1 /* Helper routines for C++ support in GDB.
2 Copyright (C) 2003-2015 Free Software Foundation, Inc.
4 Contributed by David Carlton and by Kealia, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22 #include "cp-support.h"
23 #include "gdb_obstack.h"
29 #include "dictionary.h"
35 static struct symbol *
36 cp_lookup_nested_symbol_1 (struct type *container_type,
37 const char *nested_name,
38 const char *concatenated_name,
39 const struct block *block,
42 static struct type *cp_lookup_transparent_type_loop (const char *name,
46 /* Check to see if SYMBOL refers to an object contained within an
47 anonymous namespace; if so, add an appropriate using directive. */
50 cp_scan_for_anonymous_namespaces (const struct symbol *const symbol,
51 struct objfile *const objfile)
53 if (SYMBOL_DEMANGLED_NAME (symbol) != NULL)
55 const char *name = SYMBOL_DEMANGLED_NAME (symbol);
56 unsigned int previous_component;
57 unsigned int next_component;
59 /* Start with a quick-and-dirty check for mention of "(anonymous
62 if (!cp_is_in_anonymous (name))
65 previous_component = 0;
66 next_component = cp_find_first_component (name + previous_component);
68 while (name[next_component] == ':')
70 if (((next_component - previous_component)
71 == CP_ANONYMOUS_NAMESPACE_LEN)
72 && strncmp (name + previous_component,
73 CP_ANONYMOUS_NAMESPACE_STR,
74 CP_ANONYMOUS_NAMESPACE_LEN) == 0)
76 int dest_len = (previous_component == 0
77 ? 0 : previous_component - 2);
78 int src_len = next_component;
80 char *dest = alloca (dest_len + 1);
81 char *src = alloca (src_len + 1);
83 memcpy (dest, name, dest_len);
84 memcpy (src, name, src_len);
86 dest[dest_len] = '\0';
89 /* We've found a component of the name that's an
90 anonymous namespace. So add symbols in it to the
91 namespace given by the previous component if there is
92 one, or to the global namespace if there isn't. */
93 cp_add_using_directive (dest, src, NULL, NULL, NULL, 1,
94 &objfile->objfile_obstack);
96 /* The "+ 2" is for the "::". */
97 previous_component = next_component + 2;
98 next_component = (previous_component
99 + cp_find_first_component (name
100 + previous_component));
105 /* Add a using directive to using_directives. If the using directive
106 in question has already been added, don't add it twice.
108 Create a new struct using_direct which imports the namespace SRC
109 into the scope DEST. ALIAS is the name of the imported namespace
110 in the current scope. If ALIAS is NULL then the namespace is known
111 by its original name. DECLARATION is the name if the imported
112 varable if this is a declaration import (Eg. using A::x), otherwise
113 it is NULL. EXCLUDES is a list of names not to import from an
114 imported module or NULL. If COPY_NAMES is non-zero, then the
115 arguments are copied into newly allocated memory so they can be
116 temporaries. For EXCLUDES the VEC pointers are copied but the
117 pointed to characters are not copied. */
120 cp_add_using_directive (const char *dest,
123 const char *declaration,
124 VEC (const_char_ptr) *excludes,
126 struct obstack *obstack)
128 struct using_direct *current;
129 struct using_direct *new;
131 /* Has it already been added? */
133 for (current = using_directives; current != NULL; current = current->next)
138 if (strcmp (current->import_src, src) != 0)
140 if (strcmp (current->import_dest, dest) != 0)
142 if ((alias == NULL && current->alias != NULL)
143 || (alias != NULL && current->alias == NULL)
144 || (alias != NULL && current->alias != NULL
145 && strcmp (alias, current->alias) != 0))
147 if ((declaration == NULL && current->declaration != NULL)
148 || (declaration != NULL && current->declaration == NULL)
149 || (declaration != NULL && current->declaration != NULL
150 && strcmp (declaration, current->declaration) != 0))
153 /* Compare the contents of EXCLUDES. */
154 for (ix = 0; VEC_iterate (const_char_ptr, excludes, ix, param); ix++)
155 if (current->excludes[ix] == NULL
156 || strcmp (param, current->excludes[ix]) != 0)
158 if (ix < VEC_length (const_char_ptr, excludes)
159 || current->excludes[ix] != NULL)
162 /* Parameters exactly match CURRENT. */
166 new = obstack_alloc (obstack, (sizeof (*new)
167 + (VEC_length (const_char_ptr, excludes)
168 * sizeof (*new->excludes))));
169 memset (new, 0, sizeof (*new));
173 new->import_src = obstack_copy0 (obstack, src, strlen (src));
174 new->import_dest = obstack_copy0 (obstack, dest, strlen (dest));
178 new->import_src = src;
179 new->import_dest = dest;
182 if (alias != NULL && copy_names)
183 new->alias = obstack_copy0 (obstack, alias, strlen (alias));
187 if (declaration != NULL && copy_names)
188 new->declaration = obstack_copy0 (obstack,
189 declaration, strlen (declaration));
191 new->declaration = declaration;
193 memcpy (new->excludes, VEC_address (const_char_ptr, excludes),
194 VEC_length (const_char_ptr, excludes) * sizeof (*new->excludes));
195 new->excludes[VEC_length (const_char_ptr, excludes)] = NULL;
197 new->next = using_directives;
198 using_directives = new;
201 /* Test whether or not NAMESPACE looks like it mentions an anonymous
202 namespace; return nonzero if so. */
205 cp_is_in_anonymous (const char *symbol_name)
207 return (strstr (symbol_name, CP_ANONYMOUS_NAMESPACE_STR)
211 /* Look up NAME in DOMAIN in BLOCK's static block and in global blocks.
212 If ANONYMOUS_NAMESPACE is nonzero, the symbol in question is located
213 within an anonymous namespace. */
215 static struct symbol *
216 cp_basic_lookup_symbol (const char *name, const struct block *block,
217 const domain_enum domain, int anonymous_namespace)
221 sym = lookup_symbol_in_static_block (name, block, domain);
225 if (anonymous_namespace)
227 /* Symbols defined in anonymous namespaces have external linkage
228 but should be treated as local to a single file nonetheless.
229 So we only search the current file's global block. */
231 const struct block *global_block = block_global_block (block);
233 if (global_block != NULL)
234 sym = lookup_symbol_in_block (name, global_block, domain);
238 sym = lookup_global_symbol (name, block, domain);
244 /* Search bare symbol NAME in DOMAIN in BLOCK.
245 NAME is guaranteed to not have any scope (no "::") in its name, though
246 if for example NAME is a template spec then "::" may appear in the
248 If LANGDEF is non-NULL then try to lookup NAME as a primitive type in
249 that language. Normally we wouldn't need LANGDEF but fortran also uses
251 If SEARCH is non-zero then see if we can determine "this" from BLOCK, and
252 if so then also search for NAME in that class. */
254 static struct symbol *
255 cp_lookup_bare_symbol (const struct language_defn *langdef,
256 const char *name, const struct block *block,
257 const domain_enum domain, int search)
261 /* Note: We can't do a simple assert for ':' not being in NAME because
262 ':' may be in the args of a template spec. This isn't intended to be
263 a complete test, just cheap and documentary. */
264 if (strchr (name, '<') == NULL && strchr (name, '(') == NULL)
265 gdb_assert (strchr (name, ':') == NULL);
267 sym = lookup_symbol_in_static_block (name, block, domain);
271 /* If we didn't find a definition for a builtin type in the static block,
272 search for it now. This is actually the right thing to do and can be
273 a massive performance win. E.g., when debugging a program with lots of
274 shared libraries we could search all of them only to find out the
275 builtin type isn't defined in any of them. This is common for types
277 if (langdef != NULL && domain == VAR_DOMAIN)
279 struct gdbarch *gdbarch;
282 gdbarch = target_gdbarch ();
284 gdbarch = block_gdbarch (block);
285 sym = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
290 sym = lookup_global_symbol (name, block, domain);
299 this = lookup_language_this (language_def (language_cplus), block);
303 type = check_typedef (TYPE_TARGET_TYPE (SYMBOL_TYPE (this)));
304 /* If TYPE_NAME is NULL, abandon trying to find this symbol.
305 This can happen for lambda functions compiled with clang++,
306 which outputs no name for the container class. */
307 if (TYPE_NAME (type) == NULL)
310 /* Look for a symbol named NESTED in this class. */
311 sym = cp_lookup_nested_symbol (type, name, block);
317 /* Search NAME in DOMAIN in all static blocks, and then in all baseclasses.
318 BLOCK specifies the context in which to perform the search.
319 NAME is guaranteed to have scope (contain "::") and PREFIX_LEN specifies
320 then length the entire scope of NAME (up to, but not including, the last
323 Note: At least in the case of Fortran, which also uses this code, there
324 may be no text after the last "::". */
326 static struct symbol *
327 cp_search_static_and_baseclasses (const char *name,
328 const struct block *block,
329 const domain_enum domain,
330 unsigned int prefix_len)
333 char *klass, *nested;
334 struct cleanup *cleanup;
335 struct symbol *klass_sym;
336 struct type *klass_type;
338 /* The test here uses <= instead of < because Fortran also uses this,
339 and the module.exp testcase will pass "modmany::" for NAME here. */
340 gdb_assert (prefix_len + 2 <= strlen (name));
341 gdb_assert (name[prefix_len + 1] == ':');
343 /* Find the name of the class and the name of the method, variable, etc. */
345 /* The class name is everything up to and including PREFIX_LEN. */
346 klass = savestring (name, prefix_len);
348 /* The rest of the name is everything else past the initial scope
350 nested = xstrdup (name + prefix_len + 2);
352 /* Add cleanups to free memory for these strings. */
353 cleanup = make_cleanup (xfree, klass);
354 make_cleanup (xfree, nested);
356 /* Lookup a class named KLASS. If none is found, there is nothing
357 more that can be done. */
358 klass_sym = lookup_global_symbol (klass, block, domain);
359 if (klass_sym == NULL)
361 do_cleanups (cleanup);
364 klass_type = SYMBOL_TYPE (klass_sym);
366 /* Look for a symbol named NESTED in this class.
367 The caller is assumed to have already have done a basic lookup of NAME.
368 So we pass zero for BASIC_LOOKUP to cp_lookup_nested_symbol_1 here. */
369 sym = cp_lookup_nested_symbol_1 (klass_type, nested, name, block, 0);
371 do_cleanups (cleanup);
375 /* Look up NAME in the C++ namespace NAMESPACE. Other arguments are
376 as in cp_lookup_symbol_nonlocal. If SEARCH is non-zero, search
377 through base classes for a matching symbol.
379 Note: Part of the complexity is because NAME may itself specify scope.
380 Part of the complexity is also because this handles the case where
381 there is no scoping in which case we also try looking in the class of
382 "this" if we can compute it. */
384 static struct symbol *
385 cp_lookup_symbol_in_namespace (const char *namespace, const char *name,
386 const struct block *block,
387 const domain_enum domain, int search)
389 char *concatenated_name = NULL;
391 unsigned int prefix_len;
394 if (namespace[0] != '\0')
396 concatenated_name = alloca (strlen (namespace) + 2
397 + strlen (name) + 1);
398 strcpy (concatenated_name, namespace);
399 strcat (concatenated_name, "::");
400 strcat (concatenated_name, name);
401 name = concatenated_name;
404 prefix_len = cp_entire_prefix_len (name);
406 return cp_lookup_bare_symbol (NULL, name, block, domain, search);
408 /* This would be simpler if we just called cp_lookup_nested_symbol
409 at this point. But that would require first looking up the containing
410 class/namespace. Since we're only searching static and global blocks
411 there's often no need to first do that lookup. */
413 is_in_anonymous = namespace[0] != '\0' && cp_is_in_anonymous (namespace);
414 sym = cp_basic_lookup_symbol (name, block, domain, is_in_anonymous);
419 sym = cp_search_static_and_baseclasses (name, block, domain, prefix_len);
424 /* Used for cleanups to reset the "searched" flag incase
428 reset_directive_searched (void *data)
430 struct using_direct *direct = data;
431 direct->searched = 0;
434 /* Search for NAME by applying all import statements belonging to
435 BLOCK which are applicable in SCOPE. If DECLARATION_ONLY the
436 search is restricted to using declarations.
444 If SEARCH_PARENTS the search will include imports which are
445 applicable in parents of SCOPE.
455 If SCOPE is "A::B" and SEARCH_PARENTS is true the imports of
456 namespaces X and Y will be considered. If SEARCH_PARENTS is false
457 only the import of Y is considered.
459 SEARCH_SCOPE_FIRST is an internal implementation detail: Callers must
460 pass 0 for it. Internally we pass 1 when recursing. */
462 static struct symbol *
463 cp_lookup_symbol_via_imports (const char *scope,
465 const struct block *block,
466 const domain_enum domain,
467 const int search_scope_first,
468 const int declaration_only,
469 const int search_parents)
471 struct using_direct *current;
472 struct symbol *sym = NULL;
475 struct cleanup *searched_cleanup;
477 /* First, try to find the symbol in the given namespace if requested. */
478 if (search_scope_first)
479 sym = cp_lookup_symbol_in_namespace (scope, name,
485 /* Go through the using directives. If any of them add new names to
486 the namespace we're searching in, see if we can find a match by
489 for (current = block_using (block);
491 current = current->next)
493 const char **excludep;
495 len = strlen (current->import_dest);
496 directive_match = (search_parents
497 ? (strncmp (scope, current->import_dest,
498 strlen (current->import_dest)) == 0
501 || scope[len] == '\0'))
502 : strcmp (scope, current->import_dest) == 0);
504 /* If the import destination is the current scope or one of its
505 ancestors then it is applicable. */
506 if (directive_match && !current->searched)
508 /* Mark this import as searched so that the recursive call
509 does not search it again. */
510 current->searched = 1;
511 searched_cleanup = make_cleanup (reset_directive_searched,
514 /* If there is an import of a single declaration, compare the
515 imported declaration (after optional renaming by its alias)
516 with the sought out name. If there is a match pass
517 current->import_src as NAMESPACE to direct the search
518 towards the imported namespace. */
519 if (current->declaration
520 && strcmp (name, current->alias
521 ? current->alias : current->declaration) == 0)
522 sym = cp_lookup_symbol_in_namespace (current->import_src,
523 current->declaration,
526 /* If this is a DECLARATION_ONLY search or a symbol was found
527 or this import statement was an import declaration, the
528 search of this import is complete. */
529 if (declaration_only || sym != NULL || current->declaration)
531 current->searched = 0;
532 discard_cleanups (searched_cleanup);
540 /* Do not follow CURRENT if NAME matches its EXCLUDES. */
541 for (excludep = current->excludes; *excludep; excludep++)
542 if (strcmp (name, *excludep) == 0)
546 discard_cleanups (searched_cleanup);
550 if (current->alias != NULL
551 && strcmp (name, current->alias) == 0)
552 /* If the import is creating an alias and the alias matches
553 the sought name. Pass current->import_src as the NAME to
554 direct the search towards the aliased namespace. */
556 sym = cp_lookup_symbol_in_namespace (scope,
560 else if (current->alias == NULL)
562 /* If this import statement creates no alias, pass
563 current->inner as NAMESPACE to direct the search
564 towards the imported namespace. */
565 sym = cp_lookup_symbol_via_imports (current->import_src,
569 current->searched = 0;
570 discard_cleanups (searched_cleanup);
580 /* Helper function that searches an array of symbols for one named
583 static struct symbol *
584 search_symbol_list (const char *name, int num,
585 struct symbol **syms)
589 /* Maybe we should store a dictionary in here instead. */
590 for (i = 0; i < num; ++i)
592 if (strcmp (name, SYMBOL_NATURAL_NAME (syms[i])) == 0)
598 /* Like cp_lookup_symbol_via_imports, but if BLOCK is a function, it
599 searches through the template parameters of the function and the
603 cp_lookup_symbol_imports_or_template (const char *scope,
605 const struct block *block,
606 const domain_enum domain)
608 struct symbol *function = BLOCK_FUNCTION (block);
609 struct symbol *result;
611 if (symbol_lookup_debug)
613 fprintf_unfiltered (gdb_stdlog,
614 "cp_lookup_symbol_imports_or_template"
615 " (%s, %s, %s, %s)\n",
616 scope, name, host_address_to_string (block),
617 domain_name (domain));
620 if (function != NULL && SYMBOL_LANGUAGE (function) == language_cplus)
622 /* Search the function's template parameters. */
623 if (SYMBOL_IS_CPLUS_TEMPLATE_FUNCTION (function))
625 struct template_symbol *templ
626 = (struct template_symbol *) function;
628 result = search_symbol_list (name,
629 templ->n_template_arguments,
630 templ->template_arguments);
633 if (symbol_lookup_debug)
635 fprintf_unfiltered (gdb_stdlog,
636 "cp_lookup_symbol_imports_or_template"
638 host_address_to_string (result));
644 /* Search the template parameters of the function's defining
646 if (SYMBOL_NATURAL_NAME (function))
648 struct type *context;
649 char *name_copy = xstrdup (SYMBOL_NATURAL_NAME (function));
650 struct cleanup *cleanups = make_cleanup (xfree, name_copy);
651 const struct language_defn *lang = language_def (language_cplus);
652 struct gdbarch *arch = symbol_arch (function);
653 const struct block *parent = BLOCK_SUPERBLOCK (block);
657 unsigned int prefix_len = cp_entire_prefix_len (name_copy);
663 name_copy[prefix_len] = '\0';
664 context = lookup_typename (lang, arch,
673 = search_symbol_list (name,
674 TYPE_N_TEMPLATE_ARGUMENTS (context),
675 TYPE_TEMPLATE_ARGUMENTS (context));
678 do_cleanups (cleanups);
679 if (symbol_lookup_debug)
681 fprintf_unfiltered (gdb_stdlog,
682 "cp_lookup_symbol_imports_or_template"
684 host_address_to_string (result));
690 do_cleanups (cleanups);
694 result = cp_lookup_symbol_via_imports (scope, name, block, domain, 0, 1, 1);
695 if (symbol_lookup_debug)
697 fprintf_unfiltered (gdb_stdlog,
698 "cp_lookup_symbol_imports_or_template (...) = %s\n",
700 ? host_address_to_string (result) : "NULL");
705 /* Search for NAME by applying relevant import statements belonging to BLOCK
706 and its parents. SCOPE is the namespace scope of the context in which the
707 search is being evaluated. */
709 static struct symbol *
710 cp_lookup_symbol_via_all_imports (const char *scope, const char *name,
711 const struct block *block,
712 const domain_enum domain)
716 while (block != NULL)
718 sym = cp_lookup_symbol_via_imports (scope, name, block, domain, 0, 0, 1);
722 block = BLOCK_SUPERBLOCK (block);
728 /* Searches for NAME in the current namespace, and by applying
729 relevant import statements belonging to BLOCK and its parents.
730 SCOPE is the namespace scope of the context in which the search is
734 cp_lookup_symbol_namespace (const char *scope,
736 const struct block *block,
737 const domain_enum domain)
741 if (symbol_lookup_debug)
743 fprintf_unfiltered (gdb_stdlog,
744 "cp_lookup_symbol_namespace (%s, %s, %s, %s)\n",
745 scope, name, host_address_to_string (block),
746 domain_name (domain));
749 /* First, try to find the symbol in the given namespace. */
750 sym = cp_lookup_symbol_in_namespace (scope, name, block, domain, 1);
752 /* Search for name in namespaces imported to this and parent blocks. */
754 sym = cp_lookup_symbol_via_all_imports (scope, name, block, domain);
756 if (symbol_lookup_debug)
758 fprintf_unfiltered (gdb_stdlog,
759 "cp_lookup_symbol_namespace (...) = %s\n",
760 sym != NULL ? host_address_to_string (sym) : "NULL");
765 /* Lookup NAME at namespace scope (or, in C terms, in static and
766 global variables). SCOPE is the namespace that the current
767 function is defined within; only consider namespaces whose length
768 is at least SCOPE_LEN. Other arguments are as in
769 cp_lookup_symbol_nonlocal.
771 For example, if we're within a function A::B::f and looking for a
772 symbol x, this will get called with NAME = "x", SCOPE = "A::B", and
773 SCOPE_LEN = 0. It then calls itself with NAME and SCOPE the same,
774 but with SCOPE_LEN = 1. And then it calls itself with NAME and
775 SCOPE the same, but with SCOPE_LEN = 4. This third call looks for
776 "A::B::x"; if it doesn't find it, then the second call looks for
777 "A::x", and if that call fails, then the first call looks for
780 static struct symbol *
781 lookup_namespace_scope (const struct language_defn *langdef,
783 const struct block *block,
784 const domain_enum domain,
790 if (scope[scope_len] != '\0')
792 /* Recursively search for names in child namespaces first. */
795 int new_scope_len = scope_len;
797 /* If the current scope is followed by "::", skip past that. */
798 if (new_scope_len != 0)
800 gdb_assert (scope[new_scope_len] == ':');
803 new_scope_len += cp_find_first_component (scope + new_scope_len);
804 sym = lookup_namespace_scope (langdef, name, block, domain,
805 scope, new_scope_len);
810 /* Okay, we didn't find a match in our children, so look for the
811 name in the current namespace.
813 If we there is no scope and we know we have a bare symbol, then short
814 circuit everything and call cp_lookup_bare_symbol directly.
815 This isn't an optimization, rather it allows us to pass LANGDEF which
816 is needed for primitive type lookup. The test doesn't have to be
817 perfect: if NAME is a bare symbol that our test doesn't catch (e.g., a
818 template symbol with "::" in the argument list) then
819 cp_lookup_symbol_in_namespace will catch it. */
821 if (scope_len == 0 && strchr (name, ':') == NULL)
822 return cp_lookup_bare_symbol (langdef, name, block, domain, 1);
824 namespace = alloca (scope_len + 1);
825 strncpy (namespace, scope, scope_len);
826 namespace[scope_len] = '\0';
827 return cp_lookup_symbol_in_namespace (namespace, name,
831 /* The C++-specific version of name lookup for static and global
832 names. This makes sure that names get looked for in all namespaces
833 that are in scope. NAME is the natural name of the symbol that
834 we're looking for, BLOCK is the block that we're searching within,
835 DOMAIN says what kind of symbols we're looking for. */
838 cp_lookup_symbol_nonlocal (const struct language_defn *langdef,
840 const struct block *block,
841 const domain_enum domain)
844 const char *scope = block_scope (block);
846 if (symbol_lookup_debug)
848 fprintf_unfiltered (gdb_stdlog,
849 "cp_lookup_symbol_non_local"
850 " (%s, %s (scope %s), %s)\n",
851 name, host_address_to_string (block), scope,
852 domain_name (domain));
855 /* First, try to find the symbol in the given namespace, and all
856 containing namespaces. */
857 sym = lookup_namespace_scope (langdef, name, block, domain, scope, 0);
859 /* Search for name in namespaces imported to this and parent blocks. */
861 sym = cp_lookup_symbol_via_all_imports (scope, name, block, domain);
863 if (symbol_lookup_debug)
865 fprintf_unfiltered (gdb_stdlog,
866 "cp_lookup_symbol_nonlocal (...) = %s\n",
867 sym != NULL ? host_address_to_string (sym) : "NULL");
872 /* Search through the base classes of PARENT_TYPE for a base class
873 named NAME and return its type. If not found, return NULL. */
876 cp_find_type_baseclass_by_name (struct type *parent_type, const char *name)
880 CHECK_TYPEDEF (parent_type);
881 for (i = 0; i < TYPE_N_BASECLASSES (parent_type); ++i)
883 struct type *type = check_typedef (TYPE_BASECLASS (parent_type, i));
884 const char *base_name = TYPE_BASECLASS_NAME (parent_type, i);
886 if (base_name == NULL)
889 if (streq (base_name, name))
892 type = cp_find_type_baseclass_by_name (type, name);
900 /* Search through the base classes of PARENT_TYPE for a symbol named
901 NAME in block BLOCK. */
903 static struct symbol *
904 find_symbol_in_baseclass (struct type *parent_type, const char *name,
905 const struct block *block)
909 struct cleanup *cleanup;
910 char *concatenated_name;
913 concatenated_name = NULL;
914 cleanup = make_cleanup (free_current_contents, &concatenated_name);
916 for (i = 0; i < TYPE_N_BASECLASSES (parent_type); ++i)
919 struct type *base_type = TYPE_BASECLASS (parent_type, i);
920 const char *base_name = TYPE_BASECLASS_NAME (parent_type, i);
922 if (base_name == NULL)
925 len = strlen (base_name) + 2 + strlen (name) + 1;
926 concatenated_name = xrealloc (concatenated_name, len);
927 xsnprintf (concatenated_name, len, "%s::%s", base_name, name);
929 sym = cp_lookup_nested_symbol_1 (base_type, name, concatenated_name,
935 do_cleanups (cleanup);
939 /* Helper function to look up NESTED_NAME in CONTAINER_TYPE within the
941 CONTAINER_TYPE needn't have been "check_typedef'd" yet.
942 CONCATENATED_NAME is the fully scoped spelling of NESTED_NAME, it is
943 passed as an argument so that callers can control how space for it is
945 If BASIC_LOOKUP is non-zero then perform a basic lookup of
946 CONCATENATED_NAME. See cp_basic_lookup_symbol for details. */
948 static struct symbol *
949 cp_lookup_nested_symbol_1 (struct type *container_type,
950 const char *nested_name,
951 const char *concatenated_name,
952 const struct block *block,
955 int is_in_anonymous = cp_is_in_anonymous (concatenated_name);
958 /* NOTE: carlton/2003-11-10: We don't treat C++ class members
959 of classes like, say, data or function members. Instead,
960 they're just represented by symbols whose names are
961 qualified by the name of the surrounding class. This is
962 just like members of namespaces; in particular,
963 cp_basic_lookup_symbol works when looking them up. */
967 sym = cp_basic_lookup_symbol (concatenated_name, block, VAR_DOMAIN,
973 /* Now search all static file-level symbols. We have to do this for things
974 like typedefs in the class. We do not try to guess any imported
975 namespace as even the fully specified namespace search is already not
976 C++ compliant and more assumptions could make it too magic. */
978 /* First search in this symtab, what we want is possibly there. */
979 sym = lookup_symbol_in_static_block (concatenated_name, block, VAR_DOMAIN);
983 /* Nope. We now have to search all static blocks in all objfiles,
984 even if block != NULL, because there's no guarantees as to which
985 symtab the symbol we want is in. */
986 sym = lookup_static_symbol (concatenated_name, VAR_DOMAIN);
990 /* If this is a class with baseclasses, search them next. */
991 CHECK_TYPEDEF (container_type);
992 if (TYPE_N_BASECLASSES (container_type) > 0)
994 sym = find_symbol_in_baseclass (container_type, nested_name, block);
1002 /* Look up a symbol named NESTED_NAME that is nested inside the C++
1003 class or namespace given by PARENT_TYPE, from within the context
1004 given by BLOCK. Return NULL if there is no such nested symbol. */
1007 cp_lookup_nested_symbol (struct type *parent_type,
1008 const char *nested_name,
1009 const struct block *block)
1011 /* type_name_no_tag_or_error provides better error reporting using the
1013 struct type *saved_parent_type = parent_type;
1015 CHECK_TYPEDEF (parent_type);
1017 if (symbol_lookup_debug)
1019 const char *type_name = type_name_no_tag (saved_parent_type);
1021 fprintf_unfiltered (gdb_stdlog,
1022 "cp_lookup_nested_symbol (%s, %s, %s)\n",
1023 type_name != NULL ? type_name : "unnamed",
1024 nested_name, host_address_to_string (block));
1027 switch (TYPE_CODE (parent_type))
1029 case TYPE_CODE_STRUCT:
1030 case TYPE_CODE_NAMESPACE:
1031 case TYPE_CODE_UNION:
1032 case TYPE_CODE_ENUM:
1033 /* NOTE: Handle modules here as well, because Fortran is re-using the C++
1034 specific code to lookup nested symbols in modules, by calling the
1035 function pointer la_lookup_symbol_nonlocal, which ends up here. */
1036 case TYPE_CODE_MODULE:
1039 const char *parent_name = type_name_no_tag_or_error (saved_parent_type);
1041 char *concatenated_name;
1043 size = strlen (parent_name) + 2 + strlen (nested_name) + 1;
1044 concatenated_name = alloca (size);
1045 xsnprintf (concatenated_name, size, "%s::%s",
1046 parent_name, nested_name);
1048 sym = cp_lookup_nested_symbol_1 (parent_type, nested_name,
1049 concatenated_name, block, 1);
1051 if (symbol_lookup_debug)
1053 fprintf_unfiltered (gdb_stdlog,
1054 "cp_lookup_nested_symbol (...) = %s\n",
1056 ? host_address_to_string (sym) : "NULL");
1061 case TYPE_CODE_FUNC:
1062 case TYPE_CODE_METHOD:
1063 if (symbol_lookup_debug)
1065 fprintf_unfiltered (gdb_stdlog,
1066 "cp_lookup_nested_symbol (...) = NULL"
1067 " (func/method)\n");
1072 internal_error (__FILE__, __LINE__,
1073 _("cp_lookup_nested_symbol called "
1074 "on a non-aggregate type."));
1078 /* The C++-version of lookup_transparent_type. */
1080 /* FIXME: carlton/2004-01-16: The problem that this is trying to
1081 address is that, unfortunately, sometimes NAME is wrong: it may not
1082 include the name of namespaces enclosing the type in question.
1083 lookup_transparent_type gets called when the type in question
1084 is a declaration, and we're trying to find its definition; but, for
1085 declarations, our type name deduction mechanism doesn't work.
1086 There's nothing we can do to fix this in general, I think, in the
1087 absence of debug information about namespaces (I've filed PR
1088 gdb/1511 about this); until such debug information becomes more
1089 prevalent, one heuristic which sometimes looks is to search for the
1090 definition in namespaces containing the current namespace.
1092 We should delete this functions once the appropriate debug
1093 information becomes more widespread. (GCC 3.4 will be the first
1094 released version of GCC with such information.) */
1097 cp_lookup_transparent_type (const char *name)
1099 /* First, try the honest way of looking up the definition. */
1100 struct type *t = basic_lookup_transparent_type (name);
1106 /* If that doesn't work and we're within a namespace, look there
1108 scope = block_scope (get_selected_block (0));
1110 if (scope[0] == '\0')
1113 return cp_lookup_transparent_type_loop (name, scope, 0);
1116 /* Lookup the type definition associated to NAME in namespaces/classes
1117 containing SCOPE whose name is strictly longer than LENGTH. LENGTH
1118 must be the index of the start of a component of SCOPE. */
1120 static struct type *
1121 cp_lookup_transparent_type_loop (const char *name,
1125 int scope_length = length + cp_find_first_component (scope + length);
1128 /* If the current scope is followed by "::", look in the next
1130 if (scope[scope_length] == ':')
1133 = cp_lookup_transparent_type_loop (name, scope,
1140 full_name = alloca (scope_length + 2 + strlen (name) + 1);
1141 strncpy (full_name, scope, scope_length);
1142 strncpy (full_name + scope_length, "::", 2);
1143 strcpy (full_name + scope_length + 2, name);
1145 return basic_lookup_transparent_type (full_name);
1148 /* This used to do something but was removed when it became
1152 maintenance_cplus_namespace (char *args, int from_tty)
1154 printf_unfiltered (_("The `maint namespace' command was removed.\n"));
1157 /* Provide a prototype to silence -Wmissing-prototypes. */
1158 extern initialize_file_ftype _initialize_cp_namespace;
1161 _initialize_cp_namespace (void)
1163 struct cmd_list_element *cmd;
1165 cmd = add_cmd ("namespace", class_maintenance,
1166 maintenance_cplus_namespace,
1167 _("Deprecated placeholder for removed functionality."),
1168 &maint_cplus_cmd_list);
1169 deprecate_cmd (cmd, NULL);