1 /* GDB-specific functions for operating on agent expressions.
3 Copyright (C) 1998-2013 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26 #include "expression.h"
33 #include "gdb_string.h"
36 #include "user-regs.h"
38 #include "dictionary.h"
39 #include "breakpoint.h"
40 #include "tracepoint.h"
41 #include "cp-support.h"
42 #include "arch-utils.h"
43 #include "cli/cli-utils.h"
51 /* To make sense of this file, you should read doc/agentexpr.texi.
52 Then look at the types and enums in ax-gdb.h. For the code itself,
53 look at gen_expr, towards the bottom; that's the main function that
54 looks at the GDB expressions and calls everything else to generate
57 I'm beginning to wonder whether it wouldn't be nicer to internally
58 generate trees, with types, and then spit out the bytecode in
59 linear form afterwards; we could generate fewer `swap', `ext', and
60 `zero_ext' bytecodes that way; it would make good constant folding
61 easier, too. But at the moment, I think we should be willing to
62 pay for the simplicity of this code with less-than-optimal bytecode
65 Remember, "GBD" stands for "Great Britain, Dammit!" So be careful. */
69 /* Prototypes for local functions. */
71 /* There's a standard order to the arguments of these functions:
72 union exp_element ** --- pointer into expression
73 struct agent_expr * --- agent expression buffer to generate code into
74 struct axs_value * --- describes value left on top of stack */
76 static struct value *const_var_ref (struct symbol *var);
77 static struct value *const_expr (union exp_element **pc);
78 static struct value *maybe_const_expr (union exp_element **pc);
80 static void gen_traced_pop (struct gdbarch *, struct agent_expr *,
83 static void gen_sign_extend (struct agent_expr *, struct type *);
84 static void gen_extend (struct agent_expr *, struct type *);
85 static void gen_fetch (struct agent_expr *, struct type *);
86 static void gen_left_shift (struct agent_expr *, int);
89 static void gen_frame_args_address (struct gdbarch *, struct agent_expr *);
90 static void gen_frame_locals_address (struct gdbarch *, struct agent_expr *);
91 static void gen_offset (struct agent_expr *ax, int offset);
92 static void gen_sym_offset (struct agent_expr *, struct symbol *);
93 static void gen_var_ref (struct gdbarch *, struct agent_expr *ax,
94 struct axs_value *value, struct symbol *var);
97 static void gen_int_literal (struct agent_expr *ax,
98 struct axs_value *value,
99 LONGEST k, struct type *type);
101 static void gen_usual_unary (struct expression *exp, struct agent_expr *ax,
102 struct axs_value *value);
103 static int type_wider_than (struct type *type1, struct type *type2);
104 static struct type *max_type (struct type *type1, struct type *type2);
105 static void gen_conversion (struct agent_expr *ax,
106 struct type *from, struct type *to);
107 static int is_nontrivial_conversion (struct type *from, struct type *to);
108 static void gen_usual_arithmetic (struct expression *exp,
109 struct agent_expr *ax,
110 struct axs_value *value1,
111 struct axs_value *value2);
112 static void gen_integral_promotions (struct expression *exp,
113 struct agent_expr *ax,
114 struct axs_value *value);
115 static void gen_cast (struct agent_expr *ax,
116 struct axs_value *value, struct type *type);
117 static void gen_scale (struct agent_expr *ax,
118 enum agent_op op, struct type *type);
119 static void gen_ptradd (struct agent_expr *ax, struct axs_value *value,
120 struct axs_value *value1, struct axs_value *value2);
121 static void gen_ptrsub (struct agent_expr *ax, struct axs_value *value,
122 struct axs_value *value1, struct axs_value *value2);
123 static void gen_ptrdiff (struct agent_expr *ax, struct axs_value *value,
124 struct axs_value *value1, struct axs_value *value2,
125 struct type *result_type);
126 static void gen_binop (struct agent_expr *ax,
127 struct axs_value *value,
128 struct axs_value *value1,
129 struct axs_value *value2,
131 enum agent_op op_unsigned, int may_carry, char *name);
132 static void gen_logical_not (struct agent_expr *ax, struct axs_value *value,
133 struct type *result_type);
134 static void gen_complement (struct agent_expr *ax, struct axs_value *value);
135 static void gen_deref (struct agent_expr *, struct axs_value *);
136 static void gen_address_of (struct agent_expr *, struct axs_value *);
137 static void gen_bitfield_ref (struct expression *exp, struct agent_expr *ax,
138 struct axs_value *value,
139 struct type *type, int start, int end);
140 static void gen_primitive_field (struct expression *exp,
141 struct agent_expr *ax,
142 struct axs_value *value,
143 int offset, int fieldno, struct type *type);
144 static int gen_struct_ref_recursive (struct expression *exp,
145 struct agent_expr *ax,
146 struct axs_value *value,
147 char *field, int offset,
149 static void gen_struct_ref (struct expression *exp, struct agent_expr *ax,
150 struct axs_value *value,
152 char *operator_name, char *operand_name);
153 static void gen_static_field (struct gdbarch *gdbarch,
154 struct agent_expr *ax, struct axs_value *value,
155 struct type *type, int fieldno);
156 static void gen_repeat (struct expression *exp, union exp_element **pc,
157 struct agent_expr *ax, struct axs_value *value);
158 static void gen_sizeof (struct expression *exp, union exp_element **pc,
159 struct agent_expr *ax, struct axs_value *value,
160 struct type *size_type);
161 static void gen_expr_binop_rest (struct expression *exp,
162 enum exp_opcode op, union exp_element **pc,
163 struct agent_expr *ax,
164 struct axs_value *value,
165 struct axs_value *value1,
166 struct axs_value *value2);
168 static void agent_command (char *exp, int from_tty);
171 /* Detecting constant expressions. */
173 /* If the variable reference at *PC is a constant, return its value.
174 Otherwise, return zero.
176 Hey, Wally! How can a variable reference be a constant?
178 Well, Beav, this function really handles the OP_VAR_VALUE operator,
179 not specifically variable references. GDB uses OP_VAR_VALUE to
180 refer to any kind of symbolic reference: function names, enum
181 elements, and goto labels are all handled through the OP_VAR_VALUE
182 operator, even though they're constants. It makes sense given the
185 Gee, Wally, don'cha wonder sometimes if data representations that
186 subvert commonly accepted definitions of terms in favor of heavily
187 context-specific interpretations are really just a tool of the
188 programming hegemony to preserve their power and exclude the
191 static struct value *
192 const_var_ref (struct symbol *var)
194 struct type *type = SYMBOL_TYPE (var);
196 switch (SYMBOL_CLASS (var))
199 return value_from_longest (type, (LONGEST) SYMBOL_VALUE (var));
202 return value_from_pointer (type, (CORE_ADDR) SYMBOL_VALUE_ADDRESS (var));
210 /* If the expression starting at *PC has a constant value, return it.
211 Otherwise, return zero. If we return a value, then *PC will be
212 advanced to the end of it. If we return zero, *PC could be
214 static struct value *
215 const_expr (union exp_element **pc)
217 enum exp_opcode op = (*pc)->opcode;
224 struct type *type = (*pc)[1].type;
225 LONGEST k = (*pc)[2].longconst;
228 return value_from_longest (type, k);
233 struct value *v = const_var_ref ((*pc)[2].symbol);
239 /* We could add more operators in here. */
243 v1 = const_expr (pc);
245 return value_neg (v1);
255 /* Like const_expr, but guarantee also that *PC is undisturbed if the
256 expression is not constant. */
257 static struct value *
258 maybe_const_expr (union exp_element **pc)
260 union exp_element *tentative_pc = *pc;
261 struct value *v = const_expr (&tentative_pc);
263 /* If we got a value, then update the real PC. */
271 /* Generating bytecode from GDB expressions: general assumptions */
273 /* Here are a few general assumptions made throughout the code; if you
274 want to make a change that contradicts one of these, then you'd
275 better scan things pretty thoroughly.
277 - We assume that all values occupy one stack element. For example,
278 sometimes we'll swap to get at the left argument to a binary
279 operator. If we decide that void values should occupy no stack
280 elements, or that synthetic arrays (whose size is determined at
281 run time, created by the `@' operator) should occupy two stack
282 elements (address and length), then this will cause trouble.
284 - We assume the stack elements are infinitely wide, and that we
285 don't have to worry what happens if the user requests an
286 operation that is wider than the actual interpreter's stack.
287 That is, it's up to the interpreter to handle directly all the
288 integer widths the user has access to. (Woe betide the language
291 - We don't support side effects. Thus, we don't have to worry about
292 GCC's generalized lvalues, function calls, etc.
294 - We don't support floating point. Many places where we switch on
295 some type don't bother to include cases for floating point; there
296 may be even more subtle ways this assumption exists. For
297 example, the arguments to % must be integers.
299 - We assume all subexpressions have a static, unchanging type. If
300 we tried to support convenience variables, this would be a
303 - All values on the stack should always be fully zero- or
306 (I wasn't sure whether to choose this or its opposite --- that
307 only addresses are assumed extended --- but it turns out that
308 neither convention completely eliminates spurious extend
309 operations (if everything is always extended, then you have to
310 extend after add, because it could overflow; if nothing is
311 extended, then you end up producing extends whenever you change
312 sizes), and this is simpler.) */
315 /* Generating bytecode from GDB expressions: the `trace' kludge */
317 /* The compiler in this file is a general-purpose mechanism for
318 translating GDB expressions into bytecode. One ought to be able to
319 find a million and one uses for it.
321 However, at the moment it is HOPELESSLY BRAIN-DAMAGED for the sake
322 of expediency. Let he who is without sin cast the first stone.
324 For the data tracing facility, we need to insert `trace' bytecodes
325 before each data fetch; this records all the memory that the
326 expression touches in the course of evaluation, so that memory will
327 be available when the user later tries to evaluate the expression
330 This should be done (I think) in a post-processing pass, that walks
331 an arbitrary agent expression and inserts `trace' operations at the
332 appropriate points. But it's much faster to just hack them
333 directly into the code. And since we're in a crunch, that's what
336 Setting the flag trace_kludge to non-zero enables the code that
337 emits the trace bytecodes at the appropriate points. */
340 /* Inspired by trace_kludge, this indicates that pointers to chars
341 should get an added tracenz bytecode to record nonzero bytes, up to
342 a length that is the value of trace_string_kludge. */
343 int trace_string_kludge;
345 /* Scan for all static fields in the given class, including any base
346 classes, and generate tracing bytecodes for each. */
349 gen_trace_static_fields (struct gdbarch *gdbarch,
350 struct agent_expr *ax,
353 int i, nbases = TYPE_N_BASECLASSES (type);
354 struct axs_value value;
356 CHECK_TYPEDEF (type);
358 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
360 if (field_is_static (&TYPE_FIELD (type, i)))
362 gen_static_field (gdbarch, ax, &value, type, i);
363 if (value.optimized_out)
367 case axs_lvalue_memory:
369 /* Initialize the TYPE_LENGTH if it is a typedef. */
370 check_typedef (value.type);
371 ax_const_l (ax, TYPE_LENGTH (value.type));
372 ax_simple (ax, aop_trace);
376 case axs_lvalue_register:
377 /* We don't actually need the register's value to be pushed,
378 just note that we need it to be collected. */
379 ax_reg_mask (ax, value.u.reg);
387 /* Now scan through base classes recursively. */
388 for (i = 0; i < nbases; i++)
390 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
392 gen_trace_static_fields (gdbarch, ax, basetype);
396 /* Trace the lvalue on the stack, if it needs it. In either case, pop
397 the value. Useful on the left side of a comma, and at the end of
398 an expression being used for tracing. */
400 gen_traced_pop (struct gdbarch *gdbarch,
401 struct agent_expr *ax, struct axs_value *value)
403 int string_trace = 0;
404 if (trace_string_kludge
405 && TYPE_CODE (value->type) == TYPE_CODE_PTR
406 && c_textual_element_type (check_typedef (TYPE_TARGET_TYPE (value->type)),
416 ax_const_l (ax, trace_string_kludge);
417 ax_simple (ax, aop_tracenz);
420 /* We don't trace rvalues, just the lvalues necessary to
421 produce them. So just dispose of this value. */
422 ax_simple (ax, aop_pop);
425 case axs_lvalue_memory:
428 ax_simple (ax, aop_dup);
430 /* Initialize the TYPE_LENGTH if it is a typedef. */
431 check_typedef (value->type);
433 /* There's no point in trying to use a trace_quick bytecode
434 here, since "trace_quick SIZE pop" is three bytes, whereas
435 "const8 SIZE trace" is also three bytes, does the same
436 thing, and the simplest code which generates that will also
437 work correctly for objects with large sizes. */
438 ax_const_l (ax, TYPE_LENGTH (value->type));
439 ax_simple (ax, aop_trace);
443 ax_simple (ax, aop_ref32);
444 ax_const_l (ax, trace_string_kludge);
445 ax_simple (ax, aop_tracenz);
450 case axs_lvalue_register:
451 /* We don't actually need the register's value to be on the
452 stack, and the target will get heartburn if the register is
453 larger than will fit in a stack, so just mark it for
454 collection and be done with it. */
455 ax_reg_mask (ax, value->u.reg);
457 /* But if the register points to a string, assume the value
458 will fit on the stack and push it anyway. */
461 ax_reg (ax, value->u.reg);
462 ax_const_l (ax, trace_string_kludge);
463 ax_simple (ax, aop_tracenz);
468 /* If we're not tracing, just pop the value. */
469 ax_simple (ax, aop_pop);
471 /* To trace C++ classes with static fields stored elsewhere. */
473 && (TYPE_CODE (value->type) == TYPE_CODE_STRUCT
474 || TYPE_CODE (value->type) == TYPE_CODE_UNION))
475 gen_trace_static_fields (gdbarch, ax, value->type);
480 /* Generating bytecode from GDB expressions: helper functions */
482 /* Assume that the lower bits of the top of the stack is a value of
483 type TYPE, and the upper bits are zero. Sign-extend if necessary. */
485 gen_sign_extend (struct agent_expr *ax, struct type *type)
487 /* Do we need to sign-extend this? */
488 if (!TYPE_UNSIGNED (type))
489 ax_ext (ax, TYPE_LENGTH (type) * TARGET_CHAR_BIT);
493 /* Assume the lower bits of the top of the stack hold a value of type
494 TYPE, and the upper bits are garbage. Sign-extend or truncate as
497 gen_extend (struct agent_expr *ax, struct type *type)
499 int bits = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
502 ((TYPE_UNSIGNED (type) ? ax_zero_ext : ax_ext) (ax, bits));
506 /* Assume that the top of the stack contains a value of type "pointer
507 to TYPE"; generate code to fetch its value. Note that TYPE is the
508 target type, not the pointer type. */
510 gen_fetch (struct agent_expr *ax, struct type *type)
514 /* Record the area of memory we're about to fetch. */
515 ax_trace_quick (ax, TYPE_LENGTH (type));
518 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
519 type = TYPE_TARGET_TYPE (type);
521 switch (TYPE_CODE (type))
529 /* It's a scalar value, so we know how to dereference it. How
530 many bytes long is it? */
531 switch (TYPE_LENGTH (type))
533 case 8 / TARGET_CHAR_BIT:
534 ax_simple (ax, aop_ref8);
536 case 16 / TARGET_CHAR_BIT:
537 ax_simple (ax, aop_ref16);
539 case 32 / TARGET_CHAR_BIT:
540 ax_simple (ax, aop_ref32);
542 case 64 / TARGET_CHAR_BIT:
543 ax_simple (ax, aop_ref64);
546 /* Either our caller shouldn't have asked us to dereference
547 that pointer (other code's fault), or we're not
548 implementing something we should be (this code's fault).
549 In any case, it's a bug the user shouldn't see. */
551 internal_error (__FILE__, __LINE__,
552 _("gen_fetch: strange size"));
555 gen_sign_extend (ax, type);
559 /* Our caller requested us to dereference a pointer from an unsupported
560 type. Error out and give callers a chance to handle the failure
562 error (_("gen_fetch: Unsupported type code `%s'."),
568 /* Generate code to left shift the top of the stack by DISTANCE bits, or
569 right shift it by -DISTANCE bits if DISTANCE < 0. This generates
570 unsigned (logical) right shifts. */
572 gen_left_shift (struct agent_expr *ax, int distance)
576 ax_const_l (ax, distance);
577 ax_simple (ax, aop_lsh);
579 else if (distance < 0)
581 ax_const_l (ax, -distance);
582 ax_simple (ax, aop_rsh_unsigned);
588 /* Generating bytecode from GDB expressions: symbol references */
590 /* Generate code to push the base address of the argument portion of
591 the top stack frame. */
593 gen_frame_args_address (struct gdbarch *gdbarch, struct agent_expr *ax)
596 LONGEST frame_offset;
598 gdbarch_virtual_frame_pointer (gdbarch,
599 ax->scope, &frame_reg, &frame_offset);
600 ax_reg (ax, frame_reg);
601 gen_offset (ax, frame_offset);
605 /* Generate code to push the base address of the locals portion of the
608 gen_frame_locals_address (struct gdbarch *gdbarch, struct agent_expr *ax)
611 LONGEST frame_offset;
613 gdbarch_virtual_frame_pointer (gdbarch,
614 ax->scope, &frame_reg, &frame_offset);
615 ax_reg (ax, frame_reg);
616 gen_offset (ax, frame_offset);
620 /* Generate code to add OFFSET to the top of the stack. Try to
621 generate short and readable code. We use this for getting to
622 variables on the stack, and structure members. If we were
623 programming in ML, it would be clearer why these are the same
626 gen_offset (struct agent_expr *ax, int offset)
628 /* It would suffice to simply push the offset and add it, but this
629 makes it easier to read positive and negative offsets in the
633 ax_const_l (ax, offset);
634 ax_simple (ax, aop_add);
638 ax_const_l (ax, -offset);
639 ax_simple (ax, aop_sub);
644 /* In many cases, a symbol's value is the offset from some other
645 address (stack frame, base register, etc.) Generate code to add
646 VAR's value to the top of the stack. */
648 gen_sym_offset (struct agent_expr *ax, struct symbol *var)
650 gen_offset (ax, SYMBOL_VALUE (var));
654 /* Generate code for a variable reference to AX. The variable is the
655 symbol VAR. Set VALUE to describe the result. */
658 gen_var_ref (struct gdbarch *gdbarch, struct agent_expr *ax,
659 struct axs_value *value, struct symbol *var)
661 /* Dereference any typedefs. */
662 value->type = check_typedef (SYMBOL_TYPE (var));
663 value->optimized_out = 0;
665 /* I'm imitating the code in read_var_value. */
666 switch (SYMBOL_CLASS (var))
668 case LOC_CONST: /* A constant, like an enum value. */
669 ax_const_l (ax, (LONGEST) SYMBOL_VALUE (var));
670 value->kind = axs_rvalue;
673 case LOC_LABEL: /* A goto label, being used as a value. */
674 ax_const_l (ax, (LONGEST) SYMBOL_VALUE_ADDRESS (var));
675 value->kind = axs_rvalue;
678 case LOC_CONST_BYTES:
679 internal_error (__FILE__, __LINE__,
680 _("gen_var_ref: LOC_CONST_BYTES "
681 "symbols are not supported"));
683 /* Variable at a fixed location in memory. Easy. */
685 /* Push the address of the variable. */
686 ax_const_l (ax, SYMBOL_VALUE_ADDRESS (var));
687 value->kind = axs_lvalue_memory;
690 case LOC_ARG: /* var lives in argument area of frame */
691 gen_frame_args_address (gdbarch, ax);
692 gen_sym_offset (ax, var);
693 value->kind = axs_lvalue_memory;
696 case LOC_REF_ARG: /* As above, but the frame slot really
697 holds the address of the variable. */
698 gen_frame_args_address (gdbarch, ax);
699 gen_sym_offset (ax, var);
700 /* Don't assume any particular pointer size. */
701 gen_fetch (ax, builtin_type (gdbarch)->builtin_data_ptr);
702 value->kind = axs_lvalue_memory;
705 case LOC_LOCAL: /* var lives in locals area of frame */
706 gen_frame_locals_address (gdbarch, ax);
707 gen_sym_offset (ax, var);
708 value->kind = axs_lvalue_memory;
712 error (_("Cannot compute value of typedef `%s'."),
713 SYMBOL_PRINT_NAME (var));
717 ax_const_l (ax, BLOCK_START (SYMBOL_BLOCK_VALUE (var)));
718 value->kind = axs_rvalue;
722 /* Don't generate any code at all; in the process of treating
723 this as an lvalue or rvalue, the caller will generate the
725 value->kind = axs_lvalue_register;
726 value->u.reg = SYMBOL_REGISTER_OPS (var)->register_number (var, gdbarch);
729 /* A lot like LOC_REF_ARG, but the pointer lives directly in a
730 register, not on the stack. Simpler than LOC_REGISTER
731 because it's just like any other case where the thing
732 has a real address. */
733 case LOC_REGPARM_ADDR:
734 ax_reg (ax, SYMBOL_REGISTER_OPS (var)->register_number (var, gdbarch));
735 value->kind = axs_lvalue_memory;
740 struct minimal_symbol *msym
741 = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (var), NULL, NULL);
744 error (_("Couldn't resolve symbol `%s'."), SYMBOL_PRINT_NAME (var));
746 /* Push the address of the variable. */
747 ax_const_l (ax, SYMBOL_VALUE_ADDRESS (msym));
748 value->kind = axs_lvalue_memory;
753 /* FIXME: cagney/2004-01-26: It should be possible to
754 unconditionally call the SYMBOL_COMPUTED_OPS method when available.
755 Unfortunately DWARF 2 stores the frame-base (instead of the
756 function) location in a function's symbol. Oops! For the
757 moment enable this when/where applicable. */
758 SYMBOL_COMPUTED_OPS (var)->tracepoint_var_ref (var, gdbarch, ax, value);
761 case LOC_OPTIMIZED_OUT:
762 /* Flag this, but don't say anything; leave it up to callers to
764 value->optimized_out = 1;
768 error (_("Cannot find value of botched symbol `%s'."),
769 SYMBOL_PRINT_NAME (var));
776 /* Generating bytecode from GDB expressions: literals */
779 gen_int_literal (struct agent_expr *ax, struct axs_value *value, LONGEST k,
783 value->kind = axs_rvalue;
784 value->type = check_typedef (type);
789 /* Generating bytecode from GDB expressions: unary conversions, casts */
791 /* Take what's on the top of the stack (as described by VALUE), and
792 try to make an rvalue out of it. Signal an error if we can't do
795 require_rvalue (struct agent_expr *ax, struct axs_value *value)
797 /* Only deal with scalars, structs and such may be too large
798 to fit in a stack entry. */
799 value->type = check_typedef (value->type);
800 if (TYPE_CODE (value->type) == TYPE_CODE_ARRAY
801 || TYPE_CODE (value->type) == TYPE_CODE_STRUCT
802 || TYPE_CODE (value->type) == TYPE_CODE_UNION
803 || TYPE_CODE (value->type) == TYPE_CODE_FUNC)
804 error (_("Value not scalar: cannot be an rvalue."));
809 /* It's already an rvalue. */
812 case axs_lvalue_memory:
813 /* The top of stack is the address of the object. Dereference. */
814 gen_fetch (ax, value->type);
817 case axs_lvalue_register:
818 /* There's nothing on the stack, but value->u.reg is the
819 register number containing the value.
821 When we add floating-point support, this is going to have to
822 change. What about SPARC register pairs, for example? */
823 ax_reg (ax, value->u.reg);
824 gen_extend (ax, value->type);
828 value->kind = axs_rvalue;
832 /* Assume the top of the stack is described by VALUE, and perform the
833 usual unary conversions. This is motivated by ANSI 6.2.2, but of
834 course GDB expressions are not ANSI; they're the mishmash union of
835 a bunch of languages. Rah.
837 NOTE! This function promises to produce an rvalue only when the
838 incoming value is of an appropriate type. In other words, the
839 consumer of the value this function produces may assume the value
840 is an rvalue only after checking its type.
842 The immediate issue is that if the user tries to use a structure or
843 union as an operand of, say, the `+' operator, we don't want to try
844 to convert that structure to an rvalue; require_rvalue will bomb on
845 structs and unions. Rather, we want to simply pass the struct
846 lvalue through unchanged, and let `+' raise an error. */
849 gen_usual_unary (struct expression *exp, struct agent_expr *ax,
850 struct axs_value *value)
852 /* We don't have to generate any code for the usual integral
853 conversions, since values are always represented as full-width on
854 the stack. Should we tweak the type? */
856 /* Some types require special handling. */
857 switch (TYPE_CODE (value->type))
859 /* Functions get converted to a pointer to the function. */
861 value->type = lookup_pointer_type (value->type);
862 value->kind = axs_rvalue; /* Should always be true, but just in case. */
865 /* Arrays get converted to a pointer to their first element, and
866 are no longer an lvalue. */
867 case TYPE_CODE_ARRAY:
869 struct type *elements = TYPE_TARGET_TYPE (value->type);
871 value->type = lookup_pointer_type (elements);
872 value->kind = axs_rvalue;
873 /* We don't need to generate any code; the address of the array
874 is also the address of its first element. */
878 /* Don't try to convert structures and unions to rvalues. Let the
879 consumer signal an error. */
880 case TYPE_CODE_STRUCT:
881 case TYPE_CODE_UNION:
885 /* If the value is an lvalue, dereference it. */
886 require_rvalue (ax, value);
890 /* Return non-zero iff the type TYPE1 is considered "wider" than the
891 type TYPE2, according to the rules described in gen_usual_arithmetic. */
893 type_wider_than (struct type *type1, struct type *type2)
895 return (TYPE_LENGTH (type1) > TYPE_LENGTH (type2)
896 || (TYPE_LENGTH (type1) == TYPE_LENGTH (type2)
897 && TYPE_UNSIGNED (type1)
898 && !TYPE_UNSIGNED (type2)));
902 /* Return the "wider" of the two types TYPE1 and TYPE2. */
904 max_type (struct type *type1, struct type *type2)
906 return type_wider_than (type1, type2) ? type1 : type2;
910 /* Generate code to convert a scalar value of type FROM to type TO. */
912 gen_conversion (struct agent_expr *ax, struct type *from, struct type *to)
914 /* Perhaps there is a more graceful way to state these rules. */
916 /* If we're converting to a narrower type, then we need to clear out
918 if (TYPE_LENGTH (to) < TYPE_LENGTH (from))
919 gen_extend (ax, from);
921 /* If the two values have equal width, but different signednesses,
922 then we need to extend. */
923 else if (TYPE_LENGTH (to) == TYPE_LENGTH (from))
925 if (TYPE_UNSIGNED (from) != TYPE_UNSIGNED (to))
929 /* If we're converting to a wider type, and becoming unsigned, then
930 we need to zero out any possible sign bits. */
931 else if (TYPE_LENGTH (to) > TYPE_LENGTH (from))
933 if (TYPE_UNSIGNED (to))
939 /* Return non-zero iff the type FROM will require any bytecodes to be
940 emitted to be converted to the type TO. */
942 is_nontrivial_conversion (struct type *from, struct type *to)
944 struct agent_expr *ax = new_agent_expr (NULL, 0);
947 /* Actually generate the code, and see if anything came out. At the
948 moment, it would be trivial to replicate the code in
949 gen_conversion here, but in the future, when we're supporting
950 floating point and the like, it may not be. Doing things this
951 way allows this function to be independent of the logic in
953 gen_conversion (ax, from, to);
954 nontrivial = ax->len > 0;
955 free_agent_expr (ax);
960 /* Generate code to perform the "usual arithmetic conversions" (ANSI C
961 6.2.1.5) for the two operands of an arithmetic operator. This
962 effectively finds a "least upper bound" type for the two arguments,
963 and promotes each argument to that type. *VALUE1 and *VALUE2
964 describe the values as they are passed in, and as they are left. */
966 gen_usual_arithmetic (struct expression *exp, struct agent_expr *ax,
967 struct axs_value *value1, struct axs_value *value2)
969 /* Do the usual binary conversions. */
970 if (TYPE_CODE (value1->type) == TYPE_CODE_INT
971 && TYPE_CODE (value2->type) == TYPE_CODE_INT)
973 /* The ANSI integral promotions seem to work this way: Order the
974 integer types by size, and then by signedness: an n-bit
975 unsigned type is considered "wider" than an n-bit signed
976 type. Promote to the "wider" of the two types, and always
977 promote at least to int. */
978 struct type *target = max_type (builtin_type (exp->gdbarch)->builtin_int,
979 max_type (value1->type, value2->type));
981 /* Deal with value2, on the top of the stack. */
982 gen_conversion (ax, value2->type, target);
984 /* Deal with value1, not on the top of the stack. Don't
985 generate the `swap' instructions if we're not actually going
987 if (is_nontrivial_conversion (value1->type, target))
989 ax_simple (ax, aop_swap);
990 gen_conversion (ax, value1->type, target);
991 ax_simple (ax, aop_swap);
994 value1->type = value2->type = check_typedef (target);
999 /* Generate code to perform the integral promotions (ANSI 6.2.1.1) on
1000 the value on the top of the stack, as described by VALUE. Assume
1001 the value has integral type. */
1003 gen_integral_promotions (struct expression *exp, struct agent_expr *ax,
1004 struct axs_value *value)
1006 const struct builtin_type *builtin = builtin_type (exp->gdbarch);
1008 if (!type_wider_than (value->type, builtin->builtin_int))
1010 gen_conversion (ax, value->type, builtin->builtin_int);
1011 value->type = builtin->builtin_int;
1013 else if (!type_wider_than (value->type, builtin->builtin_unsigned_int))
1015 gen_conversion (ax, value->type, builtin->builtin_unsigned_int);
1016 value->type = builtin->builtin_unsigned_int;
1021 /* Generate code for a cast to TYPE. */
1023 gen_cast (struct agent_expr *ax, struct axs_value *value, struct type *type)
1025 /* GCC does allow casts to yield lvalues, so this should be fixed
1026 before merging these changes into the trunk. */
1027 require_rvalue (ax, value);
1028 /* Dereference typedefs. */
1029 type = check_typedef (type);
1031 switch (TYPE_CODE (type))
1035 /* It's implementation-defined, and I'll bet this is what GCC
1039 case TYPE_CODE_ARRAY:
1040 case TYPE_CODE_STRUCT:
1041 case TYPE_CODE_UNION:
1042 case TYPE_CODE_FUNC:
1043 error (_("Invalid type cast: intended type must be scalar."));
1045 case TYPE_CODE_ENUM:
1046 case TYPE_CODE_BOOL:
1047 /* We don't have to worry about the size of the value, because
1048 all our integral values are fully sign-extended, and when
1049 casting pointers we can do anything we like. Is there any
1050 way for us to know what GCC actually does with a cast like
1055 gen_conversion (ax, value->type, type);
1058 case TYPE_CODE_VOID:
1059 /* We could pop the value, and rely on everyone else to check
1060 the type and notice that this value doesn't occupy a stack
1061 slot. But for now, leave the value on the stack, and
1062 preserve the "value == stack element" assumption. */
1066 error (_("Casts to requested type are not yet implemented."));
1074 /* Generating bytecode from GDB expressions: arithmetic */
1076 /* Scale the integer on the top of the stack by the size of the target
1077 of the pointer type TYPE. */
1079 gen_scale (struct agent_expr *ax, enum agent_op op, struct type *type)
1081 struct type *element = TYPE_TARGET_TYPE (type);
1083 if (TYPE_LENGTH (element) != 1)
1085 ax_const_l (ax, TYPE_LENGTH (element));
1091 /* Generate code for pointer arithmetic PTR + INT. */
1093 gen_ptradd (struct agent_expr *ax, struct axs_value *value,
1094 struct axs_value *value1, struct axs_value *value2)
1096 gdb_assert (pointer_type (value1->type));
1097 gdb_assert (TYPE_CODE (value2->type) == TYPE_CODE_INT);
1099 gen_scale (ax, aop_mul, value1->type);
1100 ax_simple (ax, aop_add);
1101 gen_extend (ax, value1->type); /* Catch overflow. */
1102 value->type = value1->type;
1103 value->kind = axs_rvalue;
1107 /* Generate code for pointer arithmetic PTR - INT. */
1109 gen_ptrsub (struct agent_expr *ax, struct axs_value *value,
1110 struct axs_value *value1, struct axs_value *value2)
1112 gdb_assert (pointer_type (value1->type));
1113 gdb_assert (TYPE_CODE (value2->type) == TYPE_CODE_INT);
1115 gen_scale (ax, aop_mul, value1->type);
1116 ax_simple (ax, aop_sub);
1117 gen_extend (ax, value1->type); /* Catch overflow. */
1118 value->type = value1->type;
1119 value->kind = axs_rvalue;
1123 /* Generate code for pointer arithmetic PTR - PTR. */
1125 gen_ptrdiff (struct agent_expr *ax, struct axs_value *value,
1126 struct axs_value *value1, struct axs_value *value2,
1127 struct type *result_type)
1129 gdb_assert (pointer_type (value1->type));
1130 gdb_assert (pointer_type (value2->type));
1132 if (TYPE_LENGTH (TYPE_TARGET_TYPE (value1->type))
1133 != TYPE_LENGTH (TYPE_TARGET_TYPE (value2->type)))
1135 First argument of `-' is a pointer, but second argument is neither\n\
1136 an integer nor a pointer of the same type."));
1138 ax_simple (ax, aop_sub);
1139 gen_scale (ax, aop_div_unsigned, value1->type);
1140 value->type = result_type;
1141 value->kind = axs_rvalue;
1145 gen_equal (struct agent_expr *ax, struct axs_value *value,
1146 struct axs_value *value1, struct axs_value *value2,
1147 struct type *result_type)
1149 if (pointer_type (value1->type) || pointer_type (value2->type))
1150 ax_simple (ax, aop_equal);
1152 gen_binop (ax, value, value1, value2,
1153 aop_equal, aop_equal, 0, "equal");
1154 value->type = result_type;
1155 value->kind = axs_rvalue;
1159 gen_less (struct agent_expr *ax, struct axs_value *value,
1160 struct axs_value *value1, struct axs_value *value2,
1161 struct type *result_type)
1163 if (pointer_type (value1->type) || pointer_type (value2->type))
1164 ax_simple (ax, aop_less_unsigned);
1166 gen_binop (ax, value, value1, value2,
1167 aop_less_signed, aop_less_unsigned, 0, "less than");
1168 value->type = result_type;
1169 value->kind = axs_rvalue;
1172 /* Generate code for a binary operator that doesn't do pointer magic.
1173 We set VALUE to describe the result value; we assume VALUE1 and
1174 VALUE2 describe the two operands, and that they've undergone the
1175 usual binary conversions. MAY_CARRY should be non-zero iff the
1176 result needs to be extended. NAME is the English name of the
1177 operator, used in error messages */
1179 gen_binop (struct agent_expr *ax, struct axs_value *value,
1180 struct axs_value *value1, struct axs_value *value2,
1181 enum agent_op op, enum agent_op op_unsigned,
1182 int may_carry, char *name)
1184 /* We only handle INT op INT. */
1185 if ((TYPE_CODE (value1->type) != TYPE_CODE_INT)
1186 || (TYPE_CODE (value2->type) != TYPE_CODE_INT))
1187 error (_("Invalid combination of types in %s."), name);
1190 TYPE_UNSIGNED (value1->type) ? op_unsigned : op);
1192 gen_extend (ax, value1->type); /* catch overflow */
1193 value->type = value1->type;
1194 value->kind = axs_rvalue;
1199 gen_logical_not (struct agent_expr *ax, struct axs_value *value,
1200 struct type *result_type)
1202 if (TYPE_CODE (value->type) != TYPE_CODE_INT
1203 && TYPE_CODE (value->type) != TYPE_CODE_PTR)
1204 error (_("Invalid type of operand to `!'."));
1206 ax_simple (ax, aop_log_not);
1207 value->type = result_type;
1212 gen_complement (struct agent_expr *ax, struct axs_value *value)
1214 if (TYPE_CODE (value->type) != TYPE_CODE_INT)
1215 error (_("Invalid type of operand to `~'."));
1217 ax_simple (ax, aop_bit_not);
1218 gen_extend (ax, value->type);
1223 /* Generating bytecode from GDB expressions: * & . -> @ sizeof */
1225 /* Dereference the value on the top of the stack. */
1227 gen_deref (struct agent_expr *ax, struct axs_value *value)
1229 /* The caller should check the type, because several operators use
1230 this, and we don't know what error message to generate. */
1231 if (!pointer_type (value->type))
1232 internal_error (__FILE__, __LINE__,
1233 _("gen_deref: expected a pointer"));
1235 /* We've got an rvalue now, which is a pointer. We want to yield an
1236 lvalue, whose address is exactly that pointer. So we don't
1237 actually emit any code; we just change the type from "Pointer to
1238 T" to "T", and mark the value as an lvalue in memory. Leave it
1239 to the consumer to actually dereference it. */
1240 value->type = check_typedef (TYPE_TARGET_TYPE (value->type));
1241 if (TYPE_CODE (value->type) == TYPE_CODE_VOID)
1242 error (_("Attempt to dereference a generic pointer."));
1243 value->kind = ((TYPE_CODE (value->type) == TYPE_CODE_FUNC)
1244 ? axs_rvalue : axs_lvalue_memory);
1248 /* Produce the address of the lvalue on the top of the stack. */
1250 gen_address_of (struct agent_expr *ax, struct axs_value *value)
1252 /* Special case for taking the address of a function. The ANSI
1253 standard describes this as a special case, too, so this
1254 arrangement is not without motivation. */
1255 if (TYPE_CODE (value->type) == TYPE_CODE_FUNC)
1256 /* The value's already an rvalue on the stack, so we just need to
1258 value->type = lookup_pointer_type (value->type);
1260 switch (value->kind)
1263 error (_("Operand of `&' is an rvalue, which has no address."));
1265 case axs_lvalue_register:
1266 error (_("Operand of `&' is in a register, and has no address."));
1268 case axs_lvalue_memory:
1269 value->kind = axs_rvalue;
1270 value->type = lookup_pointer_type (value->type);
1275 /* Generate code to push the value of a bitfield of a structure whose
1276 address is on the top of the stack. START and END give the
1277 starting and one-past-ending *bit* numbers of the field within the
1280 gen_bitfield_ref (struct expression *exp, struct agent_expr *ax,
1281 struct axs_value *value, struct type *type,
1284 /* Note that ops[i] fetches 8 << i bits. */
1285 static enum agent_op ops[]
1286 = {aop_ref8, aop_ref16, aop_ref32, aop_ref64};
1287 static int num_ops = (sizeof (ops) / sizeof (ops[0]));
1289 /* We don't want to touch any byte that the bitfield doesn't
1290 actually occupy; we shouldn't make any accesses we're not
1291 explicitly permitted to. We rely here on the fact that the
1292 bytecode `ref' operators work on unaligned addresses.
1294 It takes some fancy footwork to get the stack to work the way
1295 we'd like. Say we're retrieving a bitfield that requires three
1296 fetches. Initially, the stack just contains the address:
1298 For the first fetch, we duplicate the address
1300 then add the byte offset, do the fetch, and shift and mask as
1301 needed, yielding a fragment of the value, properly aligned for
1302 the final bitwise or:
1304 then we swap, and repeat the process:
1305 frag1 addr --- address on top
1306 frag1 addr addr --- duplicate it
1307 frag1 addr frag2 --- get second fragment
1308 frag1 frag2 addr --- swap again
1309 frag1 frag2 frag3 --- get third fragment
1310 Notice that, since the third fragment is the last one, we don't
1311 bother duplicating the address this time. Now we have all the
1312 fragments on the stack, and we can simply `or' them together,
1313 yielding the final value of the bitfield. */
1315 /* The first and one-after-last bits in the field, but rounded down
1316 and up to byte boundaries. */
1317 int bound_start = (start / TARGET_CHAR_BIT) * TARGET_CHAR_BIT;
1318 int bound_end = (((end + TARGET_CHAR_BIT - 1)
1322 /* current bit offset within the structure */
1325 /* The index in ops of the opcode we're considering. */
1328 /* The number of fragments we generated in the process. Probably
1329 equal to the number of `one' bits in bytesize, but who cares? */
1332 /* Dereference any typedefs. */
1333 type = check_typedef (type);
1335 /* Can we fetch the number of bits requested at all? */
1336 if ((end - start) > ((1 << num_ops) * 8))
1337 internal_error (__FILE__, __LINE__,
1338 _("gen_bitfield_ref: bitfield too wide"));
1340 /* Note that we know here that we only need to try each opcode once.
1341 That may not be true on machines with weird byte sizes. */
1342 offset = bound_start;
1344 for (op = num_ops - 1; op >= 0; op--)
1346 /* number of bits that ops[op] would fetch */
1347 int op_size = 8 << op;
1349 /* The stack at this point, from bottom to top, contains zero or
1350 more fragments, then the address. */
1352 /* Does this fetch fit within the bitfield? */
1353 if (offset + op_size <= bound_end)
1355 /* Is this the last fragment? */
1356 int last_frag = (offset + op_size == bound_end);
1359 ax_simple (ax, aop_dup); /* keep a copy of the address */
1361 /* Add the offset. */
1362 gen_offset (ax, offset / TARGET_CHAR_BIT);
1366 /* Record the area of memory we're about to fetch. */
1367 ax_trace_quick (ax, op_size / TARGET_CHAR_BIT);
1370 /* Perform the fetch. */
1371 ax_simple (ax, ops[op]);
1373 /* Shift the bits we have to their proper position.
1374 gen_left_shift will generate right shifts when the operand
1377 A big-endian field diagram to ponder:
1378 byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
1379 +------++------++------++------++------++------++------++------+
1380 xxxxAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBCCCCCxxxxxxxxxxx
1382 bit number 16 32 48 53
1383 These are bit numbers as supplied by GDB. Note that the
1384 bit numbers run from right to left once you've fetched the
1387 A little-endian field diagram to ponder:
1388 byte 7 byte 6 byte 5 byte 4 byte 3 byte 2 byte 1 byte 0
1389 +------++------++------++------++------++------++------++------+
1390 xxxxxxxxxxxAAAAABBBBBBBBBBBBBBBBCCCCCCCCCCCCCCCCCCCCCCCCCCCCxxxx
1392 bit number 48 32 16 4 0
1394 In both cases, the most significant end is on the left
1395 (i.e. normal numeric writing order), which means that you
1396 don't go crazy thinking about `left' and `right' shifts.
1398 We don't have to worry about masking yet:
1399 - If they contain garbage off the least significant end, then we
1400 must be looking at the low end of the field, and the right
1401 shift will wipe them out.
1402 - If they contain garbage off the most significant end, then we
1403 must be looking at the most significant end of the word, and
1404 the sign/zero extension will wipe them out.
1405 - If we're in the interior of the word, then there is no garbage
1406 on either end, because the ref operators zero-extend. */
1407 if (gdbarch_byte_order (exp->gdbarch) == BFD_ENDIAN_BIG)
1408 gen_left_shift (ax, end - (offset + op_size));
1410 gen_left_shift (ax, offset - start);
1413 /* Bring the copy of the address up to the top. */
1414 ax_simple (ax, aop_swap);
1421 /* Generate enough bitwise `or' operations to combine all the
1422 fragments we left on the stack. */
1423 while (fragment_count-- > 1)
1424 ax_simple (ax, aop_bit_or);
1426 /* Sign- or zero-extend the value as appropriate. */
1427 ((TYPE_UNSIGNED (type) ? ax_zero_ext : ax_ext) (ax, end - start));
1429 /* This is *not* an lvalue. Ugh. */
1430 value->kind = axs_rvalue;
1434 /* Generate bytecodes for field number FIELDNO of type TYPE. OFFSET
1435 is an accumulated offset (in bytes), will be nonzero for objects
1436 embedded in other objects, like C++ base classes. Behavior should
1437 generally follow value_primitive_field. */
1440 gen_primitive_field (struct expression *exp,
1441 struct agent_expr *ax, struct axs_value *value,
1442 int offset, int fieldno, struct type *type)
1444 /* Is this a bitfield? */
1445 if (TYPE_FIELD_PACKED (type, fieldno))
1446 gen_bitfield_ref (exp, ax, value, TYPE_FIELD_TYPE (type, fieldno),
1447 (offset * TARGET_CHAR_BIT
1448 + TYPE_FIELD_BITPOS (type, fieldno)),
1449 (offset * TARGET_CHAR_BIT
1450 + TYPE_FIELD_BITPOS (type, fieldno)
1451 + TYPE_FIELD_BITSIZE (type, fieldno)));
1454 gen_offset (ax, offset
1455 + TYPE_FIELD_BITPOS (type, fieldno) / TARGET_CHAR_BIT);
1456 value->kind = axs_lvalue_memory;
1457 value->type = TYPE_FIELD_TYPE (type, fieldno);
1461 /* Search for the given field in either the given type or one of its
1462 base classes. Return 1 if found, 0 if not. */
1465 gen_struct_ref_recursive (struct expression *exp, struct agent_expr *ax,
1466 struct axs_value *value,
1467 char *field, int offset, struct type *type)
1470 int nbases = TYPE_N_BASECLASSES (type);
1472 CHECK_TYPEDEF (type);
1474 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
1476 const char *this_name = TYPE_FIELD_NAME (type, i);
1480 if (strcmp (field, this_name) == 0)
1482 /* Note that bytecodes for the struct's base (aka
1483 "this") will have been generated already, which will
1484 be unnecessary but not harmful if the static field is
1485 being handled as a global. */
1486 if (field_is_static (&TYPE_FIELD (type, i)))
1488 gen_static_field (exp->gdbarch, ax, value, type, i);
1489 if (value->optimized_out)
1490 error (_("static field `%s' has been "
1491 "optimized out, cannot use"),
1496 gen_primitive_field (exp, ax, value, offset, i, type);
1499 #if 0 /* is this right? */
1500 if (this_name[0] == '\0')
1501 internal_error (__FILE__, __LINE__,
1502 _("find_field: anonymous unions not supported"));
1507 /* Now scan through base classes recursively. */
1508 for (i = 0; i < nbases; i++)
1510 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
1512 rslt = gen_struct_ref_recursive (exp, ax, value, field,
1513 offset + TYPE_BASECLASS_BITPOS (type, i)
1520 /* Not found anywhere, flag so caller can complain. */
1524 /* Generate code to reference the member named FIELD of a structure or
1525 union. The top of the stack, as described by VALUE, should have
1526 type (pointer to a)* struct/union. OPERATOR_NAME is the name of
1527 the operator being compiled, and OPERAND_NAME is the kind of thing
1528 it operates on; we use them in error messages. */
1530 gen_struct_ref (struct expression *exp, struct agent_expr *ax,
1531 struct axs_value *value, char *field,
1532 char *operator_name, char *operand_name)
1537 /* Follow pointers until we reach a non-pointer. These aren't the C
1538 semantics, but they're what the normal GDB evaluator does, so we
1539 should at least be consistent. */
1540 while (pointer_type (value->type))
1542 require_rvalue (ax, value);
1543 gen_deref (ax, value);
1545 type = check_typedef (value->type);
1547 /* This must yield a structure or a union. */
1548 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1549 && TYPE_CODE (type) != TYPE_CODE_UNION)
1550 error (_("The left operand of `%s' is not a %s."),
1551 operator_name, operand_name);
1553 /* And it must be in memory; we don't deal with structure rvalues,
1554 or structures living in registers. */
1555 if (value->kind != axs_lvalue_memory)
1556 error (_("Structure does not live in memory."));
1558 /* Search through fields and base classes recursively. */
1559 found = gen_struct_ref_recursive (exp, ax, value, field, 0, type);
1562 error (_("Couldn't find member named `%s' in struct/union/class `%s'"),
1563 field, TYPE_TAG_NAME (type));
1567 gen_namespace_elt (struct expression *exp,
1568 struct agent_expr *ax, struct axs_value *value,
1569 const struct type *curtype, char *name);
1571 gen_maybe_namespace_elt (struct expression *exp,
1572 struct agent_expr *ax, struct axs_value *value,
1573 const struct type *curtype, char *name);
1576 gen_static_field (struct gdbarch *gdbarch,
1577 struct agent_expr *ax, struct axs_value *value,
1578 struct type *type, int fieldno)
1580 if (TYPE_FIELD_LOC_KIND (type, fieldno) == FIELD_LOC_KIND_PHYSADDR)
1582 ax_const_l (ax, TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
1583 value->kind = axs_lvalue_memory;
1584 value->type = TYPE_FIELD_TYPE (type, fieldno);
1585 value->optimized_out = 0;
1589 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
1590 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
1594 gen_var_ref (gdbarch, ax, value, sym);
1596 /* Don't error if the value was optimized out, we may be
1597 scanning all static fields and just want to pass over this
1598 and continue with the rest. */
1602 /* Silently assume this was optimized out; class printing
1603 will let the user know why the data is missing. */
1604 value->optimized_out = 1;
1610 gen_struct_elt_for_reference (struct expression *exp,
1611 struct agent_expr *ax, struct axs_value *value,
1612 struct type *type, char *fieldname)
1614 struct type *t = type;
1617 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1618 && TYPE_CODE (t) != TYPE_CODE_UNION)
1619 internal_error (__FILE__, __LINE__,
1620 _("non-aggregate type to gen_struct_elt_for_reference"));
1622 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
1624 const char *t_field_name = TYPE_FIELD_NAME (t, i);
1626 if (t_field_name && strcmp (t_field_name, fieldname) == 0)
1628 if (field_is_static (&TYPE_FIELD (t, i)))
1630 gen_static_field (exp->gdbarch, ax, value, t, i);
1631 if (value->optimized_out)
1632 error (_("static field `%s' has been "
1633 "optimized out, cannot use"),
1637 if (TYPE_FIELD_PACKED (t, i))
1638 error (_("pointers to bitfield members not allowed"));
1640 /* FIXME we need a way to do "want_address" equivalent */
1642 error (_("Cannot reference non-static field \"%s\""), fieldname);
1646 /* FIXME add other scoped-reference cases here */
1648 /* Do a last-ditch lookup. */
1649 return gen_maybe_namespace_elt (exp, ax, value, type, fieldname);
1652 /* C++: Return the member NAME of the namespace given by the type
1656 gen_namespace_elt (struct expression *exp,
1657 struct agent_expr *ax, struct axs_value *value,
1658 const struct type *curtype, char *name)
1660 int found = gen_maybe_namespace_elt (exp, ax, value, curtype, name);
1663 error (_("No symbol \"%s\" in namespace \"%s\"."),
1664 name, TYPE_TAG_NAME (curtype));
1669 /* A helper function used by value_namespace_elt and
1670 value_struct_elt_for_reference. It looks up NAME inside the
1671 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
1672 is a class and NAME refers to a type in CURTYPE itself (as opposed
1673 to, say, some base class of CURTYPE). */
1676 gen_maybe_namespace_elt (struct expression *exp,
1677 struct agent_expr *ax, struct axs_value *value,
1678 const struct type *curtype, char *name)
1680 const char *namespace_name = TYPE_TAG_NAME (curtype);
1683 sym = cp_lookup_symbol_namespace (namespace_name, name,
1684 block_for_pc (ax->scope),
1690 gen_var_ref (exp->gdbarch, ax, value, sym);
1692 if (value->optimized_out)
1693 error (_("`%s' has been optimized out, cannot use"),
1694 SYMBOL_PRINT_NAME (sym));
1701 gen_aggregate_elt_ref (struct expression *exp,
1702 struct agent_expr *ax, struct axs_value *value,
1703 struct type *type, char *field,
1704 char *operator_name, char *operand_name)
1706 switch (TYPE_CODE (type))
1708 case TYPE_CODE_STRUCT:
1709 case TYPE_CODE_UNION:
1710 return gen_struct_elt_for_reference (exp, ax, value, type, field);
1712 case TYPE_CODE_NAMESPACE:
1713 return gen_namespace_elt (exp, ax, value, type, field);
1716 internal_error (__FILE__, __LINE__,
1717 _("non-aggregate type in gen_aggregate_elt_ref"));
1723 /* Generate code for GDB's magical `repeat' operator.
1724 LVALUE @ INT creates an array INT elements long, and whose elements
1725 have the same type as LVALUE, located in memory so that LVALUE is
1726 its first element. For example, argv[0]@argc gives you the array
1727 of command-line arguments.
1729 Unfortunately, because we have to know the types before we actually
1730 have a value for the expression, we can't implement this perfectly
1731 without changing the type system, having values that occupy two
1732 stack slots, doing weird things with sizeof, etc. So we require
1733 the right operand to be a constant expression. */
1735 gen_repeat (struct expression *exp, union exp_element **pc,
1736 struct agent_expr *ax, struct axs_value *value)
1738 struct axs_value value1;
1740 /* We don't want to turn this into an rvalue, so no conversions
1742 gen_expr (exp, pc, ax, &value1);
1743 if (value1.kind != axs_lvalue_memory)
1744 error (_("Left operand of `@' must be an object in memory."));
1746 /* Evaluate the length; it had better be a constant. */
1748 struct value *v = const_expr (pc);
1752 error (_("Right operand of `@' must be a "
1753 "constant, in agent expressions."));
1754 if (TYPE_CODE (value_type (v)) != TYPE_CODE_INT)
1755 error (_("Right operand of `@' must be an integer."));
1756 length = value_as_long (v);
1758 error (_("Right operand of `@' must be positive."));
1760 /* The top of the stack is already the address of the object, so
1761 all we need to do is frob the type of the lvalue. */
1763 /* FIXME-type-allocation: need a way to free this type when we are
1766 = lookup_array_range_type (value1.type, 0, length - 1);
1768 value->kind = axs_lvalue_memory;
1769 value->type = array;
1775 /* Emit code for the `sizeof' operator.
1776 *PC should point at the start of the operand expression; we advance it
1777 to the first instruction after the operand. */
1779 gen_sizeof (struct expression *exp, union exp_element **pc,
1780 struct agent_expr *ax, struct axs_value *value,
1781 struct type *size_type)
1783 /* We don't care about the value of the operand expression; we only
1784 care about its type. However, in the current arrangement, the
1785 only way to find an expression's type is to generate code for it.
1786 So we generate code for the operand, and then throw it away,
1787 replacing it with code that simply pushes its size. */
1788 int start = ax->len;
1790 gen_expr (exp, pc, ax, value);
1792 /* Throw away the code we just generated. */
1795 ax_const_l (ax, TYPE_LENGTH (value->type));
1796 value->kind = axs_rvalue;
1797 value->type = size_type;
1801 /* Generating bytecode from GDB expressions: general recursive thingy */
1804 /* A gen_expr function written by a Gen-X'er guy.
1805 Append code for the subexpression of EXPR starting at *POS_P to AX. */
1807 gen_expr (struct expression *exp, union exp_element **pc,
1808 struct agent_expr *ax, struct axs_value *value)
1810 /* Used to hold the descriptions of operand expressions. */
1811 struct axs_value value1, value2, value3;
1812 enum exp_opcode op = (*pc)[0].opcode, op2;
1813 int if1, go1, if2, go2, end;
1814 struct type *int_type = builtin_type (exp->gdbarch)->builtin_int;
1816 /* If we're looking at a constant expression, just push its value. */
1818 struct value *v = maybe_const_expr (pc);
1822 ax_const_l (ax, value_as_long (v));
1823 value->kind = axs_rvalue;
1824 value->type = check_typedef (value_type (v));
1829 /* Otherwise, go ahead and generate code for it. */
1832 /* Binary arithmetic operators. */
1840 case BINOP_SUBSCRIPT:
1841 case BINOP_BITWISE_AND:
1842 case BINOP_BITWISE_IOR:
1843 case BINOP_BITWISE_XOR:
1845 case BINOP_NOTEQUAL:
1851 gen_expr (exp, pc, ax, &value1);
1852 gen_usual_unary (exp, ax, &value1);
1853 gen_expr_binop_rest (exp, op, pc, ax, value, &value1, &value2);
1856 case BINOP_LOGICAL_AND:
1858 /* Generate the obvious sequence of tests and jumps. */
1859 gen_expr (exp, pc, ax, &value1);
1860 gen_usual_unary (exp, ax, &value1);
1861 if1 = ax_goto (ax, aop_if_goto);
1862 go1 = ax_goto (ax, aop_goto);
1863 ax_label (ax, if1, ax->len);
1864 gen_expr (exp, pc, ax, &value2);
1865 gen_usual_unary (exp, ax, &value2);
1866 if2 = ax_goto (ax, aop_if_goto);
1867 go2 = ax_goto (ax, aop_goto);
1868 ax_label (ax, if2, ax->len);
1870 end = ax_goto (ax, aop_goto);
1871 ax_label (ax, go1, ax->len);
1872 ax_label (ax, go2, ax->len);
1874 ax_label (ax, end, ax->len);
1875 value->kind = axs_rvalue;
1876 value->type = int_type;
1879 case BINOP_LOGICAL_OR:
1881 /* Generate the obvious sequence of tests and jumps. */
1882 gen_expr (exp, pc, ax, &value1);
1883 gen_usual_unary (exp, ax, &value1);
1884 if1 = ax_goto (ax, aop_if_goto);
1885 gen_expr (exp, pc, ax, &value2);
1886 gen_usual_unary (exp, ax, &value2);
1887 if2 = ax_goto (ax, aop_if_goto);
1889 end = ax_goto (ax, aop_goto);
1890 ax_label (ax, if1, ax->len);
1891 ax_label (ax, if2, ax->len);
1893 ax_label (ax, end, ax->len);
1894 value->kind = axs_rvalue;
1895 value->type = int_type;
1900 gen_expr (exp, pc, ax, &value1);
1901 gen_usual_unary (exp, ax, &value1);
1902 /* For (A ? B : C), it's easiest to generate subexpression
1903 bytecodes in order, but if_goto jumps on true, so we invert
1904 the sense of A. Then we can do B by dropping through, and
1906 gen_logical_not (ax, &value1, int_type);
1907 if1 = ax_goto (ax, aop_if_goto);
1908 gen_expr (exp, pc, ax, &value2);
1909 gen_usual_unary (exp, ax, &value2);
1910 end = ax_goto (ax, aop_goto);
1911 ax_label (ax, if1, ax->len);
1912 gen_expr (exp, pc, ax, &value3);
1913 gen_usual_unary (exp, ax, &value3);
1914 ax_label (ax, end, ax->len);
1915 /* This is arbitary - what if B and C are incompatible types? */
1916 value->type = value2.type;
1917 value->kind = value2.kind;
1922 if ((*pc)[0].opcode == OP_INTERNALVAR)
1924 char *name = internalvar_name ((*pc)[1].internalvar);
1925 struct trace_state_variable *tsv;
1928 gen_expr (exp, pc, ax, value);
1929 tsv = find_trace_state_variable (name);
1932 ax_tsv (ax, aop_setv, tsv->number);
1934 ax_tsv (ax, aop_tracev, tsv->number);
1937 error (_("$%s is not a trace state variable, "
1938 "may not assign to it"), name);
1941 error (_("May only assign to trace state variables"));
1944 case BINOP_ASSIGN_MODIFY:
1946 op2 = (*pc)[0].opcode;
1949 if ((*pc)[0].opcode == OP_INTERNALVAR)
1951 char *name = internalvar_name ((*pc)[1].internalvar);
1952 struct trace_state_variable *tsv;
1955 tsv = find_trace_state_variable (name);
1958 /* The tsv will be the left half of the binary operation. */
1959 ax_tsv (ax, aop_getv, tsv->number);
1961 ax_tsv (ax, aop_tracev, tsv->number);
1962 /* Trace state variables are always 64-bit integers. */
1963 value1.kind = axs_rvalue;
1964 value1.type = builtin_type (exp->gdbarch)->builtin_long_long;
1965 /* Now do right half of expression. */
1966 gen_expr_binop_rest (exp, op2, pc, ax, value, &value1, &value2);
1967 /* We have a result of the binary op, set the tsv. */
1968 ax_tsv (ax, aop_setv, tsv->number);
1970 ax_tsv (ax, aop_tracev, tsv->number);
1973 error (_("$%s is not a trace state variable, "
1974 "may not assign to it"), name);
1977 error (_("May only assign to trace state variables"));
1980 /* Note that we need to be a little subtle about generating code
1981 for comma. In C, we can do some optimizations here because
1982 we know the left operand is only being evaluated for effect.
1983 However, if the tracing kludge is in effect, then we always
1984 need to evaluate the left hand side fully, so that all the
1985 variables it mentions get traced. */
1988 gen_expr (exp, pc, ax, &value1);
1989 /* Don't just dispose of the left operand. We might be tracing,
1990 in which case we want to emit code to trace it if it's an
1992 gen_traced_pop (exp->gdbarch, ax, &value1);
1993 gen_expr (exp, pc, ax, value);
1994 /* It's the consumer's responsibility to trace the right operand. */
1997 case OP_LONG: /* some integer constant */
1999 struct type *type = (*pc)[1].type;
2000 LONGEST k = (*pc)[2].longconst;
2003 gen_int_literal (ax, value, k, type);
2008 gen_var_ref (exp->gdbarch, ax, value, (*pc)[2].symbol);
2010 if (value->optimized_out)
2011 error (_("`%s' has been optimized out, cannot use"),
2012 SYMBOL_PRINT_NAME ((*pc)[2].symbol));
2019 const char *name = &(*pc)[2].string;
2022 (*pc) += 4 + BYTES_TO_EXP_ELEM ((*pc)[1].longconst + 1);
2023 reg = user_reg_map_name_to_regnum (exp->gdbarch, name, strlen (name));
2025 internal_error (__FILE__, __LINE__,
2026 _("Register $%s not available"), name);
2027 /* No support for tracing user registers yet. */
2028 if (reg >= gdbarch_num_regs (exp->gdbarch)
2029 + gdbarch_num_pseudo_regs (exp->gdbarch))
2030 error (_("'%s' is a user-register; "
2031 "GDB cannot yet trace user-register contents."),
2033 value->kind = axs_lvalue_register;
2035 value->type = register_type (exp->gdbarch, reg);
2039 case OP_INTERNALVAR:
2041 struct internalvar *var = (*pc)[1].internalvar;
2042 const char *name = internalvar_name (var);
2043 struct trace_state_variable *tsv;
2046 tsv = find_trace_state_variable (name);
2049 ax_tsv (ax, aop_getv, tsv->number);
2051 ax_tsv (ax, aop_tracev, tsv->number);
2052 /* Trace state variables are always 64-bit integers. */
2053 value->kind = axs_rvalue;
2054 value->type = builtin_type (exp->gdbarch)->builtin_long_long;
2056 else if (! compile_internalvar_to_ax (var, ax, value))
2057 error (_("$%s is not a trace state variable; GDB agent "
2058 "expressions cannot use convenience variables."), name);
2062 /* Weirdo operator: see comments for gen_repeat for details. */
2064 /* Note that gen_repeat handles its own argument evaluation. */
2066 gen_repeat (exp, pc, ax, value);
2071 struct type *type = (*pc)[1].type;
2074 gen_expr (exp, pc, ax, value);
2075 gen_cast (ax, value, type);
2079 case UNOP_CAST_TYPE:
2086 offset = *pc - exp->elts;
2087 val = evaluate_subexp (NULL, exp, &offset, EVAL_AVOID_SIDE_EFFECTS);
2088 type = value_type (val);
2089 *pc = &exp->elts[offset];
2091 gen_expr (exp, pc, ax, value);
2092 gen_cast (ax, value, type);
2098 struct type *type = check_typedef ((*pc)[1].type);
2101 gen_expr (exp, pc, ax, value);
2103 /* If we have an axs_rvalue or an axs_lvalue_memory, then we
2104 already have the right value on the stack. For
2105 axs_lvalue_register, we must convert. */
2106 if (value->kind == axs_lvalue_register)
2107 require_rvalue (ax, value);
2110 value->kind = axs_lvalue_memory;
2114 case UNOP_MEMVAL_TYPE:
2121 offset = *pc - exp->elts;
2122 val = evaluate_subexp (NULL, exp, &offset, EVAL_AVOID_SIDE_EFFECTS);
2123 type = value_type (val);
2124 *pc = &exp->elts[offset];
2126 gen_expr (exp, pc, ax, value);
2128 /* If we have an axs_rvalue or an axs_lvalue_memory, then we
2129 already have the right value on the stack. For
2130 axs_lvalue_register, we must convert. */
2131 if (value->kind == axs_lvalue_register)
2132 require_rvalue (ax, value);
2135 value->kind = axs_lvalue_memory;
2141 /* + FOO is equivalent to 0 + FOO, which can be optimized. */
2142 gen_expr (exp, pc, ax, value);
2143 gen_usual_unary (exp, ax, value);
2148 /* -FOO is equivalent to 0 - FOO. */
2149 gen_int_literal (ax, &value1, 0,
2150 builtin_type (exp->gdbarch)->builtin_int);
2151 gen_usual_unary (exp, ax, &value1); /* shouldn't do much */
2152 gen_expr (exp, pc, ax, &value2);
2153 gen_usual_unary (exp, ax, &value2);
2154 gen_usual_arithmetic (exp, ax, &value1, &value2);
2155 gen_binop (ax, value, &value1, &value2, aop_sub, aop_sub, 1, "negation");
2158 case UNOP_LOGICAL_NOT:
2160 gen_expr (exp, pc, ax, value);
2161 gen_usual_unary (exp, ax, value);
2162 gen_logical_not (ax, value, int_type);
2165 case UNOP_COMPLEMENT:
2167 gen_expr (exp, pc, ax, value);
2168 gen_usual_unary (exp, ax, value);
2169 gen_integral_promotions (exp, ax, value);
2170 gen_complement (ax, value);
2175 gen_expr (exp, pc, ax, value);
2176 gen_usual_unary (exp, ax, value);
2177 if (!pointer_type (value->type))
2178 error (_("Argument of unary `*' is not a pointer."));
2179 gen_deref (ax, value);
2184 gen_expr (exp, pc, ax, value);
2185 gen_address_of (ax, value);
2190 /* Notice that gen_sizeof handles its own operand, unlike most
2191 of the other unary operator functions. This is because we
2192 have to throw away the code we generate. */
2193 gen_sizeof (exp, pc, ax, value,
2194 builtin_type (exp->gdbarch)->builtin_int);
2197 case STRUCTOP_STRUCT:
2200 int length = (*pc)[1].longconst;
2201 char *name = &(*pc)[2].string;
2203 (*pc) += 4 + BYTES_TO_EXP_ELEM (length + 1);
2204 gen_expr (exp, pc, ax, value);
2205 if (op == STRUCTOP_STRUCT)
2206 gen_struct_ref (exp, ax, value, name, ".", "structure or union");
2207 else if (op == STRUCTOP_PTR)
2208 gen_struct_ref (exp, ax, value, name, "->",
2209 "pointer to a structure or union");
2211 /* If this `if' chain doesn't handle it, then the case list
2212 shouldn't mention it, and we shouldn't be here. */
2213 internal_error (__FILE__, __LINE__,
2214 _("gen_expr: unhandled struct case"));
2220 struct symbol *sym, *func;
2222 const struct language_defn *lang;
2224 b = block_for_pc (ax->scope);
2225 func = block_linkage_function (b);
2226 lang = language_def (SYMBOL_LANGUAGE (func));
2228 sym = lookup_language_this (lang, b);
2230 error (_("no `%s' found"), lang->la_name_of_this);
2232 gen_var_ref (exp->gdbarch, ax, value, sym);
2234 if (value->optimized_out)
2235 error (_("`%s' has been optimized out, cannot use"),
2236 SYMBOL_PRINT_NAME (sym));
2244 struct type *type = (*pc)[1].type;
2245 int length = longest_to_int ((*pc)[2].longconst);
2246 char *name = &(*pc)[3].string;
2249 found = gen_aggregate_elt_ref (exp, ax, value, type, name,
2252 error (_("There is no field named %s"), name);
2253 (*pc) += 5 + BYTES_TO_EXP_ELEM (length + 1);
2260 error (_("Attempt to use a type name as an expression."));
2263 error (_("Unsupported operator %s (%d) in expression."),
2264 op_name (exp, op), op);
2268 /* This handles the middle-to-right-side of code generation for binary
2269 expressions, which is shared between regular binary operations and
2270 assign-modify (+= and friends) expressions. */
2273 gen_expr_binop_rest (struct expression *exp,
2274 enum exp_opcode op, union exp_element **pc,
2275 struct agent_expr *ax, struct axs_value *value,
2276 struct axs_value *value1, struct axs_value *value2)
2278 struct type *int_type = builtin_type (exp->gdbarch)->builtin_int;
2280 gen_expr (exp, pc, ax, value2);
2281 gen_usual_unary (exp, ax, value2);
2282 gen_usual_arithmetic (exp, ax, value1, value2);
2286 if (TYPE_CODE (value1->type) == TYPE_CODE_INT
2287 && pointer_type (value2->type))
2289 /* Swap the values and proceed normally. */
2290 ax_simple (ax, aop_swap);
2291 gen_ptradd (ax, value, value2, value1);
2293 else if (pointer_type (value1->type)
2294 && TYPE_CODE (value2->type) == TYPE_CODE_INT)
2295 gen_ptradd (ax, value, value1, value2);
2297 gen_binop (ax, value, value1, value2,
2298 aop_add, aop_add, 1, "addition");
2301 if (pointer_type (value1->type)
2302 && TYPE_CODE (value2->type) == TYPE_CODE_INT)
2303 gen_ptrsub (ax,value, value1, value2);
2304 else if (pointer_type (value1->type)
2305 && pointer_type (value2->type))
2306 /* FIXME --- result type should be ptrdiff_t */
2307 gen_ptrdiff (ax, value, value1, value2,
2308 builtin_type (exp->gdbarch)->builtin_long);
2310 gen_binop (ax, value, value1, value2,
2311 aop_sub, aop_sub, 1, "subtraction");
2314 gen_binop (ax, value, value1, value2,
2315 aop_mul, aop_mul, 1, "multiplication");
2318 gen_binop (ax, value, value1, value2,
2319 aop_div_signed, aop_div_unsigned, 1, "division");
2322 gen_binop (ax, value, value1, value2,
2323 aop_rem_signed, aop_rem_unsigned, 1, "remainder");
2326 gen_binop (ax, value, value1, value2,
2327 aop_lsh, aop_lsh, 1, "left shift");
2330 gen_binop (ax, value, value1, value2,
2331 aop_rsh_signed, aop_rsh_unsigned, 1, "right shift");
2333 case BINOP_SUBSCRIPT:
2337 if (binop_types_user_defined_p (op, value1->type, value2->type))
2339 error (_("cannot subscript requested type: "
2340 "cannot call user defined functions"));
2344 /* If the user attempts to subscript something that is not
2345 an array or pointer type (like a plain int variable for
2346 example), then report this as an error. */
2347 type = check_typedef (value1->type);
2348 if (TYPE_CODE (type) != TYPE_CODE_ARRAY
2349 && TYPE_CODE (type) != TYPE_CODE_PTR)
2351 if (TYPE_NAME (type))
2352 error (_("cannot subscript something of type `%s'"),
2355 error (_("cannot subscript requested type"));
2359 if (!is_integral_type (value2->type))
2360 error (_("Argument to arithmetic operation "
2361 "not a number or boolean."));
2363 gen_ptradd (ax, value, value1, value2);
2364 gen_deref (ax, value);
2367 case BINOP_BITWISE_AND:
2368 gen_binop (ax, value, value1, value2,
2369 aop_bit_and, aop_bit_and, 0, "bitwise and");
2372 case BINOP_BITWISE_IOR:
2373 gen_binop (ax, value, value1, value2,
2374 aop_bit_or, aop_bit_or, 0, "bitwise or");
2377 case BINOP_BITWISE_XOR:
2378 gen_binop (ax, value, value1, value2,
2379 aop_bit_xor, aop_bit_xor, 0, "bitwise exclusive-or");
2383 gen_equal (ax, value, value1, value2, int_type);
2386 case BINOP_NOTEQUAL:
2387 gen_equal (ax, value, value1, value2, int_type);
2388 gen_logical_not (ax, value, int_type);
2392 gen_less (ax, value, value1, value2, int_type);
2396 ax_simple (ax, aop_swap);
2397 gen_less (ax, value, value1, value2, int_type);
2401 ax_simple (ax, aop_swap);
2402 gen_less (ax, value, value1, value2, int_type);
2403 gen_logical_not (ax, value, int_type);
2407 gen_less (ax, value, value1, value2, int_type);
2408 gen_logical_not (ax, value, int_type);
2412 /* We should only list operators in the outer case statement
2413 that we actually handle in the inner case statement. */
2414 internal_error (__FILE__, __LINE__,
2415 _("gen_expr: op case sets don't match"));
2420 /* Given a single variable and a scope, generate bytecodes to trace
2421 its value. This is for use in situations where we have only a
2422 variable's name, and no parsed expression; for instance, when the
2423 name comes from a list of local variables of a function. */
2426 gen_trace_for_var (CORE_ADDR scope, struct gdbarch *gdbarch,
2429 struct cleanup *old_chain = 0;
2430 struct agent_expr *ax = new_agent_expr (gdbarch, scope);
2431 struct axs_value value;
2433 old_chain = make_cleanup_free_agent_expr (ax);
2436 gen_var_ref (gdbarch, ax, &value, var);
2438 /* If there is no actual variable to trace, flag it by returning
2439 an empty agent expression. */
2440 if (value.optimized_out)
2442 do_cleanups (old_chain);
2446 /* Make sure we record the final object, and get rid of it. */
2447 gen_traced_pop (gdbarch, ax, &value);
2449 /* Oh, and terminate. */
2450 ax_simple (ax, aop_end);
2452 /* We have successfully built the agent expr, so cancel the cleanup
2453 request. If we add more cleanups that we always want done, this
2454 will have to get more complicated. */
2455 discard_cleanups (old_chain);
2459 /* Generating bytecode from GDB expressions: driver */
2461 /* Given a GDB expression EXPR, return bytecode to trace its value.
2462 The result will use the `trace' and `trace_quick' bytecodes to
2463 record the value of all memory touched by the expression. The
2464 caller can then use the ax_reqs function to discover which
2465 registers it relies upon. */
2467 gen_trace_for_expr (CORE_ADDR scope, struct expression *expr)
2469 struct cleanup *old_chain = 0;
2470 struct agent_expr *ax = new_agent_expr (expr->gdbarch, scope);
2471 union exp_element *pc;
2472 struct axs_value value;
2474 old_chain = make_cleanup_free_agent_expr (ax);
2478 value.optimized_out = 0;
2479 gen_expr (expr, &pc, ax, &value);
2481 /* Make sure we record the final object, and get rid of it. */
2482 gen_traced_pop (expr->gdbarch, ax, &value);
2484 /* Oh, and terminate. */
2485 ax_simple (ax, aop_end);
2487 /* We have successfully built the agent expr, so cancel the cleanup
2488 request. If we add more cleanups that we always want done, this
2489 will have to get more complicated. */
2490 discard_cleanups (old_chain);
2494 /* Given a GDB expression EXPR, return a bytecode sequence that will
2495 evaluate and return a result. The bytecodes will do a direct
2496 evaluation, using the current data on the target, rather than
2497 recording blocks of memory and registers for later use, as
2498 gen_trace_for_expr does. The generated bytecode sequence leaves
2499 the result of expression evaluation on the top of the stack. */
2502 gen_eval_for_expr (CORE_ADDR scope, struct expression *expr)
2504 struct cleanup *old_chain = 0;
2505 struct agent_expr *ax = new_agent_expr (expr->gdbarch, scope);
2506 union exp_element *pc;
2507 struct axs_value value;
2509 old_chain = make_cleanup_free_agent_expr (ax);
2513 value.optimized_out = 0;
2514 gen_expr (expr, &pc, ax, &value);
2516 require_rvalue (ax, &value);
2518 /* Oh, and terminate. */
2519 ax_simple (ax, aop_end);
2521 /* We have successfully built the agent expr, so cancel the cleanup
2522 request. If we add more cleanups that we always want done, this
2523 will have to get more complicated. */
2524 discard_cleanups (old_chain);
2529 gen_trace_for_return_address (CORE_ADDR scope, struct gdbarch *gdbarch)
2531 struct cleanup *old_chain = 0;
2532 struct agent_expr *ax = new_agent_expr (gdbarch, scope);
2533 struct axs_value value;
2535 old_chain = make_cleanup_free_agent_expr (ax);
2539 gdbarch_gen_return_address (gdbarch, ax, &value, scope);
2541 /* Make sure we record the final object, and get rid of it. */
2542 gen_traced_pop (gdbarch, ax, &value);
2544 /* Oh, and terminate. */
2545 ax_simple (ax, aop_end);
2547 /* We have successfully built the agent expr, so cancel the cleanup
2548 request. If we add more cleanups that we always want done, this
2549 will have to get more complicated. */
2550 discard_cleanups (old_chain);
2554 /* Given a collection of printf-style arguments, generate code to
2555 evaluate the arguments and pass everything to a special
2559 gen_printf (CORE_ADDR scope, struct gdbarch *gdbarch,
2560 CORE_ADDR function, LONGEST channel,
2561 char *format, int fmtlen,
2562 struct format_piece *frags,
2563 int nargs, struct expression **exprs)
2565 struct cleanup *old_chain = 0;
2566 struct agent_expr *ax = new_agent_expr (gdbarch, scope);
2567 union exp_element *pc;
2568 struct axs_value value;
2571 old_chain = make_cleanup_free_agent_expr (ax);
2573 /* Evaluate and push the args on the stack in reverse order,
2574 for simplicity of collecting them on the target side. */
2575 for (tem = nargs - 1; tem >= 0; --tem)
2577 pc = exprs[tem]->elts;
2578 /* We're computing values, not doing side effects. */
2580 value.optimized_out = 0;
2581 gen_expr (exprs[tem], &pc, ax, &value);
2582 require_rvalue (ax, &value);
2585 /* Push function and channel. */
2586 ax_const_l (ax, channel);
2587 ax_const_l (ax, function);
2589 /* Issue the printf bytecode proper. */
2590 ax_simple (ax, aop_printf);
2591 ax_simple (ax, nargs);
2592 ax_string (ax, format, fmtlen);
2594 /* And terminate. */
2595 ax_simple (ax, aop_end);
2597 /* We have successfully built the agent expr, so cancel the cleanup
2598 request. If we add more cleanups that we always want done, this
2599 will have to get more complicated. */
2600 discard_cleanups (old_chain);
2606 agent_eval_command_one (char *exp, int eval, CORE_ADDR pc)
2608 struct cleanup *old_chain = 0;
2609 struct expression *expr;
2610 struct agent_expr *agent;
2614 trace_string_kludge = 0;
2616 exp = decode_agent_options (exp);
2619 if (!eval && strcmp (exp, "$_ret") == 0)
2621 agent = gen_trace_for_return_address (pc, get_current_arch ());
2622 old_chain = make_cleanup_free_agent_expr (agent);
2626 expr = parse_exp_1 (&exp, pc, block_for_pc (pc), 0);
2627 old_chain = make_cleanup (free_current_contents, &expr);
2629 agent = gen_eval_for_expr (pc, expr);
2631 agent = gen_trace_for_expr (pc, expr);
2632 make_cleanup_free_agent_expr (agent);
2636 ax_print (gdb_stdout, agent);
2638 /* It would be nice to call ax_reqs here to gather some general info
2639 about the expression, and then print out the result. */
2641 do_cleanups (old_chain);
2646 agent_command_1 (char *exp, int eval)
2648 /* We don't deal with overlay debugging at the moment. We need to
2649 think more carefully about this. If you copy this code into
2650 another command, change the error message; the user shouldn't
2651 have to know anything about agent expressions. */
2652 if (overlay_debugging)
2653 error (_("GDB can't do agent expression translation with overlays."));
2656 error_no_arg (_("expression to translate"));
2658 if (check_for_argument (&exp, "-at", sizeof ("-at") - 1))
2660 struct linespec_result canonical;
2662 struct linespec_sals *iter;
2663 struct cleanup *old_chain;
2665 exp = skip_spaces (exp);
2666 init_linespec_result (&canonical);
2667 decode_line_full (&exp, DECODE_LINE_FUNFIRSTLINE,
2668 (struct symtab *) NULL, 0, &canonical,
2670 old_chain = make_cleanup_destroy_linespec_result (&canonical);
2671 exp = skip_spaces (exp);
2675 exp = skip_spaces (exp);
2677 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
2681 for (i = 0; i < iter->sals.nelts; i++)
2682 agent_eval_command_one (exp, eval, iter->sals.sals[i].pc);
2684 do_cleanups (old_chain);
2687 agent_eval_command_one (exp, eval, get_frame_pc (get_current_frame ()));
2693 agent_command (char *exp, int from_tty)
2695 agent_command_1 (exp, 0);
2698 /* Parse the given expression, compile it into an agent expression
2699 that does direct evaluation, and display the resulting
2703 agent_eval_command (char *exp, int from_tty)
2705 agent_command_1 (exp, 1);
2708 /* Parse the given expression, compile it into an agent expression
2709 that does a printf, and display the resulting expression. */
2712 maint_agent_printf_command (char *exp, int from_tty)
2714 struct cleanup *old_chain = 0;
2715 struct expression *expr;
2716 struct expression *argvec[100];
2717 struct agent_expr *agent;
2718 struct frame_info *fi = get_current_frame (); /* need current scope */
2720 char *format_start, *format_end;
2721 struct format_piece *fpieces;
2724 /* We don't deal with overlay debugging at the moment. We need to
2725 think more carefully about this. If you copy this code into
2726 another command, change the error message; the user shouldn't
2727 have to know anything about agent expressions. */
2728 if (overlay_debugging)
2729 error (_("GDB can't do agent expression translation with overlays."));
2732 error_no_arg (_("expression to translate"));
2736 cmdrest = skip_spaces (cmdrest);
2738 if (*cmdrest++ != '"')
2739 error (_("Must start with a format string."));
2741 format_start = cmdrest;
2743 fpieces = parse_format_string (&cmdrest);
2745 old_chain = make_cleanup (free_format_pieces_cleanup, &fpieces);
2747 format_end = cmdrest;
2749 if (*cmdrest++ != '"')
2750 error (_("Bad format string, non-terminated '\"'."));
2752 cmdrest = skip_spaces (cmdrest);
2754 if (*cmdrest != ',' && *cmdrest != 0)
2755 error (_("Invalid argument syntax"));
2757 if (*cmdrest == ',')
2759 cmdrest = skip_spaces (cmdrest);
2762 while (*cmdrest != '\0')
2767 expr = parse_exp_1 (&cmd1, 0, (struct block *) 0, 1);
2768 argvec[nargs] = expr;
2771 if (*cmdrest == ',')
2773 /* else complain? */
2777 agent = gen_printf (get_frame_pc (fi), get_current_arch (), 0, 0,
2778 format_start, format_end - format_start,
2779 fpieces, nargs, argvec);
2780 make_cleanup_free_agent_expr (agent);
2782 ax_print (gdb_stdout, agent);
2784 /* It would be nice to call ax_reqs here to gather some general info
2785 about the expression, and then print out the result. */
2787 do_cleanups (old_chain);
2792 /* Initialization code. */
2794 void _initialize_ax_gdb (void);
2796 _initialize_ax_gdb (void)
2798 add_cmd ("agent", class_maintenance, agent_command,
2800 Translate an expression into remote agent bytecode for tracing.\n\
2801 Usage: maint agent [-at location,] EXPRESSION\n\
2802 If -at is given, generate remote agent bytecode for this location.\n\
2803 If not, generate remote agent bytecode for current frame pc address."),
2806 add_cmd ("agent-eval", class_maintenance, agent_eval_command,
2808 Translate an expression into remote agent bytecode for evaluation.\n\
2809 Usage: maint agent-eval [-at location,] EXPRESSION\n\
2810 If -at is given, generate remote agent bytecode for this location.\n\
2811 If not, generate remote agent bytecode for current frame pc address."),
2814 add_cmd ("agent-printf", class_maintenance, maint_agent_printf_command,
2815 _("Translate an expression into remote "
2816 "agent bytecode for evaluation and display the bytecodes."),