1 /* Target-dependent code for AMD64.
3 Copyright (C) 2001-2012 Free Software Foundation, Inc.
5 Contributed by Jiri Smid, SuSE Labs.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23 #include "opcode/i386.h"
25 #include "arch-utils.h"
27 #include "dummy-frame.h"
29 #include "frame-base.h"
30 #include "frame-unwind.h"
39 #include "gdb_assert.h"
40 #include "exceptions.h"
41 #include "amd64-tdep.h"
42 #include "i387-tdep.h"
44 #include "features/i386/amd64.c"
45 #include "features/i386/amd64-avx.c"
50 /* Note that the AMD64 architecture was previously known as x86-64.
51 The latter is (forever) engraved into the canonical system name as
52 returned by config.guess, and used as the name for the AMD64 port
53 of GNU/Linux. The BSD's have renamed their ports to amd64; they
54 don't like to shout. For GDB we prefer the amd64_-prefix over the
55 x86_64_-prefix since it's so much easier to type. */
57 /* Register information. */
59 static const char *amd64_register_names[] =
61 "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "rsp",
63 /* %r8 is indeed register number 8. */
64 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
65 "rip", "eflags", "cs", "ss", "ds", "es", "fs", "gs",
67 /* %st0 is register number 24. */
68 "st0", "st1", "st2", "st3", "st4", "st5", "st6", "st7",
69 "fctrl", "fstat", "ftag", "fiseg", "fioff", "foseg", "fooff", "fop",
71 /* %xmm0 is register number 40. */
72 "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7",
73 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15",
77 static const char *amd64_ymm_names[] =
79 "ymm0", "ymm1", "ymm2", "ymm3",
80 "ymm4", "ymm5", "ymm6", "ymm7",
81 "ymm8", "ymm9", "ymm10", "ymm11",
82 "ymm12", "ymm13", "ymm14", "ymm15"
85 static const char *amd64_ymmh_names[] =
87 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
88 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
89 "ymm8h", "ymm9h", "ymm10h", "ymm11h",
90 "ymm12h", "ymm13h", "ymm14h", "ymm15h"
93 /* The registers used to pass integer arguments during a function call. */
94 static int amd64_dummy_call_integer_regs[] =
96 AMD64_RDI_REGNUM, /* %rdi */
97 AMD64_RSI_REGNUM, /* %rsi */
98 AMD64_RDX_REGNUM, /* %rdx */
99 AMD64_RCX_REGNUM, /* %rcx */
104 /* DWARF Register Number Mapping as defined in the System V psABI,
107 static int amd64_dwarf_regmap[] =
109 /* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI. */
110 AMD64_RAX_REGNUM, AMD64_RDX_REGNUM,
111 AMD64_RCX_REGNUM, AMD64_RBX_REGNUM,
112 AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
114 /* Frame Pointer Register RBP. */
117 /* Stack Pointer Register RSP. */
120 /* Extended Integer Registers 8 - 15. */
121 8, 9, 10, 11, 12, 13, 14, 15,
123 /* Return Address RA. Mapped to RIP. */
126 /* SSE Registers 0 - 7. */
127 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
128 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
129 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
130 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
132 /* Extended SSE Registers 8 - 15. */
133 AMD64_XMM0_REGNUM + 8, AMD64_XMM0_REGNUM + 9,
134 AMD64_XMM0_REGNUM + 10, AMD64_XMM0_REGNUM + 11,
135 AMD64_XMM0_REGNUM + 12, AMD64_XMM0_REGNUM + 13,
136 AMD64_XMM0_REGNUM + 14, AMD64_XMM0_REGNUM + 15,
138 /* Floating Point Registers 0-7. */
139 AMD64_ST0_REGNUM + 0, AMD64_ST0_REGNUM + 1,
140 AMD64_ST0_REGNUM + 2, AMD64_ST0_REGNUM + 3,
141 AMD64_ST0_REGNUM + 4, AMD64_ST0_REGNUM + 5,
142 AMD64_ST0_REGNUM + 6, AMD64_ST0_REGNUM + 7,
144 /* Control and Status Flags Register. */
147 /* Selector Registers. */
157 /* Segment Base Address Registers. */
163 /* Special Selector Registers. */
167 /* Floating Point Control Registers. */
173 static const int amd64_dwarf_regmap_len =
174 (sizeof (amd64_dwarf_regmap) / sizeof (amd64_dwarf_regmap[0]));
176 /* Convert DWARF register number REG to the appropriate register
177 number used by GDB. */
180 amd64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
182 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
183 int ymm0_regnum = tdep->ymm0_regnum;
186 if (reg >= 0 && reg < amd64_dwarf_regmap_len)
187 regnum = amd64_dwarf_regmap[reg];
190 warning (_("Unmapped DWARF Register #%d encountered."), reg);
191 else if (ymm0_regnum >= 0
192 && i386_xmm_regnum_p (gdbarch, regnum))
193 regnum += ymm0_regnum - I387_XMM0_REGNUM (tdep);
198 /* Map architectural register numbers to gdb register numbers. */
200 static const int amd64_arch_regmap[16] =
202 AMD64_RAX_REGNUM, /* %rax */
203 AMD64_RCX_REGNUM, /* %rcx */
204 AMD64_RDX_REGNUM, /* %rdx */
205 AMD64_RBX_REGNUM, /* %rbx */
206 AMD64_RSP_REGNUM, /* %rsp */
207 AMD64_RBP_REGNUM, /* %rbp */
208 AMD64_RSI_REGNUM, /* %rsi */
209 AMD64_RDI_REGNUM, /* %rdi */
210 AMD64_R8_REGNUM, /* %r8 */
211 AMD64_R9_REGNUM, /* %r9 */
212 AMD64_R10_REGNUM, /* %r10 */
213 AMD64_R11_REGNUM, /* %r11 */
214 AMD64_R12_REGNUM, /* %r12 */
215 AMD64_R13_REGNUM, /* %r13 */
216 AMD64_R14_REGNUM, /* %r14 */
217 AMD64_R15_REGNUM /* %r15 */
220 static const int amd64_arch_regmap_len =
221 (sizeof (amd64_arch_regmap) / sizeof (amd64_arch_regmap[0]));
223 /* Convert architectural register number REG to the appropriate register
224 number used by GDB. */
227 amd64_arch_reg_to_regnum (int reg)
229 gdb_assert (reg >= 0 && reg < amd64_arch_regmap_len);
231 return amd64_arch_regmap[reg];
234 /* Register names for byte pseudo-registers. */
236 static const char *amd64_byte_names[] =
238 "al", "bl", "cl", "dl", "sil", "dil", "bpl", "spl",
239 "r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l",
240 "ah", "bh", "ch", "dh"
243 /* Number of lower byte registers. */
244 #define AMD64_NUM_LOWER_BYTE_REGS 16
246 /* Register names for word pseudo-registers. */
248 static const char *amd64_word_names[] =
250 "ax", "bx", "cx", "dx", "si", "di", "bp", "",
251 "r8w", "r9w", "r10w", "r11w", "r12w", "r13w", "r14w", "r15w"
254 /* Register names for dword pseudo-registers. */
256 static const char *amd64_dword_names[] =
258 "eax", "ebx", "ecx", "edx", "esi", "edi", "ebp", "esp",
259 "r8d", "r9d", "r10d", "r11d", "r12d", "r13d", "r14d", "r15d"
262 /* Return the name of register REGNUM. */
265 amd64_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
267 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
268 if (i386_byte_regnum_p (gdbarch, regnum))
269 return amd64_byte_names[regnum - tdep->al_regnum];
270 else if (i386_ymm_regnum_p (gdbarch, regnum))
271 return amd64_ymm_names[regnum - tdep->ymm0_regnum];
272 else if (i386_word_regnum_p (gdbarch, regnum))
273 return amd64_word_names[regnum - tdep->ax_regnum];
274 else if (i386_dword_regnum_p (gdbarch, regnum))
275 return amd64_dword_names[regnum - tdep->eax_regnum];
277 return i386_pseudo_register_name (gdbarch, regnum);
280 static struct value *
281 amd64_pseudo_register_read_value (struct gdbarch *gdbarch,
282 struct regcache *regcache,
285 gdb_byte raw_buf[MAX_REGISTER_SIZE];
286 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
287 enum register_status status;
288 struct value *result_value;
291 result_value = allocate_value (register_type (gdbarch, regnum));
292 VALUE_LVAL (result_value) = lval_register;
293 VALUE_REGNUM (result_value) = regnum;
294 buf = value_contents_raw (result_value);
296 if (i386_byte_regnum_p (gdbarch, regnum))
298 int gpnum = regnum - tdep->al_regnum;
300 /* Extract (always little endian). */
301 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
303 /* Special handling for AH, BH, CH, DH. */
304 status = regcache_raw_read (regcache,
305 gpnum - AMD64_NUM_LOWER_BYTE_REGS,
307 if (status == REG_VALID)
308 memcpy (buf, raw_buf + 1, 1);
310 mark_value_bytes_unavailable (result_value, 0,
311 TYPE_LENGTH (value_type (result_value)));
315 status = regcache_raw_read (regcache, gpnum, raw_buf);
316 if (status == REG_VALID)
317 memcpy (buf, raw_buf, 1);
319 mark_value_bytes_unavailable (result_value, 0,
320 TYPE_LENGTH (value_type (result_value)));
323 else if (i386_dword_regnum_p (gdbarch, regnum))
325 int gpnum = regnum - tdep->eax_regnum;
326 /* Extract (always little endian). */
327 status = regcache_raw_read (regcache, gpnum, raw_buf);
328 if (status == REG_VALID)
329 memcpy (buf, raw_buf, 4);
331 mark_value_bytes_unavailable (result_value, 0,
332 TYPE_LENGTH (value_type (result_value)));
335 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum,
342 amd64_pseudo_register_write (struct gdbarch *gdbarch,
343 struct regcache *regcache,
344 int regnum, const gdb_byte *buf)
346 gdb_byte raw_buf[MAX_REGISTER_SIZE];
347 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
349 if (i386_byte_regnum_p (gdbarch, regnum))
351 int gpnum = regnum - tdep->al_regnum;
353 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
355 /* Read ... AH, BH, CH, DH. */
356 regcache_raw_read (regcache,
357 gpnum - AMD64_NUM_LOWER_BYTE_REGS, raw_buf);
358 /* ... Modify ... (always little endian). */
359 memcpy (raw_buf + 1, buf, 1);
361 regcache_raw_write (regcache,
362 gpnum - AMD64_NUM_LOWER_BYTE_REGS, raw_buf);
367 regcache_raw_read (regcache, gpnum, raw_buf);
368 /* ... Modify ... (always little endian). */
369 memcpy (raw_buf, buf, 1);
371 regcache_raw_write (regcache, gpnum, raw_buf);
374 else if (i386_dword_regnum_p (gdbarch, regnum))
376 int gpnum = regnum - tdep->eax_regnum;
379 regcache_raw_read (regcache, gpnum, raw_buf);
380 /* ... Modify ... (always little endian). */
381 memcpy (raw_buf, buf, 4);
383 regcache_raw_write (regcache, gpnum, raw_buf);
386 i386_pseudo_register_write (gdbarch, regcache, regnum, buf);
391 /* Return the union class of CLASS1 and CLASS2. See the psABI for
394 static enum amd64_reg_class
395 amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2)
397 /* Rule (a): If both classes are equal, this is the resulting class. */
398 if (class1 == class2)
401 /* Rule (b): If one of the classes is NO_CLASS, the resulting class
402 is the other class. */
403 if (class1 == AMD64_NO_CLASS)
405 if (class2 == AMD64_NO_CLASS)
408 /* Rule (c): If one of the classes is MEMORY, the result is MEMORY. */
409 if (class1 == AMD64_MEMORY || class2 == AMD64_MEMORY)
412 /* Rule (d): If one of the classes is INTEGER, the result is INTEGER. */
413 if (class1 == AMD64_INTEGER || class2 == AMD64_INTEGER)
414 return AMD64_INTEGER;
416 /* Rule (e): If one of the classes is X87, X87UP, COMPLEX_X87 class,
417 MEMORY is used as class. */
418 if (class1 == AMD64_X87 || class1 == AMD64_X87UP
419 || class1 == AMD64_COMPLEX_X87 || class2 == AMD64_X87
420 || class2 == AMD64_X87UP || class2 == AMD64_COMPLEX_X87)
423 /* Rule (f): Otherwise class SSE is used. */
427 /* Return non-zero if TYPE is a non-POD structure or union type. */
430 amd64_non_pod_p (struct type *type)
432 /* ??? A class with a base class certainly isn't POD, but does this
433 catch all non-POD structure types? */
434 if (TYPE_CODE (type) == TYPE_CODE_STRUCT && TYPE_N_BASECLASSES (type) > 0)
440 /* Classify TYPE according to the rules for aggregate (structures and
441 arrays) and union types, and store the result in CLASS. */
444 amd64_classify_aggregate (struct type *type, enum amd64_reg_class class[2])
446 int len = TYPE_LENGTH (type);
448 /* 1. If the size of an object is larger than two eightbytes, or in
449 C++, is a non-POD structure or union type, or contains
450 unaligned fields, it has class memory. */
451 if (len > 16 || amd64_non_pod_p (type))
453 class[0] = class[1] = AMD64_MEMORY;
457 /* 2. Both eightbytes get initialized to class NO_CLASS. */
458 class[0] = class[1] = AMD64_NO_CLASS;
460 /* 3. Each field of an object is classified recursively so that
461 always two fields are considered. The resulting class is
462 calculated according to the classes of the fields in the
465 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
467 struct type *subtype = check_typedef (TYPE_TARGET_TYPE (type));
469 /* All fields in an array have the same type. */
470 amd64_classify (subtype, class);
471 if (len > 8 && class[1] == AMD64_NO_CLASS)
478 /* Structure or union. */
479 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
480 || TYPE_CODE (type) == TYPE_CODE_UNION);
482 for (i = 0; i < TYPE_NFIELDS (type); i++)
484 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
485 int pos = TYPE_FIELD_BITPOS (type, i) / 64;
486 enum amd64_reg_class subclass[2];
487 int bitsize = TYPE_FIELD_BITSIZE (type, i);
491 bitsize = TYPE_LENGTH (subtype) * 8;
492 endpos = (TYPE_FIELD_BITPOS (type, i) + bitsize - 1) / 64;
494 /* Ignore static fields. */
495 if (field_is_static (&TYPE_FIELD (type, i)))
498 gdb_assert (pos == 0 || pos == 1);
500 amd64_classify (subtype, subclass);
501 class[pos] = amd64_merge_classes (class[pos], subclass[0]);
502 if (bitsize <= 64 && pos == 0 && endpos == 1)
503 /* This is a bit of an odd case: We have a field that would
504 normally fit in one of the two eightbytes, except that
505 it is placed in a way that this field straddles them.
506 This has been seen with a structure containing an array.
508 The ABI is a bit unclear in this case, but we assume that
509 this field's class (stored in subclass[0]) must also be merged
510 into class[1]. In other words, our field has a piece stored
511 in the second eight-byte, and thus its class applies to
512 the second eight-byte as well.
514 In the case where the field length exceeds 8 bytes,
515 it should not be necessary to merge the field class
516 into class[1]. As LEN > 8, subclass[1] is necessarily
517 different from AMD64_NO_CLASS. If subclass[1] is equal
518 to subclass[0], then the normal class[1]/subclass[1]
519 merging will take care of everything. For subclass[1]
520 to be different from subclass[0], I can only see the case
521 where we have a SSE/SSEUP or X87/X87UP pair, which both
522 use up all 16 bytes of the aggregate, and are already
523 handled just fine (because each portion sits on its own
525 class[1] = amd64_merge_classes (class[1], subclass[0]);
527 class[1] = amd64_merge_classes (class[1], subclass[1]);
531 /* 4. Then a post merger cleanup is done: */
533 /* Rule (a): If one of the classes is MEMORY, the whole argument is
535 if (class[0] == AMD64_MEMORY || class[1] == AMD64_MEMORY)
536 class[0] = class[1] = AMD64_MEMORY;
538 /* Rule (b): If SSEUP is not preceded by SSE, it is converted to
540 if (class[0] == AMD64_SSEUP)
541 class[0] = AMD64_SSE;
542 if (class[1] == AMD64_SSEUP && class[0] != AMD64_SSE)
543 class[1] = AMD64_SSE;
546 /* Classify TYPE, and store the result in CLASS. */
549 amd64_classify (struct type *type, enum amd64_reg_class class[2])
551 enum type_code code = TYPE_CODE (type);
552 int len = TYPE_LENGTH (type);
554 class[0] = class[1] = AMD64_NO_CLASS;
556 /* Arguments of types (signed and unsigned) _Bool, char, short, int,
557 long, long long, and pointers are in the INTEGER class. Similarly,
558 range types, used by languages such as Ada, are also in the INTEGER
560 if ((code == TYPE_CODE_INT || code == TYPE_CODE_ENUM
561 || code == TYPE_CODE_BOOL || code == TYPE_CODE_RANGE
562 || code == TYPE_CODE_CHAR
563 || code == TYPE_CODE_PTR || code == TYPE_CODE_REF)
564 && (len == 1 || len == 2 || len == 4 || len == 8))
565 class[0] = AMD64_INTEGER;
567 /* Arguments of types float, double, _Decimal32, _Decimal64 and __m64
569 else if ((code == TYPE_CODE_FLT || code == TYPE_CODE_DECFLOAT)
570 && (len == 4 || len == 8))
572 class[0] = AMD64_SSE;
574 /* Arguments of types __float128, _Decimal128 and __m128 are split into
575 two halves. The least significant ones belong to class SSE, the most
576 significant one to class SSEUP. */
577 else if (code == TYPE_CODE_DECFLOAT && len == 16)
578 /* FIXME: __float128, __m128. */
579 class[0] = AMD64_SSE, class[1] = AMD64_SSEUP;
581 /* The 64-bit mantissa of arguments of type long double belongs to
582 class X87, the 16-bit exponent plus 6 bytes of padding belongs to
584 else if (code == TYPE_CODE_FLT && len == 16)
585 /* Class X87 and X87UP. */
586 class[0] = AMD64_X87, class[1] = AMD64_X87UP;
589 else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT
590 || code == TYPE_CODE_UNION)
591 amd64_classify_aggregate (type, class);
594 static enum return_value_convention
595 amd64_return_value (struct gdbarch *gdbarch, struct type *func_type,
596 struct type *type, struct regcache *regcache,
597 gdb_byte *readbuf, const gdb_byte *writebuf)
599 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
600 enum amd64_reg_class class[2];
601 int len = TYPE_LENGTH (type);
602 static int integer_regnum[] = { AMD64_RAX_REGNUM, AMD64_RDX_REGNUM };
603 static int sse_regnum[] = { AMD64_XMM0_REGNUM, AMD64_XMM1_REGNUM };
608 gdb_assert (!(readbuf && writebuf));
609 gdb_assert (tdep->classify);
611 /* 1. Classify the return type with the classification algorithm. */
612 tdep->classify (type, class);
614 /* 2. If the type has class MEMORY, then the caller provides space
615 for the return value and passes the address of this storage in
616 %rdi as if it were the first argument to the function. In effect,
617 this address becomes a hidden first argument.
619 On return %rax will contain the address that has been passed in
620 by the caller in %rdi. */
621 if (class[0] == AMD64_MEMORY)
623 /* As indicated by the comment above, the ABI guarantees that we
624 can always find the return value just after the function has
631 regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr);
632 read_memory (addr, readbuf, TYPE_LENGTH (type));
635 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
638 gdb_assert (class[1] != AMD64_MEMORY);
639 gdb_assert (len <= 16);
641 for (i = 0; len > 0; i++, len -= 8)
649 /* 3. If the class is INTEGER, the next available register
650 of the sequence %rax, %rdx is used. */
651 regnum = integer_regnum[integer_reg++];
655 /* 4. If the class is SSE, the next available SSE register
656 of the sequence %xmm0, %xmm1 is used. */
657 regnum = sse_regnum[sse_reg++];
661 /* 5. If the class is SSEUP, the eightbyte is passed in the
662 upper half of the last used SSE register. */
663 gdb_assert (sse_reg > 0);
664 regnum = sse_regnum[sse_reg - 1];
669 /* 6. If the class is X87, the value is returned on the X87
670 stack in %st0 as 80-bit x87 number. */
671 regnum = AMD64_ST0_REGNUM;
673 i387_return_value (gdbarch, regcache);
677 /* 7. If the class is X87UP, the value is returned together
678 with the previous X87 value in %st0. */
679 gdb_assert (i > 0 && class[0] == AMD64_X87);
680 regnum = AMD64_ST0_REGNUM;
689 gdb_assert (!"Unexpected register class.");
692 gdb_assert (regnum != -1);
695 regcache_raw_read_part (regcache, regnum, offset, min (len, 8),
698 regcache_raw_write_part (regcache, regnum, offset, min (len, 8),
702 return RETURN_VALUE_REGISTER_CONVENTION;
707 amd64_push_arguments (struct regcache *regcache, int nargs,
708 struct value **args, CORE_ADDR sp, int struct_return)
710 struct gdbarch *gdbarch = get_regcache_arch (regcache);
711 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
712 int *integer_regs = tdep->call_dummy_integer_regs;
713 int num_integer_regs = tdep->call_dummy_num_integer_regs;
715 static int sse_regnum[] =
717 /* %xmm0 ... %xmm7 */
718 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
719 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
720 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
721 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
723 struct value **stack_args = alloca (nargs * sizeof (struct value *));
724 /* An array that mirrors the stack_args array. For all arguments
725 that are passed by MEMORY, if that argument's address also needs
726 to be stored in a register, the ARG_ADDR_REGNO array will contain
727 that register number (or a negative value otherwise). */
728 int *arg_addr_regno = alloca (nargs * sizeof (int));
729 int num_stack_args = 0;
730 int num_elements = 0;
736 gdb_assert (tdep->classify);
738 /* Reserve a register for the "hidden" argument. */
742 for (i = 0; i < nargs; i++)
744 struct type *type = value_type (args[i]);
745 int len = TYPE_LENGTH (type);
746 enum amd64_reg_class class[2];
747 int needed_integer_regs = 0;
748 int needed_sse_regs = 0;
751 /* Classify argument. */
752 tdep->classify (type, class);
754 /* Calculate the number of integer and SSE registers needed for
756 for (j = 0; j < 2; j++)
758 if (class[j] == AMD64_INTEGER)
759 needed_integer_regs++;
760 else if (class[j] == AMD64_SSE)
764 /* Check whether enough registers are available, and if the
765 argument should be passed in registers at all. */
766 if (integer_reg + needed_integer_regs > num_integer_regs
767 || sse_reg + needed_sse_regs > ARRAY_SIZE (sse_regnum)
768 || (needed_integer_regs == 0 && needed_sse_regs == 0))
770 /* The argument will be passed on the stack. */
771 num_elements += ((len + 7) / 8);
772 stack_args[num_stack_args] = args[i];
773 /* If this is an AMD64_MEMORY argument whose address must also
774 be passed in one of the integer registers, reserve that
775 register and associate this value to that register so that
776 we can store the argument address as soon as we know it. */
777 if (class[0] == AMD64_MEMORY
778 && tdep->memory_args_by_pointer
779 && integer_reg < tdep->call_dummy_num_integer_regs)
780 arg_addr_regno[num_stack_args] =
781 tdep->call_dummy_integer_regs[integer_reg++];
783 arg_addr_regno[num_stack_args] = -1;
788 /* The argument will be passed in registers. */
789 const gdb_byte *valbuf = value_contents (args[i]);
792 gdb_assert (len <= 16);
794 for (j = 0; len > 0; j++, len -= 8)
802 regnum = integer_regs[integer_reg++];
806 regnum = sse_regnum[sse_reg++];
810 gdb_assert (sse_reg > 0);
811 regnum = sse_regnum[sse_reg - 1];
816 gdb_assert (!"Unexpected register class.");
819 gdb_assert (regnum != -1);
820 memset (buf, 0, sizeof buf);
821 memcpy (buf, valbuf + j * 8, min (len, 8));
822 regcache_raw_write_part (regcache, regnum, offset, 8, buf);
827 /* Allocate space for the arguments on the stack. */
828 sp -= num_elements * 8;
830 /* The psABI says that "The end of the input argument area shall be
831 aligned on a 16 byte boundary." */
834 /* Write out the arguments to the stack. */
835 for (i = 0; i < num_stack_args; i++)
837 struct type *type = value_type (stack_args[i]);
838 const gdb_byte *valbuf = value_contents (stack_args[i]);
839 int len = TYPE_LENGTH (type);
840 CORE_ADDR arg_addr = sp + element * 8;
842 write_memory (arg_addr, valbuf, len);
843 if (arg_addr_regno[i] >= 0)
845 /* We also need to store the address of that argument in
846 the given register. */
848 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
850 store_unsigned_integer (buf, 8, byte_order, arg_addr);
851 regcache_cooked_write (regcache, arg_addr_regno[i], buf);
853 element += ((len + 7) / 8);
856 /* The psABI says that "For calls that may call functions that use
857 varargs or stdargs (prototype-less calls or calls to functions
858 containing ellipsis (...) in the declaration) %al is used as
859 hidden argument to specify the number of SSE registers used. */
860 regcache_raw_write_unsigned (regcache, AMD64_RAX_REGNUM, sse_reg);
865 amd64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
866 struct regcache *regcache, CORE_ADDR bp_addr,
867 int nargs, struct value **args, CORE_ADDR sp,
868 int struct_return, CORE_ADDR struct_addr)
870 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
871 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
874 /* Pass arguments. */
875 sp = amd64_push_arguments (regcache, nargs, args, sp, struct_return);
877 /* Pass "hidden" argument". */
880 /* The "hidden" argument is passed throught the first argument
882 const int arg_regnum = tdep->call_dummy_integer_regs[0];
884 store_unsigned_integer (buf, 8, byte_order, struct_addr);
885 regcache_cooked_write (regcache, arg_regnum, buf);
888 /* Reserve some memory on the stack for the integer-parameter registers,
889 if required by the ABI. */
890 if (tdep->integer_param_regs_saved_in_caller_frame)
891 sp -= tdep->call_dummy_num_integer_regs * 8;
893 /* Store return address. */
895 store_unsigned_integer (buf, 8, byte_order, bp_addr);
896 write_memory (sp, buf, 8);
898 /* Finally, update the stack pointer... */
899 store_unsigned_integer (buf, 8, byte_order, sp);
900 regcache_cooked_write (regcache, AMD64_RSP_REGNUM, buf);
902 /* ...and fake a frame pointer. */
903 regcache_cooked_write (regcache, AMD64_RBP_REGNUM, buf);
908 /* Displaced instruction handling. */
910 /* A partially decoded instruction.
911 This contains enough details for displaced stepping purposes. */
915 /* The number of opcode bytes. */
917 /* The offset of the rex prefix or -1 if not present. */
919 /* The offset to the first opcode byte. */
921 /* The offset to the modrm byte or -1 if not present. */
924 /* The raw instruction. */
928 struct displaced_step_closure
930 /* For rip-relative insns, saved copy of the reg we use instead of %rip. */
935 /* Details of the instruction. */
936 struct amd64_insn insn_details;
938 /* Amount of space allocated to insn_buf. */
941 /* The possibly modified insn.
942 This is a variable-length field. */
943 gdb_byte insn_buf[1];
946 /* WARNING: Keep onebyte_has_modrm, twobyte_has_modrm in sync with
947 ../opcodes/i386-dis.c (until libopcodes exports them, or an alternative,
948 at which point delete these in favor of libopcodes' versions). */
950 static const unsigned char onebyte_has_modrm[256] = {
951 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
952 /* ------------------------------- */
953 /* 00 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 00 */
954 /* 10 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 10 */
955 /* 20 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 20 */
956 /* 30 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 30 */
957 /* 40 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 40 */
958 /* 50 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 50 */
959 /* 60 */ 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0, /* 60 */
960 /* 70 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 70 */
961 /* 80 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 80 */
962 /* 90 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 90 */
963 /* a0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* a0 */
964 /* b0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* b0 */
965 /* c0 */ 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0, /* c0 */
966 /* d0 */ 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1, /* d0 */
967 /* e0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* e0 */
968 /* f0 */ 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1 /* f0 */
969 /* ------------------------------- */
970 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
973 static const unsigned char twobyte_has_modrm[256] = {
974 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
975 /* ------------------------------- */
976 /* 00 */ 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1, /* 0f */
977 /* 10 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 1f */
978 /* 20 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 2f */
979 /* 30 */ 0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0, /* 3f */
980 /* 40 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 4f */
981 /* 50 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 5f */
982 /* 60 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 6f */
983 /* 70 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 7f */
984 /* 80 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 8f */
985 /* 90 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 9f */
986 /* a0 */ 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1, /* af */
987 /* b0 */ 1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1, /* bf */
988 /* c0 */ 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0, /* cf */
989 /* d0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* df */
990 /* e0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ef */
991 /* f0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0 /* ff */
992 /* ------------------------------- */
993 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
996 static int amd64_syscall_p (const struct amd64_insn *insn, int *lengthp);
999 rex_prefix_p (gdb_byte pfx)
1001 return REX_PREFIX_P (pfx);
1004 /* Skip the legacy instruction prefixes in INSN.
1005 We assume INSN is properly sentineled so we don't have to worry
1006 about falling off the end of the buffer. */
1009 amd64_skip_prefixes (gdb_byte *insn)
1015 case DATA_PREFIX_OPCODE:
1016 case ADDR_PREFIX_OPCODE:
1017 case CS_PREFIX_OPCODE:
1018 case DS_PREFIX_OPCODE:
1019 case ES_PREFIX_OPCODE:
1020 case FS_PREFIX_OPCODE:
1021 case GS_PREFIX_OPCODE:
1022 case SS_PREFIX_OPCODE:
1023 case LOCK_PREFIX_OPCODE:
1024 case REPE_PREFIX_OPCODE:
1025 case REPNE_PREFIX_OPCODE:
1037 /* Return an integer register (other than RSP) that is unused as an input
1039 In order to not require adding a rex prefix if the insn doesn't already
1040 have one, the result is restricted to RAX ... RDI, sans RSP.
1041 The register numbering of the result follows architecture ordering,
1045 amd64_get_unused_input_int_reg (const struct amd64_insn *details)
1047 /* 1 bit for each reg */
1048 int used_regs_mask = 0;
1050 /* There can be at most 3 int regs used as inputs in an insn, and we have
1051 7 to choose from (RAX ... RDI, sans RSP).
1052 This allows us to take a conservative approach and keep things simple.
1053 E.g. By avoiding RAX, we don't have to specifically watch for opcodes
1054 that implicitly specify RAX. */
1057 used_regs_mask |= 1 << EAX_REG_NUM;
1058 /* Similarily avoid RDX, implicit operand in divides. */
1059 used_regs_mask |= 1 << EDX_REG_NUM;
1061 used_regs_mask |= 1 << ESP_REG_NUM;
1063 /* If the opcode is one byte long and there's no ModRM byte,
1064 assume the opcode specifies a register. */
1065 if (details->opcode_len == 1 && details->modrm_offset == -1)
1066 used_regs_mask |= 1 << (details->raw_insn[details->opcode_offset] & 7);
1068 /* Mark used regs in the modrm/sib bytes. */
1069 if (details->modrm_offset != -1)
1071 int modrm = details->raw_insn[details->modrm_offset];
1072 int mod = MODRM_MOD_FIELD (modrm);
1073 int reg = MODRM_REG_FIELD (modrm);
1074 int rm = MODRM_RM_FIELD (modrm);
1075 int have_sib = mod != 3 && rm == 4;
1077 /* Assume the reg field of the modrm byte specifies a register. */
1078 used_regs_mask |= 1 << reg;
1082 int base = SIB_BASE_FIELD (details->raw_insn[details->modrm_offset + 1]);
1083 int idx = SIB_INDEX_FIELD (details->raw_insn[details->modrm_offset + 1]);
1084 used_regs_mask |= 1 << base;
1085 used_regs_mask |= 1 << idx;
1089 used_regs_mask |= 1 << rm;
1093 gdb_assert (used_regs_mask < 256);
1094 gdb_assert (used_regs_mask != 255);
1096 /* Finally, find a free reg. */
1100 for (i = 0; i < 8; ++i)
1102 if (! (used_regs_mask & (1 << i)))
1106 /* We shouldn't get here. */
1107 internal_error (__FILE__, __LINE__, _("unable to find free reg"));
1111 /* Extract the details of INSN that we need. */
1114 amd64_get_insn_details (gdb_byte *insn, struct amd64_insn *details)
1116 gdb_byte *start = insn;
1119 details->raw_insn = insn;
1121 details->opcode_len = -1;
1122 details->rex_offset = -1;
1123 details->opcode_offset = -1;
1124 details->modrm_offset = -1;
1126 /* Skip legacy instruction prefixes. */
1127 insn = amd64_skip_prefixes (insn);
1129 /* Skip REX instruction prefix. */
1130 if (rex_prefix_p (*insn))
1132 details->rex_offset = insn - start;
1136 details->opcode_offset = insn - start;
1138 if (*insn == TWO_BYTE_OPCODE_ESCAPE)
1140 /* Two or three-byte opcode. */
1142 need_modrm = twobyte_has_modrm[*insn];
1144 /* Check for three-byte opcode. */
1154 details->opcode_len = 3;
1157 details->opcode_len = 2;
1163 /* One-byte opcode. */
1164 need_modrm = onebyte_has_modrm[*insn];
1165 details->opcode_len = 1;
1171 details->modrm_offset = insn - start;
1175 /* Update %rip-relative addressing in INSN.
1177 %rip-relative addressing only uses a 32-bit displacement.
1178 32 bits is not enough to be guaranteed to cover the distance between where
1179 the real instruction is and where its copy is.
1180 Convert the insn to use base+disp addressing.
1181 We set base = pc + insn_length so we can leave disp unchanged. */
1184 fixup_riprel (struct gdbarch *gdbarch, struct displaced_step_closure *dsc,
1185 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1187 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1188 const struct amd64_insn *insn_details = &dsc->insn_details;
1189 int modrm_offset = insn_details->modrm_offset;
1190 gdb_byte *insn = insn_details->raw_insn + modrm_offset;
1194 int arch_tmp_regno, tmp_regno;
1195 ULONGEST orig_value;
1197 /* %rip+disp32 addressing mode, displacement follows ModRM byte. */
1200 /* Compute the rip-relative address. */
1201 disp = extract_signed_integer (insn, sizeof (int32_t), byte_order);
1202 insn_length = gdb_buffered_insn_length (gdbarch, dsc->insn_buf,
1203 dsc->max_len, from);
1204 rip_base = from + insn_length;
1206 /* We need a register to hold the address.
1207 Pick one not used in the insn.
1208 NOTE: arch_tmp_regno uses architecture ordering, e.g. RDI = 7. */
1209 arch_tmp_regno = amd64_get_unused_input_int_reg (insn_details);
1210 tmp_regno = amd64_arch_reg_to_regnum (arch_tmp_regno);
1212 /* REX.B should be unset as we were using rip-relative addressing,
1213 but ensure it's unset anyway, tmp_regno is not r8-r15. */
1214 if (insn_details->rex_offset != -1)
1215 dsc->insn_buf[insn_details->rex_offset] &= ~REX_B;
1217 regcache_cooked_read_unsigned (regs, tmp_regno, &orig_value);
1218 dsc->tmp_regno = tmp_regno;
1219 dsc->tmp_save = orig_value;
1222 /* Convert the ModRM field to be base+disp. */
1223 dsc->insn_buf[modrm_offset] &= ~0xc7;
1224 dsc->insn_buf[modrm_offset] |= 0x80 + arch_tmp_regno;
1226 regcache_cooked_write_unsigned (regs, tmp_regno, rip_base);
1228 if (debug_displaced)
1229 fprintf_unfiltered (gdb_stdlog, "displaced: %%rip-relative addressing used.\n"
1230 "displaced: using temp reg %d, old value %s, new value %s\n",
1231 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save),
1232 paddress (gdbarch, rip_base));
1236 fixup_displaced_copy (struct gdbarch *gdbarch,
1237 struct displaced_step_closure *dsc,
1238 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1240 const struct amd64_insn *details = &dsc->insn_details;
1242 if (details->modrm_offset != -1)
1244 gdb_byte modrm = details->raw_insn[details->modrm_offset];
1246 if ((modrm & 0xc7) == 0x05)
1248 /* The insn uses rip-relative addressing.
1250 fixup_riprel (gdbarch, dsc, from, to, regs);
1255 struct displaced_step_closure *
1256 amd64_displaced_step_copy_insn (struct gdbarch *gdbarch,
1257 CORE_ADDR from, CORE_ADDR to,
1258 struct regcache *regs)
1260 int len = gdbarch_max_insn_length (gdbarch);
1261 /* Extra space for sentinels so fixup_{riprel,displaced_copy} don't have to
1262 continually watch for running off the end of the buffer. */
1263 int fixup_sentinel_space = len;
1264 struct displaced_step_closure *dsc =
1265 xmalloc (sizeof (*dsc) + len + fixup_sentinel_space);
1266 gdb_byte *buf = &dsc->insn_buf[0];
1267 struct amd64_insn *details = &dsc->insn_details;
1270 dsc->max_len = len + fixup_sentinel_space;
1272 read_memory (from, buf, len);
1274 /* Set up the sentinel space so we don't have to worry about running
1275 off the end of the buffer. An excessive number of leading prefixes
1276 could otherwise cause this. */
1277 memset (buf + len, 0, fixup_sentinel_space);
1279 amd64_get_insn_details (buf, details);
1281 /* GDB may get control back after the insn after the syscall.
1282 Presumably this is a kernel bug.
1283 If this is a syscall, make sure there's a nop afterwards. */
1287 if (amd64_syscall_p (details, &syscall_length))
1288 buf[details->opcode_offset + syscall_length] = NOP_OPCODE;
1291 /* Modify the insn to cope with the address where it will be executed from.
1292 In particular, handle any rip-relative addressing. */
1293 fixup_displaced_copy (gdbarch, dsc, from, to, regs);
1295 write_memory (to, buf, len);
1297 if (debug_displaced)
1299 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
1300 paddress (gdbarch, from), paddress (gdbarch, to));
1301 displaced_step_dump_bytes (gdb_stdlog, buf, len);
1308 amd64_absolute_jmp_p (const struct amd64_insn *details)
1310 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1312 if (insn[0] == 0xff)
1314 /* jump near, absolute indirect (/4) */
1315 if ((insn[1] & 0x38) == 0x20)
1318 /* jump far, absolute indirect (/5) */
1319 if ((insn[1] & 0x38) == 0x28)
1327 amd64_absolute_call_p (const struct amd64_insn *details)
1329 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1331 if (insn[0] == 0xff)
1333 /* Call near, absolute indirect (/2) */
1334 if ((insn[1] & 0x38) == 0x10)
1337 /* Call far, absolute indirect (/3) */
1338 if ((insn[1] & 0x38) == 0x18)
1346 amd64_ret_p (const struct amd64_insn *details)
1348 /* NOTE: gcc can emit "repz ; ret". */
1349 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1353 case 0xc2: /* ret near, pop N bytes */
1354 case 0xc3: /* ret near */
1355 case 0xca: /* ret far, pop N bytes */
1356 case 0xcb: /* ret far */
1357 case 0xcf: /* iret */
1366 amd64_call_p (const struct amd64_insn *details)
1368 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1370 if (amd64_absolute_call_p (details))
1373 /* call near, relative */
1374 if (insn[0] == 0xe8)
1380 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
1381 length in bytes. Otherwise, return zero. */
1384 amd64_syscall_p (const struct amd64_insn *details, int *lengthp)
1386 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1388 if (insn[0] == 0x0f && insn[1] == 0x05)
1397 /* Fix up the state of registers and memory after having single-stepped
1398 a displaced instruction. */
1401 amd64_displaced_step_fixup (struct gdbarch *gdbarch,
1402 struct displaced_step_closure *dsc,
1403 CORE_ADDR from, CORE_ADDR to,
1404 struct regcache *regs)
1406 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1407 /* The offset we applied to the instruction's address. */
1408 ULONGEST insn_offset = to - from;
1409 gdb_byte *insn = dsc->insn_buf;
1410 const struct amd64_insn *insn_details = &dsc->insn_details;
1412 if (debug_displaced)
1413 fprintf_unfiltered (gdb_stdlog,
1414 "displaced: fixup (%s, %s), "
1415 "insn = 0x%02x 0x%02x ...\n",
1416 paddress (gdbarch, from), paddress (gdbarch, to),
1419 /* If we used a tmp reg, restore it. */
1423 if (debug_displaced)
1424 fprintf_unfiltered (gdb_stdlog, "displaced: restoring reg %d to %s\n",
1425 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save));
1426 regcache_cooked_write_unsigned (regs, dsc->tmp_regno, dsc->tmp_save);
1429 /* The list of issues to contend with here is taken from
1430 resume_execution in arch/x86/kernel/kprobes.c, Linux 2.6.28.
1431 Yay for Free Software! */
1433 /* Relocate the %rip back to the program's instruction stream,
1436 /* Except in the case of absolute or indirect jump or call
1437 instructions, or a return instruction, the new rip is relative to
1438 the displaced instruction; make it relative to the original insn.
1439 Well, signal handler returns don't need relocation either, but we use the
1440 value of %rip to recognize those; see below. */
1441 if (! amd64_absolute_jmp_p (insn_details)
1442 && ! amd64_absolute_call_p (insn_details)
1443 && ! amd64_ret_p (insn_details))
1448 regcache_cooked_read_unsigned (regs, AMD64_RIP_REGNUM, &orig_rip);
1450 /* A signal trampoline system call changes the %rip, resuming
1451 execution of the main program after the signal handler has
1452 returned. That makes them like 'return' instructions; we
1453 shouldn't relocate %rip.
1455 But most system calls don't, and we do need to relocate %rip.
1457 Our heuristic for distinguishing these cases: if stepping
1458 over the system call instruction left control directly after
1459 the instruction, the we relocate --- control almost certainly
1460 doesn't belong in the displaced copy. Otherwise, we assume
1461 the instruction has put control where it belongs, and leave
1462 it unrelocated. Goodness help us if there are PC-relative
1464 if (amd64_syscall_p (insn_details, &insn_len)
1465 && orig_rip != to + insn_len
1466 /* GDB can get control back after the insn after the syscall.
1467 Presumably this is a kernel bug.
1468 Fixup ensures its a nop, we add one to the length for it. */
1469 && orig_rip != to + insn_len + 1)
1471 if (debug_displaced)
1472 fprintf_unfiltered (gdb_stdlog,
1473 "displaced: syscall changed %%rip; "
1474 "not relocating\n");
1478 ULONGEST rip = orig_rip - insn_offset;
1480 /* If we just stepped over a breakpoint insn, we don't backup
1481 the pc on purpose; this is to match behaviour without
1484 regcache_cooked_write_unsigned (regs, AMD64_RIP_REGNUM, rip);
1486 if (debug_displaced)
1487 fprintf_unfiltered (gdb_stdlog,
1489 "relocated %%rip from %s to %s\n",
1490 paddress (gdbarch, orig_rip),
1491 paddress (gdbarch, rip));
1495 /* If the instruction was PUSHFL, then the TF bit will be set in the
1496 pushed value, and should be cleared. We'll leave this for later,
1497 since GDB already messes up the TF flag when stepping over a
1500 /* If the instruction was a call, the return address now atop the
1501 stack is the address following the copied instruction. We need
1502 to make it the address following the original instruction. */
1503 if (amd64_call_p (insn_details))
1507 const ULONGEST retaddr_len = 8;
1509 regcache_cooked_read_unsigned (regs, AMD64_RSP_REGNUM, &rsp);
1510 retaddr = read_memory_unsigned_integer (rsp, retaddr_len, byte_order);
1511 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
1512 write_memory_unsigned_integer (rsp, retaddr_len, byte_order, retaddr);
1514 if (debug_displaced)
1515 fprintf_unfiltered (gdb_stdlog,
1516 "displaced: relocated return addr at %s "
1518 paddress (gdbarch, rsp),
1519 paddress (gdbarch, retaddr));
1523 /* If the instruction INSN uses RIP-relative addressing, return the
1524 offset into the raw INSN where the displacement to be adjusted is
1525 found. Returns 0 if the instruction doesn't use RIP-relative
1529 rip_relative_offset (struct amd64_insn *insn)
1531 if (insn->modrm_offset != -1)
1533 gdb_byte modrm = insn->raw_insn[insn->modrm_offset];
1535 if ((modrm & 0xc7) == 0x05)
1537 /* The displacement is found right after the ModRM byte. */
1538 return insn->modrm_offset + 1;
1546 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
1548 target_write_memory (*to, buf, len);
1553 amd64_relocate_instruction (struct gdbarch *gdbarch,
1554 CORE_ADDR *to, CORE_ADDR oldloc)
1556 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1557 int len = gdbarch_max_insn_length (gdbarch);
1558 /* Extra space for sentinels. */
1559 int fixup_sentinel_space = len;
1560 gdb_byte *buf = xmalloc (len + fixup_sentinel_space);
1561 struct amd64_insn insn_details;
1563 LONGEST rel32, newrel;
1567 read_memory (oldloc, buf, len);
1569 /* Set up the sentinel space so we don't have to worry about running
1570 off the end of the buffer. An excessive number of leading prefixes
1571 could otherwise cause this. */
1572 memset (buf + len, 0, fixup_sentinel_space);
1575 amd64_get_insn_details (insn, &insn_details);
1577 insn_length = gdb_buffered_insn_length (gdbarch, insn, len, oldloc);
1579 /* Skip legacy instruction prefixes. */
1580 insn = amd64_skip_prefixes (insn);
1582 /* Adjust calls with 32-bit relative addresses as push/jump, with
1583 the address pushed being the location where the original call in
1584 the user program would return to. */
1585 if (insn[0] == 0xe8)
1587 gdb_byte push_buf[16];
1588 unsigned int ret_addr;
1590 /* Where "ret" in the original code will return to. */
1591 ret_addr = oldloc + insn_length;
1592 push_buf[0] = 0x68; /* pushq $... */
1593 memcpy (&push_buf[1], &ret_addr, 4);
1594 /* Push the push. */
1595 append_insns (to, 5, push_buf);
1597 /* Convert the relative call to a relative jump. */
1600 /* Adjust the destination offset. */
1601 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1602 newrel = (oldloc - *to) + rel32;
1603 store_signed_integer (insn + 1, 4, byte_order, newrel);
1605 if (debug_displaced)
1606 fprintf_unfiltered (gdb_stdlog,
1607 "Adjusted insn rel32=%s at %s to"
1608 " rel32=%s at %s\n",
1609 hex_string (rel32), paddress (gdbarch, oldloc),
1610 hex_string (newrel), paddress (gdbarch, *to));
1612 /* Write the adjusted jump into its displaced location. */
1613 append_insns (to, 5, insn);
1617 offset = rip_relative_offset (&insn_details);
1620 /* Adjust jumps with 32-bit relative addresses. Calls are
1621 already handled above. */
1622 if (insn[0] == 0xe9)
1624 /* Adjust conditional jumps. */
1625 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1631 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1632 newrel = (oldloc - *to) + rel32;
1633 store_signed_integer (insn + offset, 4, byte_order, newrel);
1634 if (debug_displaced)
1635 fprintf_unfiltered (gdb_stdlog,
1636 "Adjusted insn rel32=%s at %s to"
1637 " rel32=%s at %s\n",
1638 hex_string (rel32), paddress (gdbarch, oldloc),
1639 hex_string (newrel), paddress (gdbarch, *to));
1642 /* Write the adjusted instruction into its displaced location. */
1643 append_insns (to, insn_length, buf);
1647 /* The maximum number of saved registers. This should include %rip. */
1648 #define AMD64_NUM_SAVED_REGS AMD64_NUM_GREGS
1650 struct amd64_frame_cache
1655 CORE_ADDR sp_offset;
1658 /* Saved registers. */
1659 CORE_ADDR saved_regs[AMD64_NUM_SAVED_REGS];
1663 /* Do we have a frame? */
1667 /* Initialize a frame cache. */
1670 amd64_init_frame_cache (struct amd64_frame_cache *cache)
1677 cache->sp_offset = -8;
1680 /* Saved registers. We initialize these to -1 since zero is a valid
1681 offset (that's where %rbp is supposed to be stored).
1682 The values start out as being offsets, and are later converted to
1683 addresses (at which point -1 is interpreted as an address, still meaning
1685 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
1686 cache->saved_regs[i] = -1;
1687 cache->saved_sp = 0;
1688 cache->saved_sp_reg = -1;
1690 /* Frameless until proven otherwise. */
1691 cache->frameless_p = 1;
1694 /* Allocate and initialize a frame cache. */
1696 static struct amd64_frame_cache *
1697 amd64_alloc_frame_cache (void)
1699 struct amd64_frame_cache *cache;
1701 cache = FRAME_OBSTACK_ZALLOC (struct amd64_frame_cache);
1702 amd64_init_frame_cache (cache);
1706 /* GCC 4.4 and later, can put code in the prologue to realign the
1707 stack pointer. Check whether PC points to such code, and update
1708 CACHE accordingly. Return the first instruction after the code
1709 sequence or CURRENT_PC, whichever is smaller. If we don't
1710 recognize the code, return PC. */
1713 amd64_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1714 struct amd64_frame_cache *cache)
1716 /* There are 2 code sequences to re-align stack before the frame
1719 1. Use a caller-saved saved register:
1725 2. Use a callee-saved saved register:
1732 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
1734 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
1735 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
1740 int offset, offset_and;
1742 if (target_read_memory (pc, buf, sizeof buf))
1745 /* Check caller-saved saved register. The first instruction has
1746 to be "leaq 8(%rsp), %reg". */
1747 if ((buf[0] & 0xfb) == 0x48
1752 /* MOD must be binary 10 and R/M must be binary 100. */
1753 if ((buf[2] & 0xc7) != 0x44)
1756 /* REG has register number. */
1757 reg = (buf[2] >> 3) & 7;
1759 /* Check the REX.R bit. */
1767 /* Check callee-saved saved register. The first instruction
1768 has to be "pushq %reg". */
1770 if ((buf[0] & 0xf8) == 0x50)
1772 else if ((buf[0] & 0xf6) == 0x40
1773 && (buf[1] & 0xf8) == 0x50)
1775 /* Check the REX.B bit. */
1776 if ((buf[0] & 1) != 0)
1785 reg += buf[offset] & 0x7;
1789 /* The next instruction has to be "leaq 16(%rsp), %reg". */
1790 if ((buf[offset] & 0xfb) != 0x48
1791 || buf[offset + 1] != 0x8d
1792 || buf[offset + 3] != 0x24
1793 || buf[offset + 4] != 0x10)
1796 /* MOD must be binary 10 and R/M must be binary 100. */
1797 if ((buf[offset + 2] & 0xc7) != 0x44)
1800 /* REG has register number. */
1801 r = (buf[offset + 2] >> 3) & 7;
1803 /* Check the REX.R bit. */
1804 if (buf[offset] == 0x4c)
1807 /* Registers in pushq and leaq have to be the same. */
1814 /* Rigister can't be %rsp nor %rbp. */
1815 if (reg == 4 || reg == 5)
1818 /* The next instruction has to be "andq $-XXX, %rsp". */
1819 if (buf[offset] != 0x48
1820 || buf[offset + 2] != 0xe4
1821 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
1824 offset_and = offset;
1825 offset += buf[offset + 1] == 0x81 ? 7 : 4;
1827 /* The next instruction has to be "pushq -8(%reg)". */
1829 if (buf[offset] == 0xff)
1831 else if ((buf[offset] & 0xf6) == 0x40
1832 && buf[offset + 1] == 0xff)
1834 /* Check the REX.B bit. */
1835 if ((buf[offset] & 0x1) != 0)
1842 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
1844 if (buf[offset + 1] != 0xf8
1845 || (buf[offset] & 0xf8) != 0x70)
1848 /* R/M has register. */
1849 r += buf[offset] & 7;
1851 /* Registers in leaq and pushq have to be the same. */
1855 if (current_pc > pc + offset_and)
1856 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
1858 return min (pc + offset + 2, current_pc);
1861 /* Do a limited analysis of the prologue at PC and update CACHE
1862 accordingly. Bail out early if CURRENT_PC is reached. Return the
1863 address where the analysis stopped.
1865 We will handle only functions beginning with:
1868 movq %rsp, %rbp 0x48 0x89 0xe5 (or 0x48 0x8b 0xec)
1870 Any function that doesn't start with this sequence will be assumed
1871 to have no prologue and thus no valid frame pointer in %rbp. */
1874 amd64_analyze_prologue (struct gdbarch *gdbarch,
1875 CORE_ADDR pc, CORE_ADDR current_pc,
1876 struct amd64_frame_cache *cache)
1878 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1879 /* There are two variations of movq %rsp, %rbp. */
1880 static const gdb_byte mov_rsp_rbp_1[3] = { 0x48, 0x89, 0xe5 };
1881 static const gdb_byte mov_rsp_rbp_2[3] = { 0x48, 0x8b, 0xec };
1885 if (current_pc <= pc)
1888 pc = amd64_analyze_stack_align (pc, current_pc, cache);
1890 op = read_memory_unsigned_integer (pc, 1, byte_order);
1892 if (op == 0x55) /* pushq %rbp */
1894 /* Take into account that we've executed the `pushq %rbp' that
1895 starts this instruction sequence. */
1896 cache->saved_regs[AMD64_RBP_REGNUM] = 0;
1897 cache->sp_offset += 8;
1899 /* If that's all, return now. */
1900 if (current_pc <= pc + 1)
1903 /* Check for `movq %rsp, %rbp'. */
1904 read_memory (pc + 1, buf, 3);
1905 if (memcmp (buf, mov_rsp_rbp_1, 3) != 0
1906 && memcmp (buf, mov_rsp_rbp_2, 3) != 0)
1909 /* OK, we actually have a frame. */
1910 cache->frameless_p = 0;
1917 /* Work around false termination of prologue - GCC PR debug/48827.
1919 START_PC is the first instruction of a function, PC is its minimal already
1920 determined advanced address. Function returns PC if it has nothing to do.
1924 <-- here is 0 lines advance - the false prologue end marker.
1925 0f 29 85 70 ff ff ff movaps %xmm0,-0x90(%rbp)
1926 0f 29 4d 80 movaps %xmm1,-0x80(%rbp)
1927 0f 29 55 90 movaps %xmm2,-0x70(%rbp)
1928 0f 29 5d a0 movaps %xmm3,-0x60(%rbp)
1929 0f 29 65 b0 movaps %xmm4,-0x50(%rbp)
1930 0f 29 6d c0 movaps %xmm5,-0x40(%rbp)
1931 0f 29 75 d0 movaps %xmm6,-0x30(%rbp)
1932 0f 29 7d e0 movaps %xmm7,-0x20(%rbp)
1936 amd64_skip_xmm_prologue (CORE_ADDR pc, CORE_ADDR start_pc)
1938 struct symtab_and_line start_pc_sal, next_sal;
1939 gdb_byte buf[4 + 8 * 7];
1945 start_pc_sal = find_pc_sect_line (start_pc, NULL, 0);
1946 if (start_pc_sal.symtab == NULL
1947 || producer_is_gcc_ge_4 (start_pc_sal.symtab->producer) < 6
1948 || start_pc_sal.pc != start_pc || pc >= start_pc_sal.end)
1951 next_sal = find_pc_sect_line (start_pc_sal.end, NULL, 0);
1952 if (next_sal.line != start_pc_sal.line)
1955 /* START_PC can be from overlayed memory, ignored here. */
1956 if (target_read_memory (next_sal.pc - 4, buf, sizeof (buf)) != 0)
1960 if (buf[0] != 0x84 || buf[1] != 0xc0)
1967 for (xmmreg = 0; xmmreg < 8; xmmreg++)
1969 /* 0x0f 0x29 0b??000101 movaps %xmmreg?,-0x??(%rbp) */
1970 if (buf[offset] != 0x0f || buf[offset + 1] != 0x29
1971 || (buf[offset + 2] & 0x3f) != (xmmreg << 3 | 0x5))
1975 if ((buf[offset + 2] & 0xc0) == 0x40)
1977 /* 8-bit displacement. */
1981 else if ((buf[offset + 2] & 0xc0) == 0x80)
1983 /* 32-bit displacement. */
1991 if (offset - 4 != buf[3])
1994 return next_sal.end;
1997 /* Return PC of first real instruction. */
2000 amd64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
2002 struct amd64_frame_cache cache;
2005 amd64_init_frame_cache (&cache);
2006 pc = amd64_analyze_prologue (gdbarch, start_pc, 0xffffffffffffffffLL,
2008 if (cache.frameless_p)
2011 return amd64_skip_xmm_prologue (pc, start_pc);
2015 /* Normal frames. */
2018 amd64_frame_cache_1 (struct frame_info *this_frame,
2019 struct amd64_frame_cache *cache)
2021 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2022 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2026 cache->pc = get_frame_func (this_frame);
2028 amd64_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2031 if (cache->frameless_p)
2033 /* We didn't find a valid frame. If we're at the start of a
2034 function, or somewhere half-way its prologue, the function's
2035 frame probably hasn't been fully setup yet. Try to
2036 reconstruct the base address for the stack frame by looking
2037 at the stack pointer. For truly "frameless" functions this
2040 if (cache->saved_sp_reg != -1)
2042 /* Stack pointer has been saved. */
2043 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2044 cache->saved_sp = extract_unsigned_integer (buf, 8, byte_order);
2046 /* We're halfway aligning the stack. */
2047 cache->base = ((cache->saved_sp - 8) & 0xfffffffffffffff0LL) - 8;
2048 cache->saved_regs[AMD64_RIP_REGNUM] = cache->saved_sp - 8;
2050 /* This will be added back below. */
2051 cache->saved_regs[AMD64_RIP_REGNUM] -= cache->base;
2055 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2056 cache->base = extract_unsigned_integer (buf, 8, byte_order)
2062 get_frame_register (this_frame, AMD64_RBP_REGNUM, buf);
2063 cache->base = extract_unsigned_integer (buf, 8, byte_order);
2066 /* Now that we have the base address for the stack frame we can
2067 calculate the value of %rsp in the calling frame. */
2068 cache->saved_sp = cache->base + 16;
2070 /* For normal frames, %rip is stored at 8(%rbp). If we don't have a
2071 frame we find it at the same offset from the reconstructed base
2072 address. If we're halfway aligning the stack, %rip is handled
2073 differently (see above). */
2074 if (!cache->frameless_p || cache->saved_sp_reg == -1)
2075 cache->saved_regs[AMD64_RIP_REGNUM] = 8;
2077 /* Adjust all the saved registers such that they contain addresses
2078 instead of offsets. */
2079 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
2080 if (cache->saved_regs[i] != -1)
2081 cache->saved_regs[i] += cache->base;
2086 static struct amd64_frame_cache *
2087 amd64_frame_cache (struct frame_info *this_frame, void **this_cache)
2089 volatile struct gdb_exception ex;
2090 struct amd64_frame_cache *cache;
2095 cache = amd64_alloc_frame_cache ();
2096 *this_cache = cache;
2098 TRY_CATCH (ex, RETURN_MASK_ERROR)
2100 amd64_frame_cache_1 (this_frame, cache);
2102 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2103 throw_exception (ex);
2108 static enum unwind_stop_reason
2109 amd64_frame_unwind_stop_reason (struct frame_info *this_frame,
2112 struct amd64_frame_cache *cache =
2113 amd64_frame_cache (this_frame, this_cache);
2116 return UNWIND_UNAVAILABLE;
2118 /* This marks the outermost frame. */
2119 if (cache->base == 0)
2120 return UNWIND_OUTERMOST;
2122 return UNWIND_NO_REASON;
2126 amd64_frame_this_id (struct frame_info *this_frame, void **this_cache,
2127 struct frame_id *this_id)
2129 struct amd64_frame_cache *cache =
2130 amd64_frame_cache (this_frame, this_cache);
2135 /* This marks the outermost frame. */
2136 if (cache->base == 0)
2139 (*this_id) = frame_id_build (cache->base + 16, cache->pc);
2142 static struct value *
2143 amd64_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2146 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2147 struct amd64_frame_cache *cache =
2148 amd64_frame_cache (this_frame, this_cache);
2150 gdb_assert (regnum >= 0);
2152 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
2153 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
2155 if (regnum < AMD64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2156 return frame_unwind_got_memory (this_frame, regnum,
2157 cache->saved_regs[regnum]);
2159 return frame_unwind_got_register (this_frame, regnum, regnum);
2162 static const struct frame_unwind amd64_frame_unwind =
2165 amd64_frame_unwind_stop_reason,
2166 amd64_frame_this_id,
2167 amd64_frame_prev_register,
2169 default_frame_sniffer
2172 /* Generate a bytecode expression to get the value of the saved PC. */
2175 amd64_gen_return_address (struct gdbarch *gdbarch,
2176 struct agent_expr *ax, struct axs_value *value,
2179 /* The following sequence assumes the traditional use of the base
2181 ax_reg (ax, AMD64_RBP_REGNUM);
2183 ax_simple (ax, aop_add);
2184 value->type = register_type (gdbarch, AMD64_RIP_REGNUM);
2185 value->kind = axs_lvalue_memory;
2189 /* Signal trampolines. */
2191 /* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and
2192 64-bit variants. This would require using identical frame caches
2193 on both platforms. */
2195 static struct amd64_frame_cache *
2196 amd64_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2198 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2199 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2200 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2201 volatile struct gdb_exception ex;
2202 struct amd64_frame_cache *cache;
2210 cache = amd64_alloc_frame_cache ();
2212 TRY_CATCH (ex, RETURN_MASK_ERROR)
2214 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2215 cache->base = extract_unsigned_integer (buf, 8, byte_order) - 8;
2217 addr = tdep->sigcontext_addr (this_frame);
2218 gdb_assert (tdep->sc_reg_offset);
2219 gdb_assert (tdep->sc_num_regs <= AMD64_NUM_SAVED_REGS);
2220 for (i = 0; i < tdep->sc_num_regs; i++)
2221 if (tdep->sc_reg_offset[i] != -1)
2222 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2226 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2227 throw_exception (ex);
2229 *this_cache = cache;
2233 static enum unwind_stop_reason
2234 amd64_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2237 struct amd64_frame_cache *cache =
2238 amd64_sigtramp_frame_cache (this_frame, this_cache);
2241 return UNWIND_UNAVAILABLE;
2243 return UNWIND_NO_REASON;
2247 amd64_sigtramp_frame_this_id (struct frame_info *this_frame,
2248 void **this_cache, struct frame_id *this_id)
2250 struct amd64_frame_cache *cache =
2251 amd64_sigtramp_frame_cache (this_frame, this_cache);
2256 (*this_id) = frame_id_build (cache->base + 16, get_frame_pc (this_frame));
2259 static struct value *
2260 amd64_sigtramp_frame_prev_register (struct frame_info *this_frame,
2261 void **this_cache, int regnum)
2263 /* Make sure we've initialized the cache. */
2264 amd64_sigtramp_frame_cache (this_frame, this_cache);
2266 return amd64_frame_prev_register (this_frame, this_cache, regnum);
2270 amd64_sigtramp_frame_sniffer (const struct frame_unwind *self,
2271 struct frame_info *this_frame,
2274 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2276 /* We shouldn't even bother if we don't have a sigcontext_addr
2278 if (tdep->sigcontext_addr == NULL)
2281 if (tdep->sigtramp_p != NULL)
2283 if (tdep->sigtramp_p (this_frame))
2287 if (tdep->sigtramp_start != 0)
2289 CORE_ADDR pc = get_frame_pc (this_frame);
2291 gdb_assert (tdep->sigtramp_end != 0);
2292 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2299 static const struct frame_unwind amd64_sigtramp_frame_unwind =
2302 amd64_sigtramp_frame_unwind_stop_reason,
2303 amd64_sigtramp_frame_this_id,
2304 amd64_sigtramp_frame_prev_register,
2306 amd64_sigtramp_frame_sniffer
2311 amd64_frame_base_address (struct frame_info *this_frame, void **this_cache)
2313 struct amd64_frame_cache *cache =
2314 amd64_frame_cache (this_frame, this_cache);
2319 static const struct frame_base amd64_frame_base =
2321 &amd64_frame_unwind,
2322 amd64_frame_base_address,
2323 amd64_frame_base_address,
2324 amd64_frame_base_address
2327 /* Normal frames, but in a function epilogue. */
2329 /* The epilogue is defined here as the 'ret' instruction, which will
2330 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2331 the function's stack frame. */
2334 amd64_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2337 struct symtab *symtab;
2339 symtab = find_pc_symtab (pc);
2340 if (symtab && symtab->epilogue_unwind_valid)
2343 if (target_read_memory (pc, &insn, 1))
2344 return 0; /* Can't read memory at pc. */
2346 if (insn != 0xc3) /* 'ret' instruction. */
2353 amd64_epilogue_frame_sniffer (const struct frame_unwind *self,
2354 struct frame_info *this_frame,
2355 void **this_prologue_cache)
2357 if (frame_relative_level (this_frame) == 0)
2358 return amd64_in_function_epilogue_p (get_frame_arch (this_frame),
2359 get_frame_pc (this_frame));
2364 static struct amd64_frame_cache *
2365 amd64_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2367 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2368 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2369 volatile struct gdb_exception ex;
2370 struct amd64_frame_cache *cache;
2376 cache = amd64_alloc_frame_cache ();
2377 *this_cache = cache;
2379 TRY_CATCH (ex, RETURN_MASK_ERROR)
2381 /* Cache base will be %esp plus cache->sp_offset (-8). */
2382 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2383 cache->base = extract_unsigned_integer (buf, 8,
2384 byte_order) + cache->sp_offset;
2386 /* Cache pc will be the frame func. */
2387 cache->pc = get_frame_pc (this_frame);
2389 /* The saved %esp will be at cache->base plus 16. */
2390 cache->saved_sp = cache->base + 16;
2392 /* The saved %eip will be at cache->base plus 8. */
2393 cache->saved_regs[AMD64_RIP_REGNUM] = cache->base + 8;
2397 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2398 throw_exception (ex);
2403 static enum unwind_stop_reason
2404 amd64_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2407 struct amd64_frame_cache *cache
2408 = amd64_epilogue_frame_cache (this_frame, this_cache);
2411 return UNWIND_UNAVAILABLE;
2413 return UNWIND_NO_REASON;
2417 amd64_epilogue_frame_this_id (struct frame_info *this_frame,
2419 struct frame_id *this_id)
2421 struct amd64_frame_cache *cache = amd64_epilogue_frame_cache (this_frame,
2427 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2430 static const struct frame_unwind amd64_epilogue_frame_unwind =
2433 amd64_epilogue_frame_unwind_stop_reason,
2434 amd64_epilogue_frame_this_id,
2435 amd64_frame_prev_register,
2437 amd64_epilogue_frame_sniffer
2440 static struct frame_id
2441 amd64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2445 fp = get_frame_register_unsigned (this_frame, AMD64_RBP_REGNUM);
2447 return frame_id_build (fp + 16, get_frame_pc (this_frame));
2450 /* 16 byte align the SP per frame requirements. */
2453 amd64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2455 return sp & -(CORE_ADDR)16;
2459 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
2460 in the floating-point register set REGSET to register cache
2461 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
2464 amd64_supply_fpregset (const struct regset *regset, struct regcache *regcache,
2465 int regnum, const void *fpregs, size_t len)
2467 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2469 gdb_assert (len == tdep->sizeof_fpregset);
2470 amd64_supply_fxsave (regcache, regnum, fpregs);
2473 /* Collect register REGNUM from the register cache REGCACHE and store
2474 it in the buffer specified by FPREGS and LEN as described by the
2475 floating-point register set REGSET. If REGNUM is -1, do this for
2476 all registers in REGSET. */
2479 amd64_collect_fpregset (const struct regset *regset,
2480 const struct regcache *regcache,
2481 int regnum, void *fpregs, size_t len)
2483 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2485 gdb_assert (len == tdep->sizeof_fpregset);
2486 amd64_collect_fxsave (regcache, regnum, fpregs);
2489 /* Similar to amd64_supply_fpregset, but use XSAVE extended state. */
2492 amd64_supply_xstateregset (const struct regset *regset,
2493 struct regcache *regcache, int regnum,
2494 const void *xstateregs, size_t len)
2496 amd64_supply_xsave (regcache, regnum, xstateregs);
2499 /* Similar to amd64_collect_fpregset, but use XSAVE extended state. */
2502 amd64_collect_xstateregset (const struct regset *regset,
2503 const struct regcache *regcache,
2504 int regnum, void *xstateregs, size_t len)
2506 amd64_collect_xsave (regcache, regnum, xstateregs, 1);
2509 /* Return the appropriate register set for the core section identified
2510 by SECT_NAME and SECT_SIZE. */
2512 static const struct regset *
2513 amd64_regset_from_core_section (struct gdbarch *gdbarch,
2514 const char *sect_name, size_t sect_size)
2516 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2518 if (strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
2520 if (tdep->fpregset == NULL)
2521 tdep->fpregset = regset_alloc (gdbarch, amd64_supply_fpregset,
2522 amd64_collect_fpregset);
2524 return tdep->fpregset;
2527 if (strcmp (sect_name, ".reg-xstate") == 0)
2529 if (tdep->xstateregset == NULL)
2530 tdep->xstateregset = regset_alloc (gdbarch,
2531 amd64_supply_xstateregset,
2532 amd64_collect_xstateregset);
2534 return tdep->xstateregset;
2537 return i386_regset_from_core_section (gdbarch, sect_name, sect_size);
2541 /* Figure out where the longjmp will land. Slurp the jmp_buf out of
2542 %rdi. We expect its value to be a pointer to the jmp_buf structure
2543 from which we extract the address that we will land at. This
2544 address is copied into PC. This routine returns non-zero on
2548 amd64_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2552 struct gdbarch *gdbarch = get_frame_arch (frame);
2553 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2554 int len = TYPE_LENGTH (builtin_type (gdbarch)->builtin_func_ptr);
2556 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2557 longjmp will land. */
2558 if (jb_pc_offset == -1)
2561 get_frame_register (frame, AMD64_RDI_REGNUM, buf);
2562 jb_addr= extract_typed_address
2563 (buf, builtin_type (gdbarch)->builtin_data_ptr);
2564 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
2567 *pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
2572 static const int amd64_record_regmap[] =
2574 AMD64_RAX_REGNUM, AMD64_RCX_REGNUM, AMD64_RDX_REGNUM, AMD64_RBX_REGNUM,
2575 AMD64_RSP_REGNUM, AMD64_RBP_REGNUM, AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
2576 AMD64_R8_REGNUM, AMD64_R9_REGNUM, AMD64_R10_REGNUM, AMD64_R11_REGNUM,
2577 AMD64_R12_REGNUM, AMD64_R13_REGNUM, AMD64_R14_REGNUM, AMD64_R15_REGNUM,
2578 AMD64_RIP_REGNUM, AMD64_EFLAGS_REGNUM, AMD64_CS_REGNUM, AMD64_SS_REGNUM,
2579 AMD64_DS_REGNUM, AMD64_ES_REGNUM, AMD64_FS_REGNUM, AMD64_GS_REGNUM
2583 amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2585 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2586 const struct target_desc *tdesc = info.target_desc;
2588 /* AMD64 generally uses `fxsave' instead of `fsave' for saving its
2589 floating-point registers. */
2590 tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE;
2592 if (! tdesc_has_registers (tdesc))
2593 tdesc = tdesc_amd64;
2594 tdep->tdesc = tdesc;
2596 tdep->num_core_regs = AMD64_NUM_GREGS + I387_NUM_REGS;
2597 tdep->register_names = amd64_register_names;
2599 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx") != NULL)
2601 tdep->ymmh_register_names = amd64_ymmh_names;
2602 tdep->num_ymm_regs = 16;
2603 tdep->ymm0h_regnum = AMD64_YMM0H_REGNUM;
2606 tdep->num_byte_regs = 20;
2607 tdep->num_word_regs = 16;
2608 tdep->num_dword_regs = 16;
2609 /* Avoid wiring in the MMX registers for now. */
2610 tdep->num_mmx_regs = 0;
2612 set_gdbarch_pseudo_register_read_value (gdbarch,
2613 amd64_pseudo_register_read_value);
2614 set_gdbarch_pseudo_register_write (gdbarch,
2615 amd64_pseudo_register_write);
2617 set_tdesc_pseudo_register_name (gdbarch, amd64_pseudo_register_name);
2619 /* AMD64 has an FPU and 16 SSE registers. */
2620 tdep->st0_regnum = AMD64_ST0_REGNUM;
2621 tdep->num_xmm_regs = 16;
2623 /* This is what all the fuss is about. */
2624 set_gdbarch_long_bit (gdbarch, 64);
2625 set_gdbarch_long_long_bit (gdbarch, 64);
2626 set_gdbarch_ptr_bit (gdbarch, 64);
2628 /* In contrast to the i386, on AMD64 a `long double' actually takes
2629 up 128 bits, even though it's still based on the i387 extended
2630 floating-point format which has only 80 significant bits. */
2631 set_gdbarch_long_double_bit (gdbarch, 128);
2633 set_gdbarch_num_regs (gdbarch, AMD64_NUM_REGS);
2635 /* Register numbers of various important registers. */
2636 set_gdbarch_sp_regnum (gdbarch, AMD64_RSP_REGNUM); /* %rsp */
2637 set_gdbarch_pc_regnum (gdbarch, AMD64_RIP_REGNUM); /* %rip */
2638 set_gdbarch_ps_regnum (gdbarch, AMD64_EFLAGS_REGNUM); /* %eflags */
2639 set_gdbarch_fp0_regnum (gdbarch, AMD64_ST0_REGNUM); /* %st(0) */
2641 /* The "default" register numbering scheme for AMD64 is referred to
2642 as the "DWARF Register Number Mapping" in the System V psABI.
2643 The preferred debugging format for all known AMD64 targets is
2644 actually DWARF2, and GCC doesn't seem to support DWARF (that is
2645 DWARF-1), but we provide the same mapping just in case. This
2646 mapping is also used for stabs, which GCC does support. */
2647 set_gdbarch_stab_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
2648 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
2650 /* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to
2651 be in use on any of the supported AMD64 targets. */
2653 /* Call dummy code. */
2654 set_gdbarch_push_dummy_call (gdbarch, amd64_push_dummy_call);
2655 set_gdbarch_frame_align (gdbarch, amd64_frame_align);
2656 set_gdbarch_frame_red_zone_size (gdbarch, 128);
2657 tdep->call_dummy_num_integer_regs =
2658 ARRAY_SIZE (amd64_dummy_call_integer_regs);
2659 tdep->call_dummy_integer_regs = amd64_dummy_call_integer_regs;
2660 tdep->classify = amd64_classify;
2662 set_gdbarch_convert_register_p (gdbarch, i387_convert_register_p);
2663 set_gdbarch_register_to_value (gdbarch, i387_register_to_value);
2664 set_gdbarch_value_to_register (gdbarch, i387_value_to_register);
2666 set_gdbarch_return_value (gdbarch, amd64_return_value);
2668 set_gdbarch_skip_prologue (gdbarch, amd64_skip_prologue);
2670 tdep->record_regmap = amd64_record_regmap;
2672 set_gdbarch_dummy_id (gdbarch, amd64_dummy_id);
2674 /* Hook the function epilogue frame unwinder. This unwinder is
2675 appended to the list first, so that it supercedes the other
2676 unwinders in function epilogues. */
2677 frame_unwind_prepend_unwinder (gdbarch, &amd64_epilogue_frame_unwind);
2679 /* Hook the prologue-based frame unwinders. */
2680 frame_unwind_append_unwinder (gdbarch, &amd64_sigtramp_frame_unwind);
2681 frame_unwind_append_unwinder (gdbarch, &amd64_frame_unwind);
2682 frame_base_set_default (gdbarch, &amd64_frame_base);
2684 /* If we have a register mapping, enable the generic core file support. */
2685 if (tdep->gregset_reg_offset)
2686 set_gdbarch_regset_from_core_section (gdbarch,
2687 amd64_regset_from_core_section);
2689 set_gdbarch_get_longjmp_target (gdbarch, amd64_get_longjmp_target);
2691 set_gdbarch_relocate_instruction (gdbarch, amd64_relocate_instruction);
2693 set_gdbarch_gen_return_address (gdbarch, amd64_gen_return_address);
2696 /* Provide a prototype to silence -Wmissing-prototypes. */
2697 void _initialize_amd64_tdep (void);
2700 _initialize_amd64_tdep (void)
2702 initialize_tdesc_amd64 ();
2703 initialize_tdesc_amd64_avx ();
2707 /* The 64-bit FXSAVE format differs from the 32-bit format in the
2708 sense that the instruction pointer and data pointer are simply
2709 64-bit offsets into the code segment and the data segment instead
2710 of a selector offset pair. The functions below store the upper 32
2711 bits of these pointers (instead of just the 16-bits of the segment
2714 /* Fill register REGNUM in REGCACHE with the appropriate
2715 floating-point or SSE register value from *FXSAVE. If REGNUM is
2716 -1, do this for all registers. This function masks off any of the
2717 reserved bits in *FXSAVE. */
2720 amd64_supply_fxsave (struct regcache *regcache, int regnum,
2723 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2724 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2726 i387_supply_fxsave (regcache, regnum, fxsave);
2728 if (fxsave && gdbarch_ptr_bit (gdbarch) == 64)
2730 const gdb_byte *regs = fxsave;
2732 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
2733 regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
2734 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
2735 regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
2739 /* Similar to amd64_supply_fxsave, but use XSAVE extended state. */
2742 amd64_supply_xsave (struct regcache *regcache, int regnum,
2745 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2746 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2748 i387_supply_xsave (regcache, regnum, xsave);
2750 if (xsave && gdbarch_ptr_bit (gdbarch) == 64)
2752 const gdb_byte *regs = xsave;
2754 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
2755 regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep),
2757 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
2758 regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep),
2763 /* Fill register REGNUM (if it is a floating-point or SSE register) in
2764 *FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for
2765 all registers. This function doesn't touch any of the reserved
2769 amd64_collect_fxsave (const struct regcache *regcache, int regnum,
2772 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2773 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2774 gdb_byte *regs = fxsave;
2776 i387_collect_fxsave (regcache, regnum, fxsave);
2778 if (gdbarch_ptr_bit (gdbarch) == 64)
2780 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
2781 regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
2782 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
2783 regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
2787 /* Similar to amd64_collect_fxsave, but use XSAVE extended state. */
2790 amd64_collect_xsave (const struct regcache *regcache, int regnum,
2791 void *xsave, int gcore)
2793 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2794 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2795 gdb_byte *regs = xsave;
2797 i387_collect_xsave (regcache, regnum, xsave, gcore);
2799 if (gdbarch_ptr_bit (gdbarch) == 64)
2801 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
2802 regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep),
2804 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
2805 regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep),