* avr-tdep.c (avr_extract_return_value): Remove function.
[platform/upstream/binutils.git] / gdb / avr-tdep.c
1 /* Target-dependent code for Atmel AVR, for GDB.
2    Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003
3    Free Software Foundation, Inc.
4
5    This file is part of GDB.
6
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 2 of the License, or
10    (at your option) any later version.
11
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16
17    You should have received a copy of the GNU General Public License
18    along with this program; if not, write to the Free Software
19    Foundation, Inc., 59 Temple Place - Suite 330,
20    Boston, MA 02111-1307, USA.  */
21
22 /* Contributed by Theodore A. Roth, troth@verinet.com */
23
24 /* Portions of this file were taken from the original gdb-4.18 patch developed
25    by Denis Chertykov, denisc@overta.ru */
26
27 #include "defs.h"
28 #include "gdbcmd.h"
29 #include "gdbcore.h"
30 #include "inferior.h"
31 #include "symfile.h"
32 #include "arch-utils.h"
33 #include "regcache.h"
34 #include "gdb_string.h"
35
36 /* AVR Background:
37
38    (AVR micros are pure Harvard Architecture processors.)
39
40    The AVR family of microcontrollers have three distinctly different memory
41    spaces: flash, sram and eeprom. The flash is 16 bits wide and is used for
42    the most part to store program instructions. The sram is 8 bits wide and is
43    used for the stack and the heap. Some devices lack sram and some can have
44    an additional external sram added on as a peripheral.
45
46    The eeprom is 8 bits wide and is used to store data when the device is
47    powered down. Eeprom is not directly accessible, it can only be accessed
48    via io-registers using a special algorithm. Accessing eeprom via gdb's
49    remote serial protocol ('m' or 'M' packets) looks difficult to do and is
50    not included at this time.
51
52    [The eeprom could be read manually via ``x/b <eaddr + AVR_EMEM_START>'' or
53    written using ``set {unsigned char}<eaddr + AVR_EMEM_START>''.  For this to
54    work, the remote target must be able to handle eeprom accesses and perform
55    the address translation.]
56
57    All three memory spaces have physical addresses beginning at 0x0. In
58    addition, the flash is addressed by gcc/binutils/gdb with respect to 8 bit
59    bytes instead of the 16 bit wide words used by the real device for the
60    Program Counter.
61
62    In order for remote targets to work correctly, extra bits must be added to
63    addresses before they are send to the target or received from the target
64    via the remote serial protocol. The extra bits are the MSBs and are used to
65    decode which memory space the address is referring to. */
66
67 #undef XMALLOC
68 #define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
69
70 #undef EXTRACT_INSN
71 #define EXTRACT_INSN(addr) extract_unsigned_integer(addr,2)
72
73 /* Constants: prefixed with AVR_ to avoid name space clashes */
74
75 enum
76 {
77   AVR_REG_W = 24,
78   AVR_REG_X = 26,
79   AVR_REG_Y = 28,
80   AVR_FP_REGNUM = 28,
81   AVR_REG_Z = 30,
82
83   AVR_SREG_REGNUM = 32,
84   AVR_SP_REGNUM = 33,
85   AVR_PC_REGNUM = 34,
86
87   AVR_NUM_REGS = 32 + 1 /*SREG*/ + 1 /*SP*/ + 1 /*PC*/,
88   AVR_NUM_REG_BYTES = 32 + 1 /*SREG*/ + 2 /*SP*/ + 4 /*PC*/,
89
90   AVR_PC_REG_INDEX = 35,        /* index into array of registers */
91
92   AVR_MAX_PROLOGUE_SIZE = 56,   /* bytes */
93
94   /* Count of pushed registers. From r2 to r17 (inclusively), r28, r29 */
95   AVR_MAX_PUSHES = 18,
96
97   /* Number of the last pushed register. r17 for current avr-gcc */
98   AVR_LAST_PUSHED_REGNUM = 17,
99
100   /* FIXME: TRoth/2002-01-??: Can we shift all these memory masks left 8
101      bits? Do these have to match the bfd vma values?. It sure would make
102      things easier in the future if they didn't need to match.
103
104      Note: I chose these values so as to be consistent with bfd vma
105      addresses.
106
107      TRoth/2002-04-08: There is already a conflict with very large programs
108      in the mega128. The mega128 has 128K instruction bytes (64K words),
109      thus the Most Significant Bit is 0x10000 which gets masked off my
110      AVR_MEM_MASK.
111
112      The problem manifests itself when trying to set a breakpoint in a
113      function which resides in the upper half of the instruction space and
114      thus requires a 17-bit address.
115
116      For now, I've just removed the EEPROM mask and changed AVR_MEM_MASK
117      from 0x00ff0000 to 0x00f00000. Eeprom is not accessible from gdb yet,
118      but could be for some remote targets by just adding the correct offset
119      to the address and letting the remote target handle the low-level
120      details of actually accessing the eeprom. */
121
122   AVR_IMEM_START = 0x00000000,  /* INSN memory */
123   AVR_SMEM_START = 0x00800000,  /* SRAM memory */
124 #if 1
125   /* No eeprom mask defined */
126   AVR_MEM_MASK = 0x00f00000,    /* mask to determine memory space */
127 #else
128   AVR_EMEM_START = 0x00810000,  /* EEPROM memory */
129   AVR_MEM_MASK = 0x00ff0000,    /* mask to determine memory space */
130 #endif
131 };
132
133 /* Any function with a frame looks like this
134    .......    <-SP POINTS HERE
135    LOCALS1    <-FP POINTS HERE
136    LOCALS0
137    SAVED FP
138    SAVED R3
139    SAVED R2
140    RET PC
141    FIRST ARG
142    SECOND ARG */
143
144 struct frame_extra_info
145 {
146   CORE_ADDR return_pc;
147   CORE_ADDR args_pointer;
148   int locals_size;
149   int framereg;
150   int framesize;
151   int is_main;
152 };
153
154 struct gdbarch_tdep
155 {
156   /* FIXME: TRoth: is there anything to put here? */
157   int foo;
158 };
159
160 /* Lookup the name of a register given it's number. */
161
162 static const char *
163 avr_register_name (int regnum)
164 {
165   static char *register_names[] = {
166     "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
167     "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
168     "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
169     "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
170     "SREG", "SP", "PC"
171   };
172   if (regnum < 0)
173     return NULL;
174   if (regnum >= (sizeof (register_names) / sizeof (*register_names)))
175     return NULL;
176   return register_names[regnum];
177 }
178
179 /* Index within `registers' of the first byte of the space for
180    register REGNUM.  */
181
182 static int
183 avr_register_byte (int regnum)
184 {
185   if (regnum < AVR_PC_REGNUM)
186     return regnum;
187   else
188     return AVR_PC_REG_INDEX;
189 }
190
191 /* Number of bytes of storage in the actual machine representation for
192    register REGNUM.  */
193
194 static int
195 avr_register_raw_size (int regnum)
196 {
197   switch (regnum)
198     {
199     case AVR_PC_REGNUM:
200       return 4;
201     case AVR_SP_REGNUM:
202     case AVR_FP_REGNUM:
203       return 2;
204     default:
205       return 1;
206     }
207 }
208
209 /* Number of bytes of storage in the program's representation
210    for register N.  */
211
212 static int
213 avr_register_virtual_size (int regnum)
214 {
215   return TYPE_LENGTH (REGISTER_VIRTUAL_TYPE (regnum));
216 }
217
218 /* Return the GDB type object for the "standard" data type
219    of data in register N.  */
220
221 static struct type *
222 avr_register_virtual_type (int regnum)
223 {
224   switch (regnum)
225     {
226     case AVR_PC_REGNUM:
227       return builtin_type_unsigned_long;
228     case AVR_SP_REGNUM:
229       return builtin_type_unsigned_short;
230     default:
231       return builtin_type_unsigned_char;
232     }
233 }
234
235 /* Instruction address checks and convertions. */
236
237 static CORE_ADDR
238 avr_make_iaddr (CORE_ADDR x)
239 {
240   return ((x) | AVR_IMEM_START);
241 }
242
243 static int
244 avr_iaddr_p (CORE_ADDR x)
245 {
246   return (((x) & AVR_MEM_MASK) == AVR_IMEM_START);
247 }
248
249 /* FIXME: TRoth: Really need to use a larger mask for instructions. Some
250    devices are already up to 128KBytes of flash space.
251
252    TRoth/2002-04-8: See comment above where AVR_IMEM_START is defined. */
253
254 static CORE_ADDR
255 avr_convert_iaddr_to_raw (CORE_ADDR x)
256 {
257   return ((x) & 0xffffffff);
258 }
259
260 /* SRAM address checks and convertions. */
261
262 static CORE_ADDR
263 avr_make_saddr (CORE_ADDR x)
264 {
265   return ((x) | AVR_SMEM_START);
266 }
267
268 static int
269 avr_saddr_p (CORE_ADDR x)
270 {
271   return (((x) & AVR_MEM_MASK) == AVR_SMEM_START);
272 }
273
274 static CORE_ADDR
275 avr_convert_saddr_to_raw (CORE_ADDR x)
276 {
277   return ((x) & 0xffffffff);
278 }
279
280 /* EEPROM address checks and convertions. I don't know if these will ever
281    actually be used, but I've added them just the same. TRoth */
282
283 /* TRoth/2002-04-08: Commented out for now to allow fix for problem with large
284    programs in the mega128. */
285
286 /*  static CORE_ADDR */
287 /*  avr_make_eaddr (CORE_ADDR x) */
288 /*  { */
289 /*    return ((x) | AVR_EMEM_START); */
290 /*  } */
291
292 /*  static int */
293 /*  avr_eaddr_p (CORE_ADDR x) */
294 /*  { */
295 /*    return (((x) & AVR_MEM_MASK) == AVR_EMEM_START); */
296 /*  } */
297
298 /*  static CORE_ADDR */
299 /*  avr_convert_eaddr_to_raw (CORE_ADDR x) */
300 /*  { */
301 /*    return ((x) & 0xffffffff); */
302 /*  } */
303
304 /* Convert from address to pointer and vice-versa. */
305
306 static void
307 avr_address_to_pointer (struct type *type, void *buf, CORE_ADDR addr)
308 {
309   /* Is it a code address?  */
310   if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
311       || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
312     {
313       store_unsigned_integer (buf, TYPE_LENGTH (type),
314                               avr_convert_iaddr_to_raw (addr));
315     }
316   else
317     {
318       /* Strip off any upper segment bits.  */
319       store_unsigned_integer (buf, TYPE_LENGTH (type),
320                               avr_convert_saddr_to_raw (addr));
321     }
322 }
323
324 static CORE_ADDR
325 avr_pointer_to_address (struct type *type, const void *buf)
326 {
327   CORE_ADDR addr = extract_address (buf, TYPE_LENGTH (type));
328
329   if (TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
330     {
331       fprintf_unfiltered (gdb_stderr, "CODE_SPACE ---->> ptr->addr: 0x%lx\n",
332                           addr);
333       fprintf_unfiltered (gdb_stderr,
334                           "+++ If you see this, please send me an email <troth@verinet.com>\n");
335     }
336
337   /* Is it a code address?  */
338   if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
339       || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
340       || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
341     return avr_make_iaddr (addr);
342   else
343     return avr_make_saddr (addr);
344 }
345
346 static CORE_ADDR
347 avr_read_pc (ptid_t ptid)
348 {
349   ptid_t save_ptid;
350   CORE_ADDR pc;
351   CORE_ADDR retval;
352
353   save_ptid = inferior_ptid;
354   inferior_ptid = ptid;
355   pc = (int) read_register (AVR_PC_REGNUM);
356   inferior_ptid = save_ptid;
357   retval = avr_make_iaddr (pc);
358   return retval;
359 }
360
361 static void
362 avr_write_pc (CORE_ADDR val, ptid_t ptid)
363 {
364   ptid_t save_ptid;
365
366   save_ptid = inferior_ptid;
367   inferior_ptid = ptid;
368   write_register (AVR_PC_REGNUM, avr_convert_iaddr_to_raw (val));
369   inferior_ptid = save_ptid;
370 }
371
372 static CORE_ADDR
373 avr_read_sp (void)
374 {
375   return (avr_make_saddr (read_register (AVR_SP_REGNUM)));
376 }
377
378 static void
379 avr_write_sp (CORE_ADDR val)
380 {
381   write_register (AVR_SP_REGNUM, avr_convert_saddr_to_raw (val));
382 }
383
384 static CORE_ADDR
385 avr_read_fp (void)
386 {
387   return (avr_make_saddr (read_register (AVR_FP_REGNUM)));
388 }
389
390 /* Translate a GDB virtual ADDR/LEN into a format the remote target
391    understands.  Returns number of bytes that can be transfered
392    starting at TARG_ADDR.  Return ZERO if no bytes can be transfered
393    (segmentation fault).
394
395    TRoth/2002-04-08: Could this be used to check for dereferencing an invalid
396    pointer? */
397
398 static void
399 avr_remote_translate_xfer_address (CORE_ADDR memaddr, int nr_bytes,
400                                    CORE_ADDR *targ_addr, int *targ_len)
401 {
402   long out_addr;
403   long out_len;
404
405   /* FIXME: TRoth: Do nothing for now. Will need to examine memaddr at this
406      point and see if the high bit are set with the masks that we want. */
407
408   *targ_addr = memaddr;
409   *targ_len = nr_bytes;
410 }
411
412 /* Function pointers obtained from the target are half of what gdb expects so
413    multiply by 2. */
414
415 static CORE_ADDR
416 avr_convert_from_func_ptr_addr (CORE_ADDR addr)
417 {
418   return addr * 2;
419 }
420
421 /* avr_scan_prologue is also used as the frame_init_saved_regs().
422
423    Put here the code to store, into fi->saved_regs, the addresses of
424    the saved registers of frame described by FRAME_INFO.  This
425    includes special registers such as pc and fp saved in special ways
426    in the stack frame.  sp is even more special: the address we return
427    for it IS the sp for the next frame. */
428
429 /* Function: avr_scan_prologue (helper function for avr_init_extra_frame_info)
430    This function decodes a AVR function prologue to determine:
431      1) the size of the stack frame
432      2) which registers are saved on it
433      3) the offsets of saved regs
434    This information is stored in the "extra_info" field of the frame_info.
435
436    A typical AVR function prologue might look like this:
437         push rXX
438         push r28
439         push r29
440         in r28,__SP_L__
441         in r29,__SP_H__
442         sbiw r28,<LOCALS_SIZE>
443         in __tmp_reg__,__SREG__
444         cli
445         out __SP_L__,r28
446         out __SREG__,__tmp_reg__
447         out __SP_H__,r29
448
449   A `-mcall-prologues' prologue look like this:
450         ldi r26,<LOCALS_SIZE>
451         ldi r27,<LOCALS_SIZE>/265
452         ldi r30,pm_lo8(.L_foo_body)
453         ldi r31,pm_hi8(.L_foo_body)
454         rjmp __prologue_saves__+RRR
455   .L_foo_body:  */
456
457 static void
458 avr_scan_prologue (struct frame_info *fi)
459 {
460   CORE_ADDR prologue_start;
461   CORE_ADDR prologue_end;
462   int i;
463   unsigned short insn;
464   int regno;
465   int scan_stage = 0;
466   char *name;
467   struct minimal_symbol *msymbol;
468   int prologue_len;
469   unsigned char prologue[AVR_MAX_PROLOGUE_SIZE];
470   int vpc = 0;
471
472   get_frame_extra_info (fi)->framereg = AVR_SP_REGNUM;
473
474   if (find_pc_partial_function
475       (get_frame_pc (fi), &name, &prologue_start, &prologue_end))
476     {
477       struct symtab_and_line sal = find_pc_line (prologue_start, 0);
478
479       if (sal.line == 0)        /* no line info, use current PC */
480         prologue_end = get_frame_pc (fi);
481       else if (sal.end < prologue_end)  /* next line begins after fn end */
482         prologue_end = sal.end; /* (probably means no prologue)  */
483     }
484   else
485     /* We're in the boondocks: allow for */
486     /* 19 pushes, an add, and "mv fp,sp" */
487     prologue_end = prologue_start + AVR_MAX_PROLOGUE_SIZE;
488
489   prologue_end = min (prologue_end, get_frame_pc (fi));
490
491   /* Search the prologue looking for instructions that set up the
492      frame pointer, adjust the stack pointer, and save registers.  */
493
494   get_frame_extra_info (fi)->framesize = 0;
495   prologue_len = prologue_end - prologue_start;
496   read_memory (prologue_start, prologue, prologue_len);
497
498   /* Scanning main()'s prologue
499      ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
500      ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
501      out __SP_H__,r29
502      out __SP_L__,r28 */
503
504   if (name && strcmp ("main", name) == 0 && prologue_len == 8)
505     {
506       CORE_ADDR locals;
507       unsigned char img[] = {
508         0xde, 0xbf,             /* out __SP_H__,r29 */
509         0xcd, 0xbf              /* out __SP_L__,r28 */
510       };
511
512       get_frame_extra_info (fi)->framereg = AVR_FP_REGNUM;
513       insn = EXTRACT_INSN (&prologue[vpc]);
514       /* ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) */
515       if ((insn & 0xf0f0) == 0xe0c0)
516         {
517           locals = (insn & 0xf) | ((insn & 0x0f00) >> 4);
518           insn = EXTRACT_INSN (&prologue[vpc + 2]);
519           /* ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) */
520           if ((insn & 0xf0f0) == 0xe0d0)
521             {
522               locals |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
523               if (memcmp (prologue + vpc + 4, img, sizeof (img)) == 0)
524                 {
525                   deprecated_update_frame_base_hack (fi, locals);
526
527                   get_frame_extra_info (fi)->is_main = 1;
528                   return;
529                 }
530             }
531         }
532     }
533
534   /* Scanning `-mcall-prologues' prologue
535      FIXME: mega prologue have a 12 bytes long */
536
537   while (prologue_len <= 12)    /* I'm use while to avoit many goto's */
538     {
539       int loc_size;
540       int body_addr;
541       unsigned num_pushes;
542
543       insn = EXTRACT_INSN (&prologue[vpc]);
544       /* ldi r26,<LOCALS_SIZE> */
545       if ((insn & 0xf0f0) != 0xe0a0)
546         break;
547       loc_size = (insn & 0xf) | ((insn & 0x0f00) >> 4);
548
549       insn = EXTRACT_INSN (&prologue[vpc + 2]);
550       /* ldi r27,<LOCALS_SIZE> / 256 */
551       if ((insn & 0xf0f0) != 0xe0b0)
552         break;
553       loc_size |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
554
555       insn = EXTRACT_INSN (&prologue[vpc + 4]);
556       /* ldi r30,pm_lo8(.L_foo_body) */
557       if ((insn & 0xf0f0) != 0xe0e0)
558         break;
559       body_addr = (insn & 0xf) | ((insn & 0x0f00) >> 4);
560
561       insn = EXTRACT_INSN (&prologue[vpc + 6]);
562       /* ldi r31,pm_hi8(.L_foo_body) */
563       if ((insn & 0xf0f0) != 0xe0f0)
564         break;
565       body_addr |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
566
567       if (body_addr != (prologue_start + 10) / 2)
568         break;
569
570       msymbol = lookup_minimal_symbol ("__prologue_saves__", NULL, NULL);
571       if (!msymbol)
572         break;
573
574       /* FIXME: prologue for mega have a JMP instead of RJMP */
575       insn = EXTRACT_INSN (&prologue[vpc + 8]);
576       /* rjmp __prologue_saves__+RRR */
577       if ((insn & 0xf000) != 0xc000)
578         break;
579
580       /* Extract PC relative offset from RJMP */
581       i = (insn & 0xfff) | (insn & 0x800 ? (-1 ^ 0xfff) : 0);
582       /* Convert offset to byte addressable mode */
583       i *= 2;
584       /* Destination address */
585       i += vpc + prologue_start + 10;
586       /* Resovle offset (in words) from __prologue_saves__ symbol.
587          Which is a pushes count in `-mcall-prologues' mode */
588       num_pushes = AVR_MAX_PUSHES - (i - SYMBOL_VALUE_ADDRESS (msymbol)) / 2;
589
590       if (num_pushes > AVR_MAX_PUSHES)
591         num_pushes = 0;
592
593       if (num_pushes)
594         {
595           int from;
596           get_frame_saved_regs (fi)[AVR_FP_REGNUM + 1] = num_pushes;
597           if (num_pushes >= 2)
598             get_frame_saved_regs (fi)[AVR_FP_REGNUM] = num_pushes - 1;
599           i = 0;
600           for (from = AVR_LAST_PUSHED_REGNUM + 1 - (num_pushes - 2);
601                from <= AVR_LAST_PUSHED_REGNUM; ++from)
602             get_frame_saved_regs (fi)[from] = ++i;
603         }
604       get_frame_extra_info (fi)->locals_size = loc_size;
605       get_frame_extra_info (fi)->framesize = loc_size + num_pushes;
606       get_frame_extra_info (fi)->framereg = AVR_FP_REGNUM;
607       return;
608     }
609
610   /* Scan interrupt or signal function */
611
612   if (prologue_len >= 12)
613     {
614       unsigned char img[] = {
615         0x78, 0x94,             /* sei */
616         0x1f, 0x92,             /* push r1 */
617         0x0f, 0x92,             /* push r0 */
618         0x0f, 0xb6,             /* in r0,0x3f SREG */
619         0x0f, 0x92,             /* push r0 */
620         0x11, 0x24              /* clr r1 */
621       };
622       if (memcmp (prologue, img, sizeof (img)) == 0)
623         {
624           vpc += sizeof (img);
625           get_frame_saved_regs (fi)[0] = 2;
626           get_frame_saved_regs (fi)[1] = 1;
627           get_frame_extra_info (fi)->framesize += 3;
628         }
629       else if (memcmp (img + 1, prologue, sizeof (img) - 1) == 0)
630         {
631           vpc += sizeof (img) - 1;
632           get_frame_saved_regs (fi)[0] = 2;
633           get_frame_saved_regs (fi)[1] = 1;
634           get_frame_extra_info (fi)->framesize += 3;
635         }
636     }
637
638   /* First stage of the prologue scanning.
639      Scan pushes */
640
641   for (; vpc <= prologue_len; vpc += 2)
642     {
643       insn = EXTRACT_INSN (&prologue[vpc]);
644       if ((insn & 0xfe0f) == 0x920f)    /* push rXX */
645         {
646           /* Bits 4-9 contain a mask for registers R0-R32. */
647           regno = (insn & 0x1f0) >> 4;
648           ++get_frame_extra_info (fi)->framesize;
649           get_frame_saved_regs (fi)[regno] = get_frame_extra_info (fi)->framesize;
650           scan_stage = 1;
651         }
652       else
653         break;
654     }
655
656   /* Second stage of the prologue scanning.
657      Scan:
658      in r28,__SP_L__
659      in r29,__SP_H__ */
660
661   if (scan_stage == 1 && vpc + 4 <= prologue_len)
662     {
663       unsigned char img[] = {
664         0xcd, 0xb7,             /* in r28,__SP_L__ */
665         0xde, 0xb7              /* in r29,__SP_H__ */
666       };
667       unsigned short insn1;
668
669       if (memcmp (prologue + vpc, img, sizeof (img)) == 0)
670         {
671           vpc += 4;
672           get_frame_extra_info (fi)->framereg = AVR_FP_REGNUM;
673           scan_stage = 2;
674         }
675     }
676
677   /* Third stage of the prologue scanning. (Really two stages)
678      Scan for:
679      sbiw r28,XX or subi r28,lo8(XX)
680      sbci r29,hi8(XX)
681      in __tmp_reg__,__SREG__
682      cli
683      out __SP_L__,r28
684      out __SREG__,__tmp_reg__
685      out __SP_H__,r29 */
686
687   if (scan_stage == 2 && vpc + 12 <= prologue_len)
688     {
689       int locals_size = 0;
690       unsigned char img[] = {
691         0x0f, 0xb6,             /* in r0,0x3f */
692         0xf8, 0x94,             /* cli */
693         0xcd, 0xbf,             /* out 0x3d,r28 ; SPL */
694         0x0f, 0xbe,             /* out 0x3f,r0  ; SREG */
695         0xde, 0xbf              /* out 0x3e,r29 ; SPH */
696       };
697       unsigned char img_sig[] = {
698         0xcd, 0xbf,             /* out 0x3d,r28 ; SPL */
699         0xde, 0xbf              /* out 0x3e,r29 ; SPH */
700       };
701       unsigned char img_int[] = {
702         0xf8, 0x94,             /* cli */
703         0xcd, 0xbf,             /* out 0x3d,r28 ; SPL */
704         0x78, 0x94,             /* sei */
705         0xde, 0xbf              /* out 0x3e,r29 ; SPH */
706       };
707
708       insn = EXTRACT_INSN (&prologue[vpc]);
709       vpc += 2;
710       if ((insn & 0xff30) == 0x9720)    /* sbiw r28,XXX */
711         locals_size = (insn & 0xf) | ((insn & 0xc0) >> 2);
712       else if ((insn & 0xf0f0) == 0x50c0)       /* subi r28,lo8(XX) */
713         {
714           locals_size = (insn & 0xf) | ((insn & 0xf00) >> 4);
715           insn = EXTRACT_INSN (&prologue[vpc]);
716           vpc += 2;
717           locals_size += ((insn & 0xf) | ((insn & 0xf00) >> 4) << 8);
718         }
719       else
720         return;
721       get_frame_extra_info (fi)->locals_size = locals_size;
722       get_frame_extra_info (fi)->framesize += locals_size;
723     }
724 }
725
726 /* This function actually figures out the frame address for a given pc and
727    sp.  This is tricky  because we sometimes don't use an explicit
728    frame pointer, and the previous stack pointer isn't necessarily recorded
729    on the stack.  The only reliable way to get this info is to
730    examine the prologue.  */
731
732 static void
733 avr_init_extra_frame_info (int fromleaf, struct frame_info *fi)
734 {
735   int reg;
736
737   if (get_next_frame (fi))
738     deprecated_update_frame_pc_hack (fi, FRAME_SAVED_PC (get_next_frame (fi)));
739
740   frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
741   frame_saved_regs_zalloc (fi);
742
743   get_frame_extra_info (fi)->return_pc = 0;
744   get_frame_extra_info (fi)->args_pointer = 0;
745   get_frame_extra_info (fi)->locals_size = 0;
746   get_frame_extra_info (fi)->framereg = 0;
747   get_frame_extra_info (fi)->framesize = 0;
748   get_frame_extra_info (fi)->is_main = 0;
749
750   avr_scan_prologue (fi);
751
752   if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi), get_frame_base (fi),
753                                    get_frame_base (fi)))
754     {
755       /* We need to setup fi->frame here because run_stack_dummy gets it wrong
756          by assuming it's always FP.  */
757       deprecated_update_frame_base_hack (fi, deprecated_read_register_dummy (get_frame_pc (fi), get_frame_base (fi),
758                                                                              AVR_PC_REGNUM));
759     }
760   else if (!get_next_frame (fi))
761     /* this is the innermost frame? */
762     deprecated_update_frame_base_hack (fi, read_register (get_frame_extra_info (fi)->framereg));
763   else if (get_frame_extra_info (fi)->is_main != 1)
764     /* not the innermost frame, not `main' */
765     /* If we have an next frame,  the callee saved it. */
766     {
767       struct frame_info *next_fi = get_next_frame (fi);
768       if (get_frame_extra_info (fi)->framereg == AVR_SP_REGNUM)
769         deprecated_update_frame_base_hack (fi, (get_frame_base (next_fi)
770                                                 + 2 /* ret addr */
771                                                 + get_frame_extra_info (next_fi)->framesize));
772       /* FIXME: I don't analyse va_args functions  */
773       else
774         {
775           CORE_ADDR fp = 0;
776           CORE_ADDR fp1 = 0;
777           unsigned int fp_low, fp_high;
778
779           /* Scan all frames */
780           for (; next_fi; next_fi = get_next_frame (next_fi))
781             {
782               /* look for saved AVR_FP_REGNUM */
783               if (get_frame_saved_regs (next_fi)[AVR_FP_REGNUM] && !fp)
784                 fp = get_frame_saved_regs (next_fi)[AVR_FP_REGNUM];
785               /* look for saved AVR_FP_REGNUM + 1 */
786               if (get_frame_saved_regs (next_fi)[AVR_FP_REGNUM + 1] && !fp1)
787                 fp1 = get_frame_saved_regs (next_fi)[AVR_FP_REGNUM + 1];
788             }
789           fp_low = (fp ? read_memory_unsigned_integer (avr_make_saddr (fp), 1)
790                     : read_register (AVR_FP_REGNUM)) & 0xff;
791           fp_high =
792             (fp1 ? read_memory_unsigned_integer (avr_make_saddr (fp1), 1) :
793              read_register (AVR_FP_REGNUM + 1)) & 0xff;
794           deprecated_update_frame_base_hack (fi, fp_low | (fp_high << 8));
795         }
796     }
797
798   /* TRoth: Do we want to do this if we are in main? I don't think we should
799      since return_pc makes no sense when we are in main. */
800
801   if ((get_frame_pc (fi)) && (get_frame_extra_info (fi)->is_main == 0))
802     /* We are not in CALL_DUMMY */
803     {
804       CORE_ADDR addr;
805       int i;
806
807       addr = get_frame_base (fi) + get_frame_extra_info (fi)->framesize + 1;
808
809       /* Return address in stack in different endianness */
810
811       get_frame_extra_info (fi)->return_pc =
812         read_memory_unsigned_integer (avr_make_saddr (addr), 1) << 8;
813       get_frame_extra_info (fi)->return_pc |=
814         read_memory_unsigned_integer (avr_make_saddr (addr + 1), 1);
815
816       /* This return address in words,
817          must be converted to the bytes address */
818       get_frame_extra_info (fi)->return_pc *= 2;
819
820       /* Resolve a pushed registers addresses */
821       for (i = 0; i < NUM_REGS; i++)
822         {
823           if (get_frame_saved_regs (fi)[i])
824             get_frame_saved_regs (fi)[i] = addr - get_frame_saved_regs (fi)[i];
825         }
826     }
827 }
828
829 /* Restore the machine to the state it had before the current frame was
830    created.  Usually used either by the "RETURN" command, or by
831    call_function_by_hand after the dummy_frame is finished. */
832
833 static void
834 avr_pop_frame (void)
835 {
836   unsigned regnum;
837   CORE_ADDR saddr;
838   struct frame_info *frame = get_current_frame ();
839
840   if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
841                                    get_frame_base (frame),
842                                    get_frame_base (frame)))
843     {
844       generic_pop_dummy_frame ();
845     }
846   else
847     {
848       /* TRoth: Why only loop over 8 registers? */
849
850       for (regnum = 0; regnum < 8; regnum++)
851         {
852           /* Don't forget AVR_SP_REGNUM in a frame_saved_regs struct is the
853              actual value we want, not the address of the value we want.  */
854           if (get_frame_saved_regs (frame)[regnum] && regnum != AVR_SP_REGNUM)
855             {
856               saddr = avr_make_saddr (get_frame_saved_regs (frame)[regnum]);
857               write_register (regnum,
858                               read_memory_unsigned_integer (saddr, 1));
859             }
860           else if (get_frame_saved_regs (frame)[regnum] && regnum == AVR_SP_REGNUM)
861             write_register (regnum, get_frame_base (frame) + 2);
862         }
863
864       /* Don't forget the update the PC too!  */
865       write_pc (get_frame_extra_info (frame)->return_pc);
866     }
867   flush_cached_frames ();
868 }
869
870 /* Return the saved PC from this frame. */
871
872 static CORE_ADDR
873 avr_frame_saved_pc (struct frame_info *frame)
874 {
875   if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
876                                    get_frame_base (frame),
877                                    get_frame_base (frame)))
878     return deprecated_read_register_dummy (get_frame_pc (frame),
879                                            get_frame_base (frame),
880                                            AVR_PC_REGNUM);
881   else
882     return get_frame_extra_info (frame)->return_pc;
883 }
884
885 static CORE_ADDR
886 avr_saved_pc_after_call (struct frame_info *frame)
887 {
888   unsigned char m1, m2;
889   unsigned int sp = read_register (AVR_SP_REGNUM);
890   m1 = read_memory_unsigned_integer (avr_make_saddr (sp + 1), 1);
891   m2 = read_memory_unsigned_integer (avr_make_saddr (sp + 2), 1);
892   return (m2 | (m1 << 8)) * 2;
893 }
894
895 /* Returns the return address for a dummy. */
896
897 static CORE_ADDR
898 avr_call_dummy_address (void)
899 {
900   return entry_point_address ();
901 }
902
903 /* Setup the return address for a dummy frame, as called by
904    call_function_by_hand.  Only necessary when you are using an empty
905    CALL_DUMMY. */
906
907 static CORE_ADDR
908 avr_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
909 {
910   unsigned char buf[2];
911   int wordsize = 2;
912 #if 0
913   struct minimal_symbol *msymbol;
914   CORE_ADDR mon_brk;
915 #endif
916
917   buf[0] = 0;
918   buf[1] = 0;
919   sp -= wordsize;
920   write_memory (sp + 1, buf, 2);
921
922 #if 0
923   /* FIXME: TRoth/2002-02-18: This should probably be removed since it's a
924      left-over from Denis' original patch which used avr-mon for the target
925      instead of the generic remote target. */
926   if ((strcmp (target_shortname, "avr-mon") == 0)
927       && (msymbol = lookup_minimal_symbol ("gdb_break", NULL, NULL)))
928     {
929       mon_brk = SYMBOL_VALUE_ADDRESS (msymbol);
930       store_unsigned_integer (buf, wordsize, mon_brk / 2);
931       sp -= wordsize;
932       write_memory (sp + 1, buf + 1, 1);
933       write_memory (sp + 2, buf, 1);
934     }
935 #endif
936   return sp;
937 }
938
939 static CORE_ADDR
940 avr_skip_prologue (CORE_ADDR pc)
941 {
942   CORE_ADDR func_addr, func_end;
943   struct symtab_and_line sal;
944
945   /* See what the symbol table says */
946
947   if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
948     {
949       sal = find_pc_line (func_addr, 0);
950
951       /* troth/2002-08-05: For some very simple functions, gcc doesn't
952          generate a prologue and the sal.end ends up being the 2-byte ``ret''
953          instruction at the end of the function, but func_end ends up being
954          the address of the first instruction of the _next_ function. By
955          adjusting func_end by 2 bytes, we can catch these functions and not
956          return sal.end if it is the ``ret'' instruction. */
957
958       if (sal.line != 0 && sal.end < (func_end-2))
959         return sal.end;
960     }
961
962 /* Either we didn't find the start of this function (nothing we can do),
963    or there's no line info, or the line after the prologue is after
964    the end of the function (there probably isn't a prologue). */
965
966   return pc;
967 }
968
969 static CORE_ADDR
970 avr_frame_address (struct frame_info *fi)
971 {
972   return avr_make_saddr (get_frame_base (fi));
973 }
974
975 /* Given a GDB frame, determine the address of the calling function's
976    frame.  This will be used to create a new GDB frame struct, and
977    then INIT_EXTRA_FRAME_INFO and DEPRECATED_INIT_FRAME_PC will be
978    called for the new frame.
979
980    For us, the frame address is its stack pointer value, so we look up
981    the function prologue to determine the caller's sp value, and return it.  */
982
983 static CORE_ADDR
984 avr_frame_chain (struct frame_info *frame)
985 {
986   if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
987                                    get_frame_base (frame),
988                                    get_frame_base (frame)))
989     {
990       /* initialize the return_pc now */
991       get_frame_extra_info (frame)->return_pc
992         = deprecated_read_register_dummy (get_frame_pc (frame),
993                                           get_frame_base (frame),
994                                           AVR_PC_REGNUM);
995       return get_frame_base (frame);
996     }
997   return (get_frame_extra_info (frame)->is_main ? 0
998           : get_frame_base (frame) + get_frame_extra_info (frame)->framesize + 2 /* ret addr */ );
999 }
1000
1001 /* Store the address of the place in which to copy the structure the
1002    subroutine will return.  This is called from call_function. 
1003
1004    We store structs through a pointer passed in the first Argument
1005    register. */
1006
1007 static void
1008 avr_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
1009 {
1010   write_register (0, addr);
1011 }
1012
1013 /* Setup the function arguments for calling a function in the inferior.
1014
1015    On the AVR architecture, there are 18 registers (R25 to R8) which are
1016    dedicated for passing function arguments.  Up to the first 18 arguments
1017    (depending on size) may go into these registers.  The rest go on the stack.
1018
1019    Arguments that are larger than WORDSIZE bytes will be split between two or
1020    more registers as available, but will NOT be split between a register and
1021    the stack.
1022
1023    An exceptional case exists for struct arguments (and possibly other
1024    aggregates such as arrays) -- if the size is larger than WORDSIZE bytes but
1025    not a multiple of WORDSIZE bytes.  In this case the argument is never split
1026    between the registers and the stack, but instead is copied in its entirety
1027    onto the stack, AND also copied into as many registers as there is room
1028    for.  In other words, space in registers permitting, two copies of the same
1029    argument are passed in.  As far as I can tell, only the one on the stack is
1030    used, although that may be a function of the level of compiler
1031    optimization.  I suspect this is a compiler bug.  Arguments of these odd
1032    sizes are left-justified within the word (as opposed to arguments smaller
1033    than WORDSIZE bytes, which are right-justified).
1034  
1035    If the function is to return an aggregate type such as a struct, the caller
1036    must allocate space into which the callee will copy the return value.  In
1037    this case, a pointer to the return value location is passed into the callee
1038    in register R0, which displaces one of the other arguments passed in via
1039    registers R0 to R2. */
1040
1041 static CORE_ADDR
1042 avr_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1043                     int struct_return, CORE_ADDR struct_addr)
1044 {
1045   int stack_alloc, stack_offset;
1046   int wordsize;
1047   int argreg;
1048   int argnum;
1049   struct type *type;
1050   CORE_ADDR regval;
1051   char *val;
1052   char valbuf[4];
1053   int len;
1054
1055   wordsize = 1;
1056 #if 0
1057   /* Now make sure there's space on the stack */
1058   for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
1059     stack_alloc += TYPE_LENGTH (VALUE_TYPE (args[argnum]));
1060   sp -= stack_alloc;            /* make room on stack for args */
1061   /* we may over-allocate a little here, but that won't hurt anything */
1062 #endif
1063   argreg = 25;
1064   if (struct_return)            /* "struct return" pointer takes up one argreg */
1065     {
1066       write_register (--argreg, struct_addr);
1067     }
1068
1069   /* Now load as many as possible of the first arguments into registers, and
1070      push the rest onto the stack.  There are 3N bytes in three registers
1071      available.  Loop thru args from first to last.  */
1072
1073   for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
1074     {
1075       type = VALUE_TYPE (args[argnum]);
1076       len = TYPE_LENGTH (type);
1077       val = (char *) VALUE_CONTENTS (args[argnum]);
1078
1079       /* NOTE WELL!!!!!  This is not an "else if" clause!!!  That's because
1080          some *&^%$ things get passed on the stack AND in the registers!  */
1081       while (len > 0)
1082         {                       /* there's room in registers */
1083           len -= wordsize;
1084           regval = extract_address (val + len, wordsize);
1085           write_register (argreg--, regval);
1086         }
1087     }
1088   return sp;
1089 }
1090
1091 /* Initialize the gdbarch structure for the AVR's. */
1092
1093 static struct gdbarch *
1094 avr_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1095 {
1096   /* FIXME: TRoth/2002-02-18: I have no idea if avr_call_dummy_words[] should
1097      be bigger or not. Initial testing seems to show that `call my_func()`
1098      works and backtrace from a breakpoint within the call looks correct.
1099      Admittedly, I haven't tested with more than a very simple program. */
1100   static LONGEST avr_call_dummy_words[] = { 0 };
1101
1102   struct gdbarch *gdbarch;
1103   struct gdbarch_tdep *tdep;
1104
1105   /* Find a candidate among the list of pre-declared architectures. */
1106   arches = gdbarch_list_lookup_by_info (arches, &info);
1107   if (arches != NULL)
1108     return arches->gdbarch;
1109
1110   /* None found, create a new architecture from the information provided. */
1111   tdep = XMALLOC (struct gdbarch_tdep);
1112   gdbarch = gdbarch_alloc (&info, tdep);
1113
1114   /* NOTE: cagney/2002-12-06: This can be deleted when this arch is
1115      ready to unwind the PC first (see frame.c:get_prev_frame()).  */
1116   set_gdbarch_deprecated_init_frame_pc (gdbarch, init_frame_pc_default);
1117
1118   /* If we ever need to differentiate the device types, do it here. */
1119   switch (info.bfd_arch_info->mach)
1120     {
1121     case bfd_mach_avr1:
1122     case bfd_mach_avr2:
1123     case bfd_mach_avr3:
1124     case bfd_mach_avr4:
1125     case bfd_mach_avr5:
1126       break;
1127     }
1128
1129   set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1130   set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1131   set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1132   set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1133   set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1134   set_gdbarch_addr_bit (gdbarch, 32);
1135   set_gdbarch_bfd_vma_bit (gdbarch, 32);        /* FIXME: TRoth/2002-02-18: Is this needed? */
1136
1137   set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1138   set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1139   set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1140
1141   set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
1142   set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_little);
1143   set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_single_little);
1144
1145   set_gdbarch_read_pc (gdbarch, avr_read_pc);
1146   set_gdbarch_write_pc (gdbarch, avr_write_pc);
1147   set_gdbarch_read_fp (gdbarch, avr_read_fp);
1148   set_gdbarch_read_sp (gdbarch, avr_read_sp);
1149   set_gdbarch_write_sp (gdbarch, avr_write_sp);
1150
1151   set_gdbarch_num_regs (gdbarch, AVR_NUM_REGS);
1152
1153   set_gdbarch_sp_regnum (gdbarch, AVR_SP_REGNUM);
1154   set_gdbarch_fp_regnum (gdbarch, AVR_FP_REGNUM);
1155   set_gdbarch_pc_regnum (gdbarch, AVR_PC_REGNUM);
1156
1157   set_gdbarch_register_name (gdbarch, avr_register_name);
1158   set_gdbarch_register_size (gdbarch, 1);
1159   set_gdbarch_register_bytes (gdbarch, AVR_NUM_REG_BYTES);
1160   set_gdbarch_register_byte (gdbarch, avr_register_byte);
1161   set_gdbarch_register_raw_size (gdbarch, avr_register_raw_size);
1162   set_gdbarch_max_register_raw_size (gdbarch, 4);
1163   set_gdbarch_register_virtual_size (gdbarch, avr_register_virtual_size);
1164   set_gdbarch_max_register_virtual_size (gdbarch, 4);
1165   set_gdbarch_register_virtual_type (gdbarch, avr_register_virtual_type);
1166
1167   set_gdbarch_print_insn (gdbarch, print_insn_avr);
1168
1169   set_gdbarch_call_dummy_address (gdbarch, avr_call_dummy_address);
1170   set_gdbarch_call_dummy_start_offset (gdbarch, 0);
1171   set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
1172   set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
1173   set_gdbarch_call_dummy_length (gdbarch, 0);
1174   set_gdbarch_call_dummy_p (gdbarch, 1);
1175   set_gdbarch_call_dummy_words (gdbarch, avr_call_dummy_words);
1176   set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
1177   set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
1178
1179 /*    set_gdbarch_believe_pcc_promotion (gdbarch, 1); // TRoth: should this be set? */
1180
1181   set_gdbarch_address_to_pointer (gdbarch, avr_address_to_pointer);
1182   set_gdbarch_pointer_to_address (gdbarch, avr_pointer_to_address);
1183   set_gdbarch_push_arguments (gdbarch, avr_push_arguments);
1184   set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
1185   set_gdbarch_push_return_address (gdbarch, avr_push_return_address);
1186   set_gdbarch_pop_frame (gdbarch, avr_pop_frame);
1187
1188   set_gdbarch_use_struct_convention (gdbarch, generic_use_struct_convention);
1189   set_gdbarch_store_struct_return (gdbarch, avr_store_struct_return);
1190
1191   set_gdbarch_frame_init_saved_regs (gdbarch, avr_scan_prologue);
1192   set_gdbarch_init_extra_frame_info (gdbarch, avr_init_extra_frame_info);
1193   set_gdbarch_skip_prologue (gdbarch, avr_skip_prologue);
1194   set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1195
1196   set_gdbarch_decr_pc_after_break (gdbarch, 0);
1197
1198   set_gdbarch_function_start_offset (gdbarch, 0);
1199   set_gdbarch_remote_translate_xfer_address (gdbarch,
1200                                              avr_remote_translate_xfer_address);
1201   set_gdbarch_frame_args_skip (gdbarch, 0);
1202   set_gdbarch_frameless_function_invocation (gdbarch, frameless_look_for_prologue);     /* ??? */
1203   set_gdbarch_frame_chain (gdbarch, avr_frame_chain);
1204   set_gdbarch_frame_saved_pc (gdbarch, avr_frame_saved_pc);
1205   set_gdbarch_frame_args_address (gdbarch, avr_frame_address);
1206   set_gdbarch_frame_locals_address (gdbarch, avr_frame_address);
1207   set_gdbarch_saved_pc_after_call (gdbarch, avr_saved_pc_after_call);
1208   set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
1209
1210   set_gdbarch_convert_from_func_ptr_addr (gdbarch,
1211                                           avr_convert_from_func_ptr_addr);
1212
1213   return gdbarch;
1214 }
1215
1216 /* Send a query request to the avr remote target asking for values of the io
1217    registers. If args parameter is not NULL, then the user has requested info
1218    on a specific io register [This still needs implemented and is ignored for
1219    now]. The query string should be one of these forms:
1220
1221    "Ravr.io_reg" -> reply is "NN" number of io registers
1222
1223    "Ravr.io_reg:addr,len" where addr is first register and len is number of
1224    registers to be read. The reply should be "<NAME>,VV;" for each io register
1225    where, <NAME> is a string, and VV is the hex value of the register.
1226
1227    All io registers are 8-bit. */
1228
1229 static void
1230 avr_io_reg_read_command (char *args, int from_tty)
1231 {
1232   int bufsiz = 0;
1233   char buf[400];
1234   char query[400];
1235   char *p;
1236   unsigned int nreg = 0;
1237   unsigned int val;
1238   int i, j, k, step;
1239
1240 /*    fprintf_unfiltered (gdb_stderr, "DEBUG: avr_io_reg_read_command (\"%s\", %d)\n", */
1241 /*             args, from_tty); */
1242
1243   if (!current_target.to_query)
1244     {
1245       fprintf_unfiltered (gdb_stderr,
1246                           "ERR: info io_registers NOT supported by current target\n");
1247       return;
1248     }
1249
1250   /* Just get the maximum buffer size. */
1251   target_query ((int) 'R', 0, 0, &bufsiz);
1252   if (bufsiz > sizeof (buf))
1253     bufsiz = sizeof (buf);
1254
1255   /* Find out how many io registers the target has. */
1256   strcpy (query, "avr.io_reg");
1257   target_query ((int) 'R', query, buf, &bufsiz);
1258
1259   if (strncmp (buf, "", bufsiz) == 0)
1260     {
1261       fprintf_unfiltered (gdb_stderr,
1262                           "info io_registers NOT supported by target\n");
1263       return;
1264     }
1265
1266   if (sscanf (buf, "%x", &nreg) != 1)
1267     {
1268       fprintf_unfiltered (gdb_stderr,
1269                           "Error fetching number of io registers\n");
1270       return;
1271     }
1272
1273   reinitialize_more_filter ();
1274
1275   printf_unfiltered ("Target has %u io registers:\n\n", nreg);
1276
1277   /* only fetch up to 8 registers at a time to keep the buffer small */
1278   step = 8;
1279
1280   for (i = 0; i < nreg; i += step)
1281     {
1282       j = step - (nreg % step); /* how many registers this round? */
1283
1284       snprintf (query, sizeof (query) - 1, "avr.io_reg:%x,%x", i, j);
1285       target_query ((int) 'R', query, buf, &bufsiz);
1286
1287       p = buf;
1288       for (k = i; k < (i + j); k++)
1289         {
1290           if (sscanf (p, "%[^,],%x;", query, &val) == 2)
1291             {
1292               printf_filtered ("[%02x] %-15s : %02x\n", k, query, val);
1293               while ((*p != ';') && (*p != '\0'))
1294                 p++;
1295               p++;              /* skip over ';' */
1296               if (*p == '\0')
1297                 break;
1298             }
1299         }
1300     }
1301 }
1302
1303 void
1304 _initialize_avr_tdep (void)
1305 {
1306   register_gdbarch_init (bfd_arch_avr, avr_gdbarch_init);
1307
1308   /* Add a new command to allow the user to query the avr remote target for
1309      the values of the io space registers in a saner way than just using
1310      `x/NNNb ADDR`. */
1311
1312   /* FIXME: TRoth/2002-02-18: This should probably be changed to 'info avr
1313      io_registers' to signify it is not available on other platforms. */
1314
1315   add_cmd ("io_registers", class_info, avr_io_reg_read_command,
1316            "query remote avr target for io space register values", &infolist);
1317 }