Change to_xfer_partial 'len' type to ULONGEST.
[platform/upstream/binutils.git] / gdb / arm-linux-nat.c
1 /* GNU/Linux on ARM native support.
2    Copyright (C) 1999-2014 Free Software Foundation, Inc.
3
4    This file is part of GDB.
5
6    This program is free software; you can redistribute it and/or modify
7    it under the terms of the GNU General Public License as published by
8    the Free Software Foundation; either version 3 of the License, or
9    (at your option) any later version.
10
11    This program is distributed in the hope that it will be useful,
12    but WITHOUT ANY WARRANTY; without even the implied warranty of
13    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14    GNU General Public License for more details.
15
16    You should have received a copy of the GNU General Public License
17    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
18
19 #include "defs.h"
20 #include "inferior.h"
21 #include "gdbcore.h"
22 #include <string.h>
23 #include "regcache.h"
24 #include "target.h"
25 #include "linux-nat.h"
26 #include "target-descriptions.h"
27 #include "auxv.h"
28 #include "observer.h"
29 #include "gdbthread.h"
30
31 #include "arm-tdep.h"
32 #include "arm-linux-tdep.h"
33
34 #include <elf/common.h>
35 #include <sys/user.h>
36 #include <sys/ptrace.h>
37 #include <sys/utsname.h>
38 #include <sys/procfs.h>
39
40 /* Prototypes for supply_gregset etc.  */
41 #include "gregset.h"
42
43 /* Defines ps_err_e, struct ps_prochandle.  */
44 #include "gdb_proc_service.h"
45
46 #ifndef PTRACE_GET_THREAD_AREA
47 #define PTRACE_GET_THREAD_AREA 22
48 #endif
49
50 #ifndef PTRACE_GETWMMXREGS
51 #define PTRACE_GETWMMXREGS 18
52 #define PTRACE_SETWMMXREGS 19
53 #endif
54
55 #ifndef PTRACE_GETVFPREGS
56 #define PTRACE_GETVFPREGS 27
57 #define PTRACE_SETVFPREGS 28
58 #endif
59
60 #ifndef PTRACE_GETHBPREGS
61 #define PTRACE_GETHBPREGS 29
62 #define PTRACE_SETHBPREGS 30
63 #endif
64
65 /* A flag for whether the WMMX registers are available.  */
66 static int arm_linux_has_wmmx_registers;
67
68 /* The number of 64-bit VFP registers we have (expect this to be 0,
69    16, or 32).  */
70 static int arm_linux_vfp_register_count;
71
72 extern int arm_apcs_32;
73
74 /* On GNU/Linux, threads are implemented as pseudo-processes, in which
75    case we may be tracing more than one process at a time.  In that
76    case, inferior_ptid will contain the main process ID and the
77    individual thread (process) ID.  get_thread_id () is used to get
78    the thread id if it's available, and the process id otherwise.  */
79
80 static int
81 get_thread_id (ptid_t ptid)
82 {
83   int tid = ptid_get_lwp (ptid);
84   if (0 == tid)
85     tid = ptid_get_pid (ptid);
86   return tid;
87 }
88
89 #define GET_THREAD_ID(PTID)     get_thread_id (PTID)
90
91 /* Get the value of a particular register from the floating point
92    state of the process and store it into regcache.  */
93
94 static void
95 fetch_fpregister (struct regcache *regcache, int regno)
96 {
97   int ret, tid;
98   gdb_byte fp[ARM_LINUX_SIZEOF_NWFPE];
99   
100   /* Get the thread id for the ptrace call.  */
101   tid = GET_THREAD_ID (inferior_ptid);
102
103   /* Read the floating point state.  */
104   ret = ptrace (PT_GETFPREGS, tid, 0, fp);
105   if (ret < 0)
106     {
107       warning (_("Unable to fetch floating point register."));
108       return;
109     }
110
111   /* Fetch fpsr.  */
112   if (ARM_FPS_REGNUM == regno)
113     regcache_raw_supply (regcache, ARM_FPS_REGNUM,
114                          fp + NWFPE_FPSR_OFFSET);
115
116   /* Fetch the floating point register.  */
117   if (regno >= ARM_F0_REGNUM && regno <= ARM_F7_REGNUM)
118     supply_nwfpe_register (regcache, regno, fp);
119 }
120
121 /* Get the whole floating point state of the process and store it
122    into regcache.  */
123
124 static void
125 fetch_fpregs (struct regcache *regcache)
126 {
127   int ret, regno, tid;
128   gdb_byte fp[ARM_LINUX_SIZEOF_NWFPE];
129
130   /* Get the thread id for the ptrace call.  */
131   tid = GET_THREAD_ID (inferior_ptid);
132   
133   /* Read the floating point state.  */
134   ret = ptrace (PT_GETFPREGS, tid, 0, fp);
135   if (ret < 0)
136     {
137       warning (_("Unable to fetch the floating point registers."));
138       return;
139     }
140
141   /* Fetch fpsr.  */
142   regcache_raw_supply (regcache, ARM_FPS_REGNUM,
143                        fp + NWFPE_FPSR_OFFSET);
144
145   /* Fetch the floating point registers.  */
146   for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
147     supply_nwfpe_register (regcache, regno, fp);
148 }
149
150 /* Save a particular register into the floating point state of the
151    process using the contents from regcache.  */
152
153 static void
154 store_fpregister (const struct regcache *regcache, int regno)
155 {
156   int ret, tid;
157   gdb_byte fp[ARM_LINUX_SIZEOF_NWFPE];
158
159   /* Get the thread id for the ptrace call.  */
160   tid = GET_THREAD_ID (inferior_ptid);
161   
162   /* Read the floating point state.  */
163   ret = ptrace (PT_GETFPREGS, tid, 0, fp);
164   if (ret < 0)
165     {
166       warning (_("Unable to fetch the floating point registers."));
167       return;
168     }
169
170   /* Store fpsr.  */
171   if (ARM_FPS_REGNUM == regno
172       && REG_VALID == regcache_register_status (regcache, ARM_FPS_REGNUM))
173     regcache_raw_collect (regcache, ARM_FPS_REGNUM, fp + NWFPE_FPSR_OFFSET);
174
175   /* Store the floating point register.  */
176   if (regno >= ARM_F0_REGNUM && regno <= ARM_F7_REGNUM)
177     collect_nwfpe_register (regcache, regno, fp);
178
179   ret = ptrace (PTRACE_SETFPREGS, tid, 0, fp);
180   if (ret < 0)
181     {
182       warning (_("Unable to store floating point register."));
183       return;
184     }
185 }
186
187 /* Save the whole floating point state of the process using
188    the contents from regcache.  */
189
190 static void
191 store_fpregs (const struct regcache *regcache)
192 {
193   int ret, regno, tid;
194   gdb_byte fp[ARM_LINUX_SIZEOF_NWFPE];
195
196   /* Get the thread id for the ptrace call.  */
197   tid = GET_THREAD_ID (inferior_ptid);
198   
199   /* Read the floating point state.  */
200   ret = ptrace (PT_GETFPREGS, tid, 0, fp);
201   if (ret < 0)
202     {
203       warning (_("Unable to fetch the floating point registers."));
204       return;
205     }
206
207   /* Store fpsr.  */
208   if (REG_VALID == regcache_register_status (regcache, ARM_FPS_REGNUM))
209     regcache_raw_collect (regcache, ARM_FPS_REGNUM, fp + NWFPE_FPSR_OFFSET);
210
211   /* Store the floating point registers.  */
212   for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
213     if (REG_VALID == regcache_register_status (regcache, regno))
214       collect_nwfpe_register (regcache, regno, fp);
215
216   ret = ptrace (PTRACE_SETFPREGS, tid, 0, fp);
217   if (ret < 0)
218     {
219       warning (_("Unable to store floating point registers."));
220       return;
221     }
222 }
223
224 /* Fetch a general register of the process and store into
225    regcache.  */
226
227 static void
228 fetch_register (struct regcache *regcache, int regno)
229 {
230   int ret, tid;
231   elf_gregset_t regs;
232
233   /* Get the thread id for the ptrace call.  */
234   tid = GET_THREAD_ID (inferior_ptid);
235   
236   ret = ptrace (PTRACE_GETREGS, tid, 0, &regs);
237   if (ret < 0)
238     {
239       warning (_("Unable to fetch general register."));
240       return;
241     }
242
243   if (regno >= ARM_A1_REGNUM && regno < ARM_PC_REGNUM)
244     regcache_raw_supply (regcache, regno, (char *) &regs[regno]);
245
246   if (ARM_PS_REGNUM == regno)
247     {
248       if (arm_apcs_32)
249         regcache_raw_supply (regcache, ARM_PS_REGNUM,
250                              (char *) &regs[ARM_CPSR_GREGNUM]);
251       else
252         regcache_raw_supply (regcache, ARM_PS_REGNUM,
253                              (char *) &regs[ARM_PC_REGNUM]);
254     }
255     
256   if (ARM_PC_REGNUM == regno)
257     { 
258       regs[ARM_PC_REGNUM] = gdbarch_addr_bits_remove
259                               (get_regcache_arch (regcache),
260                                regs[ARM_PC_REGNUM]);
261       regcache_raw_supply (regcache, ARM_PC_REGNUM,
262                            (char *) &regs[ARM_PC_REGNUM]);
263     }
264 }
265
266 /* Fetch all general registers of the process and store into
267    regcache.  */
268
269 static void
270 fetch_regs (struct regcache *regcache)
271 {
272   int ret, regno, tid;
273   elf_gregset_t regs;
274
275   /* Get the thread id for the ptrace call.  */
276   tid = GET_THREAD_ID (inferior_ptid);
277   
278   ret = ptrace (PTRACE_GETREGS, tid, 0, &regs);
279   if (ret < 0)
280     {
281       warning (_("Unable to fetch general registers."));
282       return;
283     }
284
285   for (regno = ARM_A1_REGNUM; regno < ARM_PC_REGNUM; regno++)
286     regcache_raw_supply (regcache, regno, (char *) &regs[regno]);
287
288   if (arm_apcs_32)
289     regcache_raw_supply (regcache, ARM_PS_REGNUM,
290                          (char *) &regs[ARM_CPSR_GREGNUM]);
291   else
292     regcache_raw_supply (regcache, ARM_PS_REGNUM,
293                          (char *) &regs[ARM_PC_REGNUM]);
294
295   regs[ARM_PC_REGNUM] = gdbarch_addr_bits_remove
296                           (get_regcache_arch (regcache), regs[ARM_PC_REGNUM]);
297   regcache_raw_supply (regcache, ARM_PC_REGNUM,
298                        (char *) &regs[ARM_PC_REGNUM]);
299 }
300
301 /* Store all general registers of the process from the values in
302    regcache.  */
303
304 static void
305 store_register (const struct regcache *regcache, int regno)
306 {
307   int ret, tid;
308   elf_gregset_t regs;
309   
310   if (REG_VALID != regcache_register_status (regcache, regno))
311     return;
312
313   /* Get the thread id for the ptrace call.  */
314   tid = GET_THREAD_ID (inferior_ptid);
315   
316   /* Get the general registers from the process.  */
317   ret = ptrace (PTRACE_GETREGS, tid, 0, &regs);
318   if (ret < 0)
319     {
320       warning (_("Unable to fetch general registers."));
321       return;
322     }
323
324   if (regno >= ARM_A1_REGNUM && regno <= ARM_PC_REGNUM)
325     regcache_raw_collect (regcache, regno, (char *) &regs[regno]);
326   else if (arm_apcs_32 && regno == ARM_PS_REGNUM)
327     regcache_raw_collect (regcache, regno,
328                          (char *) &regs[ARM_CPSR_GREGNUM]);
329   else if (!arm_apcs_32 && regno == ARM_PS_REGNUM)
330     regcache_raw_collect (regcache, ARM_PC_REGNUM,
331                          (char *) &regs[ARM_PC_REGNUM]);
332
333   ret = ptrace (PTRACE_SETREGS, tid, 0, &regs);
334   if (ret < 0)
335     {
336       warning (_("Unable to store general register."));
337       return;
338     }
339 }
340
341 static void
342 store_regs (const struct regcache *regcache)
343 {
344   int ret, regno, tid;
345   elf_gregset_t regs;
346
347   /* Get the thread id for the ptrace call.  */
348   tid = GET_THREAD_ID (inferior_ptid);
349   
350   /* Fetch the general registers.  */
351   ret = ptrace (PTRACE_GETREGS, tid, 0, &regs);
352   if (ret < 0)
353     {
354       warning (_("Unable to fetch general registers."));
355       return;
356     }
357
358   for (regno = ARM_A1_REGNUM; regno <= ARM_PC_REGNUM; regno++)
359     {
360       if (REG_VALID == regcache_register_status (regcache, regno))
361         regcache_raw_collect (regcache, regno, (char *) &regs[regno]);
362     }
363
364   if (arm_apcs_32 && REG_VALID == regcache_register_status (regcache, ARM_PS_REGNUM))
365     regcache_raw_collect (regcache, ARM_PS_REGNUM,
366                          (char *) &regs[ARM_CPSR_GREGNUM]);
367
368   ret = ptrace (PTRACE_SETREGS, tid, 0, &regs);
369
370   if (ret < 0)
371     {
372       warning (_("Unable to store general registers."));
373       return;
374     }
375 }
376
377 /* Fetch all WMMX registers of the process and store into
378    regcache.  */
379
380 #define IWMMXT_REGS_SIZE (16 * 8 + 6 * 4)
381
382 static void
383 fetch_wmmx_regs (struct regcache *regcache)
384 {
385   char regbuf[IWMMXT_REGS_SIZE];
386   int ret, regno, tid;
387
388   /* Get the thread id for the ptrace call.  */
389   tid = GET_THREAD_ID (inferior_ptid);
390
391   ret = ptrace (PTRACE_GETWMMXREGS, tid, 0, regbuf);
392   if (ret < 0)
393     {
394       warning (_("Unable to fetch WMMX registers."));
395       return;
396     }
397
398   for (regno = 0; regno < 16; regno++)
399     regcache_raw_supply (regcache, regno + ARM_WR0_REGNUM,
400                          &regbuf[regno * 8]);
401
402   for (regno = 0; regno < 2; regno++)
403     regcache_raw_supply (regcache, regno + ARM_WCSSF_REGNUM,
404                          &regbuf[16 * 8 + regno * 4]);
405
406   for (regno = 0; regno < 4; regno++)
407     regcache_raw_supply (regcache, regno + ARM_WCGR0_REGNUM,
408                          &regbuf[16 * 8 + 2 * 4 + regno * 4]);
409 }
410
411 static void
412 store_wmmx_regs (const struct regcache *regcache)
413 {
414   char regbuf[IWMMXT_REGS_SIZE];
415   int ret, regno, tid;
416
417   /* Get the thread id for the ptrace call.  */
418   tid = GET_THREAD_ID (inferior_ptid);
419
420   ret = ptrace (PTRACE_GETWMMXREGS, tid, 0, regbuf);
421   if (ret < 0)
422     {
423       warning (_("Unable to fetch WMMX registers."));
424       return;
425     }
426
427   for (regno = 0; regno < 16; regno++)
428     if (REG_VALID == regcache_register_status (regcache,
429                                                regno + ARM_WR0_REGNUM))
430       regcache_raw_collect (regcache, regno + ARM_WR0_REGNUM,
431                             &regbuf[regno * 8]);
432
433   for (regno = 0; regno < 2; regno++)
434     if (REG_VALID == regcache_register_status (regcache,
435                                                regno + ARM_WCSSF_REGNUM))
436       regcache_raw_collect (regcache, regno + ARM_WCSSF_REGNUM,
437                             &regbuf[16 * 8 + regno * 4]);
438
439   for (regno = 0; regno < 4; regno++)
440     if (REG_VALID == regcache_register_status (regcache,
441                                                regno + ARM_WCGR0_REGNUM))
442       regcache_raw_collect (regcache, regno + ARM_WCGR0_REGNUM,
443                             &regbuf[16 * 8 + 2 * 4 + regno * 4]);
444
445   ret = ptrace (PTRACE_SETWMMXREGS, tid, 0, regbuf);
446
447   if (ret < 0)
448     {
449       warning (_("Unable to store WMMX registers."));
450       return;
451     }
452 }
453
454 /* Fetch and store VFP Registers.  The kernel object has space for 32
455    64-bit registers, and the FPSCR.  This is even when on a VFPv2 or
456    VFPv3D16 target.  */
457 #define VFP_REGS_SIZE (32 * 8 + 4)
458
459 static void
460 fetch_vfp_regs (struct regcache *regcache)
461 {
462   char regbuf[VFP_REGS_SIZE];
463   int ret, regno, tid;
464
465   /* Get the thread id for the ptrace call.  */
466   tid = GET_THREAD_ID (inferior_ptid);
467
468   ret = ptrace (PTRACE_GETVFPREGS, tid, 0, regbuf);
469   if (ret < 0)
470     {
471       warning (_("Unable to fetch VFP registers."));
472       return;
473     }
474
475   for (regno = 0; regno < arm_linux_vfp_register_count; regno++)
476     regcache_raw_supply (regcache, regno + ARM_D0_REGNUM,
477                          (char *) regbuf + regno * 8);
478
479   regcache_raw_supply (regcache, ARM_FPSCR_REGNUM,
480                        (char *) regbuf + 32 * 8);
481 }
482
483 static void
484 store_vfp_regs (const struct regcache *regcache)
485 {
486   char regbuf[VFP_REGS_SIZE];
487   int ret, regno, tid;
488
489   /* Get the thread id for the ptrace call.  */
490   tid = GET_THREAD_ID (inferior_ptid);
491
492   ret = ptrace (PTRACE_GETVFPREGS, tid, 0, regbuf);
493   if (ret < 0)
494     {
495       warning (_("Unable to fetch VFP registers (for update)."));
496       return;
497     }
498
499   for (regno = 0; regno < arm_linux_vfp_register_count; regno++)
500     regcache_raw_collect (regcache, regno + ARM_D0_REGNUM,
501                           (char *) regbuf + regno * 8);
502
503   regcache_raw_collect (regcache, ARM_FPSCR_REGNUM,
504                         (char *) regbuf + 32 * 8);
505
506   ret = ptrace (PTRACE_SETVFPREGS, tid, 0, regbuf);
507
508   if (ret < 0)
509     {
510       warning (_("Unable to store VFP registers."));
511       return;
512     }
513 }
514
515 /* Fetch registers from the child process.  Fetch all registers if
516    regno == -1, otherwise fetch all general registers or all floating
517    point registers depending upon the value of regno.  */
518
519 static void
520 arm_linux_fetch_inferior_registers (struct target_ops *ops,
521                                     struct regcache *regcache, int regno)
522 {
523   if (-1 == regno)
524     {
525       fetch_regs (regcache);
526       fetch_fpregs (regcache);
527       if (arm_linux_has_wmmx_registers)
528         fetch_wmmx_regs (regcache);
529       if (arm_linux_vfp_register_count > 0)
530         fetch_vfp_regs (regcache);
531     }
532   else 
533     {
534       if (regno < ARM_F0_REGNUM || regno == ARM_PS_REGNUM)
535         fetch_register (regcache, regno);
536       else if (regno >= ARM_F0_REGNUM && regno <= ARM_FPS_REGNUM)
537         fetch_fpregister (regcache, regno);
538       else if (arm_linux_has_wmmx_registers
539                && regno >= ARM_WR0_REGNUM && regno <= ARM_WCGR7_REGNUM)
540         fetch_wmmx_regs (regcache);
541       else if (arm_linux_vfp_register_count > 0
542                && regno >= ARM_D0_REGNUM
543                && regno <= ARM_D0_REGNUM + arm_linux_vfp_register_count)
544         fetch_vfp_regs (regcache);
545     }
546 }
547
548 /* Store registers back into the inferior.  Store all registers if
549    regno == -1, otherwise store all general registers or all floating
550    point registers depending upon the value of regno.  */
551
552 static void
553 arm_linux_store_inferior_registers (struct target_ops *ops,
554                                     struct regcache *regcache, int regno)
555 {
556   if (-1 == regno)
557     {
558       store_regs (regcache);
559       store_fpregs (regcache);
560       if (arm_linux_has_wmmx_registers)
561         store_wmmx_regs (regcache);
562       if (arm_linux_vfp_register_count > 0)
563         store_vfp_regs (regcache);
564     }
565   else
566     {
567       if (regno < ARM_F0_REGNUM || regno == ARM_PS_REGNUM)
568         store_register (regcache, regno);
569       else if ((regno >= ARM_F0_REGNUM) && (regno <= ARM_FPS_REGNUM))
570         store_fpregister (regcache, regno);
571       else if (arm_linux_has_wmmx_registers
572                && regno >= ARM_WR0_REGNUM && regno <= ARM_WCGR7_REGNUM)
573         store_wmmx_regs (regcache);
574       else if (arm_linux_vfp_register_count > 0
575                && regno >= ARM_D0_REGNUM
576                && regno <= ARM_D0_REGNUM + arm_linux_vfp_register_count)
577         store_vfp_regs (regcache);
578     }
579 }
580
581 /* Wrapper functions for the standard regset handling, used by
582    thread debugging.  */
583
584 void
585 fill_gregset (const struct regcache *regcache,  
586               gdb_gregset_t *gregsetp, int regno)
587 {
588   arm_linux_collect_gregset (NULL, regcache, regno, gregsetp, 0);
589 }
590
591 void
592 supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp)
593 {
594   arm_linux_supply_gregset (NULL, regcache, -1, gregsetp, 0);
595 }
596
597 void
598 fill_fpregset (const struct regcache *regcache,
599                gdb_fpregset_t *fpregsetp, int regno)
600 {
601   arm_linux_collect_nwfpe (NULL, regcache, regno, fpregsetp, 0);
602 }
603
604 /* Fill GDB's register array with the floating-point register values
605    in *fpregsetp.  */
606
607 void
608 supply_fpregset (struct regcache *regcache, const gdb_fpregset_t *fpregsetp)
609 {
610   arm_linux_supply_nwfpe (NULL, regcache, -1, fpregsetp, 0);
611 }
612
613 /* Fetch the thread-local storage pointer for libthread_db.  */
614
615 ps_err_e
616 ps_get_thread_area (const struct ps_prochandle *ph,
617                     lwpid_t lwpid, int idx, void **base)
618 {
619   if (ptrace (PTRACE_GET_THREAD_AREA, lwpid, NULL, base) != 0)
620     return PS_ERR;
621
622   /* IDX is the bias from the thread pointer to the beginning of the
623      thread descriptor.  It has to be subtracted due to implementation
624      quirks in libthread_db.  */
625   *base = (void *) ((char *)*base - idx);
626
627   return PS_OK;
628 }
629
630 static const struct target_desc *
631 arm_linux_read_description (struct target_ops *ops)
632 {
633   CORE_ADDR arm_hwcap = 0;
634   arm_linux_has_wmmx_registers = 0;
635   arm_linux_vfp_register_count = 0;
636
637   if (target_auxv_search (ops, AT_HWCAP, &arm_hwcap) != 1)
638     {
639       return NULL;
640     }
641
642   if (arm_hwcap & HWCAP_IWMMXT)
643     {
644       arm_linux_has_wmmx_registers = 1;
645       return tdesc_arm_with_iwmmxt;
646     }
647
648   if (arm_hwcap & HWCAP_VFP)
649     {
650       int pid;
651       char *buf;
652       const struct target_desc * result = NULL;
653
654       /* NEON implies VFPv3-D32 or no-VFP unit.  Say that we only support
655          Neon with VFPv3-D32.  */
656       if (arm_hwcap & HWCAP_NEON)
657         {
658           arm_linux_vfp_register_count = 32;
659           result = tdesc_arm_with_neon;
660         }
661       else if ((arm_hwcap & (HWCAP_VFPv3 | HWCAP_VFPv3D16)) == HWCAP_VFPv3)
662         {
663           arm_linux_vfp_register_count = 32;
664           result = tdesc_arm_with_vfpv3;
665         }
666       else
667         {
668           arm_linux_vfp_register_count = 16;
669           result = tdesc_arm_with_vfpv2;
670         }
671
672       /* Now make sure that the kernel supports reading these
673          registers.  Support was added in 2.6.30.  */
674       pid = ptid_get_lwp (inferior_ptid);
675       errno = 0;
676       buf = alloca (VFP_REGS_SIZE);
677       if (ptrace (PTRACE_GETVFPREGS, pid, 0, buf) < 0
678           && errno == EIO)
679         result = NULL;
680
681       return result;
682     }
683
684   return NULL;
685 }
686
687 /* Information describing the hardware breakpoint capabilities.  */
688 struct arm_linux_hwbp_cap
689 {
690   gdb_byte arch;
691   gdb_byte max_wp_length;
692   gdb_byte wp_count;
693   gdb_byte bp_count;
694 };
695
696 /* Get hold of the Hardware Breakpoint information for the target we are
697    attached to.  Returns NULL if the kernel doesn't support Hardware 
698    breakpoints at all, or a pointer to the information structure.  */
699 static const struct arm_linux_hwbp_cap *
700 arm_linux_get_hwbp_cap (void)
701 {
702   /* The info structure we return.  */
703   static struct arm_linux_hwbp_cap info;
704
705   /* Is INFO in a good state?  -1 means that no attempt has been made to
706      initialize INFO; 0 means an attempt has been made, but it failed; 1
707      means INFO is in an initialized state.  */
708   static int available = -1;
709
710   if (available == -1)
711     {
712       int tid;
713       unsigned int val;
714
715       tid = GET_THREAD_ID (inferior_ptid);
716       if (ptrace (PTRACE_GETHBPREGS, tid, 0, &val) < 0)
717         available = 0;
718       else
719         {
720           info.arch = (gdb_byte)((val >> 24) & 0xff);
721           info.max_wp_length = (gdb_byte)((val >> 16) & 0xff);
722           info.wp_count = (gdb_byte)((val >> 8) & 0xff);
723           info.bp_count = (gdb_byte)(val & 0xff);
724           available = (info.arch != 0);
725         }
726     }
727
728   return available == 1 ? &info : NULL;
729 }
730
731 /* How many hardware breakpoints are available?  */
732 static int
733 arm_linux_get_hw_breakpoint_count (void)
734 {
735   const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap ();
736   return cap != NULL ? cap->bp_count : 0;
737 }
738
739 /* How many hardware watchpoints are available?  */
740 static int
741 arm_linux_get_hw_watchpoint_count (void)
742 {
743   const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap ();
744   return cap != NULL ? cap->wp_count : 0;
745 }
746
747 /* Have we got a free break-/watch-point available for use?  Returns -1 if
748    there is not an appropriate resource available, otherwise returns 1.  */
749 static int
750 arm_linux_can_use_hw_breakpoint (int type, int cnt, int ot)
751 {
752   if (type == bp_hardware_watchpoint || type == bp_read_watchpoint
753       || type == bp_access_watchpoint || type == bp_watchpoint)
754     {
755       if (cnt + ot > arm_linux_get_hw_watchpoint_count ())
756         return -1;
757     }
758   else if (type == bp_hardware_breakpoint)
759     {
760       if (cnt > arm_linux_get_hw_breakpoint_count ())
761         return -1;
762     }
763   else
764     gdb_assert (FALSE);
765
766   return 1;
767 }
768
769 /* Enum describing the different types of ARM hardware break-/watch-points.  */
770 typedef enum
771 {
772   arm_hwbp_break = 0,
773   arm_hwbp_load = 1,
774   arm_hwbp_store = 2,
775   arm_hwbp_access = 3
776 } arm_hwbp_type;
777
778 /* Type describing an ARM Hardware Breakpoint Control register value.  */
779 typedef unsigned int arm_hwbp_control_t;
780
781 /* Structure used to keep track of hardware break-/watch-points.  */
782 struct arm_linux_hw_breakpoint
783 {
784   /* Address to break on, or being watched.  */
785   unsigned int address;
786   /* Control register for break-/watch- point.  */
787   arm_hwbp_control_t control;
788 };
789
790 /* Structure containing arrays of the break and watch points which are have
791    active in each thread.
792
793    The Linux ptrace interface to hardware break-/watch-points presents the 
794    values in a vector centred around 0 (which is used fo generic information).
795    Positive indicies refer to breakpoint addresses/control registers, negative
796    indices to watchpoint addresses/control registers.
797
798    The Linux vector is indexed as follows:
799       -((i << 1) + 2): Control register for watchpoint i.
800       -((i << 1) + 1): Address register for watchpoint i.
801                     0: Information register.
802        ((i << 1) + 1): Address register for breakpoint i.
803        ((i << 1) + 2): Control register for breakpoint i.
804
805    This structure is used as a per-thread cache of the state stored by the 
806    kernel, so that we don't need to keep calling into the kernel to find a 
807    free breakpoint.
808
809    We treat break-/watch-points with their enable bit clear as being deleted.
810    */
811 typedef struct arm_linux_thread_points
812 {
813   /* Thread ID.  */
814   int tid;
815   /* Breakpoints for thread.  */
816   struct arm_linux_hw_breakpoint *bpts;
817   /* Watchpoint for threads.  */
818   struct arm_linux_hw_breakpoint *wpts;
819 } *arm_linux_thread_points_p;
820 DEF_VEC_P (arm_linux_thread_points_p);
821
822 /* Vector of hardware breakpoints for each thread.  */
823 VEC(arm_linux_thread_points_p) *arm_threads = NULL;
824
825 /* Find the list of hardware break-/watch-points for a thread with id TID.
826    If no list exists for TID we return NULL if ALLOC_NEW is 0, otherwise we
827    create a new list and return that.  */
828 static struct arm_linux_thread_points *
829 arm_linux_find_breakpoints_by_tid (int tid, int alloc_new)
830 {
831   int i;
832   struct arm_linux_thread_points *t;
833
834   for (i = 0; VEC_iterate (arm_linux_thread_points_p, arm_threads, i, t); ++i)
835     {
836       if (t->tid == tid)
837         return t;
838     }
839
840   t = NULL;
841
842   if (alloc_new)
843     {
844       t = xmalloc (sizeof (struct arm_linux_thread_points));
845       t->tid = tid;
846       t->bpts = xzalloc (arm_linux_get_hw_breakpoint_count ()
847                          * sizeof (struct arm_linux_hw_breakpoint));
848       t->wpts = xzalloc (arm_linux_get_hw_watchpoint_count ()
849                          * sizeof (struct arm_linux_hw_breakpoint));
850       VEC_safe_push (arm_linux_thread_points_p, arm_threads, t);
851     }
852
853   return t;
854 }
855
856 /* Initialize an ARM hardware break-/watch-point control register value.
857    BYTE_ADDRESS_SELECT is the mask of bytes to trigger on; HWBP_TYPE is the 
858    type of break-/watch-point; ENABLE indicates whether the point is enabled.
859    */
860 static arm_hwbp_control_t 
861 arm_hwbp_control_initialize (unsigned byte_address_select,
862                              arm_hwbp_type hwbp_type,
863                              int enable)
864 {
865   gdb_assert ((byte_address_select & ~0xffU) == 0);
866   gdb_assert (hwbp_type != arm_hwbp_break 
867               || ((byte_address_select & 0xfU) != 0));
868
869   return (byte_address_select << 5) | (hwbp_type << 3) | (3 << 1) | enable;
870 }
871
872 /* Does the breakpoint control value CONTROL have the enable bit set?  */
873 static int
874 arm_hwbp_control_is_enabled (arm_hwbp_control_t control)
875 {
876   return control & 0x1;
877 }
878
879 /* Change a breakpoint control word so that it is in the disabled state.  */
880 static arm_hwbp_control_t
881 arm_hwbp_control_disable (arm_hwbp_control_t control)
882 {
883   return control & ~0x1;
884 }
885
886 /* Initialise the hardware breakpoint structure P.  The breakpoint will be
887    enabled, and will point to the placed address of BP_TGT.  */
888 static void
889 arm_linux_hw_breakpoint_initialize (struct gdbarch *gdbarch,
890                                     struct bp_target_info *bp_tgt,
891                                     struct arm_linux_hw_breakpoint *p)
892 {
893   unsigned mask;
894   CORE_ADDR address = bp_tgt->placed_address;
895
896   /* We have to create a mask for the control register which says which bits
897      of the word pointed to by address to break on.  */
898   if (arm_pc_is_thumb (gdbarch, address))
899     {
900       mask = 0x3;
901       address &= ~1;
902     }
903   else
904     {
905       mask = 0xf;
906       address &= ~3;
907     }
908
909   p->address = (unsigned int) address;
910   p->control = arm_hwbp_control_initialize (mask, arm_hwbp_break, 1);
911 }
912
913 /* Get the ARM hardware breakpoint type from the RW value we're given when
914    asked to set a watchpoint.  */
915 static arm_hwbp_type 
916 arm_linux_get_hwbp_type (int rw)
917 {
918   if (rw == hw_read)
919     return arm_hwbp_load;
920   else if (rw == hw_write)
921     return arm_hwbp_store;
922   else
923     return arm_hwbp_access;
924 }
925
926 /* Initialize the hardware breakpoint structure P for a watchpoint at ADDR
927    to LEN.  The type of watchpoint is given in RW.  */
928 static void
929 arm_linux_hw_watchpoint_initialize (CORE_ADDR addr, int len, int rw,
930                                     struct arm_linux_hw_breakpoint *p)
931 {
932   const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap ();
933   unsigned mask;
934
935   gdb_assert (cap != NULL);
936   gdb_assert (cap->max_wp_length != 0);
937
938   mask = (1 << len) - 1;
939
940   p->address = (unsigned int) addr;
941   p->control = arm_hwbp_control_initialize (mask, 
942                                             arm_linux_get_hwbp_type (rw), 1);
943 }
944
945 /* Are two break-/watch-points equal?  */
946 static int
947 arm_linux_hw_breakpoint_equal (const struct arm_linux_hw_breakpoint *p1,
948                                const struct arm_linux_hw_breakpoint *p2)
949 {
950   return p1->address == p2->address && p1->control == p2->control;
951 }
952
953 /* Insert the hardware breakpoint (WATCHPOINT = 0) or watchpoint (WATCHPOINT
954    =1) BPT for thread TID.  */
955 static void
956 arm_linux_insert_hw_breakpoint1 (const struct arm_linux_hw_breakpoint* bpt, 
957                                 int tid, int watchpoint)
958 {
959   struct arm_linux_thread_points *t = arm_linux_find_breakpoints_by_tid (tid, 1);
960   gdb_byte count, i;
961   struct arm_linux_hw_breakpoint* bpts;
962   int dir;
963
964   gdb_assert (t != NULL);
965
966   if (watchpoint)
967     {
968       count = arm_linux_get_hw_watchpoint_count ();
969       bpts = t->wpts;
970       dir = -1;
971     }
972   else
973     {
974       count = arm_linux_get_hw_breakpoint_count ();
975       bpts = t->bpts;
976       dir = 1;
977     }
978
979   for (i = 0; i < count; ++i)
980     if (!arm_hwbp_control_is_enabled (bpts[i].control))
981       {
982         errno = 0;
983         if (ptrace (PTRACE_SETHBPREGS, tid, dir * ((i << 1) + 1), 
984                     &bpt->address) < 0)
985           perror_with_name (_("Unexpected error setting breakpoint address"));
986         if (ptrace (PTRACE_SETHBPREGS, tid, dir * ((i << 1) + 2), 
987                     &bpt->control) < 0)
988           perror_with_name (_("Unexpected error setting breakpoint"));
989
990         memcpy (bpts + i, bpt, sizeof (struct arm_linux_hw_breakpoint));
991         break;
992       }
993
994   gdb_assert (i != count);
995 }
996
997 /* Remove the hardware breakpoint (WATCHPOINT = 0) or watchpoint
998    (WATCHPOINT = 1) BPT for thread TID.  */
999 static void
1000 arm_linux_remove_hw_breakpoint1 (const struct arm_linux_hw_breakpoint *bpt, 
1001                                  int tid, int watchpoint)
1002 {
1003   struct arm_linux_thread_points *t = arm_linux_find_breakpoints_by_tid (tid, 0);
1004   gdb_byte count, i;
1005   struct arm_linux_hw_breakpoint *bpts;
1006   int dir;
1007
1008   gdb_assert (t != NULL);
1009
1010   if (watchpoint)
1011     {
1012       count = arm_linux_get_hw_watchpoint_count ();
1013       bpts = t->wpts;
1014       dir = -1;
1015     }
1016   else
1017     {
1018       count = arm_linux_get_hw_breakpoint_count ();
1019       bpts = t->bpts;
1020       dir = 1;
1021     }
1022
1023   for (i = 0; i < count; ++i)
1024     if (arm_linux_hw_breakpoint_equal (bpt, bpts + i))
1025       {
1026         errno = 0;
1027         bpts[i].control = arm_hwbp_control_disable (bpts[i].control);
1028         if (ptrace (PTRACE_SETHBPREGS, tid, dir * ((i << 1) + 2), 
1029                     &bpts[i].control) < 0)
1030           perror_with_name (_("Unexpected error clearing breakpoint"));
1031         break;
1032       }
1033
1034   gdb_assert (i != count);
1035 }
1036
1037 /* Insert a Hardware breakpoint.  */
1038 static int
1039 arm_linux_insert_hw_breakpoint (struct gdbarch *gdbarch, 
1040                                 struct bp_target_info *bp_tgt)
1041 {
1042   struct lwp_info *lp;
1043   struct arm_linux_hw_breakpoint p;
1044
1045   if (arm_linux_get_hw_breakpoint_count () == 0)
1046     return -1;
1047
1048   arm_linux_hw_breakpoint_initialize (gdbarch, bp_tgt, &p);
1049   ALL_LWPS (lp)
1050     arm_linux_insert_hw_breakpoint1 (&p, ptid_get_lwp (lp->ptid), 0);
1051
1052   return 0;
1053 }
1054
1055 /* Remove a hardware breakpoint.  */
1056 static int
1057 arm_linux_remove_hw_breakpoint (struct gdbarch *gdbarch, 
1058                                 struct bp_target_info *bp_tgt)
1059 {
1060   struct lwp_info *lp;
1061   struct arm_linux_hw_breakpoint p;
1062
1063   if (arm_linux_get_hw_breakpoint_count () == 0)
1064     return -1;
1065
1066   arm_linux_hw_breakpoint_initialize (gdbarch, bp_tgt, &p);
1067   ALL_LWPS (lp)
1068     arm_linux_remove_hw_breakpoint1 (&p, ptid_get_lwp (lp->ptid), 0);
1069
1070   return 0;
1071 }
1072
1073 /* Are we able to use a hardware watchpoint for the LEN bytes starting at 
1074    ADDR?  */
1075 static int
1076 arm_linux_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
1077 {
1078   const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap ();
1079   CORE_ADDR max_wp_length, aligned_addr;
1080
1081   /* Can not set watchpoints for zero or negative lengths.  */
1082   if (len <= 0)
1083     return 0;
1084
1085   /* Need to be able to use the ptrace interface.  */
1086   if (cap == NULL || cap->wp_count == 0)
1087     return 0;
1088
1089   /* Test that the range [ADDR, ADDR + LEN) fits into the largest address
1090      range covered by a watchpoint.  */
1091   max_wp_length = (CORE_ADDR)cap->max_wp_length;
1092   aligned_addr = addr & ~(max_wp_length - 1);
1093
1094   if (aligned_addr + max_wp_length < addr + len)
1095     return 0;
1096
1097   /* The current ptrace interface can only handle watchpoints that are a
1098      power of 2.  */
1099   if ((len & (len - 1)) != 0)
1100     return 0;
1101
1102   /* All tests passed so we must be able to set a watchpoint.  */
1103   return 1;
1104 }
1105
1106 /* Insert a Hardware breakpoint.  */
1107 static int
1108 arm_linux_insert_watchpoint (CORE_ADDR addr, int len, int rw,
1109                              struct expression *cond)
1110 {
1111   struct lwp_info *lp;
1112   struct arm_linux_hw_breakpoint p;
1113
1114   if (arm_linux_get_hw_watchpoint_count () == 0)
1115     return -1;
1116
1117   arm_linux_hw_watchpoint_initialize (addr, len, rw, &p);
1118   ALL_LWPS (lp)
1119     arm_linux_insert_hw_breakpoint1 (&p, ptid_get_lwp (lp->ptid), 1);
1120
1121   return 0;
1122 }
1123
1124 /* Remove a hardware breakpoint.  */
1125 static int
1126 arm_linux_remove_watchpoint (CORE_ADDR addr, int len, int rw,
1127                              struct expression *cond)
1128 {
1129   struct lwp_info *lp;
1130   struct arm_linux_hw_breakpoint p;
1131
1132   if (arm_linux_get_hw_watchpoint_count () == 0)
1133     return -1;
1134
1135   arm_linux_hw_watchpoint_initialize (addr, len, rw, &p);
1136   ALL_LWPS (lp)
1137     arm_linux_remove_hw_breakpoint1 (&p, ptid_get_lwp (lp->ptid), 1);
1138
1139   return 0;
1140 }
1141
1142 /* What was the data address the target was stopped on accessing.  */
1143 static int
1144 arm_linux_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
1145 {
1146   siginfo_t siginfo;
1147   int slot;
1148
1149   if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
1150     return 0;
1151
1152   /* This must be a hardware breakpoint.  */
1153   if (siginfo.si_signo != SIGTRAP
1154       || (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
1155     return 0;
1156
1157   /* We must be able to set hardware watchpoints.  */
1158   if (arm_linux_get_hw_watchpoint_count () == 0)
1159     return 0;
1160
1161   slot = siginfo.si_errno;
1162
1163   /* If we are in a positive slot then we're looking at a breakpoint and not
1164      a watchpoint.  */
1165   if (slot >= 0)
1166     return 0;
1167
1168   *addr_p = (CORE_ADDR) (uintptr_t) siginfo.si_addr;
1169   return 1;
1170 }
1171
1172 /* Has the target been stopped by hitting a watchpoint?  */
1173 static int
1174 arm_linux_stopped_by_watchpoint (void)
1175 {
1176   CORE_ADDR addr;
1177   return arm_linux_stopped_data_address (&current_target, &addr);
1178 }
1179
1180 static int
1181 arm_linux_watchpoint_addr_within_range (struct target_ops *target,
1182                                         CORE_ADDR addr,
1183                                         CORE_ADDR start, int length)
1184 {
1185   return start <= addr && start + length - 1 >= addr;
1186 }
1187
1188 /* Handle thread creation.  We need to copy the breakpoints and watchpoints
1189    in the parent thread to the child thread.  */
1190 static void
1191 arm_linux_new_thread (struct lwp_info *lp)
1192 {
1193   int tid = ptid_get_lwp (lp->ptid);
1194   const struct arm_linux_hwbp_cap *info = arm_linux_get_hwbp_cap ();
1195
1196   if (info != NULL)
1197     {
1198       int i;
1199       struct arm_linux_thread_points *p;
1200       struct arm_linux_hw_breakpoint *bpts;
1201
1202       if (VEC_empty (arm_linux_thread_points_p, arm_threads))
1203         return;
1204
1205       /* Get a list of breakpoints from any thread. */
1206       p = VEC_last (arm_linux_thread_points_p, arm_threads);
1207
1208       /* Copy that thread's breakpoints and watchpoints to the new thread. */
1209       for (i = 0; i < info->bp_count; i++)
1210         if (arm_hwbp_control_is_enabled (p->bpts[i].control))
1211           arm_linux_insert_hw_breakpoint1 (p->bpts + i, tid, 0);
1212       for (i = 0; i < info->wp_count; i++)
1213         if (arm_hwbp_control_is_enabled (p->wpts[i].control))
1214           arm_linux_insert_hw_breakpoint1 (p->wpts + i, tid, 1);
1215     }
1216 }
1217
1218 /* Handle thread exit.  Tidy up the memory that has been allocated for the
1219    thread.  */
1220 static void
1221 arm_linux_thread_exit (struct thread_info *tp, int silent)
1222 {
1223   const struct arm_linux_hwbp_cap *info = arm_linux_get_hwbp_cap ();
1224
1225   if (info != NULL)
1226     {
1227       int i;
1228       int tid = ptid_get_lwp (tp->ptid);
1229       struct arm_linux_thread_points *t = NULL, *p;
1230
1231       for (i = 0; 
1232            VEC_iterate (arm_linux_thread_points_p, arm_threads, i, p); i++)
1233         {
1234           if (p->tid == tid)
1235             {
1236               t = p;
1237               break;
1238             }
1239         }
1240
1241       if (t == NULL)
1242         return;
1243
1244       VEC_unordered_remove (arm_linux_thread_points_p, arm_threads, i);
1245
1246       xfree (t->bpts);
1247       xfree (t->wpts);
1248       xfree (t);
1249     }
1250 }
1251
1252 void _initialize_arm_linux_nat (void);
1253
1254 void
1255 _initialize_arm_linux_nat (void)
1256 {
1257   struct target_ops *t;
1258
1259   /* Fill in the generic GNU/Linux methods.  */
1260   t = linux_target ();
1261
1262   /* Add our register access methods.  */
1263   t->to_fetch_registers = arm_linux_fetch_inferior_registers;
1264   t->to_store_registers = arm_linux_store_inferior_registers;
1265
1266   /* Add our hardware breakpoint and watchpoint implementation.  */
1267   t->to_can_use_hw_breakpoint = arm_linux_can_use_hw_breakpoint;
1268   t->to_insert_hw_breakpoint = arm_linux_insert_hw_breakpoint;
1269   t->to_remove_hw_breakpoint = arm_linux_remove_hw_breakpoint;
1270   t->to_region_ok_for_hw_watchpoint = arm_linux_region_ok_for_hw_watchpoint;
1271   t->to_insert_watchpoint = arm_linux_insert_watchpoint;
1272   t->to_remove_watchpoint = arm_linux_remove_watchpoint;
1273   t->to_stopped_by_watchpoint = arm_linux_stopped_by_watchpoint;
1274   t->to_stopped_data_address = arm_linux_stopped_data_address;
1275   t->to_watchpoint_addr_within_range = arm_linux_watchpoint_addr_within_range;
1276
1277   t->to_read_description = arm_linux_read_description;
1278
1279   /* Register the target.  */
1280   linux_nat_add_target (t);
1281
1282   /* Handle thread creation and exit */
1283   observer_attach_thread_exit (arm_linux_thread_exit);
1284   linux_nat_set_new_thread (t, arm_linux_new_thread);
1285 }