1 /* Copyright (C) 2009-2016 Free Software Foundation, Inc.
3 This file is part of GDB.
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 #include "amd64-tdep.h"
24 #include "windows-tdep.h"
27 #include "frame-unwind.h"
28 #include "coff/internal.h"
29 #include "coff/i386.h"
34 /* The registers used to pass integer arguments during a function call. */
35 static int amd64_windows_dummy_call_integer_regs[] =
37 AMD64_RCX_REGNUM, /* %rcx */
38 AMD64_RDX_REGNUM, /* %rdx */
39 AMD64_R8_REGNUM, /* %r8 */
40 AMD64_R9_REGNUM /* %r9 */
43 /* Return nonzero if an argument of type TYPE should be passed
44 via one of the integer registers. */
47 amd64_windows_passed_by_integer_register (struct type *type)
49 switch (TYPE_CODE (type))
58 case TYPE_CODE_STRUCT:
60 return (TYPE_LENGTH (type) == 1
61 || TYPE_LENGTH (type) == 2
62 || TYPE_LENGTH (type) == 4
63 || TYPE_LENGTH (type) == 8);
70 /* Return nonzero if an argument of type TYPE should be passed
71 via one of the XMM registers. */
74 amd64_windows_passed_by_xmm_register (struct type *type)
76 return ((TYPE_CODE (type) == TYPE_CODE_FLT
77 || TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
78 && (TYPE_LENGTH (type) == 4 || TYPE_LENGTH (type) == 8));
81 /* Return non-zero iff an argument of the given TYPE should be passed
85 amd64_windows_passed_by_pointer (struct type *type)
87 if (amd64_windows_passed_by_integer_register (type))
90 if (amd64_windows_passed_by_xmm_register (type))
96 /* For each argument that should be passed by pointer, reserve some
97 stack space, store a copy of the argument on the stack, and replace
98 the argument by its address. Return the new Stack Pointer value.
100 NARGS is the number of arguments. ARGS is the array containing
101 the value of each argument. SP is value of the Stack Pointer. */
104 amd64_windows_adjust_args_passed_by_pointer (struct value **args,
105 int nargs, CORE_ADDR sp)
109 for (i = 0; i < nargs; i++)
110 if (amd64_windows_passed_by_pointer (value_type (args[i])))
112 struct type *type = value_type (args[i]);
113 const gdb_byte *valbuf = value_contents (args[i]);
114 const int len = TYPE_LENGTH (type);
116 /* Store a copy of that argument on the stack, aligned to
117 a 16 bytes boundary, and then use the copy's address as
122 write_memory (sp, valbuf, len);
125 = value_addr (value_from_contents_and_address (type, valbuf, sp));
131 /* Store the value of ARG in register REGNO (right-justified).
132 REGCACHE is the register cache. */
135 amd64_windows_store_arg_in_reg (struct regcache *regcache,
136 struct value *arg, int regno)
138 struct type *type = value_type (arg);
139 const gdb_byte *valbuf = value_contents (arg);
142 gdb_assert (TYPE_LENGTH (type) <= 8);
143 memset (buf, 0, sizeof buf);
144 memcpy (buf, valbuf, min (TYPE_LENGTH (type), 8));
145 regcache_cooked_write (regcache, regno, buf);
148 /* Push the arguments for an inferior function call, and return
149 the updated value of the SP (Stack Pointer).
151 All arguments are identical to the arguments used in
152 amd64_windows_push_dummy_call. */
155 amd64_windows_push_arguments (struct regcache *regcache, int nargs,
156 struct value **args, CORE_ADDR sp,
161 struct value **stack_args = XALLOCAVEC (struct value *, nargs);
162 int num_stack_args = 0;
163 int num_elements = 0;
166 /* First, handle the arguments passed by pointer.
168 These arguments are replaced by pointers to a copy we are making
169 in inferior memory. So use a copy of the ARGS table, to avoid
170 modifying the original one. */
172 struct value **args1 = XALLOCAVEC (struct value *, nargs);
174 memcpy (args1, args, nargs * sizeof (struct value *));
175 sp = amd64_windows_adjust_args_passed_by_pointer (args1, nargs, sp);
179 /* Reserve a register for the "hidden" argument. */
183 for (i = 0; i < nargs; i++)
185 struct type *type = value_type (args[i]);
186 int len = TYPE_LENGTH (type);
189 if (reg_idx < ARRAY_SIZE (amd64_windows_dummy_call_integer_regs))
191 if (amd64_windows_passed_by_integer_register (type))
193 amd64_windows_store_arg_in_reg
195 amd64_windows_dummy_call_integer_regs[reg_idx]);
199 else if (amd64_windows_passed_by_xmm_register (type))
201 amd64_windows_store_arg_in_reg
202 (regcache, args[i], AMD64_XMM0_REGNUM + reg_idx);
203 /* In case of varargs, these parameters must also be
204 passed via the integer registers. */
205 amd64_windows_store_arg_in_reg
207 amd64_windows_dummy_call_integer_regs[reg_idx]);
215 num_elements += ((len + 7) / 8);
216 stack_args[num_stack_args++] = args[i];
220 /* Allocate space for the arguments on the stack, keeping it
221 aligned on a 16 byte boundary. */
222 sp -= num_elements * 8;
225 /* Write out the arguments to the stack. */
226 for (i = 0; i < num_stack_args; i++)
228 struct type *type = value_type (stack_args[i]);
229 const gdb_byte *valbuf = value_contents (stack_args[i]);
231 write_memory (sp + element * 8, valbuf, TYPE_LENGTH (type));
232 element += ((TYPE_LENGTH (type) + 7) / 8);
238 /* Implement the "push_dummy_call" gdbarch method. */
241 amd64_windows_push_dummy_call
242 (struct gdbarch *gdbarch, struct value *function,
243 struct regcache *regcache, CORE_ADDR bp_addr,
244 int nargs, struct value **args,
245 CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr)
247 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
250 /* Pass arguments. */
251 sp = amd64_windows_push_arguments (regcache, nargs, args, sp,
254 /* Pass "hidden" argument". */
257 /* The "hidden" argument is passed throught the first argument
259 const int arg_regnum = amd64_windows_dummy_call_integer_regs[0];
261 store_unsigned_integer (buf, 8, byte_order, struct_addr);
262 regcache_cooked_write (regcache, arg_regnum, buf);
265 /* Reserve some memory on the stack for the integer-parameter
266 registers, as required by the ABI. */
267 sp -= ARRAY_SIZE (amd64_windows_dummy_call_integer_regs) * 8;
269 /* Store return address. */
271 store_unsigned_integer (buf, 8, byte_order, bp_addr);
272 write_memory (sp, buf, 8);
274 /* Update the stack pointer... */
275 store_unsigned_integer (buf, 8, byte_order, sp);
276 regcache_cooked_write (regcache, AMD64_RSP_REGNUM, buf);
278 /* ...and fake a frame pointer. */
279 regcache_cooked_write (regcache, AMD64_RBP_REGNUM, buf);
284 /* Implement the "return_value" gdbarch method for amd64-windows. */
286 static enum return_value_convention
287 amd64_windows_return_value (struct gdbarch *gdbarch, struct value *function,
288 struct type *type, struct regcache *regcache,
289 gdb_byte *readbuf, const gdb_byte *writebuf)
291 int len = TYPE_LENGTH (type);
294 /* See if our value is returned through a register. If it is, then
295 store the associated register number in REGNUM. */
296 switch (TYPE_CODE (type))
299 case TYPE_CODE_DECFLOAT:
300 /* __m128, __m128i, __m128d, floats, and doubles are returned
302 if (len == 4 || len == 8 || len == 16)
303 regnum = AMD64_XMM0_REGNUM;
306 /* All other values that are 1, 2, 4 or 8 bytes long are returned
308 if (len == 1 || len == 2 || len == 4 || len == 8)
309 regnum = AMD64_RAX_REGNUM;
315 /* RAX contains the address where the return value has been stored. */
320 regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr);
321 read_memory (addr, readbuf, TYPE_LENGTH (type));
323 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
327 /* Extract the return value from the register where it was stored. */
329 regcache_raw_read_part (regcache, regnum, 0, len, readbuf);
331 regcache_raw_write_part (regcache, regnum, 0, len, writebuf);
332 return RETURN_VALUE_REGISTER_CONVENTION;
336 /* Check that the code pointed to by PC corresponds to a call to
337 __main, skip it if so. Return PC otherwise. */
340 amd64_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
342 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
345 target_read_memory (pc, &op, 1);
350 if (target_read_memory (pc + 1, buf, sizeof buf) == 0)
352 struct bound_minimal_symbol s;
355 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
356 s = lookup_minimal_symbol_by_pc (call_dest);
358 && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
359 && strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0)
367 struct amd64_windows_frame_cache
369 /* ImageBase for the module. */
370 CORE_ADDR image_base;
372 /* Function start and end rva. */
376 /* Next instruction to be executed. */
382 /* Address of saved integer and xmm registers. */
383 CORE_ADDR prev_reg_addr[16];
384 CORE_ADDR prev_xmm_addr[16];
386 /* These two next fields are set only for machine info frames. */
388 /* Likewise for RIP. */
389 CORE_ADDR prev_rip_addr;
391 /* Likewise for RSP. */
392 CORE_ADDR prev_rsp_addr;
394 /* Address of the previous frame. */
398 /* Convert a Windows register number to gdb. */
399 static const enum amd64_regnum amd64_windows_w2gdb_regnum[] =
419 /* Return TRUE iff PC is the the range of the function corresponding to
423 pc_in_range (CORE_ADDR pc, const struct amd64_windows_frame_cache *cache)
425 return (pc >= cache->image_base + cache->start_rva
426 && pc < cache->image_base + cache->end_rva);
429 /* Try to recognize and decode an epilogue sequence.
431 Return -1 if we fail to read the instructions for any reason.
432 Return 1 if an epilogue sequence was recognized, 0 otherwise. */
435 amd64_windows_frame_decode_epilogue (struct frame_info *this_frame,
436 struct amd64_windows_frame_cache *cache)
438 /* According to MSDN an epilogue "must consist of either an add RSP,constant
439 or lea RSP,constant[FPReg], followed by a series of zero or more 8-byte
440 register pops and a return or a jmp".
442 Furthermore, according to RtlVirtualUnwind, the complete list of
447 - jmp imm8 | imm32 [eb rel8] or [e9 rel32]
448 - jmp qword ptr imm32 - not handled
449 - rex.w jmp reg [4X ff eY]
452 CORE_ADDR pc = cache->pc;
453 CORE_ADDR cur_sp = cache->sp;
454 struct gdbarch *gdbarch = get_frame_arch (this_frame);
455 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
459 /* We don't care about the instruction deallocating the frame:
460 if it hasn't been executed, the pc is still in the body,
461 if it has been executed, the following epilog decoding will work. */
464 - pop reg [41 58-5f] or [58-5f]. */
469 if (target_read_memory (pc, &op, 1) != 0)
472 if (op >= 0x40 && op <= 0x4f)
478 if (target_read_memory (pc + 1, &op, 1) != 0)
484 if (op >= 0x58 && op <= 0x5f)
487 gdb_byte reg = (op & 0x0f) | ((rex & 1) << 3);
489 cache->prev_reg_addr[amd64_windows_w2gdb_regnum[reg]] = cur_sp;
496 /* Allow the user to break this loop. This shouldn't happen as the
497 number of consecutive pop should be small. */
501 /* Then decode the marker. */
504 if (target_read_memory (pc, &op, 1) != 0)
511 cache->prev_rip_addr = cur_sp;
512 cache->prev_sp = cur_sp + 8;
521 if (target_read_memory (pc + 1, &rel8, 1) != 0)
523 npc = pc + 2 + (signed char) rel8;
525 /* If the jump is within the function, then this is not a marker,
526 otherwise this is a tail-call. */
527 return !pc_in_range (npc, cache);
536 if (target_read_memory (pc + 1, rel32, 4) != 0)
538 npc = pc + 5 + extract_signed_integer (rel32, 4, byte_order);
540 /* If the jump is within the function, then this is not a marker,
541 otherwise this is a tail-call. */
542 return !pc_in_range (npc, cache);
550 if (target_read_memory (pc + 1, imm16, 2) != 0)
552 cache->prev_rip_addr = cur_sp;
553 cache->prev_sp = cur_sp
554 + extract_unsigned_integer (imm16, 4, byte_order);
563 if (target_read_memory (pc + 2, &op1, 1) != 0)
568 cache->prev_rip_addr = cur_sp;
569 cache->prev_sp = cur_sp + 8;
589 /* Got a REX prefix, read next byte. */
591 if (target_read_memory (pc + 1, &op, 1) != 0)
601 if (target_read_memory (pc + 2, &op1, 1) != 0)
603 return (op1 & 0xf8) == 0xe0;
609 /* Not REX, so unknown. */
614 /* Decode and execute unwind insns at UNWIND_INFO. */
617 amd64_windows_frame_decode_insns (struct frame_info *this_frame,
618 struct amd64_windows_frame_cache *cache,
619 CORE_ADDR unwind_info)
621 CORE_ADDR save_addr = 0;
622 CORE_ADDR cur_sp = cache->sp;
623 struct gdbarch *gdbarch = get_frame_arch (this_frame);
624 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
627 /* There are at least 3 possibilities to share an unwind info entry:
628 1. Two different runtime_function entries (in .pdata) can point to the
629 same unwind info entry. There is no such indication while unwinding,
630 so we don't really care about that case. We suppose this scheme is
631 used to save memory when the unwind entries are exactly the same.
632 2. Chained unwind_info entries, with no unwind codes (no prologue).
633 There is a major difference with the previous case: the pc range for
634 the function is different (in case 1, the pc range comes from the
635 runtime_function entry; in case 2, the pc range for the chained entry
636 comes from the first unwind entry). Case 1 cannot be used instead as
637 the pc is not in the prologue. This case is officially documented.
638 (There might be unwind code in the first unwind entry to handle
639 additional unwinding). GCC (at least until gcc 5.0) doesn't chain
641 3. Undocumented unwind info redirection. Hard to know the exact purpose,
642 so it is considered as a memory optimization of case 2.
647 /* Unofficially documented unwind info redirection, when UNWIND_INFO
648 address is odd (http://www.codemachine.com/article_x64deepdive.html).
650 struct external_pex64_runtime_function d;
653 if (target_read_memory (cache->image_base + (unwind_info & ~1),
654 (gdb_byte *) &d, sizeof (d)) != 0)
658 = extract_unsigned_integer (d.rva_BeginAddress, 4, byte_order);
660 = extract_unsigned_integer (d.rva_EndAddress, 4, byte_order);
662 = extract_unsigned_integer (d.rva_UnwindData, 4, byte_order);
667 struct external_pex64_unwind_info ex_ui;
668 /* There are at most 256 16-bit unwind insns. */
669 gdb_byte insns[2 * 256];
672 unsigned char codes_count;
673 unsigned char frame_reg;
674 unsigned char frame_off;
677 /* Read and decode header. */
678 if (target_read_memory (cache->image_base + unwind_info,
679 (gdb_byte *) &ex_ui, sizeof (ex_ui)) != 0)
685 "amd64_windows_frame_decodes_insn: "
686 "%s: ver: %02x, plgsz: %02x, cnt: %02x, frame: %02x\n",
687 paddress (gdbarch, unwind_info),
688 ex_ui.Version_Flags, ex_ui.SizeOfPrologue,
689 ex_ui.CountOfCodes, ex_ui.FrameRegisterOffset);
692 if (PEX64_UWI_VERSION (ex_ui.Version_Flags) != 1
693 && PEX64_UWI_VERSION (ex_ui.Version_Flags) != 2)
696 start = cache->image_base + cache->start_rva;
698 && !(cache->pc >= start && cache->pc < start + ex_ui.SizeOfPrologue))
700 /* We want to detect if the PC points to an epilogue. This needs
701 to be checked only once, and an epilogue can be anywhere but in
702 the prologue. If so, the epilogue detection+decoding function is
703 sufficient. Otherwise, the unwinder will consider that the PC
704 is in the body of the function and will need to decode unwind
706 if (amd64_windows_frame_decode_epilogue (this_frame, cache) == 1)
709 /* Not in an epilog. Clear possible side effects. */
710 memset (cache->prev_reg_addr, 0, sizeof (cache->prev_reg_addr));
713 codes_count = ex_ui.CountOfCodes;
714 frame_reg = PEX64_UWI_FRAMEREG (ex_ui.FrameRegisterOffset);
718 /* According to msdn:
719 If an FP reg is used, then any unwind code taking an offset must
720 only be used after the FP reg is established in the prolog. */
722 int frreg = amd64_windows_w2gdb_regnum[frame_reg];
724 get_frame_register (this_frame, frreg, buf);
725 save_addr = extract_unsigned_integer (buf, 8, byte_order);
728 fprintf_unfiltered (gdb_stdlog, " frame_reg=%s, val=%s\n",
729 gdbarch_register_name (gdbarch, frreg),
730 paddress (gdbarch, save_addr));
735 && target_read_memory (cache->image_base + unwind_info
737 insns, codes_count * 2) != 0)
740 end_insns = &insns[codes_count * 2];
743 /* Skip opcodes 6 of version 2. This opcode is not documented. */
744 if (PEX64_UWI_VERSION (ex_ui.Version_Flags) == 2)
746 for (; p < end_insns; p += 2)
747 if (PEX64_UNWCODE_CODE (p[1]) != 6)
751 for (; p < end_insns; p += 2)
755 /* Virtually execute the operation if the pc is after the
756 corresponding instruction (that does matter in case of break
757 within the prologue). Note that for chained info (!first), the
758 prologue has been fully executed. */
759 if (cache->pc >= start + p[0] || cache->pc < start)
763 (gdb_stdlog, " op #%u: off=0x%02x, insn=0x%02x\n",
764 (unsigned) (p - insns), p[0], p[1]);
766 /* If there is no frame registers defined, the current value of
767 rsp is used instead. */
773 switch (PEX64_UNWCODE_CODE (p[1]))
775 case UWOP_PUSH_NONVOL:
776 /* Push pre-decrements RSP. */
777 reg = amd64_windows_w2gdb_regnum[PEX64_UNWCODE_INFO (p[1])];
778 cache->prev_reg_addr[reg] = cur_sp;
781 case UWOP_ALLOC_LARGE:
782 if (PEX64_UNWCODE_INFO (p[1]) == 0)
784 8 * extract_unsigned_integer (p + 2, 2, byte_order);
785 else if (PEX64_UNWCODE_INFO (p[1]) == 1)
786 cur_sp += extract_unsigned_integer (p + 2, 4, byte_order);
790 case UWOP_ALLOC_SMALL:
791 cur_sp += 8 + 8 * PEX64_UNWCODE_INFO (p[1]);
795 - PEX64_UWI_FRAMEOFF (ex_ui.FrameRegisterOffset) * 16;
797 case UWOP_SAVE_NONVOL:
798 reg = amd64_windows_w2gdb_regnum[PEX64_UNWCODE_INFO (p[1])];
799 cache->prev_reg_addr[reg] = save_addr
800 + 8 * extract_unsigned_integer (p + 2, 2, byte_order);
802 case UWOP_SAVE_NONVOL_FAR:
803 reg = amd64_windows_w2gdb_regnum[PEX64_UNWCODE_INFO (p[1])];
804 cache->prev_reg_addr[reg] = save_addr
805 + 8 * extract_unsigned_integer (p + 2, 4, byte_order);
807 case UWOP_SAVE_XMM128:
808 cache->prev_xmm_addr[PEX64_UNWCODE_INFO (p[1])] =
810 - 16 * extract_unsigned_integer (p + 2, 2, byte_order);
812 case UWOP_SAVE_XMM128_FAR:
813 cache->prev_xmm_addr[PEX64_UNWCODE_INFO (p[1])] =
815 - 16 * extract_unsigned_integer (p + 2, 4, byte_order);
817 case UWOP_PUSH_MACHFRAME:
818 if (PEX64_UNWCODE_INFO (p[1]) == 0)
820 cache->prev_rip_addr = cur_sp + 0;
821 cache->prev_rsp_addr = cur_sp + 24;
824 else if (PEX64_UNWCODE_INFO (p[1]) == 1)
826 cache->prev_rip_addr = cur_sp + 8;
827 cache->prev_rsp_addr = cur_sp + 32;
837 /* Display address where the register was saved. */
838 if (frame_debug && reg >= 0)
840 (gdb_stdlog, " [reg %s at %s]\n",
841 gdbarch_register_name (gdbarch, reg),
842 paddress (gdbarch, cache->prev_reg_addr[reg]));
845 /* Adjust with the length of the opcode. */
846 switch (PEX64_UNWCODE_CODE (p[1]))
848 case UWOP_PUSH_NONVOL:
849 case UWOP_ALLOC_SMALL:
851 case UWOP_PUSH_MACHFRAME:
853 case UWOP_ALLOC_LARGE:
854 if (PEX64_UNWCODE_INFO (p[1]) == 0)
856 else if (PEX64_UNWCODE_INFO (p[1]) == 1)
861 case UWOP_SAVE_NONVOL:
862 case UWOP_SAVE_XMM128:
865 case UWOP_SAVE_NONVOL_FAR:
866 case UWOP_SAVE_XMM128_FAR:
873 if (PEX64_UWI_FLAGS (ex_ui.Version_Flags) != UNW_FLAG_CHAININFO)
875 /* End of unwind info. */
880 /* Read the chained unwind info. */
881 struct external_pex64_runtime_function d;
884 /* Not anymore the first entry. */
887 /* Stay aligned on word boundary. */
888 chain_vma = cache->image_base + unwind_info
889 + sizeof (ex_ui) + ((codes_count + 1) & ~1) * 2;
891 if (target_read_memory (chain_vma, (gdb_byte *) &d, sizeof (d)) != 0)
894 /* Decode begin/end. This may be different from .pdata index, as
895 an unwind info may be shared by several functions (in particular
896 if many functions have the same prolog and handler. */
898 extract_unsigned_integer (d.rva_BeginAddress, 4, byte_order);
900 extract_unsigned_integer (d.rva_EndAddress, 4, byte_order);
902 extract_unsigned_integer (d.rva_UnwindData, 4, byte_order);
907 "amd64_windows_frame_decodes_insn (next in chain):"
908 " unwind_data=%s, start_rva=%s, end_rva=%s\n",
909 paddress (gdbarch, unwind_info),
910 paddress (gdbarch, cache->start_rva),
911 paddress (gdbarch, cache->end_rva));
914 /* Allow the user to break this loop. */
917 /* PC is saved by the call. */
918 if (cache->prev_rip_addr == 0)
919 cache->prev_rip_addr = cur_sp;
920 cache->prev_sp = cur_sp + 8;
923 fprintf_unfiltered (gdb_stdlog, " prev_sp: %s, prev_pc @%s\n",
924 paddress (gdbarch, cache->prev_sp),
925 paddress (gdbarch, cache->prev_rip_addr));
928 /* Find SEH unwind info for PC, returning 0 on success.
930 UNWIND_INFO is set to the rva of unwind info address, IMAGE_BASE
931 to the base address of the corresponding image, and START_RVA
932 to the rva of the function containing PC. */
935 amd64_windows_find_unwind_info (struct gdbarch *gdbarch, CORE_ADDR pc,
936 CORE_ADDR *unwind_info,
937 CORE_ADDR *image_base,
938 CORE_ADDR *start_rva,
941 struct obj_section *sec;
943 IMAGE_DATA_DIRECTORY *dir;
944 struct objfile *objfile;
945 unsigned long lo, hi;
947 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
949 /* Get the corresponding exception directory. */
950 sec = find_pc_section (pc);
953 objfile = sec->objfile;
954 pe = pe_data (sec->objfile->obfd);
955 dir = &pe->pe_opthdr.DataDirectory[PE_EXCEPTION_TABLE];
957 base = pe->pe_opthdr.ImageBase
958 + ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
963 Note: This does not handle dynamically added entries (for JIT
964 engines). For this, we would need to ask the kernel directly,
965 which means getting some info from the native layer. For the
966 rest of the code, however, it's probably faster to search
967 the entry ourselves. */
969 hi = dir->Size / sizeof (struct external_pex64_runtime_function);
973 unsigned long mid = lo + (hi - lo) / 2;
974 struct external_pex64_runtime_function d;
977 if (target_read_memory (base + dir->VirtualAddress + mid * sizeof (d),
978 (gdb_byte *) &d, sizeof (d)) != 0)
981 sa = extract_unsigned_integer (d.rva_BeginAddress, 4, byte_order);
982 ea = extract_unsigned_integer (d.rva_EndAddress, 4, byte_order);
985 else if (pc >= base + ea)
987 else if (pc >= base + sa && pc < base + ea)
993 extract_unsigned_integer (d.rva_UnwindData, 4, byte_order);
1003 "amd64_windows_find_unwind_data: image_base=%s, unwind_data=%s\n",
1004 paddress (gdbarch, base), paddress (gdbarch, *unwind_info));
1009 /* Fill THIS_CACHE using the native amd64-windows unwinding data
1012 static struct amd64_windows_frame_cache *
1013 amd64_windows_frame_cache (struct frame_info *this_frame, void **this_cache)
1015 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1016 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1017 struct amd64_windows_frame_cache *cache;
1019 struct obj_section *sec;
1021 IMAGE_DATA_DIRECTORY *dir;
1022 CORE_ADDR image_base;
1024 struct objfile *objfile;
1025 unsigned long lo, hi;
1026 CORE_ADDR unwind_info = 0;
1029 return (struct amd64_windows_frame_cache *) *this_cache;
1031 cache = FRAME_OBSTACK_ZALLOC (struct amd64_windows_frame_cache);
1032 *this_cache = cache;
1034 /* Get current PC and SP. */
1035 pc = get_frame_pc (this_frame);
1036 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
1037 cache->sp = extract_unsigned_integer (buf, 8, byte_order);
1040 if (amd64_windows_find_unwind_info (gdbarch, pc, &unwind_info,
1046 if (unwind_info == 0)
1048 /* Assume a leaf function. */
1049 cache->prev_sp = cache->sp + 8;
1050 cache->prev_rip_addr = cache->sp;
1054 /* Decode unwind insns to compute saved addresses. */
1055 amd64_windows_frame_decode_insns (this_frame, cache, unwind_info);
1060 /* Implement the "prev_register" method of struct frame_unwind
1061 using the standard Windows x64 SEH info. */
1063 static struct value *
1064 amd64_windows_frame_prev_register (struct frame_info *this_frame,
1065 void **this_cache, int regnum)
1067 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1068 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1069 struct amd64_windows_frame_cache *cache =
1070 amd64_windows_frame_cache (this_frame, this_cache);
1075 fprintf_unfiltered (gdb_stdlog,
1076 "amd64_windows_frame_prev_register %s for sp=%s\n",
1077 gdbarch_register_name (gdbarch, regnum),
1078 paddress (gdbarch, cache->prev_sp));
1080 if (regnum >= AMD64_XMM0_REGNUM && regnum <= AMD64_XMM0_REGNUM + 15)
1081 prev = cache->prev_xmm_addr[regnum - AMD64_XMM0_REGNUM];
1082 else if (regnum == AMD64_RSP_REGNUM)
1084 prev = cache->prev_rsp_addr;
1086 return frame_unwind_got_constant (this_frame, regnum, cache->prev_sp);
1088 else if (regnum >= AMD64_RAX_REGNUM && regnum <= AMD64_R15_REGNUM)
1089 prev = cache->prev_reg_addr[regnum - AMD64_RAX_REGNUM];
1090 else if (regnum == AMD64_RIP_REGNUM)
1091 prev = cache->prev_rip_addr;
1095 if (prev && frame_debug)
1096 fprintf_unfiltered (gdb_stdlog, " -> at %s\n", paddress (gdbarch, prev));
1100 /* Register was saved. */
1101 return frame_unwind_got_memory (this_frame, regnum, prev);
1105 /* Register is either volatile or not modified. */
1106 return frame_unwind_got_register (this_frame, regnum, regnum);
1110 /* Implement the "this_id" method of struct frame_unwind using
1111 the standard Windows x64 SEH info. */
1114 amd64_windows_frame_this_id (struct frame_info *this_frame, void **this_cache,
1115 struct frame_id *this_id)
1117 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1118 struct amd64_windows_frame_cache *cache =
1119 amd64_windows_frame_cache (this_frame, this_cache);
1121 *this_id = frame_id_build (cache->prev_sp,
1122 cache->image_base + cache->start_rva);
1125 /* Windows x64 SEH unwinder. */
1127 static const struct frame_unwind amd64_windows_frame_unwind =
1130 default_frame_unwind_stop_reason,
1131 &amd64_windows_frame_this_id,
1132 &amd64_windows_frame_prev_register,
1134 default_frame_sniffer
1137 /* Implement the "skip_prologue" gdbarch method. */
1140 amd64_windows_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1142 CORE_ADDR func_addr;
1143 CORE_ADDR unwind_info = 0;
1144 CORE_ADDR image_base, start_rva, end_rva;
1145 struct external_pex64_unwind_info ex_ui;
1147 /* Use prologue size from unwind info. */
1148 if (amd64_windows_find_unwind_info (gdbarch, pc, &unwind_info,
1149 &image_base, &start_rva, &end_rva) == 0)
1151 if (unwind_info == 0)
1153 /* Leaf function. */
1156 else if (target_read_memory (image_base + unwind_info,
1157 (gdb_byte *) &ex_ui, sizeof (ex_ui)) == 0
1158 && PEX64_UWI_VERSION (ex_ui.Version_Flags) == 1)
1159 return max (pc, image_base + start_rva + ex_ui.SizeOfPrologue);
1162 /* See if we can determine the end of the prologue via the symbol
1163 table. If so, then return either the PC, or the PC after
1164 the prologue, whichever is greater. */
1165 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
1167 CORE_ADDR post_prologue_pc
1168 = skip_prologue_using_sal (gdbarch, func_addr);
1170 if (post_prologue_pc != 0)
1171 return max (pc, post_prologue_pc);
1177 /* Check Win64 DLL jmp trampolines and find jump destination. */
1180 amd64_windows_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
1182 CORE_ADDR destination = 0;
1183 struct gdbarch *gdbarch = get_frame_arch (frame);
1184 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1186 /* Check for jmp *<offset>(%rip) (jump near, absolute indirect (/4)). */
1187 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
1189 /* Get opcode offset and see if we can find a reference in our data. */
1191 = read_memory_unsigned_integer (pc + 2, 4, byte_order);
1193 /* Get address of function pointer at end of pc. */
1194 CORE_ADDR indirect_addr = pc + offset + 6;
1196 struct minimal_symbol *indsym
1198 ? lookup_minimal_symbol_by_pc (indirect_addr).minsym
1200 const char *symname = indsym ? MSYMBOL_LINKAGE_NAME (indsym) : NULL;
1204 if (startswith (symname, "__imp_")
1205 || startswith (symname, "_imp_"))
1207 = read_memory_unsigned_integer (indirect_addr, 8, byte_order);
1214 /* Implement the "auto_wide_charset" gdbarch method. */
1217 amd64_windows_auto_wide_charset (void)
1223 amd64_windows_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1225 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1227 /* The dwarf2 unwinder (appended very early by i386_gdbarch_init) is
1228 preferred over the SEH one. The reasons are:
1229 - binaries without SEH but with dwarf2 debug info are correcly handled
1230 (although they aren't ABI compliant, gcc before 4.7 didn't emit SEH
1232 - dwarf3 DW_OP_call_frame_cfa is correctly handled (it can only be
1233 handled if the dwarf2 unwinder is used).
1235 The call to amd64_init_abi appends default unwinders, that aren't
1236 compatible with the SEH one.
1238 frame_unwind_append_unwinder (gdbarch, &amd64_windows_frame_unwind);
1240 amd64_init_abi (info, gdbarch);
1242 windows_init_abi (info, gdbarch);
1244 /* On Windows, "long"s are only 32bit. */
1245 set_gdbarch_long_bit (gdbarch, 32);
1247 /* Function calls. */
1248 set_gdbarch_push_dummy_call (gdbarch, amd64_windows_push_dummy_call);
1249 set_gdbarch_return_value (gdbarch, amd64_windows_return_value);
1250 set_gdbarch_skip_main_prologue (gdbarch, amd64_skip_main_prologue);
1251 set_gdbarch_skip_trampoline_code (gdbarch,
1252 amd64_windows_skip_trampoline_code);
1254 set_gdbarch_skip_prologue (gdbarch, amd64_windows_skip_prologue);
1256 set_gdbarch_auto_wide_charset (gdbarch, amd64_windows_auto_wide_charset);
1259 /* -Wmissing-prototypes */
1260 extern initialize_file_ftype _initialize_amd64_windows_tdep;
1263 _initialize_amd64_windows_tdep (void)
1265 gdbarch_register_osabi (bfd_arch_i386, bfd_mach_x86_64, GDB_OSABI_CYGWIN,
1266 amd64_windows_init_abi);