2004-07-28 Andrew Cagney <cagney@gnu.org>
[platform/upstream/binutils.git] / gdb / avr-tdep.c
1 /* Target-dependent code for Atmel AVR, for GDB.
2    Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004
3    Free Software Foundation, Inc.
4
5    This file is part of GDB.
6
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 2 of the License, or
10    (at your option) any later version.
11
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16
17    You should have received a copy of the GNU General Public License
18    along with this program; if not, write to the Free Software
19    Foundation, Inc., 59 Temple Place - Suite 330,
20    Boston, MA 02111-1307, USA.  */
21
22 /* Contributed by Theodore A. Roth, troth@openavr.org */
23
24 /* Portions of this file were taken from the original gdb-4.18 patch developed
25    by Denis Chertykov, denisc@overta.ru */
26
27 #include "defs.h"
28 #include "frame.h"
29 #include "frame-unwind.h"
30 #include "frame-base.h"
31 #include "trad-frame.h"
32 #include "gdbcmd.h"
33 #include "gdbcore.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "arch-utils.h"
37 #include "regcache.h"
38 #include "gdb_string.h"
39 #include "dis-asm.h"
40
41 /* AVR Background:
42
43    (AVR micros are pure Harvard Architecture processors.)
44
45    The AVR family of microcontrollers have three distinctly different memory
46    spaces: flash, sram and eeprom. The flash is 16 bits wide and is used for
47    the most part to store program instructions. The sram is 8 bits wide and is
48    used for the stack and the heap. Some devices lack sram and some can have
49    an additional external sram added on as a peripheral.
50
51    The eeprom is 8 bits wide and is used to store data when the device is
52    powered down. Eeprom is not directly accessible, it can only be accessed
53    via io-registers using a special algorithm. Accessing eeprom via gdb's
54    remote serial protocol ('m' or 'M' packets) looks difficult to do and is
55    not included at this time.
56
57    [The eeprom could be read manually via ``x/b <eaddr + AVR_EMEM_START>'' or
58    written using ``set {unsigned char}<eaddr + AVR_EMEM_START>''.  For this to
59    work, the remote target must be able to handle eeprom accesses and perform
60    the address translation.]
61
62    All three memory spaces have physical addresses beginning at 0x0. In
63    addition, the flash is addressed by gcc/binutils/gdb with respect to 8 bit
64    bytes instead of the 16 bit wide words used by the real device for the
65    Program Counter.
66
67    In order for remote targets to work correctly, extra bits must be added to
68    addresses before they are send to the target or received from the target
69    via the remote serial protocol. The extra bits are the MSBs and are used to
70    decode which memory space the address is referring to. */
71
72 #undef XMALLOC
73 #define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
74
75 #undef EXTRACT_INSN
76 #define EXTRACT_INSN(addr) extract_unsigned_integer(addr,2)
77
78 /* Constants: prefixed with AVR_ to avoid name space clashes */
79
80 enum
81 {
82   AVR_REG_W = 24,
83   AVR_REG_X = 26,
84   AVR_REG_Y = 28,
85   AVR_FP_REGNUM = 28,
86   AVR_REG_Z = 30,
87
88   AVR_SREG_REGNUM = 32,
89   AVR_SP_REGNUM = 33,
90   AVR_PC_REGNUM = 34,
91
92   AVR_NUM_REGS = 32 + 1 /*SREG*/ + 1 /*SP*/ + 1 /*PC*/,
93   AVR_NUM_REG_BYTES = 32 + 1 /*SREG*/ + 2 /*SP*/ + 4 /*PC*/,
94
95   AVR_PC_REG_INDEX = 35,        /* index into array of registers */
96
97   AVR_MAX_PROLOGUE_SIZE = 64,   /* bytes */
98
99   /* Count of pushed registers. From r2 to r17 (inclusively), r28, r29 */
100   AVR_MAX_PUSHES = 18,
101
102   /* Number of the last pushed register. r17 for current avr-gcc */
103   AVR_LAST_PUSHED_REGNUM = 17,
104
105   AVR_ARG1_REGNUM = 24,         /* Single byte argument */
106   AVR_ARGN_REGNUM = 25,         /* Multi byte argments */
107
108   AVR_RET1_REGNUM = 24,         /* Single byte return value */
109   AVR_RETN_REGNUM = 25,         /* Multi byte return value */
110
111   /* FIXME: TRoth/2002-01-??: Can we shift all these memory masks left 8
112      bits? Do these have to match the bfd vma values?. It sure would make
113      things easier in the future if they didn't need to match.
114
115      Note: I chose these values so as to be consistent with bfd vma
116      addresses.
117
118      TRoth/2002-04-08: There is already a conflict with very large programs
119      in the mega128. The mega128 has 128K instruction bytes (64K words),
120      thus the Most Significant Bit is 0x10000 which gets masked off my
121      AVR_MEM_MASK.
122
123      The problem manifests itself when trying to set a breakpoint in a
124      function which resides in the upper half of the instruction space and
125      thus requires a 17-bit address.
126
127      For now, I've just removed the EEPROM mask and changed AVR_MEM_MASK
128      from 0x00ff0000 to 0x00f00000. Eeprom is not accessible from gdb yet,
129      but could be for some remote targets by just adding the correct offset
130      to the address and letting the remote target handle the low-level
131      details of actually accessing the eeprom. */
132
133   AVR_IMEM_START = 0x00000000,  /* INSN memory */
134   AVR_SMEM_START = 0x00800000,  /* SRAM memory */
135 #if 1
136   /* No eeprom mask defined */
137   AVR_MEM_MASK = 0x00f00000,    /* mask to determine memory space */
138 #else
139   AVR_EMEM_START = 0x00810000,  /* EEPROM memory */
140   AVR_MEM_MASK = 0x00ff0000,    /* mask to determine memory space */
141 #endif
142 };
143
144 /* Prologue types:
145
146    NORMAL and CALL are the typical types (the -mcall-prologues gcc option
147    causes the generation of the CALL type prologues).  */
148
149 enum {
150     AVR_PROLOGUE_NONE,              /* No prologue */
151     AVR_PROLOGUE_NORMAL,
152     AVR_PROLOGUE_CALL,              /* -mcall-prologues */
153     AVR_PROLOGUE_MAIN,
154     AVR_PROLOGUE_INTR,              /* interrupt handler */
155     AVR_PROLOGUE_SIG,               /* signal handler */
156 };
157
158 /* Any function with a frame looks like this
159    .......    <-SP POINTS HERE
160    LOCALS1    <-FP POINTS HERE
161    LOCALS0
162    SAVED FP
163    SAVED R3
164    SAVED R2
165    RET PC
166    FIRST ARG
167    SECOND ARG */
168
169 struct avr_unwind_cache
170 {
171   /* The previous frame's inner most stack address.  Used as this
172      frame ID's stack_addr.  */
173   CORE_ADDR prev_sp;
174   /* The frame's base, optionally used by the high-level debug info.  */
175   CORE_ADDR base;
176   int size;
177   int prologue_type;
178   /* Table indicating the location of each and every register.  */
179   struct trad_frame_saved_reg *saved_regs;
180 };
181
182 struct gdbarch_tdep
183 {
184   /* FIXME: TRoth: is there anything to put here? */
185   int foo;
186 };
187
188 /* Lookup the name of a register given it's number. */
189
190 static const char *
191 avr_register_name (int regnum)
192 {
193   static char *register_names[] = {
194     "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
195     "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
196     "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
197     "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
198     "SREG", "SP", "PC"
199   };
200   if (regnum < 0)
201     return NULL;
202   if (regnum >= (sizeof (register_names) / sizeof (*register_names)))
203     return NULL;
204   return register_names[regnum];
205 }
206
207 /* Return the GDB type object for the "standard" data type
208    of data in register N.  */
209
210 static struct type *
211 avr_register_type (struct gdbarch *gdbarch, int reg_nr)
212 {
213   if (reg_nr == AVR_PC_REGNUM)
214     return builtin_type_uint32;
215   if (reg_nr == AVR_SP_REGNUM)
216     return builtin_type_void_data_ptr;
217   else
218     return builtin_type_uint8;
219 }
220
221 /* Instruction address checks and convertions. */
222
223 static CORE_ADDR
224 avr_make_iaddr (CORE_ADDR x)
225 {
226   return ((x) | AVR_IMEM_START);
227 }
228
229 /* FIXME: TRoth: Really need to use a larger mask for instructions. Some
230    devices are already up to 128KBytes of flash space.
231
232    TRoth/2002-04-8: See comment above where AVR_IMEM_START is defined. */
233
234 static CORE_ADDR
235 avr_convert_iaddr_to_raw (CORE_ADDR x)
236 {
237   return ((x) & 0xffffffff);
238 }
239
240 /* SRAM address checks and convertions. */
241
242 static CORE_ADDR
243 avr_make_saddr (CORE_ADDR x)
244 {
245   return ((x) | AVR_SMEM_START);
246 }
247
248 static CORE_ADDR
249 avr_convert_saddr_to_raw (CORE_ADDR x)
250 {
251   return ((x) & 0xffffffff);
252 }
253
254 /* EEPROM address checks and convertions. I don't know if these will ever
255    actually be used, but I've added them just the same. TRoth */
256
257 /* TRoth/2002-04-08: Commented out for now to allow fix for problem with large
258    programs in the mega128. */
259
260 /*  static CORE_ADDR */
261 /*  avr_make_eaddr (CORE_ADDR x) */
262 /*  { */
263 /*    return ((x) | AVR_EMEM_START); */
264 /*  } */
265
266 /*  static int */
267 /*  avr_eaddr_p (CORE_ADDR x) */
268 /*  { */
269 /*    return (((x) & AVR_MEM_MASK) == AVR_EMEM_START); */
270 /*  } */
271
272 /*  static CORE_ADDR */
273 /*  avr_convert_eaddr_to_raw (CORE_ADDR x) */
274 /*  { */
275 /*    return ((x) & 0xffffffff); */
276 /*  } */
277
278 /* Convert from address to pointer and vice-versa. */
279
280 static void
281 avr_address_to_pointer (struct type *type, void *buf, CORE_ADDR addr)
282 {
283   /* Is it a code address?  */
284   if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
285       || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
286     {
287       store_unsigned_integer (buf, TYPE_LENGTH (type),
288                               avr_convert_iaddr_to_raw (addr >> 1));
289     }
290   else
291     {
292       /* Strip off any upper segment bits.  */
293       store_unsigned_integer (buf, TYPE_LENGTH (type),
294                               avr_convert_saddr_to_raw (addr));
295     }
296 }
297
298 static CORE_ADDR
299 avr_pointer_to_address (struct type *type, const void *buf)
300 {
301   CORE_ADDR addr = extract_unsigned_integer (buf, TYPE_LENGTH (type));
302
303   /* Is it a code address?  */
304   if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
305       || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
306       || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
307     return avr_make_iaddr (addr << 1);
308   else
309     return avr_make_saddr (addr);
310 }
311
312 static CORE_ADDR
313 avr_read_pc (ptid_t ptid)
314 {
315   ptid_t save_ptid;
316   ULONGEST pc;
317   CORE_ADDR retval;
318
319   save_ptid = inferior_ptid;
320   inferior_ptid = ptid;
321   regcache_cooked_read_unsigned (current_regcache, AVR_PC_REGNUM, &pc);
322   inferior_ptid = save_ptid;
323   retval = avr_make_iaddr (pc);
324   return retval;
325 }
326
327 static void
328 avr_write_pc (CORE_ADDR val, ptid_t ptid)
329 {
330   ptid_t save_ptid;
331
332   save_ptid = inferior_ptid;
333   inferior_ptid = ptid;
334   write_register (AVR_PC_REGNUM, avr_convert_iaddr_to_raw (val));
335   inferior_ptid = save_ptid;
336 }
337
338 static CORE_ADDR
339 avr_read_sp (void)
340 {
341   ULONGEST sp;
342
343   regcache_cooked_read_unsigned (current_regcache, AVR_SP_REGNUM, &sp);
344   return (avr_make_saddr (sp));
345 }
346
347 static int
348 avr_scan_arg_moves (int vpc, unsigned char *prologue)
349 {
350   unsigned short insn;
351
352   for (; vpc < AVR_MAX_PROLOGUE_SIZE; vpc += 2)
353     {
354       insn = EXTRACT_INSN (&prologue[vpc]);
355       if ((insn & 0xff00) == 0x0100)    /* movw rXX, rYY */
356         continue;
357       else if ((insn & 0xfc00) == 0x2c00) /* mov rXX, rYY */
358         continue;
359       else
360           break;
361     }
362     
363   return vpc;
364 }
365
366 /* Function: avr_scan_prologue
367
368    This function decodes an AVR function prologue to determine:
369      1) the size of the stack frame
370      2) which registers are saved on it
371      3) the offsets of saved regs
372    This information is stored in the avr_unwind_cache structure.
373
374    Some devices lack the sbiw instruction, so on those replace this:
375         sbiw    r28, XX
376    with this:
377         subi    r28,lo8(XX)
378         sbci    r29,hi8(XX)
379
380    A typical AVR function prologue with a frame pointer might look like this:
381         push    rXX        ; saved regs
382         ...
383         push    r28
384         push    r29
385         in      r28,__SP_L__
386         in      r29,__SP_H__
387         sbiw    r28,<LOCALS_SIZE>
388         in      __tmp_reg__,__SREG__
389         cli
390         out     __SP_H__,r29
391         out     __SREG__,__tmp_reg__
392         out     __SP_L__,r28
393
394    A typical AVR function prologue without a frame pointer might look like
395    this:
396         push    rXX        ; saved regs
397         ...
398
399    A main function prologue looks like this:
400         ldi     r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
401         ldi     r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
402         out     __SP_H__,r29
403         out     __SP_L__,r28
404
405    A signal handler prologue looks like this:
406         push    __zero_reg__
407         push    __tmp_reg__
408         in      __tmp_reg__, __SREG__
409         push    __tmp_reg__
410         clr     __zero_reg__
411         push    rXX             ; save registers r18:r27, r30:r31
412         ...
413         push    r28             ; save frame pointer
414         push    r29
415         in      r28, __SP_L__
416         in      r29, __SP_H__
417         sbiw    r28, <LOCALS_SIZE>
418         out     __SP_H__, r29
419         out     __SP_L__, r28
420         
421    A interrupt handler prologue looks like this:
422         sei
423         push    __zero_reg__
424         push    __tmp_reg__
425         in      __tmp_reg__, __SREG__
426         push    __tmp_reg__
427         clr     __zero_reg__
428         push    rXX             ; save registers r18:r27, r30:r31
429         ...
430         push    r28             ; save frame pointer
431         push    r29
432         in      r28, __SP_L__
433         in      r29, __SP_H__
434         sbiw    r28, <LOCALS_SIZE>
435         cli
436         out     __SP_H__, r29
437         sei     
438         out     __SP_L__, r28
439
440    A `-mcall-prologues' prologue looks like this (Note that the megas use a
441    jmp instead of a rjmp, thus the prologue is one word larger since jmp is a
442    32 bit insn and rjmp is a 16 bit insn):
443         ldi     r26,lo8(<LOCALS_SIZE>)
444         ldi     r27,hi8(<LOCALS_SIZE>)
445         ldi     r30,pm_lo8(.L_foo_body)
446         ldi     r31,pm_hi8(.L_foo_body)
447         rjmp    __prologue_saves__+RRR
448         .L_foo_body:  */
449
450 /* Not really part of a prologue, but still need to scan for it, is when a
451    function prologue moves values passed via registers as arguments to new
452    registers. In this case, all local variables live in registers, so there
453    may be some register saves. This is what it looks like:
454         movw    rMM, rNN
455         ...
456
457    There could be multiple movw's. If the target doesn't have a movw insn, it
458    will use two mov insns. This could be done after any of the above prologue
459    types.  */
460
461 static CORE_ADDR
462 avr_scan_prologue (CORE_ADDR pc, struct avr_unwind_cache *info)
463 {
464   int i;
465   unsigned short insn;
466   int scan_stage = 0;
467   struct minimal_symbol *msymbol;
468   unsigned char prologue[AVR_MAX_PROLOGUE_SIZE];
469   int vpc = 0;
470
471   /* FIXME: TRoth/2003-06-11: This could be made more efficient by only
472      reading in the bytes of the prologue. The problem is that the figuring
473      out where the end of the prologue is is a bit difficult. The old code 
474      tried to do that, but failed quite often.  */
475   read_memory (pc, prologue, AVR_MAX_PROLOGUE_SIZE);
476
477   /* Scanning main()'s prologue
478      ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
479      ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
480      out __SP_H__,r29
481      out __SP_L__,r28 */
482
483   if (1)
484     {
485       CORE_ADDR locals;
486       unsigned char img[] = {
487         0xde, 0xbf,             /* out __SP_H__,r29 */
488         0xcd, 0xbf              /* out __SP_L__,r28 */
489       };
490
491       insn = EXTRACT_INSN (&prologue[vpc]);
492       /* ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) */
493       if ((insn & 0xf0f0) == 0xe0c0)
494         {
495           locals = (insn & 0xf) | ((insn & 0x0f00) >> 4);
496           insn = EXTRACT_INSN (&prologue[vpc + 2]);
497           /* ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) */
498           if ((insn & 0xf0f0) == 0xe0d0)
499             {
500               locals |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
501               if (memcmp (prologue + vpc + 4, img, sizeof (img)) == 0)
502                 {
503                   info->prologue_type = AVR_PROLOGUE_MAIN;
504                   info->base = locals;
505                   return pc + 4;
506                 }
507             }
508         }
509     }
510
511   /* Scanning `-mcall-prologues' prologue
512      Classic prologue is 10 bytes, mega prologue is a 12 bytes long */
513
514   while (1)     /* Using a while to avoid many goto's */
515     {
516       int loc_size;
517       int body_addr;
518       unsigned num_pushes;
519       int pc_offset = 0;
520
521       insn = EXTRACT_INSN (&prologue[vpc]);
522       /* ldi r26,<LOCALS_SIZE> */
523       if ((insn & 0xf0f0) != 0xe0a0)
524         break;
525       loc_size = (insn & 0xf) | ((insn & 0x0f00) >> 4);
526       pc_offset += 2;
527
528       insn = EXTRACT_INSN (&prologue[vpc + 2]);
529       /* ldi r27,<LOCALS_SIZE> / 256 */
530       if ((insn & 0xf0f0) != 0xe0b0)
531         break;
532       loc_size |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
533       pc_offset += 2;
534
535       insn = EXTRACT_INSN (&prologue[vpc + 4]);
536       /* ldi r30,pm_lo8(.L_foo_body) */
537       if ((insn & 0xf0f0) != 0xe0e0)
538         break;
539       body_addr = (insn & 0xf) | ((insn & 0x0f00) >> 4);
540       pc_offset += 2;
541
542       insn = EXTRACT_INSN (&prologue[vpc + 6]);
543       /* ldi r31,pm_hi8(.L_foo_body) */
544       if ((insn & 0xf0f0) != 0xe0f0)
545         break;
546       body_addr |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
547       pc_offset += 2;
548
549       msymbol = lookup_minimal_symbol ("__prologue_saves__", NULL, NULL);
550       if (!msymbol)
551         break;
552
553       insn = EXTRACT_INSN (&prologue[vpc + 8]);
554       /* rjmp __prologue_saves__+RRR */
555       if ((insn & 0xf000) == 0xc000)
556         {
557           /* Extract PC relative offset from RJMP */
558           i = (insn & 0xfff) | (insn & 0x800 ? (-1 ^ 0xfff) : 0);
559           /* Convert offset to byte addressable mode */
560           i *= 2;
561           /* Destination address */
562           i += pc + 10;
563
564           if (body_addr != (pc + 10)/2)
565             break;
566
567           pc_offset += 2;
568         }
569       else if ((insn & 0xfe0e) == 0x940c)
570         {
571           /* Extract absolute PC address from JMP */
572           i = (((insn & 0x1) | ((insn & 0x1f0) >> 3) << 16)
573             | (EXTRACT_INSN (&prologue[vpc + 10]) & 0xffff));
574           /* Convert address to byte addressable mode */
575           i *= 2;
576
577           if (body_addr != (pc + 12)/2)
578             break;
579
580           pc_offset += 4;
581         }
582       else
583         break;
584
585       /* Resolve offset (in words) from __prologue_saves__ symbol.
586          Which is a pushes count in `-mcall-prologues' mode */
587       num_pushes = AVR_MAX_PUSHES - (i - SYMBOL_VALUE_ADDRESS (msymbol)) / 2;
588
589       if (num_pushes > AVR_MAX_PUSHES)
590         {
591           fprintf_unfiltered (gdb_stderr, "Num pushes too large: %d\n",
592                               num_pushes);
593           num_pushes = 0;
594         }
595
596       if (num_pushes)
597         {
598           int from;
599
600           info->saved_regs[AVR_FP_REGNUM + 1].addr = num_pushes;
601           if (num_pushes >= 2)
602             info->saved_regs[AVR_FP_REGNUM].addr = num_pushes - 1;
603
604           i = 0;
605           for (from = AVR_LAST_PUSHED_REGNUM + 1 - (num_pushes - 2);
606                from <= AVR_LAST_PUSHED_REGNUM; ++from)
607             info->saved_regs [from].addr = ++i;
608         }
609       info->size = loc_size + num_pushes;
610       info->prologue_type = AVR_PROLOGUE_CALL;
611
612       return pc + pc_offset;
613     }
614
615   /* Scan for the beginning of the prologue for an interrupt or signal
616      function.  Note that we have to set the prologue type here since the
617      third stage of the prologue may not be present (e.g. no saved registered
618      or changing of the SP register).  */
619
620   if (1)
621     {
622       unsigned char img[] = {
623         0x78, 0x94,             /* sei */
624         0x1f, 0x92,             /* push r1 */
625         0x0f, 0x92,             /* push r0 */
626         0x0f, 0xb6,             /* in r0,0x3f SREG */
627         0x0f, 0x92,             /* push r0 */
628         0x11, 0x24              /* clr r1 */
629       };
630       if (memcmp (prologue, img, sizeof (img)) == 0)
631         {
632           info->prologue_type = AVR_PROLOGUE_INTR;
633           vpc += sizeof (img);
634           info->saved_regs[AVR_SREG_REGNUM].addr = 3;
635           info->saved_regs[0].addr = 2;
636           info->saved_regs[1].addr = 1;
637           info->size += 3;
638         }
639       else if (memcmp (img + 2, prologue, sizeof (img) - 2) == 0)
640         {
641           info->prologue_type = AVR_PROLOGUE_SIG;
642           vpc += sizeof (img) - 2;
643           info->saved_regs[AVR_SREG_REGNUM].addr = 3;
644           info->saved_regs[0].addr = 2;
645           info->saved_regs[1].addr = 1;
646           info->size += 3;
647         }
648     }
649
650   /* First stage of the prologue scanning.
651      Scan pushes (saved registers) */
652
653   for (; vpc < AVR_MAX_PROLOGUE_SIZE; vpc += 2)
654     {
655       insn = EXTRACT_INSN (&prologue[vpc]);
656       if ((insn & 0xfe0f) == 0x920f)    /* push rXX */
657         {
658           /* Bits 4-9 contain a mask for registers R0-R32. */
659           int regno = (insn & 0x1f0) >> 4;
660           info->size++;
661           info->saved_regs[regno].addr = info->size;
662           scan_stage = 1;
663         }
664       else
665         break;
666     }
667
668   if (vpc >= AVR_MAX_PROLOGUE_SIZE)
669      fprintf_unfiltered (gdb_stderr,
670                          "Hit end of prologue while scanning pushes\n");
671
672   /* Second stage of the prologue scanning.
673      Scan:
674      in r28,__SP_L__
675      in r29,__SP_H__ */
676
677   if (scan_stage == 1 && vpc < AVR_MAX_PROLOGUE_SIZE)
678     {
679       unsigned char img[] = {
680         0xcd, 0xb7,             /* in r28,__SP_L__ */
681         0xde, 0xb7              /* in r29,__SP_H__ */
682       };
683       unsigned short insn1;
684
685       if (memcmp (prologue + vpc, img, sizeof (img)) == 0)
686         {
687           vpc += 4;
688           scan_stage = 2;
689         }
690     }
691
692   /* Third stage of the prologue scanning. (Really two stages)
693      Scan for:
694      sbiw r28,XX or subi r28,lo8(XX)
695                     sbci r29,hi8(XX)
696      in __tmp_reg__,__SREG__
697      cli
698      out __SP_H__,r29
699      out __SREG__,__tmp_reg__
700      out __SP_L__,r28 */
701
702   if (scan_stage == 2 && vpc < AVR_MAX_PROLOGUE_SIZE)
703     {
704       int locals_size = 0;
705       unsigned char img[] = {
706         0x0f, 0xb6,             /* in r0,0x3f */
707         0xf8, 0x94,             /* cli */
708         0xde, 0xbf,             /* out 0x3e,r29 ; SPH */
709         0x0f, 0xbe,             /* out 0x3f,r0  ; SREG */
710         0xcd, 0xbf              /* out 0x3d,r28 ; SPL */
711       };
712       unsigned char img_sig[] = {
713         0xde, 0xbf,             /* out 0x3e,r29 ; SPH */
714         0xcd, 0xbf              /* out 0x3d,r28 ; SPL */
715       };
716       unsigned char img_int[] = {
717         0xf8, 0x94,             /* cli */
718         0xde, 0xbf,             /* out 0x3e,r29 ; SPH */
719         0x78, 0x94,             /* sei */
720         0xcd, 0xbf              /* out 0x3d,r28 ; SPL */
721       };
722
723       insn = EXTRACT_INSN (&prologue[vpc]);
724       vpc += 2;
725       if ((insn & 0xff30) == 0x9720)    /* sbiw r28,XXX */
726         locals_size = (insn & 0xf) | ((insn & 0xc0) >> 2);
727       else if ((insn & 0xf0f0) == 0x50c0)       /* subi r28,lo8(XX) */
728         {
729           locals_size = (insn & 0xf) | ((insn & 0xf00) >> 4);
730           insn = EXTRACT_INSN (&prologue[vpc]);
731           vpc += 2;
732           locals_size += ((insn & 0xf) | ((insn & 0xf00) >> 4) << 8);
733         }
734       else
735         return pc + vpc;
736
737       /* Scan the last part of the prologue. May not be present for interrupt
738          or signal handler functions, which is why we set the prologue type
739          when we saw the beginning of the prologue previously.  */
740
741       if (memcmp (prologue + vpc, img_sig, sizeof (img_sig)) == 0)
742         {
743           vpc += sizeof (img_sig);
744         }
745       else if (memcmp (prologue + vpc, img_int, sizeof (img_int)) == 0)
746         {
747           vpc += sizeof (img_int);
748         }
749       if (memcmp (prologue + vpc, img, sizeof (img)) == 0)
750         {
751           info->prologue_type = AVR_PROLOGUE_NORMAL;
752           vpc += sizeof (img);
753         }
754
755       info->size += locals_size;
756
757       return pc + avr_scan_arg_moves (vpc, prologue);
758     }
759
760   /* If we got this far, we could not scan the prologue, so just return the pc
761      of the frame plus an adjustment for argument move insns.  */
762
763   return pc + avr_scan_arg_moves (vpc, prologue);;
764 }
765
766 static CORE_ADDR
767 avr_skip_prologue (CORE_ADDR pc)
768 {
769   CORE_ADDR func_addr, func_end;
770   CORE_ADDR prologue_end = pc;
771
772   /* See what the symbol table says */
773
774   if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
775     {
776       struct symtab_and_line sal;
777       struct avr_unwind_cache info = {0};
778       struct trad_frame_saved_reg saved_regs[AVR_NUM_REGS];
779
780       info.saved_regs = saved_regs;
781
782       /* Need to run the prologue scanner to figure out if the function has a
783          prologue and possibly skip over moving arguments passed via registers
784          to other registers.  */
785
786       prologue_end = avr_scan_prologue (pc, &info);
787
788       if (info.prologue_type == AVR_PROLOGUE_NONE)
789         return pc;
790       else
791         {
792           sal = find_pc_line (func_addr, 0);
793
794           if (sal.line != 0 && sal.end < func_end)
795             return sal.end;
796         }
797     }
798
799 /* Either we didn't find the start of this function (nothing we can do),
800    or there's no line info, or the line after the prologue is after
801    the end of the function (there probably isn't a prologue). */
802
803   return prologue_end;
804 }
805
806 /* Not all avr devices support the BREAK insn. Those that don't should treat
807    it as a NOP. Thus, it should be ok. Since the avr is currently a remote
808    only target, this shouldn't be a problem (I hope). TRoth/2003-05-14  */
809
810 static const unsigned char *
811 avr_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
812 {
813     static unsigned char avr_break_insn [] = { 0x98, 0x95 };
814     *lenptr = sizeof (avr_break_insn);
815     return avr_break_insn;
816 }
817
818 /* Given a return value in `regbuf' with a type `valtype', 
819    extract and copy its value into `valbuf'.
820
821    Return values are always passed via registers r25:r24:...  */
822
823 static void
824 avr_extract_return_value (struct type *type, struct regcache *regcache,
825                           void *valbuf)
826 {
827   ULONGEST r24, r25;
828   ULONGEST c;
829   int len;
830   if (TYPE_LENGTH (type) == 1)
831     {
832       regcache_cooked_read_unsigned (regcache, 24, &c);
833       store_unsigned_integer (valbuf, 1, c);
834     }
835   else
836     {
837       int i;
838       /* The MSB of the return value is always in r25, calculate which
839          register holds the LSB.  */
840       int lsb_reg = 25 - TYPE_LENGTH (type) + 1;
841
842       for (i=0; i< TYPE_LENGTH (type); i++)
843         {
844           regcache_cooked_read (regcache, lsb_reg + i,
845                                 (bfd_byte *) valbuf + i);
846         }
847     }
848 }
849
850 /* Put here the code to store, into fi->saved_regs, the addresses of
851    the saved registers of frame described by FRAME_INFO.  This
852    includes special registers such as pc and fp saved in special ways
853    in the stack frame.  sp is even more special: the address we return
854    for it IS the sp for the next frame. */
855
856 struct avr_unwind_cache *
857 avr_frame_unwind_cache (struct frame_info *next_frame,
858                         void **this_prologue_cache)
859 {
860   CORE_ADDR pc;
861   ULONGEST prev_sp;
862   ULONGEST this_base;
863   struct avr_unwind_cache *info;
864   int i;
865
866   if ((*this_prologue_cache))
867     return (*this_prologue_cache);
868
869   info = FRAME_OBSTACK_ZALLOC (struct avr_unwind_cache);
870   (*this_prologue_cache) = info;
871   info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
872
873   info->size = 0;
874   info->prologue_type = AVR_PROLOGUE_NONE;
875
876   pc = frame_func_unwind (next_frame);
877
878   if ((pc > 0) && (pc < frame_pc_unwind (next_frame)))
879     avr_scan_prologue (pc, info);
880
881   if ((info->prologue_type != AVR_PROLOGUE_NONE)
882       && (info->prologue_type != AVR_PROLOGUE_MAIN))
883     {
884       ULONGEST high_base;       /* High byte of FP */
885
886       /* The SP was moved to the FP.  This indicates that a new frame
887          was created.  Get THIS frame's FP value by unwinding it from
888          the next frame.  */
889       frame_unwind_unsigned_register (next_frame, AVR_FP_REGNUM, &this_base);
890       frame_unwind_unsigned_register (next_frame, AVR_FP_REGNUM+1, &high_base);
891       this_base += (high_base << 8);
892       
893       /* The FP points at the last saved register.  Adjust the FP back
894          to before the first saved register giving the SP.  */
895       prev_sp = this_base + info->size; 
896    }
897   else
898     {
899       /* Assume that the FP is this frame's SP but with that pushed
900          stack space added back.  */
901       frame_unwind_unsigned_register (next_frame, AVR_SP_REGNUM, &this_base);
902       prev_sp = this_base + info->size;
903     }
904
905   /* Add 1 here to adjust for the post-decrement nature of the push
906      instruction.*/
907   info->prev_sp = avr_make_saddr (prev_sp+1);
908
909   info->base = avr_make_saddr (this_base);
910
911   /* Adjust all the saved registers so that they contain addresses and not
912      offsets.  */
913   for (i = 0; i < NUM_REGS - 1; i++)
914     if (info->saved_regs[i].addr)
915       {
916         info->saved_regs[i].addr = (info->prev_sp - info->saved_regs[i].addr);
917       }
918
919   /* Except for the main and startup code, the return PC is always saved on
920      the stack and is at the base of the frame. */
921
922   if (info->prologue_type != AVR_PROLOGUE_MAIN)
923     {
924       info->saved_regs[AVR_PC_REGNUM].addr = info->prev_sp;
925     }  
926
927   /* The previous frame's SP needed to be computed.  Save the computed
928      value.  */
929   trad_frame_set_value (info->saved_regs, AVR_SP_REGNUM, info->prev_sp+1);
930
931   return info;
932 }
933
934 static CORE_ADDR
935 avr_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
936 {
937   ULONGEST pc;
938
939   frame_unwind_unsigned_register (next_frame, AVR_PC_REGNUM, &pc);
940
941   return avr_make_iaddr (pc);
942 }
943
944 /* Given a GDB frame, determine the address of the calling function's
945    frame.  This will be used to create a new GDB frame struct.  */
946
947 static void
948 avr_frame_this_id (struct frame_info *next_frame,
949                    void **this_prologue_cache,
950                    struct frame_id *this_id)
951 {
952   struct avr_unwind_cache *info
953     = avr_frame_unwind_cache (next_frame, this_prologue_cache);
954   CORE_ADDR base;
955   CORE_ADDR func;
956   struct frame_id id;
957
958   /* The FUNC is easy.  */
959   func = frame_func_unwind (next_frame);
960
961   /* Hopefully the prologue analysis either correctly determined the
962      frame's base (which is the SP from the previous frame), or set
963      that base to "NULL".  */
964   base = info->prev_sp;
965   if (base == 0)
966     return;
967
968   id = frame_id_build (base, func);
969   (*this_id) = id;
970 }
971
972 static void
973 avr_frame_prev_register (struct frame_info *next_frame,
974                           void **this_prologue_cache,
975                           int regnum, int *optimizedp,
976                           enum lval_type *lvalp, CORE_ADDR *addrp,
977                           int *realnump, void *bufferp)
978 {
979   struct avr_unwind_cache *info
980     = avr_frame_unwind_cache (next_frame, this_prologue_cache);
981
982   if (regnum == AVR_PC_REGNUM)
983     {
984       if (trad_frame_addr_p (info->saved_regs, regnum))
985         {
986           *optimizedp = 0;
987           *lvalp = lval_memory;
988           *addrp = info->saved_regs[regnum].addr;
989           *realnump = -1;
990           if (bufferp != NULL)
991             {
992               /* Reading the return PC from the PC register is slightly
993                  abnormal.  register_size(AVR_PC_REGNUM) says it is 4 bytes,
994                  but in reality, only two bytes (3 in upcoming mega256) are
995                  stored on the stack.
996
997                  Also, note that the value on the stack is an addr to a word
998                  not a byte, so we will need to multiply it by two at some
999                  point. 
1000
1001                  And to confuse matters even more, the return address stored
1002                  on the stack is in big endian byte order, even though most
1003                  everything else about the avr is little endian. Ick!  */
1004
1005               /* FIXME: number of bytes read here will need updated for the
1006                  mega256 when it is available.  */
1007
1008               ULONGEST pc;
1009               unsigned char tmp;
1010               unsigned char buf[2];
1011
1012               read_memory (info->saved_regs[regnum].addr, buf, 2);
1013
1014               /* Convert the PC read from memory as a big-endian to
1015                  little-endian order. */
1016               tmp = buf[0];
1017               buf[0] = buf[1];
1018               buf[1] = tmp;
1019
1020               pc = (extract_unsigned_integer (buf, 2) * 2);
1021               store_unsigned_integer (bufferp,
1022                                       register_size (current_gdbarch, regnum),
1023                                       pc);
1024             }
1025         }
1026     }
1027   else
1028     trad_frame_prev_register (next_frame, info->saved_regs, regnum,
1029                               optimizedp, lvalp, addrp, realnump, bufferp);
1030 }
1031
1032 static const struct frame_unwind avr_frame_unwind = {
1033   NORMAL_FRAME,
1034   avr_frame_this_id,
1035   avr_frame_prev_register
1036 };
1037
1038 const struct frame_unwind *
1039 avr_frame_sniffer (struct frame_info *next_frame)
1040 {
1041   return &avr_frame_unwind;
1042 }
1043
1044 static CORE_ADDR
1045 avr_frame_base_address (struct frame_info *next_frame, void **this_cache)
1046 {
1047   struct avr_unwind_cache *info
1048     = avr_frame_unwind_cache (next_frame, this_cache);
1049
1050   return info->base;
1051 }
1052
1053 static const struct frame_base avr_frame_base = {
1054   &avr_frame_unwind,
1055   avr_frame_base_address,
1056   avr_frame_base_address,
1057   avr_frame_base_address
1058 };
1059
1060 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1061    dummy frame.  The frame ID's base needs to match the TOS value
1062    saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1063    breakpoint.  */
1064
1065 static struct frame_id
1066 avr_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1067 {
1068   ULONGEST base;
1069
1070   frame_unwind_unsigned_register (next_frame, AVR_SP_REGNUM, &base);
1071   return frame_id_build (avr_make_saddr (base), frame_pc_unwind (next_frame));
1072 }
1073
1074 /* When arguments must be pushed onto the stack, they go on in reverse
1075    order.  The below implements a FILO (stack) to do this. */
1076
1077 struct stack_item
1078 {
1079   int len;
1080   struct stack_item *prev;
1081   void *data;
1082 };
1083
1084 static struct stack_item *push_stack_item (struct stack_item *prev,
1085                                            void *contents, int len);
1086 static struct stack_item *
1087 push_stack_item (struct stack_item *prev, void *contents, int len)
1088 {
1089   struct stack_item *si;
1090   si = xmalloc (sizeof (struct stack_item));
1091   si->data = xmalloc (len);
1092   si->len = len;
1093   si->prev = prev;
1094   memcpy (si->data, contents, len);
1095   return si;
1096 }
1097
1098 static struct stack_item *pop_stack_item (struct stack_item *si);
1099 static struct stack_item *
1100 pop_stack_item (struct stack_item *si)
1101 {
1102   struct stack_item *dead = si;
1103   si = si->prev;
1104   xfree (dead->data);
1105   xfree (dead);
1106   return si;
1107 }
1108
1109 /* Setup the function arguments for calling a function in the inferior.
1110
1111    On the AVR architecture, there are 18 registers (R25 to R8) which are
1112    dedicated for passing function arguments.  Up to the first 18 arguments
1113    (depending on size) may go into these registers.  The rest go on the stack.
1114
1115    All arguments are aligned to start in even-numbered registers (odd-sized
1116    arguments, including char, have one free register above them). For example,
1117    an int in arg1 and a char in arg2 would be passed as such:
1118
1119       arg1 -> r25:r24
1120       arg2 -> r22
1121
1122    Arguments that are larger than 2 bytes will be split between two or more
1123    registers as available, but will NOT be split between a register and the
1124    stack. Arguments that go onto the stack are pushed last arg first (this is
1125    similar to the d10v).  */
1126
1127 /* NOTE: TRoth/2003-06-17: The rest of this comment is old looks to be
1128    inaccurate.
1129
1130    An exceptional case exists for struct arguments (and possibly other
1131    aggregates such as arrays) -- if the size is larger than WORDSIZE bytes but
1132    not a multiple of WORDSIZE bytes.  In this case the argument is never split
1133    between the registers and the stack, but instead is copied in its entirety
1134    onto the stack, AND also copied into as many registers as there is room
1135    for.  In other words, space in registers permitting, two copies of the same
1136    argument are passed in.  As far as I can tell, only the one on the stack is
1137    used, although that may be a function of the level of compiler
1138    optimization.  I suspect this is a compiler bug.  Arguments of these odd
1139    sizes are left-justified within the word (as opposed to arguments smaller
1140    than WORDSIZE bytes, which are right-justified).
1141  
1142    If the function is to return an aggregate type such as a struct, the caller
1143    must allocate space into which the callee will copy the return value.  In
1144    this case, a pointer to the return value location is passed into the callee
1145    in register R0, which displaces one of the other arguments passed in via
1146    registers R0 to R2. */
1147
1148 static CORE_ADDR
1149 avr_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1150                      struct regcache *regcache, CORE_ADDR bp_addr,
1151                      int nargs, struct value **args, CORE_ADDR sp,
1152                      int struct_return, CORE_ADDR struct_addr)
1153 {
1154   int i;
1155   unsigned char buf[2];
1156   CORE_ADDR return_pc = avr_convert_iaddr_to_raw (bp_addr);
1157   int regnum = AVR_ARGN_REGNUM;
1158   struct stack_item *si = NULL;
1159
1160 #if 0
1161   /* FIXME: TRoth/2003-06-18: Not sure what to do when returning a struct. */
1162   if (struct_return)
1163     {
1164       fprintf_unfiltered (gdb_stderr, "struct_return: 0x%lx\n", struct_addr);
1165       write_register (argreg--, struct_addr & 0xff);
1166       write_register (argreg--, (struct_addr >>8) & 0xff);
1167     }
1168 #endif
1169
1170   for (i = 0; i < nargs; i++)
1171     {
1172       int last_regnum;
1173       int j;
1174       struct value *arg = args[i];
1175       struct type *type = check_typedef (VALUE_TYPE (arg));
1176       char *contents = VALUE_CONTENTS (arg);
1177       int len = TYPE_LENGTH (type);
1178
1179       /* Calculate the potential last register needed. */
1180       last_regnum = regnum - (len + (len & 1));
1181
1182       /* If there are registers available, use them. Once we start putting
1183          stuff on the stack, all subsequent args go on stack. */
1184       if ((si == NULL) && (last_regnum >= 8))
1185         {
1186           ULONGEST val;
1187
1188           /* Skip a register for odd length args. */
1189           if (len & 1)
1190             regnum--;
1191
1192           val = extract_unsigned_integer (contents, len);
1193           for (j=0; j<len; j++)
1194             {
1195               regcache_cooked_write_unsigned (regcache, regnum--,
1196                                               val >> (8*(len-j-1)));
1197             }
1198         }
1199       /* No registers available, push the args onto the stack. */
1200       else
1201         {
1202           /* From here on, we don't care about regnum. */
1203           si = push_stack_item (si, contents, len);
1204         }
1205     }
1206
1207   /* Push args onto the stack. */
1208   while (si)
1209     {
1210       sp -= si->len;
1211       /* Add 1 to sp here to account for post decr nature of pushes. */
1212       write_memory (sp+1, si->data, si->len);
1213       si = pop_stack_item (si);
1214     }
1215
1216   /* Set the return address.  For the avr, the return address is the BP_ADDR.
1217      Need to push the return address onto the stack noting that it needs to be
1218      in big-endian order on the stack.  */
1219   buf[0] = (return_pc >> 8) & 0xff;
1220   buf[1] = return_pc & 0xff;
1221
1222   sp -= 2;
1223   write_memory (sp+1, buf, 2);  /* Add one since pushes are post decr ops. */
1224
1225   /* Finally, update the SP register. */
1226   regcache_cooked_write_unsigned (regcache, AVR_SP_REGNUM,
1227                                   avr_convert_saddr_to_raw (sp));
1228
1229   return sp;
1230 }
1231
1232 /* Initialize the gdbarch structure for the AVR's. */
1233
1234 static struct gdbarch *
1235 avr_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1236 {
1237   struct gdbarch *gdbarch;
1238   struct gdbarch_tdep *tdep;
1239
1240   /* Find a candidate among the list of pre-declared architectures. */
1241   arches = gdbarch_list_lookup_by_info (arches, &info);
1242   if (arches != NULL)
1243     return arches->gdbarch;
1244
1245   /* None found, create a new architecture from the information provided. */
1246   tdep = XMALLOC (struct gdbarch_tdep);
1247   gdbarch = gdbarch_alloc (&info, tdep);
1248
1249   /* If we ever need to differentiate the device types, do it here. */
1250   switch (info.bfd_arch_info->mach)
1251     {
1252     case bfd_mach_avr1:
1253     case bfd_mach_avr2:
1254     case bfd_mach_avr3:
1255     case bfd_mach_avr4:
1256     case bfd_mach_avr5:
1257       break;
1258     }
1259
1260   set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1261   set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1262   set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1263   set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1264   set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1265   set_gdbarch_addr_bit (gdbarch, 32);
1266
1267   set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1268   set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1269   set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1270
1271   set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
1272   set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_little);
1273   set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_single_little);
1274
1275   set_gdbarch_read_pc (gdbarch, avr_read_pc);
1276   set_gdbarch_write_pc (gdbarch, avr_write_pc);
1277   set_gdbarch_read_sp (gdbarch, avr_read_sp);
1278
1279   set_gdbarch_num_regs (gdbarch, AVR_NUM_REGS);
1280
1281   set_gdbarch_sp_regnum (gdbarch, AVR_SP_REGNUM);
1282   set_gdbarch_pc_regnum (gdbarch, AVR_PC_REGNUM);
1283
1284   set_gdbarch_register_name (gdbarch, avr_register_name);
1285   set_gdbarch_register_type (gdbarch, avr_register_type);
1286
1287   set_gdbarch_extract_return_value (gdbarch, avr_extract_return_value);
1288   set_gdbarch_print_insn (gdbarch, print_insn_avr);
1289
1290   set_gdbarch_push_dummy_call (gdbarch, avr_push_dummy_call);
1291
1292   set_gdbarch_address_to_pointer (gdbarch, avr_address_to_pointer);
1293   set_gdbarch_pointer_to_address (gdbarch, avr_pointer_to_address);
1294
1295   set_gdbarch_skip_prologue (gdbarch, avr_skip_prologue);
1296   set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1297
1298   set_gdbarch_breakpoint_from_pc (gdbarch, avr_breakpoint_from_pc);
1299
1300   set_gdbarch_deprecated_frameless_function_invocation (gdbarch, legacy_frameless_look_for_prologue);
1301
1302   frame_unwind_append_sniffer (gdbarch, avr_frame_sniffer);
1303   frame_base_set_default (gdbarch, &avr_frame_base);
1304
1305   set_gdbarch_unwind_dummy_id (gdbarch, avr_unwind_dummy_id);
1306
1307   set_gdbarch_unwind_pc (gdbarch, avr_unwind_pc);
1308
1309   return gdbarch;
1310 }
1311
1312 /* Send a query request to the avr remote target asking for values of the io
1313    registers. If args parameter is not NULL, then the user has requested info
1314    on a specific io register [This still needs implemented and is ignored for
1315    now]. The query string should be one of these forms:
1316
1317    "Ravr.io_reg" -> reply is "NN" number of io registers
1318
1319    "Ravr.io_reg:addr,len" where addr is first register and len is number of
1320    registers to be read. The reply should be "<NAME>,VV;" for each io register
1321    where, <NAME> is a string, and VV is the hex value of the register.
1322
1323    All io registers are 8-bit. */
1324
1325 static void
1326 avr_io_reg_read_command (char *args, int from_tty)
1327 {
1328   LONGEST bufsiz = 0;
1329   char buf[400];
1330   char query[400];
1331   char *p;
1332   unsigned int nreg = 0;
1333   unsigned int val;
1334   int i, j, k, step;
1335
1336   /* Just get the maximum buffer size. */
1337   bufsiz = target_read_partial (&current_target, TARGET_OBJECT_AVR,
1338                                 NULL, NULL, 0, 0);
1339   if (bufsiz < 0)
1340     {
1341       fprintf_unfiltered (gdb_stderr,
1342                           "ERR: info io_registers NOT supported by current "
1343                           "target\n");
1344       return;
1345     }
1346   if (bufsiz > sizeof (buf))
1347     bufsiz = sizeof (buf);
1348
1349   /* Find out how many io registers the target has. */
1350   strcpy (query, "avr.io_reg");
1351   target_read_partial (&current_target, TARGET_OBJECT_AVR, query, buf, 0,
1352                        bufsiz);
1353
1354   if (strncmp (buf, "", bufsiz) == 0)
1355     {
1356       fprintf_unfiltered (gdb_stderr,
1357                           "info io_registers NOT supported by target\n");
1358       return;
1359     }
1360
1361   if (sscanf (buf, "%x", &nreg) != 1)
1362     {
1363       fprintf_unfiltered (gdb_stderr,
1364                           "Error fetching number of io registers\n");
1365       return;
1366     }
1367
1368   reinitialize_more_filter ();
1369
1370   printf_unfiltered ("Target has %u io registers:\n\n", nreg);
1371
1372   /* only fetch up to 8 registers at a time to keep the buffer small */
1373   step = 8;
1374
1375   for (i = 0; i < nreg; i += step)
1376     {
1377       /* how many registers this round? */
1378       j = step;
1379       if ((i+j) >= nreg)
1380         j = nreg - i;           /* last block is less than 8 registers */
1381
1382       snprintf (query, sizeof (query) - 1, "avr.io_reg:%x,%x", i, j);
1383       target_read_partial (&current_target, TARGET_OBJECT_AVR, query, buf,
1384                            0, bufsiz);
1385
1386       p = buf;
1387       for (k = i; k < (i + j); k++)
1388         {
1389           if (sscanf (p, "%[^,],%x;", query, &val) == 2)
1390             {
1391               printf_filtered ("[%02x] %-15s : %02x\n", k, query, val);
1392               while ((*p != ';') && (*p != '\0'))
1393                 p++;
1394               p++;              /* skip over ';' */
1395               if (*p == '\0')
1396                 break;
1397             }
1398         }
1399     }
1400 }
1401
1402 extern initialize_file_ftype _initialize_avr_tdep; /* -Wmissing-prototypes */
1403
1404 void
1405 _initialize_avr_tdep (void)
1406 {
1407   register_gdbarch_init (bfd_arch_avr, avr_gdbarch_init);
1408
1409   /* Add a new command to allow the user to query the avr remote target for
1410      the values of the io space registers in a saner way than just using
1411      `x/NNNb ADDR`. */
1412
1413   /* FIXME: TRoth/2002-02-18: This should probably be changed to 'info avr
1414      io_registers' to signify it is not available on other platforms. */
1415
1416   add_cmd ("io_registers", class_info, avr_io_reg_read_command,
1417            "query remote avr target for io space register values", &infolist);
1418 }