1 /* Target-dependent code for AMD64.
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
6 Contributed by Jiri Smid, SuSE Labs.
8 This file is part of GDB.
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "opcode/i386.h"
26 #include "arch-utils.h"
28 #include "dummy-frame.h"
30 #include "frame-base.h"
31 #include "frame-unwind.h"
40 #include "gdb_assert.h"
42 #include "amd64-tdep.h"
43 #include "i387-tdep.h"
45 /* Note that the AMD64 architecture was previously known as x86-64.
46 The latter is (forever) engraved into the canonical system name as
47 returned by config.guess, and used as the name for the AMD64 port
48 of GNU/Linux. The BSD's have renamed their ports to amd64; they
49 don't like to shout. For GDB we prefer the amd64_-prefix over the
50 x86_64_-prefix since it's so much easier to type. */
52 /* Register information. */
54 static const char *amd64_register_names[] =
56 "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "rsp",
58 /* %r8 is indeed register number 8. */
59 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
60 "rip", "eflags", "cs", "ss", "ds", "es", "fs", "gs",
62 /* %st0 is register number 24. */
63 "st0", "st1", "st2", "st3", "st4", "st5", "st6", "st7",
64 "fctrl", "fstat", "ftag", "fiseg", "fioff", "foseg", "fooff", "fop",
66 /* %xmm0 is register number 40. */
67 "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7",
68 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15",
72 /* Total number of registers. */
73 #define AMD64_NUM_REGS ARRAY_SIZE (amd64_register_names)
75 /* Return the name of register REGNUM. */
78 amd64_register_name (struct gdbarch *gdbarch, int regnum)
80 if (regnum >= 0 && regnum < AMD64_NUM_REGS)
81 return amd64_register_names[regnum];
86 /* Return the GDB type object for the "standard" data type of data in
90 amd64_register_type (struct gdbarch *gdbarch, int regnum)
92 if (regnum >= AMD64_RAX_REGNUM && regnum <= AMD64_RDI_REGNUM)
93 return builtin_type (gdbarch)->builtin_int64;
94 if (regnum == AMD64_RBP_REGNUM || regnum == AMD64_RSP_REGNUM)
95 return builtin_type (gdbarch)->builtin_data_ptr;
96 if (regnum >= AMD64_R8_REGNUM && regnum <= AMD64_R15_REGNUM)
97 return builtin_type (gdbarch)->builtin_int64;
98 if (regnum == AMD64_RIP_REGNUM)
99 return builtin_type (gdbarch)->builtin_func_ptr;
100 if (regnum == AMD64_EFLAGS_REGNUM)
101 return i386_eflags_type (gdbarch);
102 if (regnum >= AMD64_CS_REGNUM && regnum <= AMD64_GS_REGNUM)
103 return builtin_type (gdbarch)->builtin_int32;
104 if (regnum >= AMD64_ST0_REGNUM && regnum <= AMD64_ST0_REGNUM + 7)
105 return i387_ext_type (gdbarch);
106 if (regnum >= AMD64_FCTRL_REGNUM && regnum <= AMD64_FCTRL_REGNUM + 7)
107 return builtin_type (gdbarch)->builtin_int32;
108 if (regnum >= AMD64_XMM0_REGNUM && regnum <= AMD64_XMM0_REGNUM + 15)
109 return i386_sse_type (gdbarch);
110 if (regnum == AMD64_MXCSR_REGNUM)
111 return i386_mxcsr_type (gdbarch);
113 internal_error (__FILE__, __LINE__, _("invalid regnum"));
116 /* DWARF Register Number Mapping as defined in the System V psABI,
119 static int amd64_dwarf_regmap[] =
121 /* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI. */
122 AMD64_RAX_REGNUM, AMD64_RDX_REGNUM,
123 AMD64_RCX_REGNUM, AMD64_RBX_REGNUM,
124 AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
126 /* Frame Pointer Register RBP. */
129 /* Stack Pointer Register RSP. */
132 /* Extended Integer Registers 8 - 15. */
133 8, 9, 10, 11, 12, 13, 14, 15,
135 /* Return Address RA. Mapped to RIP. */
138 /* SSE Registers 0 - 7. */
139 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
140 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
141 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
142 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
144 /* Extended SSE Registers 8 - 15. */
145 AMD64_XMM0_REGNUM + 8, AMD64_XMM0_REGNUM + 9,
146 AMD64_XMM0_REGNUM + 10, AMD64_XMM0_REGNUM + 11,
147 AMD64_XMM0_REGNUM + 12, AMD64_XMM0_REGNUM + 13,
148 AMD64_XMM0_REGNUM + 14, AMD64_XMM0_REGNUM + 15,
150 /* Floating Point Registers 0-7. */
151 AMD64_ST0_REGNUM + 0, AMD64_ST0_REGNUM + 1,
152 AMD64_ST0_REGNUM + 2, AMD64_ST0_REGNUM + 3,
153 AMD64_ST0_REGNUM + 4, AMD64_ST0_REGNUM + 5,
154 AMD64_ST0_REGNUM + 6, AMD64_ST0_REGNUM + 7,
156 /* Control and Status Flags Register. */
159 /* Selector Registers. */
169 /* Segment Base Address Registers. */
175 /* Special Selector Registers. */
179 /* Floating Point Control Registers. */
185 static const int amd64_dwarf_regmap_len =
186 (sizeof (amd64_dwarf_regmap) / sizeof (amd64_dwarf_regmap[0]));
188 /* Convert DWARF register number REG to the appropriate register
189 number used by GDB. */
192 amd64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
196 if (reg >= 0 && reg < amd64_dwarf_regmap_len)
197 regnum = amd64_dwarf_regmap[reg];
200 warning (_("Unmapped DWARF Register #%d encountered."), reg);
205 /* Map architectural register numbers to gdb register numbers. */
207 static const int amd64_arch_regmap[16] =
209 AMD64_RAX_REGNUM, /* %rax */
210 AMD64_RCX_REGNUM, /* %rcx */
211 AMD64_RDX_REGNUM, /* %rdx */
212 AMD64_RBX_REGNUM, /* %rbx */
213 AMD64_RSP_REGNUM, /* %rsp */
214 AMD64_RBP_REGNUM, /* %rbp */
215 AMD64_RSI_REGNUM, /* %rsi */
216 AMD64_RDI_REGNUM, /* %rdi */
217 AMD64_R8_REGNUM, /* %r8 */
218 AMD64_R9_REGNUM, /* %r9 */
219 AMD64_R10_REGNUM, /* %r10 */
220 AMD64_R11_REGNUM, /* %r11 */
221 AMD64_R12_REGNUM, /* %r12 */
222 AMD64_R13_REGNUM, /* %r13 */
223 AMD64_R14_REGNUM, /* %r14 */
224 AMD64_R15_REGNUM /* %r15 */
227 static const int amd64_arch_regmap_len =
228 (sizeof (amd64_arch_regmap) / sizeof (amd64_arch_regmap[0]));
230 /* Convert architectural register number REG to the appropriate register
231 number used by GDB. */
234 amd64_arch_reg_to_regnum (int reg)
236 gdb_assert (reg >= 0 && reg < amd64_arch_regmap_len);
238 return amd64_arch_regmap[reg];
243 /* Register classes as defined in the psABI. */
257 /* Return the union class of CLASS1 and CLASS2. See the psABI for
260 static enum amd64_reg_class
261 amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2)
263 /* Rule (a): If both classes are equal, this is the resulting class. */
264 if (class1 == class2)
267 /* Rule (b): If one of the classes is NO_CLASS, the resulting class
268 is the other class. */
269 if (class1 == AMD64_NO_CLASS)
271 if (class2 == AMD64_NO_CLASS)
274 /* Rule (c): If one of the classes is MEMORY, the result is MEMORY. */
275 if (class1 == AMD64_MEMORY || class2 == AMD64_MEMORY)
278 /* Rule (d): If one of the classes is INTEGER, the result is INTEGER. */
279 if (class1 == AMD64_INTEGER || class2 == AMD64_INTEGER)
280 return AMD64_INTEGER;
282 /* Rule (e): If one of the classes is X87, X87UP, COMPLEX_X87 class,
283 MEMORY is used as class. */
284 if (class1 == AMD64_X87 || class1 == AMD64_X87UP
285 || class1 == AMD64_COMPLEX_X87 || class2 == AMD64_X87
286 || class2 == AMD64_X87UP || class2 == AMD64_COMPLEX_X87)
289 /* Rule (f): Otherwise class SSE is used. */
293 static void amd64_classify (struct type *type, enum amd64_reg_class class[2]);
295 /* Return non-zero if TYPE is a non-POD structure or union type. */
298 amd64_non_pod_p (struct type *type)
300 /* ??? A class with a base class certainly isn't POD, but does this
301 catch all non-POD structure types? */
302 if (TYPE_CODE (type) == TYPE_CODE_STRUCT && TYPE_N_BASECLASSES (type) > 0)
308 /* Classify TYPE according to the rules for aggregate (structures and
309 arrays) and union types, and store the result in CLASS. */
312 amd64_classify_aggregate (struct type *type, enum amd64_reg_class class[2])
314 int len = TYPE_LENGTH (type);
316 /* 1. If the size of an object is larger than two eightbytes, or in
317 C++, is a non-POD structure or union type, or contains
318 unaligned fields, it has class memory. */
319 if (len > 16 || amd64_non_pod_p (type))
321 class[0] = class[1] = AMD64_MEMORY;
325 /* 2. Both eightbytes get initialized to class NO_CLASS. */
326 class[0] = class[1] = AMD64_NO_CLASS;
328 /* 3. Each field of an object is classified recursively so that
329 always two fields are considered. The resulting class is
330 calculated according to the classes of the fields in the
333 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
335 struct type *subtype = check_typedef (TYPE_TARGET_TYPE (type));
337 /* All fields in an array have the same type. */
338 amd64_classify (subtype, class);
339 if (len > 8 && class[1] == AMD64_NO_CLASS)
346 /* Structure or union. */
347 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
348 || TYPE_CODE (type) == TYPE_CODE_UNION);
350 for (i = 0; i < TYPE_NFIELDS (type); i++)
352 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
353 int pos = TYPE_FIELD_BITPOS (type, i) / 64;
354 enum amd64_reg_class subclass[2];
356 /* Ignore static fields. */
357 if (field_is_static (&TYPE_FIELD (type, i)))
360 gdb_assert (pos == 0 || pos == 1);
362 amd64_classify (subtype, subclass);
363 class[pos] = amd64_merge_classes (class[pos], subclass[0]);
365 class[1] = amd64_merge_classes (class[1], subclass[1]);
369 /* 4. Then a post merger cleanup is done: */
371 /* Rule (a): If one of the classes is MEMORY, the whole argument is
373 if (class[0] == AMD64_MEMORY || class[1] == AMD64_MEMORY)
374 class[0] = class[1] = AMD64_MEMORY;
376 /* Rule (b): If SSEUP is not preceeded by SSE, it is converted to
378 if (class[0] == AMD64_SSEUP)
379 class[0] = AMD64_SSE;
380 if (class[1] == AMD64_SSEUP && class[0] != AMD64_SSE)
381 class[1] = AMD64_SSE;
384 /* Classify TYPE, and store the result in CLASS. */
387 amd64_classify (struct type *type, enum amd64_reg_class class[2])
389 enum type_code code = TYPE_CODE (type);
390 int len = TYPE_LENGTH (type);
392 class[0] = class[1] = AMD64_NO_CLASS;
394 /* Arguments of types (signed and unsigned) _Bool, char, short, int,
395 long, long long, and pointers are in the INTEGER class. Similarly,
396 range types, used by languages such as Ada, are also in the INTEGER
398 if ((code == TYPE_CODE_INT || code == TYPE_CODE_ENUM
399 || code == TYPE_CODE_BOOL || code == TYPE_CODE_RANGE
400 || code == TYPE_CODE_CHAR
401 || code == TYPE_CODE_PTR || code == TYPE_CODE_REF)
402 && (len == 1 || len == 2 || len == 4 || len == 8))
403 class[0] = AMD64_INTEGER;
405 /* Arguments of types float, double, _Decimal32, _Decimal64 and __m64
407 else if ((code == TYPE_CODE_FLT || code == TYPE_CODE_DECFLOAT)
408 && (len == 4 || len == 8))
410 class[0] = AMD64_SSE;
412 /* Arguments of types __float128, _Decimal128 and __m128 are split into
413 two halves. The least significant ones belong to class SSE, the most
414 significant one to class SSEUP. */
415 else if (code == TYPE_CODE_DECFLOAT && len == 16)
416 /* FIXME: __float128, __m128. */
417 class[0] = AMD64_SSE, class[1] = AMD64_SSEUP;
419 /* The 64-bit mantissa of arguments of type long double belongs to
420 class X87, the 16-bit exponent plus 6 bytes of padding belongs to
422 else if (code == TYPE_CODE_FLT && len == 16)
423 /* Class X87 and X87UP. */
424 class[0] = AMD64_X87, class[1] = AMD64_X87UP;
427 else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT
428 || code == TYPE_CODE_UNION)
429 amd64_classify_aggregate (type, class);
432 static enum return_value_convention
433 amd64_return_value (struct gdbarch *gdbarch, struct type *func_type,
434 struct type *type, struct regcache *regcache,
435 gdb_byte *readbuf, const gdb_byte *writebuf)
437 enum amd64_reg_class class[2];
438 int len = TYPE_LENGTH (type);
439 static int integer_regnum[] = { AMD64_RAX_REGNUM, AMD64_RDX_REGNUM };
440 static int sse_regnum[] = { AMD64_XMM0_REGNUM, AMD64_XMM1_REGNUM };
445 gdb_assert (!(readbuf && writebuf));
447 /* 1. Classify the return type with the classification algorithm. */
448 amd64_classify (type, class);
450 /* 2. If the type has class MEMORY, then the caller provides space
451 for the return value and passes the address of this storage in
452 %rdi as if it were the first argument to the function. In effect,
453 this address becomes a hidden first argument.
455 On return %rax will contain the address that has been passed in
456 by the caller in %rdi. */
457 if (class[0] == AMD64_MEMORY)
459 /* As indicated by the comment above, the ABI guarantees that we
460 can always find the return value just after the function has
467 regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr);
468 read_memory (addr, readbuf, TYPE_LENGTH (type));
471 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
474 gdb_assert (class[1] != AMD64_MEMORY);
475 gdb_assert (len <= 16);
477 for (i = 0; len > 0; i++, len -= 8)
485 /* 3. If the class is INTEGER, the next available register
486 of the sequence %rax, %rdx is used. */
487 regnum = integer_regnum[integer_reg++];
491 /* 4. If the class is SSE, the next available SSE register
492 of the sequence %xmm0, %xmm1 is used. */
493 regnum = sse_regnum[sse_reg++];
497 /* 5. If the class is SSEUP, the eightbyte is passed in the
498 upper half of the last used SSE register. */
499 gdb_assert (sse_reg > 0);
500 regnum = sse_regnum[sse_reg - 1];
505 /* 6. If the class is X87, the value is returned on the X87
506 stack in %st0 as 80-bit x87 number. */
507 regnum = AMD64_ST0_REGNUM;
509 i387_return_value (gdbarch, regcache);
513 /* 7. If the class is X87UP, the value is returned together
514 with the previous X87 value in %st0. */
515 gdb_assert (i > 0 && class[0] == AMD64_X87);
516 regnum = AMD64_ST0_REGNUM;
525 gdb_assert (!"Unexpected register class.");
528 gdb_assert (regnum != -1);
531 regcache_raw_read_part (regcache, regnum, offset, min (len, 8),
534 regcache_raw_write_part (regcache, regnum, offset, min (len, 8),
538 return RETURN_VALUE_REGISTER_CONVENTION;
543 amd64_push_arguments (struct regcache *regcache, int nargs,
544 struct value **args, CORE_ADDR sp, int struct_return)
546 static int integer_regnum[] =
548 AMD64_RDI_REGNUM, /* %rdi */
549 AMD64_RSI_REGNUM, /* %rsi */
550 AMD64_RDX_REGNUM, /* %rdx */
551 AMD64_RCX_REGNUM, /* %rcx */
555 static int sse_regnum[] =
557 /* %xmm0 ... %xmm7 */
558 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
559 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
560 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
561 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
563 struct value **stack_args = alloca (nargs * sizeof (struct value *));
564 int num_stack_args = 0;
565 int num_elements = 0;
571 /* Reserve a register for the "hidden" argument. */
575 for (i = 0; i < nargs; i++)
577 struct type *type = value_type (args[i]);
578 int len = TYPE_LENGTH (type);
579 enum amd64_reg_class class[2];
580 int needed_integer_regs = 0;
581 int needed_sse_regs = 0;
584 /* Classify argument. */
585 amd64_classify (type, class);
587 /* Calculate the number of integer and SSE registers needed for
589 for (j = 0; j < 2; j++)
591 if (class[j] == AMD64_INTEGER)
592 needed_integer_regs++;
593 else if (class[j] == AMD64_SSE)
597 /* Check whether enough registers are available, and if the
598 argument should be passed in registers at all. */
599 if (integer_reg + needed_integer_regs > ARRAY_SIZE (integer_regnum)
600 || sse_reg + needed_sse_regs > ARRAY_SIZE (sse_regnum)
601 || (needed_integer_regs == 0 && needed_sse_regs == 0))
603 /* The argument will be passed on the stack. */
604 num_elements += ((len + 7) / 8);
605 stack_args[num_stack_args++] = args[i];
609 /* The argument will be passed in registers. */
610 const gdb_byte *valbuf = value_contents (args[i]);
613 gdb_assert (len <= 16);
615 for (j = 0; len > 0; j++, len -= 8)
623 regnum = integer_regnum[integer_reg++];
627 regnum = sse_regnum[sse_reg++];
631 gdb_assert (sse_reg > 0);
632 regnum = sse_regnum[sse_reg - 1];
637 gdb_assert (!"Unexpected register class.");
640 gdb_assert (regnum != -1);
641 memset (buf, 0, sizeof buf);
642 memcpy (buf, valbuf + j * 8, min (len, 8));
643 regcache_raw_write_part (regcache, regnum, offset, 8, buf);
648 /* Allocate space for the arguments on the stack. */
649 sp -= num_elements * 8;
651 /* The psABI says that "The end of the input argument area shall be
652 aligned on a 16 byte boundary." */
655 /* Write out the arguments to the stack. */
656 for (i = 0; i < num_stack_args; i++)
658 struct type *type = value_type (stack_args[i]);
659 const gdb_byte *valbuf = value_contents (stack_args[i]);
660 int len = TYPE_LENGTH (type);
662 write_memory (sp + element * 8, valbuf, len);
663 element += ((len + 7) / 8);
666 /* The psABI says that "For calls that may call functions that use
667 varargs or stdargs (prototype-less calls or calls to functions
668 containing ellipsis (...) in the declaration) %al is used as
669 hidden argument to specify the number of SSE registers used. */
670 regcache_raw_write_unsigned (regcache, AMD64_RAX_REGNUM, sse_reg);
675 amd64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
676 struct regcache *regcache, CORE_ADDR bp_addr,
677 int nargs, struct value **args, CORE_ADDR sp,
678 int struct_return, CORE_ADDR struct_addr)
680 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
683 /* Pass arguments. */
684 sp = amd64_push_arguments (regcache, nargs, args, sp, struct_return);
686 /* Pass "hidden" argument". */
689 store_unsigned_integer (buf, 8, byte_order, struct_addr);
690 regcache_cooked_write (regcache, AMD64_RDI_REGNUM, buf);
693 /* Store return address. */
695 store_unsigned_integer (buf, 8, byte_order, bp_addr);
696 write_memory (sp, buf, 8);
698 /* Finally, update the stack pointer... */
699 store_unsigned_integer (buf, 8, byte_order, sp);
700 regcache_cooked_write (regcache, AMD64_RSP_REGNUM, buf);
702 /* ...and fake a frame pointer. */
703 regcache_cooked_write (regcache, AMD64_RBP_REGNUM, buf);
708 /* Displaced instruction handling. */
710 /* A partially decoded instruction.
711 This contains enough details for displaced stepping purposes. */
715 /* The number of opcode bytes. */
717 /* The offset of the rex prefix or -1 if not present. */
719 /* The offset to the first opcode byte. */
721 /* The offset to the modrm byte or -1 if not present. */
724 /* The raw instruction. */
728 struct displaced_step_closure
730 /* For rip-relative insns, saved copy of the reg we use instead of %rip. */
735 /* Details of the instruction. */
736 struct amd64_insn insn_details;
738 /* Amount of space allocated to insn_buf. */
741 /* The possibly modified insn.
742 This is a variable-length field. */
743 gdb_byte insn_buf[1];
746 /* WARNING: Keep onebyte_has_modrm, twobyte_has_modrm in sync with
747 ../opcodes/i386-dis.c (until libopcodes exports them, or an alternative,
748 at which point delete these in favor of libopcodes' versions). */
750 static const unsigned char onebyte_has_modrm[256] = {
751 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
752 /* ------------------------------- */
753 /* 00 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 00 */
754 /* 10 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 10 */
755 /* 20 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 20 */
756 /* 30 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 30 */
757 /* 40 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 40 */
758 /* 50 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 50 */
759 /* 60 */ 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0, /* 60 */
760 /* 70 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 70 */
761 /* 80 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 80 */
762 /* 90 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 90 */
763 /* a0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* a0 */
764 /* b0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* b0 */
765 /* c0 */ 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0, /* c0 */
766 /* d0 */ 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1, /* d0 */
767 /* e0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* e0 */
768 /* f0 */ 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1 /* f0 */
769 /* ------------------------------- */
770 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
773 static const unsigned char twobyte_has_modrm[256] = {
774 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
775 /* ------------------------------- */
776 /* 00 */ 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1, /* 0f */
777 /* 10 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 1f */
778 /* 20 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 2f */
779 /* 30 */ 0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0, /* 3f */
780 /* 40 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 4f */
781 /* 50 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 5f */
782 /* 60 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 6f */
783 /* 70 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 7f */
784 /* 80 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 8f */
785 /* 90 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 9f */
786 /* a0 */ 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1, /* af */
787 /* b0 */ 1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1, /* bf */
788 /* c0 */ 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0, /* cf */
789 /* d0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* df */
790 /* e0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ef */
791 /* f0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0 /* ff */
792 /* ------------------------------- */
793 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
796 static int amd64_syscall_p (const struct amd64_insn *insn, int *lengthp);
799 rex_prefix_p (gdb_byte pfx)
801 return REX_PREFIX_P (pfx);
804 /* Skip the legacy instruction prefixes in INSN.
805 We assume INSN is properly sentineled so we don't have to worry
806 about falling off the end of the buffer. */
809 amd64_skip_prefixes (gdb_byte *insn)
815 case DATA_PREFIX_OPCODE:
816 case ADDR_PREFIX_OPCODE:
817 case CS_PREFIX_OPCODE:
818 case DS_PREFIX_OPCODE:
819 case ES_PREFIX_OPCODE:
820 case FS_PREFIX_OPCODE:
821 case GS_PREFIX_OPCODE:
822 case SS_PREFIX_OPCODE:
823 case LOCK_PREFIX_OPCODE:
824 case REPE_PREFIX_OPCODE:
825 case REPNE_PREFIX_OPCODE:
837 /* fprintf-function for amd64_insn_length.
838 This function is a nop, we don't want to print anything, we just want to
839 compute the length of the insn. */
841 static int ATTR_FORMAT (printf, 2, 3)
842 amd64_insn_length_fprintf (void *stream, const char *format, ...)
847 /* Initialize a struct disassemble_info for amd64_insn_length. */
850 amd64_insn_length_init_dis (struct gdbarch *gdbarch,
851 struct disassemble_info *di,
852 const gdb_byte *insn, int max_len,
855 init_disassemble_info (di, NULL, amd64_insn_length_fprintf);
857 /* init_disassemble_info installs buffer_read_memory, etc.
858 so we don't need to do that here.
859 The cast is necessary until disassemble_info is const-ified. */
860 di->buffer = (gdb_byte *) insn;
861 di->buffer_length = max_len;
862 di->buffer_vma = addr;
864 di->arch = gdbarch_bfd_arch_info (gdbarch)->arch;
865 di->mach = gdbarch_bfd_arch_info (gdbarch)->mach;
866 di->endian = gdbarch_byte_order (gdbarch);
867 di->endian_code = gdbarch_byte_order_for_code (gdbarch);
869 disassemble_init_for_target (di);
872 /* Return the length in bytes of INSN.
873 MAX_LEN is the size of the buffer containing INSN.
874 libopcodes currently doesn't export a utility to compute the
875 instruction length, so use the disassembler until then. */
878 amd64_insn_length (struct gdbarch *gdbarch,
879 const gdb_byte *insn, int max_len, CORE_ADDR addr)
881 struct disassemble_info di;
883 amd64_insn_length_init_dis (gdbarch, &di, insn, max_len, addr);
885 return gdbarch_print_insn (gdbarch, addr, &di);
888 /* Return an integer register (other than RSP) that is unused as an input
890 In order to not require adding a rex prefix if the insn doesn't already
891 have one, the result is restricted to RAX ... RDI, sans RSP.
892 The register numbering of the result follows architecture ordering,
896 amd64_get_unused_input_int_reg (const struct amd64_insn *details)
898 /* 1 bit for each reg */
899 int used_regs_mask = 0;
901 /* There can be at most 3 int regs used as inputs in an insn, and we have
902 7 to choose from (RAX ... RDI, sans RSP).
903 This allows us to take a conservative approach and keep things simple.
904 E.g. By avoiding RAX, we don't have to specifically watch for opcodes
905 that implicitly specify RAX. */
908 used_regs_mask |= 1 << EAX_REG_NUM;
909 /* Similarily avoid RDX, implicit operand in divides. */
910 used_regs_mask |= 1 << EDX_REG_NUM;
912 used_regs_mask |= 1 << ESP_REG_NUM;
914 /* If the opcode is one byte long and there's no ModRM byte,
915 assume the opcode specifies a register. */
916 if (details->opcode_len == 1 && details->modrm_offset == -1)
917 used_regs_mask |= 1 << (details->raw_insn[details->opcode_offset] & 7);
919 /* Mark used regs in the modrm/sib bytes. */
920 if (details->modrm_offset != -1)
922 int modrm = details->raw_insn[details->modrm_offset];
923 int mod = MODRM_MOD_FIELD (modrm);
924 int reg = MODRM_REG_FIELD (modrm);
925 int rm = MODRM_RM_FIELD (modrm);
926 int have_sib = mod != 3 && rm == 4;
928 /* Assume the reg field of the modrm byte specifies a register. */
929 used_regs_mask |= 1 << reg;
933 int base = SIB_BASE_FIELD (details->raw_insn[details->modrm_offset + 1]);
934 int index = SIB_INDEX_FIELD (details->raw_insn[details->modrm_offset + 1]);
935 used_regs_mask |= 1 << base;
936 used_regs_mask |= 1 << index;
940 used_regs_mask |= 1 << rm;
944 gdb_assert (used_regs_mask < 256);
945 gdb_assert (used_regs_mask != 255);
947 /* Finally, find a free reg. */
951 for (i = 0; i < 8; ++i)
953 if (! (used_regs_mask & (1 << i)))
957 /* We shouldn't get here. */
958 internal_error (__FILE__, __LINE__, _("unable to find free reg"));
962 /* Extract the details of INSN that we need. */
965 amd64_get_insn_details (gdb_byte *insn, struct amd64_insn *details)
967 gdb_byte *start = insn;
970 details->raw_insn = insn;
972 details->opcode_len = -1;
973 details->rex_offset = -1;
974 details->opcode_offset = -1;
975 details->modrm_offset = -1;
977 /* Skip legacy instruction prefixes. */
978 insn = amd64_skip_prefixes (insn);
980 /* Skip REX instruction prefix. */
981 if (rex_prefix_p (*insn))
983 details->rex_offset = insn - start;
987 details->opcode_offset = insn - start;
989 if (*insn == TWO_BYTE_OPCODE_ESCAPE)
991 /* Two or three-byte opcode. */
993 need_modrm = twobyte_has_modrm[*insn];
995 /* Check for three-byte opcode. */
1005 details->opcode_len = 3;
1008 details->opcode_len = 2;
1014 /* One-byte opcode. */
1015 need_modrm = onebyte_has_modrm[*insn];
1016 details->opcode_len = 1;
1022 details->modrm_offset = insn - start;
1026 /* Update %rip-relative addressing in INSN.
1028 %rip-relative addressing only uses a 32-bit displacement.
1029 32 bits is not enough to be guaranteed to cover the distance between where
1030 the real instruction is and where its copy is.
1031 Convert the insn to use base+disp addressing.
1032 We set base = pc + insn_length so we can leave disp unchanged. */
1035 fixup_riprel (struct gdbarch *gdbarch, struct displaced_step_closure *dsc,
1036 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1038 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1039 const struct amd64_insn *insn_details = &dsc->insn_details;
1040 int modrm_offset = insn_details->modrm_offset;
1041 gdb_byte *insn = insn_details->raw_insn + modrm_offset;
1045 int arch_tmp_regno, tmp_regno;
1046 ULONGEST orig_value;
1048 /* %rip+disp32 addressing mode, displacement follows ModRM byte. */
1051 /* Compute the rip-relative address. */
1052 disp = extract_signed_integer (insn, sizeof (int32_t), byte_order);
1053 insn_length = amd64_insn_length (gdbarch, dsc->insn_buf, dsc->max_len, from);
1054 rip_base = from + insn_length;
1056 /* We need a register to hold the address.
1057 Pick one not used in the insn.
1058 NOTE: arch_tmp_regno uses architecture ordering, e.g. RDI = 7. */
1059 arch_tmp_regno = amd64_get_unused_input_int_reg (insn_details);
1060 tmp_regno = amd64_arch_reg_to_regnum (arch_tmp_regno);
1062 /* REX.B should be unset as we were using rip-relative addressing,
1063 but ensure it's unset anyway, tmp_regno is not r8-r15. */
1064 if (insn_details->rex_offset != -1)
1065 dsc->insn_buf[insn_details->rex_offset] &= ~REX_B;
1067 regcache_cooked_read_unsigned (regs, tmp_regno, &orig_value);
1068 dsc->tmp_regno = tmp_regno;
1069 dsc->tmp_save = orig_value;
1072 /* Convert the ModRM field to be base+disp. */
1073 dsc->insn_buf[modrm_offset] &= ~0xc7;
1074 dsc->insn_buf[modrm_offset] |= 0x80 + arch_tmp_regno;
1076 regcache_cooked_write_unsigned (regs, tmp_regno, rip_base);
1078 if (debug_displaced)
1079 fprintf_unfiltered (gdb_stdlog, "displaced: %%rip-relative addressing used.\n"
1080 "displaced: using temp reg %d, old value %s, new value %s\n",
1081 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save),
1082 paddress (gdbarch, rip_base));
1086 fixup_displaced_copy (struct gdbarch *gdbarch,
1087 struct displaced_step_closure *dsc,
1088 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1090 const struct amd64_insn *details = &dsc->insn_details;
1092 if (details->modrm_offset != -1)
1094 gdb_byte modrm = details->raw_insn[details->modrm_offset];
1096 if ((modrm & 0xc7) == 0x05)
1098 /* The insn uses rip-relative addressing.
1100 fixup_riprel (gdbarch, dsc, from, to, regs);
1105 struct displaced_step_closure *
1106 amd64_displaced_step_copy_insn (struct gdbarch *gdbarch,
1107 CORE_ADDR from, CORE_ADDR to,
1108 struct regcache *regs)
1110 int len = gdbarch_max_insn_length (gdbarch);
1111 /* Extra space for sentinels so fixup_{riprel,displaced_copy don't have to
1112 continually watch for running off the end of the buffer. */
1113 int fixup_sentinel_space = len;
1114 struct displaced_step_closure *dsc =
1115 xmalloc (sizeof (*dsc) + len + fixup_sentinel_space);
1116 gdb_byte *buf = &dsc->insn_buf[0];
1117 struct amd64_insn *details = &dsc->insn_details;
1120 dsc->max_len = len + fixup_sentinel_space;
1122 read_memory (from, buf, len);
1124 /* Set up the sentinel space so we don't have to worry about running
1125 off the end of the buffer. An excessive number of leading prefixes
1126 could otherwise cause this. */
1127 memset (buf + len, 0, fixup_sentinel_space);
1129 amd64_get_insn_details (buf, details);
1131 /* GDB may get control back after the insn after the syscall.
1132 Presumably this is a kernel bug.
1133 If this is a syscall, make sure there's a nop afterwards. */
1137 if (amd64_syscall_p (details, &syscall_length))
1138 buf[details->opcode_offset + syscall_length] = NOP_OPCODE;
1141 /* Modify the insn to cope with the address where it will be executed from.
1142 In particular, handle any rip-relative addressing. */
1143 fixup_displaced_copy (gdbarch, dsc, from, to, regs);
1145 write_memory (to, buf, len);
1147 if (debug_displaced)
1149 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
1150 paddress (gdbarch, from), paddress (gdbarch, to));
1151 displaced_step_dump_bytes (gdb_stdlog, buf, len);
1158 amd64_absolute_jmp_p (const struct amd64_insn *details)
1160 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1162 if (insn[0] == 0xff)
1164 /* jump near, absolute indirect (/4) */
1165 if ((insn[1] & 0x38) == 0x20)
1168 /* jump far, absolute indirect (/5) */
1169 if ((insn[1] & 0x38) == 0x28)
1177 amd64_absolute_call_p (const struct amd64_insn *details)
1179 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1181 if (insn[0] == 0xff)
1183 /* Call near, absolute indirect (/2) */
1184 if ((insn[1] & 0x38) == 0x10)
1187 /* Call far, absolute indirect (/3) */
1188 if ((insn[1] & 0x38) == 0x18)
1196 amd64_ret_p (const struct amd64_insn *details)
1198 /* NOTE: gcc can emit "repz ; ret". */
1199 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1203 case 0xc2: /* ret near, pop N bytes */
1204 case 0xc3: /* ret near */
1205 case 0xca: /* ret far, pop N bytes */
1206 case 0xcb: /* ret far */
1207 case 0xcf: /* iret */
1216 amd64_call_p (const struct amd64_insn *details)
1218 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1220 if (amd64_absolute_call_p (details))
1223 /* call near, relative */
1224 if (insn[0] == 0xe8)
1230 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
1231 length in bytes. Otherwise, return zero. */
1234 amd64_syscall_p (const struct amd64_insn *details, int *lengthp)
1236 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1238 if (insn[0] == 0x0f && insn[1] == 0x05)
1247 /* Fix up the state of registers and memory after having single-stepped
1248 a displaced instruction. */
1251 amd64_displaced_step_fixup (struct gdbarch *gdbarch,
1252 struct displaced_step_closure *dsc,
1253 CORE_ADDR from, CORE_ADDR to,
1254 struct regcache *regs)
1256 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1257 /* The offset we applied to the instruction's address. */
1258 ULONGEST insn_offset = to - from;
1259 gdb_byte *insn = dsc->insn_buf;
1260 const struct amd64_insn *insn_details = &dsc->insn_details;
1262 if (debug_displaced)
1263 fprintf_unfiltered (gdb_stdlog,
1264 "displaced: fixup (%s, %s), "
1265 "insn = 0x%02x 0x%02x ...\n",
1266 paddress (gdbarch, from), paddress (gdbarch, to),
1269 /* If we used a tmp reg, restore it. */
1273 if (debug_displaced)
1274 fprintf_unfiltered (gdb_stdlog, "displaced: restoring reg %d to %s\n",
1275 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save));
1276 regcache_cooked_write_unsigned (regs, dsc->tmp_regno, dsc->tmp_save);
1279 /* The list of issues to contend with here is taken from
1280 resume_execution in arch/x86/kernel/kprobes.c, Linux 2.6.28.
1281 Yay for Free Software! */
1283 /* Relocate the %rip back to the program's instruction stream,
1286 /* Except in the case of absolute or indirect jump or call
1287 instructions, or a return instruction, the new rip is relative to
1288 the displaced instruction; make it relative to the original insn.
1289 Well, signal handler returns don't need relocation either, but we use the
1290 value of %rip to recognize those; see below. */
1291 if (! amd64_absolute_jmp_p (insn_details)
1292 && ! amd64_absolute_call_p (insn_details)
1293 && ! amd64_ret_p (insn_details))
1298 regcache_cooked_read_unsigned (regs, AMD64_RIP_REGNUM, &orig_rip);
1300 /* A signal trampoline system call changes the %rip, resuming
1301 execution of the main program after the signal handler has
1302 returned. That makes them like 'return' instructions; we
1303 shouldn't relocate %rip.
1305 But most system calls don't, and we do need to relocate %rip.
1307 Our heuristic for distinguishing these cases: if stepping
1308 over the system call instruction left control directly after
1309 the instruction, the we relocate --- control almost certainly
1310 doesn't belong in the displaced copy. Otherwise, we assume
1311 the instruction has put control where it belongs, and leave
1312 it unrelocated. Goodness help us if there are PC-relative
1314 if (amd64_syscall_p (insn_details, &insn_len)
1315 && orig_rip != to + insn_len
1316 /* GDB can get control back after the insn after the syscall.
1317 Presumably this is a kernel bug.
1318 Fixup ensures its a nop, we add one to the length for it. */
1319 && orig_rip != to + insn_len + 1)
1321 if (debug_displaced)
1322 fprintf_unfiltered (gdb_stdlog,
1323 "displaced: syscall changed %%rip; "
1324 "not relocating\n");
1328 ULONGEST rip = orig_rip - insn_offset;
1330 /* If we just stepped over a breakpoint insn, we don't backup
1331 the pc on purpose; this is to match behaviour without
1334 regcache_cooked_write_unsigned (regs, AMD64_RIP_REGNUM, rip);
1336 if (debug_displaced)
1337 fprintf_unfiltered (gdb_stdlog,
1339 "relocated %%rip from %s to %s\n",
1340 paddress (gdbarch, orig_rip),
1341 paddress (gdbarch, rip));
1345 /* If the instruction was PUSHFL, then the TF bit will be set in the
1346 pushed value, and should be cleared. We'll leave this for later,
1347 since GDB already messes up the TF flag when stepping over a
1350 /* If the instruction was a call, the return address now atop the
1351 stack is the address following the copied instruction. We need
1352 to make it the address following the original instruction. */
1353 if (amd64_call_p (insn_details))
1357 const ULONGEST retaddr_len = 8;
1359 regcache_cooked_read_unsigned (regs, AMD64_RSP_REGNUM, &rsp);
1360 retaddr = read_memory_unsigned_integer (rsp, retaddr_len, byte_order);
1361 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
1362 write_memory_unsigned_integer (rsp, retaddr_len, byte_order, retaddr);
1364 if (debug_displaced)
1365 fprintf_unfiltered (gdb_stdlog,
1366 "displaced: relocated return addr at %s "
1368 paddress (gdbarch, rsp),
1369 paddress (gdbarch, retaddr));
1373 /* The maximum number of saved registers. This should include %rip. */
1374 #define AMD64_NUM_SAVED_REGS AMD64_NUM_GREGS
1376 struct amd64_frame_cache
1380 CORE_ADDR sp_offset;
1383 /* Saved registers. */
1384 CORE_ADDR saved_regs[AMD64_NUM_SAVED_REGS];
1388 /* Do we have a frame? */
1392 /* Initialize a frame cache. */
1395 amd64_init_frame_cache (struct amd64_frame_cache *cache)
1401 cache->sp_offset = -8;
1404 /* Saved registers. We initialize these to -1 since zero is a valid
1405 offset (that's where %rbp is supposed to be stored).
1406 The values start out as being offsets, and are later converted to
1407 addresses (at which point -1 is interpreted as an address, still meaning
1409 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
1410 cache->saved_regs[i] = -1;
1411 cache->saved_sp = 0;
1412 cache->saved_sp_reg = -1;
1414 /* Frameless until proven otherwise. */
1415 cache->frameless_p = 1;
1418 /* Allocate and initialize a frame cache. */
1420 static struct amd64_frame_cache *
1421 amd64_alloc_frame_cache (void)
1423 struct amd64_frame_cache *cache;
1425 cache = FRAME_OBSTACK_ZALLOC (struct amd64_frame_cache);
1426 amd64_init_frame_cache (cache);
1430 /* GCC 4.4 and later, can put code in the prologue to realign the
1431 stack pointer. Check whether PC points to such code, and update
1432 CACHE accordingly. Return the first instruction after the code
1433 sequence or CURRENT_PC, whichever is smaller. If we don't
1434 recognize the code, return PC. */
1437 amd64_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1438 struct amd64_frame_cache *cache)
1440 /* There are 2 code sequences to re-align stack before the frame
1443 1. Use a caller-saved saved register:
1449 2. Use a callee-saved saved register:
1456 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
1458 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
1459 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
1464 int offset, offset_and;
1466 if (target_read_memory (pc, buf, sizeof buf))
1469 /* Check caller-saved saved register. The first instruction has
1470 to be "leaq 8(%rsp), %reg". */
1471 if ((buf[0] & 0xfb) == 0x48
1476 /* MOD must be binary 10 and R/M must be binary 100. */
1477 if ((buf[2] & 0xc7) != 0x44)
1480 /* REG has register number. */
1481 reg = (buf[2] >> 3) & 7;
1483 /* Check the REX.R bit. */
1491 /* Check callee-saved saved register. The first instruction
1492 has to be "pushq %reg". */
1494 if ((buf[0] & 0xf8) == 0x50)
1496 else if ((buf[0] & 0xf6) == 0x40
1497 && (buf[1] & 0xf8) == 0x50)
1499 /* Check the REX.B bit. */
1500 if ((buf[0] & 1) != 0)
1509 reg += buf[offset] & 0x7;
1513 /* The next instruction has to be "leaq 16(%rsp), %reg". */
1514 if ((buf[offset] & 0xfb) != 0x48
1515 || buf[offset + 1] != 0x8d
1516 || buf[offset + 3] != 0x24
1517 || buf[offset + 4] != 0x10)
1520 /* MOD must be binary 10 and R/M must be binary 100. */
1521 if ((buf[offset + 2] & 0xc7) != 0x44)
1524 /* REG has register number. */
1525 r = (buf[offset + 2] >> 3) & 7;
1527 /* Check the REX.R bit. */
1528 if (buf[offset] == 0x4c)
1531 /* Registers in pushq and leaq have to be the same. */
1538 /* Rigister can't be %rsp nor %rbp. */
1539 if (reg == 4 || reg == 5)
1542 /* The next instruction has to be "andq $-XXX, %rsp". */
1543 if (buf[offset] != 0x48
1544 || buf[offset + 2] != 0xe4
1545 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
1548 offset_and = offset;
1549 offset += buf[offset + 1] == 0x81 ? 7 : 4;
1551 /* The next instruction has to be "pushq -8(%reg)". */
1553 if (buf[offset] == 0xff)
1555 else if ((buf[offset] & 0xf6) == 0x40
1556 && buf[offset + 1] == 0xff)
1558 /* Check the REX.B bit. */
1559 if ((buf[offset] & 0x1) != 0)
1566 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
1568 if (buf[offset + 1] != 0xf8
1569 || (buf[offset] & 0xf8) != 0x70)
1572 /* R/M has register. */
1573 r += buf[offset] & 7;
1575 /* Registers in leaq and pushq have to be the same. */
1579 if (current_pc > pc + offset_and)
1580 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
1582 return min (pc + offset + 2, current_pc);
1585 /* Do a limited analysis of the prologue at PC and update CACHE
1586 accordingly. Bail out early if CURRENT_PC is reached. Return the
1587 address where the analysis stopped.
1589 We will handle only functions beginning with:
1592 movq %rsp, %rbp 0x48 0x89 0xe5
1594 Any function that doesn't start with this sequence will be assumed
1595 to have no prologue and thus no valid frame pointer in %rbp. */
1598 amd64_analyze_prologue (struct gdbarch *gdbarch,
1599 CORE_ADDR pc, CORE_ADDR current_pc,
1600 struct amd64_frame_cache *cache)
1602 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1603 static gdb_byte proto[3] = { 0x48, 0x89, 0xe5 }; /* movq %rsp, %rbp */
1607 if (current_pc <= pc)
1610 pc = amd64_analyze_stack_align (pc, current_pc, cache);
1612 op = read_memory_unsigned_integer (pc, 1, byte_order);
1614 if (op == 0x55) /* pushq %rbp */
1616 /* Take into account that we've executed the `pushq %rbp' that
1617 starts this instruction sequence. */
1618 cache->saved_regs[AMD64_RBP_REGNUM] = 0;
1619 cache->sp_offset += 8;
1621 /* If that's all, return now. */
1622 if (current_pc <= pc + 1)
1625 /* Check for `movq %rsp, %rbp'. */
1626 read_memory (pc + 1, buf, 3);
1627 if (memcmp (buf, proto, 3) != 0)
1630 /* OK, we actually have a frame. */
1631 cache->frameless_p = 0;
1638 /* Return PC of first real instruction. */
1641 amd64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1643 struct amd64_frame_cache cache;
1646 amd64_init_frame_cache (&cache);
1647 pc = amd64_analyze_prologue (gdbarch, start_pc, 0xffffffffffffffffLL,
1649 if (cache.frameless_p)
1656 /* Normal frames. */
1658 static struct amd64_frame_cache *
1659 amd64_frame_cache (struct frame_info *this_frame, void **this_cache)
1661 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1662 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1663 struct amd64_frame_cache *cache;
1670 cache = amd64_alloc_frame_cache ();
1671 *this_cache = cache;
1673 cache->pc = get_frame_func (this_frame);
1675 amd64_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1678 if (cache->saved_sp_reg != -1)
1680 /* Stack pointer has been saved. */
1681 get_frame_register (this_frame, cache->saved_sp_reg, buf);
1682 cache->saved_sp = extract_unsigned_integer(buf, 8, byte_order);
1685 if (cache->frameless_p)
1687 /* We didn't find a valid frame. If we're at the start of a
1688 function, or somewhere half-way its prologue, the function's
1689 frame probably hasn't been fully setup yet. Try to
1690 reconstruct the base address for the stack frame by looking
1691 at the stack pointer. For truly "frameless" functions this
1694 if (cache->saved_sp_reg != -1)
1696 /* We're halfway aligning the stack. */
1697 cache->base = ((cache->saved_sp - 8) & 0xfffffffffffffff0LL) - 8;
1698 cache->saved_regs[AMD64_RIP_REGNUM] = cache->saved_sp - 8;
1700 /* This will be added back below. */
1701 cache->saved_regs[AMD64_RIP_REGNUM] -= cache->base;
1705 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
1706 cache->base = extract_unsigned_integer (buf, 8, byte_order)
1712 get_frame_register (this_frame, AMD64_RBP_REGNUM, buf);
1713 cache->base = extract_unsigned_integer (buf, 8, byte_order);
1716 /* Now that we have the base address for the stack frame we can
1717 calculate the value of %rsp in the calling frame. */
1718 cache->saved_sp = cache->base + 16;
1720 /* For normal frames, %rip is stored at 8(%rbp). If we don't have a
1721 frame we find it at the same offset from the reconstructed base
1722 address. If we're halfway aligning the stack, %rip is handled
1723 differently (see above). */
1724 if (!cache->frameless_p || cache->saved_sp_reg == -1)
1725 cache->saved_regs[AMD64_RIP_REGNUM] = 8;
1727 /* Adjust all the saved registers such that they contain addresses
1728 instead of offsets. */
1729 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
1730 if (cache->saved_regs[i] != -1)
1731 cache->saved_regs[i] += cache->base;
1737 amd64_frame_this_id (struct frame_info *this_frame, void **this_cache,
1738 struct frame_id *this_id)
1740 struct amd64_frame_cache *cache =
1741 amd64_frame_cache (this_frame, this_cache);
1743 /* This marks the outermost frame. */
1744 if (cache->base == 0)
1747 (*this_id) = frame_id_build (cache->base + 16, cache->pc);
1750 static struct value *
1751 amd64_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1754 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1755 struct amd64_frame_cache *cache =
1756 amd64_frame_cache (this_frame, this_cache);
1758 gdb_assert (regnum >= 0);
1760 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
1761 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
1763 if (regnum < AMD64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
1764 return frame_unwind_got_memory (this_frame, regnum,
1765 cache->saved_regs[regnum]);
1767 return frame_unwind_got_register (this_frame, regnum, regnum);
1770 static const struct frame_unwind amd64_frame_unwind =
1773 amd64_frame_this_id,
1774 amd64_frame_prev_register,
1776 default_frame_sniffer
1780 /* Signal trampolines. */
1782 /* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and
1783 64-bit variants. This would require using identical frame caches
1784 on both platforms. */
1786 static struct amd64_frame_cache *
1787 amd64_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
1789 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1790 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1791 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1792 struct amd64_frame_cache *cache;
1800 cache = amd64_alloc_frame_cache ();
1802 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
1803 cache->base = extract_unsigned_integer (buf, 8, byte_order) - 8;
1805 addr = tdep->sigcontext_addr (this_frame);
1806 gdb_assert (tdep->sc_reg_offset);
1807 gdb_assert (tdep->sc_num_regs <= AMD64_NUM_SAVED_REGS);
1808 for (i = 0; i < tdep->sc_num_regs; i++)
1809 if (tdep->sc_reg_offset[i] != -1)
1810 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
1812 *this_cache = cache;
1817 amd64_sigtramp_frame_this_id (struct frame_info *this_frame,
1818 void **this_cache, struct frame_id *this_id)
1820 struct amd64_frame_cache *cache =
1821 amd64_sigtramp_frame_cache (this_frame, this_cache);
1823 (*this_id) = frame_id_build (cache->base + 16, get_frame_pc (this_frame));
1826 static struct value *
1827 amd64_sigtramp_frame_prev_register (struct frame_info *this_frame,
1828 void **this_cache, int regnum)
1830 /* Make sure we've initialized the cache. */
1831 amd64_sigtramp_frame_cache (this_frame, this_cache);
1833 return amd64_frame_prev_register (this_frame, this_cache, regnum);
1837 amd64_sigtramp_frame_sniffer (const struct frame_unwind *self,
1838 struct frame_info *this_frame,
1841 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
1843 /* We shouldn't even bother if we don't have a sigcontext_addr
1845 if (tdep->sigcontext_addr == NULL)
1848 if (tdep->sigtramp_p != NULL)
1850 if (tdep->sigtramp_p (this_frame))
1854 if (tdep->sigtramp_start != 0)
1856 CORE_ADDR pc = get_frame_pc (this_frame);
1858 gdb_assert (tdep->sigtramp_end != 0);
1859 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
1866 static const struct frame_unwind amd64_sigtramp_frame_unwind =
1869 amd64_sigtramp_frame_this_id,
1870 amd64_sigtramp_frame_prev_register,
1872 amd64_sigtramp_frame_sniffer
1877 amd64_frame_base_address (struct frame_info *this_frame, void **this_cache)
1879 struct amd64_frame_cache *cache =
1880 amd64_frame_cache (this_frame, this_cache);
1885 static const struct frame_base amd64_frame_base =
1887 &amd64_frame_unwind,
1888 amd64_frame_base_address,
1889 amd64_frame_base_address,
1890 amd64_frame_base_address
1893 /* Normal frames, but in a function epilogue. */
1895 /* The epilogue is defined here as the 'ret' instruction, which will
1896 follow any instruction such as 'leave' or 'pop %ebp' that destroys
1897 the function's stack frame. */
1900 amd64_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1904 if (target_read_memory (pc, &insn, 1))
1905 return 0; /* Can't read memory at pc. */
1907 if (insn != 0xc3) /* 'ret' instruction. */
1914 amd64_epilogue_frame_sniffer (const struct frame_unwind *self,
1915 struct frame_info *this_frame,
1916 void **this_prologue_cache)
1918 if (frame_relative_level (this_frame) == 0)
1919 return amd64_in_function_epilogue_p (get_frame_arch (this_frame),
1920 get_frame_pc (this_frame));
1925 static struct amd64_frame_cache *
1926 amd64_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
1928 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1929 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1930 struct amd64_frame_cache *cache;
1936 cache = amd64_alloc_frame_cache ();
1937 *this_cache = cache;
1939 /* Cache base will be %esp plus cache->sp_offset (-8). */
1940 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
1941 cache->base = extract_unsigned_integer (buf, 8,
1942 byte_order) + cache->sp_offset;
1944 /* Cache pc will be the frame func. */
1945 cache->pc = get_frame_pc (this_frame);
1947 /* The saved %esp will be at cache->base plus 16. */
1948 cache->saved_sp = cache->base + 16;
1950 /* The saved %eip will be at cache->base plus 8. */
1951 cache->saved_regs[AMD64_RIP_REGNUM] = cache->base + 8;
1957 amd64_epilogue_frame_this_id (struct frame_info *this_frame,
1959 struct frame_id *this_id)
1961 struct amd64_frame_cache *cache = amd64_epilogue_frame_cache (this_frame,
1964 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1967 static const struct frame_unwind amd64_epilogue_frame_unwind =
1970 amd64_epilogue_frame_this_id,
1971 amd64_frame_prev_register,
1973 amd64_epilogue_frame_sniffer
1976 static struct frame_id
1977 amd64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1981 fp = get_frame_register_unsigned (this_frame, AMD64_RBP_REGNUM);
1983 return frame_id_build (fp + 16, get_frame_pc (this_frame));
1986 /* 16 byte align the SP per frame requirements. */
1989 amd64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1991 return sp & -(CORE_ADDR)16;
1995 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
1996 in the floating-point register set REGSET to register cache
1997 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
2000 amd64_supply_fpregset (const struct regset *regset, struct regcache *regcache,
2001 int regnum, const void *fpregs, size_t len)
2003 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2005 gdb_assert (len == tdep->sizeof_fpregset);
2006 amd64_supply_fxsave (regcache, regnum, fpregs);
2009 /* Collect register REGNUM from the register cache REGCACHE and store
2010 it in the buffer specified by FPREGS and LEN as described by the
2011 floating-point register set REGSET. If REGNUM is -1, do this for
2012 all registers in REGSET. */
2015 amd64_collect_fpregset (const struct regset *regset,
2016 const struct regcache *regcache,
2017 int regnum, void *fpregs, size_t len)
2019 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2021 gdb_assert (len == tdep->sizeof_fpregset);
2022 amd64_collect_fxsave (regcache, regnum, fpregs);
2025 /* Return the appropriate register set for the core section identified
2026 by SECT_NAME and SECT_SIZE. */
2028 static const struct regset *
2029 amd64_regset_from_core_section (struct gdbarch *gdbarch,
2030 const char *sect_name, size_t sect_size)
2032 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2034 if (strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
2036 if (tdep->fpregset == NULL)
2037 tdep->fpregset = regset_alloc (gdbarch, amd64_supply_fpregset,
2038 amd64_collect_fpregset);
2040 return tdep->fpregset;
2043 return i386_regset_from_core_section (gdbarch, sect_name, sect_size);
2047 /* Figure out where the longjmp will land. Slurp the jmp_buf out of
2048 %rdi. We expect its value to be a pointer to the jmp_buf structure
2049 from which we extract the address that we will land at. This
2050 address is copied into PC. This routine returns non-zero on
2054 amd64_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2058 struct gdbarch *gdbarch = get_frame_arch (frame);
2059 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2060 int len = TYPE_LENGTH (builtin_type (gdbarch)->builtin_func_ptr);
2062 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2063 longjmp will land. */
2064 if (jb_pc_offset == -1)
2067 get_frame_register (frame, AMD64_RDI_REGNUM, buf);
2068 jb_addr= extract_typed_address
2069 (buf, builtin_type (gdbarch)->builtin_data_ptr);
2070 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
2073 *pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
2078 static const int amd64_record_regmap[] =
2080 AMD64_RAX_REGNUM, AMD64_RCX_REGNUM, AMD64_RDX_REGNUM, AMD64_RBX_REGNUM,
2081 AMD64_RSP_REGNUM, AMD64_RBP_REGNUM, AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
2082 AMD64_R8_REGNUM, AMD64_R9_REGNUM, AMD64_R10_REGNUM, AMD64_R11_REGNUM,
2083 AMD64_R12_REGNUM, AMD64_R13_REGNUM, AMD64_R14_REGNUM, AMD64_R15_REGNUM,
2084 AMD64_RIP_REGNUM, AMD64_EFLAGS_REGNUM, AMD64_CS_REGNUM, AMD64_SS_REGNUM,
2085 AMD64_DS_REGNUM, AMD64_ES_REGNUM, AMD64_FS_REGNUM, AMD64_GS_REGNUM
2089 amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2091 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2093 /* AMD64 generally uses `fxsave' instead of `fsave' for saving its
2094 floating-point registers. */
2095 tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE;
2097 /* AMD64 has an FPU and 16 SSE registers. */
2098 tdep->st0_regnum = AMD64_ST0_REGNUM;
2099 tdep->num_xmm_regs = 16;
2101 /* This is what all the fuss is about. */
2102 set_gdbarch_long_bit (gdbarch, 64);
2103 set_gdbarch_long_long_bit (gdbarch, 64);
2104 set_gdbarch_ptr_bit (gdbarch, 64);
2106 /* In contrast to the i386, on AMD64 a `long double' actually takes
2107 up 128 bits, even though it's still based on the i387 extended
2108 floating-point format which has only 80 significant bits. */
2109 set_gdbarch_long_double_bit (gdbarch, 128);
2111 set_gdbarch_num_regs (gdbarch, AMD64_NUM_REGS);
2112 set_gdbarch_register_name (gdbarch, amd64_register_name);
2113 set_gdbarch_register_type (gdbarch, amd64_register_type);
2115 /* Register numbers of various important registers. */
2116 set_gdbarch_sp_regnum (gdbarch, AMD64_RSP_REGNUM); /* %rsp */
2117 set_gdbarch_pc_regnum (gdbarch, AMD64_RIP_REGNUM); /* %rip */
2118 set_gdbarch_ps_regnum (gdbarch, AMD64_EFLAGS_REGNUM); /* %eflags */
2119 set_gdbarch_fp0_regnum (gdbarch, AMD64_ST0_REGNUM); /* %st(0) */
2121 /* The "default" register numbering scheme for AMD64 is referred to
2122 as the "DWARF Register Number Mapping" in the System V psABI.
2123 The preferred debugging format for all known AMD64 targets is
2124 actually DWARF2, and GCC doesn't seem to support DWARF (that is
2125 DWARF-1), but we provide the same mapping just in case. This
2126 mapping is also used for stabs, which GCC does support. */
2127 set_gdbarch_stab_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
2128 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
2130 /* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to
2131 be in use on any of the supported AMD64 targets. */
2133 /* Call dummy code. */
2134 set_gdbarch_push_dummy_call (gdbarch, amd64_push_dummy_call);
2135 set_gdbarch_frame_align (gdbarch, amd64_frame_align);
2136 set_gdbarch_frame_red_zone_size (gdbarch, 128);
2138 set_gdbarch_convert_register_p (gdbarch, i387_convert_register_p);
2139 set_gdbarch_register_to_value (gdbarch, i387_register_to_value);
2140 set_gdbarch_value_to_register (gdbarch, i387_value_to_register);
2142 set_gdbarch_return_value (gdbarch, amd64_return_value);
2144 set_gdbarch_skip_prologue (gdbarch, amd64_skip_prologue);
2146 /* Avoid wiring in the MMX registers for now. */
2147 set_gdbarch_num_pseudo_regs (gdbarch, 0);
2148 tdep->mm0_regnum = -1;
2150 tdep->record_regmap = amd64_record_regmap;
2152 set_gdbarch_dummy_id (gdbarch, amd64_dummy_id);
2154 /* Hook the function epilogue frame unwinder. This unwinder is
2155 appended to the list first, so that it supercedes the other
2156 unwinders in function epilogues. */
2157 frame_unwind_prepend_unwinder (gdbarch, &amd64_epilogue_frame_unwind);
2159 /* Hook the prologue-based frame unwinders. */
2160 frame_unwind_append_unwinder (gdbarch, &amd64_sigtramp_frame_unwind);
2161 frame_unwind_append_unwinder (gdbarch, &amd64_frame_unwind);
2162 frame_base_set_default (gdbarch, &amd64_frame_base);
2164 /* If we have a register mapping, enable the generic core file support. */
2165 if (tdep->gregset_reg_offset)
2166 set_gdbarch_regset_from_core_section (gdbarch,
2167 amd64_regset_from_core_section);
2169 set_gdbarch_get_longjmp_target (gdbarch, amd64_get_longjmp_target);
2173 /* The 64-bit FXSAVE format differs from the 32-bit format in the
2174 sense that the instruction pointer and data pointer are simply
2175 64-bit offsets into the code segment and the data segment instead
2176 of a selector offset pair. The functions below store the upper 32
2177 bits of these pointers (instead of just the 16-bits of the segment
2180 /* Fill register REGNUM in REGCACHE with the appropriate
2181 floating-point or SSE register value from *FXSAVE. If REGNUM is
2182 -1, do this for all registers. This function masks off any of the
2183 reserved bits in *FXSAVE. */
2186 amd64_supply_fxsave (struct regcache *regcache, int regnum,
2189 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2190 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2192 i387_supply_fxsave (regcache, regnum, fxsave);
2194 if (fxsave && gdbarch_ptr_bit (gdbarch) == 64)
2196 const gdb_byte *regs = fxsave;
2198 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
2199 regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
2200 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
2201 regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
2205 /* Fill register REGNUM (if it is a floating-point or SSE register) in
2206 *FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for
2207 all registers. This function doesn't touch any of the reserved
2211 amd64_collect_fxsave (const struct regcache *regcache, int regnum,
2214 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2215 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2216 gdb_byte *regs = fxsave;
2218 i387_collect_fxsave (regcache, regnum, fxsave);
2220 if (gdbarch_ptr_bit (gdbarch) == 64)
2222 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
2223 regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
2224 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
2225 regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);