1 /* YACC parser for C expressions, for GDB.
2 Copyright (C) 1986, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2003, 2004, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21 /* Parse a C expression from text in a string,
22 and return the result as a struct expression pointer.
23 That structure contains arithmetic operations in reverse polish,
24 with constants represented by operations that are followed by special data.
25 See expression.h for the details of the format.
26 What is important here is that it can be built up sequentially
27 during the process of parsing; the lower levels of the tree always
28 come first in the result.
30 Note that malloc's and realloc's in this file are transformed to
31 xmalloc and xrealloc respectively by the same sed command in the
32 makefile that remaps any other malloc/realloc inserted by the parser
33 generator. Doing this with #defines and trying to control the interaction
34 with include files (<malloc.h> and <stdlib.h> for example) just became
35 too messy, particularly when such includes can be inserted at random
36 times by the parser generator. */
41 #include "gdb_string.h"
43 #include "expression.h"
45 #include "parser-defs.h"
48 #include "bfd.h" /* Required by objfiles.h. */
49 #include "symfile.h" /* Required by objfiles.h. */
50 #include "objfiles.h" /* For have_full_symbols and have_partial_symbols */
53 #include "cp-support.h"
55 #include "gdb_assert.h"
56 #include "macroscope.h"
58 #define parse_type builtin_type (parse_gdbarch)
60 /* Remap normal yacc parser interface names (yyparse, yylex, yyerror, etc),
61 as well as gratuitiously global symbol names, so we can have multiple
62 yacc generated parsers in gdb. Note that these are only the variables
63 produced by yacc. If other parser generators (bison, byacc, etc) produce
64 additional global names that conflict at link time, then those parser
65 generators need to be fixed instead of adding those names to this list. */
67 #define yymaxdepth c_maxdepth
68 #define yyparse c_parse_internal
70 #define yyerror c_error
73 #define yydebug c_debug
82 #define yyerrflag c_errflag
83 #define yynerrs c_nerrs
88 #define yystate c_state
94 #define yyreds c_reds /* With YYDEBUG defined */
95 #define yytoks c_toks /* With YYDEBUG defined */
96 #define yyname c_name /* With YYDEBUG defined */
97 #define yyrule c_rule /* With YYDEBUG defined */
100 #define yydefred c_yydefred
101 #define yydgoto c_yydgoto
102 #define yysindex c_yysindex
103 #define yyrindex c_yyrindex
104 #define yygindex c_yygindex
105 #define yytable c_yytable
106 #define yycheck c_yycheck
109 #define YYDEBUG 1 /* Default to yydebug support */
112 #define YYFPRINTF parser_fprintf
116 static int yylex (void);
118 void yyerror (char *);
122 /* Although the yacc "value" of an expression is not used,
123 since the result is stored in the structure being created,
124 other node types do have values. */
140 } typed_val_decfloat;
144 struct typed_stoken tsval;
146 struct symtoken ssym;
149 enum exp_opcode opcode;
150 struct internalvar *ivar;
152 struct stoken_vector svec;
158 /* YYSTYPE gets defined by %union */
159 static int parse_number (char *, int, int, YYSTYPE *);
162 %type <voidval> exp exp1 type_exp start variable qualified_name lcurly
164 %type <tval> type typebase qualified_type
165 %type <tvec> nonempty_typelist
166 /* %type <bval> block */
168 /* Fancy type parsing. */
169 %type <voidval> func_mod direct_abs_decl abs_decl
171 %type <lval> array_mod
173 %token <typed_val_int> INT
174 %token <typed_val_float> FLOAT
175 %token <typed_val_decfloat> DECFLOAT
177 /* Both NAME and TYPENAME tokens represent symbols in the input,
178 and both convey their data as strings.
179 But a TYPENAME is a string that happens to be defined as a typedef
180 or builtin type name (such as int or char)
181 and a NAME is any other symbol.
182 Contexts where this distinction is not important can use the
183 nonterminal "name", which matches either NAME or TYPENAME. */
185 %token <tsval> STRING
187 %token <ssym> NAME /* BLOCKNAME defined below to give it higher precedence. */
188 %token <voidval> COMPLETE
189 %token <tsym> TYPENAME
191 %type <svec> string_exp
192 %type <ssym> name_not_typename
193 %type <tsym> typename
195 /* A NAME_OR_INT is a symbol which is not known in the symbol table,
196 but which would parse as a valid number in the current input radix.
197 E.g. "c" when input_radix==16. Depending on the parse, it will be
198 turned into a name or into a number. */
200 %token <ssym> NAME_OR_INT
202 %token STRUCT CLASS UNION ENUM SIZEOF UNSIGNED COLONCOLON
206 /* Special type cases, put in to allow the parser to distinguish different
208 %token SIGNED_KEYWORD LONG SHORT INT_KEYWORD CONST_KEYWORD VOLATILE_KEYWORD DOUBLE_KEYWORD
210 %token <voidval> VARIABLE
212 %token <opcode> ASSIGN_MODIFY
221 %right '=' ASSIGN_MODIFY
229 %left '<' '>' LEQ GEQ
234 %right UNARY INCREMENT DECREMENT
235 %right ARROW '.' '[' '('
236 %token <ssym> BLOCKNAME
237 %token <bval> FILENAME
249 { write_exp_elt_opcode(OP_TYPE);
250 write_exp_elt_type($1);
251 write_exp_elt_opcode(OP_TYPE);}
254 /* Expressions, including the comma operator. */
257 { write_exp_elt_opcode (BINOP_COMMA); }
260 /* Expressions, not including the comma operator. */
261 exp : '*' exp %prec UNARY
262 { write_exp_elt_opcode (UNOP_IND); }
265 exp : '&' exp %prec UNARY
266 { write_exp_elt_opcode (UNOP_ADDR); }
269 exp : '-' exp %prec UNARY
270 { write_exp_elt_opcode (UNOP_NEG); }
273 exp : '+' exp %prec UNARY
274 { write_exp_elt_opcode (UNOP_PLUS); }
277 exp : '!' exp %prec UNARY
278 { write_exp_elt_opcode (UNOP_LOGICAL_NOT); }
281 exp : '~' exp %prec UNARY
282 { write_exp_elt_opcode (UNOP_COMPLEMENT); }
285 exp : INCREMENT exp %prec UNARY
286 { write_exp_elt_opcode (UNOP_PREINCREMENT); }
289 exp : DECREMENT exp %prec UNARY
290 { write_exp_elt_opcode (UNOP_PREDECREMENT); }
293 exp : exp INCREMENT %prec UNARY
294 { write_exp_elt_opcode (UNOP_POSTINCREMENT); }
297 exp : exp DECREMENT %prec UNARY
298 { write_exp_elt_opcode (UNOP_POSTDECREMENT); }
301 exp : SIZEOF exp %prec UNARY
302 { write_exp_elt_opcode (UNOP_SIZEOF); }
306 { write_exp_elt_opcode (STRUCTOP_PTR);
307 write_exp_string ($3);
308 write_exp_elt_opcode (STRUCTOP_PTR); }
311 exp : exp ARROW name COMPLETE
312 { mark_struct_expression ();
313 write_exp_elt_opcode (STRUCTOP_PTR);
314 write_exp_string ($3);
315 write_exp_elt_opcode (STRUCTOP_PTR); }
318 exp : exp ARROW COMPLETE
320 mark_struct_expression ();
321 write_exp_elt_opcode (STRUCTOP_PTR);
324 write_exp_string (s);
325 write_exp_elt_opcode (STRUCTOP_PTR); }
328 exp : exp ARROW qualified_name
329 { /* exp->type::name becomes exp->*(&type::name) */
330 /* Note: this doesn't work if name is a
331 static member! FIXME */
332 write_exp_elt_opcode (UNOP_ADDR);
333 write_exp_elt_opcode (STRUCTOP_MPTR); }
336 exp : exp ARROW '*' exp
337 { write_exp_elt_opcode (STRUCTOP_MPTR); }
341 { write_exp_elt_opcode (STRUCTOP_STRUCT);
342 write_exp_string ($3);
343 write_exp_elt_opcode (STRUCTOP_STRUCT); }
346 exp : exp '.' name COMPLETE
347 { mark_struct_expression ();
348 write_exp_elt_opcode (STRUCTOP_STRUCT);
349 write_exp_string ($3);
350 write_exp_elt_opcode (STRUCTOP_STRUCT); }
353 exp : exp '.' COMPLETE
355 mark_struct_expression ();
356 write_exp_elt_opcode (STRUCTOP_STRUCT);
359 write_exp_string (s);
360 write_exp_elt_opcode (STRUCTOP_STRUCT); }
363 exp : exp '.' qualified_name
364 { /* exp.type::name becomes exp.*(&type::name) */
365 /* Note: this doesn't work if name is a
366 static member! FIXME */
367 write_exp_elt_opcode (UNOP_ADDR);
368 write_exp_elt_opcode (STRUCTOP_MEMBER); }
371 exp : exp '.' '*' exp
372 { write_exp_elt_opcode (STRUCTOP_MEMBER); }
375 exp : exp '[' exp1 ']'
376 { write_exp_elt_opcode (BINOP_SUBSCRIPT); }
380 /* This is to save the value of arglist_len
381 being accumulated by an outer function call. */
382 { start_arglist (); }
383 arglist ')' %prec ARROW
384 { write_exp_elt_opcode (OP_FUNCALL);
385 write_exp_elt_longcst ((LONGEST) end_arglist ());
386 write_exp_elt_opcode (OP_FUNCALL); }
390 { start_arglist (); }
400 arglist : arglist ',' exp %prec ABOVE_COMMA
405 { $$ = end_arglist () - 1; }
407 exp : lcurly arglist rcurly %prec ARROW
408 { write_exp_elt_opcode (OP_ARRAY);
409 write_exp_elt_longcst ((LONGEST) 0);
410 write_exp_elt_longcst ((LONGEST) $3);
411 write_exp_elt_opcode (OP_ARRAY); }
414 exp : lcurly type rcurly exp %prec UNARY
415 { write_exp_elt_opcode (UNOP_MEMVAL);
416 write_exp_elt_type ($2);
417 write_exp_elt_opcode (UNOP_MEMVAL); }
420 exp : '(' type ')' exp %prec UNARY
421 { write_exp_elt_opcode (UNOP_CAST);
422 write_exp_elt_type ($2);
423 write_exp_elt_opcode (UNOP_CAST); }
430 /* Binary operators in order of decreasing precedence. */
433 { write_exp_elt_opcode (BINOP_REPEAT); }
437 { write_exp_elt_opcode (BINOP_MUL); }
441 { write_exp_elt_opcode (BINOP_DIV); }
445 { write_exp_elt_opcode (BINOP_REM); }
449 { write_exp_elt_opcode (BINOP_ADD); }
453 { write_exp_elt_opcode (BINOP_SUB); }
457 { write_exp_elt_opcode (BINOP_LSH); }
461 { write_exp_elt_opcode (BINOP_RSH); }
465 { write_exp_elt_opcode (BINOP_EQUAL); }
468 exp : exp NOTEQUAL exp
469 { write_exp_elt_opcode (BINOP_NOTEQUAL); }
473 { write_exp_elt_opcode (BINOP_LEQ); }
477 { write_exp_elt_opcode (BINOP_GEQ); }
481 { write_exp_elt_opcode (BINOP_LESS); }
485 { write_exp_elt_opcode (BINOP_GTR); }
489 { write_exp_elt_opcode (BINOP_BITWISE_AND); }
493 { write_exp_elt_opcode (BINOP_BITWISE_XOR); }
497 { write_exp_elt_opcode (BINOP_BITWISE_IOR); }
501 { write_exp_elt_opcode (BINOP_LOGICAL_AND); }
505 { write_exp_elt_opcode (BINOP_LOGICAL_OR); }
508 exp : exp '?' exp ':' exp %prec '?'
509 { write_exp_elt_opcode (TERNOP_COND); }
513 { write_exp_elt_opcode (BINOP_ASSIGN); }
516 exp : exp ASSIGN_MODIFY exp
517 { write_exp_elt_opcode (BINOP_ASSIGN_MODIFY);
518 write_exp_elt_opcode ($2);
519 write_exp_elt_opcode (BINOP_ASSIGN_MODIFY); }
523 { write_exp_elt_opcode (OP_LONG);
524 write_exp_elt_type ($1.type);
525 write_exp_elt_longcst ((LONGEST)($1.val));
526 write_exp_elt_opcode (OP_LONG); }
531 struct stoken_vector vec;
534 write_exp_string_vector ($1.type, &vec);
540 parse_number ($1.stoken.ptr, $1.stoken.length, 0, &val);
541 write_exp_elt_opcode (OP_LONG);
542 write_exp_elt_type (val.typed_val_int.type);
543 write_exp_elt_longcst ((LONGEST)val.typed_val_int.val);
544 write_exp_elt_opcode (OP_LONG);
550 { write_exp_elt_opcode (OP_DOUBLE);
551 write_exp_elt_type ($1.type);
552 write_exp_elt_dblcst ($1.dval);
553 write_exp_elt_opcode (OP_DOUBLE); }
557 { write_exp_elt_opcode (OP_DECFLOAT);
558 write_exp_elt_type ($1.type);
559 write_exp_elt_decfloatcst ($1.val);
560 write_exp_elt_opcode (OP_DECFLOAT); }
567 /* Already written by write_dollar_variable. */
570 exp : SIZEOF '(' type ')' %prec UNARY
571 { write_exp_elt_opcode (OP_LONG);
572 write_exp_elt_type (parse_type->builtin_int);
574 write_exp_elt_longcst ((LONGEST) TYPE_LENGTH ($3));
575 write_exp_elt_opcode (OP_LONG); }
581 /* We copy the string here, and not in the
582 lexer, to guarantee that we do not leak a
583 string. Note that we follow the
584 NUL-termination convention of the
586 struct typed_stoken *vec = XNEW (struct typed_stoken);
591 vec->length = $1.length;
592 vec->ptr = malloc ($1.length + 1);
593 memcpy (vec->ptr, $1.ptr, $1.length + 1);
598 /* Note that we NUL-terminate here, but just
602 $$.tokens = realloc ($$.tokens,
603 $$.len * sizeof (struct typed_stoken));
605 p = malloc ($2.length + 1);
606 memcpy (p, $2.ptr, $2.length + 1);
608 $$.tokens[$$.len - 1].type = $2.type;
609 $$.tokens[$$.len - 1].length = $2.length;
610 $$.tokens[$$.len - 1].ptr = p;
617 enum c_string_type type = C_STRING;
619 for (i = 0; i < $1.len; ++i)
621 switch ($1.tokens[i].type)
629 && type != $1.tokens[i].type)
630 error ("Undefined string concatenation.");
631 type = $1.tokens[i].type;
635 internal_error (__FILE__, __LINE__,
636 "unrecognized type in string concatenation");
640 write_exp_string_vector (type, &$1);
641 for (i = 0; i < $1.len; ++i)
642 free ($1.tokens[i].ptr);
649 { write_exp_elt_opcode (OP_LONG);
650 write_exp_elt_type (parse_type->builtin_bool);
651 write_exp_elt_longcst ((LONGEST) 1);
652 write_exp_elt_opcode (OP_LONG); }
656 { write_exp_elt_opcode (OP_LONG);
657 write_exp_elt_type (parse_type->builtin_bool);
658 write_exp_elt_longcst ((LONGEST) 0);
659 write_exp_elt_opcode (OP_LONG); }
667 $$ = SYMBOL_BLOCK_VALUE ($1.sym);
669 error ("No file or function \"%s\".",
670 copy_name ($1.stoken));
678 block : block COLONCOLON name
680 = lookup_symbol (copy_name ($3), $1,
681 VAR_DOMAIN, (int *) NULL);
682 if (!tem || SYMBOL_CLASS (tem) != LOC_BLOCK)
683 error ("No function \"%s\" in specified context.",
685 $$ = SYMBOL_BLOCK_VALUE (tem); }
688 variable: block COLONCOLON name
689 { struct symbol *sym;
690 sym = lookup_symbol (copy_name ($3), $1,
691 VAR_DOMAIN, (int *) NULL);
693 error ("No symbol \"%s\" in specified context.",
696 write_exp_elt_opcode (OP_VAR_VALUE);
697 /* block_found is set by lookup_symbol. */
698 write_exp_elt_block (block_found);
699 write_exp_elt_sym (sym);
700 write_exp_elt_opcode (OP_VAR_VALUE); }
703 qualified_name: typebase COLONCOLON name
705 struct type *type = $1;
706 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
707 && TYPE_CODE (type) != TYPE_CODE_UNION
708 && TYPE_CODE (type) != TYPE_CODE_NAMESPACE)
709 error ("`%s' is not defined as an aggregate type.",
712 write_exp_elt_opcode (OP_SCOPE);
713 write_exp_elt_type (type);
714 write_exp_string ($3);
715 write_exp_elt_opcode (OP_SCOPE);
717 | typebase COLONCOLON '~' name
719 struct type *type = $1;
720 struct stoken tmp_token;
721 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
722 && TYPE_CODE (type) != TYPE_CODE_UNION
723 && TYPE_CODE (type) != TYPE_CODE_NAMESPACE)
724 error ("`%s' is not defined as an aggregate type.",
727 tmp_token.ptr = (char*) alloca ($4.length + 2);
728 tmp_token.length = $4.length + 1;
729 tmp_token.ptr[0] = '~';
730 memcpy (tmp_token.ptr+1, $4.ptr, $4.length);
731 tmp_token.ptr[tmp_token.length] = 0;
733 /* Check for valid destructor name. */
734 destructor_name_p (tmp_token.ptr, type);
735 write_exp_elt_opcode (OP_SCOPE);
736 write_exp_elt_type (type);
737 write_exp_string (tmp_token);
738 write_exp_elt_opcode (OP_SCOPE);
742 variable: qualified_name
745 char *name = copy_name ($2);
747 struct minimal_symbol *msymbol;
750 lookup_symbol (name, (const struct block *) NULL,
751 VAR_DOMAIN, (int *) NULL);
754 write_exp_elt_opcode (OP_VAR_VALUE);
755 write_exp_elt_block (NULL);
756 write_exp_elt_sym (sym);
757 write_exp_elt_opcode (OP_VAR_VALUE);
761 msymbol = lookup_minimal_symbol (name, NULL, NULL);
763 write_exp_msymbol (msymbol);
764 else if (!have_full_symbols () && !have_partial_symbols ())
765 error ("No symbol table is loaded. Use the \"file\" command.");
767 error ("No symbol \"%s\" in current context.", name);
771 variable: name_not_typename
772 { struct symbol *sym = $1.sym;
776 if (symbol_read_needs_frame (sym))
778 if (innermost_block == 0 ||
779 contained_in (block_found,
781 innermost_block = block_found;
784 write_exp_elt_opcode (OP_VAR_VALUE);
785 /* We want to use the selected frame, not
786 another more inner frame which happens to
787 be in the same block. */
788 write_exp_elt_block (NULL);
789 write_exp_elt_sym (sym);
790 write_exp_elt_opcode (OP_VAR_VALUE);
792 else if ($1.is_a_field_of_this)
794 /* C++: it hangs off of `this'. Must
795 not inadvertently convert from a method call
797 if (innermost_block == 0 ||
798 contained_in (block_found, innermost_block))
799 innermost_block = block_found;
800 write_exp_elt_opcode (OP_THIS);
801 write_exp_elt_opcode (OP_THIS);
802 write_exp_elt_opcode (STRUCTOP_PTR);
803 write_exp_string ($1.stoken);
804 write_exp_elt_opcode (STRUCTOP_PTR);
808 struct minimal_symbol *msymbol;
809 char *arg = copy_name ($1.stoken);
812 lookup_minimal_symbol (arg, NULL, NULL);
814 write_exp_msymbol (msymbol);
815 else if (!have_full_symbols () && !have_partial_symbols ())
816 error ("No symbol table is loaded. Use the \"file\" command.");
818 error ("No symbol \"%s\" in current context.",
819 copy_name ($1.stoken));
824 space_identifier : '@' NAME
825 { push_type_address_space (copy_name ($2.stoken));
826 push_type (tp_space_identifier);
830 const_or_volatile: const_or_volatile_noopt
834 cv_with_space_id : const_or_volatile space_identifier const_or_volatile
837 const_or_volatile_or_space_identifier_noopt: cv_with_space_id
838 | const_or_volatile_noopt
841 const_or_volatile_or_space_identifier:
842 const_or_volatile_or_space_identifier_noopt
847 { push_type (tp_pointer); $$ = 0; }
849 { push_type (tp_pointer); $$ = $2; }
851 { push_type (tp_reference); $$ = 0; }
853 { push_type (tp_reference); $$ = $2; }
857 direct_abs_decl: '(' abs_decl ')'
859 | direct_abs_decl array_mod
862 push_type (tp_array);
867 push_type (tp_array);
871 | direct_abs_decl func_mod
872 { push_type (tp_function); }
874 { push_type (tp_function); }
885 | '(' nonempty_typelist ')'
886 { free ($2); $$ = 0; }
889 /* We used to try to recognize pointer to member types here, but
890 that didn't work (shift/reduce conflicts meant that these rules never
891 got executed). The problem is that
892 int (foo::bar::baz::bizzle)
893 is a function type but
894 int (foo::bar::baz::bizzle::*)
895 is a pointer to member type. Stroustrup loses again! */
900 typebase /* Implements (approximately): (type-qualifier)* type-specifier */
904 { $$ = parse_type->builtin_int; }
906 { $$ = parse_type->builtin_long; }
908 { $$ = parse_type->builtin_short; }
910 { $$ = parse_type->builtin_long; }
911 | LONG SIGNED_KEYWORD INT_KEYWORD
912 { $$ = parse_type->builtin_long; }
913 | LONG SIGNED_KEYWORD
914 { $$ = parse_type->builtin_long; }
915 | SIGNED_KEYWORD LONG INT_KEYWORD
916 { $$ = parse_type->builtin_long; }
917 | UNSIGNED LONG INT_KEYWORD
918 { $$ = parse_type->builtin_unsigned_long; }
919 | LONG UNSIGNED INT_KEYWORD
920 { $$ = parse_type->builtin_unsigned_long; }
922 { $$ = parse_type->builtin_unsigned_long; }
924 { $$ = parse_type->builtin_long_long; }
925 | LONG LONG INT_KEYWORD
926 { $$ = parse_type->builtin_long_long; }
927 | LONG LONG SIGNED_KEYWORD INT_KEYWORD
928 { $$ = parse_type->builtin_long_long; }
929 | LONG LONG SIGNED_KEYWORD
930 { $$ = parse_type->builtin_long_long; }
931 | SIGNED_KEYWORD LONG LONG
932 { $$ = parse_type->builtin_long_long; }
933 | SIGNED_KEYWORD LONG LONG INT_KEYWORD
934 { $$ = parse_type->builtin_long_long; }
936 { $$ = parse_type->builtin_unsigned_long_long; }
937 | UNSIGNED LONG LONG INT_KEYWORD
938 { $$ = parse_type->builtin_unsigned_long_long; }
940 { $$ = parse_type->builtin_unsigned_long_long; }
941 | LONG LONG UNSIGNED INT_KEYWORD
942 { $$ = parse_type->builtin_unsigned_long_long; }
944 { $$ = parse_type->builtin_short; }
945 | SHORT SIGNED_KEYWORD INT_KEYWORD
946 { $$ = parse_type->builtin_short; }
947 | SHORT SIGNED_KEYWORD
948 { $$ = parse_type->builtin_short; }
949 | UNSIGNED SHORT INT_KEYWORD
950 { $$ = parse_type->builtin_unsigned_short; }
952 { $$ = parse_type->builtin_unsigned_short; }
953 | SHORT UNSIGNED INT_KEYWORD
954 { $$ = parse_type->builtin_unsigned_short; }
956 { $$ = parse_type->builtin_double; }
957 | LONG DOUBLE_KEYWORD
958 { $$ = parse_type->builtin_long_double; }
960 { $$ = lookup_struct (copy_name ($2),
961 expression_context_block); }
963 { $$ = lookup_struct (copy_name ($2),
964 expression_context_block); }
966 { $$ = lookup_union (copy_name ($2),
967 expression_context_block); }
969 { $$ = lookup_enum (copy_name ($2),
970 expression_context_block); }
972 { $$ = lookup_unsigned_typename (parse_language,
974 TYPE_NAME($2.type)); }
976 { $$ = parse_type->builtin_unsigned_int; }
977 | SIGNED_KEYWORD typename
978 { $$ = lookup_signed_typename (parse_language,
980 TYPE_NAME($2.type)); }
982 { $$ = parse_type->builtin_int; }
983 /* It appears that this rule for templates is never
984 reduced; template recognition happens by lookahead
985 in the token processing code in yylex. */
986 | TEMPLATE name '<' type '>'
987 { $$ = lookup_template_type(copy_name($2), $4,
988 expression_context_block);
990 | const_or_volatile_or_space_identifier_noopt typebase
991 { $$ = follow_types ($2); }
992 | typebase const_or_volatile_or_space_identifier_noopt
993 { $$ = follow_types ($1); }
997 /* FIXME: carlton/2003-09-25: This next bit leads to lots of
998 reduce-reduce conflicts, because the parser doesn't know whether or
999 not to use qualified_name or qualified_type: the rules are
1000 identical. If the parser is parsing 'A::B::x', then, when it sees
1001 the second '::', it knows that the expression to the left of it has
1002 to be a type, so it uses qualified_type. But if it is parsing just
1003 'A::B', then it doesn't have any way of knowing which rule to use,
1004 so there's a reduce-reduce conflict; it picks qualified_name, since
1005 that occurs earlier in this file than qualified_type.
1007 There's no good way to fix this with the grammar as it stands; as
1008 far as I can tell, some of the problems arise from ambiguities that
1009 GDB introduces ('start' can be either an expression or a type), but
1010 some of it is inherent to the nature of C++ (you want to treat the
1011 input "(FOO)" fairly differently depending on whether FOO is an
1012 expression or a type, and if FOO is a complex expression, this can
1013 be hard to determine at the right time). Fortunately, it works
1014 pretty well in most cases. For example, if you do 'ptype A::B',
1015 where A::B is a nested type, then the parser will mistakenly
1016 misidentify it as an expression; but evaluate_subexp will get
1017 called with 'noside' set to EVAL_AVOID_SIDE_EFFECTS, and everything
1018 will work out anyways. But there are situations where the parser
1019 will get confused: the most common one that I've run into is when
1022 print *((A::B *) x)"
1024 where the parser doesn't realize that A::B has to be a type until
1025 it hits the first right paren, at which point it's too late. (The
1026 workaround is to type "print *(('A::B' *) x)" instead.) (And
1027 another solution is to fix our symbol-handling code so that the
1028 user never wants to type something like that in the first place,
1029 because we get all the types right without the user's help!)
1031 Perhaps we could fix this by making the lexer smarter. Some of
1032 this functionality used to be in the lexer, but in a way that
1033 worked even less well than the current solution: that attempt
1034 involved having the parser sometimes handle '::' and having the
1035 lexer sometimes handle it, and without a clear division of
1036 responsibility, it quickly degenerated into a big mess. Probably
1037 the eventual correct solution will give more of a role to the lexer
1038 (ideally via code that is shared between the lexer and
1039 decode_line_1), but I'm not holding my breath waiting for somebody
1040 to get around to cleaning this up... */
1042 qualified_type: typebase COLONCOLON name
1044 struct type *type = $1;
1045 struct type *new_type;
1046 char *ncopy = alloca ($3.length + 1);
1048 memcpy (ncopy, $3.ptr, $3.length);
1049 ncopy[$3.length] = '\0';
1051 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1052 && TYPE_CODE (type) != TYPE_CODE_UNION
1053 && TYPE_CODE (type) != TYPE_CODE_NAMESPACE)
1054 error ("`%s' is not defined as an aggregate type.",
1057 new_type = cp_lookup_nested_type (type, ncopy,
1058 expression_context_block);
1059 if (new_type == NULL)
1060 error ("No type \"%s\" within class or namespace \"%s\".",
1061 ncopy, TYPE_NAME (type));
1070 $$.stoken.ptr = "int";
1071 $$.stoken.length = 3;
1072 $$.type = parse_type->builtin_int;
1076 $$.stoken.ptr = "long";
1077 $$.stoken.length = 4;
1078 $$.type = parse_type->builtin_long;
1082 $$.stoken.ptr = "short";
1083 $$.stoken.length = 5;
1084 $$.type = parse_type->builtin_short;
1090 { $$ = (struct type **) malloc (sizeof (struct type *) * 2);
1091 $<ivec>$[0] = 1; /* Number of types in vector */
1094 | nonempty_typelist ',' type
1095 { int len = sizeof (struct type *) * (++($<ivec>1[0]) + 1);
1096 $$ = (struct type **) realloc ((char *) $1, len);
1097 $$[$<ivec>$[0]] = $3;
1102 | ptype const_or_volatile_or_space_identifier abs_decl const_or_volatile_or_space_identifier
1103 { $$ = follow_types ($1); }
1106 const_and_volatile: CONST_KEYWORD VOLATILE_KEYWORD
1107 | VOLATILE_KEYWORD CONST_KEYWORD
1110 const_or_volatile_noopt: const_and_volatile
1111 { push_type (tp_const);
1112 push_type (tp_volatile);
1115 { push_type (tp_const); }
1117 { push_type (tp_volatile); }
1120 name : NAME { $$ = $1.stoken; }
1121 | BLOCKNAME { $$ = $1.stoken; }
1122 | TYPENAME { $$ = $1.stoken; }
1123 | NAME_OR_INT { $$ = $1.stoken; }
1126 name_not_typename : NAME
1128 /* These would be useful if name_not_typename was useful, but it is just
1129 a fake for "variable", so these cause reduce/reduce conflicts because
1130 the parser can't tell whether NAME_OR_INT is a name_not_typename (=variable,
1131 =exp) or just an exp. If name_not_typename was ever used in an lvalue
1132 context where only a name could occur, this might be useful.
1139 /* Take care of parsing a number (anything that starts with a digit).
1140 Set yylval and return the token type; update lexptr.
1141 LEN is the number of characters in it. */
1143 /*** Needs some error checking for the float case ***/
1146 parse_number (char *p, int len, int parsed_float, YYSTYPE *putithere)
1148 /* FIXME: Shouldn't these be unsigned? We don't deal with negative values
1149 here, and we do kind of silly things like cast to unsigned. */
1156 int base = input_radix;
1159 /* Number of "L" suffixes encountered. */
1162 /* We have found a "L" or "U" suffix. */
1163 int found_suffix = 0;
1166 struct type *signed_type;
1167 struct type *unsigned_type;
1171 /* It's a float since it contains a point or an exponent. */
1173 int num; /* number of tokens scanned by scanf */
1176 /* If it ends at "df", "dd" or "dl", take it as type of decimal floating
1177 point. Return DECFLOAT. */
1179 if (len >= 2 && p[len - 2] == 'd' && p[len - 1] == 'f')
1182 putithere->typed_val_decfloat.type
1183 = parse_type->builtin_decfloat;
1184 decimal_from_string (putithere->typed_val_decfloat.val, 4,
1185 gdbarch_byte_order (parse_gdbarch), p);
1190 if (len >= 2 && p[len - 2] == 'd' && p[len - 1] == 'd')
1193 putithere->typed_val_decfloat.type
1194 = parse_type->builtin_decdouble;
1195 decimal_from_string (putithere->typed_val_decfloat.val, 8,
1196 gdbarch_byte_order (parse_gdbarch), p);
1201 if (len >= 2 && p[len - 2] == 'd' && p[len - 1] == 'l')
1204 putithere->typed_val_decfloat.type
1205 = parse_type->builtin_declong;
1206 decimal_from_string (putithere->typed_val_decfloat.val, 16,
1207 gdbarch_byte_order (parse_gdbarch), p);
1213 saved_char = p[len];
1214 p[len] = 0; /* null-terminate the token */
1215 num = sscanf (p, "%" DOUBLEST_SCAN_FORMAT "%s",
1216 &putithere->typed_val_float.dval, s);
1217 p[len] = saved_char; /* restore the input stream */
1220 putithere->typed_val_float.type =
1221 parse_type->builtin_double;
1225 /* See if it has any float suffix: 'f' for float, 'l' for long
1227 if (!strcasecmp (s, "f"))
1228 putithere->typed_val_float.type =
1229 parse_type->builtin_float;
1230 else if (!strcasecmp (s, "l"))
1231 putithere->typed_val_float.type =
1232 parse_type->builtin_long_double;
1244 /* Handle base-switching prefixes 0x, 0t, 0d, 0 */
1278 if (c >= 'A' && c <= 'Z')
1280 if (c != 'l' && c != 'u')
1282 if (c >= '0' && c <= '9')
1290 if (base > 10 && c >= 'a' && c <= 'f')
1294 n += i = c - 'a' + 10;
1307 return ERROR; /* Char not a digit */
1310 return ERROR; /* Invalid digit in this base */
1312 /* Portably test for overflow (only works for nonzero values, so make
1313 a second check for zero). FIXME: Can't we just make n and prevn
1314 unsigned and avoid this? */
1315 if (c != 'l' && c != 'u' && (prevn >= n) && n != 0)
1316 unsigned_p = 1; /* Try something unsigned */
1318 /* Portably test for unsigned overflow.
1319 FIXME: This check is wrong; for example it doesn't find overflow
1320 on 0x123456789 when LONGEST is 32 bits. */
1321 if (c != 'l' && c != 'u' && n != 0)
1323 if ((unsigned_p && (ULONGEST) prevn >= (ULONGEST) n))
1324 error ("Numeric constant too large.");
1329 /* An integer constant is an int, a long, or a long long. An L
1330 suffix forces it to be long; an LL suffix forces it to be long
1331 long. If not forced to a larger size, it gets the first type of
1332 the above that it fits in. To figure out whether it fits, we
1333 shift it right and see whether anything remains. Note that we
1334 can't shift sizeof (LONGEST) * HOST_CHAR_BIT bits or more in one
1335 operation, because many compilers will warn about such a shift
1336 (which always produces a zero result). Sometimes gdbarch_int_bit
1337 or gdbarch_long_bit will be that big, sometimes not. To deal with
1338 the case where it is we just always shift the value more than
1339 once, with fewer bits each time. */
1341 un = (ULONGEST)n >> 2;
1343 && (un >> (gdbarch_int_bit (parse_gdbarch) - 2)) == 0)
1345 high_bit = ((ULONGEST)1) << (gdbarch_int_bit (parse_gdbarch) - 1);
1347 /* A large decimal (not hex or octal) constant (between INT_MAX
1348 and UINT_MAX) is a long or unsigned long, according to ANSI,
1349 never an unsigned int, but this code treats it as unsigned
1350 int. This probably should be fixed. GCC gives a warning on
1353 unsigned_type = parse_type->builtin_unsigned_int;
1354 signed_type = parse_type->builtin_int;
1356 else if (long_p <= 1
1357 && (un >> (gdbarch_long_bit (parse_gdbarch) - 2)) == 0)
1359 high_bit = ((ULONGEST)1) << (gdbarch_long_bit (parse_gdbarch) - 1);
1360 unsigned_type = parse_type->builtin_unsigned_long;
1361 signed_type = parse_type->builtin_long;
1366 if (sizeof (ULONGEST) * HOST_CHAR_BIT
1367 < gdbarch_long_long_bit (parse_gdbarch))
1368 /* A long long does not fit in a LONGEST. */
1369 shift = (sizeof (ULONGEST) * HOST_CHAR_BIT - 1);
1371 shift = (gdbarch_long_long_bit (parse_gdbarch) - 1);
1372 high_bit = (ULONGEST) 1 << shift;
1373 unsigned_type = parse_type->builtin_unsigned_long_long;
1374 signed_type = parse_type->builtin_long_long;
1377 putithere->typed_val_int.val = n;
1379 /* If the high bit of the worked out type is set then this number
1380 has to be unsigned. */
1382 if (unsigned_p || (n & high_bit))
1384 putithere->typed_val_int.type = unsigned_type;
1388 putithere->typed_val_int.type = signed_type;
1394 /* Temporary obstack used for holding strings. */
1395 static struct obstack tempbuf;
1396 static int tempbuf_init;
1398 /* Parse a C escape sequence. The initial backslash of the sequence
1399 is at (*PTR)[-1]. *PTR will be updated to point to just after the
1400 last character of the sequence. If OUTPUT is not NULL, the
1401 translated form of the escape sequence will be written there. If
1402 OUTPUT is NULL, no output is written and the call will only affect
1403 *PTR. If an escape sequence is expressed in target bytes, then the
1404 entire sequence will simply be copied to OUTPUT. Return 1 if any
1405 character was emitted, 0 otherwise. */
1408 c_parse_escape (char **ptr, struct obstack *output)
1410 char *tokptr = *ptr;
1413 /* Some escape sequences undergo character set conversion. Those we
1417 /* Hex escapes do not undergo character set conversion, so keep
1418 the escape sequence for later. */
1421 obstack_grow_str (output, "\\x");
1423 if (!isxdigit (*tokptr))
1424 error (_("\\x escape without a following hex digit"));
1425 while (isxdigit (*tokptr))
1428 obstack_1grow (output, *tokptr);
1433 /* Octal escapes do not undergo character set conversion, so
1434 keep the escape sequence for later. */
1446 obstack_grow_str (output, "\\");
1448 i < 3 && isdigit (*tokptr) && *tokptr != '8' && *tokptr != '9';
1452 obstack_1grow (output, *tokptr);
1458 /* We handle UCNs later. We could handle them here, but that
1459 would mean a spurious error in the case where the UCN could
1460 be converted to the target charset but not the host
1466 int i, len = c == 'U' ? 8 : 4;
1469 obstack_1grow (output, '\\');
1470 obstack_1grow (output, *tokptr);
1473 if (!isxdigit (*tokptr))
1474 error (_("\\%c escape without a following hex digit"), c);
1475 for (i = 0; i < len && isxdigit (*tokptr); ++i)
1478 obstack_1grow (output, *tokptr);
1484 /* We must pass backslash through so that it does not
1485 cause quoting during the second expansion. */
1488 obstack_grow_str (output, "\\\\");
1492 /* Escapes which undergo conversion. */
1495 obstack_1grow (output, '\a');
1500 obstack_1grow (output, '\b');
1505 obstack_1grow (output, '\f');
1510 obstack_1grow (output, '\n');
1515 obstack_1grow (output, '\r');
1520 obstack_1grow (output, '\t');
1525 obstack_1grow (output, '\v');
1529 /* GCC extension. */
1532 obstack_1grow (output, HOST_ESCAPE_CHAR);
1536 /* Backslash-newline expands to nothing at all. */
1542 /* A few escapes just expand to the character itself. */
1546 /* GCC extensions. */
1551 /* Unrecognized escapes turn into the character itself. */
1554 obstack_1grow (output, *tokptr);
1562 /* Parse a string or character literal from TOKPTR. The string or
1563 character may be wide or unicode. *OUTPTR is set to just after the
1564 end of the literal in the input string. The resulting token is
1565 stored in VALUE. This returns a token value, either STRING or
1566 CHAR, depending on what was parsed. *HOST_CHARS is set to the
1567 number of host characters in the literal. */
1569 parse_string_or_char (char *tokptr, char **outptr, struct typed_stoken *value,
1573 enum c_string_type type;
1575 /* Build the gdb internal form of the input string in tempbuf. Note
1576 that the buffer is null byte terminated *only* for the
1577 convenience of debugging gdb itself and printing the buffer
1578 contents when the buffer contains no embedded nulls. Gdb does
1579 not depend upon the buffer being null byte terminated, it uses
1580 the length string instead. This allows gdb to handle C strings
1581 (as well as strings in other languages) with embedded null
1587 obstack_free (&tempbuf, NULL);
1588 obstack_init (&tempbuf);
1590 /* Record the string type. */
1593 type = C_WIDE_STRING;
1596 else if (*tokptr == 'u')
1601 else if (*tokptr == 'U')
1609 /* Skip the quote. */
1623 *host_chars += c_parse_escape (&tokptr, &tempbuf);
1625 else if (c == quote)
1629 obstack_1grow (&tempbuf, c);
1631 /* FIXME: this does the wrong thing with multi-byte host
1632 characters. We could use mbrlen here, but that would
1633 make "set host-charset" a bit less useful. */
1638 if (*tokptr != quote)
1641 error ("Unterminated string in expression.");
1643 error ("Unmatched single quote.");
1648 value->ptr = obstack_base (&tempbuf);
1649 value->length = obstack_object_size (&tempbuf);
1653 return quote == '"' ? STRING : CHAR;
1660 enum exp_opcode opcode;
1664 static const struct token tokentab3[] =
1666 {">>=", ASSIGN_MODIFY, BINOP_RSH, 0},
1667 {"<<=", ASSIGN_MODIFY, BINOP_LSH, 0}
1670 static const struct token tokentab2[] =
1672 {"+=", ASSIGN_MODIFY, BINOP_ADD, 0},
1673 {"-=", ASSIGN_MODIFY, BINOP_SUB, 0},
1674 {"*=", ASSIGN_MODIFY, BINOP_MUL, 0},
1675 {"/=", ASSIGN_MODIFY, BINOP_DIV, 0},
1676 {"%=", ASSIGN_MODIFY, BINOP_REM, 0},
1677 {"|=", ASSIGN_MODIFY, BINOP_BITWISE_IOR, 0},
1678 {"&=", ASSIGN_MODIFY, BINOP_BITWISE_AND, 0},
1679 {"^=", ASSIGN_MODIFY, BINOP_BITWISE_XOR, 0},
1680 {"++", INCREMENT, BINOP_END, 0},
1681 {"--", DECREMENT, BINOP_END, 0},
1682 {"->", ARROW, BINOP_END, 0},
1683 {"&&", ANDAND, BINOP_END, 0},
1684 {"||", OROR, BINOP_END, 0},
1685 {"::", COLONCOLON, BINOP_END, 0},
1686 {"<<", LSH, BINOP_END, 0},
1687 {">>", RSH, BINOP_END, 0},
1688 {"==", EQUAL, BINOP_END, 0},
1689 {"!=", NOTEQUAL, BINOP_END, 0},
1690 {"<=", LEQ, BINOP_END, 0},
1691 {">=", GEQ, BINOP_END, 0}
1694 /* Identifier-like tokens. */
1695 static const struct token ident_tokens[] =
1697 {"unsigned", UNSIGNED, OP_NULL, 0},
1698 {"template", TEMPLATE, OP_NULL, 1},
1699 {"volatile", VOLATILE_KEYWORD, OP_NULL, 0},
1700 {"struct", STRUCT, OP_NULL, 0},
1701 {"signed", SIGNED_KEYWORD, OP_NULL, 0},
1702 {"sizeof", SIZEOF, OP_NULL, 0},
1703 {"double", DOUBLE_KEYWORD, OP_NULL, 0},
1704 {"false", FALSEKEYWORD, OP_NULL, 1},
1705 {"class", CLASS, OP_NULL, 1},
1706 {"union", UNION, OP_NULL, 0},
1707 {"short", SHORT, OP_NULL, 0},
1708 {"const", CONST_KEYWORD, OP_NULL, 0},
1709 {"enum", ENUM, OP_NULL, 0},
1710 {"long", LONG, OP_NULL, 0},
1711 {"true", TRUEKEYWORD, OP_NULL, 1},
1712 {"int", INT_KEYWORD, OP_NULL, 0},
1714 {"and", ANDAND, BINOP_END, 1},
1715 {"and_eq", ASSIGN_MODIFY, BINOP_BITWISE_AND, 1},
1716 {"bitand", '&', OP_NULL, 1},
1717 {"bitor", '|', OP_NULL, 1},
1718 {"compl", '~', OP_NULL, 1},
1719 {"not", '!', OP_NULL, 1},
1720 {"not_eq", NOTEQUAL, BINOP_END, 1},
1721 {"or", OROR, BINOP_END, 1},
1722 {"or_eq", ASSIGN_MODIFY, BINOP_BITWISE_IOR, 1},
1723 {"xor", '^', OP_NULL, 1},
1724 {"xor_eq", ASSIGN_MODIFY, BINOP_BITWISE_XOR, 1}
1727 /* When we find that lexptr (the global var defined in parse.c) is
1728 pointing at a macro invocation, we expand the invocation, and call
1729 scan_macro_expansion to save the old lexptr here and point lexptr
1730 into the expanded text. When we reach the end of that, we call
1731 end_macro_expansion to pop back to the value we saved here. The
1732 macro expansion code promises to return only fully-expanded text,
1733 so we don't need to "push" more than one level.
1735 This is disgusting, of course. It would be cleaner to do all macro
1736 expansion beforehand, and then hand that to lexptr. But we don't
1737 really know where the expression ends. Remember, in a command like
1739 (gdb) break *ADDRESS if CONDITION
1741 we evaluate ADDRESS in the scope of the current frame, but we
1742 evaluate CONDITION in the scope of the breakpoint's location. So
1743 it's simply wrong to try to macro-expand the whole thing at once. */
1744 static char *macro_original_text;
1746 /* We save all intermediate macro expansions on this obstack for the
1747 duration of a single parse. The expansion text may sometimes have
1748 to live past the end of the expansion, due to yacc lookahead.
1749 Rather than try to be clever about saving the data for a single
1750 token, we simply keep it all and delete it after parsing has
1752 static struct obstack expansion_obstack;
1755 scan_macro_expansion (char *expansion)
1759 /* We'd better not be trying to push the stack twice. */
1760 gdb_assert (! macro_original_text);
1762 /* Copy to the obstack, and then free the intermediate
1764 copy = obstack_copy0 (&expansion_obstack, expansion, strlen (expansion));
1767 /* Save the old lexptr value, so we can return to it when we're done
1768 parsing the expanded text. */
1769 macro_original_text = lexptr;
1775 scanning_macro_expansion (void)
1777 return macro_original_text != 0;
1782 finished_macro_expansion (void)
1784 /* There'd better be something to pop back to. */
1785 gdb_assert (macro_original_text);
1787 /* Pop back to the original text. */
1788 lexptr = macro_original_text;
1789 macro_original_text = 0;
1794 scan_macro_cleanup (void *dummy)
1796 if (macro_original_text)
1797 finished_macro_expansion ();
1799 obstack_free (&expansion_obstack, NULL);
1803 /* The scope used for macro expansion. */
1804 static struct macro_scope *expression_macro_scope;
1806 /* This is set if a NAME token appeared at the very end of the input
1807 string, with no whitespace separating the name from the EOF. This
1808 is used only when parsing to do field name completion. */
1809 static int saw_name_at_eof;
1811 /* This is set if the previously-returned token was a structure
1812 operator -- either '.' or ARROW. This is used only when parsing to
1813 do field name completion. */
1814 static int last_was_structop;
1816 /* Read one token, getting characters through lexptr. */
1825 int saw_structop = last_was_structop;
1828 last_was_structop = 0;
1832 /* Check if this is a macro invocation that we need to expand. */
1833 if (! scanning_macro_expansion ())
1835 char *expanded = macro_expand_next (&lexptr,
1836 standard_macro_lookup,
1837 expression_macro_scope);
1840 scan_macro_expansion (expanded);
1843 prev_lexptr = lexptr;
1846 /* See if it is a special token of length 3. */
1847 for (i = 0; i < sizeof tokentab3 / sizeof tokentab3[0]; i++)
1848 if (strncmp (tokstart, tokentab3[i].operator, 3) == 0)
1851 yylval.opcode = tokentab3[i].opcode;
1852 return tokentab3[i].token;
1855 /* See if it is a special token of length 2. */
1856 for (i = 0; i < sizeof tokentab2 / sizeof tokentab2[0]; i++)
1857 if (strncmp (tokstart, tokentab2[i].operator, 2) == 0)
1860 yylval.opcode = tokentab2[i].opcode;
1861 if (in_parse_field && tokentab2[i].token == ARROW)
1862 last_was_structop = 1;
1863 return tokentab2[i].token;
1866 switch (c = *tokstart)
1869 /* If we were just scanning the result of a macro expansion,
1870 then we need to resume scanning the original text.
1871 If we're parsing for field name completion, and the previous
1872 token allows such completion, return a COMPLETE token.
1873 Otherwise, we were already scanning the original text, and
1874 we're really done. */
1875 if (scanning_macro_expansion ())
1877 finished_macro_expansion ();
1880 else if (saw_name_at_eof)
1882 saw_name_at_eof = 0;
1885 else if (saw_structop)
1904 if (paren_depth == 0)
1911 if (comma_terminates
1913 && ! scanning_macro_expansion ())
1919 /* Might be a floating point number. */
1920 if (lexptr[1] < '0' || lexptr[1] > '9')
1923 last_was_structop = 1;
1924 goto symbol; /* Nope, must be a symbol. */
1926 /* FALL THRU into number case. */
1939 /* It's a number. */
1940 int got_dot = 0, got_e = 0, toktype;
1942 int hex = input_radix > 10;
1944 if (c == '0' && (p[1] == 'x' || p[1] == 'X'))
1949 else if (c == '0' && (p[1]=='t' || p[1]=='T' || p[1]=='d' || p[1]=='D'))
1957 /* This test includes !hex because 'e' is a valid hex digit
1958 and thus does not indicate a floating point number when
1959 the radix is hex. */
1960 if (!hex && !got_e && (*p == 'e' || *p == 'E'))
1961 got_dot = got_e = 1;
1962 /* This test does not include !hex, because a '.' always indicates
1963 a decimal floating point number regardless of the radix. */
1964 else if (!got_dot && *p == '.')
1966 else if (got_e && (p[-1] == 'e' || p[-1] == 'E')
1967 && (*p == '-' || *p == '+'))
1968 /* This is the sign of the exponent, not the end of the
1971 /* We will take any letters or digits. parse_number will
1972 complain if past the radix, or if L or U are not final. */
1973 else if ((*p < '0' || *p > '9')
1974 && ((*p < 'a' || *p > 'z')
1975 && (*p < 'A' || *p > 'Z')))
1978 toktype = parse_number (tokstart, p - tokstart, got_dot|got_e, &yylval);
1979 if (toktype == ERROR)
1981 char *err_copy = (char *) alloca (p - tokstart + 1);
1983 memcpy (err_copy, tokstart, p - tokstart);
1984 err_copy[p - tokstart] = 0;
1985 error ("Invalid number \"%s\".", err_copy);
2016 if (tokstart[1] != '"' && tokstart[1] != '\'')
2023 int result = parse_string_or_char (tokstart, &lexptr, &yylval.tsval,
2028 error ("Empty character constant.");
2029 else if (host_len > 2 && c == '\'')
2032 namelen = lexptr - tokstart - 1;
2035 else if (host_len > 1)
2036 error ("Invalid character constant.");
2042 if (!(c == '_' || c == '$'
2043 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')))
2044 /* We must have come across a bad character (e.g. ';'). */
2045 error ("Invalid character '%c' in expression.", c);
2047 /* It's a name. See how long it is. */
2049 for (c = tokstart[namelen];
2050 (c == '_' || c == '$' || (c >= '0' && c <= '9')
2051 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z') || c == '<');)
2053 /* Template parameter lists are part of the name.
2054 FIXME: This mishandles `print $a<4&&$a>3'. */
2058 /* Scan ahead to get rest of the template specification. Note
2059 that we look ahead only when the '<' adjoins non-whitespace
2060 characters; for comparison expressions, e.g. "a < b > c",
2061 there must be spaces before the '<', etc. */
2063 char * p = find_template_name_end (tokstart + namelen);
2065 namelen = p - tokstart;
2068 c = tokstart[++namelen];
2071 /* The token "if" terminates the expression and is NOT removed from
2072 the input stream. It doesn't count if it appears in the
2073 expansion of a macro. */
2075 && tokstart[0] == 'i'
2076 && tokstart[1] == 'f'
2077 && ! scanning_macro_expansion ())
2086 yylval.sval.ptr = tokstart;
2087 yylval.sval.length = namelen;
2089 /* Catch specific keywords. */
2090 copy = copy_name (yylval.sval);
2091 for (i = 0; i < sizeof ident_tokens / sizeof ident_tokens[0]; i++)
2092 if (strcmp (copy, ident_tokens[i].operator) == 0)
2094 if (ident_tokens[i].cxx_only
2095 && parse_language->la_language != language_cplus)
2098 /* It is ok to always set this, even though we don't always
2099 strictly need to. */
2100 yylval.opcode = ident_tokens[i].opcode;
2101 return ident_tokens[i].token;
2104 if (*tokstart == '$')
2106 write_dollar_variable (yylval.sval);
2110 /* Use token-type BLOCKNAME for symbols that happen to be defined as
2111 functions or symtabs. If this is not so, then ...
2112 Use token-type TYPENAME for symbols that happen to be defined
2113 currently as names of types; NAME for other symbols.
2114 The caller is not constrained to care about the distinction. */
2117 int is_a_field_of_this = 0;
2120 sym = lookup_symbol (copy, expression_context_block,
2122 parse_language->la_language == language_cplus
2123 ? &is_a_field_of_this : (int *) NULL);
2124 /* Call lookup_symtab, not lookup_partial_symtab, in case there are
2125 no psymtabs (coff, xcoff, or some future change to blow away the
2126 psymtabs once once symbols are read). */
2127 if (sym && SYMBOL_CLASS (sym) == LOC_BLOCK)
2129 yylval.ssym.sym = sym;
2130 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
2134 { /* See if it's a file name. */
2135 struct symtab *symtab;
2137 symtab = lookup_symtab (copy);
2141 yylval.bval = BLOCKVECTOR_BLOCK (BLOCKVECTOR (symtab), STATIC_BLOCK);
2146 if (sym && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
2148 /* NOTE: carlton/2003-09-25: There used to be code here to
2149 handle nested types. It didn't work very well. See the
2150 comment before qualified_type for more info. */
2151 yylval.tsym.type = SYMBOL_TYPE (sym);
2155 = language_lookup_primitive_type_by_name (parse_language,
2156 parse_gdbarch, copy);
2157 if (yylval.tsym.type != NULL)
2160 /* Input names that aren't symbols but ARE valid hex numbers,
2161 when the input radix permits them, can be names or numbers
2162 depending on the parse. Note we support radixes > 16 here. */
2164 ((tokstart[0] >= 'a' && tokstart[0] < 'a' + input_radix - 10) ||
2165 (tokstart[0] >= 'A' && tokstart[0] < 'A' + input_radix - 10)))
2167 YYSTYPE newlval; /* Its value is ignored. */
2168 hextype = parse_number (tokstart, namelen, 0, &newlval);
2171 yylval.ssym.sym = sym;
2172 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
2177 /* Any other kind of symbol */
2178 yylval.ssym.sym = sym;
2179 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
2180 if (in_parse_field && *lexptr == '\0')
2181 saw_name_at_eof = 1;
2190 struct cleanup *back_to = make_cleanup (free_current_contents,
2191 &expression_macro_scope);
2193 /* Set up the scope for macro expansion. */
2194 expression_macro_scope = NULL;
2196 if (expression_context_block)
2197 expression_macro_scope
2198 = sal_macro_scope (find_pc_line (expression_context_pc, 0));
2200 expression_macro_scope = default_macro_scope ();
2201 if (! expression_macro_scope)
2202 expression_macro_scope = user_macro_scope ();
2204 /* Initialize macro expansion code. */
2205 obstack_init (&expansion_obstack);
2206 gdb_assert (! macro_original_text);
2207 make_cleanup (scan_macro_cleanup, 0);
2209 /* Initialize some state used by the lexer. */
2210 last_was_structop = 0;
2211 saw_name_at_eof = 0;
2213 result = yyparse ();
2214 do_cleanups (back_to);
2223 lexptr = prev_lexptr;
2225 error ("A %s in expression, near `%s'.", (msg ? msg : "error"), lexptr);