1 /* Target-dependent code for Atmel AVR, for GDB.
3 Copyright (C) 1996-2014 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 /* Contributed by Theodore A. Roth, troth@openavr.org */
22 /* Portions of this file were taken from the original gdb-4.18 patch developed
23 by Denis Chertykov, denisc@overta.ru */
27 #include "frame-unwind.h"
28 #include "frame-base.h"
29 #include "trad-frame.h"
35 #include "arch-utils.h"
42 (AVR micros are pure Harvard Architecture processors.)
44 The AVR family of microcontrollers have three distinctly different memory
45 spaces: flash, sram and eeprom. The flash is 16 bits wide and is used for
46 the most part to store program instructions. The sram is 8 bits wide and is
47 used for the stack and the heap. Some devices lack sram and some can have
48 an additional external sram added on as a peripheral.
50 The eeprom is 8 bits wide and is used to store data when the device is
51 powered down. Eeprom is not directly accessible, it can only be accessed
52 via io-registers using a special algorithm. Accessing eeprom via gdb's
53 remote serial protocol ('m' or 'M' packets) looks difficult to do and is
54 not included at this time.
56 [The eeprom could be read manually via ``x/b <eaddr + AVR_EMEM_START>'' or
57 written using ``set {unsigned char}<eaddr + AVR_EMEM_START>''. For this to
58 work, the remote target must be able to handle eeprom accesses and perform
59 the address translation.]
61 All three memory spaces have physical addresses beginning at 0x0. In
62 addition, the flash is addressed by gcc/binutils/gdb with respect to 8 bit
63 bytes instead of the 16 bit wide words used by the real device for the
66 In order for remote targets to work correctly, extra bits must be added to
67 addresses before they are send to the target or received from the target
68 via the remote serial protocol. The extra bits are the MSBs and are used to
69 decode which memory space the address is referring to. */
71 /* Constants: prefixed with AVR_ to avoid name space clashes */
85 AVR_NUM_REGS = 32 + 1 /*SREG*/ + 1 /*SP*/ + 1 /*PC*/,
86 AVR_NUM_REG_BYTES = 32 + 1 /*SREG*/ + 2 /*SP*/ + 4 /*PC*/,
88 /* Pseudo registers. */
89 AVR_PSEUDO_PC_REGNUM = 35,
90 AVR_NUM_PSEUDO_REGS = 1,
92 AVR_PC_REG_INDEX = 35, /* index into array of registers */
94 AVR_MAX_PROLOGUE_SIZE = 64, /* bytes */
96 /* Count of pushed registers. From r2 to r17 (inclusively), r28, r29 */
99 /* Number of the last pushed register. r17 for current avr-gcc */
100 AVR_LAST_PUSHED_REGNUM = 17,
102 AVR_ARG1_REGNUM = 24, /* Single byte argument */
103 AVR_ARGN_REGNUM = 25, /* Multi byte argments */
105 AVR_RET1_REGNUM = 24, /* Single byte return value */
106 AVR_RETN_REGNUM = 25, /* Multi byte return value */
108 /* FIXME: TRoth/2002-01-??: Can we shift all these memory masks left 8
109 bits? Do these have to match the bfd vma values? It sure would make
110 things easier in the future if they didn't need to match.
112 Note: I chose these values so as to be consistent with bfd vma
115 TRoth/2002-04-08: There is already a conflict with very large programs
116 in the mega128. The mega128 has 128K instruction bytes (64K words),
117 thus the Most Significant Bit is 0x10000 which gets masked off my
120 The problem manifests itself when trying to set a breakpoint in a
121 function which resides in the upper half of the instruction space and
122 thus requires a 17-bit address.
124 For now, I've just removed the EEPROM mask and changed AVR_MEM_MASK
125 from 0x00ff0000 to 0x00f00000. Eeprom is not accessible from gdb yet,
126 but could be for some remote targets by just adding the correct offset
127 to the address and letting the remote target handle the low-level
128 details of actually accessing the eeprom. */
130 AVR_IMEM_START = 0x00000000, /* INSN memory */
131 AVR_SMEM_START = 0x00800000, /* SRAM memory */
133 /* No eeprom mask defined */
134 AVR_MEM_MASK = 0x00f00000, /* mask to determine memory space */
136 AVR_EMEM_START = 0x00810000, /* EEPROM memory */
137 AVR_MEM_MASK = 0x00ff0000, /* mask to determine memory space */
143 NORMAL and CALL are the typical types (the -mcall-prologues gcc option
144 causes the generation of the CALL type prologues). */
147 AVR_PROLOGUE_NONE, /* No prologue */
149 AVR_PROLOGUE_CALL, /* -mcall-prologues */
151 AVR_PROLOGUE_INTR, /* interrupt handler */
152 AVR_PROLOGUE_SIG, /* signal handler */
155 /* Any function with a frame looks like this
156 ....... <-SP POINTS HERE
157 LOCALS1 <-FP POINTS HERE
166 struct avr_unwind_cache
168 /* The previous frame's inner most stack address. Used as this
169 frame ID's stack_addr. */
171 /* The frame's base, optionally used by the high-level debug info. */
175 /* Table indicating the location of each and every register. */
176 struct trad_frame_saved_reg *saved_regs;
181 /* Number of bytes stored to the stack by call instructions.
182 2 bytes for avr1-5, 3 bytes for avr6. */
186 struct type *void_type;
187 /* Type for a function returning void. */
188 struct type *func_void_type;
189 /* Type for a pointer to a function. Used for the type of PC. */
190 struct type *pc_type;
193 /* Lookup the name of a register given it's number. */
196 avr_register_name (struct gdbarch *gdbarch, int regnum)
198 static const char * const register_names[] = {
199 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
200 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
201 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
202 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
208 if (regnum >= (sizeof (register_names) / sizeof (*register_names)))
210 return register_names[regnum];
213 /* Return the GDB type object for the "standard" data type
214 of data in register N. */
217 avr_register_type (struct gdbarch *gdbarch, int reg_nr)
219 if (reg_nr == AVR_PC_REGNUM)
220 return builtin_type (gdbarch)->builtin_uint32;
221 if (reg_nr == AVR_PSEUDO_PC_REGNUM)
222 return gdbarch_tdep (gdbarch)->pc_type;
223 if (reg_nr == AVR_SP_REGNUM)
224 return builtin_type (gdbarch)->builtin_data_ptr;
225 return builtin_type (gdbarch)->builtin_uint8;
228 /* Instruction address checks and convertions. */
231 avr_make_iaddr (CORE_ADDR x)
233 return ((x) | AVR_IMEM_START);
236 /* FIXME: TRoth: Really need to use a larger mask for instructions. Some
237 devices are already up to 128KBytes of flash space.
239 TRoth/2002-04-8: See comment above where AVR_IMEM_START is defined. */
242 avr_convert_iaddr_to_raw (CORE_ADDR x)
244 return ((x) & 0xffffffff);
247 /* SRAM address checks and convertions. */
250 avr_make_saddr (CORE_ADDR x)
252 /* Return 0 for NULL. */
256 return ((x) | AVR_SMEM_START);
260 avr_convert_saddr_to_raw (CORE_ADDR x)
262 return ((x) & 0xffffffff);
265 /* EEPROM address checks and convertions. I don't know if these will ever
266 actually be used, but I've added them just the same. TRoth */
268 /* TRoth/2002-04-08: Commented out for now to allow fix for problem with large
269 programs in the mega128. */
271 /* static CORE_ADDR */
272 /* avr_make_eaddr (CORE_ADDR x) */
274 /* return ((x) | AVR_EMEM_START); */
278 /* avr_eaddr_p (CORE_ADDR x) */
280 /* return (((x) & AVR_MEM_MASK) == AVR_EMEM_START); */
283 /* static CORE_ADDR */
284 /* avr_convert_eaddr_to_raw (CORE_ADDR x) */
286 /* return ((x) & 0xffffffff); */
289 /* Convert from address to pointer and vice-versa. */
292 avr_address_to_pointer (struct gdbarch *gdbarch,
293 struct type *type, gdb_byte *buf, CORE_ADDR addr)
295 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
297 /* Is it a code address? */
298 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
299 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
301 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
302 avr_convert_iaddr_to_raw (addr >> 1));
306 /* Strip off any upper segment bits. */
307 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
308 avr_convert_saddr_to_raw (addr));
313 avr_pointer_to_address (struct gdbarch *gdbarch,
314 struct type *type, const gdb_byte *buf)
316 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
318 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
320 /* Is it a code address? */
321 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
322 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
323 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
324 return avr_make_iaddr (addr << 1);
326 return avr_make_saddr (addr);
330 avr_integer_to_address (struct gdbarch *gdbarch,
331 struct type *type, const gdb_byte *buf)
333 ULONGEST addr = unpack_long (type, buf);
335 return avr_make_saddr (addr);
339 avr_read_pc (struct regcache *regcache)
342 regcache_cooked_read_unsigned (regcache, AVR_PC_REGNUM, &pc);
343 return avr_make_iaddr (pc);
347 avr_write_pc (struct regcache *regcache, CORE_ADDR val)
349 regcache_cooked_write_unsigned (regcache, AVR_PC_REGNUM,
350 avr_convert_iaddr_to_raw (val));
353 static enum register_status
354 avr_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
355 int regnum, gdb_byte *buf)
358 enum register_status status;
362 case AVR_PSEUDO_PC_REGNUM:
363 status = regcache_raw_read_unsigned (regcache, AVR_PC_REGNUM, &val);
364 if (status != REG_VALID)
367 store_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch), val);
370 internal_error (__FILE__, __LINE__, _("invalid regnum"));
375 avr_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
376 int regnum, const gdb_byte *buf)
382 case AVR_PSEUDO_PC_REGNUM:
383 val = extract_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch));
385 regcache_raw_write_unsigned (regcache, AVR_PC_REGNUM, val);
388 internal_error (__FILE__, __LINE__, _("invalid regnum"));
392 /* Function: avr_scan_prologue
394 This function decodes an AVR function prologue to determine:
395 1) the size of the stack frame
396 2) which registers are saved on it
397 3) the offsets of saved regs
398 This information is stored in the avr_unwind_cache structure.
400 Some devices lack the sbiw instruction, so on those replace this:
406 A typical AVR function prologue with a frame pointer might look like this:
407 push rXX ; saved regs
413 sbiw r28,<LOCALS_SIZE>
414 in __tmp_reg__,__SREG__
417 out __SREG__,__tmp_reg__
420 A typical AVR function prologue without a frame pointer might look like
422 push rXX ; saved regs
425 A main function prologue looks like this:
426 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
427 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
431 A signal handler prologue looks like this:
434 in __tmp_reg__, __SREG__
437 push rXX ; save registers r18:r27, r30:r31
439 push r28 ; save frame pointer
443 sbiw r28, <LOCALS_SIZE>
447 A interrupt handler prologue looks like this:
451 in __tmp_reg__, __SREG__
454 push rXX ; save registers r18:r27, r30:r31
456 push r28 ; save frame pointer
460 sbiw r28, <LOCALS_SIZE>
466 A `-mcall-prologues' prologue looks like this (Note that the megas use a
467 jmp instead of a rjmp, thus the prologue is one word larger since jmp is a
468 32 bit insn and rjmp is a 16 bit insn):
469 ldi r26,lo8(<LOCALS_SIZE>)
470 ldi r27,hi8(<LOCALS_SIZE>)
471 ldi r30,pm_lo8(.L_foo_body)
472 ldi r31,pm_hi8(.L_foo_body)
473 rjmp __prologue_saves__+RRR
476 /* Not really part of a prologue, but still need to scan for it, is when a
477 function prologue moves values passed via registers as arguments to new
478 registers. In this case, all local variables live in registers, so there
479 may be some register saves. This is what it looks like:
483 There could be multiple movw's. If the target doesn't have a movw insn, it
484 will use two mov insns. This could be done after any of the above prologue
488 avr_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR pc_beg, CORE_ADDR pc_end,
489 struct avr_unwind_cache *info)
491 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
495 struct minimal_symbol *msymbol;
496 unsigned char prologue[AVR_MAX_PROLOGUE_SIZE];
500 len = pc_end - pc_beg;
501 if (len > AVR_MAX_PROLOGUE_SIZE)
502 len = AVR_MAX_PROLOGUE_SIZE;
504 /* FIXME: TRoth/2003-06-11: This could be made more efficient by only
505 reading in the bytes of the prologue. The problem is that the figuring
506 out where the end of the prologue is is a bit difficult. The old code
507 tried to do that, but failed quite often. */
508 read_memory (pc_beg, prologue, len);
510 /* Scanning main()'s prologue
511 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
512 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
519 static const unsigned char img[] = {
520 0xde, 0xbf, /* out __SP_H__,r29 */
521 0xcd, 0xbf /* out __SP_L__,r28 */
524 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
525 /* ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) */
526 if ((insn & 0xf0f0) == 0xe0c0)
528 locals = (insn & 0xf) | ((insn & 0x0f00) >> 4);
529 insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order);
530 /* ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) */
531 if ((insn & 0xf0f0) == 0xe0d0)
533 locals |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
534 if (vpc + 4 + sizeof (img) < len
535 && memcmp (prologue + vpc + 4, img, sizeof (img)) == 0)
537 info->prologue_type = AVR_PROLOGUE_MAIN;
545 /* Scanning `-mcall-prologues' prologue
546 Classic prologue is 10 bytes, mega prologue is a 12 bytes long */
548 while (1) /* Using a while to avoid many goto's */
555 /* At least the fifth instruction must have been executed to
556 modify frame shape. */
560 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
561 /* ldi r26,<LOCALS_SIZE> */
562 if ((insn & 0xf0f0) != 0xe0a0)
564 loc_size = (insn & 0xf) | ((insn & 0x0f00) >> 4);
567 insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order);
568 /* ldi r27,<LOCALS_SIZE> / 256 */
569 if ((insn & 0xf0f0) != 0xe0b0)
571 loc_size |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
574 insn = extract_unsigned_integer (&prologue[vpc + 4], 2, byte_order);
575 /* ldi r30,pm_lo8(.L_foo_body) */
576 if ((insn & 0xf0f0) != 0xe0e0)
578 body_addr = (insn & 0xf) | ((insn & 0x0f00) >> 4);
581 insn = extract_unsigned_integer (&prologue[vpc + 6], 2, byte_order);
582 /* ldi r31,pm_hi8(.L_foo_body) */
583 if ((insn & 0xf0f0) != 0xe0f0)
585 body_addr |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
588 msymbol = lookup_minimal_symbol ("__prologue_saves__", NULL, NULL);
592 insn = extract_unsigned_integer (&prologue[vpc + 8], 2, byte_order);
593 /* rjmp __prologue_saves__+RRR */
594 if ((insn & 0xf000) == 0xc000)
596 /* Extract PC relative offset from RJMP */
597 i = (insn & 0xfff) | (insn & 0x800 ? (-1 ^ 0xfff) : 0);
598 /* Convert offset to byte addressable mode */
600 /* Destination address */
603 if (body_addr != (pc_beg + 10)/2)
608 else if ((insn & 0xfe0e) == 0x940c)
610 /* Extract absolute PC address from JMP */
611 i = (((insn & 0x1) | ((insn & 0x1f0) >> 3) << 16)
612 | (extract_unsigned_integer (&prologue[vpc + 10], 2, byte_order)
614 /* Convert address to byte addressable mode */
617 if (body_addr != (pc_beg + 12)/2)
625 /* Resolve offset (in words) from __prologue_saves__ symbol.
626 Which is a pushes count in `-mcall-prologues' mode */
627 num_pushes = AVR_MAX_PUSHES - (i - SYMBOL_VALUE_ADDRESS (msymbol)) / 2;
629 if (num_pushes > AVR_MAX_PUSHES)
631 fprintf_unfiltered (gdb_stderr, _("Num pushes too large: %d\n"),
640 info->saved_regs[AVR_FP_REGNUM + 1].addr = num_pushes;
642 info->saved_regs[AVR_FP_REGNUM].addr = num_pushes - 1;
645 for (from = AVR_LAST_PUSHED_REGNUM + 1 - (num_pushes - 2);
646 from <= AVR_LAST_PUSHED_REGNUM; ++from)
647 info->saved_regs [from].addr = ++i;
649 info->size = loc_size + num_pushes;
650 info->prologue_type = AVR_PROLOGUE_CALL;
652 return pc_beg + pc_offset;
655 /* Scan for the beginning of the prologue for an interrupt or signal
656 function. Note that we have to set the prologue type here since the
657 third stage of the prologue may not be present (e.g. no saved registered
658 or changing of the SP register). */
662 static const unsigned char img[] = {
663 0x78, 0x94, /* sei */
664 0x1f, 0x92, /* push r1 */
665 0x0f, 0x92, /* push r0 */
666 0x0f, 0xb6, /* in r0,0x3f SREG */
667 0x0f, 0x92, /* push r0 */
668 0x11, 0x24 /* clr r1 */
670 if (len >= sizeof (img)
671 && memcmp (prologue, img, sizeof (img)) == 0)
673 info->prologue_type = AVR_PROLOGUE_INTR;
675 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
676 info->saved_regs[0].addr = 2;
677 info->saved_regs[1].addr = 1;
680 else if (len >= sizeof (img) - 2
681 && memcmp (img + 2, prologue, sizeof (img) - 2) == 0)
683 info->prologue_type = AVR_PROLOGUE_SIG;
684 vpc += sizeof (img) - 2;
685 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
686 info->saved_regs[0].addr = 2;
687 info->saved_regs[1].addr = 1;
692 /* First stage of the prologue scanning.
693 Scan pushes (saved registers) */
695 for (; vpc < len; vpc += 2)
697 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
698 if ((insn & 0xfe0f) == 0x920f) /* push rXX */
700 /* Bits 4-9 contain a mask for registers R0-R32. */
701 int regno = (insn & 0x1f0) >> 4;
703 info->saved_regs[regno].addr = info->size;
710 gdb_assert (vpc < AVR_MAX_PROLOGUE_SIZE);
712 /* Handle static small stack allocation using rcall or push. */
714 while (scan_stage == 1 && vpc < len)
716 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
717 if (insn == 0xd000) /* rcall .+0 */
719 info->size += gdbarch_tdep (gdbarch)->call_length;
722 else if (insn == 0x920f) /* push r0 */
731 /* Second stage of the prologue scanning.
736 if (scan_stage == 1 && vpc < len)
738 static const unsigned char img[] = {
739 0xcd, 0xb7, /* in r28,__SP_L__ */
740 0xde, 0xb7 /* in r29,__SP_H__ */
743 if (vpc + sizeof (img) < len
744 && memcmp (prologue + vpc, img, sizeof (img)) == 0)
751 /* Third stage of the prologue scanning. (Really two stages).
753 sbiw r28,XX or subi r28,lo8(XX)
755 in __tmp_reg__,__SREG__
758 out __SREG__,__tmp_reg__
761 if (scan_stage == 2 && vpc < len)
764 static const unsigned char img[] = {
765 0x0f, 0xb6, /* in r0,0x3f */
766 0xf8, 0x94, /* cli */
767 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
768 0x0f, 0xbe, /* out 0x3f,r0 ; SREG */
769 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
771 static const unsigned char img_sig[] = {
772 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
773 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
775 static const unsigned char img_int[] = {
776 0xf8, 0x94, /* cli */
777 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
778 0x78, 0x94, /* sei */
779 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
782 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
783 if ((insn & 0xff30) == 0x9720) /* sbiw r28,XXX */
785 locals_size = (insn & 0xf) | ((insn & 0xc0) >> 2);
788 else if ((insn & 0xf0f0) == 0x50c0) /* subi r28,lo8(XX) */
790 locals_size = (insn & 0xf) | ((insn & 0xf00) >> 4);
792 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
794 locals_size += ((insn & 0xf) | ((insn & 0xf00) >> 4)) << 8;
799 /* Scan the last part of the prologue. May not be present for interrupt
800 or signal handler functions, which is why we set the prologue type
801 when we saw the beginning of the prologue previously. */
803 if (vpc + sizeof (img_sig) < len
804 && memcmp (prologue + vpc, img_sig, sizeof (img_sig)) == 0)
806 vpc += sizeof (img_sig);
808 else if (vpc + sizeof (img_int) < len
809 && memcmp (prologue + vpc, img_int, sizeof (img_int)) == 0)
811 vpc += sizeof (img_int);
813 if (vpc + sizeof (img) < len
814 && memcmp (prologue + vpc, img, sizeof (img)) == 0)
816 info->prologue_type = AVR_PROLOGUE_NORMAL;
820 info->size += locals_size;
825 /* If we got this far, we could not scan the prologue, so just return the pc
826 of the frame plus an adjustment for argument move insns. */
828 for (; vpc < len; vpc += 2)
830 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
831 if ((insn & 0xff00) == 0x0100) /* movw rXX, rYY */
833 else if ((insn & 0xfc00) == 0x2c00) /* mov rXX, rYY */
843 avr_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
845 CORE_ADDR func_addr, func_end;
846 CORE_ADDR post_prologue_pc;
848 /* See what the symbol table says */
850 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
853 post_prologue_pc = skip_prologue_using_sal (gdbarch, func_addr);
854 if (post_prologue_pc != 0)
855 return max (pc, post_prologue_pc);
858 CORE_ADDR prologue_end = pc;
859 struct avr_unwind_cache info = {0};
860 struct trad_frame_saved_reg saved_regs[AVR_NUM_REGS];
862 info.saved_regs = saved_regs;
864 /* Need to run the prologue scanner to figure out if the function has a
865 prologue and possibly skip over moving arguments passed via registers
866 to other registers. */
868 prologue_end = avr_scan_prologue (gdbarch, func_addr, func_end, &info);
870 if (info.prologue_type != AVR_PROLOGUE_NONE)
874 /* Either we didn't find the start of this function (nothing we can do),
875 or there's no line info, or the line after the prologue is after
876 the end of the function (there probably isn't a prologue). */
881 /* Not all avr devices support the BREAK insn. Those that don't should treat
882 it as a NOP. Thus, it should be ok. Since the avr is currently a remote
883 only target, this shouldn't be a problem (I hope). TRoth/2003-05-14 */
885 static const unsigned char *
886 avr_breakpoint_from_pc (struct gdbarch *gdbarch,
887 CORE_ADDR *pcptr, int *lenptr)
889 static const unsigned char avr_break_insn [] = { 0x98, 0x95 };
890 *lenptr = sizeof (avr_break_insn);
891 return avr_break_insn;
894 /* Determine, for architecture GDBARCH, how a return value of TYPE
895 should be returned. If it is supposed to be returned in registers,
896 and READBUF is non-zero, read the appropriate value from REGCACHE,
897 and copy it into READBUF. If WRITEBUF is non-zero, write the value
898 from WRITEBUF into REGCACHE. */
900 static enum return_value_convention
901 avr_return_value (struct gdbarch *gdbarch, struct value *function,
902 struct type *valtype, struct regcache *regcache,
903 gdb_byte *readbuf, const gdb_byte *writebuf)
906 /* Single byte are returned in r24.
907 Otherwise, the MSB of the return value is always in r25, calculate which
908 register holds the LSB. */
911 if ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
912 || TYPE_CODE (valtype) == TYPE_CODE_UNION
913 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
914 && TYPE_LENGTH (valtype) > 8)
915 return RETURN_VALUE_STRUCT_CONVENTION;
917 if (TYPE_LENGTH (valtype) <= 2)
919 else if (TYPE_LENGTH (valtype) <= 4)
921 else if (TYPE_LENGTH (valtype) <= 8)
924 gdb_assert_not_reached ("unexpected type length");
926 if (writebuf != NULL)
928 for (i = 0; i < TYPE_LENGTH (valtype); i++)
929 regcache_cooked_write (regcache, lsb_reg + i, writebuf + i);
934 for (i = 0; i < TYPE_LENGTH (valtype); i++)
935 regcache_cooked_read (regcache, lsb_reg + i, readbuf + i);
938 return RETURN_VALUE_REGISTER_CONVENTION;
942 /* Put here the code to store, into fi->saved_regs, the addresses of
943 the saved registers of frame described by FRAME_INFO. This
944 includes special registers such as pc and fp saved in special ways
945 in the stack frame. sp is even more special: the address we return
946 for it IS the sp for the next frame. */
948 static struct avr_unwind_cache *
949 avr_frame_unwind_cache (struct frame_info *this_frame,
950 void **this_prologue_cache)
952 CORE_ADDR start_pc, current_pc;
955 struct avr_unwind_cache *info;
956 struct gdbarch *gdbarch;
957 struct gdbarch_tdep *tdep;
960 if (*this_prologue_cache)
961 return *this_prologue_cache;
963 info = FRAME_OBSTACK_ZALLOC (struct avr_unwind_cache);
964 *this_prologue_cache = info;
965 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
968 info->prologue_type = AVR_PROLOGUE_NONE;
970 start_pc = get_frame_func (this_frame);
971 current_pc = get_frame_pc (this_frame);
972 if ((start_pc > 0) && (start_pc <= current_pc))
973 avr_scan_prologue (get_frame_arch (this_frame),
974 start_pc, current_pc, info);
976 if ((info->prologue_type != AVR_PROLOGUE_NONE)
977 && (info->prologue_type != AVR_PROLOGUE_MAIN))
979 ULONGEST high_base; /* High byte of FP */
981 /* The SP was moved to the FP. This indicates that a new frame
982 was created. Get THIS frame's FP value by unwinding it from
984 this_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM);
985 high_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM + 1);
986 this_base += (high_base << 8);
988 /* The FP points at the last saved register. Adjust the FP back
989 to before the first saved register giving the SP. */
990 prev_sp = this_base + info->size;
994 /* Assume that the FP is this frame's SP but with that pushed
995 stack space added back. */
996 this_base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM);
997 prev_sp = this_base + info->size;
1000 /* Add 1 here to adjust for the post-decrement nature of the push
1002 info->prev_sp = avr_make_saddr (prev_sp + 1);
1003 info->base = avr_make_saddr (this_base);
1005 gdbarch = get_frame_arch (this_frame);
1007 /* Adjust all the saved registers so that they contain addresses and not
1009 for (i = 0; i < gdbarch_num_regs (gdbarch) - 1; i++)
1010 if (info->saved_regs[i].addr > 0)
1011 info->saved_regs[i].addr = info->prev_sp - info->saved_regs[i].addr;
1013 /* Except for the main and startup code, the return PC is always saved on
1014 the stack and is at the base of the frame. */
1016 if (info->prologue_type != AVR_PROLOGUE_MAIN)
1017 info->saved_regs[AVR_PC_REGNUM].addr = info->prev_sp;
1019 /* The previous frame's SP needed to be computed. Save the computed
1021 tdep = gdbarch_tdep (gdbarch);
1022 trad_frame_set_value (info->saved_regs, AVR_SP_REGNUM,
1023 info->prev_sp - 1 + tdep->call_length);
1029 avr_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1033 pc = frame_unwind_register_unsigned (next_frame, AVR_PC_REGNUM);
1035 return avr_make_iaddr (pc);
1039 avr_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1043 sp = frame_unwind_register_unsigned (next_frame, AVR_SP_REGNUM);
1045 return avr_make_saddr (sp);
1048 /* Given a GDB frame, determine the address of the calling function's
1049 frame. This will be used to create a new GDB frame struct. */
1052 avr_frame_this_id (struct frame_info *this_frame,
1053 void **this_prologue_cache,
1054 struct frame_id *this_id)
1056 struct avr_unwind_cache *info
1057 = avr_frame_unwind_cache (this_frame, this_prologue_cache);
1062 /* The FUNC is easy. */
1063 func = get_frame_func (this_frame);
1065 /* Hopefully the prologue analysis either correctly determined the
1066 frame's base (which is the SP from the previous frame), or set
1067 that base to "NULL". */
1068 base = info->prev_sp;
1072 id = frame_id_build (base, func);
1076 static struct value *
1077 avr_frame_prev_register (struct frame_info *this_frame,
1078 void **this_prologue_cache, int regnum)
1080 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1081 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1082 struct avr_unwind_cache *info
1083 = avr_frame_unwind_cache (this_frame, this_prologue_cache);
1085 if (regnum == AVR_PC_REGNUM || regnum == AVR_PSEUDO_PC_REGNUM)
1087 if (trad_frame_addr_p (info->saved_regs, AVR_PC_REGNUM))
1089 /* Reading the return PC from the PC register is slightly
1090 abnormal. register_size(AVR_PC_REGNUM) says it is 4 bytes,
1091 but in reality, only two bytes (3 in upcoming mega256) are
1092 stored on the stack.
1094 Also, note that the value on the stack is an addr to a word
1095 not a byte, so we will need to multiply it by two at some
1098 And to confuse matters even more, the return address stored
1099 on the stack is in big endian byte order, even though most
1100 everything else about the avr is little endian. Ick! */
1104 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1105 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1107 read_memory (info->saved_regs[AVR_PC_REGNUM].addr,
1108 buf, tdep->call_length);
1110 /* Extract the PC read from memory as a big-endian. */
1112 for (i = 0; i < tdep->call_length; i++)
1113 pc = (pc << 8) | buf[i];
1115 if (regnum == AVR_PC_REGNUM)
1118 return frame_unwind_got_constant (this_frame, regnum, pc);
1121 return frame_unwind_got_optimized (this_frame, regnum);
1124 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1127 static const struct frame_unwind avr_frame_unwind = {
1129 default_frame_unwind_stop_reason,
1131 avr_frame_prev_register,
1133 default_frame_sniffer
1137 avr_frame_base_address (struct frame_info *this_frame, void **this_cache)
1139 struct avr_unwind_cache *info
1140 = avr_frame_unwind_cache (this_frame, this_cache);
1145 static const struct frame_base avr_frame_base = {
1147 avr_frame_base_address,
1148 avr_frame_base_address,
1149 avr_frame_base_address
1152 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
1153 frame. The frame ID's base needs to match the TOS value saved by
1154 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
1156 static struct frame_id
1157 avr_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1161 base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM);
1162 return frame_id_build (avr_make_saddr (base), get_frame_pc (this_frame));
1165 /* When arguments must be pushed onto the stack, they go on in reverse
1166 order. The below implements a FILO (stack) to do this. */
1171 struct stack_item *prev;
1175 static struct stack_item *
1176 push_stack_item (struct stack_item *prev, const bfd_byte *contents, int len)
1178 struct stack_item *si;
1179 si = xmalloc (sizeof (struct stack_item));
1180 si->data = xmalloc (len);
1183 memcpy (si->data, contents, len);
1187 static struct stack_item *pop_stack_item (struct stack_item *si);
1188 static struct stack_item *
1189 pop_stack_item (struct stack_item *si)
1191 struct stack_item *dead = si;
1198 /* Setup the function arguments for calling a function in the inferior.
1200 On the AVR architecture, there are 18 registers (R25 to R8) which are
1201 dedicated for passing function arguments. Up to the first 18 arguments
1202 (depending on size) may go into these registers. The rest go on the stack.
1204 All arguments are aligned to start in even-numbered registers (odd-sized
1205 arguments, including char, have one free register above them). For example,
1206 an int in arg1 and a char in arg2 would be passed as such:
1211 Arguments that are larger than 2 bytes will be split between two or more
1212 registers as available, but will NOT be split between a register and the
1213 stack. Arguments that go onto the stack are pushed last arg first (this is
1214 similar to the d10v). */
1216 /* NOTE: TRoth/2003-06-17: The rest of this comment is old looks to be
1219 An exceptional case exists for struct arguments (and possibly other
1220 aggregates such as arrays) -- if the size is larger than WORDSIZE bytes but
1221 not a multiple of WORDSIZE bytes. In this case the argument is never split
1222 between the registers and the stack, but instead is copied in its entirety
1223 onto the stack, AND also copied into as many registers as there is room
1224 for. In other words, space in registers permitting, two copies of the same
1225 argument are passed in. As far as I can tell, only the one on the stack is
1226 used, although that may be a function of the level of compiler
1227 optimization. I suspect this is a compiler bug. Arguments of these odd
1228 sizes are left-justified within the word (as opposed to arguments smaller
1229 than WORDSIZE bytes, which are right-justified).
1231 If the function is to return an aggregate type such as a struct, the caller
1232 must allocate space into which the callee will copy the return value. In
1233 this case, a pointer to the return value location is passed into the callee
1234 in register R0, which displaces one of the other arguments passed in via
1235 registers R0 to R2. */
1238 avr_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1239 struct regcache *regcache, CORE_ADDR bp_addr,
1240 int nargs, struct value **args, CORE_ADDR sp,
1241 int struct_return, CORE_ADDR struct_addr)
1243 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1246 int call_length = gdbarch_tdep (gdbarch)->call_length;
1247 CORE_ADDR return_pc = avr_convert_iaddr_to_raw (bp_addr);
1248 int regnum = AVR_ARGN_REGNUM;
1249 struct stack_item *si = NULL;
1253 regcache_cooked_write_unsigned
1254 (regcache, regnum--, (struct_addr >> 8) & 0xff);
1255 regcache_cooked_write_unsigned
1256 (regcache, regnum--, struct_addr & 0xff);
1257 /* SP being post decremented, we need to reserve one byte so that the
1258 return address won't overwrite the result (or vice-versa). */
1259 if (sp == struct_addr)
1263 for (i = 0; i < nargs; i++)
1267 struct value *arg = args[i];
1268 struct type *type = check_typedef (value_type (arg));
1269 const bfd_byte *contents = value_contents (arg);
1270 int len = TYPE_LENGTH (type);
1272 /* Calculate the potential last register needed. */
1273 last_regnum = regnum - (len + (len & 1));
1275 /* If there are registers available, use them. Once we start putting
1276 stuff on the stack, all subsequent args go on stack. */
1277 if ((si == NULL) && (last_regnum >= 8))
1281 /* Skip a register for odd length args. */
1285 val = extract_unsigned_integer (contents, len, byte_order);
1286 for (j = 0; j < len; j++)
1287 regcache_cooked_write_unsigned
1288 (regcache, regnum--, val >> (8 * (len - j - 1)));
1290 /* No registers available, push the args onto the stack. */
1293 /* From here on, we don't care about regnum. */
1294 si = push_stack_item (si, contents, len);
1298 /* Push args onto the stack. */
1302 /* Add 1 to sp here to account for post decr nature of pushes. */
1303 write_memory (sp + 1, si->data, si->len);
1304 si = pop_stack_item (si);
1307 /* Set the return address. For the avr, the return address is the BP_ADDR.
1308 Need to push the return address onto the stack noting that it needs to be
1309 in big-endian order on the stack. */
1310 for (i = 1; i <= call_length; i++)
1312 buf[call_length - i] = return_pc & 0xff;
1317 /* Use 'sp + 1' since pushes are post decr ops. */
1318 write_memory (sp + 1, buf, call_length);
1320 /* Finally, update the SP register. */
1321 regcache_cooked_write_unsigned (regcache, AVR_SP_REGNUM,
1322 avr_convert_saddr_to_raw (sp));
1324 /* Return SP value for the dummy frame, where the return address hasn't been
1326 return sp + call_length;
1329 /* Unfortunately dwarf2 register for SP is 32. */
1332 avr_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1334 if (reg >= 0 && reg < 32)
1337 return AVR_SP_REGNUM;
1339 warning (_("Unmapped DWARF Register #%d encountered."), reg);
1344 /* Initialize the gdbarch structure for the AVR's. */
1346 static struct gdbarch *
1347 avr_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1349 struct gdbarch *gdbarch;
1350 struct gdbarch_tdep *tdep;
1351 struct gdbarch_list *best_arch;
1354 /* Avr-6 call instructions save 3 bytes. */
1355 switch (info.bfd_arch_info->mach)
1370 /* If there is already a candidate, use it. */
1371 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
1373 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
1375 if (gdbarch_tdep (best_arch->gdbarch)->call_length == call_length)
1376 return best_arch->gdbarch;
1379 /* None found, create a new architecture from the information provided. */
1380 tdep = XNEW (struct gdbarch_tdep);
1381 gdbarch = gdbarch_alloc (&info, tdep);
1383 tdep->call_length = call_length;
1385 /* Create a type for PC. We can't use builtin types here, as they may not
1387 tdep->void_type = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
1388 tdep->func_void_type = make_function_type (tdep->void_type, NULL);
1389 tdep->pc_type = arch_type (gdbarch, TYPE_CODE_PTR, 4, NULL);
1390 TYPE_TARGET_TYPE (tdep->pc_type) = tdep->func_void_type;
1391 TYPE_UNSIGNED (tdep->pc_type) = 1;
1393 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1394 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1395 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1396 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1397 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1398 set_gdbarch_addr_bit (gdbarch, 32);
1400 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1401 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1402 set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1404 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1405 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
1406 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_single);
1408 set_gdbarch_read_pc (gdbarch, avr_read_pc);
1409 set_gdbarch_write_pc (gdbarch, avr_write_pc);
1411 set_gdbarch_num_regs (gdbarch, AVR_NUM_REGS);
1413 set_gdbarch_sp_regnum (gdbarch, AVR_SP_REGNUM);
1414 set_gdbarch_pc_regnum (gdbarch, AVR_PC_REGNUM);
1416 set_gdbarch_register_name (gdbarch, avr_register_name);
1417 set_gdbarch_register_type (gdbarch, avr_register_type);
1419 set_gdbarch_num_pseudo_regs (gdbarch, AVR_NUM_PSEUDO_REGS);
1420 set_gdbarch_pseudo_register_read (gdbarch, avr_pseudo_register_read);
1421 set_gdbarch_pseudo_register_write (gdbarch, avr_pseudo_register_write);
1423 set_gdbarch_return_value (gdbarch, avr_return_value);
1424 set_gdbarch_print_insn (gdbarch, print_insn_avr);
1426 set_gdbarch_push_dummy_call (gdbarch, avr_push_dummy_call);
1428 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, avr_dwarf_reg_to_regnum);
1430 set_gdbarch_address_to_pointer (gdbarch, avr_address_to_pointer);
1431 set_gdbarch_pointer_to_address (gdbarch, avr_pointer_to_address);
1432 set_gdbarch_integer_to_address (gdbarch, avr_integer_to_address);
1434 set_gdbarch_skip_prologue (gdbarch, avr_skip_prologue);
1435 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1437 set_gdbarch_breakpoint_from_pc (gdbarch, avr_breakpoint_from_pc);
1439 frame_unwind_append_unwinder (gdbarch, &avr_frame_unwind);
1440 frame_base_set_default (gdbarch, &avr_frame_base);
1442 set_gdbarch_dummy_id (gdbarch, avr_dummy_id);
1444 set_gdbarch_unwind_pc (gdbarch, avr_unwind_pc);
1445 set_gdbarch_unwind_sp (gdbarch, avr_unwind_sp);
1450 /* Send a query request to the avr remote target asking for values of the io
1451 registers. If args parameter is not NULL, then the user has requested info
1452 on a specific io register [This still needs implemented and is ignored for
1453 now]. The query string should be one of these forms:
1455 "Ravr.io_reg" -> reply is "NN" number of io registers
1457 "Ravr.io_reg:addr,len" where addr is first register and len is number of
1458 registers to be read. The reply should be "<NAME>,VV;" for each io register
1459 where, <NAME> is a string, and VV is the hex value of the register.
1461 All io registers are 8-bit. */
1464 avr_io_reg_read_command (char *args, int from_tty)
1471 unsigned int nreg = 0;
1475 /* Find out how many io registers the target has. */
1476 bufsiz = target_read_alloc (¤t_target, TARGET_OBJECT_AVR,
1477 "avr.io_reg", &buf);
1478 bufstr = (const char *) buf;
1482 fprintf_unfiltered (gdb_stderr,
1483 _("ERR: info io_registers NOT supported "
1484 "by current target\n"));
1488 if (sscanf (bufstr, "%x", &nreg) != 1)
1490 fprintf_unfiltered (gdb_stderr,
1491 _("Error fetching number of io registers\n"));
1498 reinitialize_more_filter ();
1500 printf_unfiltered (_("Target has %u io registers:\n\n"), nreg);
1502 /* only fetch up to 8 registers at a time to keep the buffer small */
1505 for (i = 0; i < nreg; i += step)
1507 /* how many registers this round? */
1510 j = nreg - i; /* last block is less than 8 registers */
1512 snprintf (query, sizeof (query) - 1, "avr.io_reg:%x,%x", i, j);
1513 bufsiz = target_read_alloc (¤t_target, TARGET_OBJECT_AVR,
1516 p = (const char *) buf;
1517 for (k = i; k < (i + j); k++)
1519 if (sscanf (p, "%[^,],%x;", query, &val) == 2)
1521 printf_filtered ("[%02x] %-15s : %02x\n", k, query, val);
1522 while ((*p != ';') && (*p != '\0'))
1524 p++; /* skip over ';' */
1534 extern initialize_file_ftype _initialize_avr_tdep; /* -Wmissing-prototypes */
1537 _initialize_avr_tdep (void)
1539 register_gdbarch_init (bfd_arch_avr, avr_gdbarch_init);
1541 /* Add a new command to allow the user to query the avr remote target for
1542 the values of the io space registers in a saner way than just using
1545 /* FIXME: TRoth/2002-02-18: This should probably be changed to 'info avr
1546 io_registers' to signify it is not available on other platforms. */
1548 add_cmd ("io_registers", class_info, avr_io_reg_read_command,
1549 _("query remote avr target for io space register values"),