1 /* Target-dependent code for Atmel AVR, for GDB.
2 Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003
3 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 /* Contributed by Theodore A. Roth, troth@openavr.org */
24 /* Portions of this file were taken from the original gdb-4.18 patch developed
25 by Denis Chertykov, denisc@overta.ru */
32 #include "arch-utils.h"
34 #include "gdb_string.h"
38 (AVR micros are pure Harvard Architecture processors.)
40 The AVR family of microcontrollers have three distinctly different memory
41 spaces: flash, sram and eeprom. The flash is 16 bits wide and is used for
42 the most part to store program instructions. The sram is 8 bits wide and is
43 used for the stack and the heap. Some devices lack sram and some can have
44 an additional external sram added on as a peripheral.
46 The eeprom is 8 bits wide and is used to store data when the device is
47 powered down. Eeprom is not directly accessible, it can only be accessed
48 via io-registers using a special algorithm. Accessing eeprom via gdb's
49 remote serial protocol ('m' or 'M' packets) looks difficult to do and is
50 not included at this time.
52 [The eeprom could be read manually via ``x/b <eaddr + AVR_EMEM_START>'' or
53 written using ``set {unsigned char}<eaddr + AVR_EMEM_START>''. For this to
54 work, the remote target must be able to handle eeprom accesses and perform
55 the address translation.]
57 All three memory spaces have physical addresses beginning at 0x0. In
58 addition, the flash is addressed by gcc/binutils/gdb with respect to 8 bit
59 bytes instead of the 16 bit wide words used by the real device for the
62 In order for remote targets to work correctly, extra bits must be added to
63 addresses before they are send to the target or received from the target
64 via the remote serial protocol. The extra bits are the MSBs and are used to
65 decode which memory space the address is referring to. */
68 #define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
71 #define EXTRACT_INSN(addr) extract_unsigned_integer(addr,2)
73 /* Constants: prefixed with AVR_ to avoid name space clashes */
87 AVR_NUM_REGS = 32 + 1 /*SREG*/ + 1 /*SP*/ + 1 /*PC*/,
88 AVR_NUM_REG_BYTES = 32 + 1 /*SREG*/ + 2 /*SP*/ + 4 /*PC*/,
90 AVR_PC_REG_INDEX = 35, /* index into array of registers */
92 AVR_MAX_PROLOGUE_SIZE = 56, /* bytes */
94 /* Count of pushed registers. From r2 to r17 (inclusively), r28, r29 */
97 /* Number of the last pushed register. r17 for current avr-gcc */
98 AVR_LAST_PUSHED_REGNUM = 17,
100 /* FIXME: TRoth/2002-01-??: Can we shift all these memory masks left 8
101 bits? Do these have to match the bfd vma values?. It sure would make
102 things easier in the future if they didn't need to match.
104 Note: I chose these values so as to be consistent with bfd vma
107 TRoth/2002-04-08: There is already a conflict with very large programs
108 in the mega128. The mega128 has 128K instruction bytes (64K words),
109 thus the Most Significant Bit is 0x10000 which gets masked off my
112 The problem manifests itself when trying to set a breakpoint in a
113 function which resides in the upper half of the instruction space and
114 thus requires a 17-bit address.
116 For now, I've just removed the EEPROM mask and changed AVR_MEM_MASK
117 from 0x00ff0000 to 0x00f00000. Eeprom is not accessible from gdb yet,
118 but could be for some remote targets by just adding the correct offset
119 to the address and letting the remote target handle the low-level
120 details of actually accessing the eeprom. */
122 AVR_IMEM_START = 0x00000000, /* INSN memory */
123 AVR_SMEM_START = 0x00800000, /* SRAM memory */
125 /* No eeprom mask defined */
126 AVR_MEM_MASK = 0x00f00000, /* mask to determine memory space */
128 AVR_EMEM_START = 0x00810000, /* EEPROM memory */
129 AVR_MEM_MASK = 0x00ff0000, /* mask to determine memory space */
133 /* Any function with a frame looks like this
134 ....... <-SP POINTS HERE
135 LOCALS1 <-FP POINTS HERE
144 struct frame_extra_info
147 CORE_ADDR args_pointer;
156 /* FIXME: TRoth: is there anything to put here? */
160 /* Lookup the name of a register given it's number. */
163 avr_register_name (int regnum)
165 static char *register_names[] = {
166 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
167 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
168 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
169 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
174 if (regnum >= (sizeof (register_names) / sizeof (*register_names)))
176 return register_names[regnum];
179 /* Index within `registers' of the first byte of the space for
183 avr_register_byte (int regnum)
185 if (regnum < AVR_PC_REGNUM)
188 return AVR_PC_REG_INDEX;
191 /* Number of bytes of storage in the actual machine representation for
195 avr_register_raw_size (int regnum)
209 /* Number of bytes of storage in the program's representation
213 avr_register_virtual_size (int regnum)
215 return TYPE_LENGTH (REGISTER_VIRTUAL_TYPE (regnum));
218 /* Return the GDB type object for the "standard" data type
219 of data in register N. */
222 avr_register_virtual_type (int regnum)
227 return builtin_type_unsigned_long;
229 return builtin_type_unsigned_short;
231 return builtin_type_unsigned_char;
235 /* Instruction address checks and convertions. */
238 avr_make_iaddr (CORE_ADDR x)
240 return ((x) | AVR_IMEM_START);
244 avr_iaddr_p (CORE_ADDR x)
246 return (((x) & AVR_MEM_MASK) == AVR_IMEM_START);
249 /* FIXME: TRoth: Really need to use a larger mask for instructions. Some
250 devices are already up to 128KBytes of flash space.
252 TRoth/2002-04-8: See comment above where AVR_IMEM_START is defined. */
255 avr_convert_iaddr_to_raw (CORE_ADDR x)
257 return ((x) & 0xffffffff);
260 /* SRAM address checks and convertions. */
263 avr_make_saddr (CORE_ADDR x)
265 return ((x) | AVR_SMEM_START);
269 avr_saddr_p (CORE_ADDR x)
271 return (((x) & AVR_MEM_MASK) == AVR_SMEM_START);
275 avr_convert_saddr_to_raw (CORE_ADDR x)
277 return ((x) & 0xffffffff);
280 /* EEPROM address checks and convertions. I don't know if these will ever
281 actually be used, but I've added them just the same. TRoth */
283 /* TRoth/2002-04-08: Commented out for now to allow fix for problem with large
284 programs in the mega128. */
286 /* static CORE_ADDR */
287 /* avr_make_eaddr (CORE_ADDR x) */
289 /* return ((x) | AVR_EMEM_START); */
293 /* avr_eaddr_p (CORE_ADDR x) */
295 /* return (((x) & AVR_MEM_MASK) == AVR_EMEM_START); */
298 /* static CORE_ADDR */
299 /* avr_convert_eaddr_to_raw (CORE_ADDR x) */
301 /* return ((x) & 0xffffffff); */
304 /* Convert from address to pointer and vice-versa. */
307 avr_address_to_pointer (struct type *type, void *buf, CORE_ADDR addr)
309 /* Is it a code address? */
310 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
311 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
313 store_unsigned_integer (buf, TYPE_LENGTH (type),
314 avr_convert_iaddr_to_raw (addr));
318 /* Strip off any upper segment bits. */
319 store_unsigned_integer (buf, TYPE_LENGTH (type),
320 avr_convert_saddr_to_raw (addr));
325 avr_pointer_to_address (struct type *type, const void *buf)
327 CORE_ADDR addr = extract_unsigned_integer (buf, TYPE_LENGTH (type));
329 if (TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
331 fprintf_unfiltered (gdb_stderr, "CODE_SPACE ---->> ptr->addr: 0x%lx\n",
333 fprintf_unfiltered (gdb_stderr,
334 "+++ If you see this, please send me an email <troth@openavr.org>\n");
337 /* Is it a code address? */
338 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
339 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
340 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
341 return avr_make_iaddr (addr);
343 return avr_make_saddr (addr);
347 avr_read_pc (ptid_t ptid)
353 save_ptid = inferior_ptid;
354 inferior_ptid = ptid;
355 pc = (int) read_register (AVR_PC_REGNUM);
356 inferior_ptid = save_ptid;
357 retval = avr_make_iaddr (pc);
362 avr_write_pc (CORE_ADDR val, ptid_t ptid)
366 save_ptid = inferior_ptid;
367 inferior_ptid = ptid;
368 write_register (AVR_PC_REGNUM, avr_convert_iaddr_to_raw (val));
369 inferior_ptid = save_ptid;
375 return (avr_make_saddr (read_register (AVR_SP_REGNUM)));
379 avr_write_sp (CORE_ADDR val)
381 write_register (AVR_SP_REGNUM, avr_convert_saddr_to_raw (val));
387 return (avr_make_saddr (read_register (AVR_FP_REGNUM)));
390 /* Translate a GDB virtual ADDR/LEN into a format the remote target
391 understands. Returns number of bytes that can be transfered
392 starting at TARG_ADDR. Return ZERO if no bytes can be transfered
393 (segmentation fault).
395 TRoth/2002-04-08: Could this be used to check for dereferencing an invalid
399 avr_remote_translate_xfer_address (struct gdbarch *gdbarch,
400 struct regcache *regcache,
401 CORE_ADDR memaddr, int nr_bytes,
402 CORE_ADDR *targ_addr, int *targ_len)
407 /* FIXME: TRoth: Do nothing for now. Will need to examine memaddr at this
408 point and see if the high bit are set with the masks that we want. */
410 *targ_addr = memaddr;
411 *targ_len = nr_bytes;
414 /* Function pointers obtained from the target are half of what gdb expects so
418 avr_convert_from_func_ptr_addr (CORE_ADDR addr)
423 /* avr_scan_prologue is also used as the
424 deprecated_frame_init_saved_regs().
426 Put here the code to store, into fi->saved_regs, the addresses of
427 the saved registers of frame described by FRAME_INFO. This
428 includes special registers such as pc and fp saved in special ways
429 in the stack frame. sp is even more special: the address we return
430 for it IS the sp for the next frame. */
432 /* Function: avr_scan_prologue (helper function for avr_init_extra_frame_info)
433 This function decodes a AVR function prologue to determine:
434 1) the size of the stack frame
435 2) which registers are saved on it
436 3) the offsets of saved regs
437 This information is stored in the "extra_info" field of the frame_info.
439 A typical AVR function prologue might look like this:
445 sbiw r28,<LOCALS_SIZE>
446 in __tmp_reg__,__SREG__
449 out __SREG__,__tmp_reg__
452 A `-mcall-prologues' prologue look like this:
453 ldi r26,<LOCALS_SIZE>
454 ldi r27,<LOCALS_SIZE>/265
455 ldi r30,pm_lo8(.L_foo_body)
456 ldi r31,pm_hi8(.L_foo_body)
457 rjmp __prologue_saves__+RRR
461 avr_scan_prologue (struct frame_info *fi)
463 CORE_ADDR prologue_start;
464 CORE_ADDR prologue_end;
470 struct minimal_symbol *msymbol;
472 unsigned char prologue[AVR_MAX_PROLOGUE_SIZE];
475 get_frame_extra_info (fi)->framereg = AVR_SP_REGNUM;
477 if (find_pc_partial_function
478 (get_frame_pc (fi), &name, &prologue_start, &prologue_end))
480 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
482 if (sal.line == 0) /* no line info, use current PC */
483 prologue_end = get_frame_pc (fi);
484 else if (sal.end < prologue_end) /* next line begins after fn end */
485 prologue_end = sal.end; /* (probably means no prologue) */
488 /* We're in the boondocks: allow for */
489 /* 19 pushes, an add, and "mv fp,sp" */
490 prologue_end = prologue_start + AVR_MAX_PROLOGUE_SIZE;
492 prologue_end = min (prologue_end, get_frame_pc (fi));
494 /* Search the prologue looking for instructions that set up the
495 frame pointer, adjust the stack pointer, and save registers. */
497 get_frame_extra_info (fi)->framesize = 0;
498 prologue_len = prologue_end - prologue_start;
499 read_memory (prologue_start, prologue, prologue_len);
501 /* Scanning main()'s prologue
502 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
503 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
507 if (name && strcmp ("main", name) == 0 && prologue_len == 8)
510 unsigned char img[] = {
511 0xde, 0xbf, /* out __SP_H__,r29 */
512 0xcd, 0xbf /* out __SP_L__,r28 */
515 get_frame_extra_info (fi)->framereg = AVR_FP_REGNUM;
516 insn = EXTRACT_INSN (&prologue[vpc]);
517 /* ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) */
518 if ((insn & 0xf0f0) == 0xe0c0)
520 locals = (insn & 0xf) | ((insn & 0x0f00) >> 4);
521 insn = EXTRACT_INSN (&prologue[vpc + 2]);
522 /* ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) */
523 if ((insn & 0xf0f0) == 0xe0d0)
525 locals |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
526 if (memcmp (prologue + vpc + 4, img, sizeof (img)) == 0)
528 deprecated_update_frame_base_hack (fi, locals);
530 get_frame_extra_info (fi)->is_main = 1;
537 /* Scanning `-mcall-prologues' prologue
538 FIXME: mega prologue have a 12 bytes long */
540 while (prologue_len <= 12) /* I'm use while to avoit many goto's */
546 insn = EXTRACT_INSN (&prologue[vpc]);
547 /* ldi r26,<LOCALS_SIZE> */
548 if ((insn & 0xf0f0) != 0xe0a0)
550 loc_size = (insn & 0xf) | ((insn & 0x0f00) >> 4);
552 insn = EXTRACT_INSN (&prologue[vpc + 2]);
553 /* ldi r27,<LOCALS_SIZE> / 256 */
554 if ((insn & 0xf0f0) != 0xe0b0)
556 loc_size |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
558 insn = EXTRACT_INSN (&prologue[vpc + 4]);
559 /* ldi r30,pm_lo8(.L_foo_body) */
560 if ((insn & 0xf0f0) != 0xe0e0)
562 body_addr = (insn & 0xf) | ((insn & 0x0f00) >> 4);
564 insn = EXTRACT_INSN (&prologue[vpc + 6]);
565 /* ldi r31,pm_hi8(.L_foo_body) */
566 if ((insn & 0xf0f0) != 0xe0f0)
568 body_addr |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
570 if (body_addr != (prologue_start + 10) / 2)
573 msymbol = lookup_minimal_symbol ("__prologue_saves__", NULL, NULL);
577 /* FIXME: prologue for mega have a JMP instead of RJMP */
578 insn = EXTRACT_INSN (&prologue[vpc + 8]);
579 /* rjmp __prologue_saves__+RRR */
580 if ((insn & 0xf000) != 0xc000)
583 /* Extract PC relative offset from RJMP */
584 i = (insn & 0xfff) | (insn & 0x800 ? (-1 ^ 0xfff) : 0);
585 /* Convert offset to byte addressable mode */
587 /* Destination address */
588 i += vpc + prologue_start + 10;
589 /* Resovle offset (in words) from __prologue_saves__ symbol.
590 Which is a pushes count in `-mcall-prologues' mode */
591 num_pushes = AVR_MAX_PUSHES - (i - SYMBOL_VALUE_ADDRESS (msymbol)) / 2;
593 if (num_pushes > AVR_MAX_PUSHES)
599 get_frame_saved_regs (fi)[AVR_FP_REGNUM + 1] = num_pushes;
601 get_frame_saved_regs (fi)[AVR_FP_REGNUM] = num_pushes - 1;
603 for (from = AVR_LAST_PUSHED_REGNUM + 1 - (num_pushes - 2);
604 from <= AVR_LAST_PUSHED_REGNUM; ++from)
605 get_frame_saved_regs (fi)[from] = ++i;
607 get_frame_extra_info (fi)->locals_size = loc_size;
608 get_frame_extra_info (fi)->framesize = loc_size + num_pushes;
609 get_frame_extra_info (fi)->framereg = AVR_FP_REGNUM;
613 /* Scan interrupt or signal function */
615 if (prologue_len >= 12)
617 unsigned char img[] = {
618 0x78, 0x94, /* sei */
619 0x1f, 0x92, /* push r1 */
620 0x0f, 0x92, /* push r0 */
621 0x0f, 0xb6, /* in r0,0x3f SREG */
622 0x0f, 0x92, /* push r0 */
623 0x11, 0x24 /* clr r1 */
625 if (memcmp (prologue, img, sizeof (img)) == 0)
628 get_frame_saved_regs (fi)[0] = 2;
629 get_frame_saved_regs (fi)[1] = 1;
630 get_frame_extra_info (fi)->framesize += 3;
632 else if (memcmp (img + 1, prologue, sizeof (img) - 1) == 0)
634 vpc += sizeof (img) - 1;
635 get_frame_saved_regs (fi)[0] = 2;
636 get_frame_saved_regs (fi)[1] = 1;
637 get_frame_extra_info (fi)->framesize += 3;
641 /* First stage of the prologue scanning.
644 for (; vpc <= prologue_len; vpc += 2)
646 insn = EXTRACT_INSN (&prologue[vpc]);
647 if ((insn & 0xfe0f) == 0x920f) /* push rXX */
649 /* Bits 4-9 contain a mask for registers R0-R32. */
650 regno = (insn & 0x1f0) >> 4;
651 ++get_frame_extra_info (fi)->framesize;
652 get_frame_saved_regs (fi)[regno] = get_frame_extra_info (fi)->framesize;
659 /* Second stage of the prologue scanning.
664 if (scan_stage == 1 && vpc + 4 <= prologue_len)
666 unsigned char img[] = {
667 0xcd, 0xb7, /* in r28,__SP_L__ */
668 0xde, 0xb7 /* in r29,__SP_H__ */
670 unsigned short insn1;
672 if (memcmp (prologue + vpc, img, sizeof (img)) == 0)
675 get_frame_extra_info (fi)->framereg = AVR_FP_REGNUM;
680 /* Third stage of the prologue scanning. (Really two stages)
682 sbiw r28,XX or subi r28,lo8(XX)
684 in __tmp_reg__,__SREG__
687 out __SREG__,__tmp_reg__
690 if (scan_stage == 2 && vpc + 12 <= prologue_len)
693 unsigned char img[] = {
694 0x0f, 0xb6, /* in r0,0x3f */
695 0xf8, 0x94, /* cli */
696 0xcd, 0xbf, /* out 0x3d,r28 ; SPL */
697 0x0f, 0xbe, /* out 0x3f,r0 ; SREG */
698 0xde, 0xbf /* out 0x3e,r29 ; SPH */
700 unsigned char img_sig[] = {
701 0xcd, 0xbf, /* out 0x3d,r28 ; SPL */
702 0xde, 0xbf /* out 0x3e,r29 ; SPH */
704 unsigned char img_int[] = {
705 0xf8, 0x94, /* cli */
706 0xcd, 0xbf, /* out 0x3d,r28 ; SPL */
707 0x78, 0x94, /* sei */
708 0xde, 0xbf /* out 0x3e,r29 ; SPH */
711 insn = EXTRACT_INSN (&prologue[vpc]);
713 if ((insn & 0xff30) == 0x9720) /* sbiw r28,XXX */
714 locals_size = (insn & 0xf) | ((insn & 0xc0) >> 2);
715 else if ((insn & 0xf0f0) == 0x50c0) /* subi r28,lo8(XX) */
717 locals_size = (insn & 0xf) | ((insn & 0xf00) >> 4);
718 insn = EXTRACT_INSN (&prologue[vpc]);
720 locals_size += ((insn & 0xf) | ((insn & 0xf00) >> 4) << 8);
724 get_frame_extra_info (fi)->locals_size = locals_size;
725 get_frame_extra_info (fi)->framesize += locals_size;
729 /* This function actually figures out the frame address for a given pc and
730 sp. This is tricky because we sometimes don't use an explicit
731 frame pointer, and the previous stack pointer isn't necessarily recorded
732 on the stack. The only reliable way to get this info is to
733 examine the prologue. */
736 avr_init_extra_frame_info (int fromleaf, struct frame_info *fi)
740 if (get_next_frame (fi))
741 deprecated_update_frame_pc_hack (fi, DEPRECATED_FRAME_SAVED_PC (get_next_frame (fi)));
743 frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
744 frame_saved_regs_zalloc (fi);
746 get_frame_extra_info (fi)->return_pc = 0;
747 get_frame_extra_info (fi)->args_pointer = 0;
748 get_frame_extra_info (fi)->locals_size = 0;
749 get_frame_extra_info (fi)->framereg = 0;
750 get_frame_extra_info (fi)->framesize = 0;
751 get_frame_extra_info (fi)->is_main = 0;
753 avr_scan_prologue (fi);
755 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi), get_frame_base (fi),
756 get_frame_base (fi)))
758 /* We need to setup fi->frame here because call_function_by_hand
759 gets it wrong by assuming it's always FP. */
760 deprecated_update_frame_base_hack (fi, deprecated_read_register_dummy (get_frame_pc (fi), get_frame_base (fi),
763 else if (!get_next_frame (fi))
764 /* this is the innermost frame? */
765 deprecated_update_frame_base_hack (fi, read_register (get_frame_extra_info (fi)->framereg));
766 else if (get_frame_extra_info (fi)->is_main != 1)
767 /* not the innermost frame, not `main' */
768 /* If we have an next frame, the callee saved it. */
770 struct frame_info *next_fi = get_next_frame (fi);
771 if (get_frame_extra_info (fi)->framereg == AVR_SP_REGNUM)
772 deprecated_update_frame_base_hack (fi, (get_frame_base (next_fi)
774 + get_frame_extra_info (next_fi)->framesize));
775 /* FIXME: I don't analyse va_args functions */
780 unsigned int fp_low, fp_high;
782 /* Scan all frames */
783 for (; next_fi; next_fi = get_next_frame (next_fi))
785 /* look for saved AVR_FP_REGNUM */
786 if (get_frame_saved_regs (next_fi)[AVR_FP_REGNUM] && !fp)
787 fp = get_frame_saved_regs (next_fi)[AVR_FP_REGNUM];
788 /* look for saved AVR_FP_REGNUM + 1 */
789 if (get_frame_saved_regs (next_fi)[AVR_FP_REGNUM + 1] && !fp1)
790 fp1 = get_frame_saved_regs (next_fi)[AVR_FP_REGNUM + 1];
792 fp_low = (fp ? read_memory_unsigned_integer (avr_make_saddr (fp), 1)
793 : read_register (AVR_FP_REGNUM)) & 0xff;
795 (fp1 ? read_memory_unsigned_integer (avr_make_saddr (fp1), 1) :
796 read_register (AVR_FP_REGNUM + 1)) & 0xff;
797 deprecated_update_frame_base_hack (fi, fp_low | (fp_high << 8));
801 /* TRoth: Do we want to do this if we are in main? I don't think we should
802 since return_pc makes no sense when we are in main. */
804 if ((get_frame_pc (fi)) && (get_frame_extra_info (fi)->is_main == 0))
805 /* We are not in CALL_DUMMY */
810 addr = get_frame_base (fi) + get_frame_extra_info (fi)->framesize + 1;
812 /* Return address in stack in different endianness */
814 get_frame_extra_info (fi)->return_pc =
815 read_memory_unsigned_integer (avr_make_saddr (addr), 1) << 8;
816 get_frame_extra_info (fi)->return_pc |=
817 read_memory_unsigned_integer (avr_make_saddr (addr + 1), 1);
819 /* This return address in words,
820 must be converted to the bytes address */
821 get_frame_extra_info (fi)->return_pc *= 2;
823 /* Resolve a pushed registers addresses */
824 for (i = 0; i < NUM_REGS; i++)
826 if (get_frame_saved_regs (fi)[i])
827 get_frame_saved_regs (fi)[i] = addr - get_frame_saved_regs (fi)[i];
832 /* Restore the machine to the state it had before the current frame was
833 created. Usually used either by the "RETURN" command, or by
834 call_function_by_hand after the dummy_frame is finished. */
841 struct frame_info *frame = get_current_frame ();
843 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
844 get_frame_base (frame),
845 get_frame_base (frame)))
847 generic_pop_dummy_frame ();
851 /* TRoth: Why only loop over 8 registers? */
853 for (regnum = 0; regnum < 8; regnum++)
855 /* Don't forget AVR_SP_REGNUM in a frame_saved_regs struct is the
856 actual value we want, not the address of the value we want. */
857 if (get_frame_saved_regs (frame)[regnum] && regnum != AVR_SP_REGNUM)
859 saddr = avr_make_saddr (get_frame_saved_regs (frame)[regnum]);
860 write_register (regnum,
861 read_memory_unsigned_integer (saddr, 1));
863 else if (get_frame_saved_regs (frame)[regnum] && regnum == AVR_SP_REGNUM)
864 write_register (regnum, get_frame_base (frame) + 2);
867 /* Don't forget the update the PC too! */
868 write_pc (get_frame_extra_info (frame)->return_pc);
870 flush_cached_frames ();
873 /* Return the saved PC from this frame. */
876 avr_frame_saved_pc (struct frame_info *frame)
878 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
879 get_frame_base (frame),
880 get_frame_base (frame)))
881 return deprecated_read_register_dummy (get_frame_pc (frame),
882 get_frame_base (frame),
885 return get_frame_extra_info (frame)->return_pc;
889 avr_saved_pc_after_call (struct frame_info *frame)
891 unsigned char m1, m2;
892 unsigned int sp = read_register (AVR_SP_REGNUM);
893 m1 = read_memory_unsigned_integer (avr_make_saddr (sp + 1), 1);
894 m2 = read_memory_unsigned_integer (avr_make_saddr (sp + 2), 1);
895 return (m2 | (m1 << 8)) * 2;
898 /* Returns the return address for a dummy. */
901 avr_call_dummy_address (void)
903 return entry_point_address ();
906 /* Setup the return address for a dummy frame, as called by
907 call_function_by_hand. Only necessary when you are using an empty
911 avr_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
913 unsigned char buf[2];
916 struct minimal_symbol *msymbol;
923 write_memory (sp + 1, buf, 2);
926 /* FIXME: TRoth/2002-02-18: This should probably be removed since it's a
927 left-over from Denis' original patch which used avr-mon for the target
928 instead of the generic remote target. */
929 if ((strcmp (target_shortname, "avr-mon") == 0)
930 && (msymbol = lookup_minimal_symbol ("gdb_break", NULL, NULL)))
932 mon_brk = SYMBOL_VALUE_ADDRESS (msymbol);
933 store_unsigned_integer (buf, wordsize, mon_brk / 2);
935 write_memory (sp + 1, buf + 1, 1);
936 write_memory (sp + 2, buf, 1);
943 avr_skip_prologue (CORE_ADDR pc)
945 CORE_ADDR func_addr, func_end;
946 struct symtab_and_line sal;
948 /* See what the symbol table says */
950 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
952 sal = find_pc_line (func_addr, 0);
954 /* troth/2002-08-05: For some very simple functions, gcc doesn't
955 generate a prologue and the sal.end ends up being the 2-byte ``ret''
956 instruction at the end of the function, but func_end ends up being
957 the address of the first instruction of the _next_ function. By
958 adjusting func_end by 2 bytes, we can catch these functions and not
959 return sal.end if it is the ``ret'' instruction. */
961 if (sal.line != 0 && sal.end < (func_end-2))
965 /* Either we didn't find the start of this function (nothing we can do),
966 or there's no line info, or the line after the prologue is after
967 the end of the function (there probably isn't a prologue). */
973 avr_frame_address (struct frame_info *fi)
975 return avr_make_saddr (get_frame_base (fi));
978 /* Given a GDB frame, determine the address of the calling function's
979 frame. This will be used to create a new GDB frame struct, and
980 then DEPRECATED_INIT_EXTRA_FRAME_INFO and DEPRECATED_INIT_FRAME_PC
981 will be called for the new frame.
983 For us, the frame address is its stack pointer value, so we look up
984 the function prologue to determine the caller's sp value, and return it. */
987 avr_frame_chain (struct frame_info *frame)
989 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
990 get_frame_base (frame),
991 get_frame_base (frame)))
993 /* initialize the return_pc now */
994 get_frame_extra_info (frame)->return_pc
995 = deprecated_read_register_dummy (get_frame_pc (frame),
996 get_frame_base (frame),
998 return get_frame_base (frame);
1000 return (get_frame_extra_info (frame)->is_main ? 0
1001 : get_frame_base (frame) + get_frame_extra_info (frame)->framesize + 2 /* ret addr */ );
1004 /* Store the address of the place in which to copy the structure the
1005 subroutine will return. This is called from call_function.
1007 We store structs through a pointer passed in the first Argument
1011 avr_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
1013 write_register (0, addr);
1016 /* Setup the function arguments for calling a function in the inferior.
1018 On the AVR architecture, there are 18 registers (R25 to R8) which are
1019 dedicated for passing function arguments. Up to the first 18 arguments
1020 (depending on size) may go into these registers. The rest go on the stack.
1022 Arguments that are larger than WORDSIZE bytes will be split between two or
1023 more registers as available, but will NOT be split between a register and
1026 An exceptional case exists for struct arguments (and possibly other
1027 aggregates such as arrays) -- if the size is larger than WORDSIZE bytes but
1028 not a multiple of WORDSIZE bytes. In this case the argument is never split
1029 between the registers and the stack, but instead is copied in its entirety
1030 onto the stack, AND also copied into as many registers as there is room
1031 for. In other words, space in registers permitting, two copies of the same
1032 argument are passed in. As far as I can tell, only the one on the stack is
1033 used, although that may be a function of the level of compiler
1034 optimization. I suspect this is a compiler bug. Arguments of these odd
1035 sizes are left-justified within the word (as opposed to arguments smaller
1036 than WORDSIZE bytes, which are right-justified).
1038 If the function is to return an aggregate type such as a struct, the caller
1039 must allocate space into which the callee will copy the return value. In
1040 this case, a pointer to the return value location is passed into the callee
1041 in register R0, which displaces one of the other arguments passed in via
1042 registers R0 to R2. */
1045 avr_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1046 int struct_return, CORE_ADDR struct_addr)
1048 int stack_alloc, stack_offset;
1060 /* Now make sure there's space on the stack */
1061 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
1062 stack_alloc += TYPE_LENGTH (VALUE_TYPE (args[argnum]));
1063 sp -= stack_alloc; /* make room on stack for args */
1064 /* we may over-allocate a little here, but that won't hurt anything */
1067 if (struct_return) /* "struct return" pointer takes up one argreg */
1069 write_register (--argreg, struct_addr);
1072 /* Now load as many as possible of the first arguments into registers, and
1073 push the rest onto the stack. There are 3N bytes in three registers
1074 available. Loop thru args from first to last. */
1076 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
1078 type = VALUE_TYPE (args[argnum]);
1079 len = TYPE_LENGTH (type);
1080 val = (char *) VALUE_CONTENTS (args[argnum]);
1082 /* NOTE WELL!!!!! This is not an "else if" clause!!! That's because
1083 some *&^%$ things get passed on the stack AND in the registers! */
1085 { /* there's room in registers */
1087 regval = extract_unsigned_integer (val + len, wordsize);
1088 write_register (argreg--, regval);
1094 /* Not all avr devices support the BREAK insn. Those that don't should treat
1095 it as a NOP. Thus, it should be ok. Since the avr is currently a remote
1096 only target, this shouldn't be a problem (I hope). TRoth/2003-05-14 */
1098 const unsigned char *
1099 avr_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
1101 static unsigned char avr_break_insn [] = { 0x98, 0x95 };
1102 *lenptr = sizeof (avr_break_insn);
1103 return avr_break_insn;
1106 /* Initialize the gdbarch structure for the AVR's. */
1108 static struct gdbarch *
1109 avr_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1111 /* FIXME: TRoth/2002-02-18: I have no idea if avr_call_dummy_words[] should
1112 be bigger or not. Initial testing seems to show that `call my_func()`
1113 works and backtrace from a breakpoint within the call looks correct.
1114 Admittedly, I haven't tested with more than a very simple program. */
1115 static LONGEST avr_call_dummy_words[] = { 0 };
1117 struct gdbarch *gdbarch;
1118 struct gdbarch_tdep *tdep;
1120 /* Find a candidate among the list of pre-declared architectures. */
1121 arches = gdbarch_list_lookup_by_info (arches, &info);
1123 return arches->gdbarch;
1125 /* None found, create a new architecture from the information provided. */
1126 tdep = XMALLOC (struct gdbarch_tdep);
1127 gdbarch = gdbarch_alloc (&info, tdep);
1129 /* NOTE: cagney/2002-12-06: This can be deleted when this arch is
1130 ready to unwind the PC first (see frame.c:get_prev_frame()). */
1131 set_gdbarch_deprecated_init_frame_pc (gdbarch, init_frame_pc_default);
1133 /* If we ever need to differentiate the device types, do it here. */
1134 switch (info.bfd_arch_info->mach)
1144 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1145 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1146 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1147 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1148 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1149 set_gdbarch_addr_bit (gdbarch, 32);
1150 set_gdbarch_bfd_vma_bit (gdbarch, 32); /* FIXME: TRoth/2002-02-18: Is this needed? */
1152 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1153 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1154 set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1156 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
1157 set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_little);
1158 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_single_little);
1160 set_gdbarch_read_pc (gdbarch, avr_read_pc);
1161 set_gdbarch_write_pc (gdbarch, avr_write_pc);
1162 set_gdbarch_deprecated_target_read_fp (gdbarch, avr_read_fp);
1163 set_gdbarch_read_sp (gdbarch, avr_read_sp);
1164 set_gdbarch_deprecated_dummy_write_sp (gdbarch, avr_write_sp);
1166 set_gdbarch_num_regs (gdbarch, AVR_NUM_REGS);
1168 set_gdbarch_sp_regnum (gdbarch, AVR_SP_REGNUM);
1169 set_gdbarch_deprecated_fp_regnum (gdbarch, AVR_FP_REGNUM);
1170 set_gdbarch_pc_regnum (gdbarch, AVR_PC_REGNUM);
1172 set_gdbarch_register_name (gdbarch, avr_register_name);
1173 set_gdbarch_deprecated_register_size (gdbarch, 1);
1174 set_gdbarch_deprecated_register_bytes (gdbarch, AVR_NUM_REG_BYTES);
1175 set_gdbarch_register_byte (gdbarch, avr_register_byte);
1176 set_gdbarch_register_raw_size (gdbarch, avr_register_raw_size);
1177 set_gdbarch_deprecated_max_register_raw_size (gdbarch, 4);
1178 set_gdbarch_register_virtual_size (gdbarch, avr_register_virtual_size);
1179 set_gdbarch_deprecated_max_register_virtual_size (gdbarch, 4);
1180 set_gdbarch_register_virtual_type (gdbarch, avr_register_virtual_type);
1182 set_gdbarch_print_insn (gdbarch, print_insn_avr);
1184 set_gdbarch_call_dummy_address (gdbarch, avr_call_dummy_address);
1185 set_gdbarch_deprecated_call_dummy_words (gdbarch, avr_call_dummy_words);
1187 /* set_gdbarch_believe_pcc_promotion (gdbarch, 1); // TRoth: should this be set? */
1189 set_gdbarch_address_to_pointer (gdbarch, avr_address_to_pointer);
1190 set_gdbarch_pointer_to_address (gdbarch, avr_pointer_to_address);
1191 set_gdbarch_deprecated_push_arguments (gdbarch, avr_push_arguments);
1192 set_gdbarch_deprecated_push_return_address (gdbarch, avr_push_return_address);
1193 set_gdbarch_deprecated_pop_frame (gdbarch, avr_pop_frame);
1195 set_gdbarch_use_struct_convention (gdbarch, generic_use_struct_convention);
1196 set_gdbarch_deprecated_store_struct_return (gdbarch, avr_store_struct_return);
1198 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, avr_scan_prologue);
1199 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, avr_init_extra_frame_info);
1200 set_gdbarch_skip_prologue (gdbarch, avr_skip_prologue);
1201 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1203 set_gdbarch_decr_pc_after_break (gdbarch, 0);
1204 set_gdbarch_breakpoint_from_pc (gdbarch, avr_breakpoint_from_pc);
1206 set_gdbarch_function_start_offset (gdbarch, 0);
1207 set_gdbarch_remote_translate_xfer_address (gdbarch,
1208 avr_remote_translate_xfer_address);
1209 set_gdbarch_frame_args_skip (gdbarch, 0);
1210 set_gdbarch_frameless_function_invocation (gdbarch, frameless_look_for_prologue); /* ??? */
1211 set_gdbarch_deprecated_frame_chain (gdbarch, avr_frame_chain);
1212 set_gdbarch_deprecated_frame_saved_pc (gdbarch, avr_frame_saved_pc);
1213 set_gdbarch_frame_args_address (gdbarch, avr_frame_address);
1214 set_gdbarch_frame_locals_address (gdbarch, avr_frame_address);
1215 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, avr_saved_pc_after_call);
1217 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
1218 avr_convert_from_func_ptr_addr);
1223 /* Send a query request to the avr remote target asking for values of the io
1224 registers. If args parameter is not NULL, then the user has requested info
1225 on a specific io register [This still needs implemented and is ignored for
1226 now]. The query string should be one of these forms:
1228 "Ravr.io_reg" -> reply is "NN" number of io registers
1230 "Ravr.io_reg:addr,len" where addr is first register and len is number of
1231 registers to be read. The reply should be "<NAME>,VV;" for each io register
1232 where, <NAME> is a string, and VV is the hex value of the register.
1234 All io registers are 8-bit. */
1237 avr_io_reg_read_command (char *args, int from_tty)
1243 unsigned int nreg = 0;
1247 /* fprintf_unfiltered (gdb_stderr, "DEBUG: avr_io_reg_read_command (\"%s\", %d)\n", */
1248 /* args, from_tty); */
1250 if (!current_target.to_query)
1252 fprintf_unfiltered (gdb_stderr,
1253 "ERR: info io_registers NOT supported by current target\n");
1257 /* Just get the maximum buffer size. */
1258 target_query ((int) 'R', 0, 0, &bufsiz);
1259 if (bufsiz > sizeof (buf))
1260 bufsiz = sizeof (buf);
1262 /* Find out how many io registers the target has. */
1263 strcpy (query, "avr.io_reg");
1264 target_query ((int) 'R', query, buf, &bufsiz);
1266 if (strncmp (buf, "", bufsiz) == 0)
1268 fprintf_unfiltered (gdb_stderr,
1269 "info io_registers NOT supported by target\n");
1273 if (sscanf (buf, "%x", &nreg) != 1)
1275 fprintf_unfiltered (gdb_stderr,
1276 "Error fetching number of io registers\n");
1280 reinitialize_more_filter ();
1282 printf_unfiltered ("Target has %u io registers:\n\n", nreg);
1284 /* only fetch up to 8 registers at a time to keep the buffer small */
1287 for (i = 0; i < nreg; i += step)
1289 /* how many registers this round? */
1292 j = nreg - i; /* last block is less than 8 registers */
1294 snprintf (query, sizeof (query) - 1, "avr.io_reg:%x,%x", i, j);
1295 target_query ((int) 'R', query, buf, &bufsiz);
1298 for (k = i; k < (i + j); k++)
1300 if (sscanf (p, "%[^,],%x;", query, &val) == 2)
1302 printf_filtered ("[%02x] %-15s : %02x\n", k, query, val);
1303 while ((*p != ';') && (*p != '\0'))
1305 p++; /* skip over ';' */
1314 _initialize_avr_tdep (void)
1316 register_gdbarch_init (bfd_arch_avr, avr_gdbarch_init);
1318 /* Add a new command to allow the user to query the avr remote target for
1319 the values of the io space registers in a saner way than just using
1322 /* FIXME: TRoth/2002-02-18: This should probably be changed to 'info avr
1323 io_registers' to signify it is not available on other platforms. */
1325 add_cmd ("io_registers", class_info, avr_io_reg_read_command,
1326 "query remote avr target for io space register values", &infolist);