1 /* Target dependent code for CRIS, for GDB, the GNU debugger.
3 Copyright 2001, 2002, 2003, 2004, 2005 Free Software Foundation,
6 Contributed by Axis Communications AB.
7 Written by Hendrik Ruijter, Stefan Andersson, and Orjan Friberg.
9 This file is part of GDB.
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
27 #include "frame-unwind.h"
28 #include "frame-base.h"
29 #include "trad-frame.h"
30 #include "dwarf2-frame.h"
38 #include "opcode/cris.h"
39 #include "arch-utils.h"
41 #include "gdb_assert.h"
43 /* To get entry_point_address. */
46 #include "solib.h" /* Support for shared libraries. */
47 #include "solib-svr4.h" /* For struct link_map_offsets. */
48 #include "gdb_string.h"
53 /* There are no floating point registers. Used in gdbserver low-linux.c. */
56 /* There are 16 general registers. */
59 /* There are 16 special registers. */
62 /* CRISv32 has a pseudo PC register, not noted here. */
64 /* CRISv32 has 16 support registers. */
68 /* Register numbers of various important registers.
69 CRIS_FP_REGNUM Contains address of executing stack frame.
70 STR_REGNUM Contains the address of structure return values.
71 RET_REGNUM Contains the return value when shorter than or equal to 32 bits
72 ARG1_REGNUM Contains the first parameter to a function.
73 ARG2_REGNUM Contains the second parameter to a function.
74 ARG3_REGNUM Contains the third parameter to a function.
75 ARG4_REGNUM Contains the fourth parameter to a function. Rest on stack.
76 SP_REGNUM Contains address of top of stack.
77 PC_REGNUM Contains address of next instruction.
78 SRP_REGNUM Subroutine return pointer register.
79 BRP_REGNUM Breakpoint return pointer register. */
83 /* Enums with respect to the general registers, valid for all
84 CRIS versions. The frame pointer is always in R8. */
86 /* ABI related registers. */
94 /* Registers which happen to be common. */
99 /* CRISv10 et. al. specific registers. */
111 /* CRISv32 specific registers. */
124 CRISV32USP_REGNUM = 30, /* Shares name but not number with CRISv10. */
126 CRISV32PC_REGNUM = 32, /* Shares name but not number with CRISv10. */
146 extern const struct cris_spec_reg cris_spec_regs[];
148 /* CRIS version, set via the user command 'set cris-version'. Affects
149 register names and sizes. */
150 static int usr_cmd_cris_version;
152 /* Indicates whether to trust the above variable. */
153 static int usr_cmd_cris_version_valid = 0;
155 static const char cris_mode_normal[] = "normal";
156 static const char cris_mode_guru[] = "guru";
157 static const char *cris_modes[] = {
163 /* CRIS mode, set via the user command 'set cris-mode'. Affects
164 type of break instruction among other things. */
165 static const char *usr_cmd_cris_mode = cris_mode_normal;
167 /* Whether to make use of Dwarf-2 CFI (default on). */
168 static int usr_cmd_cris_dwarf2_cfi = 1;
170 /* CRIS architecture specific information. */
174 const char *cris_mode;
178 /* Functions for accessing target dependent data. */
183 return (gdbarch_tdep (current_gdbarch)->cris_version);
189 return (gdbarch_tdep (current_gdbarch)->cris_mode);
192 /* Sigtramp identification code copied from i386-linux-tdep.c. */
194 #define SIGTRAMP_INSN0 0x9c5f /* movu.w 0xXX, $r9 */
195 #define SIGTRAMP_OFFSET0 0
196 #define SIGTRAMP_INSN1 0xe93d /* break 13 */
197 #define SIGTRAMP_OFFSET1 4
199 static const unsigned short sigtramp_code[] =
201 SIGTRAMP_INSN0, 0x0077, /* movu.w $0x77, $r9 */
202 SIGTRAMP_INSN1 /* break 13 */
205 #define SIGTRAMP_LEN (sizeof sigtramp_code)
207 /* Note: same length as normal sigtramp code. */
209 static const unsigned short rt_sigtramp_code[] =
211 SIGTRAMP_INSN0, 0x00ad, /* movu.w $0xad, $r9 */
212 SIGTRAMP_INSN1 /* break 13 */
215 /* If PC is in a sigtramp routine, return the address of the start of
216 the routine. Otherwise, return 0. */
219 cris_sigtramp_start (struct frame_info *next_frame)
221 CORE_ADDR pc = frame_pc_unwind (next_frame);
222 gdb_byte buf[SIGTRAMP_LEN];
224 if (!safe_frame_unwind_memory (next_frame, pc, buf, SIGTRAMP_LEN))
227 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN0)
229 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN1)
232 pc -= SIGTRAMP_OFFSET1;
233 if (!safe_frame_unwind_memory (next_frame, pc, buf, SIGTRAMP_LEN))
237 if (memcmp (buf, sigtramp_code, SIGTRAMP_LEN) != 0)
243 /* If PC is in a RT sigtramp routine, return the address of the start of
244 the routine. Otherwise, return 0. */
247 cris_rt_sigtramp_start (struct frame_info *next_frame)
249 CORE_ADDR pc = frame_pc_unwind (next_frame);
250 gdb_byte buf[SIGTRAMP_LEN];
252 if (!safe_frame_unwind_memory (next_frame, pc, buf, SIGTRAMP_LEN))
255 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN0)
257 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN1)
260 pc -= SIGTRAMP_OFFSET1;
261 if (!safe_frame_unwind_memory (next_frame, pc, buf, SIGTRAMP_LEN))
265 if (memcmp (buf, rt_sigtramp_code, SIGTRAMP_LEN) != 0)
271 /* Assuming NEXT_FRAME is a frame following a GNU/Linux sigtramp
272 routine, return the address of the associated sigcontext structure. */
275 cris_sigcontext_addr (struct frame_info *next_frame)
281 frame_unwind_register (next_frame, SP_REGNUM, buf);
282 sp = extract_unsigned_integer (buf, 4);
284 /* Look for normal sigtramp frame first. */
285 pc = cris_sigtramp_start (next_frame);
288 /* struct signal_frame (arch/cris/kernel/signal.c) contains
289 struct sigcontext as its first member, meaning the SP points to
294 pc = cris_rt_sigtramp_start (next_frame);
297 /* struct rt_signal_frame (arch/cris/kernel/signal.c) contains
298 a struct ucontext, which in turn contains a struct sigcontext.
300 4 + 4 + 128 to struct ucontext, then
301 4 + 4 + 12 to struct sigcontext. */
305 error (_("Couldn't recognize signal trampoline."));
309 struct cris_unwind_cache
311 /* The previous frame's inner most stack address. Used as this
312 frame ID's stack_addr. */
314 /* The frame's base, optionally used by the high-level debug info. */
317 /* How far the SP and r8 (FP) have been offset from the start of
318 the stack frame (as defined by the previous frame's stack
324 /* From old frame_extra_info struct. */
328 /* Table indicating the location of each and every register. */
329 struct trad_frame_saved_reg *saved_regs;
332 static struct cris_unwind_cache *
333 cris_sigtramp_frame_unwind_cache (struct frame_info *next_frame,
336 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
337 struct cris_unwind_cache *info;
345 return (*this_cache);
347 info = FRAME_OBSTACK_ZALLOC (struct cris_unwind_cache);
348 (*this_cache) = info;
349 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
351 /* Zero all fields. */
357 info->uses_frame = 0;
359 info->leaf_function = 0;
361 frame_unwind_register (next_frame, SP_REGNUM, buf);
362 info->base = extract_unsigned_integer (buf, 4);
364 addr = cris_sigcontext_addr (next_frame);
366 /* Layout of the sigcontext struct:
369 unsigned long oldmask;
373 if (tdep->cris_version == 10)
375 /* R0 to R13 are stored in reverse order at offset (2 * 4) in
377 for (i = 0; i <= 13; i++)
378 info->saved_regs[i].addr = addr + ((15 - i) * 4);
380 info->saved_regs[MOF_REGNUM].addr = addr + (16 * 4);
381 info->saved_regs[DCCR_REGNUM].addr = addr + (17 * 4);
382 info->saved_regs[SRP_REGNUM].addr = addr + (18 * 4);
383 /* Note: IRP is off by 2 at this point. There's no point in correcting
384 it though since that will mean that the backtrace will show a PC
385 different from what is shown when stopped. */
386 info->saved_regs[IRP_REGNUM].addr = addr + (19 * 4);
387 info->saved_regs[PC_REGNUM] = info->saved_regs[IRP_REGNUM];
388 info->saved_regs[SP_REGNUM].addr = addr + (24 * 4);
393 /* R0 to R13 are stored in order at offset (1 * 4) in
395 for (i = 0; i <= 13; i++)
396 info->saved_regs[i].addr = addr + ((i + 1) * 4);
398 info->saved_regs[ACR_REGNUM].addr = addr + (15 * 4);
399 info->saved_regs[SRS_REGNUM].addr = addr + (16 * 4);
400 info->saved_regs[MOF_REGNUM].addr = addr + (17 * 4);
401 info->saved_regs[SPC_REGNUM].addr = addr + (18 * 4);
402 info->saved_regs[CCS_REGNUM].addr = addr + (19 * 4);
403 info->saved_regs[SRP_REGNUM].addr = addr + (20 * 4);
404 info->saved_regs[ERP_REGNUM].addr = addr + (21 * 4);
405 info->saved_regs[EXS_REGNUM].addr = addr + (22 * 4);
406 info->saved_regs[EDA_REGNUM].addr = addr + (23 * 4);
408 /* FIXME: If ERP is in a delay slot at this point then the PC will
409 be wrong at this point. This problem manifests itself in the
410 sigaltstack.exp test case, which occasionally generates FAILs when
411 the signal is received while in a delay slot.
413 This could be solved by a couple of read_memory_unsigned_integer and a
414 trad_frame_set_value. */
415 info->saved_regs[PC_REGNUM] = info->saved_regs[ERP_REGNUM];
417 info->saved_regs[SP_REGNUM].addr = addr + (25 * 4);
424 cris_sigtramp_frame_this_id (struct frame_info *next_frame, void **this_cache,
425 struct frame_id *this_id)
427 struct cris_unwind_cache *cache =
428 cris_sigtramp_frame_unwind_cache (next_frame, this_cache);
429 (*this_id) = frame_id_build (cache->base, frame_pc_unwind (next_frame));
432 /* Forward declaration. */
434 static void cris_frame_prev_register (struct frame_info *next_frame,
435 void **this_prologue_cache,
436 int regnum, int *optimizedp,
437 enum lval_type *lvalp, CORE_ADDR *addrp,
438 int *realnump, gdb_byte *bufferp);
440 cris_sigtramp_frame_prev_register (struct frame_info *next_frame,
442 int regnum, int *optimizedp,
443 enum lval_type *lvalp, CORE_ADDR *addrp,
444 int *realnump, gdb_byte *valuep)
446 /* Make sure we've initialized the cache. */
447 cris_sigtramp_frame_unwind_cache (next_frame, this_cache);
448 cris_frame_prev_register (next_frame, this_cache, regnum,
449 optimizedp, lvalp, addrp, realnump, valuep);
452 static const struct frame_unwind cris_sigtramp_frame_unwind =
455 cris_sigtramp_frame_this_id,
456 cris_sigtramp_frame_prev_register
459 static const struct frame_unwind *
460 cris_sigtramp_frame_sniffer (struct frame_info *next_frame)
462 if (cris_sigtramp_start (next_frame)
463 || cris_rt_sigtramp_start (next_frame))
464 return &cris_sigtramp_frame_unwind;
470 crisv32_single_step_through_delay (struct gdbarch *gdbarch,
471 struct frame_info *this_frame)
473 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
478 if (cris_mode () == cris_mode_guru)
480 frame_unwind_register (this_frame, NRP_REGNUM, buf);
484 frame_unwind_register (this_frame, ERP_REGNUM, buf);
487 erp = extract_unsigned_integer (buf, 4);
491 /* In delay slot - check if there's a breakpoint at the preceding
493 if (breakpoint_here_p (erp & ~0x1))
499 /* Hardware watchpoint support. */
501 /* We support 6 hardware data watchpoints, but cannot trigger on execute
502 (any combination of read/write is fine). */
505 cris_can_use_hardware_watchpoint (int type, int count, int other)
507 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
509 /* No bookkeeping is done here; it is handled by the remote debug agent. */
511 if (tdep->cris_version != 32)
514 /* CRISv32: Six data watchpoints, one for instructions. */
515 return (((type == bp_read_watchpoint || type == bp_access_watchpoint
516 || type == bp_hardware_watchpoint) && count <= 6)
517 || (type == bp_hardware_breakpoint && count <= 1));
520 /* The CRISv32 hardware data watchpoints work by specifying ranges,
521 which have no alignment or length restrictions. */
524 cris_region_ok_for_watchpoint (CORE_ADDR addr, int len)
529 /* If the inferior has some watchpoint that triggered, return the
530 address associated with that watchpoint. Otherwise, return
534 cris_stopped_data_address (void)
537 eda = read_register (EDA_REGNUM);
541 /* The instruction environment needed to find single-step breakpoints. */
544 struct instruction_environment
546 unsigned long reg[NUM_GENREGS];
547 unsigned long preg[NUM_SPECREGS];
548 unsigned long branch_break_address;
549 unsigned long delay_slot_pc;
550 unsigned long prefix_value;
555 int delay_slot_pc_active;
557 int disable_interrupt;
560 /* Save old breakpoints in order to restore the state before a single_step.
561 At most, two breakpoints will have to be remembered. */
563 char binsn_quantum[BREAKPOINT_MAX];
564 static binsn_quantum break_mem[2];
565 static CORE_ADDR next_pc = 0;
566 static CORE_ADDR branch_target_address = 0;
567 static unsigned char branch_break_inserted = 0;
569 /* Machine-dependencies in CRIS for opcodes. */
571 /* Instruction sizes. */
572 enum cris_instruction_sizes
579 /* Addressing modes. */
580 enum cris_addressing_modes
587 /* Prefix addressing modes. */
588 enum cris_prefix_addressing_modes
590 PREFIX_INDEX_MODE = 2,
591 PREFIX_ASSIGN_MODE = 3,
593 /* Handle immediate byte offset addressing mode prefix format. */
594 PREFIX_OFFSET_MODE = 2
597 /* Masks for opcodes. */
598 enum cris_opcode_masks
600 BRANCH_SIGNED_SHORT_OFFSET_MASK = 0x1,
601 SIGNED_EXTEND_BIT_MASK = 0x2,
602 SIGNED_BYTE_MASK = 0x80,
603 SIGNED_BYTE_EXTEND_MASK = 0xFFFFFF00,
604 SIGNED_WORD_MASK = 0x8000,
605 SIGNED_WORD_EXTEND_MASK = 0xFFFF0000,
606 SIGNED_DWORD_MASK = 0x80000000,
607 SIGNED_QUICK_VALUE_MASK = 0x20,
608 SIGNED_QUICK_VALUE_EXTEND_MASK = 0xFFFFFFC0
611 /* Functions for opcodes. The general form of the ETRAX 16-bit instruction:
619 cris_get_operand2 (unsigned short insn)
621 return ((insn & 0xF000) >> 12);
625 cris_get_mode (unsigned short insn)
627 return ((insn & 0x0C00) >> 10);
631 cris_get_opcode (unsigned short insn)
633 return ((insn & 0x03C0) >> 6);
637 cris_get_size (unsigned short insn)
639 return ((insn & 0x0030) >> 4);
643 cris_get_operand1 (unsigned short insn)
645 return (insn & 0x000F);
648 /* Additional functions in order to handle opcodes. */
651 cris_get_quick_value (unsigned short insn)
653 return (insn & 0x003F);
657 cris_get_bdap_quick_offset (unsigned short insn)
659 return (insn & 0x00FF);
663 cris_get_branch_short_offset (unsigned short insn)
665 return (insn & 0x00FF);
669 cris_get_asr_shift_steps (unsigned long value)
671 return (value & 0x3F);
675 cris_get_clear_size (unsigned short insn)
677 return ((insn) & 0xC000);
681 cris_is_signed_extend_bit_on (unsigned short insn)
683 return (((insn) & 0x20) == 0x20);
687 cris_is_xflag_bit_on (unsigned short insn)
689 return (((insn) & 0x1000) == 0x1000);
693 cris_set_size_to_dword (unsigned short *insn)
700 cris_get_signed_offset (unsigned short insn)
702 return ((signed char) (insn & 0x00FF));
705 /* Calls an op function given the op-type, working on the insn and the
707 static void cris_gdb_func (enum cris_op_type, unsigned short, inst_env_type *);
709 static struct gdbarch *cris_gdbarch_init (struct gdbarch_info,
710 struct gdbarch_list *);
712 static void cris_dump_tdep (struct gdbarch *, struct ui_file *);
714 static void set_cris_version (char *ignore_args, int from_tty,
715 struct cmd_list_element *c);
717 static void set_cris_mode (char *ignore_args, int from_tty,
718 struct cmd_list_element *c);
720 static void set_cris_dwarf2_cfi (char *ignore_args, int from_tty,
721 struct cmd_list_element *c);
723 static CORE_ADDR cris_scan_prologue (CORE_ADDR pc,
724 struct frame_info *next_frame,
725 struct cris_unwind_cache *info);
727 static CORE_ADDR cris_unwind_pc (struct gdbarch *gdbarch,
728 struct frame_info *next_frame);
730 static CORE_ADDR cris_unwind_sp (struct gdbarch *gdbarch,
731 struct frame_info *next_frame);
733 /* When arguments must be pushed onto the stack, they go on in reverse
734 order. The below implements a FILO (stack) to do this.
735 Copied from d10v-tdep.c. */
740 struct stack_item *prev;
744 static struct stack_item *
745 push_stack_item (struct stack_item *prev, void *contents, int len)
747 struct stack_item *si;
748 si = xmalloc (sizeof (struct stack_item));
749 si->data = xmalloc (len);
752 memcpy (si->data, contents, len);
756 static struct stack_item *
757 pop_stack_item (struct stack_item *si)
759 struct stack_item *dead = si;
766 /* Put here the code to store, into fi->saved_regs, the addresses of
767 the saved registers of frame described by FRAME_INFO. This
768 includes special registers such as pc and fp saved in special ways
769 in the stack frame. sp is even more special: the address we return
770 for it IS the sp for the next frame. */
772 struct cris_unwind_cache *
773 cris_frame_unwind_cache (struct frame_info *next_frame,
774 void **this_prologue_cache)
777 struct cris_unwind_cache *info;
780 if ((*this_prologue_cache))
781 return (*this_prologue_cache);
783 info = FRAME_OBSTACK_ZALLOC (struct cris_unwind_cache);
784 (*this_prologue_cache) = info;
785 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
787 /* Zero all fields. */
793 info->uses_frame = 0;
795 info->leaf_function = 0;
797 /* Prologue analysis does the rest... */
798 cris_scan_prologue (frame_func_unwind (next_frame), next_frame, info);
803 /* Given a GDB frame, determine the address of the calling function's
804 frame. This will be used to create a new GDB frame struct. */
807 cris_frame_this_id (struct frame_info *next_frame,
808 void **this_prologue_cache,
809 struct frame_id *this_id)
811 struct cris_unwind_cache *info
812 = cris_frame_unwind_cache (next_frame, this_prologue_cache);
817 /* The FUNC is easy. */
818 func = frame_func_unwind (next_frame);
820 /* Hopefully the prologue analysis either correctly determined the
821 frame's base (which is the SP from the previous frame), or set
822 that base to "NULL". */
823 base = info->prev_sp;
827 id = frame_id_build (base, func);
833 cris_frame_prev_register (struct frame_info *next_frame,
834 void **this_prologue_cache,
835 int regnum, int *optimizedp,
836 enum lval_type *lvalp, CORE_ADDR *addrp,
837 int *realnump, gdb_byte *bufferp)
839 struct cris_unwind_cache *info
840 = cris_frame_unwind_cache (next_frame, this_prologue_cache);
841 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
842 optimizedp, lvalp, addrp, realnump, bufferp);
845 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
846 dummy frame. The frame ID's base needs to match the TOS value
847 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
850 static struct frame_id
851 cris_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
853 return frame_id_build (cris_unwind_sp (gdbarch, next_frame),
854 frame_pc_unwind (next_frame));
858 cris_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
860 /* Align to the size of an instruction (so that they can safely be
861 pushed onto the stack). */
866 cris_push_dummy_code (struct gdbarch *gdbarch,
867 CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc,
868 struct value **args, int nargs,
869 struct type *value_type,
870 CORE_ADDR *real_pc, CORE_ADDR *bp_addr)
872 /* Allocate space sufficient for a breakpoint. */
874 /* Store the address of that breakpoint */
876 /* CRIS always starts the call at the callee's entry point. */
882 cris_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
883 struct regcache *regcache, CORE_ADDR bp_addr,
884 int nargs, struct value **args, CORE_ADDR sp,
885 int struct_return, CORE_ADDR struct_addr)
894 /* The function's arguments and memory allocated by gdb for the arguments to
895 point at reside in separate areas on the stack.
896 Both frame pointers grow toward higher addresses. */
900 struct stack_item *si = NULL;
902 /* Push the return address. */
903 regcache_cooked_write_unsigned (regcache, SRP_REGNUM, bp_addr);
905 /* Are we returning a value using a structure return or a normal value
906 return? struct_addr is the address of the reserved space for the return
907 structure to be written on the stack. */
910 regcache_cooked_write_unsigned (regcache, STR_REGNUM, struct_addr);
913 /* Now load as many as possible of the first arguments into registers,
914 and push the rest onto the stack. */
915 argreg = ARG1_REGNUM;
918 for (argnum = 0; argnum < nargs; argnum++)
925 len = TYPE_LENGTH (value_type (args[argnum]));
926 val = (char *) value_contents (args[argnum]);
928 /* How may registers worth of storage do we need for this argument? */
929 reg_demand = (len / 4) + (len % 4 != 0 ? 1 : 0);
931 if (len <= (2 * 4) && (argreg + reg_demand - 1 <= ARG4_REGNUM))
933 /* Data passed by value. Fits in available register(s). */
934 for (i = 0; i < reg_demand; i++)
936 regcache_cooked_write_unsigned (regcache, argreg,
937 *(unsigned long *) val);
942 else if (len <= (2 * 4) && argreg <= ARG4_REGNUM)
944 /* Data passed by value. Does not fit in available register(s).
945 Use the register(s) first, then the stack. */
946 for (i = 0; i < reg_demand; i++)
948 if (argreg <= ARG4_REGNUM)
950 regcache_cooked_write_unsigned (regcache, argreg,
951 *(unsigned long *) val);
957 /* Push item for later so that pushed arguments
958 come in the right order. */
959 si = push_stack_item (si, val, 4);
964 else if (len > (2 * 4))
967 internal_error (__FILE__, __LINE__, _("We don't do this"));
971 /* Data passed by value. No available registers. Put it on
973 si = push_stack_item (si, val, len);
979 /* fp_arg must be word-aligned (i.e., don't += len) to match
980 the function prologue. */
981 sp = (sp - si->len) & ~3;
982 write_memory (sp, si->data, si->len);
983 si = pop_stack_item (si);
986 /* Finally, update the SP register. */
987 regcache_cooked_write_unsigned (regcache, SP_REGNUM, sp);
992 static const struct frame_unwind cris_frame_unwind =
996 cris_frame_prev_register
999 const struct frame_unwind *
1000 cris_frame_sniffer (struct frame_info *next_frame)
1002 return &cris_frame_unwind;
1006 cris_frame_base_address (struct frame_info *next_frame, void **this_cache)
1008 struct cris_unwind_cache *info
1009 = cris_frame_unwind_cache (next_frame, this_cache);
1013 static const struct frame_base cris_frame_base =
1016 cris_frame_base_address,
1017 cris_frame_base_address,
1018 cris_frame_base_address
1021 /* Frames information. The definition of the struct frame_info is
1025 enum frame_type type;
1029 If the compilation option -fno-omit-frame-pointer is present the
1030 variable frame will be set to the content of R8 which is the frame
1033 The variable pc contains the address where execution is performed
1034 in the present frame. The innermost frame contains the current content
1035 of the register PC. All other frames contain the content of the
1036 register PC in the next frame.
1038 The variable `type' indicates the frame's type: normal, SIGTRAMP
1039 (associated with a signal handler), dummy (associated with a dummy
1042 The variable return_pc contains the address where execution should be
1043 resumed when the present frame has finished, the return address.
1045 The variable leaf_function is 1 if the return address is in the register
1046 SRP, and 0 if it is on the stack.
1048 Prologue instructions C-code.
1049 The prologue may consist of (-fno-omit-frame-pointer)
1053 move.d sp,r8 move.d sp,r8
1055 movem rY,[sp] movem rY,[sp]
1056 move.S rZ,[r8-U] move.S rZ,[r8-U]
1058 where 1 is a non-terminal function, and 2 is a leaf-function.
1060 Note that this assumption is extremely brittle, and will break at the
1061 slightest change in GCC's prologue.
1063 If local variables are declared or register contents are saved on stack
1064 the subq-instruction will be present with X as the number of bytes
1065 needed for storage. The reshuffle with respect to r8 may be performed
1066 with any size S (b, w, d) and any of the general registers Z={0..13}.
1067 The offset U should be representable by a signed 8-bit value in all cases.
1068 Thus, the prefix word is assumed to be immediate byte offset mode followed
1069 by another word containing the instruction.
1078 Prologue instructions C++-code.
1079 Case 1) and 2) in the C-code may be followed by
1081 move.d r10,rS ; this
1085 move.S [r8+U],rZ ; P4
1087 if any of the call parameters are stored. The host expects these
1088 instructions to be executed in order to get the call parameters right. */
1090 /* Examine the prologue of a function. The variable ip is the address of
1091 the first instruction of the prologue. The variable limit is the address
1092 of the first instruction after the prologue. The variable fi contains the
1093 information in struct frame_info. The variable frameless_p controls whether
1094 the entire prologue is examined (0) or just enough instructions to
1095 determine that it is a prologue (1). */
1098 cris_scan_prologue (CORE_ADDR pc, struct frame_info *next_frame,
1099 struct cris_unwind_cache *info)
1101 /* Present instruction. */
1102 unsigned short insn;
1104 /* Next instruction, lookahead. */
1105 unsigned short insn_next;
1108 /* Is there a push fp? */
1111 /* Number of byte on stack used for local variables and movem. */
1114 /* Highest register number in a movem. */
1117 /* move.d r<source_register>,rS */
1118 short source_register;
1123 /* This frame is with respect to a leaf until a push srp is found. */
1126 info->leaf_function = 1;
1129 /* Assume nothing on stack. */
1133 /* If we were called without a next_frame, that means we were called
1134 from cris_skip_prologue which already tried to find the end of the
1135 prologue through the symbol information. 64 instructions past current
1136 pc is arbitrarily chosen, but at least it means we'll stop eventually. */
1137 limit = next_frame ? frame_pc_unwind (next_frame) : pc + 64;
1139 /* Find the prologue instructions. */
1140 while (pc > 0 && pc < limit)
1142 insn = read_memory_unsigned_integer (pc, 2);
1146 /* push <reg> 32 bit instruction */
1147 insn_next = read_memory_unsigned_integer (pc, 2);
1149 regno = cris_get_operand2 (insn_next);
1152 info->sp_offset += 4;
1154 /* This check, meant to recognize srp, used to be regno ==
1155 (SRP_REGNUM - NUM_GENREGS), but that covers r11 also. */
1156 if (insn_next == 0xBE7E)
1160 info->leaf_function = 0;
1163 else if (insn_next == 0x8FEE)
1168 info->r8_offset = info->sp_offset;
1172 else if (insn == 0x866E)
1177 info->uses_frame = 1;
1181 else if (cris_get_operand2 (insn) == SP_REGNUM
1182 && cris_get_mode (insn) == 0x0000
1183 && cris_get_opcode (insn) == 0x000A)
1188 info->sp_offset += cris_get_quick_value (insn);
1191 else if (cris_get_mode (insn) == 0x0002
1192 && cris_get_opcode (insn) == 0x000F
1193 && cris_get_size (insn) == 0x0003
1194 && cris_get_operand1 (insn) == SP_REGNUM)
1196 /* movem r<regsave>,[sp] */
1197 regsave = cris_get_operand2 (insn);
1199 else if (cris_get_operand2 (insn) == SP_REGNUM
1200 && ((insn & 0x0F00) >> 8) == 0x0001
1201 && (cris_get_signed_offset (insn) < 0))
1203 /* Immediate byte offset addressing prefix word with sp as base
1204 register. Used for CRIS v8 i.e. ETRAX 100 and newer if <val>
1205 is between 64 and 128.
1206 movem r<regsave>,[sp=sp-<val>] */
1209 info->sp_offset += -cris_get_signed_offset (insn);
1211 insn_next = read_memory_unsigned_integer (pc, 2);
1213 if (cris_get_mode (insn_next) == PREFIX_ASSIGN_MODE
1214 && cris_get_opcode (insn_next) == 0x000F
1215 && cris_get_size (insn_next) == 0x0003
1216 && cris_get_operand1 (insn_next) == SP_REGNUM)
1218 regsave = cris_get_operand2 (insn_next);
1222 /* The prologue ended before the limit was reached. */
1227 else if (cris_get_mode (insn) == 0x0001
1228 && cris_get_opcode (insn) == 0x0009
1229 && cris_get_size (insn) == 0x0002)
1231 /* move.d r<10..13>,r<0..15> */
1232 source_register = cris_get_operand1 (insn);
1234 /* FIXME? In the glibc solibs, the prologue might contain something
1235 like (this example taken from relocate_doit):
1237 sub.d 0xfffef426,$r0
1238 which isn't covered by the source_register check below. Question
1239 is whether to add a check for this combo, or make better use of
1240 the limit variable instead. */
1241 if (source_register < ARG1_REGNUM || source_register > ARG4_REGNUM)
1243 /* The prologue ended before the limit was reached. */
1248 else if (cris_get_operand2 (insn) == CRIS_FP_REGNUM
1249 /* The size is a fixed-size. */
1250 && ((insn & 0x0F00) >> 8) == 0x0001
1251 /* A negative offset. */
1252 && (cris_get_signed_offset (insn) < 0))
1254 /* move.S rZ,[r8-U] (?) */
1255 insn_next = read_memory_unsigned_integer (pc, 2);
1257 regno = cris_get_operand2 (insn_next);
1258 if ((regno >= 0 && regno < SP_REGNUM)
1259 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
1260 && cris_get_opcode (insn_next) == 0x000F)
1262 /* move.S rZ,[r8-U] */
1267 /* The prologue ended before the limit was reached. */
1272 else if (cris_get_operand2 (insn) == CRIS_FP_REGNUM
1273 /* The size is a fixed-size. */
1274 && ((insn & 0x0F00) >> 8) == 0x0001
1275 /* A positive offset. */
1276 && (cris_get_signed_offset (insn) > 0))
1278 /* move.S [r8+U],rZ (?) */
1279 insn_next = read_memory_unsigned_integer (pc, 2);
1281 regno = cris_get_operand2 (insn_next);
1282 if ((regno >= 0 && regno < SP_REGNUM)
1283 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
1284 && cris_get_opcode (insn_next) == 0x0009
1285 && cris_get_operand1 (insn_next) == regno)
1287 /* move.S [r8+U],rZ */
1292 /* The prologue ended before the limit was reached. */
1299 /* The prologue ended before the limit was reached. */
1305 /* We only want to know the end of the prologue when next_frame and info
1306 are NULL (called from cris_skip_prologue i.e.). */
1307 if (next_frame == NULL && info == NULL)
1312 info->size = info->sp_offset;
1314 /* Compute the previous frame's stack pointer (which is also the
1315 frame's ID's stack address), and this frame's base pointer. */
1316 if (info->uses_frame)
1319 /* The SP was moved to the FP. This indicates that a new frame
1320 was created. Get THIS frame's FP value by unwinding it from
1322 frame_unwind_unsigned_register (next_frame, CRIS_FP_REGNUM,
1324 info->base = this_base;
1325 info->saved_regs[CRIS_FP_REGNUM].addr = info->base;
1327 /* The FP points at the last saved register. Adjust the FP back
1328 to before the first saved register giving the SP. */
1329 info->prev_sp = info->base + info->r8_offset;
1334 /* Assume that the FP is this frame's SP but with that pushed
1335 stack space added back. */
1336 frame_unwind_unsigned_register (next_frame, SP_REGNUM, &this_base);
1337 info->base = this_base;
1338 info->prev_sp = info->base + info->size;
1341 /* Calculate the addresses for the saved registers on the stack. */
1342 /* FIXME: The address calculation should really be done on the fly while
1343 we're analyzing the prologue (we only hold one regsave value as it is
1345 val = info->sp_offset;
1347 for (regno = regsave; regno >= 0; regno--)
1349 info->saved_regs[regno].addr = info->base + info->r8_offset - val;
1353 /* The previous frame's SP needed to be computed. Save the computed
1355 trad_frame_set_value (info->saved_regs, SP_REGNUM, info->prev_sp);
1357 if (!info->leaf_function)
1359 /* SRP saved on the stack. But where? */
1360 if (info->r8_offset == 0)
1362 /* R8 not pushed yet. */
1363 info->saved_regs[SRP_REGNUM].addr = info->base;
1367 /* R8 pushed, but SP may or may not be moved to R8 yet. */
1368 info->saved_regs[SRP_REGNUM].addr = info->base + 4;
1372 /* The PC is found in SRP (the actual register or located on the stack). */
1373 info->saved_regs[PC_REGNUM] = info->saved_regs[SRP_REGNUM];
1378 /* Advance pc beyond any function entry prologue instructions at pc
1379 to reach some "real" code. */
1381 /* Given a PC value corresponding to the start of a function, return the PC
1382 of the first instruction after the function prologue. */
1385 cris_skip_prologue (CORE_ADDR pc)
1387 CORE_ADDR func_addr, func_end;
1388 struct symtab_and_line sal;
1389 CORE_ADDR pc_after_prologue;
1391 /* If we have line debugging information, then the end of the prologue
1392 should the first assembly instruction of the first source line. */
1393 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1395 sal = find_pc_line (func_addr, 0);
1396 if (sal.end > 0 && sal.end < func_end)
1400 pc_after_prologue = cris_scan_prologue (pc, NULL, NULL);
1401 return pc_after_prologue;
1405 cris_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1408 frame_unwind_unsigned_register (next_frame, PC_REGNUM, &pc);
1413 cris_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1416 frame_unwind_unsigned_register (next_frame, SP_REGNUM, &sp);
1420 /* Use the program counter to determine the contents and size of a breakpoint
1421 instruction. It returns a pointer to a string of bytes that encode a
1422 breakpoint instruction, stores the length of the string to *lenptr, and
1423 adjusts pcptr (if necessary) to point to the actual memory location where
1424 the breakpoint should be inserted. */
1426 static const unsigned char *
1427 cris_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
1429 static unsigned char break8_insn[] = {0x38, 0xe9};
1430 static unsigned char break15_insn[] = {0x3f, 0xe9};
1433 if (cris_mode () == cris_mode_guru)
1434 return break15_insn;
1439 /* Returns 1 if spec_reg is applicable to the current gdbarch's CRIS version,
1443 cris_spec_reg_applicable (struct cris_spec_reg spec_reg)
1445 int version = cris_version ();
1447 switch (spec_reg.applicable_version)
1449 case cris_ver_version_all:
1451 case cris_ver_warning:
1452 /* Indeterminate/obsolete. */
1455 return (version >= 0 && version <= 3);
1457 return (version >= 3);
1459 return (version == 8 || version == 9);
1461 return (version >= 8);
1462 case cris_ver_v0_10:
1463 return (version >= 0 && version <= 10);
1464 case cris_ver_v3_10:
1465 return (version >= 3 && version <= 10);
1466 case cris_ver_v8_10:
1467 return (version >= 8 && version <= 10);
1469 return (version == 10);
1471 return (version >= 10);
1473 return (version >= 32);
1475 /* Invalid cris version. */
1480 /* Returns the register size in unit byte. Returns 0 for an unimplemented
1481 register, -1 for an invalid register. */
1484 cris_register_size (int regno)
1486 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1490 if (regno >= 0 && regno < NUM_GENREGS)
1492 /* General registers (R0 - R15) are 32 bits. */
1495 else if (regno >= NUM_GENREGS && regno < (NUM_GENREGS + NUM_SPECREGS))
1497 /* Special register (R16 - R31). cris_spec_regs is zero-based.
1498 Adjust regno accordingly. */
1499 spec_regno = regno - NUM_GENREGS;
1501 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1503 if (cris_spec_regs[i].number == spec_regno
1504 && cris_spec_reg_applicable (cris_spec_regs[i]))
1505 /* Go with the first applicable register. */
1506 return cris_spec_regs[i].reg_size;
1508 /* Special register not applicable to this CRIS version. */
1511 else if (regno >= PC_REGNUM && regno < NUM_REGS)
1513 /* This will apply to CRISv32 only where there are additional registers
1514 after the special registers (pseudo PC and support registers). */
1522 /* Nonzero if regno should not be fetched from the target. This is the case
1523 for unimplemented (size 0) and non-existant registers. */
1526 cris_cannot_fetch_register (int regno)
1528 return ((regno < 0 || regno >= NUM_REGS)
1529 || (cris_register_size (regno) == 0));
1532 /* Nonzero if regno should not be written to the target, for various
1536 cris_cannot_store_register (int regno)
1538 /* There are three kinds of registers we refuse to write to.
1539 1. Those that not implemented.
1540 2. Those that are read-only (depends on the processor mode).
1541 3. Those registers to which a write has no effect.
1544 if (regno < 0 || regno >= NUM_REGS || cris_register_size (regno) == 0)
1545 /* Not implemented. */
1548 else if (regno == VR_REGNUM)
1552 else if (regno == P0_REGNUM || regno == P4_REGNUM || regno == P8_REGNUM)
1553 /* Writing has no effect. */
1556 /* IBR, BAR, BRP and IRP are read-only in user mode. Let the debug
1557 agent decide whether they are writable. */
1562 /* Nonzero if regno should not be fetched from the target. This is the case
1563 for unimplemented (size 0) and non-existant registers. */
1566 crisv32_cannot_fetch_register (int regno)
1568 return ((regno < 0 || regno >= NUM_REGS)
1569 || (cris_register_size (regno) == 0));
1572 /* Nonzero if regno should not be written to the target, for various
1576 crisv32_cannot_store_register (int regno)
1578 /* There are three kinds of registers we refuse to write to.
1579 1. Those that not implemented.
1580 2. Those that are read-only (depends on the processor mode).
1581 3. Those registers to which a write has no effect.
1584 if (regno < 0 || regno >= NUM_REGS || cris_register_size (regno) == 0)
1585 /* Not implemented. */
1588 else if (regno == VR_REGNUM)
1592 else if (regno == BZ_REGNUM || regno == WZ_REGNUM || regno == DZ_REGNUM)
1593 /* Writing has no effect. */
1596 /* Many special registers are read-only in user mode. Let the debug
1597 agent decide whether they are writable. */
1602 /* Return the GDB type (defined in gdbtypes.c) for the "standard" data type
1603 of data in register regno. */
1605 static struct type *
1606 cris_register_type (struct gdbarch *gdbarch, int regno)
1608 if (regno == PC_REGNUM)
1609 return builtin_type_void_func_ptr;
1610 else if (regno == SP_REGNUM || regno == CRIS_FP_REGNUM)
1611 return builtin_type_void_data_ptr;
1612 else if ((regno >= 0 && regno < SP_REGNUM)
1613 || (regno >= MOF_REGNUM && regno <= USP_REGNUM))
1614 /* Note: R8 taken care of previous clause. */
1615 return builtin_type_uint32;
1616 else if (regno >= P4_REGNUM && regno <= CCR_REGNUM)
1617 return builtin_type_uint16;
1618 else if (regno >= P0_REGNUM && regno <= VR_REGNUM)
1619 return builtin_type_uint8;
1621 /* Invalid (unimplemented) register. */
1622 return builtin_type_int0;
1625 static struct type *
1626 crisv32_register_type (struct gdbarch *gdbarch, int regno)
1628 if (regno == PC_REGNUM)
1629 return builtin_type_void_func_ptr;
1630 else if (regno == SP_REGNUM || regno == CRIS_FP_REGNUM)
1631 return builtin_type_void_data_ptr;
1632 else if ((regno >= 0 && regno <= ACR_REGNUM)
1633 || (regno >= EXS_REGNUM && regno <= SPC_REGNUM)
1634 || (regno == PID_REGNUM)
1635 || (regno >= S0_REGNUM && regno <= S15_REGNUM))
1636 /* Note: R8 and SP taken care of by previous clause. */
1637 return builtin_type_uint32;
1638 else if (regno == WZ_REGNUM)
1639 return builtin_type_uint16;
1640 else if (regno == BZ_REGNUM || regno == VR_REGNUM || regno == SRS_REGNUM)
1641 return builtin_type_uint8;
1644 /* Invalid (unimplemented) register. Should not happen as there are
1645 no unimplemented CRISv32 registers. */
1646 warning (_("crisv32_register_type: unknown regno %d"), regno);
1647 return builtin_type_int0;
1651 /* Stores a function return value of type type, where valbuf is the address
1652 of the value to be stored. */
1654 /* In the CRIS ABI, R10 and R11 are used to store return values. */
1657 cris_store_return_value (struct type *type, struct regcache *regcache,
1661 int len = TYPE_LENGTH (type);
1665 /* Put the return value in R10. */
1666 val = extract_unsigned_integer (valbuf, len);
1667 regcache_cooked_write_unsigned (regcache, ARG1_REGNUM, val);
1671 /* Put the return value in R10 and R11. */
1672 val = extract_unsigned_integer (valbuf, 4);
1673 regcache_cooked_write_unsigned (regcache, ARG1_REGNUM, val);
1674 val = extract_unsigned_integer ((char *)valbuf + 4, len - 4);
1675 regcache_cooked_write_unsigned (regcache, ARG2_REGNUM, val);
1678 error (_("cris_store_return_value: type length too large."));
1681 /* Return the name of register regno as a string. Return NULL for an invalid or
1682 unimplemented register. */
1685 cris_special_register_name (int regno)
1690 /* Special register (R16 - R31). cris_spec_regs is zero-based.
1691 Adjust regno accordingly. */
1692 spec_regno = regno - NUM_GENREGS;
1694 /* Assume nothing about the layout of the cris_spec_regs struct
1696 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1698 if (cris_spec_regs[i].number == spec_regno
1699 && cris_spec_reg_applicable (cris_spec_regs[i]))
1700 /* Go with the first applicable register. */
1701 return cris_spec_regs[i].name;
1703 /* Special register not applicable to this CRIS version. */
1708 cris_register_name (int regno)
1710 static char *cris_genreg_names[] =
1711 { "r0", "r1", "r2", "r3", \
1712 "r4", "r5", "r6", "r7", \
1713 "r8", "r9", "r10", "r11", \
1714 "r12", "r13", "sp", "pc" };
1716 if (regno >= 0 && regno < NUM_GENREGS)
1718 /* General register. */
1719 return cris_genreg_names[regno];
1721 else if (regno >= NUM_GENREGS && regno < NUM_REGS)
1723 return cris_special_register_name (regno);
1727 /* Invalid register. */
1733 crisv32_register_name (int regno)
1735 static char *crisv32_genreg_names[] =
1736 { "r0", "r1", "r2", "r3", \
1737 "r4", "r5", "r6", "r7", \
1738 "r8", "r9", "r10", "r11", \
1739 "r12", "r13", "sp", "acr"
1742 static char *crisv32_sreg_names[] =
1743 { "s0", "s1", "s2", "s3", \
1744 "s4", "s5", "s6", "s7", \
1745 "s8", "s9", "s10", "s11", \
1746 "s12", "s13", "s14", "s15"
1749 if (regno >= 0 && regno < NUM_GENREGS)
1751 /* General register. */
1752 return crisv32_genreg_names[regno];
1754 else if (regno >= NUM_GENREGS && regno < (NUM_GENREGS + NUM_SPECREGS))
1756 return cris_special_register_name (regno);
1758 else if (regno == PC_REGNUM)
1762 else if (regno >= S0_REGNUM && regno <= S15_REGNUM)
1764 return crisv32_sreg_names[regno - S0_REGNUM];
1768 /* Invalid register. */
1773 /* Convert DWARF register number REG to the appropriate register
1774 number used by GDB. */
1777 cris_dwarf2_reg_to_regnum (int reg)
1779 /* We need to re-map a couple of registers (SRP is 16 in Dwarf-2 register
1780 numbering, MOF is 18).
1781 Adapted from gcc/config/cris/cris.h. */
1782 static int cris_dwarf_regmap[] = {
1794 if (reg >= 0 && reg < ARRAY_SIZE (cris_dwarf_regmap))
1795 regnum = cris_dwarf_regmap[reg];
1798 warning (_("Unmapped DWARF Register #%d encountered."), reg);
1803 /* DWARF-2 frame support. */
1806 cris_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1807 struct dwarf2_frame_state_reg *reg)
1809 /* The return address column. */
1810 if (regnum == PC_REGNUM)
1811 reg->how = DWARF2_FRAME_REG_RA;
1813 /* The call frame address. */
1814 else if (regnum == SP_REGNUM)
1815 reg->how = DWARF2_FRAME_REG_CFA;
1818 /* Extract from an array regbuf containing the raw register state a function
1819 return value of type type, and copy that, in virtual format, into
1822 /* In the CRIS ABI, R10 and R11 are used to store return values. */
1825 cris_extract_return_value (struct type *type, struct regcache *regcache,
1829 int len = TYPE_LENGTH (type);
1833 /* Get the return value from R10. */
1834 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &val);
1835 store_unsigned_integer (valbuf, len, val);
1839 /* Get the return value from R10 and R11. */
1840 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &val);
1841 store_unsigned_integer (valbuf, 4, val);
1842 regcache_cooked_read_unsigned (regcache, ARG2_REGNUM, &val);
1843 store_unsigned_integer ((char *)valbuf + 4, len - 4, val);
1846 error (_("cris_extract_return_value: type length too large"));
1849 /* Handle the CRIS return value convention. */
1851 static enum return_value_convention
1852 cris_return_value (struct gdbarch *gdbarch, struct type *type,
1853 struct regcache *regcache, gdb_byte *readbuf,
1854 const gdb_byte *writebuf)
1856 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1857 || TYPE_CODE (type) == TYPE_CODE_UNION
1858 || TYPE_LENGTH (type) > 8)
1859 /* Structs, unions, and anything larger than 8 bytes (2 registers)
1860 goes on the stack. */
1861 return RETURN_VALUE_STRUCT_CONVENTION;
1864 cris_extract_return_value (type, regcache, readbuf);
1866 cris_store_return_value (type, regcache, writebuf);
1868 return RETURN_VALUE_REGISTER_CONVENTION;
1871 /* Returns 1 if the given type will be passed by pointer rather than
1874 /* In the CRIS ABI, arguments shorter than or equal to 64 bits are passed
1878 cris_reg_struct_has_addr (int gcc_p, struct type *type)
1880 return (TYPE_LENGTH (type) > 8);
1883 /* Calculates a value that measures how good inst_args constraints an
1884 instruction. It stems from cris_constraint, found in cris-dis.c. */
1887 constraint (unsigned int insn, const signed char *inst_args,
1888 inst_env_type *inst_env)
1893 const char *s = inst_args;
1899 if ((insn & 0x30) == 0x30)
1904 /* A prefix operand. */
1905 if (inst_env->prefix_found)
1911 /* A "push" prefix. (This check was REMOVED by san 970921.) Check for
1912 valid "push" size. In case of special register, it may be != 4. */
1913 if (inst_env->prefix_found)
1919 retval = (((insn >> 0xC) & 0xF) == (insn & 0xF));
1927 tmp = (insn >> 0xC) & 0xF;
1929 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1931 /* Since we match four bits, we will give a value of
1932 4 - 1 = 3 in a match. If there is a corresponding
1933 exact match of a special register in another pattern, it
1934 will get a value of 4, which will be higher. This should
1935 be correct in that an exact pattern would match better that
1937 Note that there is a reason for not returning zero; the
1938 pattern for "clear" is partly matched in the bit-pattern
1939 (the two lower bits must be zero), while the bit-pattern
1940 for a move from a special register is matched in the
1941 register constraint.
1942 This also means we will will have a race condition if
1943 there is a partly match in three bits in the bit pattern. */
1944 if (tmp == cris_spec_regs[i].number)
1951 if (cris_spec_regs[i].name == NULL)
1958 /* Returns the number of bits set in the variable value. */
1961 number_of_bits (unsigned int value)
1963 int number_of_bits = 0;
1967 number_of_bits += 1;
1968 value &= (value - 1);
1970 return number_of_bits;
1973 /* Finds the address that should contain the single step breakpoint(s).
1974 It stems from code in cris-dis.c. */
1977 find_cris_op (unsigned short insn, inst_env_type *inst_env)
1980 int max_level_of_match = -1;
1981 int max_matched = -1;
1984 for (i = 0; cris_opcodes[i].name != NULL; i++)
1986 if (((cris_opcodes[i].match & insn) == cris_opcodes[i].match)
1987 && ((cris_opcodes[i].lose & insn) == 0)
1988 /* Only CRISv10 instructions, please. */
1989 && (cris_opcodes[i].applicable_version != cris_ver_v32p))
1991 level_of_match = constraint (insn, cris_opcodes[i].args, inst_env);
1992 if (level_of_match >= 0)
1995 number_of_bits (cris_opcodes[i].match | cris_opcodes[i].lose);
1996 if (level_of_match > max_level_of_match)
1999 max_level_of_match = level_of_match;
2000 if (level_of_match == 16)
2002 /* All bits matched, cannot find better. */
2012 /* Attempts to find single-step breakpoints. Returns -1 on failure which is
2013 actually an internal error. */
2016 find_step_target (inst_env_type *inst_env)
2020 unsigned short insn;
2022 /* Create a local register image and set the initial state. */
2023 for (i = 0; i < NUM_GENREGS; i++)
2025 inst_env->reg[i] = (unsigned long) read_register (i);
2027 offset = NUM_GENREGS;
2028 for (i = 0; i < NUM_SPECREGS; i++)
2030 inst_env->preg[i] = (unsigned long) read_register (offset + i);
2032 inst_env->branch_found = 0;
2033 inst_env->slot_needed = 0;
2034 inst_env->delay_slot_pc_active = 0;
2035 inst_env->prefix_found = 0;
2036 inst_env->invalid = 0;
2037 inst_env->xflag_found = 0;
2038 inst_env->disable_interrupt = 0;
2040 /* Look for a step target. */
2043 /* Read an instruction from the client. */
2044 insn = read_memory_unsigned_integer (inst_env->reg[PC_REGNUM], 2);
2046 /* If the instruction is not in a delay slot the new content of the
2047 PC is [PC] + 2. If the instruction is in a delay slot it is not
2048 that simple. Since a instruction in a delay slot cannot change
2049 the content of the PC, it does not matter what value PC will have.
2050 Just make sure it is a valid instruction. */
2051 if (!inst_env->delay_slot_pc_active)
2053 inst_env->reg[PC_REGNUM] += 2;
2057 inst_env->delay_slot_pc_active = 0;
2058 inst_env->reg[PC_REGNUM] = inst_env->delay_slot_pc;
2060 /* Analyse the present instruction. */
2061 i = find_cris_op (insn, inst_env);
2064 inst_env->invalid = 1;
2068 cris_gdb_func (cris_opcodes[i].op, insn, inst_env);
2070 } while (!inst_env->invalid
2071 && (inst_env->prefix_found || inst_env->xflag_found
2072 || inst_env->slot_needed));
2076 /* There is no hardware single-step support. The function find_step_target
2077 digs through the opcodes in order to find all possible targets.
2078 Either one ordinary target or two targets for branches may be found. */
2081 cris_software_single_step (enum target_signal ignore, int insert_breakpoints)
2083 inst_env_type inst_env;
2085 if (insert_breakpoints)
2087 /* Analyse the present instruction environment and insert
2089 int status = find_step_target (&inst_env);
2092 /* Could not find a target. Things are likely to go downhill
2094 warning (_("CRIS software single step could not find a step target."));
2098 /* Insert at most two breakpoints. One for the next PC content
2099 and possibly another one for a branch, jump, etc. */
2100 next_pc = (CORE_ADDR) inst_env.reg[PC_REGNUM];
2101 target_insert_breakpoint (next_pc, break_mem[0]);
2102 if (inst_env.branch_found
2103 && (CORE_ADDR) inst_env.branch_break_address != next_pc)
2105 branch_target_address =
2106 (CORE_ADDR) inst_env.branch_break_address;
2107 target_insert_breakpoint (branch_target_address, break_mem[1]);
2108 branch_break_inserted = 1;
2114 /* Remove breakpoints. */
2115 target_remove_breakpoint (next_pc, break_mem[0]);
2116 if (branch_break_inserted)
2118 target_remove_breakpoint (branch_target_address, break_mem[1]);
2119 branch_break_inserted = 0;
2124 /* Calculates the prefix value for quick offset addressing mode. */
2127 quick_mode_bdap_prefix (unsigned short inst, inst_env_type *inst_env)
2129 /* It's invalid to be in a delay slot. You can't have a prefix to this
2130 instruction (not 100% sure). */
2131 if (inst_env->slot_needed || inst_env->prefix_found)
2133 inst_env->invalid = 1;
2137 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
2138 inst_env->prefix_value += cris_get_bdap_quick_offset (inst);
2140 /* A prefix doesn't change the xflag_found. But the rest of the flags
2142 inst_env->slot_needed = 0;
2143 inst_env->prefix_found = 1;
2146 /* Updates the autoincrement register. The size of the increment is derived
2147 from the size of the operation. The PC is always kept aligned on even
2151 process_autoincrement (int size, unsigned short inst, inst_env_type *inst_env)
2153 if (size == INST_BYTE_SIZE)
2155 inst_env->reg[cris_get_operand1 (inst)] += 1;
2157 /* The PC must be word aligned, so increase the PC with one
2158 word even if the size is byte. */
2159 if (cris_get_operand1 (inst) == REG_PC)
2161 inst_env->reg[REG_PC] += 1;
2164 else if (size == INST_WORD_SIZE)
2166 inst_env->reg[cris_get_operand1 (inst)] += 2;
2168 else if (size == INST_DWORD_SIZE)
2170 inst_env->reg[cris_get_operand1 (inst)] += 4;
2175 inst_env->invalid = 1;
2179 /* Just a forward declaration. */
2181 static unsigned long get_data_from_address (unsigned short *inst,
2184 /* Calculates the prefix value for the general case of offset addressing
2188 bdap_prefix (unsigned short inst, inst_env_type *inst_env)
2193 /* It's invalid to be in a delay slot. */
2194 if (inst_env->slot_needed || inst_env->prefix_found)
2196 inst_env->invalid = 1;
2200 /* The calculation of prefix_value used to be after process_autoincrement,
2201 but that fails for an instruction such as jsr [$r0+12] which is encoded
2202 as 5f0d 0c00 30b9 when compiled with -fpic. Since PC is operand1 it
2203 mustn't be incremented until we have read it and what it points at. */
2204 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
2206 /* The offset is an indirection of the contents of the operand1 register. */
2207 inst_env->prefix_value +=
2208 get_data_from_address (&inst, inst_env->reg[cris_get_operand1 (inst)]);
2210 if (cris_get_mode (inst) == AUTOINC_MODE)
2212 process_autoincrement (cris_get_size (inst), inst, inst_env);
2215 /* A prefix doesn't change the xflag_found. But the rest of the flags
2217 inst_env->slot_needed = 0;
2218 inst_env->prefix_found = 1;
2221 /* Calculates the prefix value for the index addressing mode. */
2224 biap_prefix (unsigned short inst, inst_env_type *inst_env)
2226 /* It's invalid to be in a delay slot. I can't see that it's possible to
2227 have a prefix to this instruction. So I will treat this as invalid. */
2228 if (inst_env->slot_needed || inst_env->prefix_found)
2230 inst_env->invalid = 1;
2234 inst_env->prefix_value = inst_env->reg[cris_get_operand1 (inst)];
2236 /* The offset is the operand2 value shifted the size of the instruction
2238 inst_env->prefix_value +=
2239 inst_env->reg[cris_get_operand2 (inst)] << cris_get_size (inst);
2241 /* If the PC is operand1 (base) the address used is the address after
2242 the main instruction, i.e. address + 2 (the PC is already compensated
2243 for the prefix operation). */
2244 if (cris_get_operand1 (inst) == REG_PC)
2246 inst_env->prefix_value += 2;
2249 /* A prefix doesn't change the xflag_found. But the rest of the flags
2251 inst_env->slot_needed = 0;
2252 inst_env->xflag_found = 0;
2253 inst_env->prefix_found = 1;
2256 /* Calculates the prefix value for the double indirect addressing mode. */
2259 dip_prefix (unsigned short inst, inst_env_type *inst_env)
2264 /* It's invalid to be in a delay slot. */
2265 if (inst_env->slot_needed || inst_env->prefix_found)
2267 inst_env->invalid = 1;
2271 /* The prefix value is one dereference of the contents of the operand1
2273 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
2274 inst_env->prefix_value = read_memory_unsigned_integer (address, 4);
2276 /* Check if the mode is autoincrement. */
2277 if (cris_get_mode (inst) == AUTOINC_MODE)
2279 inst_env->reg[cris_get_operand1 (inst)] += 4;
2282 /* A prefix doesn't change the xflag_found. But the rest of the flags
2284 inst_env->slot_needed = 0;
2285 inst_env->xflag_found = 0;
2286 inst_env->prefix_found = 1;
2289 /* Finds the destination for a branch with 8-bits offset. */
2292 eight_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
2297 /* If we have a prefix or are in a delay slot it's bad. */
2298 if (inst_env->slot_needed || inst_env->prefix_found)
2300 inst_env->invalid = 1;
2304 /* We have a branch, find out where the branch will land. */
2305 offset = cris_get_branch_short_offset (inst);
2307 /* Check if the offset is signed. */
2308 if (offset & BRANCH_SIGNED_SHORT_OFFSET_MASK)
2313 /* The offset ends with the sign bit, set it to zero. The address
2314 should always be word aligned. */
2315 offset &= ~BRANCH_SIGNED_SHORT_OFFSET_MASK;
2317 inst_env->branch_found = 1;
2318 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2320 inst_env->slot_needed = 1;
2321 inst_env->prefix_found = 0;
2322 inst_env->xflag_found = 0;
2323 inst_env->disable_interrupt = 1;
2326 /* Finds the destination for a branch with 16-bits offset. */
2329 sixteen_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
2333 /* If we have a prefix or is in a delay slot it's bad. */
2334 if (inst_env->slot_needed || inst_env->prefix_found)
2336 inst_env->invalid = 1;
2340 /* We have a branch, find out the offset for the branch. */
2341 offset = read_memory_integer (inst_env->reg[REG_PC], 2);
2343 /* The instruction is one word longer than normal, so add one word
2345 inst_env->reg[REG_PC] += 2;
2347 inst_env->branch_found = 1;
2348 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2351 inst_env->slot_needed = 1;
2352 inst_env->prefix_found = 0;
2353 inst_env->xflag_found = 0;
2354 inst_env->disable_interrupt = 1;
2357 /* Handles the ABS instruction. */
2360 abs_op (unsigned short inst, inst_env_type *inst_env)
2365 /* ABS can't have a prefix, so it's bad if it does. */
2366 if (inst_env->prefix_found)
2368 inst_env->invalid = 1;
2372 /* Check if the operation affects the PC. */
2373 if (cris_get_operand2 (inst) == REG_PC)
2376 /* It's invalid to change to the PC if we are in a delay slot. */
2377 if (inst_env->slot_needed)
2379 inst_env->invalid = 1;
2383 value = (long) inst_env->reg[REG_PC];
2385 /* The value of abs (SIGNED_DWORD_MASK) is SIGNED_DWORD_MASK. */
2386 if (value != SIGNED_DWORD_MASK)
2389 inst_env->reg[REG_PC] = (long) value;
2393 inst_env->slot_needed = 0;
2394 inst_env->prefix_found = 0;
2395 inst_env->xflag_found = 0;
2396 inst_env->disable_interrupt = 0;
2399 /* Handles the ADDI instruction. */
2402 addi_op (unsigned short inst, inst_env_type *inst_env)
2404 /* It's invalid to have the PC as base register. And ADDI can't have
2406 if (inst_env->prefix_found || (cris_get_operand1 (inst) == REG_PC))
2408 inst_env->invalid = 1;
2412 inst_env->slot_needed = 0;
2413 inst_env->prefix_found = 0;
2414 inst_env->xflag_found = 0;
2415 inst_env->disable_interrupt = 0;
2418 /* Handles the ASR instruction. */
2421 asr_op (unsigned short inst, inst_env_type *inst_env)
2424 unsigned long value;
2425 unsigned long signed_extend_mask = 0;
2427 /* ASR can't have a prefix, so check that it doesn't. */
2428 if (inst_env->prefix_found)
2430 inst_env->invalid = 1;
2434 /* Check if the PC is the target register. */
2435 if (cris_get_operand2 (inst) == REG_PC)
2437 /* It's invalid to change the PC in a delay slot. */
2438 if (inst_env->slot_needed)
2440 inst_env->invalid = 1;
2443 /* Get the number of bits to shift. */
2444 shift_steps = cris_get_asr_shift_steps (inst_env->reg[cris_get_operand1 (inst)]);
2445 value = inst_env->reg[REG_PC];
2447 /* Find out how many bits the operation should apply to. */
2448 if (cris_get_size (inst) == INST_BYTE_SIZE)
2450 if (value & SIGNED_BYTE_MASK)
2452 signed_extend_mask = 0xFF;
2453 signed_extend_mask = signed_extend_mask >> shift_steps;
2454 signed_extend_mask = ~signed_extend_mask;
2456 value = value >> shift_steps;
2457 value |= signed_extend_mask;
2459 inst_env->reg[REG_PC] &= 0xFFFFFF00;
2460 inst_env->reg[REG_PC] |= value;
2462 else if (cris_get_size (inst) == INST_WORD_SIZE)
2464 if (value & SIGNED_WORD_MASK)
2466 signed_extend_mask = 0xFFFF;
2467 signed_extend_mask = signed_extend_mask >> shift_steps;
2468 signed_extend_mask = ~signed_extend_mask;
2470 value = value >> shift_steps;
2471 value |= signed_extend_mask;
2473 inst_env->reg[REG_PC] &= 0xFFFF0000;
2474 inst_env->reg[REG_PC] |= value;
2476 else if (cris_get_size (inst) == INST_DWORD_SIZE)
2478 if (value & SIGNED_DWORD_MASK)
2480 signed_extend_mask = 0xFFFFFFFF;
2481 signed_extend_mask = signed_extend_mask >> shift_steps;
2482 signed_extend_mask = ~signed_extend_mask;
2484 value = value >> shift_steps;
2485 value |= signed_extend_mask;
2486 inst_env->reg[REG_PC] = value;
2489 inst_env->slot_needed = 0;
2490 inst_env->prefix_found = 0;
2491 inst_env->xflag_found = 0;
2492 inst_env->disable_interrupt = 0;
2495 /* Handles the ASRQ instruction. */
2498 asrq_op (unsigned short inst, inst_env_type *inst_env)
2502 unsigned long value;
2503 unsigned long signed_extend_mask = 0;
2505 /* ASRQ can't have a prefix, so check that it doesn't. */
2506 if (inst_env->prefix_found)
2508 inst_env->invalid = 1;
2512 /* Check if the PC is the target register. */
2513 if (cris_get_operand2 (inst) == REG_PC)
2516 /* It's invalid to change the PC in a delay slot. */
2517 if (inst_env->slot_needed)
2519 inst_env->invalid = 1;
2522 /* The shift size is given as a 5 bit quick value, i.e. we don't
2523 want the the sign bit of the quick value. */
2524 shift_steps = cris_get_asr_shift_steps (inst);
2525 value = inst_env->reg[REG_PC];
2526 if (value & SIGNED_DWORD_MASK)
2528 signed_extend_mask = 0xFFFFFFFF;
2529 signed_extend_mask = signed_extend_mask >> shift_steps;
2530 signed_extend_mask = ~signed_extend_mask;
2532 value = value >> shift_steps;
2533 value |= signed_extend_mask;
2534 inst_env->reg[REG_PC] = value;
2536 inst_env->slot_needed = 0;
2537 inst_env->prefix_found = 0;
2538 inst_env->xflag_found = 0;
2539 inst_env->disable_interrupt = 0;
2542 /* Handles the AX, EI and SETF instruction. */
2545 ax_ei_setf_op (unsigned short inst, inst_env_type *inst_env)
2547 if (inst_env->prefix_found)
2549 inst_env->invalid = 1;
2552 /* Check if the instruction is setting the X flag. */
2553 if (cris_is_xflag_bit_on (inst))
2555 inst_env->xflag_found = 1;
2559 inst_env->xflag_found = 0;
2561 inst_env->slot_needed = 0;
2562 inst_env->prefix_found = 0;
2563 inst_env->disable_interrupt = 1;
2566 /* Checks if the instruction is in assign mode. If so, it updates the assign
2567 register. Note that check_assign assumes that the caller has checked that
2568 there is a prefix to this instruction. The mode check depends on this. */
2571 check_assign (unsigned short inst, inst_env_type *inst_env)
2573 /* Check if it's an assign addressing mode. */
2574 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2576 /* Assign the prefix value to operand 1. */
2577 inst_env->reg[cris_get_operand1 (inst)] = inst_env->prefix_value;
2581 /* Handles the 2-operand BOUND instruction. */
2584 two_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2586 /* It's invalid to have the PC as the index operand. */
2587 if (cris_get_operand2 (inst) == REG_PC)
2589 inst_env->invalid = 1;
2592 /* Check if we have a prefix. */
2593 if (inst_env->prefix_found)
2595 check_assign (inst, inst_env);
2597 /* Check if this is an autoincrement mode. */
2598 else if (cris_get_mode (inst) == AUTOINC_MODE)
2600 /* It's invalid to change the PC in a delay slot. */
2601 if (inst_env->slot_needed)
2603 inst_env->invalid = 1;
2606 process_autoincrement (cris_get_size (inst), inst, inst_env);
2608 inst_env->slot_needed = 0;
2609 inst_env->prefix_found = 0;
2610 inst_env->xflag_found = 0;
2611 inst_env->disable_interrupt = 0;
2614 /* Handles the 3-operand BOUND instruction. */
2617 three_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2619 /* It's an error if we haven't got a prefix. And it's also an error
2620 if the PC is the destination register. */
2621 if ((!inst_env->prefix_found) || (cris_get_operand1 (inst) == REG_PC))
2623 inst_env->invalid = 1;
2626 inst_env->slot_needed = 0;
2627 inst_env->prefix_found = 0;
2628 inst_env->xflag_found = 0;
2629 inst_env->disable_interrupt = 0;
2632 /* Clears the status flags in inst_env. */
2635 btst_nop_op (unsigned short inst, inst_env_type *inst_env)
2637 /* It's an error if we have got a prefix. */
2638 if (inst_env->prefix_found)
2640 inst_env->invalid = 1;
2644 inst_env->slot_needed = 0;
2645 inst_env->prefix_found = 0;
2646 inst_env->xflag_found = 0;
2647 inst_env->disable_interrupt = 0;
2650 /* Clears the status flags in inst_env. */
2653 clearf_di_op (unsigned short inst, inst_env_type *inst_env)
2655 /* It's an error if we have got a prefix. */
2656 if (inst_env->prefix_found)
2658 inst_env->invalid = 1;
2662 inst_env->slot_needed = 0;
2663 inst_env->prefix_found = 0;
2664 inst_env->xflag_found = 0;
2665 inst_env->disable_interrupt = 1;
2668 /* Handles the CLEAR instruction if it's in register mode. */
2671 reg_mode_clear_op (unsigned short inst, inst_env_type *inst_env)
2673 /* Check if the target is the PC. */
2674 if (cris_get_operand2 (inst) == REG_PC)
2676 /* The instruction will clear the instruction's size bits. */
2677 int clear_size = cris_get_clear_size (inst);
2678 if (clear_size == INST_BYTE_SIZE)
2680 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFFFF00;
2682 if (clear_size == INST_WORD_SIZE)
2684 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFF0000;
2686 if (clear_size == INST_DWORD_SIZE)
2688 inst_env->delay_slot_pc = 0x0;
2690 /* The jump will be delayed with one delay slot. So we need a delay
2692 inst_env->slot_needed = 1;
2693 inst_env->delay_slot_pc_active = 1;
2697 /* The PC will not change => no delay slot. */
2698 inst_env->slot_needed = 0;
2700 inst_env->prefix_found = 0;
2701 inst_env->xflag_found = 0;
2702 inst_env->disable_interrupt = 0;
2705 /* Handles the TEST instruction if it's in register mode. */
2708 reg_mode_test_op (unsigned short inst, inst_env_type *inst_env)
2710 /* It's an error if we have got a prefix. */
2711 if (inst_env->prefix_found)
2713 inst_env->invalid = 1;
2716 inst_env->slot_needed = 0;
2717 inst_env->prefix_found = 0;
2718 inst_env->xflag_found = 0;
2719 inst_env->disable_interrupt = 0;
2723 /* Handles the CLEAR and TEST instruction if the instruction isn't
2724 in register mode. */
2727 none_reg_mode_clear_test_op (unsigned short inst, inst_env_type *inst_env)
2729 /* Check if we are in a prefix mode. */
2730 if (inst_env->prefix_found)
2732 /* The only way the PC can change is if this instruction is in
2733 assign addressing mode. */
2734 check_assign (inst, inst_env);
2736 /* Indirect mode can't change the PC so just check if the mode is
2738 else if (cris_get_mode (inst) == AUTOINC_MODE)
2740 process_autoincrement (cris_get_size (inst), inst, inst_env);
2742 inst_env->slot_needed = 0;
2743 inst_env->prefix_found = 0;
2744 inst_env->xflag_found = 0;
2745 inst_env->disable_interrupt = 0;
2748 /* Checks that the PC isn't the destination register or the instructions has
2752 dstep_logshift_mstep_neg_not_op (unsigned short inst, inst_env_type *inst_env)
2754 /* It's invalid to have the PC as the destination. The instruction can't
2756 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2758 inst_env->invalid = 1;
2762 inst_env->slot_needed = 0;
2763 inst_env->prefix_found = 0;
2764 inst_env->xflag_found = 0;
2765 inst_env->disable_interrupt = 0;
2768 /* Checks that the instruction doesn't have a prefix. */
2771 break_op (unsigned short inst, inst_env_type *inst_env)
2773 /* The instruction can't have a prefix. */
2774 if (inst_env->prefix_found)
2776 inst_env->invalid = 1;
2780 inst_env->slot_needed = 0;
2781 inst_env->prefix_found = 0;
2782 inst_env->xflag_found = 0;
2783 inst_env->disable_interrupt = 1;
2786 /* Checks that the PC isn't the destination register and that the instruction
2787 doesn't have a prefix. */
2790 scc_op (unsigned short inst, inst_env_type *inst_env)
2792 /* It's invalid to have the PC as the destination. The instruction can't
2794 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2796 inst_env->invalid = 1;
2800 inst_env->slot_needed = 0;
2801 inst_env->prefix_found = 0;
2802 inst_env->xflag_found = 0;
2803 inst_env->disable_interrupt = 1;
2806 /* Handles the register mode JUMP instruction. */
2809 reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
2811 /* It's invalid to do a JUMP in a delay slot. The mode is register, so
2812 you can't have a prefix. */
2813 if ((inst_env->slot_needed) || (inst_env->prefix_found))
2815 inst_env->invalid = 1;
2819 /* Just change the PC. */
2820 inst_env->reg[REG_PC] = inst_env->reg[cris_get_operand1 (inst)];
2821 inst_env->slot_needed = 0;
2822 inst_env->prefix_found = 0;
2823 inst_env->xflag_found = 0;
2824 inst_env->disable_interrupt = 1;
2827 /* Handles the JUMP instruction for all modes except register. */
2830 none_reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
2832 unsigned long newpc;
2835 /* It's invalid to do a JUMP in a delay slot. */
2836 if (inst_env->slot_needed)
2838 inst_env->invalid = 1;
2842 /* Check if we have a prefix. */
2843 if (inst_env->prefix_found)
2845 check_assign (inst, inst_env);
2847 /* Get the new value for the the PC. */
2849 read_memory_unsigned_integer ((CORE_ADDR) inst_env->prefix_value,
2854 /* Get the new value for the PC. */
2855 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
2856 newpc = read_memory_unsigned_integer (address, 4);
2858 /* Check if we should increment a register. */
2859 if (cris_get_mode (inst) == AUTOINC_MODE)
2861 inst_env->reg[cris_get_operand1 (inst)] += 4;
2864 inst_env->reg[REG_PC] = newpc;
2866 inst_env->slot_needed = 0;
2867 inst_env->prefix_found = 0;
2868 inst_env->xflag_found = 0;
2869 inst_env->disable_interrupt = 1;
2872 /* Handles moves to special registers (aka P-register) for all modes. */
2875 move_to_preg_op (unsigned short inst, inst_env_type *inst_env)
2877 if (inst_env->prefix_found)
2879 /* The instruction has a prefix that means we are only interested if
2880 the instruction is in assign mode. */
2881 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2883 /* The prefix handles the problem if we are in a delay slot. */
2884 if (cris_get_operand1 (inst) == REG_PC)
2886 /* Just take care of the assign. */
2887 check_assign (inst, inst_env);
2891 else if (cris_get_mode (inst) == AUTOINC_MODE)
2893 /* The instruction doesn't have a prefix, the only case left that we
2894 are interested in is the autoincrement mode. */
2895 if (cris_get_operand1 (inst) == REG_PC)
2897 /* If the PC is to be incremented it's invalid to be in a
2899 if (inst_env->slot_needed)
2901 inst_env->invalid = 1;
2905 /* The increment depends on the size of the special register. */
2906 if (cris_register_size (cris_get_operand2 (inst)) == 1)
2908 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
2910 else if (cris_register_size (cris_get_operand2 (inst)) == 2)
2912 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
2916 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
2920 inst_env->slot_needed = 0;
2921 inst_env->prefix_found = 0;
2922 inst_env->xflag_found = 0;
2923 inst_env->disable_interrupt = 1;
2926 /* Handles moves from special registers (aka P-register) for all modes
2930 none_reg_mode_move_from_preg_op (unsigned short inst, inst_env_type *inst_env)
2932 if (inst_env->prefix_found)
2934 /* The instruction has a prefix that means we are only interested if
2935 the instruction is in assign mode. */
2936 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2938 /* The prefix handles the problem if we are in a delay slot. */
2939 if (cris_get_operand1 (inst) == REG_PC)
2941 /* Just take care of the assign. */
2942 check_assign (inst, inst_env);
2946 /* The instruction doesn't have a prefix, the only case left that we
2947 are interested in is the autoincrement mode. */
2948 else if (cris_get_mode (inst) == AUTOINC_MODE)
2950 if (cris_get_operand1 (inst) == REG_PC)
2952 /* If the PC is to be incremented it's invalid to be in a
2954 if (inst_env->slot_needed)
2956 inst_env->invalid = 1;
2960 /* The increment depends on the size of the special register. */
2961 if (cris_register_size (cris_get_operand2 (inst)) == 1)
2963 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
2965 else if (cris_register_size (cris_get_operand2 (inst)) == 2)
2967 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
2971 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
2975 inst_env->slot_needed = 0;
2976 inst_env->prefix_found = 0;
2977 inst_env->xflag_found = 0;
2978 inst_env->disable_interrupt = 1;
2981 /* Handles moves from special registers (aka P-register) when the mode
2985 reg_mode_move_from_preg_op (unsigned short inst, inst_env_type *inst_env)
2987 /* Register mode move from special register can't have a prefix. */
2988 if (inst_env->prefix_found)
2990 inst_env->invalid = 1;
2994 if (cris_get_operand1 (inst) == REG_PC)
2996 /* It's invalid to change the PC in a delay slot. */
2997 if (inst_env->slot_needed)
2999 inst_env->invalid = 1;
3002 /* The destination is the PC, the jump will have a delay slot. */
3003 inst_env->delay_slot_pc = inst_env->preg[cris_get_operand2 (inst)];
3004 inst_env->slot_needed = 1;
3005 inst_env->delay_slot_pc_active = 1;
3009 /* If the destination isn't PC, there will be no jump. */
3010 inst_env->slot_needed = 0;
3012 inst_env->prefix_found = 0;
3013 inst_env->xflag_found = 0;
3014 inst_env->disable_interrupt = 1;
3017 /* Handles the MOVEM from memory to general register instruction. */
3020 move_mem_to_reg_movem_op (unsigned short inst, inst_env_type *inst_env)
3022 if (inst_env->prefix_found)
3024 /* The prefix handles the problem if we are in a delay slot. Is the
3025 MOVEM instruction going to change the PC? */
3026 if (cris_get_operand2 (inst) >= REG_PC)
3028 inst_env->reg[REG_PC] =
3029 read_memory_unsigned_integer (inst_env->prefix_value, 4);
3031 /* The assign value is the value after the increment. Normally, the
3032 assign value is the value before the increment. */
3033 if ((cris_get_operand1 (inst) == REG_PC)
3034 && (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
3036 inst_env->reg[REG_PC] = inst_env->prefix_value;
3037 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3042 /* Is the MOVEM instruction going to change the PC? */
3043 if (cris_get_operand2 (inst) == REG_PC)
3045 /* It's invalid to change the PC in a delay slot. */
3046 if (inst_env->slot_needed)
3048 inst_env->invalid = 1;
3051 inst_env->reg[REG_PC] =
3052 read_memory_unsigned_integer (inst_env->reg[cris_get_operand1 (inst)],
3055 /* The increment is not depending on the size, instead it's depending
3056 on the number of registers loaded from memory. */
3057 if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE))
3059 /* It's invalid to change the PC in a delay slot. */
3060 if (inst_env->slot_needed)
3062 inst_env->invalid = 1;
3065 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3068 inst_env->slot_needed = 0;
3069 inst_env->prefix_found = 0;
3070 inst_env->xflag_found = 0;
3071 inst_env->disable_interrupt = 0;
3074 /* Handles the MOVEM to memory from general register instruction. */
3077 move_reg_to_mem_movem_op (unsigned short inst, inst_env_type *inst_env)
3079 if (inst_env->prefix_found)
3081 /* The assign value is the value after the increment. Normally, the
3082 assign value is the value before the increment. */
3083 if ((cris_get_operand1 (inst) == REG_PC) &&
3084 (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
3086 /* The prefix handles the problem if we are in a delay slot. */
3087 inst_env->reg[REG_PC] = inst_env->prefix_value;
3088 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3093 /* The increment is not depending on the size, instead it's depending
3094 on the number of registers loaded to memory. */
3095 if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE))
3097 /* It's invalid to change the PC in a delay slot. */
3098 if (inst_env->slot_needed)
3100 inst_env->invalid = 1;
3103 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3106 inst_env->slot_needed = 0;
3107 inst_env->prefix_found = 0;
3108 inst_env->xflag_found = 0;
3109 inst_env->disable_interrupt = 0;
3112 /* Handles the intructions that's not yet implemented, by setting
3113 inst_env->invalid to true. */
3116 not_implemented_op (unsigned short inst, inst_env_type *inst_env)
3118 inst_env->invalid = 1;
3121 /* Handles the XOR instruction. */
3124 xor_op (unsigned short inst, inst_env_type *inst_env)
3126 /* XOR can't have a prefix. */
3127 if (inst_env->prefix_found)
3129 inst_env->invalid = 1;
3133 /* Check if the PC is the target. */
3134 if (cris_get_operand2 (inst) == REG_PC)
3136 /* It's invalid to change the PC in a delay slot. */
3137 if (inst_env->slot_needed)
3139 inst_env->invalid = 1;
3142 inst_env->reg[REG_PC] ^= inst_env->reg[cris_get_operand1 (inst)];
3144 inst_env->slot_needed = 0;
3145 inst_env->prefix_found = 0;
3146 inst_env->xflag_found = 0;
3147 inst_env->disable_interrupt = 0;
3150 /* Handles the MULS instruction. */
3153 muls_op (unsigned short inst, inst_env_type *inst_env)
3155 /* MULS/U can't have a prefix. */
3156 if (inst_env->prefix_found)
3158 inst_env->invalid = 1;
3162 /* Consider it invalid if the PC is the target. */
3163 if (cris_get_operand2 (inst) == REG_PC)
3165 inst_env->invalid = 1;
3168 inst_env->slot_needed = 0;
3169 inst_env->prefix_found = 0;
3170 inst_env->xflag_found = 0;
3171 inst_env->disable_interrupt = 0;
3174 /* Handles the MULU instruction. */
3177 mulu_op (unsigned short inst, inst_env_type *inst_env)
3179 /* MULS/U can't have a prefix. */
3180 if (inst_env->prefix_found)
3182 inst_env->invalid = 1;
3186 /* Consider it invalid if the PC is the target. */
3187 if (cris_get_operand2 (inst) == REG_PC)
3189 inst_env->invalid = 1;
3192 inst_env->slot_needed = 0;
3193 inst_env->prefix_found = 0;
3194 inst_env->xflag_found = 0;
3195 inst_env->disable_interrupt = 0;
3198 /* Calculate the result of the instruction for ADD, SUB, CMP AND, OR and MOVE.
3199 The MOVE instruction is the move from source to register. */
3202 add_sub_cmp_and_or_move_action (unsigned short inst, inst_env_type *inst_env,
3203 unsigned long source1, unsigned long source2)
3205 unsigned long pc_mask;
3206 unsigned long operation_mask;
3208 /* Find out how many bits the operation should apply to. */
3209 if (cris_get_size (inst) == INST_BYTE_SIZE)
3211 pc_mask = 0xFFFFFF00;
3212 operation_mask = 0xFF;
3214 else if (cris_get_size (inst) == INST_WORD_SIZE)
3216 pc_mask = 0xFFFF0000;
3217 operation_mask = 0xFFFF;
3219 else if (cris_get_size (inst) == INST_DWORD_SIZE)
3222 operation_mask = 0xFFFFFFFF;
3226 /* The size is out of range. */
3227 inst_env->invalid = 1;
3231 /* The instruction just works on uw_operation_mask bits. */
3232 source2 &= operation_mask;
3233 source1 &= operation_mask;
3235 /* Now calculate the result. The opcode's 3 first bits separates
3236 the different actions. */
3237 switch (cris_get_opcode (inst) & 7)
3247 case 2: /* subtract */
3251 case 3: /* compare */
3263 inst_env->invalid = 1;
3269 /* Make sure that the result doesn't contain more than the instruction
3271 source2 &= operation_mask;
3273 /* Calculate the new breakpoint address. */
3274 inst_env->reg[REG_PC] &= pc_mask;
3275 inst_env->reg[REG_PC] |= source1;
3279 /* Extends the value from either byte or word size to a dword. If the mode
3280 is zero extend then the value is extended with zero. If instead the mode
3281 is signed extend the sign bit of the value is taken into consideration. */
3283 static unsigned long
3284 do_sign_or_zero_extend (unsigned long value, unsigned short *inst)
3286 /* The size can be either byte or word, check which one it is.
3287 Don't check the highest bit, it's indicating if it's a zero
3289 if (cris_get_size (*inst) & INST_WORD_SIZE)
3294 /* Check if the instruction is signed extend. If so, check if value has
3296 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_WORD_MASK))
3298 value |= SIGNED_WORD_EXTEND_MASK;
3306 /* Check if the instruction is signed extend. If so, check if value has
3308 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_BYTE_MASK))
3310 value |= SIGNED_BYTE_EXTEND_MASK;
3313 /* The size should now be dword. */
3314 cris_set_size_to_dword (inst);
3318 /* Handles the register mode for the ADD, SUB, CMP, AND, OR and MOVE
3319 instruction. The MOVE instruction is the move from source to register. */
3322 reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3323 inst_env_type *inst_env)
3325 unsigned long operand1;
3326 unsigned long operand2;
3328 /* It's invalid to have a prefix to the instruction. This is a register
3329 mode instruction and can't have a prefix. */
3330 if (inst_env->prefix_found)
3332 inst_env->invalid = 1;
3335 /* Check if the instruction has PC as its target. */
3336 if (cris_get_operand2 (inst) == REG_PC)
3338 if (inst_env->slot_needed)
3340 inst_env->invalid = 1;
3343 /* The instruction has the PC as its target register. */
3344 operand1 = inst_env->reg[cris_get_operand1 (inst)];
3345 operand2 = inst_env->reg[REG_PC];
3347 /* Check if it's a extend, signed or zero instruction. */
3348 if (cris_get_opcode (inst) < 4)
3350 operand1 = do_sign_or_zero_extend (operand1, &inst);
3352 /* Calculate the PC value after the instruction, i.e. where the
3353 breakpoint should be. The order of the udw_operands is vital. */
3354 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3356 inst_env->slot_needed = 0;
3357 inst_env->prefix_found = 0;
3358 inst_env->xflag_found = 0;
3359 inst_env->disable_interrupt = 0;
3362 /* Returns the data contained at address. The size of the data is derived from
3363 the size of the operation. If the instruction is a zero or signed
3364 extend instruction, the size field is changed in instruction. */
3366 static unsigned long
3367 get_data_from_address (unsigned short *inst, CORE_ADDR address)
3369 int size = cris_get_size (*inst);
3370 unsigned long value;
3372 /* If it's an extend instruction we don't want the signed extend bit,
3373 because it influences the size. */
3374 if (cris_get_opcode (*inst) < 4)
3376 size &= ~SIGNED_EXTEND_BIT_MASK;
3378 /* Is there a need for checking the size? Size should contain the number of
3381 value = read_memory_unsigned_integer (address, size);
3383 /* Check if it's an extend, signed or zero instruction. */
3384 if (cris_get_opcode (*inst) < 4)
3386 value = do_sign_or_zero_extend (value, inst);
3391 /* Handles the assign addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3392 instructions. The MOVE instruction is the move from source to register. */
3395 handle_prefix_assign_mode_for_aritm_op (unsigned short inst,
3396 inst_env_type *inst_env)
3398 unsigned long operand2;
3399 unsigned long operand3;
3401 check_assign (inst, inst_env);
3402 if (cris_get_operand2 (inst) == REG_PC)
3404 operand2 = inst_env->reg[REG_PC];
3406 /* Get the value of the third operand. */
3407 operand3 = get_data_from_address (&inst, inst_env->prefix_value);
3409 /* Calculate the PC value after the instruction, i.e. where the
3410 breakpoint should be. The order of the udw_operands is vital. */
3411 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3413 inst_env->slot_needed = 0;
3414 inst_env->prefix_found = 0;
3415 inst_env->xflag_found = 0;
3416 inst_env->disable_interrupt = 0;
3419 /* Handles the three-operand addressing mode for the ADD, SUB, CMP, AND and
3420 OR instructions. Note that for this to work as expected, the calling
3421 function must have made sure that there is a prefix to this instruction. */
3424 three_operand_add_sub_cmp_and_or_op (unsigned short inst,
3425 inst_env_type *inst_env)
3427 unsigned long operand2;
3428 unsigned long operand3;
3430 if (cris_get_operand1 (inst) == REG_PC)
3432 /* The PC will be changed by the instruction. */
3433 operand2 = inst_env->reg[cris_get_operand2 (inst)];
3435 /* Get the value of the third operand. */
3436 operand3 = get_data_from_address (&inst, inst_env->prefix_value);
3438 /* Calculate the PC value after the instruction, i.e. where the
3439 breakpoint should be. */
3440 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3442 inst_env->slot_needed = 0;
3443 inst_env->prefix_found = 0;
3444 inst_env->xflag_found = 0;
3445 inst_env->disable_interrupt = 0;
3448 /* Handles the index addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3449 instructions. The MOVE instruction is the move from source to register. */
3452 handle_prefix_index_mode_for_aritm_op (unsigned short inst,
3453 inst_env_type *inst_env)
3455 if (cris_get_operand1 (inst) != cris_get_operand2 (inst))
3457 /* If the instruction is MOVE it's invalid. If the instruction is ADD,
3458 SUB, AND or OR something weird is going on (if everything works these
3459 instructions should end up in the three operand version). */
3460 inst_env->invalid = 1;
3465 /* three_operand_add_sub_cmp_and_or does the same as we should do here
3467 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3469 inst_env->slot_needed = 0;
3470 inst_env->prefix_found = 0;
3471 inst_env->xflag_found = 0;
3472 inst_env->disable_interrupt = 0;
3475 /* Handles the autoincrement and indirect addresing mode for the ADD, SUB,
3476 CMP, AND OR and MOVE instruction. The MOVE instruction is the move from
3477 source to register. */
3480 handle_inc_and_index_mode_for_aritm_op (unsigned short inst,
3481 inst_env_type *inst_env)
3483 unsigned long operand1;
3484 unsigned long operand2;
3485 unsigned long operand3;
3488 /* The instruction is either an indirect or autoincrement addressing mode.
3489 Check if the destination register is the PC. */
3490 if (cris_get_operand2 (inst) == REG_PC)
3492 /* Must be done here, get_data_from_address may change the size
3494 size = cris_get_size (inst);
3495 operand2 = inst_env->reg[REG_PC];
3497 /* Get the value of the third operand, i.e. the indirect operand. */
3498 operand1 = inst_env->reg[cris_get_operand1 (inst)];
3499 operand3 = get_data_from_address (&inst, operand1);
3501 /* Calculate the PC value after the instruction, i.e. where the
3502 breakpoint should be. The order of the udw_operands is vital. */
3503 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3505 /* If this is an autoincrement addressing mode, check if the increment
3507 if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE))
3509 /* Get the size field. */
3510 size = cris_get_size (inst);
3512 /* If it's an extend instruction we don't want the signed extend bit,
3513 because it influences the size. */
3514 if (cris_get_opcode (inst) < 4)
3516 size &= ~SIGNED_EXTEND_BIT_MASK;
3518 process_autoincrement (size, inst, inst_env);
3520 inst_env->slot_needed = 0;
3521 inst_env->prefix_found = 0;
3522 inst_env->xflag_found = 0;
3523 inst_env->disable_interrupt = 0;
3526 /* Handles the two-operand addressing mode, all modes except register, for
3527 the ADD, SUB CMP, AND and OR instruction. */
3530 none_reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3531 inst_env_type *inst_env)
3533 if (inst_env->prefix_found)
3535 if (cris_get_mode (inst) == PREFIX_INDEX_MODE)
3537 handle_prefix_index_mode_for_aritm_op (inst, inst_env);
3539 else if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
3541 handle_prefix_assign_mode_for_aritm_op (inst, inst_env);
3545 /* The mode is invalid for a prefixed base instruction. */
3546 inst_env->invalid = 1;
3552 handle_inc_and_index_mode_for_aritm_op (inst, inst_env);
3556 /* Handles the quick addressing mode for the ADD and SUB instruction. */
3559 quick_mode_add_sub_op (unsigned short inst, inst_env_type *inst_env)
3561 unsigned long operand1;
3562 unsigned long operand2;
3564 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3565 instruction and can't have a prefix. */
3566 if (inst_env->prefix_found)
3568 inst_env->invalid = 1;
3572 /* Check if the instruction has PC as its target. */
3573 if (cris_get_operand2 (inst) == REG_PC)
3575 if (inst_env->slot_needed)
3577 inst_env->invalid = 1;
3580 operand1 = cris_get_quick_value (inst);
3581 operand2 = inst_env->reg[REG_PC];
3583 /* The size should now be dword. */
3584 cris_set_size_to_dword (&inst);
3586 /* Calculate the PC value after the instruction, i.e. where the
3587 breakpoint should be. */
3588 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3590 inst_env->slot_needed = 0;
3591 inst_env->prefix_found = 0;
3592 inst_env->xflag_found = 0;
3593 inst_env->disable_interrupt = 0;
3596 /* Handles the quick addressing mode for the CMP, AND and OR instruction. */
3599 quick_mode_and_cmp_move_or_op (unsigned short inst, inst_env_type *inst_env)
3601 unsigned long operand1;
3602 unsigned long operand2;
3604 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3605 instruction and can't have a prefix. */
3606 if (inst_env->prefix_found)
3608 inst_env->invalid = 1;
3611 /* Check if the instruction has PC as its target. */
3612 if (cris_get_operand2 (inst) == REG_PC)
3614 if (inst_env->slot_needed)
3616 inst_env->invalid = 1;
3619 /* The instruction has the PC as its target register. */
3620 operand1 = cris_get_quick_value (inst);
3621 operand2 = inst_env->reg[REG_PC];
3623 /* The quick value is signed, so check if we must do a signed extend. */
3624 if (operand1 & SIGNED_QUICK_VALUE_MASK)
3627 operand1 |= SIGNED_QUICK_VALUE_EXTEND_MASK;
3629 /* The size should now be dword. */
3630 cris_set_size_to_dword (&inst);
3632 /* Calculate the PC value after the instruction, i.e. where the
3633 breakpoint should be. */
3634 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3636 inst_env->slot_needed = 0;
3637 inst_env->prefix_found = 0;
3638 inst_env->xflag_found = 0;
3639 inst_env->disable_interrupt = 0;
3642 /* Translate op_type to a function and call it. */
3645 cris_gdb_func (enum cris_op_type op_type, unsigned short inst,
3646 inst_env_type *inst_env)
3650 case cris_not_implemented_op:
3651 not_implemented_op (inst, inst_env);
3655 abs_op (inst, inst_env);
3659 addi_op (inst, inst_env);
3663 asr_op (inst, inst_env);
3667 asrq_op (inst, inst_env);
3670 case cris_ax_ei_setf_op:
3671 ax_ei_setf_op (inst, inst_env);
3674 case cris_bdap_prefix:
3675 bdap_prefix (inst, inst_env);
3678 case cris_biap_prefix:
3679 biap_prefix (inst, inst_env);
3683 break_op (inst, inst_env);
3686 case cris_btst_nop_op:
3687 btst_nop_op (inst, inst_env);
3690 case cris_clearf_di_op:
3691 clearf_di_op (inst, inst_env);
3694 case cris_dip_prefix:
3695 dip_prefix (inst, inst_env);
3698 case cris_dstep_logshift_mstep_neg_not_op:
3699 dstep_logshift_mstep_neg_not_op (inst, inst_env);
3702 case cris_eight_bit_offset_branch_op:
3703 eight_bit_offset_branch_op (inst, inst_env);
3706 case cris_move_mem_to_reg_movem_op:
3707 move_mem_to_reg_movem_op (inst, inst_env);
3710 case cris_move_reg_to_mem_movem_op:
3711 move_reg_to_mem_movem_op (inst, inst_env);
3714 case cris_move_to_preg_op:
3715 move_to_preg_op (inst, inst_env);
3719 muls_op (inst, inst_env);
3723 mulu_op (inst, inst_env);
3726 case cris_none_reg_mode_add_sub_cmp_and_or_move_op:
3727 none_reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3730 case cris_none_reg_mode_clear_test_op:
3731 none_reg_mode_clear_test_op (inst, inst_env);
3734 case cris_none_reg_mode_jump_op:
3735 none_reg_mode_jump_op (inst, inst_env);
3738 case cris_none_reg_mode_move_from_preg_op:
3739 none_reg_mode_move_from_preg_op (inst, inst_env);
3742 case cris_quick_mode_add_sub_op:
3743 quick_mode_add_sub_op (inst, inst_env);
3746 case cris_quick_mode_and_cmp_move_or_op:
3747 quick_mode_and_cmp_move_or_op (inst, inst_env);
3750 case cris_quick_mode_bdap_prefix:
3751 quick_mode_bdap_prefix (inst, inst_env);
3754 case cris_reg_mode_add_sub_cmp_and_or_move_op:
3755 reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3758 case cris_reg_mode_clear_op:
3759 reg_mode_clear_op (inst, inst_env);
3762 case cris_reg_mode_jump_op:
3763 reg_mode_jump_op (inst, inst_env);
3766 case cris_reg_mode_move_from_preg_op:
3767 reg_mode_move_from_preg_op (inst, inst_env);
3770 case cris_reg_mode_test_op:
3771 reg_mode_test_op (inst, inst_env);
3775 scc_op (inst, inst_env);
3778 case cris_sixteen_bit_offset_branch_op:
3779 sixteen_bit_offset_branch_op (inst, inst_env);
3782 case cris_three_operand_add_sub_cmp_and_or_op:
3783 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3786 case cris_three_operand_bound_op:
3787 three_operand_bound_op (inst, inst_env);
3790 case cris_two_operand_bound_op:
3791 two_operand_bound_op (inst, inst_env);
3795 xor_op (inst, inst_env);
3800 /* This wrapper is to avoid cris_get_assembler being called before
3801 exec_bfd has been set. */
3804 cris_delayed_get_disassembler (bfd_vma addr, struct disassemble_info *info)
3806 int (*print_insn) (bfd_vma addr, struct disassemble_info *info);
3807 /* FIXME: cagney/2003-08-27: It should be possible to select a CRIS
3808 disassembler, even when there is no BFD. Does something like
3809 "gdb; target remote; disassmeble *0x123" work? */
3810 gdb_assert (exec_bfd != NULL);
3811 print_insn = cris_get_disassembler (exec_bfd);
3812 gdb_assert (print_insn != NULL);
3813 return print_insn (addr, info);
3816 /* Copied from <asm/elf.h>. */
3817 typedef unsigned long elf_greg_t;
3819 /* Same as user_regs_struct struct in <asm/user.h>. */
3820 #define CRISV10_ELF_NGREG 35
3821 typedef elf_greg_t elf_gregset_t[CRISV10_ELF_NGREG];
3823 #define CRISV32_ELF_NGREG 32
3824 typedef elf_greg_t crisv32_elf_gregset_t[CRISV32_ELF_NGREG];
3826 /* Unpack an elf_gregset_t into GDB's register cache. */
3829 supply_gregset (elf_gregset_t *gregsetp)
3831 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3833 elf_greg_t *regp = *gregsetp;
3834 static char zerobuf[4] = {0};
3836 /* The kernel dumps all 32 registers as unsigned longs, but supply_register
3837 knows about the actual size of each register so that's no problem. */
3838 for (i = 0; i < NUM_GENREGS + NUM_SPECREGS; i++)
3840 regcache_raw_supply (current_regcache, i, (char *)®p[i]);
3843 if (tdep->cris_version == 32)
3845 /* Needed to set pseudo-register PC for CRISv32. */
3846 /* FIXME: If ERP is in a delay slot at this point then the PC will
3847 be wrong. Issue a warning to alert the user. */
3848 regcache_raw_supply (current_regcache, PC_REGNUM,
3849 (char *)®p[ERP_REGNUM]);
3851 if (*(char *)®p[ERP_REGNUM] & 0x1)
3852 fprintf_unfiltered (gdb_stderr, "Warning: PC in delay slot\n");
3856 /* Use a local version of this function to get the correct types for
3857 regsets, until multi-arch core support is ready. */
3860 fetch_core_registers (char *core_reg_sect, unsigned core_reg_size,
3861 int which, CORE_ADDR reg_addr)
3863 elf_gregset_t gregset;
3868 if (core_reg_size != sizeof (elf_gregset_t)
3869 && core_reg_size != sizeof (crisv32_elf_gregset_t))
3871 warning (_("wrong size gregset struct in core file"));
3875 memcpy (&gregset, core_reg_sect, sizeof (gregset));
3876 supply_gregset (&gregset);
3880 /* We've covered all the kinds of registers we know about here,
3881 so this must be something we wouldn't know what to do with
3882 anyway. Just ignore it. */
3887 static struct core_fns cris_elf_core_fns =
3889 bfd_target_elf_flavour, /* core_flavour */
3890 default_check_format, /* check_format */
3891 default_core_sniffer, /* core_sniffer */
3892 fetch_core_registers, /* core_read_registers */
3896 /* Fetch (and possibly build) an appropriate link_map_offsets
3897 structure for native GNU/Linux CRIS targets using the struct
3898 offsets defined in link.h (but without actual reference to that
3901 This makes it possible to access GNU/Linux CRIS shared libraries
3902 from a GDB that was not built on an GNU/Linux CRIS host (for cross
3905 See gdb/solib-svr4.h for an explanation of these fields. */
3907 static struct link_map_offsets *
3908 cris_linux_svr4_fetch_link_map_offsets (void)
3910 static struct link_map_offsets lmo;
3911 static struct link_map_offsets *lmp = NULL;
3917 lmo.r_debug_size = 8; /* The actual size is 20 bytes, but
3918 this is all we need. */
3919 lmo.r_map_offset = 4;
3922 lmo.link_map_size = 20;
3924 lmo.l_addr_offset = 0;
3925 lmo.l_addr_size = 4;
3927 lmo.l_name_offset = 4;
3928 lmo.l_name_size = 4;
3930 lmo.l_next_offset = 12;
3931 lmo.l_next_size = 4;
3933 lmo.l_prev_offset = 16;
3934 lmo.l_prev_size = 4;
3940 extern initialize_file_ftype _initialize_cris_tdep; /* -Wmissing-prototypes */
3943 _initialize_cris_tdep (void)
3945 static struct cmd_list_element *cris_set_cmdlist;
3946 static struct cmd_list_element *cris_show_cmdlist;
3948 struct cmd_list_element *c;
3950 gdbarch_register (bfd_arch_cris, cris_gdbarch_init, cris_dump_tdep);
3952 /* CRIS-specific user-commands. */
3953 add_setshow_uinteger_cmd ("cris-version", class_support,
3954 &usr_cmd_cris_version,
3955 _("Set the current CRIS version."),
3956 _("Show the current CRIS version."),
3958 Set to 10 for CRISv10 or 32 for CRISv32 if autodetection fails.\n\
3961 NULL, /* FIXME: i18n: Current CRIS version is %s. */
3962 &setlist, &showlist);
3964 add_setshow_enum_cmd ("cris-mode", class_support,
3965 cris_modes, &usr_cmd_cris_mode,
3966 _("Set the current CRIS mode."),
3967 _("Show the current CRIS mode."),
3969 Set to CRIS_MODE_GURU when debugging in guru mode.\n\
3970 Makes GDB use the NRP register instead of the ERP register in certain cases."),
3972 NULL, /* FIXME: i18n: Current CRIS version is %s. */
3973 &setlist, &showlist);
3975 add_setshow_boolean_cmd ("cris-dwarf2-cfi", class_support,
3976 &usr_cmd_cris_dwarf2_cfi,
3977 _("Set the usage of Dwarf-2 CFI for CRIS."),
3978 _("Show the usage of Dwarf-2 CFI for CRIS."),
3979 _("Set this to \"off\" if using gcc-cris < R59."),
3980 set_cris_dwarf2_cfi,
3981 NULL, /* FIXME: i18n: Usage of Dwarf-2 CFI for CRIS is %d. */
3982 &setlist, &showlist);
3984 deprecated_add_core_fns (&cris_elf_core_fns);
3987 /* Prints out all target specific values. */
3990 cris_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3992 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3995 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_version = %i\n",
3996 tdep->cris_version);
3997 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_mode = %s\n",
3999 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_dwarf2_cfi = %i\n",
4000 tdep->cris_dwarf2_cfi);
4005 set_cris_version (char *ignore_args, int from_tty,
4006 struct cmd_list_element *c)
4008 struct gdbarch_info info;
4010 usr_cmd_cris_version_valid = 1;
4012 /* Update the current architecture, if needed. */
4013 gdbarch_info_init (&info);
4014 if (!gdbarch_update_p (info))
4015 internal_error (__FILE__, __LINE__,
4016 _("cris_gdbarch_update: failed to update architecture."));
4020 set_cris_mode (char *ignore_args, int from_tty,
4021 struct cmd_list_element *c)
4023 struct gdbarch_info info;
4025 /* Update the current architecture, if needed. */
4026 gdbarch_info_init (&info);
4027 if (!gdbarch_update_p (info))
4028 internal_error (__FILE__, __LINE__,
4029 "cris_gdbarch_update: failed to update architecture.");
4033 set_cris_dwarf2_cfi (char *ignore_args, int from_tty,
4034 struct cmd_list_element *c)
4036 struct gdbarch_info info;
4038 /* Update the current architecture, if needed. */
4039 gdbarch_info_init (&info);
4040 if (!gdbarch_update_p (info))
4041 internal_error (__FILE__, __LINE__,
4042 _("cris_gdbarch_update: failed to update architecture."));
4045 static struct gdbarch *
4046 cris_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
4048 struct gdbarch *gdbarch;
4049 struct gdbarch_tdep *tdep;
4052 if (usr_cmd_cris_version_valid)
4054 /* Trust the user's CRIS version setting. */
4055 cris_version = usr_cmd_cris_version;
4057 else if (info.abfd && bfd_get_mach (info.abfd) == bfd_mach_cris_v32)
4063 /* Assume it's CRIS version 10. */
4067 /* Make the current settings visible to the user. */
4068 usr_cmd_cris_version = cris_version;
4070 /* Find a candidate among the list of pre-declared architectures. */
4071 for (arches = gdbarch_list_lookup_by_info (arches, &info);
4073 arches = gdbarch_list_lookup_by_info (arches->next, &info))
4075 if ((gdbarch_tdep (arches->gdbarch)->cris_version
4076 == usr_cmd_cris_version)
4077 && (gdbarch_tdep (arches->gdbarch)->cris_mode
4078 == usr_cmd_cris_mode)
4079 && (gdbarch_tdep (arches->gdbarch)->cris_dwarf2_cfi
4080 == usr_cmd_cris_dwarf2_cfi))
4081 return arches->gdbarch;
4084 /* No matching architecture was found. Create a new one. */
4085 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
4086 gdbarch = gdbarch_alloc (&info, tdep);
4088 tdep->cris_version = usr_cmd_cris_version;
4089 tdep->cris_mode = usr_cmd_cris_mode;
4090 tdep->cris_dwarf2_cfi = usr_cmd_cris_dwarf2_cfi;
4092 /* INIT shall ensure that the INFO.BYTE_ORDER is non-zero. */
4093 switch (info.byte_order)
4095 case BFD_ENDIAN_LITTLE:
4099 case BFD_ENDIAN_BIG:
4100 internal_error (__FILE__, __LINE__, _("cris_gdbarch_init: big endian byte order in info"));
4104 internal_error (__FILE__, __LINE__, _("cris_gdbarch_init: unknown byte order in info"));
4107 set_gdbarch_return_value (gdbarch, cris_return_value);
4108 set_gdbarch_deprecated_reg_struct_has_addr (gdbarch,
4109 cris_reg_struct_has_addr);
4110 set_gdbarch_deprecated_use_struct_convention (gdbarch, always_use_struct_convention);
4112 set_gdbarch_sp_regnum (gdbarch, 14);
4114 /* Length of ordinary registers used in push_word and a few other
4115 places. register_size() is the real way to know how big a
4118 set_gdbarch_double_bit (gdbarch, 64);
4119 /* The default definition of a long double is 2 * TARGET_DOUBLE_BIT,
4120 which means we have to set this explicitly. */
4121 set_gdbarch_long_double_bit (gdbarch, 64);
4123 /* The total amount of space needed to store (in an array called registers)
4124 GDB's copy of the machine's register state. Note: We can not use
4125 cris_register_size at this point, since it relies on current_gdbarch
4127 switch (tdep->cris_version)
4135 /* Old versions; not supported. */
4136 internal_error (__FILE__, __LINE__,
4137 _("cris_gdbarch_init: unsupported CRIS version"));
4142 /* CRIS v10 and v11, a.k.a. ETRAX 100LX. In addition to ETRAX 100,
4143 P7 (32 bits), and P15 (32 bits) have been implemented. */
4144 set_gdbarch_pc_regnum (gdbarch, 15);
4145 set_gdbarch_register_type (gdbarch, cris_register_type);
4146 /* There are 32 registers (some of which may not be implemented). */
4147 set_gdbarch_num_regs (gdbarch, 32);
4148 set_gdbarch_register_name (gdbarch, cris_register_name);
4149 set_gdbarch_cannot_store_register (gdbarch, cris_cannot_store_register);
4150 set_gdbarch_cannot_fetch_register (gdbarch, cris_cannot_fetch_register);
4152 set_gdbarch_software_single_step (gdbarch, cris_software_single_step);
4156 /* CRIS v32. General registers R0 - R15 (32 bits), special registers
4157 P0 - P15 (32 bits) except P0, P1, P3 (8 bits) and P4 (16 bits)
4158 and pseudo-register PC (32 bits). */
4159 set_gdbarch_pc_regnum (gdbarch, 32);
4160 set_gdbarch_register_type (gdbarch, crisv32_register_type);
4161 /* 32 registers + pseudo-register PC + 16 support registers. */
4162 set_gdbarch_num_regs (gdbarch, 32 + 1 + 16);
4163 set_gdbarch_register_name (gdbarch, crisv32_register_name);
4165 set_gdbarch_cannot_store_register
4166 (gdbarch, crisv32_cannot_store_register);
4167 set_gdbarch_cannot_fetch_register
4168 (gdbarch, crisv32_cannot_fetch_register);
4170 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
4172 set_gdbarch_single_step_through_delay
4173 (gdbarch, crisv32_single_step_through_delay);
4178 internal_error (__FILE__, __LINE__,
4179 _("cris_gdbarch_init: unknown CRIS version"));
4182 /* Dummy frame functions (shared between CRISv10 and CRISv32 since they
4183 have the same ABI). */
4184 set_gdbarch_push_dummy_code (gdbarch, cris_push_dummy_code);
4185 set_gdbarch_push_dummy_call (gdbarch, cris_push_dummy_call);
4186 set_gdbarch_frame_align (gdbarch, cris_frame_align);
4187 set_gdbarch_skip_prologue (gdbarch, cris_skip_prologue);
4189 /* The stack grows downward. */
4190 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
4192 set_gdbarch_breakpoint_from_pc (gdbarch, cris_breakpoint_from_pc);
4194 set_gdbarch_unwind_pc (gdbarch, cris_unwind_pc);
4195 set_gdbarch_unwind_sp (gdbarch, cris_unwind_sp);
4196 set_gdbarch_unwind_dummy_id (gdbarch, cris_unwind_dummy_id);
4198 if (tdep->cris_dwarf2_cfi == 1)
4200 /* Hook in the Dwarf-2 frame sniffer. */
4201 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, cris_dwarf2_reg_to_regnum);
4202 dwarf2_frame_set_init_reg (gdbarch, cris_dwarf2_frame_init_reg);
4203 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
4206 if (tdep->cris_mode != cris_mode_guru)
4208 frame_unwind_append_sniffer (gdbarch, cris_sigtramp_frame_sniffer);
4211 frame_unwind_append_sniffer (gdbarch, cris_frame_sniffer);
4212 frame_base_set_default (gdbarch, &cris_frame_base);
4214 /* Use target_specific function to define link map offsets. */
4215 set_solib_svr4_fetch_link_map_offsets
4216 (gdbarch, cris_linux_svr4_fetch_link_map_offsets);
4218 /* FIXME: cagney/2003-08-27: It should be possible to select a CRIS
4219 disassembler, even when there is no BFD. Does something like
4220 "gdb; target remote; disassmeble *0x123" work? */
4221 set_gdbarch_print_insn (gdbarch, cris_delayed_get_disassembler);