1 /* Target dependent code for CRIS, for GDB, the GNU debugger.
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011 Free Software Foundation, Inc.
6 Contributed by Axis Communications AB.
7 Written by Hendrik Ruijter, Stefan Andersson, and Orjan Friberg.
9 This file is part of GDB.
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26 #include "frame-unwind.h"
27 #include "frame-base.h"
28 #include "trad-frame.h"
29 #include "dwarf2-frame.h"
37 #include "opcode/cris.h"
38 #include "arch-utils.h"
40 #include "gdb_assert.h"
44 #include "solib.h" /* Support for shared libraries. */
45 #include "solib-svr4.h"
46 #include "gdb_string.h"
51 /* There are no floating point registers. Used in gdbserver low-linux.c. */
54 /* There are 16 general registers. */
57 /* There are 16 special registers. */
60 /* CRISv32 has a pseudo PC register, not noted here. */
62 /* CRISv32 has 16 support registers. */
66 /* Register numbers of various important registers.
67 CRIS_FP_REGNUM Contains address of executing stack frame.
68 STR_REGNUM Contains the address of structure return values.
69 RET_REGNUM Contains the return value when shorter than or equal to 32 bits
70 ARG1_REGNUM Contains the first parameter to a function.
71 ARG2_REGNUM Contains the second parameter to a function.
72 ARG3_REGNUM Contains the third parameter to a function.
73 ARG4_REGNUM Contains the fourth parameter to a function. Rest on stack.
74 gdbarch_sp_regnum Contains address of top of stack.
75 gdbarch_pc_regnum Contains address of next instruction.
76 SRP_REGNUM Subroutine return pointer register.
77 BRP_REGNUM Breakpoint return pointer register. */
81 /* Enums with respect to the general registers, valid for all
82 CRIS versions. The frame pointer is always in R8. */
84 /* ABI related registers. */
92 /* Registers which happen to be common. */
97 /* CRISv10 et al. specific registers. */
109 /* CRISv32 specific registers. */
122 CRISV32USP_REGNUM = 30, /* Shares name but not number with CRISv10. */
124 CRISV32PC_REGNUM = 32, /* Shares name but not number with CRISv10. */
144 extern const struct cris_spec_reg cris_spec_regs[];
146 /* CRIS version, set via the user command 'set cris-version'. Affects
147 register names and sizes. */
148 static int usr_cmd_cris_version;
150 /* Indicates whether to trust the above variable. */
151 static int usr_cmd_cris_version_valid = 0;
153 static const char cris_mode_normal[] = "normal";
154 static const char cris_mode_guru[] = "guru";
155 static const char *cris_modes[] = {
161 /* CRIS mode, set via the user command 'set cris-mode'. Affects
162 type of break instruction among other things. */
163 static const char *usr_cmd_cris_mode = cris_mode_normal;
165 /* Whether to make use of Dwarf-2 CFI (default on). */
166 static int usr_cmd_cris_dwarf2_cfi = 1;
168 /* CRIS architecture specific information. */
172 const char *cris_mode;
176 /* Sigtramp identification code copied from i386-linux-tdep.c. */
178 #define SIGTRAMP_INSN0 0x9c5f /* movu.w 0xXX, $r9 */
179 #define SIGTRAMP_OFFSET0 0
180 #define SIGTRAMP_INSN1 0xe93d /* break 13 */
181 #define SIGTRAMP_OFFSET1 4
183 static const unsigned short sigtramp_code[] =
185 SIGTRAMP_INSN0, 0x0077, /* movu.w $0x77, $r9 */
186 SIGTRAMP_INSN1 /* break 13 */
189 #define SIGTRAMP_LEN (sizeof sigtramp_code)
191 /* Note: same length as normal sigtramp code. */
193 static const unsigned short rt_sigtramp_code[] =
195 SIGTRAMP_INSN0, 0x00ad, /* movu.w $0xad, $r9 */
196 SIGTRAMP_INSN1 /* break 13 */
199 /* If PC is in a sigtramp routine, return the address of the start of
200 the routine. Otherwise, return 0. */
203 cris_sigtramp_start (struct frame_info *this_frame)
205 CORE_ADDR pc = get_frame_pc (this_frame);
206 gdb_byte buf[SIGTRAMP_LEN];
208 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN))
211 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN0)
213 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN1)
216 pc -= SIGTRAMP_OFFSET1;
217 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN))
221 if (memcmp (buf, sigtramp_code, SIGTRAMP_LEN) != 0)
227 /* If PC is in a RT sigtramp routine, return the address of the start of
228 the routine. Otherwise, return 0. */
231 cris_rt_sigtramp_start (struct frame_info *this_frame)
233 CORE_ADDR pc = get_frame_pc (this_frame);
234 gdb_byte buf[SIGTRAMP_LEN];
236 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN))
239 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN0)
241 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN1)
244 pc -= SIGTRAMP_OFFSET1;
245 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN))
249 if (memcmp (buf, rt_sigtramp_code, SIGTRAMP_LEN) != 0)
255 /* Assuming THIS_FRAME is a frame for a GNU/Linux sigtramp routine,
256 return the address of the associated sigcontext structure. */
259 cris_sigcontext_addr (struct frame_info *this_frame)
261 struct gdbarch *gdbarch = get_frame_arch (this_frame);
262 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
267 get_frame_register (this_frame, gdbarch_sp_regnum (gdbarch), buf);
268 sp = extract_unsigned_integer (buf, 4, byte_order);
270 /* Look for normal sigtramp frame first. */
271 pc = cris_sigtramp_start (this_frame);
274 /* struct signal_frame (arch/cris/kernel/signal.c) contains
275 struct sigcontext as its first member, meaning the SP points to
280 pc = cris_rt_sigtramp_start (this_frame);
283 /* struct rt_signal_frame (arch/cris/kernel/signal.c) contains
284 a struct ucontext, which in turn contains a struct sigcontext.
286 4 + 4 + 128 to struct ucontext, then
287 4 + 4 + 12 to struct sigcontext. */
291 error (_("Couldn't recognize signal trampoline."));
295 struct cris_unwind_cache
297 /* The previous frame's inner most stack address. Used as this
298 frame ID's stack_addr. */
300 /* The frame's base, optionally used by the high-level debug info. */
303 /* How far the SP and r8 (FP) have been offset from the start of
304 the stack frame (as defined by the previous frame's stack
310 /* From old frame_extra_info struct. */
314 /* Table indicating the location of each and every register. */
315 struct trad_frame_saved_reg *saved_regs;
318 static struct cris_unwind_cache *
319 cris_sigtramp_frame_unwind_cache (struct frame_info *this_frame,
322 struct gdbarch *gdbarch = get_frame_arch (this_frame);
323 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
324 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
325 struct cris_unwind_cache *info;
333 return (*this_cache);
335 info = FRAME_OBSTACK_ZALLOC (struct cris_unwind_cache);
336 (*this_cache) = info;
337 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
339 /* Zero all fields. */
345 info->uses_frame = 0;
347 info->leaf_function = 0;
349 get_frame_register (this_frame, gdbarch_sp_regnum (gdbarch), buf);
350 info->base = extract_unsigned_integer (buf, 4, byte_order);
352 addr = cris_sigcontext_addr (this_frame);
354 /* Layout of the sigcontext struct:
357 unsigned long oldmask;
361 if (tdep->cris_version == 10)
363 /* R0 to R13 are stored in reverse order at offset (2 * 4) in
365 for (i = 0; i <= 13; i++)
366 info->saved_regs[i].addr = addr + ((15 - i) * 4);
368 info->saved_regs[MOF_REGNUM].addr = addr + (16 * 4);
369 info->saved_regs[DCCR_REGNUM].addr = addr + (17 * 4);
370 info->saved_regs[SRP_REGNUM].addr = addr + (18 * 4);
371 /* Note: IRP is off by 2 at this point. There's no point in correcting
372 it though since that will mean that the backtrace will show a PC
373 different from what is shown when stopped. */
374 info->saved_regs[IRP_REGNUM].addr = addr + (19 * 4);
375 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
376 = info->saved_regs[IRP_REGNUM];
377 info->saved_regs[gdbarch_sp_regnum (gdbarch)].addr = addr + (24 * 4);
382 /* R0 to R13 are stored in order at offset (1 * 4) in
384 for (i = 0; i <= 13; i++)
385 info->saved_regs[i].addr = addr + ((i + 1) * 4);
387 info->saved_regs[ACR_REGNUM].addr = addr + (15 * 4);
388 info->saved_regs[SRS_REGNUM].addr = addr + (16 * 4);
389 info->saved_regs[MOF_REGNUM].addr = addr + (17 * 4);
390 info->saved_regs[SPC_REGNUM].addr = addr + (18 * 4);
391 info->saved_regs[CCS_REGNUM].addr = addr + (19 * 4);
392 info->saved_regs[SRP_REGNUM].addr = addr + (20 * 4);
393 info->saved_regs[ERP_REGNUM].addr = addr + (21 * 4);
394 info->saved_regs[EXS_REGNUM].addr = addr + (22 * 4);
395 info->saved_regs[EDA_REGNUM].addr = addr + (23 * 4);
397 /* FIXME: If ERP is in a delay slot at this point then the PC will
398 be wrong at this point. This problem manifests itself in the
399 sigaltstack.exp test case, which occasionally generates FAILs when
400 the signal is received while in a delay slot.
402 This could be solved by a couple of read_memory_unsigned_integer and a
403 trad_frame_set_value. */
404 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
405 = info->saved_regs[ERP_REGNUM];
407 info->saved_regs[gdbarch_sp_regnum (gdbarch)].addr
415 cris_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
416 struct frame_id *this_id)
418 struct cris_unwind_cache *cache =
419 cris_sigtramp_frame_unwind_cache (this_frame, this_cache);
420 (*this_id) = frame_id_build (cache->base, get_frame_pc (this_frame));
423 /* Forward declaration. */
425 static struct value *cris_frame_prev_register (struct frame_info *this_frame,
426 void **this_cache, int regnum);
427 static struct value *
428 cris_sigtramp_frame_prev_register (struct frame_info *this_frame,
429 void **this_cache, int regnum)
431 /* Make sure we've initialized the cache. */
432 cris_sigtramp_frame_unwind_cache (this_frame, this_cache);
433 return cris_frame_prev_register (this_frame, this_cache, regnum);
437 cris_sigtramp_frame_sniffer (const struct frame_unwind *self,
438 struct frame_info *this_frame,
441 if (cris_sigtramp_start (this_frame)
442 || cris_rt_sigtramp_start (this_frame))
448 static const struct frame_unwind cris_sigtramp_frame_unwind =
451 default_frame_unwind_stop_reason,
452 cris_sigtramp_frame_this_id,
453 cris_sigtramp_frame_prev_register,
455 cris_sigtramp_frame_sniffer
459 crisv32_single_step_through_delay (struct gdbarch *gdbarch,
460 struct frame_info *this_frame)
462 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
466 if (tdep->cris_mode == cris_mode_guru)
467 erp = get_frame_register_unsigned (this_frame, NRP_REGNUM);
469 erp = get_frame_register_unsigned (this_frame, ERP_REGNUM);
473 /* In delay slot - check if there's a breakpoint at the preceding
475 if (breakpoint_here_p (get_frame_address_space (this_frame), erp & ~0x1))
481 /* Hardware watchpoint support. */
483 /* We support 6 hardware data watchpoints, but cannot trigger on execute
484 (any combination of read/write is fine). */
487 cris_can_use_hardware_watchpoint (int type, int count, int other)
489 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch);
491 /* No bookkeeping is done here; it is handled by the remote debug agent. */
493 if (tdep->cris_version != 32)
496 /* CRISv32: Six data watchpoints, one for instructions. */
497 return (((type == bp_read_watchpoint || type == bp_access_watchpoint
498 || type == bp_hardware_watchpoint) && count <= 6)
499 || (type == bp_hardware_breakpoint && count <= 1));
502 /* The CRISv32 hardware data watchpoints work by specifying ranges,
503 which have no alignment or length restrictions. */
506 cris_region_ok_for_watchpoint (CORE_ADDR addr, int len)
511 /* If the inferior has some watchpoint that triggered, return the
512 address associated with that watchpoint. Otherwise, return
516 cris_stopped_data_address (void)
519 eda = get_frame_register_unsigned (get_current_frame (), EDA_REGNUM);
523 /* The instruction environment needed to find single-step breakpoints. */
526 struct instruction_environment
528 unsigned long reg[NUM_GENREGS];
529 unsigned long preg[NUM_SPECREGS];
530 unsigned long branch_break_address;
531 unsigned long delay_slot_pc;
532 unsigned long prefix_value;
537 int delay_slot_pc_active;
539 int disable_interrupt;
543 /* Machine-dependencies in CRIS for opcodes. */
545 /* Instruction sizes. */
546 enum cris_instruction_sizes
553 /* Addressing modes. */
554 enum cris_addressing_modes
561 /* Prefix addressing modes. */
562 enum cris_prefix_addressing_modes
564 PREFIX_INDEX_MODE = 2,
565 PREFIX_ASSIGN_MODE = 3,
567 /* Handle immediate byte offset addressing mode prefix format. */
568 PREFIX_OFFSET_MODE = 2
571 /* Masks for opcodes. */
572 enum cris_opcode_masks
574 BRANCH_SIGNED_SHORT_OFFSET_MASK = 0x1,
575 SIGNED_EXTEND_BIT_MASK = 0x2,
576 SIGNED_BYTE_MASK = 0x80,
577 SIGNED_BYTE_EXTEND_MASK = 0xFFFFFF00,
578 SIGNED_WORD_MASK = 0x8000,
579 SIGNED_WORD_EXTEND_MASK = 0xFFFF0000,
580 SIGNED_DWORD_MASK = 0x80000000,
581 SIGNED_QUICK_VALUE_MASK = 0x20,
582 SIGNED_QUICK_VALUE_EXTEND_MASK = 0xFFFFFFC0
585 /* Functions for opcodes. The general form of the ETRAX 16-bit instruction:
593 cris_get_operand2 (unsigned short insn)
595 return ((insn & 0xF000) >> 12);
599 cris_get_mode (unsigned short insn)
601 return ((insn & 0x0C00) >> 10);
605 cris_get_opcode (unsigned short insn)
607 return ((insn & 0x03C0) >> 6);
611 cris_get_size (unsigned short insn)
613 return ((insn & 0x0030) >> 4);
617 cris_get_operand1 (unsigned short insn)
619 return (insn & 0x000F);
622 /* Additional functions in order to handle opcodes. */
625 cris_get_quick_value (unsigned short insn)
627 return (insn & 0x003F);
631 cris_get_bdap_quick_offset (unsigned short insn)
633 return (insn & 0x00FF);
637 cris_get_branch_short_offset (unsigned short insn)
639 return (insn & 0x00FF);
643 cris_get_asr_shift_steps (unsigned long value)
645 return (value & 0x3F);
649 cris_get_clear_size (unsigned short insn)
651 return ((insn) & 0xC000);
655 cris_is_signed_extend_bit_on (unsigned short insn)
657 return (((insn) & 0x20) == 0x20);
661 cris_is_xflag_bit_on (unsigned short insn)
663 return (((insn) & 0x1000) == 0x1000);
667 cris_set_size_to_dword (unsigned short *insn)
674 cris_get_signed_offset (unsigned short insn)
676 return ((signed char) (insn & 0x00FF));
679 /* Calls an op function given the op-type, working on the insn and the
681 static void cris_gdb_func (struct gdbarch *, enum cris_op_type, unsigned short,
684 static struct gdbarch *cris_gdbarch_init (struct gdbarch_info,
685 struct gdbarch_list *);
687 static void cris_dump_tdep (struct gdbarch *, struct ui_file *);
689 static void set_cris_version (char *ignore_args, int from_tty,
690 struct cmd_list_element *c);
692 static void set_cris_mode (char *ignore_args, int from_tty,
693 struct cmd_list_element *c);
695 static void set_cris_dwarf2_cfi (char *ignore_args, int from_tty,
696 struct cmd_list_element *c);
698 static CORE_ADDR cris_scan_prologue (CORE_ADDR pc,
699 struct frame_info *this_frame,
700 struct cris_unwind_cache *info);
702 static CORE_ADDR crisv32_scan_prologue (CORE_ADDR pc,
703 struct frame_info *this_frame,
704 struct cris_unwind_cache *info);
706 static CORE_ADDR cris_unwind_pc (struct gdbarch *gdbarch,
707 struct frame_info *next_frame);
709 static CORE_ADDR cris_unwind_sp (struct gdbarch *gdbarch,
710 struct frame_info *next_frame);
712 /* When arguments must be pushed onto the stack, they go on in reverse
713 order. The below implements a FILO (stack) to do this.
714 Copied from d10v-tdep.c. */
719 struct stack_item *prev;
723 static struct stack_item *
724 push_stack_item (struct stack_item *prev, void *contents, int len)
726 struct stack_item *si;
727 si = xmalloc (sizeof (struct stack_item));
728 si->data = xmalloc (len);
731 memcpy (si->data, contents, len);
735 static struct stack_item *
736 pop_stack_item (struct stack_item *si)
738 struct stack_item *dead = si;
745 /* Put here the code to store, into fi->saved_regs, the addresses of
746 the saved registers of frame described by FRAME_INFO. This
747 includes special registers such as pc and fp saved in special ways
748 in the stack frame. sp is even more special: the address we return
749 for it IS the sp for the next frame. */
751 static struct cris_unwind_cache *
752 cris_frame_unwind_cache (struct frame_info *this_frame,
753 void **this_prologue_cache)
755 struct gdbarch *gdbarch = get_frame_arch (this_frame);
756 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
758 struct cris_unwind_cache *info;
761 if ((*this_prologue_cache))
762 return (*this_prologue_cache);
764 info = FRAME_OBSTACK_ZALLOC (struct cris_unwind_cache);
765 (*this_prologue_cache) = info;
766 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
768 /* Zero all fields. */
774 info->uses_frame = 0;
776 info->leaf_function = 0;
778 /* Prologue analysis does the rest... */
779 if (tdep->cris_version == 32)
780 crisv32_scan_prologue (get_frame_func (this_frame), this_frame, info);
782 cris_scan_prologue (get_frame_func (this_frame), this_frame, info);
787 /* Given a GDB frame, determine the address of the calling function's
788 frame. This will be used to create a new GDB frame struct. */
791 cris_frame_this_id (struct frame_info *this_frame,
792 void **this_prologue_cache,
793 struct frame_id *this_id)
795 struct cris_unwind_cache *info
796 = cris_frame_unwind_cache (this_frame, this_prologue_cache);
801 /* The FUNC is easy. */
802 func = get_frame_func (this_frame);
804 /* Hopefully the prologue analysis either correctly determined the
805 frame's base (which is the SP from the previous frame), or set
806 that base to "NULL". */
807 base = info->prev_sp;
811 id = frame_id_build (base, func);
816 static struct value *
817 cris_frame_prev_register (struct frame_info *this_frame,
818 void **this_prologue_cache, int regnum)
820 struct cris_unwind_cache *info
821 = cris_frame_unwind_cache (this_frame, this_prologue_cache);
822 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
825 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
826 frame. The frame ID's base needs to match the TOS value saved by
827 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
829 static struct frame_id
830 cris_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
833 sp = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
834 return frame_id_build (sp, get_frame_pc (this_frame));
838 cris_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
840 /* Align to the size of an instruction (so that they can safely be
841 pushed onto the stack). */
846 cris_push_dummy_code (struct gdbarch *gdbarch,
847 CORE_ADDR sp, CORE_ADDR funaddr,
848 struct value **args, int nargs,
849 struct type *value_type,
850 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
851 struct regcache *regcache)
853 /* Allocate space sufficient for a breakpoint. */
855 /* Store the address of that breakpoint */
857 /* CRIS always starts the call at the callee's entry point. */
863 cris_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
864 struct regcache *regcache, CORE_ADDR bp_addr,
865 int nargs, struct value **args, CORE_ADDR sp,
866 int struct_return, CORE_ADDR struct_addr)
868 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
876 /* The function's arguments and memory allocated by gdb for the arguments to
877 point at reside in separate areas on the stack.
878 Both frame pointers grow toward higher addresses. */
882 struct stack_item *si = NULL;
884 /* Push the return address. */
885 regcache_cooked_write_unsigned (regcache, SRP_REGNUM, bp_addr);
887 /* Are we returning a value using a structure return or a normal value
888 return? struct_addr is the address of the reserved space for the return
889 structure to be written on the stack. */
892 regcache_cooked_write_unsigned (regcache, STR_REGNUM, struct_addr);
895 /* Now load as many as possible of the first arguments into registers,
896 and push the rest onto the stack. */
897 argreg = ARG1_REGNUM;
900 for (argnum = 0; argnum < nargs; argnum++)
907 len = TYPE_LENGTH (value_type (args[argnum]));
908 val = (char *) value_contents (args[argnum]);
910 /* How may registers worth of storage do we need for this argument? */
911 reg_demand = (len / 4) + (len % 4 != 0 ? 1 : 0);
913 if (len <= (2 * 4) && (argreg + reg_demand - 1 <= ARG4_REGNUM))
915 /* Data passed by value. Fits in available register(s). */
916 for (i = 0; i < reg_demand; i++)
918 regcache_cooked_write (regcache, argreg, val);
923 else if (len <= (2 * 4) && argreg <= ARG4_REGNUM)
925 /* Data passed by value. Does not fit in available register(s).
926 Use the register(s) first, then the stack. */
927 for (i = 0; i < reg_demand; i++)
929 if (argreg <= ARG4_REGNUM)
931 regcache_cooked_write (regcache, argreg, val);
937 /* Push item for later so that pushed arguments
938 come in the right order. */
939 si = push_stack_item (si, val, 4);
944 else if (len > (2 * 4))
946 /* Data passed by reference. Push copy of data onto stack
947 and pass pointer to this copy as argument. */
948 sp = (sp - len) & ~3;
949 write_memory (sp, val, len);
951 if (argreg <= ARG4_REGNUM)
953 regcache_cooked_write_unsigned (regcache, argreg, sp);
959 store_unsigned_integer (buf, 4, byte_order, sp);
960 si = push_stack_item (si, buf, 4);
965 /* Data passed by value. No available registers. Put it on
967 si = push_stack_item (si, val, len);
973 /* fp_arg must be word-aligned (i.e., don't += len) to match
974 the function prologue. */
975 sp = (sp - si->len) & ~3;
976 write_memory (sp, si->data, si->len);
977 si = pop_stack_item (si);
980 /* Finally, update the SP register. */
981 regcache_cooked_write_unsigned (regcache, gdbarch_sp_regnum (gdbarch), sp);
986 static const struct frame_unwind cris_frame_unwind =
989 default_frame_unwind_stop_reason,
991 cris_frame_prev_register,
993 default_frame_sniffer
997 cris_frame_base_address (struct frame_info *this_frame, void **this_cache)
999 struct cris_unwind_cache *info
1000 = cris_frame_unwind_cache (this_frame, this_cache);
1004 static const struct frame_base cris_frame_base =
1007 cris_frame_base_address,
1008 cris_frame_base_address,
1009 cris_frame_base_address
1012 /* Frames information. The definition of the struct frame_info is
1016 enum frame_type type;
1020 If the compilation option -fno-omit-frame-pointer is present the
1021 variable frame will be set to the content of R8 which is the frame
1024 The variable pc contains the address where execution is performed
1025 in the present frame. The innermost frame contains the current content
1026 of the register PC. All other frames contain the content of the
1027 register PC in the next frame.
1029 The variable `type' indicates the frame's type: normal, SIGTRAMP
1030 (associated with a signal handler), dummy (associated with a dummy
1033 The variable return_pc contains the address where execution should be
1034 resumed when the present frame has finished, the return address.
1036 The variable leaf_function is 1 if the return address is in the register
1037 SRP, and 0 if it is on the stack.
1039 Prologue instructions C-code.
1040 The prologue may consist of (-fno-omit-frame-pointer)
1044 move.d sp,r8 move.d sp,r8
1046 movem rY,[sp] movem rY,[sp]
1047 move.S rZ,[r8-U] move.S rZ,[r8-U]
1049 where 1 is a non-terminal function, and 2 is a leaf-function.
1051 Note that this assumption is extremely brittle, and will break at the
1052 slightest change in GCC's prologue.
1054 If local variables are declared or register contents are saved on stack
1055 the subq-instruction will be present with X as the number of bytes
1056 needed for storage. The reshuffle with respect to r8 may be performed
1057 with any size S (b, w, d) and any of the general registers Z={0..13}.
1058 The offset U should be representable by a signed 8-bit value in all cases.
1059 Thus, the prefix word is assumed to be immediate byte offset mode followed
1060 by another word containing the instruction.
1069 Prologue instructions C++-code.
1070 Case 1) and 2) in the C-code may be followed by
1072 move.d r10,rS ; this
1076 move.S [r8+U],rZ ; P4
1078 if any of the call parameters are stored. The host expects these
1079 instructions to be executed in order to get the call parameters right. */
1081 /* Examine the prologue of a function. The variable ip is the address of
1082 the first instruction of the prologue. The variable limit is the address
1083 of the first instruction after the prologue. The variable fi contains the
1084 information in struct frame_info. The variable frameless_p controls whether
1085 the entire prologue is examined (0) or just enough instructions to
1086 determine that it is a prologue (1). */
1089 cris_scan_prologue (CORE_ADDR pc, struct frame_info *this_frame,
1090 struct cris_unwind_cache *info)
1092 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1093 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1095 /* Present instruction. */
1096 unsigned short insn;
1098 /* Next instruction, lookahead. */
1099 unsigned short insn_next;
1102 /* Is there a push fp? */
1105 /* Number of byte on stack used for local variables and movem. */
1108 /* Highest register number in a movem. */
1111 /* move.d r<source_register>,rS */
1112 short source_register;
1117 /* This frame is with respect to a leaf until a push srp is found. */
1120 info->leaf_function = 1;
1123 /* Assume nothing on stack. */
1127 /* If we were called without a this_frame, that means we were called
1128 from cris_skip_prologue which already tried to find the end of the
1129 prologue through the symbol information. 64 instructions past current
1130 pc is arbitrarily chosen, but at least it means we'll stop eventually. */
1131 limit = this_frame ? get_frame_pc (this_frame) : pc + 64;
1133 /* Find the prologue instructions. */
1134 while (pc > 0 && pc < limit)
1136 insn = read_memory_unsigned_integer (pc, 2, byte_order);
1140 /* push <reg> 32 bit instruction. */
1141 insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
1143 regno = cris_get_operand2 (insn_next);
1146 info->sp_offset += 4;
1148 /* This check, meant to recognize srp, used to be regno ==
1149 (SRP_REGNUM - NUM_GENREGS), but that covers r11 also. */
1150 if (insn_next == 0xBE7E)
1154 info->leaf_function = 0;
1157 else if (insn_next == 0x8FEE)
1162 info->r8_offset = info->sp_offset;
1166 else if (insn == 0x866E)
1171 info->uses_frame = 1;
1175 else if (cris_get_operand2 (insn) == gdbarch_sp_regnum (gdbarch)
1176 && cris_get_mode (insn) == 0x0000
1177 && cris_get_opcode (insn) == 0x000A)
1182 info->sp_offset += cris_get_quick_value (insn);
1185 else if (cris_get_mode (insn) == 0x0002
1186 && cris_get_opcode (insn) == 0x000F
1187 && cris_get_size (insn) == 0x0003
1188 && cris_get_operand1 (insn) == gdbarch_sp_regnum (gdbarch))
1190 /* movem r<regsave>,[sp] */
1191 regsave = cris_get_operand2 (insn);
1193 else if (cris_get_operand2 (insn) == gdbarch_sp_regnum (gdbarch)
1194 && ((insn & 0x0F00) >> 8) == 0x0001
1195 && (cris_get_signed_offset (insn) < 0))
1197 /* Immediate byte offset addressing prefix word with sp as base
1198 register. Used for CRIS v8 i.e. ETRAX 100 and newer if <val>
1199 is between 64 and 128.
1200 movem r<regsave>,[sp=sp-<val>] */
1203 info->sp_offset += -cris_get_signed_offset (insn);
1205 insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
1207 if (cris_get_mode (insn_next) == PREFIX_ASSIGN_MODE
1208 && cris_get_opcode (insn_next) == 0x000F
1209 && cris_get_size (insn_next) == 0x0003
1210 && cris_get_operand1 (insn_next) == gdbarch_sp_regnum
1213 regsave = cris_get_operand2 (insn_next);
1217 /* The prologue ended before the limit was reached. */
1222 else if (cris_get_mode (insn) == 0x0001
1223 && cris_get_opcode (insn) == 0x0009
1224 && cris_get_size (insn) == 0x0002)
1226 /* move.d r<10..13>,r<0..15> */
1227 source_register = cris_get_operand1 (insn);
1229 /* FIXME? In the glibc solibs, the prologue might contain something
1230 like (this example taken from relocate_doit):
1232 sub.d 0xfffef426,$r0
1233 which isn't covered by the source_register check below. Question
1234 is whether to add a check for this combo, or make better use of
1235 the limit variable instead. */
1236 if (source_register < ARG1_REGNUM || source_register > ARG4_REGNUM)
1238 /* The prologue ended before the limit was reached. */
1243 else if (cris_get_operand2 (insn) == CRIS_FP_REGNUM
1244 /* The size is a fixed-size. */
1245 && ((insn & 0x0F00) >> 8) == 0x0001
1246 /* A negative offset. */
1247 && (cris_get_signed_offset (insn) < 0))
1249 /* move.S rZ,[r8-U] (?) */
1250 insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
1252 regno = cris_get_operand2 (insn_next);
1253 if ((regno >= 0 && regno < gdbarch_sp_regnum (gdbarch))
1254 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
1255 && cris_get_opcode (insn_next) == 0x000F)
1257 /* move.S rZ,[r8-U] */
1262 /* The prologue ended before the limit was reached. */
1267 else if (cris_get_operand2 (insn) == CRIS_FP_REGNUM
1268 /* The size is a fixed-size. */
1269 && ((insn & 0x0F00) >> 8) == 0x0001
1270 /* A positive offset. */
1271 && (cris_get_signed_offset (insn) > 0))
1273 /* move.S [r8+U],rZ (?) */
1274 insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
1276 regno = cris_get_operand2 (insn_next);
1277 if ((regno >= 0 && regno < gdbarch_sp_regnum (gdbarch))
1278 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
1279 && cris_get_opcode (insn_next) == 0x0009
1280 && cris_get_operand1 (insn_next) == regno)
1282 /* move.S [r8+U],rZ */
1287 /* The prologue ended before the limit was reached. */
1294 /* The prologue ended before the limit was reached. */
1300 /* We only want to know the end of the prologue when this_frame and info
1301 are NULL (called from cris_skip_prologue i.e.). */
1302 if (this_frame == NULL && info == NULL)
1307 info->size = info->sp_offset;
1309 /* Compute the previous frame's stack pointer (which is also the
1310 frame's ID's stack address), and this frame's base pointer. */
1311 if (info->uses_frame)
1314 /* The SP was moved to the FP. This indicates that a new frame
1315 was created. Get THIS frame's FP value by unwinding it from
1317 this_base = get_frame_register_unsigned (this_frame, CRIS_FP_REGNUM);
1318 info->base = this_base;
1319 info->saved_regs[CRIS_FP_REGNUM].addr = info->base;
1321 /* The FP points at the last saved register. Adjust the FP back
1322 to before the first saved register giving the SP. */
1323 info->prev_sp = info->base + info->r8_offset;
1328 /* Assume that the FP is this frame's SP but with that pushed
1329 stack space added back. */
1330 this_base = get_frame_register_unsigned (this_frame,
1331 gdbarch_sp_regnum (gdbarch));
1332 info->base = this_base;
1333 info->prev_sp = info->base + info->size;
1336 /* Calculate the addresses for the saved registers on the stack. */
1337 /* FIXME: The address calculation should really be done on the fly while
1338 we're analyzing the prologue (we only hold one regsave value as it is
1340 val = info->sp_offset;
1342 for (regno = regsave; regno >= 0; regno--)
1344 info->saved_regs[regno].addr = info->base + info->r8_offset - val;
1348 /* The previous frame's SP needed to be computed. Save the computed
1350 trad_frame_set_value (info->saved_regs,
1351 gdbarch_sp_regnum (gdbarch), info->prev_sp);
1353 if (!info->leaf_function)
1355 /* SRP saved on the stack. But where? */
1356 if (info->r8_offset == 0)
1358 /* R8 not pushed yet. */
1359 info->saved_regs[SRP_REGNUM].addr = info->base;
1363 /* R8 pushed, but SP may or may not be moved to R8 yet. */
1364 info->saved_regs[SRP_REGNUM].addr = info->base + 4;
1368 /* The PC is found in SRP (the actual register or located on the stack). */
1369 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
1370 = info->saved_regs[SRP_REGNUM];
1376 crisv32_scan_prologue (CORE_ADDR pc, struct frame_info *this_frame,
1377 struct cris_unwind_cache *info)
1379 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1382 /* Unlike the CRISv10 prologue scanner (cris_scan_prologue), this is not
1383 meant to be a full-fledged prologue scanner. It is only needed for
1384 the cases where we end up in code always lacking DWARF-2 CFI, notably:
1386 * PLT stubs (library calls)
1388 * signal trampolines
1390 For those cases, it is assumed that there is no actual prologue; that
1391 the stack pointer is not adjusted, and (as a consequence) the return
1392 address is not pushed onto the stack. */
1394 /* We only want to know the end of the prologue when this_frame and info
1395 are NULL (called from cris_skip_prologue i.e.). */
1396 if (this_frame == NULL && info == NULL)
1401 /* The SP is assumed to be unaltered. */
1402 this_base = get_frame_register_unsigned (this_frame,
1403 gdbarch_sp_regnum (gdbarch));
1404 info->base = this_base;
1405 info->prev_sp = this_base;
1407 /* The PC is assumed to be found in SRP. */
1408 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
1409 = info->saved_regs[SRP_REGNUM];
1414 /* Advance pc beyond any function entry prologue instructions at pc
1415 to reach some "real" code. */
1417 /* Given a PC value corresponding to the start of a function, return the PC
1418 of the first instruction after the function prologue. */
1421 cris_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1423 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1424 CORE_ADDR func_addr, func_end;
1425 struct symtab_and_line sal;
1426 CORE_ADDR pc_after_prologue;
1428 /* If we have line debugging information, then the end of the prologue
1429 should the first assembly instruction of the first source line. */
1430 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1432 sal = find_pc_line (func_addr, 0);
1433 if (sal.end > 0 && sal.end < func_end)
1437 if (tdep->cris_version == 32)
1438 pc_after_prologue = crisv32_scan_prologue (pc, NULL, NULL);
1440 pc_after_prologue = cris_scan_prologue (pc, NULL, NULL);
1442 return pc_after_prologue;
1446 cris_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1449 pc = frame_unwind_register_unsigned (next_frame,
1450 gdbarch_pc_regnum (gdbarch));
1455 cris_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1458 sp = frame_unwind_register_unsigned (next_frame,
1459 gdbarch_sp_regnum (gdbarch));
1463 /* Use the program counter to determine the contents and size of a breakpoint
1464 instruction. It returns a pointer to a string of bytes that encode a
1465 breakpoint instruction, stores the length of the string to *lenptr, and
1466 adjusts pcptr (if necessary) to point to the actual memory location where
1467 the breakpoint should be inserted. */
1469 static const unsigned char *
1470 cris_breakpoint_from_pc (struct gdbarch *gdbarch,
1471 CORE_ADDR *pcptr, int *lenptr)
1473 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1474 static unsigned char break8_insn[] = {0x38, 0xe9};
1475 static unsigned char break15_insn[] = {0x3f, 0xe9};
1478 if (tdep->cris_mode == cris_mode_guru)
1479 return break15_insn;
1484 /* Returns 1 if spec_reg is applicable to the current gdbarch's CRIS version,
1488 cris_spec_reg_applicable (struct gdbarch *gdbarch,
1489 struct cris_spec_reg spec_reg)
1491 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1492 int version = tdep->cris_version;
1494 switch (spec_reg.applicable_version)
1496 case cris_ver_version_all:
1498 case cris_ver_warning:
1499 /* Indeterminate/obsolete. */
1502 return (version >= 0 && version <= 3);
1504 return (version >= 3);
1506 return (version == 8 || version == 9);
1508 return (version >= 8);
1509 case cris_ver_v0_10:
1510 return (version >= 0 && version <= 10);
1511 case cris_ver_v3_10:
1512 return (version >= 3 && version <= 10);
1513 case cris_ver_v8_10:
1514 return (version >= 8 && version <= 10);
1516 return (version == 10);
1518 return (version >= 10);
1520 return (version >= 32);
1522 /* Invalid cris version. */
1527 /* Returns the register size in unit byte. Returns 0 for an unimplemented
1528 register, -1 for an invalid register. */
1531 cris_register_size (struct gdbarch *gdbarch, int regno)
1533 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1537 if (regno >= 0 && regno < NUM_GENREGS)
1539 /* General registers (R0 - R15) are 32 bits. */
1542 else if (regno >= NUM_GENREGS && regno < (NUM_GENREGS + NUM_SPECREGS))
1544 /* Special register (R16 - R31). cris_spec_regs is zero-based.
1545 Adjust regno accordingly. */
1546 spec_regno = regno - NUM_GENREGS;
1548 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1550 if (cris_spec_regs[i].number == spec_regno
1551 && cris_spec_reg_applicable (gdbarch, cris_spec_regs[i]))
1552 /* Go with the first applicable register. */
1553 return cris_spec_regs[i].reg_size;
1555 /* Special register not applicable to this CRIS version. */
1558 else if (regno >= gdbarch_pc_regnum (gdbarch)
1559 && regno < gdbarch_num_regs (gdbarch))
1561 /* This will apply to CRISv32 only where there are additional registers
1562 after the special registers (pseudo PC and support registers). */
1570 /* Nonzero if regno should not be fetched from the target. This is the case
1571 for unimplemented (size 0) and non-existant registers. */
1574 cris_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
1576 return ((regno < 0 || regno >= gdbarch_num_regs (gdbarch))
1577 || (cris_register_size (gdbarch, regno) == 0));
1580 /* Nonzero if regno should not be written to the target, for various
1584 cris_cannot_store_register (struct gdbarch *gdbarch, int regno)
1586 /* There are three kinds of registers we refuse to write to.
1587 1. Those that not implemented.
1588 2. Those that are read-only (depends on the processor mode).
1589 3. Those registers to which a write has no effect. */
1592 || regno >= gdbarch_num_regs (gdbarch)
1593 || cris_register_size (gdbarch, regno) == 0)
1594 /* Not implemented. */
1597 else if (regno == VR_REGNUM)
1601 else if (regno == P0_REGNUM || regno == P4_REGNUM || regno == P8_REGNUM)
1602 /* Writing has no effect. */
1605 /* IBR, BAR, BRP and IRP are read-only in user mode. Let the debug
1606 agent decide whether they are writable. */
1611 /* Nonzero if regno should not be fetched from the target. This is the case
1612 for unimplemented (size 0) and non-existant registers. */
1615 crisv32_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
1617 return ((regno < 0 || regno >= gdbarch_num_regs (gdbarch))
1618 || (cris_register_size (gdbarch, regno) == 0));
1621 /* Nonzero if regno should not be written to the target, for various
1625 crisv32_cannot_store_register (struct gdbarch *gdbarch, int regno)
1627 /* There are three kinds of registers we refuse to write to.
1628 1. Those that not implemented.
1629 2. Those that are read-only (depends on the processor mode).
1630 3. Those registers to which a write has no effect. */
1633 || regno >= gdbarch_num_regs (gdbarch)
1634 || cris_register_size (gdbarch, regno) == 0)
1635 /* Not implemented. */
1638 else if (regno == VR_REGNUM)
1642 else if (regno == BZ_REGNUM || regno == WZ_REGNUM || regno == DZ_REGNUM)
1643 /* Writing has no effect. */
1646 /* Many special registers are read-only in user mode. Let the debug
1647 agent decide whether they are writable. */
1652 /* Return the GDB type (defined in gdbtypes.c) for the "standard" data type
1653 of data in register regno. */
1655 static struct type *
1656 cris_register_type (struct gdbarch *gdbarch, int regno)
1658 if (regno == gdbarch_pc_regnum (gdbarch))
1659 return builtin_type (gdbarch)->builtin_func_ptr;
1660 else if (regno == gdbarch_sp_regnum (gdbarch)
1661 || regno == CRIS_FP_REGNUM)
1662 return builtin_type (gdbarch)->builtin_data_ptr;
1663 else if ((regno >= 0 && regno < gdbarch_sp_regnum (gdbarch))
1664 || (regno >= MOF_REGNUM && regno <= USP_REGNUM))
1665 /* Note: R8 taken care of previous clause. */
1666 return builtin_type (gdbarch)->builtin_uint32;
1667 else if (regno >= P4_REGNUM && regno <= CCR_REGNUM)
1668 return builtin_type (gdbarch)->builtin_uint16;
1669 else if (regno >= P0_REGNUM && regno <= VR_REGNUM)
1670 return builtin_type (gdbarch)->builtin_uint8;
1672 /* Invalid (unimplemented) register. */
1673 return builtin_type (gdbarch)->builtin_int0;
1676 static struct type *
1677 crisv32_register_type (struct gdbarch *gdbarch, int regno)
1679 if (regno == gdbarch_pc_regnum (gdbarch))
1680 return builtin_type (gdbarch)->builtin_func_ptr;
1681 else if (regno == gdbarch_sp_regnum (gdbarch)
1682 || regno == CRIS_FP_REGNUM)
1683 return builtin_type (gdbarch)->builtin_data_ptr;
1684 else if ((regno >= 0 && regno <= ACR_REGNUM)
1685 || (regno >= EXS_REGNUM && regno <= SPC_REGNUM)
1686 || (regno == PID_REGNUM)
1687 || (regno >= S0_REGNUM && regno <= S15_REGNUM))
1688 /* Note: R8 and SP taken care of by previous clause. */
1689 return builtin_type (gdbarch)->builtin_uint32;
1690 else if (regno == WZ_REGNUM)
1691 return builtin_type (gdbarch)->builtin_uint16;
1692 else if (regno == BZ_REGNUM || regno == VR_REGNUM || regno == SRS_REGNUM)
1693 return builtin_type (gdbarch)->builtin_uint8;
1696 /* Invalid (unimplemented) register. Should not happen as there are
1697 no unimplemented CRISv32 registers. */
1698 warning (_("crisv32_register_type: unknown regno %d"), regno);
1699 return builtin_type (gdbarch)->builtin_int0;
1703 /* Stores a function return value of type type, where valbuf is the address
1704 of the value to be stored. */
1706 /* In the CRIS ABI, R10 and R11 are used to store return values. */
1709 cris_store_return_value (struct type *type, struct regcache *regcache,
1712 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1713 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1715 int len = TYPE_LENGTH (type);
1719 /* Put the return value in R10. */
1720 val = extract_unsigned_integer (valbuf, len, byte_order);
1721 regcache_cooked_write_unsigned (regcache, ARG1_REGNUM, val);
1725 /* Put the return value in R10 and R11. */
1726 val = extract_unsigned_integer (valbuf, 4, byte_order);
1727 regcache_cooked_write_unsigned (regcache, ARG1_REGNUM, val);
1728 val = extract_unsigned_integer ((char *)valbuf + 4, len - 4, byte_order);
1729 regcache_cooked_write_unsigned (regcache, ARG2_REGNUM, val);
1732 error (_("cris_store_return_value: type length too large."));
1735 /* Return the name of register regno as a string. Return NULL for an
1736 invalid or unimplemented register. */
1739 cris_special_register_name (struct gdbarch *gdbarch, int regno)
1744 /* Special register (R16 - R31). cris_spec_regs is zero-based.
1745 Adjust regno accordingly. */
1746 spec_regno = regno - NUM_GENREGS;
1748 /* Assume nothing about the layout of the cris_spec_regs struct
1750 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1752 if (cris_spec_regs[i].number == spec_regno
1753 && cris_spec_reg_applicable (gdbarch, cris_spec_regs[i]))
1754 /* Go with the first applicable register. */
1755 return cris_spec_regs[i].name;
1757 /* Special register not applicable to this CRIS version. */
1762 cris_register_name (struct gdbarch *gdbarch, int regno)
1764 static char *cris_genreg_names[] =
1765 { "r0", "r1", "r2", "r3", \
1766 "r4", "r5", "r6", "r7", \
1767 "r8", "r9", "r10", "r11", \
1768 "r12", "r13", "sp", "pc" };
1770 if (regno >= 0 && regno < NUM_GENREGS)
1772 /* General register. */
1773 return cris_genreg_names[regno];
1775 else if (regno >= NUM_GENREGS && regno < gdbarch_num_regs (gdbarch))
1777 return cris_special_register_name (gdbarch, regno);
1781 /* Invalid register. */
1787 crisv32_register_name (struct gdbarch *gdbarch, int regno)
1789 static char *crisv32_genreg_names[] =
1790 { "r0", "r1", "r2", "r3", \
1791 "r4", "r5", "r6", "r7", \
1792 "r8", "r9", "r10", "r11", \
1793 "r12", "r13", "sp", "acr"
1796 static char *crisv32_sreg_names[] =
1797 { "s0", "s1", "s2", "s3", \
1798 "s4", "s5", "s6", "s7", \
1799 "s8", "s9", "s10", "s11", \
1800 "s12", "s13", "s14", "s15"
1803 if (regno >= 0 && regno < NUM_GENREGS)
1805 /* General register. */
1806 return crisv32_genreg_names[regno];
1808 else if (regno >= NUM_GENREGS && regno < (NUM_GENREGS + NUM_SPECREGS))
1810 return cris_special_register_name (gdbarch, regno);
1812 else if (regno == gdbarch_pc_regnum (gdbarch))
1816 else if (regno >= S0_REGNUM && regno <= S15_REGNUM)
1818 return crisv32_sreg_names[regno - S0_REGNUM];
1822 /* Invalid register. */
1827 /* Convert DWARF register number REG to the appropriate register
1828 number used by GDB. */
1831 cris_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1833 /* We need to re-map a couple of registers (SRP is 16 in Dwarf-2 register
1834 numbering, MOF is 18).
1835 Adapted from gcc/config/cris/cris.h. */
1836 static int cris_dwarf_regmap[] = {
1848 if (reg >= 0 && reg < ARRAY_SIZE (cris_dwarf_regmap))
1849 regnum = cris_dwarf_regmap[reg];
1852 warning (_("Unmapped DWARF Register #%d encountered."), reg);
1857 /* DWARF-2 frame support. */
1860 cris_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1861 struct dwarf2_frame_state_reg *reg,
1862 struct frame_info *this_frame)
1864 /* The return address column. */
1865 if (regnum == gdbarch_pc_regnum (gdbarch))
1866 reg->how = DWARF2_FRAME_REG_RA;
1868 /* The call frame address. */
1869 else if (regnum == gdbarch_sp_regnum (gdbarch))
1870 reg->how = DWARF2_FRAME_REG_CFA;
1873 /* Extract from an array regbuf containing the raw register state a function
1874 return value of type type, and copy that, in virtual format, into
1877 /* In the CRIS ABI, R10 and R11 are used to store return values. */
1880 cris_extract_return_value (struct type *type, struct regcache *regcache,
1883 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1884 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1886 int len = TYPE_LENGTH (type);
1890 /* Get the return value from R10. */
1891 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &val);
1892 store_unsigned_integer (valbuf, len, byte_order, val);
1896 /* Get the return value from R10 and R11. */
1897 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &val);
1898 store_unsigned_integer (valbuf, 4, byte_order, val);
1899 regcache_cooked_read_unsigned (regcache, ARG2_REGNUM, &val);
1900 store_unsigned_integer ((char *)valbuf + 4, len - 4, byte_order, val);
1903 error (_("cris_extract_return_value: type length too large"));
1906 /* Handle the CRIS return value convention. */
1908 static enum return_value_convention
1909 cris_return_value (struct gdbarch *gdbarch, struct type *func_type,
1910 struct type *type, struct regcache *regcache,
1911 gdb_byte *readbuf, const gdb_byte *writebuf)
1913 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1914 || TYPE_CODE (type) == TYPE_CODE_UNION
1915 || TYPE_LENGTH (type) > 8)
1916 /* Structs, unions, and anything larger than 8 bytes (2 registers)
1917 goes on the stack. */
1918 return RETURN_VALUE_STRUCT_CONVENTION;
1921 cris_extract_return_value (type, regcache, readbuf);
1923 cris_store_return_value (type, regcache, writebuf);
1925 return RETURN_VALUE_REGISTER_CONVENTION;
1928 /* Calculates a value that measures how good inst_args constraints an
1929 instruction. It stems from cris_constraint, found in cris-dis.c. */
1932 constraint (unsigned int insn, const signed char *inst_args,
1933 inst_env_type *inst_env)
1938 const char *s = inst_args;
1944 if ((insn & 0x30) == 0x30)
1949 /* A prefix operand. */
1950 if (inst_env->prefix_found)
1956 /* A "push" prefix. (This check was REMOVED by san 970921.) Check for
1957 valid "push" size. In case of special register, it may be != 4. */
1958 if (inst_env->prefix_found)
1964 retval = (((insn >> 0xC) & 0xF) == (insn & 0xF));
1972 tmp = (insn >> 0xC) & 0xF;
1974 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1976 /* Since we match four bits, we will give a value of
1977 4 - 1 = 3 in a match. If there is a corresponding
1978 exact match of a special register in another pattern, it
1979 will get a value of 4, which will be higher. This should
1980 be correct in that an exact pattern would match better that
1982 Note that there is a reason for not returning zero; the
1983 pattern for "clear" is partly matched in the bit-pattern
1984 (the two lower bits must be zero), while the bit-pattern
1985 for a move from a special register is matched in the
1986 register constraint.
1987 This also means we will will have a race condition if
1988 there is a partly match in three bits in the bit pattern. */
1989 if (tmp == cris_spec_regs[i].number)
1996 if (cris_spec_regs[i].name == NULL)
2003 /* Returns the number of bits set in the variable value. */
2006 number_of_bits (unsigned int value)
2008 int number_of_bits = 0;
2012 number_of_bits += 1;
2013 value &= (value - 1);
2015 return number_of_bits;
2018 /* Finds the address that should contain the single step breakpoint(s).
2019 It stems from code in cris-dis.c. */
2022 find_cris_op (unsigned short insn, inst_env_type *inst_env)
2025 int max_level_of_match = -1;
2026 int max_matched = -1;
2029 for (i = 0; cris_opcodes[i].name != NULL; i++)
2031 if (((cris_opcodes[i].match & insn) == cris_opcodes[i].match)
2032 && ((cris_opcodes[i].lose & insn) == 0)
2033 /* Only CRISv10 instructions, please. */
2034 && (cris_opcodes[i].applicable_version != cris_ver_v32p))
2036 level_of_match = constraint (insn, cris_opcodes[i].args, inst_env);
2037 if (level_of_match >= 0)
2040 number_of_bits (cris_opcodes[i].match | cris_opcodes[i].lose);
2041 if (level_of_match > max_level_of_match)
2044 max_level_of_match = level_of_match;
2045 if (level_of_match == 16)
2047 /* All bits matched, cannot find better. */
2057 /* Attempts to find single-step breakpoints. Returns -1 on failure which is
2058 actually an internal error. */
2061 find_step_target (struct frame_info *frame, inst_env_type *inst_env)
2065 unsigned short insn;
2066 struct gdbarch *gdbarch = get_frame_arch (frame);
2067 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2069 /* Create a local register image and set the initial state. */
2070 for (i = 0; i < NUM_GENREGS; i++)
2073 (unsigned long) get_frame_register_unsigned (frame, i);
2075 offset = NUM_GENREGS;
2076 for (i = 0; i < NUM_SPECREGS; i++)
2079 (unsigned long) get_frame_register_unsigned (frame, offset + i);
2081 inst_env->branch_found = 0;
2082 inst_env->slot_needed = 0;
2083 inst_env->delay_slot_pc_active = 0;
2084 inst_env->prefix_found = 0;
2085 inst_env->invalid = 0;
2086 inst_env->xflag_found = 0;
2087 inst_env->disable_interrupt = 0;
2088 inst_env->byte_order = byte_order;
2090 /* Look for a step target. */
2093 /* Read an instruction from the client. */
2094 insn = read_memory_unsigned_integer
2095 (inst_env->reg[gdbarch_pc_regnum (gdbarch)], 2, byte_order);
2097 /* If the instruction is not in a delay slot the new content of the
2098 PC is [PC] + 2. If the instruction is in a delay slot it is not
2099 that simple. Since a instruction in a delay slot cannot change
2100 the content of the PC, it does not matter what value PC will have.
2101 Just make sure it is a valid instruction. */
2102 if (!inst_env->delay_slot_pc_active)
2104 inst_env->reg[gdbarch_pc_regnum (gdbarch)] += 2;
2108 inst_env->delay_slot_pc_active = 0;
2109 inst_env->reg[gdbarch_pc_regnum (gdbarch)]
2110 = inst_env->delay_slot_pc;
2112 /* Analyse the present instruction. */
2113 i = find_cris_op (insn, inst_env);
2116 inst_env->invalid = 1;
2120 cris_gdb_func (gdbarch, cris_opcodes[i].op, insn, inst_env);
2122 } while (!inst_env->invalid
2123 && (inst_env->prefix_found || inst_env->xflag_found
2124 || inst_env->slot_needed));
2128 /* There is no hardware single-step support. The function find_step_target
2129 digs through the opcodes in order to find all possible targets.
2130 Either one ordinary target or two targets for branches may be found. */
2133 cris_software_single_step (struct frame_info *frame)
2135 struct gdbarch *gdbarch = get_frame_arch (frame);
2136 struct address_space *aspace = get_frame_address_space (frame);
2137 inst_env_type inst_env;
2139 /* Analyse the present instruction environment and insert
2141 int status = find_step_target (frame, &inst_env);
2144 /* Could not find a target. Things are likely to go downhill
2146 warning (_("CRIS software single step could not find a step target."));
2150 /* Insert at most two breakpoints. One for the next PC content
2151 and possibly another one for a branch, jump, etc. */
2153 = (CORE_ADDR) inst_env.reg[gdbarch_pc_regnum (gdbarch)];
2154 insert_single_step_breakpoint (gdbarch, aspace, next_pc);
2155 if (inst_env.branch_found
2156 && (CORE_ADDR) inst_env.branch_break_address != next_pc)
2158 CORE_ADDR branch_target_address
2159 = (CORE_ADDR) inst_env.branch_break_address;
2160 insert_single_step_breakpoint (gdbarch,
2161 aspace, branch_target_address);
2168 /* Calculates the prefix value for quick offset addressing mode. */
2171 quick_mode_bdap_prefix (unsigned short inst, inst_env_type *inst_env)
2173 /* It's invalid to be in a delay slot. You can't have a prefix to this
2174 instruction (not 100% sure). */
2175 if (inst_env->slot_needed || inst_env->prefix_found)
2177 inst_env->invalid = 1;
2181 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
2182 inst_env->prefix_value += cris_get_bdap_quick_offset (inst);
2184 /* A prefix doesn't change the xflag_found. But the rest of the flags
2186 inst_env->slot_needed = 0;
2187 inst_env->prefix_found = 1;
2190 /* Updates the autoincrement register. The size of the increment is derived
2191 from the size of the operation. The PC is always kept aligned on even
2195 process_autoincrement (int size, unsigned short inst, inst_env_type *inst_env)
2197 if (size == INST_BYTE_SIZE)
2199 inst_env->reg[cris_get_operand1 (inst)] += 1;
2201 /* The PC must be word aligned, so increase the PC with one
2202 word even if the size is byte. */
2203 if (cris_get_operand1 (inst) == REG_PC)
2205 inst_env->reg[REG_PC] += 1;
2208 else if (size == INST_WORD_SIZE)
2210 inst_env->reg[cris_get_operand1 (inst)] += 2;
2212 else if (size == INST_DWORD_SIZE)
2214 inst_env->reg[cris_get_operand1 (inst)] += 4;
2219 inst_env->invalid = 1;
2223 /* Just a forward declaration. */
2225 static unsigned long get_data_from_address (unsigned short *inst,
2227 enum bfd_endian byte_order);
2229 /* Calculates the prefix value for the general case of offset addressing
2233 bdap_prefix (unsigned short inst, inst_env_type *inst_env)
2238 /* It's invalid to be in a delay slot. */
2239 if (inst_env->slot_needed || inst_env->prefix_found)
2241 inst_env->invalid = 1;
2245 /* The calculation of prefix_value used to be after process_autoincrement,
2246 but that fails for an instruction such as jsr [$r0+12] which is encoded
2247 as 5f0d 0c00 30b9 when compiled with -fpic. Since PC is operand1 it
2248 mustn't be incremented until we have read it and what it points at. */
2249 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
2251 /* The offset is an indirection of the contents of the operand1 register. */
2252 inst_env->prefix_value +=
2253 get_data_from_address (&inst, inst_env->reg[cris_get_operand1 (inst)],
2254 inst_env->byte_order);
2256 if (cris_get_mode (inst) == AUTOINC_MODE)
2258 process_autoincrement (cris_get_size (inst), inst, inst_env);
2261 /* A prefix doesn't change the xflag_found. But the rest of the flags
2263 inst_env->slot_needed = 0;
2264 inst_env->prefix_found = 1;
2267 /* Calculates the prefix value for the index addressing mode. */
2270 biap_prefix (unsigned short inst, inst_env_type *inst_env)
2272 /* It's invalid to be in a delay slot. I can't see that it's possible to
2273 have a prefix to this instruction. So I will treat this as invalid. */
2274 if (inst_env->slot_needed || inst_env->prefix_found)
2276 inst_env->invalid = 1;
2280 inst_env->prefix_value = inst_env->reg[cris_get_operand1 (inst)];
2282 /* The offset is the operand2 value shifted the size of the instruction
2284 inst_env->prefix_value +=
2285 inst_env->reg[cris_get_operand2 (inst)] << cris_get_size (inst);
2287 /* If the PC is operand1 (base) the address used is the address after
2288 the main instruction, i.e. address + 2 (the PC is already compensated
2289 for the prefix operation). */
2290 if (cris_get_operand1 (inst) == REG_PC)
2292 inst_env->prefix_value += 2;
2295 /* A prefix doesn't change the xflag_found. But the rest of the flags
2297 inst_env->slot_needed = 0;
2298 inst_env->xflag_found = 0;
2299 inst_env->prefix_found = 1;
2302 /* Calculates the prefix value for the double indirect addressing mode. */
2305 dip_prefix (unsigned short inst, inst_env_type *inst_env)
2310 /* It's invalid to be in a delay slot. */
2311 if (inst_env->slot_needed || inst_env->prefix_found)
2313 inst_env->invalid = 1;
2317 /* The prefix value is one dereference of the contents of the operand1
2319 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
2320 inst_env->prefix_value
2321 = read_memory_unsigned_integer (address, 4, inst_env->byte_order);
2323 /* Check if the mode is autoincrement. */
2324 if (cris_get_mode (inst) == AUTOINC_MODE)
2326 inst_env->reg[cris_get_operand1 (inst)] += 4;
2329 /* A prefix doesn't change the xflag_found. But the rest of the flags
2331 inst_env->slot_needed = 0;
2332 inst_env->xflag_found = 0;
2333 inst_env->prefix_found = 1;
2336 /* Finds the destination for a branch with 8-bits offset. */
2339 eight_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
2344 /* If we have a prefix or are in a delay slot it's bad. */
2345 if (inst_env->slot_needed || inst_env->prefix_found)
2347 inst_env->invalid = 1;
2351 /* We have a branch, find out where the branch will land. */
2352 offset = cris_get_branch_short_offset (inst);
2354 /* Check if the offset is signed. */
2355 if (offset & BRANCH_SIGNED_SHORT_OFFSET_MASK)
2360 /* The offset ends with the sign bit, set it to zero. The address
2361 should always be word aligned. */
2362 offset &= ~BRANCH_SIGNED_SHORT_OFFSET_MASK;
2364 inst_env->branch_found = 1;
2365 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2367 inst_env->slot_needed = 1;
2368 inst_env->prefix_found = 0;
2369 inst_env->xflag_found = 0;
2370 inst_env->disable_interrupt = 1;
2373 /* Finds the destination for a branch with 16-bits offset. */
2376 sixteen_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
2380 /* If we have a prefix or is in a delay slot it's bad. */
2381 if (inst_env->slot_needed || inst_env->prefix_found)
2383 inst_env->invalid = 1;
2387 /* We have a branch, find out the offset for the branch. */
2388 offset = read_memory_integer (inst_env->reg[REG_PC], 2,
2389 inst_env->byte_order);
2391 /* The instruction is one word longer than normal, so add one word
2393 inst_env->reg[REG_PC] += 2;
2395 inst_env->branch_found = 1;
2396 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2399 inst_env->slot_needed = 1;
2400 inst_env->prefix_found = 0;
2401 inst_env->xflag_found = 0;
2402 inst_env->disable_interrupt = 1;
2405 /* Handles the ABS instruction. */
2408 abs_op (unsigned short inst, inst_env_type *inst_env)
2413 /* ABS can't have a prefix, so it's bad if it does. */
2414 if (inst_env->prefix_found)
2416 inst_env->invalid = 1;
2420 /* Check if the operation affects the PC. */
2421 if (cris_get_operand2 (inst) == REG_PC)
2424 /* It's invalid to change to the PC if we are in a delay slot. */
2425 if (inst_env->slot_needed)
2427 inst_env->invalid = 1;
2431 value = (long) inst_env->reg[REG_PC];
2433 /* The value of abs (SIGNED_DWORD_MASK) is SIGNED_DWORD_MASK. */
2434 if (value != SIGNED_DWORD_MASK)
2437 inst_env->reg[REG_PC] = (long) value;
2441 inst_env->slot_needed = 0;
2442 inst_env->prefix_found = 0;
2443 inst_env->xflag_found = 0;
2444 inst_env->disable_interrupt = 0;
2447 /* Handles the ADDI instruction. */
2450 addi_op (unsigned short inst, inst_env_type *inst_env)
2452 /* It's invalid to have the PC as base register. And ADDI can't have
2454 if (inst_env->prefix_found || (cris_get_operand1 (inst) == REG_PC))
2456 inst_env->invalid = 1;
2460 inst_env->slot_needed = 0;
2461 inst_env->prefix_found = 0;
2462 inst_env->xflag_found = 0;
2463 inst_env->disable_interrupt = 0;
2466 /* Handles the ASR instruction. */
2469 asr_op (unsigned short inst, inst_env_type *inst_env)
2472 unsigned long value;
2473 unsigned long signed_extend_mask = 0;
2475 /* ASR can't have a prefix, so check that it doesn't. */
2476 if (inst_env->prefix_found)
2478 inst_env->invalid = 1;
2482 /* Check if the PC is the target register. */
2483 if (cris_get_operand2 (inst) == REG_PC)
2485 /* It's invalid to change the PC in a delay slot. */
2486 if (inst_env->slot_needed)
2488 inst_env->invalid = 1;
2491 /* Get the number of bits to shift. */
2493 = cris_get_asr_shift_steps (inst_env->reg[cris_get_operand1 (inst)]);
2494 value = inst_env->reg[REG_PC];
2496 /* Find out how many bits the operation should apply to. */
2497 if (cris_get_size (inst) == INST_BYTE_SIZE)
2499 if (value & SIGNED_BYTE_MASK)
2501 signed_extend_mask = 0xFF;
2502 signed_extend_mask = signed_extend_mask >> shift_steps;
2503 signed_extend_mask = ~signed_extend_mask;
2505 value = value >> shift_steps;
2506 value |= signed_extend_mask;
2508 inst_env->reg[REG_PC] &= 0xFFFFFF00;
2509 inst_env->reg[REG_PC] |= value;
2511 else if (cris_get_size (inst) == INST_WORD_SIZE)
2513 if (value & SIGNED_WORD_MASK)
2515 signed_extend_mask = 0xFFFF;
2516 signed_extend_mask = signed_extend_mask >> shift_steps;
2517 signed_extend_mask = ~signed_extend_mask;
2519 value = value >> shift_steps;
2520 value |= signed_extend_mask;
2522 inst_env->reg[REG_PC] &= 0xFFFF0000;
2523 inst_env->reg[REG_PC] |= value;
2525 else if (cris_get_size (inst) == INST_DWORD_SIZE)
2527 if (value & SIGNED_DWORD_MASK)
2529 signed_extend_mask = 0xFFFFFFFF;
2530 signed_extend_mask = signed_extend_mask >> shift_steps;
2531 signed_extend_mask = ~signed_extend_mask;
2533 value = value >> shift_steps;
2534 value |= signed_extend_mask;
2535 inst_env->reg[REG_PC] = value;
2538 inst_env->slot_needed = 0;
2539 inst_env->prefix_found = 0;
2540 inst_env->xflag_found = 0;
2541 inst_env->disable_interrupt = 0;
2544 /* Handles the ASRQ instruction. */
2547 asrq_op (unsigned short inst, inst_env_type *inst_env)
2551 unsigned long value;
2552 unsigned long signed_extend_mask = 0;
2554 /* ASRQ can't have a prefix, so check that it doesn't. */
2555 if (inst_env->prefix_found)
2557 inst_env->invalid = 1;
2561 /* Check if the PC is the target register. */
2562 if (cris_get_operand2 (inst) == REG_PC)
2565 /* It's invalid to change the PC in a delay slot. */
2566 if (inst_env->slot_needed)
2568 inst_env->invalid = 1;
2571 /* The shift size is given as a 5 bit quick value, i.e. we don't
2572 want the sign bit of the quick value. */
2573 shift_steps = cris_get_asr_shift_steps (inst);
2574 value = inst_env->reg[REG_PC];
2575 if (value & SIGNED_DWORD_MASK)
2577 signed_extend_mask = 0xFFFFFFFF;
2578 signed_extend_mask = signed_extend_mask >> shift_steps;
2579 signed_extend_mask = ~signed_extend_mask;
2581 value = value >> shift_steps;
2582 value |= signed_extend_mask;
2583 inst_env->reg[REG_PC] = value;
2585 inst_env->slot_needed = 0;
2586 inst_env->prefix_found = 0;
2587 inst_env->xflag_found = 0;
2588 inst_env->disable_interrupt = 0;
2591 /* Handles the AX, EI and SETF instruction. */
2594 ax_ei_setf_op (unsigned short inst, inst_env_type *inst_env)
2596 if (inst_env->prefix_found)
2598 inst_env->invalid = 1;
2601 /* Check if the instruction is setting the X flag. */
2602 if (cris_is_xflag_bit_on (inst))
2604 inst_env->xflag_found = 1;
2608 inst_env->xflag_found = 0;
2610 inst_env->slot_needed = 0;
2611 inst_env->prefix_found = 0;
2612 inst_env->disable_interrupt = 1;
2615 /* Checks if the instruction is in assign mode. If so, it updates the assign
2616 register. Note that check_assign assumes that the caller has checked that
2617 there is a prefix to this instruction. The mode check depends on this. */
2620 check_assign (unsigned short inst, inst_env_type *inst_env)
2622 /* Check if it's an assign addressing mode. */
2623 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2625 /* Assign the prefix value to operand 1. */
2626 inst_env->reg[cris_get_operand1 (inst)] = inst_env->prefix_value;
2630 /* Handles the 2-operand BOUND instruction. */
2633 two_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2635 /* It's invalid to have the PC as the index operand. */
2636 if (cris_get_operand2 (inst) == REG_PC)
2638 inst_env->invalid = 1;
2641 /* Check if we have a prefix. */
2642 if (inst_env->prefix_found)
2644 check_assign (inst, inst_env);
2646 /* Check if this is an autoincrement mode. */
2647 else if (cris_get_mode (inst) == AUTOINC_MODE)
2649 /* It's invalid to change the PC in a delay slot. */
2650 if (inst_env->slot_needed)
2652 inst_env->invalid = 1;
2655 process_autoincrement (cris_get_size (inst), inst, inst_env);
2657 inst_env->slot_needed = 0;
2658 inst_env->prefix_found = 0;
2659 inst_env->xflag_found = 0;
2660 inst_env->disable_interrupt = 0;
2663 /* Handles the 3-operand BOUND instruction. */
2666 three_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2668 /* It's an error if we haven't got a prefix. And it's also an error
2669 if the PC is the destination register. */
2670 if ((!inst_env->prefix_found) || (cris_get_operand1 (inst) == REG_PC))
2672 inst_env->invalid = 1;
2675 inst_env->slot_needed = 0;
2676 inst_env->prefix_found = 0;
2677 inst_env->xflag_found = 0;
2678 inst_env->disable_interrupt = 0;
2681 /* Clears the status flags in inst_env. */
2684 btst_nop_op (unsigned short inst, inst_env_type *inst_env)
2686 /* It's an error if we have got a prefix. */
2687 if (inst_env->prefix_found)
2689 inst_env->invalid = 1;
2693 inst_env->slot_needed = 0;
2694 inst_env->prefix_found = 0;
2695 inst_env->xflag_found = 0;
2696 inst_env->disable_interrupt = 0;
2699 /* Clears the status flags in inst_env. */
2702 clearf_di_op (unsigned short inst, inst_env_type *inst_env)
2704 /* It's an error if we have got a prefix. */
2705 if (inst_env->prefix_found)
2707 inst_env->invalid = 1;
2711 inst_env->slot_needed = 0;
2712 inst_env->prefix_found = 0;
2713 inst_env->xflag_found = 0;
2714 inst_env->disable_interrupt = 1;
2717 /* Handles the CLEAR instruction if it's in register mode. */
2720 reg_mode_clear_op (unsigned short inst, inst_env_type *inst_env)
2722 /* Check if the target is the PC. */
2723 if (cris_get_operand2 (inst) == REG_PC)
2725 /* The instruction will clear the instruction's size bits. */
2726 int clear_size = cris_get_clear_size (inst);
2727 if (clear_size == INST_BYTE_SIZE)
2729 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFFFF00;
2731 if (clear_size == INST_WORD_SIZE)
2733 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFF0000;
2735 if (clear_size == INST_DWORD_SIZE)
2737 inst_env->delay_slot_pc = 0x0;
2739 /* The jump will be delayed with one delay slot. So we need a delay
2741 inst_env->slot_needed = 1;
2742 inst_env->delay_slot_pc_active = 1;
2746 /* The PC will not change => no delay slot. */
2747 inst_env->slot_needed = 0;
2749 inst_env->prefix_found = 0;
2750 inst_env->xflag_found = 0;
2751 inst_env->disable_interrupt = 0;
2754 /* Handles the TEST instruction if it's in register mode. */
2757 reg_mode_test_op (unsigned short inst, inst_env_type *inst_env)
2759 /* It's an error if we have got a prefix. */
2760 if (inst_env->prefix_found)
2762 inst_env->invalid = 1;
2765 inst_env->slot_needed = 0;
2766 inst_env->prefix_found = 0;
2767 inst_env->xflag_found = 0;
2768 inst_env->disable_interrupt = 0;
2772 /* Handles the CLEAR and TEST instruction if the instruction isn't
2773 in register mode. */
2776 none_reg_mode_clear_test_op (unsigned short inst, inst_env_type *inst_env)
2778 /* Check if we are in a prefix mode. */
2779 if (inst_env->prefix_found)
2781 /* The only way the PC can change is if this instruction is in
2782 assign addressing mode. */
2783 check_assign (inst, inst_env);
2785 /* Indirect mode can't change the PC so just check if the mode is
2787 else if (cris_get_mode (inst) == AUTOINC_MODE)
2789 process_autoincrement (cris_get_size (inst), inst, inst_env);
2791 inst_env->slot_needed = 0;
2792 inst_env->prefix_found = 0;
2793 inst_env->xflag_found = 0;
2794 inst_env->disable_interrupt = 0;
2797 /* Checks that the PC isn't the destination register or the instructions has
2801 dstep_logshift_mstep_neg_not_op (unsigned short inst, inst_env_type *inst_env)
2803 /* It's invalid to have the PC as the destination. The instruction can't
2805 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2807 inst_env->invalid = 1;
2811 inst_env->slot_needed = 0;
2812 inst_env->prefix_found = 0;
2813 inst_env->xflag_found = 0;
2814 inst_env->disable_interrupt = 0;
2817 /* Checks that the instruction doesn't have a prefix. */
2820 break_op (unsigned short inst, inst_env_type *inst_env)
2822 /* The instruction can't have a prefix. */
2823 if (inst_env->prefix_found)
2825 inst_env->invalid = 1;
2829 inst_env->slot_needed = 0;
2830 inst_env->prefix_found = 0;
2831 inst_env->xflag_found = 0;
2832 inst_env->disable_interrupt = 1;
2835 /* Checks that the PC isn't the destination register and that the instruction
2836 doesn't have a prefix. */
2839 scc_op (unsigned short inst, inst_env_type *inst_env)
2841 /* It's invalid to have the PC as the destination. The instruction can't
2843 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2845 inst_env->invalid = 1;
2849 inst_env->slot_needed = 0;
2850 inst_env->prefix_found = 0;
2851 inst_env->xflag_found = 0;
2852 inst_env->disable_interrupt = 1;
2855 /* Handles the register mode JUMP instruction. */
2858 reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
2860 /* It's invalid to do a JUMP in a delay slot. The mode is register, so
2861 you can't have a prefix. */
2862 if ((inst_env->slot_needed) || (inst_env->prefix_found))
2864 inst_env->invalid = 1;
2868 /* Just change the PC. */
2869 inst_env->reg[REG_PC] = inst_env->reg[cris_get_operand1 (inst)];
2870 inst_env->slot_needed = 0;
2871 inst_env->prefix_found = 0;
2872 inst_env->xflag_found = 0;
2873 inst_env->disable_interrupt = 1;
2876 /* Handles the JUMP instruction for all modes except register. */
2879 none_reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
2881 unsigned long newpc;
2884 /* It's invalid to do a JUMP in a delay slot. */
2885 if (inst_env->slot_needed)
2887 inst_env->invalid = 1;
2891 /* Check if we have a prefix. */
2892 if (inst_env->prefix_found)
2894 check_assign (inst, inst_env);
2896 /* Get the new value for the PC. */
2898 read_memory_unsigned_integer ((CORE_ADDR) inst_env->prefix_value,
2899 4, inst_env->byte_order);
2903 /* Get the new value for the PC. */
2904 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
2905 newpc = read_memory_unsigned_integer (address,
2906 4, inst_env->byte_order);
2908 /* Check if we should increment a register. */
2909 if (cris_get_mode (inst) == AUTOINC_MODE)
2911 inst_env->reg[cris_get_operand1 (inst)] += 4;
2914 inst_env->reg[REG_PC] = newpc;
2916 inst_env->slot_needed = 0;
2917 inst_env->prefix_found = 0;
2918 inst_env->xflag_found = 0;
2919 inst_env->disable_interrupt = 1;
2922 /* Handles moves to special registers (aka P-register) for all modes. */
2925 move_to_preg_op (struct gdbarch *gdbarch, unsigned short inst,
2926 inst_env_type *inst_env)
2928 if (inst_env->prefix_found)
2930 /* The instruction has a prefix that means we are only interested if
2931 the instruction is in assign mode. */
2932 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2934 /* The prefix handles the problem if we are in a delay slot. */
2935 if (cris_get_operand1 (inst) == REG_PC)
2937 /* Just take care of the assign. */
2938 check_assign (inst, inst_env);
2942 else if (cris_get_mode (inst) == AUTOINC_MODE)
2944 /* The instruction doesn't have a prefix, the only case left that we
2945 are interested in is the autoincrement mode. */
2946 if (cris_get_operand1 (inst) == REG_PC)
2948 /* If the PC is to be incremented it's invalid to be in a
2950 if (inst_env->slot_needed)
2952 inst_env->invalid = 1;
2956 /* The increment depends on the size of the special register. */
2957 if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 1)
2959 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
2961 else if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 2)
2963 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
2967 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
2971 inst_env->slot_needed = 0;
2972 inst_env->prefix_found = 0;
2973 inst_env->xflag_found = 0;
2974 inst_env->disable_interrupt = 1;
2977 /* Handles moves from special registers (aka P-register) for all modes
2981 none_reg_mode_move_from_preg_op (struct gdbarch *gdbarch, unsigned short inst,
2982 inst_env_type *inst_env)
2984 if (inst_env->prefix_found)
2986 /* The instruction has a prefix that means we are only interested if
2987 the instruction is in assign mode. */
2988 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2990 /* The prefix handles the problem if we are in a delay slot. */
2991 if (cris_get_operand1 (inst) == REG_PC)
2993 /* Just take care of the assign. */
2994 check_assign (inst, inst_env);
2998 /* The instruction doesn't have a prefix, the only case left that we
2999 are interested in is the autoincrement mode. */
3000 else if (cris_get_mode (inst) == AUTOINC_MODE)
3002 if (cris_get_operand1 (inst) == REG_PC)
3004 /* If the PC is to be incremented it's invalid to be in a
3006 if (inst_env->slot_needed)
3008 inst_env->invalid = 1;
3012 /* The increment depends on the size of the special register. */
3013 if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 1)
3015 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
3017 else if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 2)
3019 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
3023 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
3027 inst_env->slot_needed = 0;
3028 inst_env->prefix_found = 0;
3029 inst_env->xflag_found = 0;
3030 inst_env->disable_interrupt = 1;
3033 /* Handles moves from special registers (aka P-register) when the mode
3037 reg_mode_move_from_preg_op (unsigned short inst, inst_env_type *inst_env)
3039 /* Register mode move from special register can't have a prefix. */
3040 if (inst_env->prefix_found)
3042 inst_env->invalid = 1;
3046 if (cris_get_operand1 (inst) == REG_PC)
3048 /* It's invalid to change the PC in a delay slot. */
3049 if (inst_env->slot_needed)
3051 inst_env->invalid = 1;
3054 /* The destination is the PC, the jump will have a delay slot. */
3055 inst_env->delay_slot_pc = inst_env->preg[cris_get_operand2 (inst)];
3056 inst_env->slot_needed = 1;
3057 inst_env->delay_slot_pc_active = 1;
3061 /* If the destination isn't PC, there will be no jump. */
3062 inst_env->slot_needed = 0;
3064 inst_env->prefix_found = 0;
3065 inst_env->xflag_found = 0;
3066 inst_env->disable_interrupt = 1;
3069 /* Handles the MOVEM from memory to general register instruction. */
3072 move_mem_to_reg_movem_op (unsigned short inst, inst_env_type *inst_env)
3074 if (inst_env->prefix_found)
3076 /* The prefix handles the problem if we are in a delay slot. Is the
3077 MOVEM instruction going to change the PC? */
3078 if (cris_get_operand2 (inst) >= REG_PC)
3080 inst_env->reg[REG_PC] =
3081 read_memory_unsigned_integer (inst_env->prefix_value,
3082 4, inst_env->byte_order);
3084 /* The assign value is the value after the increment. Normally, the
3085 assign value is the value before the increment. */
3086 if ((cris_get_operand1 (inst) == REG_PC)
3087 && (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
3089 inst_env->reg[REG_PC] = inst_env->prefix_value;
3090 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3095 /* Is the MOVEM instruction going to change the PC? */
3096 if (cris_get_operand2 (inst) == REG_PC)
3098 /* It's invalid to change the PC in a delay slot. */
3099 if (inst_env->slot_needed)
3101 inst_env->invalid = 1;
3104 inst_env->reg[REG_PC] =
3105 read_memory_unsigned_integer (inst_env->reg[cris_get_operand1 (inst)],
3106 4, inst_env->byte_order);
3108 /* The increment is not depending on the size, instead it's depending
3109 on the number of registers loaded from memory. */
3110 if ((cris_get_operand1 (inst) == REG_PC)
3111 && (cris_get_mode (inst) == AUTOINC_MODE))
3113 /* It's invalid to change the PC in a delay slot. */
3114 if (inst_env->slot_needed)
3116 inst_env->invalid = 1;
3119 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3122 inst_env->slot_needed = 0;
3123 inst_env->prefix_found = 0;
3124 inst_env->xflag_found = 0;
3125 inst_env->disable_interrupt = 0;
3128 /* Handles the MOVEM to memory from general register instruction. */
3131 move_reg_to_mem_movem_op (unsigned short inst, inst_env_type *inst_env)
3133 if (inst_env->prefix_found)
3135 /* The assign value is the value after the increment. Normally, the
3136 assign value is the value before the increment. */
3137 if ((cris_get_operand1 (inst) == REG_PC)
3138 && (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
3140 /* The prefix handles the problem if we are in a delay slot. */
3141 inst_env->reg[REG_PC] = inst_env->prefix_value;
3142 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3147 /* The increment is not depending on the size, instead it's depending
3148 on the number of registers loaded to memory. */
3149 if ((cris_get_operand1 (inst) == REG_PC)
3150 && (cris_get_mode (inst) == AUTOINC_MODE))
3152 /* It's invalid to change the PC in a delay slot. */
3153 if (inst_env->slot_needed)
3155 inst_env->invalid = 1;
3158 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3161 inst_env->slot_needed = 0;
3162 inst_env->prefix_found = 0;
3163 inst_env->xflag_found = 0;
3164 inst_env->disable_interrupt = 0;
3167 /* Handles the intructions that's not yet implemented, by setting
3168 inst_env->invalid to true. */
3171 not_implemented_op (unsigned short inst, inst_env_type *inst_env)
3173 inst_env->invalid = 1;
3176 /* Handles the XOR instruction. */
3179 xor_op (unsigned short inst, inst_env_type *inst_env)
3181 /* XOR can't have a prefix. */
3182 if (inst_env->prefix_found)
3184 inst_env->invalid = 1;
3188 /* Check if the PC is the target. */
3189 if (cris_get_operand2 (inst) == REG_PC)
3191 /* It's invalid to change the PC in a delay slot. */
3192 if (inst_env->slot_needed)
3194 inst_env->invalid = 1;
3197 inst_env->reg[REG_PC] ^= inst_env->reg[cris_get_operand1 (inst)];
3199 inst_env->slot_needed = 0;
3200 inst_env->prefix_found = 0;
3201 inst_env->xflag_found = 0;
3202 inst_env->disable_interrupt = 0;
3205 /* Handles the MULS instruction. */
3208 muls_op (unsigned short inst, inst_env_type *inst_env)
3210 /* MULS/U can't have a prefix. */
3211 if (inst_env->prefix_found)
3213 inst_env->invalid = 1;
3217 /* Consider it invalid if the PC is the target. */
3218 if (cris_get_operand2 (inst) == REG_PC)
3220 inst_env->invalid = 1;
3223 inst_env->slot_needed = 0;
3224 inst_env->prefix_found = 0;
3225 inst_env->xflag_found = 0;
3226 inst_env->disable_interrupt = 0;
3229 /* Handles the MULU instruction. */
3232 mulu_op (unsigned short inst, inst_env_type *inst_env)
3234 /* MULS/U can't have a prefix. */
3235 if (inst_env->prefix_found)
3237 inst_env->invalid = 1;
3241 /* Consider it invalid if the PC is the target. */
3242 if (cris_get_operand2 (inst) == REG_PC)
3244 inst_env->invalid = 1;
3247 inst_env->slot_needed = 0;
3248 inst_env->prefix_found = 0;
3249 inst_env->xflag_found = 0;
3250 inst_env->disable_interrupt = 0;
3253 /* Calculate the result of the instruction for ADD, SUB, CMP AND, OR and MOVE.
3254 The MOVE instruction is the move from source to register. */
3257 add_sub_cmp_and_or_move_action (unsigned short inst, inst_env_type *inst_env,
3258 unsigned long source1, unsigned long source2)
3260 unsigned long pc_mask;
3261 unsigned long operation_mask;
3263 /* Find out how many bits the operation should apply to. */
3264 if (cris_get_size (inst) == INST_BYTE_SIZE)
3266 pc_mask = 0xFFFFFF00;
3267 operation_mask = 0xFF;
3269 else if (cris_get_size (inst) == INST_WORD_SIZE)
3271 pc_mask = 0xFFFF0000;
3272 operation_mask = 0xFFFF;
3274 else if (cris_get_size (inst) == INST_DWORD_SIZE)
3277 operation_mask = 0xFFFFFFFF;
3281 /* The size is out of range. */
3282 inst_env->invalid = 1;
3286 /* The instruction just works on uw_operation_mask bits. */
3287 source2 &= operation_mask;
3288 source1 &= operation_mask;
3290 /* Now calculate the result. The opcode's 3 first bits separates
3291 the different actions. */
3292 switch (cris_get_opcode (inst) & 7)
3302 case 2: /* subtract */
3306 case 3: /* compare */
3318 inst_env->invalid = 1;
3324 /* Make sure that the result doesn't contain more than the instruction
3326 source2 &= operation_mask;
3328 /* Calculate the new breakpoint address. */
3329 inst_env->reg[REG_PC] &= pc_mask;
3330 inst_env->reg[REG_PC] |= source1;
3334 /* Extends the value from either byte or word size to a dword. If the mode
3335 is zero extend then the value is extended with zero. If instead the mode
3336 is signed extend the sign bit of the value is taken into consideration. */
3338 static unsigned long
3339 do_sign_or_zero_extend (unsigned long value, unsigned short *inst)
3341 /* The size can be either byte or word, check which one it is.
3342 Don't check the highest bit, it's indicating if it's a zero
3344 if (cris_get_size (*inst) & INST_WORD_SIZE)
3349 /* Check if the instruction is signed extend. If so, check if value has
3351 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_WORD_MASK))
3353 value |= SIGNED_WORD_EXTEND_MASK;
3361 /* Check if the instruction is signed extend. If so, check if value has
3363 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_BYTE_MASK))
3365 value |= SIGNED_BYTE_EXTEND_MASK;
3368 /* The size should now be dword. */
3369 cris_set_size_to_dword (inst);
3373 /* Handles the register mode for the ADD, SUB, CMP, AND, OR and MOVE
3374 instruction. The MOVE instruction is the move from source to register. */
3377 reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3378 inst_env_type *inst_env)
3380 unsigned long operand1;
3381 unsigned long operand2;
3383 /* It's invalid to have a prefix to the instruction. This is a register
3384 mode instruction and can't have a prefix. */
3385 if (inst_env->prefix_found)
3387 inst_env->invalid = 1;
3390 /* Check if the instruction has PC as its target. */
3391 if (cris_get_operand2 (inst) == REG_PC)
3393 if (inst_env->slot_needed)
3395 inst_env->invalid = 1;
3398 /* The instruction has the PC as its target register. */
3399 operand1 = inst_env->reg[cris_get_operand1 (inst)];
3400 operand2 = inst_env->reg[REG_PC];
3402 /* Check if it's a extend, signed or zero instruction. */
3403 if (cris_get_opcode (inst) < 4)
3405 operand1 = do_sign_or_zero_extend (operand1, &inst);
3407 /* Calculate the PC value after the instruction, i.e. where the
3408 breakpoint should be. The order of the udw_operands is vital. */
3409 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3411 inst_env->slot_needed = 0;
3412 inst_env->prefix_found = 0;
3413 inst_env->xflag_found = 0;
3414 inst_env->disable_interrupt = 0;
3417 /* Returns the data contained at address. The size of the data is derived from
3418 the size of the operation. If the instruction is a zero or signed
3419 extend instruction, the size field is changed in instruction. */
3421 static unsigned long
3422 get_data_from_address (unsigned short *inst, CORE_ADDR address,
3423 enum bfd_endian byte_order)
3425 int size = cris_get_size (*inst);
3426 unsigned long value;
3428 /* If it's an extend instruction we don't want the signed extend bit,
3429 because it influences the size. */
3430 if (cris_get_opcode (*inst) < 4)
3432 size &= ~SIGNED_EXTEND_BIT_MASK;
3434 /* Is there a need for checking the size? Size should contain the number of
3437 value = read_memory_unsigned_integer (address, size, byte_order);
3439 /* Check if it's an extend, signed or zero instruction. */
3440 if (cris_get_opcode (*inst) < 4)
3442 value = do_sign_or_zero_extend (value, inst);
3447 /* Handles the assign addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3448 instructions. The MOVE instruction is the move from source to register. */
3451 handle_prefix_assign_mode_for_aritm_op (unsigned short inst,
3452 inst_env_type *inst_env)
3454 unsigned long operand2;
3455 unsigned long operand3;
3457 check_assign (inst, inst_env);
3458 if (cris_get_operand2 (inst) == REG_PC)
3460 operand2 = inst_env->reg[REG_PC];
3462 /* Get the value of the third operand. */
3463 operand3 = get_data_from_address (&inst, inst_env->prefix_value,
3464 inst_env->byte_order);
3466 /* Calculate the PC value after the instruction, i.e. where the
3467 breakpoint should be. The order of the udw_operands is vital. */
3468 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3470 inst_env->slot_needed = 0;
3471 inst_env->prefix_found = 0;
3472 inst_env->xflag_found = 0;
3473 inst_env->disable_interrupt = 0;
3476 /* Handles the three-operand addressing mode for the ADD, SUB, CMP, AND and
3477 OR instructions. Note that for this to work as expected, the calling
3478 function must have made sure that there is a prefix to this instruction. */
3481 three_operand_add_sub_cmp_and_or_op (unsigned short inst,
3482 inst_env_type *inst_env)
3484 unsigned long operand2;
3485 unsigned long operand3;
3487 if (cris_get_operand1 (inst) == REG_PC)
3489 /* The PC will be changed by the instruction. */
3490 operand2 = inst_env->reg[cris_get_operand2 (inst)];
3492 /* Get the value of the third operand. */
3493 operand3 = get_data_from_address (&inst, inst_env->prefix_value,
3494 inst_env->byte_order);
3496 /* Calculate the PC value after the instruction, i.e. where the
3497 breakpoint should be. */
3498 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3500 inst_env->slot_needed = 0;
3501 inst_env->prefix_found = 0;
3502 inst_env->xflag_found = 0;
3503 inst_env->disable_interrupt = 0;
3506 /* Handles the index addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3507 instructions. The MOVE instruction is the move from source to register. */
3510 handle_prefix_index_mode_for_aritm_op (unsigned short inst,
3511 inst_env_type *inst_env)
3513 if (cris_get_operand1 (inst) != cris_get_operand2 (inst))
3515 /* If the instruction is MOVE it's invalid. If the instruction is ADD,
3516 SUB, AND or OR something weird is going on (if everything works these
3517 instructions should end up in the three operand version). */
3518 inst_env->invalid = 1;
3523 /* three_operand_add_sub_cmp_and_or does the same as we should do here
3525 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3527 inst_env->slot_needed = 0;
3528 inst_env->prefix_found = 0;
3529 inst_env->xflag_found = 0;
3530 inst_env->disable_interrupt = 0;
3533 /* Handles the autoincrement and indirect addresing mode for the ADD, SUB,
3534 CMP, AND OR and MOVE instruction. The MOVE instruction is the move from
3535 source to register. */
3538 handle_inc_and_index_mode_for_aritm_op (unsigned short inst,
3539 inst_env_type *inst_env)
3541 unsigned long operand1;
3542 unsigned long operand2;
3543 unsigned long operand3;
3546 /* The instruction is either an indirect or autoincrement addressing mode.
3547 Check if the destination register is the PC. */
3548 if (cris_get_operand2 (inst) == REG_PC)
3550 /* Must be done here, get_data_from_address may change the size
3552 size = cris_get_size (inst);
3553 operand2 = inst_env->reg[REG_PC];
3555 /* Get the value of the third operand, i.e. the indirect operand. */
3556 operand1 = inst_env->reg[cris_get_operand1 (inst)];
3557 operand3 = get_data_from_address (&inst, operand1, inst_env->byte_order);
3559 /* Calculate the PC value after the instruction, i.e. where the
3560 breakpoint should be. The order of the udw_operands is vital. */
3561 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3563 /* If this is an autoincrement addressing mode, check if the increment
3565 if ((cris_get_operand1 (inst) == REG_PC)
3566 && (cris_get_mode (inst) == AUTOINC_MODE))
3568 /* Get the size field. */
3569 size = cris_get_size (inst);
3571 /* If it's an extend instruction we don't want the signed extend bit,
3572 because it influences the size. */
3573 if (cris_get_opcode (inst) < 4)
3575 size &= ~SIGNED_EXTEND_BIT_MASK;
3577 process_autoincrement (size, inst, inst_env);
3579 inst_env->slot_needed = 0;
3580 inst_env->prefix_found = 0;
3581 inst_env->xflag_found = 0;
3582 inst_env->disable_interrupt = 0;
3585 /* Handles the two-operand addressing mode, all modes except register, for
3586 the ADD, SUB CMP, AND and OR instruction. */
3589 none_reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3590 inst_env_type *inst_env)
3592 if (inst_env->prefix_found)
3594 if (cris_get_mode (inst) == PREFIX_INDEX_MODE)
3596 handle_prefix_index_mode_for_aritm_op (inst, inst_env);
3598 else if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
3600 handle_prefix_assign_mode_for_aritm_op (inst, inst_env);
3604 /* The mode is invalid for a prefixed base instruction. */
3605 inst_env->invalid = 1;
3611 handle_inc_and_index_mode_for_aritm_op (inst, inst_env);
3615 /* Handles the quick addressing mode for the ADD and SUB instruction. */
3618 quick_mode_add_sub_op (unsigned short inst, inst_env_type *inst_env)
3620 unsigned long operand1;
3621 unsigned long operand2;
3623 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3624 instruction and can't have a prefix. */
3625 if (inst_env->prefix_found)
3627 inst_env->invalid = 1;
3631 /* Check if the instruction has PC as its target. */
3632 if (cris_get_operand2 (inst) == REG_PC)
3634 if (inst_env->slot_needed)
3636 inst_env->invalid = 1;
3639 operand1 = cris_get_quick_value (inst);
3640 operand2 = inst_env->reg[REG_PC];
3642 /* The size should now be dword. */
3643 cris_set_size_to_dword (&inst);
3645 /* Calculate the PC value after the instruction, i.e. where the
3646 breakpoint should be. */
3647 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3649 inst_env->slot_needed = 0;
3650 inst_env->prefix_found = 0;
3651 inst_env->xflag_found = 0;
3652 inst_env->disable_interrupt = 0;
3655 /* Handles the quick addressing mode for the CMP, AND and OR instruction. */
3658 quick_mode_and_cmp_move_or_op (unsigned short inst, inst_env_type *inst_env)
3660 unsigned long operand1;
3661 unsigned long operand2;
3663 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3664 instruction and can't have a prefix. */
3665 if (inst_env->prefix_found)
3667 inst_env->invalid = 1;
3670 /* Check if the instruction has PC as its target. */
3671 if (cris_get_operand2 (inst) == REG_PC)
3673 if (inst_env->slot_needed)
3675 inst_env->invalid = 1;
3678 /* The instruction has the PC as its target register. */
3679 operand1 = cris_get_quick_value (inst);
3680 operand2 = inst_env->reg[REG_PC];
3682 /* The quick value is signed, so check if we must do a signed extend. */
3683 if (operand1 & SIGNED_QUICK_VALUE_MASK)
3686 operand1 |= SIGNED_QUICK_VALUE_EXTEND_MASK;
3688 /* The size should now be dword. */
3689 cris_set_size_to_dword (&inst);
3691 /* Calculate the PC value after the instruction, i.e. where the
3692 breakpoint should be. */
3693 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3695 inst_env->slot_needed = 0;
3696 inst_env->prefix_found = 0;
3697 inst_env->xflag_found = 0;
3698 inst_env->disable_interrupt = 0;
3701 /* Translate op_type to a function and call it. */
3704 cris_gdb_func (struct gdbarch *gdbarch, enum cris_op_type op_type,
3705 unsigned short inst, inst_env_type *inst_env)
3709 case cris_not_implemented_op:
3710 not_implemented_op (inst, inst_env);
3714 abs_op (inst, inst_env);
3718 addi_op (inst, inst_env);
3722 asr_op (inst, inst_env);
3726 asrq_op (inst, inst_env);
3729 case cris_ax_ei_setf_op:
3730 ax_ei_setf_op (inst, inst_env);
3733 case cris_bdap_prefix:
3734 bdap_prefix (inst, inst_env);
3737 case cris_biap_prefix:
3738 biap_prefix (inst, inst_env);
3742 break_op (inst, inst_env);
3745 case cris_btst_nop_op:
3746 btst_nop_op (inst, inst_env);
3749 case cris_clearf_di_op:
3750 clearf_di_op (inst, inst_env);
3753 case cris_dip_prefix:
3754 dip_prefix (inst, inst_env);
3757 case cris_dstep_logshift_mstep_neg_not_op:
3758 dstep_logshift_mstep_neg_not_op (inst, inst_env);
3761 case cris_eight_bit_offset_branch_op:
3762 eight_bit_offset_branch_op (inst, inst_env);
3765 case cris_move_mem_to_reg_movem_op:
3766 move_mem_to_reg_movem_op (inst, inst_env);
3769 case cris_move_reg_to_mem_movem_op:
3770 move_reg_to_mem_movem_op (inst, inst_env);
3773 case cris_move_to_preg_op:
3774 move_to_preg_op (gdbarch, inst, inst_env);
3778 muls_op (inst, inst_env);
3782 mulu_op (inst, inst_env);
3785 case cris_none_reg_mode_add_sub_cmp_and_or_move_op:
3786 none_reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3789 case cris_none_reg_mode_clear_test_op:
3790 none_reg_mode_clear_test_op (inst, inst_env);
3793 case cris_none_reg_mode_jump_op:
3794 none_reg_mode_jump_op (inst, inst_env);
3797 case cris_none_reg_mode_move_from_preg_op:
3798 none_reg_mode_move_from_preg_op (gdbarch, inst, inst_env);
3801 case cris_quick_mode_add_sub_op:
3802 quick_mode_add_sub_op (inst, inst_env);
3805 case cris_quick_mode_and_cmp_move_or_op:
3806 quick_mode_and_cmp_move_or_op (inst, inst_env);
3809 case cris_quick_mode_bdap_prefix:
3810 quick_mode_bdap_prefix (inst, inst_env);
3813 case cris_reg_mode_add_sub_cmp_and_or_move_op:
3814 reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3817 case cris_reg_mode_clear_op:
3818 reg_mode_clear_op (inst, inst_env);
3821 case cris_reg_mode_jump_op:
3822 reg_mode_jump_op (inst, inst_env);
3825 case cris_reg_mode_move_from_preg_op:
3826 reg_mode_move_from_preg_op (inst, inst_env);
3829 case cris_reg_mode_test_op:
3830 reg_mode_test_op (inst, inst_env);
3834 scc_op (inst, inst_env);
3837 case cris_sixteen_bit_offset_branch_op:
3838 sixteen_bit_offset_branch_op (inst, inst_env);
3841 case cris_three_operand_add_sub_cmp_and_or_op:
3842 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3845 case cris_three_operand_bound_op:
3846 three_operand_bound_op (inst, inst_env);
3849 case cris_two_operand_bound_op:
3850 two_operand_bound_op (inst, inst_env);
3854 xor_op (inst, inst_env);
3859 /* This wrapper is to avoid cris_get_assembler being called before
3860 exec_bfd has been set. */
3863 cris_delayed_get_disassembler (bfd_vma addr, struct disassemble_info *info)
3865 int (*print_insn) (bfd_vma addr, struct disassemble_info *info);
3866 /* FIXME: cagney/2003-08-27: It should be possible to select a CRIS
3867 disassembler, even when there is no BFD. Does something like
3868 "gdb; target remote; disassmeble *0x123" work? */
3869 gdb_assert (exec_bfd != NULL);
3870 print_insn = cris_get_disassembler (exec_bfd);
3871 gdb_assert (print_insn != NULL);
3872 return print_insn (addr, info);
3875 /* Copied from <asm/elf.h>. */
3876 typedef unsigned long elf_greg_t;
3878 /* Same as user_regs_struct struct in <asm/user.h>. */
3879 #define CRISV10_ELF_NGREG 35
3880 typedef elf_greg_t elf_gregset_t[CRISV10_ELF_NGREG];
3882 #define CRISV32_ELF_NGREG 32
3883 typedef elf_greg_t crisv32_elf_gregset_t[CRISV32_ELF_NGREG];
3885 /* Unpack an elf_gregset_t into GDB's register cache. */
3888 cris_supply_gregset (struct regcache *regcache, elf_gregset_t *gregsetp)
3890 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3891 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3893 elf_greg_t *regp = *gregsetp;
3894 static char zerobuf[4] = {0};
3896 /* The kernel dumps all 32 registers as unsigned longs, but supply_register
3897 knows about the actual size of each register so that's no problem. */
3898 for (i = 0; i < NUM_GENREGS + NUM_SPECREGS; i++)
3900 regcache_raw_supply (regcache, i, (char *)®p[i]);
3903 if (tdep->cris_version == 32)
3905 /* Needed to set pseudo-register PC for CRISv32. */
3906 /* FIXME: If ERP is in a delay slot at this point then the PC will
3907 be wrong. Issue a warning to alert the user. */
3908 regcache_raw_supply (regcache, gdbarch_pc_regnum (gdbarch),
3909 (char *)®p[ERP_REGNUM]);
3911 if (*(char *)®p[ERP_REGNUM] & 0x1)
3912 fprintf_unfiltered (gdb_stderr, "Warning: PC in delay slot\n");
3916 /* Use a local version of this function to get the correct types for
3917 regsets, until multi-arch core support is ready. */
3920 fetch_core_registers (struct regcache *regcache,
3921 char *core_reg_sect, unsigned core_reg_size,
3922 int which, CORE_ADDR reg_addr)
3924 elf_gregset_t gregset;
3929 if (core_reg_size != sizeof (elf_gregset_t)
3930 && core_reg_size != sizeof (crisv32_elf_gregset_t))
3932 warning (_("wrong size gregset struct in core file"));
3936 memcpy (&gregset, core_reg_sect, sizeof (gregset));
3937 cris_supply_gregset (regcache, &gregset);
3941 /* We've covered all the kinds of registers we know about here,
3942 so this must be something we wouldn't know what to do with
3943 anyway. Just ignore it. */
3948 static struct core_fns cris_elf_core_fns =
3950 bfd_target_elf_flavour, /* core_flavour */
3951 default_check_format, /* check_format */
3952 default_core_sniffer, /* core_sniffer */
3953 fetch_core_registers, /* core_read_registers */
3957 extern initialize_file_ftype _initialize_cris_tdep; /* -Wmissing-prototypes */
3960 _initialize_cris_tdep (void)
3962 static struct cmd_list_element *cris_set_cmdlist;
3963 static struct cmd_list_element *cris_show_cmdlist;
3965 struct cmd_list_element *c;
3967 gdbarch_register (bfd_arch_cris, cris_gdbarch_init, cris_dump_tdep);
3969 /* CRIS-specific user-commands. */
3970 add_setshow_uinteger_cmd ("cris-version", class_support,
3971 &usr_cmd_cris_version,
3972 _("Set the current CRIS version."),
3973 _("Show the current CRIS version."),
3975 Set to 10 for CRISv10 or 32 for CRISv32 if autodetection fails.\n\
3978 NULL, /* FIXME: i18n: Current CRIS version
3980 &setlist, &showlist);
3982 add_setshow_enum_cmd ("cris-mode", class_support,
3983 cris_modes, &usr_cmd_cris_mode,
3984 _("Set the current CRIS mode."),
3985 _("Show the current CRIS mode."),
3987 Set to CRIS_MODE_GURU when debugging in guru mode.\n\
3988 Makes GDB use the NRP register instead of the ERP register in certain cases."),
3990 NULL, /* FIXME: i18n: Current CRIS version is %s. */
3991 &setlist, &showlist);
3993 add_setshow_boolean_cmd ("cris-dwarf2-cfi", class_support,
3994 &usr_cmd_cris_dwarf2_cfi,
3995 _("Set the usage of Dwarf-2 CFI for CRIS."),
3996 _("Show the usage of Dwarf-2 CFI for CRIS."),
3997 _("Set this to \"off\" if using gcc-cris < R59."),
3998 set_cris_dwarf2_cfi,
3999 NULL, /* FIXME: i18n: Usage of Dwarf-2 CFI
4001 &setlist, &showlist);
4003 deprecated_add_core_fns (&cris_elf_core_fns);
4006 /* Prints out all target specific values. */
4009 cris_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
4011 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4014 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_version = %i\n",
4015 tdep->cris_version);
4016 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_mode = %s\n",
4018 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_dwarf2_cfi = %i\n",
4019 tdep->cris_dwarf2_cfi);
4024 set_cris_version (char *ignore_args, int from_tty,
4025 struct cmd_list_element *c)
4027 struct gdbarch_info info;
4029 usr_cmd_cris_version_valid = 1;
4031 /* Update the current architecture, if needed. */
4032 gdbarch_info_init (&info);
4033 if (!gdbarch_update_p (info))
4034 internal_error (__FILE__, __LINE__,
4035 _("cris_gdbarch_update: failed to update architecture."));
4039 set_cris_mode (char *ignore_args, int from_tty,
4040 struct cmd_list_element *c)
4042 struct gdbarch_info info;
4044 /* Update the current architecture, if needed. */
4045 gdbarch_info_init (&info);
4046 if (!gdbarch_update_p (info))
4047 internal_error (__FILE__, __LINE__,
4048 "cris_gdbarch_update: failed to update architecture.");
4052 set_cris_dwarf2_cfi (char *ignore_args, int from_tty,
4053 struct cmd_list_element *c)
4055 struct gdbarch_info info;
4057 /* Update the current architecture, if needed. */
4058 gdbarch_info_init (&info);
4059 if (!gdbarch_update_p (info))
4060 internal_error (__FILE__, __LINE__,
4061 _("cris_gdbarch_update: failed to update architecture."));
4064 static struct gdbarch *
4065 cris_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
4067 struct gdbarch *gdbarch;
4068 struct gdbarch_tdep *tdep;
4071 if (usr_cmd_cris_version_valid)
4073 /* Trust the user's CRIS version setting. */
4074 cris_version = usr_cmd_cris_version;
4076 else if (info.abfd && bfd_get_mach (info.abfd) == bfd_mach_cris_v32)
4082 /* Assume it's CRIS version 10. */
4086 /* Make the current settings visible to the user. */
4087 usr_cmd_cris_version = cris_version;
4089 /* Find a candidate among the list of pre-declared architectures. */
4090 for (arches = gdbarch_list_lookup_by_info (arches, &info);
4092 arches = gdbarch_list_lookup_by_info (arches->next, &info))
4094 if ((gdbarch_tdep (arches->gdbarch)->cris_version
4095 == usr_cmd_cris_version)
4096 && (gdbarch_tdep (arches->gdbarch)->cris_mode
4097 == usr_cmd_cris_mode)
4098 && (gdbarch_tdep (arches->gdbarch)->cris_dwarf2_cfi
4099 == usr_cmd_cris_dwarf2_cfi))
4100 return arches->gdbarch;
4103 /* No matching architecture was found. Create a new one. */
4104 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
4105 gdbarch = gdbarch_alloc (&info, tdep);
4107 tdep->cris_version = usr_cmd_cris_version;
4108 tdep->cris_mode = usr_cmd_cris_mode;
4109 tdep->cris_dwarf2_cfi = usr_cmd_cris_dwarf2_cfi;
4111 /* INIT shall ensure that the INFO.BYTE_ORDER is non-zero. */
4112 switch (info.byte_order)
4114 case BFD_ENDIAN_LITTLE:
4118 case BFD_ENDIAN_BIG:
4119 internal_error (__FILE__, __LINE__,
4120 _("cris_gdbarch_init: big endian byte order in info"));
4124 internal_error (__FILE__, __LINE__,
4125 _("cris_gdbarch_init: unknown byte order in info"));
4128 set_gdbarch_return_value (gdbarch, cris_return_value);
4130 set_gdbarch_sp_regnum (gdbarch, 14);
4132 /* Length of ordinary registers used in push_word and a few other
4133 places. register_size() is the real way to know how big a
4136 set_gdbarch_double_bit (gdbarch, 64);
4137 /* The default definition of a long double is 2 * gdbarch_double_bit,
4138 which means we have to set this explicitly. */
4139 set_gdbarch_long_double_bit (gdbarch, 64);
4141 /* The total amount of space needed to store (in an array called registers)
4142 GDB's copy of the machine's register state. Note: We can not use
4143 cris_register_size at this point, since it relies on gdbarch
4145 switch (tdep->cris_version)
4153 /* Old versions; not supported. */
4154 internal_error (__FILE__, __LINE__,
4155 _("cris_gdbarch_init: unsupported CRIS version"));
4160 /* CRIS v10 and v11, a.k.a. ETRAX 100LX. In addition to ETRAX 100,
4161 P7 (32 bits), and P15 (32 bits) have been implemented. */
4162 set_gdbarch_pc_regnum (gdbarch, 15);
4163 set_gdbarch_register_type (gdbarch, cris_register_type);
4164 /* There are 32 registers (some of which may not be implemented). */
4165 set_gdbarch_num_regs (gdbarch, 32);
4166 set_gdbarch_register_name (gdbarch, cris_register_name);
4167 set_gdbarch_cannot_store_register (gdbarch, cris_cannot_store_register);
4168 set_gdbarch_cannot_fetch_register (gdbarch, cris_cannot_fetch_register);
4170 set_gdbarch_software_single_step (gdbarch, cris_software_single_step);
4174 /* CRIS v32. General registers R0 - R15 (32 bits), special registers
4175 P0 - P15 (32 bits) except P0, P1, P3 (8 bits) and P4 (16 bits)
4176 and pseudo-register PC (32 bits). */
4177 set_gdbarch_pc_regnum (gdbarch, 32);
4178 set_gdbarch_register_type (gdbarch, crisv32_register_type);
4179 /* 32 registers + pseudo-register PC + 16 support registers. */
4180 set_gdbarch_num_regs (gdbarch, 32 + 1 + 16);
4181 set_gdbarch_register_name (gdbarch, crisv32_register_name);
4183 set_gdbarch_cannot_store_register
4184 (gdbarch, crisv32_cannot_store_register);
4185 set_gdbarch_cannot_fetch_register
4186 (gdbarch, crisv32_cannot_fetch_register);
4188 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
4190 set_gdbarch_single_step_through_delay
4191 (gdbarch, crisv32_single_step_through_delay);
4196 internal_error (__FILE__, __LINE__,
4197 _("cris_gdbarch_init: unknown CRIS version"));
4200 /* Dummy frame functions (shared between CRISv10 and CRISv32 since they
4201 have the same ABI). */
4202 set_gdbarch_push_dummy_code (gdbarch, cris_push_dummy_code);
4203 set_gdbarch_push_dummy_call (gdbarch, cris_push_dummy_call);
4204 set_gdbarch_frame_align (gdbarch, cris_frame_align);
4205 set_gdbarch_skip_prologue (gdbarch, cris_skip_prologue);
4207 /* The stack grows downward. */
4208 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
4210 set_gdbarch_breakpoint_from_pc (gdbarch, cris_breakpoint_from_pc);
4212 set_gdbarch_unwind_pc (gdbarch, cris_unwind_pc);
4213 set_gdbarch_unwind_sp (gdbarch, cris_unwind_sp);
4214 set_gdbarch_dummy_id (gdbarch, cris_dummy_id);
4216 if (tdep->cris_dwarf2_cfi == 1)
4218 /* Hook in the Dwarf-2 frame sniffer. */
4219 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, cris_dwarf2_reg_to_regnum);
4220 dwarf2_frame_set_init_reg (gdbarch, cris_dwarf2_frame_init_reg);
4221 dwarf2_append_unwinders (gdbarch);
4224 if (tdep->cris_mode != cris_mode_guru)
4226 frame_unwind_append_unwinder (gdbarch, &cris_sigtramp_frame_unwind);
4229 frame_unwind_append_unwinder (gdbarch, &cris_frame_unwind);
4230 frame_base_set_default (gdbarch, &cris_frame_base);
4232 set_solib_svr4_fetch_link_map_offsets
4233 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
4235 /* FIXME: cagney/2003-08-27: It should be possible to select a CRIS
4236 disassembler, even when there is no BFD. Does something like
4237 "gdb; target remote; disassmeble *0x123" work? */
4238 set_gdbarch_print_insn (gdbarch, cris_delayed_get_disassembler);