL);
3860 return print_insn (addr, info);
3863 /* Copied from <asm/elf.h>. */
3864 typedef unsigned long elf_greg_t;
3866 /* Same as user_regs_struct struct in <asm/user.h>. */
3867 #define CRISV10_ELF_NGREG 35
3868 typedef elf_greg_t elf_gregset_t[CRISV10_ELF_NGREG];
3870 #define CRISV32_ELF_NGREG 32
3871 typedef elf_greg_t crisv32_elf_gregset_t[CRISV32_ELF_NGREG];
3873 /* Unpack an elf_gregset_t into GDB's register cache. */
3876 supply_gregset (elf_gregset_t *gregsetp)
3878 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3880 elf_greg_t *regp = *gregsetp;
3881 static char zerobuf[4] = {0};
3883 /* The kernel dumps all 32 registers as unsigned longs, but supply_register
3884 knows about the actual size of each register so that's no problem. */
3885 for (i = 0; i < NUM_GENREGS + NUM_SPECREGS; i++)
3887 regcache_raw_supply (current_regcache, i, (char *)®p[i]);
3890 if (tdep->cris_version == 32)
3892 /* Needed to set pseudo-register PC for CRISv32. */
3893 /* FIXME: If ERP is in a delay slot at this point then the PC will
3894 be wrong. Issue a warning to alert the user. */
3895 regcache_raw_supply (current_regcache, PC_REGNUM,
3896 (char *)®p[ERP_REGNUM]);
3898 if (*(char *)®p[ERP_REGNUM] & 0x1)
3899 fprintf_unfiltered (gdb_stderr, "Warning: PC in delay slot\n");
3903 /* Use a local version of this function to get the correct types for
3904 regsets, until multi-arch core support is ready. */
3907 fetch_core_registers (char *core_reg_sect, unsigned core_reg_size,
3908 int which, CORE_ADDR reg_addr)
3910 elf_gregset_t gregset;
3915 if (core_reg_size != sizeof (elf_gregset_t)
3916 && core_reg_size != sizeof (crisv32_elf_gregset_t))
3918 warning (_("wrong size gregset struct in core file"));
3922 memcpy (&gregset, core_reg_sect, sizeof (gregset));
3923 supply_gregset (&gregset);
3927 /* We've covered all the kinds of registers we know about here,
3928 so this must be something we wouldn't know what to do with
3929 anyway. Just ignore it. */
3934 static struct core_fns cris_elf_core_fns =
3936 bfd_target_elf_flavour, /* core_flavour */
3937 default_check_format, /* check_format */
3938 default_core_sniffer, /* core_sniffer */
3939 fetch_core_registers, /* core_read_registers */
3943 /* Fetch (and possibly build) an appropriate link_map_offsets
3944 structure for native GNU/Linux CRIS targets using the struct
3945 offsets defined in link.h (but without actual reference to that
3948 This makes it possible to access GNU/Linux CRIS shared libraries
3949 from a GDB that was not built on an GNU/Linux CRIS host (for cross
3952 See gdb/solib-svr4.h for an explanation of these fields. */
3954 static struct link_map_offsets *
3955 cris_linux_svr4_fetch_link_map_offsets (void)
3957 static struct link_map_offsets lmo;
3958 static struct link_map_offsets *lmp = NULL;
3964 lmo.r_debug_size = 8; /* The actual size is 20 bytes, but
3965 this is all we need. */
3966 lmo.r_map_offset = 4;
3969 lmo.link_map_size = 20;
3971 lmo.l_addr_offset = 0;
3972 lmo.l_addr_size = 4;
3974 lmo.l_name_offset = 4;
3975 lmo.l_name_size = 4;
3977 lmo.l_next_offset = 12;
3978 lmo.l_next_size = 4;
3980 lmo.l_prev_offset = 16;
3981 lmo.l_prev_size = 4;
3987 extern initialize_file_ftype _initialize_cris_tdep; /* -Wmissing-prototypes */
3990 _initialize_cris_tdep (void)
3992 static struct cmd_list_element *cris_set_cmdlist;
3993 static struct cmd_list_element *cris_show_cmdlist;
3995 struct cmd_list_element *c;
3997 gdbarch_register (bfd_arch_cris, cris_gdbarch_init, cris_dump_tdep);
3999 /* CRIS-specific user-commands. */
4000 add_setshow_uinteger_cmd ("cris-version", class_support,
4001 &usr_cmd_cris_version,
4002 _("Set the current CRIS version."),
4003 _("Show the current CRIS version."),
4005 Set to 10 for CRISv10 or 32 for CRISv32 if autodetection fails.\n\
4008 NULL, /* FIXME: i18n: Current CRIS version is %s. */
4009 &setlist, &showlist);
4011 add_setshow_enum_cmd ("cris-mode", class_support,
4012 cris_modes, &usr_cmd_cris_mode,
4013 _("Set the current CRIS mode."),
4014 _("Show the current CRIS mode."),
4016 Set to CRIS_MODE_GURU when debugging in guru mode.\n\
4017 Makes GDB use the NRP register instead of the ERP register in certain cases."),
4019 NULL, /* FIXME: i18n: Current CRIS version is %s. */
4020 &setlist, &showlist);
4022 add_setshow_boolean_cmd ("cris-dwarf2-cfi", class_support,
4023 &usr_cmd_cris_dwarf2_cfi,
4024 _("Set the usage of Dwarf-2 CFI for CRIS."),
4025 _("Show the usage of Dwarf-2 CFI for CRIS."),
4026 _("Set this to \"off\" if using gcc-cris < R59."),
4027 set_cris_dwarf2_cfi,
4028 NULL, /* FIXME: i18n: Usage of Dwarf-2 CFI for CRIS is %d. */
4029 &setlist, &showlist);
4031 deprecated_add_core_fns (&cris_elf_core_fns);
4034 /* Prints out all target specific values. */
4037 cris_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
4039 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4042 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_version = %i\n",
4043 tdep->cris_version);
4044 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_mode = %s\n",
4046 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_dwarf2_cfi = %i\n",
4047 tdep->cris_dwarf2_cfi);
4052 set_cris_version (char *ignore_args, int from_tty,
4053 struct cmd_list_element *c)
4055 struct gdbarch_info info;
4057 usr_cmd_cris_version_valid = 1;
4059 /* Update the current architecture, if needed. */
4060 gdbarch_info_init (&info);
4061 if (!gdbarch_update_p (info))
4062 internal_error (__FILE__, __LINE__,
4063 _("cris_gdbarch_update: failed to update architecture."));
4067 set_cris_mode (char *ignore_args, int from_tty,
4068 struct cmd_list_element *c)
4070 struct gdbarch_info info;
4072 /* Update the current architecture, if needed. */
4073 gdbarch_info_init (&info);
4074 if (!gdbarch_update_p (info))
4075 internal_error (__FILE__, __LINE__,
4076 "cris_gdbarch_update: failed to update architecture.");
4080 set_cris_dwarf2_cfi (char *ignore_args, int from_tty,
4081 struct cmd_list_element *c)
4083 struct gdbarch_info info;
4085 /* Update the current architecture, if needed. */
4086 gdbarch_info_init (&info);
4087 if (!gdbarch_update_p (info))
4088 internal_error (__FILE__, __LINE__,
4089 _("cris_gdbarch_update: failed to update architecture."));
4092 static struct gdbarch *
4093 cris_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
4095 struct gdbarch *gdbarch;
4096 struct gdbarch_tdep *tdep;
4099 if (usr_cmd_cris_version_valid)
4101 /* Trust the user's CRIS version setting. */
4102 cris_version = usr_cmd_cris_version;
4104 else if (info.abfd && bfd_get_mach (info.abfd) == bfd_mach_cris_v32)
4110 /* Assume it's CRIS version 10. */
4114 /* Make the current settings visible to the user. */
4115 usr_cmd_cris_version = cris_version;
4117 /* Find a candidate among the list of pre-declared architectures. */
4118 for (arches = gdbarch_list_lookup_by_info (arches, &info);
4120 arches = gdbarch_list_lookup_by_info (arches->next, &info))
4122 if ((gdbarch_tdep (arches->gdbarch)->cris_version
4123 == usr_cmd_cris_version)
4124 && (gdbarch_tdep (arches->gdbarch)->cris_mode
4125 == usr_cmd_cris_mode)
4126 && (gdbarch_tdep (arches->gdbarch)->cris_dwarf2_cfi
4127 == usr_cmd_cris_dwarf2_cfi))
4128 return arches->gdbarch;
4131 /* No matching architecture was found. Create a new one. */
4132 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
4133 gdbarch = gdbarch_alloc (&info, tdep);
4135 tdep->cris_version = usr_cmd_cris_version;
4136 tdep->cris_mode = usr_cmd_cris_mode;
4137 tdep->cris_dwarf2_cfi = usr_cmd_cris_dwarf2_cfi;
4139 /* INIT shall ensure that the INFO.BYTE_ORDER is non-zero. */
4140 switch (info.byte_order)
4142 case BFD_ENDIAN_LITTLE:
4146 case BFD_ENDIAN_BIG:
4147 internal_error (__FILE__, __LINE__, _("cris_gdbarch_init: big endian byte order in info"));
4151 internal_error (__FILE__, __LINE__, _("cris_gdbarch_init: unknown byte order in info"));
4154 set_gdbarch_return_value (gdbarch, cris_return_value);
4155 set_gdbarch_deprecated_reg_struct_has_addr (gdbarch,
4156 cris_reg_struct_has_addr);
4157 set_gdbarch_deprecated_use_struct_convention (gdbarch, always_use_struct_convention);
4159 set_gdbarch_sp_regnum (gdbarch, 14);
4161 /* Length of ordinary registers used in push_word and a few other
4162 places. register_size() is the real way to know how big a
4165 set_gdbarch_double_bit (gdbarch, 64);
4166 /* The default definition of a long double is 2 * TARGET_DOUBLE_BIT,
4167 which means we have to set this explicitly. */
4168 set_gdbarch_long_double_bit (gdbarch, 64);
4170 /* The total amount of space needed to store (in an array called registers)
4171 GDB's copy of the machine's register state. Note: We can not use
4172 cris_register_size at this point, since it relies on current_gdbarch
4174 switch (tdep->cris_version)
4182 /* Old versions; not supported. */
4183 internal_error (__FILE__, __LINE__,
4184 _("cris_gdbarch_init: unsupported CRIS version"));
4189 /* CRIS v10 and v11, a.k.a. ETRAX 100LX. In addition to ETRAX 100,
4190 P7 (32 bits), and P15 (32 bits) have been implemented. */
4191 set_gdbarch_pc_regnum (gdbarch, 15);
4192 set_gdbarch_register_type (gdbarch, cris_register_type);
4193 /* There are 32 registers (some of which may not be implemented). */
4194 set_gdbarch_num_regs (gdbarch, 32);
4195 set_gdbarch_register_name (gdbarch, cris_register_name);
4196 set_gdbarch_cannot_store_register (gdbarch, cris_cannot_store_register);
4197 set_gdbarch_cannot_fetch_register (gdbarch, cris_cannot_fetch_register);
4199 set_gdbarch_software_single_step (gdbarch, cris_software_single_step);
4203 /* CRIS v32. General registers R0 - R15 (32 bits), special registers
4204 P0 - P15 (32 bits) except P0, P1, P3 (8 bits) and P4 (16 bits)
4205 and pseudo-register PC (32 bits). */
4206 set_gdbarch_pc_regnum (gdbarch, 32);
4207 set_gdbarch_register_type (gdbarch, crisv32_register_type);
4208 /* 32 registers + pseudo-register PC + 16 support registers. */
4209 set_gdbarch_num_regs (gdbarch, 32 + 1 + 16);
4210 set_gdbarch_register_name (gdbarch, crisv32_register_name);
4212 set_gdbarch_cannot_store_register
4213 (gdbarch, crisv32_cannot_store_register);
4214 set_gdbarch_cannot_fetch_register
4215 (gdbarch, crisv32_cannot_fetch_register);
4217 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
4219 set_gdbarch_single_step_through_delay
4220 (gdbarch, crisv32_single_step_through_delay);
4225 internal_error (__FILE__, __LINE__,
4226 _("cris_gdbarch_init: unknown CRIS version"));
4229 /* Dummy frame functions (shared between CRISv10 and CRISv32 since they
4230 have the same ABI). */
4231 set_gdbarch_push_dummy_code (gdbarch, cris_push_dummy_code);
4232 set_gdbarch_push_dummy_call (gdbarch, cris_push_dummy_call);
4233 set_gdbarch_frame_align (gdbarch, cris_frame_align);
4234 set_gdbarch_skip_prologue (gdbarch, cris_skip_prologue);
4236 /* The stack grows downward. */
4237 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
4239 set_gdbarch_breakpoint_from_pc (gdbarch, cris_breakpoint_from_pc);
4241 set_gdbarch_unwind_pc (gdbarch, cris_unwind_pc);
4242 set_gdbarch_unwind_sp (gdbarch, cris_unwind_sp);
4243 set_gdbarch_unwind_dummy_id (gdbarch, cris_unwind_dummy_id);
4245 if (tdep->cris_dwarf2_cfi == 1)
4247 /* Hook in the Dwarf-2 frame sniffer. */
4248 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, cris_dwarf2_reg_to_regnum);
4249 dwarf2_frame_set_init_reg (gdbarch, cris_dwarf2_frame_init_reg);
4250 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
4253 if (tdep->cris_mode != cris_mode_guru)
4255 frame_unwind_append_sniffer (gdbarch, cris_sigtramp_frame_sniffer);
4258 frame_unwind_append_sniffer (gdbarch, cris_frame_sniffer);
4259 frame_base_set_default (gdbarch, &cris_frame_base);
4261 /* Use target_specific function to define link map offsets. */
4262 set_solib_svr4_fetch_link_map_offsets
4263 (gdbarch, cris_linux_svr4_fetch_link_map_offsets);
4265 /* FIXME: cagney/2003-08-27: It should be possible to select a CRIS
4266 disassembler, even when there is no BFD. Does something like
4267 "gdb; target remote; disassmeble *0x123" work? */
4268 set_gdbarch_print_insn (gdbarch, cris_delayed_get_disassembler);