1 /* GNU/Linux on ARM native support.
2 Copyright (C) 1999-2014 Free Software Foundation, Inc.
4 This file is part of GDB.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "linux-nat.h"
25 #include "target-descriptions.h"
28 #include "gdbthread.h"
31 #include "arm-linux-tdep.h"
33 #include <elf/common.h>
35 #include <sys/ptrace.h>
36 #include <sys/utsname.h>
37 #include <sys/procfs.h>
39 /* Prototypes for supply_gregset etc. */
42 /* Defines ps_err_e, struct ps_prochandle. */
43 #include "gdb_proc_service.h"
45 #ifndef PTRACE_GET_THREAD_AREA
46 #define PTRACE_GET_THREAD_AREA 22
49 #ifndef PTRACE_GETWMMXREGS
50 #define PTRACE_GETWMMXREGS 18
51 #define PTRACE_SETWMMXREGS 19
54 #ifndef PTRACE_GETVFPREGS
55 #define PTRACE_GETVFPREGS 27
56 #define PTRACE_SETVFPREGS 28
59 #ifndef PTRACE_GETHBPREGS
60 #define PTRACE_GETHBPREGS 29
61 #define PTRACE_SETHBPREGS 30
64 /* A flag for whether the WMMX registers are available. */
65 static int arm_linux_has_wmmx_registers;
67 /* The number of 64-bit VFP registers we have (expect this to be 0,
69 static int arm_linux_vfp_register_count;
71 extern int arm_apcs_32;
73 /* On GNU/Linux, threads are implemented as pseudo-processes, in which
74 case we may be tracing more than one process at a time. In that
75 case, inferior_ptid will contain the main process ID and the
76 individual thread (process) ID. get_thread_id () is used to get
77 the thread id if it's available, and the process id otherwise. */
80 get_thread_id (ptid_t ptid)
82 int tid = ptid_get_lwp (ptid);
84 tid = ptid_get_pid (ptid);
88 #define GET_THREAD_ID(PTID) get_thread_id (PTID)
90 /* Get the value of a particular register from the floating point
91 state of the process and store it into regcache. */
94 fetch_fpregister (struct regcache *regcache, int regno)
97 gdb_byte fp[ARM_LINUX_SIZEOF_NWFPE];
99 /* Get the thread id for the ptrace call. */
100 tid = GET_THREAD_ID (inferior_ptid);
102 /* Read the floating point state. */
103 ret = ptrace (PT_GETFPREGS, tid, 0, fp);
106 warning (_("Unable to fetch floating point register."));
111 if (ARM_FPS_REGNUM == regno)
112 regcache_raw_supply (regcache, ARM_FPS_REGNUM,
113 fp + NWFPE_FPSR_OFFSET);
115 /* Fetch the floating point register. */
116 if (regno >= ARM_F0_REGNUM && regno <= ARM_F7_REGNUM)
117 supply_nwfpe_register (regcache, regno, fp);
120 /* Get the whole floating point state of the process and store it
124 fetch_fpregs (struct regcache *regcache)
127 gdb_byte fp[ARM_LINUX_SIZEOF_NWFPE];
129 /* Get the thread id for the ptrace call. */
130 tid = GET_THREAD_ID (inferior_ptid);
132 /* Read the floating point state. */
133 ret = ptrace (PT_GETFPREGS, tid, 0, fp);
136 warning (_("Unable to fetch the floating point registers."));
141 regcache_raw_supply (regcache, ARM_FPS_REGNUM,
142 fp + NWFPE_FPSR_OFFSET);
144 /* Fetch the floating point registers. */
145 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
146 supply_nwfpe_register (regcache, regno, fp);
149 /* Save a particular register into the floating point state of the
150 process using the contents from regcache. */
153 store_fpregister (const struct regcache *regcache, int regno)
156 gdb_byte fp[ARM_LINUX_SIZEOF_NWFPE];
158 /* Get the thread id for the ptrace call. */
159 tid = GET_THREAD_ID (inferior_ptid);
161 /* Read the floating point state. */
162 ret = ptrace (PT_GETFPREGS, tid, 0, fp);
165 warning (_("Unable to fetch the floating point registers."));
170 if (ARM_FPS_REGNUM == regno
171 && REG_VALID == regcache_register_status (regcache, ARM_FPS_REGNUM))
172 regcache_raw_collect (regcache, ARM_FPS_REGNUM, fp + NWFPE_FPSR_OFFSET);
174 /* Store the floating point register. */
175 if (regno >= ARM_F0_REGNUM && regno <= ARM_F7_REGNUM)
176 collect_nwfpe_register (regcache, regno, fp);
178 ret = ptrace (PTRACE_SETFPREGS, tid, 0, fp);
181 warning (_("Unable to store floating point register."));
186 /* Save the whole floating point state of the process using
187 the contents from regcache. */
190 store_fpregs (const struct regcache *regcache)
193 gdb_byte fp[ARM_LINUX_SIZEOF_NWFPE];
195 /* Get the thread id for the ptrace call. */
196 tid = GET_THREAD_ID (inferior_ptid);
198 /* Read the floating point state. */
199 ret = ptrace (PT_GETFPREGS, tid, 0, fp);
202 warning (_("Unable to fetch the floating point registers."));
207 if (REG_VALID == regcache_register_status (regcache, ARM_FPS_REGNUM))
208 regcache_raw_collect (regcache, ARM_FPS_REGNUM, fp + NWFPE_FPSR_OFFSET);
210 /* Store the floating point registers. */
211 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
212 if (REG_VALID == regcache_register_status (regcache, regno))
213 collect_nwfpe_register (regcache, regno, fp);
215 ret = ptrace (PTRACE_SETFPREGS, tid, 0, fp);
218 warning (_("Unable to store floating point registers."));
223 /* Fetch a general register of the process and store into
227 fetch_register (struct regcache *regcache, int regno)
232 /* Get the thread id for the ptrace call. */
233 tid = GET_THREAD_ID (inferior_ptid);
235 ret = ptrace (PTRACE_GETREGS, tid, 0, ®s);
238 warning (_("Unable to fetch general register."));
242 if (regno >= ARM_A1_REGNUM && regno < ARM_PC_REGNUM)
243 regcache_raw_supply (regcache, regno, (char *) ®s[regno]);
245 if (ARM_PS_REGNUM == regno)
248 regcache_raw_supply (regcache, ARM_PS_REGNUM,
249 (char *) ®s[ARM_CPSR_GREGNUM]);
251 regcache_raw_supply (regcache, ARM_PS_REGNUM,
252 (char *) ®s[ARM_PC_REGNUM]);
255 if (ARM_PC_REGNUM == regno)
257 regs[ARM_PC_REGNUM] = gdbarch_addr_bits_remove
258 (get_regcache_arch (regcache),
259 regs[ARM_PC_REGNUM]);
260 regcache_raw_supply (regcache, ARM_PC_REGNUM,
261 (char *) ®s[ARM_PC_REGNUM]);
265 /* Fetch all general registers of the process and store into
269 fetch_regs (struct regcache *regcache)
274 /* Get the thread id for the ptrace call. */
275 tid = GET_THREAD_ID (inferior_ptid);
277 ret = ptrace (PTRACE_GETREGS, tid, 0, ®s);
280 warning (_("Unable to fetch general registers."));
284 for (regno = ARM_A1_REGNUM; regno < ARM_PC_REGNUM; regno++)
285 regcache_raw_supply (regcache, regno, (char *) ®s[regno]);
288 regcache_raw_supply (regcache, ARM_PS_REGNUM,
289 (char *) ®s[ARM_CPSR_GREGNUM]);
291 regcache_raw_supply (regcache, ARM_PS_REGNUM,
292 (char *) ®s[ARM_PC_REGNUM]);
294 regs[ARM_PC_REGNUM] = gdbarch_addr_bits_remove
295 (get_regcache_arch (regcache), regs[ARM_PC_REGNUM]);
296 regcache_raw_supply (regcache, ARM_PC_REGNUM,
297 (char *) ®s[ARM_PC_REGNUM]);
300 /* Store all general registers of the process from the values in
304 store_register (const struct regcache *regcache, int regno)
309 if (REG_VALID != regcache_register_status (regcache, regno))
312 /* Get the thread id for the ptrace call. */
313 tid = GET_THREAD_ID (inferior_ptid);
315 /* Get the general registers from the process. */
316 ret = ptrace (PTRACE_GETREGS, tid, 0, ®s);
319 warning (_("Unable to fetch general registers."));
323 if (regno >= ARM_A1_REGNUM && regno <= ARM_PC_REGNUM)
324 regcache_raw_collect (regcache, regno, (char *) ®s[regno]);
325 else if (arm_apcs_32 && regno == ARM_PS_REGNUM)
326 regcache_raw_collect (regcache, regno,
327 (char *) ®s[ARM_CPSR_GREGNUM]);
328 else if (!arm_apcs_32 && regno == ARM_PS_REGNUM)
329 regcache_raw_collect (regcache, ARM_PC_REGNUM,
330 (char *) ®s[ARM_PC_REGNUM]);
332 ret = ptrace (PTRACE_SETREGS, tid, 0, ®s);
335 warning (_("Unable to store general register."));
341 store_regs (const struct regcache *regcache)
346 /* Get the thread id for the ptrace call. */
347 tid = GET_THREAD_ID (inferior_ptid);
349 /* Fetch the general registers. */
350 ret = ptrace (PTRACE_GETREGS, tid, 0, ®s);
353 warning (_("Unable to fetch general registers."));
357 for (regno = ARM_A1_REGNUM; regno <= ARM_PC_REGNUM; regno++)
359 if (REG_VALID == regcache_register_status (regcache, regno))
360 regcache_raw_collect (regcache, regno, (char *) ®s[regno]);
363 if (arm_apcs_32 && REG_VALID == regcache_register_status (regcache, ARM_PS_REGNUM))
364 regcache_raw_collect (regcache, ARM_PS_REGNUM,
365 (char *) ®s[ARM_CPSR_GREGNUM]);
367 ret = ptrace (PTRACE_SETREGS, tid, 0, ®s);
371 warning (_("Unable to store general registers."));
376 /* Fetch all WMMX registers of the process and store into
379 #define IWMMXT_REGS_SIZE (16 * 8 + 6 * 4)
382 fetch_wmmx_regs (struct regcache *regcache)
384 char regbuf[IWMMXT_REGS_SIZE];
387 /* Get the thread id for the ptrace call. */
388 tid = GET_THREAD_ID (inferior_ptid);
390 ret = ptrace (PTRACE_GETWMMXREGS, tid, 0, regbuf);
393 warning (_("Unable to fetch WMMX registers."));
397 for (regno = 0; regno < 16; regno++)
398 regcache_raw_supply (regcache, regno + ARM_WR0_REGNUM,
401 for (regno = 0; regno < 2; regno++)
402 regcache_raw_supply (regcache, regno + ARM_WCSSF_REGNUM,
403 ®buf[16 * 8 + regno * 4]);
405 for (regno = 0; regno < 4; regno++)
406 regcache_raw_supply (regcache, regno + ARM_WCGR0_REGNUM,
407 ®buf[16 * 8 + 2 * 4 + regno * 4]);
411 store_wmmx_regs (const struct regcache *regcache)
413 char regbuf[IWMMXT_REGS_SIZE];
416 /* Get the thread id for the ptrace call. */
417 tid = GET_THREAD_ID (inferior_ptid);
419 ret = ptrace (PTRACE_GETWMMXREGS, tid, 0, regbuf);
422 warning (_("Unable to fetch WMMX registers."));
426 for (regno = 0; regno < 16; regno++)
427 if (REG_VALID == regcache_register_status (regcache,
428 regno + ARM_WR0_REGNUM))
429 regcache_raw_collect (regcache, regno + ARM_WR0_REGNUM,
432 for (regno = 0; regno < 2; regno++)
433 if (REG_VALID == regcache_register_status (regcache,
434 regno + ARM_WCSSF_REGNUM))
435 regcache_raw_collect (regcache, regno + ARM_WCSSF_REGNUM,
436 ®buf[16 * 8 + regno * 4]);
438 for (regno = 0; regno < 4; regno++)
439 if (REG_VALID == regcache_register_status (regcache,
440 regno + ARM_WCGR0_REGNUM))
441 regcache_raw_collect (regcache, regno + ARM_WCGR0_REGNUM,
442 ®buf[16 * 8 + 2 * 4 + regno * 4]);
444 ret = ptrace (PTRACE_SETWMMXREGS, tid, 0, regbuf);
448 warning (_("Unable to store WMMX registers."));
453 /* Fetch and store VFP Registers. The kernel object has space for 32
454 64-bit registers, and the FPSCR. This is even when on a VFPv2 or
456 #define VFP_REGS_SIZE (32 * 8 + 4)
459 fetch_vfp_regs (struct regcache *regcache)
461 char regbuf[VFP_REGS_SIZE];
464 /* Get the thread id for the ptrace call. */
465 tid = GET_THREAD_ID (inferior_ptid);
467 ret = ptrace (PTRACE_GETVFPREGS, tid, 0, regbuf);
470 warning (_("Unable to fetch VFP registers."));
474 for (regno = 0; regno < arm_linux_vfp_register_count; regno++)
475 regcache_raw_supply (regcache, regno + ARM_D0_REGNUM,
476 (char *) regbuf + regno * 8);
478 regcache_raw_supply (regcache, ARM_FPSCR_REGNUM,
479 (char *) regbuf + 32 * 8);
483 store_vfp_regs (const struct regcache *regcache)
485 char regbuf[VFP_REGS_SIZE];
488 /* Get the thread id for the ptrace call. */
489 tid = GET_THREAD_ID (inferior_ptid);
491 ret = ptrace (PTRACE_GETVFPREGS, tid, 0, regbuf);
494 warning (_("Unable to fetch VFP registers (for update)."));
498 for (regno = 0; regno < arm_linux_vfp_register_count; regno++)
499 regcache_raw_collect (regcache, regno + ARM_D0_REGNUM,
500 (char *) regbuf + regno * 8);
502 regcache_raw_collect (regcache, ARM_FPSCR_REGNUM,
503 (char *) regbuf + 32 * 8);
505 ret = ptrace (PTRACE_SETVFPREGS, tid, 0, regbuf);
509 warning (_("Unable to store VFP registers."));
514 /* Fetch registers from the child process. Fetch all registers if
515 regno == -1, otherwise fetch all general registers or all floating
516 point registers depending upon the value of regno. */
519 arm_linux_fetch_inferior_registers (struct target_ops *ops,
520 struct regcache *regcache, int regno)
524 fetch_regs (regcache);
525 fetch_fpregs (regcache);
526 if (arm_linux_has_wmmx_registers)
527 fetch_wmmx_regs (regcache);
528 if (arm_linux_vfp_register_count > 0)
529 fetch_vfp_regs (regcache);
533 if (regno < ARM_F0_REGNUM || regno == ARM_PS_REGNUM)
534 fetch_register (regcache, regno);
535 else if (regno >= ARM_F0_REGNUM && regno <= ARM_FPS_REGNUM)
536 fetch_fpregister (regcache, regno);
537 else if (arm_linux_has_wmmx_registers
538 && regno >= ARM_WR0_REGNUM && regno <= ARM_WCGR7_REGNUM)
539 fetch_wmmx_regs (regcache);
540 else if (arm_linux_vfp_register_count > 0
541 && regno >= ARM_D0_REGNUM
542 && regno <= ARM_D0_REGNUM + arm_linux_vfp_register_count)
543 fetch_vfp_regs (regcache);
547 /* Store registers back into the inferior. Store all registers if
548 regno == -1, otherwise store all general registers or all floating
549 point registers depending upon the value of regno. */
552 arm_linux_store_inferior_registers (struct target_ops *ops,
553 struct regcache *regcache, int regno)
557 store_regs (regcache);
558 store_fpregs (regcache);
559 if (arm_linux_has_wmmx_registers)
560 store_wmmx_regs (regcache);
561 if (arm_linux_vfp_register_count > 0)
562 store_vfp_regs (regcache);
566 if (regno < ARM_F0_REGNUM || regno == ARM_PS_REGNUM)
567 store_register (regcache, regno);
568 else if ((regno >= ARM_F0_REGNUM) && (regno <= ARM_FPS_REGNUM))
569 store_fpregister (regcache, regno);
570 else if (arm_linux_has_wmmx_registers
571 && regno >= ARM_WR0_REGNUM && regno <= ARM_WCGR7_REGNUM)
572 store_wmmx_regs (regcache);
573 else if (arm_linux_vfp_register_count > 0
574 && regno >= ARM_D0_REGNUM
575 && regno <= ARM_D0_REGNUM + arm_linux_vfp_register_count)
576 store_vfp_regs (regcache);
580 /* Wrapper functions for the standard regset handling, used by
584 fill_gregset (const struct regcache *regcache,
585 gdb_gregset_t *gregsetp, int regno)
587 arm_linux_collect_gregset (NULL, regcache, regno, gregsetp, 0);
591 supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp)
593 arm_linux_supply_gregset (NULL, regcache, -1, gregsetp, 0);
597 fill_fpregset (const struct regcache *regcache,
598 gdb_fpregset_t *fpregsetp, int regno)
600 arm_linux_collect_nwfpe (NULL, regcache, regno, fpregsetp, 0);
603 /* Fill GDB's register array with the floating-point register values
607 supply_fpregset (struct regcache *regcache, const gdb_fpregset_t *fpregsetp)
609 arm_linux_supply_nwfpe (NULL, regcache, -1, fpregsetp, 0);
612 /* Fetch the thread-local storage pointer for libthread_db. */
615 ps_get_thread_area (const struct ps_prochandle *ph,
616 lwpid_t lwpid, int idx, void **base)
618 if (ptrace (PTRACE_GET_THREAD_AREA, lwpid, NULL, base) != 0)
621 /* IDX is the bias from the thread pointer to the beginning of the
622 thread descriptor. It has to be subtracted due to implementation
623 quirks in libthread_db. */
624 *base = (void *) ((char *)*base - idx);
629 static const struct target_desc *
630 arm_linux_read_description (struct target_ops *ops)
632 CORE_ADDR arm_hwcap = 0;
633 arm_linux_has_wmmx_registers = 0;
634 arm_linux_vfp_register_count = 0;
636 if (target_auxv_search (ops, AT_HWCAP, &arm_hwcap) != 1)
638 return ops->beneath->to_read_description (ops->beneath);
641 if (arm_hwcap & HWCAP_IWMMXT)
643 arm_linux_has_wmmx_registers = 1;
644 return tdesc_arm_with_iwmmxt;
647 if (arm_hwcap & HWCAP_VFP)
651 const struct target_desc * result = NULL;
653 /* NEON implies VFPv3-D32 or no-VFP unit. Say that we only support
654 Neon with VFPv3-D32. */
655 if (arm_hwcap & HWCAP_NEON)
657 arm_linux_vfp_register_count = 32;
658 result = tdesc_arm_with_neon;
660 else if ((arm_hwcap & (HWCAP_VFPv3 | HWCAP_VFPv3D16)) == HWCAP_VFPv3)
662 arm_linux_vfp_register_count = 32;
663 result = tdesc_arm_with_vfpv3;
667 arm_linux_vfp_register_count = 16;
668 result = tdesc_arm_with_vfpv2;
671 /* Now make sure that the kernel supports reading these
672 registers. Support was added in 2.6.30. */
673 pid = ptid_get_lwp (inferior_ptid);
675 buf = alloca (VFP_REGS_SIZE);
676 if (ptrace (PTRACE_GETVFPREGS, pid, 0, buf) < 0
683 return ops->beneath->to_read_description (ops->beneath);
686 /* Information describing the hardware breakpoint capabilities. */
687 struct arm_linux_hwbp_cap
690 gdb_byte max_wp_length;
695 /* Since we cannot dynamically allocate subfields of arm_linux_process_info,
696 assume a maximum number of supported break-/watchpoints. */
700 /* Get hold of the Hardware Breakpoint information for the target we are
701 attached to. Returns NULL if the kernel doesn't support Hardware
702 breakpoints at all, or a pointer to the information structure. */
703 static const struct arm_linux_hwbp_cap *
704 arm_linux_get_hwbp_cap (void)
706 /* The info structure we return. */
707 static struct arm_linux_hwbp_cap info;
709 /* Is INFO in a good state? -1 means that no attempt has been made to
710 initialize INFO; 0 means an attempt has been made, but it failed; 1
711 means INFO is in an initialized state. */
712 static int available = -1;
719 tid = GET_THREAD_ID (inferior_ptid);
720 if (ptrace (PTRACE_GETHBPREGS, tid, 0, &val) < 0)
724 info.arch = (gdb_byte)((val >> 24) & 0xff);
725 info.max_wp_length = (gdb_byte)((val >> 16) & 0xff);
726 info.wp_count = (gdb_byte)((val >> 8) & 0xff);
727 info.bp_count = (gdb_byte)(val & 0xff);
729 if (info.wp_count > MAX_WPTS)
731 warning (_("arm-linux-gdb supports %d hardware watchpoints but target \
732 supports %d"), MAX_WPTS, info.wp_count);
733 info.wp_count = MAX_WPTS;
736 if (info.bp_count > MAX_BPTS)
738 warning (_("arm-linux-gdb supports %d hardware breakpoints but target \
739 supports %d"), MAX_BPTS, info.bp_count);
740 info.bp_count = MAX_BPTS;
742 available = (info.arch != 0);
746 return available == 1 ? &info : NULL;
749 /* How many hardware breakpoints are available? */
751 arm_linux_get_hw_breakpoint_count (void)
753 const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap ();
754 return cap != NULL ? cap->bp_count : 0;
757 /* How many hardware watchpoints are available? */
759 arm_linux_get_hw_watchpoint_count (void)
761 const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap ();
762 return cap != NULL ? cap->wp_count : 0;
765 /* Have we got a free break-/watch-point available for use? Returns -1 if
766 there is not an appropriate resource available, otherwise returns 1. */
768 arm_linux_can_use_hw_breakpoint (struct target_ops *self,
769 int type, int cnt, int ot)
771 if (type == bp_hardware_watchpoint || type == bp_read_watchpoint
772 || type == bp_access_watchpoint || type == bp_watchpoint)
774 if (cnt + ot > arm_linux_get_hw_watchpoint_count ())
777 else if (type == bp_hardware_breakpoint)
779 if (cnt > arm_linux_get_hw_breakpoint_count ())
788 /* Enum describing the different types of ARM hardware break-/watch-points. */
797 /* Type describing an ARM Hardware Breakpoint Control register value. */
798 typedef unsigned int arm_hwbp_control_t;
800 /* Structure used to keep track of hardware break-/watch-points. */
801 struct arm_linux_hw_breakpoint
803 /* Address to break on, or being watched. */
804 unsigned int address;
805 /* Control register for break-/watch- point. */
806 arm_hwbp_control_t control;
809 /* Structure containing arrays of per process hardware break-/watchpoints
810 for caching address and control information.
812 The Linux ptrace interface to hardware break-/watch-points presents the
813 values in a vector centred around 0 (which is used fo generic information).
814 Positive indicies refer to breakpoint addresses/control registers, negative
815 indices to watchpoint addresses/control registers.
817 The Linux vector is indexed as follows:
818 -((i << 1) + 2): Control register for watchpoint i.
819 -((i << 1) + 1): Address register for watchpoint i.
820 0: Information register.
821 ((i << 1) + 1): Address register for breakpoint i.
822 ((i << 1) + 2): Control register for breakpoint i.
824 This structure is used as a per-thread cache of the state stored by the
825 kernel, so that we don't need to keep calling into the kernel to find a
828 We treat break-/watch-points with their enable bit clear as being deleted.
830 struct arm_linux_debug_reg_state
832 /* Hardware breakpoints for this process. */
833 struct arm_linux_hw_breakpoint bpts[MAX_BPTS];
834 /* Hardware watchpoints for this process. */
835 struct arm_linux_hw_breakpoint wpts[MAX_WPTS];
838 /* Per-process arch-specific data we want to keep. */
839 struct arm_linux_process_info
842 struct arm_linux_process_info *next;
843 /* The process identifier. */
845 /* Hardware break-/watchpoints state information. */
846 struct arm_linux_debug_reg_state state;
850 /* Per-thread arch-specific data we want to keep. */
853 /* Non-zero if our copy differs from what's recorded in the thread. */
854 char bpts_changed[MAX_BPTS];
855 char wpts_changed[MAX_WPTS];
858 static struct arm_linux_process_info *arm_linux_process_list = NULL;
860 /* Find process data for process PID. */
862 static struct arm_linux_process_info *
863 arm_linux_find_process_pid (pid_t pid)
865 struct arm_linux_process_info *proc;
867 for (proc = arm_linux_process_list; proc; proc = proc->next)
868 if (proc->pid == pid)
874 /* Add process data for process PID. Returns newly allocated info
877 static struct arm_linux_process_info *
878 arm_linux_add_process (pid_t pid)
880 struct arm_linux_process_info *proc;
882 proc = xcalloc (1, sizeof (*proc));
885 proc->next = arm_linux_process_list;
886 arm_linux_process_list = proc;
891 /* Get data specific info for process PID, creating it if necessary.
892 Never returns NULL. */
894 static struct arm_linux_process_info *
895 arm_linux_process_info_get (pid_t pid)
897 struct arm_linux_process_info *proc;
899 proc = arm_linux_find_process_pid (pid);
901 proc = arm_linux_add_process (pid);
906 /* Called whenever GDB is no longer debugging process PID. It deletes
907 data structures that keep track of debug register state. */
910 arm_linux_forget_process (pid_t pid)
912 struct arm_linux_process_info *proc, **proc_link;
914 proc = arm_linux_process_list;
915 proc_link = &arm_linux_process_list;
919 if (proc->pid == pid)
921 *proc_link = proc->next;
927 proc_link = &proc->next;
932 /* Get hardware break-/watchpoint state for process PID. */
934 static struct arm_linux_debug_reg_state *
935 arm_linux_get_debug_reg_state (pid_t pid)
937 return &arm_linux_process_info_get (pid)->state;
940 /* Initialize an ARM hardware break-/watch-point control register value.
941 BYTE_ADDRESS_SELECT is the mask of bytes to trigger on; HWBP_TYPE is the
942 type of break-/watch-point; ENABLE indicates whether the point is enabled.
944 static arm_hwbp_control_t
945 arm_hwbp_control_initialize (unsigned byte_address_select,
946 arm_hwbp_type hwbp_type,
949 gdb_assert ((byte_address_select & ~0xffU) == 0);
950 gdb_assert (hwbp_type != arm_hwbp_break
951 || ((byte_address_select & 0xfU) != 0));
953 return (byte_address_select << 5) | (hwbp_type << 3) | (3 << 1) | enable;
956 /* Does the breakpoint control value CONTROL have the enable bit set? */
958 arm_hwbp_control_is_enabled (arm_hwbp_control_t control)
960 return control & 0x1;
963 /* Change a breakpoint control word so that it is in the disabled state. */
964 static arm_hwbp_control_t
965 arm_hwbp_control_disable (arm_hwbp_control_t control)
967 return control & ~0x1;
970 /* Initialise the hardware breakpoint structure P. The breakpoint will be
971 enabled, and will point to the placed address of BP_TGT. */
973 arm_linux_hw_breakpoint_initialize (struct gdbarch *gdbarch,
974 struct bp_target_info *bp_tgt,
975 struct arm_linux_hw_breakpoint *p)
978 CORE_ADDR address = bp_tgt->placed_address = bp_tgt->reqstd_address;
980 /* We have to create a mask for the control register which says which bits
981 of the word pointed to by address to break on. */
982 if (arm_pc_is_thumb (gdbarch, address))
993 p->address = (unsigned int) address;
994 p->control = arm_hwbp_control_initialize (mask, arm_hwbp_break, 1);
997 /* Get the ARM hardware breakpoint type from the RW value we're given when
998 asked to set a watchpoint. */
1000 arm_linux_get_hwbp_type (int rw)
1003 return arm_hwbp_load;
1004 else if (rw == hw_write)
1005 return arm_hwbp_store;
1007 return arm_hwbp_access;
1010 /* Initialize the hardware breakpoint structure P for a watchpoint at ADDR
1011 to LEN. The type of watchpoint is given in RW. */
1013 arm_linux_hw_watchpoint_initialize (CORE_ADDR addr, int len, int rw,
1014 struct arm_linux_hw_breakpoint *p)
1016 const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap ();
1019 gdb_assert (cap != NULL);
1020 gdb_assert (cap->max_wp_length != 0);
1022 mask = (1 << len) - 1;
1024 p->address = (unsigned int) addr;
1025 p->control = arm_hwbp_control_initialize (mask,
1026 arm_linux_get_hwbp_type (rw), 1);
1029 /* Are two break-/watch-points equal? */
1031 arm_linux_hw_breakpoint_equal (const struct arm_linux_hw_breakpoint *p1,
1032 const struct arm_linux_hw_breakpoint *p2)
1034 return p1->address == p2->address && p1->control == p2->control;
1037 /* Callback to mark a watch-/breakpoint to be updated in all threads of
1038 the current process. */
1040 struct update_registers_data
1047 update_registers_callback (struct lwp_info *lwp, void *arg)
1049 struct update_registers_data *data = (struct update_registers_data *) arg;
1051 if (lwp->arch_private == NULL)
1052 lwp->arch_private = XCNEW (struct arch_lwp_info);
1054 /* The actual update is done later just before resuming the lwp,
1055 we just mark that the registers need updating. */
1057 lwp->arch_private->wpts_changed[data->index] = 1;
1059 lwp->arch_private->bpts_changed[data->index] = 1;
1061 /* If the lwp isn't stopped, force it to momentarily pause, so
1062 we can update its breakpoint registers. */
1064 linux_stop_lwp (lwp);
1069 /* Insert the hardware breakpoint (WATCHPOINT = 0) or watchpoint (WATCHPOINT
1070 =1) BPT for thread TID. */
1072 arm_linux_insert_hw_breakpoint1 (const struct arm_linux_hw_breakpoint* bpt,
1078 struct arm_linux_hw_breakpoint* bpts;
1079 struct update_registers_data data;
1081 pid = ptid_get_pid (inferior_ptid);
1082 pid_ptid = pid_to_ptid (pid);
1086 count = arm_linux_get_hw_watchpoint_count ();
1087 bpts = arm_linux_get_debug_reg_state (pid)->wpts;
1091 count = arm_linux_get_hw_breakpoint_count ();
1092 bpts = arm_linux_get_debug_reg_state (pid)->bpts;
1095 for (i = 0; i < count; ++i)
1096 if (!arm_hwbp_control_is_enabled (bpts[i].control))
1098 data.watch = watchpoint;
1101 iterate_over_lwps (pid_ptid, update_registers_callback, &data);
1105 gdb_assert (i != count);
1108 /* Remove the hardware breakpoint (WATCHPOINT = 0) or watchpoint
1109 (WATCHPOINT = 1) BPT for thread TID. */
1111 arm_linux_remove_hw_breakpoint1 (const struct arm_linux_hw_breakpoint *bpt,
1117 struct arm_linux_hw_breakpoint* bpts;
1118 struct update_registers_data data;
1120 pid = ptid_get_pid (inferior_ptid);
1121 pid_ptid = pid_to_ptid (pid);
1125 count = arm_linux_get_hw_watchpoint_count ();
1126 bpts = arm_linux_get_debug_reg_state (pid)->wpts;
1130 count = arm_linux_get_hw_breakpoint_count ();
1131 bpts = arm_linux_get_debug_reg_state (pid)->bpts;
1134 for (i = 0; i < count; ++i)
1135 if (arm_linux_hw_breakpoint_equal (bpt, bpts + i))
1137 data.watch = watchpoint;
1139 bpts[i].control = arm_hwbp_control_disable (bpts[i].control);
1140 iterate_over_lwps (pid_ptid, update_registers_callback, &data);
1144 gdb_assert (i != count);
1147 /* Insert a Hardware breakpoint. */
1149 arm_linux_insert_hw_breakpoint (struct target_ops *self,
1150 struct gdbarch *gdbarch,
1151 struct bp_target_info *bp_tgt)
1153 struct lwp_info *lp;
1154 struct arm_linux_hw_breakpoint p;
1156 if (arm_linux_get_hw_breakpoint_count () == 0)
1159 arm_linux_hw_breakpoint_initialize (gdbarch, bp_tgt, &p);
1161 arm_linux_insert_hw_breakpoint1 (&p, 0);
1166 /* Remove a hardware breakpoint. */
1168 arm_linux_remove_hw_breakpoint (struct target_ops *self,
1169 struct gdbarch *gdbarch,
1170 struct bp_target_info *bp_tgt)
1172 struct lwp_info *lp;
1173 struct arm_linux_hw_breakpoint p;
1175 if (arm_linux_get_hw_breakpoint_count () == 0)
1178 arm_linux_hw_breakpoint_initialize (gdbarch, bp_tgt, &p);
1180 arm_linux_remove_hw_breakpoint1 (&p, 0);
1185 /* Are we able to use a hardware watchpoint for the LEN bytes starting at
1188 arm_linux_region_ok_for_hw_watchpoint (struct target_ops *self,
1189 CORE_ADDR addr, int len)
1191 const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap ();
1192 CORE_ADDR max_wp_length, aligned_addr;
1194 /* Can not set watchpoints for zero or negative lengths. */
1198 /* Need to be able to use the ptrace interface. */
1199 if (cap == NULL || cap->wp_count == 0)
1202 /* Test that the range [ADDR, ADDR + LEN) fits into the largest address
1203 range covered by a watchpoint. */
1204 max_wp_length = (CORE_ADDR)cap->max_wp_length;
1205 aligned_addr = addr & ~(max_wp_length - 1);
1207 if (aligned_addr + max_wp_length < addr + len)
1210 /* The current ptrace interface can only handle watchpoints that are a
1212 if ((len & (len - 1)) != 0)
1215 /* All tests passed so we must be able to set a watchpoint. */
1219 /* Insert a Hardware breakpoint. */
1221 arm_linux_insert_watchpoint (struct target_ops *self,
1222 CORE_ADDR addr, int len, int rw,
1223 struct expression *cond)
1225 struct lwp_info *lp;
1226 struct arm_linux_hw_breakpoint p;
1228 if (arm_linux_get_hw_watchpoint_count () == 0)
1231 arm_linux_hw_watchpoint_initialize (addr, len, rw, &p);
1233 arm_linux_insert_hw_breakpoint1 (&p, 1);
1238 /* Remove a hardware breakpoint. */
1240 arm_linux_remove_watchpoint (struct target_ops *self,
1241 CORE_ADDR addr, int len, int rw,
1242 struct expression *cond)
1244 struct lwp_info *lp;
1245 struct arm_linux_hw_breakpoint p;
1247 if (arm_linux_get_hw_watchpoint_count () == 0)
1250 arm_linux_hw_watchpoint_initialize (addr, len, rw, &p);
1252 arm_linux_remove_hw_breakpoint1 (&p, 1);
1257 /* What was the data address the target was stopped on accessing. */
1259 arm_linux_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
1264 if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
1267 /* This must be a hardware breakpoint. */
1268 if (siginfo.si_signo != SIGTRAP
1269 || (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
1272 /* We must be able to set hardware watchpoints. */
1273 if (arm_linux_get_hw_watchpoint_count () == 0)
1276 slot = siginfo.si_errno;
1278 /* If we are in a positive slot then we're looking at a breakpoint and not
1283 *addr_p = (CORE_ADDR) (uintptr_t) siginfo.si_addr;
1287 /* Has the target been stopped by hitting a watchpoint? */
1289 arm_linux_stopped_by_watchpoint (struct target_ops *ops)
1292 return arm_linux_stopped_data_address (ops, &addr);
1296 arm_linux_watchpoint_addr_within_range (struct target_ops *target,
1298 CORE_ADDR start, int length)
1300 return start <= addr && start + length - 1 >= addr;
1303 /* Handle thread creation. We need to copy the breakpoints and watchpoints
1304 in the parent thread to the child thread. */
1306 arm_linux_new_thread (struct lwp_info *lp)
1309 struct arch_lwp_info *info = XCNEW (struct arch_lwp_info);
1311 /* Mark that all the hardware breakpoint/watchpoint register pairs
1312 for this thread need to be initialized. */
1314 for (i = 0; i < MAX_BPTS; i++)
1316 info->bpts_changed[i] = 1;
1317 info->wpts_changed[i] = 1;
1320 lp->arch_private = info;
1323 /* Called when resuming a thread.
1324 The hardware debug registers are updated when there is any change. */
1327 arm_linux_prepare_to_resume (struct lwp_info *lwp)
1330 struct arm_linux_hw_breakpoint *bpts, *wpts;
1331 struct arch_lwp_info *arm_lwp_info = lwp->arch_private;
1333 pid = ptid_get_lwp (lwp->ptid);
1334 bpts = arm_linux_get_debug_reg_state (ptid_get_pid (lwp->ptid))->bpts;
1335 wpts = arm_linux_get_debug_reg_state (ptid_get_pid (lwp->ptid))->wpts;
1337 /* NULL means this is the main thread still going through the shell,
1338 or, no watchpoint has been set yet. In that case, there's
1340 if (arm_lwp_info == NULL)
1343 for (i = 0; i < arm_linux_get_hw_breakpoint_count (); i++)
1344 if (arm_lwp_info->bpts_changed[i])
1347 if (arm_hwbp_control_is_enabled (bpts[i].control))
1348 if (ptrace (PTRACE_SETHBPREGS, pid,
1349 (PTRACE_TYPE_ARG3) ((i << 1) + 1), &bpts[i].address) < 0)
1350 perror_with_name (_("Unexpected error setting breakpoint"));
1352 if (bpts[i].control != 0)
1353 if (ptrace (PTRACE_SETHBPREGS, pid,
1354 (PTRACE_TYPE_ARG3) ((i << 1) + 2), &bpts[i].control) < 0)
1355 perror_with_name (_("Unexpected error setting breakpoint"));
1357 arm_lwp_info->bpts_changed[i] = 0;
1360 for (i = 0; i < arm_linux_get_hw_watchpoint_count (); i++)
1361 if (arm_lwp_info->wpts_changed[i])
1364 if (arm_hwbp_control_is_enabled (wpts[i].control))
1365 if (ptrace (PTRACE_SETHBPREGS, pid,
1366 (PTRACE_TYPE_ARG3) -((i << 1) + 1), &wpts[i].address) < 0)
1367 perror_with_name (_("Unexpected error setting watchpoint"));
1369 if (wpts[i].control != 0)
1370 if (ptrace (PTRACE_SETHBPREGS, pid,
1371 (PTRACE_TYPE_ARG3) -((i << 1) + 2), &wpts[i].control) < 0)
1372 perror_with_name (_("Unexpected error setting watchpoint"));
1374 arm_lwp_info->wpts_changed[i] = 0;
1378 /* linux_nat_new_fork hook. */
1381 arm_linux_new_fork (struct lwp_info *parent, pid_t child_pid)
1384 struct arm_linux_debug_reg_state *parent_state;
1385 struct arm_linux_debug_reg_state *child_state;
1387 /* NULL means no watchpoint has ever been set in the parent. In
1388 that case, there's nothing to do. */
1389 if (parent->arch_private == NULL)
1392 /* GDB core assumes the child inherits the watchpoints/hw
1393 breakpoints of the parent, and will remove them all from the
1394 forked off process. Copy the debug registers mirrors into the
1395 new process so that all breakpoints and watchpoints can be
1396 removed together. */
1398 parent_pid = ptid_get_pid (parent->ptid);
1399 parent_state = arm_linux_get_debug_reg_state (parent_pid);
1400 child_state = arm_linux_get_debug_reg_state (child_pid);
1401 *child_state = *parent_state;
1404 void _initialize_arm_linux_nat (void);
1407 _initialize_arm_linux_nat (void)
1409 struct target_ops *t;
1411 /* Fill in the generic GNU/Linux methods. */
1412 t = linux_target ();
1414 /* Add our register access methods. */
1415 t->to_fetch_registers = arm_linux_fetch_inferior_registers;
1416 t->to_store_registers = arm_linux_store_inferior_registers;
1418 /* Add our hardware breakpoint and watchpoint implementation. */
1419 t->to_can_use_hw_breakpoint = arm_linux_can_use_hw_breakpoint;
1420 t->to_insert_hw_breakpoint = arm_linux_insert_hw_breakpoint;
1421 t->to_remove_hw_breakpoint = arm_linux_remove_hw_breakpoint;
1422 t->to_region_ok_for_hw_watchpoint = arm_linux_region_ok_for_hw_watchpoint;
1423 t->to_insert_watchpoint = arm_linux_insert_watchpoint;
1424 t->to_remove_watchpoint = arm_linux_remove_watchpoint;
1425 t->to_stopped_by_watchpoint = arm_linux_stopped_by_watchpoint;
1426 t->to_stopped_data_address = arm_linux_stopped_data_address;
1427 t->to_watchpoint_addr_within_range = arm_linux_watchpoint_addr_within_range;
1429 t->to_read_description = arm_linux_read_description;
1431 /* Register the target. */
1432 linux_nat_add_target (t);
1434 /* Handle thread creation and exit. */
1435 linux_nat_set_new_thread (t, arm_linux_new_thread);
1436 linux_nat_set_prepare_to_resume (t, arm_linux_prepare_to_resume);
1438 /* Handle process creation and exit. */
1439 linux_nat_set_new_fork (t, arm_linux_new_fork);
1440 linux_nat_set_forget_process (t, arm_linux_forget_process);