1 /* GNU/Linux on ARM native support.
2 Copyright (C) 1999-2019 Free Software Foundation, Inc.
4 This file is part of GDB.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "linux-nat.h"
25 #include "target-descriptions.h"
27 #include "observable.h"
28 #include "gdbthread.h"
31 #include "arm-linux-tdep.h"
32 #include "aarch32-linux-nat.h"
34 #include <elf/common.h>
36 #include "nat/gdb_ptrace.h"
37 #include <sys/utsname.h>
38 #include <sys/procfs.h>
40 #include "nat/linux-ptrace.h"
42 /* Prototypes for supply_gregset etc. */
45 /* Defines ps_err_e, struct ps_prochandle. */
46 #include "gdb_proc_service.h"
48 #ifndef PTRACE_GET_THREAD_AREA
49 #define PTRACE_GET_THREAD_AREA 22
52 #ifndef PTRACE_GETWMMXREGS
53 #define PTRACE_GETWMMXREGS 18
54 #define PTRACE_SETWMMXREGS 19
57 #ifndef PTRACE_GETVFPREGS
58 #define PTRACE_GETVFPREGS 27
59 #define PTRACE_SETVFPREGS 28
62 #ifndef PTRACE_GETHBPREGS
63 #define PTRACE_GETHBPREGS 29
64 #define PTRACE_SETHBPREGS 30
67 extern int arm_apcs_32;
69 class arm_linux_nat_target final : public linux_nat_target
72 /* Add our register access methods. */
73 void fetch_registers (struct regcache *, int) override;
74 void store_registers (struct regcache *, int) override;
76 /* Add our hardware breakpoint and watchpoint implementation. */
77 int can_use_hw_breakpoint (enum bptype, int, int) override;
79 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
81 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
83 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
85 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
86 struct expression *) override;
88 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
89 struct expression *) override;
90 bool stopped_by_watchpoint () override;
92 bool stopped_data_address (CORE_ADDR *) override;
94 bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
96 const struct target_desc *read_description () override;
98 /* Override linux_nat_target low methods. */
100 /* Handle thread creation and exit. */
101 void low_new_thread (struct lwp_info *lp) override;
102 void low_delete_thread (struct arch_lwp_info *lp) override;
103 void low_prepare_to_resume (struct lwp_info *lp) override;
105 /* Handle process creation and exit. */
106 void low_new_fork (struct lwp_info *parent, pid_t child_pid) override;
107 void low_forget_process (pid_t pid) override;
110 static arm_linux_nat_target the_arm_linux_nat_target;
112 /* Get the whole floating point state of the process and store it
116 fetch_fpregs (struct regcache *regcache)
119 gdb_byte fp[ARM_LINUX_SIZEOF_NWFPE];
121 /* Get the thread id for the ptrace call. */
122 tid = regcache->ptid ().lwp ();
124 /* Read the floating point state. */
125 if (have_ptrace_getregset == TRIBOOL_TRUE)
130 iov.iov_len = ARM_LINUX_SIZEOF_NWFPE;
132 ret = ptrace (PTRACE_GETREGSET, tid, NT_FPREGSET, &iov);
135 ret = ptrace (PT_GETFPREGS, tid, 0, fp);
138 perror_with_name (_("Unable to fetch the floating point registers."));
141 regcache->raw_supply (ARM_FPS_REGNUM, fp + NWFPE_FPSR_OFFSET);
143 /* Fetch the floating point registers. */
144 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
145 supply_nwfpe_register (regcache, regno, fp);
148 /* Save the whole floating point state of the process using
149 the contents from regcache. */
152 store_fpregs (const struct regcache *regcache)
155 gdb_byte fp[ARM_LINUX_SIZEOF_NWFPE];
157 /* Get the thread id for the ptrace call. */
158 tid = regcache->ptid ().lwp ();
160 /* Read the floating point state. */
161 if (have_ptrace_getregset == TRIBOOL_TRUE)
163 elf_fpregset_t fpregs;
166 iov.iov_base = &fpregs;
167 iov.iov_len = sizeof (fpregs);
169 ret = ptrace (PTRACE_GETREGSET, tid, NT_FPREGSET, &iov);
172 ret = ptrace (PT_GETFPREGS, tid, 0, fp);
175 perror_with_name (_("Unable to fetch the floating point registers."));
178 if (REG_VALID == regcache->get_register_status (ARM_FPS_REGNUM))
179 regcache->raw_collect (ARM_FPS_REGNUM, fp + NWFPE_FPSR_OFFSET);
181 /* Store the floating point registers. */
182 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
183 if (REG_VALID == regcache->get_register_status (regno))
184 collect_nwfpe_register (regcache, regno, fp);
186 if (have_ptrace_getregset == TRIBOOL_TRUE)
191 iov.iov_len = ARM_LINUX_SIZEOF_NWFPE;
193 ret = ptrace (PTRACE_SETREGSET, tid, NT_FPREGSET, &iov);
196 ret = ptrace (PTRACE_SETFPREGS, tid, 0, fp);
199 perror_with_name (_("Unable to store floating point registers."));
202 /* Fetch all general registers of the process and store into
206 fetch_regs (struct regcache *regcache)
211 /* Get the thread id for the ptrace call. */
212 tid = regcache->ptid ().lwp ();
214 if (have_ptrace_getregset == TRIBOOL_TRUE)
218 iov.iov_base = ®s;
219 iov.iov_len = sizeof (regs);
221 ret = ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iov);
224 ret = ptrace (PTRACE_GETREGS, tid, 0, ®s);
227 perror_with_name (_("Unable to fetch general registers."));
229 aarch32_gp_regcache_supply (regcache, (uint32_t *) regs, arm_apcs_32);
233 store_regs (const struct regcache *regcache)
238 /* Get the thread id for the ptrace call. */
239 tid = regcache->ptid ().lwp ();
241 /* Fetch the general registers. */
242 if (have_ptrace_getregset == TRIBOOL_TRUE)
246 iov.iov_base = ®s;
247 iov.iov_len = sizeof (regs);
249 ret = ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iov);
252 ret = ptrace (PTRACE_GETREGS, tid, 0, ®s);
255 perror_with_name (_("Unable to fetch general registers."));
257 aarch32_gp_regcache_collect (regcache, (uint32_t *) regs, arm_apcs_32);
259 if (have_ptrace_getregset == TRIBOOL_TRUE)
263 iov.iov_base = ®s;
264 iov.iov_len = sizeof (regs);
266 ret = ptrace (PTRACE_SETREGSET, tid, NT_PRSTATUS, &iov);
269 ret = ptrace (PTRACE_SETREGS, tid, 0, ®s);
272 perror_with_name (_("Unable to store general registers."));
275 /* Fetch all WMMX registers of the process and store into
278 #define IWMMXT_REGS_SIZE (16 * 8 + 6 * 4)
281 fetch_wmmx_regs (struct regcache *regcache)
283 char regbuf[IWMMXT_REGS_SIZE];
286 /* Get the thread id for the ptrace call. */
287 tid = regcache->ptid ().lwp ();
289 ret = ptrace (PTRACE_GETWMMXREGS, tid, 0, regbuf);
291 perror_with_name (_("Unable to fetch WMMX registers."));
293 for (regno = 0; regno < 16; regno++)
294 regcache->raw_supply (regno + ARM_WR0_REGNUM, ®buf[regno * 8]);
296 for (regno = 0; regno < 2; regno++)
297 regcache->raw_supply (regno + ARM_WCSSF_REGNUM,
298 ®buf[16 * 8 + regno * 4]);
300 for (regno = 0; regno < 4; regno++)
301 regcache->raw_supply (regno + ARM_WCGR0_REGNUM,
302 ®buf[16 * 8 + 2 * 4 + regno * 4]);
306 store_wmmx_regs (const struct regcache *regcache)
308 char regbuf[IWMMXT_REGS_SIZE];
311 /* Get the thread id for the ptrace call. */
312 tid = regcache->ptid ().lwp ();
314 ret = ptrace (PTRACE_GETWMMXREGS, tid, 0, regbuf);
316 perror_with_name (_("Unable to fetch WMMX registers."));
318 for (regno = 0; regno < 16; regno++)
319 if (REG_VALID == regcache->get_register_status (regno + ARM_WR0_REGNUM))
320 regcache->raw_collect (regno + ARM_WR0_REGNUM, ®buf[regno * 8]);
322 for (regno = 0; regno < 2; regno++)
323 if (REG_VALID == regcache->get_register_status (regno + ARM_WCSSF_REGNUM))
324 regcache->raw_collect (regno + ARM_WCSSF_REGNUM,
325 ®buf[16 * 8 + regno * 4]);
327 for (regno = 0; regno < 4; regno++)
328 if (REG_VALID == regcache->get_register_status (regno + ARM_WCGR0_REGNUM))
329 regcache->raw_collect (regno + ARM_WCGR0_REGNUM,
330 ®buf[16 * 8 + 2 * 4 + regno * 4]);
332 ret = ptrace (PTRACE_SETWMMXREGS, tid, 0, regbuf);
335 perror_with_name (_("Unable to store WMMX registers."));
339 fetch_vfp_regs (struct regcache *regcache)
341 gdb_byte regbuf[VFP_REGS_SIZE];
343 struct gdbarch *gdbarch = regcache->arch ();
344 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
346 /* Get the thread id for the ptrace call. */
347 tid = regcache->ptid ().lwp ();
349 if (have_ptrace_getregset == TRIBOOL_TRUE)
353 iov.iov_base = regbuf;
354 iov.iov_len = VFP_REGS_SIZE;
355 ret = ptrace (PTRACE_GETREGSET, tid, NT_ARM_VFP, &iov);
358 ret = ptrace (PTRACE_GETVFPREGS, tid, 0, regbuf);
361 perror_with_name (_("Unable to fetch VFP registers."));
363 aarch32_vfp_regcache_supply (regcache, regbuf,
364 tdep->vfp_register_count);
368 store_vfp_regs (const struct regcache *regcache)
370 gdb_byte regbuf[VFP_REGS_SIZE];
372 struct gdbarch *gdbarch = regcache->arch ();
373 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
375 /* Get the thread id for the ptrace call. */
376 tid = regcache->ptid ().lwp ();
378 if (have_ptrace_getregset == TRIBOOL_TRUE)
382 iov.iov_base = regbuf;
383 iov.iov_len = VFP_REGS_SIZE;
384 ret = ptrace (PTRACE_GETREGSET, tid, NT_ARM_VFP, &iov);
387 ret = ptrace (PTRACE_GETVFPREGS, tid, 0, regbuf);
390 perror_with_name (_("Unable to fetch VFP registers (for update)."));
392 aarch32_vfp_regcache_collect (regcache, regbuf,
393 tdep->vfp_register_count);
395 if (have_ptrace_getregset == TRIBOOL_TRUE)
399 iov.iov_base = regbuf;
400 iov.iov_len = VFP_REGS_SIZE;
401 ret = ptrace (PTRACE_SETREGSET, tid, NT_ARM_VFP, &iov);
404 ret = ptrace (PTRACE_SETVFPREGS, tid, 0, regbuf);
407 perror_with_name (_("Unable to store VFP registers."));
410 /* Fetch registers from the child process. Fetch all registers if
411 regno == -1, otherwise fetch all general registers or all floating
412 point registers depending upon the value of regno. */
415 arm_linux_nat_target::fetch_registers (struct regcache *regcache, int regno)
417 struct gdbarch *gdbarch = regcache->arch ();
418 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
422 fetch_regs (regcache);
423 if (tdep->have_wmmx_registers)
424 fetch_wmmx_regs (regcache);
425 if (tdep->vfp_register_count > 0)
426 fetch_vfp_regs (regcache);
427 if (tdep->have_fpa_registers)
428 fetch_fpregs (regcache);
432 if (regno < ARM_F0_REGNUM || regno == ARM_PS_REGNUM)
433 fetch_regs (regcache);
434 else if (regno >= ARM_F0_REGNUM && regno <= ARM_FPS_REGNUM)
435 fetch_fpregs (regcache);
436 else if (tdep->have_wmmx_registers
437 && regno >= ARM_WR0_REGNUM && regno <= ARM_WCGR7_REGNUM)
438 fetch_wmmx_regs (regcache);
439 else if (tdep->vfp_register_count > 0
440 && regno >= ARM_D0_REGNUM
441 && (regno < ARM_D0_REGNUM + tdep->vfp_register_count
442 || regno == ARM_FPSCR_REGNUM))
443 fetch_vfp_regs (regcache);
447 /* Store registers back into the inferior. Store all registers if
448 regno == -1, otherwise store all general registers or all floating
449 point registers depending upon the value of regno. */
452 arm_linux_nat_target::store_registers (struct regcache *regcache, int regno)
454 struct gdbarch *gdbarch = regcache->arch ();
455 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
459 store_regs (regcache);
460 if (tdep->have_wmmx_registers)
461 store_wmmx_regs (regcache);
462 if (tdep->vfp_register_count > 0)
463 store_vfp_regs (regcache);
464 if (tdep->have_fpa_registers)
465 store_fpregs (regcache);
469 if (regno < ARM_F0_REGNUM || regno == ARM_PS_REGNUM)
470 store_regs (regcache);
471 else if ((regno >= ARM_F0_REGNUM) && (regno <= ARM_FPS_REGNUM))
472 store_fpregs (regcache);
473 else if (tdep->have_wmmx_registers
474 && regno >= ARM_WR0_REGNUM && regno <= ARM_WCGR7_REGNUM)
475 store_wmmx_regs (regcache);
476 else if (tdep->vfp_register_count > 0
477 && regno >= ARM_D0_REGNUM
478 && (regno < ARM_D0_REGNUM + tdep->vfp_register_count
479 || regno == ARM_FPSCR_REGNUM))
480 store_vfp_regs (regcache);
484 /* Wrapper functions for the standard regset handling, used by
488 fill_gregset (const struct regcache *regcache,
489 gdb_gregset_t *gregsetp, int regno)
491 arm_linux_collect_gregset (NULL, regcache, regno, gregsetp, 0);
495 supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp)
497 arm_linux_supply_gregset (NULL, regcache, -1, gregsetp, 0);
501 fill_fpregset (const struct regcache *regcache,
502 gdb_fpregset_t *fpregsetp, int regno)
504 arm_linux_collect_nwfpe (NULL, regcache, regno, fpregsetp, 0);
507 /* Fill GDB's register array with the floating-point register values
511 supply_fpregset (struct regcache *regcache, const gdb_fpregset_t *fpregsetp)
513 arm_linux_supply_nwfpe (NULL, regcache, -1, fpregsetp, 0);
516 /* Fetch the thread-local storage pointer for libthread_db. */
519 ps_get_thread_area (struct ps_prochandle *ph,
520 lwpid_t lwpid, int idx, void **base)
522 if (ptrace (PTRACE_GET_THREAD_AREA, lwpid, NULL, base) != 0)
525 /* IDX is the bias from the thread pointer to the beginning of the
526 thread descriptor. It has to be subtracted due to implementation
527 quirks in libthread_db. */
528 *base = (void *) ((char *)*base - idx);
533 const struct target_desc *
534 arm_linux_nat_target::read_description ()
536 CORE_ADDR arm_hwcap = linux_get_hwcap (this);
538 if (have_ptrace_getregset == TRIBOOL_UNKNOWN)
540 elf_gregset_t gpregs;
542 int tid = inferior_ptid.lwp ();
544 iov.iov_base = &gpregs;
545 iov.iov_len = sizeof (gpregs);
547 /* Check if PTRACE_GETREGSET works. */
548 if (ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iov) < 0)
549 have_ptrace_getregset = TRIBOOL_FALSE;
551 have_ptrace_getregset = TRIBOOL_TRUE;
554 if (arm_hwcap & HWCAP_IWMMXT)
555 return tdesc_arm_with_iwmmxt;
557 if (arm_hwcap & HWCAP_VFP)
561 const struct target_desc * result = NULL;
563 /* NEON implies VFPv3-D32 or no-VFP unit. Say that we only support
564 Neon with VFPv3-D32. */
565 if (arm_hwcap & HWCAP_NEON)
566 result = tdesc_arm_with_neon;
567 else if ((arm_hwcap & (HWCAP_VFPv3 | HWCAP_VFPv3D16)) == HWCAP_VFPv3)
568 result = tdesc_arm_with_vfpv3;
570 result = tdesc_arm_with_vfpv2;
572 /* Now make sure that the kernel supports reading these
573 registers. Support was added in 2.6.30. */
574 pid = inferior_ptid.lwp ();
576 buf = (char *) alloca (VFP_REGS_SIZE);
577 if (ptrace (PTRACE_GETVFPREGS, pid, 0, buf) < 0
584 return this->beneath ()->read_description ();
587 /* Information describing the hardware breakpoint capabilities. */
588 struct arm_linux_hwbp_cap
591 gdb_byte max_wp_length;
596 /* Since we cannot dynamically allocate subfields of arm_linux_process_info,
597 assume a maximum number of supported break-/watchpoints. */
601 /* Get hold of the Hardware Breakpoint information for the target we are
602 attached to. Returns NULL if the kernel doesn't support Hardware
603 breakpoints at all, or a pointer to the information structure. */
604 static const struct arm_linux_hwbp_cap *
605 arm_linux_get_hwbp_cap (void)
607 /* The info structure we return. */
608 static struct arm_linux_hwbp_cap info;
610 /* Is INFO in a good state? -1 means that no attempt has been made to
611 initialize INFO; 0 means an attempt has been made, but it failed; 1
612 means INFO is in an initialized state. */
613 static int available = -1;
620 tid = inferior_ptid.lwp ();
621 if (ptrace (PTRACE_GETHBPREGS, tid, 0, &val) < 0)
625 info.arch = (gdb_byte)((val >> 24) & 0xff);
626 info.max_wp_length = (gdb_byte)((val >> 16) & 0xff);
627 info.wp_count = (gdb_byte)((val >> 8) & 0xff);
628 info.bp_count = (gdb_byte)(val & 0xff);
630 if (info.wp_count > MAX_WPTS)
632 warning (_("arm-linux-gdb supports %d hardware watchpoints but target \
633 supports %d"), MAX_WPTS, info.wp_count);
634 info.wp_count = MAX_WPTS;
637 if (info.bp_count > MAX_BPTS)
639 warning (_("arm-linux-gdb supports %d hardware breakpoints but target \
640 supports %d"), MAX_BPTS, info.bp_count);
641 info.bp_count = MAX_BPTS;
643 available = (info.arch != 0);
647 return available == 1 ? &info : NULL;
650 /* How many hardware breakpoints are available? */
652 arm_linux_get_hw_breakpoint_count (void)
654 const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap ();
655 return cap != NULL ? cap->bp_count : 0;
658 /* How many hardware watchpoints are available? */
660 arm_linux_get_hw_watchpoint_count (void)
662 const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap ();
663 return cap != NULL ? cap->wp_count : 0;
666 /* Have we got a free break-/watch-point available for use? Returns -1 if
667 there is not an appropriate resource available, otherwise returns 1. */
669 arm_linux_nat_target::can_use_hw_breakpoint (enum bptype type,
672 if (type == bp_hardware_watchpoint || type == bp_read_watchpoint
673 || type == bp_access_watchpoint || type == bp_watchpoint)
675 int count = arm_linux_get_hw_watchpoint_count ();
679 else if (cnt + ot > count)
682 else if (type == bp_hardware_breakpoint)
684 int count = arm_linux_get_hw_breakpoint_count ();
688 else if (cnt > count)
697 /* Enum describing the different types of ARM hardware break-/watch-points. */
706 /* Type describing an ARM Hardware Breakpoint Control register value. */
707 typedef unsigned int arm_hwbp_control_t;
709 /* Structure used to keep track of hardware break-/watch-points. */
710 struct arm_linux_hw_breakpoint
712 /* Address to break on, or being watched. */
713 unsigned int address;
714 /* Control register for break-/watch- point. */
715 arm_hwbp_control_t control;
718 /* Structure containing arrays of per process hardware break-/watchpoints
719 for caching address and control information.
721 The Linux ptrace interface to hardware break-/watch-points presents the
722 values in a vector centred around 0 (which is used fo generic information).
723 Positive indicies refer to breakpoint addresses/control registers, negative
724 indices to watchpoint addresses/control registers.
726 The Linux vector is indexed as follows:
727 -((i << 1) + 2): Control register for watchpoint i.
728 -((i << 1) + 1): Address register for watchpoint i.
729 0: Information register.
730 ((i << 1) + 1): Address register for breakpoint i.
731 ((i << 1) + 2): Control register for breakpoint i.
733 This structure is used as a per-thread cache of the state stored by the
734 kernel, so that we don't need to keep calling into the kernel to find a
737 We treat break-/watch-points with their enable bit clear as being deleted.
739 struct arm_linux_debug_reg_state
741 /* Hardware breakpoints for this process. */
742 struct arm_linux_hw_breakpoint bpts[MAX_BPTS];
743 /* Hardware watchpoints for this process. */
744 struct arm_linux_hw_breakpoint wpts[MAX_WPTS];
747 /* Per-process arch-specific data we want to keep. */
748 struct arm_linux_process_info
751 struct arm_linux_process_info *next;
752 /* The process identifier. */
754 /* Hardware break-/watchpoints state information. */
755 struct arm_linux_debug_reg_state state;
759 /* Per-thread arch-specific data we want to keep. */
762 /* Non-zero if our copy differs from what's recorded in the thread. */
763 char bpts_changed[MAX_BPTS];
764 char wpts_changed[MAX_WPTS];
767 static struct arm_linux_process_info *arm_linux_process_list = NULL;
769 /* Find process data for process PID. */
771 static struct arm_linux_process_info *
772 arm_linux_find_process_pid (pid_t pid)
774 struct arm_linux_process_info *proc;
776 for (proc = arm_linux_process_list; proc; proc = proc->next)
777 if (proc->pid == pid)
783 /* Add process data for process PID. Returns newly allocated info
786 static struct arm_linux_process_info *
787 arm_linux_add_process (pid_t pid)
789 struct arm_linux_process_info *proc;
791 proc = XCNEW (struct arm_linux_process_info);
794 proc->next = arm_linux_process_list;
795 arm_linux_process_list = proc;
800 /* Get data specific info for process PID, creating it if necessary.
801 Never returns NULL. */
803 static struct arm_linux_process_info *
804 arm_linux_process_info_get (pid_t pid)
806 struct arm_linux_process_info *proc;
808 proc = arm_linux_find_process_pid (pid);
810 proc = arm_linux_add_process (pid);
815 /* Called whenever GDB is no longer debugging process PID. It deletes
816 data structures that keep track of debug register state. */
819 arm_linux_nat_target::low_forget_process (pid_t pid)
821 struct arm_linux_process_info *proc, **proc_link;
823 proc = arm_linux_process_list;
824 proc_link = &arm_linux_process_list;
828 if (proc->pid == pid)
830 *proc_link = proc->next;
836 proc_link = &proc->next;
841 /* Get hardware break-/watchpoint state for process PID. */
843 static struct arm_linux_debug_reg_state *
844 arm_linux_get_debug_reg_state (pid_t pid)
846 return &arm_linux_process_info_get (pid)->state;
849 /* Initialize an ARM hardware break-/watch-point control register value.
850 BYTE_ADDRESS_SELECT is the mask of bytes to trigger on; HWBP_TYPE is the
851 type of break-/watch-point; ENABLE indicates whether the point is enabled.
853 static arm_hwbp_control_t
854 arm_hwbp_control_initialize (unsigned byte_address_select,
855 arm_hwbp_type hwbp_type,
858 gdb_assert ((byte_address_select & ~0xffU) == 0);
859 gdb_assert (hwbp_type != arm_hwbp_break
860 || ((byte_address_select & 0xfU) != 0));
862 return (byte_address_select << 5) | (hwbp_type << 3) | (3 << 1) | enable;
865 /* Does the breakpoint control value CONTROL have the enable bit set? */
867 arm_hwbp_control_is_enabled (arm_hwbp_control_t control)
869 return control & 0x1;
872 /* Change a breakpoint control word so that it is in the disabled state. */
873 static arm_hwbp_control_t
874 arm_hwbp_control_disable (arm_hwbp_control_t control)
876 return control & ~0x1;
879 /* Initialise the hardware breakpoint structure P. The breakpoint will be
880 enabled, and will point to the placed address of BP_TGT. */
882 arm_linux_hw_breakpoint_initialize (struct gdbarch *gdbarch,
883 struct bp_target_info *bp_tgt,
884 struct arm_linux_hw_breakpoint *p)
887 CORE_ADDR address = bp_tgt->placed_address = bp_tgt->reqstd_address;
889 /* We have to create a mask for the control register which says which bits
890 of the word pointed to by address to break on. */
891 if (arm_pc_is_thumb (gdbarch, address))
902 p->address = (unsigned int) address;
903 p->control = arm_hwbp_control_initialize (mask, arm_hwbp_break, 1);
906 /* Get the ARM hardware breakpoint type from the TYPE value we're
907 given when asked to set a watchpoint. */
909 arm_linux_get_hwbp_type (enum target_hw_bp_type type)
912 return arm_hwbp_load;
913 else if (type == hw_write)
914 return arm_hwbp_store;
916 return arm_hwbp_access;
919 /* Initialize the hardware breakpoint structure P for a watchpoint at ADDR
920 to LEN. The type of watchpoint is given in RW. */
922 arm_linux_hw_watchpoint_initialize (CORE_ADDR addr, int len,
923 enum target_hw_bp_type type,
924 struct arm_linux_hw_breakpoint *p)
926 const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap ();
929 gdb_assert (cap != NULL);
930 gdb_assert (cap->max_wp_length != 0);
932 mask = (1 << len) - 1;
934 p->address = (unsigned int) addr;
935 p->control = arm_hwbp_control_initialize (mask,
936 arm_linux_get_hwbp_type (type), 1);
939 /* Are two break-/watch-points equal? */
941 arm_linux_hw_breakpoint_equal (const struct arm_linux_hw_breakpoint *p1,
942 const struct arm_linux_hw_breakpoint *p2)
944 return p1->address == p2->address && p1->control == p2->control;
947 /* Callback to mark a watch-/breakpoint to be updated in all threads of
948 the current process. */
951 update_registers_callback (struct lwp_info *lwp, int watch, int index)
953 if (lwp->arch_private == NULL)
954 lwp->arch_private = XCNEW (struct arch_lwp_info);
956 /* The actual update is done later just before resuming the lwp,
957 we just mark that the registers need updating. */
959 lwp->arch_private->wpts_changed[index] = 1;
961 lwp->arch_private->bpts_changed[index] = 1;
963 /* If the lwp isn't stopped, force it to momentarily pause, so
964 we can update its breakpoint registers. */
966 linux_stop_lwp (lwp);
971 /* Insert the hardware breakpoint (WATCHPOINT = 0) or watchpoint (WATCHPOINT
972 =1) BPT for thread TID. */
974 arm_linux_insert_hw_breakpoint1 (const struct arm_linux_hw_breakpoint* bpt,
980 struct arm_linux_hw_breakpoint* bpts;
982 pid = inferior_ptid.pid ();
983 pid_ptid = ptid_t (pid);
987 count = arm_linux_get_hw_watchpoint_count ();
988 bpts = arm_linux_get_debug_reg_state (pid)->wpts;
992 count = arm_linux_get_hw_breakpoint_count ();
993 bpts = arm_linux_get_debug_reg_state (pid)->bpts;
996 for (i = 0; i < count; ++i)
997 if (!arm_hwbp_control_is_enabled (bpts[i].control))
1000 iterate_over_lwps (pid_ptid,
1001 [=] (struct lwp_info *info)
1003 return update_registers_callback (info, watchpoint,
1009 gdb_assert (i != count);
1012 /* Remove the hardware breakpoint (WATCHPOINT = 0) or watchpoint
1013 (WATCHPOINT = 1) BPT for thread TID. */
1015 arm_linux_remove_hw_breakpoint1 (const struct arm_linux_hw_breakpoint *bpt,
1021 struct arm_linux_hw_breakpoint* bpts;
1023 pid = inferior_ptid.pid ();
1024 pid_ptid = ptid_t (pid);
1028 count = arm_linux_get_hw_watchpoint_count ();
1029 bpts = arm_linux_get_debug_reg_state (pid)->wpts;
1033 count = arm_linux_get_hw_breakpoint_count ();
1034 bpts = arm_linux_get_debug_reg_state (pid)->bpts;
1037 for (i = 0; i < count; ++i)
1038 if (arm_linux_hw_breakpoint_equal (bpt, bpts + i))
1040 bpts[i].control = arm_hwbp_control_disable (bpts[i].control);
1041 iterate_over_lwps (pid_ptid,
1042 [=] (struct lwp_info *info)
1044 return update_registers_callback (info, watchpoint,
1050 gdb_assert (i != count);
1053 /* Insert a Hardware breakpoint. */
1055 arm_linux_nat_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
1056 struct bp_target_info *bp_tgt)
1058 struct arm_linux_hw_breakpoint p;
1060 if (arm_linux_get_hw_breakpoint_count () == 0)
1063 arm_linux_hw_breakpoint_initialize (gdbarch, bp_tgt, &p);
1065 arm_linux_insert_hw_breakpoint1 (&p, 0);
1070 /* Remove a hardware breakpoint. */
1072 arm_linux_nat_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
1073 struct bp_target_info *bp_tgt)
1075 struct arm_linux_hw_breakpoint p;
1077 if (arm_linux_get_hw_breakpoint_count () == 0)
1080 arm_linux_hw_breakpoint_initialize (gdbarch, bp_tgt, &p);
1082 arm_linux_remove_hw_breakpoint1 (&p, 0);
1087 /* Are we able to use a hardware watchpoint for the LEN bytes starting at
1090 arm_linux_nat_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
1092 const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap ();
1093 CORE_ADDR max_wp_length, aligned_addr;
1095 /* Can not set watchpoints for zero or negative lengths. */
1099 /* Need to be able to use the ptrace interface. */
1100 if (cap == NULL || cap->wp_count == 0)
1103 /* Test that the range [ADDR, ADDR + LEN) fits into the largest address
1104 range covered by a watchpoint. */
1105 max_wp_length = (CORE_ADDR)cap->max_wp_length;
1106 aligned_addr = addr & ~(max_wp_length - 1);
1108 if (aligned_addr + max_wp_length < addr + len)
1111 /* The current ptrace interface can only handle watchpoints that are a
1113 if ((len & (len - 1)) != 0)
1116 /* All tests passed so we must be able to set a watchpoint. */
1120 /* Insert a Hardware breakpoint. */
1122 arm_linux_nat_target::insert_watchpoint (CORE_ADDR addr, int len,
1123 enum target_hw_bp_type rw,
1124 struct expression *cond)
1126 struct arm_linux_hw_breakpoint p;
1128 if (arm_linux_get_hw_watchpoint_count () == 0)
1131 arm_linux_hw_watchpoint_initialize (addr, len, rw, &p);
1133 arm_linux_insert_hw_breakpoint1 (&p, 1);
1138 /* Remove a hardware breakpoint. */
1140 arm_linux_nat_target::remove_watchpoint (CORE_ADDR addr,
1141 int len, enum target_hw_bp_type rw,
1142 struct expression *cond)
1144 struct arm_linux_hw_breakpoint p;
1146 if (arm_linux_get_hw_watchpoint_count () == 0)
1149 arm_linux_hw_watchpoint_initialize (addr, len, rw, &p);
1151 arm_linux_remove_hw_breakpoint1 (&p, 1);
1156 /* What was the data address the target was stopped on accessing. */
1158 arm_linux_nat_target::stopped_data_address (CORE_ADDR *addr_p)
1163 if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
1166 /* This must be a hardware breakpoint. */
1167 if (siginfo.si_signo != SIGTRAP
1168 || (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
1171 /* We must be able to set hardware watchpoints. */
1172 if (arm_linux_get_hw_watchpoint_count () == 0)
1175 slot = siginfo.si_errno;
1177 /* If we are in a positive slot then we're looking at a breakpoint and not
1182 *addr_p = (CORE_ADDR) (uintptr_t) siginfo.si_addr;
1186 /* Has the target been stopped by hitting a watchpoint? */
1188 arm_linux_nat_target::stopped_by_watchpoint ()
1191 return stopped_data_address (&addr);
1195 arm_linux_nat_target::watchpoint_addr_within_range (CORE_ADDR addr,
1199 return start <= addr && start + length - 1 >= addr;
1202 /* Handle thread creation. We need to copy the breakpoints and watchpoints
1203 in the parent thread to the child thread. */
1205 arm_linux_nat_target::low_new_thread (struct lwp_info *lp)
1208 struct arch_lwp_info *info = XCNEW (struct arch_lwp_info);
1210 /* Mark that all the hardware breakpoint/watchpoint register pairs
1211 for this thread need to be initialized. */
1213 for (i = 0; i < MAX_BPTS; i++)
1215 info->bpts_changed[i] = 1;
1216 info->wpts_changed[i] = 1;
1219 lp->arch_private = info;
1222 /* Function to call when a thread is being deleted. */
1225 arm_linux_nat_target::low_delete_thread (struct arch_lwp_info *arch_lwp)
1230 /* Called when resuming a thread.
1231 The hardware debug registers are updated when there is any change. */
1234 arm_linux_nat_target::low_prepare_to_resume (struct lwp_info *lwp)
1237 struct arm_linux_hw_breakpoint *bpts, *wpts;
1238 struct arch_lwp_info *arm_lwp_info = lwp->arch_private;
1240 pid = lwp->ptid.lwp ();
1241 bpts = arm_linux_get_debug_reg_state (lwp->ptid.pid ())->bpts;
1242 wpts = arm_linux_get_debug_reg_state (lwp->ptid.pid ())->wpts;
1244 /* NULL means this is the main thread still going through the shell,
1245 or, no watchpoint has been set yet. In that case, there's
1247 if (arm_lwp_info == NULL)
1250 for (i = 0; i < arm_linux_get_hw_breakpoint_count (); i++)
1251 if (arm_lwp_info->bpts_changed[i])
1254 if (arm_hwbp_control_is_enabled (bpts[i].control))
1255 if (ptrace (PTRACE_SETHBPREGS, pid,
1256 (PTRACE_TYPE_ARG3) ((i << 1) + 1), &bpts[i].address) < 0)
1257 perror_with_name (_("Unexpected error setting breakpoint"));
1259 if (bpts[i].control != 0)
1260 if (ptrace (PTRACE_SETHBPREGS, pid,
1261 (PTRACE_TYPE_ARG3) ((i << 1) + 2), &bpts[i].control) < 0)
1262 perror_with_name (_("Unexpected error setting breakpoint"));
1264 arm_lwp_info->bpts_changed[i] = 0;
1267 for (i = 0; i < arm_linux_get_hw_watchpoint_count (); i++)
1268 if (arm_lwp_info->wpts_changed[i])
1271 if (arm_hwbp_control_is_enabled (wpts[i].control))
1272 if (ptrace (PTRACE_SETHBPREGS, pid,
1273 (PTRACE_TYPE_ARG3) -((i << 1) + 1), &wpts[i].address) < 0)
1274 perror_with_name (_("Unexpected error setting watchpoint"));
1276 if (wpts[i].control != 0)
1277 if (ptrace (PTRACE_SETHBPREGS, pid,
1278 (PTRACE_TYPE_ARG3) -((i << 1) + 2), &wpts[i].control) < 0)
1279 perror_with_name (_("Unexpected error setting watchpoint"));
1281 arm_lwp_info->wpts_changed[i] = 0;
1285 /* linux_nat_new_fork hook. */
1288 arm_linux_nat_target::low_new_fork (struct lwp_info *parent, pid_t child_pid)
1291 struct arm_linux_debug_reg_state *parent_state;
1292 struct arm_linux_debug_reg_state *child_state;
1294 /* NULL means no watchpoint has ever been set in the parent. In
1295 that case, there's nothing to do. */
1296 if (parent->arch_private == NULL)
1299 /* GDB core assumes the child inherits the watchpoints/hw
1300 breakpoints of the parent, and will remove them all from the
1301 forked off process. Copy the debug registers mirrors into the
1302 new process so that all breakpoints and watchpoints can be
1303 removed together. */
1305 parent_pid = parent->ptid.pid ();
1306 parent_state = arm_linux_get_debug_reg_state (parent_pid);
1307 child_state = arm_linux_get_debug_reg_state (child_pid);
1308 *child_state = *parent_state;
1312 _initialize_arm_linux_nat (void)
1314 /* Register the target. */
1315 linux_target = &the_arm_linux_nat_target;
1316 add_inf_child_target (&the_arm_linux_nat_target);