1 /* Parameters for execution on any Hewlett-Packard PA-RISC machine.
2 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1995
3 Free Software Foundation, Inc.
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
8 This file is part of GDB.
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
24 /* Forward declarations of some types we use in prototypes */
28 struct frame_saved_regs;
31 struct inferior_status;
34 /* Target system byte order. */
36 #define TARGET_BYTE_ORDER BIG_ENDIAN
38 /* By default assume we don't have to worry about software floating point. */
43 /* Get at various relevent fields of an instruction word. */
47 #define MASK_14 0x3fff
48 #define MASK_21 0x1fffff
50 /* This macro gets bit fields using HP's numbering (MSB = 0) */
52 #define GET_FIELD(X, FROM, TO) \
53 ((X) >> (31 - (TO)) & ((1 << ((TO) - (FROM) + 1)) - 1))
55 /* Watch out for NaNs */
59 /* On the PA, any pass-by-value structure > 8 bytes is actually
60 passed via a pointer regardless of its type or the compiler
63 #define REG_STRUCT_HAS_ADDR(gcc_p,type) \
64 (TYPE_LENGTH (type) > 8)
66 /* Offset from address of function to start of its code.
67 Zero on most machines. */
69 #define FUNCTION_START_OFFSET 0
71 /* Advance PC across any function entry prologue instructions
72 to reach some "real" code. */
74 #define SKIP_PROLOGUE(pc) pc = skip_prologue (pc)
75 extern CORE_ADDR skip_prologue PARAMS ((CORE_ADDR));
77 /* If PC is in some function-call trampoline code, return the PC
78 where the function itself actually starts. If not, return NULL. */
80 #define SKIP_TRAMPOLINE_CODE(pc) skip_trampoline_code (pc, NULL)
82 /* Return non-zero if we are in an appropriate trampoline. */
84 #define IN_SOLIB_CALL_TRAMPOLINE(pc, name) \
85 in_solib_call_trampoline (pc, name)
86 extern int in_solib_call_trampoline PARAMS ((CORE_ADDR, char *));
88 #define IN_SOLIB_RETURN_TRAMPOLINE(pc, name) \
89 in_solib_return_trampoline (pc, name)
90 extern int in_solib_return_trampoline PARAMS ((CORE_ADDR, char *));
92 /* Immediately after a function call, return the saved pc.
93 Can't go through the frames for this because on some machines
94 the new frame is not set up until the new function executes
97 #undef SAVED_PC_AFTER_CALL
98 #define SAVED_PC_AFTER_CALL(frame) saved_pc_after_call (frame)
99 extern CORE_ADDR saved_pc_after_call PARAMS ((struct frame_info *));
101 /* Stack grows upward */
105 /* Sequence of bytes for breakpoint instruction. */
107 #define BREAKPOINT {0x00, 0x01, 0x00, 0x04}
109 /* Amount PC must be decremented by after a breakpoint.
110 This is often the number of bytes in BREAKPOINT
113 Not on the PA-RISC */
115 #define DECR_PC_AFTER_BREAK 0
117 /* return instruction is bv r0(rp) or bv,n r0(rp)*/
119 #define ABOUT_TO_RETURN(pc) ((read_memory_integer (pc, 4) | 0x2) == 0xE840C002)
121 /* Say how long (ordinary) registers are. This is a piece of bogosity
122 used in push_word and a few other places; REGISTER_RAW_SIZE is the
123 real way to know how big a register is. */
125 #define REGISTER_SIZE 4
127 /* Number of machine registers */
131 /* Initializer for an array of names of registers.
132 There should be NUM_REGS strings in this initializer. */
134 #define REGISTER_NAMES \
135 {"flags", "r1", "rp", "r3", "r4", "r5", "r6", "r7", "r8", "r9", \
136 "r10", "r11", "r12", "r13", "r14", "r15", "r16", "r17", "r18", "r19", \
137 "r20", "r21", "r22", "r23", "r24", "r25", "r26", "dp", "ret0", "ret1", \
138 "sp", "r31", "sar", "pcoqh", "pcsqh", "pcoqt", "pcsqt", \
139 "eiem", "iir", "isr", "ior", "ipsw", "goto", "sr4", "sr0", "sr1", "sr2", \
140 "sr3", "sr5", "sr6", "sr7", "cr0", "cr8", "cr9", "ccr", "cr12", "cr13", \
141 "cr24", "cr25", "cr26", "mpsfu_high", "mpsfu_low", "mpsfu_ovflo", "pad", \
142 "fpsr", "fpe1", "fpe2", "fpe3", "fpe4", "fpe5", "fpe6", "fpe7", \
143 "fr4", "fr4R", "fr5", "fr5R", "fr6", "fr6R", "fr7", "fr7R", \
144 "fr8", "fr8R", "fr9", "fr9R", "fr10", "fr10R", "fr11", "fr11R", \
145 "fr12", "fr12R", "fr13", "fr13R", "fr14", "fr14R", "fr15", "fr15R", \
146 "fr16", "fr16R", "fr17", "fr17R", "fr18", "fr18R", "fr19", "fr19R", \
147 "fr20", "fr20R", "fr21", "fr21R", "fr22", "fr22R", "fr23", "fr23R", \
148 "fr24", "fr24R", "fr25", "fr25R", "fr26", "fr26R", "fr27", "fr27R", \
149 "fr28", "fr28R", "fr29", "fr29R", "fr30", "fr30R", "fr31", "fr31R"}
151 /* Register numbers of various important registers.
152 Note that some of these values are "real" register numbers,
153 and correspond to the general registers of the machine,
154 and some are "phony" register numbers which are too large
155 to be actual register numbers as far as the user is concerned
156 but do serve to get the desired values when passed to read_register. */
158 #define R0_REGNUM 0 /* Doesn't actually exist, used as base for
159 other r registers. */
160 #define FLAGS_REGNUM 0 /* Various status flags */
161 #define RP_REGNUM 2 /* return pointer */
162 #define FP_REGNUM 3 /* Contains address of executing stack */
164 #define SP_REGNUM 30 /* Contains address of top of stack */
165 #define SAR_REGNUM 32 /* Shift Amount Register */
166 #define IPSW_REGNUM 41 /* Interrupt Processor Status Word */
167 #define PCOQ_HEAD_REGNUM 33 /* instruction offset queue head */
168 #define PCSQ_HEAD_REGNUM 34 /* instruction space queue head */
169 #define PCOQ_TAIL_REGNUM 35 /* instruction offset queue tail */
170 #define PCSQ_TAIL_REGNUM 36 /* instruction space queue tail */
171 #define EIEM_REGNUM 37 /* External Interrupt Enable Mask */
172 #define IIR_REGNUM 38 /* Interrupt Instruction Register */
173 #define IOR_REGNUM 40 /* Interrupt Offset Register */
174 #define SR4_REGNUM 43 /* space register 4 */
175 #define RCR_REGNUM 51 /* Recover Counter (also known as cr0) */
176 #define CCR_REGNUM 54 /* Coprocessor Configuration Register */
177 #define TR0_REGNUM 57 /* Temporary Registers (cr24 -> cr31) */
178 #define FP0_REGNUM 64 /* floating point reg. 0 */
179 #define FP4_REGNUM 72
181 /* compatibility with the rest of gdb. */
182 #define PC_REGNUM PCOQ_HEAD_REGNUM
183 #define NPC_REGNUM PCOQ_TAIL_REGNUM
186 * Processor Status Word Masks
189 #define PSW_T 0x01000000 /* Taken Branch Trap Enable */
190 #define PSW_H 0x00800000 /* Higher-Privilege Transfer Trap Enable */
191 #define PSW_L 0x00400000 /* Lower-Privilege Transfer Trap Enable */
192 #define PSW_N 0x00200000 /* PC Queue Front Instruction Nullified */
193 #define PSW_X 0x00100000 /* Data Memory Break Disable */
194 #define PSW_B 0x00080000 /* Taken Branch in Previous Cycle */
195 #define PSW_C 0x00040000 /* Code Address Translation Enable */
196 #define PSW_V 0x00020000 /* Divide Step Correction */
197 #define PSW_M 0x00010000 /* High-Priority Machine Check Disable */
198 #define PSW_CB 0x0000ff00 /* Carry/Borrow Bits */
199 #define PSW_R 0x00000010 /* Recovery Counter Enable */
200 #define PSW_Q 0x00000008 /* Interruption State Collection Enable */
201 #define PSW_P 0x00000004 /* Protection ID Validation Enable */
202 #define PSW_D 0x00000002 /* Data Address Translation Enable */
203 #define PSW_I 0x00000001 /* External, Power Failure, Low-Priority */
204 /* Machine Check Interruption Enable */
206 /* When fetching register values from an inferior or a core file,
207 clean them up using this macro. BUF is a char pointer to
208 the raw value of the register in the registers[] array. */
210 #define CLEAN_UP_REGISTER_VALUE(regno, buf) \
212 if ((regno) == PCOQ_HEAD_REGNUM || (regno) == PCOQ_TAIL_REGNUM) \
216 /* Define DO_REGISTERS_INFO() to do machine-specific formatting
217 of register dumps. */
219 #define DO_REGISTERS_INFO(_regnum, fp) pa_do_registers_info (_regnum, fp)
220 extern void pa_do_registers_info PARAMS ((int, int));
222 /* PA specific macro to see if the current instruction is nullified. */
223 #ifndef INSTRUCTION_NULLIFIED
224 #define INSTRUCTION_NULLIFIED ((int)read_register (IPSW_REGNUM) & 0x00200000)
227 /* Number of bytes of storage in the actual machine representation
228 for register N. On the PA-RISC, all regs are 4 bytes, including
229 the FP registers (they're accessed as two 4 byte halves). */
231 #define REGISTER_RAW_SIZE(N) 4
233 /* Total amount of space needed to store our copies of the machine's
234 register state, the array `registers'. */
235 #define REGISTER_BYTES (NUM_REGS * 4)
237 /* Index within `registers' of the first byte of the space for
240 #define REGISTER_BYTE(N) (N) * 4
242 /* Number of bytes of storage in the program's representation
245 #define REGISTER_VIRTUAL_SIZE(N) REGISTER_RAW_SIZE(N)
247 /* Largest value REGISTER_RAW_SIZE can have. */
249 #define MAX_REGISTER_RAW_SIZE 4
251 /* Largest value REGISTER_VIRTUAL_SIZE can have. */
253 #define MAX_REGISTER_VIRTUAL_SIZE 8
255 /* Return the GDB type object for the "standard" data type
256 of data in register N. */
258 #define REGISTER_VIRTUAL_TYPE(N) \
259 ((N) < FP4_REGNUM ? builtin_type_int : builtin_type_float)
261 /* Store the address of the place in which to copy the structure the
262 subroutine will return. This is called from call_function. */
264 #define STORE_STRUCT_RETURN(ADDR, SP) {write_register (28, (ADDR)); }
266 /* Extract from an array REGBUF containing the (raw) register state
267 a function return value of type TYPE, and copy that, in virtual format,
270 FIXME: Not sure what to do for soft float here. */
272 #define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
274 if (TYPE_CODE (TYPE) == TYPE_CODE_FLT && !SOFT_FLOAT) \
276 ((char *)(REGBUF)) + REGISTER_BYTE (FP4_REGNUM), \
277 TYPE_LENGTH (TYPE)); \
280 (char *)(REGBUF) + REGISTER_BYTE (28) + \
281 (TYPE_LENGTH (TYPE) >= 4 ? 0 : 4 - TYPE_LENGTH (TYPE)), \
282 TYPE_LENGTH (TYPE)); \
285 /* Write into appropriate registers a function return value
286 of type TYPE, given in virtual format.
288 For software floating point the return value goes into the integer
289 registers. But we don't have any flag to key this on, so we always
290 store the value into the integer registers, and if it's a float value,
291 then we put it in the float registers too. */
293 #define STORE_RETURN_VALUE(TYPE,VALBUF) \
294 write_register_bytes (REGISTER_BYTE (28),(VALBUF), TYPE_LENGTH (TYPE)) ; \
296 write_register_bytes ((TYPE_CODE(TYPE) == TYPE_CODE_FLT \
297 ? REGISTER_BYTE (FP4_REGNUM) \
298 : REGISTER_BYTE (28)), \
299 (VALBUF), TYPE_LENGTH (TYPE))
301 /* Extract from an array REGBUF containing the (raw) register state
302 the address in which a function should return its structure value,
303 as a CORE_ADDR (or an expression that can be used as one). */
305 #define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) \
306 (*(int *)((REGBUF) + REGISTER_BYTE (28)))
309 * This macro defines the register numbers (from REGISTER_NAMES) that
310 * are effectively unavailable to the user through ptrace(). It allows
311 * us to include the whole register set in REGISTER_NAMES (inorder to
312 * better support remote debugging). If it is used in
313 * fetch/store_inferior_registers() gdb will not complain about I/O errors
314 * on fetching these registers. If all registers in REGISTER_NAMES
315 * are available, then return false (0).
318 #define CANNOT_STORE_REGISTER(regno) \
320 ((regno) == PCSQ_HEAD_REGNUM) || \
321 ((regno) >= PCSQ_TAIL_REGNUM && (regno) < IPSW_REGNUM) || \
322 ((regno) > IPSW_REGNUM && (regno) < FP4_REGNUM)
324 #define INIT_EXTRA_FRAME_INFO(fromleaf, frame) init_extra_frame_info (fromleaf, frame)
325 extern void init_extra_frame_info PARAMS ((int, struct frame_info *));
327 /* Describe the pointer in each stack frame to the previous stack frame
330 /* FRAME_CHAIN takes a frame's nominal address
331 and produces the frame's chain-pointer.
333 FRAME_CHAIN_COMBINE takes the chain pointer and the frame's nominal address
334 and produces the nominal address of the caller frame.
336 However, if FRAME_CHAIN_VALID returns zero,
337 it means the given frame is the outermost one and has no caller.
338 In that case, FRAME_CHAIN_COMBINE is not used. */
340 /* In the case of the PA-RISC, the frame's nominal address
341 is the address of a 4-byte word containing the calling frame's
342 address (previous FP). */
344 #define FRAME_CHAIN(thisframe) frame_chain (thisframe)
345 extern CORE_ADDR frame_chain PARAMS ((struct frame_info *));
347 #define FRAME_CHAIN_VALID(chain, thisframe) \
348 frame_chain_valid (chain, thisframe)
349 extern int frame_chain_valid PARAMS ((CORE_ADDR, struct frame_info *));
351 #define FRAME_CHAIN_COMBINE(chain, thisframe) (chain)
353 /* Define other aspects of the stack frame. */
355 /* A macro that tells us whether the function invocation represented
356 by FI does not have a frame on the stack associated with it. If it
357 does not, FRAMELESS is set to 1, else 0. */
358 #define FRAMELESS_FUNCTION_INVOCATION(FI, FRAMELESS) \
359 (FRAMELESS) = frameless_function_invocation(FI)
360 extern int frameless_function_invocation PARAMS ((struct frame_info *));
362 #define FRAME_SAVED_PC(FRAME) frame_saved_pc (FRAME)
364 #define FRAME_ARGS_ADDRESS(fi) ((fi)->frame)
366 #define FRAME_LOCALS_ADDRESS(fi) ((fi)->frame)
367 /* Set VAL to the number of args passed to frame described by FI.
368 Can set VAL to -1, meaning no way to tell. */
370 /* We can't tell how many args there are
371 now that the C compiler delays popping them. */
372 #define FRAME_NUM_ARGS(val,fi) (val = -1)
374 /* Return number of bytes at start of arglist that are not really args. */
376 #define FRAME_ARGS_SKIP 0
378 #define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \
379 hppa_frame_find_saved_regs (frame_info, &frame_saved_regs)
381 hppa_frame_find_saved_regs PARAMS ((struct frame_info *,
382 struct frame_saved_regs *));
385 /* Things needed for making the inferior call functions. */
387 /* Push an empty stack frame, to record the current PC, etc. */
389 #define PUSH_DUMMY_FRAME push_dummy_frame (&inf_status)
390 extern void push_dummy_frame PARAMS ((struct inferior_status *));
392 /* Discard from the stack the innermost frame,
393 restoring all saved registers. */
394 #define POP_FRAME hppa_pop_frame ()
395 extern void hppa_pop_frame PARAMS ((void));
397 #define INSTRUCTION_SIZE 4
401 /* Non-level zero PA's have space registers (but they don't always have
402 floating-point, do they???? */
404 /* This sequence of words is the instructions
406 ; Call stack frame has already been built by gdb. Since we could be calling
407 ; a varargs function, and we do not have the benefit of a stub to put things in
408 ; the right place, we load the first 4 word of arguments into both the general
419 fldds -12(0, r1), fr7
420 ldil 0, r22 ; FUNC_LDIL_OFFSET must point here
421 ldo 0(r22), r22 ; FUNC_LDO_OFFSET must point here
423 ldil 0, r1 ; SR4EXPORT_LDIL_OFFSET must point here
424 ldo 0(r1), r1 ; SR4EXPORT_LDO_OFFSET must point here
426 combt,=,n r4, r20, text_space ; If target is in data space, do a
427 ble 0(sr5, r22) ; "normal" procedure call
432 text_space ; Otherwise, go through _sr4export,
433 ble (sr4, r1) ; which will return back here.
438 nop ; To avoid kernel bugs
439 nop ; and keep the dummy 8 byte aligned
441 The dummy decides if the target is in text space or data space. If
442 it's in data space, there's no problem because the target can
443 return back to the dummy. However, if the target is in text space,
444 the dummy calls the secret, undocumented routine _sr4export, which
445 calls a function in text space and can return to any space. Instead
446 of including fake instructions to represent saved registers, we
447 know that the frame is associated with the call dummy and treat it
450 The trailing NOPs are needed to avoid a bug in HPUX, BSD and OSF1
451 kernels. If the memory at the location pointed to by the PC is
452 0xffffffff then a ptrace step call will fail (even if the instruction
455 The code to pop a dummy frame single steps three instructions
456 starting with the last mtsp. This includes the nullified "instruction"
457 following the ble (which is uninitialized junk). If the
458 "instruction" following the last BLE is 0xffffffff, then the ptrace
459 will fail and the dummy frame is not correctly popped.
461 By placing a NOP in the delay slot of the BLE instruction we can be
462 sure that we never try to execute a 0xffffffff instruction and
463 avoid the kernel bug. The second NOP is needed to keep the call
464 dummy 8 byte aligned. */
466 /* Define offsets into the call dummy for the target function address */
467 #define FUNC_LDIL_OFFSET (INSTRUCTION_SIZE * 9)
468 #define FUNC_LDO_OFFSET (INSTRUCTION_SIZE * 10)
470 /* Define offsets into the call dummy for the _sr4export address */
471 #define SR4EXPORT_LDIL_OFFSET (INSTRUCTION_SIZE * 12)
472 #define SR4EXPORT_LDO_OFFSET (INSTRUCTION_SIZE * 13)
474 #define CALL_DUMMY {0x4BDA3FB9, 0x4BD93FB1, 0x4BD83FA9, 0x4BD73FA1,\
475 0x37C13FB9, 0x24201004, 0x2C391005, 0x24311006,\
476 0x2C291007, 0x22C00000, 0x36D60000, 0x02C010A4,\
477 0x20200000, 0x34210000, 0x002010b4, 0x82842022,\
478 0xe6c06000, 0x081f0242, 0x00010004, 0x00151820,\
479 0xe6c00002, 0xe4202000, 0x6bdf3fd1, 0x00010004,\
480 0x00151820, 0xe6c00002, 0x08000240, 0x08000240}
482 #define CALL_DUMMY_LENGTH (INSTRUCTION_SIZE * 28)
484 #else /* defined PA_LEVEL_0 */
486 /* This is the call dummy for a level 0 PA. Level 0's don't have space
487 registers (or floating point??), so we skip all that inter-space call stuff,
488 and avoid touching the fp regs.
496 ldil 0, %r31 ; FUNC_LDIL_OFFSET must point here
497 ldo 0(%r31), %r31 ; FUNC_LDO_OFFSET must point here
501 nop ; restore_pc_queue expects these
502 bv,n 0(%r22) ; instructions to be here...
506 /* Define offsets into the call dummy for the target function address */
507 #define FUNC_LDIL_OFFSET (INSTRUCTION_SIZE * 4)
508 #define FUNC_LDO_OFFSET (INSTRUCTION_SIZE * 5)
510 #define CALL_DUMMY {0x4bda3fb9, 0x4bd93fb1, 0x4bd83fa9, 0x4bd73fa1,\
511 0x23e00000, 0x37ff0000, 0xe7e00000, 0x081f0242,\
512 0x00010004, 0x08000240, 0xeac0c002, 0x08000240}
514 #define CALL_DUMMY_LENGTH (INSTRUCTION_SIZE * 12)
518 #define CALL_DUMMY_START_OFFSET 0
521 * Insert the specified number of args and function address
522 * into a call sequence of the above form stored at DUMMYNAME.
524 * On the hppa we need to call the stack dummy through $$dyncall.
525 * Therefore our version of FIX_CALL_DUMMY takes an extra argument,
526 * real_pc, which is the location where gdb should start up the
527 * inferior to do the function call.
530 #define FIX_CALL_DUMMY hppa_fix_call_dummy
533 hppa_fix_call_dummy PARAMS ((char *, CORE_ADDR, CORE_ADDR, int,
534 struct value **, struct type *, int));
536 #define PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr) \
537 sp = hppa_push_arguments(nargs, args, sp, struct_return, struct_addr)
539 hppa_push_arguments PARAMS ((int, struct value **, CORE_ADDR, int,
542 /* The low two bits of the PC on the PA contain the privilege level. Some
543 genius implementing a (non-GCC) compiler apparently decided this means
544 that "addresses" in a text section therefore include a privilege level,
545 and thus symbol tables should contain these bits. This seems like a
546 bonehead thing to do--anyway, it seems to work for our purposes to just
547 ignore those bits. */
548 #define SMASH_TEXT_ADDRESS(addr) ((addr) &= ~0x3)
550 #define GDB_TARGET_IS_HPPA
552 #define BELIEVE_PCC_PROMOTION 1
555 * Unwind table and descriptor.
558 struct unwind_table_entry {
559 unsigned int region_start;
560 unsigned int region_end;
562 unsigned int Cannot_unwind : 1;
563 unsigned int Millicode : 1;
564 unsigned int Millicode_save_sr0 : 1;
565 unsigned int Region_description : 2;
566 unsigned int reserved1 : 1;
567 unsigned int Entry_SR : 1;
568 unsigned int Entry_FR : 4; /* number saved */
569 unsigned int Entry_GR : 5; /* number saved */
570 unsigned int Args_stored : 1;
571 unsigned int Variable_Frame : 1;
572 unsigned int Separate_Package_Body : 1;
573 unsigned int Frame_Extension_Millicode:1;
574 unsigned int Stack_Overflow_Check : 1;
575 unsigned int Two_Instruction_SP_Increment:1;
576 unsigned int Ada_Region : 1;
577 /* Use this field to store a stub unwind type. */
578 #define stub_type reserved2
579 unsigned int reserved2 : 4;
580 unsigned int Save_SP : 1;
581 unsigned int Save_RP : 1;
582 unsigned int Save_MRP_in_frame : 1;
583 unsigned int extn_ptr_defined : 1;
584 unsigned int Cleanup_defined : 1;
586 unsigned int MPE_XL_interrupt_marker: 1;
587 unsigned int HP_UX_interrupt_marker: 1;
588 unsigned int Large_frame : 1;
589 unsigned int reserved4 : 2;
590 unsigned int Total_frame_size : 27;
593 /* HP linkers also generate unwinds for various linker-generated stubs.
594 GDB reads in the stubs from the $UNWIND_END$ subspace, then
595 "converts" them into normal unwind entries using some of the reserved
596 fields to store the stub type. */
598 struct stub_unwind_entry
600 /* The offset within the executable for the associated stub. */
601 unsigned stub_offset;
603 /* The type of stub this unwind entry describes. */
606 /* Unknown. Not needed by GDB at this time. */
609 /* Length (in instructions) of the associated stub. */
613 /* Sizes (in bytes) of the native unwind entries. */
614 #define UNWIND_ENTRY_SIZE 16
615 #define STUB_UNWIND_ENTRY_SIZE 8
617 /* The gaps represent linker stubs used in MPE and space for future
619 enum unwind_stub_types
622 PARAMETER_RELOCATION = 2,
628 /* Info about the unwind table associated with an object file. This is hung
629 off of the objfile->obj_private pointer, and is allocated in the objfile's
630 psymbol obstack. This allows us to have unique unwind info for each
631 executable and shared library that we are debugging. */
633 struct obj_unwind_info {
634 struct unwind_table_entry *table; /* Pointer to unwind info */
635 struct unwind_table_entry *cache; /* Pointer to last entry we found */
636 int last; /* Index of last entry */
639 #define OBJ_UNWIND_INFO(obj) ((struct obj_unwind_info *)obj->obj_private)
641 extern CORE_ADDR target_read_pc PARAMS ((int));
642 extern void target_write_pc PARAMS ((CORE_ADDR, int));
643 extern CORE_ADDR skip_trampoline_code PARAMS ((CORE_ADDR, char *));
645 #define TARGET_READ_PC(pid) target_read_pc (pid)
646 #define TARGET_WRITE_PC(v,pid) target_write_pc (v,pid)
648 /* For a number of horrible reasons we may have to adjust the location
649 of variables on the stack. Ugh. */
650 #define HPREAD_ADJUST_STACK_ADDRESS(ADDR) hpread_adjust_stack_address(ADDR)
652 extern int hpread_adjust_stack_address PARAMS ((CORE_ADDR));
654 /* If the current gcc for for this target does not produce correct debugging
655 information for float parameters, both prototyped and unprototyped, then
656 define this macro. This forces gdb to always assume that floats are
657 passed as doubles and then converted in the callee.
659 For the pa, it appears that the debug info marks the parameters as
660 floats regardless of whether the function is prototyped, but the actual
661 values are passed as doubles for the non-prototyped case and floats for
662 the prototyped case. Thus we choose to make the non-prototyped case work
663 for C and break the prototyped case, since the non-prototyped case is
664 probably much more common. (FIXME). */
666 #define COERCE_FLOAT_TO_DOUBLE (current_language -> la_language == language_c)