1 /* Target-dependent code for AMD64.
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011 Free Software Foundation, Inc.
6 Contributed by Jiri Smid, SuSE Labs.
8 This file is part of GDB.
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "opcode/i386.h"
26 #include "arch-utils.h"
28 #include "dummy-frame.h"
30 #include "frame-base.h"
31 #include "frame-unwind.h"
40 #include "gdb_assert.h"
41 #include "exceptions.h"
42 #include "amd64-tdep.h"
43 #include "i387-tdep.h"
45 #include "features/i386/amd64.c"
46 #include "features/i386/amd64-avx.c"
51 /* Note that the AMD64 architecture was previously known as x86-64.
52 The latter is (forever) engraved into the canonical system name as
53 returned by config.guess, and used as the name for the AMD64 port
54 of GNU/Linux. The BSD's have renamed their ports to amd64; they
55 don't like to shout. For GDB we prefer the amd64_-prefix over the
56 x86_64_-prefix since it's so much easier to type. */
58 /* Register information. */
60 static const char *amd64_register_names[] =
62 "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "rsp",
64 /* %r8 is indeed register number 8. */
65 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
66 "rip", "eflags", "cs", "ss", "ds", "es", "fs", "gs",
68 /* %st0 is register number 24. */
69 "st0", "st1", "st2", "st3", "st4", "st5", "st6", "st7",
70 "fctrl", "fstat", "ftag", "fiseg", "fioff", "foseg", "fooff", "fop",
72 /* %xmm0 is register number 40. */
73 "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7",
74 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15",
78 static const char *amd64_ymm_names[] =
80 "ymm0", "ymm1", "ymm2", "ymm3",
81 "ymm4", "ymm5", "ymm6", "ymm7",
82 "ymm8", "ymm9", "ymm10", "ymm11",
83 "ymm12", "ymm13", "ymm14", "ymm15"
86 static const char *amd64_ymmh_names[] =
88 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
89 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
90 "ymm8h", "ymm9h", "ymm10h", "ymm11h",
91 "ymm12h", "ymm13h", "ymm14h", "ymm15h"
94 /* The registers used to pass integer arguments during a function call. */
95 static int amd64_dummy_call_integer_regs[] =
97 AMD64_RDI_REGNUM, /* %rdi */
98 AMD64_RSI_REGNUM, /* %rsi */
99 AMD64_RDX_REGNUM, /* %rdx */
100 AMD64_RCX_REGNUM, /* %rcx */
105 /* DWARF Register Number Mapping as defined in the System V psABI,
108 static int amd64_dwarf_regmap[] =
110 /* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI. */
111 AMD64_RAX_REGNUM, AMD64_RDX_REGNUM,
112 AMD64_RCX_REGNUM, AMD64_RBX_REGNUM,
113 AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
115 /* Frame Pointer Register RBP. */
118 /* Stack Pointer Register RSP. */
121 /* Extended Integer Registers 8 - 15. */
122 8, 9, 10, 11, 12, 13, 14, 15,
124 /* Return Address RA. Mapped to RIP. */
127 /* SSE Registers 0 - 7. */
128 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
129 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
130 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
131 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
133 /* Extended SSE Registers 8 - 15. */
134 AMD64_XMM0_REGNUM + 8, AMD64_XMM0_REGNUM + 9,
135 AMD64_XMM0_REGNUM + 10, AMD64_XMM0_REGNUM + 11,
136 AMD64_XMM0_REGNUM + 12, AMD64_XMM0_REGNUM + 13,
137 AMD64_XMM0_REGNUM + 14, AMD64_XMM0_REGNUM + 15,
139 /* Floating Point Registers 0-7. */
140 AMD64_ST0_REGNUM + 0, AMD64_ST0_REGNUM + 1,
141 AMD64_ST0_REGNUM + 2, AMD64_ST0_REGNUM + 3,
142 AMD64_ST0_REGNUM + 4, AMD64_ST0_REGNUM + 5,
143 AMD64_ST0_REGNUM + 6, AMD64_ST0_REGNUM + 7,
145 /* Control and Status Flags Register. */
148 /* Selector Registers. */
158 /* Segment Base Address Registers. */
164 /* Special Selector Registers. */
168 /* Floating Point Control Registers. */
174 static const int amd64_dwarf_regmap_len =
175 (sizeof (amd64_dwarf_regmap) / sizeof (amd64_dwarf_regmap[0]));
177 /* Convert DWARF register number REG to the appropriate register
178 number used by GDB. */
181 amd64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
183 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
184 int ymm0_regnum = tdep->ymm0_regnum;
187 if (reg >= 0 && reg < amd64_dwarf_regmap_len)
188 regnum = amd64_dwarf_regmap[reg];
191 warning (_("Unmapped DWARF Register #%d encountered."), reg);
192 else if (ymm0_regnum >= 0
193 && i386_xmm_regnum_p (gdbarch, regnum))
194 regnum += ymm0_regnum - I387_XMM0_REGNUM (tdep);
199 /* Map architectural register numbers to gdb register numbers. */
201 static const int amd64_arch_regmap[16] =
203 AMD64_RAX_REGNUM, /* %rax */
204 AMD64_RCX_REGNUM, /* %rcx */
205 AMD64_RDX_REGNUM, /* %rdx */
206 AMD64_RBX_REGNUM, /* %rbx */
207 AMD64_RSP_REGNUM, /* %rsp */
208 AMD64_RBP_REGNUM, /* %rbp */
209 AMD64_RSI_REGNUM, /* %rsi */
210 AMD64_RDI_REGNUM, /* %rdi */
211 AMD64_R8_REGNUM, /* %r8 */
212 AMD64_R9_REGNUM, /* %r9 */
213 AMD64_R10_REGNUM, /* %r10 */
214 AMD64_R11_REGNUM, /* %r11 */
215 AMD64_R12_REGNUM, /* %r12 */
216 AMD64_R13_REGNUM, /* %r13 */
217 AMD64_R14_REGNUM, /* %r14 */
218 AMD64_R15_REGNUM /* %r15 */
221 static const int amd64_arch_regmap_len =
222 (sizeof (amd64_arch_regmap) / sizeof (amd64_arch_regmap[0]));
224 /* Convert architectural register number REG to the appropriate register
225 number used by GDB. */
228 amd64_arch_reg_to_regnum (int reg)
230 gdb_assert (reg >= 0 && reg < amd64_arch_regmap_len);
232 return amd64_arch_regmap[reg];
235 /* Register names for byte pseudo-registers. */
237 static const char *amd64_byte_names[] =
239 "al", "bl", "cl", "dl", "sil", "dil", "bpl", "spl",
240 "r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l",
241 "ah", "bh", "ch", "dh"
244 /* Number of lower byte registers. */
245 #define AMD64_NUM_LOWER_BYTE_REGS 16
247 /* Register names for word pseudo-registers. */
249 static const char *amd64_word_names[] =
251 "ax", "bx", "cx", "dx", "si", "di", "bp", "",
252 "r8w", "r9w", "r10w", "r11w", "r12w", "r13w", "r14w", "r15w"
255 /* Register names for dword pseudo-registers. */
257 static const char *amd64_dword_names[] =
259 "eax", "ebx", "ecx", "edx", "esi", "edi", "ebp", "esp",
260 "r8d", "r9d", "r10d", "r11d", "r12d", "r13d", "r14d", "r15d"
263 /* Return the name of register REGNUM. */
266 amd64_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
268 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
269 if (i386_byte_regnum_p (gdbarch, regnum))
270 return amd64_byte_names[regnum - tdep->al_regnum];
271 else if (i386_ymm_regnum_p (gdbarch, regnum))
272 return amd64_ymm_names[regnum - tdep->ymm0_regnum];
273 else if (i386_word_regnum_p (gdbarch, regnum))
274 return amd64_word_names[regnum - tdep->ax_regnum];
275 else if (i386_dword_regnum_p (gdbarch, regnum))
276 return amd64_dword_names[regnum - tdep->eax_regnum];
278 return i386_pseudo_register_name (gdbarch, regnum);
281 static struct value *
282 amd64_pseudo_register_read_value (struct gdbarch *gdbarch,
283 struct regcache *regcache,
286 gdb_byte raw_buf[MAX_REGISTER_SIZE];
287 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
288 enum register_status status;
289 struct value *result_value;
292 result_value = allocate_value (register_type (gdbarch, regnum));
293 VALUE_LVAL (result_value) = lval_register;
294 VALUE_REGNUM (result_value) = regnum;
295 buf = value_contents_raw (result_value);
297 if (i386_byte_regnum_p (gdbarch, regnum))
299 int gpnum = regnum - tdep->al_regnum;
301 /* Extract (always little endian). */
302 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
304 /* Special handling for AH, BH, CH, DH. */
305 status = regcache_raw_read (regcache,
306 gpnum - AMD64_NUM_LOWER_BYTE_REGS,
308 if (status == REG_VALID)
309 memcpy (buf, raw_buf + 1, 1);
311 mark_value_bytes_unavailable (result_value, 0,
312 TYPE_LENGTH (value_type (result_value)));
316 status = regcache_raw_read (regcache, gpnum, raw_buf);
317 if (status == REG_VALID)
318 memcpy (buf, raw_buf, 1);
320 mark_value_bytes_unavailable (result_value, 0,
321 TYPE_LENGTH (value_type (result_value)));
324 else if (i386_dword_regnum_p (gdbarch, regnum))
326 int gpnum = regnum - tdep->eax_regnum;
327 /* Extract (always little endian). */
328 status = regcache_raw_read (regcache, gpnum, raw_buf);
329 if (status == REG_VALID)
330 memcpy (buf, raw_buf, 4);
332 mark_value_bytes_unavailable (result_value, 0,
333 TYPE_LENGTH (value_type (result_value)));
336 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum,
343 amd64_pseudo_register_write (struct gdbarch *gdbarch,
344 struct regcache *regcache,
345 int regnum, const gdb_byte *buf)
347 gdb_byte raw_buf[MAX_REGISTER_SIZE];
348 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
350 if (i386_byte_regnum_p (gdbarch, regnum))
352 int gpnum = regnum - tdep->al_regnum;
354 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
356 /* Read ... AH, BH, CH, DH. */
357 regcache_raw_read (regcache,
358 gpnum - AMD64_NUM_LOWER_BYTE_REGS, raw_buf);
359 /* ... Modify ... (always little endian). */
360 memcpy (raw_buf + 1, buf, 1);
362 regcache_raw_write (regcache,
363 gpnum - AMD64_NUM_LOWER_BYTE_REGS, raw_buf);
368 regcache_raw_read (regcache, gpnum, raw_buf);
369 /* ... Modify ... (always little endian). */
370 memcpy (raw_buf, buf, 1);
372 regcache_raw_write (regcache, gpnum, raw_buf);
375 else if (i386_dword_regnum_p (gdbarch, regnum))
377 int gpnum = regnum - tdep->eax_regnum;
380 regcache_raw_read (regcache, gpnum, raw_buf);
381 /* ... Modify ... (always little endian). */
382 memcpy (raw_buf, buf, 4);
384 regcache_raw_write (regcache, gpnum, raw_buf);
387 i386_pseudo_register_write (gdbarch, regcache, regnum, buf);
392 /* Return the union class of CLASS1 and CLASS2. See the psABI for
395 static enum amd64_reg_class
396 amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2)
398 /* Rule (a): If both classes are equal, this is the resulting class. */
399 if (class1 == class2)
402 /* Rule (b): If one of the classes is NO_CLASS, the resulting class
403 is the other class. */
404 if (class1 == AMD64_NO_CLASS)
406 if (class2 == AMD64_NO_CLASS)
409 /* Rule (c): If one of the classes is MEMORY, the result is MEMORY. */
410 if (class1 == AMD64_MEMORY || class2 == AMD64_MEMORY)
413 /* Rule (d): If one of the classes is INTEGER, the result is INTEGER. */
414 if (class1 == AMD64_INTEGER || class2 == AMD64_INTEGER)
415 return AMD64_INTEGER;
417 /* Rule (e): If one of the classes is X87, X87UP, COMPLEX_X87 class,
418 MEMORY is used as class. */
419 if (class1 == AMD64_X87 || class1 == AMD64_X87UP
420 || class1 == AMD64_COMPLEX_X87 || class2 == AMD64_X87
421 || class2 == AMD64_X87UP || class2 == AMD64_COMPLEX_X87)
424 /* Rule (f): Otherwise class SSE is used. */
428 /* Return non-zero if TYPE is a non-POD structure or union type. */
431 amd64_non_pod_p (struct type *type)
433 /* ??? A class with a base class certainly isn't POD, but does this
434 catch all non-POD structure types? */
435 if (TYPE_CODE (type) == TYPE_CODE_STRUCT && TYPE_N_BASECLASSES (type) > 0)
441 /* Classify TYPE according to the rules for aggregate (structures and
442 arrays) and union types, and store the result in CLASS. */
445 amd64_classify_aggregate (struct type *type, enum amd64_reg_class class[2])
447 int len = TYPE_LENGTH (type);
449 /* 1. If the size of an object is larger than two eightbytes, or in
450 C++, is a non-POD structure or union type, or contains
451 unaligned fields, it has class memory. */
452 if (len > 16 || amd64_non_pod_p (type))
454 class[0] = class[1] = AMD64_MEMORY;
458 /* 2. Both eightbytes get initialized to class NO_CLASS. */
459 class[0] = class[1] = AMD64_NO_CLASS;
461 /* 3. Each field of an object is classified recursively so that
462 always two fields are considered. The resulting class is
463 calculated according to the classes of the fields in the
466 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
468 struct type *subtype = check_typedef (TYPE_TARGET_TYPE (type));
470 /* All fields in an array have the same type. */
471 amd64_classify (subtype, class);
472 if (len > 8 && class[1] == AMD64_NO_CLASS)
479 /* Structure or union. */
480 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
481 || TYPE_CODE (type) == TYPE_CODE_UNION);
483 for (i = 0; i < TYPE_NFIELDS (type); i++)
485 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
486 int pos = TYPE_FIELD_BITPOS (type, i) / 64;
487 enum amd64_reg_class subclass[2];
488 int bitsize = TYPE_FIELD_BITSIZE (type, i);
492 bitsize = TYPE_LENGTH (subtype) * 8;
493 endpos = (TYPE_FIELD_BITPOS (type, i) + bitsize - 1) / 64;
495 /* Ignore static fields. */
496 if (field_is_static (&TYPE_FIELD (type, i)))
499 gdb_assert (pos == 0 || pos == 1);
501 amd64_classify (subtype, subclass);
502 class[pos] = amd64_merge_classes (class[pos], subclass[0]);
503 if (bitsize <= 64 && pos == 0 && endpos == 1)
504 /* This is a bit of an odd case: We have a field that would
505 normally fit in one of the two eightbytes, except that
506 it is placed in a way that this field straddles them.
507 This has been seen with a structure containing an array.
509 The ABI is a bit unclear in this case, but we assume that
510 this field's class (stored in subclass[0]) must also be merged
511 into class[1]. In other words, our field has a piece stored
512 in the second eight-byte, and thus its class applies to
513 the second eight-byte as well.
515 In the case where the field length exceeds 8 bytes,
516 it should not be necessary to merge the field class
517 into class[1]. As LEN > 8, subclass[1] is necessarily
518 different from AMD64_NO_CLASS. If subclass[1] is equal
519 to subclass[0], then the normal class[1]/subclass[1]
520 merging will take care of everything. For subclass[1]
521 to be different from subclass[0], I can only see the case
522 where we have a SSE/SSEUP or X87/X87UP pair, which both
523 use up all 16 bytes of the aggregate, and are already
524 handled just fine (because each portion sits on its own
526 class[1] = amd64_merge_classes (class[1], subclass[0]);
528 class[1] = amd64_merge_classes (class[1], subclass[1]);
532 /* 4. Then a post merger cleanup is done: */
534 /* Rule (a): If one of the classes is MEMORY, the whole argument is
536 if (class[0] == AMD64_MEMORY || class[1] == AMD64_MEMORY)
537 class[0] = class[1] = AMD64_MEMORY;
539 /* Rule (b): If SSEUP is not preceded by SSE, it is converted to
541 if (class[0] == AMD64_SSEUP)
542 class[0] = AMD64_SSE;
543 if (class[1] == AMD64_SSEUP && class[0] != AMD64_SSE)
544 class[1] = AMD64_SSE;
547 /* Classify TYPE, and store the result in CLASS. */
550 amd64_classify (struct type *type, enum amd64_reg_class class[2])
552 enum type_code code = TYPE_CODE (type);
553 int len = TYPE_LENGTH (type);
555 class[0] = class[1] = AMD64_NO_CLASS;
557 /* Arguments of types (signed and unsigned) _Bool, char, short, int,
558 long, long long, and pointers are in the INTEGER class. Similarly,
559 range types, used by languages such as Ada, are also in the INTEGER
561 if ((code == TYPE_CODE_INT || code == TYPE_CODE_ENUM
562 || code == TYPE_CODE_BOOL || code == TYPE_CODE_RANGE
563 || code == TYPE_CODE_CHAR
564 || code == TYPE_CODE_PTR || code == TYPE_CODE_REF)
565 && (len == 1 || len == 2 || len == 4 || len == 8))
566 class[0] = AMD64_INTEGER;
568 /* Arguments of types float, double, _Decimal32, _Decimal64 and __m64
570 else if ((code == TYPE_CODE_FLT || code == TYPE_CODE_DECFLOAT)
571 && (len == 4 || len == 8))
573 class[0] = AMD64_SSE;
575 /* Arguments of types __float128, _Decimal128 and __m128 are split into
576 two halves. The least significant ones belong to class SSE, the most
577 significant one to class SSEUP. */
578 else if (code == TYPE_CODE_DECFLOAT && len == 16)
579 /* FIXME: __float128, __m128. */
580 class[0] = AMD64_SSE, class[1] = AMD64_SSEUP;
582 /* The 64-bit mantissa of arguments of type long double belongs to
583 class X87, the 16-bit exponent plus 6 bytes of padding belongs to
585 else if (code == TYPE_CODE_FLT && len == 16)
586 /* Class X87 and X87UP. */
587 class[0] = AMD64_X87, class[1] = AMD64_X87UP;
590 else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT
591 || code == TYPE_CODE_UNION)
592 amd64_classify_aggregate (type, class);
595 static enum return_value_convention
596 amd64_return_value (struct gdbarch *gdbarch, struct type *func_type,
597 struct type *type, struct regcache *regcache,
598 gdb_byte *readbuf, const gdb_byte *writebuf)
600 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
601 enum amd64_reg_class class[2];
602 int len = TYPE_LENGTH (type);
603 static int integer_regnum[] = { AMD64_RAX_REGNUM, AMD64_RDX_REGNUM };
604 static int sse_regnum[] = { AMD64_XMM0_REGNUM, AMD64_XMM1_REGNUM };
609 gdb_assert (!(readbuf && writebuf));
610 gdb_assert (tdep->classify);
612 /* 1. Classify the return type with the classification algorithm. */
613 tdep->classify (type, class);
615 /* 2. If the type has class MEMORY, then the caller provides space
616 for the return value and passes the address of this storage in
617 %rdi as if it were the first argument to the function. In effect,
618 this address becomes a hidden first argument.
620 On return %rax will contain the address that has been passed in
621 by the caller in %rdi. */
622 if (class[0] == AMD64_MEMORY)
624 /* As indicated by the comment above, the ABI guarantees that we
625 can always find the return value just after the function has
632 regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr);
633 read_memory (addr, readbuf, TYPE_LENGTH (type));
636 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
639 gdb_assert (class[1] != AMD64_MEMORY);
640 gdb_assert (len <= 16);
642 for (i = 0; len > 0; i++, len -= 8)
650 /* 3. If the class is INTEGER, the next available register
651 of the sequence %rax, %rdx is used. */
652 regnum = integer_regnum[integer_reg++];
656 /* 4. If the class is SSE, the next available SSE register
657 of the sequence %xmm0, %xmm1 is used. */
658 regnum = sse_regnum[sse_reg++];
662 /* 5. If the class is SSEUP, the eightbyte is passed in the
663 upper half of the last used SSE register. */
664 gdb_assert (sse_reg > 0);
665 regnum = sse_regnum[sse_reg - 1];
670 /* 6. If the class is X87, the value is returned on the X87
671 stack in %st0 as 80-bit x87 number. */
672 regnum = AMD64_ST0_REGNUM;
674 i387_return_value (gdbarch, regcache);
678 /* 7. If the class is X87UP, the value is returned together
679 with the previous X87 value in %st0. */
680 gdb_assert (i > 0 && class[0] == AMD64_X87);
681 regnum = AMD64_ST0_REGNUM;
690 gdb_assert (!"Unexpected register class.");
693 gdb_assert (regnum != -1);
696 regcache_raw_read_part (regcache, regnum, offset, min (len, 8),
699 regcache_raw_write_part (regcache, regnum, offset, min (len, 8),
703 return RETURN_VALUE_REGISTER_CONVENTION;
708 amd64_push_arguments (struct regcache *regcache, int nargs,
709 struct value **args, CORE_ADDR sp, int struct_return)
711 struct gdbarch *gdbarch = get_regcache_arch (regcache);
712 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
713 int *integer_regs = tdep->call_dummy_integer_regs;
714 int num_integer_regs = tdep->call_dummy_num_integer_regs;
716 static int sse_regnum[] =
718 /* %xmm0 ... %xmm7 */
719 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
720 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
721 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
722 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
724 struct value **stack_args = alloca (nargs * sizeof (struct value *));
725 /* An array that mirrors the stack_args array. For all arguments
726 that are passed by MEMORY, if that argument's address also needs
727 to be stored in a register, the ARG_ADDR_REGNO array will contain
728 that register number (or a negative value otherwise). */
729 int *arg_addr_regno = alloca (nargs * sizeof (int));
730 int num_stack_args = 0;
731 int num_elements = 0;
737 gdb_assert (tdep->classify);
739 /* Reserve a register for the "hidden" argument. */
743 for (i = 0; i < nargs; i++)
745 struct type *type = value_type (args[i]);
746 int len = TYPE_LENGTH (type);
747 enum amd64_reg_class class[2];
748 int needed_integer_regs = 0;
749 int needed_sse_regs = 0;
752 /* Classify argument. */
753 tdep->classify (type, class);
755 /* Calculate the number of integer and SSE registers needed for
757 for (j = 0; j < 2; j++)
759 if (class[j] == AMD64_INTEGER)
760 needed_integer_regs++;
761 else if (class[j] == AMD64_SSE)
765 /* Check whether enough registers are available, and if the
766 argument should be passed in registers at all. */
767 if (integer_reg + needed_integer_regs > num_integer_regs
768 || sse_reg + needed_sse_regs > ARRAY_SIZE (sse_regnum)
769 || (needed_integer_regs == 0 && needed_sse_regs == 0))
771 /* The argument will be passed on the stack. */
772 num_elements += ((len + 7) / 8);
773 stack_args[num_stack_args] = args[i];
774 /* If this is an AMD64_MEMORY argument whose address must also
775 be passed in one of the integer registers, reserve that
776 register and associate this value to that register so that
777 we can store the argument address as soon as we know it. */
778 if (class[0] == AMD64_MEMORY
779 && tdep->memory_args_by_pointer
780 && integer_reg < tdep->call_dummy_num_integer_regs)
781 arg_addr_regno[num_stack_args] =
782 tdep->call_dummy_integer_regs[integer_reg++];
784 arg_addr_regno[num_stack_args] = -1;
789 /* The argument will be passed in registers. */
790 const gdb_byte *valbuf = value_contents (args[i]);
793 gdb_assert (len <= 16);
795 for (j = 0; len > 0; j++, len -= 8)
803 regnum = integer_regs[integer_reg++];
807 regnum = sse_regnum[sse_reg++];
811 gdb_assert (sse_reg > 0);
812 regnum = sse_regnum[sse_reg - 1];
817 gdb_assert (!"Unexpected register class.");
820 gdb_assert (regnum != -1);
821 memset (buf, 0, sizeof buf);
822 memcpy (buf, valbuf + j * 8, min (len, 8));
823 regcache_raw_write_part (regcache, regnum, offset, 8, buf);
828 /* Allocate space for the arguments on the stack. */
829 sp -= num_elements * 8;
831 /* The psABI says that "The end of the input argument area shall be
832 aligned on a 16 byte boundary." */
835 /* Write out the arguments to the stack. */
836 for (i = 0; i < num_stack_args; i++)
838 struct type *type = value_type (stack_args[i]);
839 const gdb_byte *valbuf = value_contents (stack_args[i]);
840 int len = TYPE_LENGTH (type);
841 CORE_ADDR arg_addr = sp + element * 8;
843 write_memory (arg_addr, valbuf, len);
844 if (arg_addr_regno[i] >= 0)
846 /* We also need to store the address of that argument in
847 the given register. */
849 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
851 store_unsigned_integer (buf, 8, byte_order, arg_addr);
852 regcache_cooked_write (regcache, arg_addr_regno[i], buf);
854 element += ((len + 7) / 8);
857 /* The psABI says that "For calls that may call functions that use
858 varargs or stdargs (prototype-less calls or calls to functions
859 containing ellipsis (...) in the declaration) %al is used as
860 hidden argument to specify the number of SSE registers used. */
861 regcache_raw_write_unsigned (regcache, AMD64_RAX_REGNUM, sse_reg);
866 amd64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
867 struct regcache *regcache, CORE_ADDR bp_addr,
868 int nargs, struct value **args, CORE_ADDR sp,
869 int struct_return, CORE_ADDR struct_addr)
871 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
872 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
875 /* Pass arguments. */
876 sp = amd64_push_arguments (regcache, nargs, args, sp, struct_return);
878 /* Pass "hidden" argument". */
881 /* The "hidden" argument is passed throught the first argument
883 const int arg_regnum = tdep->call_dummy_integer_regs[0];
885 store_unsigned_integer (buf, 8, byte_order, struct_addr);
886 regcache_cooked_write (regcache, arg_regnum, buf);
889 /* Reserve some memory on the stack for the integer-parameter registers,
890 if required by the ABI. */
891 if (tdep->integer_param_regs_saved_in_caller_frame)
892 sp -= tdep->call_dummy_num_integer_regs * 8;
894 /* Store return address. */
896 store_unsigned_integer (buf, 8, byte_order, bp_addr);
897 write_memory (sp, buf, 8);
899 /* Finally, update the stack pointer... */
900 store_unsigned_integer (buf, 8, byte_order, sp);
901 regcache_cooked_write (regcache, AMD64_RSP_REGNUM, buf);
903 /* ...and fake a frame pointer. */
904 regcache_cooked_write (regcache, AMD64_RBP_REGNUM, buf);
909 /* Displaced instruction handling. */
911 /* A partially decoded instruction.
912 This contains enough details for displaced stepping purposes. */
916 /* The number of opcode bytes. */
918 /* The offset of the rex prefix or -1 if not present. */
920 /* The offset to the first opcode byte. */
922 /* The offset to the modrm byte or -1 if not present. */
925 /* The raw instruction. */
929 struct displaced_step_closure
931 /* For rip-relative insns, saved copy of the reg we use instead of %rip. */
936 /* Details of the instruction. */
937 struct amd64_insn insn_details;
939 /* Amount of space allocated to insn_buf. */
942 /* The possibly modified insn.
943 This is a variable-length field. */
944 gdb_byte insn_buf[1];
947 /* WARNING: Keep onebyte_has_modrm, twobyte_has_modrm in sync with
948 ../opcodes/i386-dis.c (until libopcodes exports them, or an alternative,
949 at which point delete these in favor of libopcodes' versions). */
951 static const unsigned char onebyte_has_modrm[256] = {
952 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
953 /* ------------------------------- */
954 /* 00 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 00 */
955 /* 10 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 10 */
956 /* 20 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 20 */
957 /* 30 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 30 */
958 /* 40 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 40 */
959 /* 50 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 50 */
960 /* 60 */ 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0, /* 60 */
961 /* 70 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 70 */
962 /* 80 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 80 */
963 /* 90 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 90 */
964 /* a0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* a0 */
965 /* b0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* b0 */
966 /* c0 */ 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0, /* c0 */
967 /* d0 */ 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1, /* d0 */
968 /* e0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* e0 */
969 /* f0 */ 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1 /* f0 */
970 /* ------------------------------- */
971 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
974 static const unsigned char twobyte_has_modrm[256] = {
975 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
976 /* ------------------------------- */
977 /* 00 */ 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1, /* 0f */
978 /* 10 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 1f */
979 /* 20 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 2f */
980 /* 30 */ 0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0, /* 3f */
981 /* 40 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 4f */
982 /* 50 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 5f */
983 /* 60 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 6f */
984 /* 70 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 7f */
985 /* 80 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 8f */
986 /* 90 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 9f */
987 /* a0 */ 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1, /* af */
988 /* b0 */ 1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1, /* bf */
989 /* c0 */ 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0, /* cf */
990 /* d0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* df */
991 /* e0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ef */
992 /* f0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0 /* ff */
993 /* ------------------------------- */
994 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
997 static int amd64_syscall_p (const struct amd64_insn *insn, int *lengthp);
1000 rex_prefix_p (gdb_byte pfx)
1002 return REX_PREFIX_P (pfx);
1005 /* Skip the legacy instruction prefixes in INSN.
1006 We assume INSN is properly sentineled so we don't have to worry
1007 about falling off the end of the buffer. */
1010 amd64_skip_prefixes (gdb_byte *insn)
1016 case DATA_PREFIX_OPCODE:
1017 case ADDR_PREFIX_OPCODE:
1018 case CS_PREFIX_OPCODE:
1019 case DS_PREFIX_OPCODE:
1020 case ES_PREFIX_OPCODE:
1021 case FS_PREFIX_OPCODE:
1022 case GS_PREFIX_OPCODE:
1023 case SS_PREFIX_OPCODE:
1024 case LOCK_PREFIX_OPCODE:
1025 case REPE_PREFIX_OPCODE:
1026 case REPNE_PREFIX_OPCODE:
1038 /* Return an integer register (other than RSP) that is unused as an input
1040 In order to not require adding a rex prefix if the insn doesn't already
1041 have one, the result is restricted to RAX ... RDI, sans RSP.
1042 The register numbering of the result follows architecture ordering,
1046 amd64_get_unused_input_int_reg (const struct amd64_insn *details)
1048 /* 1 bit for each reg */
1049 int used_regs_mask = 0;
1051 /* There can be at most 3 int regs used as inputs in an insn, and we have
1052 7 to choose from (RAX ... RDI, sans RSP).
1053 This allows us to take a conservative approach and keep things simple.
1054 E.g. By avoiding RAX, we don't have to specifically watch for opcodes
1055 that implicitly specify RAX. */
1058 used_regs_mask |= 1 << EAX_REG_NUM;
1059 /* Similarily avoid RDX, implicit operand in divides. */
1060 used_regs_mask |= 1 << EDX_REG_NUM;
1062 used_regs_mask |= 1 << ESP_REG_NUM;
1064 /* If the opcode is one byte long and there's no ModRM byte,
1065 assume the opcode specifies a register. */
1066 if (details->opcode_len == 1 && details->modrm_offset == -1)
1067 used_regs_mask |= 1 << (details->raw_insn[details->opcode_offset] & 7);
1069 /* Mark used regs in the modrm/sib bytes. */
1070 if (details->modrm_offset != -1)
1072 int modrm = details->raw_insn[details->modrm_offset];
1073 int mod = MODRM_MOD_FIELD (modrm);
1074 int reg = MODRM_REG_FIELD (modrm);
1075 int rm = MODRM_RM_FIELD (modrm);
1076 int have_sib = mod != 3 && rm == 4;
1078 /* Assume the reg field of the modrm byte specifies a register. */
1079 used_regs_mask |= 1 << reg;
1083 int base = SIB_BASE_FIELD (details->raw_insn[details->modrm_offset + 1]);
1084 int idx = SIB_INDEX_FIELD (details->raw_insn[details->modrm_offset + 1]);
1085 used_regs_mask |= 1 << base;
1086 used_regs_mask |= 1 << idx;
1090 used_regs_mask |= 1 << rm;
1094 gdb_assert (used_regs_mask < 256);
1095 gdb_assert (used_regs_mask != 255);
1097 /* Finally, find a free reg. */
1101 for (i = 0; i < 8; ++i)
1103 if (! (used_regs_mask & (1 << i)))
1107 /* We shouldn't get here. */
1108 internal_error (__FILE__, __LINE__, _("unable to find free reg"));
1112 /* Extract the details of INSN that we need. */
1115 amd64_get_insn_details (gdb_byte *insn, struct amd64_insn *details)
1117 gdb_byte *start = insn;
1120 details->raw_insn = insn;
1122 details->opcode_len = -1;
1123 details->rex_offset = -1;
1124 details->opcode_offset = -1;
1125 details->modrm_offset = -1;
1127 /* Skip legacy instruction prefixes. */
1128 insn = amd64_skip_prefixes (insn);
1130 /* Skip REX instruction prefix. */
1131 if (rex_prefix_p (*insn))
1133 details->rex_offset = insn - start;
1137 details->opcode_offset = insn - start;
1139 if (*insn == TWO_BYTE_OPCODE_ESCAPE)
1141 /* Two or three-byte opcode. */
1143 need_modrm = twobyte_has_modrm[*insn];
1145 /* Check for three-byte opcode. */
1155 details->opcode_len = 3;
1158 details->opcode_len = 2;
1164 /* One-byte opcode. */
1165 need_modrm = onebyte_has_modrm[*insn];
1166 details->opcode_len = 1;
1172 details->modrm_offset = insn - start;
1176 /* Update %rip-relative addressing in INSN.
1178 %rip-relative addressing only uses a 32-bit displacement.
1179 32 bits is not enough to be guaranteed to cover the distance between where
1180 the real instruction is and where its copy is.
1181 Convert the insn to use base+disp addressing.
1182 We set base = pc + insn_length so we can leave disp unchanged. */
1185 fixup_riprel (struct gdbarch *gdbarch, struct displaced_step_closure *dsc,
1186 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1188 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1189 const struct amd64_insn *insn_details = &dsc->insn_details;
1190 int modrm_offset = insn_details->modrm_offset;
1191 gdb_byte *insn = insn_details->raw_insn + modrm_offset;
1195 int arch_tmp_regno, tmp_regno;
1196 ULONGEST orig_value;
1198 /* %rip+disp32 addressing mode, displacement follows ModRM byte. */
1201 /* Compute the rip-relative address. */
1202 disp = extract_signed_integer (insn, sizeof (int32_t), byte_order);
1203 insn_length = gdb_buffered_insn_length (gdbarch, dsc->insn_buf,
1204 dsc->max_len, from);
1205 rip_base = from + insn_length;
1207 /* We need a register to hold the address.
1208 Pick one not used in the insn.
1209 NOTE: arch_tmp_regno uses architecture ordering, e.g. RDI = 7. */
1210 arch_tmp_regno = amd64_get_unused_input_int_reg (insn_details);
1211 tmp_regno = amd64_arch_reg_to_regnum (arch_tmp_regno);
1213 /* REX.B should be unset as we were using rip-relative addressing,
1214 but ensure it's unset anyway, tmp_regno is not r8-r15. */
1215 if (insn_details->rex_offset != -1)
1216 dsc->insn_buf[insn_details->rex_offset] &= ~REX_B;
1218 regcache_cooked_read_unsigned (regs, tmp_regno, &orig_value);
1219 dsc->tmp_regno = tmp_regno;
1220 dsc->tmp_save = orig_value;
1223 /* Convert the ModRM field to be base+disp. */
1224 dsc->insn_buf[modrm_offset] &= ~0xc7;
1225 dsc->insn_buf[modrm_offset] |= 0x80 + arch_tmp_regno;
1227 regcache_cooked_write_unsigned (regs, tmp_regno, rip_base);
1229 if (debug_displaced)
1230 fprintf_unfiltered (gdb_stdlog, "displaced: %%rip-relative addressing used.\n"
1231 "displaced: using temp reg %d, old value %s, new value %s\n",
1232 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save),
1233 paddress (gdbarch, rip_base));
1237 fixup_displaced_copy (struct gdbarch *gdbarch,
1238 struct displaced_step_closure *dsc,
1239 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1241 const struct amd64_insn *details = &dsc->insn_details;
1243 if (details->modrm_offset != -1)
1245 gdb_byte modrm = details->raw_insn[details->modrm_offset];
1247 if ((modrm & 0xc7) == 0x05)
1249 /* The insn uses rip-relative addressing.
1251 fixup_riprel (gdbarch, dsc, from, to, regs);
1256 struct displaced_step_closure *
1257 amd64_displaced_step_copy_insn (struct gdbarch *gdbarch,
1258 CORE_ADDR from, CORE_ADDR to,
1259 struct regcache *regs)
1261 int len = gdbarch_max_insn_length (gdbarch);
1262 /* Extra space for sentinels so fixup_{riprel,displaced_copy don't have to
1263 continually watch for running off the end of the buffer. */
1264 int fixup_sentinel_space = len;
1265 struct displaced_step_closure *dsc =
1266 xmalloc (sizeof (*dsc) + len + fixup_sentinel_space);
1267 gdb_byte *buf = &dsc->insn_buf[0];
1268 struct amd64_insn *details = &dsc->insn_details;
1271 dsc->max_len = len + fixup_sentinel_space;
1273 read_memory (from, buf, len);
1275 /* Set up the sentinel space so we don't have to worry about running
1276 off the end of the buffer. An excessive number of leading prefixes
1277 could otherwise cause this. */
1278 memset (buf + len, 0, fixup_sentinel_space);
1280 amd64_get_insn_details (buf, details);
1282 /* GDB may get control back after the insn after the syscall.
1283 Presumably this is a kernel bug.
1284 If this is a syscall, make sure there's a nop afterwards. */
1288 if (amd64_syscall_p (details, &syscall_length))
1289 buf[details->opcode_offset + syscall_length] = NOP_OPCODE;
1292 /* Modify the insn to cope with the address where it will be executed from.
1293 In particular, handle any rip-relative addressing. */
1294 fixup_displaced_copy (gdbarch, dsc, from, to, regs);
1296 write_memory (to, buf, len);
1298 if (debug_displaced)
1300 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
1301 paddress (gdbarch, from), paddress (gdbarch, to));
1302 displaced_step_dump_bytes (gdb_stdlog, buf, len);
1309 amd64_absolute_jmp_p (const struct amd64_insn *details)
1311 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1313 if (insn[0] == 0xff)
1315 /* jump near, absolute indirect (/4) */
1316 if ((insn[1] & 0x38) == 0x20)
1319 /* jump far, absolute indirect (/5) */
1320 if ((insn[1] & 0x38) == 0x28)
1328 amd64_absolute_call_p (const struct amd64_insn *details)
1330 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1332 if (insn[0] == 0xff)
1334 /* Call near, absolute indirect (/2) */
1335 if ((insn[1] & 0x38) == 0x10)
1338 /* Call far, absolute indirect (/3) */
1339 if ((insn[1] & 0x38) == 0x18)
1347 amd64_ret_p (const struct amd64_insn *details)
1349 /* NOTE: gcc can emit "repz ; ret". */
1350 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1354 case 0xc2: /* ret near, pop N bytes */
1355 case 0xc3: /* ret near */
1356 case 0xca: /* ret far, pop N bytes */
1357 case 0xcb: /* ret far */
1358 case 0xcf: /* iret */
1367 amd64_call_p (const struct amd64_insn *details)
1369 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1371 if (amd64_absolute_call_p (details))
1374 /* call near, relative */
1375 if (insn[0] == 0xe8)
1381 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
1382 length in bytes. Otherwise, return zero. */
1385 amd64_syscall_p (const struct amd64_insn *details, int *lengthp)
1387 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1389 if (insn[0] == 0x0f && insn[1] == 0x05)
1398 /* Fix up the state of registers and memory after having single-stepped
1399 a displaced instruction. */
1402 amd64_displaced_step_fixup (struct gdbarch *gdbarch,
1403 struct displaced_step_closure *dsc,
1404 CORE_ADDR from, CORE_ADDR to,
1405 struct regcache *regs)
1407 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1408 /* The offset we applied to the instruction's address. */
1409 ULONGEST insn_offset = to - from;
1410 gdb_byte *insn = dsc->insn_buf;
1411 const struct amd64_insn *insn_details = &dsc->insn_details;
1413 if (debug_displaced)
1414 fprintf_unfiltered (gdb_stdlog,
1415 "displaced: fixup (%s, %s), "
1416 "insn = 0x%02x 0x%02x ...\n",
1417 paddress (gdbarch, from), paddress (gdbarch, to),
1420 /* If we used a tmp reg, restore it. */
1424 if (debug_displaced)
1425 fprintf_unfiltered (gdb_stdlog, "displaced: restoring reg %d to %s\n",
1426 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save));
1427 regcache_cooked_write_unsigned (regs, dsc->tmp_regno, dsc->tmp_save);
1430 /* The list of issues to contend with here is taken from
1431 resume_execution in arch/x86/kernel/kprobes.c, Linux 2.6.28.
1432 Yay for Free Software! */
1434 /* Relocate the %rip back to the program's instruction stream,
1437 /* Except in the case of absolute or indirect jump or call
1438 instructions, or a return instruction, the new rip is relative to
1439 the displaced instruction; make it relative to the original insn.
1440 Well, signal handler returns don't need relocation either, but we use the
1441 value of %rip to recognize those; see below. */
1442 if (! amd64_absolute_jmp_p (insn_details)
1443 && ! amd64_absolute_call_p (insn_details)
1444 && ! amd64_ret_p (insn_details))
1449 regcache_cooked_read_unsigned (regs, AMD64_RIP_REGNUM, &orig_rip);
1451 /* A signal trampoline system call changes the %rip, resuming
1452 execution of the main program after the signal handler has
1453 returned. That makes them like 'return' instructions; we
1454 shouldn't relocate %rip.
1456 But most system calls don't, and we do need to relocate %rip.
1458 Our heuristic for distinguishing these cases: if stepping
1459 over the system call instruction left control directly after
1460 the instruction, the we relocate --- control almost certainly
1461 doesn't belong in the displaced copy. Otherwise, we assume
1462 the instruction has put control where it belongs, and leave
1463 it unrelocated. Goodness help us if there are PC-relative
1465 if (amd64_syscall_p (insn_details, &insn_len)
1466 && orig_rip != to + insn_len
1467 /* GDB can get control back after the insn after the syscall.
1468 Presumably this is a kernel bug.
1469 Fixup ensures its a nop, we add one to the length for it. */
1470 && orig_rip != to + insn_len + 1)
1472 if (debug_displaced)
1473 fprintf_unfiltered (gdb_stdlog,
1474 "displaced: syscall changed %%rip; "
1475 "not relocating\n");
1479 ULONGEST rip = orig_rip - insn_offset;
1481 /* If we just stepped over a breakpoint insn, we don't backup
1482 the pc on purpose; this is to match behaviour without
1485 regcache_cooked_write_unsigned (regs, AMD64_RIP_REGNUM, rip);
1487 if (debug_displaced)
1488 fprintf_unfiltered (gdb_stdlog,
1490 "relocated %%rip from %s to %s\n",
1491 paddress (gdbarch, orig_rip),
1492 paddress (gdbarch, rip));
1496 /* If the instruction was PUSHFL, then the TF bit will be set in the
1497 pushed value, and should be cleared. We'll leave this for later,
1498 since GDB already messes up the TF flag when stepping over a
1501 /* If the instruction was a call, the return address now atop the
1502 stack is the address following the copied instruction. We need
1503 to make it the address following the original instruction. */
1504 if (amd64_call_p (insn_details))
1508 const ULONGEST retaddr_len = 8;
1510 regcache_cooked_read_unsigned (regs, AMD64_RSP_REGNUM, &rsp);
1511 retaddr = read_memory_unsigned_integer (rsp, retaddr_len, byte_order);
1512 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
1513 write_memory_unsigned_integer (rsp, retaddr_len, byte_order, retaddr);
1515 if (debug_displaced)
1516 fprintf_unfiltered (gdb_stdlog,
1517 "displaced: relocated return addr at %s "
1519 paddress (gdbarch, rsp),
1520 paddress (gdbarch, retaddr));
1524 /* If the instruction INSN uses RIP-relative addressing, return the
1525 offset into the raw INSN where the displacement to be adjusted is
1526 found. Returns 0 if the instruction doesn't use RIP-relative
1530 rip_relative_offset (struct amd64_insn *insn)
1532 if (insn->modrm_offset != -1)
1534 gdb_byte modrm = insn->raw_insn[insn->modrm_offset];
1536 if ((modrm & 0xc7) == 0x05)
1538 /* The displacement is found right after the ModRM byte. */
1539 return insn->modrm_offset + 1;
1547 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
1549 target_write_memory (*to, buf, len);
1554 amd64_relocate_instruction (struct gdbarch *gdbarch,
1555 CORE_ADDR *to, CORE_ADDR oldloc)
1557 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1558 int len = gdbarch_max_insn_length (gdbarch);
1559 /* Extra space for sentinels. */
1560 int fixup_sentinel_space = len;
1561 gdb_byte *buf = xmalloc (len + fixup_sentinel_space);
1562 struct amd64_insn insn_details;
1564 LONGEST rel32, newrel;
1568 read_memory (oldloc, buf, len);
1570 /* Set up the sentinel space so we don't have to worry about running
1571 off the end of the buffer. An excessive number of leading prefixes
1572 could otherwise cause this. */
1573 memset (buf + len, 0, fixup_sentinel_space);
1576 amd64_get_insn_details (insn, &insn_details);
1578 insn_length = gdb_buffered_insn_length (gdbarch, insn, len, oldloc);
1580 /* Skip legacy instruction prefixes. */
1581 insn = amd64_skip_prefixes (insn);
1583 /* Adjust calls with 32-bit relative addresses as push/jump, with
1584 the address pushed being the location where the original call in
1585 the user program would return to. */
1586 if (insn[0] == 0xe8)
1588 gdb_byte push_buf[16];
1589 unsigned int ret_addr;
1591 /* Where "ret" in the original code will return to. */
1592 ret_addr = oldloc + insn_length;
1593 push_buf[0] = 0x68; /* pushq $... */
1594 memcpy (&push_buf[1], &ret_addr, 4);
1595 /* Push the push. */
1596 append_insns (to, 5, push_buf);
1598 /* Convert the relative call to a relative jump. */
1601 /* Adjust the destination offset. */
1602 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1603 newrel = (oldloc - *to) + rel32;
1604 store_signed_integer (insn + 1, 4, byte_order, newrel);
1606 if (debug_displaced)
1607 fprintf_unfiltered (gdb_stdlog,
1608 "Adjusted insn rel32=%s at %s to"
1609 " rel32=%s at %s\n",
1610 hex_string (rel32), paddress (gdbarch, oldloc),
1611 hex_string (newrel), paddress (gdbarch, *to));
1613 /* Write the adjusted jump into its displaced location. */
1614 append_insns (to, 5, insn);
1618 offset = rip_relative_offset (&insn_details);
1621 /* Adjust jumps with 32-bit relative addresses. Calls are
1622 already handled above. */
1623 if (insn[0] == 0xe9)
1625 /* Adjust conditional jumps. */
1626 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1632 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1633 newrel = (oldloc - *to) + rel32;
1634 store_signed_integer (insn + offset, 4, byte_order, newrel);
1635 if (debug_displaced)
1636 fprintf_unfiltered (gdb_stdlog,
1637 "Adjusted insn rel32=%s at %s to"
1638 " rel32=%s at %s\n",
1639 hex_string (rel32), paddress (gdbarch, oldloc),
1640 hex_string (newrel), paddress (gdbarch, *to));
1643 /* Write the adjusted instruction into its displaced location. */
1644 append_insns (to, insn_length, buf);
1648 /* The maximum number of saved registers. This should include %rip. */
1649 #define AMD64_NUM_SAVED_REGS AMD64_NUM_GREGS
1651 struct amd64_frame_cache
1656 CORE_ADDR sp_offset;
1659 /* Saved registers. */
1660 CORE_ADDR saved_regs[AMD64_NUM_SAVED_REGS];
1664 /* Do we have a frame? */
1668 /* Initialize a frame cache. */
1671 amd64_init_frame_cache (struct amd64_frame_cache *cache)
1678 cache->sp_offset = -8;
1681 /* Saved registers. We initialize these to -1 since zero is a valid
1682 offset (that's where %rbp is supposed to be stored).
1683 The values start out as being offsets, and are later converted to
1684 addresses (at which point -1 is interpreted as an address, still meaning
1686 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
1687 cache->saved_regs[i] = -1;
1688 cache->saved_sp = 0;
1689 cache->saved_sp_reg = -1;
1691 /* Frameless until proven otherwise. */
1692 cache->frameless_p = 1;
1695 /* Allocate and initialize a frame cache. */
1697 static struct amd64_frame_cache *
1698 amd64_alloc_frame_cache (void)
1700 struct amd64_frame_cache *cache;
1702 cache = FRAME_OBSTACK_ZALLOC (struct amd64_frame_cache);
1703 amd64_init_frame_cache (cache);
1707 /* GCC 4.4 and later, can put code in the prologue to realign the
1708 stack pointer. Check whether PC points to such code, and update
1709 CACHE accordingly. Return the first instruction after the code
1710 sequence or CURRENT_PC, whichever is smaller. If we don't
1711 recognize the code, return PC. */
1714 amd64_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1715 struct amd64_frame_cache *cache)
1717 /* There are 2 code sequences to re-align stack before the frame
1720 1. Use a caller-saved saved register:
1726 2. Use a callee-saved saved register:
1733 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
1735 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
1736 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
1741 int offset, offset_and;
1743 if (target_read_memory (pc, buf, sizeof buf))
1746 /* Check caller-saved saved register. The first instruction has
1747 to be "leaq 8(%rsp), %reg". */
1748 if ((buf[0] & 0xfb) == 0x48
1753 /* MOD must be binary 10 and R/M must be binary 100. */
1754 if ((buf[2] & 0xc7) != 0x44)
1757 /* REG has register number. */
1758 reg = (buf[2] >> 3) & 7;
1760 /* Check the REX.R bit. */
1768 /* Check callee-saved saved register. The first instruction
1769 has to be "pushq %reg". */
1771 if ((buf[0] & 0xf8) == 0x50)
1773 else if ((buf[0] & 0xf6) == 0x40
1774 && (buf[1] & 0xf8) == 0x50)
1776 /* Check the REX.B bit. */
1777 if ((buf[0] & 1) != 0)
1786 reg += buf[offset] & 0x7;
1790 /* The next instruction has to be "leaq 16(%rsp), %reg". */
1791 if ((buf[offset] & 0xfb) != 0x48
1792 || buf[offset + 1] != 0x8d
1793 || buf[offset + 3] != 0x24
1794 || buf[offset + 4] != 0x10)
1797 /* MOD must be binary 10 and R/M must be binary 100. */
1798 if ((buf[offset + 2] & 0xc7) != 0x44)
1801 /* REG has register number. */
1802 r = (buf[offset + 2] >> 3) & 7;
1804 /* Check the REX.R bit. */
1805 if (buf[offset] == 0x4c)
1808 /* Registers in pushq and leaq have to be the same. */
1815 /* Rigister can't be %rsp nor %rbp. */
1816 if (reg == 4 || reg == 5)
1819 /* The next instruction has to be "andq $-XXX, %rsp". */
1820 if (buf[offset] != 0x48
1821 || buf[offset + 2] != 0xe4
1822 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
1825 offset_and = offset;
1826 offset += buf[offset + 1] == 0x81 ? 7 : 4;
1828 /* The next instruction has to be "pushq -8(%reg)". */
1830 if (buf[offset] == 0xff)
1832 else if ((buf[offset] & 0xf6) == 0x40
1833 && buf[offset + 1] == 0xff)
1835 /* Check the REX.B bit. */
1836 if ((buf[offset] & 0x1) != 0)
1843 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
1845 if (buf[offset + 1] != 0xf8
1846 || (buf[offset] & 0xf8) != 0x70)
1849 /* R/M has register. */
1850 r += buf[offset] & 7;
1852 /* Registers in leaq and pushq have to be the same. */
1856 if (current_pc > pc + offset_and)
1857 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
1859 return min (pc + offset + 2, current_pc);
1862 /* Do a limited analysis of the prologue at PC and update CACHE
1863 accordingly. Bail out early if CURRENT_PC is reached. Return the
1864 address where the analysis stopped.
1866 We will handle only functions beginning with:
1869 movq %rsp, %rbp 0x48 0x89 0xe5
1871 Any function that doesn't start with this sequence will be assumed
1872 to have no prologue and thus no valid frame pointer in %rbp. */
1875 amd64_analyze_prologue (struct gdbarch *gdbarch,
1876 CORE_ADDR pc, CORE_ADDR current_pc,
1877 struct amd64_frame_cache *cache)
1879 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1880 static gdb_byte proto[3] = { 0x48, 0x89, 0xe5 }; /* movq %rsp, %rbp */
1884 if (current_pc <= pc)
1887 pc = amd64_analyze_stack_align (pc, current_pc, cache);
1889 op = read_memory_unsigned_integer (pc, 1, byte_order);
1891 if (op == 0x55) /* pushq %rbp */
1893 /* Take into account that we've executed the `pushq %rbp' that
1894 starts this instruction sequence. */
1895 cache->saved_regs[AMD64_RBP_REGNUM] = 0;
1896 cache->sp_offset += 8;
1898 /* If that's all, return now. */
1899 if (current_pc <= pc + 1)
1902 /* Check for `movq %rsp, %rbp'. */
1903 read_memory (pc + 1, buf, 3);
1904 if (memcmp (buf, proto, 3) != 0)
1907 /* OK, we actually have a frame. */
1908 cache->frameless_p = 0;
1915 /* Work around false termination of prologue - GCC PR debug/48827.
1917 START_PC is the first instruction of a function, PC is its minimal already
1918 determined advanced address. Function returns PC if it has nothing to do.
1922 <-- here is 0 lines advance - the false prologue end marker.
1923 0f 29 85 70 ff ff ff movaps %xmm0,-0x90(%rbp)
1924 0f 29 4d 80 movaps %xmm1,-0x80(%rbp)
1925 0f 29 55 90 movaps %xmm2,-0x70(%rbp)
1926 0f 29 5d a0 movaps %xmm3,-0x60(%rbp)
1927 0f 29 65 b0 movaps %xmm4,-0x50(%rbp)
1928 0f 29 6d c0 movaps %xmm5,-0x40(%rbp)
1929 0f 29 75 d0 movaps %xmm6,-0x30(%rbp)
1930 0f 29 7d e0 movaps %xmm7,-0x20(%rbp)
1934 amd64_skip_xmm_prologue (CORE_ADDR pc, CORE_ADDR start_pc)
1936 struct symtab_and_line start_pc_sal, next_sal;
1937 gdb_byte buf[4 + 8 * 7];
1943 start_pc_sal = find_pc_sect_line (start_pc, NULL, 0);
1944 if (start_pc_sal.symtab == NULL
1945 || producer_is_gcc_ge_4 (start_pc_sal.symtab->producer) < 6
1946 || start_pc_sal.pc != start_pc || pc >= start_pc_sal.end)
1949 next_sal = find_pc_sect_line (start_pc_sal.end, NULL, 0);
1950 if (next_sal.line != start_pc_sal.line)
1953 /* START_PC can be from overlayed memory, ignored here. */
1954 if (target_read_memory (next_sal.pc - 4, buf, sizeof (buf)) != 0)
1958 if (buf[0] != 0x84 || buf[1] != 0xc0)
1965 for (xmmreg = 0; xmmreg < 8; xmmreg++)
1967 /* 0x0f 0x29 0b??000101 movaps %xmmreg?,-0x??(%rbp) */
1968 if (buf[offset] != 0x0f || buf[offset + 1] != 0x29
1969 || (buf[offset + 2] & 0x3f) != (xmmreg << 3 | 0x5))
1973 if ((buf[offset + 2] & 0xc0) == 0x40)
1975 /* 8-bit displacement. */
1979 else if ((buf[offset + 2] & 0xc0) == 0x80)
1981 /* 32-bit displacement. */
1989 if (offset - 4 != buf[3])
1992 return next_sal.end;
1995 /* Return PC of first real instruction. */
1998 amd64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
2000 struct amd64_frame_cache cache;
2003 amd64_init_frame_cache (&cache);
2004 pc = amd64_analyze_prologue (gdbarch, start_pc, 0xffffffffffffffffLL,
2006 if (cache.frameless_p)
2009 return amd64_skip_xmm_prologue (pc, start_pc);
2013 /* Normal frames. */
2016 amd64_frame_cache_1 (struct frame_info *this_frame,
2017 struct amd64_frame_cache *cache)
2019 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2020 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2024 cache->pc = get_frame_func (this_frame);
2026 amd64_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2029 if (cache->frameless_p)
2031 /* We didn't find a valid frame. If we're at the start of a
2032 function, or somewhere half-way its prologue, the function's
2033 frame probably hasn't been fully setup yet. Try to
2034 reconstruct the base address for the stack frame by looking
2035 at the stack pointer. For truly "frameless" functions this
2038 if (cache->saved_sp_reg != -1)
2040 /* Stack pointer has been saved. */
2041 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2042 cache->saved_sp = extract_unsigned_integer (buf, 8, byte_order);
2044 /* We're halfway aligning the stack. */
2045 cache->base = ((cache->saved_sp - 8) & 0xfffffffffffffff0LL) - 8;
2046 cache->saved_regs[AMD64_RIP_REGNUM] = cache->saved_sp - 8;
2048 /* This will be added back below. */
2049 cache->saved_regs[AMD64_RIP_REGNUM] -= cache->base;
2053 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2054 cache->base = extract_unsigned_integer (buf, 8, byte_order)
2060 get_frame_register (this_frame, AMD64_RBP_REGNUM, buf);
2061 cache->base = extract_unsigned_integer (buf, 8, byte_order);
2064 /* Now that we have the base address for the stack frame we can
2065 calculate the value of %rsp in the calling frame. */
2066 cache->saved_sp = cache->base + 16;
2068 /* For normal frames, %rip is stored at 8(%rbp). If we don't have a
2069 frame we find it at the same offset from the reconstructed base
2070 address. If we're halfway aligning the stack, %rip is handled
2071 differently (see above). */
2072 if (!cache->frameless_p || cache->saved_sp_reg == -1)
2073 cache->saved_regs[AMD64_RIP_REGNUM] = 8;
2075 /* Adjust all the saved registers such that they contain addresses
2076 instead of offsets. */
2077 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
2078 if (cache->saved_regs[i] != -1)
2079 cache->saved_regs[i] += cache->base;
2084 static struct amd64_frame_cache *
2085 amd64_frame_cache (struct frame_info *this_frame, void **this_cache)
2087 volatile struct gdb_exception ex;
2088 struct amd64_frame_cache *cache;
2093 cache = amd64_alloc_frame_cache ();
2094 *this_cache = cache;
2096 TRY_CATCH (ex, RETURN_MASK_ERROR)
2098 amd64_frame_cache_1 (this_frame, cache);
2100 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2101 throw_exception (ex);
2106 static enum unwind_stop_reason
2107 amd64_frame_unwind_stop_reason (struct frame_info *this_frame,
2110 struct amd64_frame_cache *cache =
2111 amd64_frame_cache (this_frame, this_cache);
2114 return UNWIND_UNAVAILABLE;
2116 /* This marks the outermost frame. */
2117 if (cache->base == 0)
2118 return UNWIND_OUTERMOST;
2120 return UNWIND_NO_REASON;
2124 amd64_frame_this_id (struct frame_info *this_frame, void **this_cache,
2125 struct frame_id *this_id)
2127 struct amd64_frame_cache *cache =
2128 amd64_frame_cache (this_frame, this_cache);
2133 /* This marks the outermost frame. */
2134 if (cache->base == 0)
2137 (*this_id) = frame_id_build (cache->base + 16, cache->pc);
2140 static struct value *
2141 amd64_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2144 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2145 struct amd64_frame_cache *cache =
2146 amd64_frame_cache (this_frame, this_cache);
2148 gdb_assert (regnum >= 0);
2150 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
2151 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
2153 if (regnum < AMD64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2154 return frame_unwind_got_memory (this_frame, regnum,
2155 cache->saved_regs[regnum]);
2157 return frame_unwind_got_register (this_frame, regnum, regnum);
2160 static const struct frame_unwind amd64_frame_unwind =
2163 amd64_frame_unwind_stop_reason,
2164 amd64_frame_this_id,
2165 amd64_frame_prev_register,
2167 default_frame_sniffer
2170 /* Generate a bytecode expression to get the value of the saved PC. */
2173 amd64_gen_return_address (struct gdbarch *gdbarch,
2174 struct agent_expr *ax, struct axs_value *value,
2177 /* The following sequence assumes the traditional use of the base
2179 ax_reg (ax, AMD64_RBP_REGNUM);
2181 ax_simple (ax, aop_add);
2182 value->type = register_type (gdbarch, AMD64_RIP_REGNUM);
2183 value->kind = axs_lvalue_memory;
2187 /* Signal trampolines. */
2189 /* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and
2190 64-bit variants. This would require using identical frame caches
2191 on both platforms. */
2193 static struct amd64_frame_cache *
2194 amd64_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2196 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2197 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2198 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2199 volatile struct gdb_exception ex;
2200 struct amd64_frame_cache *cache;
2208 cache = amd64_alloc_frame_cache ();
2210 TRY_CATCH (ex, RETURN_MASK_ERROR)
2212 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2213 cache->base = extract_unsigned_integer (buf, 8, byte_order) - 8;
2215 addr = tdep->sigcontext_addr (this_frame);
2216 gdb_assert (tdep->sc_reg_offset);
2217 gdb_assert (tdep->sc_num_regs <= AMD64_NUM_SAVED_REGS);
2218 for (i = 0; i < tdep->sc_num_regs; i++)
2219 if (tdep->sc_reg_offset[i] != -1)
2220 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2224 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2225 throw_exception (ex);
2227 *this_cache = cache;
2231 static enum unwind_stop_reason
2232 amd64_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2235 struct amd64_frame_cache *cache =
2236 amd64_sigtramp_frame_cache (this_frame, this_cache);
2239 return UNWIND_UNAVAILABLE;
2241 return UNWIND_NO_REASON;
2245 amd64_sigtramp_frame_this_id (struct frame_info *this_frame,
2246 void **this_cache, struct frame_id *this_id)
2248 struct amd64_frame_cache *cache =
2249 amd64_sigtramp_frame_cache (this_frame, this_cache);
2254 (*this_id) = frame_id_build (cache->base + 16, get_frame_pc (this_frame));
2257 static struct value *
2258 amd64_sigtramp_frame_prev_register (struct frame_info *this_frame,
2259 void **this_cache, int regnum)
2261 /* Make sure we've initialized the cache. */
2262 amd64_sigtramp_frame_cache (this_frame, this_cache);
2264 return amd64_frame_prev_register (this_frame, this_cache, regnum);
2268 amd64_sigtramp_frame_sniffer (const struct frame_unwind *self,
2269 struct frame_info *this_frame,
2272 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2274 /* We shouldn't even bother if we don't have a sigcontext_addr
2276 if (tdep->sigcontext_addr == NULL)
2279 if (tdep->sigtramp_p != NULL)
2281 if (tdep->sigtramp_p (this_frame))
2285 if (tdep->sigtramp_start != 0)
2287 CORE_ADDR pc = get_frame_pc (this_frame);
2289 gdb_assert (tdep->sigtramp_end != 0);
2290 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2297 static const struct frame_unwind amd64_sigtramp_frame_unwind =
2300 amd64_sigtramp_frame_unwind_stop_reason,
2301 amd64_sigtramp_frame_this_id,
2302 amd64_sigtramp_frame_prev_register,
2304 amd64_sigtramp_frame_sniffer
2309 amd64_frame_base_address (struct frame_info *this_frame, void **this_cache)
2311 struct amd64_frame_cache *cache =
2312 amd64_frame_cache (this_frame, this_cache);
2317 static const struct frame_base amd64_frame_base =
2319 &amd64_frame_unwind,
2320 amd64_frame_base_address,
2321 amd64_frame_base_address,
2322 amd64_frame_base_address
2325 /* Normal frames, but in a function epilogue. */
2327 /* The epilogue is defined here as the 'ret' instruction, which will
2328 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2329 the function's stack frame. */
2332 amd64_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2335 struct symtab *symtab;
2337 symtab = find_pc_symtab (pc);
2338 if (symtab && symtab->epilogue_unwind_valid)
2341 if (target_read_memory (pc, &insn, 1))
2342 return 0; /* Can't read memory at pc. */
2344 if (insn != 0xc3) /* 'ret' instruction. */
2351 amd64_epilogue_frame_sniffer (const struct frame_unwind *self,
2352 struct frame_info *this_frame,
2353 void **this_prologue_cache)
2355 if (frame_relative_level (this_frame) == 0)
2356 return amd64_in_function_epilogue_p (get_frame_arch (this_frame),
2357 get_frame_pc (this_frame));
2362 static struct amd64_frame_cache *
2363 amd64_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2365 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2366 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2367 volatile struct gdb_exception ex;
2368 struct amd64_frame_cache *cache;
2374 cache = amd64_alloc_frame_cache ();
2375 *this_cache = cache;
2377 TRY_CATCH (ex, RETURN_MASK_ERROR)
2379 /* Cache base will be %esp plus cache->sp_offset (-8). */
2380 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2381 cache->base = extract_unsigned_integer (buf, 8,
2382 byte_order) + cache->sp_offset;
2384 /* Cache pc will be the frame func. */
2385 cache->pc = get_frame_pc (this_frame);
2387 /* The saved %esp will be at cache->base plus 16. */
2388 cache->saved_sp = cache->base + 16;
2390 /* The saved %eip will be at cache->base plus 8. */
2391 cache->saved_regs[AMD64_RIP_REGNUM] = cache->base + 8;
2395 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2396 throw_exception (ex);
2401 static enum unwind_stop_reason
2402 amd64_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2405 struct amd64_frame_cache *cache
2406 = amd64_epilogue_frame_cache (this_frame, this_cache);
2409 return UNWIND_UNAVAILABLE;
2411 return UNWIND_NO_REASON;
2415 amd64_epilogue_frame_this_id (struct frame_info *this_frame,
2417 struct frame_id *this_id)
2419 struct amd64_frame_cache *cache = amd64_epilogue_frame_cache (this_frame,
2425 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2428 static const struct frame_unwind amd64_epilogue_frame_unwind =
2431 amd64_epilogue_frame_unwind_stop_reason,
2432 amd64_epilogue_frame_this_id,
2433 amd64_frame_prev_register,
2435 amd64_epilogue_frame_sniffer
2438 static struct frame_id
2439 amd64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2443 fp = get_frame_register_unsigned (this_frame, AMD64_RBP_REGNUM);
2445 return frame_id_build (fp + 16, get_frame_pc (this_frame));
2448 /* 16 byte align the SP per frame requirements. */
2451 amd64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2453 return sp & -(CORE_ADDR)16;
2457 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
2458 in the floating-point register set REGSET to register cache
2459 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
2462 amd64_supply_fpregset (const struct regset *regset, struct regcache *regcache,
2463 int regnum, const void *fpregs, size_t len)
2465 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2467 gdb_assert (len == tdep->sizeof_fpregset);
2468 amd64_supply_fxsave (regcache, regnum, fpregs);
2471 /* Collect register REGNUM from the register cache REGCACHE and store
2472 it in the buffer specified by FPREGS and LEN as described by the
2473 floating-point register set REGSET. If REGNUM is -1, do this for
2474 all registers in REGSET. */
2477 amd64_collect_fpregset (const struct regset *regset,
2478 const struct regcache *regcache,
2479 int regnum, void *fpregs, size_t len)
2481 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2483 gdb_assert (len == tdep->sizeof_fpregset);
2484 amd64_collect_fxsave (regcache, regnum, fpregs);
2487 /* Similar to amd64_supply_fpregset, but use XSAVE extended state. */
2490 amd64_supply_xstateregset (const struct regset *regset,
2491 struct regcache *regcache, int regnum,
2492 const void *xstateregs, size_t len)
2494 amd64_supply_xsave (regcache, regnum, xstateregs);
2497 /* Similar to amd64_collect_fpregset, but use XSAVE extended state. */
2500 amd64_collect_xstateregset (const struct regset *regset,
2501 const struct regcache *regcache,
2502 int regnum, void *xstateregs, size_t len)
2504 amd64_collect_xsave (regcache, regnum, xstateregs, 1);
2507 /* Return the appropriate register set for the core section identified
2508 by SECT_NAME and SECT_SIZE. */
2510 static const struct regset *
2511 amd64_regset_from_core_section (struct gdbarch *gdbarch,
2512 const char *sect_name, size_t sect_size)
2514 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2516 if (strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
2518 if (tdep->fpregset == NULL)
2519 tdep->fpregset = regset_alloc (gdbarch, amd64_supply_fpregset,
2520 amd64_collect_fpregset);
2522 return tdep->fpregset;
2525 if (strcmp (sect_name, ".reg-xstate") == 0)
2527 if (tdep->xstateregset == NULL)
2528 tdep->xstateregset = regset_alloc (gdbarch,
2529 amd64_supply_xstateregset,
2530 amd64_collect_xstateregset);
2532 return tdep->xstateregset;
2535 return i386_regset_from_core_section (gdbarch, sect_name, sect_size);
2539 /* Figure out where the longjmp will land. Slurp the jmp_buf out of
2540 %rdi. We expect its value to be a pointer to the jmp_buf structure
2541 from which we extract the address that we will land at. This
2542 address is copied into PC. This routine returns non-zero on
2546 amd64_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2550 struct gdbarch *gdbarch = get_frame_arch (frame);
2551 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2552 int len = TYPE_LENGTH (builtin_type (gdbarch)->builtin_func_ptr);
2554 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2555 longjmp will land. */
2556 if (jb_pc_offset == -1)
2559 get_frame_register (frame, AMD64_RDI_REGNUM, buf);
2560 jb_addr= extract_typed_address
2561 (buf, builtin_type (gdbarch)->builtin_data_ptr);
2562 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
2565 *pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
2570 static const int amd64_record_regmap[] =
2572 AMD64_RAX_REGNUM, AMD64_RCX_REGNUM, AMD64_RDX_REGNUM, AMD64_RBX_REGNUM,
2573 AMD64_RSP_REGNUM, AMD64_RBP_REGNUM, AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
2574 AMD64_R8_REGNUM, AMD64_R9_REGNUM, AMD64_R10_REGNUM, AMD64_R11_REGNUM,
2575 AMD64_R12_REGNUM, AMD64_R13_REGNUM, AMD64_R14_REGNUM, AMD64_R15_REGNUM,
2576 AMD64_RIP_REGNUM, AMD64_EFLAGS_REGNUM, AMD64_CS_REGNUM, AMD64_SS_REGNUM,
2577 AMD64_DS_REGNUM, AMD64_ES_REGNUM, AMD64_FS_REGNUM, AMD64_GS_REGNUM
2581 amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2583 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2584 const struct target_desc *tdesc = info.target_desc;
2586 /* AMD64 generally uses `fxsave' instead of `fsave' for saving its
2587 floating-point registers. */
2588 tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE;
2590 if (! tdesc_has_registers (tdesc))
2591 tdesc = tdesc_amd64;
2592 tdep->tdesc = tdesc;
2594 tdep->num_core_regs = AMD64_NUM_GREGS + I387_NUM_REGS;
2595 tdep->register_names = amd64_register_names;
2597 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx") != NULL)
2599 tdep->ymmh_register_names = amd64_ymmh_names;
2600 tdep->num_ymm_regs = 16;
2601 tdep->ymm0h_regnum = AMD64_YMM0H_REGNUM;
2604 tdep->num_byte_regs = 20;
2605 tdep->num_word_regs = 16;
2606 tdep->num_dword_regs = 16;
2607 /* Avoid wiring in the MMX registers for now. */
2608 tdep->num_mmx_regs = 0;
2610 set_gdbarch_pseudo_register_read_value (gdbarch,
2611 amd64_pseudo_register_read_value);
2612 set_gdbarch_pseudo_register_write (gdbarch,
2613 amd64_pseudo_register_write);
2615 set_tdesc_pseudo_register_name (gdbarch, amd64_pseudo_register_name);
2617 /* AMD64 has an FPU and 16 SSE registers. */
2618 tdep->st0_regnum = AMD64_ST0_REGNUM;
2619 tdep->num_xmm_regs = 16;
2621 /* This is what all the fuss is about. */
2622 set_gdbarch_long_bit (gdbarch, 64);
2623 set_gdbarch_long_long_bit (gdbarch, 64);
2624 set_gdbarch_ptr_bit (gdbarch, 64);
2626 /* In contrast to the i386, on AMD64 a `long double' actually takes
2627 up 128 bits, even though it's still based on the i387 extended
2628 floating-point format which has only 80 significant bits. */
2629 set_gdbarch_long_double_bit (gdbarch, 128);
2631 set_gdbarch_num_regs (gdbarch, AMD64_NUM_REGS);
2633 /* Register numbers of various important registers. */
2634 set_gdbarch_sp_regnum (gdbarch, AMD64_RSP_REGNUM); /* %rsp */
2635 set_gdbarch_pc_regnum (gdbarch, AMD64_RIP_REGNUM); /* %rip */
2636 set_gdbarch_ps_regnum (gdbarch, AMD64_EFLAGS_REGNUM); /* %eflags */
2637 set_gdbarch_fp0_regnum (gdbarch, AMD64_ST0_REGNUM); /* %st(0) */
2639 /* The "default" register numbering scheme for AMD64 is referred to
2640 as the "DWARF Register Number Mapping" in the System V psABI.
2641 The preferred debugging format for all known AMD64 targets is
2642 actually DWARF2, and GCC doesn't seem to support DWARF (that is
2643 DWARF-1), but we provide the same mapping just in case. This
2644 mapping is also used for stabs, which GCC does support. */
2645 set_gdbarch_stab_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
2646 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
2648 /* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to
2649 be in use on any of the supported AMD64 targets. */
2651 /* Call dummy code. */
2652 set_gdbarch_push_dummy_call (gdbarch, amd64_push_dummy_call);
2653 set_gdbarch_frame_align (gdbarch, amd64_frame_align);
2654 set_gdbarch_frame_red_zone_size (gdbarch, 128);
2655 tdep->call_dummy_num_integer_regs =
2656 ARRAY_SIZE (amd64_dummy_call_integer_regs);
2657 tdep->call_dummy_integer_regs = amd64_dummy_call_integer_regs;
2658 tdep->classify = amd64_classify;
2660 set_gdbarch_convert_register_p (gdbarch, i387_convert_register_p);
2661 set_gdbarch_register_to_value (gdbarch, i387_register_to_value);
2662 set_gdbarch_value_to_register (gdbarch, i387_value_to_register);
2664 set_gdbarch_return_value (gdbarch, amd64_return_value);
2666 set_gdbarch_skip_prologue (gdbarch, amd64_skip_prologue);
2668 tdep->record_regmap = amd64_record_regmap;
2670 set_gdbarch_dummy_id (gdbarch, amd64_dummy_id);
2672 /* Hook the function epilogue frame unwinder. This unwinder is
2673 appended to the list first, so that it supercedes the other
2674 unwinders in function epilogues. */
2675 frame_unwind_prepend_unwinder (gdbarch, &amd64_epilogue_frame_unwind);
2677 /* Hook the prologue-based frame unwinders. */
2678 frame_unwind_append_unwinder (gdbarch, &amd64_sigtramp_frame_unwind);
2679 frame_unwind_append_unwinder (gdbarch, &amd64_frame_unwind);
2680 frame_base_set_default (gdbarch, &amd64_frame_base);
2682 /* If we have a register mapping, enable the generic core file support. */
2683 if (tdep->gregset_reg_offset)
2684 set_gdbarch_regset_from_core_section (gdbarch,
2685 amd64_regset_from_core_section);
2687 set_gdbarch_get_longjmp_target (gdbarch, amd64_get_longjmp_target);
2689 set_gdbarch_relocate_instruction (gdbarch, amd64_relocate_instruction);
2691 set_gdbarch_gen_return_address (gdbarch, amd64_gen_return_address);
2694 /* Provide a prototype to silence -Wmissing-prototypes. */
2695 void _initialize_amd64_tdep (void);
2698 _initialize_amd64_tdep (void)
2700 initialize_tdesc_amd64 ();
2701 initialize_tdesc_amd64_avx ();
2705 /* The 64-bit FXSAVE format differs from the 32-bit format in the
2706 sense that the instruction pointer and data pointer are simply
2707 64-bit offsets into the code segment and the data segment instead
2708 of a selector offset pair. The functions below store the upper 32
2709 bits of these pointers (instead of just the 16-bits of the segment
2712 /* Fill register REGNUM in REGCACHE with the appropriate
2713 floating-point or SSE register value from *FXSAVE. If REGNUM is
2714 -1, do this for all registers. This function masks off any of the
2715 reserved bits in *FXSAVE. */
2718 amd64_supply_fxsave (struct regcache *regcache, int regnum,
2721 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2722 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2724 i387_supply_fxsave (regcache, regnum, fxsave);
2726 if (fxsave && gdbarch_ptr_bit (gdbarch) == 64)
2728 const gdb_byte *regs = fxsave;
2730 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
2731 regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
2732 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
2733 regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
2737 /* Similar to amd64_supply_fxsave, but use XSAVE extended state. */
2740 amd64_supply_xsave (struct regcache *regcache, int regnum,
2743 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2744 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2746 i387_supply_xsave (regcache, regnum, xsave);
2748 if (xsave && gdbarch_ptr_bit (gdbarch) == 64)
2750 const gdb_byte *regs = xsave;
2752 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
2753 regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep),
2755 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
2756 regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep),
2761 /* Fill register REGNUM (if it is a floating-point or SSE register) in
2762 *FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for
2763 all registers. This function doesn't touch any of the reserved
2767 amd64_collect_fxsave (const struct regcache *regcache, int regnum,
2770 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2771 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2772 gdb_byte *regs = fxsave;
2774 i387_collect_fxsave (regcache, regnum, fxsave);
2776 if (gdbarch_ptr_bit (gdbarch) == 64)
2778 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
2779 regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
2780 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
2781 regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
2785 /* Similar to amd64_collect_fxsave, but use XSAVE extended state. */
2788 amd64_collect_xsave (const struct regcache *regcache, int regnum,
2789 void *xsave, int gcore)
2791 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2792 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2793 gdb_byte *regs = xsave;
2795 i387_collect_xsave (regcache, regnum, xsave, gcore);
2797 if (gdbarch_ptr_bit (gdbarch) == 64)
2799 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
2800 regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep),
2802 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
2803 regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep),