1 /* Target dependent code for CRIS, for GDB, the GNU debugger.
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011 Free Software Foundation, Inc.
6 Contributed by Axis Communications AB.
7 Written by Hendrik Ruijter, Stefan Andersson, and Orjan Friberg.
9 This file is part of GDB.
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26 #include "frame-unwind.h"
27 #include "frame-base.h"
28 #include "trad-frame.h"
29 #include "dwarf2-frame.h"
37 #include "opcode/cris.h"
38 #include "arch-utils.h"
40 #include "gdb_assert.h"
44 #include "solib.h" /* Support for shared libraries. */
45 #include "solib-svr4.h"
46 #include "gdb_string.h"
51 /* There are no floating point registers. Used in gdbserver low-linux.c. */
54 /* There are 16 general registers. */
57 /* There are 16 special registers. */
60 /* CRISv32 has a pseudo PC register, not noted here. */
62 /* CRISv32 has 16 support registers. */
66 /* Register numbers of various important registers.
67 CRIS_FP_REGNUM Contains address of executing stack frame.
68 STR_REGNUM Contains the address of structure return values.
69 RET_REGNUM Contains the return value when shorter than or equal to 32 bits
70 ARG1_REGNUM Contains the first parameter to a function.
71 ARG2_REGNUM Contains the second parameter to a function.
72 ARG3_REGNUM Contains the third parameter to a function.
73 ARG4_REGNUM Contains the fourth parameter to a function. Rest on stack.
74 gdbarch_sp_regnum Contains address of top of stack.
75 gdbarch_pc_regnum Contains address of next instruction.
76 SRP_REGNUM Subroutine return pointer register.
77 BRP_REGNUM Breakpoint return pointer register. */
81 /* Enums with respect to the general registers, valid for all
82 CRIS versions. The frame pointer is always in R8. */
84 /* ABI related registers. */
92 /* Registers which happen to be common. */
97 /* CRISv10 et al. specific registers. */
109 /* CRISv32 specific registers. */
122 CRISV32USP_REGNUM = 30, /* Shares name but not number with CRISv10. */
124 CRISV32PC_REGNUM = 32, /* Shares name but not number with CRISv10. */
144 extern const struct cris_spec_reg cris_spec_regs[];
146 /* CRIS version, set via the user command 'set cris-version'. Affects
147 register names and sizes. */
148 static int usr_cmd_cris_version;
150 /* Indicates whether to trust the above variable. */
151 static int usr_cmd_cris_version_valid = 0;
153 static const char cris_mode_normal[] = "normal";
154 static const char cris_mode_guru[] = "guru";
155 static const char *cris_modes[] = {
161 /* CRIS mode, set via the user command 'set cris-mode'. Affects
162 type of break instruction among other things. */
163 static const char *usr_cmd_cris_mode = cris_mode_normal;
165 /* Whether to make use of Dwarf-2 CFI (default on). */
166 static int usr_cmd_cris_dwarf2_cfi = 1;
168 /* CRIS architecture specific information. */
172 const char *cris_mode;
176 /* Sigtramp identification code copied from i386-linux-tdep.c. */
178 #define SIGTRAMP_INSN0 0x9c5f /* movu.w 0xXX, $r9 */
179 #define SIGTRAMP_OFFSET0 0
180 #define SIGTRAMP_INSN1 0xe93d /* break 13 */
181 #define SIGTRAMP_OFFSET1 4
183 static const unsigned short sigtramp_code[] =
185 SIGTRAMP_INSN0, 0x0077, /* movu.w $0x77, $r9 */
186 SIGTRAMP_INSN1 /* break 13 */
189 #define SIGTRAMP_LEN (sizeof sigtramp_code)
191 /* Note: same length as normal sigtramp code. */
193 static const unsigned short rt_sigtramp_code[] =
195 SIGTRAMP_INSN0, 0x00ad, /* movu.w $0xad, $r9 */
196 SIGTRAMP_INSN1 /* break 13 */
199 /* If PC is in a sigtramp routine, return the address of the start of
200 the routine. Otherwise, return 0. */
203 cris_sigtramp_start (struct frame_info *this_frame)
205 CORE_ADDR pc = get_frame_pc (this_frame);
206 gdb_byte buf[SIGTRAMP_LEN];
208 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN))
211 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN0)
213 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN1)
216 pc -= SIGTRAMP_OFFSET1;
217 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN))
221 if (memcmp (buf, sigtramp_code, SIGTRAMP_LEN) != 0)
227 /* If PC is in a RT sigtramp routine, return the address of the start of
228 the routine. Otherwise, return 0. */
231 cris_rt_sigtramp_start (struct frame_info *this_frame)
233 CORE_ADDR pc = get_frame_pc (this_frame);
234 gdb_byte buf[SIGTRAMP_LEN];
236 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN))
239 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN0)
241 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN1)
244 pc -= SIGTRAMP_OFFSET1;
245 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN))
249 if (memcmp (buf, rt_sigtramp_code, SIGTRAMP_LEN) != 0)
255 /* Assuming THIS_FRAME is a frame for a GNU/Linux sigtramp routine,
256 return the address of the associated sigcontext structure. */
259 cris_sigcontext_addr (struct frame_info *this_frame)
261 struct gdbarch *gdbarch = get_frame_arch (this_frame);
262 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
267 get_frame_register (this_frame, gdbarch_sp_regnum (gdbarch), buf);
268 sp = extract_unsigned_integer (buf, 4, byte_order);
270 /* Look for normal sigtramp frame first. */
271 pc = cris_sigtramp_start (this_frame);
274 /* struct signal_frame (arch/cris/kernel/signal.c) contains
275 struct sigcontext as its first member, meaning the SP points to
280 pc = cris_rt_sigtramp_start (this_frame);
283 /* struct rt_signal_frame (arch/cris/kernel/signal.c) contains
284 a struct ucontext, which in turn contains a struct sigcontext.
286 4 + 4 + 128 to struct ucontext, then
287 4 + 4 + 12 to struct sigcontext. */
291 error (_("Couldn't recognize signal trampoline."));
295 struct cris_unwind_cache
297 /* The previous frame's inner most stack address. Used as this
298 frame ID's stack_addr. */
300 /* The frame's base, optionally used by the high-level debug info. */
303 /* How far the SP and r8 (FP) have been offset from the start of
304 the stack frame (as defined by the previous frame's stack
310 /* From old frame_extra_info struct. */
314 /* Table indicating the location of each and every register. */
315 struct trad_frame_saved_reg *saved_regs;
318 static struct cris_unwind_cache *
319 cris_sigtramp_frame_unwind_cache (struct frame_info *this_frame,
322 struct gdbarch *gdbarch = get_frame_arch (this_frame);
323 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
324 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
325 struct cris_unwind_cache *info;
333 return (*this_cache);
335 info = FRAME_OBSTACK_ZALLOC (struct cris_unwind_cache);
336 (*this_cache) = info;
337 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
339 /* Zero all fields. */
345 info->uses_frame = 0;
347 info->leaf_function = 0;
349 get_frame_register (this_frame, gdbarch_sp_regnum (gdbarch), buf);
350 info->base = extract_unsigned_integer (buf, 4, byte_order);
352 addr = cris_sigcontext_addr (this_frame);
354 /* Layout of the sigcontext struct:
357 unsigned long oldmask;
361 if (tdep->cris_version == 10)
363 /* R0 to R13 are stored in reverse order at offset (2 * 4) in
365 for (i = 0; i <= 13; i++)
366 info->saved_regs[i].addr = addr + ((15 - i) * 4);
368 info->saved_regs[MOF_REGNUM].addr = addr + (16 * 4);
369 info->saved_regs[DCCR_REGNUM].addr = addr + (17 * 4);
370 info->saved_regs[SRP_REGNUM].addr = addr + (18 * 4);
371 /* Note: IRP is off by 2 at this point. There's no point in correcting
372 it though since that will mean that the backtrace will show a PC
373 different from what is shown when stopped. */
374 info->saved_regs[IRP_REGNUM].addr = addr + (19 * 4);
375 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
376 = info->saved_regs[IRP_REGNUM];
377 info->saved_regs[gdbarch_sp_regnum (gdbarch)].addr = addr + (24 * 4);
382 /* R0 to R13 are stored in order at offset (1 * 4) in
384 for (i = 0; i <= 13; i++)
385 info->saved_regs[i].addr = addr + ((i + 1) * 4);
387 info->saved_regs[ACR_REGNUM].addr = addr + (15 * 4);
388 info->saved_regs[SRS_REGNUM].addr = addr + (16 * 4);
389 info->saved_regs[MOF_REGNUM].addr = addr + (17 * 4);
390 info->saved_regs[SPC_REGNUM].addr = addr + (18 * 4);
391 info->saved_regs[CCS_REGNUM].addr = addr + (19 * 4);
392 info->saved_regs[SRP_REGNUM].addr = addr + (20 * 4);
393 info->saved_regs[ERP_REGNUM].addr = addr + (21 * 4);
394 info->saved_regs[EXS_REGNUM].addr = addr + (22 * 4);
395 info->saved_regs[EDA_REGNUM].addr = addr + (23 * 4);
397 /* FIXME: If ERP is in a delay slot at this point then the PC will
398 be wrong at this point. This problem manifests itself in the
399 sigaltstack.exp test case, which occasionally generates FAILs when
400 the signal is received while in a delay slot.
402 This could be solved by a couple of read_memory_unsigned_integer and a
403 trad_frame_set_value. */
404 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
405 = info->saved_regs[ERP_REGNUM];
407 info->saved_regs[gdbarch_sp_regnum (gdbarch)].addr
415 cris_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
416 struct frame_id *this_id)
418 struct cris_unwind_cache *cache =
419 cris_sigtramp_frame_unwind_cache (this_frame, this_cache);
420 (*this_id) = frame_id_build (cache->base, get_frame_pc (this_frame));
423 /* Forward declaration. */
425 static struct value *cris_frame_prev_register (struct frame_info *this_frame,
426 void **this_cache, int regnum);
427 static struct value *
428 cris_sigtramp_frame_prev_register (struct frame_info *this_frame,
429 void **this_cache, int regnum)
431 /* Make sure we've initialized the cache. */
432 cris_sigtramp_frame_unwind_cache (this_frame, this_cache);
433 return cris_frame_prev_register (this_frame, this_cache, regnum);
437 cris_sigtramp_frame_sniffer (const struct frame_unwind *self,
438 struct frame_info *this_frame,
441 if (cris_sigtramp_start (this_frame)
442 || cris_rt_sigtramp_start (this_frame))
448 static const struct frame_unwind cris_sigtramp_frame_unwind =
451 cris_sigtramp_frame_this_id,
452 cris_sigtramp_frame_prev_register,
454 cris_sigtramp_frame_sniffer
458 crisv32_single_step_through_delay (struct gdbarch *gdbarch,
459 struct frame_info *this_frame)
461 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
465 if (tdep->cris_mode == cris_mode_guru)
466 erp = get_frame_register_unsigned (this_frame, NRP_REGNUM);
468 erp = get_frame_register_unsigned (this_frame, ERP_REGNUM);
472 /* In delay slot - check if there's a breakpoint at the preceding
474 if (breakpoint_here_p (get_frame_address_space (this_frame), erp & ~0x1))
480 /* Hardware watchpoint support. */
482 /* We support 6 hardware data watchpoints, but cannot trigger on execute
483 (any combination of read/write is fine). */
486 cris_can_use_hardware_watchpoint (int type, int count, int other)
488 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch);
490 /* No bookkeeping is done here; it is handled by the remote debug agent. */
492 if (tdep->cris_version != 32)
495 /* CRISv32: Six data watchpoints, one for instructions. */
496 return (((type == bp_read_watchpoint || type == bp_access_watchpoint
497 || type == bp_hardware_watchpoint) && count <= 6)
498 || (type == bp_hardware_breakpoint && count <= 1));
501 /* The CRISv32 hardware data watchpoints work by specifying ranges,
502 which have no alignment or length restrictions. */
505 cris_region_ok_for_watchpoint (CORE_ADDR addr, int len)
510 /* If the inferior has some watchpoint that triggered, return the
511 address associated with that watchpoint. Otherwise, return
515 cris_stopped_data_address (void)
518 eda = get_frame_register_unsigned (get_current_frame (), EDA_REGNUM);
522 /* The instruction environment needed to find single-step breakpoints. */
525 struct instruction_environment
527 unsigned long reg[NUM_GENREGS];
528 unsigned long preg[NUM_SPECREGS];
529 unsigned long branch_break_address;
530 unsigned long delay_slot_pc;
531 unsigned long prefix_value;
536 int delay_slot_pc_active;
538 int disable_interrupt;
542 /* Machine-dependencies in CRIS for opcodes. */
544 /* Instruction sizes. */
545 enum cris_instruction_sizes
552 /* Addressing modes. */
553 enum cris_addressing_modes
560 /* Prefix addressing modes. */
561 enum cris_prefix_addressing_modes
563 PREFIX_INDEX_MODE = 2,
564 PREFIX_ASSIGN_MODE = 3,
566 /* Handle immediate byte offset addressing mode prefix format. */
567 PREFIX_OFFSET_MODE = 2
570 /* Masks for opcodes. */
571 enum cris_opcode_masks
573 BRANCH_SIGNED_SHORT_OFFSET_MASK = 0x1,
574 SIGNED_EXTEND_BIT_MASK = 0x2,
575 SIGNED_BYTE_MASK = 0x80,
576 SIGNED_BYTE_EXTEND_MASK = 0xFFFFFF00,
577 SIGNED_WORD_MASK = 0x8000,
578 SIGNED_WORD_EXTEND_MASK = 0xFFFF0000,
579 SIGNED_DWORD_MASK = 0x80000000,
580 SIGNED_QUICK_VALUE_MASK = 0x20,
581 SIGNED_QUICK_VALUE_EXTEND_MASK = 0xFFFFFFC0
584 /* Functions for opcodes. The general form of the ETRAX 16-bit instruction:
592 cris_get_operand2 (unsigned short insn)
594 return ((insn & 0xF000) >> 12);
598 cris_get_mode (unsigned short insn)
600 return ((insn & 0x0C00) >> 10);
604 cris_get_opcode (unsigned short insn)
606 return ((insn & 0x03C0) >> 6);
610 cris_get_size (unsigned short insn)
612 return ((insn & 0x0030) >> 4);
616 cris_get_operand1 (unsigned short insn)
618 return (insn & 0x000F);
621 /* Additional functions in order to handle opcodes. */
624 cris_get_quick_value (unsigned short insn)
626 return (insn & 0x003F);
630 cris_get_bdap_quick_offset (unsigned short insn)
632 return (insn & 0x00FF);
636 cris_get_branch_short_offset (unsigned short insn)
638 return (insn & 0x00FF);
642 cris_get_asr_shift_steps (unsigned long value)
644 return (value & 0x3F);
648 cris_get_clear_size (unsigned short insn)
650 return ((insn) & 0xC000);
654 cris_is_signed_extend_bit_on (unsigned short insn)
656 return (((insn) & 0x20) == 0x20);
660 cris_is_xflag_bit_on (unsigned short insn)
662 return (((insn) & 0x1000) == 0x1000);
666 cris_set_size_to_dword (unsigned short *insn)
673 cris_get_signed_offset (unsigned short insn)
675 return ((signed char) (insn & 0x00FF));
678 /* Calls an op function given the op-type, working on the insn and the
680 static void cris_gdb_func (struct gdbarch *, enum cris_op_type, unsigned short,
683 static struct gdbarch *cris_gdbarch_init (struct gdbarch_info,
684 struct gdbarch_list *);
686 static void cris_dump_tdep (struct gdbarch *, struct ui_file *);
688 static void set_cris_version (char *ignore_args, int from_tty,
689 struct cmd_list_element *c);
691 static void set_cris_mode (char *ignore_args, int from_tty,
692 struct cmd_list_element *c);
694 static void set_cris_dwarf2_cfi (char *ignore_args, int from_tty,
695 struct cmd_list_element *c);
697 static CORE_ADDR cris_scan_prologue (CORE_ADDR pc,
698 struct frame_info *this_frame,
699 struct cris_unwind_cache *info);
701 static CORE_ADDR crisv32_scan_prologue (CORE_ADDR pc,
702 struct frame_info *this_frame,
703 struct cris_unwind_cache *info);
705 static CORE_ADDR cris_unwind_pc (struct gdbarch *gdbarch,
706 struct frame_info *next_frame);
708 static CORE_ADDR cris_unwind_sp (struct gdbarch *gdbarch,
709 struct frame_info *next_frame);
711 /* When arguments must be pushed onto the stack, they go on in reverse
712 order. The below implements a FILO (stack) to do this.
713 Copied from d10v-tdep.c. */
718 struct stack_item *prev;
722 static struct stack_item *
723 push_stack_item (struct stack_item *prev, void *contents, int len)
725 struct stack_item *si;
726 si = xmalloc (sizeof (struct stack_item));
727 si->data = xmalloc (len);
730 memcpy (si->data, contents, len);
734 static struct stack_item *
735 pop_stack_item (struct stack_item *si)
737 struct stack_item *dead = si;
744 /* Put here the code to store, into fi->saved_regs, the addresses of
745 the saved registers of frame described by FRAME_INFO. This
746 includes special registers such as pc and fp saved in special ways
747 in the stack frame. sp is even more special: the address we return
748 for it IS the sp for the next frame. */
750 static struct cris_unwind_cache *
751 cris_frame_unwind_cache (struct frame_info *this_frame,
752 void **this_prologue_cache)
754 struct gdbarch *gdbarch = get_frame_arch (this_frame);
755 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
757 struct cris_unwind_cache *info;
760 if ((*this_prologue_cache))
761 return (*this_prologue_cache);
763 info = FRAME_OBSTACK_ZALLOC (struct cris_unwind_cache);
764 (*this_prologue_cache) = info;
765 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
767 /* Zero all fields. */
773 info->uses_frame = 0;
775 info->leaf_function = 0;
777 /* Prologue analysis does the rest... */
778 if (tdep->cris_version == 32)
779 crisv32_scan_prologue (get_frame_func (this_frame), this_frame, info);
781 cris_scan_prologue (get_frame_func (this_frame), this_frame, info);
786 /* Given a GDB frame, determine the address of the calling function's
787 frame. This will be used to create a new GDB frame struct. */
790 cris_frame_this_id (struct frame_info *this_frame,
791 void **this_prologue_cache,
792 struct frame_id *this_id)
794 struct cris_unwind_cache *info
795 = cris_frame_unwind_cache (this_frame, this_prologue_cache);
800 /* The FUNC is easy. */
801 func = get_frame_func (this_frame);
803 /* Hopefully the prologue analysis either correctly determined the
804 frame's base (which is the SP from the previous frame), or set
805 that base to "NULL". */
806 base = info->prev_sp;
810 id = frame_id_build (base, func);
815 static struct value *
816 cris_frame_prev_register (struct frame_info *this_frame,
817 void **this_prologue_cache, int regnum)
819 struct cris_unwind_cache *info
820 = cris_frame_unwind_cache (this_frame, this_prologue_cache);
821 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
824 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
825 frame. The frame ID's base needs to match the TOS value saved by
826 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
828 static struct frame_id
829 cris_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
832 sp = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
833 return frame_id_build (sp, get_frame_pc (this_frame));
837 cris_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
839 /* Align to the size of an instruction (so that they can safely be
840 pushed onto the stack). */
845 cris_push_dummy_code (struct gdbarch *gdbarch,
846 CORE_ADDR sp, CORE_ADDR funaddr,
847 struct value **args, int nargs,
848 struct type *value_type,
849 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
850 struct regcache *regcache)
852 /* Allocate space sufficient for a breakpoint. */
854 /* Store the address of that breakpoint */
856 /* CRIS always starts the call at the callee's entry point. */
862 cris_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
863 struct regcache *regcache, CORE_ADDR bp_addr,
864 int nargs, struct value **args, CORE_ADDR sp,
865 int struct_return, CORE_ADDR struct_addr)
867 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
875 /* The function's arguments and memory allocated by gdb for the arguments to
876 point at reside in separate areas on the stack.
877 Both frame pointers grow toward higher addresses. */
881 struct stack_item *si = NULL;
883 /* Push the return address. */
884 regcache_cooked_write_unsigned (regcache, SRP_REGNUM, bp_addr);
886 /* Are we returning a value using a structure return or a normal value
887 return? struct_addr is the address of the reserved space for the return
888 structure to be written on the stack. */
891 regcache_cooked_write_unsigned (regcache, STR_REGNUM, struct_addr);
894 /* Now load as many as possible of the first arguments into registers,
895 and push the rest onto the stack. */
896 argreg = ARG1_REGNUM;
899 for (argnum = 0; argnum < nargs; argnum++)
906 len = TYPE_LENGTH (value_type (args[argnum]));
907 val = (char *) value_contents (args[argnum]);
909 /* How may registers worth of storage do we need for this argument? */
910 reg_demand = (len / 4) + (len % 4 != 0 ? 1 : 0);
912 if (len <= (2 * 4) && (argreg + reg_demand - 1 <= ARG4_REGNUM))
914 /* Data passed by value. Fits in available register(s). */
915 for (i = 0; i < reg_demand; i++)
917 regcache_cooked_write (regcache, argreg, val);
922 else if (len <= (2 * 4) && argreg <= ARG4_REGNUM)
924 /* Data passed by value. Does not fit in available register(s).
925 Use the register(s) first, then the stack. */
926 for (i = 0; i < reg_demand; i++)
928 if (argreg <= ARG4_REGNUM)
930 regcache_cooked_write (regcache, argreg, val);
936 /* Push item for later so that pushed arguments
937 come in the right order. */
938 si = push_stack_item (si, val, 4);
943 else if (len > (2 * 4))
945 /* Data passed by reference. Push copy of data onto stack
946 and pass pointer to this copy as argument. */
947 sp = (sp - len) & ~3;
948 write_memory (sp, val, len);
950 if (argreg <= ARG4_REGNUM)
952 regcache_cooked_write_unsigned (regcache, argreg, sp);
958 store_unsigned_integer (buf, 4, byte_order, sp);
959 si = push_stack_item (si, buf, 4);
964 /* Data passed by value. No available registers. Put it on
966 si = push_stack_item (si, val, len);
972 /* fp_arg must be word-aligned (i.e., don't += len) to match
973 the function prologue. */
974 sp = (sp - si->len) & ~3;
975 write_memory (sp, si->data, si->len);
976 si = pop_stack_item (si);
979 /* Finally, update the SP register. */
980 regcache_cooked_write_unsigned (regcache, gdbarch_sp_regnum (gdbarch), sp);
985 static const struct frame_unwind cris_frame_unwind =
989 cris_frame_prev_register,
991 default_frame_sniffer
995 cris_frame_base_address (struct frame_info *this_frame, void **this_cache)
997 struct cris_unwind_cache *info
998 = cris_frame_unwind_cache (this_frame, this_cache);
1002 static const struct frame_base cris_frame_base =
1005 cris_frame_base_address,
1006 cris_frame_base_address,
1007 cris_frame_base_address
1010 /* Frames information. The definition of the struct frame_info is
1014 enum frame_type type;
1018 If the compilation option -fno-omit-frame-pointer is present the
1019 variable frame will be set to the content of R8 which is the frame
1022 The variable pc contains the address where execution is performed
1023 in the present frame. The innermost frame contains the current content
1024 of the register PC. All other frames contain the content of the
1025 register PC in the next frame.
1027 The variable `type' indicates the frame's type: normal, SIGTRAMP
1028 (associated with a signal handler), dummy (associated with a dummy
1031 The variable return_pc contains the address where execution should be
1032 resumed when the present frame has finished, the return address.
1034 The variable leaf_function is 1 if the return address is in the register
1035 SRP, and 0 if it is on the stack.
1037 Prologue instructions C-code.
1038 The prologue may consist of (-fno-omit-frame-pointer)
1042 move.d sp,r8 move.d sp,r8
1044 movem rY,[sp] movem rY,[sp]
1045 move.S rZ,[r8-U] move.S rZ,[r8-U]
1047 where 1 is a non-terminal function, and 2 is a leaf-function.
1049 Note that this assumption is extremely brittle, and will break at the
1050 slightest change in GCC's prologue.
1052 If local variables are declared or register contents are saved on stack
1053 the subq-instruction will be present with X as the number of bytes
1054 needed for storage. The reshuffle with respect to r8 may be performed
1055 with any size S (b, w, d) and any of the general registers Z={0..13}.
1056 The offset U should be representable by a signed 8-bit value in all cases.
1057 Thus, the prefix word is assumed to be immediate byte offset mode followed
1058 by another word containing the instruction.
1067 Prologue instructions C++-code.
1068 Case 1) and 2) in the C-code may be followed by
1070 move.d r10,rS ; this
1074 move.S [r8+U],rZ ; P4
1076 if any of the call parameters are stored. The host expects these
1077 instructions to be executed in order to get the call parameters right. */
1079 /* Examine the prologue of a function. The variable ip is the address of
1080 the first instruction of the prologue. The variable limit is the address
1081 of the first instruction after the prologue. The variable fi contains the
1082 information in struct frame_info. The variable frameless_p controls whether
1083 the entire prologue is examined (0) or just enough instructions to
1084 determine that it is a prologue (1). */
1087 cris_scan_prologue (CORE_ADDR pc, struct frame_info *this_frame,
1088 struct cris_unwind_cache *info)
1090 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1091 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1093 /* Present instruction. */
1094 unsigned short insn;
1096 /* Next instruction, lookahead. */
1097 unsigned short insn_next;
1100 /* Is there a push fp? */
1103 /* Number of byte on stack used for local variables and movem. */
1106 /* Highest register number in a movem. */
1109 /* move.d r<source_register>,rS */
1110 short source_register;
1115 /* This frame is with respect to a leaf until a push srp is found. */
1118 info->leaf_function = 1;
1121 /* Assume nothing on stack. */
1125 /* If we were called without a this_frame, that means we were called
1126 from cris_skip_prologue which already tried to find the end of the
1127 prologue through the symbol information. 64 instructions past current
1128 pc is arbitrarily chosen, but at least it means we'll stop eventually. */
1129 limit = this_frame ? get_frame_pc (this_frame) : pc + 64;
1131 /* Find the prologue instructions. */
1132 while (pc > 0 && pc < limit)
1134 insn = read_memory_unsigned_integer (pc, 2, byte_order);
1138 /* push <reg> 32 bit instruction. */
1139 insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
1141 regno = cris_get_operand2 (insn_next);
1144 info->sp_offset += 4;
1146 /* This check, meant to recognize srp, used to be regno ==
1147 (SRP_REGNUM - NUM_GENREGS), but that covers r11 also. */
1148 if (insn_next == 0xBE7E)
1152 info->leaf_function = 0;
1155 else if (insn_next == 0x8FEE)
1160 info->r8_offset = info->sp_offset;
1164 else if (insn == 0x866E)
1169 info->uses_frame = 1;
1173 else if (cris_get_operand2 (insn) == gdbarch_sp_regnum (gdbarch)
1174 && cris_get_mode (insn) == 0x0000
1175 && cris_get_opcode (insn) == 0x000A)
1180 info->sp_offset += cris_get_quick_value (insn);
1183 else if (cris_get_mode (insn) == 0x0002
1184 && cris_get_opcode (insn) == 0x000F
1185 && cris_get_size (insn) == 0x0003
1186 && cris_get_operand1 (insn) == gdbarch_sp_regnum (gdbarch))
1188 /* movem r<regsave>,[sp] */
1189 regsave = cris_get_operand2 (insn);
1191 else if (cris_get_operand2 (insn) == gdbarch_sp_regnum (gdbarch)
1192 && ((insn & 0x0F00) >> 8) == 0x0001
1193 && (cris_get_signed_offset (insn) < 0))
1195 /* Immediate byte offset addressing prefix word with sp as base
1196 register. Used for CRIS v8 i.e. ETRAX 100 and newer if <val>
1197 is between 64 and 128.
1198 movem r<regsave>,[sp=sp-<val>] */
1201 info->sp_offset += -cris_get_signed_offset (insn);
1203 insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
1205 if (cris_get_mode (insn_next) == PREFIX_ASSIGN_MODE
1206 && cris_get_opcode (insn_next) == 0x000F
1207 && cris_get_size (insn_next) == 0x0003
1208 && cris_get_operand1 (insn_next) == gdbarch_sp_regnum
1211 regsave = cris_get_operand2 (insn_next);
1215 /* The prologue ended before the limit was reached. */
1220 else if (cris_get_mode (insn) == 0x0001
1221 && cris_get_opcode (insn) == 0x0009
1222 && cris_get_size (insn) == 0x0002)
1224 /* move.d r<10..13>,r<0..15> */
1225 source_register = cris_get_operand1 (insn);
1227 /* FIXME? In the glibc solibs, the prologue might contain something
1228 like (this example taken from relocate_doit):
1230 sub.d 0xfffef426,$r0
1231 which isn't covered by the source_register check below. Question
1232 is whether to add a check for this combo, or make better use of
1233 the limit variable instead. */
1234 if (source_register < ARG1_REGNUM || source_register > ARG4_REGNUM)
1236 /* The prologue ended before the limit was reached. */
1241 else if (cris_get_operand2 (insn) == CRIS_FP_REGNUM
1242 /* The size is a fixed-size. */
1243 && ((insn & 0x0F00) >> 8) == 0x0001
1244 /* A negative offset. */
1245 && (cris_get_signed_offset (insn) < 0))
1247 /* move.S rZ,[r8-U] (?) */
1248 insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
1250 regno = cris_get_operand2 (insn_next);
1251 if ((regno >= 0 && regno < gdbarch_sp_regnum (gdbarch))
1252 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
1253 && cris_get_opcode (insn_next) == 0x000F)
1255 /* move.S rZ,[r8-U] */
1260 /* The prologue ended before the limit was reached. */
1265 else if (cris_get_operand2 (insn) == CRIS_FP_REGNUM
1266 /* The size is a fixed-size. */
1267 && ((insn & 0x0F00) >> 8) == 0x0001
1268 /* A positive offset. */
1269 && (cris_get_signed_offset (insn) > 0))
1271 /* move.S [r8+U],rZ (?) */
1272 insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
1274 regno = cris_get_operand2 (insn_next);
1275 if ((regno >= 0 && regno < gdbarch_sp_regnum (gdbarch))
1276 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
1277 && cris_get_opcode (insn_next) == 0x0009
1278 && cris_get_operand1 (insn_next) == regno)
1280 /* move.S [r8+U],rZ */
1285 /* The prologue ended before the limit was reached. */
1292 /* The prologue ended before the limit was reached. */
1298 /* We only want to know the end of the prologue when this_frame and info
1299 are NULL (called from cris_skip_prologue i.e.). */
1300 if (this_frame == NULL && info == NULL)
1305 info->size = info->sp_offset;
1307 /* Compute the previous frame's stack pointer (which is also the
1308 frame's ID's stack address), and this frame's base pointer. */
1309 if (info->uses_frame)
1312 /* The SP was moved to the FP. This indicates that a new frame
1313 was created. Get THIS frame's FP value by unwinding it from
1315 this_base = get_frame_register_unsigned (this_frame, CRIS_FP_REGNUM);
1316 info->base = this_base;
1317 info->saved_regs[CRIS_FP_REGNUM].addr = info->base;
1319 /* The FP points at the last saved register. Adjust the FP back
1320 to before the first saved register giving the SP. */
1321 info->prev_sp = info->base + info->r8_offset;
1326 /* Assume that the FP is this frame's SP but with that pushed
1327 stack space added back. */
1328 this_base = get_frame_register_unsigned (this_frame,
1329 gdbarch_sp_regnum (gdbarch));
1330 info->base = this_base;
1331 info->prev_sp = info->base + info->size;
1334 /* Calculate the addresses for the saved registers on the stack. */
1335 /* FIXME: The address calculation should really be done on the fly while
1336 we're analyzing the prologue (we only hold one regsave value as it is
1338 val = info->sp_offset;
1340 for (regno = regsave; regno >= 0; regno--)
1342 info->saved_regs[regno].addr = info->base + info->r8_offset - val;
1346 /* The previous frame's SP needed to be computed. Save the computed
1348 trad_frame_set_value (info->saved_regs,
1349 gdbarch_sp_regnum (gdbarch), info->prev_sp);
1351 if (!info->leaf_function)
1353 /* SRP saved on the stack. But where? */
1354 if (info->r8_offset == 0)
1356 /* R8 not pushed yet. */
1357 info->saved_regs[SRP_REGNUM].addr = info->base;
1361 /* R8 pushed, but SP may or may not be moved to R8 yet. */
1362 info->saved_regs[SRP_REGNUM].addr = info->base + 4;
1366 /* The PC is found in SRP (the actual register or located on the stack). */
1367 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
1368 = info->saved_regs[SRP_REGNUM];
1374 crisv32_scan_prologue (CORE_ADDR pc, struct frame_info *this_frame,
1375 struct cris_unwind_cache *info)
1377 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1380 /* Unlike the CRISv10 prologue scanner (cris_scan_prologue), this is not
1381 meant to be a full-fledged prologue scanner. It is only needed for
1382 the cases where we end up in code always lacking DWARF-2 CFI, notably:
1384 * PLT stubs (library calls)
1386 * signal trampolines
1388 For those cases, it is assumed that there is no actual prologue; that
1389 the stack pointer is not adjusted, and (as a consequence) the return
1390 address is not pushed onto the stack. */
1392 /* We only want to know the end of the prologue when this_frame and info
1393 are NULL (called from cris_skip_prologue i.e.). */
1394 if (this_frame == NULL && info == NULL)
1399 /* The SP is assumed to be unaltered. */
1400 this_base = get_frame_register_unsigned (this_frame,
1401 gdbarch_sp_regnum (gdbarch));
1402 info->base = this_base;
1403 info->prev_sp = this_base;
1405 /* The PC is assumed to be found in SRP. */
1406 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
1407 = info->saved_regs[SRP_REGNUM];
1412 /* Advance pc beyond any function entry prologue instructions at pc
1413 to reach some "real" code. */
1415 /* Given a PC value corresponding to the start of a function, return the PC
1416 of the first instruction after the function prologue. */
1419 cris_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1421 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1422 CORE_ADDR func_addr, func_end;
1423 struct symtab_and_line sal;
1424 CORE_ADDR pc_after_prologue;
1426 /* If we have line debugging information, then the end of the prologue
1427 should the first assembly instruction of the first source line. */
1428 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1430 sal = find_pc_line (func_addr, 0);
1431 if (sal.end > 0 && sal.end < func_end)
1435 if (tdep->cris_version == 32)
1436 pc_after_prologue = crisv32_scan_prologue (pc, NULL, NULL);
1438 pc_after_prologue = cris_scan_prologue (pc, NULL, NULL);
1440 return pc_after_prologue;
1444 cris_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1447 pc = frame_unwind_register_unsigned (next_frame,
1448 gdbarch_pc_regnum (gdbarch));
1453 cris_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1456 sp = frame_unwind_register_unsigned (next_frame,
1457 gdbarch_sp_regnum (gdbarch));
1461 /* Use the program counter to determine the contents and size of a breakpoint
1462 instruction. It returns a pointer to a string of bytes that encode a
1463 breakpoint instruction, stores the length of the string to *lenptr, and
1464 adjusts pcptr (if necessary) to point to the actual memory location where
1465 the breakpoint should be inserted. */
1467 static const unsigned char *
1468 cris_breakpoint_from_pc (struct gdbarch *gdbarch,
1469 CORE_ADDR *pcptr, int *lenptr)
1471 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1472 static unsigned char break8_insn[] = {0x38, 0xe9};
1473 static unsigned char break15_insn[] = {0x3f, 0xe9};
1476 if (tdep->cris_mode == cris_mode_guru)
1477 return break15_insn;
1482 /* Returns 1 if spec_reg is applicable to the current gdbarch's CRIS version,
1486 cris_spec_reg_applicable (struct gdbarch *gdbarch,
1487 struct cris_spec_reg spec_reg)
1489 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1490 int version = tdep->cris_version;
1492 switch (spec_reg.applicable_version)
1494 case cris_ver_version_all:
1496 case cris_ver_warning:
1497 /* Indeterminate/obsolete. */
1500 return (version >= 0 && version <= 3);
1502 return (version >= 3);
1504 return (version == 8 || version == 9);
1506 return (version >= 8);
1507 case cris_ver_v0_10:
1508 return (version >= 0 && version <= 10);
1509 case cris_ver_v3_10:
1510 return (version >= 3 && version <= 10);
1511 case cris_ver_v8_10:
1512 return (version >= 8 && version <= 10);
1514 return (version == 10);
1516 return (version >= 10);
1518 return (version >= 32);
1520 /* Invalid cris version. */
1525 /* Returns the register size in unit byte. Returns 0 for an unimplemented
1526 register, -1 for an invalid register. */
1529 cris_register_size (struct gdbarch *gdbarch, int regno)
1531 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1535 if (regno >= 0 && regno < NUM_GENREGS)
1537 /* General registers (R0 - R15) are 32 bits. */
1540 else if (regno >= NUM_GENREGS && regno < (NUM_GENREGS + NUM_SPECREGS))
1542 /* Special register (R16 - R31). cris_spec_regs is zero-based.
1543 Adjust regno accordingly. */
1544 spec_regno = regno - NUM_GENREGS;
1546 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1548 if (cris_spec_regs[i].number == spec_regno
1549 && cris_spec_reg_applicable (gdbarch, cris_spec_regs[i]))
1550 /* Go with the first applicable register. */
1551 return cris_spec_regs[i].reg_size;
1553 /* Special register not applicable to this CRIS version. */
1556 else if (regno >= gdbarch_pc_regnum (gdbarch)
1557 && regno < gdbarch_num_regs (gdbarch))
1559 /* This will apply to CRISv32 only where there are additional registers
1560 after the special registers (pseudo PC and support registers). */
1568 /* Nonzero if regno should not be fetched from the target. This is the case
1569 for unimplemented (size 0) and non-existant registers. */
1572 cris_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
1574 return ((regno < 0 || regno >= gdbarch_num_regs (gdbarch))
1575 || (cris_register_size (gdbarch, regno) == 0));
1578 /* Nonzero if regno should not be written to the target, for various
1582 cris_cannot_store_register (struct gdbarch *gdbarch, int regno)
1584 /* There are three kinds of registers we refuse to write to.
1585 1. Those that not implemented.
1586 2. Those that are read-only (depends on the processor mode).
1587 3. Those registers to which a write has no effect. */
1590 || regno >= gdbarch_num_regs (gdbarch)
1591 || cris_register_size (gdbarch, regno) == 0)
1592 /* Not implemented. */
1595 else if (regno == VR_REGNUM)
1599 else if (regno == P0_REGNUM || regno == P4_REGNUM || regno == P8_REGNUM)
1600 /* Writing has no effect. */
1603 /* IBR, BAR, BRP and IRP are read-only in user mode. Let the debug
1604 agent decide whether they are writable. */
1609 /* Nonzero if regno should not be fetched from the target. This is the case
1610 for unimplemented (size 0) and non-existant registers. */
1613 crisv32_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
1615 return ((regno < 0 || regno >= gdbarch_num_regs (gdbarch))
1616 || (cris_register_size (gdbarch, regno) == 0));
1619 /* Nonzero if regno should not be written to the target, for various
1623 crisv32_cannot_store_register (struct gdbarch *gdbarch, int regno)
1625 /* There are three kinds of registers we refuse to write to.
1626 1. Those that not implemented.
1627 2. Those that are read-only (depends on the processor mode).
1628 3. Those registers to which a write has no effect. */
1631 || regno >= gdbarch_num_regs (gdbarch)
1632 || cris_register_size (gdbarch, regno) == 0)
1633 /* Not implemented. */
1636 else if (regno == VR_REGNUM)
1640 else if (regno == BZ_REGNUM || regno == WZ_REGNUM || regno == DZ_REGNUM)
1641 /* Writing has no effect. */
1644 /* Many special registers are read-only in user mode. Let the debug
1645 agent decide whether they are writable. */
1650 /* Return the GDB type (defined in gdbtypes.c) for the "standard" data type
1651 of data in register regno. */
1653 static struct type *
1654 cris_register_type (struct gdbarch *gdbarch, int regno)
1656 if (regno == gdbarch_pc_regnum (gdbarch))
1657 return builtin_type (gdbarch)->builtin_func_ptr;
1658 else if (regno == gdbarch_sp_regnum (gdbarch)
1659 || regno == CRIS_FP_REGNUM)
1660 return builtin_type (gdbarch)->builtin_data_ptr;
1661 else if ((regno >= 0 && regno < gdbarch_sp_regnum (gdbarch))
1662 || (regno >= MOF_REGNUM && regno <= USP_REGNUM))
1663 /* Note: R8 taken care of previous clause. */
1664 return builtin_type (gdbarch)->builtin_uint32;
1665 else if (regno >= P4_REGNUM && regno <= CCR_REGNUM)
1666 return builtin_type (gdbarch)->builtin_uint16;
1667 else if (regno >= P0_REGNUM && regno <= VR_REGNUM)
1668 return builtin_type (gdbarch)->builtin_uint8;
1670 /* Invalid (unimplemented) register. */
1671 return builtin_type (gdbarch)->builtin_int0;
1674 static struct type *
1675 crisv32_register_type (struct gdbarch *gdbarch, int regno)
1677 if (regno == gdbarch_pc_regnum (gdbarch))
1678 return builtin_type (gdbarch)->builtin_func_ptr;
1679 else if (regno == gdbarch_sp_regnum (gdbarch)
1680 || regno == CRIS_FP_REGNUM)
1681 return builtin_type (gdbarch)->builtin_data_ptr;
1682 else if ((regno >= 0 && regno <= ACR_REGNUM)
1683 || (regno >= EXS_REGNUM && regno <= SPC_REGNUM)
1684 || (regno == PID_REGNUM)
1685 || (regno >= S0_REGNUM && regno <= S15_REGNUM))
1686 /* Note: R8 and SP taken care of by previous clause. */
1687 return builtin_type (gdbarch)->builtin_uint32;
1688 else if (regno == WZ_REGNUM)
1689 return builtin_type (gdbarch)->builtin_uint16;
1690 else if (regno == BZ_REGNUM || regno == VR_REGNUM || regno == SRS_REGNUM)
1691 return builtin_type (gdbarch)->builtin_uint8;
1694 /* Invalid (unimplemented) register. Should not happen as there are
1695 no unimplemented CRISv32 registers. */
1696 warning (_("crisv32_register_type: unknown regno %d"), regno);
1697 return builtin_type (gdbarch)->builtin_int0;
1701 /* Stores a function return value of type type, where valbuf is the address
1702 of the value to be stored. */
1704 /* In the CRIS ABI, R10 and R11 are used to store return values. */
1707 cris_store_return_value (struct type *type, struct regcache *regcache,
1710 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1711 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1713 int len = TYPE_LENGTH (type);
1717 /* Put the return value in R10. */
1718 val = extract_unsigned_integer (valbuf, len, byte_order);
1719 regcache_cooked_write_unsigned (regcache, ARG1_REGNUM, val);
1723 /* Put the return value in R10 and R11. */
1724 val = extract_unsigned_integer (valbuf, 4, byte_order);
1725 regcache_cooked_write_unsigned (regcache, ARG1_REGNUM, val);
1726 val = extract_unsigned_integer ((char *)valbuf + 4, len - 4, byte_order);
1727 regcache_cooked_write_unsigned (regcache, ARG2_REGNUM, val);
1730 error (_("cris_store_return_value: type length too large."));
1733 /* Return the name of register regno as a string. Return NULL for an
1734 invalid or unimplemented register. */
1737 cris_special_register_name (struct gdbarch *gdbarch, int regno)
1742 /* Special register (R16 - R31). cris_spec_regs is zero-based.
1743 Adjust regno accordingly. */
1744 spec_regno = regno - NUM_GENREGS;
1746 /* Assume nothing about the layout of the cris_spec_regs struct
1748 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1750 if (cris_spec_regs[i].number == spec_regno
1751 && cris_spec_reg_applicable (gdbarch, cris_spec_regs[i]))
1752 /* Go with the first applicable register. */
1753 return cris_spec_regs[i].name;
1755 /* Special register not applicable to this CRIS version. */
1760 cris_register_name (struct gdbarch *gdbarch, int regno)
1762 static char *cris_genreg_names[] =
1763 { "r0", "r1", "r2", "r3", \
1764 "r4", "r5", "r6", "r7", \
1765 "r8", "r9", "r10", "r11", \
1766 "r12", "r13", "sp", "pc" };
1768 if (regno >= 0 && regno < NUM_GENREGS)
1770 /* General register. */
1771 return cris_genreg_names[regno];
1773 else if (regno >= NUM_GENREGS && regno < gdbarch_num_regs (gdbarch))
1775 return cris_special_register_name (gdbarch, regno);
1779 /* Invalid register. */
1785 crisv32_register_name (struct gdbarch *gdbarch, int regno)
1787 static char *crisv32_genreg_names[] =
1788 { "r0", "r1", "r2", "r3", \
1789 "r4", "r5", "r6", "r7", \
1790 "r8", "r9", "r10", "r11", \
1791 "r12", "r13", "sp", "acr"
1794 static char *crisv32_sreg_names[] =
1795 { "s0", "s1", "s2", "s3", \
1796 "s4", "s5", "s6", "s7", \
1797 "s8", "s9", "s10", "s11", \
1798 "s12", "s13", "s14", "s15"
1801 if (regno >= 0 && regno < NUM_GENREGS)
1803 /* General register. */
1804 return crisv32_genreg_names[regno];
1806 else if (regno >= NUM_GENREGS && regno < (NUM_GENREGS + NUM_SPECREGS))
1808 return cris_special_register_name (gdbarch, regno);
1810 else if (regno == gdbarch_pc_regnum (gdbarch))
1814 else if (regno >= S0_REGNUM && regno <= S15_REGNUM)
1816 return crisv32_sreg_names[regno - S0_REGNUM];
1820 /* Invalid register. */
1825 /* Convert DWARF register number REG to the appropriate register
1826 number used by GDB. */
1829 cris_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1831 /* We need to re-map a couple of registers (SRP is 16 in Dwarf-2 register
1832 numbering, MOF is 18).
1833 Adapted from gcc/config/cris/cris.h. */
1834 static int cris_dwarf_regmap[] = {
1846 if (reg >= 0 && reg < ARRAY_SIZE (cris_dwarf_regmap))
1847 regnum = cris_dwarf_regmap[reg];
1850 warning (_("Unmapped DWARF Register #%d encountered."), reg);
1855 /* DWARF-2 frame support. */
1858 cris_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1859 struct dwarf2_frame_state_reg *reg,
1860 struct frame_info *this_frame)
1862 /* The return address column. */
1863 if (regnum == gdbarch_pc_regnum (gdbarch))
1864 reg->how = DWARF2_FRAME_REG_RA;
1866 /* The call frame address. */
1867 else if (regnum == gdbarch_sp_regnum (gdbarch))
1868 reg->how = DWARF2_FRAME_REG_CFA;
1871 /* Extract from an array regbuf containing the raw register state a function
1872 return value of type type, and copy that, in virtual format, into
1875 /* In the CRIS ABI, R10 and R11 are used to store return values. */
1878 cris_extract_return_value (struct type *type, struct regcache *regcache,
1881 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1882 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1884 int len = TYPE_LENGTH (type);
1888 /* Get the return value from R10. */
1889 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &val);
1890 store_unsigned_integer (valbuf, len, byte_order, val);
1894 /* Get the return value from R10 and R11. */
1895 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &val);
1896 store_unsigned_integer (valbuf, 4, byte_order, val);
1897 regcache_cooked_read_unsigned (regcache, ARG2_REGNUM, &val);
1898 store_unsigned_integer ((char *)valbuf + 4, len - 4, byte_order, val);
1901 error (_("cris_extract_return_value: type length too large"));
1904 /* Handle the CRIS return value convention. */
1906 static enum return_value_convention
1907 cris_return_value (struct gdbarch *gdbarch, struct type *func_type,
1908 struct type *type, struct regcache *regcache,
1909 gdb_byte *readbuf, const gdb_byte *writebuf)
1911 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1912 || TYPE_CODE (type) == TYPE_CODE_UNION
1913 || TYPE_LENGTH (type) > 8)
1914 /* Structs, unions, and anything larger than 8 bytes (2 registers)
1915 goes on the stack. */
1916 return RETURN_VALUE_STRUCT_CONVENTION;
1919 cris_extract_return_value (type, regcache, readbuf);
1921 cris_store_return_value (type, regcache, writebuf);
1923 return RETURN_VALUE_REGISTER_CONVENTION;
1926 /* Calculates a value that measures how good inst_args constraints an
1927 instruction. It stems from cris_constraint, found in cris-dis.c. */
1930 constraint (unsigned int insn, const signed char *inst_args,
1931 inst_env_type *inst_env)
1936 const char *s = inst_args;
1942 if ((insn & 0x30) == 0x30)
1947 /* A prefix operand. */
1948 if (inst_env->prefix_found)
1954 /* A "push" prefix. (This check was REMOVED by san 970921.) Check for
1955 valid "push" size. In case of special register, it may be != 4. */
1956 if (inst_env->prefix_found)
1962 retval = (((insn >> 0xC) & 0xF) == (insn & 0xF));
1970 tmp = (insn >> 0xC) & 0xF;
1972 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1974 /* Since we match four bits, we will give a value of
1975 4 - 1 = 3 in a match. If there is a corresponding
1976 exact match of a special register in another pattern, it
1977 will get a value of 4, which will be higher. This should
1978 be correct in that an exact pattern would match better that
1980 Note that there is a reason for not returning zero; the
1981 pattern for "clear" is partly matched in the bit-pattern
1982 (the two lower bits must be zero), while the bit-pattern
1983 for a move from a special register is matched in the
1984 register constraint.
1985 This also means we will will have a race condition if
1986 there is a partly match in three bits in the bit pattern. */
1987 if (tmp == cris_spec_regs[i].number)
1994 if (cris_spec_regs[i].name == NULL)
2001 /* Returns the number of bits set in the variable value. */
2004 number_of_bits (unsigned int value)
2006 int number_of_bits = 0;
2010 number_of_bits += 1;
2011 value &= (value - 1);
2013 return number_of_bits;
2016 /* Finds the address that should contain the single step breakpoint(s).
2017 It stems from code in cris-dis.c. */
2020 find_cris_op (unsigned short insn, inst_env_type *inst_env)
2023 int max_level_of_match = -1;
2024 int max_matched = -1;
2027 for (i = 0; cris_opcodes[i].name != NULL; i++)
2029 if (((cris_opcodes[i].match & insn) == cris_opcodes[i].match)
2030 && ((cris_opcodes[i].lose & insn) == 0)
2031 /* Only CRISv10 instructions, please. */
2032 && (cris_opcodes[i].applicable_version != cris_ver_v32p))
2034 level_of_match = constraint (insn, cris_opcodes[i].args, inst_env);
2035 if (level_of_match >= 0)
2038 number_of_bits (cris_opcodes[i].match | cris_opcodes[i].lose);
2039 if (level_of_match > max_level_of_match)
2042 max_level_of_match = level_of_match;
2043 if (level_of_match == 16)
2045 /* All bits matched, cannot find better. */
2055 /* Attempts to find single-step breakpoints. Returns -1 on failure which is
2056 actually an internal error. */
2059 find_step_target (struct frame_info *frame, inst_env_type *inst_env)
2063 unsigned short insn;
2064 struct gdbarch *gdbarch = get_frame_arch (frame);
2065 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2067 /* Create a local register image and set the initial state. */
2068 for (i = 0; i < NUM_GENREGS; i++)
2071 (unsigned long) get_frame_register_unsigned (frame, i);
2073 offset = NUM_GENREGS;
2074 for (i = 0; i < NUM_SPECREGS; i++)
2077 (unsigned long) get_frame_register_unsigned (frame, offset + i);
2079 inst_env->branch_found = 0;
2080 inst_env->slot_needed = 0;
2081 inst_env->delay_slot_pc_active = 0;
2082 inst_env->prefix_found = 0;
2083 inst_env->invalid = 0;
2084 inst_env->xflag_found = 0;
2085 inst_env->disable_interrupt = 0;
2086 inst_env->byte_order = byte_order;
2088 /* Look for a step target. */
2091 /* Read an instruction from the client. */
2092 insn = read_memory_unsigned_integer
2093 (inst_env->reg[gdbarch_pc_regnum (gdbarch)], 2, byte_order);
2095 /* If the instruction is not in a delay slot the new content of the
2096 PC is [PC] + 2. If the instruction is in a delay slot it is not
2097 that simple. Since a instruction in a delay slot cannot change
2098 the content of the PC, it does not matter what value PC will have.
2099 Just make sure it is a valid instruction. */
2100 if (!inst_env->delay_slot_pc_active)
2102 inst_env->reg[gdbarch_pc_regnum (gdbarch)] += 2;
2106 inst_env->delay_slot_pc_active = 0;
2107 inst_env->reg[gdbarch_pc_regnum (gdbarch)]
2108 = inst_env->delay_slot_pc;
2110 /* Analyse the present instruction. */
2111 i = find_cris_op (insn, inst_env);
2114 inst_env->invalid = 1;
2118 cris_gdb_func (gdbarch, cris_opcodes[i].op, insn, inst_env);
2120 } while (!inst_env->invalid
2121 && (inst_env->prefix_found || inst_env->xflag_found
2122 || inst_env->slot_needed));
2126 /* There is no hardware single-step support. The function find_step_target
2127 digs through the opcodes in order to find all possible targets.
2128 Either one ordinary target or two targets for branches may be found. */
2131 cris_software_single_step (struct frame_info *frame)
2133 struct gdbarch *gdbarch = get_frame_arch (frame);
2134 struct address_space *aspace = get_frame_address_space (frame);
2135 inst_env_type inst_env;
2137 /* Analyse the present instruction environment and insert
2139 int status = find_step_target (frame, &inst_env);
2142 /* Could not find a target. Things are likely to go downhill
2144 warning (_("CRIS software single step could not find a step target."));
2148 /* Insert at most two breakpoints. One for the next PC content
2149 and possibly another one for a branch, jump, etc. */
2151 = (CORE_ADDR) inst_env.reg[gdbarch_pc_regnum (gdbarch)];
2152 insert_single_step_breakpoint (gdbarch, aspace, next_pc);
2153 if (inst_env.branch_found
2154 && (CORE_ADDR) inst_env.branch_break_address != next_pc)
2156 CORE_ADDR branch_target_address
2157 = (CORE_ADDR) inst_env.branch_break_address;
2158 insert_single_step_breakpoint (gdbarch,
2159 aspace, branch_target_address);
2166 /* Calculates the prefix value for quick offset addressing mode. */
2169 quick_mode_bdap_prefix (unsigned short inst, inst_env_type *inst_env)
2171 /* It's invalid to be in a delay slot. You can't have a prefix to this
2172 instruction (not 100% sure). */
2173 if (inst_env->slot_needed || inst_env->prefix_found)
2175 inst_env->invalid = 1;
2179 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
2180 inst_env->prefix_value += cris_get_bdap_quick_offset (inst);
2182 /* A prefix doesn't change the xflag_found. But the rest of the flags
2184 inst_env->slot_needed = 0;
2185 inst_env->prefix_found = 1;
2188 /* Updates the autoincrement register. The size of the increment is derived
2189 from the size of the operation. The PC is always kept aligned on even
2193 process_autoincrement (int size, unsigned short inst, inst_env_type *inst_env)
2195 if (size == INST_BYTE_SIZE)
2197 inst_env->reg[cris_get_operand1 (inst)] += 1;
2199 /* The PC must be word aligned, so increase the PC with one
2200 word even if the size is byte. */
2201 if (cris_get_operand1 (inst) == REG_PC)
2203 inst_env->reg[REG_PC] += 1;
2206 else if (size == INST_WORD_SIZE)
2208 inst_env->reg[cris_get_operand1 (inst)] += 2;
2210 else if (size == INST_DWORD_SIZE)
2212 inst_env->reg[cris_get_operand1 (inst)] += 4;
2217 inst_env->invalid = 1;
2221 /* Just a forward declaration. */
2223 static unsigned long get_data_from_address (unsigned short *inst,
2225 enum bfd_endian byte_order);
2227 /* Calculates the prefix value for the general case of offset addressing
2231 bdap_prefix (unsigned short inst, inst_env_type *inst_env)
2236 /* It's invalid to be in a delay slot. */
2237 if (inst_env->slot_needed || inst_env->prefix_found)
2239 inst_env->invalid = 1;
2243 /* The calculation of prefix_value used to be after process_autoincrement,
2244 but that fails for an instruction such as jsr [$r0+12] which is encoded
2245 as 5f0d 0c00 30b9 when compiled with -fpic. Since PC is operand1 it
2246 mustn't be incremented until we have read it and what it points at. */
2247 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
2249 /* The offset is an indirection of the contents of the operand1 register. */
2250 inst_env->prefix_value +=
2251 get_data_from_address (&inst, inst_env->reg[cris_get_operand1 (inst)],
2252 inst_env->byte_order);
2254 if (cris_get_mode (inst) == AUTOINC_MODE)
2256 process_autoincrement (cris_get_size (inst), inst, inst_env);
2259 /* A prefix doesn't change the xflag_found. But the rest of the flags
2261 inst_env->slot_needed = 0;
2262 inst_env->prefix_found = 1;
2265 /* Calculates the prefix value for the index addressing mode. */
2268 biap_prefix (unsigned short inst, inst_env_type *inst_env)
2270 /* It's invalid to be in a delay slot. I can't see that it's possible to
2271 have a prefix to this instruction. So I will treat this as invalid. */
2272 if (inst_env->slot_needed || inst_env->prefix_found)
2274 inst_env->invalid = 1;
2278 inst_env->prefix_value = inst_env->reg[cris_get_operand1 (inst)];
2280 /* The offset is the operand2 value shifted the size of the instruction
2282 inst_env->prefix_value +=
2283 inst_env->reg[cris_get_operand2 (inst)] << cris_get_size (inst);
2285 /* If the PC is operand1 (base) the address used is the address after
2286 the main instruction, i.e. address + 2 (the PC is already compensated
2287 for the prefix operation). */
2288 if (cris_get_operand1 (inst) == REG_PC)
2290 inst_env->prefix_value += 2;
2293 /* A prefix doesn't change the xflag_found. But the rest of the flags
2295 inst_env->slot_needed = 0;
2296 inst_env->xflag_found = 0;
2297 inst_env->prefix_found = 1;
2300 /* Calculates the prefix value for the double indirect addressing mode. */
2303 dip_prefix (unsigned short inst, inst_env_type *inst_env)
2308 /* It's invalid to be in a delay slot. */
2309 if (inst_env->slot_needed || inst_env->prefix_found)
2311 inst_env->invalid = 1;
2315 /* The prefix value is one dereference of the contents of the operand1
2317 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
2318 inst_env->prefix_value
2319 = read_memory_unsigned_integer (address, 4, inst_env->byte_order);
2321 /* Check if the mode is autoincrement. */
2322 if (cris_get_mode (inst) == AUTOINC_MODE)
2324 inst_env->reg[cris_get_operand1 (inst)] += 4;
2327 /* A prefix doesn't change the xflag_found. But the rest of the flags
2329 inst_env->slot_needed = 0;
2330 inst_env->xflag_found = 0;
2331 inst_env->prefix_found = 1;
2334 /* Finds the destination for a branch with 8-bits offset. */
2337 eight_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
2342 /* If we have a prefix or are in a delay slot it's bad. */
2343 if (inst_env->slot_needed || inst_env->prefix_found)
2345 inst_env->invalid = 1;
2349 /* We have a branch, find out where the branch will land. */
2350 offset = cris_get_branch_short_offset (inst);
2352 /* Check if the offset is signed. */
2353 if (offset & BRANCH_SIGNED_SHORT_OFFSET_MASK)
2358 /* The offset ends with the sign bit, set it to zero. The address
2359 should always be word aligned. */
2360 offset &= ~BRANCH_SIGNED_SHORT_OFFSET_MASK;
2362 inst_env->branch_found = 1;
2363 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2365 inst_env->slot_needed = 1;
2366 inst_env->prefix_found = 0;
2367 inst_env->xflag_found = 0;
2368 inst_env->disable_interrupt = 1;
2371 /* Finds the destination for a branch with 16-bits offset. */
2374 sixteen_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
2378 /* If we have a prefix or is in a delay slot it's bad. */
2379 if (inst_env->slot_needed || inst_env->prefix_found)
2381 inst_env->invalid = 1;
2385 /* We have a branch, find out the offset for the branch. */
2386 offset = read_memory_integer (inst_env->reg[REG_PC], 2,
2387 inst_env->byte_order);
2389 /* The instruction is one word longer than normal, so add one word
2391 inst_env->reg[REG_PC] += 2;
2393 inst_env->branch_found = 1;
2394 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2397 inst_env->slot_needed = 1;
2398 inst_env->prefix_found = 0;
2399 inst_env->xflag_found = 0;
2400 inst_env->disable_interrupt = 1;
2403 /* Handles the ABS instruction. */
2406 abs_op (unsigned short inst, inst_env_type *inst_env)
2411 /* ABS can't have a prefix, so it's bad if it does. */
2412 if (inst_env->prefix_found)
2414 inst_env->invalid = 1;
2418 /* Check if the operation affects the PC. */
2419 if (cris_get_operand2 (inst) == REG_PC)
2422 /* It's invalid to change to the PC if we are in a delay slot. */
2423 if (inst_env->slot_needed)
2425 inst_env->invalid = 1;
2429 value = (long) inst_env->reg[REG_PC];
2431 /* The value of abs (SIGNED_DWORD_MASK) is SIGNED_DWORD_MASK. */
2432 if (value != SIGNED_DWORD_MASK)
2435 inst_env->reg[REG_PC] = (long) value;
2439 inst_env->slot_needed = 0;
2440 inst_env->prefix_found = 0;
2441 inst_env->xflag_found = 0;
2442 inst_env->disable_interrupt = 0;
2445 /* Handles the ADDI instruction. */
2448 addi_op (unsigned short inst, inst_env_type *inst_env)
2450 /* It's invalid to have the PC as base register. And ADDI can't have
2452 if (inst_env->prefix_found || (cris_get_operand1 (inst) == REG_PC))
2454 inst_env->invalid = 1;
2458 inst_env->slot_needed = 0;
2459 inst_env->prefix_found = 0;
2460 inst_env->xflag_found = 0;
2461 inst_env->disable_interrupt = 0;
2464 /* Handles the ASR instruction. */
2467 asr_op (unsigned short inst, inst_env_type *inst_env)
2470 unsigned long value;
2471 unsigned long signed_extend_mask = 0;
2473 /* ASR can't have a prefix, so check that it doesn't. */
2474 if (inst_env->prefix_found)
2476 inst_env->invalid = 1;
2480 /* Check if the PC is the target register. */
2481 if (cris_get_operand2 (inst) == REG_PC)
2483 /* It's invalid to change the PC in a delay slot. */
2484 if (inst_env->slot_needed)
2486 inst_env->invalid = 1;
2489 /* Get the number of bits to shift. */
2491 = cris_get_asr_shift_steps (inst_env->reg[cris_get_operand1 (inst)]);
2492 value = inst_env->reg[REG_PC];
2494 /* Find out how many bits the operation should apply to. */
2495 if (cris_get_size (inst) == INST_BYTE_SIZE)
2497 if (value & SIGNED_BYTE_MASK)
2499 signed_extend_mask = 0xFF;
2500 signed_extend_mask = signed_extend_mask >> shift_steps;
2501 signed_extend_mask = ~signed_extend_mask;
2503 value = value >> shift_steps;
2504 value |= signed_extend_mask;
2506 inst_env->reg[REG_PC] &= 0xFFFFFF00;
2507 inst_env->reg[REG_PC] |= value;
2509 else if (cris_get_size (inst) == INST_WORD_SIZE)
2511 if (value & SIGNED_WORD_MASK)
2513 signed_extend_mask = 0xFFFF;
2514 signed_extend_mask = signed_extend_mask >> shift_steps;
2515 signed_extend_mask = ~signed_extend_mask;
2517 value = value >> shift_steps;
2518 value |= signed_extend_mask;
2520 inst_env->reg[REG_PC] &= 0xFFFF0000;
2521 inst_env->reg[REG_PC] |= value;
2523 else if (cris_get_size (inst) == INST_DWORD_SIZE)
2525 if (value & SIGNED_DWORD_MASK)
2527 signed_extend_mask = 0xFFFFFFFF;
2528 signed_extend_mask = signed_extend_mask >> shift_steps;
2529 signed_extend_mask = ~signed_extend_mask;
2531 value = value >> shift_steps;
2532 value |= signed_extend_mask;
2533 inst_env->reg[REG_PC] = value;
2536 inst_env->slot_needed = 0;
2537 inst_env->prefix_found = 0;
2538 inst_env->xflag_found = 0;
2539 inst_env->disable_interrupt = 0;
2542 /* Handles the ASRQ instruction. */
2545 asrq_op (unsigned short inst, inst_env_type *inst_env)
2549 unsigned long value;
2550 unsigned long signed_extend_mask = 0;
2552 /* ASRQ can't have a prefix, so check that it doesn't. */
2553 if (inst_env->prefix_found)
2555 inst_env->invalid = 1;
2559 /* Check if the PC is the target register. */
2560 if (cris_get_operand2 (inst) == REG_PC)
2563 /* It's invalid to change the PC in a delay slot. */
2564 if (inst_env->slot_needed)
2566 inst_env->invalid = 1;
2569 /* The shift size is given as a 5 bit quick value, i.e. we don't
2570 want the the sign bit of the quick value. */
2571 shift_steps = cris_get_asr_shift_steps (inst);
2572 value = inst_env->reg[REG_PC];
2573 if (value & SIGNED_DWORD_MASK)
2575 signed_extend_mask = 0xFFFFFFFF;
2576 signed_extend_mask = signed_extend_mask >> shift_steps;
2577 signed_extend_mask = ~signed_extend_mask;
2579 value = value >> shift_steps;
2580 value |= signed_extend_mask;
2581 inst_env->reg[REG_PC] = value;
2583 inst_env->slot_needed = 0;
2584 inst_env->prefix_found = 0;
2585 inst_env->xflag_found = 0;
2586 inst_env->disable_interrupt = 0;
2589 /* Handles the AX, EI and SETF instruction. */
2592 ax_ei_setf_op (unsigned short inst, inst_env_type *inst_env)
2594 if (inst_env->prefix_found)
2596 inst_env->invalid = 1;
2599 /* Check if the instruction is setting the X flag. */
2600 if (cris_is_xflag_bit_on (inst))
2602 inst_env->xflag_found = 1;
2606 inst_env->xflag_found = 0;
2608 inst_env->slot_needed = 0;
2609 inst_env->prefix_found = 0;
2610 inst_env->disable_interrupt = 1;
2613 /* Checks if the instruction is in assign mode. If so, it updates the assign
2614 register. Note that check_assign assumes that the caller has checked that
2615 there is a prefix to this instruction. The mode check depends on this. */
2618 check_assign (unsigned short inst, inst_env_type *inst_env)
2620 /* Check if it's an assign addressing mode. */
2621 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2623 /* Assign the prefix value to operand 1. */
2624 inst_env->reg[cris_get_operand1 (inst)] = inst_env->prefix_value;
2628 /* Handles the 2-operand BOUND instruction. */
2631 two_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2633 /* It's invalid to have the PC as the index operand. */
2634 if (cris_get_operand2 (inst) == REG_PC)
2636 inst_env->invalid = 1;
2639 /* Check if we have a prefix. */
2640 if (inst_env->prefix_found)
2642 check_assign (inst, inst_env);
2644 /* Check if this is an autoincrement mode. */
2645 else if (cris_get_mode (inst) == AUTOINC_MODE)
2647 /* It's invalid to change the PC in a delay slot. */
2648 if (inst_env->slot_needed)
2650 inst_env->invalid = 1;
2653 process_autoincrement (cris_get_size (inst), inst, inst_env);
2655 inst_env->slot_needed = 0;
2656 inst_env->prefix_found = 0;
2657 inst_env->xflag_found = 0;
2658 inst_env->disable_interrupt = 0;
2661 /* Handles the 3-operand BOUND instruction. */
2664 three_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2666 /* It's an error if we haven't got a prefix. And it's also an error
2667 if the PC is the destination register. */
2668 if ((!inst_env->prefix_found) || (cris_get_operand1 (inst) == REG_PC))
2670 inst_env->invalid = 1;
2673 inst_env->slot_needed = 0;
2674 inst_env->prefix_found = 0;
2675 inst_env->xflag_found = 0;
2676 inst_env->disable_interrupt = 0;
2679 /* Clears the status flags in inst_env. */
2682 btst_nop_op (unsigned short inst, inst_env_type *inst_env)
2684 /* It's an error if we have got a prefix. */
2685 if (inst_env->prefix_found)
2687 inst_env->invalid = 1;
2691 inst_env->slot_needed = 0;
2692 inst_env->prefix_found = 0;
2693 inst_env->xflag_found = 0;
2694 inst_env->disable_interrupt = 0;
2697 /* Clears the status flags in inst_env. */
2700 clearf_di_op (unsigned short inst, inst_env_type *inst_env)
2702 /* It's an error if we have got a prefix. */
2703 if (inst_env->prefix_found)
2705 inst_env->invalid = 1;
2709 inst_env->slot_needed = 0;
2710 inst_env->prefix_found = 0;
2711 inst_env->xflag_found = 0;
2712 inst_env->disable_interrupt = 1;
2715 /* Handles the CLEAR instruction if it's in register mode. */
2718 reg_mode_clear_op (unsigned short inst, inst_env_type *inst_env)
2720 /* Check if the target is the PC. */
2721 if (cris_get_operand2 (inst) == REG_PC)
2723 /* The instruction will clear the instruction's size bits. */
2724 int clear_size = cris_get_clear_size (inst);
2725 if (clear_size == INST_BYTE_SIZE)
2727 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFFFF00;
2729 if (clear_size == INST_WORD_SIZE)
2731 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFF0000;
2733 if (clear_size == INST_DWORD_SIZE)
2735 inst_env->delay_slot_pc = 0x0;
2737 /* The jump will be delayed with one delay slot. So we need a delay
2739 inst_env->slot_needed = 1;
2740 inst_env->delay_slot_pc_active = 1;
2744 /* The PC will not change => no delay slot. */
2745 inst_env->slot_needed = 0;
2747 inst_env->prefix_found = 0;
2748 inst_env->xflag_found = 0;
2749 inst_env->disable_interrupt = 0;
2752 /* Handles the TEST instruction if it's in register mode. */
2755 reg_mode_test_op (unsigned short inst, inst_env_type *inst_env)
2757 /* It's an error if we have got a prefix. */
2758 if (inst_env->prefix_found)
2760 inst_env->invalid = 1;
2763 inst_env->slot_needed = 0;
2764 inst_env->prefix_found = 0;
2765 inst_env->xflag_found = 0;
2766 inst_env->disable_interrupt = 0;
2770 /* Handles the CLEAR and TEST instruction if the instruction isn't
2771 in register mode. */
2774 none_reg_mode_clear_test_op (unsigned short inst, inst_env_type *inst_env)
2776 /* Check if we are in a prefix mode. */
2777 if (inst_env->prefix_found)
2779 /* The only way the PC can change is if this instruction is in
2780 assign addressing mode. */
2781 check_assign (inst, inst_env);
2783 /* Indirect mode can't change the PC so just check if the mode is
2785 else if (cris_get_mode (inst) == AUTOINC_MODE)
2787 process_autoincrement (cris_get_size (inst), inst, inst_env);
2789 inst_env->slot_needed = 0;
2790 inst_env->prefix_found = 0;
2791 inst_env->xflag_found = 0;
2792 inst_env->disable_interrupt = 0;
2795 /* Checks that the PC isn't the destination register or the instructions has
2799 dstep_logshift_mstep_neg_not_op (unsigned short inst, inst_env_type *inst_env)
2801 /* It's invalid to have the PC as the destination. The instruction can't
2803 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2805 inst_env->invalid = 1;
2809 inst_env->slot_needed = 0;
2810 inst_env->prefix_found = 0;
2811 inst_env->xflag_found = 0;
2812 inst_env->disable_interrupt = 0;
2815 /* Checks that the instruction doesn't have a prefix. */
2818 break_op (unsigned short inst, inst_env_type *inst_env)
2820 /* The instruction can't have a prefix. */
2821 if (inst_env->prefix_found)
2823 inst_env->invalid = 1;
2827 inst_env->slot_needed = 0;
2828 inst_env->prefix_found = 0;
2829 inst_env->xflag_found = 0;
2830 inst_env->disable_interrupt = 1;
2833 /* Checks that the PC isn't the destination register and that the instruction
2834 doesn't have a prefix. */
2837 scc_op (unsigned short inst, inst_env_type *inst_env)
2839 /* It's invalid to have the PC as the destination. The instruction can't
2841 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2843 inst_env->invalid = 1;
2847 inst_env->slot_needed = 0;
2848 inst_env->prefix_found = 0;
2849 inst_env->xflag_found = 0;
2850 inst_env->disable_interrupt = 1;
2853 /* Handles the register mode JUMP instruction. */
2856 reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
2858 /* It's invalid to do a JUMP in a delay slot. The mode is register, so
2859 you can't have a prefix. */
2860 if ((inst_env->slot_needed) || (inst_env->prefix_found))
2862 inst_env->invalid = 1;
2866 /* Just change the PC. */
2867 inst_env->reg[REG_PC] = inst_env->reg[cris_get_operand1 (inst)];
2868 inst_env->slot_needed = 0;
2869 inst_env->prefix_found = 0;
2870 inst_env->xflag_found = 0;
2871 inst_env->disable_interrupt = 1;
2874 /* Handles the JUMP instruction for all modes except register. */
2877 none_reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
2879 unsigned long newpc;
2882 /* It's invalid to do a JUMP in a delay slot. */
2883 if (inst_env->slot_needed)
2885 inst_env->invalid = 1;
2889 /* Check if we have a prefix. */
2890 if (inst_env->prefix_found)
2892 check_assign (inst, inst_env);
2894 /* Get the new value for the the PC. */
2896 read_memory_unsigned_integer ((CORE_ADDR) inst_env->prefix_value,
2897 4, inst_env->byte_order);
2901 /* Get the new value for the PC. */
2902 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
2903 newpc = read_memory_unsigned_integer (address,
2904 4, inst_env->byte_order);
2906 /* Check if we should increment a register. */
2907 if (cris_get_mode (inst) == AUTOINC_MODE)
2909 inst_env->reg[cris_get_operand1 (inst)] += 4;
2912 inst_env->reg[REG_PC] = newpc;
2914 inst_env->slot_needed = 0;
2915 inst_env->prefix_found = 0;
2916 inst_env->xflag_found = 0;
2917 inst_env->disable_interrupt = 1;
2920 /* Handles moves to special registers (aka P-register) for all modes. */
2923 move_to_preg_op (struct gdbarch *gdbarch, unsigned short inst,
2924 inst_env_type *inst_env)
2926 if (inst_env->prefix_found)
2928 /* The instruction has a prefix that means we are only interested if
2929 the instruction is in assign mode. */
2930 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2932 /* The prefix handles the problem if we are in a delay slot. */
2933 if (cris_get_operand1 (inst) == REG_PC)
2935 /* Just take care of the assign. */
2936 check_assign (inst, inst_env);
2940 else if (cris_get_mode (inst) == AUTOINC_MODE)
2942 /* The instruction doesn't have a prefix, the only case left that we
2943 are interested in is the autoincrement mode. */
2944 if (cris_get_operand1 (inst) == REG_PC)
2946 /* If the PC is to be incremented it's invalid to be in a
2948 if (inst_env->slot_needed)
2950 inst_env->invalid = 1;
2954 /* The increment depends on the size of the special register. */
2955 if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 1)
2957 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
2959 else if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 2)
2961 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
2965 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
2969 inst_env->slot_needed = 0;
2970 inst_env->prefix_found = 0;
2971 inst_env->xflag_found = 0;
2972 inst_env->disable_interrupt = 1;
2975 /* Handles moves from special registers (aka P-register) for all modes
2979 none_reg_mode_move_from_preg_op (struct gdbarch *gdbarch, unsigned short inst,
2980 inst_env_type *inst_env)
2982 if (inst_env->prefix_found)
2984 /* The instruction has a prefix that means we are only interested if
2985 the instruction is in assign mode. */
2986 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2988 /* The prefix handles the problem if we are in a delay slot. */
2989 if (cris_get_operand1 (inst) == REG_PC)
2991 /* Just take care of the assign. */
2992 check_assign (inst, inst_env);
2996 /* The instruction doesn't have a prefix, the only case left that we
2997 are interested in is the autoincrement mode. */
2998 else if (cris_get_mode (inst) == AUTOINC_MODE)
3000 if (cris_get_operand1 (inst) == REG_PC)
3002 /* If the PC is to be incremented it's invalid to be in a
3004 if (inst_env->slot_needed)
3006 inst_env->invalid = 1;
3010 /* The increment depends on the size of the special register. */
3011 if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 1)
3013 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
3015 else if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 2)
3017 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
3021 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
3025 inst_env->slot_needed = 0;
3026 inst_env->prefix_found = 0;
3027 inst_env->xflag_found = 0;
3028 inst_env->disable_interrupt = 1;
3031 /* Handles moves from special registers (aka P-register) when the mode
3035 reg_mode_move_from_preg_op (unsigned short inst, inst_env_type *inst_env)
3037 /* Register mode move from special register can't have a prefix. */
3038 if (inst_env->prefix_found)
3040 inst_env->invalid = 1;
3044 if (cris_get_operand1 (inst) == REG_PC)
3046 /* It's invalid to change the PC in a delay slot. */
3047 if (inst_env->slot_needed)
3049 inst_env->invalid = 1;
3052 /* The destination is the PC, the jump will have a delay slot. */
3053 inst_env->delay_slot_pc = inst_env->preg[cris_get_operand2 (inst)];
3054 inst_env->slot_needed = 1;
3055 inst_env->delay_slot_pc_active = 1;
3059 /* If the destination isn't PC, there will be no jump. */
3060 inst_env->slot_needed = 0;
3062 inst_env->prefix_found = 0;
3063 inst_env->xflag_found = 0;
3064 inst_env->disable_interrupt = 1;
3067 /* Handles the MOVEM from memory to general register instruction. */
3070 move_mem_to_reg_movem_op (unsigned short inst, inst_env_type *inst_env)
3072 if (inst_env->prefix_found)
3074 /* The prefix handles the problem if we are in a delay slot. Is the
3075 MOVEM instruction going to change the PC? */
3076 if (cris_get_operand2 (inst) >= REG_PC)
3078 inst_env->reg[REG_PC] =
3079 read_memory_unsigned_integer (inst_env->prefix_value,
3080 4, inst_env->byte_order);
3082 /* The assign value is the value after the increment. Normally, the
3083 assign value is the value before the increment. */
3084 if ((cris_get_operand1 (inst) == REG_PC)
3085 && (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
3087 inst_env->reg[REG_PC] = inst_env->prefix_value;
3088 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3093 /* Is the MOVEM instruction going to change the PC? */
3094 if (cris_get_operand2 (inst) == REG_PC)
3096 /* It's invalid to change the PC in a delay slot. */
3097 if (inst_env->slot_needed)
3099 inst_env->invalid = 1;
3102 inst_env->reg[REG_PC] =
3103 read_memory_unsigned_integer (inst_env->reg[cris_get_operand1 (inst)],
3104 4, inst_env->byte_order);
3106 /* The increment is not depending on the size, instead it's depending
3107 on the number of registers loaded from memory. */
3108 if ((cris_get_operand1 (inst) == REG_PC)
3109 && (cris_get_mode (inst) == AUTOINC_MODE))
3111 /* It's invalid to change the PC in a delay slot. */
3112 if (inst_env->slot_needed)
3114 inst_env->invalid = 1;
3117 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3120 inst_env->slot_needed = 0;
3121 inst_env->prefix_found = 0;
3122 inst_env->xflag_found = 0;
3123 inst_env->disable_interrupt = 0;
3126 /* Handles the MOVEM to memory from general register instruction. */
3129 move_reg_to_mem_movem_op (unsigned short inst, inst_env_type *inst_env)
3131 if (inst_env->prefix_found)
3133 /* The assign value is the value after the increment. Normally, the
3134 assign value is the value before the increment. */
3135 if ((cris_get_operand1 (inst) == REG_PC)
3136 && (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
3138 /* The prefix handles the problem if we are in a delay slot. */
3139 inst_env->reg[REG_PC] = inst_env->prefix_value;
3140 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3145 /* The increment is not depending on the size, instead it's depending
3146 on the number of registers loaded to memory. */
3147 if ((cris_get_operand1 (inst) == REG_PC)
3148 && (cris_get_mode (inst) == AUTOINC_MODE))
3150 /* It's invalid to change the PC in a delay slot. */
3151 if (inst_env->slot_needed)
3153 inst_env->invalid = 1;
3156 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3159 inst_env->slot_needed = 0;
3160 inst_env->prefix_found = 0;
3161 inst_env->xflag_found = 0;
3162 inst_env->disable_interrupt = 0;
3165 /* Handles the intructions that's not yet implemented, by setting
3166 inst_env->invalid to true. */
3169 not_implemented_op (unsigned short inst, inst_env_type *inst_env)
3171 inst_env->invalid = 1;
3174 /* Handles the XOR instruction. */
3177 xor_op (unsigned short inst, inst_env_type *inst_env)
3179 /* XOR can't have a prefix. */
3180 if (inst_env->prefix_found)
3182 inst_env->invalid = 1;
3186 /* Check if the PC is the target. */
3187 if (cris_get_operand2 (inst) == REG_PC)
3189 /* It's invalid to change the PC in a delay slot. */
3190 if (inst_env->slot_needed)
3192 inst_env->invalid = 1;
3195 inst_env->reg[REG_PC] ^= inst_env->reg[cris_get_operand1 (inst)];
3197 inst_env->slot_needed = 0;
3198 inst_env->prefix_found = 0;
3199 inst_env->xflag_found = 0;
3200 inst_env->disable_interrupt = 0;
3203 /* Handles the MULS instruction. */
3206 muls_op (unsigned short inst, inst_env_type *inst_env)
3208 /* MULS/U can't have a prefix. */
3209 if (inst_env->prefix_found)
3211 inst_env->invalid = 1;
3215 /* Consider it invalid if the PC is the target. */
3216 if (cris_get_operand2 (inst) == REG_PC)
3218 inst_env->invalid = 1;
3221 inst_env->slot_needed = 0;
3222 inst_env->prefix_found = 0;
3223 inst_env->xflag_found = 0;
3224 inst_env->disable_interrupt = 0;
3227 /* Handles the MULU instruction. */
3230 mulu_op (unsigned short inst, inst_env_type *inst_env)
3232 /* MULS/U can't have a prefix. */
3233 if (inst_env->prefix_found)
3235 inst_env->invalid = 1;
3239 /* Consider it invalid if the PC is the target. */
3240 if (cris_get_operand2 (inst) == REG_PC)
3242 inst_env->invalid = 1;
3245 inst_env->slot_needed = 0;
3246 inst_env->prefix_found = 0;
3247 inst_env->xflag_found = 0;
3248 inst_env->disable_interrupt = 0;
3251 /* Calculate the result of the instruction for ADD, SUB, CMP AND, OR and MOVE.
3252 The MOVE instruction is the move from source to register. */
3255 add_sub_cmp_and_or_move_action (unsigned short inst, inst_env_type *inst_env,
3256 unsigned long source1, unsigned long source2)
3258 unsigned long pc_mask;
3259 unsigned long operation_mask;
3261 /* Find out how many bits the operation should apply to. */
3262 if (cris_get_size (inst) == INST_BYTE_SIZE)
3264 pc_mask = 0xFFFFFF00;
3265 operation_mask = 0xFF;
3267 else if (cris_get_size (inst) == INST_WORD_SIZE)
3269 pc_mask = 0xFFFF0000;
3270 operation_mask = 0xFFFF;
3272 else if (cris_get_size (inst) == INST_DWORD_SIZE)
3275 operation_mask = 0xFFFFFFFF;
3279 /* The size is out of range. */
3280 inst_env->invalid = 1;
3284 /* The instruction just works on uw_operation_mask bits. */
3285 source2 &= operation_mask;
3286 source1 &= operation_mask;
3288 /* Now calculate the result. The opcode's 3 first bits separates
3289 the different actions. */
3290 switch (cris_get_opcode (inst) & 7)
3300 case 2: /* subtract */
3304 case 3: /* compare */
3316 inst_env->invalid = 1;
3322 /* Make sure that the result doesn't contain more than the instruction
3324 source2 &= operation_mask;
3326 /* Calculate the new breakpoint address. */
3327 inst_env->reg[REG_PC] &= pc_mask;
3328 inst_env->reg[REG_PC] |= source1;
3332 /* Extends the value from either byte or word size to a dword. If the mode
3333 is zero extend then the value is extended with zero. If instead the mode
3334 is signed extend the sign bit of the value is taken into consideration. */
3336 static unsigned long
3337 do_sign_or_zero_extend (unsigned long value, unsigned short *inst)
3339 /* The size can be either byte or word, check which one it is.
3340 Don't check the highest bit, it's indicating if it's a zero
3342 if (cris_get_size (*inst) & INST_WORD_SIZE)
3347 /* Check if the instruction is signed extend. If so, check if value has
3349 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_WORD_MASK))
3351 value |= SIGNED_WORD_EXTEND_MASK;
3359 /* Check if the instruction is signed extend. If so, check if value has
3361 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_BYTE_MASK))
3363 value |= SIGNED_BYTE_EXTEND_MASK;
3366 /* The size should now be dword. */
3367 cris_set_size_to_dword (inst);
3371 /* Handles the register mode for the ADD, SUB, CMP, AND, OR and MOVE
3372 instruction. The MOVE instruction is the move from source to register. */
3375 reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3376 inst_env_type *inst_env)
3378 unsigned long operand1;
3379 unsigned long operand2;
3381 /* It's invalid to have a prefix to the instruction. This is a register
3382 mode instruction and can't have a prefix. */
3383 if (inst_env->prefix_found)
3385 inst_env->invalid = 1;
3388 /* Check if the instruction has PC as its target. */
3389 if (cris_get_operand2 (inst) == REG_PC)
3391 if (inst_env->slot_needed)
3393 inst_env->invalid = 1;
3396 /* The instruction has the PC as its target register. */
3397 operand1 = inst_env->reg[cris_get_operand1 (inst)];
3398 operand2 = inst_env->reg[REG_PC];
3400 /* Check if it's a extend, signed or zero instruction. */
3401 if (cris_get_opcode (inst) < 4)
3403 operand1 = do_sign_or_zero_extend (operand1, &inst);
3405 /* Calculate the PC value after the instruction, i.e. where the
3406 breakpoint should be. The order of the udw_operands is vital. */
3407 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3409 inst_env->slot_needed = 0;
3410 inst_env->prefix_found = 0;
3411 inst_env->xflag_found = 0;
3412 inst_env->disable_interrupt = 0;
3415 /* Returns the data contained at address. The size of the data is derived from
3416 the size of the operation. If the instruction is a zero or signed
3417 extend instruction, the size field is changed in instruction. */
3419 static unsigned long
3420 get_data_from_address (unsigned short *inst, CORE_ADDR address,
3421 enum bfd_endian byte_order)
3423 int size = cris_get_size (*inst);
3424 unsigned long value;
3426 /* If it's an extend instruction we don't want the signed extend bit,
3427 because it influences the size. */
3428 if (cris_get_opcode (*inst) < 4)
3430 size &= ~SIGNED_EXTEND_BIT_MASK;
3432 /* Is there a need for checking the size? Size should contain the number of
3435 value = read_memory_unsigned_integer (address, size, byte_order);
3437 /* Check if it's an extend, signed or zero instruction. */
3438 if (cris_get_opcode (*inst) < 4)
3440 value = do_sign_or_zero_extend (value, inst);
3445 /* Handles the assign addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3446 instructions. The MOVE instruction is the move from source to register. */
3449 handle_prefix_assign_mode_for_aritm_op (unsigned short inst,
3450 inst_env_type *inst_env)
3452 unsigned long operand2;
3453 unsigned long operand3;
3455 check_assign (inst, inst_env);
3456 if (cris_get_operand2 (inst) == REG_PC)
3458 operand2 = inst_env->reg[REG_PC];
3460 /* Get the value of the third operand. */
3461 operand3 = get_data_from_address (&inst, inst_env->prefix_value,
3462 inst_env->byte_order);
3464 /* Calculate the PC value after the instruction, i.e. where the
3465 breakpoint should be. The order of the udw_operands is vital. */
3466 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3468 inst_env->slot_needed = 0;
3469 inst_env->prefix_found = 0;
3470 inst_env->xflag_found = 0;
3471 inst_env->disable_interrupt = 0;
3474 /* Handles the three-operand addressing mode for the ADD, SUB, CMP, AND and
3475 OR instructions. Note that for this to work as expected, the calling
3476 function must have made sure that there is a prefix to this instruction. */
3479 three_operand_add_sub_cmp_and_or_op (unsigned short inst,
3480 inst_env_type *inst_env)
3482 unsigned long operand2;
3483 unsigned long operand3;
3485 if (cris_get_operand1 (inst) == REG_PC)
3487 /* The PC will be changed by the instruction. */
3488 operand2 = inst_env->reg[cris_get_operand2 (inst)];
3490 /* Get the value of the third operand. */
3491 operand3 = get_data_from_address (&inst, inst_env->prefix_value,
3492 inst_env->byte_order);
3494 /* Calculate the PC value after the instruction, i.e. where the
3495 breakpoint should be. */
3496 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3498 inst_env->slot_needed = 0;
3499 inst_env->prefix_found = 0;
3500 inst_env->xflag_found = 0;
3501 inst_env->disable_interrupt = 0;
3504 /* Handles the index addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3505 instructions. The MOVE instruction is the move from source to register. */
3508 handle_prefix_index_mode_for_aritm_op (unsigned short inst,
3509 inst_env_type *inst_env)
3511 if (cris_get_operand1 (inst) != cris_get_operand2 (inst))
3513 /* If the instruction is MOVE it's invalid. If the instruction is ADD,
3514 SUB, AND or OR something weird is going on (if everything works these
3515 instructions should end up in the three operand version). */
3516 inst_env->invalid = 1;
3521 /* three_operand_add_sub_cmp_and_or does the same as we should do here
3523 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3525 inst_env->slot_needed = 0;
3526 inst_env->prefix_found = 0;
3527 inst_env->xflag_found = 0;
3528 inst_env->disable_interrupt = 0;
3531 /* Handles the autoincrement and indirect addresing mode for the ADD, SUB,
3532 CMP, AND OR and MOVE instruction. The MOVE instruction is the move from
3533 source to register. */
3536 handle_inc_and_index_mode_for_aritm_op (unsigned short inst,
3537 inst_env_type *inst_env)
3539 unsigned long operand1;
3540 unsigned long operand2;
3541 unsigned long operand3;
3544 /* The instruction is either an indirect or autoincrement addressing mode.
3545 Check if the destination register is the PC. */
3546 if (cris_get_operand2 (inst) == REG_PC)
3548 /* Must be done here, get_data_from_address may change the size
3550 size = cris_get_size (inst);
3551 operand2 = inst_env->reg[REG_PC];
3553 /* Get the value of the third operand, i.e. the indirect operand. */
3554 operand1 = inst_env->reg[cris_get_operand1 (inst)];
3555 operand3 = get_data_from_address (&inst, operand1, inst_env->byte_order);
3557 /* Calculate the PC value after the instruction, i.e. where the
3558 breakpoint should be. The order of the udw_operands is vital. */
3559 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3561 /* If this is an autoincrement addressing mode, check if the increment
3563 if ((cris_get_operand1 (inst) == REG_PC)
3564 && (cris_get_mode (inst) == AUTOINC_MODE))
3566 /* Get the size field. */
3567 size = cris_get_size (inst);
3569 /* If it's an extend instruction we don't want the signed extend bit,
3570 because it influences the size. */
3571 if (cris_get_opcode (inst) < 4)
3573 size &= ~SIGNED_EXTEND_BIT_MASK;
3575 process_autoincrement (size, inst, inst_env);
3577 inst_env->slot_needed = 0;
3578 inst_env->prefix_found = 0;
3579 inst_env->xflag_found = 0;
3580 inst_env->disable_interrupt = 0;
3583 /* Handles the two-operand addressing mode, all modes except register, for
3584 the ADD, SUB CMP, AND and OR instruction. */
3587 none_reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3588 inst_env_type *inst_env)
3590 if (inst_env->prefix_found)
3592 if (cris_get_mode (inst) == PREFIX_INDEX_MODE)
3594 handle_prefix_index_mode_for_aritm_op (inst, inst_env);
3596 else if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
3598 handle_prefix_assign_mode_for_aritm_op (inst, inst_env);
3602 /* The mode is invalid for a prefixed base instruction. */
3603 inst_env->invalid = 1;
3609 handle_inc_and_index_mode_for_aritm_op (inst, inst_env);
3613 /* Handles the quick addressing mode for the ADD and SUB instruction. */
3616 quick_mode_add_sub_op (unsigned short inst, inst_env_type *inst_env)
3618 unsigned long operand1;
3619 unsigned long operand2;
3621 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3622 instruction and can't have a prefix. */
3623 if (inst_env->prefix_found)
3625 inst_env->invalid = 1;
3629 /* Check if the instruction has PC as its target. */
3630 if (cris_get_operand2 (inst) == REG_PC)
3632 if (inst_env->slot_needed)
3634 inst_env->invalid = 1;
3637 operand1 = cris_get_quick_value (inst);
3638 operand2 = inst_env->reg[REG_PC];
3640 /* The size should now be dword. */
3641 cris_set_size_to_dword (&inst);
3643 /* Calculate the PC value after the instruction, i.e. where the
3644 breakpoint should be. */
3645 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3647 inst_env->slot_needed = 0;
3648 inst_env->prefix_found = 0;
3649 inst_env->xflag_found = 0;
3650 inst_env->disable_interrupt = 0;
3653 /* Handles the quick addressing mode for the CMP, AND and OR instruction. */
3656 quick_mode_and_cmp_move_or_op (unsigned short inst, inst_env_type *inst_env)
3658 unsigned long operand1;
3659 unsigned long operand2;
3661 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3662 instruction and can't have a prefix. */
3663 if (inst_env->prefix_found)
3665 inst_env->invalid = 1;
3668 /* Check if the instruction has PC as its target. */
3669 if (cris_get_operand2 (inst) == REG_PC)
3671 if (inst_env->slot_needed)
3673 inst_env->invalid = 1;
3676 /* The instruction has the PC as its target register. */
3677 operand1 = cris_get_quick_value (inst);
3678 operand2 = inst_env->reg[REG_PC];
3680 /* The quick value is signed, so check if we must do a signed extend. */
3681 if (operand1 & SIGNED_QUICK_VALUE_MASK)
3684 operand1 |= SIGNED_QUICK_VALUE_EXTEND_MASK;
3686 /* The size should now be dword. */
3687 cris_set_size_to_dword (&inst);
3689 /* Calculate the PC value after the instruction, i.e. where the
3690 breakpoint should be. */
3691 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3693 inst_env->slot_needed = 0;
3694 inst_env->prefix_found = 0;
3695 inst_env->xflag_found = 0;
3696 inst_env->disable_interrupt = 0;
3699 /* Translate op_type to a function and call it. */
3702 cris_gdb_func (struct gdbarch *gdbarch, enum cris_op_type op_type,
3703 unsigned short inst, inst_env_type *inst_env)
3707 case cris_not_implemented_op:
3708 not_implemented_op (inst, inst_env);
3712 abs_op (inst, inst_env);
3716 addi_op (inst, inst_env);
3720 asr_op (inst, inst_env);
3724 asrq_op (inst, inst_env);
3727 case cris_ax_ei_setf_op:
3728 ax_ei_setf_op (inst, inst_env);
3731 case cris_bdap_prefix:
3732 bdap_prefix (inst, inst_env);
3735 case cris_biap_prefix:
3736 biap_prefix (inst, inst_env);
3740 break_op (inst, inst_env);
3743 case cris_btst_nop_op:
3744 btst_nop_op (inst, inst_env);
3747 case cris_clearf_di_op:
3748 clearf_di_op (inst, inst_env);
3751 case cris_dip_prefix:
3752 dip_prefix (inst, inst_env);
3755 case cris_dstep_logshift_mstep_neg_not_op:
3756 dstep_logshift_mstep_neg_not_op (inst, inst_env);
3759 case cris_eight_bit_offset_branch_op:
3760 eight_bit_offset_branch_op (inst, inst_env);
3763 case cris_move_mem_to_reg_movem_op:
3764 move_mem_to_reg_movem_op (inst, inst_env);
3767 case cris_move_reg_to_mem_movem_op:
3768 move_reg_to_mem_movem_op (inst, inst_env);
3771 case cris_move_to_preg_op:
3772 move_to_preg_op (gdbarch, inst, inst_env);
3776 muls_op (inst, inst_env);
3780 mulu_op (inst, inst_env);
3783 case cris_none_reg_mode_add_sub_cmp_and_or_move_op:
3784 none_reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3787 case cris_none_reg_mode_clear_test_op:
3788 none_reg_mode_clear_test_op (inst, inst_env);
3791 case cris_none_reg_mode_jump_op:
3792 none_reg_mode_jump_op (inst, inst_env);
3795 case cris_none_reg_mode_move_from_preg_op:
3796 none_reg_mode_move_from_preg_op (gdbarch, inst, inst_env);
3799 case cris_quick_mode_add_sub_op:
3800 quick_mode_add_sub_op (inst, inst_env);
3803 case cris_quick_mode_and_cmp_move_or_op:
3804 quick_mode_and_cmp_move_or_op (inst, inst_env);
3807 case cris_quick_mode_bdap_prefix:
3808 quick_mode_bdap_prefix (inst, inst_env);
3811 case cris_reg_mode_add_sub_cmp_and_or_move_op:
3812 reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3815 case cris_reg_mode_clear_op:
3816 reg_mode_clear_op (inst, inst_env);
3819 case cris_reg_mode_jump_op:
3820 reg_mode_jump_op (inst, inst_env);
3823 case cris_reg_mode_move_from_preg_op:
3824 reg_mode_move_from_preg_op (inst, inst_env);
3827 case cris_reg_mode_test_op:
3828 reg_mode_test_op (inst, inst_env);
3832 scc_op (inst, inst_env);
3835 case cris_sixteen_bit_offset_branch_op:
3836 sixteen_bit_offset_branch_op (inst, inst_env);
3839 case cris_three_operand_add_sub_cmp_and_or_op:
3840 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3843 case cris_three_operand_bound_op:
3844 three_operand_bound_op (inst, inst_env);
3847 case cris_two_operand_bound_op:
3848 two_operand_bound_op (inst, inst_env);
3852 xor_op (inst, inst_env);
3857 /* This wrapper is to avoid cris_get_assembler being called before
3858 exec_bfd has been set. */
3861 cris_delayed_get_disassembler (bfd_vma addr, struct disassemble_info *info)
3863 int (*print_insn) (bfd_vma addr, struct disassemble_info *info);
3864 /* FIXME: cagney/2003-08-27: It should be possible to select a CRIS
3865 disassembler, even when there is no BFD. Does something like
3866 "gdb; target remote; disassmeble *0x123" work? */
3867 gdb_assert (exec_bfd != NULL);
3868 print_insn = cris_get_disassembler (exec_bfd);
3869 gdb_assert (print_insn != NULL);
3870 return print_insn (addr, info);
3873 /* Copied from <asm/elf.h>. */
3874 typedef unsigned long elf_greg_t;
3876 /* Same as user_regs_struct struct in <asm/user.h>. */
3877 #define CRISV10_ELF_NGREG 35
3878 typedef elf_greg_t elf_gregset_t[CRISV10_ELF_NGREG];
3880 #define CRISV32_ELF_NGREG 32
3881 typedef elf_greg_t crisv32_elf_gregset_t[CRISV32_ELF_NGREG];
3883 /* Unpack an elf_gregset_t into GDB's register cache. */
3886 cris_supply_gregset (struct regcache *regcache, elf_gregset_t *gregsetp)
3888 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3889 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3891 elf_greg_t *regp = *gregsetp;
3892 static char zerobuf[4] = {0};
3894 /* The kernel dumps all 32 registers as unsigned longs, but supply_register
3895 knows about the actual size of each register so that's no problem. */
3896 for (i = 0; i < NUM_GENREGS + NUM_SPECREGS; i++)
3898 regcache_raw_supply (regcache, i, (char *)®p[i]);
3901 if (tdep->cris_version == 32)
3903 /* Needed to set pseudo-register PC for CRISv32. */
3904 /* FIXME: If ERP is in a delay slot at this point then the PC will
3905 be wrong. Issue a warning to alert the user. */
3906 regcache_raw_supply (regcache, gdbarch_pc_regnum (gdbarch),
3907 (char *)®p[ERP_REGNUM]);
3909 if (*(char *)®p[ERP_REGNUM] & 0x1)
3910 fprintf_unfiltered (gdb_stderr, "Warning: PC in delay slot\n");
3914 /* Use a local version of this function to get the correct types for
3915 regsets, until multi-arch core support is ready. */
3918 fetch_core_registers (struct regcache *regcache,
3919 char *core_reg_sect, unsigned core_reg_size,
3920 int which, CORE_ADDR reg_addr)
3922 elf_gregset_t gregset;
3927 if (core_reg_size != sizeof (elf_gregset_t)
3928 && core_reg_size != sizeof (crisv32_elf_gregset_t))
3930 warning (_("wrong size gregset struct in core file"));
3934 memcpy (&gregset, core_reg_sect, sizeof (gregset));
3935 cris_supply_gregset (regcache, &gregset);
3939 /* We've covered all the kinds of registers we know about here,
3940 so this must be something we wouldn't know what to do with
3941 anyway. Just ignore it. */
3946 static struct core_fns cris_elf_core_fns =
3948 bfd_target_elf_flavour, /* core_flavour */
3949 default_check_format, /* check_format */
3950 default_core_sniffer, /* core_sniffer */
3951 fetch_core_registers, /* core_read_registers */
3955 extern initialize_file_ftype _initialize_cris_tdep; /* -Wmissing-prototypes */
3958 _initialize_cris_tdep (void)
3960 static struct cmd_list_element *cris_set_cmdlist;
3961 static struct cmd_list_element *cris_show_cmdlist;
3963 struct cmd_list_element *c;
3965 gdbarch_register (bfd_arch_cris, cris_gdbarch_init, cris_dump_tdep);
3967 /* CRIS-specific user-commands. */
3968 add_setshow_uinteger_cmd ("cris-version", class_support,
3969 &usr_cmd_cris_version,
3970 _("Set the current CRIS version."),
3971 _("Show the current CRIS version."),
3973 Set to 10 for CRISv10 or 32 for CRISv32 if autodetection fails.\n\
3976 NULL, /* FIXME: i18n: Current CRIS version
3978 &setlist, &showlist);
3980 add_setshow_enum_cmd ("cris-mode", class_support,
3981 cris_modes, &usr_cmd_cris_mode,
3982 _("Set the current CRIS mode."),
3983 _("Show the current CRIS mode."),
3985 Set to CRIS_MODE_GURU when debugging in guru mode.\n\
3986 Makes GDB use the NRP register instead of the ERP register in certain cases."),
3988 NULL, /* FIXME: i18n: Current CRIS version is %s. */
3989 &setlist, &showlist);
3991 add_setshow_boolean_cmd ("cris-dwarf2-cfi", class_support,
3992 &usr_cmd_cris_dwarf2_cfi,
3993 _("Set the usage of Dwarf-2 CFI for CRIS."),
3994 _("Show the usage of Dwarf-2 CFI for CRIS."),
3995 _("Set this to \"off\" if using gcc-cris < R59."),
3996 set_cris_dwarf2_cfi,
3997 NULL, /* FIXME: i18n: Usage of Dwarf-2 CFI
3999 &setlist, &showlist);
4001 deprecated_add_core_fns (&cris_elf_core_fns);
4004 /* Prints out all target specific values. */
4007 cris_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
4009 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4012 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_version = %i\n",
4013 tdep->cris_version);
4014 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_mode = %s\n",
4016 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_dwarf2_cfi = %i\n",
4017 tdep->cris_dwarf2_cfi);
4022 set_cris_version (char *ignore_args, int from_tty,
4023 struct cmd_list_element *c)
4025 struct gdbarch_info info;
4027 usr_cmd_cris_version_valid = 1;
4029 /* Update the current architecture, if needed. */
4030 gdbarch_info_init (&info);
4031 if (!gdbarch_update_p (info))
4032 internal_error (__FILE__, __LINE__,
4033 _("cris_gdbarch_update: failed to update architecture."));
4037 set_cris_mode (char *ignore_args, int from_tty,
4038 struct cmd_list_element *c)
4040 struct gdbarch_info info;
4042 /* Update the current architecture, if needed. */
4043 gdbarch_info_init (&info);
4044 if (!gdbarch_update_p (info))
4045 internal_error (__FILE__, __LINE__,
4046 "cris_gdbarch_update: failed to update architecture.");
4050 set_cris_dwarf2_cfi (char *ignore_args, int from_tty,
4051 struct cmd_list_element *c)
4053 struct gdbarch_info info;
4055 /* Update the current architecture, if needed. */
4056 gdbarch_info_init (&info);
4057 if (!gdbarch_update_p (info))
4058 internal_error (__FILE__, __LINE__,
4059 _("cris_gdbarch_update: failed to update architecture."));
4062 static struct gdbarch *
4063 cris_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
4065 struct gdbarch *gdbarch;
4066 struct gdbarch_tdep *tdep;
4069 if (usr_cmd_cris_version_valid)
4071 /* Trust the user's CRIS version setting. */
4072 cris_version = usr_cmd_cris_version;
4074 else if (info.abfd && bfd_get_mach (info.abfd) == bfd_mach_cris_v32)
4080 /* Assume it's CRIS version 10. */
4084 /* Make the current settings visible to the user. */
4085 usr_cmd_cris_version = cris_version;
4087 /* Find a candidate among the list of pre-declared architectures. */
4088 for (arches = gdbarch_list_lookup_by_info (arches, &info);
4090 arches = gdbarch_list_lookup_by_info (arches->next, &info))
4092 if ((gdbarch_tdep (arches->gdbarch)->cris_version
4093 == usr_cmd_cris_version)
4094 && (gdbarch_tdep (arches->gdbarch)->cris_mode
4095 == usr_cmd_cris_mode)
4096 && (gdbarch_tdep (arches->gdbarch)->cris_dwarf2_cfi
4097 == usr_cmd_cris_dwarf2_cfi))
4098 return arches->gdbarch;
4101 /* No matching architecture was found. Create a new one. */
4102 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
4103 gdbarch = gdbarch_alloc (&info, tdep);
4105 tdep->cris_version = usr_cmd_cris_version;
4106 tdep->cris_mode = usr_cmd_cris_mode;
4107 tdep->cris_dwarf2_cfi = usr_cmd_cris_dwarf2_cfi;
4109 /* INIT shall ensure that the INFO.BYTE_ORDER is non-zero. */
4110 switch (info.byte_order)
4112 case BFD_ENDIAN_LITTLE:
4116 case BFD_ENDIAN_BIG:
4117 internal_error (__FILE__, __LINE__,
4118 _("cris_gdbarch_init: big endian byte order in info"));
4122 internal_error (__FILE__, __LINE__,
4123 _("cris_gdbarch_init: unknown byte order in info"));
4126 set_gdbarch_return_value (gdbarch, cris_return_value);
4128 set_gdbarch_sp_regnum (gdbarch, 14);
4130 /* Length of ordinary registers used in push_word and a few other
4131 places. register_size() is the real way to know how big a
4134 set_gdbarch_double_bit (gdbarch, 64);
4135 /* The default definition of a long double is 2 * gdbarch_double_bit,
4136 which means we have to set this explicitly. */
4137 set_gdbarch_long_double_bit (gdbarch, 64);
4139 /* The total amount of space needed to store (in an array called registers)
4140 GDB's copy of the machine's register state. Note: We can not use
4141 cris_register_size at this point, since it relies on gdbarch
4143 switch (tdep->cris_version)
4151 /* Old versions; not supported. */
4152 internal_error (__FILE__, __LINE__,
4153 _("cris_gdbarch_init: unsupported CRIS version"));
4158 /* CRIS v10 and v11, a.k.a. ETRAX 100LX. In addition to ETRAX 100,
4159 P7 (32 bits), and P15 (32 bits) have been implemented. */
4160 set_gdbarch_pc_regnum (gdbarch, 15);
4161 set_gdbarch_register_type (gdbarch, cris_register_type);
4162 /* There are 32 registers (some of which may not be implemented). */
4163 set_gdbarch_num_regs (gdbarch, 32);
4164 set_gdbarch_register_name (gdbarch, cris_register_name);
4165 set_gdbarch_cannot_store_register (gdbarch, cris_cannot_store_register);
4166 set_gdbarch_cannot_fetch_register (gdbarch, cris_cannot_fetch_register);
4168 set_gdbarch_software_single_step (gdbarch, cris_software_single_step);
4172 /* CRIS v32. General registers R0 - R15 (32 bits), special registers
4173 P0 - P15 (32 bits) except P0, P1, P3 (8 bits) and P4 (16 bits)
4174 and pseudo-register PC (32 bits). */
4175 set_gdbarch_pc_regnum (gdbarch, 32);
4176 set_gdbarch_register_type (gdbarch, crisv32_register_type);
4177 /* 32 registers + pseudo-register PC + 16 support registers. */
4178 set_gdbarch_num_regs (gdbarch, 32 + 1 + 16);
4179 set_gdbarch_register_name (gdbarch, crisv32_register_name);
4181 set_gdbarch_cannot_store_register
4182 (gdbarch, crisv32_cannot_store_register);
4183 set_gdbarch_cannot_fetch_register
4184 (gdbarch, crisv32_cannot_fetch_register);
4186 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
4188 set_gdbarch_single_step_through_delay
4189 (gdbarch, crisv32_single_step_through_delay);
4194 internal_error (__FILE__, __LINE__,
4195 _("cris_gdbarch_init: unknown CRIS version"));
4198 /* Dummy frame functions (shared between CRISv10 and CRISv32 since they
4199 have the same ABI). */
4200 set_gdbarch_push_dummy_code (gdbarch, cris_push_dummy_code);
4201 set_gdbarch_push_dummy_call (gdbarch, cris_push_dummy_call);
4202 set_gdbarch_frame_align (gdbarch, cris_frame_align);
4203 set_gdbarch_skip_prologue (gdbarch, cris_skip_prologue);
4205 /* The stack grows downward. */
4206 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
4208 set_gdbarch_breakpoint_from_pc (gdbarch, cris_breakpoint_from_pc);
4210 set_gdbarch_unwind_pc (gdbarch, cris_unwind_pc);
4211 set_gdbarch_unwind_sp (gdbarch, cris_unwind_sp);
4212 set_gdbarch_dummy_id (gdbarch, cris_dummy_id);
4214 if (tdep->cris_dwarf2_cfi == 1)
4216 /* Hook in the Dwarf-2 frame sniffer. */
4217 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, cris_dwarf2_reg_to_regnum);
4218 dwarf2_frame_set_init_reg (gdbarch, cris_dwarf2_frame_init_reg);
4219 dwarf2_append_unwinders (gdbarch);
4222 if (tdep->cris_mode != cris_mode_guru)
4224 frame_unwind_append_unwinder (gdbarch, &cris_sigtramp_frame_unwind);
4227 frame_unwind_append_unwinder (gdbarch, &cris_frame_unwind);
4228 frame_base_set_default (gdbarch, &cris_frame_base);
4230 set_solib_svr4_fetch_link_map_offsets
4231 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
4233 /* FIXME: cagney/2003-08-27: It should be possible to select a CRIS
4234 disassembler, even when there is no BFD. Does something like
4235 "gdb; target remote; disassmeble *0x123" work? */
4236 set_gdbarch_print_insn (gdbarch, cris_delayed_get_disassembler);