1 /* Copyright (C) 2009-2015 Free Software Foundation, Inc.
3 This file is part of GDB.
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 #include "amd64-tdep.h"
24 #include "windows-tdep.h"
27 #include "frame-unwind.h"
28 #include "coff/internal.h"
29 #include "coff/i386.h"
34 /* The registers used to pass integer arguments during a function call. */
35 static int amd64_windows_dummy_call_integer_regs[] =
37 AMD64_RCX_REGNUM, /* %rcx */
38 AMD64_RDX_REGNUM, /* %rdx */
39 AMD64_R8_REGNUM, /* %r8 */
40 AMD64_R9_REGNUM /* %r9 */
43 /* Return nonzero if an argument of type TYPE should be passed
44 via one of the integer registers. */
47 amd64_windows_passed_by_integer_register (struct type *type)
49 switch (TYPE_CODE (type))
58 case TYPE_CODE_STRUCT:
60 return (TYPE_LENGTH (type) == 1
61 || TYPE_LENGTH (type) == 2
62 || TYPE_LENGTH (type) == 4
63 || TYPE_LENGTH (type) == 8);
70 /* Return nonzero if an argument of type TYPE should be passed
71 via one of the XMM registers. */
74 amd64_windows_passed_by_xmm_register (struct type *type)
76 return ((TYPE_CODE (type) == TYPE_CODE_FLT
77 || TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
78 && (TYPE_LENGTH (type) == 4 || TYPE_LENGTH (type) == 8));
81 /* Return non-zero iff an argument of the given TYPE should be passed
85 amd64_windows_passed_by_pointer (struct type *type)
87 if (amd64_windows_passed_by_integer_register (type))
90 if (amd64_windows_passed_by_xmm_register (type))
96 /* For each argument that should be passed by pointer, reserve some
97 stack space, store a copy of the argument on the stack, and replace
98 the argument by its address. Return the new Stack Pointer value.
100 NARGS is the number of arguments. ARGS is the array containing
101 the value of each argument. SP is value of the Stack Pointer. */
104 amd64_windows_adjust_args_passed_by_pointer (struct value **args,
105 int nargs, CORE_ADDR sp)
109 for (i = 0; i < nargs; i++)
110 if (amd64_windows_passed_by_pointer (value_type (args[i])))
112 struct type *type = value_type (args[i]);
113 const gdb_byte *valbuf = value_contents (args[i]);
114 const int len = TYPE_LENGTH (type);
116 /* Store a copy of that argument on the stack, aligned to
117 a 16 bytes boundary, and then use the copy's address as
122 write_memory (sp, valbuf, len);
125 = value_addr (value_from_contents_and_address (type, valbuf, sp));
131 /* Store the value of ARG in register REGNO (right-justified).
132 REGCACHE is the register cache. */
135 amd64_windows_store_arg_in_reg (struct regcache *regcache,
136 struct value *arg, int regno)
138 struct type *type = value_type (arg);
139 const gdb_byte *valbuf = value_contents (arg);
142 gdb_assert (TYPE_LENGTH (type) <= 8);
143 memset (buf, 0, sizeof buf);
144 memcpy (buf, valbuf, min (TYPE_LENGTH (type), 8));
145 regcache_cooked_write (regcache, regno, buf);
148 /* Push the arguments for an inferior function call, and return
149 the updated value of the SP (Stack Pointer).
151 All arguments are identical to the arguments used in
152 amd64_windows_push_dummy_call. */
155 amd64_windows_push_arguments (struct regcache *regcache, int nargs,
156 struct value **args, CORE_ADDR sp,
161 struct value **stack_args = XALLOCAVEC (struct value *, nargs);
162 int num_stack_args = 0;
163 int num_elements = 0;
166 /* First, handle the arguments passed by pointer.
168 These arguments are replaced by pointers to a copy we are making
169 in inferior memory. So use a copy of the ARGS table, to avoid
170 modifying the original one. */
172 struct value **args1 = XALLOCAVEC (struct value *, nargs);
174 memcpy (args1, args, nargs * sizeof (struct value *));
175 sp = amd64_windows_adjust_args_passed_by_pointer (args1, nargs, sp);
179 /* Reserve a register for the "hidden" argument. */
183 for (i = 0; i < nargs; i++)
185 struct type *type = value_type (args[i]);
186 int len = TYPE_LENGTH (type);
189 if (reg_idx < ARRAY_SIZE (amd64_windows_dummy_call_integer_regs))
191 if (amd64_windows_passed_by_integer_register (type))
193 amd64_windows_store_arg_in_reg
195 amd64_windows_dummy_call_integer_regs[reg_idx]);
199 else if (amd64_windows_passed_by_xmm_register (type))
201 amd64_windows_store_arg_in_reg
202 (regcache, args[i], AMD64_XMM0_REGNUM + reg_idx);
203 /* In case of varargs, these parameters must also be
204 passed via the integer registers. */
205 amd64_windows_store_arg_in_reg
207 amd64_windows_dummy_call_integer_regs[reg_idx]);
215 num_elements += ((len + 7) / 8);
216 stack_args[num_stack_args++] = args[i];
220 /* Allocate space for the arguments on the stack, keeping it
221 aligned on a 16 byte boundary. */
222 sp -= num_elements * 8;
225 /* Write out the arguments to the stack. */
226 for (i = 0; i < num_stack_args; i++)
228 struct type *type = value_type (stack_args[i]);
229 const gdb_byte *valbuf = value_contents (stack_args[i]);
231 write_memory (sp + element * 8, valbuf, TYPE_LENGTH (type));
232 element += ((TYPE_LENGTH (type) + 7) / 8);
238 /* Implement the "push_dummy_call" gdbarch method. */
241 amd64_windows_push_dummy_call
242 (struct gdbarch *gdbarch, struct value *function,
243 struct regcache *regcache, CORE_ADDR bp_addr,
244 int nargs, struct value **args,
245 CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr)
247 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
250 /* Pass arguments. */
251 sp = amd64_windows_push_arguments (regcache, nargs, args, sp,
254 /* Pass "hidden" argument". */
257 /* The "hidden" argument is passed throught the first argument
259 const int arg_regnum = amd64_windows_dummy_call_integer_regs[0];
261 store_unsigned_integer (buf, 8, byte_order, struct_addr);
262 regcache_cooked_write (regcache, arg_regnum, buf);
265 /* Reserve some memory on the stack for the integer-parameter
266 registers, as required by the ABI. */
267 sp -= ARRAY_SIZE (amd64_windows_dummy_call_integer_regs) * 8;
269 /* Store return address. */
271 store_unsigned_integer (buf, 8, byte_order, bp_addr);
272 write_memory (sp, buf, 8);
274 /* Update the stack pointer... */
275 store_unsigned_integer (buf, 8, byte_order, sp);
276 regcache_cooked_write (regcache, AMD64_RSP_REGNUM, buf);
278 /* ...and fake a frame pointer. */
279 regcache_cooked_write (regcache, AMD64_RBP_REGNUM, buf);
284 /* Implement the "return_value" gdbarch method for amd64-windows. */
286 static enum return_value_convention
287 amd64_windows_return_value (struct gdbarch *gdbarch, struct value *function,
288 struct type *type, struct regcache *regcache,
289 gdb_byte *readbuf, const gdb_byte *writebuf)
291 int len = TYPE_LENGTH (type);
294 /* See if our value is returned through a register. If it is, then
295 store the associated register number in REGNUM. */
296 switch (TYPE_CODE (type))
299 case TYPE_CODE_DECFLOAT:
300 /* __m128, __m128i, __m128d, floats, and doubles are returned
302 if (len == 4 || len == 8 || len == 16)
303 regnum = AMD64_XMM0_REGNUM;
306 /* All other values that are 1, 2, 4 or 8 bytes long are returned
308 if (len == 1 || len == 2 || len == 4 || len == 8)
309 regnum = AMD64_RAX_REGNUM;
315 /* RAX contains the address where the return value has been stored. */
320 regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr);
321 read_memory (addr, readbuf, TYPE_LENGTH (type));
323 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
327 /* Extract the return value from the register where it was stored. */
329 regcache_raw_read_part (regcache, regnum, 0, len, readbuf);
331 regcache_raw_write_part (regcache, regnum, 0, len, writebuf);
332 return RETURN_VALUE_REGISTER_CONVENTION;
336 /* Check that the code pointed to by PC corresponds to a call to
337 __main, skip it if so. Return PC otherwise. */
340 amd64_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
342 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
345 target_read_memory (pc, &op, 1);
350 if (target_read_memory (pc + 1, buf, sizeof buf) == 0)
352 struct bound_minimal_symbol s;
355 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
356 s = lookup_minimal_symbol_by_pc (call_dest);
358 && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
359 && strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0)
367 struct amd64_windows_frame_cache
369 /* ImageBase for the module. */
370 CORE_ADDR image_base;
372 /* Function start and end rva. */
376 /* Next instruction to be executed. */
382 /* Address of saved integer and xmm registers. */
383 CORE_ADDR prev_reg_addr[16];
384 CORE_ADDR prev_xmm_addr[16];
386 /* These two next fields are set only for machine info frames. */
388 /* Likewise for RIP. */
389 CORE_ADDR prev_rip_addr;
391 /* Likewise for RSP. */
392 CORE_ADDR prev_rsp_addr;
394 /* Address of the previous frame. */
398 /* Convert a Windows register number to gdb. */
399 static const enum amd64_regnum amd64_windows_w2gdb_regnum[] =
419 /* Return TRUE iff PC is the the range of the function corresponding to
423 pc_in_range (CORE_ADDR pc, const struct amd64_windows_frame_cache *cache)
425 return (pc >= cache->image_base + cache->start_rva
426 && pc < cache->image_base + cache->end_rva);
429 /* Try to recognize and decode an epilogue sequence.
431 Return -1 if we fail to read the instructions for any reason.
432 Return 1 if an epilogue sequence was recognized, 0 otherwise. */
435 amd64_windows_frame_decode_epilogue (struct frame_info *this_frame,
436 struct amd64_windows_frame_cache *cache)
438 /* According to MSDN an epilogue "must consist of either an add RSP,constant
439 or lea RSP,constant[FPReg], followed by a series of zero or more 8-byte
440 register pops and a return or a jmp".
442 Furthermore, according to RtlVirtualUnwind, the complete list of
447 - jmp imm8 | imm32 [eb rel8] or [e9 rel32]
448 - jmp qword ptr imm32 - not handled
449 - rex.w jmp reg [4X ff eY]
452 CORE_ADDR pc = cache->pc;
453 CORE_ADDR cur_sp = cache->sp;
454 struct gdbarch *gdbarch = get_frame_arch (this_frame);
455 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
459 /* We don't care about the instruction deallocating the frame:
460 if it hasn't been executed, the pc is still in the body,
461 if it has been executed, the following epilog decoding will work. */
464 - pop reg [41 58-5f] or [58-5f]. */
469 if (target_read_memory (pc, &op, 1) != 0)
472 if (op >= 0x40 && op <= 0x4f)
478 if (target_read_memory (pc + 1, &op, 1) != 0)
484 if (op >= 0x58 && op <= 0x5f)
487 gdb_byte reg = (op & 0x0f) | ((rex & 1) << 3);
489 cache->prev_reg_addr[amd64_windows_w2gdb_regnum[reg]] = cur_sp;
495 /* Allow the user to break this loop. This shouldn't happen as the
496 number of consecutive pop should be small. */
500 /* Then decode the marker. */
503 if (target_read_memory (pc, &op, 1) != 0)
510 cache->prev_rip_addr = cur_sp;
511 cache->prev_sp = cur_sp + 8;
520 if (target_read_memory (pc + 1, &rel8, 1) != 0)
522 npc = pc + 2 + (signed char) rel8;
524 /* If the jump is within the function, then this is not a marker,
525 otherwise this is a tail-call. */
526 return !pc_in_range (npc, cache);
535 if (target_read_memory (pc + 1, rel32, 4) != 0)
537 npc = pc + 5 + extract_signed_integer (rel32, 4, byte_order);
539 /* If the jump is within the function, then this is not a marker,
540 otherwise this is a tail-call. */
541 return !pc_in_range (npc, cache);
549 if (target_read_memory (pc + 1, imm16, 2) != 0)
551 cache->prev_rip_addr = cur_sp;
552 cache->prev_sp = cur_sp
553 + extract_unsigned_integer (imm16, 4, byte_order);
562 if (target_read_memory (pc + 2, &op1, 1) != 0)
567 cache->prev_rip_addr = cur_sp;
568 cache->prev_sp = cur_sp + 8;
588 /* Got a REX prefix, read next byte. */
590 if (target_read_memory (pc + 1, &op, 1) != 0)
600 if (target_read_memory (pc + 2, &op1, 1) != 0)
602 return (op1 & 0xf8) == 0xe0;
608 /* Not REX, so unknown. */
613 /* Decode and execute unwind insns at UNWIND_INFO. */
616 amd64_windows_frame_decode_insns (struct frame_info *this_frame,
617 struct amd64_windows_frame_cache *cache,
618 CORE_ADDR unwind_info)
620 CORE_ADDR save_addr = 0;
621 CORE_ADDR cur_sp = cache->sp;
622 struct gdbarch *gdbarch = get_frame_arch (this_frame);
623 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
626 /* There are at least 3 possibilities to share an unwind info entry:
627 1. Two different runtime_function entries (in .pdata) can point to the
628 same unwind info entry. There is no such indication while unwinding,
629 so we don't really care about that case. We suppose this scheme is
630 used to save memory when the unwind entries are exactly the same.
631 2. Chained unwind_info entries, with no unwind codes (no prologue).
632 There is a major difference with the previous case: the pc range for
633 the function is different (in case 1, the pc range comes from the
634 runtime_function entry; in case 2, the pc range for the chained entry
635 comes from the first unwind entry). Case 1 cannot be used instead as
636 the pc is not in the prologue. This case is officially documented.
637 (There might be unwind code in the first unwind entry to handle
638 additional unwinding). GCC (at least until gcc 5.0) doesn't chain
640 3. Undocumented unwind info redirection. Hard to know the exact purpose,
641 so it is considered as a memory optimization of case 2.
646 /* Unofficially documented unwind info redirection, when UNWIND_INFO
647 address is odd (http://www.codemachine.com/article_x64deepdive.html).
649 struct external_pex64_runtime_function d;
652 if (target_read_memory (cache->image_base + (unwind_info & ~1),
653 (gdb_byte *) &d, sizeof (d)) != 0)
657 = extract_unsigned_integer (d.rva_BeginAddress, 4, byte_order);
659 = extract_unsigned_integer (d.rva_EndAddress, 4, byte_order);
661 = extract_unsigned_integer (d.rva_UnwindData, 4, byte_order);
666 struct external_pex64_unwind_info ex_ui;
667 /* There are at most 256 16-bit unwind insns. */
668 gdb_byte insns[2 * 256];
671 unsigned char codes_count;
672 unsigned char frame_reg;
673 unsigned char frame_off;
676 /* Read and decode header. */
677 if (target_read_memory (cache->image_base + unwind_info,
678 (gdb_byte *) &ex_ui, sizeof (ex_ui)) != 0)
684 "amd64_windows_frame_decodes_insn: "
685 "%s: ver: %02x, plgsz: %02x, cnt: %02x, frame: %02x\n",
686 paddress (gdbarch, unwind_info),
687 ex_ui.Version_Flags, ex_ui.SizeOfPrologue,
688 ex_ui.CountOfCodes, ex_ui.FrameRegisterOffset);
691 if (PEX64_UWI_VERSION (ex_ui.Version_Flags) != 1
692 && PEX64_UWI_VERSION (ex_ui.Version_Flags) != 2)
695 start = cache->image_base + cache->start_rva;
697 && !(cache->pc >= start && cache->pc < start + ex_ui.SizeOfPrologue))
699 /* We want to detect if the PC points to an epilogue. This needs
700 to be checked only once, and an epilogue can be anywhere but in
701 the prologue. If so, the epilogue detection+decoding function is
702 sufficient. Otherwise, the unwinder will consider that the PC
703 is in the body of the function and will need to decode unwind
705 if (amd64_windows_frame_decode_epilogue (this_frame, cache) == 1)
708 /* Not in an epilog. Clear possible side effects. */
709 memset (cache->prev_reg_addr, 0, sizeof (cache->prev_reg_addr));
712 codes_count = ex_ui.CountOfCodes;
713 frame_reg = PEX64_UWI_FRAMEREG (ex_ui.FrameRegisterOffset);
717 /* According to msdn:
718 If an FP reg is used, then any unwind code taking an offset must
719 only be used after the FP reg is established in the prolog. */
721 int frreg = amd64_windows_w2gdb_regnum[frame_reg];
723 get_frame_register (this_frame, frreg, buf);
724 save_addr = extract_unsigned_integer (buf, 8, byte_order);
727 fprintf_unfiltered (gdb_stdlog, " frame_reg=%s, val=%s\n",
728 gdbarch_register_name (gdbarch, frreg),
729 paddress (gdbarch, save_addr));
734 && target_read_memory (cache->image_base + unwind_info
736 insns, codes_count * 2) != 0)
739 end_insns = &insns[codes_count * 2];
742 /* Skip opcodes 6 of version 2. This opcode is not documented. */
743 if (PEX64_UWI_VERSION (ex_ui.Version_Flags) == 2)
745 for (; p < end_insns; p += 2)
746 if (PEX64_UNWCODE_CODE (p[1]) != 6)
750 for (; p < end_insns; p += 2)
754 /* Virtually execute the operation if the pc is after the
755 corresponding instruction (that does matter in case of break
756 within the prologue). Note that for chained info (!first), the
757 prologue has been fully executed. */
758 if (cache->pc >= start + p[0] || cache->pc < start)
762 (gdb_stdlog, " op #%u: off=0x%02x, insn=0x%02x\n",
763 (unsigned) (p - insns), p[0], p[1]);
765 /* If there is no frame registers defined, the current value of
766 rsp is used instead. */
772 switch (PEX64_UNWCODE_CODE (p[1]))
774 case UWOP_PUSH_NONVOL:
775 /* Push pre-decrements RSP. */
776 reg = amd64_windows_w2gdb_regnum[PEX64_UNWCODE_INFO (p[1])];
777 cache->prev_reg_addr[reg] = cur_sp;
780 case UWOP_ALLOC_LARGE:
781 if (PEX64_UNWCODE_INFO (p[1]) == 0)
783 8 * extract_unsigned_integer (p + 2, 2, byte_order);
784 else if (PEX64_UNWCODE_INFO (p[1]) == 1)
785 cur_sp += extract_unsigned_integer (p + 2, 4, byte_order);
789 case UWOP_ALLOC_SMALL:
790 cur_sp += 8 + 8 * PEX64_UNWCODE_INFO (p[1]);
794 - PEX64_UWI_FRAMEOFF (ex_ui.FrameRegisterOffset) * 16;
796 case UWOP_SAVE_NONVOL:
797 reg = amd64_windows_w2gdb_regnum[PEX64_UNWCODE_INFO (p[1])];
798 cache->prev_reg_addr[reg] = save_addr
799 + 8 * extract_unsigned_integer (p + 2, 2, byte_order);
801 case UWOP_SAVE_NONVOL_FAR:
802 reg = amd64_windows_w2gdb_regnum[PEX64_UNWCODE_INFO (p[1])];
803 cache->prev_reg_addr[reg] = save_addr
804 + 8 * extract_unsigned_integer (p + 2, 4, byte_order);
806 case UWOP_SAVE_XMM128:
807 cache->prev_xmm_addr[PEX64_UNWCODE_INFO (p[1])] =
809 - 16 * extract_unsigned_integer (p + 2, 2, byte_order);
811 case UWOP_SAVE_XMM128_FAR:
812 cache->prev_xmm_addr[PEX64_UNWCODE_INFO (p[1])] =
814 - 16 * extract_unsigned_integer (p + 2, 4, byte_order);
816 case UWOP_PUSH_MACHFRAME:
817 if (PEX64_UNWCODE_INFO (p[1]) == 0)
819 cache->prev_rip_addr = cur_sp + 0;
820 cache->prev_rsp_addr = cur_sp + 24;
823 else if (PEX64_UNWCODE_INFO (p[1]) == 1)
825 cache->prev_rip_addr = cur_sp + 8;
826 cache->prev_rsp_addr = cur_sp + 32;
836 /* Display address where the register was saved. */
837 if (frame_debug && reg >= 0)
839 (gdb_stdlog, " [reg %s at %s]\n",
840 gdbarch_register_name (gdbarch, reg),
841 paddress (gdbarch, cache->prev_reg_addr[reg]));
844 /* Adjust with the length of the opcode. */
845 switch (PEX64_UNWCODE_CODE (p[1]))
847 case UWOP_PUSH_NONVOL:
848 case UWOP_ALLOC_SMALL:
850 case UWOP_PUSH_MACHFRAME:
852 case UWOP_ALLOC_LARGE:
853 if (PEX64_UNWCODE_INFO (p[1]) == 0)
855 else if (PEX64_UNWCODE_INFO (p[1]) == 1)
860 case UWOP_SAVE_NONVOL:
861 case UWOP_SAVE_XMM128:
864 case UWOP_SAVE_NONVOL_FAR:
865 case UWOP_SAVE_XMM128_FAR:
872 if (PEX64_UWI_FLAGS (ex_ui.Version_Flags) != UNW_FLAG_CHAININFO)
874 /* End of unwind info. */
879 /* Read the chained unwind info. */
880 struct external_pex64_runtime_function d;
883 /* Not anymore the first entry. */
886 /* Stay aligned on word boundary. */
887 chain_vma = cache->image_base + unwind_info
888 + sizeof (ex_ui) + ((codes_count + 1) & ~1) * 2;
890 if (target_read_memory (chain_vma, (gdb_byte *) &d, sizeof (d)) != 0)
893 /* Decode begin/end. This may be different from .pdata index, as
894 an unwind info may be shared by several functions (in particular
895 if many functions have the same prolog and handler. */
897 extract_unsigned_integer (d.rva_BeginAddress, 4, byte_order);
899 extract_unsigned_integer (d.rva_EndAddress, 4, byte_order);
901 extract_unsigned_integer (d.rva_UnwindData, 4, byte_order);
906 "amd64_windows_frame_decodes_insn (next in chain):"
907 " unwind_data=%s, start_rva=%s, end_rva=%s\n",
908 paddress (gdbarch, unwind_info),
909 paddress (gdbarch, cache->start_rva),
910 paddress (gdbarch, cache->end_rva));
913 /* Allow the user to break this loop. */
916 /* PC is saved by the call. */
917 if (cache->prev_rip_addr == 0)
918 cache->prev_rip_addr = cur_sp;
919 cache->prev_sp = cur_sp + 8;
922 fprintf_unfiltered (gdb_stdlog, " prev_sp: %s, prev_pc @%s\n",
923 paddress (gdbarch, cache->prev_sp),
924 paddress (gdbarch, cache->prev_rip_addr));
927 /* Find SEH unwind info for PC, returning 0 on success.
929 UNWIND_INFO is set to the rva of unwind info address, IMAGE_BASE
930 to the base address of the corresponding image, and START_RVA
931 to the rva of the function containing PC. */
934 amd64_windows_find_unwind_info (struct gdbarch *gdbarch, CORE_ADDR pc,
935 CORE_ADDR *unwind_info,
936 CORE_ADDR *image_base,
937 CORE_ADDR *start_rva,
940 struct obj_section *sec;
942 IMAGE_DATA_DIRECTORY *dir;
943 struct objfile *objfile;
944 unsigned long lo, hi;
946 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
948 /* Get the corresponding exception directory. */
949 sec = find_pc_section (pc);
952 objfile = sec->objfile;
953 pe = pe_data (sec->objfile->obfd);
954 dir = &pe->pe_opthdr.DataDirectory[PE_EXCEPTION_TABLE];
956 base = pe->pe_opthdr.ImageBase
957 + ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
962 Note: This does not handle dynamically added entries (for JIT
963 engines). For this, we would need to ask the kernel directly,
964 which means getting some info from the native layer. For the
965 rest of the code, however, it's probably faster to search
966 the entry ourselves. */
968 hi = dir->Size / sizeof (struct external_pex64_runtime_function);
972 unsigned long mid = lo + (hi - lo) / 2;
973 struct external_pex64_runtime_function d;
976 if (target_read_memory (base + dir->VirtualAddress + mid * sizeof (d),
977 (gdb_byte *) &d, sizeof (d)) != 0)
980 sa = extract_unsigned_integer (d.rva_BeginAddress, 4, byte_order);
981 ea = extract_unsigned_integer (d.rva_EndAddress, 4, byte_order);
984 else if (pc >= base + ea)
986 else if (pc >= base + sa && pc < base + ea)
992 extract_unsigned_integer (d.rva_UnwindData, 4, byte_order);
1002 "amd64_windows_find_unwind_data: image_base=%s, unwind_data=%s\n",
1003 paddress (gdbarch, base), paddress (gdbarch, *unwind_info));
1008 /* Fill THIS_CACHE using the native amd64-windows unwinding data
1011 static struct amd64_windows_frame_cache *
1012 amd64_windows_frame_cache (struct frame_info *this_frame, void **this_cache)
1014 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1015 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1016 struct amd64_windows_frame_cache *cache;
1018 struct obj_section *sec;
1020 IMAGE_DATA_DIRECTORY *dir;
1021 CORE_ADDR image_base;
1023 struct objfile *objfile;
1024 unsigned long lo, hi;
1025 CORE_ADDR unwind_info = 0;
1030 cache = FRAME_OBSTACK_ZALLOC (struct amd64_windows_frame_cache);
1031 *this_cache = cache;
1033 /* Get current PC and SP. */
1034 pc = get_frame_pc (this_frame);
1035 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
1036 cache->sp = extract_unsigned_integer (buf, 8, byte_order);
1039 if (amd64_windows_find_unwind_info (gdbarch, pc, &unwind_info,
1045 if (unwind_info == 0)
1047 /* Assume a leaf function. */
1048 cache->prev_sp = cache->sp + 8;
1049 cache->prev_rip_addr = cache->sp;
1053 /* Decode unwind insns to compute saved addresses. */
1054 amd64_windows_frame_decode_insns (this_frame, cache, unwind_info);
1059 /* Implement the "prev_register" method of struct frame_unwind
1060 using the standard Windows x64 SEH info. */
1062 static struct value *
1063 amd64_windows_frame_prev_register (struct frame_info *this_frame,
1064 void **this_cache, int regnum)
1066 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1067 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1068 struct amd64_windows_frame_cache *cache =
1069 amd64_windows_frame_cache (this_frame, this_cache);
1074 fprintf_unfiltered (gdb_stdlog,
1075 "amd64_windows_frame_prev_register %s for sp=%s\n",
1076 gdbarch_register_name (gdbarch, regnum),
1077 paddress (gdbarch, cache->prev_sp));
1079 if (regnum >= AMD64_XMM0_REGNUM && regnum <= AMD64_XMM0_REGNUM + 15)
1080 prev = cache->prev_xmm_addr[regnum - AMD64_XMM0_REGNUM];
1081 else if (regnum == AMD64_RSP_REGNUM)
1083 prev = cache->prev_rsp_addr;
1085 return frame_unwind_got_constant (this_frame, regnum, cache->prev_sp);
1087 else if (regnum >= AMD64_RAX_REGNUM && regnum <= AMD64_R15_REGNUM)
1088 prev = cache->prev_reg_addr[regnum - AMD64_RAX_REGNUM];
1089 else if (regnum == AMD64_RIP_REGNUM)
1090 prev = cache->prev_rip_addr;
1094 if (prev && frame_debug)
1095 fprintf_unfiltered (gdb_stdlog, " -> at %s\n", paddress (gdbarch, prev));
1099 /* Register was saved. */
1100 return frame_unwind_got_memory (this_frame, regnum, prev);
1104 /* Register is either volatile or not modified. */
1105 return frame_unwind_got_register (this_frame, regnum, regnum);
1109 /* Implement the "this_id" method of struct frame_unwind using
1110 the standard Windows x64 SEH info. */
1113 amd64_windows_frame_this_id (struct frame_info *this_frame, void **this_cache,
1114 struct frame_id *this_id)
1116 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1117 struct amd64_windows_frame_cache *cache =
1118 amd64_windows_frame_cache (this_frame, this_cache);
1120 *this_id = frame_id_build (cache->prev_sp,
1121 cache->image_base + cache->start_rva);
1124 /* Windows x64 SEH unwinder. */
1126 static const struct frame_unwind amd64_windows_frame_unwind =
1129 default_frame_unwind_stop_reason,
1130 &amd64_windows_frame_this_id,
1131 &amd64_windows_frame_prev_register,
1133 default_frame_sniffer
1136 /* Implement the "skip_prologue" gdbarch method. */
1139 amd64_windows_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1141 CORE_ADDR func_addr;
1142 CORE_ADDR unwind_info = 0;
1143 CORE_ADDR image_base, start_rva, end_rva;
1144 struct external_pex64_unwind_info ex_ui;
1146 /* Use prologue size from unwind info. */
1147 if (amd64_windows_find_unwind_info (gdbarch, pc, &unwind_info,
1148 &image_base, &start_rva, &end_rva) == 0)
1150 if (unwind_info == 0)
1152 /* Leaf function. */
1155 else if (target_read_memory (image_base + unwind_info,
1156 (gdb_byte *) &ex_ui, sizeof (ex_ui)) == 0
1157 && PEX64_UWI_VERSION (ex_ui.Version_Flags) == 1)
1158 return max (pc, image_base + start_rva + ex_ui.SizeOfPrologue);
1161 /* See if we can determine the end of the prologue via the symbol
1162 table. If so, then return either the PC, or the PC after
1163 the prologue, whichever is greater. */
1164 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
1166 CORE_ADDR post_prologue_pc
1167 = skip_prologue_using_sal (gdbarch, func_addr);
1169 if (post_prologue_pc != 0)
1170 return max (pc, post_prologue_pc);
1176 /* Check Win64 DLL jmp trampolines and find jump destination. */
1179 amd64_windows_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
1181 CORE_ADDR destination = 0;
1182 struct gdbarch *gdbarch = get_frame_arch (frame);
1183 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1185 /* Check for jmp *<offset>(%rip) (jump near, absolute indirect (/4)). */
1186 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
1188 /* Get opcode offset and see if we can find a reference in our data. */
1190 = read_memory_unsigned_integer (pc + 2, 4, byte_order);
1192 /* Get address of function pointer at end of pc. */
1193 CORE_ADDR indirect_addr = pc + offset + 6;
1195 struct minimal_symbol *indsym
1197 ? lookup_minimal_symbol_by_pc (indirect_addr).minsym
1199 const char *symname = indsym ? MSYMBOL_LINKAGE_NAME (indsym) : NULL;
1203 if (startswith (symname, "__imp_")
1204 || startswith (symname, "_imp_"))
1206 = read_memory_unsigned_integer (indirect_addr, 8, byte_order);
1213 /* Implement the "auto_wide_charset" gdbarch method. */
1216 amd64_windows_auto_wide_charset (void)
1222 amd64_windows_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1224 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1226 /* The dwarf2 unwinder (appended very early by i386_gdbarch_init) is
1227 preferred over the SEH one. The reasons are:
1228 - binaries without SEH but with dwarf2 debug info are correcly handled
1229 (although they aren't ABI compliant, gcc before 4.7 didn't emit SEH
1231 - dwarf3 DW_OP_call_frame_cfa is correctly handled (it can only be
1232 handled if the dwarf2 unwinder is used).
1234 The call to amd64_init_abi appends default unwinders, that aren't
1235 compatible with the SEH one.
1237 frame_unwind_append_unwinder (gdbarch, &amd64_windows_frame_unwind);
1239 amd64_init_abi (info, gdbarch);
1241 windows_init_abi (info, gdbarch);
1243 /* On Windows, "long"s are only 32bit. */
1244 set_gdbarch_long_bit (gdbarch, 32);
1246 /* Function calls. */
1247 set_gdbarch_push_dummy_call (gdbarch, amd64_windows_push_dummy_call);
1248 set_gdbarch_return_value (gdbarch, amd64_windows_return_value);
1249 set_gdbarch_skip_main_prologue (gdbarch, amd64_skip_main_prologue);
1250 set_gdbarch_skip_trampoline_code (gdbarch,
1251 amd64_windows_skip_trampoline_code);
1253 set_gdbarch_skip_prologue (gdbarch, amd64_windows_skip_prologue);
1255 set_gdbarch_auto_wide_charset (gdbarch, amd64_windows_auto_wide_charset);
1258 /* -Wmissing-prototypes */
1259 extern initialize_file_ftype _initialize_amd64_windows_tdep;
1262 _initialize_amd64_windows_tdep (void)
1264 gdbarch_register_osabi (bfd_arch_i386, bfd_mach_x86_64, GDB_OSABI_CYGWIN,
1265 amd64_windows_init_abi);