1 /* Target-dependent code for Atmel AVR, for GDB.
3 Copyright (C) 1996-2016 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 /* Contributed by Theodore A. Roth, troth@openavr.org */
22 /* Portions of this file were taken from the original gdb-4.18 patch developed
23 by Denis Chertykov, denisc@overta.ru */
27 #include "frame-unwind.h"
28 #include "frame-base.h"
29 #include "trad-frame.h"
35 #include "arch-utils.h"
42 (AVR micros are pure Harvard Architecture processors.)
44 The AVR family of microcontrollers have three distinctly different memory
45 spaces: flash, sram and eeprom. The flash is 16 bits wide and is used for
46 the most part to store program instructions. The sram is 8 bits wide and is
47 used for the stack and the heap. Some devices lack sram and some can have
48 an additional external sram added on as a peripheral.
50 The eeprom is 8 bits wide and is used to store data when the device is
51 powered down. Eeprom is not directly accessible, it can only be accessed
52 via io-registers using a special algorithm. Accessing eeprom via gdb's
53 remote serial protocol ('m' or 'M' packets) looks difficult to do and is
54 not included at this time.
56 [The eeprom could be read manually via ``x/b <eaddr + AVR_EMEM_START>'' or
57 written using ``set {unsigned char}<eaddr + AVR_EMEM_START>''. For this to
58 work, the remote target must be able to handle eeprom accesses and perform
59 the address translation.]
61 All three memory spaces have physical addresses beginning at 0x0. In
62 addition, the flash is addressed by gcc/binutils/gdb with respect to 8 bit
63 bytes instead of the 16 bit wide words used by the real device for the
66 In order for remote targets to work correctly, extra bits must be added to
67 addresses before they are send to the target or received from the target
68 via the remote serial protocol. The extra bits are the MSBs and are used to
69 decode which memory space the address is referring to. */
71 /* Constants: prefixed with AVR_ to avoid name space clashes */
73 /* Address space flags */
75 /* We are assigning the TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 to the flash address
78 #define AVR_TYPE_ADDRESS_CLASS_FLASH TYPE_ADDRESS_CLASS_1
79 #define AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH \
80 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1
95 AVR_NUM_REGS = 32 + 1 /*SREG*/ + 1 /*SP*/ + 1 /*PC*/,
96 AVR_NUM_REG_BYTES = 32 + 1 /*SREG*/ + 2 /*SP*/ + 4 /*PC*/,
98 /* Pseudo registers. */
99 AVR_PSEUDO_PC_REGNUM = 35,
100 AVR_NUM_PSEUDO_REGS = 1,
102 AVR_PC_REG_INDEX = 35, /* index into array of registers */
104 AVR_MAX_PROLOGUE_SIZE = 64, /* bytes */
106 /* Count of pushed registers. From r2 to r17 (inclusively), r28, r29 */
109 /* Number of the last pushed register. r17 for current avr-gcc */
110 AVR_LAST_PUSHED_REGNUM = 17,
112 AVR_ARG1_REGNUM = 24, /* Single byte argument */
113 AVR_ARGN_REGNUM = 25, /* Multi byte argments */
114 AVR_LAST_ARG_REGNUM = 8, /* Last argument register */
116 AVR_RET1_REGNUM = 24, /* Single byte return value */
117 AVR_RETN_REGNUM = 25, /* Multi byte return value */
119 /* FIXME: TRoth/2002-01-??: Can we shift all these memory masks left 8
120 bits? Do these have to match the bfd vma values? It sure would make
121 things easier in the future if they didn't need to match.
123 Note: I chose these values so as to be consistent with bfd vma
126 TRoth/2002-04-08: There is already a conflict with very large programs
127 in the mega128. The mega128 has 128K instruction bytes (64K words),
128 thus the Most Significant Bit is 0x10000 which gets masked off my
131 The problem manifests itself when trying to set a breakpoint in a
132 function which resides in the upper half of the instruction space and
133 thus requires a 17-bit address.
135 For now, I've just removed the EEPROM mask and changed AVR_MEM_MASK
136 from 0x00ff0000 to 0x00f00000. Eeprom is not accessible from gdb yet,
137 but could be for some remote targets by just adding the correct offset
138 to the address and letting the remote target handle the low-level
139 details of actually accessing the eeprom. */
141 AVR_IMEM_START = 0x00000000, /* INSN memory */
142 AVR_SMEM_START = 0x00800000, /* SRAM memory */
144 /* No eeprom mask defined */
145 AVR_MEM_MASK = 0x00f00000, /* mask to determine memory space */
147 AVR_EMEM_START = 0x00810000, /* EEPROM memory */
148 AVR_MEM_MASK = 0x00ff0000, /* mask to determine memory space */
154 NORMAL and CALL are the typical types (the -mcall-prologues gcc option
155 causes the generation of the CALL type prologues). */
158 AVR_PROLOGUE_NONE, /* No prologue */
160 AVR_PROLOGUE_CALL, /* -mcall-prologues */
162 AVR_PROLOGUE_INTR, /* interrupt handler */
163 AVR_PROLOGUE_SIG, /* signal handler */
166 /* Any function with a frame looks like this
167 ....... <-SP POINTS HERE
168 LOCALS1 <-FP POINTS HERE
177 struct avr_unwind_cache
179 /* The previous frame's inner most stack address. Used as this
180 frame ID's stack_addr. */
182 /* The frame's base, optionally used by the high-level debug info. */
186 /* Table indicating the location of each and every register. */
187 struct trad_frame_saved_reg *saved_regs;
192 /* Number of bytes stored to the stack by call instructions.
193 2 bytes for avr1-5 and avrxmega1-5, 3 bytes for avr6 and avrxmega6-7. */
197 struct type *void_type;
198 /* Type for a function returning void. */
199 struct type *func_void_type;
200 /* Type for a pointer to a function. Used for the type of PC. */
201 struct type *pc_type;
204 /* Lookup the name of a register given it's number. */
207 avr_register_name (struct gdbarch *gdbarch, int regnum)
209 static const char * const register_names[] = {
210 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
211 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
212 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
213 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
219 if (regnum >= (sizeof (register_names) / sizeof (*register_names)))
221 return register_names[regnum];
224 /* Return the GDB type object for the "standard" data type
225 of data in register N. */
228 avr_register_type (struct gdbarch *gdbarch, int reg_nr)
230 if (reg_nr == AVR_PC_REGNUM)
231 return builtin_type (gdbarch)->builtin_uint32;
232 if (reg_nr == AVR_PSEUDO_PC_REGNUM)
233 return gdbarch_tdep (gdbarch)->pc_type;
234 if (reg_nr == AVR_SP_REGNUM)
235 return builtin_type (gdbarch)->builtin_data_ptr;
236 return builtin_type (gdbarch)->builtin_uint8;
239 /* Instruction address checks and convertions. */
242 avr_make_iaddr (CORE_ADDR x)
244 return ((x) | AVR_IMEM_START);
247 /* FIXME: TRoth: Really need to use a larger mask for instructions. Some
248 devices are already up to 128KBytes of flash space.
250 TRoth/2002-04-8: See comment above where AVR_IMEM_START is defined. */
253 avr_convert_iaddr_to_raw (CORE_ADDR x)
255 return ((x) & 0xffffffff);
258 /* SRAM address checks and convertions. */
261 avr_make_saddr (CORE_ADDR x)
263 /* Return 0 for NULL. */
267 return ((x) | AVR_SMEM_START);
271 avr_convert_saddr_to_raw (CORE_ADDR x)
273 return ((x) & 0xffffffff);
276 /* EEPROM address checks and convertions. I don't know if these will ever
277 actually be used, but I've added them just the same. TRoth */
279 /* TRoth/2002-04-08: Commented out for now to allow fix for problem with large
280 programs in the mega128. */
282 /* static CORE_ADDR */
283 /* avr_make_eaddr (CORE_ADDR x) */
285 /* return ((x) | AVR_EMEM_START); */
289 /* avr_eaddr_p (CORE_ADDR x) */
291 /* return (((x) & AVR_MEM_MASK) == AVR_EMEM_START); */
294 /* static CORE_ADDR */
295 /* avr_convert_eaddr_to_raw (CORE_ADDR x) */
297 /* return ((x) & 0xffffffff); */
300 /* Convert from address to pointer and vice-versa. */
303 avr_address_to_pointer (struct gdbarch *gdbarch,
304 struct type *type, gdb_byte *buf, CORE_ADDR addr)
306 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
308 /* Is it a data address in flash? */
309 if (AVR_TYPE_ADDRESS_CLASS_FLASH (type))
311 /* A data pointer in flash is byte addressed. */
312 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
313 avr_convert_iaddr_to_raw (addr));
315 /* Is it a code address? */
316 else if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
317 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
319 /* A code pointer is word (16 bits) addressed. We shift the address down
320 by 1 bit to convert it to a pointer. */
321 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
322 avr_convert_iaddr_to_raw (addr >> 1));
326 /* Strip off any upper segment bits. */
327 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
328 avr_convert_saddr_to_raw (addr));
333 avr_pointer_to_address (struct gdbarch *gdbarch,
334 struct type *type, const gdb_byte *buf)
336 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
338 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
340 /* Is it a data address in flash? */
341 if (AVR_TYPE_ADDRESS_CLASS_FLASH (type))
343 /* A data pointer in flash is already byte addressed. */
344 return avr_make_iaddr (addr);
346 /* Is it a code address? */
347 else if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
348 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
349 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
351 /* A code pointer is word (16 bits) addressed so we shift it up
352 by 1 bit to convert it to an address. */
353 return avr_make_iaddr (addr << 1);
356 return avr_make_saddr (addr);
360 avr_integer_to_address (struct gdbarch *gdbarch,
361 struct type *type, const gdb_byte *buf)
363 ULONGEST addr = unpack_long (type, buf);
365 return avr_make_saddr (addr);
369 avr_read_pc (struct regcache *regcache)
372 regcache_cooked_read_unsigned (regcache, AVR_PC_REGNUM, &pc);
373 return avr_make_iaddr (pc);
377 avr_write_pc (struct regcache *regcache, CORE_ADDR val)
379 regcache_cooked_write_unsigned (regcache, AVR_PC_REGNUM,
380 avr_convert_iaddr_to_raw (val));
383 static enum register_status
384 avr_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
385 int regnum, gdb_byte *buf)
388 enum register_status status;
392 case AVR_PSEUDO_PC_REGNUM:
393 status = regcache_raw_read_unsigned (regcache, AVR_PC_REGNUM, &val);
394 if (status != REG_VALID)
397 store_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch), val);
400 internal_error (__FILE__, __LINE__, _("invalid regnum"));
405 avr_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
406 int regnum, const gdb_byte *buf)
412 case AVR_PSEUDO_PC_REGNUM:
413 val = extract_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch));
415 regcache_raw_write_unsigned (regcache, AVR_PC_REGNUM, val);
418 internal_error (__FILE__, __LINE__, _("invalid regnum"));
422 /* Function: avr_scan_prologue
424 This function decodes an AVR function prologue to determine:
425 1) the size of the stack frame
426 2) which registers are saved on it
427 3) the offsets of saved regs
428 This information is stored in the avr_unwind_cache structure.
430 Some devices lack the sbiw instruction, so on those replace this:
436 A typical AVR function prologue with a frame pointer might look like this:
437 push rXX ; saved regs
443 sbiw r28,<LOCALS_SIZE>
444 in __tmp_reg__,__SREG__
447 out __SREG__,__tmp_reg__
450 A typical AVR function prologue without a frame pointer might look like
452 push rXX ; saved regs
455 A main function prologue looks like this:
456 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
457 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
461 A signal handler prologue looks like this:
464 in __tmp_reg__, __SREG__
467 push rXX ; save registers r18:r27, r30:r31
469 push r28 ; save frame pointer
473 sbiw r28, <LOCALS_SIZE>
477 A interrupt handler prologue looks like this:
481 in __tmp_reg__, __SREG__
484 push rXX ; save registers r18:r27, r30:r31
486 push r28 ; save frame pointer
490 sbiw r28, <LOCALS_SIZE>
496 A `-mcall-prologues' prologue looks like this (Note that the megas use a
497 jmp instead of a rjmp, thus the prologue is one word larger since jmp is a
498 32 bit insn and rjmp is a 16 bit insn):
499 ldi r26,lo8(<LOCALS_SIZE>)
500 ldi r27,hi8(<LOCALS_SIZE>)
501 ldi r30,pm_lo8(.L_foo_body)
502 ldi r31,pm_hi8(.L_foo_body)
503 rjmp __prologue_saves__+RRR
506 /* Not really part of a prologue, but still need to scan for it, is when a
507 function prologue moves values passed via registers as arguments to new
508 registers. In this case, all local variables live in registers, so there
509 may be some register saves. This is what it looks like:
513 There could be multiple movw's. If the target doesn't have a movw insn, it
514 will use two mov insns. This could be done after any of the above prologue
518 avr_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR pc_beg, CORE_ADDR pc_end,
519 struct avr_unwind_cache *info)
521 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
525 struct bound_minimal_symbol msymbol;
526 unsigned char prologue[AVR_MAX_PROLOGUE_SIZE];
530 len = pc_end - pc_beg;
531 if (len > AVR_MAX_PROLOGUE_SIZE)
532 len = AVR_MAX_PROLOGUE_SIZE;
534 /* FIXME: TRoth/2003-06-11: This could be made more efficient by only
535 reading in the bytes of the prologue. The problem is that the figuring
536 out where the end of the prologue is is a bit difficult. The old code
537 tried to do that, but failed quite often. */
538 read_memory (pc_beg, prologue, len);
540 /* Scanning main()'s prologue
541 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
542 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
549 static const unsigned char img[] = {
550 0xde, 0xbf, /* out __SP_H__,r29 */
551 0xcd, 0xbf /* out __SP_L__,r28 */
554 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
555 /* ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) */
556 if ((insn & 0xf0f0) == 0xe0c0)
558 locals = (insn & 0xf) | ((insn & 0x0f00) >> 4);
559 insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order);
560 /* ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) */
561 if ((insn & 0xf0f0) == 0xe0d0)
563 locals |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
564 if (vpc + 4 + sizeof (img) < len
565 && memcmp (prologue + vpc + 4, img, sizeof (img)) == 0)
567 info->prologue_type = AVR_PROLOGUE_MAIN;
575 /* Scanning `-mcall-prologues' prologue
576 Classic prologue is 10 bytes, mega prologue is a 12 bytes long */
578 while (1) /* Using a while to avoid many goto's */
585 /* At least the fifth instruction must have been executed to
586 modify frame shape. */
590 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
591 /* ldi r26,<LOCALS_SIZE> */
592 if ((insn & 0xf0f0) != 0xe0a0)
594 loc_size = (insn & 0xf) | ((insn & 0x0f00) >> 4);
597 insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order);
598 /* ldi r27,<LOCALS_SIZE> / 256 */
599 if ((insn & 0xf0f0) != 0xe0b0)
601 loc_size |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
604 insn = extract_unsigned_integer (&prologue[vpc + 4], 2, byte_order);
605 /* ldi r30,pm_lo8(.L_foo_body) */
606 if ((insn & 0xf0f0) != 0xe0e0)
608 body_addr = (insn & 0xf) | ((insn & 0x0f00) >> 4);
611 insn = extract_unsigned_integer (&prologue[vpc + 6], 2, byte_order);
612 /* ldi r31,pm_hi8(.L_foo_body) */
613 if ((insn & 0xf0f0) != 0xe0f0)
615 body_addr |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
618 msymbol = lookup_minimal_symbol ("__prologue_saves__", NULL, NULL);
622 insn = extract_unsigned_integer (&prologue[vpc + 8], 2, byte_order);
623 /* rjmp __prologue_saves__+RRR */
624 if ((insn & 0xf000) == 0xc000)
626 /* Extract PC relative offset from RJMP */
627 i = (insn & 0xfff) | (insn & 0x800 ? (-1 ^ 0xfff) : 0);
628 /* Convert offset to byte addressable mode */
630 /* Destination address */
633 if (body_addr != (pc_beg + 10)/2)
638 else if ((insn & 0xfe0e) == 0x940c)
640 /* Extract absolute PC address from JMP */
641 i = (((insn & 0x1) | ((insn & 0x1f0) >> 3) << 16)
642 | (extract_unsigned_integer (&prologue[vpc + 10], 2, byte_order)
644 /* Convert address to byte addressable mode */
647 if (body_addr != (pc_beg + 12)/2)
655 /* Resolve offset (in words) from __prologue_saves__ symbol.
656 Which is a pushes count in `-mcall-prologues' mode */
657 num_pushes = AVR_MAX_PUSHES - (i - BMSYMBOL_VALUE_ADDRESS (msymbol)) / 2;
659 if (num_pushes > AVR_MAX_PUSHES)
661 fprintf_unfiltered (gdb_stderr, _("Num pushes too large: %d\n"),
670 info->saved_regs[AVR_FP_REGNUM + 1].addr = num_pushes;
672 info->saved_regs[AVR_FP_REGNUM].addr = num_pushes - 1;
675 for (from = AVR_LAST_PUSHED_REGNUM + 1 - (num_pushes - 2);
676 from <= AVR_LAST_PUSHED_REGNUM; ++from)
677 info->saved_regs [from].addr = ++i;
679 info->size = loc_size + num_pushes;
680 info->prologue_type = AVR_PROLOGUE_CALL;
682 return pc_beg + pc_offset;
685 /* Scan for the beginning of the prologue for an interrupt or signal
686 function. Note that we have to set the prologue type here since the
687 third stage of the prologue may not be present (e.g. no saved registered
688 or changing of the SP register). */
692 static const unsigned char img[] = {
693 0x78, 0x94, /* sei */
694 0x1f, 0x92, /* push r1 */
695 0x0f, 0x92, /* push r0 */
696 0x0f, 0xb6, /* in r0,0x3f SREG */
697 0x0f, 0x92, /* push r0 */
698 0x11, 0x24 /* clr r1 */
700 if (len >= sizeof (img)
701 && memcmp (prologue, img, sizeof (img)) == 0)
703 info->prologue_type = AVR_PROLOGUE_INTR;
705 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
706 info->saved_regs[0].addr = 2;
707 info->saved_regs[1].addr = 1;
710 else if (len >= sizeof (img) - 2
711 && memcmp (img + 2, prologue, sizeof (img) - 2) == 0)
713 info->prologue_type = AVR_PROLOGUE_SIG;
714 vpc += sizeof (img) - 2;
715 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
716 info->saved_regs[0].addr = 2;
717 info->saved_regs[1].addr = 1;
722 /* First stage of the prologue scanning.
723 Scan pushes (saved registers) */
725 for (; vpc < len; vpc += 2)
727 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
728 if ((insn & 0xfe0f) == 0x920f) /* push rXX */
730 /* Bits 4-9 contain a mask for registers R0-R32. */
731 int regno = (insn & 0x1f0) >> 4;
733 info->saved_regs[regno].addr = info->size;
740 gdb_assert (vpc < AVR_MAX_PROLOGUE_SIZE);
742 /* Handle static small stack allocation using rcall or push. */
744 while (scan_stage == 1 && vpc < len)
746 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
747 if (insn == 0xd000) /* rcall .+0 */
749 info->size += gdbarch_tdep (gdbarch)->call_length;
752 else if (insn == 0x920f || insn == 0x921f) /* push r0 or push r1 */
761 /* Second stage of the prologue scanning.
766 if (scan_stage == 1 && vpc < len)
768 static const unsigned char img[] = {
769 0xcd, 0xb7, /* in r28,__SP_L__ */
770 0xde, 0xb7 /* in r29,__SP_H__ */
773 if (vpc + sizeof (img) < len
774 && memcmp (prologue + vpc, img, sizeof (img)) == 0)
781 /* Third stage of the prologue scanning. (Really two stages).
783 sbiw r28,XX or subi r28,lo8(XX)
785 in __tmp_reg__,__SREG__
788 out __SREG__,__tmp_reg__
791 if (scan_stage == 2 && vpc < len)
794 static const unsigned char img[] = {
795 0x0f, 0xb6, /* in r0,0x3f */
796 0xf8, 0x94, /* cli */
797 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
798 0x0f, 0xbe, /* out 0x3f,r0 ; SREG */
799 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
801 static const unsigned char img_sig[] = {
802 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
803 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
805 static const unsigned char img_int[] = {
806 0xf8, 0x94, /* cli */
807 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
808 0x78, 0x94, /* sei */
809 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
812 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
813 if ((insn & 0xff30) == 0x9720) /* sbiw r28,XXX */
815 locals_size = (insn & 0xf) | ((insn & 0xc0) >> 2);
818 else if ((insn & 0xf0f0) == 0x50c0) /* subi r28,lo8(XX) */
820 locals_size = (insn & 0xf) | ((insn & 0xf00) >> 4);
822 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
824 locals_size += ((insn & 0xf) | ((insn & 0xf00) >> 4)) << 8;
829 /* Scan the last part of the prologue. May not be present for interrupt
830 or signal handler functions, which is why we set the prologue type
831 when we saw the beginning of the prologue previously. */
833 if (vpc + sizeof (img_sig) < len
834 && memcmp (prologue + vpc, img_sig, sizeof (img_sig)) == 0)
836 vpc += sizeof (img_sig);
838 else if (vpc + sizeof (img_int) < len
839 && memcmp (prologue + vpc, img_int, sizeof (img_int)) == 0)
841 vpc += sizeof (img_int);
843 if (vpc + sizeof (img) < len
844 && memcmp (prologue + vpc, img, sizeof (img)) == 0)
846 info->prologue_type = AVR_PROLOGUE_NORMAL;
850 info->size += locals_size;
855 /* If we got this far, we could not scan the prologue, so just return the pc
856 of the frame plus an adjustment for argument move insns. */
858 for (; vpc < len; vpc += 2)
860 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
861 if ((insn & 0xff00) == 0x0100) /* movw rXX, rYY */
863 else if ((insn & 0xfc00) == 0x2c00) /* mov rXX, rYY */
873 avr_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
875 CORE_ADDR func_addr, func_end;
876 CORE_ADDR post_prologue_pc;
878 /* See what the symbol table says */
880 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
883 post_prologue_pc = skip_prologue_using_sal (gdbarch, func_addr);
884 if (post_prologue_pc != 0)
885 return max (pc, post_prologue_pc);
888 CORE_ADDR prologue_end = pc;
889 struct avr_unwind_cache info = {0};
890 struct trad_frame_saved_reg saved_regs[AVR_NUM_REGS];
892 info.saved_regs = saved_regs;
894 /* Need to run the prologue scanner to figure out if the function has a
895 prologue and possibly skip over moving arguments passed via registers
896 to other registers. */
898 prologue_end = avr_scan_prologue (gdbarch, func_addr, func_end, &info);
900 if (info.prologue_type != AVR_PROLOGUE_NONE)
904 /* Either we didn't find the start of this function (nothing we can do),
905 or there's no line info, or the line after the prologue is after
906 the end of the function (there probably isn't a prologue). */
911 /* Not all avr devices support the BREAK insn. Those that don't should treat
912 it as a NOP. Thus, it should be ok. Since the avr is currently a remote
913 only target, this shouldn't be a problem (I hope). TRoth/2003-05-14 */
915 static const unsigned char *
916 avr_breakpoint_from_pc (struct gdbarch *gdbarch,
917 CORE_ADDR *pcptr, int *lenptr)
919 static const unsigned char avr_break_insn [] = { 0x98, 0x95 };
920 *lenptr = sizeof (avr_break_insn);
921 return avr_break_insn;
924 /* Determine, for architecture GDBARCH, how a return value of TYPE
925 should be returned. If it is supposed to be returned in registers,
926 and READBUF is non-zero, read the appropriate value from REGCACHE,
927 and copy it into READBUF. If WRITEBUF is non-zero, write the value
928 from WRITEBUF into REGCACHE. */
930 static enum return_value_convention
931 avr_return_value (struct gdbarch *gdbarch, struct value *function,
932 struct type *valtype, struct regcache *regcache,
933 gdb_byte *readbuf, const gdb_byte *writebuf)
936 /* Single byte are returned in r24.
937 Otherwise, the MSB of the return value is always in r25, calculate which
938 register holds the LSB. */
941 if ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
942 || TYPE_CODE (valtype) == TYPE_CODE_UNION
943 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
944 && TYPE_LENGTH (valtype) > 8)
945 return RETURN_VALUE_STRUCT_CONVENTION;
947 if (TYPE_LENGTH (valtype) <= 2)
949 else if (TYPE_LENGTH (valtype) <= 4)
951 else if (TYPE_LENGTH (valtype) <= 8)
954 gdb_assert_not_reached ("unexpected type length");
956 if (writebuf != NULL)
958 for (i = 0; i < TYPE_LENGTH (valtype); i++)
959 regcache_cooked_write (regcache, lsb_reg + i, writebuf + i);
964 for (i = 0; i < TYPE_LENGTH (valtype); i++)
965 regcache_cooked_read (regcache, lsb_reg + i, readbuf + i);
968 return RETURN_VALUE_REGISTER_CONVENTION;
972 /* Put here the code to store, into fi->saved_regs, the addresses of
973 the saved registers of frame described by FRAME_INFO. This
974 includes special registers such as pc and fp saved in special ways
975 in the stack frame. sp is even more special: the address we return
976 for it IS the sp for the next frame. */
978 static struct avr_unwind_cache *
979 avr_frame_unwind_cache (struct frame_info *this_frame,
980 void **this_prologue_cache)
982 CORE_ADDR start_pc, current_pc;
985 struct avr_unwind_cache *info;
986 struct gdbarch *gdbarch;
987 struct gdbarch_tdep *tdep;
990 if (*this_prologue_cache)
991 return (struct avr_unwind_cache *) *this_prologue_cache;
993 info = FRAME_OBSTACK_ZALLOC (struct avr_unwind_cache);
994 *this_prologue_cache = info;
995 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
998 info->prologue_type = AVR_PROLOGUE_NONE;
1000 start_pc = get_frame_func (this_frame);
1001 current_pc = get_frame_pc (this_frame);
1002 if ((start_pc > 0) && (start_pc <= current_pc))
1003 avr_scan_prologue (get_frame_arch (this_frame),
1004 start_pc, current_pc, info);
1006 if ((info->prologue_type != AVR_PROLOGUE_NONE)
1007 && (info->prologue_type != AVR_PROLOGUE_MAIN))
1009 ULONGEST high_base; /* High byte of FP */
1011 /* The SP was moved to the FP. This indicates that a new frame
1012 was created. Get THIS frame's FP value by unwinding it from
1014 this_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM);
1015 high_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM + 1);
1016 this_base += (high_base << 8);
1018 /* The FP points at the last saved register. Adjust the FP back
1019 to before the first saved register giving the SP. */
1020 prev_sp = this_base + info->size;
1024 /* Assume that the FP is this frame's SP but with that pushed
1025 stack space added back. */
1026 this_base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM);
1027 prev_sp = this_base + info->size;
1030 /* Add 1 here to adjust for the post-decrement nature of the push
1032 info->prev_sp = avr_make_saddr (prev_sp + 1);
1033 info->base = avr_make_saddr (this_base);
1035 gdbarch = get_frame_arch (this_frame);
1037 /* Adjust all the saved registers so that they contain addresses and not
1039 for (i = 0; i < gdbarch_num_regs (gdbarch) - 1; i++)
1040 if (info->saved_regs[i].addr > 0)
1041 info->saved_regs[i].addr = info->prev_sp - info->saved_regs[i].addr;
1043 /* Except for the main and startup code, the return PC is always saved on
1044 the stack and is at the base of the frame. */
1046 if (info->prologue_type != AVR_PROLOGUE_MAIN)
1047 info->saved_regs[AVR_PC_REGNUM].addr = info->prev_sp;
1049 /* The previous frame's SP needed to be computed. Save the computed
1051 tdep = gdbarch_tdep (gdbarch);
1052 trad_frame_set_value (info->saved_regs, AVR_SP_REGNUM,
1053 info->prev_sp - 1 + tdep->call_length);
1059 avr_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1063 pc = frame_unwind_register_unsigned (next_frame, AVR_PC_REGNUM);
1065 return avr_make_iaddr (pc);
1069 avr_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1073 sp = frame_unwind_register_unsigned (next_frame, AVR_SP_REGNUM);
1075 return avr_make_saddr (sp);
1078 /* Given a GDB frame, determine the address of the calling function's
1079 frame. This will be used to create a new GDB frame struct. */
1082 avr_frame_this_id (struct frame_info *this_frame,
1083 void **this_prologue_cache,
1084 struct frame_id *this_id)
1086 struct avr_unwind_cache *info
1087 = avr_frame_unwind_cache (this_frame, this_prologue_cache);
1092 /* The FUNC is easy. */
1093 func = get_frame_func (this_frame);
1095 /* Hopefully the prologue analysis either correctly determined the
1096 frame's base (which is the SP from the previous frame), or set
1097 that base to "NULL". */
1098 base = info->prev_sp;
1102 id = frame_id_build (base, func);
1106 static struct value *
1107 avr_frame_prev_register (struct frame_info *this_frame,
1108 void **this_prologue_cache, int regnum)
1110 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1111 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1112 struct avr_unwind_cache *info
1113 = avr_frame_unwind_cache (this_frame, this_prologue_cache);
1115 if (regnum == AVR_PC_REGNUM || regnum == AVR_PSEUDO_PC_REGNUM)
1117 if (trad_frame_addr_p (info->saved_regs, AVR_PC_REGNUM))
1119 /* Reading the return PC from the PC register is slightly
1120 abnormal. register_size(AVR_PC_REGNUM) says it is 4 bytes,
1121 but in reality, only two bytes (3 in upcoming mega256) are
1122 stored on the stack.
1124 Also, note that the value on the stack is an addr to a word
1125 not a byte, so we will need to multiply it by two at some
1128 And to confuse matters even more, the return address stored
1129 on the stack is in big endian byte order, even though most
1130 everything else about the avr is little endian. Ick! */
1134 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1135 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1137 read_memory (info->saved_regs[AVR_PC_REGNUM].addr,
1138 buf, tdep->call_length);
1140 /* Extract the PC read from memory as a big-endian. */
1142 for (i = 0; i < tdep->call_length; i++)
1143 pc = (pc << 8) | buf[i];
1145 if (regnum == AVR_PC_REGNUM)
1148 return frame_unwind_got_constant (this_frame, regnum, pc);
1151 return frame_unwind_got_optimized (this_frame, regnum);
1154 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1157 static const struct frame_unwind avr_frame_unwind = {
1159 default_frame_unwind_stop_reason,
1161 avr_frame_prev_register,
1163 default_frame_sniffer
1167 avr_frame_base_address (struct frame_info *this_frame, void **this_cache)
1169 struct avr_unwind_cache *info
1170 = avr_frame_unwind_cache (this_frame, this_cache);
1175 static const struct frame_base avr_frame_base = {
1177 avr_frame_base_address,
1178 avr_frame_base_address,
1179 avr_frame_base_address
1182 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
1183 frame. The frame ID's base needs to match the TOS value saved by
1184 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
1186 static struct frame_id
1187 avr_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1191 base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM);
1192 return frame_id_build (avr_make_saddr (base), get_frame_pc (this_frame));
1195 /* When arguments must be pushed onto the stack, they go on in reverse
1196 order. The below implements a FILO (stack) to do this. */
1201 struct stack_item *prev;
1205 static struct stack_item *
1206 push_stack_item (struct stack_item *prev, const bfd_byte *contents, int len)
1208 struct stack_item *si;
1209 si = XNEW (struct stack_item);
1210 si->data = (gdb_byte *) xmalloc (len);
1213 memcpy (si->data, contents, len);
1217 static struct stack_item *pop_stack_item (struct stack_item *si);
1218 static struct stack_item *
1219 pop_stack_item (struct stack_item *si)
1221 struct stack_item *dead = si;
1228 /* Setup the function arguments for calling a function in the inferior.
1230 On the AVR architecture, there are 18 registers (R25 to R8) which are
1231 dedicated for passing function arguments. Up to the first 18 arguments
1232 (depending on size) may go into these registers. The rest go on the stack.
1234 All arguments are aligned to start in even-numbered registers (odd-sized
1235 arguments, including char, have one free register above them). For example,
1236 an int in arg1 and a char in arg2 would be passed as such:
1241 Arguments that are larger than 2 bytes will be split between two or more
1242 registers as available, but will NOT be split between a register and the
1243 stack. Arguments that go onto the stack are pushed last arg first (this is
1244 similar to the d10v). */
1246 /* NOTE: TRoth/2003-06-17: The rest of this comment is old looks to be
1249 An exceptional case exists for struct arguments (and possibly other
1250 aggregates such as arrays) -- if the size is larger than WORDSIZE bytes but
1251 not a multiple of WORDSIZE bytes. In this case the argument is never split
1252 between the registers and the stack, but instead is copied in its entirety
1253 onto the stack, AND also copied into as many registers as there is room
1254 for. In other words, space in registers permitting, two copies of the same
1255 argument are passed in. As far as I can tell, only the one on the stack is
1256 used, although that may be a function of the level of compiler
1257 optimization. I suspect this is a compiler bug. Arguments of these odd
1258 sizes are left-justified within the word (as opposed to arguments smaller
1259 than WORDSIZE bytes, which are right-justified).
1261 If the function is to return an aggregate type such as a struct, the caller
1262 must allocate space into which the callee will copy the return value. In
1263 this case, a pointer to the return value location is passed into the callee
1264 in register R0, which displaces one of the other arguments passed in via
1265 registers R0 to R2. */
1268 avr_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1269 struct regcache *regcache, CORE_ADDR bp_addr,
1270 int nargs, struct value **args, CORE_ADDR sp,
1271 int struct_return, CORE_ADDR struct_addr)
1273 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1276 int call_length = gdbarch_tdep (gdbarch)->call_length;
1277 CORE_ADDR return_pc = avr_convert_iaddr_to_raw (bp_addr);
1278 int regnum = AVR_ARGN_REGNUM;
1279 struct stack_item *si = NULL;
1283 regcache_cooked_write_unsigned
1284 (regcache, regnum--, (struct_addr >> 8) & 0xff);
1285 regcache_cooked_write_unsigned
1286 (regcache, regnum--, struct_addr & 0xff);
1287 /* SP being post decremented, we need to reserve one byte so that the
1288 return address won't overwrite the result (or vice-versa). */
1289 if (sp == struct_addr)
1293 for (i = 0; i < nargs; i++)
1297 struct value *arg = args[i];
1298 struct type *type = check_typedef (value_type (arg));
1299 const bfd_byte *contents = value_contents (arg);
1300 int len = TYPE_LENGTH (type);
1302 /* Calculate the potential last register needed.
1303 E.g. For length 2, registers regnum and regnum-1 (say 25 and 24)
1304 shall be used. So, last needed register will be regnum-1(24). */
1305 last_regnum = regnum - (len + (len & 1)) + 1;
1307 /* If there are registers available, use them. Once we start putting
1308 stuff on the stack, all subsequent args go on stack. */
1309 if ((si == NULL) && (last_regnum >= AVR_LAST_ARG_REGNUM))
1311 /* Skip a register for odd length args. */
1315 /* Write MSB of argument into register and subsequent bytes in
1316 decreasing register numbers. */
1317 for (j = 0; j < len; j++)
1318 regcache_cooked_write_unsigned
1319 (regcache, regnum--, contents[len - j - 1]);
1321 /* No registers available, push the args onto the stack. */
1324 /* From here on, we don't care about regnum. */
1325 si = push_stack_item (si, contents, len);
1329 /* Push args onto the stack. */
1333 /* Add 1 to sp here to account for post decr nature of pushes. */
1334 write_memory (sp + 1, si->data, si->len);
1335 si = pop_stack_item (si);
1338 /* Set the return address. For the avr, the return address is the BP_ADDR.
1339 Need to push the return address onto the stack noting that it needs to be
1340 in big-endian order on the stack. */
1341 for (i = 1; i <= call_length; i++)
1343 buf[call_length - i] = return_pc & 0xff;
1348 /* Use 'sp + 1' since pushes are post decr ops. */
1349 write_memory (sp + 1, buf, call_length);
1351 /* Finally, update the SP register. */
1352 regcache_cooked_write_unsigned (regcache, AVR_SP_REGNUM,
1353 avr_convert_saddr_to_raw (sp));
1355 /* Return SP value for the dummy frame, where the return address hasn't been
1357 return sp + call_length;
1360 /* Unfortunately dwarf2 register for SP is 32. */
1363 avr_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1365 if (reg >= 0 && reg < 32)
1368 return AVR_SP_REGNUM;
1372 /* Implementation of `address_class_type_flags' gdbarch method.
1374 This method maps DW_AT_address_class attributes to a
1375 type_instance_flag_value. */
1378 avr_address_class_type_flags (int byte_size, int dwarf2_addr_class)
1380 /* The value 1 of the DW_AT_address_class attribute corresponds to the
1381 __flash qualifier. Note that this attribute is only valid with
1382 pointer types and therefore the flag is set to the pointer type and
1383 not its target type. */
1384 if (dwarf2_addr_class == 1 && byte_size == 2)
1385 return AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH;
1389 /* Implementation of `address_class_type_flags_to_name' gdbarch method.
1391 Convert a type_instance_flag_value to an address space qualifier. */
1394 avr_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
1396 if (type_flags & AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH)
1402 /* Implementation of `address_class_name_to_type_flags' gdbarch method.
1404 Convert an address space qualifier to a type_instance_flag_value. */
1407 avr_address_class_name_to_type_flags (struct gdbarch *gdbarch,
1409 int *type_flags_ptr)
1411 if (strcmp (name, "flash") == 0)
1413 *type_flags_ptr = AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH;
1420 /* Initialize the gdbarch structure for the AVR's. */
1422 static struct gdbarch *
1423 avr_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1425 struct gdbarch *gdbarch;
1426 struct gdbarch_tdep *tdep;
1427 struct gdbarch_list *best_arch;
1430 /* Avr-6 call instructions save 3 bytes. */
1431 switch (info.bfd_arch_info->mach)
1434 case bfd_mach_avrxmega1:
1436 case bfd_mach_avrxmega2:
1438 case bfd_mach_avrxmega3:
1440 case bfd_mach_avrxmega4:
1442 case bfd_mach_avrxmega5:
1447 case bfd_mach_avrxmega6:
1448 case bfd_mach_avrxmega7:
1453 /* If there is already a candidate, use it. */
1454 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
1456 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
1458 if (gdbarch_tdep (best_arch->gdbarch)->call_length == call_length)
1459 return best_arch->gdbarch;
1462 /* None found, create a new architecture from the information provided. */
1463 tdep = XNEW (struct gdbarch_tdep);
1464 gdbarch = gdbarch_alloc (&info, tdep);
1466 tdep->call_length = call_length;
1468 /* Create a type for PC. We can't use builtin types here, as they may not
1470 tdep->void_type = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
1471 tdep->func_void_type = make_function_type (tdep->void_type, NULL);
1472 tdep->pc_type = arch_type (gdbarch, TYPE_CODE_PTR, 4, NULL);
1473 TYPE_TARGET_TYPE (tdep->pc_type) = tdep->func_void_type;
1474 TYPE_UNSIGNED (tdep->pc_type) = 1;
1476 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1477 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1478 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1479 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1480 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1481 set_gdbarch_addr_bit (gdbarch, 32);
1483 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1484 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1485 set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1487 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1488 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
1489 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_single);
1491 set_gdbarch_read_pc (gdbarch, avr_read_pc);
1492 set_gdbarch_write_pc (gdbarch, avr_write_pc);
1494 set_gdbarch_num_regs (gdbarch, AVR_NUM_REGS);
1496 set_gdbarch_sp_regnum (gdbarch, AVR_SP_REGNUM);
1497 set_gdbarch_pc_regnum (gdbarch, AVR_PC_REGNUM);
1499 set_gdbarch_register_name (gdbarch, avr_register_name);
1500 set_gdbarch_register_type (gdbarch, avr_register_type);
1502 set_gdbarch_num_pseudo_regs (gdbarch, AVR_NUM_PSEUDO_REGS);
1503 set_gdbarch_pseudo_register_read (gdbarch, avr_pseudo_register_read);
1504 set_gdbarch_pseudo_register_write (gdbarch, avr_pseudo_register_write);
1506 set_gdbarch_return_value (gdbarch, avr_return_value);
1507 set_gdbarch_print_insn (gdbarch, print_insn_avr);
1509 set_gdbarch_push_dummy_call (gdbarch, avr_push_dummy_call);
1511 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, avr_dwarf_reg_to_regnum);
1513 set_gdbarch_address_to_pointer (gdbarch, avr_address_to_pointer);
1514 set_gdbarch_pointer_to_address (gdbarch, avr_pointer_to_address);
1515 set_gdbarch_integer_to_address (gdbarch, avr_integer_to_address);
1517 set_gdbarch_skip_prologue (gdbarch, avr_skip_prologue);
1518 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1520 set_gdbarch_breakpoint_from_pc (gdbarch, avr_breakpoint_from_pc);
1522 frame_unwind_append_unwinder (gdbarch, &avr_frame_unwind);
1523 frame_base_set_default (gdbarch, &avr_frame_base);
1525 set_gdbarch_dummy_id (gdbarch, avr_dummy_id);
1527 set_gdbarch_unwind_pc (gdbarch, avr_unwind_pc);
1528 set_gdbarch_unwind_sp (gdbarch, avr_unwind_sp);
1530 set_gdbarch_address_class_type_flags (gdbarch, avr_address_class_type_flags);
1531 set_gdbarch_address_class_name_to_type_flags
1532 (gdbarch, avr_address_class_name_to_type_flags);
1533 set_gdbarch_address_class_type_flags_to_name
1534 (gdbarch, avr_address_class_type_flags_to_name);
1539 /* Send a query request to the avr remote target asking for values of the io
1540 registers. If args parameter is not NULL, then the user has requested info
1541 on a specific io register [This still needs implemented and is ignored for
1542 now]. The query string should be one of these forms:
1544 "Ravr.io_reg" -> reply is "NN" number of io registers
1546 "Ravr.io_reg:addr,len" where addr is first register and len is number of
1547 registers to be read. The reply should be "<NAME>,VV;" for each io register
1548 where, <NAME> is a string, and VV is the hex value of the register.
1550 All io registers are 8-bit. */
1553 avr_io_reg_read_command (char *args, int from_tty)
1560 unsigned int nreg = 0;
1564 /* Find out how many io registers the target has. */
1565 bufsiz = target_read_alloc (¤t_target, TARGET_OBJECT_AVR,
1566 "avr.io_reg", &buf);
1567 bufstr = (const char *) buf;
1571 fprintf_unfiltered (gdb_stderr,
1572 _("ERR: info io_registers NOT supported "
1573 "by current target\n"));
1577 if (sscanf (bufstr, "%x", &nreg) != 1)
1579 fprintf_unfiltered (gdb_stderr,
1580 _("Error fetching number of io registers\n"));
1587 reinitialize_more_filter ();
1589 printf_unfiltered (_("Target has %u io registers:\n\n"), nreg);
1591 /* only fetch up to 8 registers at a time to keep the buffer small */
1594 for (i = 0; i < nreg; i += step)
1596 /* how many registers this round? */
1599 j = nreg - i; /* last block is less than 8 registers */
1601 snprintf (query, sizeof (query) - 1, "avr.io_reg:%x,%x", i, j);
1602 bufsiz = target_read_alloc (¤t_target, TARGET_OBJECT_AVR,
1605 p = (const char *) buf;
1606 for (k = i; k < (i + j); k++)
1608 if (sscanf (p, "%[^,],%x;", query, &val) == 2)
1610 printf_filtered ("[%02x] %-15s : %02x\n", k, query, val);
1611 while ((*p != ';') && (*p != '\0'))
1613 p++; /* skip over ';' */
1623 extern initialize_file_ftype _initialize_avr_tdep; /* -Wmissing-prototypes */
1626 _initialize_avr_tdep (void)
1628 register_gdbarch_init (bfd_arch_avr, avr_gdbarch_init);
1630 /* Add a new command to allow the user to query the avr remote target for
1631 the values of the io space registers in a saner way than just using
1634 /* FIXME: TRoth/2002-02-18: This should probably be changed to 'info avr
1635 io_registers' to signify it is not available on other platforms. */
1637 add_info ("io_registers", avr_io_reg_read_command,
1638 _("query remote avr target for io space register values"));