1 /* Target-dependent code for AMD64.
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011 Free Software Foundation, Inc.
6 Contributed by Jiri Smid, SuSE Labs.
8 This file is part of GDB.
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "opcode/i386.h"
26 #include "arch-utils.h"
28 #include "dummy-frame.h"
30 #include "frame-base.h"
31 #include "frame-unwind.h"
40 #include "gdb_assert.h"
42 #include "amd64-tdep.h"
43 #include "i387-tdep.h"
45 #include "features/i386/amd64.c"
46 #include "features/i386/amd64-avx.c"
48 /* Note that the AMD64 architecture was previously known as x86-64.
49 The latter is (forever) engraved into the canonical system name as
50 returned by config.guess, and used as the name for the AMD64 port
51 of GNU/Linux. The BSD's have renamed their ports to amd64; they
52 don't like to shout. For GDB we prefer the amd64_-prefix over the
53 x86_64_-prefix since it's so much easier to type. */
55 /* Register information. */
57 static const char *amd64_register_names[] =
59 "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "rsp",
61 /* %r8 is indeed register number 8. */
62 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
63 "rip", "eflags", "cs", "ss", "ds", "es", "fs", "gs",
65 /* %st0 is register number 24. */
66 "st0", "st1", "st2", "st3", "st4", "st5", "st6", "st7",
67 "fctrl", "fstat", "ftag", "fiseg", "fioff", "foseg", "fooff", "fop",
69 /* %xmm0 is register number 40. */
70 "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7",
71 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15",
75 static const char *amd64_ymm_names[] =
77 "ymm0", "ymm1", "ymm2", "ymm3",
78 "ymm4", "ymm5", "ymm6", "ymm7",
79 "ymm8", "ymm9", "ymm10", "ymm11",
80 "ymm12", "ymm13", "ymm14", "ymm15"
83 static const char *amd64_ymmh_names[] =
85 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
86 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
87 "ymm8h", "ymm9h", "ymm10h", "ymm11h",
88 "ymm12h", "ymm13h", "ymm14h", "ymm15h"
91 /* The registers used to pass integer arguments during a function call. */
92 static int amd64_dummy_call_integer_regs[] =
94 AMD64_RDI_REGNUM, /* %rdi */
95 AMD64_RSI_REGNUM, /* %rsi */
96 AMD64_RDX_REGNUM, /* %rdx */
97 AMD64_RCX_REGNUM, /* %rcx */
102 /* DWARF Register Number Mapping as defined in the System V psABI,
105 static int amd64_dwarf_regmap[] =
107 /* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI. */
108 AMD64_RAX_REGNUM, AMD64_RDX_REGNUM,
109 AMD64_RCX_REGNUM, AMD64_RBX_REGNUM,
110 AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
112 /* Frame Pointer Register RBP. */
115 /* Stack Pointer Register RSP. */
118 /* Extended Integer Registers 8 - 15. */
119 8, 9, 10, 11, 12, 13, 14, 15,
121 /* Return Address RA. Mapped to RIP. */
124 /* SSE Registers 0 - 7. */
125 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
126 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
127 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
128 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
130 /* Extended SSE Registers 8 - 15. */
131 AMD64_XMM0_REGNUM + 8, AMD64_XMM0_REGNUM + 9,
132 AMD64_XMM0_REGNUM + 10, AMD64_XMM0_REGNUM + 11,
133 AMD64_XMM0_REGNUM + 12, AMD64_XMM0_REGNUM + 13,
134 AMD64_XMM0_REGNUM + 14, AMD64_XMM0_REGNUM + 15,
136 /* Floating Point Registers 0-7. */
137 AMD64_ST0_REGNUM + 0, AMD64_ST0_REGNUM + 1,
138 AMD64_ST0_REGNUM + 2, AMD64_ST0_REGNUM + 3,
139 AMD64_ST0_REGNUM + 4, AMD64_ST0_REGNUM + 5,
140 AMD64_ST0_REGNUM + 6, AMD64_ST0_REGNUM + 7,
142 /* Control and Status Flags Register. */
145 /* Selector Registers. */
155 /* Segment Base Address Registers. */
161 /* Special Selector Registers. */
165 /* Floating Point Control Registers. */
171 static const int amd64_dwarf_regmap_len =
172 (sizeof (amd64_dwarf_regmap) / sizeof (amd64_dwarf_regmap[0]));
174 /* Convert DWARF register number REG to the appropriate register
175 number used by GDB. */
178 amd64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
180 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
181 int ymm0_regnum = tdep->ymm0_regnum;
184 if (reg >= 0 && reg < amd64_dwarf_regmap_len)
185 regnum = amd64_dwarf_regmap[reg];
188 warning (_("Unmapped DWARF Register #%d encountered."), reg);
189 else if (ymm0_regnum >= 0
190 && i386_xmm_regnum_p (gdbarch, regnum))
191 regnum += ymm0_regnum - I387_XMM0_REGNUM (tdep);
196 /* Map architectural register numbers to gdb register numbers. */
198 static const int amd64_arch_regmap[16] =
200 AMD64_RAX_REGNUM, /* %rax */
201 AMD64_RCX_REGNUM, /* %rcx */
202 AMD64_RDX_REGNUM, /* %rdx */
203 AMD64_RBX_REGNUM, /* %rbx */
204 AMD64_RSP_REGNUM, /* %rsp */
205 AMD64_RBP_REGNUM, /* %rbp */
206 AMD64_RSI_REGNUM, /* %rsi */
207 AMD64_RDI_REGNUM, /* %rdi */
208 AMD64_R8_REGNUM, /* %r8 */
209 AMD64_R9_REGNUM, /* %r9 */
210 AMD64_R10_REGNUM, /* %r10 */
211 AMD64_R11_REGNUM, /* %r11 */
212 AMD64_R12_REGNUM, /* %r12 */
213 AMD64_R13_REGNUM, /* %r13 */
214 AMD64_R14_REGNUM, /* %r14 */
215 AMD64_R15_REGNUM /* %r15 */
218 static const int amd64_arch_regmap_len =
219 (sizeof (amd64_arch_regmap) / sizeof (amd64_arch_regmap[0]));
221 /* Convert architectural register number REG to the appropriate register
222 number used by GDB. */
225 amd64_arch_reg_to_regnum (int reg)
227 gdb_assert (reg >= 0 && reg < amd64_arch_regmap_len);
229 return amd64_arch_regmap[reg];
232 /* Register names for byte pseudo-registers. */
234 static const char *amd64_byte_names[] =
236 "al", "bl", "cl", "dl", "sil", "dil", "bpl", "spl",
237 "r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l",
238 "ah", "bh", "ch", "dh"
241 /* Number of lower byte registers. */
242 #define AMD64_NUM_LOWER_BYTE_REGS 16
244 /* Register names for word pseudo-registers. */
246 static const char *amd64_word_names[] =
248 "ax", "bx", "cx", "dx", "si", "di", "bp", "",
249 "r8w", "r9w", "r10w", "r11w", "r12w", "r13w", "r14w", "r15w"
252 /* Register names for dword pseudo-registers. */
254 static const char *amd64_dword_names[] =
256 "eax", "ebx", "ecx", "edx", "esi", "edi", "ebp", "esp",
257 "r8d", "r9d", "r10d", "r11d", "r12d", "r13d", "r14d", "r15d"
260 /* Return the name of register REGNUM. */
263 amd64_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
265 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
266 if (i386_byte_regnum_p (gdbarch, regnum))
267 return amd64_byte_names[regnum - tdep->al_regnum];
268 else if (i386_ymm_regnum_p (gdbarch, regnum))
269 return amd64_ymm_names[regnum - tdep->ymm0_regnum];
270 else if (i386_word_regnum_p (gdbarch, regnum))
271 return amd64_word_names[regnum - tdep->ax_regnum];
272 else if (i386_dword_regnum_p (gdbarch, regnum))
273 return amd64_dword_names[regnum - tdep->eax_regnum];
275 return i386_pseudo_register_name (gdbarch, regnum);
278 static enum register_status
279 amd64_pseudo_register_read (struct gdbarch *gdbarch,
280 struct regcache *regcache,
281 int regnum, gdb_byte *buf)
283 gdb_byte raw_buf[MAX_REGISTER_SIZE];
284 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
285 enum register_status status;
287 if (i386_byte_regnum_p (gdbarch, regnum))
289 int gpnum = regnum - tdep->al_regnum;
291 /* Extract (always little endian). */
292 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
294 /* Special handling for AH, BH, CH, DH. */
295 status = regcache_raw_read (regcache,
296 gpnum - AMD64_NUM_LOWER_BYTE_REGS,
298 if (status == REG_VALID)
299 memcpy (buf, raw_buf + 1, 1);
303 status = regcache_raw_read (regcache, gpnum, raw_buf);
304 if (status == REG_VALID)
305 memcpy (buf, raw_buf, 1);
310 else if (i386_dword_regnum_p (gdbarch, regnum))
312 int gpnum = regnum - tdep->eax_regnum;
313 /* Extract (always little endian). */
314 status = regcache_raw_read (regcache, gpnum, raw_buf);
315 if (status == REG_VALID)
316 memcpy (buf, raw_buf, 4);
321 return i386_pseudo_register_read (gdbarch, regcache, regnum, buf);
325 amd64_pseudo_register_write (struct gdbarch *gdbarch,
326 struct regcache *regcache,
327 int regnum, const gdb_byte *buf)
329 gdb_byte raw_buf[MAX_REGISTER_SIZE];
330 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
332 if (i386_byte_regnum_p (gdbarch, regnum))
334 int gpnum = regnum - tdep->al_regnum;
336 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
338 /* Read ... AH, BH, CH, DH. */
339 regcache_raw_read (regcache,
340 gpnum - AMD64_NUM_LOWER_BYTE_REGS, raw_buf);
341 /* ... Modify ... (always little endian). */
342 memcpy (raw_buf + 1, buf, 1);
344 regcache_raw_write (regcache,
345 gpnum - AMD64_NUM_LOWER_BYTE_REGS, raw_buf);
350 regcache_raw_read (regcache, gpnum, raw_buf);
351 /* ... Modify ... (always little endian). */
352 memcpy (raw_buf, buf, 1);
354 regcache_raw_write (regcache, gpnum, raw_buf);
357 else if (i386_dword_regnum_p (gdbarch, regnum))
359 int gpnum = regnum - tdep->eax_regnum;
362 regcache_raw_read (regcache, gpnum, raw_buf);
363 /* ... Modify ... (always little endian). */
364 memcpy (raw_buf, buf, 4);
366 regcache_raw_write (regcache, gpnum, raw_buf);
369 i386_pseudo_register_write (gdbarch, regcache, regnum, buf);
374 /* Return the union class of CLASS1 and CLASS2. See the psABI for
377 static enum amd64_reg_class
378 amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2)
380 /* Rule (a): If both classes are equal, this is the resulting class. */
381 if (class1 == class2)
384 /* Rule (b): If one of the classes is NO_CLASS, the resulting class
385 is the other class. */
386 if (class1 == AMD64_NO_CLASS)
388 if (class2 == AMD64_NO_CLASS)
391 /* Rule (c): If one of the classes is MEMORY, the result is MEMORY. */
392 if (class1 == AMD64_MEMORY || class2 == AMD64_MEMORY)
395 /* Rule (d): If one of the classes is INTEGER, the result is INTEGER. */
396 if (class1 == AMD64_INTEGER || class2 == AMD64_INTEGER)
397 return AMD64_INTEGER;
399 /* Rule (e): If one of the classes is X87, X87UP, COMPLEX_X87 class,
400 MEMORY is used as class. */
401 if (class1 == AMD64_X87 || class1 == AMD64_X87UP
402 || class1 == AMD64_COMPLEX_X87 || class2 == AMD64_X87
403 || class2 == AMD64_X87UP || class2 == AMD64_COMPLEX_X87)
406 /* Rule (f): Otherwise class SSE is used. */
410 /* Return non-zero if TYPE is a non-POD structure or union type. */
413 amd64_non_pod_p (struct type *type)
415 /* ??? A class with a base class certainly isn't POD, but does this
416 catch all non-POD structure types? */
417 if (TYPE_CODE (type) == TYPE_CODE_STRUCT && TYPE_N_BASECLASSES (type) > 0)
423 /* Classify TYPE according to the rules for aggregate (structures and
424 arrays) and union types, and store the result in CLASS. */
427 amd64_classify_aggregate (struct type *type, enum amd64_reg_class class[2])
429 int len = TYPE_LENGTH (type);
431 /* 1. If the size of an object is larger than two eightbytes, or in
432 C++, is a non-POD structure or union type, or contains
433 unaligned fields, it has class memory. */
434 if (len > 16 || amd64_non_pod_p (type))
436 class[0] = class[1] = AMD64_MEMORY;
440 /* 2. Both eightbytes get initialized to class NO_CLASS. */
441 class[0] = class[1] = AMD64_NO_CLASS;
443 /* 3. Each field of an object is classified recursively so that
444 always two fields are considered. The resulting class is
445 calculated according to the classes of the fields in the
448 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
450 struct type *subtype = check_typedef (TYPE_TARGET_TYPE (type));
452 /* All fields in an array have the same type. */
453 amd64_classify (subtype, class);
454 if (len > 8 && class[1] == AMD64_NO_CLASS)
461 /* Structure or union. */
462 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
463 || TYPE_CODE (type) == TYPE_CODE_UNION);
465 for (i = 0; i < TYPE_NFIELDS (type); i++)
467 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
468 int pos = TYPE_FIELD_BITPOS (type, i) / 64;
469 enum amd64_reg_class subclass[2];
470 int bitsize = TYPE_FIELD_BITSIZE (type, i);
474 bitsize = TYPE_LENGTH (subtype) * 8;
475 endpos = (TYPE_FIELD_BITPOS (type, i) + bitsize - 1) / 64;
477 /* Ignore static fields. */
478 if (field_is_static (&TYPE_FIELD (type, i)))
481 gdb_assert (pos == 0 || pos == 1);
483 amd64_classify (subtype, subclass);
484 class[pos] = amd64_merge_classes (class[pos], subclass[0]);
485 if (bitsize <= 64 && pos == 0 && endpos == 1)
486 /* This is a bit of an odd case: We have a field that would
487 normally fit in one of the two eightbytes, except that
488 it is placed in a way that this field straddles them.
489 This has been seen with a structure containing an array.
491 The ABI is a bit unclear in this case, but we assume that
492 this field's class (stored in subclass[0]) must also be merged
493 into class[1]. In other words, our field has a piece stored
494 in the second eight-byte, and thus its class applies to
495 the second eight-byte as well.
497 In the case where the field length exceeds 8 bytes,
498 it should not be necessary to merge the field class
499 into class[1]. As LEN > 8, subclass[1] is necessarily
500 different from AMD64_NO_CLASS. If subclass[1] is equal
501 to subclass[0], then the normal class[1]/subclass[1]
502 merging will take care of everything. For subclass[1]
503 to be different from subclass[0], I can only see the case
504 where we have a SSE/SSEUP or X87/X87UP pair, which both
505 use up all 16 bytes of the aggregate, and are already
506 handled just fine (because each portion sits on its own
508 class[1] = amd64_merge_classes (class[1], subclass[0]);
510 class[1] = amd64_merge_classes (class[1], subclass[1]);
514 /* 4. Then a post merger cleanup is done: */
516 /* Rule (a): If one of the classes is MEMORY, the whole argument is
518 if (class[0] == AMD64_MEMORY || class[1] == AMD64_MEMORY)
519 class[0] = class[1] = AMD64_MEMORY;
521 /* Rule (b): If SSEUP is not preceeded by SSE, it is converted to
523 if (class[0] == AMD64_SSEUP)
524 class[0] = AMD64_SSE;
525 if (class[1] == AMD64_SSEUP && class[0] != AMD64_SSE)
526 class[1] = AMD64_SSE;
529 /* Classify TYPE, and store the result in CLASS. */
532 amd64_classify (struct type *type, enum amd64_reg_class class[2])
534 enum type_code code = TYPE_CODE (type);
535 int len = TYPE_LENGTH (type);
537 class[0] = class[1] = AMD64_NO_CLASS;
539 /* Arguments of types (signed and unsigned) _Bool, char, short, int,
540 long, long long, and pointers are in the INTEGER class. Similarly,
541 range types, used by languages such as Ada, are also in the INTEGER
543 if ((code == TYPE_CODE_INT || code == TYPE_CODE_ENUM
544 || code == TYPE_CODE_BOOL || code == TYPE_CODE_RANGE
545 || code == TYPE_CODE_CHAR
546 || code == TYPE_CODE_PTR || code == TYPE_CODE_REF)
547 && (len == 1 || len == 2 || len == 4 || len == 8))
548 class[0] = AMD64_INTEGER;
550 /* Arguments of types float, double, _Decimal32, _Decimal64 and __m64
552 else if ((code == TYPE_CODE_FLT || code == TYPE_CODE_DECFLOAT)
553 && (len == 4 || len == 8))
555 class[0] = AMD64_SSE;
557 /* Arguments of types __float128, _Decimal128 and __m128 are split into
558 two halves. The least significant ones belong to class SSE, the most
559 significant one to class SSEUP. */
560 else if (code == TYPE_CODE_DECFLOAT && len == 16)
561 /* FIXME: __float128, __m128. */
562 class[0] = AMD64_SSE, class[1] = AMD64_SSEUP;
564 /* The 64-bit mantissa of arguments of type long double belongs to
565 class X87, the 16-bit exponent plus 6 bytes of padding belongs to
567 else if (code == TYPE_CODE_FLT && len == 16)
568 /* Class X87 and X87UP. */
569 class[0] = AMD64_X87, class[1] = AMD64_X87UP;
572 else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT
573 || code == TYPE_CODE_UNION)
574 amd64_classify_aggregate (type, class);
577 static enum return_value_convention
578 amd64_return_value (struct gdbarch *gdbarch, struct type *func_type,
579 struct type *type, struct regcache *regcache,
580 gdb_byte *readbuf, const gdb_byte *writebuf)
582 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
583 enum amd64_reg_class class[2];
584 int len = TYPE_LENGTH (type);
585 static int integer_regnum[] = { AMD64_RAX_REGNUM, AMD64_RDX_REGNUM };
586 static int sse_regnum[] = { AMD64_XMM0_REGNUM, AMD64_XMM1_REGNUM };
591 gdb_assert (!(readbuf && writebuf));
592 gdb_assert (tdep->classify);
594 /* 1. Classify the return type with the classification algorithm. */
595 tdep->classify (type, class);
597 /* 2. If the type has class MEMORY, then the caller provides space
598 for the return value and passes the address of this storage in
599 %rdi as if it were the first argument to the function. In effect,
600 this address becomes a hidden first argument.
602 On return %rax will contain the address that has been passed in
603 by the caller in %rdi. */
604 if (class[0] == AMD64_MEMORY)
606 /* As indicated by the comment above, the ABI guarantees that we
607 can always find the return value just after the function has
614 regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr);
615 read_memory (addr, readbuf, TYPE_LENGTH (type));
618 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
621 gdb_assert (class[1] != AMD64_MEMORY);
622 gdb_assert (len <= 16);
624 for (i = 0; len > 0; i++, len -= 8)
632 /* 3. If the class is INTEGER, the next available register
633 of the sequence %rax, %rdx is used. */
634 regnum = integer_regnum[integer_reg++];
638 /* 4. If the class is SSE, the next available SSE register
639 of the sequence %xmm0, %xmm1 is used. */
640 regnum = sse_regnum[sse_reg++];
644 /* 5. If the class is SSEUP, the eightbyte is passed in the
645 upper half of the last used SSE register. */
646 gdb_assert (sse_reg > 0);
647 regnum = sse_regnum[sse_reg - 1];
652 /* 6. If the class is X87, the value is returned on the X87
653 stack in %st0 as 80-bit x87 number. */
654 regnum = AMD64_ST0_REGNUM;
656 i387_return_value (gdbarch, regcache);
660 /* 7. If the class is X87UP, the value is returned together
661 with the previous X87 value in %st0. */
662 gdb_assert (i > 0 && class[0] == AMD64_X87);
663 regnum = AMD64_ST0_REGNUM;
672 gdb_assert (!"Unexpected register class.");
675 gdb_assert (regnum != -1);
678 regcache_raw_read_part (regcache, regnum, offset, min (len, 8),
681 regcache_raw_write_part (regcache, regnum, offset, min (len, 8),
685 return RETURN_VALUE_REGISTER_CONVENTION;
690 amd64_push_arguments (struct regcache *regcache, int nargs,
691 struct value **args, CORE_ADDR sp, int struct_return)
693 struct gdbarch *gdbarch = get_regcache_arch (regcache);
694 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
695 int *integer_regs = tdep->call_dummy_integer_regs;
696 int num_integer_regs = tdep->call_dummy_num_integer_regs;
698 static int sse_regnum[] =
700 /* %xmm0 ... %xmm7 */
701 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
702 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
703 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
704 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
706 struct value **stack_args = alloca (nargs * sizeof (struct value *));
707 /* An array that mirrors the stack_args array. For all arguments
708 that are passed by MEMORY, if that argument's address also needs
709 to be stored in a register, the ARG_ADDR_REGNO array will contain
710 that register number (or a negative value otherwise). */
711 int *arg_addr_regno = alloca (nargs * sizeof (int));
712 int num_stack_args = 0;
713 int num_elements = 0;
719 gdb_assert (tdep->classify);
721 /* Reserve a register for the "hidden" argument. */
725 for (i = 0; i < nargs; i++)
727 struct type *type = value_type (args[i]);
728 int len = TYPE_LENGTH (type);
729 enum amd64_reg_class class[2];
730 int needed_integer_regs = 0;
731 int needed_sse_regs = 0;
734 /* Classify argument. */
735 tdep->classify (type, class);
737 /* Calculate the number of integer and SSE registers needed for
739 for (j = 0; j < 2; j++)
741 if (class[j] == AMD64_INTEGER)
742 needed_integer_regs++;
743 else if (class[j] == AMD64_SSE)
747 /* Check whether enough registers are available, and if the
748 argument should be passed in registers at all. */
749 if (integer_reg + needed_integer_regs > num_integer_regs
750 || sse_reg + needed_sse_regs > ARRAY_SIZE (sse_regnum)
751 || (needed_integer_regs == 0 && needed_sse_regs == 0))
753 /* The argument will be passed on the stack. */
754 num_elements += ((len + 7) / 8);
755 stack_args[num_stack_args] = args[i];
756 /* If this is an AMD64_MEMORY argument whose address must also
757 be passed in one of the integer registers, reserve that
758 register and associate this value to that register so that
759 we can store the argument address as soon as we know it. */
760 if (class[0] == AMD64_MEMORY
761 && tdep->memory_args_by_pointer
762 && integer_reg < tdep->call_dummy_num_integer_regs)
763 arg_addr_regno[num_stack_args] =
764 tdep->call_dummy_integer_regs[integer_reg++];
766 arg_addr_regno[num_stack_args] = -1;
771 /* The argument will be passed in registers. */
772 const gdb_byte *valbuf = value_contents (args[i]);
775 gdb_assert (len <= 16);
777 for (j = 0; len > 0; j++, len -= 8)
785 regnum = integer_regs[integer_reg++];
789 regnum = sse_regnum[sse_reg++];
793 gdb_assert (sse_reg > 0);
794 regnum = sse_regnum[sse_reg - 1];
799 gdb_assert (!"Unexpected register class.");
802 gdb_assert (regnum != -1);
803 memset (buf, 0, sizeof buf);
804 memcpy (buf, valbuf + j * 8, min (len, 8));
805 regcache_raw_write_part (regcache, regnum, offset, 8, buf);
810 /* Allocate space for the arguments on the stack. */
811 sp -= num_elements * 8;
813 /* The psABI says that "The end of the input argument area shall be
814 aligned on a 16 byte boundary." */
817 /* Write out the arguments to the stack. */
818 for (i = 0; i < num_stack_args; i++)
820 struct type *type = value_type (stack_args[i]);
821 const gdb_byte *valbuf = value_contents (stack_args[i]);
822 int len = TYPE_LENGTH (type);
823 CORE_ADDR arg_addr = sp + element * 8;
825 write_memory (arg_addr, valbuf, len);
826 if (arg_addr_regno[i] >= 0)
828 /* We also need to store the address of that argument in
829 the given register. */
831 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
833 store_unsigned_integer (buf, 8, byte_order, arg_addr);
834 regcache_cooked_write (regcache, arg_addr_regno[i], buf);
836 element += ((len + 7) / 8);
839 /* The psABI says that "For calls that may call functions that use
840 varargs or stdargs (prototype-less calls or calls to functions
841 containing ellipsis (...) in the declaration) %al is used as
842 hidden argument to specify the number of SSE registers used. */
843 regcache_raw_write_unsigned (regcache, AMD64_RAX_REGNUM, sse_reg);
848 amd64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
849 struct regcache *regcache, CORE_ADDR bp_addr,
850 int nargs, struct value **args, CORE_ADDR sp,
851 int struct_return, CORE_ADDR struct_addr)
853 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
854 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
857 /* Pass arguments. */
858 sp = amd64_push_arguments (regcache, nargs, args, sp, struct_return);
860 /* Pass "hidden" argument". */
863 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
864 /* The "hidden" argument is passed throught the first argument
866 const int arg_regnum = tdep->call_dummy_integer_regs[0];
868 store_unsigned_integer (buf, 8, byte_order, struct_addr);
869 regcache_cooked_write (regcache, arg_regnum, buf);
872 /* Reserve some memory on the stack for the integer-parameter registers,
873 if required by the ABI. */
874 if (tdep->integer_param_regs_saved_in_caller_frame)
875 sp -= tdep->call_dummy_num_integer_regs * 8;
877 /* Store return address. */
879 store_unsigned_integer (buf, 8, byte_order, bp_addr);
880 write_memory (sp, buf, 8);
882 /* Finally, update the stack pointer... */
883 store_unsigned_integer (buf, 8, byte_order, sp);
884 regcache_cooked_write (regcache, AMD64_RSP_REGNUM, buf);
886 /* ...and fake a frame pointer. */
887 regcache_cooked_write (regcache, AMD64_RBP_REGNUM, buf);
892 /* Displaced instruction handling. */
894 /* A partially decoded instruction.
895 This contains enough details for displaced stepping purposes. */
899 /* The number of opcode bytes. */
901 /* The offset of the rex prefix or -1 if not present. */
903 /* The offset to the first opcode byte. */
905 /* The offset to the modrm byte or -1 if not present. */
908 /* The raw instruction. */
912 struct displaced_step_closure
914 /* For rip-relative insns, saved copy of the reg we use instead of %rip. */
919 /* Details of the instruction. */
920 struct amd64_insn insn_details;
922 /* Amount of space allocated to insn_buf. */
925 /* The possibly modified insn.
926 This is a variable-length field. */
927 gdb_byte insn_buf[1];
930 /* WARNING: Keep onebyte_has_modrm, twobyte_has_modrm in sync with
931 ../opcodes/i386-dis.c (until libopcodes exports them, or an alternative,
932 at which point delete these in favor of libopcodes' versions). */
934 static const unsigned char onebyte_has_modrm[256] = {
935 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
936 /* ------------------------------- */
937 /* 00 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 00 */
938 /* 10 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 10 */
939 /* 20 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 20 */
940 /* 30 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 30 */
941 /* 40 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 40 */
942 /* 50 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 50 */
943 /* 60 */ 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0, /* 60 */
944 /* 70 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 70 */
945 /* 80 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 80 */
946 /* 90 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 90 */
947 /* a0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* a0 */
948 /* b0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* b0 */
949 /* c0 */ 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0, /* c0 */
950 /* d0 */ 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1, /* d0 */
951 /* e0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* e0 */
952 /* f0 */ 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1 /* f0 */
953 /* ------------------------------- */
954 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
957 static const unsigned char twobyte_has_modrm[256] = {
958 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
959 /* ------------------------------- */
960 /* 00 */ 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1, /* 0f */
961 /* 10 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 1f */
962 /* 20 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 2f */
963 /* 30 */ 0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0, /* 3f */
964 /* 40 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 4f */
965 /* 50 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 5f */
966 /* 60 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 6f */
967 /* 70 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 7f */
968 /* 80 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 8f */
969 /* 90 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 9f */
970 /* a0 */ 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1, /* af */
971 /* b0 */ 1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1, /* bf */
972 /* c0 */ 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0, /* cf */
973 /* d0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* df */
974 /* e0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ef */
975 /* f0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0 /* ff */
976 /* ------------------------------- */
977 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
980 static int amd64_syscall_p (const struct amd64_insn *insn, int *lengthp);
983 rex_prefix_p (gdb_byte pfx)
985 return REX_PREFIX_P (pfx);
988 /* Skip the legacy instruction prefixes in INSN.
989 We assume INSN is properly sentineled so we don't have to worry
990 about falling off the end of the buffer. */
993 amd64_skip_prefixes (gdb_byte *insn)
999 case DATA_PREFIX_OPCODE:
1000 case ADDR_PREFIX_OPCODE:
1001 case CS_PREFIX_OPCODE:
1002 case DS_PREFIX_OPCODE:
1003 case ES_PREFIX_OPCODE:
1004 case FS_PREFIX_OPCODE:
1005 case GS_PREFIX_OPCODE:
1006 case SS_PREFIX_OPCODE:
1007 case LOCK_PREFIX_OPCODE:
1008 case REPE_PREFIX_OPCODE:
1009 case REPNE_PREFIX_OPCODE:
1021 /* Return an integer register (other than RSP) that is unused as an input
1023 In order to not require adding a rex prefix if the insn doesn't already
1024 have one, the result is restricted to RAX ... RDI, sans RSP.
1025 The register numbering of the result follows architecture ordering,
1029 amd64_get_unused_input_int_reg (const struct amd64_insn *details)
1031 /* 1 bit for each reg */
1032 int used_regs_mask = 0;
1034 /* There can be at most 3 int regs used as inputs in an insn, and we have
1035 7 to choose from (RAX ... RDI, sans RSP).
1036 This allows us to take a conservative approach and keep things simple.
1037 E.g. By avoiding RAX, we don't have to specifically watch for opcodes
1038 that implicitly specify RAX. */
1041 used_regs_mask |= 1 << EAX_REG_NUM;
1042 /* Similarily avoid RDX, implicit operand in divides. */
1043 used_regs_mask |= 1 << EDX_REG_NUM;
1045 used_regs_mask |= 1 << ESP_REG_NUM;
1047 /* If the opcode is one byte long and there's no ModRM byte,
1048 assume the opcode specifies a register. */
1049 if (details->opcode_len == 1 && details->modrm_offset == -1)
1050 used_regs_mask |= 1 << (details->raw_insn[details->opcode_offset] & 7);
1052 /* Mark used regs in the modrm/sib bytes. */
1053 if (details->modrm_offset != -1)
1055 int modrm = details->raw_insn[details->modrm_offset];
1056 int mod = MODRM_MOD_FIELD (modrm);
1057 int reg = MODRM_REG_FIELD (modrm);
1058 int rm = MODRM_RM_FIELD (modrm);
1059 int have_sib = mod != 3 && rm == 4;
1061 /* Assume the reg field of the modrm byte specifies a register. */
1062 used_regs_mask |= 1 << reg;
1066 int base = SIB_BASE_FIELD (details->raw_insn[details->modrm_offset + 1]);
1067 int index = SIB_INDEX_FIELD (details->raw_insn[details->modrm_offset + 1]);
1068 used_regs_mask |= 1 << base;
1069 used_regs_mask |= 1 << index;
1073 used_regs_mask |= 1 << rm;
1077 gdb_assert (used_regs_mask < 256);
1078 gdb_assert (used_regs_mask != 255);
1080 /* Finally, find a free reg. */
1084 for (i = 0; i < 8; ++i)
1086 if (! (used_regs_mask & (1 << i)))
1090 /* We shouldn't get here. */
1091 internal_error (__FILE__, __LINE__, _("unable to find free reg"));
1095 /* Extract the details of INSN that we need. */
1098 amd64_get_insn_details (gdb_byte *insn, struct amd64_insn *details)
1100 gdb_byte *start = insn;
1103 details->raw_insn = insn;
1105 details->opcode_len = -1;
1106 details->rex_offset = -1;
1107 details->opcode_offset = -1;
1108 details->modrm_offset = -1;
1110 /* Skip legacy instruction prefixes. */
1111 insn = amd64_skip_prefixes (insn);
1113 /* Skip REX instruction prefix. */
1114 if (rex_prefix_p (*insn))
1116 details->rex_offset = insn - start;
1120 details->opcode_offset = insn - start;
1122 if (*insn == TWO_BYTE_OPCODE_ESCAPE)
1124 /* Two or three-byte opcode. */
1126 need_modrm = twobyte_has_modrm[*insn];
1128 /* Check for three-byte opcode. */
1138 details->opcode_len = 3;
1141 details->opcode_len = 2;
1147 /* One-byte opcode. */
1148 need_modrm = onebyte_has_modrm[*insn];
1149 details->opcode_len = 1;
1155 details->modrm_offset = insn - start;
1159 /* Update %rip-relative addressing in INSN.
1161 %rip-relative addressing only uses a 32-bit displacement.
1162 32 bits is not enough to be guaranteed to cover the distance between where
1163 the real instruction is and where its copy is.
1164 Convert the insn to use base+disp addressing.
1165 We set base = pc + insn_length so we can leave disp unchanged. */
1168 fixup_riprel (struct gdbarch *gdbarch, struct displaced_step_closure *dsc,
1169 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1171 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1172 const struct amd64_insn *insn_details = &dsc->insn_details;
1173 int modrm_offset = insn_details->modrm_offset;
1174 gdb_byte *insn = insn_details->raw_insn + modrm_offset;
1178 int arch_tmp_regno, tmp_regno;
1179 ULONGEST orig_value;
1181 /* %rip+disp32 addressing mode, displacement follows ModRM byte. */
1184 /* Compute the rip-relative address. */
1185 disp = extract_signed_integer (insn, sizeof (int32_t), byte_order);
1186 insn_length = gdb_buffered_insn_length (gdbarch, dsc->insn_buf,
1187 dsc->max_len, from);
1188 rip_base = from + insn_length;
1190 /* We need a register to hold the address.
1191 Pick one not used in the insn.
1192 NOTE: arch_tmp_regno uses architecture ordering, e.g. RDI = 7. */
1193 arch_tmp_regno = amd64_get_unused_input_int_reg (insn_details);
1194 tmp_regno = amd64_arch_reg_to_regnum (arch_tmp_regno);
1196 /* REX.B should be unset as we were using rip-relative addressing,
1197 but ensure it's unset anyway, tmp_regno is not r8-r15. */
1198 if (insn_details->rex_offset != -1)
1199 dsc->insn_buf[insn_details->rex_offset] &= ~REX_B;
1201 regcache_cooked_read_unsigned (regs, tmp_regno, &orig_value);
1202 dsc->tmp_regno = tmp_regno;
1203 dsc->tmp_save = orig_value;
1206 /* Convert the ModRM field to be base+disp. */
1207 dsc->insn_buf[modrm_offset] &= ~0xc7;
1208 dsc->insn_buf[modrm_offset] |= 0x80 + arch_tmp_regno;
1210 regcache_cooked_write_unsigned (regs, tmp_regno, rip_base);
1212 if (debug_displaced)
1213 fprintf_unfiltered (gdb_stdlog, "displaced: %%rip-relative addressing used.\n"
1214 "displaced: using temp reg %d, old value %s, new value %s\n",
1215 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save),
1216 paddress (gdbarch, rip_base));
1220 fixup_displaced_copy (struct gdbarch *gdbarch,
1221 struct displaced_step_closure *dsc,
1222 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1224 const struct amd64_insn *details = &dsc->insn_details;
1226 if (details->modrm_offset != -1)
1228 gdb_byte modrm = details->raw_insn[details->modrm_offset];
1230 if ((modrm & 0xc7) == 0x05)
1232 /* The insn uses rip-relative addressing.
1234 fixup_riprel (gdbarch, dsc, from, to, regs);
1239 struct displaced_step_closure *
1240 amd64_displaced_step_copy_insn (struct gdbarch *gdbarch,
1241 CORE_ADDR from, CORE_ADDR to,
1242 struct regcache *regs)
1244 int len = gdbarch_max_insn_length (gdbarch);
1245 /* Extra space for sentinels so fixup_{riprel,displaced_copy don't have to
1246 continually watch for running off the end of the buffer. */
1247 int fixup_sentinel_space = len;
1248 struct displaced_step_closure *dsc =
1249 xmalloc (sizeof (*dsc) + len + fixup_sentinel_space);
1250 gdb_byte *buf = &dsc->insn_buf[0];
1251 struct amd64_insn *details = &dsc->insn_details;
1254 dsc->max_len = len + fixup_sentinel_space;
1256 read_memory (from, buf, len);
1258 /* Set up the sentinel space so we don't have to worry about running
1259 off the end of the buffer. An excessive number of leading prefixes
1260 could otherwise cause this. */
1261 memset (buf + len, 0, fixup_sentinel_space);
1263 amd64_get_insn_details (buf, details);
1265 /* GDB may get control back after the insn after the syscall.
1266 Presumably this is a kernel bug.
1267 If this is a syscall, make sure there's a nop afterwards. */
1271 if (amd64_syscall_p (details, &syscall_length))
1272 buf[details->opcode_offset + syscall_length] = NOP_OPCODE;
1275 /* Modify the insn to cope with the address where it will be executed from.
1276 In particular, handle any rip-relative addressing. */
1277 fixup_displaced_copy (gdbarch, dsc, from, to, regs);
1279 write_memory (to, buf, len);
1281 if (debug_displaced)
1283 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
1284 paddress (gdbarch, from), paddress (gdbarch, to));
1285 displaced_step_dump_bytes (gdb_stdlog, buf, len);
1292 amd64_absolute_jmp_p (const struct amd64_insn *details)
1294 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1296 if (insn[0] == 0xff)
1298 /* jump near, absolute indirect (/4) */
1299 if ((insn[1] & 0x38) == 0x20)
1302 /* jump far, absolute indirect (/5) */
1303 if ((insn[1] & 0x38) == 0x28)
1311 amd64_absolute_call_p (const struct amd64_insn *details)
1313 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1315 if (insn[0] == 0xff)
1317 /* Call near, absolute indirect (/2) */
1318 if ((insn[1] & 0x38) == 0x10)
1321 /* Call far, absolute indirect (/3) */
1322 if ((insn[1] & 0x38) == 0x18)
1330 amd64_ret_p (const struct amd64_insn *details)
1332 /* NOTE: gcc can emit "repz ; ret". */
1333 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1337 case 0xc2: /* ret near, pop N bytes */
1338 case 0xc3: /* ret near */
1339 case 0xca: /* ret far, pop N bytes */
1340 case 0xcb: /* ret far */
1341 case 0xcf: /* iret */
1350 amd64_call_p (const struct amd64_insn *details)
1352 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1354 if (amd64_absolute_call_p (details))
1357 /* call near, relative */
1358 if (insn[0] == 0xe8)
1364 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
1365 length in bytes. Otherwise, return zero. */
1368 amd64_syscall_p (const struct amd64_insn *details, int *lengthp)
1370 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1372 if (insn[0] == 0x0f && insn[1] == 0x05)
1381 /* Fix up the state of registers and memory after having single-stepped
1382 a displaced instruction. */
1385 amd64_displaced_step_fixup (struct gdbarch *gdbarch,
1386 struct displaced_step_closure *dsc,
1387 CORE_ADDR from, CORE_ADDR to,
1388 struct regcache *regs)
1390 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1391 /* The offset we applied to the instruction's address. */
1392 ULONGEST insn_offset = to - from;
1393 gdb_byte *insn = dsc->insn_buf;
1394 const struct amd64_insn *insn_details = &dsc->insn_details;
1396 if (debug_displaced)
1397 fprintf_unfiltered (gdb_stdlog,
1398 "displaced: fixup (%s, %s), "
1399 "insn = 0x%02x 0x%02x ...\n",
1400 paddress (gdbarch, from), paddress (gdbarch, to),
1403 /* If we used a tmp reg, restore it. */
1407 if (debug_displaced)
1408 fprintf_unfiltered (gdb_stdlog, "displaced: restoring reg %d to %s\n",
1409 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save));
1410 regcache_cooked_write_unsigned (regs, dsc->tmp_regno, dsc->tmp_save);
1413 /* The list of issues to contend with here is taken from
1414 resume_execution in arch/x86/kernel/kprobes.c, Linux 2.6.28.
1415 Yay for Free Software! */
1417 /* Relocate the %rip back to the program's instruction stream,
1420 /* Except in the case of absolute or indirect jump or call
1421 instructions, or a return instruction, the new rip is relative to
1422 the displaced instruction; make it relative to the original insn.
1423 Well, signal handler returns don't need relocation either, but we use the
1424 value of %rip to recognize those; see below. */
1425 if (! amd64_absolute_jmp_p (insn_details)
1426 && ! amd64_absolute_call_p (insn_details)
1427 && ! amd64_ret_p (insn_details))
1432 regcache_cooked_read_unsigned (regs, AMD64_RIP_REGNUM, &orig_rip);
1434 /* A signal trampoline system call changes the %rip, resuming
1435 execution of the main program after the signal handler has
1436 returned. That makes them like 'return' instructions; we
1437 shouldn't relocate %rip.
1439 But most system calls don't, and we do need to relocate %rip.
1441 Our heuristic for distinguishing these cases: if stepping
1442 over the system call instruction left control directly after
1443 the instruction, the we relocate --- control almost certainly
1444 doesn't belong in the displaced copy. Otherwise, we assume
1445 the instruction has put control where it belongs, and leave
1446 it unrelocated. Goodness help us if there are PC-relative
1448 if (amd64_syscall_p (insn_details, &insn_len)
1449 && orig_rip != to + insn_len
1450 /* GDB can get control back after the insn after the syscall.
1451 Presumably this is a kernel bug.
1452 Fixup ensures its a nop, we add one to the length for it. */
1453 && orig_rip != to + insn_len + 1)
1455 if (debug_displaced)
1456 fprintf_unfiltered (gdb_stdlog,
1457 "displaced: syscall changed %%rip; "
1458 "not relocating\n");
1462 ULONGEST rip = orig_rip - insn_offset;
1464 /* If we just stepped over a breakpoint insn, we don't backup
1465 the pc on purpose; this is to match behaviour without
1468 regcache_cooked_write_unsigned (regs, AMD64_RIP_REGNUM, rip);
1470 if (debug_displaced)
1471 fprintf_unfiltered (gdb_stdlog,
1473 "relocated %%rip from %s to %s\n",
1474 paddress (gdbarch, orig_rip),
1475 paddress (gdbarch, rip));
1479 /* If the instruction was PUSHFL, then the TF bit will be set in the
1480 pushed value, and should be cleared. We'll leave this for later,
1481 since GDB already messes up the TF flag when stepping over a
1484 /* If the instruction was a call, the return address now atop the
1485 stack is the address following the copied instruction. We need
1486 to make it the address following the original instruction. */
1487 if (amd64_call_p (insn_details))
1491 const ULONGEST retaddr_len = 8;
1493 regcache_cooked_read_unsigned (regs, AMD64_RSP_REGNUM, &rsp);
1494 retaddr = read_memory_unsigned_integer (rsp, retaddr_len, byte_order);
1495 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
1496 write_memory_unsigned_integer (rsp, retaddr_len, byte_order, retaddr);
1498 if (debug_displaced)
1499 fprintf_unfiltered (gdb_stdlog,
1500 "displaced: relocated return addr at %s "
1502 paddress (gdbarch, rsp),
1503 paddress (gdbarch, retaddr));
1507 /* If the instruction INSN uses RIP-relative addressing, return the
1508 offset into the raw INSN where the displacement to be adjusted is
1509 found. Returns 0 if the instruction doesn't use RIP-relative
1513 rip_relative_offset (struct amd64_insn *insn)
1515 if (insn->modrm_offset != -1)
1517 gdb_byte modrm = insn->raw_insn[insn->modrm_offset];
1519 if ((modrm & 0xc7) == 0x05)
1521 /* The displacement is found right after the ModRM byte. */
1522 return insn->modrm_offset + 1;
1530 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
1532 target_write_memory (*to, buf, len);
1537 amd64_relocate_instruction (struct gdbarch *gdbarch,
1538 CORE_ADDR *to, CORE_ADDR oldloc)
1540 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1541 int len = gdbarch_max_insn_length (gdbarch);
1542 /* Extra space for sentinels. */
1543 int fixup_sentinel_space = len;
1544 gdb_byte *buf = xmalloc (len + fixup_sentinel_space);
1545 struct amd64_insn insn_details;
1547 LONGEST rel32, newrel;
1551 read_memory (oldloc, buf, len);
1553 /* Set up the sentinel space so we don't have to worry about running
1554 off the end of the buffer. An excessive number of leading prefixes
1555 could otherwise cause this. */
1556 memset (buf + len, 0, fixup_sentinel_space);
1559 amd64_get_insn_details (insn, &insn_details);
1561 insn_length = gdb_buffered_insn_length (gdbarch, insn, len, oldloc);
1563 /* Skip legacy instruction prefixes. */
1564 insn = amd64_skip_prefixes (insn);
1566 /* Adjust calls with 32-bit relative addresses as push/jump, with
1567 the address pushed being the location where the original call in
1568 the user program would return to. */
1569 if (insn[0] == 0xe8)
1571 gdb_byte push_buf[16];
1572 unsigned int ret_addr;
1574 /* Where "ret" in the original code will return to. */
1575 ret_addr = oldloc + insn_length;
1576 push_buf[0] = 0x68; /* pushq $... */
1577 memcpy (&push_buf[1], &ret_addr, 4);
1578 /* Push the push. */
1579 append_insns (to, 5, push_buf);
1581 /* Convert the relative call to a relative jump. */
1584 /* Adjust the destination offset. */
1585 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1586 newrel = (oldloc - *to) + rel32;
1587 store_signed_integer (insn + 1, 4, byte_order, newrel);
1589 if (debug_displaced)
1590 fprintf_unfiltered (gdb_stdlog,
1591 "Adjusted insn rel32=%s at %s to"
1592 " rel32=%s at %s\n",
1593 hex_string (rel32), paddress (gdbarch, oldloc),
1594 hex_string (newrel), paddress (gdbarch, *to));
1596 /* Write the adjusted jump into its displaced location. */
1597 append_insns (to, 5, insn);
1601 offset = rip_relative_offset (&insn_details);
1604 /* Adjust jumps with 32-bit relative addresses. Calls are
1605 already handled above. */
1606 if (insn[0] == 0xe9)
1608 /* Adjust conditional jumps. */
1609 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1615 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1616 newrel = (oldloc - *to) + rel32;
1617 store_signed_integer (insn + offset, 4, byte_order, newrel);
1618 if (debug_displaced)
1619 fprintf_unfiltered (gdb_stdlog,
1620 "Adjusted insn rel32=%s at %s to"
1621 " rel32=%s at %s\n",
1622 hex_string (rel32), paddress (gdbarch, oldloc),
1623 hex_string (newrel), paddress (gdbarch, *to));
1626 /* Write the adjusted instruction into its displaced location. */
1627 append_insns (to, insn_length, buf);
1631 /* The maximum number of saved registers. This should include %rip. */
1632 #define AMD64_NUM_SAVED_REGS AMD64_NUM_GREGS
1634 struct amd64_frame_cache
1638 CORE_ADDR sp_offset;
1641 /* Saved registers. */
1642 CORE_ADDR saved_regs[AMD64_NUM_SAVED_REGS];
1646 /* Do we have a frame? */
1650 /* Initialize a frame cache. */
1653 amd64_init_frame_cache (struct amd64_frame_cache *cache)
1659 cache->sp_offset = -8;
1662 /* Saved registers. We initialize these to -1 since zero is a valid
1663 offset (that's where %rbp is supposed to be stored).
1664 The values start out as being offsets, and are later converted to
1665 addresses (at which point -1 is interpreted as an address, still meaning
1667 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
1668 cache->saved_regs[i] = -1;
1669 cache->saved_sp = 0;
1670 cache->saved_sp_reg = -1;
1672 /* Frameless until proven otherwise. */
1673 cache->frameless_p = 1;
1676 /* Allocate and initialize a frame cache. */
1678 static struct amd64_frame_cache *
1679 amd64_alloc_frame_cache (void)
1681 struct amd64_frame_cache *cache;
1683 cache = FRAME_OBSTACK_ZALLOC (struct amd64_frame_cache);
1684 amd64_init_frame_cache (cache);
1688 /* GCC 4.4 and later, can put code in the prologue to realign the
1689 stack pointer. Check whether PC points to such code, and update
1690 CACHE accordingly. Return the first instruction after the code
1691 sequence or CURRENT_PC, whichever is smaller. If we don't
1692 recognize the code, return PC. */
1695 amd64_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1696 struct amd64_frame_cache *cache)
1698 /* There are 2 code sequences to re-align stack before the frame
1701 1. Use a caller-saved saved register:
1707 2. Use a callee-saved saved register:
1714 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
1716 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
1717 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
1722 int offset, offset_and;
1724 if (target_read_memory (pc, buf, sizeof buf))
1727 /* Check caller-saved saved register. The first instruction has
1728 to be "leaq 8(%rsp), %reg". */
1729 if ((buf[0] & 0xfb) == 0x48
1734 /* MOD must be binary 10 and R/M must be binary 100. */
1735 if ((buf[2] & 0xc7) != 0x44)
1738 /* REG has register number. */
1739 reg = (buf[2] >> 3) & 7;
1741 /* Check the REX.R bit. */
1749 /* Check callee-saved saved register. The first instruction
1750 has to be "pushq %reg". */
1752 if ((buf[0] & 0xf8) == 0x50)
1754 else if ((buf[0] & 0xf6) == 0x40
1755 && (buf[1] & 0xf8) == 0x50)
1757 /* Check the REX.B bit. */
1758 if ((buf[0] & 1) != 0)
1767 reg += buf[offset] & 0x7;
1771 /* The next instruction has to be "leaq 16(%rsp), %reg". */
1772 if ((buf[offset] & 0xfb) != 0x48
1773 || buf[offset + 1] != 0x8d
1774 || buf[offset + 3] != 0x24
1775 || buf[offset + 4] != 0x10)
1778 /* MOD must be binary 10 and R/M must be binary 100. */
1779 if ((buf[offset + 2] & 0xc7) != 0x44)
1782 /* REG has register number. */
1783 r = (buf[offset + 2] >> 3) & 7;
1785 /* Check the REX.R bit. */
1786 if (buf[offset] == 0x4c)
1789 /* Registers in pushq and leaq have to be the same. */
1796 /* Rigister can't be %rsp nor %rbp. */
1797 if (reg == 4 || reg == 5)
1800 /* The next instruction has to be "andq $-XXX, %rsp". */
1801 if (buf[offset] != 0x48
1802 || buf[offset + 2] != 0xe4
1803 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
1806 offset_and = offset;
1807 offset += buf[offset + 1] == 0x81 ? 7 : 4;
1809 /* The next instruction has to be "pushq -8(%reg)". */
1811 if (buf[offset] == 0xff)
1813 else if ((buf[offset] & 0xf6) == 0x40
1814 && buf[offset + 1] == 0xff)
1816 /* Check the REX.B bit. */
1817 if ((buf[offset] & 0x1) != 0)
1824 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
1826 if (buf[offset + 1] != 0xf8
1827 || (buf[offset] & 0xf8) != 0x70)
1830 /* R/M has register. */
1831 r += buf[offset] & 7;
1833 /* Registers in leaq and pushq have to be the same. */
1837 if (current_pc > pc + offset_and)
1838 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
1840 return min (pc + offset + 2, current_pc);
1843 /* Do a limited analysis of the prologue at PC and update CACHE
1844 accordingly. Bail out early if CURRENT_PC is reached. Return the
1845 address where the analysis stopped.
1847 We will handle only functions beginning with:
1850 movq %rsp, %rbp 0x48 0x89 0xe5
1852 Any function that doesn't start with this sequence will be assumed
1853 to have no prologue and thus no valid frame pointer in %rbp. */
1856 amd64_analyze_prologue (struct gdbarch *gdbarch,
1857 CORE_ADDR pc, CORE_ADDR current_pc,
1858 struct amd64_frame_cache *cache)
1860 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1861 static gdb_byte proto[3] = { 0x48, 0x89, 0xe5 }; /* movq %rsp, %rbp */
1865 if (current_pc <= pc)
1868 pc = amd64_analyze_stack_align (pc, current_pc, cache);
1870 op = read_memory_unsigned_integer (pc, 1, byte_order);
1872 if (op == 0x55) /* pushq %rbp */
1874 /* Take into account that we've executed the `pushq %rbp' that
1875 starts this instruction sequence. */
1876 cache->saved_regs[AMD64_RBP_REGNUM] = 0;
1877 cache->sp_offset += 8;
1879 /* If that's all, return now. */
1880 if (current_pc <= pc + 1)
1883 /* Check for `movq %rsp, %rbp'. */
1884 read_memory (pc + 1, buf, 3);
1885 if (memcmp (buf, proto, 3) != 0)
1888 /* OK, we actually have a frame. */
1889 cache->frameless_p = 0;
1896 /* Return PC of first real instruction. */
1899 amd64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1901 struct amd64_frame_cache cache;
1904 amd64_init_frame_cache (&cache);
1905 pc = amd64_analyze_prologue (gdbarch, start_pc, 0xffffffffffffffffLL,
1907 if (cache.frameless_p)
1914 /* Normal frames. */
1916 static struct amd64_frame_cache *
1917 amd64_frame_cache (struct frame_info *this_frame, void **this_cache)
1919 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1920 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1921 struct amd64_frame_cache *cache;
1928 cache = amd64_alloc_frame_cache ();
1929 *this_cache = cache;
1931 cache->pc = get_frame_func (this_frame);
1933 amd64_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1936 if (cache->saved_sp_reg != -1)
1938 /* Stack pointer has been saved. */
1939 get_frame_register (this_frame, cache->saved_sp_reg, buf);
1940 cache->saved_sp = extract_unsigned_integer(buf, 8, byte_order);
1943 if (cache->frameless_p)
1945 /* We didn't find a valid frame. If we're at the start of a
1946 function, or somewhere half-way its prologue, the function's
1947 frame probably hasn't been fully setup yet. Try to
1948 reconstruct the base address for the stack frame by looking
1949 at the stack pointer. For truly "frameless" functions this
1952 if (cache->saved_sp_reg != -1)
1954 /* We're halfway aligning the stack. */
1955 cache->base = ((cache->saved_sp - 8) & 0xfffffffffffffff0LL) - 8;
1956 cache->saved_regs[AMD64_RIP_REGNUM] = cache->saved_sp - 8;
1958 /* This will be added back below. */
1959 cache->saved_regs[AMD64_RIP_REGNUM] -= cache->base;
1963 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
1964 cache->base = extract_unsigned_integer (buf, 8, byte_order)
1970 get_frame_register (this_frame, AMD64_RBP_REGNUM, buf);
1971 cache->base = extract_unsigned_integer (buf, 8, byte_order);
1974 /* Now that we have the base address for the stack frame we can
1975 calculate the value of %rsp in the calling frame. */
1976 cache->saved_sp = cache->base + 16;
1978 /* For normal frames, %rip is stored at 8(%rbp). If we don't have a
1979 frame we find it at the same offset from the reconstructed base
1980 address. If we're halfway aligning the stack, %rip is handled
1981 differently (see above). */
1982 if (!cache->frameless_p || cache->saved_sp_reg == -1)
1983 cache->saved_regs[AMD64_RIP_REGNUM] = 8;
1985 /* Adjust all the saved registers such that they contain addresses
1986 instead of offsets. */
1987 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
1988 if (cache->saved_regs[i] != -1)
1989 cache->saved_regs[i] += cache->base;
1995 amd64_frame_this_id (struct frame_info *this_frame, void **this_cache,
1996 struct frame_id *this_id)
1998 struct amd64_frame_cache *cache =
1999 amd64_frame_cache (this_frame, this_cache);
2001 /* This marks the outermost frame. */
2002 if (cache->base == 0)
2005 (*this_id) = frame_id_build (cache->base + 16, cache->pc);
2008 static struct value *
2009 amd64_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2012 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2013 struct amd64_frame_cache *cache =
2014 amd64_frame_cache (this_frame, this_cache);
2016 gdb_assert (regnum >= 0);
2018 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
2019 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
2021 if (regnum < AMD64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2022 return frame_unwind_got_memory (this_frame, regnum,
2023 cache->saved_regs[regnum]);
2025 return frame_unwind_got_register (this_frame, regnum, regnum);
2028 static const struct frame_unwind amd64_frame_unwind =
2031 amd64_frame_this_id,
2032 amd64_frame_prev_register,
2034 default_frame_sniffer
2038 /* Signal trampolines. */
2040 /* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and
2041 64-bit variants. This would require using identical frame caches
2042 on both platforms. */
2044 static struct amd64_frame_cache *
2045 amd64_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2047 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2048 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2049 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2050 struct amd64_frame_cache *cache;
2058 cache = amd64_alloc_frame_cache ();
2060 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2061 cache->base = extract_unsigned_integer (buf, 8, byte_order) - 8;
2063 addr = tdep->sigcontext_addr (this_frame);
2064 gdb_assert (tdep->sc_reg_offset);
2065 gdb_assert (tdep->sc_num_regs <= AMD64_NUM_SAVED_REGS);
2066 for (i = 0; i < tdep->sc_num_regs; i++)
2067 if (tdep->sc_reg_offset[i] != -1)
2068 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2070 *this_cache = cache;
2075 amd64_sigtramp_frame_this_id (struct frame_info *this_frame,
2076 void **this_cache, struct frame_id *this_id)
2078 struct amd64_frame_cache *cache =
2079 amd64_sigtramp_frame_cache (this_frame, this_cache);
2081 (*this_id) = frame_id_build (cache->base + 16, get_frame_pc (this_frame));
2084 static struct value *
2085 amd64_sigtramp_frame_prev_register (struct frame_info *this_frame,
2086 void **this_cache, int regnum)
2088 /* Make sure we've initialized the cache. */
2089 amd64_sigtramp_frame_cache (this_frame, this_cache);
2091 return amd64_frame_prev_register (this_frame, this_cache, regnum);
2095 amd64_sigtramp_frame_sniffer (const struct frame_unwind *self,
2096 struct frame_info *this_frame,
2099 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2101 /* We shouldn't even bother if we don't have a sigcontext_addr
2103 if (tdep->sigcontext_addr == NULL)
2106 if (tdep->sigtramp_p != NULL)
2108 if (tdep->sigtramp_p (this_frame))
2112 if (tdep->sigtramp_start != 0)
2114 CORE_ADDR pc = get_frame_pc (this_frame);
2116 gdb_assert (tdep->sigtramp_end != 0);
2117 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2124 static const struct frame_unwind amd64_sigtramp_frame_unwind =
2127 amd64_sigtramp_frame_this_id,
2128 amd64_sigtramp_frame_prev_register,
2130 amd64_sigtramp_frame_sniffer
2135 amd64_frame_base_address (struct frame_info *this_frame, void **this_cache)
2137 struct amd64_frame_cache *cache =
2138 amd64_frame_cache (this_frame, this_cache);
2143 static const struct frame_base amd64_frame_base =
2145 &amd64_frame_unwind,
2146 amd64_frame_base_address,
2147 amd64_frame_base_address,
2148 amd64_frame_base_address
2151 /* Normal frames, but in a function epilogue. */
2153 /* The epilogue is defined here as the 'ret' instruction, which will
2154 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2155 the function's stack frame. */
2158 amd64_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2162 if (target_read_memory (pc, &insn, 1))
2163 return 0; /* Can't read memory at pc. */
2165 if (insn != 0xc3) /* 'ret' instruction. */
2172 amd64_epilogue_frame_sniffer (const struct frame_unwind *self,
2173 struct frame_info *this_frame,
2174 void **this_prologue_cache)
2176 if (frame_relative_level (this_frame) == 0)
2177 return amd64_in_function_epilogue_p (get_frame_arch (this_frame),
2178 get_frame_pc (this_frame));
2183 static struct amd64_frame_cache *
2184 amd64_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2186 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2187 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2188 struct amd64_frame_cache *cache;
2194 cache = amd64_alloc_frame_cache ();
2195 *this_cache = cache;
2197 /* Cache base will be %esp plus cache->sp_offset (-8). */
2198 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2199 cache->base = extract_unsigned_integer (buf, 8,
2200 byte_order) + cache->sp_offset;
2202 /* Cache pc will be the frame func. */
2203 cache->pc = get_frame_pc (this_frame);
2205 /* The saved %esp will be at cache->base plus 16. */
2206 cache->saved_sp = cache->base + 16;
2208 /* The saved %eip will be at cache->base plus 8. */
2209 cache->saved_regs[AMD64_RIP_REGNUM] = cache->base + 8;
2215 amd64_epilogue_frame_this_id (struct frame_info *this_frame,
2217 struct frame_id *this_id)
2219 struct amd64_frame_cache *cache = amd64_epilogue_frame_cache (this_frame,
2222 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2225 static const struct frame_unwind amd64_epilogue_frame_unwind =
2228 amd64_epilogue_frame_this_id,
2229 amd64_frame_prev_register,
2231 amd64_epilogue_frame_sniffer
2234 static struct frame_id
2235 amd64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2239 fp = get_frame_register_unsigned (this_frame, AMD64_RBP_REGNUM);
2241 return frame_id_build (fp + 16, get_frame_pc (this_frame));
2244 /* 16 byte align the SP per frame requirements. */
2247 amd64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2249 return sp & -(CORE_ADDR)16;
2253 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
2254 in the floating-point register set REGSET to register cache
2255 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
2258 amd64_supply_fpregset (const struct regset *regset, struct regcache *regcache,
2259 int regnum, const void *fpregs, size_t len)
2261 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2263 gdb_assert (len == tdep->sizeof_fpregset);
2264 amd64_supply_fxsave (regcache, regnum, fpregs);
2267 /* Collect register REGNUM from the register cache REGCACHE and store
2268 it in the buffer specified by FPREGS and LEN as described by the
2269 floating-point register set REGSET. If REGNUM is -1, do this for
2270 all registers in REGSET. */
2273 amd64_collect_fpregset (const struct regset *regset,
2274 const struct regcache *regcache,
2275 int regnum, void *fpregs, size_t len)
2277 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2279 gdb_assert (len == tdep->sizeof_fpregset);
2280 amd64_collect_fxsave (regcache, regnum, fpregs);
2283 /* Similar to amd64_supply_fpregset, but use XSAVE extended state. */
2286 amd64_supply_xstateregset (const struct regset *regset,
2287 struct regcache *regcache, int regnum,
2288 const void *xstateregs, size_t len)
2290 amd64_supply_xsave (regcache, regnum, xstateregs);
2293 /* Similar to amd64_collect_fpregset, but use XSAVE extended state. */
2296 amd64_collect_xstateregset (const struct regset *regset,
2297 const struct regcache *regcache,
2298 int regnum, void *xstateregs, size_t len)
2300 amd64_collect_xsave (regcache, regnum, xstateregs, 1);
2303 /* Return the appropriate register set for the core section identified
2304 by SECT_NAME and SECT_SIZE. */
2306 static const struct regset *
2307 amd64_regset_from_core_section (struct gdbarch *gdbarch,
2308 const char *sect_name, size_t sect_size)
2310 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2312 if (strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
2314 if (tdep->fpregset == NULL)
2315 tdep->fpregset = regset_alloc (gdbarch, amd64_supply_fpregset,
2316 amd64_collect_fpregset);
2318 return tdep->fpregset;
2321 if (strcmp (sect_name, ".reg-xstate") == 0)
2323 if (tdep->xstateregset == NULL)
2324 tdep->xstateregset = regset_alloc (gdbarch,
2325 amd64_supply_xstateregset,
2326 amd64_collect_xstateregset);
2328 return tdep->xstateregset;
2331 return i386_regset_from_core_section (gdbarch, sect_name, sect_size);
2335 /* Figure out where the longjmp will land. Slurp the jmp_buf out of
2336 %rdi. We expect its value to be a pointer to the jmp_buf structure
2337 from which we extract the address that we will land at. This
2338 address is copied into PC. This routine returns non-zero on
2342 amd64_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2346 struct gdbarch *gdbarch = get_frame_arch (frame);
2347 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2348 int len = TYPE_LENGTH (builtin_type (gdbarch)->builtin_func_ptr);
2350 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2351 longjmp will land. */
2352 if (jb_pc_offset == -1)
2355 get_frame_register (frame, AMD64_RDI_REGNUM, buf);
2356 jb_addr= extract_typed_address
2357 (buf, builtin_type (gdbarch)->builtin_data_ptr);
2358 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
2361 *pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
2366 static const int amd64_record_regmap[] =
2368 AMD64_RAX_REGNUM, AMD64_RCX_REGNUM, AMD64_RDX_REGNUM, AMD64_RBX_REGNUM,
2369 AMD64_RSP_REGNUM, AMD64_RBP_REGNUM, AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
2370 AMD64_R8_REGNUM, AMD64_R9_REGNUM, AMD64_R10_REGNUM, AMD64_R11_REGNUM,
2371 AMD64_R12_REGNUM, AMD64_R13_REGNUM, AMD64_R14_REGNUM, AMD64_R15_REGNUM,
2372 AMD64_RIP_REGNUM, AMD64_EFLAGS_REGNUM, AMD64_CS_REGNUM, AMD64_SS_REGNUM,
2373 AMD64_DS_REGNUM, AMD64_ES_REGNUM, AMD64_FS_REGNUM, AMD64_GS_REGNUM
2377 amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2379 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2380 const struct target_desc *tdesc = info.target_desc;
2382 /* AMD64 generally uses `fxsave' instead of `fsave' for saving its
2383 floating-point registers. */
2384 tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE;
2386 if (! tdesc_has_registers (tdesc))
2387 tdesc = tdesc_amd64;
2388 tdep->tdesc = tdesc;
2390 tdep->num_core_regs = AMD64_NUM_GREGS + I387_NUM_REGS;
2391 tdep->register_names = amd64_register_names;
2393 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx") != NULL)
2395 tdep->ymmh_register_names = amd64_ymmh_names;
2396 tdep->num_ymm_regs = 16;
2397 tdep->ymm0h_regnum = AMD64_YMM0H_REGNUM;
2400 tdep->num_byte_regs = 20;
2401 tdep->num_word_regs = 16;
2402 tdep->num_dword_regs = 16;
2403 /* Avoid wiring in the MMX registers for now. */
2404 tdep->num_mmx_regs = 0;
2406 set_gdbarch_pseudo_register_read (gdbarch,
2407 amd64_pseudo_register_read);
2408 set_gdbarch_pseudo_register_write (gdbarch,
2409 amd64_pseudo_register_write);
2411 set_tdesc_pseudo_register_name (gdbarch, amd64_pseudo_register_name);
2413 /* AMD64 has an FPU and 16 SSE registers. */
2414 tdep->st0_regnum = AMD64_ST0_REGNUM;
2415 tdep->num_xmm_regs = 16;
2417 /* This is what all the fuss is about. */
2418 set_gdbarch_long_bit (gdbarch, 64);
2419 set_gdbarch_long_long_bit (gdbarch, 64);
2420 set_gdbarch_ptr_bit (gdbarch, 64);
2422 /* In contrast to the i386, on AMD64 a `long double' actually takes
2423 up 128 bits, even though it's still based on the i387 extended
2424 floating-point format which has only 80 significant bits. */
2425 set_gdbarch_long_double_bit (gdbarch, 128);
2427 set_gdbarch_num_regs (gdbarch, AMD64_NUM_REGS);
2429 /* Register numbers of various important registers. */
2430 set_gdbarch_sp_regnum (gdbarch, AMD64_RSP_REGNUM); /* %rsp */
2431 set_gdbarch_pc_regnum (gdbarch, AMD64_RIP_REGNUM); /* %rip */
2432 set_gdbarch_ps_regnum (gdbarch, AMD64_EFLAGS_REGNUM); /* %eflags */
2433 set_gdbarch_fp0_regnum (gdbarch, AMD64_ST0_REGNUM); /* %st(0) */
2435 /* The "default" register numbering scheme for AMD64 is referred to
2436 as the "DWARF Register Number Mapping" in the System V psABI.
2437 The preferred debugging format for all known AMD64 targets is
2438 actually DWARF2, and GCC doesn't seem to support DWARF (that is
2439 DWARF-1), but we provide the same mapping just in case. This
2440 mapping is also used for stabs, which GCC does support. */
2441 set_gdbarch_stab_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
2442 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
2444 /* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to
2445 be in use on any of the supported AMD64 targets. */
2447 /* Call dummy code. */
2448 set_gdbarch_push_dummy_call (gdbarch, amd64_push_dummy_call);
2449 set_gdbarch_frame_align (gdbarch, amd64_frame_align);
2450 set_gdbarch_frame_red_zone_size (gdbarch, 128);
2451 tdep->call_dummy_num_integer_regs =
2452 ARRAY_SIZE (amd64_dummy_call_integer_regs);
2453 tdep->call_dummy_integer_regs = amd64_dummy_call_integer_regs;
2454 tdep->classify = amd64_classify;
2456 set_gdbarch_convert_register_p (gdbarch, i387_convert_register_p);
2457 set_gdbarch_register_to_value (gdbarch, i387_register_to_value);
2458 set_gdbarch_value_to_register (gdbarch, i387_value_to_register);
2460 set_gdbarch_return_value (gdbarch, amd64_return_value);
2462 set_gdbarch_skip_prologue (gdbarch, amd64_skip_prologue);
2464 tdep->record_regmap = amd64_record_regmap;
2466 set_gdbarch_dummy_id (gdbarch, amd64_dummy_id);
2468 /* Hook the function epilogue frame unwinder. This unwinder is
2469 appended to the list first, so that it supercedes the other
2470 unwinders in function epilogues. */
2471 frame_unwind_prepend_unwinder (gdbarch, &amd64_epilogue_frame_unwind);
2473 /* Hook the prologue-based frame unwinders. */
2474 frame_unwind_append_unwinder (gdbarch, &amd64_sigtramp_frame_unwind);
2475 frame_unwind_append_unwinder (gdbarch, &amd64_frame_unwind);
2476 frame_base_set_default (gdbarch, &amd64_frame_base);
2478 /* If we have a register mapping, enable the generic core file support. */
2479 if (tdep->gregset_reg_offset)
2480 set_gdbarch_regset_from_core_section (gdbarch,
2481 amd64_regset_from_core_section);
2483 set_gdbarch_get_longjmp_target (gdbarch, amd64_get_longjmp_target);
2485 set_gdbarch_relocate_instruction (gdbarch, amd64_relocate_instruction);
2488 /* Provide a prototype to silence -Wmissing-prototypes. */
2489 void _initialize_amd64_tdep (void);
2492 _initialize_amd64_tdep (void)
2494 initialize_tdesc_amd64 ();
2495 initialize_tdesc_amd64_avx ();
2499 /* The 64-bit FXSAVE format differs from the 32-bit format in the
2500 sense that the instruction pointer and data pointer are simply
2501 64-bit offsets into the code segment and the data segment instead
2502 of a selector offset pair. The functions below store the upper 32
2503 bits of these pointers (instead of just the 16-bits of the segment
2506 /* Fill register REGNUM in REGCACHE with the appropriate
2507 floating-point or SSE register value from *FXSAVE. If REGNUM is
2508 -1, do this for all registers. This function masks off any of the
2509 reserved bits in *FXSAVE. */
2512 amd64_supply_fxsave (struct regcache *regcache, int regnum,
2515 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2516 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2518 i387_supply_fxsave (regcache, regnum, fxsave);
2520 if (fxsave && gdbarch_ptr_bit (gdbarch) == 64)
2522 const gdb_byte *regs = fxsave;
2524 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
2525 regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
2526 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
2527 regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
2531 /* Similar to amd64_supply_fxsave, but use XSAVE extended state. */
2534 amd64_supply_xsave (struct regcache *regcache, int regnum,
2537 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2538 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2540 i387_supply_xsave (regcache, regnum, xsave);
2542 if (xsave && gdbarch_ptr_bit (gdbarch) == 64)
2544 const gdb_byte *regs = xsave;
2546 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
2547 regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep),
2549 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
2550 regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep),
2555 /* Fill register REGNUM (if it is a floating-point or SSE register) in
2556 *FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for
2557 all registers. This function doesn't touch any of the reserved
2561 amd64_collect_fxsave (const struct regcache *regcache, int regnum,
2564 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2565 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2566 gdb_byte *regs = fxsave;
2568 i387_collect_fxsave (regcache, regnum, fxsave);
2570 if (gdbarch_ptr_bit (gdbarch) == 64)
2572 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
2573 regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
2574 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
2575 regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
2579 /* Similar to amd64_collect_fxsave, but but use XSAVE extended state. */
2582 amd64_collect_xsave (const struct regcache *regcache, int regnum,
2583 void *xsave, int gcore)
2585 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2586 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2587 gdb_byte *regs = xsave;
2589 i387_collect_xsave (regcache, regnum, xsave, gcore);
2591 if (gdbarch_ptr_bit (gdbarch) == 64)
2593 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
2594 regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep),
2596 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
2597 regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep),