1 /* Target-dependent code for AMD64.
3 Copyright (C) 2001-2017 Free Software Foundation, Inc.
5 Contributed by Jiri Smid, SuSE Labs.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23 #include "opcode/i386.h"
25 #include "arch-utils.h"
27 #include "dummy-frame.h"
29 #include "frame-base.h"
30 #include "frame-unwind.h"
40 #include "amd64-tdep.h"
41 #include "i387-tdep.h"
42 #include "x86-xstate.h"
44 #include "target-descriptions.h"
45 #include "arch/amd64.h"
49 #include "common/byte-vector.h"
51 /* Note that the AMD64 architecture was previously known as x86-64.
52 The latter is (forever) engraved into the canonical system name as
53 returned by config.guess, and used as the name for the AMD64 port
54 of GNU/Linux. The BSD's have renamed their ports to amd64; they
55 don't like to shout. For GDB we prefer the amd64_-prefix over the
56 x86_64_-prefix since it's so much easier to type. */
58 /* Register information. */
60 static const char *amd64_register_names[] =
62 "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "rsp",
64 /* %r8 is indeed register number 8. */
65 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
66 "rip", "eflags", "cs", "ss", "ds", "es", "fs", "gs",
68 /* %st0 is register number 24. */
69 "st0", "st1", "st2", "st3", "st4", "st5", "st6", "st7",
70 "fctrl", "fstat", "ftag", "fiseg", "fioff", "foseg", "fooff", "fop",
72 /* %xmm0 is register number 40. */
73 "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7",
74 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15",
78 static const char *amd64_ymm_names[] =
80 "ymm0", "ymm1", "ymm2", "ymm3",
81 "ymm4", "ymm5", "ymm6", "ymm7",
82 "ymm8", "ymm9", "ymm10", "ymm11",
83 "ymm12", "ymm13", "ymm14", "ymm15"
86 static const char *amd64_ymm_avx512_names[] =
88 "ymm16", "ymm17", "ymm18", "ymm19",
89 "ymm20", "ymm21", "ymm22", "ymm23",
90 "ymm24", "ymm25", "ymm26", "ymm27",
91 "ymm28", "ymm29", "ymm30", "ymm31"
94 static const char *amd64_ymmh_names[] =
96 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
97 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
98 "ymm8h", "ymm9h", "ymm10h", "ymm11h",
99 "ymm12h", "ymm13h", "ymm14h", "ymm15h"
102 static const char *amd64_ymmh_avx512_names[] =
104 "ymm16h", "ymm17h", "ymm18h", "ymm19h",
105 "ymm20h", "ymm21h", "ymm22h", "ymm23h",
106 "ymm24h", "ymm25h", "ymm26h", "ymm27h",
107 "ymm28h", "ymm29h", "ymm30h", "ymm31h"
110 static const char *amd64_mpx_names[] =
112 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
115 static const char *amd64_k_names[] =
117 "k0", "k1", "k2", "k3",
118 "k4", "k5", "k6", "k7"
121 static const char *amd64_zmmh_names[] =
123 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
124 "zmm4h", "zmm5h", "zmm6h", "zmm7h",
125 "zmm8h", "zmm9h", "zmm10h", "zmm11h",
126 "zmm12h", "zmm13h", "zmm14h", "zmm15h",
127 "zmm16h", "zmm17h", "zmm18h", "zmm19h",
128 "zmm20h", "zmm21h", "zmm22h", "zmm23h",
129 "zmm24h", "zmm25h", "zmm26h", "zmm27h",
130 "zmm28h", "zmm29h", "zmm30h", "zmm31h"
133 static const char *amd64_zmm_names[] =
135 "zmm0", "zmm1", "zmm2", "zmm3",
136 "zmm4", "zmm5", "zmm6", "zmm7",
137 "zmm8", "zmm9", "zmm10", "zmm11",
138 "zmm12", "zmm13", "zmm14", "zmm15",
139 "zmm16", "zmm17", "zmm18", "zmm19",
140 "zmm20", "zmm21", "zmm22", "zmm23",
141 "zmm24", "zmm25", "zmm26", "zmm27",
142 "zmm28", "zmm29", "zmm30", "zmm31"
145 static const char *amd64_xmm_avx512_names[] = {
146 "xmm16", "xmm17", "xmm18", "xmm19",
147 "xmm20", "xmm21", "xmm22", "xmm23",
148 "xmm24", "xmm25", "xmm26", "xmm27",
149 "xmm28", "xmm29", "xmm30", "xmm31"
152 static const char *amd64_pkeys_names[] = {
156 /* DWARF Register Number Mapping as defined in the System V psABI,
159 static int amd64_dwarf_regmap[] =
161 /* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI. */
162 AMD64_RAX_REGNUM, AMD64_RDX_REGNUM,
163 AMD64_RCX_REGNUM, AMD64_RBX_REGNUM,
164 AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
166 /* Frame Pointer Register RBP. */
169 /* Stack Pointer Register RSP. */
172 /* Extended Integer Registers 8 - 15. */
173 AMD64_R8_REGNUM, /* %r8 */
174 AMD64_R9_REGNUM, /* %r9 */
175 AMD64_R10_REGNUM, /* %r10 */
176 AMD64_R11_REGNUM, /* %r11 */
177 AMD64_R12_REGNUM, /* %r12 */
178 AMD64_R13_REGNUM, /* %r13 */
179 AMD64_R14_REGNUM, /* %r14 */
180 AMD64_R15_REGNUM, /* %r15 */
182 /* Return Address RA. Mapped to RIP. */
185 /* SSE Registers 0 - 7. */
186 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
187 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
188 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
189 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
191 /* Extended SSE Registers 8 - 15. */
192 AMD64_XMM0_REGNUM + 8, AMD64_XMM0_REGNUM + 9,
193 AMD64_XMM0_REGNUM + 10, AMD64_XMM0_REGNUM + 11,
194 AMD64_XMM0_REGNUM + 12, AMD64_XMM0_REGNUM + 13,
195 AMD64_XMM0_REGNUM + 14, AMD64_XMM0_REGNUM + 15,
197 /* Floating Point Registers 0-7. */
198 AMD64_ST0_REGNUM + 0, AMD64_ST0_REGNUM + 1,
199 AMD64_ST0_REGNUM + 2, AMD64_ST0_REGNUM + 3,
200 AMD64_ST0_REGNUM + 4, AMD64_ST0_REGNUM + 5,
201 AMD64_ST0_REGNUM + 6, AMD64_ST0_REGNUM + 7,
203 /* MMX Registers 0 - 7.
204 We have to handle those registers specifically, as their register
205 number within GDB depends on the target (or they may even not be
206 available at all). */
207 -1, -1, -1, -1, -1, -1, -1, -1,
209 /* Control and Status Flags Register. */
212 /* Selector Registers. */
222 /* Segment Base Address Registers. */
228 /* Special Selector Registers. */
232 /* Floating Point Control Registers. */
238 static const int amd64_dwarf_regmap_len =
239 (sizeof (amd64_dwarf_regmap) / sizeof (amd64_dwarf_regmap[0]));
241 /* Convert DWARF register number REG to the appropriate register
242 number used by GDB. */
245 amd64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
247 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
248 int ymm0_regnum = tdep->ymm0_regnum;
251 if (reg >= 0 && reg < amd64_dwarf_regmap_len)
252 regnum = amd64_dwarf_regmap[reg];
255 && i386_xmm_regnum_p (gdbarch, regnum))
256 regnum += ymm0_regnum - I387_XMM0_REGNUM (tdep);
261 /* Map architectural register numbers to gdb register numbers. */
263 static const int amd64_arch_regmap[16] =
265 AMD64_RAX_REGNUM, /* %rax */
266 AMD64_RCX_REGNUM, /* %rcx */
267 AMD64_RDX_REGNUM, /* %rdx */
268 AMD64_RBX_REGNUM, /* %rbx */
269 AMD64_RSP_REGNUM, /* %rsp */
270 AMD64_RBP_REGNUM, /* %rbp */
271 AMD64_RSI_REGNUM, /* %rsi */
272 AMD64_RDI_REGNUM, /* %rdi */
273 AMD64_R8_REGNUM, /* %r8 */
274 AMD64_R9_REGNUM, /* %r9 */
275 AMD64_R10_REGNUM, /* %r10 */
276 AMD64_R11_REGNUM, /* %r11 */
277 AMD64_R12_REGNUM, /* %r12 */
278 AMD64_R13_REGNUM, /* %r13 */
279 AMD64_R14_REGNUM, /* %r14 */
280 AMD64_R15_REGNUM /* %r15 */
283 static const int amd64_arch_regmap_len =
284 (sizeof (amd64_arch_regmap) / sizeof (amd64_arch_regmap[0]));
286 /* Convert architectural register number REG to the appropriate register
287 number used by GDB. */
290 amd64_arch_reg_to_regnum (int reg)
292 gdb_assert (reg >= 0 && reg < amd64_arch_regmap_len);
294 return amd64_arch_regmap[reg];
297 /* Register names for byte pseudo-registers. */
299 static const char *amd64_byte_names[] =
301 "al", "bl", "cl", "dl", "sil", "dil", "bpl", "spl",
302 "r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l",
303 "ah", "bh", "ch", "dh"
306 /* Number of lower byte registers. */
307 #define AMD64_NUM_LOWER_BYTE_REGS 16
309 /* Register names for word pseudo-registers. */
311 static const char *amd64_word_names[] =
313 "ax", "bx", "cx", "dx", "si", "di", "bp", "",
314 "r8w", "r9w", "r10w", "r11w", "r12w", "r13w", "r14w", "r15w"
317 /* Register names for dword pseudo-registers. */
319 static const char *amd64_dword_names[] =
321 "eax", "ebx", "ecx", "edx", "esi", "edi", "ebp", "esp",
322 "r8d", "r9d", "r10d", "r11d", "r12d", "r13d", "r14d", "r15d",
326 /* Return the name of register REGNUM. */
329 amd64_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
331 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
332 if (i386_byte_regnum_p (gdbarch, regnum))
333 return amd64_byte_names[regnum - tdep->al_regnum];
334 else if (i386_zmm_regnum_p (gdbarch, regnum))
335 return amd64_zmm_names[regnum - tdep->zmm0_regnum];
336 else if (i386_ymm_regnum_p (gdbarch, regnum))
337 return amd64_ymm_names[regnum - tdep->ymm0_regnum];
338 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
339 return amd64_ymm_avx512_names[regnum - tdep->ymm16_regnum];
340 else if (i386_word_regnum_p (gdbarch, regnum))
341 return amd64_word_names[regnum - tdep->ax_regnum];
342 else if (i386_dword_regnum_p (gdbarch, regnum))
343 return amd64_dword_names[regnum - tdep->eax_regnum];
345 return i386_pseudo_register_name (gdbarch, regnum);
348 static struct value *
349 amd64_pseudo_register_read_value (struct gdbarch *gdbarch,
350 struct regcache *regcache,
353 gdb_byte *raw_buf = (gdb_byte *) alloca (register_size (gdbarch, regnum));
354 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
355 enum register_status status;
356 struct value *result_value;
359 result_value = allocate_value (register_type (gdbarch, regnum));
360 VALUE_LVAL (result_value) = lval_register;
361 VALUE_REGNUM (result_value) = regnum;
362 buf = value_contents_raw (result_value);
364 if (i386_byte_regnum_p (gdbarch, regnum))
366 int gpnum = regnum - tdep->al_regnum;
368 /* Extract (always little endian). */
369 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
371 /* Special handling for AH, BH, CH, DH. */
372 status = regcache_raw_read (regcache,
373 gpnum - AMD64_NUM_LOWER_BYTE_REGS,
375 if (status == REG_VALID)
376 memcpy (buf, raw_buf + 1, 1);
378 mark_value_bytes_unavailable (result_value, 0,
379 TYPE_LENGTH (value_type (result_value)));
383 status = regcache_raw_read (regcache, gpnum, raw_buf);
384 if (status == REG_VALID)
385 memcpy (buf, raw_buf, 1);
387 mark_value_bytes_unavailable (result_value, 0,
388 TYPE_LENGTH (value_type (result_value)));
391 else if (i386_dword_regnum_p (gdbarch, regnum))
393 int gpnum = regnum - tdep->eax_regnum;
394 /* Extract (always little endian). */
395 status = regcache_raw_read (regcache, gpnum, raw_buf);
396 if (status == REG_VALID)
397 memcpy (buf, raw_buf, 4);
399 mark_value_bytes_unavailable (result_value, 0,
400 TYPE_LENGTH (value_type (result_value)));
403 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum,
410 amd64_pseudo_register_write (struct gdbarch *gdbarch,
411 struct regcache *regcache,
412 int regnum, const gdb_byte *buf)
414 gdb_byte *raw_buf = (gdb_byte *) alloca (register_size (gdbarch, regnum));
415 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
417 if (i386_byte_regnum_p (gdbarch, regnum))
419 int gpnum = regnum - tdep->al_regnum;
421 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
423 /* Read ... AH, BH, CH, DH. */
424 regcache_raw_read (regcache,
425 gpnum - AMD64_NUM_LOWER_BYTE_REGS, raw_buf);
426 /* ... Modify ... (always little endian). */
427 memcpy (raw_buf + 1, buf, 1);
429 regcache_raw_write (regcache,
430 gpnum - AMD64_NUM_LOWER_BYTE_REGS, raw_buf);
435 regcache_raw_read (regcache, gpnum, raw_buf);
436 /* ... Modify ... (always little endian). */
437 memcpy (raw_buf, buf, 1);
439 regcache_raw_write (regcache, gpnum, raw_buf);
442 else if (i386_dword_regnum_p (gdbarch, regnum))
444 int gpnum = regnum - tdep->eax_regnum;
447 regcache_raw_read (regcache, gpnum, raw_buf);
448 /* ... Modify ... (always little endian). */
449 memcpy (raw_buf, buf, 4);
451 regcache_raw_write (regcache, gpnum, raw_buf);
454 i386_pseudo_register_write (gdbarch, regcache, regnum, buf);
457 /* Implement the 'ax_pseudo_register_collect' gdbarch method. */
460 amd64_ax_pseudo_register_collect (struct gdbarch *gdbarch,
461 struct agent_expr *ax, int regnum)
463 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
465 if (i386_byte_regnum_p (gdbarch, regnum))
467 int gpnum = regnum - tdep->al_regnum;
469 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
470 ax_reg_mask (ax, gpnum - AMD64_NUM_LOWER_BYTE_REGS);
472 ax_reg_mask (ax, gpnum);
475 else if (i386_dword_regnum_p (gdbarch, regnum))
477 int gpnum = regnum - tdep->eax_regnum;
479 ax_reg_mask (ax, gpnum);
483 return i386_ax_pseudo_register_collect (gdbarch, ax, regnum);
488 /* Register classes as defined in the psABI. */
502 /* Return the union class of CLASS1 and CLASS2. See the psABI for
505 static enum amd64_reg_class
506 amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2)
508 /* Rule (a): If both classes are equal, this is the resulting class. */
509 if (class1 == class2)
512 /* Rule (b): If one of the classes is NO_CLASS, the resulting class
513 is the other class. */
514 if (class1 == AMD64_NO_CLASS)
516 if (class2 == AMD64_NO_CLASS)
519 /* Rule (c): If one of the classes is MEMORY, the result is MEMORY. */
520 if (class1 == AMD64_MEMORY || class2 == AMD64_MEMORY)
523 /* Rule (d): If one of the classes is INTEGER, the result is INTEGER. */
524 if (class1 == AMD64_INTEGER || class2 == AMD64_INTEGER)
525 return AMD64_INTEGER;
527 /* Rule (e): If one of the classes is X87, X87UP, COMPLEX_X87 class,
528 MEMORY is used as class. */
529 if (class1 == AMD64_X87 || class1 == AMD64_X87UP
530 || class1 == AMD64_COMPLEX_X87 || class2 == AMD64_X87
531 || class2 == AMD64_X87UP || class2 == AMD64_COMPLEX_X87)
534 /* Rule (f): Otherwise class SSE is used. */
538 static void amd64_classify (struct type *type, enum amd64_reg_class theclass[2]);
540 /* Return non-zero if TYPE is a non-POD structure or union type. */
543 amd64_non_pod_p (struct type *type)
545 /* ??? A class with a base class certainly isn't POD, but does this
546 catch all non-POD structure types? */
547 if (TYPE_CODE (type) == TYPE_CODE_STRUCT && TYPE_N_BASECLASSES (type) > 0)
553 /* Classify TYPE according to the rules for aggregate (structures and
554 arrays) and union types, and store the result in CLASS. */
557 amd64_classify_aggregate (struct type *type, enum amd64_reg_class theclass[2])
559 /* 1. If the size of an object is larger than two eightbytes, or in
560 C++, is a non-POD structure or union type, or contains
561 unaligned fields, it has class memory. */
562 if (TYPE_LENGTH (type) > 16 || amd64_non_pod_p (type))
564 theclass[0] = theclass[1] = AMD64_MEMORY;
568 /* 2. Both eightbytes get initialized to class NO_CLASS. */
569 theclass[0] = theclass[1] = AMD64_NO_CLASS;
571 /* 3. Each field of an object is classified recursively so that
572 always two fields are considered. The resulting class is
573 calculated according to the classes of the fields in the
576 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
578 struct type *subtype = check_typedef (TYPE_TARGET_TYPE (type));
580 /* All fields in an array have the same type. */
581 amd64_classify (subtype, theclass);
582 if (TYPE_LENGTH (type) > 8 && theclass[1] == AMD64_NO_CLASS)
583 theclass[1] = theclass[0];
589 /* Structure or union. */
590 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
591 || TYPE_CODE (type) == TYPE_CODE_UNION);
593 for (i = 0; i < TYPE_NFIELDS (type); i++)
595 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
596 int pos = TYPE_FIELD_BITPOS (type, i) / 64;
597 enum amd64_reg_class subclass[2];
598 int bitsize = TYPE_FIELD_BITSIZE (type, i);
602 bitsize = TYPE_LENGTH (subtype) * 8;
603 endpos = (TYPE_FIELD_BITPOS (type, i) + bitsize - 1) / 64;
605 /* Ignore static fields. */
606 if (field_is_static (&TYPE_FIELD (type, i)))
609 gdb_assert (pos == 0 || pos == 1);
611 amd64_classify (subtype, subclass);
612 theclass[pos] = amd64_merge_classes (theclass[pos], subclass[0]);
613 if (bitsize <= 64 && pos == 0 && endpos == 1)
614 /* This is a bit of an odd case: We have a field that would
615 normally fit in one of the two eightbytes, except that
616 it is placed in a way that this field straddles them.
617 This has been seen with a structure containing an array.
619 The ABI is a bit unclear in this case, but we assume that
620 this field's class (stored in subclass[0]) must also be merged
621 into class[1]. In other words, our field has a piece stored
622 in the second eight-byte, and thus its class applies to
623 the second eight-byte as well.
625 In the case where the field length exceeds 8 bytes,
626 it should not be necessary to merge the field class
627 into class[1]. As LEN > 8, subclass[1] is necessarily
628 different from AMD64_NO_CLASS. If subclass[1] is equal
629 to subclass[0], then the normal class[1]/subclass[1]
630 merging will take care of everything. For subclass[1]
631 to be different from subclass[0], I can only see the case
632 where we have a SSE/SSEUP or X87/X87UP pair, which both
633 use up all 16 bytes of the aggregate, and are already
634 handled just fine (because each portion sits on its own
636 theclass[1] = amd64_merge_classes (theclass[1], subclass[0]);
638 theclass[1] = amd64_merge_classes (theclass[1], subclass[1]);
642 /* 4. Then a post merger cleanup is done: */
644 /* Rule (a): If one of the classes is MEMORY, the whole argument is
646 if (theclass[0] == AMD64_MEMORY || theclass[1] == AMD64_MEMORY)
647 theclass[0] = theclass[1] = AMD64_MEMORY;
649 /* Rule (b): If SSEUP is not preceded by SSE, it is converted to
651 if (theclass[0] == AMD64_SSEUP)
652 theclass[0] = AMD64_SSE;
653 if (theclass[1] == AMD64_SSEUP && theclass[0] != AMD64_SSE)
654 theclass[1] = AMD64_SSE;
657 /* Classify TYPE, and store the result in CLASS. */
660 amd64_classify (struct type *type, enum amd64_reg_class theclass[2])
662 enum type_code code = TYPE_CODE (type);
663 int len = TYPE_LENGTH (type);
665 theclass[0] = theclass[1] = AMD64_NO_CLASS;
667 /* Arguments of types (signed and unsigned) _Bool, char, short, int,
668 long, long long, and pointers are in the INTEGER class. Similarly,
669 range types, used by languages such as Ada, are also in the INTEGER
671 if ((code == TYPE_CODE_INT || code == TYPE_CODE_ENUM
672 || code == TYPE_CODE_BOOL || code == TYPE_CODE_RANGE
673 || code == TYPE_CODE_CHAR
674 || code == TYPE_CODE_PTR || TYPE_IS_REFERENCE (type))
675 && (len == 1 || len == 2 || len == 4 || len == 8))
676 theclass[0] = AMD64_INTEGER;
678 /* Arguments of types float, double, _Decimal32, _Decimal64 and __m64
680 else if ((code == TYPE_CODE_FLT || code == TYPE_CODE_DECFLOAT)
681 && (len == 4 || len == 8))
683 theclass[0] = AMD64_SSE;
685 /* Arguments of types __float128, _Decimal128 and __m128 are split into
686 two halves. The least significant ones belong to class SSE, the most
687 significant one to class SSEUP. */
688 else if (code == TYPE_CODE_DECFLOAT && len == 16)
689 /* FIXME: __float128, __m128. */
690 theclass[0] = AMD64_SSE, theclass[1] = AMD64_SSEUP;
692 /* The 64-bit mantissa of arguments of type long double belongs to
693 class X87, the 16-bit exponent plus 6 bytes of padding belongs to
695 else if (code == TYPE_CODE_FLT && len == 16)
696 /* Class X87 and X87UP. */
697 theclass[0] = AMD64_X87, theclass[1] = AMD64_X87UP;
699 /* Arguments of complex T where T is one of the types float or
700 double get treated as if they are implemented as:
708 else if (code == TYPE_CODE_COMPLEX && len == 8)
709 theclass[0] = AMD64_SSE;
710 else if (code == TYPE_CODE_COMPLEX && len == 16)
711 theclass[0] = theclass[1] = AMD64_SSE;
713 /* A variable of type complex long double is classified as type
715 else if (code == TYPE_CODE_COMPLEX && len == 32)
716 theclass[0] = AMD64_COMPLEX_X87;
719 else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT
720 || code == TYPE_CODE_UNION)
721 amd64_classify_aggregate (type, theclass);
724 static enum return_value_convention
725 amd64_return_value (struct gdbarch *gdbarch, struct value *function,
726 struct type *type, struct regcache *regcache,
727 gdb_byte *readbuf, const gdb_byte *writebuf)
729 enum amd64_reg_class theclass[2];
730 int len = TYPE_LENGTH (type);
731 static int integer_regnum[] = { AMD64_RAX_REGNUM, AMD64_RDX_REGNUM };
732 static int sse_regnum[] = { AMD64_XMM0_REGNUM, AMD64_XMM1_REGNUM };
737 gdb_assert (!(readbuf && writebuf));
739 /* 1. Classify the return type with the classification algorithm. */
740 amd64_classify (type, theclass);
742 /* 2. If the type has class MEMORY, then the caller provides space
743 for the return value and passes the address of this storage in
744 %rdi as if it were the first argument to the function. In effect,
745 this address becomes a hidden first argument.
747 On return %rax will contain the address that has been passed in
748 by the caller in %rdi. */
749 if (theclass[0] == AMD64_MEMORY)
751 /* As indicated by the comment above, the ABI guarantees that we
752 can always find the return value just after the function has
759 regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr);
760 read_memory (addr, readbuf, TYPE_LENGTH (type));
763 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
766 /* 8. If the class is COMPLEX_X87, the real part of the value is
767 returned in %st0 and the imaginary part in %st1. */
768 if (theclass[0] == AMD64_COMPLEX_X87)
772 regcache_raw_read (regcache, AMD64_ST0_REGNUM, readbuf);
773 regcache_raw_read (regcache, AMD64_ST1_REGNUM, readbuf + 16);
778 i387_return_value (gdbarch, regcache);
779 regcache_raw_write (regcache, AMD64_ST0_REGNUM, writebuf);
780 regcache_raw_write (regcache, AMD64_ST1_REGNUM, writebuf + 16);
782 /* Fix up the tag word such that both %st(0) and %st(1) are
784 regcache_raw_write_unsigned (regcache, AMD64_FTAG_REGNUM, 0xfff);
787 return RETURN_VALUE_REGISTER_CONVENTION;
790 gdb_assert (theclass[1] != AMD64_MEMORY);
791 gdb_assert (len <= 16);
793 for (i = 0; len > 0; i++, len -= 8)
801 /* 3. If the class is INTEGER, the next available register
802 of the sequence %rax, %rdx is used. */
803 regnum = integer_regnum[integer_reg++];
807 /* 4. If the class is SSE, the next available SSE register
808 of the sequence %xmm0, %xmm1 is used. */
809 regnum = sse_regnum[sse_reg++];
813 /* 5. If the class is SSEUP, the eightbyte is passed in the
814 upper half of the last used SSE register. */
815 gdb_assert (sse_reg > 0);
816 regnum = sse_regnum[sse_reg - 1];
821 /* 6. If the class is X87, the value is returned on the X87
822 stack in %st0 as 80-bit x87 number. */
823 regnum = AMD64_ST0_REGNUM;
825 i387_return_value (gdbarch, regcache);
829 /* 7. If the class is X87UP, the value is returned together
830 with the previous X87 value in %st0. */
831 gdb_assert (i > 0 && theclass[0] == AMD64_X87);
832 regnum = AMD64_ST0_REGNUM;
841 gdb_assert (!"Unexpected register class.");
844 gdb_assert (regnum != -1);
847 regcache_raw_read_part (regcache, regnum, offset, std::min (len, 8),
850 regcache_raw_write_part (regcache, regnum, offset, std::min (len, 8),
854 return RETURN_VALUE_REGISTER_CONVENTION;
859 amd64_push_arguments (struct regcache *regcache, int nargs,
860 struct value **args, CORE_ADDR sp, int struct_return)
862 static int integer_regnum[] =
864 AMD64_RDI_REGNUM, /* %rdi */
865 AMD64_RSI_REGNUM, /* %rsi */
866 AMD64_RDX_REGNUM, /* %rdx */
867 AMD64_RCX_REGNUM, /* %rcx */
868 AMD64_R8_REGNUM, /* %r8 */
869 AMD64_R9_REGNUM /* %r9 */
871 static int sse_regnum[] =
873 /* %xmm0 ... %xmm7 */
874 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
875 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
876 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
877 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
879 struct value **stack_args = XALLOCAVEC (struct value *, nargs);
880 int num_stack_args = 0;
881 int num_elements = 0;
887 /* Reserve a register for the "hidden" argument. */
891 for (i = 0; i < nargs; i++)
893 struct type *type = value_type (args[i]);
894 int len = TYPE_LENGTH (type);
895 enum amd64_reg_class theclass[2];
896 int needed_integer_regs = 0;
897 int needed_sse_regs = 0;
900 /* Classify argument. */
901 amd64_classify (type, theclass);
903 /* Calculate the number of integer and SSE registers needed for
905 for (j = 0; j < 2; j++)
907 if (theclass[j] == AMD64_INTEGER)
908 needed_integer_regs++;
909 else if (theclass[j] == AMD64_SSE)
913 /* Check whether enough registers are available, and if the
914 argument should be passed in registers at all. */
915 if (integer_reg + needed_integer_regs > ARRAY_SIZE (integer_regnum)
916 || sse_reg + needed_sse_regs > ARRAY_SIZE (sse_regnum)
917 || (needed_integer_regs == 0 && needed_sse_regs == 0))
919 /* The argument will be passed on the stack. */
920 num_elements += ((len + 7) / 8);
921 stack_args[num_stack_args++] = args[i];
925 /* The argument will be passed in registers. */
926 const gdb_byte *valbuf = value_contents (args[i]);
929 gdb_assert (len <= 16);
931 for (j = 0; len > 0; j++, len -= 8)
939 regnum = integer_regnum[integer_reg++];
943 regnum = sse_regnum[sse_reg++];
947 gdb_assert (sse_reg > 0);
948 regnum = sse_regnum[sse_reg - 1];
953 gdb_assert (!"Unexpected register class.");
956 gdb_assert (regnum != -1);
957 memset (buf, 0, sizeof buf);
958 memcpy (buf, valbuf + j * 8, std::min (len, 8));
959 regcache_raw_write_part (regcache, regnum, offset, 8, buf);
964 /* Allocate space for the arguments on the stack. */
965 sp -= num_elements * 8;
967 /* The psABI says that "The end of the input argument area shall be
968 aligned on a 16 byte boundary." */
971 /* Write out the arguments to the stack. */
972 for (i = 0; i < num_stack_args; i++)
974 struct type *type = value_type (stack_args[i]);
975 const gdb_byte *valbuf = value_contents (stack_args[i]);
976 int len = TYPE_LENGTH (type);
978 write_memory (sp + element * 8, valbuf, len);
979 element += ((len + 7) / 8);
982 /* The psABI says that "For calls that may call functions that use
983 varargs or stdargs (prototype-less calls or calls to functions
984 containing ellipsis (...) in the declaration) %al is used as
985 hidden argument to specify the number of SSE registers used. */
986 regcache_raw_write_unsigned (regcache, AMD64_RAX_REGNUM, sse_reg);
991 amd64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
992 struct regcache *regcache, CORE_ADDR bp_addr,
993 int nargs, struct value **args, CORE_ADDR sp,
994 int struct_return, CORE_ADDR struct_addr)
996 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
999 /* BND registers can be in arbitrary values at the moment of the
1000 inferior call. This can cause boundary violations that are not
1001 due to a real bug or even desired by the user. The best to be done
1002 is set the BND registers to allow access to the whole memory, INIT
1003 state, before pushing the inferior call. */
1004 i387_reset_bnd_regs (gdbarch, regcache);
1006 /* Pass arguments. */
1007 sp = amd64_push_arguments (regcache, nargs, args, sp, struct_return);
1009 /* Pass "hidden" argument". */
1012 store_unsigned_integer (buf, 8, byte_order, struct_addr);
1013 regcache_cooked_write (regcache, AMD64_RDI_REGNUM, buf);
1016 /* Store return address. */
1018 store_unsigned_integer (buf, 8, byte_order, bp_addr);
1019 write_memory (sp, buf, 8);
1021 /* Finally, update the stack pointer... */
1022 store_unsigned_integer (buf, 8, byte_order, sp);
1023 regcache_cooked_write (regcache, AMD64_RSP_REGNUM, buf);
1025 /* ...and fake a frame pointer. */
1026 regcache_cooked_write (regcache, AMD64_RBP_REGNUM, buf);
1031 /* Displaced instruction handling. */
1033 /* A partially decoded instruction.
1034 This contains enough details for displaced stepping purposes. */
1038 /* The number of opcode bytes. */
1040 /* The offset of the rex prefix or -1 if not present. */
1042 /* The offset to the first opcode byte. */
1044 /* The offset to the modrm byte or -1 if not present. */
1047 /* The raw instruction. */
1051 struct amd64_displaced_step_closure : public displaced_step_closure
1053 amd64_displaced_step_closure (int insn_buf_len)
1054 : insn_buf (insn_buf_len, 0)
1057 /* For rip-relative insns, saved copy of the reg we use instead of %rip. */
1062 /* Details of the instruction. */
1063 struct amd64_insn insn_details;
1065 /* The possibly modified insn. */
1066 gdb::byte_vector insn_buf;
1069 /* WARNING: Keep onebyte_has_modrm, twobyte_has_modrm in sync with
1070 ../opcodes/i386-dis.c (until libopcodes exports them, or an alternative,
1071 at which point delete these in favor of libopcodes' versions). */
1073 static const unsigned char onebyte_has_modrm[256] = {
1074 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1075 /* ------------------------------- */
1076 /* 00 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 00 */
1077 /* 10 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 10 */
1078 /* 20 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 20 */
1079 /* 30 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 30 */
1080 /* 40 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 40 */
1081 /* 50 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 50 */
1082 /* 60 */ 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0, /* 60 */
1083 /* 70 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 70 */
1084 /* 80 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 80 */
1085 /* 90 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 90 */
1086 /* a0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* a0 */
1087 /* b0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* b0 */
1088 /* c0 */ 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0, /* c0 */
1089 /* d0 */ 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1, /* d0 */
1090 /* e0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* e0 */
1091 /* f0 */ 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1 /* f0 */
1092 /* ------------------------------- */
1093 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1096 static const unsigned char twobyte_has_modrm[256] = {
1097 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1098 /* ------------------------------- */
1099 /* 00 */ 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1, /* 0f */
1100 /* 10 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 1f */
1101 /* 20 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 2f */
1102 /* 30 */ 0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0, /* 3f */
1103 /* 40 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 4f */
1104 /* 50 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 5f */
1105 /* 60 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 6f */
1106 /* 70 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 7f */
1107 /* 80 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 8f */
1108 /* 90 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 9f */
1109 /* a0 */ 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1, /* af */
1110 /* b0 */ 1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1, /* bf */
1111 /* c0 */ 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0, /* cf */
1112 /* d0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* df */
1113 /* e0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ef */
1114 /* f0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0 /* ff */
1115 /* ------------------------------- */
1116 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1119 static int amd64_syscall_p (const struct amd64_insn *insn, int *lengthp);
1122 rex_prefix_p (gdb_byte pfx)
1124 return REX_PREFIX_P (pfx);
1127 /* Skip the legacy instruction prefixes in INSN.
1128 We assume INSN is properly sentineled so we don't have to worry
1129 about falling off the end of the buffer. */
1132 amd64_skip_prefixes (gdb_byte *insn)
1138 case DATA_PREFIX_OPCODE:
1139 case ADDR_PREFIX_OPCODE:
1140 case CS_PREFIX_OPCODE:
1141 case DS_PREFIX_OPCODE:
1142 case ES_PREFIX_OPCODE:
1143 case FS_PREFIX_OPCODE:
1144 case GS_PREFIX_OPCODE:
1145 case SS_PREFIX_OPCODE:
1146 case LOCK_PREFIX_OPCODE:
1147 case REPE_PREFIX_OPCODE:
1148 case REPNE_PREFIX_OPCODE:
1160 /* Return an integer register (other than RSP) that is unused as an input
1162 In order to not require adding a rex prefix if the insn doesn't already
1163 have one, the result is restricted to RAX ... RDI, sans RSP.
1164 The register numbering of the result follows architecture ordering,
1168 amd64_get_unused_input_int_reg (const struct amd64_insn *details)
1170 /* 1 bit for each reg */
1171 int used_regs_mask = 0;
1173 /* There can be at most 3 int regs used as inputs in an insn, and we have
1174 7 to choose from (RAX ... RDI, sans RSP).
1175 This allows us to take a conservative approach and keep things simple.
1176 E.g. By avoiding RAX, we don't have to specifically watch for opcodes
1177 that implicitly specify RAX. */
1180 used_regs_mask |= 1 << EAX_REG_NUM;
1181 /* Similarily avoid RDX, implicit operand in divides. */
1182 used_regs_mask |= 1 << EDX_REG_NUM;
1184 used_regs_mask |= 1 << ESP_REG_NUM;
1186 /* If the opcode is one byte long and there's no ModRM byte,
1187 assume the opcode specifies a register. */
1188 if (details->opcode_len == 1 && details->modrm_offset == -1)
1189 used_regs_mask |= 1 << (details->raw_insn[details->opcode_offset] & 7);
1191 /* Mark used regs in the modrm/sib bytes. */
1192 if (details->modrm_offset != -1)
1194 int modrm = details->raw_insn[details->modrm_offset];
1195 int mod = MODRM_MOD_FIELD (modrm);
1196 int reg = MODRM_REG_FIELD (modrm);
1197 int rm = MODRM_RM_FIELD (modrm);
1198 int have_sib = mod != 3 && rm == 4;
1200 /* Assume the reg field of the modrm byte specifies a register. */
1201 used_regs_mask |= 1 << reg;
1205 int base = SIB_BASE_FIELD (details->raw_insn[details->modrm_offset + 1]);
1206 int idx = SIB_INDEX_FIELD (details->raw_insn[details->modrm_offset + 1]);
1207 used_regs_mask |= 1 << base;
1208 used_regs_mask |= 1 << idx;
1212 used_regs_mask |= 1 << rm;
1216 gdb_assert (used_regs_mask < 256);
1217 gdb_assert (used_regs_mask != 255);
1219 /* Finally, find a free reg. */
1223 for (i = 0; i < 8; ++i)
1225 if (! (used_regs_mask & (1 << i)))
1229 /* We shouldn't get here. */
1230 internal_error (__FILE__, __LINE__, _("unable to find free reg"));
1234 /* Extract the details of INSN that we need. */
1237 amd64_get_insn_details (gdb_byte *insn, struct amd64_insn *details)
1239 gdb_byte *start = insn;
1242 details->raw_insn = insn;
1244 details->opcode_len = -1;
1245 details->rex_offset = -1;
1246 details->opcode_offset = -1;
1247 details->modrm_offset = -1;
1249 /* Skip legacy instruction prefixes. */
1250 insn = amd64_skip_prefixes (insn);
1252 /* Skip REX instruction prefix. */
1253 if (rex_prefix_p (*insn))
1255 details->rex_offset = insn - start;
1259 details->opcode_offset = insn - start;
1261 if (*insn == TWO_BYTE_OPCODE_ESCAPE)
1263 /* Two or three-byte opcode. */
1265 need_modrm = twobyte_has_modrm[*insn];
1267 /* Check for three-byte opcode. */
1277 details->opcode_len = 3;
1280 details->opcode_len = 2;
1286 /* One-byte opcode. */
1287 need_modrm = onebyte_has_modrm[*insn];
1288 details->opcode_len = 1;
1294 details->modrm_offset = insn - start;
1298 /* Update %rip-relative addressing in INSN.
1300 %rip-relative addressing only uses a 32-bit displacement.
1301 32 bits is not enough to be guaranteed to cover the distance between where
1302 the real instruction is and where its copy is.
1303 Convert the insn to use base+disp addressing.
1304 We set base = pc + insn_length so we can leave disp unchanged. */
1307 fixup_riprel (struct gdbarch *gdbarch, amd64_displaced_step_closure *dsc,
1308 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1310 const struct amd64_insn *insn_details = &dsc->insn_details;
1311 int modrm_offset = insn_details->modrm_offset;
1312 gdb_byte *insn = insn_details->raw_insn + modrm_offset;
1315 int arch_tmp_regno, tmp_regno;
1316 ULONGEST orig_value;
1318 /* %rip+disp32 addressing mode, displacement follows ModRM byte. */
1321 /* Compute the rip-relative address. */
1322 insn_length = gdb_buffered_insn_length (gdbarch, dsc->insn_buf.data (),
1323 dsc->insn_buf.size (), from);
1324 rip_base = from + insn_length;
1326 /* We need a register to hold the address.
1327 Pick one not used in the insn.
1328 NOTE: arch_tmp_regno uses architecture ordering, e.g. RDI = 7. */
1329 arch_tmp_regno = amd64_get_unused_input_int_reg (insn_details);
1330 tmp_regno = amd64_arch_reg_to_regnum (arch_tmp_regno);
1332 /* REX.B should be unset as we were using rip-relative addressing,
1333 but ensure it's unset anyway, tmp_regno is not r8-r15. */
1334 if (insn_details->rex_offset != -1)
1335 dsc->insn_buf[insn_details->rex_offset] &= ~REX_B;
1337 regcache_cooked_read_unsigned (regs, tmp_regno, &orig_value);
1338 dsc->tmp_regno = tmp_regno;
1339 dsc->tmp_save = orig_value;
1342 /* Convert the ModRM field to be base+disp. */
1343 dsc->insn_buf[modrm_offset] &= ~0xc7;
1344 dsc->insn_buf[modrm_offset] |= 0x80 + arch_tmp_regno;
1346 regcache_cooked_write_unsigned (regs, tmp_regno, rip_base);
1348 if (debug_displaced)
1349 fprintf_unfiltered (gdb_stdlog, "displaced: %%rip-relative addressing used.\n"
1350 "displaced: using temp reg %d, old value %s, new value %s\n",
1351 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save),
1352 paddress (gdbarch, rip_base));
1356 fixup_displaced_copy (struct gdbarch *gdbarch,
1357 amd64_displaced_step_closure *dsc,
1358 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1360 const struct amd64_insn *details = &dsc->insn_details;
1362 if (details->modrm_offset != -1)
1364 gdb_byte modrm = details->raw_insn[details->modrm_offset];
1366 if ((modrm & 0xc7) == 0x05)
1368 /* The insn uses rip-relative addressing.
1370 fixup_riprel (gdbarch, dsc, from, to, regs);
1375 struct displaced_step_closure *
1376 amd64_displaced_step_copy_insn (struct gdbarch *gdbarch,
1377 CORE_ADDR from, CORE_ADDR to,
1378 struct regcache *regs)
1380 int len = gdbarch_max_insn_length (gdbarch);
1381 /* Extra space for sentinels so fixup_{riprel,displaced_copy} don't have to
1382 continually watch for running off the end of the buffer. */
1383 int fixup_sentinel_space = len;
1384 amd64_displaced_step_closure *dsc
1385 = new amd64_displaced_step_closure (len + fixup_sentinel_space);
1386 gdb_byte *buf = &dsc->insn_buf[0];
1387 struct amd64_insn *details = &dsc->insn_details;
1389 read_memory (from, buf, len);
1391 /* Set up the sentinel space so we don't have to worry about running
1392 off the end of the buffer. An excessive number of leading prefixes
1393 could otherwise cause this. */
1394 memset (buf + len, 0, fixup_sentinel_space);
1396 amd64_get_insn_details (buf, details);
1398 /* GDB may get control back after the insn after the syscall.
1399 Presumably this is a kernel bug.
1400 If this is a syscall, make sure there's a nop afterwards. */
1404 if (amd64_syscall_p (details, &syscall_length))
1405 buf[details->opcode_offset + syscall_length] = NOP_OPCODE;
1408 /* Modify the insn to cope with the address where it will be executed from.
1409 In particular, handle any rip-relative addressing. */
1410 fixup_displaced_copy (gdbarch, dsc, from, to, regs);
1412 write_memory (to, buf, len);
1414 if (debug_displaced)
1416 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
1417 paddress (gdbarch, from), paddress (gdbarch, to));
1418 displaced_step_dump_bytes (gdb_stdlog, buf, len);
1425 amd64_absolute_jmp_p (const struct amd64_insn *details)
1427 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1429 if (insn[0] == 0xff)
1431 /* jump near, absolute indirect (/4) */
1432 if ((insn[1] & 0x38) == 0x20)
1435 /* jump far, absolute indirect (/5) */
1436 if ((insn[1] & 0x38) == 0x28)
1443 /* Return non-zero if the instruction DETAILS is a jump, zero otherwise. */
1446 amd64_jmp_p (const struct amd64_insn *details)
1448 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1450 /* jump short, relative. */
1451 if (insn[0] == 0xeb)
1454 /* jump near, relative. */
1455 if (insn[0] == 0xe9)
1458 return amd64_absolute_jmp_p (details);
1462 amd64_absolute_call_p (const struct amd64_insn *details)
1464 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1466 if (insn[0] == 0xff)
1468 /* Call near, absolute indirect (/2) */
1469 if ((insn[1] & 0x38) == 0x10)
1472 /* Call far, absolute indirect (/3) */
1473 if ((insn[1] & 0x38) == 0x18)
1481 amd64_ret_p (const struct amd64_insn *details)
1483 /* NOTE: gcc can emit "repz ; ret". */
1484 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1488 case 0xc2: /* ret near, pop N bytes */
1489 case 0xc3: /* ret near */
1490 case 0xca: /* ret far, pop N bytes */
1491 case 0xcb: /* ret far */
1492 case 0xcf: /* iret */
1501 amd64_call_p (const struct amd64_insn *details)
1503 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1505 if (amd64_absolute_call_p (details))
1508 /* call near, relative */
1509 if (insn[0] == 0xe8)
1515 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
1516 length in bytes. Otherwise, return zero. */
1519 amd64_syscall_p (const struct amd64_insn *details, int *lengthp)
1521 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1523 if (insn[0] == 0x0f && insn[1] == 0x05)
1532 /* Classify the instruction at ADDR using PRED.
1533 Throw an error if the memory can't be read. */
1536 amd64_classify_insn_at (struct gdbarch *gdbarch, CORE_ADDR addr,
1537 int (*pred) (const struct amd64_insn *))
1539 struct amd64_insn details;
1541 int len, classification;
1543 len = gdbarch_max_insn_length (gdbarch);
1544 buf = (gdb_byte *) alloca (len);
1546 read_code (addr, buf, len);
1547 amd64_get_insn_details (buf, &details);
1549 classification = pred (&details);
1551 return classification;
1554 /* The gdbarch insn_is_call method. */
1557 amd64_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
1559 return amd64_classify_insn_at (gdbarch, addr, amd64_call_p);
1562 /* The gdbarch insn_is_ret method. */
1565 amd64_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
1567 return amd64_classify_insn_at (gdbarch, addr, amd64_ret_p);
1570 /* The gdbarch insn_is_jump method. */
1573 amd64_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
1575 return amd64_classify_insn_at (gdbarch, addr, amd64_jmp_p);
1578 /* Fix up the state of registers and memory after having single-stepped
1579 a displaced instruction. */
1582 amd64_displaced_step_fixup (struct gdbarch *gdbarch,
1583 struct displaced_step_closure *dsc_,
1584 CORE_ADDR from, CORE_ADDR to,
1585 struct regcache *regs)
1587 amd64_displaced_step_closure *dsc = (amd64_displaced_step_closure *) dsc_;
1588 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1589 /* The offset we applied to the instruction's address. */
1590 ULONGEST insn_offset = to - from;
1591 gdb_byte *insn = dsc->insn_buf.data ();
1592 const struct amd64_insn *insn_details = &dsc->insn_details;
1594 if (debug_displaced)
1595 fprintf_unfiltered (gdb_stdlog,
1596 "displaced: fixup (%s, %s), "
1597 "insn = 0x%02x 0x%02x ...\n",
1598 paddress (gdbarch, from), paddress (gdbarch, to),
1601 /* If we used a tmp reg, restore it. */
1605 if (debug_displaced)
1606 fprintf_unfiltered (gdb_stdlog, "displaced: restoring reg %d to %s\n",
1607 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save));
1608 regcache_cooked_write_unsigned (regs, dsc->tmp_regno, dsc->tmp_save);
1611 /* The list of issues to contend with here is taken from
1612 resume_execution in arch/x86/kernel/kprobes.c, Linux 2.6.28.
1613 Yay for Free Software! */
1615 /* Relocate the %rip back to the program's instruction stream,
1618 /* Except in the case of absolute or indirect jump or call
1619 instructions, or a return instruction, the new rip is relative to
1620 the displaced instruction; make it relative to the original insn.
1621 Well, signal handler returns don't need relocation either, but we use the
1622 value of %rip to recognize those; see below. */
1623 if (! amd64_absolute_jmp_p (insn_details)
1624 && ! amd64_absolute_call_p (insn_details)
1625 && ! amd64_ret_p (insn_details))
1630 regcache_cooked_read_unsigned (regs, AMD64_RIP_REGNUM, &orig_rip);
1632 /* A signal trampoline system call changes the %rip, resuming
1633 execution of the main program after the signal handler has
1634 returned. That makes them like 'return' instructions; we
1635 shouldn't relocate %rip.
1637 But most system calls don't, and we do need to relocate %rip.
1639 Our heuristic for distinguishing these cases: if stepping
1640 over the system call instruction left control directly after
1641 the instruction, the we relocate --- control almost certainly
1642 doesn't belong in the displaced copy. Otherwise, we assume
1643 the instruction has put control where it belongs, and leave
1644 it unrelocated. Goodness help us if there are PC-relative
1646 if (amd64_syscall_p (insn_details, &insn_len)
1647 && orig_rip != to + insn_len
1648 /* GDB can get control back after the insn after the syscall.
1649 Presumably this is a kernel bug.
1650 Fixup ensures its a nop, we add one to the length for it. */
1651 && orig_rip != to + insn_len + 1)
1653 if (debug_displaced)
1654 fprintf_unfiltered (gdb_stdlog,
1655 "displaced: syscall changed %%rip; "
1656 "not relocating\n");
1660 ULONGEST rip = orig_rip - insn_offset;
1662 /* If we just stepped over a breakpoint insn, we don't backup
1663 the pc on purpose; this is to match behaviour without
1666 regcache_cooked_write_unsigned (regs, AMD64_RIP_REGNUM, rip);
1668 if (debug_displaced)
1669 fprintf_unfiltered (gdb_stdlog,
1671 "relocated %%rip from %s to %s\n",
1672 paddress (gdbarch, orig_rip),
1673 paddress (gdbarch, rip));
1677 /* If the instruction was PUSHFL, then the TF bit will be set in the
1678 pushed value, and should be cleared. We'll leave this for later,
1679 since GDB already messes up the TF flag when stepping over a
1682 /* If the instruction was a call, the return address now atop the
1683 stack is the address following the copied instruction. We need
1684 to make it the address following the original instruction. */
1685 if (amd64_call_p (insn_details))
1689 const ULONGEST retaddr_len = 8;
1691 regcache_cooked_read_unsigned (regs, AMD64_RSP_REGNUM, &rsp);
1692 retaddr = read_memory_unsigned_integer (rsp, retaddr_len, byte_order);
1693 retaddr = (retaddr - insn_offset) & 0xffffffffffffffffULL;
1694 write_memory_unsigned_integer (rsp, retaddr_len, byte_order, retaddr);
1696 if (debug_displaced)
1697 fprintf_unfiltered (gdb_stdlog,
1698 "displaced: relocated return addr at %s "
1700 paddress (gdbarch, rsp),
1701 paddress (gdbarch, retaddr));
1705 /* If the instruction INSN uses RIP-relative addressing, return the
1706 offset into the raw INSN where the displacement to be adjusted is
1707 found. Returns 0 if the instruction doesn't use RIP-relative
1711 rip_relative_offset (struct amd64_insn *insn)
1713 if (insn->modrm_offset != -1)
1715 gdb_byte modrm = insn->raw_insn[insn->modrm_offset];
1717 if ((modrm & 0xc7) == 0x05)
1719 /* The displacement is found right after the ModRM byte. */
1720 return insn->modrm_offset + 1;
1728 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
1730 target_write_memory (*to, buf, len);
1735 amd64_relocate_instruction (struct gdbarch *gdbarch,
1736 CORE_ADDR *to, CORE_ADDR oldloc)
1738 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1739 int len = gdbarch_max_insn_length (gdbarch);
1740 /* Extra space for sentinels. */
1741 int fixup_sentinel_space = len;
1742 gdb_byte *buf = (gdb_byte *) xmalloc (len + fixup_sentinel_space);
1743 struct amd64_insn insn_details;
1745 LONGEST rel32, newrel;
1749 read_memory (oldloc, buf, len);
1751 /* Set up the sentinel space so we don't have to worry about running
1752 off the end of the buffer. An excessive number of leading prefixes
1753 could otherwise cause this. */
1754 memset (buf + len, 0, fixup_sentinel_space);
1757 amd64_get_insn_details (insn, &insn_details);
1759 insn_length = gdb_buffered_insn_length (gdbarch, insn, len, oldloc);
1761 /* Skip legacy instruction prefixes. */
1762 insn = amd64_skip_prefixes (insn);
1764 /* Adjust calls with 32-bit relative addresses as push/jump, with
1765 the address pushed being the location where the original call in
1766 the user program would return to. */
1767 if (insn[0] == 0xe8)
1769 gdb_byte push_buf[32];
1773 /* Where "ret" in the original code will return to. */
1774 ret_addr = oldloc + insn_length;
1776 /* If pushing an address higher than or equal to 0x80000000,
1777 avoid 'pushq', as that sign extends its 32-bit operand, which
1778 would be incorrect. */
1779 if (ret_addr <= 0x7fffffff)
1781 push_buf[0] = 0x68; /* pushq $... */
1782 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
1787 push_buf[i++] = 0x48; /* sub $0x8,%rsp */
1788 push_buf[i++] = 0x83;
1789 push_buf[i++] = 0xec;
1790 push_buf[i++] = 0x08;
1792 push_buf[i++] = 0xc7; /* movl $imm,(%rsp) */
1793 push_buf[i++] = 0x04;
1794 push_buf[i++] = 0x24;
1795 store_unsigned_integer (&push_buf[i], 4, byte_order,
1796 ret_addr & 0xffffffff);
1799 push_buf[i++] = 0xc7; /* movl $imm,4(%rsp) */
1800 push_buf[i++] = 0x44;
1801 push_buf[i++] = 0x24;
1802 push_buf[i++] = 0x04;
1803 store_unsigned_integer (&push_buf[i], 4, byte_order,
1807 gdb_assert (i <= sizeof (push_buf));
1808 /* Push the push. */
1809 append_insns (to, i, push_buf);
1811 /* Convert the relative call to a relative jump. */
1814 /* Adjust the destination offset. */
1815 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1816 newrel = (oldloc - *to) + rel32;
1817 store_signed_integer (insn + 1, 4, byte_order, newrel);
1819 if (debug_displaced)
1820 fprintf_unfiltered (gdb_stdlog,
1821 "Adjusted insn rel32=%s at %s to"
1822 " rel32=%s at %s\n",
1823 hex_string (rel32), paddress (gdbarch, oldloc),
1824 hex_string (newrel), paddress (gdbarch, *to));
1826 /* Write the adjusted jump into its displaced location. */
1827 append_insns (to, 5, insn);
1831 offset = rip_relative_offset (&insn_details);
1834 /* Adjust jumps with 32-bit relative addresses. Calls are
1835 already handled above. */
1836 if (insn[0] == 0xe9)
1838 /* Adjust conditional jumps. */
1839 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1845 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1846 newrel = (oldloc - *to) + rel32;
1847 store_signed_integer (insn + offset, 4, byte_order, newrel);
1848 if (debug_displaced)
1849 fprintf_unfiltered (gdb_stdlog,
1850 "Adjusted insn rel32=%s at %s to"
1851 " rel32=%s at %s\n",
1852 hex_string (rel32), paddress (gdbarch, oldloc),
1853 hex_string (newrel), paddress (gdbarch, *to));
1856 /* Write the adjusted instruction into its displaced location. */
1857 append_insns (to, insn_length, buf);
1861 /* The maximum number of saved registers. This should include %rip. */
1862 #define AMD64_NUM_SAVED_REGS AMD64_NUM_GREGS
1864 struct amd64_frame_cache
1869 CORE_ADDR sp_offset;
1872 /* Saved registers. */
1873 CORE_ADDR saved_regs[AMD64_NUM_SAVED_REGS];
1877 /* Do we have a frame? */
1881 /* Initialize a frame cache. */
1884 amd64_init_frame_cache (struct amd64_frame_cache *cache)
1891 cache->sp_offset = -8;
1894 /* Saved registers. We initialize these to -1 since zero is a valid
1895 offset (that's where %rbp is supposed to be stored).
1896 The values start out as being offsets, and are later converted to
1897 addresses (at which point -1 is interpreted as an address, still meaning
1899 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
1900 cache->saved_regs[i] = -1;
1901 cache->saved_sp = 0;
1902 cache->saved_sp_reg = -1;
1904 /* Frameless until proven otherwise. */
1905 cache->frameless_p = 1;
1908 /* Allocate and initialize a frame cache. */
1910 static struct amd64_frame_cache *
1911 amd64_alloc_frame_cache (void)
1913 struct amd64_frame_cache *cache;
1915 cache = FRAME_OBSTACK_ZALLOC (struct amd64_frame_cache);
1916 amd64_init_frame_cache (cache);
1920 /* GCC 4.4 and later, can put code in the prologue to realign the
1921 stack pointer. Check whether PC points to such code, and update
1922 CACHE accordingly. Return the first instruction after the code
1923 sequence or CURRENT_PC, whichever is smaller. If we don't
1924 recognize the code, return PC. */
1927 amd64_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1928 struct amd64_frame_cache *cache)
1930 /* There are 2 code sequences to re-align stack before the frame
1933 1. Use a caller-saved saved register:
1939 2. Use a callee-saved saved register:
1946 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
1948 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
1949 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
1954 int offset, offset_and;
1956 if (target_read_code (pc, buf, sizeof buf))
1959 /* Check caller-saved saved register. The first instruction has
1960 to be "leaq 8(%rsp), %reg". */
1961 if ((buf[0] & 0xfb) == 0x48
1966 /* MOD must be binary 10 and R/M must be binary 100. */
1967 if ((buf[2] & 0xc7) != 0x44)
1970 /* REG has register number. */
1971 reg = (buf[2] >> 3) & 7;
1973 /* Check the REX.R bit. */
1981 /* Check callee-saved saved register. The first instruction
1982 has to be "pushq %reg". */
1984 if ((buf[0] & 0xf8) == 0x50)
1986 else if ((buf[0] & 0xf6) == 0x40
1987 && (buf[1] & 0xf8) == 0x50)
1989 /* Check the REX.B bit. */
1990 if ((buf[0] & 1) != 0)
1999 reg += buf[offset] & 0x7;
2003 /* The next instruction has to be "leaq 16(%rsp), %reg". */
2004 if ((buf[offset] & 0xfb) != 0x48
2005 || buf[offset + 1] != 0x8d
2006 || buf[offset + 3] != 0x24
2007 || buf[offset + 4] != 0x10)
2010 /* MOD must be binary 10 and R/M must be binary 100. */
2011 if ((buf[offset + 2] & 0xc7) != 0x44)
2014 /* REG has register number. */
2015 r = (buf[offset + 2] >> 3) & 7;
2017 /* Check the REX.R bit. */
2018 if (buf[offset] == 0x4c)
2021 /* Registers in pushq and leaq have to be the same. */
2028 /* Rigister can't be %rsp nor %rbp. */
2029 if (reg == 4 || reg == 5)
2032 /* The next instruction has to be "andq $-XXX, %rsp". */
2033 if (buf[offset] != 0x48
2034 || buf[offset + 2] != 0xe4
2035 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
2038 offset_and = offset;
2039 offset += buf[offset + 1] == 0x81 ? 7 : 4;
2041 /* The next instruction has to be "pushq -8(%reg)". */
2043 if (buf[offset] == 0xff)
2045 else if ((buf[offset] & 0xf6) == 0x40
2046 && buf[offset + 1] == 0xff)
2048 /* Check the REX.B bit. */
2049 if ((buf[offset] & 0x1) != 0)
2056 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
2058 if (buf[offset + 1] != 0xf8
2059 || (buf[offset] & 0xf8) != 0x70)
2062 /* R/M has register. */
2063 r += buf[offset] & 7;
2065 /* Registers in leaq and pushq have to be the same. */
2069 if (current_pc > pc + offset_and)
2070 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
2072 return std::min (pc + offset + 2, current_pc);
2075 /* Similar to amd64_analyze_stack_align for x32. */
2078 amd64_x32_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
2079 struct amd64_frame_cache *cache)
2081 /* There are 2 code sequences to re-align stack before the frame
2084 1. Use a caller-saved saved register:
2092 [addr32] leal 8(%rsp), %reg
2094 [addr32] pushq -8(%reg)
2096 2. Use a callee-saved saved register:
2106 [addr32] leal 16(%rsp), %reg
2108 [addr32] pushq -8(%reg)
2110 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
2112 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
2113 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
2115 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
2117 0x83 0xe4 0xf0 andl $-16, %esp
2118 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
2123 int offset, offset_and;
2125 if (target_read_memory (pc, buf, sizeof buf))
2128 /* Skip optional addr32 prefix. */
2129 offset = buf[0] == 0x67 ? 1 : 0;
2131 /* Check caller-saved saved register. The first instruction has
2132 to be "leaq 8(%rsp), %reg" or "leal 8(%rsp), %reg". */
2133 if (((buf[offset] & 0xfb) == 0x48 || (buf[offset] & 0xfb) == 0x40)
2134 && buf[offset + 1] == 0x8d
2135 && buf[offset + 3] == 0x24
2136 && buf[offset + 4] == 0x8)
2138 /* MOD must be binary 10 and R/M must be binary 100. */
2139 if ((buf[offset + 2] & 0xc7) != 0x44)
2142 /* REG has register number. */
2143 reg = (buf[offset + 2] >> 3) & 7;
2145 /* Check the REX.R bit. */
2146 if ((buf[offset] & 0x4) != 0)
2153 /* Check callee-saved saved register. The first instruction
2154 has to be "pushq %reg". */
2156 if ((buf[offset] & 0xf6) == 0x40
2157 && (buf[offset + 1] & 0xf8) == 0x50)
2159 /* Check the REX.B bit. */
2160 if ((buf[offset] & 1) != 0)
2165 else if ((buf[offset] & 0xf8) != 0x50)
2169 reg += buf[offset] & 0x7;
2173 /* Skip optional addr32 prefix. */
2174 if (buf[offset] == 0x67)
2177 /* The next instruction has to be "leaq 16(%rsp), %reg" or
2178 "leal 16(%rsp), %reg". */
2179 if (((buf[offset] & 0xfb) != 0x48 && (buf[offset] & 0xfb) != 0x40)
2180 || buf[offset + 1] != 0x8d
2181 || buf[offset + 3] != 0x24
2182 || buf[offset + 4] != 0x10)
2185 /* MOD must be binary 10 and R/M must be binary 100. */
2186 if ((buf[offset + 2] & 0xc7) != 0x44)
2189 /* REG has register number. */
2190 r = (buf[offset + 2] >> 3) & 7;
2192 /* Check the REX.R bit. */
2193 if ((buf[offset] & 0x4) != 0)
2196 /* Registers in pushq and leaq have to be the same. */
2203 /* Rigister can't be %rsp nor %rbp. */
2204 if (reg == 4 || reg == 5)
2207 /* The next instruction may be "andq $-XXX, %rsp" or
2208 "andl $-XXX, %esp". */
2209 if (buf[offset] != 0x48)
2212 if (buf[offset + 2] != 0xe4
2213 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
2216 offset_and = offset;
2217 offset += buf[offset + 1] == 0x81 ? 7 : 4;
2219 /* Skip optional addr32 prefix. */
2220 if (buf[offset] == 0x67)
2223 /* The next instruction has to be "pushq -8(%reg)". */
2225 if (buf[offset] == 0xff)
2227 else if ((buf[offset] & 0xf6) == 0x40
2228 && buf[offset + 1] == 0xff)
2230 /* Check the REX.B bit. */
2231 if ((buf[offset] & 0x1) != 0)
2238 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
2240 if (buf[offset + 1] != 0xf8
2241 || (buf[offset] & 0xf8) != 0x70)
2244 /* R/M has register. */
2245 r += buf[offset] & 7;
2247 /* Registers in leaq and pushq have to be the same. */
2251 if (current_pc > pc + offset_and)
2252 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
2254 return std::min (pc + offset + 2, current_pc);
2257 /* Do a limited analysis of the prologue at PC and update CACHE
2258 accordingly. Bail out early if CURRENT_PC is reached. Return the
2259 address where the analysis stopped.
2261 We will handle only functions beginning with:
2264 movq %rsp, %rbp 0x48 0x89 0xe5 (or 0x48 0x8b 0xec)
2266 or (for the X32 ABI):
2269 movl %esp, %ebp 0x89 0xe5 (or 0x8b 0xec)
2271 Any function that doesn't start with one of these sequences will be
2272 assumed to have no prologue and thus no valid frame pointer in
2276 amd64_analyze_prologue (struct gdbarch *gdbarch,
2277 CORE_ADDR pc, CORE_ADDR current_pc,
2278 struct amd64_frame_cache *cache)
2280 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2281 /* There are two variations of movq %rsp, %rbp. */
2282 static const gdb_byte mov_rsp_rbp_1[3] = { 0x48, 0x89, 0xe5 };
2283 static const gdb_byte mov_rsp_rbp_2[3] = { 0x48, 0x8b, 0xec };
2284 /* Ditto for movl %esp, %ebp. */
2285 static const gdb_byte mov_esp_ebp_1[2] = { 0x89, 0xe5 };
2286 static const gdb_byte mov_esp_ebp_2[2] = { 0x8b, 0xec };
2291 if (current_pc <= pc)
2294 if (gdbarch_ptr_bit (gdbarch) == 32)
2295 pc = amd64_x32_analyze_stack_align (pc, current_pc, cache);
2297 pc = amd64_analyze_stack_align (pc, current_pc, cache);
2299 op = read_code_unsigned_integer (pc, 1, byte_order);
2301 if (op == 0x55) /* pushq %rbp */
2303 /* Take into account that we've executed the `pushq %rbp' that
2304 starts this instruction sequence. */
2305 cache->saved_regs[AMD64_RBP_REGNUM] = 0;
2306 cache->sp_offset += 8;
2308 /* If that's all, return now. */
2309 if (current_pc <= pc + 1)
2312 read_code (pc + 1, buf, 3);
2314 /* Check for `movq %rsp, %rbp'. */
2315 if (memcmp (buf, mov_rsp_rbp_1, 3) == 0
2316 || memcmp (buf, mov_rsp_rbp_2, 3) == 0)
2318 /* OK, we actually have a frame. */
2319 cache->frameless_p = 0;
2323 /* For X32, also check for `movq %esp, %ebp'. */
2324 if (gdbarch_ptr_bit (gdbarch) == 32)
2326 if (memcmp (buf, mov_esp_ebp_1, 2) == 0
2327 || memcmp (buf, mov_esp_ebp_2, 2) == 0)
2329 /* OK, we actually have a frame. */
2330 cache->frameless_p = 0;
2341 /* Work around false termination of prologue - GCC PR debug/48827.
2343 START_PC is the first instruction of a function, PC is its minimal already
2344 determined advanced address. Function returns PC if it has nothing to do.
2348 <-- here is 0 lines advance - the false prologue end marker.
2349 0f 29 85 70 ff ff ff movaps %xmm0,-0x90(%rbp)
2350 0f 29 4d 80 movaps %xmm1,-0x80(%rbp)
2351 0f 29 55 90 movaps %xmm2,-0x70(%rbp)
2352 0f 29 5d a0 movaps %xmm3,-0x60(%rbp)
2353 0f 29 65 b0 movaps %xmm4,-0x50(%rbp)
2354 0f 29 6d c0 movaps %xmm5,-0x40(%rbp)
2355 0f 29 75 d0 movaps %xmm6,-0x30(%rbp)
2356 0f 29 7d e0 movaps %xmm7,-0x20(%rbp)
2360 amd64_skip_xmm_prologue (CORE_ADDR pc, CORE_ADDR start_pc)
2362 struct symtab_and_line start_pc_sal, next_sal;
2363 gdb_byte buf[4 + 8 * 7];
2369 start_pc_sal = find_pc_sect_line (start_pc, NULL, 0);
2370 if (start_pc_sal.symtab == NULL
2371 || producer_is_gcc_ge_4 (COMPUNIT_PRODUCER
2372 (SYMTAB_COMPUNIT (start_pc_sal.symtab))) < 6
2373 || start_pc_sal.pc != start_pc || pc >= start_pc_sal.end)
2376 next_sal = find_pc_sect_line (start_pc_sal.end, NULL, 0);
2377 if (next_sal.line != start_pc_sal.line)
2380 /* START_PC can be from overlayed memory, ignored here. */
2381 if (target_read_code (next_sal.pc - 4, buf, sizeof (buf)) != 0)
2385 if (buf[0] != 0x84 || buf[1] != 0xc0)
2392 for (xmmreg = 0; xmmreg < 8; xmmreg++)
2394 /* 0x0f 0x29 0b??000101 movaps %xmmreg?,-0x??(%rbp) */
2395 if (buf[offset] != 0x0f || buf[offset + 1] != 0x29
2396 || (buf[offset + 2] & 0x3f) != (xmmreg << 3 | 0x5))
2400 if ((buf[offset + 2] & 0xc0) == 0x40)
2402 /* 8-bit displacement. */
2406 else if ((buf[offset + 2] & 0xc0) == 0x80)
2408 /* 32-bit displacement. */
2416 if (offset - 4 != buf[3])
2419 return next_sal.end;
2422 /* Return PC of first real instruction. */
2425 amd64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
2427 struct amd64_frame_cache cache;
2429 CORE_ADDR func_addr;
2431 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
2433 CORE_ADDR post_prologue_pc
2434 = skip_prologue_using_sal (gdbarch, func_addr);
2435 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
2437 /* Clang always emits a line note before the prologue and another
2438 one after. We trust clang to emit usable line notes. */
2439 if (post_prologue_pc
2441 && COMPUNIT_PRODUCER (cust) != NULL
2442 && startswith (COMPUNIT_PRODUCER (cust), "clang ")))
2443 return std::max (start_pc, post_prologue_pc);
2446 amd64_init_frame_cache (&cache);
2447 pc = amd64_analyze_prologue (gdbarch, start_pc, 0xffffffffffffffffLL,
2449 if (cache.frameless_p)
2452 return amd64_skip_xmm_prologue (pc, start_pc);
2456 /* Normal frames. */
2459 amd64_frame_cache_1 (struct frame_info *this_frame,
2460 struct amd64_frame_cache *cache)
2462 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2463 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2467 cache->pc = get_frame_func (this_frame);
2469 amd64_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2472 if (cache->frameless_p)
2474 /* We didn't find a valid frame. If we're at the start of a
2475 function, or somewhere half-way its prologue, the function's
2476 frame probably hasn't been fully setup yet. Try to
2477 reconstruct the base address for the stack frame by looking
2478 at the stack pointer. For truly "frameless" functions this
2481 if (cache->saved_sp_reg != -1)
2483 /* Stack pointer has been saved. */
2484 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2485 cache->saved_sp = extract_unsigned_integer (buf, 8, byte_order);
2487 /* We're halfway aligning the stack. */
2488 cache->base = ((cache->saved_sp - 8) & 0xfffffffffffffff0LL) - 8;
2489 cache->saved_regs[AMD64_RIP_REGNUM] = cache->saved_sp - 8;
2491 /* This will be added back below. */
2492 cache->saved_regs[AMD64_RIP_REGNUM] -= cache->base;
2496 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2497 cache->base = extract_unsigned_integer (buf, 8, byte_order)
2503 get_frame_register (this_frame, AMD64_RBP_REGNUM, buf);
2504 cache->base = extract_unsigned_integer (buf, 8, byte_order);
2507 /* Now that we have the base address for the stack frame we can
2508 calculate the value of %rsp in the calling frame. */
2509 cache->saved_sp = cache->base + 16;
2511 /* For normal frames, %rip is stored at 8(%rbp). If we don't have a
2512 frame we find it at the same offset from the reconstructed base
2513 address. If we're halfway aligning the stack, %rip is handled
2514 differently (see above). */
2515 if (!cache->frameless_p || cache->saved_sp_reg == -1)
2516 cache->saved_regs[AMD64_RIP_REGNUM] = 8;
2518 /* Adjust all the saved registers such that they contain addresses
2519 instead of offsets. */
2520 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
2521 if (cache->saved_regs[i] != -1)
2522 cache->saved_regs[i] += cache->base;
2527 static struct amd64_frame_cache *
2528 amd64_frame_cache (struct frame_info *this_frame, void **this_cache)
2530 struct amd64_frame_cache *cache;
2533 return (struct amd64_frame_cache *) *this_cache;
2535 cache = amd64_alloc_frame_cache ();
2536 *this_cache = cache;
2540 amd64_frame_cache_1 (this_frame, cache);
2542 CATCH (ex, RETURN_MASK_ERROR)
2544 if (ex.error != NOT_AVAILABLE_ERROR)
2545 throw_exception (ex);
2552 static enum unwind_stop_reason
2553 amd64_frame_unwind_stop_reason (struct frame_info *this_frame,
2556 struct amd64_frame_cache *cache =
2557 amd64_frame_cache (this_frame, this_cache);
2560 return UNWIND_UNAVAILABLE;
2562 /* This marks the outermost frame. */
2563 if (cache->base == 0)
2564 return UNWIND_OUTERMOST;
2566 return UNWIND_NO_REASON;
2570 amd64_frame_this_id (struct frame_info *this_frame, void **this_cache,
2571 struct frame_id *this_id)
2573 struct amd64_frame_cache *cache =
2574 amd64_frame_cache (this_frame, this_cache);
2577 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2578 else if (cache->base == 0)
2580 /* This marks the outermost frame. */
2584 (*this_id) = frame_id_build (cache->base + 16, cache->pc);
2587 static struct value *
2588 amd64_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2591 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2592 struct amd64_frame_cache *cache =
2593 amd64_frame_cache (this_frame, this_cache);
2595 gdb_assert (regnum >= 0);
2597 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
2598 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
2600 if (regnum < AMD64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2601 return frame_unwind_got_memory (this_frame, regnum,
2602 cache->saved_regs[regnum]);
2604 return frame_unwind_got_register (this_frame, regnum, regnum);
2607 static const struct frame_unwind amd64_frame_unwind =
2610 amd64_frame_unwind_stop_reason,
2611 amd64_frame_this_id,
2612 amd64_frame_prev_register,
2614 default_frame_sniffer
2617 /* Generate a bytecode expression to get the value of the saved PC. */
2620 amd64_gen_return_address (struct gdbarch *gdbarch,
2621 struct agent_expr *ax, struct axs_value *value,
2624 /* The following sequence assumes the traditional use of the base
2626 ax_reg (ax, AMD64_RBP_REGNUM);
2628 ax_simple (ax, aop_add);
2629 value->type = register_type (gdbarch, AMD64_RIP_REGNUM);
2630 value->kind = axs_lvalue_memory;
2634 /* Signal trampolines. */
2636 /* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and
2637 64-bit variants. This would require using identical frame caches
2638 on both platforms. */
2640 static struct amd64_frame_cache *
2641 amd64_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2643 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2644 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2645 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2646 struct amd64_frame_cache *cache;
2652 return (struct amd64_frame_cache *) *this_cache;
2654 cache = amd64_alloc_frame_cache ();
2658 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2659 cache->base = extract_unsigned_integer (buf, 8, byte_order) - 8;
2661 addr = tdep->sigcontext_addr (this_frame);
2662 gdb_assert (tdep->sc_reg_offset);
2663 gdb_assert (tdep->sc_num_regs <= AMD64_NUM_SAVED_REGS);
2664 for (i = 0; i < tdep->sc_num_regs; i++)
2665 if (tdep->sc_reg_offset[i] != -1)
2666 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2670 CATCH (ex, RETURN_MASK_ERROR)
2672 if (ex.error != NOT_AVAILABLE_ERROR)
2673 throw_exception (ex);
2677 *this_cache = cache;
2681 static enum unwind_stop_reason
2682 amd64_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2685 struct amd64_frame_cache *cache =
2686 amd64_sigtramp_frame_cache (this_frame, this_cache);
2689 return UNWIND_UNAVAILABLE;
2691 return UNWIND_NO_REASON;
2695 amd64_sigtramp_frame_this_id (struct frame_info *this_frame,
2696 void **this_cache, struct frame_id *this_id)
2698 struct amd64_frame_cache *cache =
2699 amd64_sigtramp_frame_cache (this_frame, this_cache);
2702 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2703 else if (cache->base == 0)
2705 /* This marks the outermost frame. */
2709 (*this_id) = frame_id_build (cache->base + 16, get_frame_pc (this_frame));
2712 static struct value *
2713 amd64_sigtramp_frame_prev_register (struct frame_info *this_frame,
2714 void **this_cache, int regnum)
2716 /* Make sure we've initialized the cache. */
2717 amd64_sigtramp_frame_cache (this_frame, this_cache);
2719 return amd64_frame_prev_register (this_frame, this_cache, regnum);
2723 amd64_sigtramp_frame_sniffer (const struct frame_unwind *self,
2724 struct frame_info *this_frame,
2727 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2729 /* We shouldn't even bother if we don't have a sigcontext_addr
2731 if (tdep->sigcontext_addr == NULL)
2734 if (tdep->sigtramp_p != NULL)
2736 if (tdep->sigtramp_p (this_frame))
2740 if (tdep->sigtramp_start != 0)
2742 CORE_ADDR pc = get_frame_pc (this_frame);
2744 gdb_assert (tdep->sigtramp_end != 0);
2745 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2752 static const struct frame_unwind amd64_sigtramp_frame_unwind =
2755 amd64_sigtramp_frame_unwind_stop_reason,
2756 amd64_sigtramp_frame_this_id,
2757 amd64_sigtramp_frame_prev_register,
2759 amd64_sigtramp_frame_sniffer
2764 amd64_frame_base_address (struct frame_info *this_frame, void **this_cache)
2766 struct amd64_frame_cache *cache =
2767 amd64_frame_cache (this_frame, this_cache);
2772 static const struct frame_base amd64_frame_base =
2774 &amd64_frame_unwind,
2775 amd64_frame_base_address,
2776 amd64_frame_base_address,
2777 amd64_frame_base_address
2780 /* Normal frames, but in a function epilogue. */
2782 /* Implement the stack_frame_destroyed_p gdbarch method.
2784 The epilogue is defined here as the 'ret' instruction, which will
2785 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2786 the function's stack frame. */
2789 amd64_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2792 struct compunit_symtab *cust;
2794 cust = find_pc_compunit_symtab (pc);
2795 if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
2798 if (target_read_memory (pc, &insn, 1))
2799 return 0; /* Can't read memory at pc. */
2801 if (insn != 0xc3) /* 'ret' instruction. */
2808 amd64_epilogue_frame_sniffer (const struct frame_unwind *self,
2809 struct frame_info *this_frame,
2810 void **this_prologue_cache)
2812 if (frame_relative_level (this_frame) == 0)
2813 return amd64_stack_frame_destroyed_p (get_frame_arch (this_frame),
2814 get_frame_pc (this_frame));
2819 static struct amd64_frame_cache *
2820 amd64_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2822 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2823 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2824 struct amd64_frame_cache *cache;
2828 return (struct amd64_frame_cache *) *this_cache;
2830 cache = amd64_alloc_frame_cache ();
2831 *this_cache = cache;
2835 /* Cache base will be %esp plus cache->sp_offset (-8). */
2836 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2837 cache->base = extract_unsigned_integer (buf, 8,
2838 byte_order) + cache->sp_offset;
2840 /* Cache pc will be the frame func. */
2841 cache->pc = get_frame_pc (this_frame);
2843 /* The saved %esp will be at cache->base plus 16. */
2844 cache->saved_sp = cache->base + 16;
2846 /* The saved %eip will be at cache->base plus 8. */
2847 cache->saved_regs[AMD64_RIP_REGNUM] = cache->base + 8;
2851 CATCH (ex, RETURN_MASK_ERROR)
2853 if (ex.error != NOT_AVAILABLE_ERROR)
2854 throw_exception (ex);
2861 static enum unwind_stop_reason
2862 amd64_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2865 struct amd64_frame_cache *cache
2866 = amd64_epilogue_frame_cache (this_frame, this_cache);
2869 return UNWIND_UNAVAILABLE;
2871 return UNWIND_NO_REASON;
2875 amd64_epilogue_frame_this_id (struct frame_info *this_frame,
2877 struct frame_id *this_id)
2879 struct amd64_frame_cache *cache = amd64_epilogue_frame_cache (this_frame,
2883 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2885 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2888 static const struct frame_unwind amd64_epilogue_frame_unwind =
2891 amd64_epilogue_frame_unwind_stop_reason,
2892 amd64_epilogue_frame_this_id,
2893 amd64_frame_prev_register,
2895 amd64_epilogue_frame_sniffer
2898 static struct frame_id
2899 amd64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2903 fp = get_frame_register_unsigned (this_frame, AMD64_RBP_REGNUM);
2905 return frame_id_build (fp + 16, get_frame_pc (this_frame));
2908 /* 16 byte align the SP per frame requirements. */
2911 amd64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2913 return sp & -(CORE_ADDR)16;
2917 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
2918 in the floating-point register set REGSET to register cache
2919 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
2922 amd64_supply_fpregset (const struct regset *regset, struct regcache *regcache,
2923 int regnum, const void *fpregs, size_t len)
2925 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2926 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2928 gdb_assert (len >= tdep->sizeof_fpregset);
2929 amd64_supply_fxsave (regcache, regnum, fpregs);
2932 /* Collect register REGNUM from the register cache REGCACHE and store
2933 it in the buffer specified by FPREGS and LEN as described by the
2934 floating-point register set REGSET. If REGNUM is -1, do this for
2935 all registers in REGSET. */
2938 amd64_collect_fpregset (const struct regset *regset,
2939 const struct regcache *regcache,
2940 int regnum, void *fpregs, size_t len)
2942 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2943 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2945 gdb_assert (len >= tdep->sizeof_fpregset);
2946 amd64_collect_fxsave (regcache, regnum, fpregs);
2949 const struct regset amd64_fpregset =
2951 NULL, amd64_supply_fpregset, amd64_collect_fpregset
2955 /* Figure out where the longjmp will land. Slurp the jmp_buf out of
2956 %rdi. We expect its value to be a pointer to the jmp_buf structure
2957 from which we extract the address that we will land at. This
2958 address is copied into PC. This routine returns non-zero on
2962 amd64_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2966 struct gdbarch *gdbarch = get_frame_arch (frame);
2967 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2968 int len = TYPE_LENGTH (builtin_type (gdbarch)->builtin_func_ptr);
2970 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2971 longjmp will land. */
2972 if (jb_pc_offset == -1)
2975 get_frame_register (frame, AMD64_RDI_REGNUM, buf);
2976 jb_addr= extract_typed_address
2977 (buf, builtin_type (gdbarch)->builtin_data_ptr);
2978 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
2981 *pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
2986 static const int amd64_record_regmap[] =
2988 AMD64_RAX_REGNUM, AMD64_RCX_REGNUM, AMD64_RDX_REGNUM, AMD64_RBX_REGNUM,
2989 AMD64_RSP_REGNUM, AMD64_RBP_REGNUM, AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
2990 AMD64_R8_REGNUM, AMD64_R9_REGNUM, AMD64_R10_REGNUM, AMD64_R11_REGNUM,
2991 AMD64_R12_REGNUM, AMD64_R13_REGNUM, AMD64_R14_REGNUM, AMD64_R15_REGNUM,
2992 AMD64_RIP_REGNUM, AMD64_EFLAGS_REGNUM, AMD64_CS_REGNUM, AMD64_SS_REGNUM,
2993 AMD64_DS_REGNUM, AMD64_ES_REGNUM, AMD64_FS_REGNUM, AMD64_GS_REGNUM
2997 amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch,
2998 const target_desc *default_tdesc)
3000 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3001 const struct target_desc *tdesc = info.target_desc;
3002 static const char *const stap_integer_prefixes[] = { "$", NULL };
3003 static const char *const stap_register_prefixes[] = { "%", NULL };
3004 static const char *const stap_register_indirection_prefixes[] = { "(",
3006 static const char *const stap_register_indirection_suffixes[] = { ")",
3009 /* AMD64 generally uses `fxsave' instead of `fsave' for saving its
3010 floating-point registers. */
3011 tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE;
3012 tdep->fpregset = &amd64_fpregset;
3014 if (! tdesc_has_registers (tdesc))
3015 tdesc = default_tdesc;
3016 tdep->tdesc = tdesc;
3018 tdep->num_core_regs = AMD64_NUM_GREGS + I387_NUM_REGS;
3019 tdep->register_names = amd64_register_names;
3021 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512") != NULL)
3023 tdep->zmmh_register_names = amd64_zmmh_names;
3024 tdep->k_register_names = amd64_k_names;
3025 tdep->xmm_avx512_register_names = amd64_xmm_avx512_names;
3026 tdep->ymm16h_register_names = amd64_ymmh_avx512_names;
3028 tdep->num_zmm_regs = 32;
3029 tdep->num_xmm_avx512_regs = 16;
3030 tdep->num_ymm_avx512_regs = 16;
3032 tdep->zmm0h_regnum = AMD64_ZMM0H_REGNUM;
3033 tdep->k0_regnum = AMD64_K0_REGNUM;
3034 tdep->xmm16_regnum = AMD64_XMM16_REGNUM;
3035 tdep->ymm16h_regnum = AMD64_YMM16H_REGNUM;
3038 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx") != NULL)
3040 tdep->ymmh_register_names = amd64_ymmh_names;
3041 tdep->num_ymm_regs = 16;
3042 tdep->ymm0h_regnum = AMD64_YMM0H_REGNUM;
3045 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL)
3047 tdep->mpx_register_names = amd64_mpx_names;
3048 tdep->bndcfgu_regnum = AMD64_BNDCFGU_REGNUM;
3049 tdep->bnd0r_regnum = AMD64_BND0R_REGNUM;
3052 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.segments") != NULL)
3054 const struct tdesc_feature *feature =
3055 tdesc_find_feature (tdesc, "org.gnu.gdb.i386.segments");
3056 struct tdesc_arch_data *tdesc_data_segments =
3057 (struct tdesc_arch_data *) info.tdep_info;
3059 tdesc_numbered_register (feature, tdesc_data_segments,
3060 AMD64_FSBASE_REGNUM, "fs_base");
3061 tdesc_numbered_register (feature, tdesc_data_segments,
3062 AMD64_GSBASE_REGNUM, "gs_base");
3065 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.pkeys") != NULL)
3067 tdep->pkeys_register_names = amd64_pkeys_names;
3068 tdep->pkru_regnum = AMD64_PKRU_REGNUM;
3069 tdep->num_pkeys_regs = 1;
3072 tdep->num_byte_regs = 20;
3073 tdep->num_word_regs = 16;
3074 tdep->num_dword_regs = 16;
3075 /* Avoid wiring in the MMX registers for now. */
3076 tdep->num_mmx_regs = 0;
3078 set_gdbarch_pseudo_register_read_value (gdbarch,
3079 amd64_pseudo_register_read_value);
3080 set_gdbarch_pseudo_register_write (gdbarch,
3081 amd64_pseudo_register_write);
3082 set_gdbarch_ax_pseudo_register_collect (gdbarch,
3083 amd64_ax_pseudo_register_collect);
3085 set_tdesc_pseudo_register_name (gdbarch, amd64_pseudo_register_name);
3087 /* AMD64 has an FPU and 16 SSE registers. */
3088 tdep->st0_regnum = AMD64_ST0_REGNUM;
3089 tdep->num_xmm_regs = 16;
3091 /* This is what all the fuss is about. */
3092 set_gdbarch_long_bit (gdbarch, 64);
3093 set_gdbarch_long_long_bit (gdbarch, 64);
3094 set_gdbarch_ptr_bit (gdbarch, 64);
3096 /* In contrast to the i386, on AMD64 a `long double' actually takes
3097 up 128 bits, even though it's still based on the i387 extended
3098 floating-point format which has only 80 significant bits. */
3099 set_gdbarch_long_double_bit (gdbarch, 128);
3101 set_gdbarch_num_regs (gdbarch, AMD64_NUM_REGS);
3103 /* Register numbers of various important registers. */
3104 set_gdbarch_sp_regnum (gdbarch, AMD64_RSP_REGNUM); /* %rsp */
3105 set_gdbarch_pc_regnum (gdbarch, AMD64_RIP_REGNUM); /* %rip */
3106 set_gdbarch_ps_regnum (gdbarch, AMD64_EFLAGS_REGNUM); /* %eflags */
3107 set_gdbarch_fp0_regnum (gdbarch, AMD64_ST0_REGNUM); /* %st(0) */
3109 /* The "default" register numbering scheme for AMD64 is referred to
3110 as the "DWARF Register Number Mapping" in the System V psABI.
3111 The preferred debugging format for all known AMD64 targets is
3112 actually DWARF2, and GCC doesn't seem to support DWARF (that is
3113 DWARF-1), but we provide the same mapping just in case. This
3114 mapping is also used for stabs, which GCC does support. */
3115 set_gdbarch_stab_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
3116 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
3118 /* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to
3119 be in use on any of the supported AMD64 targets. */
3121 /* Call dummy code. */
3122 set_gdbarch_push_dummy_call (gdbarch, amd64_push_dummy_call);
3123 set_gdbarch_frame_align (gdbarch, amd64_frame_align);
3124 set_gdbarch_frame_red_zone_size (gdbarch, 128);
3126 set_gdbarch_convert_register_p (gdbarch, i387_convert_register_p);
3127 set_gdbarch_register_to_value (gdbarch, i387_register_to_value);
3128 set_gdbarch_value_to_register (gdbarch, i387_value_to_register);
3130 set_gdbarch_return_value (gdbarch, amd64_return_value);
3132 set_gdbarch_skip_prologue (gdbarch, amd64_skip_prologue);
3134 tdep->record_regmap = amd64_record_regmap;
3136 set_gdbarch_dummy_id (gdbarch, amd64_dummy_id);
3138 /* Hook the function epilogue frame unwinder. This unwinder is
3139 appended to the list first, so that it supercedes the other
3140 unwinders in function epilogues. */
3141 frame_unwind_prepend_unwinder (gdbarch, &amd64_epilogue_frame_unwind);
3143 /* Hook the prologue-based frame unwinders. */
3144 frame_unwind_append_unwinder (gdbarch, &amd64_sigtramp_frame_unwind);
3145 frame_unwind_append_unwinder (gdbarch, &amd64_frame_unwind);
3146 frame_base_set_default (gdbarch, &amd64_frame_base);
3148 set_gdbarch_get_longjmp_target (gdbarch, amd64_get_longjmp_target);
3150 set_gdbarch_relocate_instruction (gdbarch, amd64_relocate_instruction);
3152 set_gdbarch_gen_return_address (gdbarch, amd64_gen_return_address);
3154 /* SystemTap variables and functions. */
3155 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
3156 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
3157 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
3158 stap_register_indirection_prefixes);
3159 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
3160 stap_register_indirection_suffixes);
3161 set_gdbarch_stap_is_single_operand (gdbarch,
3162 i386_stap_is_single_operand);
3163 set_gdbarch_stap_parse_special_token (gdbarch,
3164 i386_stap_parse_special_token);
3165 set_gdbarch_insn_is_call (gdbarch, amd64_insn_is_call);
3166 set_gdbarch_insn_is_ret (gdbarch, amd64_insn_is_ret);
3167 set_gdbarch_insn_is_jump (gdbarch, amd64_insn_is_jump);
3171 static struct type *
3172 amd64_x32_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3174 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3176 switch (regnum - tdep->eax_regnum)
3178 case AMD64_RBP_REGNUM: /* %ebp */
3179 case AMD64_RSP_REGNUM: /* %esp */
3180 return builtin_type (gdbarch)->builtin_data_ptr;
3181 case AMD64_RIP_REGNUM: /* %eip */
3182 return builtin_type (gdbarch)->builtin_func_ptr;
3185 return i386_pseudo_register_type (gdbarch, regnum);
3189 amd64_x32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch,
3190 const target_desc *default_tdesc)
3192 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3194 amd64_init_abi (info, gdbarch, default_tdesc);
3196 tdep->num_dword_regs = 17;
3197 set_tdesc_pseudo_register_type (gdbarch, amd64_x32_pseudo_register_type);
3199 set_gdbarch_long_bit (gdbarch, 32);
3200 set_gdbarch_ptr_bit (gdbarch, 32);
3203 /* Return the target description for a specified XSAVE feature mask. */
3205 const struct target_desc *
3206 amd64_target_description (uint64_t xcr0)
3208 static target_desc *amd64_tdescs \
3209 [2/*AVX*/][2/*MPX*/][2/*AVX512*/][2/*PKRU*/] = {};
3210 target_desc **tdesc;
3212 tdesc = &amd64_tdescs[(xcr0 & X86_XSTATE_AVX) ? 1 : 0]
3213 [(xcr0 & X86_XSTATE_MPX) ? 1 : 0]
3214 [(xcr0 & X86_XSTATE_AVX512) ? 1 : 0]
3215 [(xcr0 & X86_XSTATE_PKRU) ? 1 : 0];
3218 *tdesc = amd64_create_target_description (xcr0, false, false);
3224 _initialize_amd64_tdep (void)
3232 { "i386/amd64.xml", X86_XSTATE_SSE_MASK },
3233 { "i386/amd64-avx.xml", X86_XSTATE_AVX_MASK },
3234 { "i386/amd64-mpx.xml", X86_XSTATE_MPX_MASK },
3235 { "i386/amd64-avx-mpx.xml", X86_XSTATE_AVX_MPX_MASK },
3236 { "i386/amd64-avx-avx512.xml", X86_XSTATE_AVX_AVX512_MASK },
3237 { "i386/amd64-avx-mpx-avx512-pku.xml",
3238 X86_XSTATE_AVX_MPX_AVX512_PKU_MASK },
3241 for (auto &a : xml_masks)
3243 auto tdesc = amd64_target_description (a.mask);
3245 selftests::record_xml_tdesc (a.xml, tdesc);
3247 #endif /* GDB_SELF_TEST */
3251 /* The 64-bit FXSAVE format differs from the 32-bit format in the
3252 sense that the instruction pointer and data pointer are simply
3253 64-bit offsets into the code segment and the data segment instead
3254 of a selector offset pair. The functions below store the upper 32
3255 bits of these pointers (instead of just the 16-bits of the segment
3258 /* Fill register REGNUM in REGCACHE with the appropriate
3259 floating-point or SSE register value from *FXSAVE. If REGNUM is
3260 -1, do this for all registers. This function masks off any of the
3261 reserved bits in *FXSAVE. */
3264 amd64_supply_fxsave (struct regcache *regcache, int regnum,
3267 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3268 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3270 i387_supply_fxsave (regcache, regnum, fxsave);
3273 && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3275 const gdb_byte *regs = (const gdb_byte *) fxsave;
3277 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3278 regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
3279 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3280 regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
3284 /* Similar to amd64_supply_fxsave, but use XSAVE extended state. */
3287 amd64_supply_xsave (struct regcache *regcache, int regnum,
3290 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3291 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3293 i387_supply_xsave (regcache, regnum, xsave);
3296 && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3298 const gdb_byte *regs = (const gdb_byte *) xsave;
3300 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3301 regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep),
3303 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3304 regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep),
3309 /* Fill register REGNUM (if it is a floating-point or SSE register) in
3310 *FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for
3311 all registers. This function doesn't touch any of the reserved
3315 amd64_collect_fxsave (const struct regcache *regcache, int regnum,
3318 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3319 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3320 gdb_byte *regs = (gdb_byte *) fxsave;
3322 i387_collect_fxsave (regcache, regnum, fxsave);
3324 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3326 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3327 regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
3328 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3329 regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
3333 /* Similar to amd64_collect_fxsave, but use XSAVE extended state. */
3336 amd64_collect_xsave (const struct regcache *regcache, int regnum,
3337 void *xsave, int gcore)
3339 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3340 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3341 gdb_byte *regs = (gdb_byte *) xsave;
3343 i387_collect_xsave (regcache, regnum, xsave, gcore);
3345 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3347 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3348 regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep),
3350 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3351 regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep),