1 /* Target-dependent code for AMD64.
3 Copyright 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4 Contributed by Jiri Smid, SuSE Labs.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
24 #include "arch-utils.h"
26 #include "dummy-frame.h"
28 #include "frame-base.h"
29 #include "frame-unwind.h"
38 #include "gdb_assert.h"
40 #include "amd64-tdep.h"
41 #include "i387-tdep.h"
43 /* Note that the AMD64 architecture was previously known as x86-64.
44 The latter is (forever) engraved into the canonical system name as
45 returned by config.guess, and used as the name for the AMD64 port
46 of GNU/Linux. The BSD's have renamed their ports to amd64; they
47 don't like to shout. For GDB we prefer the amd64_-prefix over the
48 x86_64_-prefix since it's so much easier to type. */
50 /* Register information. */
52 struct amd64_register_info
58 static struct amd64_register_info amd64_register_info[] =
60 { "rax", &builtin_type_int64 },
61 { "rbx", &builtin_type_int64 },
62 { "rcx", &builtin_type_int64 },
63 { "rdx", &builtin_type_int64 },
64 { "rsi", &builtin_type_int64 },
65 { "rdi", &builtin_type_int64 },
66 { "rbp", &builtin_type_void_data_ptr },
67 { "rsp", &builtin_type_void_data_ptr },
69 /* %r8 is indeed register number 8. */
70 { "r8", &builtin_type_int64 },
71 { "r9", &builtin_type_int64 },
72 { "r10", &builtin_type_int64 },
73 { "r11", &builtin_type_int64 },
74 { "r12", &builtin_type_int64 },
75 { "r13", &builtin_type_int64 },
76 { "r14", &builtin_type_int64 },
77 { "r15", &builtin_type_int64 },
78 { "rip", &builtin_type_void_func_ptr },
79 { "eflags", &builtin_type_int32 },
80 { "cs", &builtin_type_int32 },
81 { "ss", &builtin_type_int32 },
82 { "ds", &builtin_type_int32 },
83 { "es", &builtin_type_int32 },
84 { "fs", &builtin_type_int32 },
85 { "gs", &builtin_type_int32 },
87 /* %st0 is register number 24. */
88 { "st0", &builtin_type_i387_ext },
89 { "st1", &builtin_type_i387_ext },
90 { "st2", &builtin_type_i387_ext },
91 { "st3", &builtin_type_i387_ext },
92 { "st4", &builtin_type_i387_ext },
93 { "st5", &builtin_type_i387_ext },
94 { "st6", &builtin_type_i387_ext },
95 { "st7", &builtin_type_i387_ext },
96 { "fctrl", &builtin_type_int32 },
97 { "fstat", &builtin_type_int32 },
98 { "ftag", &builtin_type_int32 },
99 { "fiseg", &builtin_type_int32 },
100 { "fioff", &builtin_type_int32 },
101 { "foseg", &builtin_type_int32 },
102 { "fooff", &builtin_type_int32 },
103 { "fop", &builtin_type_int32 },
105 /* %xmm0 is register number 40. */
106 { "xmm0", &builtin_type_v4sf },
107 { "xmm1", &builtin_type_v4sf },
108 { "xmm2", &builtin_type_v4sf },
109 { "xmm3", &builtin_type_v4sf },
110 { "xmm4", &builtin_type_v4sf },
111 { "xmm5", &builtin_type_v4sf },
112 { "xmm6", &builtin_type_v4sf },
113 { "xmm7", &builtin_type_v4sf },
114 { "xmm8", &builtin_type_v4sf },
115 { "xmm9", &builtin_type_v4sf },
116 { "xmm10", &builtin_type_v4sf },
117 { "xmm11", &builtin_type_v4sf },
118 { "xmm12", &builtin_type_v4sf },
119 { "xmm13", &builtin_type_v4sf },
120 { "xmm14", &builtin_type_v4sf },
121 { "xmm15", &builtin_type_v4sf },
122 { "mxcsr", &builtin_type_int32 }
125 /* Total number of registers. */
126 #define AMD64_NUM_REGS \
127 (sizeof (amd64_register_info) / sizeof (amd64_register_info[0]))
129 /* Return the name of register REGNUM. */
132 amd64_register_name (int regnum)
134 if (regnum >= 0 && regnum < AMD64_NUM_REGS)
135 return amd64_register_info[regnum].name;
140 /* Return the GDB type object for the "standard" data type of data in
144 amd64_register_type (struct gdbarch *gdbarch, int regnum)
146 gdb_assert (regnum >= 0 && regnum < AMD64_NUM_REGS);
148 return *amd64_register_info[regnum].type;
151 /* DWARF Register Number Mapping as defined in the System V psABI,
154 static int amd64_dwarf_regmap[] =
156 /* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI. */
157 AMD64_RAX_REGNUM, AMD64_RDX_REGNUM,
158 AMD64_RCX_REGNUM, AMD64_RBX_REGNUM,
159 AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
161 /* Frame Pointer Register RBP. */
164 /* Stack Pointer Register RSP. */
167 /* Extended Integer Registers 8 - 15. */
168 8, 9, 10, 11, 12, 13, 14, 15,
170 /* Return Address RA. Mapped to RIP. */
173 /* SSE Registers 0 - 7. */
174 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
175 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
176 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
177 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
179 /* Extended SSE Registers 8 - 15. */
180 AMD64_XMM0_REGNUM + 8, AMD64_XMM0_REGNUM + 9,
181 AMD64_XMM0_REGNUM + 10, AMD64_XMM0_REGNUM + 11,
182 AMD64_XMM0_REGNUM + 12, AMD64_XMM0_REGNUM + 13,
183 AMD64_XMM0_REGNUM + 14, AMD64_XMM0_REGNUM + 15,
185 /* Floating Point Registers 0-7. */
186 AMD64_ST0_REGNUM + 0, AMD64_ST0_REGNUM + 1,
187 AMD64_ST0_REGNUM + 2, AMD64_ST0_REGNUM + 3,
188 AMD64_ST0_REGNUM + 4, AMD64_ST0_REGNUM + 5,
189 AMD64_ST0_REGNUM + 6, AMD64_ST0_REGNUM + 7
192 static const int amd64_dwarf_regmap_len =
193 (sizeof (amd64_dwarf_regmap) / sizeof (amd64_dwarf_regmap[0]));
195 /* Convert DWARF register number REG to the appropriate register
196 number used by GDB. */
199 amd64_dwarf_reg_to_regnum (int reg)
203 if (reg >= 0 || reg < amd64_dwarf_regmap_len)
204 regnum = amd64_dwarf_regmap[reg];
207 warning ("Unmapped DWARF Register #%d encountered\n", reg);
212 /* Return nonzero if a value of type TYPE stored in register REGNUM
213 needs any special handling. */
216 amd64_convert_register_p (int regnum, struct type *type)
218 return i386_fp_regnum_p (regnum);
222 /* Register classes as defined in the psABI. */
236 /* Return the union class of CLASS1 and CLASS2. See the psABI for
239 static enum amd64_reg_class
240 amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2)
242 /* Rule (a): If both classes are equal, this is the resulting class. */
243 if (class1 == class2)
246 /* Rule (b): If one of the classes is NO_CLASS, the resulting class
247 is the other class. */
248 if (class1 == AMD64_NO_CLASS)
250 if (class2 == AMD64_NO_CLASS)
253 /* Rule (c): If one of the classes is MEMORY, the result is MEMORY. */
254 if (class1 == AMD64_MEMORY || class2 == AMD64_MEMORY)
257 /* Rule (d): If one of the classes is INTEGER, the result is INTEGER. */
258 if (class1 == AMD64_INTEGER || class2 == AMD64_INTEGER)
259 return AMD64_INTEGER;
261 /* Rule (e): If one of the classes is X87, X87UP, COMPLEX_X87 class,
262 MEMORY is used as class. */
263 if (class1 == AMD64_X87 || class1 == AMD64_X87UP
264 || class1 == AMD64_COMPLEX_X87 || class2 == AMD64_X87
265 || class2 == AMD64_X87UP || class2 == AMD64_COMPLEX_X87)
268 /* Rule (f): Otherwise class SSE is used. */
272 static void amd64_classify (struct type *type, enum amd64_reg_class class[2]);
274 /* Return non-zero if TYPE is a non-POD structure or union type. */
277 amd64_non_pod_p (struct type *type)
279 /* ??? A class with a base class certainly isn't POD, but does this
280 catch all non-POD structure types? */
281 if (TYPE_CODE (type) == TYPE_CODE_STRUCT && TYPE_N_BASECLASSES (type) > 0)
287 /* Classify TYPE according to the rules for aggregate (structures and
288 arrays) and union types, and store the result in CLASS. */
291 amd64_classify_aggregate (struct type *type, enum amd64_reg_class class[2])
293 int len = TYPE_LENGTH (type);
295 /* 1. If the size of an object is larger than two eightbytes, or in
296 C++, is a non-POD structure or union type, or contains
297 unaligned fields, it has class memory. */
298 if (len > 16 || amd64_non_pod_p (type))
300 class[0] = class[1] = AMD64_MEMORY;
304 /* 2. Both eightbytes get initialized to class NO_CLASS. */
305 class[0] = class[1] = AMD64_NO_CLASS;
307 /* 3. Each field of an object is classified recursively so that
308 always two fields are considered. The resulting class is
309 calculated according to the classes of the fields in the
312 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
314 struct type *subtype = check_typedef (TYPE_TARGET_TYPE (type));
316 /* All fields in an array have the same type. */
317 amd64_classify (subtype, class);
318 if (len > 8 && class[1] == AMD64_NO_CLASS)
325 /* Structure or union. */
326 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
327 || TYPE_CODE (type) == TYPE_CODE_UNION);
329 for (i = 0; i < TYPE_NFIELDS (type); i++)
331 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
332 int pos = TYPE_FIELD_BITPOS (type, i) / 64;
333 enum amd64_reg_class subclass[2];
335 /* Ignore static fields. */
336 if (TYPE_FIELD_STATIC (type, i))
339 gdb_assert (pos == 0 || pos == 1);
341 amd64_classify (subtype, subclass);
342 class[pos] = amd64_merge_classes (class[pos], subclass[0]);
344 class[1] = amd64_merge_classes (class[1], subclass[1]);
348 /* 4. Then a post merger cleanup is done: */
350 /* Rule (a): If one of the classes is MEMORY, the whole argument is
352 if (class[0] == AMD64_MEMORY || class[1] == AMD64_MEMORY)
353 class[0] = class[1] = AMD64_MEMORY;
355 /* Rule (b): If SSEUP is not preceeded by SSE, it is converted to
357 if (class[0] == AMD64_SSEUP)
358 class[0] = AMD64_SSE;
359 if (class[1] == AMD64_SSEUP && class[0] != AMD64_SSE)
360 class[1] = AMD64_SSE;
363 /* Classify TYPE, and store the result in CLASS. */
366 amd64_classify (struct type *type, enum amd64_reg_class class[2])
368 enum type_code code = TYPE_CODE (type);
369 int len = TYPE_LENGTH (type);
371 class[0] = class[1] = AMD64_NO_CLASS;
373 /* Arguments of types (signed and unsigned) _Bool, char, short, int,
374 long, long long, and pointers are in the INTEGER class. Similarly,
375 range types, used by languages such as Ada, are also in the INTEGER
377 if ((code == TYPE_CODE_INT || code == TYPE_CODE_ENUM
378 || code == TYPE_CODE_RANGE
379 || code == TYPE_CODE_PTR || code == TYPE_CODE_REF)
380 && (len == 1 || len == 2 || len == 4 || len == 8))
381 class[0] = AMD64_INTEGER;
383 /* Arguments of types float, double and __m64 are in class SSE. */
384 else if (code == TYPE_CODE_FLT && (len == 4 || len == 8))
386 class[0] = AMD64_SSE;
388 /* Arguments of types __float128 and __m128 are split into two
389 halves. The least significant ones belong to class SSE, the most
390 significant one to class SSEUP. */
391 /* FIXME: __float128, __m128. */
393 /* The 64-bit mantissa of arguments of type long double belongs to
394 class X87, the 16-bit exponent plus 6 bytes of padding belongs to
396 else if (code == TYPE_CODE_FLT && len == 16)
397 /* Class X87 and X87UP. */
398 class[0] = AMD64_X87, class[1] = AMD64_X87UP;
401 else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT
402 || code == TYPE_CODE_UNION)
403 amd64_classify_aggregate (type, class);
406 static enum return_value_convention
407 amd64_return_value (struct gdbarch *gdbarch, struct type *type,
408 struct regcache *regcache,
409 void *readbuf, const void *writebuf)
411 enum amd64_reg_class class[2];
412 int len = TYPE_LENGTH (type);
413 static int integer_regnum[] = { AMD64_RAX_REGNUM, AMD64_RDX_REGNUM };
414 static int sse_regnum[] = { AMD64_XMM0_REGNUM, AMD64_XMM1_REGNUM };
419 gdb_assert (!(readbuf && writebuf));
421 /* 1. Classify the return type with the classification algorithm. */
422 amd64_classify (type, class);
424 /* 2. If the type has class MEMORY, then the caller provides space
425 for the return value and passes the address of this storage in
426 %rdi as if it were the first argument to the function. In effect,
427 this address becomes a hidden first argument.
429 On return %rax will contain the address that has been passed in
430 by the caller in %rdi. */
431 if (class[0] == AMD64_MEMORY)
433 /* As indicated by the comment above, the ABI guarantees that we
434 can always find the return value just after the function has
441 regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr);
442 read_memory (addr, readbuf, TYPE_LENGTH (type));
445 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
448 gdb_assert (class[1] != AMD64_MEMORY);
449 gdb_assert (len <= 16);
451 for (i = 0; len > 0; i++, len -= 8)
459 /* 3. If the class is INTEGER, the next available register
460 of the sequence %rax, %rdx is used. */
461 regnum = integer_regnum[integer_reg++];
465 /* 4. If the class is SSE, the next available SSE register
466 of the sequence %xmm0, %xmm1 is used. */
467 regnum = sse_regnum[sse_reg++];
471 /* 5. If the class is SSEUP, the eightbyte is passed in the
472 upper half of the last used SSE register. */
473 gdb_assert (sse_reg > 0);
474 regnum = sse_regnum[sse_reg - 1];
479 /* 6. If the class is X87, the value is returned on the X87
480 stack in %st0 as 80-bit x87 number. */
481 regnum = AMD64_ST0_REGNUM;
483 i387_return_value (gdbarch, regcache);
487 /* 7. If the class is X87UP, the value is returned together
488 with the previous X87 value in %st0. */
489 gdb_assert (i > 0 && class[0] == AMD64_X87);
490 regnum = AMD64_ST0_REGNUM;
499 gdb_assert (!"Unexpected register class.");
502 gdb_assert (regnum != -1);
505 regcache_raw_read_part (regcache, regnum, offset, min (len, 8),
506 (char *) readbuf + i * 8);
508 regcache_raw_write_part (regcache, regnum, offset, min (len, 8),
509 (const char *) writebuf + i * 8);
512 return RETURN_VALUE_REGISTER_CONVENTION;
517 amd64_push_arguments (struct regcache *regcache, int nargs,
518 struct value **args, CORE_ADDR sp, int struct_return)
520 static int integer_regnum[] =
522 AMD64_RDI_REGNUM, /* %rdi */
523 AMD64_RSI_REGNUM, /* %rsi */
524 AMD64_RDX_REGNUM, /* %rdx */
525 AMD64_RCX_REGNUM, /* %rcx */
529 static int sse_regnum[] =
531 /* %xmm0 ... %xmm7 */
532 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
533 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
534 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
535 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
537 struct value **stack_args = alloca (nargs * sizeof (struct value *));
538 int num_stack_args = 0;
539 int num_elements = 0;
545 /* Reserve a register for the "hidden" argument. */
549 for (i = 0; i < nargs; i++)
551 struct type *type = value_type (args[i]);
552 int len = TYPE_LENGTH (type);
553 enum amd64_reg_class class[2];
554 int needed_integer_regs = 0;
555 int needed_sse_regs = 0;
558 /* Classify argument. */
559 amd64_classify (type, class);
561 /* Calculate the number of integer and SSE registers needed for
563 for (j = 0; j < 2; j++)
565 if (class[j] == AMD64_INTEGER)
566 needed_integer_regs++;
567 else if (class[j] == AMD64_SSE)
571 /* Check whether enough registers are available, and if the
572 argument should be passed in registers at all. */
573 if (integer_reg + needed_integer_regs > ARRAY_SIZE (integer_regnum)
574 || sse_reg + needed_sse_regs > ARRAY_SIZE (sse_regnum)
575 || (needed_integer_regs == 0 && needed_sse_regs == 0))
577 /* The argument will be passed on the stack. */
578 num_elements += ((len + 7) / 8);
579 stack_args[num_stack_args++] = args[i];
583 /* The argument will be passed in registers. */
584 char *valbuf = VALUE_CONTENTS (args[i]);
587 gdb_assert (len <= 16);
589 for (j = 0; len > 0; j++, len -= 8)
597 regnum = integer_regnum[integer_reg++];
601 regnum = sse_regnum[sse_reg++];
605 gdb_assert (sse_reg > 0);
606 regnum = sse_regnum[sse_reg - 1];
611 gdb_assert (!"Unexpected register class.");
614 gdb_assert (regnum != -1);
615 memset (buf, 0, sizeof buf);
616 memcpy (buf, valbuf + j * 8, min (len, 8));
617 regcache_raw_write_part (regcache, regnum, offset, 8, buf);
622 /* Allocate space for the arguments on the stack. */
623 sp -= num_elements * 8;
625 /* The psABI says that "The end of the input argument area shall be
626 aligned on a 16 byte boundary." */
629 /* Write out the arguments to the stack. */
630 for (i = 0; i < num_stack_args; i++)
632 struct type *type = value_type (stack_args[i]);
633 char *valbuf = VALUE_CONTENTS (stack_args[i]);
634 int len = TYPE_LENGTH (type);
636 write_memory (sp + element * 8, valbuf, len);
637 element += ((len + 7) / 8);
640 /* The psABI says that "For calls that may call functions that use
641 varargs or stdargs (prototype-less calls or calls to functions
642 containing ellipsis (...) in the declaration) %al is used as
643 hidden argument to specify the number of SSE registers used. */
644 regcache_raw_write_unsigned (regcache, AMD64_RAX_REGNUM, sse_reg);
649 amd64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
650 struct regcache *regcache, CORE_ADDR bp_addr,
651 int nargs, struct value **args, CORE_ADDR sp,
652 int struct_return, CORE_ADDR struct_addr)
656 /* Pass arguments. */
657 sp = amd64_push_arguments (regcache, nargs, args, sp, struct_return);
659 /* Pass "hidden" argument". */
662 store_unsigned_integer (buf, 8, struct_addr);
663 regcache_cooked_write (regcache, AMD64_RDI_REGNUM, buf);
666 /* Store return address. */
668 store_unsigned_integer (buf, 8, bp_addr);
669 write_memory (sp, buf, 8);
671 /* Finally, update the stack pointer... */
672 store_unsigned_integer (buf, 8, sp);
673 regcache_cooked_write (regcache, AMD64_RSP_REGNUM, buf);
675 /* ...and fake a frame pointer. */
676 regcache_cooked_write (regcache, AMD64_RBP_REGNUM, buf);
682 /* The maximum number of saved registers. This should include %rip. */
683 #define AMD64_NUM_SAVED_REGS AMD64_NUM_GREGS
685 struct amd64_frame_cache
692 /* Saved registers. */
693 CORE_ADDR saved_regs[AMD64_NUM_SAVED_REGS];
696 /* Do we have a frame? */
700 /* Allocate and initialize a frame cache. */
702 static struct amd64_frame_cache *
703 amd64_alloc_frame_cache (void)
705 struct amd64_frame_cache *cache;
708 cache = FRAME_OBSTACK_ZALLOC (struct amd64_frame_cache);
712 cache->sp_offset = -8;
715 /* Saved registers. We initialize these to -1 since zero is a valid
716 offset (that's where %rbp is supposed to be stored). */
717 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
718 cache->saved_regs[i] = -1;
721 /* Frameless until proven otherwise. */
722 cache->frameless_p = 1;
727 /* Do a limited analysis of the prologue at PC and update CACHE
728 accordingly. Bail out early if CURRENT_PC is reached. Return the
729 address where the analysis stopped.
731 We will handle only functions beginning with:
734 movq %rsp, %rbp 0x48 0x89 0xe5
736 Any function that doesn't start with this sequence will be assumed
737 to have no prologue and thus no valid frame pointer in %rbp. */
740 amd64_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
741 struct amd64_frame_cache *cache)
743 static unsigned char proto[3] = { 0x48, 0x89, 0xe5 };
744 unsigned char buf[3];
747 if (current_pc <= pc)
750 op = read_memory_unsigned_integer (pc, 1);
752 if (op == 0x55) /* pushq %rbp */
754 /* Take into account that we've executed the `pushq %rbp' that
755 starts this instruction sequence. */
756 cache->saved_regs[AMD64_RBP_REGNUM] = 0;
757 cache->sp_offset += 8;
759 /* If that's all, return now. */
760 if (current_pc <= pc + 1)
763 /* Check for `movq %rsp, %rbp'. */
764 read_memory (pc + 1, buf, 3);
765 if (memcmp (buf, proto, 3) != 0)
768 /* OK, we actually have a frame. */
769 cache->frameless_p = 0;
776 /* Return PC of first real instruction. */
779 amd64_skip_prologue (CORE_ADDR start_pc)
781 struct amd64_frame_cache cache;
784 pc = amd64_analyze_prologue (start_pc, 0xffffffffffffffffLL, &cache);
785 if (cache.frameless_p)
794 static struct amd64_frame_cache *
795 amd64_frame_cache (struct frame_info *next_frame, void **this_cache)
797 struct amd64_frame_cache *cache;
804 cache = amd64_alloc_frame_cache ();
807 cache->pc = frame_func_unwind (next_frame);
809 amd64_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
811 if (cache->frameless_p)
813 /* We didn't find a valid frame. If we're at the start of a
814 function, or somewhere half-way its prologue, the function's
815 frame probably hasn't been fully setup yet. Try to
816 reconstruct the base address for the stack frame by looking
817 at the stack pointer. For truly "frameless" functions this
820 frame_unwind_register (next_frame, AMD64_RSP_REGNUM, buf);
821 cache->base = extract_unsigned_integer (buf, 8) + cache->sp_offset;
825 frame_unwind_register (next_frame, AMD64_RBP_REGNUM, buf);
826 cache->base = extract_unsigned_integer (buf, 8);
829 /* Now that we have the base address for the stack frame we can
830 calculate the value of %rsp in the calling frame. */
831 cache->saved_sp = cache->base + 16;
833 /* For normal frames, %rip is stored at 8(%rbp). If we don't have a
834 frame we find it at the same offset from the reconstructed base
836 cache->saved_regs[AMD64_RIP_REGNUM] = 8;
838 /* Adjust all the saved registers such that they contain addresses
839 instead of offsets. */
840 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
841 if (cache->saved_regs[i] != -1)
842 cache->saved_regs[i] += cache->base;
848 amd64_frame_this_id (struct frame_info *next_frame, void **this_cache,
849 struct frame_id *this_id)
851 struct amd64_frame_cache *cache =
852 amd64_frame_cache (next_frame, this_cache);
854 /* This marks the outermost frame. */
855 if (cache->base == 0)
858 (*this_id) = frame_id_build (cache->base + 16, cache->pc);
862 amd64_frame_prev_register (struct frame_info *next_frame, void **this_cache,
863 int regnum, int *optimizedp,
864 enum lval_type *lvalp, CORE_ADDR *addrp,
865 int *realnump, void *valuep)
867 struct amd64_frame_cache *cache =
868 amd64_frame_cache (next_frame, this_cache);
870 gdb_assert (regnum >= 0);
872 if (regnum == SP_REGNUM && cache->saved_sp)
880 /* Store the value. */
881 store_unsigned_integer (valuep, 8, cache->saved_sp);
886 if (regnum < AMD64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
889 *lvalp = lval_memory;
890 *addrp = cache->saved_regs[regnum];
894 /* Read the value in from memory. */
895 read_memory (*addrp, valuep,
896 register_size (current_gdbarch, regnum));
902 *lvalp = lval_register;
906 frame_unwind_register (next_frame, (*realnump), valuep);
909 static const struct frame_unwind amd64_frame_unwind =
913 amd64_frame_prev_register
916 static const struct frame_unwind *
917 amd64_frame_sniffer (struct frame_info *next_frame)
919 return &amd64_frame_unwind;
923 /* Signal trampolines. */
925 /* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and
926 64-bit variants. This would require using identical frame caches
927 on both platforms. */
929 static struct amd64_frame_cache *
930 amd64_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache)
932 struct amd64_frame_cache *cache;
933 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
941 cache = amd64_alloc_frame_cache ();
943 frame_unwind_register (next_frame, AMD64_RSP_REGNUM, buf);
944 cache->base = extract_unsigned_integer (buf, 8) - 8;
946 addr = tdep->sigcontext_addr (next_frame);
947 gdb_assert (tdep->sc_reg_offset);
948 gdb_assert (tdep->sc_num_regs <= AMD64_NUM_SAVED_REGS);
949 for (i = 0; i < tdep->sc_num_regs; i++)
950 if (tdep->sc_reg_offset[i] != -1)
951 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
958 amd64_sigtramp_frame_this_id (struct frame_info *next_frame,
959 void **this_cache, struct frame_id *this_id)
961 struct amd64_frame_cache *cache =
962 amd64_sigtramp_frame_cache (next_frame, this_cache);
964 (*this_id) = frame_id_build (cache->base + 16, frame_pc_unwind (next_frame));
968 amd64_sigtramp_frame_prev_register (struct frame_info *next_frame,
970 int regnum, int *optimizedp,
971 enum lval_type *lvalp, CORE_ADDR *addrp,
972 int *realnump, void *valuep)
974 /* Make sure we've initialized the cache. */
975 amd64_sigtramp_frame_cache (next_frame, this_cache);
977 amd64_frame_prev_register (next_frame, this_cache, regnum,
978 optimizedp, lvalp, addrp, realnump, valuep);
981 static const struct frame_unwind amd64_sigtramp_frame_unwind =
984 amd64_sigtramp_frame_this_id,
985 amd64_sigtramp_frame_prev_register
988 static const struct frame_unwind *
989 amd64_sigtramp_frame_sniffer (struct frame_info *next_frame)
991 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame));
993 /* We shouldn't even bother if we don't have a sigcontext_addr
995 if (tdep->sigcontext_addr == NULL)
998 if (tdep->sigtramp_p != NULL)
1000 if (tdep->sigtramp_p (next_frame))
1001 return &amd64_sigtramp_frame_unwind;
1004 if (tdep->sigtramp_start != 0)
1006 CORE_ADDR pc = frame_pc_unwind (next_frame);
1008 gdb_assert (tdep->sigtramp_end != 0);
1009 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
1010 return &amd64_sigtramp_frame_unwind;
1018 amd64_frame_base_address (struct frame_info *next_frame, void **this_cache)
1020 struct amd64_frame_cache *cache =
1021 amd64_frame_cache (next_frame, this_cache);
1026 static const struct frame_base amd64_frame_base =
1028 &amd64_frame_unwind,
1029 amd64_frame_base_address,
1030 amd64_frame_base_address,
1031 amd64_frame_base_address
1034 static struct frame_id
1035 amd64_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1040 frame_unwind_register (next_frame, AMD64_RBP_REGNUM, buf);
1041 fp = extract_unsigned_integer (buf, 8);
1043 return frame_id_build (fp + 16, frame_pc_unwind (next_frame));
1046 /* 16 byte align the SP per frame requirements. */
1049 amd64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1051 return sp & -(CORE_ADDR)16;
1055 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
1056 in the floating-point register set REGSET to register cache
1057 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
1060 amd64_supply_fpregset (const struct regset *regset, struct regcache *regcache,
1061 int regnum, const void *fpregs, size_t len)
1063 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
1065 gdb_assert (len == tdep->sizeof_fpregset);
1066 amd64_supply_fxsave (regcache, regnum, fpregs);
1069 /* Collect register REGNUM from the register cache REGCACHE and store
1070 it in the buffer specified by FPREGS and LEN as described by the
1071 floating-point register set REGSET. If REGNUM is -1, do this for
1072 all registers in REGSET. */
1075 amd64_collect_fpregset (const struct regset *regset,
1076 const struct regcache *regcache,
1077 int regnum, void *fpregs, size_t len)
1079 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
1081 gdb_assert (len == tdep->sizeof_fpregset);
1082 amd64_collect_fxsave (regcache, regnum, fpregs);
1085 /* Return the appropriate register set for the core section identified
1086 by SECT_NAME and SECT_SIZE. */
1088 static const struct regset *
1089 amd64_regset_from_core_section (struct gdbarch *gdbarch,
1090 const char *sect_name, size_t sect_size)
1092 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1094 if (strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
1096 if (tdep->fpregset == NULL)
1097 tdep->fpregset = regset_alloc (gdbarch, amd64_supply_fpregset,
1098 amd64_collect_fpregset);
1100 return tdep->fpregset;
1103 return i386_regset_from_core_section (gdbarch, sect_name, sect_size);
1108 amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1110 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1112 /* AMD64 generally uses `fxsave' instead of `fsave' for saving its
1113 floating-point registers. */
1114 tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE;
1116 /* AMD64 has an FPU and 16 SSE registers. */
1117 tdep->st0_regnum = AMD64_ST0_REGNUM;
1118 tdep->num_xmm_regs = 16;
1120 /* This is what all the fuss is about. */
1121 set_gdbarch_long_bit (gdbarch, 64);
1122 set_gdbarch_long_long_bit (gdbarch, 64);
1123 set_gdbarch_ptr_bit (gdbarch, 64);
1125 /* In contrast to the i386, on AMD64 a `long double' actually takes
1126 up 128 bits, even though it's still based on the i387 extended
1127 floating-point format which has only 80 significant bits. */
1128 set_gdbarch_long_double_bit (gdbarch, 128);
1130 set_gdbarch_num_regs (gdbarch, AMD64_NUM_REGS);
1131 set_gdbarch_register_name (gdbarch, amd64_register_name);
1132 set_gdbarch_register_type (gdbarch, amd64_register_type);
1134 /* Register numbers of various important registers. */
1135 set_gdbarch_sp_regnum (gdbarch, AMD64_RSP_REGNUM); /* %rsp */
1136 set_gdbarch_pc_regnum (gdbarch, AMD64_RIP_REGNUM); /* %rip */
1137 set_gdbarch_ps_regnum (gdbarch, AMD64_EFLAGS_REGNUM); /* %eflags */
1138 set_gdbarch_fp0_regnum (gdbarch, AMD64_ST0_REGNUM); /* %st(0) */
1140 /* The "default" register numbering scheme for AMD64 is referred to
1141 as the "DWARF Register Number Mapping" in the System V psABI.
1142 The preferred debugging format for all known AMD64 targets is
1143 actually DWARF2, and GCC doesn't seem to support DWARF (that is
1144 DWARF-1), but we provide the same mapping just in case. This
1145 mapping is also used for stabs, which GCC does support. */
1146 set_gdbarch_stab_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
1147 set_gdbarch_dwarf_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
1148 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
1150 /* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to
1151 be in use on any of the supported AMD64 targets. */
1153 /* Call dummy code. */
1154 set_gdbarch_push_dummy_call (gdbarch, amd64_push_dummy_call);
1155 set_gdbarch_frame_align (gdbarch, amd64_frame_align);
1156 set_gdbarch_frame_red_zone_size (gdbarch, 128);
1158 set_gdbarch_convert_register_p (gdbarch, amd64_convert_register_p);
1159 set_gdbarch_register_to_value (gdbarch, i387_register_to_value);
1160 set_gdbarch_value_to_register (gdbarch, i387_value_to_register);
1162 set_gdbarch_return_value (gdbarch, amd64_return_value);
1164 set_gdbarch_skip_prologue (gdbarch, amd64_skip_prologue);
1166 /* Avoid wiring in the MMX registers for now. */
1167 set_gdbarch_num_pseudo_regs (gdbarch, 0);
1168 tdep->mm0_regnum = -1;
1170 set_gdbarch_unwind_dummy_id (gdbarch, amd64_unwind_dummy_id);
1172 frame_unwind_append_sniffer (gdbarch, amd64_sigtramp_frame_sniffer);
1173 frame_unwind_append_sniffer (gdbarch, amd64_frame_sniffer);
1174 frame_base_set_default (gdbarch, &amd64_frame_base);
1176 /* If we have a register mapping, enable the generic core file support. */
1177 if (tdep->gregset_reg_offset)
1178 set_gdbarch_regset_from_core_section (gdbarch,
1179 amd64_regset_from_core_section);
1183 #define I387_ST0_REGNUM AMD64_ST0_REGNUM
1185 /* The 64-bit FXSAVE format differs from the 32-bit format in the
1186 sense that the instruction pointer and data pointer are simply
1187 64-bit offsets into the code segment and the data segment instead
1188 of a selector offset pair. The functions below store the upper 32
1189 bits of these pointers (instead of just the 16-bits of the segment
1192 /* Fill register REGNUM in REGCACHE with the appropriate
1193 floating-point or SSE register value from *FXSAVE. If REGNUM is
1194 -1, do this for all registers. This function masks off any of the
1195 reserved bits in *FXSAVE. */
1198 amd64_supply_fxsave (struct regcache *regcache, int regnum,
1201 i387_supply_fxsave (regcache, regnum, fxsave);
1203 if (fxsave && gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
1205 const char *regs = fxsave;
1207 if (regnum == -1 || regnum == I387_FISEG_REGNUM)
1208 regcache_raw_supply (regcache, I387_FISEG_REGNUM, regs + 12);
1209 if (regnum == -1 || regnum == I387_FOSEG_REGNUM)
1210 regcache_raw_supply (regcache, I387_FOSEG_REGNUM, regs + 20);
1214 /* Fill register REGNUM (if it is a floating-point or SSE register) in
1215 *FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for
1216 all registers. This function doesn't touch any of the reserved
1220 amd64_collect_fxsave (const struct regcache *regcache, int regnum,
1223 char *regs = fxsave;
1225 i387_collect_fxsave (regcache, regnum, fxsave);
1227 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
1229 if (regnum == -1 || regnum == I387_FISEG_REGNUM)
1230 regcache_raw_collect (regcache, I387_FISEG_REGNUM, regs + 12);
1231 if (regnum == -1 || regnum == I387_FOSEG_REGNUM)
1232 regcache_raw_collect (regcache, I387_FOSEG_REGNUM, regs + 20);