1 /* GNU/Linux on ARM target support.
3 Copyright (C) 1999-2012 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "floatformat.h"
29 #include "solib-svr4.h"
32 #include "trad-frame.h"
33 #include "tramp-frame.h"
34 #include "breakpoint.h"
38 #include "arm-linux-tdep.h"
39 #include "linux-tdep.h"
40 #include "glibc-tdep.h"
41 #include "arch-utils.h"
43 #include "gdbthread.h"
46 #include "cli/cli-utils.h"
47 #include "stap-probe.h"
48 #include "parser-defs.h"
49 #include "user-regs.h"
52 #include "gdb_string.h"
54 /* This is defined in <elf.h> on ARM GNU/Linux systems. */
57 extern int arm_apcs_32;
59 /* Under ARM GNU/Linux the traditional way of performing a breakpoint
60 is to execute a particular software interrupt, rather than use a
61 particular undefined instruction to provoke a trap. Upon exection
62 of the software interrupt the kernel stops the inferior with a
63 SIGTRAP, and wakes the debugger. */
65 static const char arm_linux_arm_le_breakpoint[] = { 0x01, 0x00, 0x9f, 0xef };
67 static const char arm_linux_arm_be_breakpoint[] = { 0xef, 0x9f, 0x00, 0x01 };
69 /* However, the EABI syscall interface (new in Nov. 2005) does not look at
70 the operand of the swi if old-ABI compatibility is disabled. Therefore,
71 use an undefined instruction instead. This is supported as of kernel
72 version 2.5.70 (May 2003), so should be a safe assumption for EABI
75 static const char eabi_linux_arm_le_breakpoint[] = { 0xf0, 0x01, 0xf0, 0xe7 };
77 static const char eabi_linux_arm_be_breakpoint[] = { 0xe7, 0xf0, 0x01, 0xf0 };
79 /* All the kernels which support Thumb support using a specific undefined
80 instruction for the Thumb breakpoint. */
82 static const char arm_linux_thumb_be_breakpoint[] = {0xde, 0x01};
84 static const char arm_linux_thumb_le_breakpoint[] = {0x01, 0xde};
86 /* Because the 16-bit Thumb breakpoint is affected by Thumb-2 IT blocks,
87 we must use a length-appropriate breakpoint for 32-bit Thumb
88 instructions. See also thumb_get_next_pc. */
90 static const char arm_linux_thumb2_be_breakpoint[] = { 0xf7, 0xf0, 0xa0, 0x00 };
92 static const char arm_linux_thumb2_le_breakpoint[] = { 0xf0, 0xf7, 0x00, 0xa0 };
94 /* Description of the longjmp buffer. The buffer is treated as an array of
95 elements of size ARM_LINUX_JB_ELEMENT_SIZE.
97 The location of saved registers in this buffer (in particular the PC
98 to use after longjmp is called) varies depending on the ABI (in
99 particular the FP model) and also (possibly) the C Library.
101 For glibc, eglibc, and uclibc the following holds: If the FP model is
102 SoftVFP or VFP (which implies EABI) then the PC is at offset 9 in the
103 buffer. This is also true for the SoftFPA model. However, for the FPA
104 model the PC is at offset 21 in the buffer. */
105 #define ARM_LINUX_JB_ELEMENT_SIZE INT_REGISTER_SIZE
106 #define ARM_LINUX_JB_PC_FPA 21
107 #define ARM_LINUX_JB_PC_EABI 9
110 Dynamic Linking on ARM GNU/Linux
111 --------------------------------
113 Note: PLT = procedure linkage table
114 GOT = global offset table
116 As much as possible, ELF dynamic linking defers the resolution of
117 jump/call addresses until the last minute. The technique used is
118 inspired by the i386 ELF design, and is based on the following
121 1) The calling technique should not force a change in the assembly
122 code produced for apps; it MAY cause changes in the way assembly
123 code is produced for position independent code (i.e. shared
126 2) The technique must be such that all executable areas must not be
127 modified; and any modified areas must not be executed.
129 To do this, there are three steps involved in a typical jump:
133 3) using a pointer from the GOT
135 When the executable or library is first loaded, each GOT entry is
136 initialized to point to the code which implements dynamic name
137 resolution and code finding. This is normally a function in the
138 program interpreter (on ARM GNU/Linux this is usually
139 ld-linux.so.2, but it does not have to be). On the first
140 invocation, the function is located and the GOT entry is replaced
141 with the real function address. Subsequent calls go through steps
142 1, 2 and 3 and end up calling the real code.
149 This is typical ARM code using the 26 bit relative branch or branch
150 and link instructions. The target of the instruction
151 (function_call is usually the address of the function to be called.
152 In position independent code, the target of the instruction is
153 actually an entry in the PLT when calling functions in a shared
154 library. Note that this call is identical to a normal function
155 call, only the target differs.
159 The PLT is a synthetic area, created by the linker. It exists in
160 both executables and libraries. It is an array of stubs, one per
161 imported function call. It looks like this:
164 str lr, [sp, #-4]! @push the return address (lr)
165 ldr lr, [pc, #16] @load from 6 words ahead
166 add lr, pc, lr @form an address for GOT[0]
167 ldr pc, [lr, #8]! @jump to the contents of that addr
169 The return address (lr) is pushed on the stack and used for
170 calculations. The load on the second line loads the lr with
171 &GOT[3] - . - 20. The addition on the third leaves:
173 lr = (&GOT[3] - . - 20) + (. + 8)
177 On the fourth line, the pc and lr are both updated, so that:
183 NOTE: PLT[0] borrows an offset .word from PLT[1]. This is a little
184 "tight", but allows us to keep all the PLT entries the same size.
187 ldr ip, [pc, #4] @load offset from gotoff
188 add ip, pc, ip @add the offset to the pc
189 ldr pc, [ip] @jump to that address
190 gotoff: .word GOT[n+3] - .
192 The load on the first line, gets an offset from the fourth word of
193 the PLT entry. The add on the second line makes ip = &GOT[n+3],
194 which contains either a pointer to PLT[0] (the fixup trampoline) or
195 a pointer to the actual code.
199 The GOT contains helper pointers for both code (PLT) fixups and
200 data fixups. The first 3 entries of the GOT are special. The next
201 M entries (where M is the number of entries in the PLT) belong to
202 the PLT fixups. The next D (all remaining) entries belong to
203 various data fixups. The actual size of the GOT is 3 + M + D.
205 The GOT is also a synthetic area, created by the linker. It exists
206 in both executables and libraries. When the GOT is first
207 initialized , all the GOT entries relating to PLT fixups are
208 pointing to code back at PLT[0].
210 The special entries in the GOT are:
212 GOT[0] = linked list pointer used by the dynamic loader
213 GOT[1] = pointer to the reloc table for this module
214 GOT[2] = pointer to the fixup/resolver code
216 The first invocation of function call comes through and uses the
217 fixup/resolver code. On the entry to the fixup/resolver code:
221 stack[0] = return address (lr) of the function call
222 [r0, r1, r2, r3] are still the arguments to the function call
224 This is enough information for the fixup/resolver code to work
225 with. Before the fixup/resolver code returns, it actually calls
226 the requested function and repairs &GOT[n+3]. */
228 /* The constants below were determined by examining the following files
229 in the linux kernel sources:
231 arch/arm/kernel/signal.c
232 - see SWI_SYS_SIGRETURN and SWI_SYS_RT_SIGRETURN
233 include/asm-arm/unistd.h
234 - see __NR_sigreturn, __NR_rt_sigreturn, and __NR_SYSCALL_BASE */
236 #define ARM_LINUX_SIGRETURN_INSTR 0xef900077
237 #define ARM_LINUX_RT_SIGRETURN_INSTR 0xef9000ad
239 /* For ARM EABI, the syscall number is not in the SWI instruction
240 (instead it is loaded into r7). We recognize the pattern that
241 glibc uses... alternatively, we could arrange to do this by
242 function name, but they are not always exported. */
243 #define ARM_SET_R7_SIGRETURN 0xe3a07077
244 #define ARM_SET_R7_RT_SIGRETURN 0xe3a070ad
245 #define ARM_EABI_SYSCALL 0xef000000
247 /* OABI syscall restart trampoline, used for EABI executables too
248 whenever OABI support has been enabled in the kernel. */
249 #define ARM_OABI_SYSCALL_RESTART_SYSCALL 0xef900000
250 #define ARM_LDR_PC_SP_12 0xe49df00c
251 #define ARM_LDR_PC_SP_4 0xe49df004
254 arm_linux_sigtramp_cache (struct frame_info *this_frame,
255 struct trad_frame_cache *this_cache,
256 CORE_ADDR func, int regs_offset)
258 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
259 CORE_ADDR base = sp + regs_offset;
262 for (i = 0; i < 16; i++)
263 trad_frame_set_reg_addr (this_cache, i, base + i * 4);
265 trad_frame_set_reg_addr (this_cache, ARM_PS_REGNUM, base + 16 * 4);
267 /* The VFP or iWMMXt registers may be saved on the stack, but there's
268 no reliable way to restore them (yet). */
270 /* Save a frame ID. */
271 trad_frame_set_id (this_cache, frame_id_build (sp, func));
274 /* There are a couple of different possible stack layouts that
277 Before version 2.6.18, the kernel used completely independent
278 layouts for non-RT and RT signals. For non-RT signals the stack
279 began directly with a struct sigcontext. For RT signals the stack
280 began with two redundant pointers (to the siginfo and ucontext),
281 and then the siginfo and ucontext.
283 As of version 2.6.18, the non-RT signal frame layout starts with
284 a ucontext and the RT signal frame starts with a siginfo and then
285 a ucontext. Also, the ucontext now has a designated save area
286 for coprocessor registers.
288 For RT signals, it's easy to tell the difference: we look for
289 pinfo, the pointer to the siginfo. If it has the expected
290 value, we have an old layout. If it doesn't, we have the new
293 For non-RT signals, it's a bit harder. We need something in one
294 layout or the other with a recognizable offset and value. We can't
295 use the return trampoline, because ARM usually uses SA_RESTORER,
296 in which case the stack return trampoline is not filled in.
297 We can't use the saved stack pointer, because sigaltstack might
298 be in use. So for now we guess the new layout... */
300 /* There are three words (trap_no, error_code, oldmask) in
301 struct sigcontext before r0. */
302 #define ARM_SIGCONTEXT_R0 0xc
304 /* There are five words (uc_flags, uc_link, and three for uc_stack)
305 in the ucontext_t before the sigcontext. */
306 #define ARM_UCONTEXT_SIGCONTEXT 0x14
308 /* There are three elements in an rt_sigframe before the ucontext:
309 pinfo, puc, and info. The first two are pointers and the third
310 is a struct siginfo, with size 128 bytes. We could follow puc
311 to the ucontext, but it's simpler to skip the whole thing. */
312 #define ARM_OLD_RT_SIGFRAME_SIGINFO 0x8
313 #define ARM_OLD_RT_SIGFRAME_UCONTEXT 0x88
315 #define ARM_NEW_RT_SIGFRAME_UCONTEXT 0x80
317 #define ARM_NEW_SIGFRAME_MAGIC 0x5ac3c35a
320 arm_linux_sigreturn_init (const struct tramp_frame *self,
321 struct frame_info *this_frame,
322 struct trad_frame_cache *this_cache,
325 struct gdbarch *gdbarch = get_frame_arch (this_frame);
326 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
327 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
328 ULONGEST uc_flags = read_memory_unsigned_integer (sp, 4, byte_order);
330 if (uc_flags == ARM_NEW_SIGFRAME_MAGIC)
331 arm_linux_sigtramp_cache (this_frame, this_cache, func,
332 ARM_UCONTEXT_SIGCONTEXT
333 + ARM_SIGCONTEXT_R0);
335 arm_linux_sigtramp_cache (this_frame, this_cache, func,
340 arm_linux_rt_sigreturn_init (const struct tramp_frame *self,
341 struct frame_info *this_frame,
342 struct trad_frame_cache *this_cache,
345 struct gdbarch *gdbarch = get_frame_arch (this_frame);
346 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
347 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
348 ULONGEST pinfo = read_memory_unsigned_integer (sp, 4, byte_order);
350 if (pinfo == sp + ARM_OLD_RT_SIGFRAME_SIGINFO)
351 arm_linux_sigtramp_cache (this_frame, this_cache, func,
352 ARM_OLD_RT_SIGFRAME_UCONTEXT
353 + ARM_UCONTEXT_SIGCONTEXT
354 + ARM_SIGCONTEXT_R0);
356 arm_linux_sigtramp_cache (this_frame, this_cache, func,
357 ARM_NEW_RT_SIGFRAME_UCONTEXT
358 + ARM_UCONTEXT_SIGCONTEXT
359 + ARM_SIGCONTEXT_R0);
363 arm_linux_restart_syscall_init (const struct tramp_frame *self,
364 struct frame_info *this_frame,
365 struct trad_frame_cache *this_cache,
368 struct gdbarch *gdbarch = get_frame_arch (this_frame);
369 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
370 CORE_ADDR pc = get_frame_memory_unsigned (this_frame, sp, 4);
371 CORE_ADDR cpsr = get_frame_register_unsigned (this_frame, ARM_PS_REGNUM);
372 ULONGEST t_bit = arm_psr_thumb_bit (gdbarch);
375 /* There are two variants of this trampoline; with older kernels, the
376 stub is placed on the stack, while newer kernels use the stub from
377 the vector page. They are identical except that the older version
378 increments SP by 12 (to skip stored PC and the stub itself), while
379 the newer version increments SP only by 4 (just the stored PC). */
380 if (self->insn[1].bytes == ARM_LDR_PC_SP_4)
385 /* Update Thumb bit in CPSR. */
391 /* Remove Thumb bit from PC. */
392 pc = gdbarch_addr_bits_remove (gdbarch, pc);
394 /* Save previous register values. */
395 trad_frame_set_reg_value (this_cache, ARM_SP_REGNUM, sp + sp_offset);
396 trad_frame_set_reg_value (this_cache, ARM_PC_REGNUM, pc);
397 trad_frame_set_reg_value (this_cache, ARM_PS_REGNUM, cpsr);
399 /* Save a frame ID. */
400 trad_frame_set_id (this_cache, frame_id_build (sp, func));
403 static struct tramp_frame arm_linux_sigreturn_tramp_frame = {
407 { ARM_LINUX_SIGRETURN_INSTR, -1 },
408 { TRAMP_SENTINEL_INSN }
410 arm_linux_sigreturn_init
413 static struct tramp_frame arm_linux_rt_sigreturn_tramp_frame = {
417 { ARM_LINUX_RT_SIGRETURN_INSTR, -1 },
418 { TRAMP_SENTINEL_INSN }
420 arm_linux_rt_sigreturn_init
423 static struct tramp_frame arm_eabi_linux_sigreturn_tramp_frame = {
427 { ARM_SET_R7_SIGRETURN, -1 },
428 { ARM_EABI_SYSCALL, -1 },
429 { TRAMP_SENTINEL_INSN }
431 arm_linux_sigreturn_init
434 static struct tramp_frame arm_eabi_linux_rt_sigreturn_tramp_frame = {
438 { ARM_SET_R7_RT_SIGRETURN, -1 },
439 { ARM_EABI_SYSCALL, -1 },
440 { TRAMP_SENTINEL_INSN }
442 arm_linux_rt_sigreturn_init
445 static struct tramp_frame arm_linux_restart_syscall_tramp_frame = {
449 { ARM_OABI_SYSCALL_RESTART_SYSCALL, -1 },
450 { ARM_LDR_PC_SP_12, -1 },
451 { TRAMP_SENTINEL_INSN }
453 arm_linux_restart_syscall_init
456 static struct tramp_frame arm_kernel_linux_restart_syscall_tramp_frame = {
460 { ARM_OABI_SYSCALL_RESTART_SYSCALL, -1 },
461 { ARM_LDR_PC_SP_4, -1 },
462 { TRAMP_SENTINEL_INSN }
464 arm_linux_restart_syscall_init
467 /* Core file and register set support. */
469 #define ARM_LINUX_SIZEOF_GREGSET (18 * INT_REGISTER_SIZE)
472 arm_linux_supply_gregset (const struct regset *regset,
473 struct regcache *regcache,
474 int regnum, const void *gregs_buf, size_t len)
476 struct gdbarch *gdbarch = get_regcache_arch (regcache);
477 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
478 const gdb_byte *gregs = gregs_buf;
481 gdb_byte pc_buf[INT_REGISTER_SIZE];
483 for (regno = ARM_A1_REGNUM; regno < ARM_PC_REGNUM; regno++)
484 if (regnum == -1 || regnum == regno)
485 regcache_raw_supply (regcache, regno,
486 gregs + INT_REGISTER_SIZE * regno);
488 if (regnum == ARM_PS_REGNUM || regnum == -1)
491 regcache_raw_supply (regcache, ARM_PS_REGNUM,
492 gregs + INT_REGISTER_SIZE * ARM_CPSR_GREGNUM);
494 regcache_raw_supply (regcache, ARM_PS_REGNUM,
495 gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM);
498 if (regnum == ARM_PC_REGNUM || regnum == -1)
500 reg_pc = extract_unsigned_integer (gregs
501 + INT_REGISTER_SIZE * ARM_PC_REGNUM,
502 INT_REGISTER_SIZE, byte_order);
503 reg_pc = gdbarch_addr_bits_remove (gdbarch, reg_pc);
504 store_unsigned_integer (pc_buf, INT_REGISTER_SIZE, byte_order, reg_pc);
505 regcache_raw_supply (regcache, ARM_PC_REGNUM, pc_buf);
510 arm_linux_collect_gregset (const struct regset *regset,
511 const struct regcache *regcache,
512 int regnum, void *gregs_buf, size_t len)
514 gdb_byte *gregs = gregs_buf;
517 for (regno = ARM_A1_REGNUM; regno < ARM_PC_REGNUM; regno++)
518 if (regnum == -1 || regnum == regno)
519 regcache_raw_collect (regcache, regno,
520 gregs + INT_REGISTER_SIZE * regno);
522 if (regnum == ARM_PS_REGNUM || regnum == -1)
525 regcache_raw_collect (regcache, ARM_PS_REGNUM,
526 gregs + INT_REGISTER_SIZE * ARM_CPSR_GREGNUM);
528 regcache_raw_collect (regcache, ARM_PS_REGNUM,
529 gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM);
532 if (regnum == ARM_PC_REGNUM || regnum == -1)
533 regcache_raw_collect (regcache, ARM_PC_REGNUM,
534 gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM);
537 /* Support for register format used by the NWFPE FPA emulator. */
539 #define typeNone 0x00
540 #define typeSingle 0x01
541 #define typeDouble 0x02
542 #define typeExtended 0x03
545 supply_nwfpe_register (struct regcache *regcache, int regno,
546 const gdb_byte *regs)
548 const gdb_byte *reg_data;
550 gdb_byte buf[FP_REGISTER_SIZE];
552 reg_data = regs + (regno - ARM_F0_REGNUM) * FP_REGISTER_SIZE;
553 reg_tag = regs[(regno - ARM_F0_REGNUM) + NWFPE_TAGS_OFFSET];
554 memset (buf, 0, FP_REGISTER_SIZE);
559 memcpy (buf, reg_data, 4);
562 memcpy (buf, reg_data + 4, 4);
563 memcpy (buf + 4, reg_data, 4);
566 /* We want sign and exponent, then least significant bits,
567 then most significant. NWFPE does sign, most, least. */
568 memcpy (buf, reg_data, 4);
569 memcpy (buf + 4, reg_data + 8, 4);
570 memcpy (buf + 8, reg_data + 4, 4);
576 regcache_raw_supply (regcache, regno, buf);
580 collect_nwfpe_register (const struct regcache *regcache, int regno,
585 gdb_byte buf[FP_REGISTER_SIZE];
587 regcache_raw_collect (regcache, regno, buf);
589 /* NOTE drow/2006-06-07: This code uses the tag already in the
590 register buffer. I've preserved that when moving the code
591 from the native file to the target file. But this doesn't
592 always make sense. */
594 reg_data = regs + (regno - ARM_F0_REGNUM) * FP_REGISTER_SIZE;
595 reg_tag = regs[(regno - ARM_F0_REGNUM) + NWFPE_TAGS_OFFSET];
600 memcpy (reg_data, buf, 4);
603 memcpy (reg_data, buf + 4, 4);
604 memcpy (reg_data + 4, buf, 4);
607 memcpy (reg_data, buf, 4);
608 memcpy (reg_data + 4, buf + 8, 4);
609 memcpy (reg_data + 8, buf + 4, 4);
617 arm_linux_supply_nwfpe (const struct regset *regset,
618 struct regcache *regcache,
619 int regnum, const void *regs_buf, size_t len)
621 const gdb_byte *regs = regs_buf;
624 if (regnum == ARM_FPS_REGNUM || regnum == -1)
625 regcache_raw_supply (regcache, ARM_FPS_REGNUM,
626 regs + NWFPE_FPSR_OFFSET);
628 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
629 if (regnum == -1 || regnum == regno)
630 supply_nwfpe_register (regcache, regno, regs);
634 arm_linux_collect_nwfpe (const struct regset *regset,
635 const struct regcache *regcache,
636 int regnum, void *regs_buf, size_t len)
638 gdb_byte *regs = regs_buf;
641 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
642 if (regnum == -1 || regnum == regno)
643 collect_nwfpe_register (regcache, regno, regs);
645 if (regnum == ARM_FPS_REGNUM || regnum == -1)
646 regcache_raw_collect (regcache, ARM_FPS_REGNUM,
647 regs + INT_REGISTER_SIZE * ARM_FPS_REGNUM);
650 /* Support VFP register format. */
652 #define ARM_LINUX_SIZEOF_VFP (32 * 8 + 4)
655 arm_linux_supply_vfp (const struct regset *regset,
656 struct regcache *regcache,
657 int regnum, const void *regs_buf, size_t len)
659 const gdb_byte *regs = regs_buf;
662 if (regnum == ARM_FPSCR_REGNUM || regnum == -1)
663 regcache_raw_supply (regcache, ARM_FPSCR_REGNUM, regs + 32 * 8);
665 for (regno = ARM_D0_REGNUM; regno <= ARM_D31_REGNUM; regno++)
666 if (regnum == -1 || regnum == regno)
667 regcache_raw_supply (regcache, regno,
668 regs + (regno - ARM_D0_REGNUM) * 8);
672 arm_linux_collect_vfp (const struct regset *regset,
673 const struct regcache *regcache,
674 int regnum, void *regs_buf, size_t len)
676 gdb_byte *regs = regs_buf;
679 if (regnum == ARM_FPSCR_REGNUM || regnum == -1)
680 regcache_raw_collect (regcache, ARM_FPSCR_REGNUM, regs + 32 * 8);
682 for (regno = ARM_D0_REGNUM; regno <= ARM_D31_REGNUM; regno++)
683 if (regnum == -1 || regnum == regno)
684 regcache_raw_collect (regcache, regno,
685 regs + (regno - ARM_D0_REGNUM) * 8);
688 /* Return the appropriate register set for the core section identified
689 by SECT_NAME and SECT_SIZE. */
691 static const struct regset *
692 arm_linux_regset_from_core_section (struct gdbarch *gdbarch,
693 const char *sect_name, size_t sect_size)
695 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
697 if (strcmp (sect_name, ".reg") == 0
698 && sect_size == ARM_LINUX_SIZEOF_GREGSET)
700 if (tdep->gregset == NULL)
701 tdep->gregset = regset_alloc (gdbarch, arm_linux_supply_gregset,
702 arm_linux_collect_gregset);
703 return tdep->gregset;
706 if (strcmp (sect_name, ".reg2") == 0
707 && sect_size == ARM_LINUX_SIZEOF_NWFPE)
709 if (tdep->fpregset == NULL)
710 tdep->fpregset = regset_alloc (gdbarch, arm_linux_supply_nwfpe,
711 arm_linux_collect_nwfpe);
712 return tdep->fpregset;
715 if (strcmp (sect_name, ".reg-arm-vfp") == 0
716 && sect_size == ARM_LINUX_SIZEOF_VFP)
718 if (tdep->vfpregset == NULL)
719 tdep->vfpregset = regset_alloc (gdbarch, arm_linux_supply_vfp,
720 arm_linux_collect_vfp);
721 return tdep->vfpregset;
727 /* Core file register set sections. */
729 static struct core_regset_section arm_linux_fpa_regset_sections[] =
731 { ".reg", ARM_LINUX_SIZEOF_GREGSET, "general-purpose" },
732 { ".reg2", ARM_LINUX_SIZEOF_NWFPE, "FPA floating-point" },
736 static struct core_regset_section arm_linux_vfp_regset_sections[] =
738 { ".reg", ARM_LINUX_SIZEOF_GREGSET, "general-purpose" },
739 { ".reg-arm-vfp", ARM_LINUX_SIZEOF_VFP, "VFP floating-point" },
743 /* Determine target description from core file. */
745 static const struct target_desc *
746 arm_linux_core_read_description (struct gdbarch *gdbarch,
747 struct target_ops *target,
750 CORE_ADDR arm_hwcap = 0;
752 if (target_auxv_search (target, AT_HWCAP, &arm_hwcap) != 1)
755 if (arm_hwcap & HWCAP_VFP)
757 /* NEON implies VFPv3-D32 or no-VFP unit. Say that we only support
758 Neon with VFPv3-D32. */
759 if (arm_hwcap & HWCAP_NEON)
760 return tdesc_arm_with_neon;
761 else if ((arm_hwcap & (HWCAP_VFPv3 | HWCAP_VFPv3D16)) == HWCAP_VFPv3)
762 return tdesc_arm_with_vfpv3;
764 return tdesc_arm_with_vfpv2;
771 /* Copy the value of next pc of sigreturn and rt_sigrturn into PC,
772 return 1. In addition, set IS_THUMB depending on whether we
773 will return to ARM or Thumb code. Return 0 if it is not a
774 rt_sigreturn/sigreturn syscall. */
776 arm_linux_sigreturn_return_addr (struct frame_info *frame,
777 unsigned long svc_number,
778 CORE_ADDR *pc, int *is_thumb)
780 /* Is this a sigreturn or rt_sigreturn syscall? */
781 if (svc_number == 119 || svc_number == 173)
783 if (get_frame_type (frame) == SIGTRAMP_FRAME)
785 ULONGEST t_bit = arm_psr_thumb_bit (frame_unwind_arch (frame));
787 = frame_unwind_register_unsigned (frame, ARM_PS_REGNUM);
789 *is_thumb = (cpsr & t_bit) != 0;
790 *pc = frame_unwind_caller_pc (frame);
797 /* When FRAME is at a syscall instruction, return the PC of the next
798 instruction to be executed. */
801 arm_linux_syscall_next_pc (struct frame_info *frame)
803 CORE_ADDR pc = get_frame_pc (frame);
804 CORE_ADDR return_addr = 0;
805 int is_thumb = arm_frame_is_thumb (frame);
806 ULONGEST svc_number = 0;
810 svc_number = get_frame_register_unsigned (frame, 7);
811 return_addr = pc + 2;
815 struct gdbarch *gdbarch = get_frame_arch (frame);
816 enum bfd_endian byte_order_for_code =
817 gdbarch_byte_order_for_code (gdbarch);
818 unsigned long this_instr =
819 read_memory_unsigned_integer (pc, 4, byte_order_for_code);
821 unsigned long svc_operand = (0x00ffffff & this_instr);
822 if (svc_operand) /* OABI. */
824 svc_number = svc_operand - 0x900000;
828 svc_number = get_frame_register_unsigned (frame, 7);
831 return_addr = pc + 4;
834 arm_linux_sigreturn_return_addr (frame, svc_number, &return_addr, &is_thumb);
836 /* Addresses for calling Thumb functions have the bit 0 set. */
844 /* Insert a single step breakpoint at the next executed instruction. */
847 arm_linux_software_single_step (struct frame_info *frame)
849 struct gdbarch *gdbarch = get_frame_arch (frame);
850 struct address_space *aspace = get_frame_address_space (frame);
853 if (arm_deal_with_atomic_sequence (frame))
856 next_pc = arm_get_next_pc (frame, get_frame_pc (frame));
858 /* The Linux kernel offers some user-mode helpers in a high page. We can
859 not read this page (as of 2.6.23), and even if we could then we couldn't
860 set breakpoints in it, and even if we could then the atomic operations
861 would fail when interrupted. They are all called as functions and return
862 to the address in LR, so step to there instead. */
863 if (next_pc > 0xffff0000)
864 next_pc = get_frame_register_unsigned (frame, ARM_LR_REGNUM);
866 arm_insert_single_step_breakpoint (gdbarch, aspace, next_pc);
871 /* Support for displaced stepping of Linux SVC instructions. */
874 arm_linux_cleanup_svc (struct gdbarch *gdbarch,
875 struct regcache *regs,
876 struct displaced_step_closure *dsc)
878 CORE_ADDR from = dsc->insn_addr;
879 ULONGEST apparent_pc;
882 regcache_cooked_read_unsigned (regs, ARM_PC_REGNUM, &apparent_pc);
884 within_scratch = (apparent_pc >= dsc->scratch_base
885 && apparent_pc < (dsc->scratch_base
886 + DISPLACED_MODIFIED_INSNS * 4 + 4));
890 fprintf_unfiltered (gdb_stdlog, "displaced: PC is apparently %.8lx after "
891 "SVC step ", (unsigned long) apparent_pc);
893 fprintf_unfiltered (gdb_stdlog, "(within scratch space)\n");
895 fprintf_unfiltered (gdb_stdlog, "(outside scratch space)\n");
899 displaced_write_reg (regs, dsc, ARM_PC_REGNUM, from + 4, BRANCH_WRITE_PC);
903 arm_linux_copy_svc (struct gdbarch *gdbarch, struct regcache *regs,
904 struct displaced_step_closure *dsc)
906 CORE_ADDR return_to = 0;
908 struct frame_info *frame;
909 unsigned int svc_number = displaced_read_reg (regs, dsc, 7);
910 int is_sigreturn = 0;
913 frame = get_current_frame ();
915 is_sigreturn = arm_linux_sigreturn_return_addr(frame, svc_number,
916 &return_to, &is_thumb);
919 struct symtab_and_line sal;
922 fprintf_unfiltered (gdb_stdlog, "displaced: found "
923 "sigreturn/rt_sigreturn SVC call. PC in frame = %lx\n",
924 (unsigned long) get_frame_pc (frame));
927 fprintf_unfiltered (gdb_stdlog, "displaced: unwind pc = %lx. "
928 "Setting momentary breakpoint.\n", (unsigned long) return_to);
930 gdb_assert (inferior_thread ()->control.step_resume_breakpoint
933 sal = find_pc_line (return_to, 0);
935 sal.section = find_pc_overlay (return_to);
938 frame = get_prev_frame (frame);
942 inferior_thread ()->control.step_resume_breakpoint
943 = set_momentary_breakpoint (gdbarch, sal, get_frame_id (frame),
946 /* set_momentary_breakpoint invalidates FRAME. */
949 /* We need to make sure we actually insert the momentary
950 breakpoint set above. */
951 insert_breakpoints ();
953 else if (debug_displaced)
954 fprintf_unfiltered (gdb_stderr, "displaced: couldn't find previous "
955 "frame to set momentary breakpoint for "
956 "sigreturn/rt_sigreturn\n");
958 else if (debug_displaced)
959 fprintf_unfiltered (gdb_stdlog, "displaced: sigreturn/rt_sigreturn "
960 "SVC call not in signal trampoline frame\n");
963 /* Preparation: If we detect sigreturn, set momentary breakpoint at resume
964 location, else nothing.
965 Insn: unmodified svc.
966 Cleanup: if pc lands in scratch space, pc <- insn_addr + 4
967 else leave pc alone. */
970 dsc->cleanup = &arm_linux_cleanup_svc;
971 /* Pretend we wrote to the PC, so cleanup doesn't set PC to the next
973 dsc->wrote_to_pc = 1;
979 /* The following two functions implement single-stepping over calls to Linux
980 kernel helper routines, which perform e.g. atomic operations on architecture
981 variants which don't support them natively.
983 When this function is called, the PC will be pointing at the kernel helper
984 (at an address inaccessible to GDB), and r14 will point to the return
985 address. Displaced stepping always executes code in the copy area:
986 so, make the copy-area instruction branch back to the kernel helper (the
987 "from" address), and make r14 point to the breakpoint in the copy area. In
988 that way, we regain control once the kernel helper returns, and can clean
989 up appropriately (as if we had just returned from the kernel helper as it
990 would have been called from the non-displaced location). */
993 cleanup_kernel_helper_return (struct gdbarch *gdbarch,
994 struct regcache *regs,
995 struct displaced_step_closure *dsc)
997 displaced_write_reg (regs, dsc, ARM_LR_REGNUM, dsc->tmp[0], CANNOT_WRITE_PC);
998 displaced_write_reg (regs, dsc, ARM_PC_REGNUM, dsc->tmp[0], BRANCH_WRITE_PC);
1002 arm_catch_kernel_helper_return (struct gdbarch *gdbarch, CORE_ADDR from,
1003 CORE_ADDR to, struct regcache *regs,
1004 struct displaced_step_closure *dsc)
1006 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1009 dsc->insn_addr = from;
1010 dsc->cleanup = &cleanup_kernel_helper_return;
1011 /* Say we wrote to the PC, else cleanup will set PC to the next
1012 instruction in the helper, which isn't helpful. */
1013 dsc->wrote_to_pc = 1;
1015 /* Preparation: tmp[0] <- r14
1016 r14 <- <scratch space>+4
1017 *(<scratch space>+8) <- from
1018 Insn: ldr pc, [r14, #4]
1019 Cleanup: r14 <- tmp[0], pc <- tmp[0]. */
1021 dsc->tmp[0] = displaced_read_reg (regs, dsc, ARM_LR_REGNUM);
1022 displaced_write_reg (regs, dsc, ARM_LR_REGNUM, (ULONGEST) to + 4,
1024 write_memory_unsigned_integer (to + 8, 4, byte_order, from);
1026 dsc->modinsn[0] = 0xe59ef004; /* ldr pc, [lr, #4]. */
1029 /* Linux-specific displaced step instruction copying function. Detects when
1030 the program has stepped into a Linux kernel helper routine (which must be
1031 handled as a special case), falling back to arm_displaced_step_copy_insn()
1034 static struct displaced_step_closure *
1035 arm_linux_displaced_step_copy_insn (struct gdbarch *gdbarch,
1036 CORE_ADDR from, CORE_ADDR to,
1037 struct regcache *regs)
1039 struct displaced_step_closure *dsc
1040 = xmalloc (sizeof (struct displaced_step_closure));
1042 /* Detect when we enter an (inaccessible by GDB) Linux kernel helper, and
1043 stop at the return location. */
1044 if (from > 0xffff0000)
1046 if (debug_displaced)
1047 fprintf_unfiltered (gdb_stdlog, "displaced: detected kernel helper "
1048 "at %.8lx\n", (unsigned long) from);
1050 arm_catch_kernel_helper_return (gdbarch, from, to, regs, dsc);
1054 /* Override the default handling of SVC instructions. */
1055 dsc->u.svc.copy_svc_os = arm_linux_copy_svc;
1057 arm_process_displaced_insn (gdbarch, from, to, regs, dsc);
1060 arm_displaced_init_closure (gdbarch, from, to, dsc);
1066 arm_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
1068 return (*s == '#' /* Literal number. */
1069 || *s == '[' /* Register indirection or
1071 || isalpha (*s)); /* Register value. */
1074 /* This routine is used to parse a special token in ARM's assembly.
1076 The special tokens parsed by it are:
1078 - Register displacement (e.g, [fp, #-8])
1080 It returns one if the special token has been parsed successfully,
1081 or zero if the current token is not considered special. */
1084 arm_stap_parse_special_token (struct gdbarch *gdbarch,
1085 struct stap_parse_info *p)
1089 /* Temporary holder for lookahead. */
1090 const char *tmp = p->arg;
1091 /* Used to save the register name. */
1102 /* Register name. */
1103 while (isalnum (*tmp))
1110 regname = alloca (len + 2);
1113 if (isdigit (*start))
1115 /* If we are dealing with a register whose name begins with a
1116 digit, it means we should prefix the name with the letter
1117 `r', because GDB expects this name pattern. Otherwise (e.g.,
1118 we are dealing with the register `fp'), we don't need to
1119 add such a prefix. */
1124 strncpy (regname + offset, start, len);
1126 regname[len] = '\0';
1128 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
1129 error (_("Invalid register name `%s' on expression `%s'."),
1130 regname, p->saved_arg);
1133 tmp = skip_spaces_const (tmp);
1143 displacement = strtol (tmp, (char **) &tmp, 10);
1145 /* Skipping last `]'. */
1149 /* The displacement. */
1150 write_exp_elt_opcode (OP_LONG);
1151 write_exp_elt_type (builtin_type (gdbarch)->builtin_long);
1152 write_exp_elt_longcst (displacement);
1153 write_exp_elt_opcode (OP_LONG);
1155 write_exp_elt_opcode (UNOP_NEG);
1157 /* The register name. */
1158 write_exp_elt_opcode (OP_REGISTER);
1161 write_exp_string (str);
1162 write_exp_elt_opcode (OP_REGISTER);
1164 write_exp_elt_opcode (BINOP_ADD);
1166 /* Casting to the expected type. */
1167 write_exp_elt_opcode (UNOP_CAST);
1168 write_exp_elt_type (lookup_pointer_type (p->arg_type));
1169 write_exp_elt_opcode (UNOP_CAST);
1171 write_exp_elt_opcode (UNOP_IND);
1182 arm_linux_init_abi (struct gdbarch_info info,
1183 struct gdbarch *gdbarch)
1185 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1187 linux_init_abi (info, gdbarch);
1189 tdep->lowest_pc = 0x8000;
1190 if (info.byte_order == BFD_ENDIAN_BIG)
1192 if (tdep->arm_abi == ARM_ABI_AAPCS)
1193 tdep->arm_breakpoint = eabi_linux_arm_be_breakpoint;
1195 tdep->arm_breakpoint = arm_linux_arm_be_breakpoint;
1196 tdep->thumb_breakpoint = arm_linux_thumb_be_breakpoint;
1197 tdep->thumb2_breakpoint = arm_linux_thumb2_be_breakpoint;
1201 if (tdep->arm_abi == ARM_ABI_AAPCS)
1202 tdep->arm_breakpoint = eabi_linux_arm_le_breakpoint;
1204 tdep->arm_breakpoint = arm_linux_arm_le_breakpoint;
1205 tdep->thumb_breakpoint = arm_linux_thumb_le_breakpoint;
1206 tdep->thumb2_breakpoint = arm_linux_thumb2_le_breakpoint;
1208 tdep->arm_breakpoint_size = sizeof (arm_linux_arm_le_breakpoint);
1209 tdep->thumb_breakpoint_size = sizeof (arm_linux_thumb_le_breakpoint);
1210 tdep->thumb2_breakpoint_size = sizeof (arm_linux_thumb2_le_breakpoint);
1212 if (tdep->fp_model == ARM_FLOAT_AUTO)
1213 tdep->fp_model = ARM_FLOAT_FPA;
1215 switch (tdep->fp_model)
1218 tdep->jb_pc = ARM_LINUX_JB_PC_FPA;
1220 case ARM_FLOAT_SOFT_FPA:
1221 case ARM_FLOAT_SOFT_VFP:
1223 tdep->jb_pc = ARM_LINUX_JB_PC_EABI;
1227 (__FILE__, __LINE__,
1228 _("arm_linux_init_abi: Floating point model not supported"));
1231 tdep->jb_elt_size = ARM_LINUX_JB_ELEMENT_SIZE;
1233 set_solib_svr4_fetch_link_map_offsets
1234 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
1236 /* Single stepping. */
1237 set_gdbarch_software_single_step (gdbarch, arm_linux_software_single_step);
1239 /* Shared library handling. */
1240 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1241 set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
1243 /* Enable TLS support. */
1244 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1245 svr4_fetch_objfile_link_map);
1247 tramp_frame_prepend_unwinder (gdbarch,
1248 &arm_linux_sigreturn_tramp_frame);
1249 tramp_frame_prepend_unwinder (gdbarch,
1250 &arm_linux_rt_sigreturn_tramp_frame);
1251 tramp_frame_prepend_unwinder (gdbarch,
1252 &arm_eabi_linux_sigreturn_tramp_frame);
1253 tramp_frame_prepend_unwinder (gdbarch,
1254 &arm_eabi_linux_rt_sigreturn_tramp_frame);
1255 tramp_frame_prepend_unwinder (gdbarch,
1256 &arm_linux_restart_syscall_tramp_frame);
1257 tramp_frame_prepend_unwinder (gdbarch,
1258 &arm_kernel_linux_restart_syscall_tramp_frame);
1260 /* Core file support. */
1261 set_gdbarch_regset_from_core_section (gdbarch,
1262 arm_linux_regset_from_core_section);
1263 set_gdbarch_core_read_description (gdbarch, arm_linux_core_read_description);
1265 if (tdep->have_vfp_registers)
1266 set_gdbarch_core_regset_sections (gdbarch, arm_linux_vfp_regset_sections);
1267 else if (tdep->have_fpa_registers)
1268 set_gdbarch_core_regset_sections (gdbarch, arm_linux_fpa_regset_sections);
1270 set_gdbarch_get_siginfo_type (gdbarch, linux_get_siginfo_type);
1272 /* Displaced stepping. */
1273 set_gdbarch_displaced_step_copy_insn (gdbarch,
1274 arm_linux_displaced_step_copy_insn);
1275 set_gdbarch_displaced_step_fixup (gdbarch, arm_displaced_step_fixup);
1276 set_gdbarch_displaced_step_free_closure (gdbarch,
1277 simple_displaced_step_free_closure);
1278 set_gdbarch_displaced_step_location (gdbarch, displaced_step_at_entry_point);
1280 /* Reversible debugging, process record. */
1281 set_gdbarch_process_record (gdbarch, arm_process_record);
1283 /* SystemTap functions. */
1284 set_gdbarch_stap_integer_prefix (gdbarch, "#");
1285 set_gdbarch_stap_register_prefix (gdbarch, "r");
1286 set_gdbarch_stap_register_indirection_prefix (gdbarch, "[");
1287 set_gdbarch_stap_register_indirection_suffix (gdbarch, "]");
1288 set_gdbarch_stap_gdb_register_prefix (gdbarch, "r");
1289 set_gdbarch_stap_is_single_operand (gdbarch, arm_stap_is_single_operand);
1290 set_gdbarch_stap_parse_special_token (gdbarch,
1291 arm_stap_parse_special_token);
1293 tdep->syscall_next_pc = arm_linux_syscall_next_pc;
1295 /* Syscall record. */
1296 tdep->arm_swi_record = NULL;
1299 /* Provide a prototype to silence -Wmissing-prototypes. */
1300 extern initialize_file_ftype _initialize_arm_linux_tdep;
1303 _initialize_arm_linux_tdep (void)
1305 gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_LINUX,
1306 arm_linux_init_abi);