3318cb4377d55a73e7c380200e226f320b226737
[external/binutils.git] / gdb / block.c
1 /* Block-related functions for the GNU debugger, GDB.
2
3    Copyright (C) 2003, 2007-2012 Free Software Foundation, Inc.
4
5    This file is part of GDB.
6
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19
20 #include "defs.h"
21 #include "block.h"
22 #include "symtab.h"
23 #include "symfile.h"
24 #include "gdb_obstack.h"
25 #include "cp-support.h"
26 #include "addrmap.h"
27 #include "gdbtypes.h"
28 #include "exceptions.h"
29
30 /* This is used by struct block to store namespace-related info for
31    C++ files, namely using declarations and the current namespace in
32    scope.  */
33
34 struct block_namespace_info
35 {
36   const char *scope;
37   struct using_direct *using;
38 };
39
40 static void block_initialize_namespace (struct block *block,
41                                         struct obstack *obstack);
42
43 /* Return Nonzero if block a is lexically nested within block b,
44    or if a and b have the same pc range.
45    Return zero otherwise.  */
46
47 int
48 contained_in (const struct block *a, const struct block *b)
49 {
50   if (!a || !b)
51     return 0;
52
53   do
54     {
55       if (a == b)
56         return 1;
57       /* If A is a function block, then A cannot be contained in B,
58          except if A was inlined.  */
59       if (BLOCK_FUNCTION (a) != NULL && !block_inlined_p (a))
60         return 0;
61       a = BLOCK_SUPERBLOCK (a);
62     }
63   while (a != NULL);
64
65   return 0;
66 }
67
68
69 /* Return the symbol for the function which contains a specified
70    lexical block, described by a struct block BL.  The return value
71    will not be an inlined function; the containing function will be
72    returned instead.  */
73
74 struct symbol *
75 block_linkage_function (const struct block *bl)
76 {
77   while ((BLOCK_FUNCTION (bl) == NULL || block_inlined_p (bl))
78          && BLOCK_SUPERBLOCK (bl) != NULL)
79     bl = BLOCK_SUPERBLOCK (bl);
80
81   return BLOCK_FUNCTION (bl);
82 }
83
84 /* Return the symbol for the function which contains a specified
85    block, described by a struct block BL.  The return value will be
86    the closest enclosing function, which might be an inline
87    function.  */
88
89 struct symbol *
90 block_containing_function (const struct block *bl)
91 {
92   while (BLOCK_FUNCTION (bl) == NULL && BLOCK_SUPERBLOCK (bl) != NULL)
93     bl = BLOCK_SUPERBLOCK (bl);
94
95   return BLOCK_FUNCTION (bl);
96 }
97
98 /* Return one if BL represents an inlined function.  */
99
100 int
101 block_inlined_p (const struct block *bl)
102 {
103   return BLOCK_FUNCTION (bl) != NULL && SYMBOL_INLINED (BLOCK_FUNCTION (bl));
104 }
105
106 /* Return the blockvector immediately containing the innermost lexical
107    block containing the specified pc value and section, or 0 if there
108    is none.  PBLOCK is a pointer to the block.  If PBLOCK is NULL, we
109    don't pass this information back to the caller.  */
110
111 struct blockvector *
112 blockvector_for_pc_sect (CORE_ADDR pc, struct obj_section *section,
113                          struct block **pblock, struct symtab *symtab)
114 {
115   struct block *b;
116   int bot, top, half;
117   struct blockvector *bl;
118
119   if (symtab == 0)              /* if no symtab specified by caller */
120     {
121       /* First search all symtabs for one whose file contains our pc */
122       symtab = find_pc_sect_symtab (pc, section);
123       if (symtab == 0)
124         return 0;
125     }
126
127   bl = BLOCKVECTOR (symtab);
128
129   /* Then search that symtab for the smallest block that wins.  */
130
131   /* If we have an addrmap mapping code addresses to blocks, then use
132      that.  */
133   if (BLOCKVECTOR_MAP (bl))
134     {
135       b = addrmap_find (BLOCKVECTOR_MAP (bl), pc);
136       if (b)
137         {
138           if (pblock)
139             *pblock = b;
140           return bl;
141         }
142       else
143         return 0;
144     }
145
146
147   /* Otherwise, use binary search to find the last block that starts
148      before PC.  */
149   bot = 0;
150   top = BLOCKVECTOR_NBLOCKS (bl);
151
152   while (top - bot > 1)
153     {
154       half = (top - bot + 1) >> 1;
155       b = BLOCKVECTOR_BLOCK (bl, bot + half);
156       if (BLOCK_START (b) <= pc)
157         bot += half;
158       else
159         top = bot + half;
160     }
161
162   /* Now search backward for a block that ends after PC.  */
163
164   while (bot >= 0)
165     {
166       b = BLOCKVECTOR_BLOCK (bl, bot);
167       if (BLOCK_END (b) > pc)
168         {
169           if (pblock)
170             *pblock = b;
171           return bl;
172         }
173       bot--;
174     }
175   return 0;
176 }
177
178 /* Return call_site for specified PC in GDBARCH.  PC must match exactly, it
179    must be the next instruction after call (or after tail call jump).  Throw
180    NO_ENTRY_VALUE_ERROR otherwise.  This function never returns NULL.  */
181
182 struct call_site *
183 call_site_for_pc (struct gdbarch *gdbarch, CORE_ADDR pc)
184 {
185   struct symtab *symtab;
186   void **slot = NULL;
187
188   /* -1 as tail call PC can be already after the compilation unit range.  */
189   symtab = find_pc_symtab (pc - 1);
190
191   if (symtab != NULL && symtab->call_site_htab != NULL)
192     slot = htab_find_slot (symtab->call_site_htab, &pc, NO_INSERT);
193
194   if (slot == NULL)
195     {
196       struct minimal_symbol *msym = lookup_minimal_symbol_by_pc (pc);
197
198       /* DW_TAG_gnu_call_site will be missing just if GCC could not determine
199          the call target.  */
200       throw_error (NO_ENTRY_VALUE_ERROR,
201                    _("DW_OP_GNU_entry_value resolving cannot find "
202                      "DW_TAG_GNU_call_site %s in %s"),
203                    paddress (gdbarch, pc),
204                    msym == NULL ? "???" : SYMBOL_PRINT_NAME (msym));
205     }
206
207   return *slot;
208 }
209
210 /* Return the blockvector immediately containing the innermost lexical block
211    containing the specified pc value, or 0 if there is none.
212    Backward compatibility, no section.  */
213
214 struct blockvector *
215 blockvector_for_pc (CORE_ADDR pc, struct block **pblock)
216 {
217   return blockvector_for_pc_sect (pc, find_pc_mapped_section (pc),
218                                   pblock, NULL);
219 }
220
221 /* Return the innermost lexical block containing the specified pc value
222    in the specified section, or 0 if there is none.  */
223
224 struct block *
225 block_for_pc_sect (CORE_ADDR pc, struct obj_section *section)
226 {
227   struct blockvector *bl;
228   struct block *b;
229
230   bl = blockvector_for_pc_sect (pc, section, &b, NULL);
231   if (bl)
232     return b;
233   return 0;
234 }
235
236 /* Return the innermost lexical block containing the specified pc value,
237    or 0 if there is none.  Backward compatibility, no section.  */
238
239 struct block *
240 block_for_pc (CORE_ADDR pc)
241 {
242   return block_for_pc_sect (pc, find_pc_mapped_section (pc));
243 }
244
245 /* Now come some functions designed to deal with C++ namespace issues.
246    The accessors are safe to use even in the non-C++ case.  */
247
248 /* This returns the namespace that BLOCK is enclosed in, or "" if it
249    isn't enclosed in a namespace at all.  This travels the chain of
250    superblocks looking for a scope, if necessary.  */
251
252 const char *
253 block_scope (const struct block *block)
254 {
255   for (; block != NULL; block = BLOCK_SUPERBLOCK (block))
256     {
257       if (BLOCK_NAMESPACE (block) != NULL
258           && BLOCK_NAMESPACE (block)->scope != NULL)
259         return BLOCK_NAMESPACE (block)->scope;
260     }
261
262   return "";
263 }
264
265 /* Set BLOCK's scope member to SCOPE; if needed, allocate memory via
266    OBSTACK.  (It won't make a copy of SCOPE, however, so that already
267    has to be allocated correctly.)  */
268
269 void
270 block_set_scope (struct block *block, const char *scope,
271                  struct obstack *obstack)
272 {
273   block_initialize_namespace (block, obstack);
274
275   BLOCK_NAMESPACE (block)->scope = scope;
276 }
277
278 /* This returns the using directives list associated with BLOCK, if
279    any.  */
280
281 struct using_direct *
282 block_using (const struct block *block)
283 {
284   if (block == NULL || BLOCK_NAMESPACE (block) == NULL)
285     return NULL;
286   else
287     return BLOCK_NAMESPACE (block)->using;
288 }
289
290 /* Set BLOCK's using member to USING; if needed, allocate memory via
291    OBSTACK.  (It won't make a copy of USING, however, so that already
292    has to be allocated correctly.)  */
293
294 void
295 block_set_using (struct block *block,
296                  struct using_direct *using,
297                  struct obstack *obstack)
298 {
299   block_initialize_namespace (block, obstack);
300
301   BLOCK_NAMESPACE (block)->using = using;
302 }
303
304 /* If BLOCK_NAMESPACE (block) is NULL, allocate it via OBSTACK and
305    ititialize its members to zero.  */
306
307 static void
308 block_initialize_namespace (struct block *block, struct obstack *obstack)
309 {
310   if (BLOCK_NAMESPACE (block) == NULL)
311     {
312       BLOCK_NAMESPACE (block)
313         = obstack_alloc (obstack, sizeof (struct block_namespace_info));
314       BLOCK_NAMESPACE (block)->scope = NULL;
315       BLOCK_NAMESPACE (block)->using = NULL;
316     }
317 }
318
319 /* Return the static block associated to BLOCK.  Return NULL if block
320    is NULL or if block is a global block.  */
321
322 const struct block *
323 block_static_block (const struct block *block)
324 {
325   if (block == NULL || BLOCK_SUPERBLOCK (block) == NULL)
326     return NULL;
327
328   while (BLOCK_SUPERBLOCK (BLOCK_SUPERBLOCK (block)) != NULL)
329     block = BLOCK_SUPERBLOCK (block);
330
331   return block;
332 }
333
334 /* Return the static block associated to BLOCK.  Return NULL if block
335    is NULL.  */
336
337 const struct block *
338 block_global_block (const struct block *block)
339 {
340   if (block == NULL)
341     return NULL;
342
343   while (BLOCK_SUPERBLOCK (block) != NULL)
344     block = BLOCK_SUPERBLOCK (block);
345
346   return block;
347 }
348
349 /* Allocate a block on OBSTACK, and initialize its elements to
350    zero/NULL.  This is useful for creating "dummy" blocks that don't
351    correspond to actual source files.
352
353    Warning: it sets the block's BLOCK_DICT to NULL, which isn't a
354    valid value.  If you really don't want the block to have a
355    dictionary, then you should subsequently set its BLOCK_DICT to
356    dict_create_linear (obstack, NULL).  */
357
358 struct block *
359 allocate_block (struct obstack *obstack)
360 {
361   struct block *bl = obstack_alloc (obstack, sizeof (struct block));
362
363   BLOCK_START (bl) = 0;
364   BLOCK_END (bl) = 0;
365   BLOCK_FUNCTION (bl) = NULL;
366   BLOCK_SUPERBLOCK (bl) = NULL;
367   BLOCK_DICT (bl) = NULL;
368   BLOCK_NAMESPACE (bl) = NULL;
369
370   return bl;
371 }
372
373 \f
374
375 /* See block.h.  */
376
377 struct symbol *
378 block_iterator_first (const struct block *block,
379                       struct block_iterator *iterator)
380 {
381   return dict_iterator_first (block->dict, &iterator->dict_iter);
382 }
383
384 /* See block.h.  */
385
386 struct symbol *
387 block_iterator_next (struct block_iterator *iterator)
388 {
389   return dict_iterator_next (&iterator->dict_iter);
390 }
391
392 /* See block.h.  */
393
394 struct symbol *
395 block_iter_name_first (const struct block *block,
396                        const char *name,
397                        struct block_iterator *iterator)
398 {
399   return dict_iter_name_first (block->dict, name, &iterator->dict_iter);
400 }
401
402 /* See block.h.  */
403
404 struct symbol *
405 block_iter_name_next (const char *name, struct block_iterator *iterator)
406 {
407   return dict_iter_name_next (name, &iterator->dict_iter);
408 }
409
410 /* See block.h.  */
411
412 struct symbol *
413 block_iter_match_first (const struct block *block,
414                         const char *name,
415                         symbol_compare_ftype *compare,
416                         struct block_iterator *iterator)
417 {
418   return dict_iter_match_first (block->dict, name, compare,
419                                 &iterator->dict_iter);
420 }
421
422 /* See block.h.  */
423
424 struct symbol *
425 block_iter_match_next (const char *name,
426                        symbol_compare_ftype *compare,
427                        struct block_iterator *iterator)
428 {
429   return dict_iter_match_next (name, compare, &iterator->dict_iter);
430 }