Fix colors in TUI mode in MS-Windows build with ncurses
[external/binutils.git] / gdb / arm-linux-nat.c
1 /* GNU/Linux on ARM native support.
2    Copyright (C) 1999-2019 Free Software Foundation, Inc.
3
4    This file is part of GDB.
5
6    This program is free software; you can redistribute it and/or modify
7    it under the terms of the GNU General Public License as published by
8    the Free Software Foundation; either version 3 of the License, or
9    (at your option) any later version.
10
11    This program is distributed in the hope that it will be useful,
12    but WITHOUT ANY WARRANTY; without even the implied warranty of
13    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14    GNU General Public License for more details.
15
16    You should have received a copy of the GNU General Public License
17    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
18
19 #include "defs.h"
20 #include "inferior.h"
21 #include "gdbcore.h"
22 #include "regcache.h"
23 #include "target.h"
24 #include "linux-nat.h"
25 #include "target-descriptions.h"
26 #include "auxv.h"
27 #include "observable.h"
28 #include "gdbthread.h"
29
30 #include "arm-tdep.h"
31 #include "arm-linux-tdep.h"
32 #include "aarch32-linux-nat.h"
33
34 #include <elf/common.h>
35 #include <sys/user.h>
36 #include "nat/gdb_ptrace.h"
37 #include <sys/utsname.h>
38 #include <sys/procfs.h>
39
40 #include "nat/linux-ptrace.h"
41
42 /* Prototypes for supply_gregset etc.  */
43 #include "gregset.h"
44
45 /* Defines ps_err_e, struct ps_prochandle.  */
46 #include "gdb_proc_service.h"
47
48 #ifndef PTRACE_GET_THREAD_AREA
49 #define PTRACE_GET_THREAD_AREA 22
50 #endif
51
52 #ifndef PTRACE_GETWMMXREGS
53 #define PTRACE_GETWMMXREGS 18
54 #define PTRACE_SETWMMXREGS 19
55 #endif
56
57 #ifndef PTRACE_GETVFPREGS
58 #define PTRACE_GETVFPREGS 27
59 #define PTRACE_SETVFPREGS 28
60 #endif
61
62 #ifndef PTRACE_GETHBPREGS
63 #define PTRACE_GETHBPREGS 29
64 #define PTRACE_SETHBPREGS 30
65 #endif
66
67 extern int arm_apcs_32;
68
69 class arm_linux_nat_target final : public linux_nat_target
70 {
71 public:
72   /* Add our register access methods.  */
73   void fetch_registers (struct regcache *, int) override;
74   void store_registers (struct regcache *, int) override;
75
76   /* Add our hardware breakpoint and watchpoint implementation.  */
77   int can_use_hw_breakpoint (enum bptype, int, int) override;
78
79   int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
80
81   int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
82
83   int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
84
85   int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
86                          struct expression *) override;
87
88   int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
89                          struct expression *) override;
90   bool stopped_by_watchpoint () override;
91
92   bool stopped_data_address (CORE_ADDR *) override;
93
94   bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
95
96   const struct target_desc *read_description () override;
97
98   /* Override linux_nat_target low methods.  */
99
100   /* Handle thread creation and exit.  */
101   void low_new_thread (struct lwp_info *lp) override;
102   void low_delete_thread (struct arch_lwp_info *lp) override;
103   void low_prepare_to_resume (struct lwp_info *lp) override;
104
105   /* Handle process creation and exit.  */
106   void low_new_fork (struct lwp_info *parent, pid_t child_pid) override;
107   void low_forget_process (pid_t pid) override;
108 };
109
110 static arm_linux_nat_target the_arm_linux_nat_target;
111
112 /* Get the whole floating point state of the process and store it
113    into regcache.  */
114
115 static void
116 fetch_fpregs (struct regcache *regcache)
117 {
118   int ret, regno, tid;
119   gdb_byte fp[ARM_LINUX_SIZEOF_NWFPE];
120
121   /* Get the thread id for the ptrace call.  */
122   tid = regcache->ptid ().lwp ();
123
124   /* Read the floating point state.  */
125   if (have_ptrace_getregset == TRIBOOL_TRUE)
126     {
127       struct iovec iov;
128
129       iov.iov_base = &fp;
130       iov.iov_len = ARM_LINUX_SIZEOF_NWFPE;
131
132       ret = ptrace (PTRACE_GETREGSET, tid, NT_FPREGSET, &iov);
133     }
134   else
135     ret = ptrace (PT_GETFPREGS, tid, 0, fp);
136
137   if (ret < 0)
138     perror_with_name (_("Unable to fetch the floating point registers."));
139
140   /* Fetch fpsr.  */
141   regcache->raw_supply (ARM_FPS_REGNUM, fp + NWFPE_FPSR_OFFSET);
142
143   /* Fetch the floating point registers.  */
144   for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
145     supply_nwfpe_register (regcache, regno, fp);
146 }
147
148 /* Save the whole floating point state of the process using
149    the contents from regcache.  */
150
151 static void
152 store_fpregs (const struct regcache *regcache)
153 {
154   int ret, regno, tid;
155   gdb_byte fp[ARM_LINUX_SIZEOF_NWFPE];
156
157   /* Get the thread id for the ptrace call.  */
158   tid = regcache->ptid ().lwp ();
159
160   /* Read the floating point state.  */
161   if (have_ptrace_getregset == TRIBOOL_TRUE)
162     {
163       elf_fpregset_t fpregs;
164       struct iovec iov;
165
166       iov.iov_base = &fpregs;
167       iov.iov_len = sizeof (fpregs);
168
169       ret = ptrace (PTRACE_GETREGSET, tid, NT_FPREGSET, &iov);
170     }
171   else
172     ret = ptrace (PT_GETFPREGS, tid, 0, fp);
173
174   if (ret < 0)
175     perror_with_name (_("Unable to fetch the floating point registers."));
176
177   /* Store fpsr.  */
178   if (REG_VALID == regcache->get_register_status (ARM_FPS_REGNUM))
179     regcache->raw_collect (ARM_FPS_REGNUM, fp + NWFPE_FPSR_OFFSET);
180
181   /* Store the floating point registers.  */
182   for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
183     if (REG_VALID == regcache->get_register_status (regno))
184       collect_nwfpe_register (regcache, regno, fp);
185
186   if (have_ptrace_getregset == TRIBOOL_TRUE)
187     {
188       struct iovec iov;
189
190       iov.iov_base = &fp;
191       iov.iov_len = ARM_LINUX_SIZEOF_NWFPE;
192
193       ret = ptrace (PTRACE_SETREGSET, tid, NT_FPREGSET, &iov);
194     }
195   else
196     ret = ptrace (PTRACE_SETFPREGS, tid, 0, fp);
197
198   if (ret < 0)
199     perror_with_name (_("Unable to store floating point registers."));
200 }
201
202 /* Fetch all general registers of the process and store into
203    regcache.  */
204
205 static void
206 fetch_regs (struct regcache *regcache)
207 {
208   int ret, tid;
209   elf_gregset_t regs;
210
211   /* Get the thread id for the ptrace call.  */
212   tid = regcache->ptid ().lwp ();
213
214   if (have_ptrace_getregset == TRIBOOL_TRUE)
215     {
216       struct iovec iov;
217
218       iov.iov_base = &regs;
219       iov.iov_len = sizeof (regs);
220
221       ret = ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iov);
222     }
223   else
224     ret = ptrace (PTRACE_GETREGS, tid, 0, &regs);
225
226   if (ret < 0)
227     perror_with_name (_("Unable to fetch general registers."));
228
229   aarch32_gp_regcache_supply (regcache, (uint32_t *) regs, arm_apcs_32);
230 }
231
232 static void
233 store_regs (const struct regcache *regcache)
234 {
235   int ret, tid;
236   elf_gregset_t regs;
237
238   /* Get the thread id for the ptrace call.  */
239   tid = regcache->ptid ().lwp ();
240
241   /* Fetch the general registers.  */
242   if (have_ptrace_getregset == TRIBOOL_TRUE)
243     {
244       struct iovec iov;
245
246       iov.iov_base = &regs;
247       iov.iov_len = sizeof (regs);
248
249       ret = ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iov);
250     }
251   else
252     ret = ptrace (PTRACE_GETREGS, tid, 0, &regs);
253
254   if (ret < 0)
255     perror_with_name (_("Unable to fetch general registers."));
256
257   aarch32_gp_regcache_collect (regcache, (uint32_t *) regs, arm_apcs_32);
258
259   if (have_ptrace_getregset == TRIBOOL_TRUE)
260     {
261       struct iovec iov;
262
263       iov.iov_base = &regs;
264       iov.iov_len = sizeof (regs);
265
266       ret = ptrace (PTRACE_SETREGSET, tid, NT_PRSTATUS, &iov);
267     }
268   else
269     ret = ptrace (PTRACE_SETREGS, tid, 0, &regs);
270
271   if (ret < 0)
272     perror_with_name (_("Unable to store general registers."));
273 }
274
275 /* Fetch all WMMX registers of the process and store into
276    regcache.  */
277
278 #define IWMMXT_REGS_SIZE (16 * 8 + 6 * 4)
279
280 static void
281 fetch_wmmx_regs (struct regcache *regcache)
282 {
283   char regbuf[IWMMXT_REGS_SIZE];
284   int ret, regno, tid;
285
286   /* Get the thread id for the ptrace call.  */
287   tid = regcache->ptid ().lwp ();
288
289   ret = ptrace (PTRACE_GETWMMXREGS, tid, 0, regbuf);
290   if (ret < 0)
291     perror_with_name (_("Unable to fetch WMMX registers."));
292
293   for (regno = 0; regno < 16; regno++)
294     regcache->raw_supply (regno + ARM_WR0_REGNUM, &regbuf[regno * 8]);
295
296   for (regno = 0; regno < 2; regno++)
297     regcache->raw_supply (regno + ARM_WCSSF_REGNUM,
298                           &regbuf[16 * 8 + regno * 4]);
299
300   for (regno = 0; regno < 4; regno++)
301     regcache->raw_supply (regno + ARM_WCGR0_REGNUM,
302                           &regbuf[16 * 8 + 2 * 4 + regno * 4]);
303 }
304
305 static void
306 store_wmmx_regs (const struct regcache *regcache)
307 {
308   char regbuf[IWMMXT_REGS_SIZE];
309   int ret, regno, tid;
310
311   /* Get the thread id for the ptrace call.  */
312   tid = regcache->ptid ().lwp ();
313
314   ret = ptrace (PTRACE_GETWMMXREGS, tid, 0, regbuf);
315   if (ret < 0)
316     perror_with_name (_("Unable to fetch WMMX registers."));
317
318   for (regno = 0; regno < 16; regno++)
319     if (REG_VALID == regcache->get_register_status (regno + ARM_WR0_REGNUM))
320       regcache->raw_collect (regno + ARM_WR0_REGNUM, &regbuf[regno * 8]);
321
322   for (regno = 0; regno < 2; regno++)
323     if (REG_VALID == regcache->get_register_status (regno + ARM_WCSSF_REGNUM))
324       regcache->raw_collect (regno + ARM_WCSSF_REGNUM,
325                              &regbuf[16 * 8 + regno * 4]);
326
327   for (regno = 0; regno < 4; regno++)
328     if (REG_VALID == regcache->get_register_status (regno + ARM_WCGR0_REGNUM))
329       regcache->raw_collect (regno + ARM_WCGR0_REGNUM,
330                              &regbuf[16 * 8 + 2 * 4 + regno * 4]);
331
332   ret = ptrace (PTRACE_SETWMMXREGS, tid, 0, regbuf);
333
334   if (ret < 0)
335     perror_with_name (_("Unable to store WMMX registers."));
336 }
337
338 static void
339 fetch_vfp_regs (struct regcache *regcache)
340 {
341   gdb_byte regbuf[VFP_REGS_SIZE];
342   int ret, tid;
343   struct gdbarch *gdbarch = regcache->arch ();
344   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
345
346   /* Get the thread id for the ptrace call.  */
347   tid = regcache->ptid ().lwp ();
348
349   if (have_ptrace_getregset == TRIBOOL_TRUE)
350     {
351       struct iovec iov;
352
353       iov.iov_base = regbuf;
354       iov.iov_len = VFP_REGS_SIZE;
355       ret = ptrace (PTRACE_GETREGSET, tid, NT_ARM_VFP, &iov);
356     }
357   else
358     ret = ptrace (PTRACE_GETVFPREGS, tid, 0, regbuf);
359
360   if (ret < 0)
361     perror_with_name (_("Unable to fetch VFP registers."));
362
363   aarch32_vfp_regcache_supply (regcache, regbuf,
364                                tdep->vfp_register_count);
365 }
366
367 static void
368 store_vfp_regs (const struct regcache *regcache)
369 {
370   gdb_byte regbuf[VFP_REGS_SIZE];
371   int ret, tid;
372   struct gdbarch *gdbarch = regcache->arch ();
373   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
374
375   /* Get the thread id for the ptrace call.  */
376   tid = regcache->ptid ().lwp ();
377
378   if (have_ptrace_getregset == TRIBOOL_TRUE)
379     {
380       struct iovec iov;
381
382       iov.iov_base = regbuf;
383       iov.iov_len = VFP_REGS_SIZE;
384       ret = ptrace (PTRACE_GETREGSET, tid, NT_ARM_VFP, &iov);
385     }
386   else
387     ret = ptrace (PTRACE_GETVFPREGS, tid, 0, regbuf);
388
389   if (ret < 0)
390     perror_with_name (_("Unable to fetch VFP registers (for update)."));
391
392   aarch32_vfp_regcache_collect (regcache, regbuf,
393                                 tdep->vfp_register_count);
394
395   if (have_ptrace_getregset == TRIBOOL_TRUE)
396     {
397       struct iovec iov;
398
399       iov.iov_base = regbuf;
400       iov.iov_len = VFP_REGS_SIZE;
401       ret = ptrace (PTRACE_SETREGSET, tid, NT_ARM_VFP, &iov);
402     }
403   else
404     ret = ptrace (PTRACE_SETVFPREGS, tid, 0, regbuf);
405
406   if (ret < 0)
407     perror_with_name (_("Unable to store VFP registers."));
408 }
409
410 /* Fetch registers from the child process.  Fetch all registers if
411    regno == -1, otherwise fetch all general registers or all floating
412    point registers depending upon the value of regno.  */
413
414 void
415 arm_linux_nat_target::fetch_registers (struct regcache *regcache, int regno)
416 {
417   struct gdbarch *gdbarch = regcache->arch ();
418   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
419
420   if (-1 == regno)
421     {
422       fetch_regs (regcache);
423       if (tdep->have_wmmx_registers)
424         fetch_wmmx_regs (regcache);
425       if (tdep->vfp_register_count > 0)
426         fetch_vfp_regs (regcache);
427       if (tdep->have_fpa_registers)
428         fetch_fpregs (regcache);
429     }
430   else
431     {
432       if (regno < ARM_F0_REGNUM || regno == ARM_PS_REGNUM)
433         fetch_regs (regcache);
434       else if (regno >= ARM_F0_REGNUM && regno <= ARM_FPS_REGNUM)
435         fetch_fpregs (regcache);
436       else if (tdep->have_wmmx_registers
437                && regno >= ARM_WR0_REGNUM && regno <= ARM_WCGR7_REGNUM)
438         fetch_wmmx_regs (regcache);
439       else if (tdep->vfp_register_count > 0
440                && regno >= ARM_D0_REGNUM
441                && (regno < ARM_D0_REGNUM + tdep->vfp_register_count
442                    || regno == ARM_FPSCR_REGNUM))
443         fetch_vfp_regs (regcache);
444     }
445 }
446
447 /* Store registers back into the inferior.  Store all registers if
448    regno == -1, otherwise store all general registers or all floating
449    point registers depending upon the value of regno.  */
450
451 void
452 arm_linux_nat_target::store_registers (struct regcache *regcache, int regno)
453 {
454   struct gdbarch *gdbarch = regcache->arch ();
455   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
456
457   if (-1 == regno)
458     {
459       store_regs (regcache);
460       if (tdep->have_wmmx_registers)
461         store_wmmx_regs (regcache);
462       if (tdep->vfp_register_count > 0)
463         store_vfp_regs (regcache);
464       if (tdep->have_fpa_registers)
465         store_fpregs (regcache);
466     }
467   else
468     {
469       if (regno < ARM_F0_REGNUM || regno == ARM_PS_REGNUM)
470         store_regs (regcache);
471       else if ((regno >= ARM_F0_REGNUM) && (regno <= ARM_FPS_REGNUM))
472         store_fpregs (regcache);
473       else if (tdep->have_wmmx_registers
474                && regno >= ARM_WR0_REGNUM && regno <= ARM_WCGR7_REGNUM)
475         store_wmmx_regs (regcache);
476       else if (tdep->vfp_register_count > 0
477                && regno >= ARM_D0_REGNUM
478                && (regno < ARM_D0_REGNUM + tdep->vfp_register_count
479                    || regno == ARM_FPSCR_REGNUM))
480         store_vfp_regs (regcache);
481     }
482 }
483
484 /* Wrapper functions for the standard regset handling, used by
485    thread debugging.  */
486
487 void
488 fill_gregset (const struct regcache *regcache,  
489               gdb_gregset_t *gregsetp, int regno)
490 {
491   arm_linux_collect_gregset (NULL, regcache, regno, gregsetp, 0);
492 }
493
494 void
495 supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp)
496 {
497   arm_linux_supply_gregset (NULL, regcache, -1, gregsetp, 0);
498 }
499
500 void
501 fill_fpregset (const struct regcache *regcache,
502                gdb_fpregset_t *fpregsetp, int regno)
503 {
504   arm_linux_collect_nwfpe (NULL, regcache, regno, fpregsetp, 0);
505 }
506
507 /* Fill GDB's register array with the floating-point register values
508    in *fpregsetp.  */
509
510 void
511 supply_fpregset (struct regcache *regcache, const gdb_fpregset_t *fpregsetp)
512 {
513   arm_linux_supply_nwfpe (NULL, regcache, -1, fpregsetp, 0);
514 }
515
516 /* Fetch the thread-local storage pointer for libthread_db.  */
517
518 ps_err_e
519 ps_get_thread_area (struct ps_prochandle *ph,
520                     lwpid_t lwpid, int idx, void **base)
521 {
522   if (ptrace (PTRACE_GET_THREAD_AREA, lwpid, NULL, base) != 0)
523     return PS_ERR;
524
525   /* IDX is the bias from the thread pointer to the beginning of the
526      thread descriptor.  It has to be subtracted due to implementation
527      quirks in libthread_db.  */
528   *base = (void *) ((char *)*base - idx);
529
530   return PS_OK;
531 }
532
533 const struct target_desc *
534 arm_linux_nat_target::read_description ()
535 {
536   CORE_ADDR arm_hwcap = 0;
537
538   if (have_ptrace_getregset == TRIBOOL_UNKNOWN)
539     {
540       elf_gregset_t gpregs;
541       struct iovec iov;
542       int tid = inferior_ptid.lwp ();
543
544       iov.iov_base = &gpregs;
545       iov.iov_len = sizeof (gpregs);
546
547       /* Check if PTRACE_GETREGSET works.  */
548       if (ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iov) < 0)
549         have_ptrace_getregset = TRIBOOL_FALSE;
550       else
551         have_ptrace_getregset = TRIBOOL_TRUE;
552     }
553
554   if (target_auxv_search (this, AT_HWCAP, &arm_hwcap) != 1)
555     {
556       return this->beneath ()->read_description ();
557     }
558
559   if (arm_hwcap & HWCAP_IWMMXT)
560     return tdesc_arm_with_iwmmxt;
561
562   if (arm_hwcap & HWCAP_VFP)
563     {
564       int pid;
565       char *buf;
566       const struct target_desc * result = NULL;
567
568       /* NEON implies VFPv3-D32 or no-VFP unit.  Say that we only support
569          Neon with VFPv3-D32.  */
570       if (arm_hwcap & HWCAP_NEON)
571         result = tdesc_arm_with_neon;
572       else if ((arm_hwcap & (HWCAP_VFPv3 | HWCAP_VFPv3D16)) == HWCAP_VFPv3)
573         result = tdesc_arm_with_vfpv3;
574       else
575         result = tdesc_arm_with_vfpv2;
576
577       /* Now make sure that the kernel supports reading these
578          registers.  Support was added in 2.6.30.  */
579       pid = inferior_ptid.lwp ();
580       errno = 0;
581       buf = (char *) alloca (VFP_REGS_SIZE);
582       if (ptrace (PTRACE_GETVFPREGS, pid, 0, buf) < 0
583           && errno == EIO)
584         result = NULL;
585
586       return result;
587     }
588
589   return this->beneath ()->read_description ();
590 }
591
592 /* Information describing the hardware breakpoint capabilities.  */
593 struct arm_linux_hwbp_cap
594 {
595   gdb_byte arch;
596   gdb_byte max_wp_length;
597   gdb_byte wp_count;
598   gdb_byte bp_count;
599 };
600
601 /* Since we cannot dynamically allocate subfields of arm_linux_process_info,
602    assume a maximum number of supported break-/watchpoints.  */
603 #define MAX_BPTS 16
604 #define MAX_WPTS 16
605
606 /* Get hold of the Hardware Breakpoint information for the target we are
607    attached to.  Returns NULL if the kernel doesn't support Hardware 
608    breakpoints at all, or a pointer to the information structure.  */
609 static const struct arm_linux_hwbp_cap *
610 arm_linux_get_hwbp_cap (void)
611 {
612   /* The info structure we return.  */
613   static struct arm_linux_hwbp_cap info;
614
615   /* Is INFO in a good state?  -1 means that no attempt has been made to
616      initialize INFO; 0 means an attempt has been made, but it failed; 1
617      means INFO is in an initialized state.  */
618   static int available = -1;
619
620   if (available == -1)
621     {
622       int tid;
623       unsigned int val;
624
625       tid = inferior_ptid.lwp ();
626       if (ptrace (PTRACE_GETHBPREGS, tid, 0, &val) < 0)
627         available = 0;
628       else
629         {
630           info.arch = (gdb_byte)((val >> 24) & 0xff);
631           info.max_wp_length = (gdb_byte)((val >> 16) & 0xff);
632           info.wp_count = (gdb_byte)((val >> 8) & 0xff);
633           info.bp_count = (gdb_byte)(val & 0xff);
634
635       if (info.wp_count > MAX_WPTS)
636         {
637           warning (_("arm-linux-gdb supports %d hardware watchpoints but target \
638                       supports %d"), MAX_WPTS, info.wp_count);
639           info.wp_count = MAX_WPTS;
640         }
641
642       if (info.bp_count > MAX_BPTS)
643         {
644           warning (_("arm-linux-gdb supports %d hardware breakpoints but target \
645                       supports %d"), MAX_BPTS, info.bp_count);
646           info.bp_count = MAX_BPTS;
647         }
648           available = (info.arch != 0);
649         }
650     }
651
652   return available == 1 ? &info : NULL;
653 }
654
655 /* How many hardware breakpoints are available?  */
656 static int
657 arm_linux_get_hw_breakpoint_count (void)
658 {
659   const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap ();
660   return cap != NULL ? cap->bp_count : 0;
661 }
662
663 /* How many hardware watchpoints are available?  */
664 static int
665 arm_linux_get_hw_watchpoint_count (void)
666 {
667   const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap ();
668   return cap != NULL ? cap->wp_count : 0;
669 }
670
671 /* Have we got a free break-/watch-point available for use?  Returns -1 if
672    there is not an appropriate resource available, otherwise returns 1.  */
673 int
674 arm_linux_nat_target::can_use_hw_breakpoint (enum bptype type,
675                                              int cnt, int ot)
676 {
677   if (type == bp_hardware_watchpoint || type == bp_read_watchpoint
678       || type == bp_access_watchpoint || type == bp_watchpoint)
679     {
680       int count = arm_linux_get_hw_watchpoint_count ();
681
682       if (count == 0)
683         return 0;
684       else if (cnt + ot > count)
685         return -1;
686     }
687   else if (type == bp_hardware_breakpoint)
688     {
689       int count = arm_linux_get_hw_breakpoint_count ();
690
691       if (count == 0)
692         return 0;
693       else if (cnt > count)
694         return -1;
695     }
696   else
697     gdb_assert (FALSE);
698
699   return 1;
700 }
701
702 /* Enum describing the different types of ARM hardware break-/watch-points.  */
703 typedef enum
704 {
705   arm_hwbp_break = 0,
706   arm_hwbp_load = 1,
707   arm_hwbp_store = 2,
708   arm_hwbp_access = 3
709 } arm_hwbp_type;
710
711 /* Type describing an ARM Hardware Breakpoint Control register value.  */
712 typedef unsigned int arm_hwbp_control_t;
713
714 /* Structure used to keep track of hardware break-/watch-points.  */
715 struct arm_linux_hw_breakpoint
716 {
717   /* Address to break on, or being watched.  */
718   unsigned int address;
719   /* Control register for break-/watch- point.  */
720   arm_hwbp_control_t control;
721 };
722
723 /* Structure containing arrays of per process hardware break-/watchpoints
724    for caching address and control information.
725
726    The Linux ptrace interface to hardware break-/watch-points presents the 
727    values in a vector centred around 0 (which is used fo generic information).
728    Positive indicies refer to breakpoint addresses/control registers, negative
729    indices to watchpoint addresses/control registers.
730
731    The Linux vector is indexed as follows:
732       -((i << 1) + 2): Control register for watchpoint i.
733       -((i << 1) + 1): Address register for watchpoint i.
734                     0: Information register.
735        ((i << 1) + 1): Address register for breakpoint i.
736        ((i << 1) + 2): Control register for breakpoint i.
737
738    This structure is used as a per-thread cache of the state stored by the 
739    kernel, so that we don't need to keep calling into the kernel to find a 
740    free breakpoint.
741
742    We treat break-/watch-points with their enable bit clear as being deleted.
743    */
744 struct arm_linux_debug_reg_state
745 {
746   /* Hardware breakpoints for this process.  */
747   struct arm_linux_hw_breakpoint bpts[MAX_BPTS];
748   /* Hardware watchpoints for this process.  */
749   struct arm_linux_hw_breakpoint wpts[MAX_WPTS];
750 };
751
752 /* Per-process arch-specific data we want to keep.  */
753 struct arm_linux_process_info
754 {
755   /* Linked list.  */
756   struct arm_linux_process_info *next;
757   /* The process identifier.  */
758   pid_t pid;
759   /* Hardware break-/watchpoints state information.  */
760   struct arm_linux_debug_reg_state state;
761
762 };
763
764 /* Per-thread arch-specific data we want to keep.  */
765 struct arch_lwp_info
766 {
767   /* Non-zero if our copy differs from what's recorded in the thread.  */
768   char bpts_changed[MAX_BPTS];
769   char wpts_changed[MAX_WPTS];
770 };
771
772 static struct arm_linux_process_info *arm_linux_process_list = NULL;
773
774 /* Find process data for process PID.  */
775
776 static struct arm_linux_process_info *
777 arm_linux_find_process_pid (pid_t pid)
778 {
779   struct arm_linux_process_info *proc;
780
781   for (proc = arm_linux_process_list; proc; proc = proc->next)
782     if (proc->pid == pid)
783       return proc;
784
785   return NULL;
786 }
787
788 /* Add process data for process PID.  Returns newly allocated info
789    object.  */
790
791 static struct arm_linux_process_info *
792 arm_linux_add_process (pid_t pid)
793 {
794   struct arm_linux_process_info *proc;
795
796   proc = XCNEW (struct arm_linux_process_info);
797   proc->pid = pid;
798
799   proc->next = arm_linux_process_list;
800   arm_linux_process_list = proc;
801
802   return proc;
803 }
804
805 /* Get data specific info for process PID, creating it if necessary.
806    Never returns NULL.  */
807
808 static struct arm_linux_process_info *
809 arm_linux_process_info_get (pid_t pid)
810 {
811   struct arm_linux_process_info *proc;
812
813   proc = arm_linux_find_process_pid (pid);
814   if (proc == NULL)
815     proc = arm_linux_add_process (pid);
816
817   return proc;
818 }
819
820 /* Called whenever GDB is no longer debugging process PID.  It deletes
821    data structures that keep track of debug register state.  */
822
823 void
824 arm_linux_nat_target::low_forget_process (pid_t pid)
825 {
826   struct arm_linux_process_info *proc, **proc_link;
827
828   proc = arm_linux_process_list;
829   proc_link = &arm_linux_process_list;
830
831   while (proc != NULL)
832     {
833       if (proc->pid == pid)
834     {
835       *proc_link = proc->next;
836
837       xfree (proc);
838       return;
839     }
840
841       proc_link = &proc->next;
842       proc = *proc_link;
843     }
844 }
845
846 /* Get hardware break-/watchpoint state for process PID.  */
847
848 static struct arm_linux_debug_reg_state *
849 arm_linux_get_debug_reg_state (pid_t pid)
850 {
851   return &arm_linux_process_info_get (pid)->state;
852 }
853
854 /* Initialize an ARM hardware break-/watch-point control register value.
855    BYTE_ADDRESS_SELECT is the mask of bytes to trigger on; HWBP_TYPE is the 
856    type of break-/watch-point; ENABLE indicates whether the point is enabled.
857    */
858 static arm_hwbp_control_t 
859 arm_hwbp_control_initialize (unsigned byte_address_select,
860                              arm_hwbp_type hwbp_type,
861                              int enable)
862 {
863   gdb_assert ((byte_address_select & ~0xffU) == 0);
864   gdb_assert (hwbp_type != arm_hwbp_break 
865               || ((byte_address_select & 0xfU) != 0));
866
867   return (byte_address_select << 5) | (hwbp_type << 3) | (3 << 1) | enable;
868 }
869
870 /* Does the breakpoint control value CONTROL have the enable bit set?  */
871 static int
872 arm_hwbp_control_is_enabled (arm_hwbp_control_t control)
873 {
874   return control & 0x1;
875 }
876
877 /* Change a breakpoint control word so that it is in the disabled state.  */
878 static arm_hwbp_control_t
879 arm_hwbp_control_disable (arm_hwbp_control_t control)
880 {
881   return control & ~0x1;
882 }
883
884 /* Initialise the hardware breakpoint structure P.  The breakpoint will be
885    enabled, and will point to the placed address of BP_TGT.  */
886 static void
887 arm_linux_hw_breakpoint_initialize (struct gdbarch *gdbarch,
888                                     struct bp_target_info *bp_tgt,
889                                     struct arm_linux_hw_breakpoint *p)
890 {
891   unsigned mask;
892   CORE_ADDR address = bp_tgt->placed_address = bp_tgt->reqstd_address;
893
894   /* We have to create a mask for the control register which says which bits
895      of the word pointed to by address to break on.  */
896   if (arm_pc_is_thumb (gdbarch, address))
897     {
898       mask = 0x3;
899       address &= ~1;
900     }
901   else
902     {
903       mask = 0xf;
904       address &= ~3;
905     }
906
907   p->address = (unsigned int) address;
908   p->control = arm_hwbp_control_initialize (mask, arm_hwbp_break, 1);
909 }
910
911 /* Get the ARM hardware breakpoint type from the TYPE value we're
912    given when asked to set a watchpoint.  */
913 static arm_hwbp_type 
914 arm_linux_get_hwbp_type (enum target_hw_bp_type type)
915 {
916   if (type == hw_read)
917     return arm_hwbp_load;
918   else if (type == hw_write)
919     return arm_hwbp_store;
920   else
921     return arm_hwbp_access;
922 }
923
924 /* Initialize the hardware breakpoint structure P for a watchpoint at ADDR
925    to LEN.  The type of watchpoint is given in RW.  */
926 static void
927 arm_linux_hw_watchpoint_initialize (CORE_ADDR addr, int len,
928                                     enum target_hw_bp_type type,
929                                     struct arm_linux_hw_breakpoint *p)
930 {
931   const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap ();
932   unsigned mask;
933
934   gdb_assert (cap != NULL);
935   gdb_assert (cap->max_wp_length != 0);
936
937   mask = (1 << len) - 1;
938
939   p->address = (unsigned int) addr;
940   p->control = arm_hwbp_control_initialize (mask, 
941                                             arm_linux_get_hwbp_type (type), 1);
942 }
943
944 /* Are two break-/watch-points equal?  */
945 static int
946 arm_linux_hw_breakpoint_equal (const struct arm_linux_hw_breakpoint *p1,
947                                const struct arm_linux_hw_breakpoint *p2)
948 {
949   return p1->address == p2->address && p1->control == p2->control;
950 }
951
952 /* Callback to mark a watch-/breakpoint to be updated in all threads of
953    the current process.  */
954
955 struct update_registers_data
956 {
957   int watch;
958   int index;
959 };
960
961 static int
962 update_registers_callback (struct lwp_info *lwp, void *arg)
963 {
964   struct update_registers_data *data = (struct update_registers_data *) arg;
965
966   if (lwp->arch_private == NULL)
967     lwp->arch_private = XCNEW (struct arch_lwp_info);
968
969   /* The actual update is done later just before resuming the lwp,
970      we just mark that the registers need updating.  */
971   if (data->watch)
972     lwp->arch_private->wpts_changed[data->index] = 1;
973   else
974     lwp->arch_private->bpts_changed[data->index] = 1;
975
976   /* If the lwp isn't stopped, force it to momentarily pause, so
977      we can update its breakpoint registers.  */
978   if (!lwp->stopped)
979     linux_stop_lwp (lwp);
980
981   return 0;
982 }
983
984 /* Insert the hardware breakpoint (WATCHPOINT = 0) or watchpoint (WATCHPOINT
985    =1) BPT for thread TID.  */
986 static void
987 arm_linux_insert_hw_breakpoint1 (const struct arm_linux_hw_breakpoint* bpt, 
988                                  int watchpoint)
989 {
990   int pid;
991   ptid_t pid_ptid;
992   gdb_byte count, i;
993   struct arm_linux_hw_breakpoint* bpts;
994   struct update_registers_data data;
995
996   pid = inferior_ptid.pid ();
997   pid_ptid = ptid_t (pid);
998
999   if (watchpoint)
1000     {
1001       count = arm_linux_get_hw_watchpoint_count ();
1002       bpts = arm_linux_get_debug_reg_state (pid)->wpts;
1003     }
1004   else
1005     {
1006       count = arm_linux_get_hw_breakpoint_count ();
1007       bpts = arm_linux_get_debug_reg_state (pid)->bpts;
1008     }
1009
1010   for (i = 0; i < count; ++i)
1011     if (!arm_hwbp_control_is_enabled (bpts[i].control))
1012       {
1013         data.watch = watchpoint;
1014         data.index = i;
1015         bpts[i] = *bpt;
1016         iterate_over_lwps (pid_ptid, update_registers_callback, &data);
1017         break;
1018       }
1019
1020   gdb_assert (i != count);
1021 }
1022
1023 /* Remove the hardware breakpoint (WATCHPOINT = 0) or watchpoint
1024    (WATCHPOINT = 1) BPT for thread TID.  */
1025 static void
1026 arm_linux_remove_hw_breakpoint1 (const struct arm_linux_hw_breakpoint *bpt, 
1027                                  int watchpoint)
1028 {
1029   int pid;
1030   gdb_byte count, i;
1031   ptid_t pid_ptid;
1032   struct arm_linux_hw_breakpoint* bpts;
1033   struct update_registers_data data;
1034
1035   pid = inferior_ptid.pid ();
1036   pid_ptid = ptid_t (pid);
1037
1038   if (watchpoint)
1039     {
1040       count = arm_linux_get_hw_watchpoint_count ();
1041       bpts = arm_linux_get_debug_reg_state (pid)->wpts;
1042     }
1043   else
1044     {
1045       count = arm_linux_get_hw_breakpoint_count ();
1046       bpts = arm_linux_get_debug_reg_state (pid)->bpts;
1047     }
1048
1049   for (i = 0; i < count; ++i)
1050     if (arm_linux_hw_breakpoint_equal (bpt, bpts + i))
1051       {
1052         data.watch = watchpoint;
1053         data.index = i;
1054         bpts[i].control = arm_hwbp_control_disable (bpts[i].control);
1055         iterate_over_lwps (pid_ptid, update_registers_callback, &data);
1056         break;
1057       }
1058
1059   gdb_assert (i != count);
1060 }
1061
1062 /* Insert a Hardware breakpoint.  */
1063 int
1064 arm_linux_nat_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
1065                                             struct bp_target_info *bp_tgt)
1066 {
1067   struct arm_linux_hw_breakpoint p;
1068
1069   if (arm_linux_get_hw_breakpoint_count () == 0)
1070     return -1;
1071
1072   arm_linux_hw_breakpoint_initialize (gdbarch, bp_tgt, &p);
1073
1074   arm_linux_insert_hw_breakpoint1 (&p, 0);
1075
1076   return 0;
1077 }
1078
1079 /* Remove a hardware breakpoint.  */
1080 int
1081 arm_linux_nat_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
1082                                             struct bp_target_info *bp_tgt)
1083 {
1084   struct arm_linux_hw_breakpoint p;
1085
1086   if (arm_linux_get_hw_breakpoint_count () == 0)
1087     return -1;
1088
1089   arm_linux_hw_breakpoint_initialize (gdbarch, bp_tgt, &p);
1090
1091   arm_linux_remove_hw_breakpoint1 (&p, 0);
1092
1093   return 0;
1094 }
1095
1096 /* Are we able to use a hardware watchpoint for the LEN bytes starting at 
1097    ADDR?  */
1098 int
1099 arm_linux_nat_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
1100 {
1101   const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap ();
1102   CORE_ADDR max_wp_length, aligned_addr;
1103
1104   /* Can not set watchpoints for zero or negative lengths.  */
1105   if (len <= 0)
1106     return 0;
1107
1108   /* Need to be able to use the ptrace interface.  */
1109   if (cap == NULL || cap->wp_count == 0)
1110     return 0;
1111
1112   /* Test that the range [ADDR, ADDR + LEN) fits into the largest address
1113      range covered by a watchpoint.  */
1114   max_wp_length = (CORE_ADDR)cap->max_wp_length;
1115   aligned_addr = addr & ~(max_wp_length - 1);
1116
1117   if (aligned_addr + max_wp_length < addr + len)
1118     return 0;
1119
1120   /* The current ptrace interface can only handle watchpoints that are a
1121      power of 2.  */
1122   if ((len & (len - 1)) != 0)
1123     return 0;
1124
1125   /* All tests passed so we must be able to set a watchpoint.  */
1126   return 1;
1127 }
1128
1129 /* Insert a Hardware breakpoint.  */
1130 int
1131 arm_linux_nat_target::insert_watchpoint (CORE_ADDR addr, int len,
1132                                          enum target_hw_bp_type rw,
1133                                          struct expression *cond)
1134 {
1135   struct arm_linux_hw_breakpoint p;
1136
1137   if (arm_linux_get_hw_watchpoint_count () == 0)
1138     return -1;
1139
1140   arm_linux_hw_watchpoint_initialize (addr, len, rw, &p);
1141
1142   arm_linux_insert_hw_breakpoint1 (&p, 1);
1143
1144   return 0;
1145 }
1146
1147 /* Remove a hardware breakpoint.  */
1148 int
1149 arm_linux_nat_target::remove_watchpoint (CORE_ADDR addr,
1150                                          int len, enum target_hw_bp_type rw,
1151                                          struct expression *cond)
1152 {
1153   struct arm_linux_hw_breakpoint p;
1154
1155   if (arm_linux_get_hw_watchpoint_count () == 0)
1156     return -1;
1157
1158   arm_linux_hw_watchpoint_initialize (addr, len, rw, &p);
1159
1160   arm_linux_remove_hw_breakpoint1 (&p, 1);
1161
1162   return 0;
1163 }
1164
1165 /* What was the data address the target was stopped on accessing.  */
1166 bool
1167 arm_linux_nat_target::stopped_data_address (CORE_ADDR *addr_p)
1168 {
1169   siginfo_t siginfo;
1170   int slot;
1171
1172   if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
1173     return false;
1174
1175   /* This must be a hardware breakpoint.  */
1176   if (siginfo.si_signo != SIGTRAP
1177       || (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
1178     return false;
1179
1180   /* We must be able to set hardware watchpoints.  */
1181   if (arm_linux_get_hw_watchpoint_count () == 0)
1182     return 0;
1183
1184   slot = siginfo.si_errno;
1185
1186   /* If we are in a positive slot then we're looking at a breakpoint and not
1187      a watchpoint.  */
1188   if (slot >= 0)
1189     return false;
1190
1191   *addr_p = (CORE_ADDR) (uintptr_t) siginfo.si_addr;
1192   return true;
1193 }
1194
1195 /* Has the target been stopped by hitting a watchpoint?  */
1196 bool
1197 arm_linux_nat_target::stopped_by_watchpoint ()
1198 {
1199   CORE_ADDR addr;
1200   return stopped_data_address (&addr);
1201 }
1202
1203 bool
1204 arm_linux_nat_target::watchpoint_addr_within_range (CORE_ADDR addr,
1205                                                     CORE_ADDR start,
1206                                                     int length)
1207 {
1208   return start <= addr && start + length - 1 >= addr;
1209 }
1210
1211 /* Handle thread creation.  We need to copy the breakpoints and watchpoints
1212    in the parent thread to the child thread.  */
1213 void
1214 arm_linux_nat_target::low_new_thread (struct lwp_info *lp)
1215 {
1216   int i;
1217   struct arch_lwp_info *info = XCNEW (struct arch_lwp_info);
1218
1219   /* Mark that all the hardware breakpoint/watchpoint register pairs
1220      for this thread need to be initialized.  */
1221
1222   for (i = 0; i < MAX_BPTS; i++)
1223     {
1224       info->bpts_changed[i] = 1;
1225       info->wpts_changed[i] = 1;
1226     }
1227
1228   lp->arch_private = info;
1229 }
1230
1231 /* Function to call when a thread is being deleted.  */
1232
1233 void
1234 arm_linux_nat_target::low_delete_thread (struct arch_lwp_info *arch_lwp)
1235 {
1236   xfree (arch_lwp);
1237 }
1238
1239 /* Called when resuming a thread.
1240    The hardware debug registers are updated when there is any change.  */
1241
1242 void
1243 arm_linux_nat_target::low_prepare_to_resume (struct lwp_info *lwp)
1244 {
1245   int pid, i;
1246   struct arm_linux_hw_breakpoint *bpts, *wpts;
1247   struct arch_lwp_info *arm_lwp_info = lwp->arch_private;
1248
1249   pid = lwp->ptid.lwp ();
1250   bpts = arm_linux_get_debug_reg_state (lwp->ptid.pid ())->bpts;
1251   wpts = arm_linux_get_debug_reg_state (lwp->ptid.pid ())->wpts;
1252
1253   /* NULL means this is the main thread still going through the shell,
1254      or, no watchpoint has been set yet.  In that case, there's
1255      nothing to do.  */
1256   if (arm_lwp_info == NULL)
1257     return;
1258
1259   for (i = 0; i < arm_linux_get_hw_breakpoint_count (); i++)
1260     if (arm_lwp_info->bpts_changed[i])
1261       {
1262         errno = 0;
1263         if (arm_hwbp_control_is_enabled (bpts[i].control))
1264           if (ptrace (PTRACE_SETHBPREGS, pid,
1265               (PTRACE_TYPE_ARG3) ((i << 1) + 1), &bpts[i].address) < 0)
1266             perror_with_name (_("Unexpected error setting breakpoint"));
1267
1268         if (bpts[i].control != 0)
1269           if (ptrace (PTRACE_SETHBPREGS, pid,
1270               (PTRACE_TYPE_ARG3) ((i << 1) + 2), &bpts[i].control) < 0)
1271             perror_with_name (_("Unexpected error setting breakpoint"));
1272
1273         arm_lwp_info->bpts_changed[i] = 0;
1274       }
1275
1276   for (i = 0; i < arm_linux_get_hw_watchpoint_count (); i++)
1277     if (arm_lwp_info->wpts_changed[i])
1278       {
1279         errno = 0;
1280         if (arm_hwbp_control_is_enabled (wpts[i].control))
1281           if (ptrace (PTRACE_SETHBPREGS, pid,
1282               (PTRACE_TYPE_ARG3) -((i << 1) + 1), &wpts[i].address) < 0)
1283             perror_with_name (_("Unexpected error setting watchpoint"));
1284
1285         if (wpts[i].control != 0)
1286           if (ptrace (PTRACE_SETHBPREGS, pid,
1287               (PTRACE_TYPE_ARG3) -((i << 1) + 2), &wpts[i].control) < 0)
1288             perror_with_name (_("Unexpected error setting watchpoint"));
1289
1290         arm_lwp_info->wpts_changed[i] = 0;
1291       }
1292 }
1293
1294 /* linux_nat_new_fork hook.  */
1295
1296 void
1297 arm_linux_nat_target::low_new_fork (struct lwp_info *parent, pid_t child_pid)
1298 {
1299   pid_t parent_pid;
1300   struct arm_linux_debug_reg_state *parent_state;
1301   struct arm_linux_debug_reg_state *child_state;
1302
1303   /* NULL means no watchpoint has ever been set in the parent.  In
1304      that case, there's nothing to do.  */
1305   if (parent->arch_private == NULL)
1306     return;
1307
1308   /* GDB core assumes the child inherits the watchpoints/hw
1309      breakpoints of the parent, and will remove them all from the
1310      forked off process.  Copy the debug registers mirrors into the
1311      new process so that all breakpoints and watchpoints can be
1312      removed together.  */
1313
1314   parent_pid = parent->ptid.pid ();
1315   parent_state = arm_linux_get_debug_reg_state (parent_pid);
1316   child_state = arm_linux_get_debug_reg_state (child_pid);
1317   *child_state = *parent_state;
1318 }
1319
1320 void
1321 _initialize_arm_linux_nat (void)
1322 {
1323   /* Register the target.  */
1324   linux_target = &the_arm_linux_nat_target;
1325   add_inf_child_target (&the_arm_linux_nat_target);
1326 }