1 /* Target-dependent code for Atmel AVR, for GDB.
2 Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002
3 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 /* Contributed by Theodore A. Roth, troth@verinet.com */
24 /* Portions of this file were taken from the original gdb-4.18 patch developed
25 by Denis Chertykov, denisc@overta.ru */
32 #include "arch-utils.h"
34 #include "gdb_string.h"
38 (AVR micros are pure Harvard Architecture processors.)
40 The AVR family of microcontrollers have three distinctly different memory
41 spaces: flash, sram and eeprom. The flash is 16 bits wide and is used for
42 the most part to store program instructions. The sram is 8 bits wide and is
43 used for the stack and the heap. Some devices lack sram and some can have
44 an additional external sram added on as a peripheral.
46 The eeprom is 8 bits wide and is used to store data when the device is
47 powered down. Eeprom is not directly accessible, it can only be accessed
48 via io-registers using a special algorithm. Accessing eeprom via gdb's
49 remote serial protocol ('m' or 'M' packets) looks difficult to do and is
50 not included at this time.
52 [The eeprom could be read manually via ``x/b <eaddr + AVR_EMEM_START>'' or
53 written using ``set {unsigned char}<eaddr + AVR_EMEM_START>''. For this to
54 work, the remote target must be able to handle eeprom accesses and perform
55 the address translation.]
57 All three memory spaces have physical addresses beginning at 0x0. In
58 addition, the flash is addressed by gcc/binutils/gdb with respect to 8 bit
59 bytes instead of the 16 bit wide words used by the real device for the
62 In order for remote targets to work correctly, extra bits must be added to
63 addresses before they are send to the target or received from the target
64 via the remote serial protocol. The extra bits are the MSBs and are used to
65 decode which memory space the address is referring to. */
68 #define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
71 #define EXTRACT_INSN(addr) extract_unsigned_integer(addr,2)
73 /* Constants: prefixed with AVR_ to avoid name space clashes */
87 AVR_NUM_REGS = 32 + 1 /*SREG*/ + 1 /*SP*/ + 1 /*PC*/,
88 AVR_NUM_REG_BYTES = 32 + 1 /*SREG*/ + 2 /*SP*/ + 4 /*PC*/,
90 AVR_PC_REG_INDEX = 35, /* index into array of registers */
92 AVR_MAX_PROLOGUE_SIZE = 56, /* bytes */
94 /* Count of pushed registers. From r2 to r17 (inclusively), r28, r29 */
97 /* Number of the last pushed register. r17 for current avr-gcc */
98 AVR_LAST_PUSHED_REGNUM = 17,
100 /* FIXME: TRoth/2002-01-??: Can we shift all these memory masks left 8
101 bits? Do these have to match the bfd vma values?. It sure would make
102 things easier in the future if they didn't need to match.
104 Note: I chose these values so as to be consistent with bfd vma
107 TRoth/2002-04-08: There is already a conflict with very large programs
108 in the mega128. The mega128 has 128K instruction bytes (64K words),
109 thus the Most Significant Bit is 0x10000 which gets masked off my
112 The problem manifests itself when trying to set a breakpoint in a
113 function which resides in the upper half of the instruction space and
114 thus requires a 17-bit address.
116 For now, I've just removed the EEPROM mask and changed AVR_MEM_MASK
117 from 0x00ff0000 to 0x00f00000. Eeprom is not accessible from gdb yet,
118 but could be for some remote targets by just adding the correct offset
119 to the address and letting the remote target handle the low-level
120 details of actually accessing the eeprom. */
122 AVR_IMEM_START = 0x00000000, /* INSN memory */
123 AVR_SMEM_START = 0x00800000, /* SRAM memory */
125 /* No eeprom mask defined */
126 AVR_MEM_MASK = 0x00f00000, /* mask to determine memory space */
128 AVR_EMEM_START = 0x00810000, /* EEPROM memory */
129 AVR_MEM_MASK = 0x00ff0000, /* mask to determine memory space */
133 /* Any function with a frame looks like this
134 ....... <-SP POINTS HERE
135 LOCALS1 <-FP POINTS HERE
144 struct frame_extra_info
147 CORE_ADDR args_pointer;
156 /* FIXME: TRoth: is there anything to put here? */
160 /* Lookup the name of a register given it's number. */
163 avr_register_name (int regnum)
165 static char *register_names[] = {
166 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
167 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
168 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
169 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
174 if (regnum >= (sizeof (register_names) / sizeof (*register_names)))
176 return register_names[regnum];
179 /* Index within `registers' of the first byte of the space for
183 avr_register_byte (int regnum)
185 if (regnum < AVR_PC_REGNUM)
188 return AVR_PC_REG_INDEX;
191 /* Number of bytes of storage in the actual machine representation for
195 avr_register_raw_size (int regnum)
209 /* Number of bytes of storage in the program's representation
213 avr_register_virtual_size (int regnum)
215 return TYPE_LENGTH (REGISTER_VIRTUAL_TYPE (regnum));
218 /* Return the GDB type object for the "standard" data type
219 of data in register N. */
222 avr_register_virtual_type (int regnum)
227 return builtin_type_unsigned_long;
229 return builtin_type_unsigned_short;
231 return builtin_type_unsigned_char;
235 /* Instruction address checks and convertions. */
238 avr_make_iaddr (CORE_ADDR x)
240 return ((x) | AVR_IMEM_START);
244 avr_iaddr_p (CORE_ADDR x)
246 return (((x) & AVR_MEM_MASK) == AVR_IMEM_START);
249 /* FIXME: TRoth: Really need to use a larger mask for instructions. Some
250 devices are already up to 128KBytes of flash space.
252 TRoth/2002-04-8: See comment above where AVR_IMEM_START is defined. */
255 avr_convert_iaddr_to_raw (CORE_ADDR x)
257 return ((x) & 0xffffffff);
260 /* SRAM address checks and convertions. */
263 avr_make_saddr (CORE_ADDR x)
265 return ((x) | AVR_SMEM_START);
269 avr_saddr_p (CORE_ADDR x)
271 return (((x) & AVR_MEM_MASK) == AVR_SMEM_START);
275 avr_convert_saddr_to_raw (CORE_ADDR x)
277 return ((x) & 0xffffffff);
280 /* EEPROM address checks and convertions. I don't know if these will ever
281 actually be used, but I've added them just the same. TRoth */
283 /* TRoth/2002-04-08: Commented out for now to allow fix for problem with large
284 programs in the mega128. */
286 /* static CORE_ADDR */
287 /* avr_make_eaddr (CORE_ADDR x) */
289 /* return ((x) | AVR_EMEM_START); */
293 /* avr_eaddr_p (CORE_ADDR x) */
295 /* return (((x) & AVR_MEM_MASK) == AVR_EMEM_START); */
298 /* static CORE_ADDR */
299 /* avr_convert_eaddr_to_raw (CORE_ADDR x) */
301 /* return ((x) & 0xffffffff); */
304 /* Convert from address to pointer and vice-versa. */
307 avr_address_to_pointer (struct type *type, void *buf, CORE_ADDR addr)
309 /* Is it a code address? */
310 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
311 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
313 store_unsigned_integer (buf, TYPE_LENGTH (type),
314 avr_convert_iaddr_to_raw (addr));
318 /* Strip off any upper segment bits. */
319 store_unsigned_integer (buf, TYPE_LENGTH (type),
320 avr_convert_saddr_to_raw (addr));
325 avr_pointer_to_address (struct type *type, void *buf)
327 CORE_ADDR addr = extract_address (buf, TYPE_LENGTH (type));
329 if (TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
331 fprintf_unfiltered (gdb_stderr, "CODE_SPACE ---->> ptr->addr: 0x%lx\n",
333 fprintf_unfiltered (gdb_stderr,
334 "+++ If you see this, please send me an email <troth@verinet.com>\n");
337 /* Is it a code address? */
338 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
339 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
340 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
341 return avr_make_iaddr (addr);
343 return avr_make_saddr (addr);
347 avr_read_pc (ptid_t ptid)
353 save_ptid = inferior_ptid;
354 inferior_ptid = ptid;
355 pc = (int) read_register (AVR_PC_REGNUM);
356 inferior_ptid = save_ptid;
357 retval = avr_make_iaddr (pc);
362 avr_write_pc (CORE_ADDR val, ptid_t ptid)
366 save_ptid = inferior_ptid;
367 inferior_ptid = ptid;
368 write_register (AVR_PC_REGNUM, avr_convert_iaddr_to_raw (val));
369 inferior_ptid = save_ptid;
375 return (avr_make_saddr (read_register (AVR_SP_REGNUM)));
379 avr_write_sp (CORE_ADDR val)
381 write_register (AVR_SP_REGNUM, avr_convert_saddr_to_raw (val));
387 return (avr_make_saddr (read_register (AVR_FP_REGNUM)));
390 /* Translate a GDB virtual ADDR/LEN into a format the remote target
391 understands. Returns number of bytes that can be transfered
392 starting at TARG_ADDR. Return ZERO if no bytes can be transfered
393 (segmentation fault).
395 TRoth/2002-04-08: Could this be used to check for dereferencing an invalid
399 avr_remote_translate_xfer_address (CORE_ADDR memaddr, int nr_bytes,
400 CORE_ADDR *targ_addr, int *targ_len)
405 /* FIXME: TRoth: Do nothing for now. Will need to examine memaddr at this
406 point and see if the high bit are set with the masks that we want. */
408 *targ_addr = memaddr;
409 *targ_len = nr_bytes;
412 /* Function pointers obtained from the target are half of what gdb expects so
416 avr_convert_from_func_ptr_addr (CORE_ADDR addr)
421 /* avr_scan_prologue is also used as the frame_init_saved_regs().
423 Put here the code to store, into fi->saved_regs, the addresses of
424 the saved registers of frame described by FRAME_INFO. This
425 includes special registers such as pc and fp saved in special ways
426 in the stack frame. sp is even more special: the address we return
427 for it IS the sp for the next frame. */
429 /* Function: avr_scan_prologue (helper function for avr_init_extra_frame_info)
430 This function decodes a AVR function prologue to determine:
431 1) the size of the stack frame
432 2) which registers are saved on it
433 3) the offsets of saved regs
434 This information is stored in the "extra_info" field of the frame_info.
436 A typical AVR function prologue might look like this:
442 sbiw r28,<LOCALS_SIZE>
443 in __tmp_reg__,__SREG__
446 out __SREG__,__tmp_reg__
449 A `-mcall-prologues' prologue look like this:
450 ldi r26,<LOCALS_SIZE>
451 ldi r27,<LOCALS_SIZE>/265
452 ldi r30,pm_lo8(.L_foo_body)
453 ldi r31,pm_hi8(.L_foo_body)
454 rjmp __prologue_saves__+RRR
458 avr_scan_prologue (struct frame_info *fi)
460 CORE_ADDR prologue_start;
461 CORE_ADDR prologue_end;
467 struct minimal_symbol *msymbol;
469 unsigned char prologue[AVR_MAX_PROLOGUE_SIZE];
472 fi->extra_info->framereg = AVR_SP_REGNUM;
474 if (find_pc_partial_function
475 (fi->pc, &name, &prologue_start, &prologue_end))
477 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
479 if (sal.line == 0) /* no line info, use current PC */
480 prologue_end = fi->pc;
481 else if (sal.end < prologue_end) /* next line begins after fn end */
482 prologue_end = sal.end; /* (probably means no prologue) */
485 /* We're in the boondocks: allow for */
486 /* 19 pushes, an add, and "mv fp,sp" */
487 prologue_end = prologue_start + AVR_MAX_PROLOGUE_SIZE;
489 prologue_end = min (prologue_end, fi->pc);
491 /* Search the prologue looking for instructions that set up the
492 frame pointer, adjust the stack pointer, and save registers. */
494 fi->extra_info->framesize = 0;
495 prologue_len = prologue_end - prologue_start;
496 read_memory (prologue_start, prologue, prologue_len);
498 /* Scanning main()'s prologue
499 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
500 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
504 if (name && strcmp ("main", name) == 0 && prologue_len == 8)
507 unsigned char img[] = {
508 0xde, 0xbf, /* out __SP_H__,r29 */
509 0xcd, 0xbf /* out __SP_L__,r28 */
512 fi->extra_info->framereg = AVR_FP_REGNUM;
513 insn = EXTRACT_INSN (&prologue[vpc]);
514 /* ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) */
515 if ((insn & 0xf0f0) == 0xe0c0)
517 locals = (insn & 0xf) | ((insn & 0x0f00) >> 4);
518 insn = EXTRACT_INSN (&prologue[vpc + 2]);
519 /* ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) */
520 if ((insn & 0xf0f0) == 0xe0d0)
522 locals |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
523 if (memcmp (prologue + vpc + 4, img, sizeof (img)) == 0)
527 fi->extra_info->is_main = 1;
534 /* Scanning `-mcall-prologues' prologue
535 FIXME: mega prologue have a 12 bytes long */
537 while (prologue_len <= 12) /* I'm use while to avoit many goto's */
543 insn = EXTRACT_INSN (&prologue[vpc]);
544 /* ldi r26,<LOCALS_SIZE> */
545 if ((insn & 0xf0f0) != 0xe0a0)
547 loc_size = (insn & 0xf) | ((insn & 0x0f00) >> 4);
549 insn = EXTRACT_INSN (&prologue[vpc + 2]);
550 /* ldi r27,<LOCALS_SIZE> / 256 */
551 if ((insn & 0xf0f0) != 0xe0b0)
553 loc_size |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
555 insn = EXTRACT_INSN (&prologue[vpc + 4]);
556 /* ldi r30,pm_lo8(.L_foo_body) */
557 if ((insn & 0xf0f0) != 0xe0e0)
559 body_addr = (insn & 0xf) | ((insn & 0x0f00) >> 4);
561 insn = EXTRACT_INSN (&prologue[vpc + 6]);
562 /* ldi r31,pm_hi8(.L_foo_body) */
563 if ((insn & 0xf0f0) != 0xe0f0)
565 body_addr |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
567 if (body_addr != (prologue_start + 10) / 2)
570 msymbol = lookup_minimal_symbol ("__prologue_saves__", NULL, NULL);
574 /* FIXME: prologue for mega have a JMP instead of RJMP */
575 insn = EXTRACT_INSN (&prologue[vpc + 8]);
576 /* rjmp __prologue_saves__+RRR */
577 if ((insn & 0xf000) != 0xc000)
580 /* Extract PC relative offset from RJMP */
581 i = (insn & 0xfff) | (insn & 0x800 ? (-1 ^ 0xfff) : 0);
582 /* Convert offset to byte addressable mode */
584 /* Destination address */
585 i += vpc + prologue_start + 10;
586 /* Resovle offset (in words) from __prologue_saves__ symbol.
587 Which is a pushes count in `-mcall-prologues' mode */
588 num_pushes = AVR_MAX_PUSHES - (i - SYMBOL_VALUE_ADDRESS (msymbol)) / 2;
590 if (num_pushes > AVR_MAX_PUSHES)
596 fi->saved_regs[AVR_FP_REGNUM + 1] = num_pushes;
598 fi->saved_regs[AVR_FP_REGNUM] = num_pushes - 1;
600 for (from = AVR_LAST_PUSHED_REGNUM + 1 - (num_pushes - 2);
601 from <= AVR_LAST_PUSHED_REGNUM; ++from)
602 fi->saved_regs[from] = ++i;
604 fi->extra_info->locals_size = loc_size;
605 fi->extra_info->framesize = loc_size + num_pushes;
606 fi->extra_info->framereg = AVR_FP_REGNUM;
610 /* Scan interrupt or signal function */
612 if (prologue_len >= 12)
614 unsigned char img[] = {
615 0x78, 0x94, /* sei */
616 0x1f, 0x92, /* push r1 */
617 0x0f, 0x92, /* push r0 */
618 0x0f, 0xb6, /* in r0,0x3f SREG */
619 0x0f, 0x92, /* push r0 */
620 0x11, 0x24 /* clr r1 */
622 if (memcmp (prologue, img, sizeof (img)) == 0)
625 fi->saved_regs[0] = 2;
626 fi->saved_regs[1] = 1;
627 fi->extra_info->framesize += 3;
629 else if (memcmp (img + 1, prologue, sizeof (img) - 1) == 0)
631 vpc += sizeof (img) - 1;
632 fi->saved_regs[0] = 2;
633 fi->saved_regs[1] = 1;
634 fi->extra_info->framesize += 3;
638 /* First stage of the prologue scanning.
641 for (; vpc <= prologue_len; vpc += 2)
643 insn = EXTRACT_INSN (&prologue[vpc]);
644 if ((insn & 0xfe0f) == 0x920f) /* push rXX */
646 /* Bits 4-9 contain a mask for registers R0-R32. */
647 regno = (insn & 0x1f0) >> 4;
648 ++fi->extra_info->framesize;
649 fi->saved_regs[regno] = fi->extra_info->framesize;
656 /* Second stage of the prologue scanning.
661 if (scan_stage == 1 && vpc + 4 <= prologue_len)
663 unsigned char img[] = {
664 0xcd, 0xb7, /* in r28,__SP_L__ */
665 0xde, 0xb7 /* in r29,__SP_H__ */
667 unsigned short insn1;
669 if (memcmp (prologue + vpc, img, sizeof (img)) == 0)
672 fi->extra_info->framereg = AVR_FP_REGNUM;
677 /* Third stage of the prologue scanning. (Really two stages)
679 sbiw r28,XX or subi r28,lo8(XX)
681 in __tmp_reg__,__SREG__
684 out __SREG__,__tmp_reg__
687 if (scan_stage == 2 && vpc + 12 <= prologue_len)
690 unsigned char img[] = {
691 0x0f, 0xb6, /* in r0,0x3f */
692 0xf8, 0x94, /* cli */
693 0xcd, 0xbf, /* out 0x3d,r28 ; SPL */
694 0x0f, 0xbe, /* out 0x3f,r0 ; SREG */
695 0xde, 0xbf /* out 0x3e,r29 ; SPH */
697 unsigned char img_sig[] = {
698 0xcd, 0xbf, /* out 0x3d,r28 ; SPL */
699 0xde, 0xbf /* out 0x3e,r29 ; SPH */
701 unsigned char img_int[] = {
702 0xf8, 0x94, /* cli */
703 0xcd, 0xbf, /* out 0x3d,r28 ; SPL */
704 0x78, 0x94, /* sei */
705 0xde, 0xbf /* out 0x3e,r29 ; SPH */
708 insn = EXTRACT_INSN (&prologue[vpc]);
710 if ((insn & 0xff30) == 0x9720) /* sbiw r28,XXX */
711 locals_size = (insn & 0xf) | ((insn & 0xc0) >> 2);
712 else if ((insn & 0xf0f0) == 0x50c0) /* subi r28,lo8(XX) */
714 locals_size = (insn & 0xf) | ((insn & 0xf00) >> 4);
715 insn = EXTRACT_INSN (&prologue[vpc]);
717 locals_size += ((insn & 0xf) | ((insn & 0xf00) >> 4) << 8);
721 fi->extra_info->locals_size = locals_size;
722 fi->extra_info->framesize += locals_size;
726 /* This function actually figures out the frame address for a given pc and
727 sp. This is tricky because we sometimes don't use an explicit
728 frame pointer, and the previous stack pointer isn't necessarily recorded
729 on the stack. The only reliable way to get this info is to
730 examine the prologue. */
733 avr_init_extra_frame_info (int fromleaf, struct frame_info *fi)
738 fi->pc = FRAME_SAVED_PC (fi->next);
740 fi->extra_info = (struct frame_extra_info *)
741 frame_obstack_alloc (sizeof (struct frame_extra_info));
742 frame_saved_regs_zalloc (fi);
744 fi->extra_info->return_pc = 0;
745 fi->extra_info->args_pointer = 0;
746 fi->extra_info->locals_size = 0;
747 fi->extra_info->framereg = 0;
748 fi->extra_info->framesize = 0;
749 fi->extra_info->is_main = 0;
751 avr_scan_prologue (fi);
753 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
755 /* We need to setup fi->frame here because run_stack_dummy gets it wrong
756 by assuming it's always FP. */
757 fi->frame = deprecated_read_register_dummy (fi->pc, fi->frame,
760 else if (!fi->next) /* this is the innermost frame? */
761 fi->frame = read_register (fi->extra_info->framereg);
762 else if (fi->extra_info->is_main != 1) /* not the innermost frame, not `main' */
763 /* If we have an next frame, the callee saved it. */
765 struct frame_info *next_fi = fi->next;
766 if (fi->extra_info->framereg == AVR_SP_REGNUM)
768 next_fi->frame + 2 /* ret addr */ + next_fi->extra_info->framesize;
769 /* FIXME: I don't analyse va_args functions */
774 unsigned int fp_low, fp_high;
776 /* Scan all frames */
777 for (; next_fi; next_fi = next_fi->next)
779 /* look for saved AVR_FP_REGNUM */
780 if (next_fi->saved_regs[AVR_FP_REGNUM] && !fp)
781 fp = next_fi->saved_regs[AVR_FP_REGNUM];
782 /* look for saved AVR_FP_REGNUM + 1 */
783 if (next_fi->saved_regs[AVR_FP_REGNUM + 1] && !fp1)
784 fp1 = next_fi->saved_regs[AVR_FP_REGNUM + 1];
786 fp_low = (fp ? read_memory_unsigned_integer (avr_make_saddr (fp), 1)
787 : read_register (AVR_FP_REGNUM)) & 0xff;
789 (fp1 ? read_memory_unsigned_integer (avr_make_saddr (fp1), 1) :
790 read_register (AVR_FP_REGNUM + 1)) & 0xff;
791 fi->frame = fp_low | (fp_high << 8);
795 /* TRoth: Do we want to do this if we are in main? I don't think we should
796 since return_pc makes no sense when we are in main. */
798 if ((fi->pc) && (fi->extra_info->is_main == 0)) /* We are not in CALL_DUMMY */
803 addr = fi->frame + fi->extra_info->framesize + 1;
805 /* Return address in stack in different endianness */
807 fi->extra_info->return_pc =
808 read_memory_unsigned_integer (avr_make_saddr (addr), 1) << 8;
809 fi->extra_info->return_pc |=
810 read_memory_unsigned_integer (avr_make_saddr (addr + 1), 1);
812 /* This return address in words,
813 must be converted to the bytes address */
814 fi->extra_info->return_pc *= 2;
816 /* Resolve a pushed registers addresses */
817 for (i = 0; i < NUM_REGS; i++)
819 if (fi->saved_regs[i])
820 fi->saved_regs[i] = addr - fi->saved_regs[i];
825 /* Restore the machine to the state it had before the current frame was
826 created. Usually used either by the "RETURN" command, or by
827 call_function_by_hand after the dummy_frame is finished. */
834 struct frame_info *frame = get_current_frame ();
836 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
838 generic_pop_dummy_frame ();
842 /* TRoth: Why only loop over 8 registers? */
844 for (regnum = 0; regnum < 8; regnum++)
846 /* Don't forget AVR_SP_REGNUM in a frame_saved_regs struct is the
847 actual value we want, not the address of the value we want. */
848 if (frame->saved_regs[regnum] && regnum != AVR_SP_REGNUM)
850 saddr = avr_make_saddr (frame->saved_regs[regnum]);
851 write_register (regnum,
852 read_memory_unsigned_integer (saddr, 1));
854 else if (frame->saved_regs[regnum] && regnum == AVR_SP_REGNUM)
855 write_register (regnum, frame->frame + 2);
858 /* Don't forget the update the PC too! */
859 write_pc (frame->extra_info->return_pc);
861 flush_cached_frames ();
864 /* Return the saved PC from this frame. */
867 avr_frame_saved_pc (struct frame_info *frame)
869 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
870 return deprecated_read_register_dummy (frame->pc, frame->frame,
873 return frame->extra_info->return_pc;
877 avr_saved_pc_after_call (struct frame_info *frame)
879 unsigned char m1, m2;
880 unsigned int sp = read_register (AVR_SP_REGNUM);
881 m1 = read_memory_unsigned_integer (avr_make_saddr (sp + 1), 1);
882 m2 = read_memory_unsigned_integer (avr_make_saddr (sp + 2), 1);
883 return (m2 | (m1 << 8)) * 2;
886 /* Figure out where in REGBUF the called function has left its return value.
887 Copy that into VALBUF. */
890 avr_extract_return_value (struct type *type, char *regbuf, char *valbuf)
896 len = TYPE_LENGTH (type);
901 case 2: /* (short), (int) */
902 memcpy (valbuf, regbuf + REGISTER_BYTE (24), 2);
904 case 4: /* (long), (float) */
905 memcpy (valbuf, regbuf + REGISTER_BYTE (22), 4);
907 case 8: /* (double) (doesn't seem to happen, which is good,
908 because this almost certainly isn't right. */
909 error ("I don't know how a double is returned.");
914 /* Returns the return address for a dummy. */
917 avr_call_dummy_address (void)
919 return entry_point_address ();
922 /* Place the appropriate value in the appropriate registers.
923 Primarily used by the RETURN command. */
926 avr_store_return_value (struct type *type, char *valbuf)
928 int wordsize, len, regval;
932 len = TYPE_LENGTH (type);
936 case 2: /* short, int */
937 regval = extract_address (valbuf, len);
938 write_register (0, regval);
940 case 4: /* long, float */
941 regval = extract_address (valbuf, len);
942 write_register (0, regval >> 16);
943 write_register (1, regval & 0xffff);
945 case 8: /* presumeably double, but doesn't seem to happen */
946 error ("I don't know how to return a double.");
951 /* Setup the return address for a dummy frame, as called by
952 call_function_by_hand. Only necessary when you are using an empty
956 avr_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
958 unsigned char buf[2];
961 struct minimal_symbol *msymbol;
968 write_memory (sp + 1, buf, 2);
971 /* FIXME: TRoth/2002-02-18: This should probably be removed since it's a
972 left-over from Denis' original patch which used avr-mon for the target
973 instead of the generic remote target. */
974 if ((strcmp (target_shortname, "avr-mon") == 0)
975 && (msymbol = lookup_minimal_symbol ("gdb_break", NULL, NULL)))
977 mon_brk = SYMBOL_VALUE_ADDRESS (msymbol);
978 store_unsigned_integer (buf, wordsize, mon_brk / 2);
980 write_memory (sp + 1, buf + 1, 1);
981 write_memory (sp + 2, buf, 1);
988 avr_skip_prologue (CORE_ADDR pc)
990 CORE_ADDR func_addr, func_end;
991 struct symtab_and_line sal;
993 /* See what the symbol table says */
995 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
997 sal = find_pc_line (func_addr, 0);
999 /* troth/2002-08-05: For some very simple functions, gcc doesn't
1000 generate a prologue and the sal.end ends up being the 2-byte ``ret''
1001 instruction at the end of the function, but func_end ends up being
1002 the address of the first instruction of the _next_ function. By
1003 adjusting func_end by 2 bytes, we can catch these functions and not
1004 return sal.end if it is the ``ret'' instruction. */
1006 if (sal.line != 0 && sal.end < (func_end-2))
1010 /* Either we didn't find the start of this function (nothing we can do),
1011 or there's no line info, or the line after the prologue is after
1012 the end of the function (there probably isn't a prologue). */
1018 avr_frame_address (struct frame_info *fi)
1020 return avr_make_saddr (fi->frame);
1023 /* Given a GDB frame, determine the address of the calling function's frame.
1024 This will be used to create a new GDB frame struct, and then
1025 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
1027 For us, the frame address is its stack pointer value, so we look up
1028 the function prologue to determine the caller's sp value, and return it. */
1031 avr_frame_chain (struct frame_info *frame)
1033 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
1035 /* initialize the return_pc now */
1036 frame->extra_info->return_pc
1037 = deprecated_read_register_dummy (frame->pc, frame->frame,
1039 return frame->frame;
1041 return (frame->extra_info->is_main ? 0
1042 : frame->frame + frame->extra_info->framesize + 2 /* ret addr */ );
1045 /* Store the address of the place in which to copy the structure the
1046 subroutine will return. This is called from call_function.
1048 We store structs through a pointer passed in the first Argument
1052 avr_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
1054 write_register (0, addr);
1057 /* Extract from an array REGBUF containing the (raw) register state
1058 the address in which a function should return its structure value,
1059 as a CORE_ADDR (or an expression that can be used as one). */
1062 avr_extract_struct_value_address (char *regbuf)
1064 return (extract_address ((regbuf) + REGISTER_BYTE (0),
1065 REGISTER_RAW_SIZE (0)) | AVR_SMEM_START);
1068 /* Setup the function arguments for calling a function in the inferior.
1070 On the AVR architecture, there are 18 registers (R25 to R8) which are
1071 dedicated for passing function arguments. Up to the first 18 arguments
1072 (depending on size) may go into these registers. The rest go on the stack.
1074 Arguments that are larger than WORDSIZE bytes will be split between two or
1075 more registers as available, but will NOT be split between a register and
1078 An exceptional case exists for struct arguments (and possibly other
1079 aggregates such as arrays) -- if the size is larger than WORDSIZE bytes but
1080 not a multiple of WORDSIZE bytes. In this case the argument is never split
1081 between the registers and the stack, but instead is copied in its entirety
1082 onto the stack, AND also copied into as many registers as there is room
1083 for. In other words, space in registers permitting, two copies of the same
1084 argument are passed in. As far as I can tell, only the one on the stack is
1085 used, although that may be a function of the level of compiler
1086 optimization. I suspect this is a compiler bug. Arguments of these odd
1087 sizes are left-justified within the word (as opposed to arguments smaller
1088 than WORDSIZE bytes, which are right-justified).
1090 If the function is to return an aggregate type such as a struct, the caller
1091 must allocate space into which the callee will copy the return value. In
1092 this case, a pointer to the return value location is passed into the callee
1093 in register R0, which displaces one of the other arguments passed in via
1094 registers R0 to R2. */
1097 avr_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1098 int struct_return, CORE_ADDR struct_addr)
1100 int stack_alloc, stack_offset;
1112 /* Now make sure there's space on the stack */
1113 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
1114 stack_alloc += TYPE_LENGTH (VALUE_TYPE (args[argnum]));
1115 sp -= stack_alloc; /* make room on stack for args */
1116 /* we may over-allocate a little here, but that won't hurt anything */
1119 if (struct_return) /* "struct return" pointer takes up one argreg */
1121 write_register (--argreg, struct_addr);
1124 /* Now load as many as possible of the first arguments into registers, and
1125 push the rest onto the stack. There are 3N bytes in three registers
1126 available. Loop thru args from first to last. */
1128 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
1130 type = VALUE_TYPE (args[argnum]);
1131 len = TYPE_LENGTH (type);
1132 val = (char *) VALUE_CONTENTS (args[argnum]);
1134 /* NOTE WELL!!!!! This is not an "else if" clause!!! That's because
1135 some *&^%$ things get passed on the stack AND in the registers! */
1137 { /* there's room in registers */
1139 regval = extract_address (val + len, wordsize);
1140 write_register (argreg--, regval);
1146 /* Initialize the gdbarch structure for the AVR's. */
1148 static struct gdbarch *
1149 avr_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1151 /* FIXME: TRoth/2002-02-18: I have no idea if avr_call_dummy_words[] should
1152 be bigger or not. Initial testing seems to show that `call my_func()`
1153 works and backtrace from a breakpoint within the call looks correct.
1154 Admittedly, I haven't tested with more than a very simple program. */
1155 static LONGEST avr_call_dummy_words[] = { 0 };
1157 struct gdbarch *gdbarch;
1158 struct gdbarch_tdep *tdep;
1160 /* Find a candidate among the list of pre-declared architectures. */
1161 arches = gdbarch_list_lookup_by_info (arches, &info);
1163 return arches->gdbarch;
1165 /* None found, create a new architecture from the information provided. */
1166 tdep = XMALLOC (struct gdbarch_tdep);
1167 gdbarch = gdbarch_alloc (&info, tdep);
1169 /* If we ever need to differentiate the device types, do it here. */
1170 switch (info.bfd_arch_info->mach)
1180 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1181 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1182 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1183 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1184 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1185 set_gdbarch_addr_bit (gdbarch, 32);
1186 set_gdbarch_bfd_vma_bit (gdbarch, 32); /* FIXME: TRoth/2002-02-18: Is this needed? */
1188 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1189 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1190 set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1192 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
1193 set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_little);
1194 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_single_little);
1196 set_gdbarch_read_pc (gdbarch, avr_read_pc);
1197 set_gdbarch_write_pc (gdbarch, avr_write_pc);
1198 set_gdbarch_read_fp (gdbarch, avr_read_fp);
1199 set_gdbarch_read_sp (gdbarch, avr_read_sp);
1200 set_gdbarch_write_sp (gdbarch, avr_write_sp);
1202 set_gdbarch_num_regs (gdbarch, AVR_NUM_REGS);
1204 set_gdbarch_sp_regnum (gdbarch, AVR_SP_REGNUM);
1205 set_gdbarch_fp_regnum (gdbarch, AVR_FP_REGNUM);
1206 set_gdbarch_pc_regnum (gdbarch, AVR_PC_REGNUM);
1208 set_gdbarch_register_name (gdbarch, avr_register_name);
1209 set_gdbarch_register_size (gdbarch, 1);
1210 set_gdbarch_register_bytes (gdbarch, AVR_NUM_REG_BYTES);
1211 set_gdbarch_register_byte (gdbarch, avr_register_byte);
1212 set_gdbarch_register_raw_size (gdbarch, avr_register_raw_size);
1213 set_gdbarch_max_register_raw_size (gdbarch, 4);
1214 set_gdbarch_register_virtual_size (gdbarch, avr_register_virtual_size);
1215 set_gdbarch_max_register_virtual_size (gdbarch, 4);
1216 set_gdbarch_register_virtual_type (gdbarch, avr_register_virtual_type);
1218 set_gdbarch_print_insn (gdbarch, print_insn_avr);
1220 set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
1221 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
1222 set_gdbarch_call_dummy_address (gdbarch, avr_call_dummy_address);
1223 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
1224 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
1225 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
1226 set_gdbarch_call_dummy_length (gdbarch, 0);
1227 set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy);
1228 set_gdbarch_call_dummy_p (gdbarch, 1);
1229 set_gdbarch_call_dummy_words (gdbarch, avr_call_dummy_words);
1230 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
1231 set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
1233 /* set_gdbarch_believe_pcc_promotion (gdbarch, 1); // TRoth: should this be set? */
1235 set_gdbarch_address_to_pointer (gdbarch, avr_address_to_pointer);
1236 set_gdbarch_pointer_to_address (gdbarch, avr_pointer_to_address);
1237 set_gdbarch_deprecated_extract_return_value (gdbarch, avr_extract_return_value);
1238 set_gdbarch_push_arguments (gdbarch, avr_push_arguments);
1239 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
1240 set_gdbarch_push_return_address (gdbarch, avr_push_return_address);
1241 set_gdbarch_pop_frame (gdbarch, avr_pop_frame);
1243 set_gdbarch_deprecated_store_return_value (gdbarch, avr_store_return_value);
1245 set_gdbarch_use_struct_convention (gdbarch, generic_use_struct_convention);
1246 set_gdbarch_store_struct_return (gdbarch, avr_store_struct_return);
1247 set_gdbarch_deprecated_extract_struct_value_address
1248 (gdbarch, avr_extract_struct_value_address);
1250 set_gdbarch_frame_init_saved_regs (gdbarch, avr_scan_prologue);
1251 set_gdbarch_init_extra_frame_info (gdbarch, avr_init_extra_frame_info);
1252 set_gdbarch_skip_prologue (gdbarch, avr_skip_prologue);
1253 /* set_gdbarch_prologue_frameless_p (gdbarch, avr_prologue_frameless_p); */
1254 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1256 set_gdbarch_decr_pc_after_break (gdbarch, 0);
1258 set_gdbarch_function_start_offset (gdbarch, 0);
1259 set_gdbarch_remote_translate_xfer_address (gdbarch,
1260 avr_remote_translate_xfer_address);
1261 set_gdbarch_frame_args_skip (gdbarch, 0);
1262 set_gdbarch_frameless_function_invocation (gdbarch, frameless_look_for_prologue); /* ??? */
1263 set_gdbarch_frame_chain (gdbarch, avr_frame_chain);
1264 set_gdbarch_frame_chain_valid (gdbarch, generic_func_frame_chain_valid);
1265 set_gdbarch_frame_saved_pc (gdbarch, avr_frame_saved_pc);
1266 set_gdbarch_frame_args_address (gdbarch, avr_frame_address);
1267 set_gdbarch_frame_locals_address (gdbarch, avr_frame_address);
1268 set_gdbarch_saved_pc_after_call (gdbarch, avr_saved_pc_after_call);
1269 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
1271 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
1272 avr_convert_from_func_ptr_addr);
1277 /* Send a query request to the avr remote target asking for values of the io
1278 registers. If args parameter is not NULL, then the user has requested info
1279 on a specific io register [This still needs implemented and is ignored for
1280 now]. The query string should be one of these forms:
1282 "Ravr.io_reg" -> reply is "NN" number of io registers
1284 "Ravr.io_reg:addr,len" where addr is first register and len is number of
1285 registers to be read. The reply should be "<NAME>,VV;" for each io register
1286 where, <NAME> is a string, and VV is the hex value of the register.
1288 All io registers are 8-bit. */
1291 avr_io_reg_read_command (char *args, int from_tty)
1297 unsigned int nreg = 0;
1301 /* fprintf_unfiltered (gdb_stderr, "DEBUG: avr_io_reg_read_command (\"%s\", %d)\n", */
1302 /* args, from_tty); */
1304 if (!current_target.to_query)
1306 fprintf_unfiltered (gdb_stderr,
1307 "ERR: info io_registers NOT supported by current target\n");
1311 /* Just get the maximum buffer size. */
1312 target_query ((int) 'R', 0, 0, &bufsiz);
1313 if (bufsiz > sizeof (buf))
1314 bufsiz = sizeof (buf);
1316 /* Find out how many io registers the target has. */
1317 strcpy (query, "avr.io_reg");
1318 target_query ((int) 'R', query, buf, &bufsiz);
1320 if (strncmp (buf, "", bufsiz) == 0)
1322 fprintf_unfiltered (gdb_stderr,
1323 "info io_registers NOT supported by target\n");
1327 if (sscanf (buf, "%x", &nreg) != 1)
1329 fprintf_unfiltered (gdb_stderr,
1330 "Error fetching number of io registers\n");
1334 reinitialize_more_filter ();
1336 printf_unfiltered ("Target has %u io registers:\n\n", nreg);
1338 /* only fetch up to 8 registers at a time to keep the buffer small */
1341 for (i = 0; i < nreg; i += step)
1343 j = step - (nreg % step); /* how many registers this round? */
1345 snprintf (query, sizeof (query) - 1, "avr.io_reg:%x,%x", i, j);
1346 target_query ((int) 'R', query, buf, &bufsiz);
1349 for (k = i; k < (i + j); k++)
1351 if (sscanf (p, "%[^,],%x;", query, &val) == 2)
1353 printf_filtered ("[%02x] %-15s : %02x\n", k, query, val);
1354 while ((*p != ';') && (*p != '\0'))
1356 p++; /* skip over ';' */
1365 _initialize_avr_tdep (void)
1367 register_gdbarch_init (bfd_arch_avr, avr_gdbarch_init);
1369 /* Add a new command to allow the user to query the avr remote target for
1370 the values of the io space registers in a saner way than just using
1373 /* FIXME: TRoth/2002-02-18: This should probably be changed to 'info avr
1374 io_registers' to signify it is not available on other platforms. */
1376 add_cmd ("io_registers", class_info, avr_io_reg_read_command,
1377 "query remote avr target for io space register values", &infolist);