1 /* Target-dependent code for AMD64.
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
6 Contributed by Jiri Smid, SuSE Labs.
8 This file is part of GDB.
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "arch-utils.h"
26 #include "dummy-frame.h"
28 #include "frame-base.h"
29 #include "frame-unwind.h"
38 #include "gdb_assert.h"
40 #include "amd64-tdep.h"
41 #include "i387-tdep.h"
43 /* Note that the AMD64 architecture was previously known as x86-64.
44 The latter is (forever) engraved into the canonical system name as
45 returned by config.guess, and used as the name for the AMD64 port
46 of GNU/Linux. The BSD's have renamed their ports to amd64; they
47 don't like to shout. For GDB we prefer the amd64_-prefix over the
48 x86_64_-prefix since it's so much easier to type. */
50 /* Register information. */
52 static const char *amd64_register_names[] =
54 "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "rsp",
56 /* %r8 is indeed register number 8. */
57 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
58 "rip", "eflags", "cs", "ss", "ds", "es", "fs", "gs",
60 /* %st0 is register number 24. */
61 "st0", "st1", "st2", "st3", "st4", "st5", "st6", "st7",
62 "fctrl", "fstat", "ftag", "fiseg", "fioff", "foseg", "fooff", "fop",
64 /* %xmm0 is register number 40. */
65 "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7",
66 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15",
70 /* Total number of registers. */
71 #define AMD64_NUM_REGS ARRAY_SIZE (amd64_register_names)
73 /* Return the name of register REGNUM. */
76 amd64_register_name (int regnum)
78 if (regnum >= 0 && regnum < AMD64_NUM_REGS)
79 return amd64_register_names[regnum];
84 /* Return the GDB type object for the "standard" data type of data in
88 amd64_register_type (struct gdbarch *gdbarch, int regnum)
90 if (regnum >= AMD64_RAX_REGNUM && regnum <= AMD64_RDI_REGNUM)
91 return builtin_type_int64;
92 if (regnum == AMD64_RBP_REGNUM || regnum == AMD64_RSP_REGNUM)
93 return builtin_type_void_data_ptr;
94 if (regnum >= AMD64_R8_REGNUM && regnum <= AMD64_R15_REGNUM)
95 return builtin_type_int64;
96 if (regnum == AMD64_RIP_REGNUM)
97 return builtin_type_void_func_ptr;
98 if (regnum == AMD64_EFLAGS_REGNUM)
99 return i386_eflags_type;
100 if (regnum >= AMD64_CS_REGNUM && regnum <= AMD64_GS_REGNUM)
101 return builtin_type_int32;
102 if (regnum >= AMD64_ST0_REGNUM && regnum <= AMD64_ST0_REGNUM + 7)
103 return builtin_type_i387_ext;
104 if (regnum >= AMD64_FCTRL_REGNUM && regnum <= AMD64_FCTRL_REGNUM + 7)
105 return builtin_type_int32;
106 if (regnum >= AMD64_XMM0_REGNUM && regnum <= AMD64_XMM0_REGNUM + 15)
107 return i386_sse_type (gdbarch);
108 if (regnum == AMD64_MXCSR_REGNUM)
109 return i386_mxcsr_type;
111 internal_error (__FILE__, __LINE__, _("invalid regnum"));
114 /* DWARF Register Number Mapping as defined in the System V psABI,
117 static int amd64_dwarf_regmap[] =
119 /* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI. */
120 AMD64_RAX_REGNUM, AMD64_RDX_REGNUM,
121 AMD64_RCX_REGNUM, AMD64_RBX_REGNUM,
122 AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
124 /* Frame Pointer Register RBP. */
127 /* Stack Pointer Register RSP. */
130 /* Extended Integer Registers 8 - 15. */
131 8, 9, 10, 11, 12, 13, 14, 15,
133 /* Return Address RA. Mapped to RIP. */
136 /* SSE Registers 0 - 7. */
137 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
138 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
139 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
140 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
142 /* Extended SSE Registers 8 - 15. */
143 AMD64_XMM0_REGNUM + 8, AMD64_XMM0_REGNUM + 9,
144 AMD64_XMM0_REGNUM + 10, AMD64_XMM0_REGNUM + 11,
145 AMD64_XMM0_REGNUM + 12, AMD64_XMM0_REGNUM + 13,
146 AMD64_XMM0_REGNUM + 14, AMD64_XMM0_REGNUM + 15,
148 /* Floating Point Registers 0-7. */
149 AMD64_ST0_REGNUM + 0, AMD64_ST0_REGNUM + 1,
150 AMD64_ST0_REGNUM + 2, AMD64_ST0_REGNUM + 3,
151 AMD64_ST0_REGNUM + 4, AMD64_ST0_REGNUM + 5,
152 AMD64_ST0_REGNUM + 6, AMD64_ST0_REGNUM + 7,
154 /* Control and Status Flags Register. */
157 /* Selector Registers. */
167 /* Segment Base Address Registers. */
173 /* Special Selector Registers. */
177 /* Floating Point Control Registers. */
183 static const int amd64_dwarf_regmap_len =
184 (sizeof (amd64_dwarf_regmap) / sizeof (amd64_dwarf_regmap[0]));
186 /* Convert DWARF register number REG to the appropriate register
187 number used by GDB. */
190 amd64_dwarf_reg_to_regnum (int reg)
194 if (reg >= 0 && reg < amd64_dwarf_regmap_len)
195 regnum = amd64_dwarf_regmap[reg];
198 warning (_("Unmapped DWARF Register #%d encountered."), reg);
203 /* Return nonzero if a value of type TYPE stored in register REGNUM
204 needs any special handling. */
207 amd64_convert_register_p (int regnum, struct type *type)
209 return i386_fp_regnum_p (regnum);
213 /* Register classes as defined in the psABI. */
227 /* Return the union class of CLASS1 and CLASS2. See the psABI for
230 static enum amd64_reg_class
231 amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2)
233 /* Rule (a): If both classes are equal, this is the resulting class. */
234 if (class1 == class2)
237 /* Rule (b): If one of the classes is NO_CLASS, the resulting class
238 is the other class. */
239 if (class1 == AMD64_NO_CLASS)
241 if (class2 == AMD64_NO_CLASS)
244 /* Rule (c): If one of the classes is MEMORY, the result is MEMORY. */
245 if (class1 == AMD64_MEMORY || class2 == AMD64_MEMORY)
248 /* Rule (d): If one of the classes is INTEGER, the result is INTEGER. */
249 if (class1 == AMD64_INTEGER || class2 == AMD64_INTEGER)
250 return AMD64_INTEGER;
252 /* Rule (e): If one of the classes is X87, X87UP, COMPLEX_X87 class,
253 MEMORY is used as class. */
254 if (class1 == AMD64_X87 || class1 == AMD64_X87UP
255 || class1 == AMD64_COMPLEX_X87 || class2 == AMD64_X87
256 || class2 == AMD64_X87UP || class2 == AMD64_COMPLEX_X87)
259 /* Rule (f): Otherwise class SSE is used. */
263 static void amd64_classify (struct type *type, enum amd64_reg_class class[2]);
265 /* Return non-zero if TYPE is a non-POD structure or union type. */
268 amd64_non_pod_p (struct type *type)
270 /* ??? A class with a base class certainly isn't POD, but does this
271 catch all non-POD structure types? */
272 if (TYPE_CODE (type) == TYPE_CODE_STRUCT && TYPE_N_BASECLASSES (type) > 0)
278 /* Classify TYPE according to the rules for aggregate (structures and
279 arrays) and union types, and store the result in CLASS. */
282 amd64_classify_aggregate (struct type *type, enum amd64_reg_class class[2])
284 int len = TYPE_LENGTH (type);
286 /* 1. If the size of an object is larger than two eightbytes, or in
287 C++, is a non-POD structure or union type, or contains
288 unaligned fields, it has class memory. */
289 if (len > 16 || amd64_non_pod_p (type))
291 class[0] = class[1] = AMD64_MEMORY;
295 /* 2. Both eightbytes get initialized to class NO_CLASS. */
296 class[0] = class[1] = AMD64_NO_CLASS;
298 /* 3. Each field of an object is classified recursively so that
299 always two fields are considered. The resulting class is
300 calculated according to the classes of the fields in the
303 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
305 struct type *subtype = check_typedef (TYPE_TARGET_TYPE (type));
307 /* All fields in an array have the same type. */
308 amd64_classify (subtype, class);
309 if (len > 8 && class[1] == AMD64_NO_CLASS)
316 /* Structure or union. */
317 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
318 || TYPE_CODE (type) == TYPE_CODE_UNION);
320 for (i = 0; i < TYPE_NFIELDS (type); i++)
322 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
323 int pos = TYPE_FIELD_BITPOS (type, i) / 64;
324 enum amd64_reg_class subclass[2];
326 /* Ignore static fields. */
327 if (TYPE_FIELD_STATIC (type, i))
330 gdb_assert (pos == 0 || pos == 1);
332 amd64_classify (subtype, subclass);
333 class[pos] = amd64_merge_classes (class[pos], subclass[0]);
335 class[1] = amd64_merge_classes (class[1], subclass[1]);
339 /* 4. Then a post merger cleanup is done: */
341 /* Rule (a): If one of the classes is MEMORY, the whole argument is
343 if (class[0] == AMD64_MEMORY || class[1] == AMD64_MEMORY)
344 class[0] = class[1] = AMD64_MEMORY;
346 /* Rule (b): If SSEUP is not preceeded by SSE, it is converted to
348 if (class[0] == AMD64_SSEUP)
349 class[0] = AMD64_SSE;
350 if (class[1] == AMD64_SSEUP && class[0] != AMD64_SSE)
351 class[1] = AMD64_SSE;
354 /* Classify TYPE, and store the result in CLASS. */
357 amd64_classify (struct type *type, enum amd64_reg_class class[2])
359 enum type_code code = TYPE_CODE (type);
360 int len = TYPE_LENGTH (type);
362 class[0] = class[1] = AMD64_NO_CLASS;
364 /* Arguments of types (signed and unsigned) _Bool, char, short, int,
365 long, long long, and pointers are in the INTEGER class. Similarly,
366 range types, used by languages such as Ada, are also in the INTEGER
368 if ((code == TYPE_CODE_INT || code == TYPE_CODE_ENUM
369 || code == TYPE_CODE_BOOL || code == TYPE_CODE_RANGE
370 || code == TYPE_CODE_PTR || code == TYPE_CODE_REF)
371 && (len == 1 || len == 2 || len == 4 || len == 8))
372 class[0] = AMD64_INTEGER;
374 /* Arguments of types float, double and __m64 are in class SSE. */
375 else if (code == TYPE_CODE_FLT && (len == 4 || len == 8))
377 class[0] = AMD64_SSE;
379 /* Arguments of types __float128 and __m128 are split into two
380 halves. The least significant ones belong to class SSE, the most
381 significant one to class SSEUP. */
382 /* FIXME: __float128, __m128. */
384 /* The 64-bit mantissa of arguments of type long double belongs to
385 class X87, the 16-bit exponent plus 6 bytes of padding belongs to
387 else if (code == TYPE_CODE_FLT && len == 16)
388 /* Class X87 and X87UP. */
389 class[0] = AMD64_X87, class[1] = AMD64_X87UP;
392 else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT
393 || code == TYPE_CODE_UNION)
394 amd64_classify_aggregate (type, class);
397 static enum return_value_convention
398 amd64_return_value (struct gdbarch *gdbarch, struct type *type,
399 struct regcache *regcache,
400 gdb_byte *readbuf, const gdb_byte *writebuf)
402 enum amd64_reg_class class[2];
403 int len = TYPE_LENGTH (type);
404 static int integer_regnum[] = { AMD64_RAX_REGNUM, AMD64_RDX_REGNUM };
405 static int sse_regnum[] = { AMD64_XMM0_REGNUM, AMD64_XMM1_REGNUM };
410 gdb_assert (!(readbuf && writebuf));
412 /* 1. Classify the return type with the classification algorithm. */
413 amd64_classify (type, class);
415 /* 2. If the type has class MEMORY, then the caller provides space
416 for the return value and passes the address of this storage in
417 %rdi as if it were the first argument to the function. In effect,
418 this address becomes a hidden first argument.
420 On return %rax will contain the address that has been passed in
421 by the caller in %rdi. */
422 if (class[0] == AMD64_MEMORY)
424 /* As indicated by the comment above, the ABI guarantees that we
425 can always find the return value just after the function has
432 regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr);
433 read_memory (addr, readbuf, TYPE_LENGTH (type));
436 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
439 gdb_assert (class[1] != AMD64_MEMORY);
440 gdb_assert (len <= 16);
442 for (i = 0; len > 0; i++, len -= 8)
450 /* 3. If the class is INTEGER, the next available register
451 of the sequence %rax, %rdx is used. */
452 regnum = integer_regnum[integer_reg++];
456 /* 4. If the class is SSE, the next available SSE register
457 of the sequence %xmm0, %xmm1 is used. */
458 regnum = sse_regnum[sse_reg++];
462 /* 5. If the class is SSEUP, the eightbyte is passed in the
463 upper half of the last used SSE register. */
464 gdb_assert (sse_reg > 0);
465 regnum = sse_regnum[sse_reg - 1];
470 /* 6. If the class is X87, the value is returned on the X87
471 stack in %st0 as 80-bit x87 number. */
472 regnum = AMD64_ST0_REGNUM;
474 i387_return_value (gdbarch, regcache);
478 /* 7. If the class is X87UP, the value is returned together
479 with the previous X87 value in %st0. */
480 gdb_assert (i > 0 && class[0] == AMD64_X87);
481 regnum = AMD64_ST0_REGNUM;
490 gdb_assert (!"Unexpected register class.");
493 gdb_assert (regnum != -1);
496 regcache_raw_read_part (regcache, regnum, offset, min (len, 8),
499 regcache_raw_write_part (regcache, regnum, offset, min (len, 8),
503 return RETURN_VALUE_REGISTER_CONVENTION;
508 amd64_push_arguments (struct regcache *regcache, int nargs,
509 struct value **args, CORE_ADDR sp, int struct_return)
511 static int integer_regnum[] =
513 AMD64_RDI_REGNUM, /* %rdi */
514 AMD64_RSI_REGNUM, /* %rsi */
515 AMD64_RDX_REGNUM, /* %rdx */
516 AMD64_RCX_REGNUM, /* %rcx */
520 static int sse_regnum[] =
522 /* %xmm0 ... %xmm7 */
523 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
524 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
525 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
526 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
528 struct value **stack_args = alloca (nargs * sizeof (struct value *));
529 int num_stack_args = 0;
530 int num_elements = 0;
536 /* Reserve a register for the "hidden" argument. */
540 for (i = 0; i < nargs; i++)
542 struct type *type = value_type (args[i]);
543 int len = TYPE_LENGTH (type);
544 enum amd64_reg_class class[2];
545 int needed_integer_regs = 0;
546 int needed_sse_regs = 0;
549 /* Classify argument. */
550 amd64_classify (type, class);
552 /* Calculate the number of integer and SSE registers needed for
554 for (j = 0; j < 2; j++)
556 if (class[j] == AMD64_INTEGER)
557 needed_integer_regs++;
558 else if (class[j] == AMD64_SSE)
562 /* Check whether enough registers are available, and if the
563 argument should be passed in registers at all. */
564 if (integer_reg + needed_integer_regs > ARRAY_SIZE (integer_regnum)
565 || sse_reg + needed_sse_regs > ARRAY_SIZE (sse_regnum)
566 || (needed_integer_regs == 0 && needed_sse_regs == 0))
568 /* The argument will be passed on the stack. */
569 num_elements += ((len + 7) / 8);
570 stack_args[num_stack_args++] = args[i];
574 /* The argument will be passed in registers. */
575 const gdb_byte *valbuf = value_contents (args[i]);
578 gdb_assert (len <= 16);
580 for (j = 0; len > 0; j++, len -= 8)
588 regnum = integer_regnum[integer_reg++];
592 regnum = sse_regnum[sse_reg++];
596 gdb_assert (sse_reg > 0);
597 regnum = sse_regnum[sse_reg - 1];
602 gdb_assert (!"Unexpected register class.");
605 gdb_assert (regnum != -1);
606 memset (buf, 0, sizeof buf);
607 memcpy (buf, valbuf + j * 8, min (len, 8));
608 regcache_raw_write_part (regcache, regnum, offset, 8, buf);
613 /* Allocate space for the arguments on the stack. */
614 sp -= num_elements * 8;
616 /* The psABI says that "The end of the input argument area shall be
617 aligned on a 16 byte boundary." */
620 /* Write out the arguments to the stack. */
621 for (i = 0; i < num_stack_args; i++)
623 struct type *type = value_type (stack_args[i]);
624 const gdb_byte *valbuf = value_contents (stack_args[i]);
625 int len = TYPE_LENGTH (type);
627 write_memory (sp + element * 8, valbuf, len);
628 element += ((len + 7) / 8);
631 /* The psABI says that "For calls that may call functions that use
632 varargs or stdargs (prototype-less calls or calls to functions
633 containing ellipsis (...) in the declaration) %al is used as
634 hidden argument to specify the number of SSE registers used. */
635 regcache_raw_write_unsigned (regcache, AMD64_RAX_REGNUM, sse_reg);
640 amd64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
641 struct regcache *regcache, CORE_ADDR bp_addr,
642 int nargs, struct value **args, CORE_ADDR sp,
643 int struct_return, CORE_ADDR struct_addr)
647 /* Pass arguments. */
648 sp = amd64_push_arguments (regcache, nargs, args, sp, struct_return);
650 /* Pass "hidden" argument". */
653 store_unsigned_integer (buf, 8, struct_addr);
654 regcache_cooked_write (regcache, AMD64_RDI_REGNUM, buf);
657 /* Store return address. */
659 store_unsigned_integer (buf, 8, bp_addr);
660 write_memory (sp, buf, 8);
662 /* Finally, update the stack pointer... */
663 store_unsigned_integer (buf, 8, sp);
664 regcache_cooked_write (regcache, AMD64_RSP_REGNUM, buf);
666 /* ...and fake a frame pointer. */
667 regcache_cooked_write (regcache, AMD64_RBP_REGNUM, buf);
673 /* The maximum number of saved registers. This should include %rip. */
674 #define AMD64_NUM_SAVED_REGS AMD64_NUM_GREGS
676 struct amd64_frame_cache
683 /* Saved registers. */
684 CORE_ADDR saved_regs[AMD64_NUM_SAVED_REGS];
687 /* Do we have a frame? */
691 /* Initialize a frame cache. */
694 amd64_init_frame_cache (struct amd64_frame_cache *cache)
700 cache->sp_offset = -8;
703 /* Saved registers. We initialize these to -1 since zero is a valid
704 offset (that's where %rbp is supposed to be stored). */
705 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
706 cache->saved_regs[i] = -1;
709 /* Frameless until proven otherwise. */
710 cache->frameless_p = 1;
713 /* Allocate and initialize a frame cache. */
715 static struct amd64_frame_cache *
716 amd64_alloc_frame_cache (void)
718 struct amd64_frame_cache *cache;
720 cache = FRAME_OBSTACK_ZALLOC (struct amd64_frame_cache);
721 amd64_init_frame_cache (cache);
725 /* Do a limited analysis of the prologue at PC and update CACHE
726 accordingly. Bail out early if CURRENT_PC is reached. Return the
727 address where the analysis stopped.
729 We will handle only functions beginning with:
732 movq %rsp, %rbp 0x48 0x89 0xe5
734 Any function that doesn't start with this sequence will be assumed
735 to have no prologue and thus no valid frame pointer in %rbp. */
738 amd64_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
739 struct amd64_frame_cache *cache)
741 static gdb_byte proto[3] = { 0x48, 0x89, 0xe5 }; /* movq %rsp, %rbp */
745 if (current_pc <= pc)
748 op = read_memory_unsigned_integer (pc, 1);
750 if (op == 0x55) /* pushq %rbp */
752 /* Take into account that we've executed the `pushq %rbp' that
753 starts this instruction sequence. */
754 cache->saved_regs[AMD64_RBP_REGNUM] = 0;
755 cache->sp_offset += 8;
757 /* If that's all, return now. */
758 if (current_pc <= pc + 1)
761 /* Check for `movq %rsp, %rbp'. */
762 read_memory (pc + 1, buf, 3);
763 if (memcmp (buf, proto, 3) != 0)
766 /* OK, we actually have a frame. */
767 cache->frameless_p = 0;
774 /* Return PC of first real instruction. */
777 amd64_skip_prologue (CORE_ADDR start_pc)
779 struct amd64_frame_cache cache;
782 amd64_init_frame_cache (&cache);
783 pc = amd64_analyze_prologue (start_pc, 0xffffffffffffffffLL, &cache);
784 if (cache.frameless_p)
793 static struct amd64_frame_cache *
794 amd64_frame_cache (struct frame_info *next_frame, void **this_cache)
796 struct amd64_frame_cache *cache;
803 cache = amd64_alloc_frame_cache ();
806 cache->pc = frame_func_unwind (next_frame, NORMAL_FRAME);
808 amd64_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
810 if (cache->frameless_p)
812 /* We didn't find a valid frame. If we're at the start of a
813 function, or somewhere half-way its prologue, the function's
814 frame probably hasn't been fully setup yet. Try to
815 reconstruct the base address for the stack frame by looking
816 at the stack pointer. For truly "frameless" functions this
819 frame_unwind_register (next_frame, AMD64_RSP_REGNUM, buf);
820 cache->base = extract_unsigned_integer (buf, 8) + cache->sp_offset;
824 frame_unwind_register (next_frame, AMD64_RBP_REGNUM, buf);
825 cache->base = extract_unsigned_integer (buf, 8);
828 /* Now that we have the base address for the stack frame we can
829 calculate the value of %rsp in the calling frame. */
830 cache->saved_sp = cache->base + 16;
832 /* For normal frames, %rip is stored at 8(%rbp). If we don't have a
833 frame we find it at the same offset from the reconstructed base
835 cache->saved_regs[AMD64_RIP_REGNUM] = 8;
837 /* Adjust all the saved registers such that they contain addresses
838 instead of offsets. */
839 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
840 if (cache->saved_regs[i] != -1)
841 cache->saved_regs[i] += cache->base;
847 amd64_frame_this_id (struct frame_info *next_frame, void **this_cache,
848 struct frame_id *this_id)
850 struct amd64_frame_cache *cache =
851 amd64_frame_cache (next_frame, this_cache);
853 /* This marks the outermost frame. */
854 if (cache->base == 0)
857 (*this_id) = frame_id_build (cache->base + 16, cache->pc);
861 amd64_frame_prev_register (struct frame_info *next_frame, void **this_cache,
862 int regnum, int *optimizedp,
863 enum lval_type *lvalp, CORE_ADDR *addrp,
864 int *realnump, gdb_byte *valuep)
866 struct amd64_frame_cache *cache =
867 amd64_frame_cache (next_frame, this_cache);
869 gdb_assert (regnum >= 0);
871 if (regnum == gdbarch_sp_regnum (current_gdbarch) && cache->saved_sp)
879 /* Store the value. */
880 store_unsigned_integer (valuep, 8, cache->saved_sp);
885 if (regnum < AMD64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
888 *lvalp = lval_memory;
889 *addrp = cache->saved_regs[regnum];
893 /* Read the value in from memory. */
894 read_memory (*addrp, valuep,
895 register_size (current_gdbarch, regnum));
901 *lvalp = lval_register;
905 frame_unwind_register (next_frame, (*realnump), valuep);
908 static const struct frame_unwind amd64_frame_unwind =
912 amd64_frame_prev_register
915 static const struct frame_unwind *
916 amd64_frame_sniffer (struct frame_info *next_frame)
918 return &amd64_frame_unwind;
922 /* Signal trampolines. */
924 /* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and
925 64-bit variants. This would require using identical frame caches
926 on both platforms. */
928 static struct amd64_frame_cache *
929 amd64_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache)
931 struct amd64_frame_cache *cache;
932 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
940 cache = amd64_alloc_frame_cache ();
942 frame_unwind_register (next_frame, AMD64_RSP_REGNUM, buf);
943 cache->base = extract_unsigned_integer (buf, 8) - 8;
945 addr = tdep->sigcontext_addr (next_frame);
946 gdb_assert (tdep->sc_reg_offset);
947 gdb_assert (tdep->sc_num_regs <= AMD64_NUM_SAVED_REGS);
948 for (i = 0; i < tdep->sc_num_regs; i++)
949 if (tdep->sc_reg_offset[i] != -1)
950 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
957 amd64_sigtramp_frame_this_id (struct frame_info *next_frame,
958 void **this_cache, struct frame_id *this_id)
960 struct amd64_frame_cache *cache =
961 amd64_sigtramp_frame_cache (next_frame, this_cache);
963 (*this_id) = frame_id_build (cache->base + 16, frame_pc_unwind (next_frame));
967 amd64_sigtramp_frame_prev_register (struct frame_info *next_frame,
969 int regnum, int *optimizedp,
970 enum lval_type *lvalp, CORE_ADDR *addrp,
971 int *realnump, gdb_byte *valuep)
973 /* Make sure we've initialized the cache. */
974 amd64_sigtramp_frame_cache (next_frame, this_cache);
976 amd64_frame_prev_register (next_frame, this_cache, regnum,
977 optimizedp, lvalp, addrp, realnump, valuep);
980 static const struct frame_unwind amd64_sigtramp_frame_unwind =
983 amd64_sigtramp_frame_this_id,
984 amd64_sigtramp_frame_prev_register
987 static const struct frame_unwind *
988 amd64_sigtramp_frame_sniffer (struct frame_info *next_frame)
990 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame));
992 /* We shouldn't even bother if we don't have a sigcontext_addr
994 if (tdep->sigcontext_addr == NULL)
997 if (tdep->sigtramp_p != NULL)
999 if (tdep->sigtramp_p (next_frame))
1000 return &amd64_sigtramp_frame_unwind;
1003 if (tdep->sigtramp_start != 0)
1005 CORE_ADDR pc = frame_pc_unwind (next_frame);
1007 gdb_assert (tdep->sigtramp_end != 0);
1008 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
1009 return &amd64_sigtramp_frame_unwind;
1017 amd64_frame_base_address (struct frame_info *next_frame, void **this_cache)
1019 struct amd64_frame_cache *cache =
1020 amd64_frame_cache (next_frame, this_cache);
1025 static const struct frame_base amd64_frame_base =
1027 &amd64_frame_unwind,
1028 amd64_frame_base_address,
1029 amd64_frame_base_address,
1030 amd64_frame_base_address
1033 static struct frame_id
1034 amd64_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1039 frame_unwind_register (next_frame, AMD64_RBP_REGNUM, buf);
1040 fp = extract_unsigned_integer (buf, 8);
1042 return frame_id_build (fp + 16, frame_pc_unwind (next_frame));
1045 /* 16 byte align the SP per frame requirements. */
1048 amd64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1050 return sp & -(CORE_ADDR)16;
1054 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
1055 in the floating-point register set REGSET to register cache
1056 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
1059 amd64_supply_fpregset (const struct regset *regset, struct regcache *regcache,
1060 int regnum, const void *fpregs, size_t len)
1062 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
1064 gdb_assert (len == tdep->sizeof_fpregset);
1065 amd64_supply_fxsave (regcache, regnum, fpregs);
1068 /* Collect register REGNUM from the register cache REGCACHE and store
1069 it in the buffer specified by FPREGS and LEN as described by the
1070 floating-point register set REGSET. If REGNUM is -1, do this for
1071 all registers in REGSET. */
1074 amd64_collect_fpregset (const struct regset *regset,
1075 const struct regcache *regcache,
1076 int regnum, void *fpregs, size_t len)
1078 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
1080 gdb_assert (len == tdep->sizeof_fpregset);
1081 amd64_collect_fxsave (regcache, regnum, fpregs);
1084 /* Return the appropriate register set for the core section identified
1085 by SECT_NAME and SECT_SIZE. */
1087 static const struct regset *
1088 amd64_regset_from_core_section (struct gdbarch *gdbarch,
1089 const char *sect_name, size_t sect_size)
1091 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1093 if (strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
1095 if (tdep->fpregset == NULL)
1096 tdep->fpregset = regset_alloc (gdbarch, amd64_supply_fpregset,
1097 amd64_collect_fpregset);
1099 return tdep->fpregset;
1102 return i386_regset_from_core_section (gdbarch, sect_name, sect_size);
1107 amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1109 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1111 /* AMD64 generally uses `fxsave' instead of `fsave' for saving its
1112 floating-point registers. */
1113 tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE;
1115 /* AMD64 has an FPU and 16 SSE registers. */
1116 tdep->st0_regnum = AMD64_ST0_REGNUM;
1117 tdep->num_xmm_regs = 16;
1119 /* This is what all the fuss is about. */
1120 set_gdbarch_long_bit (gdbarch, 64);
1121 set_gdbarch_long_long_bit (gdbarch, 64);
1122 set_gdbarch_ptr_bit (gdbarch, 64);
1124 /* In contrast to the i386, on AMD64 a `long double' actually takes
1125 up 128 bits, even though it's still based on the i387 extended
1126 floating-point format which has only 80 significant bits. */
1127 set_gdbarch_long_double_bit (gdbarch, 128);
1129 set_gdbarch_num_regs (gdbarch, AMD64_NUM_REGS);
1130 set_gdbarch_register_name (gdbarch, amd64_register_name);
1131 set_gdbarch_register_type (gdbarch, amd64_register_type);
1133 /* Register numbers of various important registers. */
1134 set_gdbarch_sp_regnum (gdbarch, AMD64_RSP_REGNUM); /* %rsp */
1135 set_gdbarch_pc_regnum (gdbarch, AMD64_RIP_REGNUM); /* %rip */
1136 set_gdbarch_ps_regnum (gdbarch, AMD64_EFLAGS_REGNUM); /* %eflags */
1137 set_gdbarch_fp0_regnum (gdbarch, AMD64_ST0_REGNUM); /* %st(0) */
1139 /* The "default" register numbering scheme for AMD64 is referred to
1140 as the "DWARF Register Number Mapping" in the System V psABI.
1141 The preferred debugging format for all known AMD64 targets is
1142 actually DWARF2, and GCC doesn't seem to support DWARF (that is
1143 DWARF-1), but we provide the same mapping just in case. This
1144 mapping is also used for stabs, which GCC does support. */
1145 set_gdbarch_stab_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
1146 set_gdbarch_dwarf_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
1147 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
1149 /* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to
1150 be in use on any of the supported AMD64 targets. */
1152 /* Call dummy code. */
1153 set_gdbarch_push_dummy_call (gdbarch, amd64_push_dummy_call);
1154 set_gdbarch_frame_align (gdbarch, amd64_frame_align);
1155 set_gdbarch_frame_red_zone_size (gdbarch, 128);
1157 set_gdbarch_convert_register_p (gdbarch, amd64_convert_register_p);
1158 set_gdbarch_register_to_value (gdbarch, i387_register_to_value);
1159 set_gdbarch_value_to_register (gdbarch, i387_value_to_register);
1161 set_gdbarch_return_value (gdbarch, amd64_return_value);
1163 set_gdbarch_skip_prologue (gdbarch, amd64_skip_prologue);
1165 /* Avoid wiring in the MMX registers for now. */
1166 set_gdbarch_num_pseudo_regs (gdbarch, 0);
1167 tdep->mm0_regnum = -1;
1169 set_gdbarch_unwind_dummy_id (gdbarch, amd64_unwind_dummy_id);
1171 frame_unwind_append_sniffer (gdbarch, amd64_sigtramp_frame_sniffer);
1172 frame_unwind_append_sniffer (gdbarch, amd64_frame_sniffer);
1173 frame_base_set_default (gdbarch, &amd64_frame_base);
1175 /* If we have a register mapping, enable the generic core file support. */
1176 if (tdep->gregset_reg_offset)
1177 set_gdbarch_regset_from_core_section (gdbarch,
1178 amd64_regset_from_core_section);
1182 #define I387_ST0_REGNUM AMD64_ST0_REGNUM
1184 /* The 64-bit FXSAVE format differs from the 32-bit format in the
1185 sense that the instruction pointer and data pointer are simply
1186 64-bit offsets into the code segment and the data segment instead
1187 of a selector offset pair. The functions below store the upper 32
1188 bits of these pointers (instead of just the 16-bits of the segment
1191 /* Fill register REGNUM in REGCACHE with the appropriate
1192 floating-point or SSE register value from *FXSAVE. If REGNUM is
1193 -1, do this for all registers. This function masks off any of the
1194 reserved bits in *FXSAVE. */
1197 amd64_supply_fxsave (struct regcache *regcache, int regnum,
1200 i387_supply_fxsave (regcache, regnum, fxsave);
1202 if (fxsave && gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
1204 const gdb_byte *regs = fxsave;
1206 if (regnum == -1 || regnum == I387_FISEG_REGNUM)
1207 regcache_raw_supply (regcache, I387_FISEG_REGNUM, regs + 12);
1208 if (regnum == -1 || regnum == I387_FOSEG_REGNUM)
1209 regcache_raw_supply (regcache, I387_FOSEG_REGNUM, regs + 20);
1213 /* Fill register REGNUM (if it is a floating-point or SSE register) in
1214 *FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for
1215 all registers. This function doesn't touch any of the reserved
1219 amd64_collect_fxsave (const struct regcache *regcache, int regnum,
1222 gdb_byte *regs = fxsave;
1224 i387_collect_fxsave (regcache, regnum, fxsave);
1226 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
1228 if (regnum == -1 || regnum == I387_FISEG_REGNUM)
1229 regcache_raw_collect (regcache, I387_FISEG_REGNUM, regs + 12);
1230 if (regnum == -1 || regnum == I387_FOSEG_REGNUM)
1231 regcache_raw_collect (regcache, I387_FOSEG_REGNUM, regs + 20);