1 /* Target-dependent code for AMD64.
3 Copyright (C) 2001-2014 Free Software Foundation, Inc.
5 Contributed by Jiri Smid, SuSE Labs.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23 #include "opcode/i386.h"
25 #include "arch-utils.h"
27 #include "dummy-frame.h"
29 #include "frame-base.h"
30 #include "frame-unwind.h"
40 #include "gdb_assert.h"
41 #include "exceptions.h"
42 #include "amd64-tdep.h"
43 #include "i387-tdep.h"
45 #include "features/i386/amd64.c"
46 #include "features/i386/amd64-avx.c"
47 #include "features/i386/amd64-mpx.c"
48 #include "features/i386/amd64-avx512.c"
50 #include "features/i386/x32.c"
51 #include "features/i386/x32-avx.c"
52 #include "features/i386/x32-avx512.c"
57 /* Note that the AMD64 architecture was previously known as x86-64.
58 The latter is (forever) engraved into the canonical system name as
59 returned by config.guess, and used as the name for the AMD64 port
60 of GNU/Linux. The BSD's have renamed their ports to amd64; they
61 don't like to shout. For GDB we prefer the amd64_-prefix over the
62 x86_64_-prefix since it's so much easier to type. */
64 /* Register information. */
66 static const char *amd64_register_names[] =
68 "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "rsp",
70 /* %r8 is indeed register number 8. */
71 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
72 "rip", "eflags", "cs", "ss", "ds", "es", "fs", "gs",
74 /* %st0 is register number 24. */
75 "st0", "st1", "st2", "st3", "st4", "st5", "st6", "st7",
76 "fctrl", "fstat", "ftag", "fiseg", "fioff", "foseg", "fooff", "fop",
78 /* %xmm0 is register number 40. */
79 "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7",
80 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15",
84 static const char *amd64_ymm_names[] =
86 "ymm0", "ymm1", "ymm2", "ymm3",
87 "ymm4", "ymm5", "ymm6", "ymm7",
88 "ymm8", "ymm9", "ymm10", "ymm11",
89 "ymm12", "ymm13", "ymm14", "ymm15"
92 static const char *amd64_ymm_avx512_names[] =
94 "ymm16", "ymm17", "ymm18", "ymm19",
95 "ymm20", "ymm21", "ymm22", "ymm23",
96 "ymm24", "ymm25", "ymm26", "ymm27",
97 "ymm28", "ymm29", "ymm30", "ymm31"
100 static const char *amd64_ymmh_names[] =
102 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
103 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
104 "ymm8h", "ymm9h", "ymm10h", "ymm11h",
105 "ymm12h", "ymm13h", "ymm14h", "ymm15h"
108 static const char *amd64_ymmh_avx512_names[] =
110 "ymm16h", "ymm17h", "ymm18h", "ymm19h",
111 "ymm20h", "ymm21h", "ymm22h", "ymm23h",
112 "ymm24h", "ymm25h", "ymm26h", "ymm27h",
113 "ymm28h", "ymm29h", "ymm30h", "ymm31h"
116 static const char *amd64_mpx_names[] =
118 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
121 static const char *amd64_k_names[] =
123 "k0", "k1", "k2", "k3",
124 "k4", "k5", "k6", "k7"
127 static const char *amd64_zmmh_names[] =
129 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
130 "zmm4h", "zmm5h", "zmm6h", "zmm7h",
131 "zmm8h", "zmm9h", "zmm10h", "zmm11h",
132 "zmm12h", "zmm13h", "zmm14h", "zmm15h",
133 "zmm16h", "zmm17h", "zmm18h", "zmm19h",
134 "zmm20h", "zmm21h", "zmm22h", "zmm23h",
135 "zmm24h", "zmm25h", "zmm26h", "zmm27h",
136 "zmm28h", "zmm29h", "zmm30h", "zmm31h"
139 static const char *amd64_zmm_names[] =
141 "zmm0", "zmm1", "zmm2", "zmm3",
142 "zmm4", "zmm5", "zmm6", "zmm7",
143 "zmm8", "zmm9", "zmm10", "zmm11",
144 "zmm12", "zmm13", "zmm14", "zmm15",
145 "zmm16", "zmm17", "zmm18", "zmm19",
146 "zmm20", "zmm21", "zmm22", "zmm23",
147 "zmm24", "zmm25", "zmm26", "zmm27",
148 "zmm28", "zmm29", "zmm30", "zmm31"
151 static const char *amd64_xmm_avx512_names[] = {
152 "xmm16", "xmm17", "xmm18", "xmm19",
153 "xmm20", "xmm21", "xmm22", "xmm23",
154 "xmm24", "xmm25", "xmm26", "xmm27",
155 "xmm28", "xmm29", "xmm30", "xmm31"
158 /* DWARF Register Number Mapping as defined in the System V psABI,
161 static int amd64_dwarf_regmap[] =
163 /* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI. */
164 AMD64_RAX_REGNUM, AMD64_RDX_REGNUM,
165 AMD64_RCX_REGNUM, AMD64_RBX_REGNUM,
166 AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
168 /* Frame Pointer Register RBP. */
171 /* Stack Pointer Register RSP. */
174 /* Extended Integer Registers 8 - 15. */
175 AMD64_R8_REGNUM, /* %r8 */
176 AMD64_R9_REGNUM, /* %r9 */
177 AMD64_R10_REGNUM, /* %r10 */
178 AMD64_R11_REGNUM, /* %r11 */
179 AMD64_R12_REGNUM, /* %r12 */
180 AMD64_R13_REGNUM, /* %r13 */
181 AMD64_R14_REGNUM, /* %r14 */
182 AMD64_R15_REGNUM, /* %r15 */
184 /* Return Address RA. Mapped to RIP. */
187 /* SSE Registers 0 - 7. */
188 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
189 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
190 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
191 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
193 /* Extended SSE Registers 8 - 15. */
194 AMD64_XMM0_REGNUM + 8, AMD64_XMM0_REGNUM + 9,
195 AMD64_XMM0_REGNUM + 10, AMD64_XMM0_REGNUM + 11,
196 AMD64_XMM0_REGNUM + 12, AMD64_XMM0_REGNUM + 13,
197 AMD64_XMM0_REGNUM + 14, AMD64_XMM0_REGNUM + 15,
199 /* Floating Point Registers 0-7. */
200 AMD64_ST0_REGNUM + 0, AMD64_ST0_REGNUM + 1,
201 AMD64_ST0_REGNUM + 2, AMD64_ST0_REGNUM + 3,
202 AMD64_ST0_REGNUM + 4, AMD64_ST0_REGNUM + 5,
203 AMD64_ST0_REGNUM + 6, AMD64_ST0_REGNUM + 7,
205 /* Control and Status Flags Register. */
208 /* Selector Registers. */
218 /* Segment Base Address Registers. */
224 /* Special Selector Registers. */
228 /* Floating Point Control Registers. */
234 static const int amd64_dwarf_regmap_len =
235 (sizeof (amd64_dwarf_regmap) / sizeof (amd64_dwarf_regmap[0]));
237 /* Convert DWARF register number REG to the appropriate register
238 number used by GDB. */
241 amd64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
243 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
244 int ymm0_regnum = tdep->ymm0_regnum;
247 if (reg >= 0 && reg < amd64_dwarf_regmap_len)
248 regnum = amd64_dwarf_regmap[reg];
251 warning (_("Unmapped DWARF Register #%d encountered."), reg);
252 else if (ymm0_regnum >= 0
253 && i386_xmm_regnum_p (gdbarch, regnum))
254 regnum += ymm0_regnum - I387_XMM0_REGNUM (tdep);
259 /* Map architectural register numbers to gdb register numbers. */
261 static const int amd64_arch_regmap[16] =
263 AMD64_RAX_REGNUM, /* %rax */
264 AMD64_RCX_REGNUM, /* %rcx */
265 AMD64_RDX_REGNUM, /* %rdx */
266 AMD64_RBX_REGNUM, /* %rbx */
267 AMD64_RSP_REGNUM, /* %rsp */
268 AMD64_RBP_REGNUM, /* %rbp */
269 AMD64_RSI_REGNUM, /* %rsi */
270 AMD64_RDI_REGNUM, /* %rdi */
271 AMD64_R8_REGNUM, /* %r8 */
272 AMD64_R9_REGNUM, /* %r9 */
273 AMD64_R10_REGNUM, /* %r10 */
274 AMD64_R11_REGNUM, /* %r11 */
275 AMD64_R12_REGNUM, /* %r12 */
276 AMD64_R13_REGNUM, /* %r13 */
277 AMD64_R14_REGNUM, /* %r14 */
278 AMD64_R15_REGNUM /* %r15 */
281 static const int amd64_arch_regmap_len =
282 (sizeof (amd64_arch_regmap) / sizeof (amd64_arch_regmap[0]));
284 /* Convert architectural register number REG to the appropriate register
285 number used by GDB. */
288 amd64_arch_reg_to_regnum (int reg)
290 gdb_assert (reg >= 0 && reg < amd64_arch_regmap_len);
292 return amd64_arch_regmap[reg];
295 /* Register names for byte pseudo-registers. */
297 static const char *amd64_byte_names[] =
299 "al", "bl", "cl", "dl", "sil", "dil", "bpl", "spl",
300 "r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l",
301 "ah", "bh", "ch", "dh"
304 /* Number of lower byte registers. */
305 #define AMD64_NUM_LOWER_BYTE_REGS 16
307 /* Register names for word pseudo-registers. */
309 static const char *amd64_word_names[] =
311 "ax", "bx", "cx", "dx", "si", "di", "bp", "",
312 "r8w", "r9w", "r10w", "r11w", "r12w", "r13w", "r14w", "r15w"
315 /* Register names for dword pseudo-registers. */
317 static const char *amd64_dword_names[] =
319 "eax", "ebx", "ecx", "edx", "esi", "edi", "ebp", "esp",
320 "r8d", "r9d", "r10d", "r11d", "r12d", "r13d", "r14d", "r15d",
324 /* Return the name of register REGNUM. */
327 amd64_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
329 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
330 if (i386_byte_regnum_p (gdbarch, regnum))
331 return amd64_byte_names[regnum - tdep->al_regnum];
332 else if (i386_zmm_regnum_p (gdbarch, regnum))
333 return amd64_zmm_names[regnum - tdep->zmm0_regnum];
334 else if (i386_ymm_regnum_p (gdbarch, regnum))
335 return amd64_ymm_names[regnum - tdep->ymm0_regnum];
336 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
337 return amd64_ymm_avx512_names[regnum - tdep->ymm16_regnum];
338 else if (i386_word_regnum_p (gdbarch, regnum))
339 return amd64_word_names[regnum - tdep->ax_regnum];
340 else if (i386_dword_regnum_p (gdbarch, regnum))
341 return amd64_dword_names[regnum - tdep->eax_regnum];
343 return i386_pseudo_register_name (gdbarch, regnum);
346 static struct value *
347 amd64_pseudo_register_read_value (struct gdbarch *gdbarch,
348 struct regcache *regcache,
351 gdb_byte raw_buf[MAX_REGISTER_SIZE];
352 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
353 enum register_status status;
354 struct value *result_value;
357 result_value = allocate_value (register_type (gdbarch, regnum));
358 VALUE_LVAL (result_value) = lval_register;
359 VALUE_REGNUM (result_value) = regnum;
360 buf = value_contents_raw (result_value);
362 if (i386_byte_regnum_p (gdbarch, regnum))
364 int gpnum = regnum - tdep->al_regnum;
366 /* Extract (always little endian). */
367 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
369 /* Special handling for AH, BH, CH, DH. */
370 status = regcache_raw_read (regcache,
371 gpnum - AMD64_NUM_LOWER_BYTE_REGS,
373 if (status == REG_VALID)
374 memcpy (buf, raw_buf + 1, 1);
376 mark_value_bytes_unavailable (result_value, 0,
377 TYPE_LENGTH (value_type (result_value)));
381 status = regcache_raw_read (regcache, gpnum, raw_buf);
382 if (status == REG_VALID)
383 memcpy (buf, raw_buf, 1);
385 mark_value_bytes_unavailable (result_value, 0,
386 TYPE_LENGTH (value_type (result_value)));
389 else if (i386_dword_regnum_p (gdbarch, regnum))
391 int gpnum = regnum - tdep->eax_regnum;
392 /* Extract (always little endian). */
393 status = regcache_raw_read (regcache, gpnum, raw_buf);
394 if (status == REG_VALID)
395 memcpy (buf, raw_buf, 4);
397 mark_value_bytes_unavailable (result_value, 0,
398 TYPE_LENGTH (value_type (result_value)));
401 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum,
408 amd64_pseudo_register_write (struct gdbarch *gdbarch,
409 struct regcache *regcache,
410 int regnum, const gdb_byte *buf)
412 gdb_byte raw_buf[MAX_REGISTER_SIZE];
413 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
415 if (i386_byte_regnum_p (gdbarch, regnum))
417 int gpnum = regnum - tdep->al_regnum;
419 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
421 /* Read ... AH, BH, CH, DH. */
422 regcache_raw_read (regcache,
423 gpnum - AMD64_NUM_LOWER_BYTE_REGS, raw_buf);
424 /* ... Modify ... (always little endian). */
425 memcpy (raw_buf + 1, buf, 1);
427 regcache_raw_write (regcache,
428 gpnum - AMD64_NUM_LOWER_BYTE_REGS, raw_buf);
433 regcache_raw_read (regcache, gpnum, raw_buf);
434 /* ... Modify ... (always little endian). */
435 memcpy (raw_buf, buf, 1);
437 regcache_raw_write (regcache, gpnum, raw_buf);
440 else if (i386_dword_regnum_p (gdbarch, regnum))
442 int gpnum = regnum - tdep->eax_regnum;
445 regcache_raw_read (regcache, gpnum, raw_buf);
446 /* ... Modify ... (always little endian). */
447 memcpy (raw_buf, buf, 4);
449 regcache_raw_write (regcache, gpnum, raw_buf);
452 i386_pseudo_register_write (gdbarch, regcache, regnum, buf);
457 /* Register classes as defined in the psABI. */
471 /* Return the union class of CLASS1 and CLASS2. See the psABI for
474 static enum amd64_reg_class
475 amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2)
477 /* Rule (a): If both classes are equal, this is the resulting class. */
478 if (class1 == class2)
481 /* Rule (b): If one of the classes is NO_CLASS, the resulting class
482 is the other class. */
483 if (class1 == AMD64_NO_CLASS)
485 if (class2 == AMD64_NO_CLASS)
488 /* Rule (c): If one of the classes is MEMORY, the result is MEMORY. */
489 if (class1 == AMD64_MEMORY || class2 == AMD64_MEMORY)
492 /* Rule (d): If one of the classes is INTEGER, the result is INTEGER. */
493 if (class1 == AMD64_INTEGER || class2 == AMD64_INTEGER)
494 return AMD64_INTEGER;
496 /* Rule (e): If one of the classes is X87, X87UP, COMPLEX_X87 class,
497 MEMORY is used as class. */
498 if (class1 == AMD64_X87 || class1 == AMD64_X87UP
499 || class1 == AMD64_COMPLEX_X87 || class2 == AMD64_X87
500 || class2 == AMD64_X87UP || class2 == AMD64_COMPLEX_X87)
503 /* Rule (f): Otherwise class SSE is used. */
507 static void amd64_classify (struct type *type, enum amd64_reg_class class[2]);
509 /* Return non-zero if TYPE is a non-POD structure or union type. */
512 amd64_non_pod_p (struct type *type)
514 /* ??? A class with a base class certainly isn't POD, but does this
515 catch all non-POD structure types? */
516 if (TYPE_CODE (type) == TYPE_CODE_STRUCT && TYPE_N_BASECLASSES (type) > 0)
522 /* Classify TYPE according to the rules for aggregate (structures and
523 arrays) and union types, and store the result in CLASS. */
526 amd64_classify_aggregate (struct type *type, enum amd64_reg_class class[2])
528 /* 1. If the size of an object is larger than two eightbytes, or in
529 C++, is a non-POD structure or union type, or contains
530 unaligned fields, it has class memory. */
531 if (TYPE_LENGTH (type) > 16 || amd64_non_pod_p (type))
533 class[0] = class[1] = AMD64_MEMORY;
537 /* 2. Both eightbytes get initialized to class NO_CLASS. */
538 class[0] = class[1] = AMD64_NO_CLASS;
540 /* 3. Each field of an object is classified recursively so that
541 always two fields are considered. The resulting class is
542 calculated according to the classes of the fields in the
545 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
547 struct type *subtype = check_typedef (TYPE_TARGET_TYPE (type));
549 /* All fields in an array have the same type. */
550 amd64_classify (subtype, class);
551 if (TYPE_LENGTH (type) > 8 && class[1] == AMD64_NO_CLASS)
558 /* Structure or union. */
559 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
560 || TYPE_CODE (type) == TYPE_CODE_UNION);
562 for (i = 0; i < TYPE_NFIELDS (type); i++)
564 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
565 int pos = TYPE_FIELD_BITPOS (type, i) / 64;
566 enum amd64_reg_class subclass[2];
567 int bitsize = TYPE_FIELD_BITSIZE (type, i);
571 bitsize = TYPE_LENGTH (subtype) * 8;
572 endpos = (TYPE_FIELD_BITPOS (type, i) + bitsize - 1) / 64;
574 /* Ignore static fields. */
575 if (field_is_static (&TYPE_FIELD (type, i)))
578 gdb_assert (pos == 0 || pos == 1);
580 amd64_classify (subtype, subclass);
581 class[pos] = amd64_merge_classes (class[pos], subclass[0]);
582 if (bitsize <= 64 && pos == 0 && endpos == 1)
583 /* This is a bit of an odd case: We have a field that would
584 normally fit in one of the two eightbytes, except that
585 it is placed in a way that this field straddles them.
586 This has been seen with a structure containing an array.
588 The ABI is a bit unclear in this case, but we assume that
589 this field's class (stored in subclass[0]) must also be merged
590 into class[1]. In other words, our field has a piece stored
591 in the second eight-byte, and thus its class applies to
592 the second eight-byte as well.
594 In the case where the field length exceeds 8 bytes,
595 it should not be necessary to merge the field class
596 into class[1]. As LEN > 8, subclass[1] is necessarily
597 different from AMD64_NO_CLASS. If subclass[1] is equal
598 to subclass[0], then the normal class[1]/subclass[1]
599 merging will take care of everything. For subclass[1]
600 to be different from subclass[0], I can only see the case
601 where we have a SSE/SSEUP or X87/X87UP pair, which both
602 use up all 16 bytes of the aggregate, and are already
603 handled just fine (because each portion sits on its own
605 class[1] = amd64_merge_classes (class[1], subclass[0]);
607 class[1] = amd64_merge_classes (class[1], subclass[1]);
611 /* 4. Then a post merger cleanup is done: */
613 /* Rule (a): If one of the classes is MEMORY, the whole argument is
615 if (class[0] == AMD64_MEMORY || class[1] == AMD64_MEMORY)
616 class[0] = class[1] = AMD64_MEMORY;
618 /* Rule (b): If SSEUP is not preceded by SSE, it is converted to
620 if (class[0] == AMD64_SSEUP)
621 class[0] = AMD64_SSE;
622 if (class[1] == AMD64_SSEUP && class[0] != AMD64_SSE)
623 class[1] = AMD64_SSE;
626 /* Classify TYPE, and store the result in CLASS. */
629 amd64_classify (struct type *type, enum amd64_reg_class class[2])
631 enum type_code code = TYPE_CODE (type);
632 int len = TYPE_LENGTH (type);
634 class[0] = class[1] = AMD64_NO_CLASS;
636 /* Arguments of types (signed and unsigned) _Bool, char, short, int,
637 long, long long, and pointers are in the INTEGER class. Similarly,
638 range types, used by languages such as Ada, are also in the INTEGER
640 if ((code == TYPE_CODE_INT || code == TYPE_CODE_ENUM
641 || code == TYPE_CODE_BOOL || code == TYPE_CODE_RANGE
642 || code == TYPE_CODE_CHAR
643 || code == TYPE_CODE_PTR || code == TYPE_CODE_REF)
644 && (len == 1 || len == 2 || len == 4 || len == 8))
645 class[0] = AMD64_INTEGER;
647 /* Arguments of types float, double, _Decimal32, _Decimal64 and __m64
649 else if ((code == TYPE_CODE_FLT || code == TYPE_CODE_DECFLOAT)
650 && (len == 4 || len == 8))
652 class[0] = AMD64_SSE;
654 /* Arguments of types __float128, _Decimal128 and __m128 are split into
655 two halves. The least significant ones belong to class SSE, the most
656 significant one to class SSEUP. */
657 else if (code == TYPE_CODE_DECFLOAT && len == 16)
658 /* FIXME: __float128, __m128. */
659 class[0] = AMD64_SSE, class[1] = AMD64_SSEUP;
661 /* The 64-bit mantissa of arguments of type long double belongs to
662 class X87, the 16-bit exponent plus 6 bytes of padding belongs to
664 else if (code == TYPE_CODE_FLT && len == 16)
665 /* Class X87 and X87UP. */
666 class[0] = AMD64_X87, class[1] = AMD64_X87UP;
668 /* Arguments of complex T where T is one of the types float or
669 double get treated as if they are implemented as:
675 else if (code == TYPE_CODE_COMPLEX && len == 8)
676 class[0] = AMD64_SSE;
677 else if (code == TYPE_CODE_COMPLEX && len == 16)
678 class[0] = class[1] = AMD64_SSE;
680 /* A variable of type complex long double is classified as type
682 else if (code == TYPE_CODE_COMPLEX && len == 32)
683 class[0] = AMD64_COMPLEX_X87;
686 else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT
687 || code == TYPE_CODE_UNION)
688 amd64_classify_aggregate (type, class);
691 static enum return_value_convention
692 amd64_return_value (struct gdbarch *gdbarch, struct value *function,
693 struct type *type, struct regcache *regcache,
694 gdb_byte *readbuf, const gdb_byte *writebuf)
696 enum amd64_reg_class class[2];
697 int len = TYPE_LENGTH (type);
698 static int integer_regnum[] = { AMD64_RAX_REGNUM, AMD64_RDX_REGNUM };
699 static int sse_regnum[] = { AMD64_XMM0_REGNUM, AMD64_XMM1_REGNUM };
704 gdb_assert (!(readbuf && writebuf));
706 /* 1. Classify the return type with the classification algorithm. */
707 amd64_classify (type, class);
709 /* 2. If the type has class MEMORY, then the caller provides space
710 for the return value and passes the address of this storage in
711 %rdi as if it were the first argument to the function. In effect,
712 this address becomes a hidden first argument.
714 On return %rax will contain the address that has been passed in
715 by the caller in %rdi. */
716 if (class[0] == AMD64_MEMORY)
718 /* As indicated by the comment above, the ABI guarantees that we
719 can always find the return value just after the function has
726 regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr);
727 read_memory (addr, readbuf, TYPE_LENGTH (type));
730 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
733 /* 8. If the class is COMPLEX_X87, the real part of the value is
734 returned in %st0 and the imaginary part in %st1. */
735 if (class[0] == AMD64_COMPLEX_X87)
739 regcache_raw_read (regcache, AMD64_ST0_REGNUM, readbuf);
740 regcache_raw_read (regcache, AMD64_ST1_REGNUM, readbuf + 16);
745 i387_return_value (gdbarch, regcache);
746 regcache_raw_write (regcache, AMD64_ST0_REGNUM, writebuf);
747 regcache_raw_write (regcache, AMD64_ST1_REGNUM, writebuf + 16);
749 /* Fix up the tag word such that both %st(0) and %st(1) are
751 regcache_raw_write_unsigned (regcache, AMD64_FTAG_REGNUM, 0xfff);
754 return RETURN_VALUE_REGISTER_CONVENTION;
757 gdb_assert (class[1] != AMD64_MEMORY);
758 gdb_assert (len <= 16);
760 for (i = 0; len > 0; i++, len -= 8)
768 /* 3. If the class is INTEGER, the next available register
769 of the sequence %rax, %rdx is used. */
770 regnum = integer_regnum[integer_reg++];
774 /* 4. If the class is SSE, the next available SSE register
775 of the sequence %xmm0, %xmm1 is used. */
776 regnum = sse_regnum[sse_reg++];
780 /* 5. If the class is SSEUP, the eightbyte is passed in the
781 upper half of the last used SSE register. */
782 gdb_assert (sse_reg > 0);
783 regnum = sse_regnum[sse_reg - 1];
788 /* 6. If the class is X87, the value is returned on the X87
789 stack in %st0 as 80-bit x87 number. */
790 regnum = AMD64_ST0_REGNUM;
792 i387_return_value (gdbarch, regcache);
796 /* 7. If the class is X87UP, the value is returned together
797 with the previous X87 value in %st0. */
798 gdb_assert (i > 0 && class[0] == AMD64_X87);
799 regnum = AMD64_ST0_REGNUM;
808 gdb_assert (!"Unexpected register class.");
811 gdb_assert (regnum != -1);
814 regcache_raw_read_part (regcache, regnum, offset, min (len, 8),
817 regcache_raw_write_part (regcache, regnum, offset, min (len, 8),
821 return RETURN_VALUE_REGISTER_CONVENTION;
826 amd64_push_arguments (struct regcache *regcache, int nargs,
827 struct value **args, CORE_ADDR sp, int struct_return)
829 static int integer_regnum[] =
831 AMD64_RDI_REGNUM, /* %rdi */
832 AMD64_RSI_REGNUM, /* %rsi */
833 AMD64_RDX_REGNUM, /* %rdx */
834 AMD64_RCX_REGNUM, /* %rcx */
835 AMD64_R8_REGNUM, /* %r8 */
836 AMD64_R9_REGNUM /* %r9 */
838 static int sse_regnum[] =
840 /* %xmm0 ... %xmm7 */
841 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
842 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
843 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
844 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
846 struct value **stack_args = alloca (nargs * sizeof (struct value *));
847 int num_stack_args = 0;
848 int num_elements = 0;
854 /* Reserve a register for the "hidden" argument. */
858 for (i = 0; i < nargs; i++)
860 struct type *type = value_type (args[i]);
861 int len = TYPE_LENGTH (type);
862 enum amd64_reg_class class[2];
863 int needed_integer_regs = 0;
864 int needed_sse_regs = 0;
867 /* Classify argument. */
868 amd64_classify (type, class);
870 /* Calculate the number of integer and SSE registers needed for
872 for (j = 0; j < 2; j++)
874 if (class[j] == AMD64_INTEGER)
875 needed_integer_regs++;
876 else if (class[j] == AMD64_SSE)
880 /* Check whether enough registers are available, and if the
881 argument should be passed in registers at all. */
882 if (integer_reg + needed_integer_regs > ARRAY_SIZE (integer_regnum)
883 || sse_reg + needed_sse_regs > ARRAY_SIZE (sse_regnum)
884 || (needed_integer_regs == 0 && needed_sse_regs == 0))
886 /* The argument will be passed on the stack. */
887 num_elements += ((len + 7) / 8);
888 stack_args[num_stack_args++] = args[i];
892 /* The argument will be passed in registers. */
893 const gdb_byte *valbuf = value_contents (args[i]);
896 gdb_assert (len <= 16);
898 for (j = 0; len > 0; j++, len -= 8)
906 regnum = integer_regnum[integer_reg++];
910 regnum = sse_regnum[sse_reg++];
914 gdb_assert (sse_reg > 0);
915 regnum = sse_regnum[sse_reg - 1];
920 gdb_assert (!"Unexpected register class.");
923 gdb_assert (regnum != -1);
924 memset (buf, 0, sizeof buf);
925 memcpy (buf, valbuf + j * 8, min (len, 8));
926 regcache_raw_write_part (regcache, regnum, offset, 8, buf);
931 /* Allocate space for the arguments on the stack. */
932 sp -= num_elements * 8;
934 /* The psABI says that "The end of the input argument area shall be
935 aligned on a 16 byte boundary." */
938 /* Write out the arguments to the stack. */
939 for (i = 0; i < num_stack_args; i++)
941 struct type *type = value_type (stack_args[i]);
942 const gdb_byte *valbuf = value_contents (stack_args[i]);
943 int len = TYPE_LENGTH (type);
945 write_memory (sp + element * 8, valbuf, len);
946 element += ((len + 7) / 8);
949 /* The psABI says that "For calls that may call functions that use
950 varargs or stdargs (prototype-less calls or calls to functions
951 containing ellipsis (...) in the declaration) %al is used as
952 hidden argument to specify the number of SSE registers used. */
953 regcache_raw_write_unsigned (regcache, AMD64_RAX_REGNUM, sse_reg);
958 amd64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
959 struct regcache *regcache, CORE_ADDR bp_addr,
960 int nargs, struct value **args, CORE_ADDR sp,
961 int struct_return, CORE_ADDR struct_addr)
963 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
966 /* Pass arguments. */
967 sp = amd64_push_arguments (regcache, nargs, args, sp, struct_return);
969 /* Pass "hidden" argument". */
972 store_unsigned_integer (buf, 8, byte_order, struct_addr);
973 regcache_cooked_write (regcache, AMD64_RDI_REGNUM, buf);
976 /* Store return address. */
978 store_unsigned_integer (buf, 8, byte_order, bp_addr);
979 write_memory (sp, buf, 8);
981 /* Finally, update the stack pointer... */
982 store_unsigned_integer (buf, 8, byte_order, sp);
983 regcache_cooked_write (regcache, AMD64_RSP_REGNUM, buf);
985 /* ...and fake a frame pointer. */
986 regcache_cooked_write (regcache, AMD64_RBP_REGNUM, buf);
991 /* Displaced instruction handling. */
993 /* A partially decoded instruction.
994 This contains enough details for displaced stepping purposes. */
998 /* The number of opcode bytes. */
1000 /* The offset of the rex prefix or -1 if not present. */
1002 /* The offset to the first opcode byte. */
1004 /* The offset to the modrm byte or -1 if not present. */
1007 /* The raw instruction. */
1011 struct displaced_step_closure
1013 /* For rip-relative insns, saved copy of the reg we use instead of %rip. */
1018 /* Details of the instruction. */
1019 struct amd64_insn insn_details;
1021 /* Amount of space allocated to insn_buf. */
1024 /* The possibly modified insn.
1025 This is a variable-length field. */
1026 gdb_byte insn_buf[1];
1029 /* WARNING: Keep onebyte_has_modrm, twobyte_has_modrm in sync with
1030 ../opcodes/i386-dis.c (until libopcodes exports them, or an alternative,
1031 at which point delete these in favor of libopcodes' versions). */
1033 static const unsigned char onebyte_has_modrm[256] = {
1034 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1035 /* ------------------------------- */
1036 /* 00 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 00 */
1037 /* 10 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 10 */
1038 /* 20 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 20 */
1039 /* 30 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 30 */
1040 /* 40 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 40 */
1041 /* 50 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 50 */
1042 /* 60 */ 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0, /* 60 */
1043 /* 70 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 70 */
1044 /* 80 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 80 */
1045 /* 90 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 90 */
1046 /* a0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* a0 */
1047 /* b0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* b0 */
1048 /* c0 */ 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0, /* c0 */
1049 /* d0 */ 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1, /* d0 */
1050 /* e0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* e0 */
1051 /* f0 */ 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1 /* f0 */
1052 /* ------------------------------- */
1053 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1056 static const unsigned char twobyte_has_modrm[256] = {
1057 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1058 /* ------------------------------- */
1059 /* 00 */ 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1, /* 0f */
1060 /* 10 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 1f */
1061 /* 20 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 2f */
1062 /* 30 */ 0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0, /* 3f */
1063 /* 40 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 4f */
1064 /* 50 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 5f */
1065 /* 60 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 6f */
1066 /* 70 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 7f */
1067 /* 80 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 8f */
1068 /* 90 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 9f */
1069 /* a0 */ 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1, /* af */
1070 /* b0 */ 1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1, /* bf */
1071 /* c0 */ 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0, /* cf */
1072 /* d0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* df */
1073 /* e0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ef */
1074 /* f0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0 /* ff */
1075 /* ------------------------------- */
1076 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1079 static int amd64_syscall_p (const struct amd64_insn *insn, int *lengthp);
1082 rex_prefix_p (gdb_byte pfx)
1084 return REX_PREFIX_P (pfx);
1087 /* Skip the legacy instruction prefixes in INSN.
1088 We assume INSN is properly sentineled so we don't have to worry
1089 about falling off the end of the buffer. */
1092 amd64_skip_prefixes (gdb_byte *insn)
1098 case DATA_PREFIX_OPCODE:
1099 case ADDR_PREFIX_OPCODE:
1100 case CS_PREFIX_OPCODE:
1101 case DS_PREFIX_OPCODE:
1102 case ES_PREFIX_OPCODE:
1103 case FS_PREFIX_OPCODE:
1104 case GS_PREFIX_OPCODE:
1105 case SS_PREFIX_OPCODE:
1106 case LOCK_PREFIX_OPCODE:
1107 case REPE_PREFIX_OPCODE:
1108 case REPNE_PREFIX_OPCODE:
1120 /* Return an integer register (other than RSP) that is unused as an input
1122 In order to not require adding a rex prefix if the insn doesn't already
1123 have one, the result is restricted to RAX ... RDI, sans RSP.
1124 The register numbering of the result follows architecture ordering,
1128 amd64_get_unused_input_int_reg (const struct amd64_insn *details)
1130 /* 1 bit for each reg */
1131 int used_regs_mask = 0;
1133 /* There can be at most 3 int regs used as inputs in an insn, and we have
1134 7 to choose from (RAX ... RDI, sans RSP).
1135 This allows us to take a conservative approach and keep things simple.
1136 E.g. By avoiding RAX, we don't have to specifically watch for opcodes
1137 that implicitly specify RAX. */
1140 used_regs_mask |= 1 << EAX_REG_NUM;
1141 /* Similarily avoid RDX, implicit operand in divides. */
1142 used_regs_mask |= 1 << EDX_REG_NUM;
1144 used_regs_mask |= 1 << ESP_REG_NUM;
1146 /* If the opcode is one byte long and there's no ModRM byte,
1147 assume the opcode specifies a register. */
1148 if (details->opcode_len == 1 && details->modrm_offset == -1)
1149 used_regs_mask |= 1 << (details->raw_insn[details->opcode_offset] & 7);
1151 /* Mark used regs in the modrm/sib bytes. */
1152 if (details->modrm_offset != -1)
1154 int modrm = details->raw_insn[details->modrm_offset];
1155 int mod = MODRM_MOD_FIELD (modrm);
1156 int reg = MODRM_REG_FIELD (modrm);
1157 int rm = MODRM_RM_FIELD (modrm);
1158 int have_sib = mod != 3 && rm == 4;
1160 /* Assume the reg field of the modrm byte specifies a register. */
1161 used_regs_mask |= 1 << reg;
1165 int base = SIB_BASE_FIELD (details->raw_insn[details->modrm_offset + 1]);
1166 int idx = SIB_INDEX_FIELD (details->raw_insn[details->modrm_offset + 1]);
1167 used_regs_mask |= 1 << base;
1168 used_regs_mask |= 1 << idx;
1172 used_regs_mask |= 1 << rm;
1176 gdb_assert (used_regs_mask < 256);
1177 gdb_assert (used_regs_mask != 255);
1179 /* Finally, find a free reg. */
1183 for (i = 0; i < 8; ++i)
1185 if (! (used_regs_mask & (1 << i)))
1189 /* We shouldn't get here. */
1190 internal_error (__FILE__, __LINE__, _("unable to find free reg"));
1194 /* Extract the details of INSN that we need. */
1197 amd64_get_insn_details (gdb_byte *insn, struct amd64_insn *details)
1199 gdb_byte *start = insn;
1202 details->raw_insn = insn;
1204 details->opcode_len = -1;
1205 details->rex_offset = -1;
1206 details->opcode_offset = -1;
1207 details->modrm_offset = -1;
1209 /* Skip legacy instruction prefixes. */
1210 insn = amd64_skip_prefixes (insn);
1212 /* Skip REX instruction prefix. */
1213 if (rex_prefix_p (*insn))
1215 details->rex_offset = insn - start;
1219 details->opcode_offset = insn - start;
1221 if (*insn == TWO_BYTE_OPCODE_ESCAPE)
1223 /* Two or three-byte opcode. */
1225 need_modrm = twobyte_has_modrm[*insn];
1227 /* Check for three-byte opcode. */
1237 details->opcode_len = 3;
1240 details->opcode_len = 2;
1246 /* One-byte opcode. */
1247 need_modrm = onebyte_has_modrm[*insn];
1248 details->opcode_len = 1;
1254 details->modrm_offset = insn - start;
1258 /* Update %rip-relative addressing in INSN.
1260 %rip-relative addressing only uses a 32-bit displacement.
1261 32 bits is not enough to be guaranteed to cover the distance between where
1262 the real instruction is and where its copy is.
1263 Convert the insn to use base+disp addressing.
1264 We set base = pc + insn_length so we can leave disp unchanged. */
1267 fixup_riprel (struct gdbarch *gdbarch, struct displaced_step_closure *dsc,
1268 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1270 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1271 const struct amd64_insn *insn_details = &dsc->insn_details;
1272 int modrm_offset = insn_details->modrm_offset;
1273 gdb_byte *insn = insn_details->raw_insn + modrm_offset;
1277 int arch_tmp_regno, tmp_regno;
1278 ULONGEST orig_value;
1280 /* %rip+disp32 addressing mode, displacement follows ModRM byte. */
1283 /* Compute the rip-relative address. */
1284 disp = extract_signed_integer (insn, sizeof (int32_t), byte_order);
1285 insn_length = gdb_buffered_insn_length (gdbarch, dsc->insn_buf,
1286 dsc->max_len, from);
1287 rip_base = from + insn_length;
1289 /* We need a register to hold the address.
1290 Pick one not used in the insn.
1291 NOTE: arch_tmp_regno uses architecture ordering, e.g. RDI = 7. */
1292 arch_tmp_regno = amd64_get_unused_input_int_reg (insn_details);
1293 tmp_regno = amd64_arch_reg_to_regnum (arch_tmp_regno);
1295 /* REX.B should be unset as we were using rip-relative addressing,
1296 but ensure it's unset anyway, tmp_regno is not r8-r15. */
1297 if (insn_details->rex_offset != -1)
1298 dsc->insn_buf[insn_details->rex_offset] &= ~REX_B;
1300 regcache_cooked_read_unsigned (regs, tmp_regno, &orig_value);
1301 dsc->tmp_regno = tmp_regno;
1302 dsc->tmp_save = orig_value;
1305 /* Convert the ModRM field to be base+disp. */
1306 dsc->insn_buf[modrm_offset] &= ~0xc7;
1307 dsc->insn_buf[modrm_offset] |= 0x80 + arch_tmp_regno;
1309 regcache_cooked_write_unsigned (regs, tmp_regno, rip_base);
1311 if (debug_displaced)
1312 fprintf_unfiltered (gdb_stdlog, "displaced: %%rip-relative addressing used.\n"
1313 "displaced: using temp reg %d, old value %s, new value %s\n",
1314 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save),
1315 paddress (gdbarch, rip_base));
1319 fixup_displaced_copy (struct gdbarch *gdbarch,
1320 struct displaced_step_closure *dsc,
1321 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1323 const struct amd64_insn *details = &dsc->insn_details;
1325 if (details->modrm_offset != -1)
1327 gdb_byte modrm = details->raw_insn[details->modrm_offset];
1329 if ((modrm & 0xc7) == 0x05)
1331 /* The insn uses rip-relative addressing.
1333 fixup_riprel (gdbarch, dsc, from, to, regs);
1338 struct displaced_step_closure *
1339 amd64_displaced_step_copy_insn (struct gdbarch *gdbarch,
1340 CORE_ADDR from, CORE_ADDR to,
1341 struct regcache *regs)
1343 int len = gdbarch_max_insn_length (gdbarch);
1344 /* Extra space for sentinels so fixup_{riprel,displaced_copy} don't have to
1345 continually watch for running off the end of the buffer. */
1346 int fixup_sentinel_space = len;
1347 struct displaced_step_closure *dsc =
1348 xmalloc (sizeof (*dsc) + len + fixup_sentinel_space);
1349 gdb_byte *buf = &dsc->insn_buf[0];
1350 struct amd64_insn *details = &dsc->insn_details;
1353 dsc->max_len = len + fixup_sentinel_space;
1355 read_memory (from, buf, len);
1357 /* Set up the sentinel space so we don't have to worry about running
1358 off the end of the buffer. An excessive number of leading prefixes
1359 could otherwise cause this. */
1360 memset (buf + len, 0, fixup_sentinel_space);
1362 amd64_get_insn_details (buf, details);
1364 /* GDB may get control back after the insn after the syscall.
1365 Presumably this is a kernel bug.
1366 If this is a syscall, make sure there's a nop afterwards. */
1370 if (amd64_syscall_p (details, &syscall_length))
1371 buf[details->opcode_offset + syscall_length] = NOP_OPCODE;
1374 /* Modify the insn to cope with the address where it will be executed from.
1375 In particular, handle any rip-relative addressing. */
1376 fixup_displaced_copy (gdbarch, dsc, from, to, regs);
1378 write_memory (to, buf, len);
1380 if (debug_displaced)
1382 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
1383 paddress (gdbarch, from), paddress (gdbarch, to));
1384 displaced_step_dump_bytes (gdb_stdlog, buf, len);
1391 amd64_absolute_jmp_p (const struct amd64_insn *details)
1393 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1395 if (insn[0] == 0xff)
1397 /* jump near, absolute indirect (/4) */
1398 if ((insn[1] & 0x38) == 0x20)
1401 /* jump far, absolute indirect (/5) */
1402 if ((insn[1] & 0x38) == 0x28)
1409 /* Return non-zero if the instruction DETAILS is a jump, zero otherwise. */
1412 amd64_jmp_p (const struct amd64_insn *details)
1414 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1416 /* jump short, relative. */
1417 if (insn[0] == 0xeb)
1420 /* jump near, relative. */
1421 if (insn[0] == 0xe9)
1424 return amd64_absolute_jmp_p (details);
1428 amd64_absolute_call_p (const struct amd64_insn *details)
1430 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1432 if (insn[0] == 0xff)
1434 /* Call near, absolute indirect (/2) */
1435 if ((insn[1] & 0x38) == 0x10)
1438 /* Call far, absolute indirect (/3) */
1439 if ((insn[1] & 0x38) == 0x18)
1447 amd64_ret_p (const struct amd64_insn *details)
1449 /* NOTE: gcc can emit "repz ; ret". */
1450 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1454 case 0xc2: /* ret near, pop N bytes */
1455 case 0xc3: /* ret near */
1456 case 0xca: /* ret far, pop N bytes */
1457 case 0xcb: /* ret far */
1458 case 0xcf: /* iret */
1467 amd64_call_p (const struct amd64_insn *details)
1469 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1471 if (amd64_absolute_call_p (details))
1474 /* call near, relative */
1475 if (insn[0] == 0xe8)
1481 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
1482 length in bytes. Otherwise, return zero. */
1485 amd64_syscall_p (const struct amd64_insn *details, int *lengthp)
1487 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1489 if (insn[0] == 0x0f && insn[1] == 0x05)
1498 /* Classify the instruction at ADDR using PRED.
1499 Throw an error if the memory can't be read. */
1502 amd64_classify_insn_at (struct gdbarch *gdbarch, CORE_ADDR addr,
1503 int (*pred) (const struct amd64_insn *))
1505 struct amd64_insn details;
1507 int len, classification;
1509 len = gdbarch_max_insn_length (gdbarch);
1512 read_code (addr, buf, len);
1513 amd64_get_insn_details (buf, &details);
1515 classification = pred (&details);
1517 return classification;
1520 /* The gdbarch insn_is_call method. */
1523 amd64_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
1525 return amd64_classify_insn_at (gdbarch, addr, amd64_call_p);
1528 /* The gdbarch insn_is_ret method. */
1531 amd64_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
1533 return amd64_classify_insn_at (gdbarch, addr, amd64_ret_p);
1536 /* The gdbarch insn_is_jump method. */
1539 amd64_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
1541 return amd64_classify_insn_at (gdbarch, addr, amd64_jmp_p);
1544 /* Fix up the state of registers and memory after having single-stepped
1545 a displaced instruction. */
1548 amd64_displaced_step_fixup (struct gdbarch *gdbarch,
1549 struct displaced_step_closure *dsc,
1550 CORE_ADDR from, CORE_ADDR to,
1551 struct regcache *regs)
1553 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1554 /* The offset we applied to the instruction's address. */
1555 ULONGEST insn_offset = to - from;
1556 gdb_byte *insn = dsc->insn_buf;
1557 const struct amd64_insn *insn_details = &dsc->insn_details;
1559 if (debug_displaced)
1560 fprintf_unfiltered (gdb_stdlog,
1561 "displaced: fixup (%s, %s), "
1562 "insn = 0x%02x 0x%02x ...\n",
1563 paddress (gdbarch, from), paddress (gdbarch, to),
1566 /* If we used a tmp reg, restore it. */
1570 if (debug_displaced)
1571 fprintf_unfiltered (gdb_stdlog, "displaced: restoring reg %d to %s\n",
1572 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save));
1573 regcache_cooked_write_unsigned (regs, dsc->tmp_regno, dsc->tmp_save);
1576 /* The list of issues to contend with here is taken from
1577 resume_execution in arch/x86/kernel/kprobes.c, Linux 2.6.28.
1578 Yay for Free Software! */
1580 /* Relocate the %rip back to the program's instruction stream,
1583 /* Except in the case of absolute or indirect jump or call
1584 instructions, or a return instruction, the new rip is relative to
1585 the displaced instruction; make it relative to the original insn.
1586 Well, signal handler returns don't need relocation either, but we use the
1587 value of %rip to recognize those; see below. */
1588 if (! amd64_absolute_jmp_p (insn_details)
1589 && ! amd64_absolute_call_p (insn_details)
1590 && ! amd64_ret_p (insn_details))
1595 regcache_cooked_read_unsigned (regs, AMD64_RIP_REGNUM, &orig_rip);
1597 /* A signal trampoline system call changes the %rip, resuming
1598 execution of the main program after the signal handler has
1599 returned. That makes them like 'return' instructions; we
1600 shouldn't relocate %rip.
1602 But most system calls don't, and we do need to relocate %rip.
1604 Our heuristic for distinguishing these cases: if stepping
1605 over the system call instruction left control directly after
1606 the instruction, the we relocate --- control almost certainly
1607 doesn't belong in the displaced copy. Otherwise, we assume
1608 the instruction has put control where it belongs, and leave
1609 it unrelocated. Goodness help us if there are PC-relative
1611 if (amd64_syscall_p (insn_details, &insn_len)
1612 && orig_rip != to + insn_len
1613 /* GDB can get control back after the insn after the syscall.
1614 Presumably this is a kernel bug.
1615 Fixup ensures its a nop, we add one to the length for it. */
1616 && orig_rip != to + insn_len + 1)
1618 if (debug_displaced)
1619 fprintf_unfiltered (gdb_stdlog,
1620 "displaced: syscall changed %%rip; "
1621 "not relocating\n");
1625 ULONGEST rip = orig_rip - insn_offset;
1627 /* If we just stepped over a breakpoint insn, we don't backup
1628 the pc on purpose; this is to match behaviour without
1631 regcache_cooked_write_unsigned (regs, AMD64_RIP_REGNUM, rip);
1633 if (debug_displaced)
1634 fprintf_unfiltered (gdb_stdlog,
1636 "relocated %%rip from %s to %s\n",
1637 paddress (gdbarch, orig_rip),
1638 paddress (gdbarch, rip));
1642 /* If the instruction was PUSHFL, then the TF bit will be set in the
1643 pushed value, and should be cleared. We'll leave this for later,
1644 since GDB already messes up the TF flag when stepping over a
1647 /* If the instruction was a call, the return address now atop the
1648 stack is the address following the copied instruction. We need
1649 to make it the address following the original instruction. */
1650 if (amd64_call_p (insn_details))
1654 const ULONGEST retaddr_len = 8;
1656 regcache_cooked_read_unsigned (regs, AMD64_RSP_REGNUM, &rsp);
1657 retaddr = read_memory_unsigned_integer (rsp, retaddr_len, byte_order);
1658 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
1659 write_memory_unsigned_integer (rsp, retaddr_len, byte_order, retaddr);
1661 if (debug_displaced)
1662 fprintf_unfiltered (gdb_stdlog,
1663 "displaced: relocated return addr at %s "
1665 paddress (gdbarch, rsp),
1666 paddress (gdbarch, retaddr));
1670 /* If the instruction INSN uses RIP-relative addressing, return the
1671 offset into the raw INSN where the displacement to be adjusted is
1672 found. Returns 0 if the instruction doesn't use RIP-relative
1676 rip_relative_offset (struct amd64_insn *insn)
1678 if (insn->modrm_offset != -1)
1680 gdb_byte modrm = insn->raw_insn[insn->modrm_offset];
1682 if ((modrm & 0xc7) == 0x05)
1684 /* The displacement is found right after the ModRM byte. */
1685 return insn->modrm_offset + 1;
1693 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
1695 target_write_memory (*to, buf, len);
1700 amd64_relocate_instruction (struct gdbarch *gdbarch,
1701 CORE_ADDR *to, CORE_ADDR oldloc)
1703 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1704 int len = gdbarch_max_insn_length (gdbarch);
1705 /* Extra space for sentinels. */
1706 int fixup_sentinel_space = len;
1707 gdb_byte *buf = xmalloc (len + fixup_sentinel_space);
1708 struct amd64_insn insn_details;
1710 LONGEST rel32, newrel;
1714 read_memory (oldloc, buf, len);
1716 /* Set up the sentinel space so we don't have to worry about running
1717 off the end of the buffer. An excessive number of leading prefixes
1718 could otherwise cause this. */
1719 memset (buf + len, 0, fixup_sentinel_space);
1722 amd64_get_insn_details (insn, &insn_details);
1724 insn_length = gdb_buffered_insn_length (gdbarch, insn, len, oldloc);
1726 /* Skip legacy instruction prefixes. */
1727 insn = amd64_skip_prefixes (insn);
1729 /* Adjust calls with 32-bit relative addresses as push/jump, with
1730 the address pushed being the location where the original call in
1731 the user program would return to. */
1732 if (insn[0] == 0xe8)
1734 gdb_byte push_buf[16];
1735 unsigned int ret_addr;
1737 /* Where "ret" in the original code will return to. */
1738 ret_addr = oldloc + insn_length;
1739 push_buf[0] = 0x68; /* pushq $... */
1740 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
1741 /* Push the push. */
1742 append_insns (to, 5, push_buf);
1744 /* Convert the relative call to a relative jump. */
1747 /* Adjust the destination offset. */
1748 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1749 newrel = (oldloc - *to) + rel32;
1750 store_signed_integer (insn + 1, 4, byte_order, newrel);
1752 if (debug_displaced)
1753 fprintf_unfiltered (gdb_stdlog,
1754 "Adjusted insn rel32=%s at %s to"
1755 " rel32=%s at %s\n",
1756 hex_string (rel32), paddress (gdbarch, oldloc),
1757 hex_string (newrel), paddress (gdbarch, *to));
1759 /* Write the adjusted jump into its displaced location. */
1760 append_insns (to, 5, insn);
1764 offset = rip_relative_offset (&insn_details);
1767 /* Adjust jumps with 32-bit relative addresses. Calls are
1768 already handled above. */
1769 if (insn[0] == 0xe9)
1771 /* Adjust conditional jumps. */
1772 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1778 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1779 newrel = (oldloc - *to) + rel32;
1780 store_signed_integer (insn + offset, 4, byte_order, newrel);
1781 if (debug_displaced)
1782 fprintf_unfiltered (gdb_stdlog,
1783 "Adjusted insn rel32=%s at %s to"
1784 " rel32=%s at %s\n",
1785 hex_string (rel32), paddress (gdbarch, oldloc),
1786 hex_string (newrel), paddress (gdbarch, *to));
1789 /* Write the adjusted instruction into its displaced location. */
1790 append_insns (to, insn_length, buf);
1794 /* The maximum number of saved registers. This should include %rip. */
1795 #define AMD64_NUM_SAVED_REGS AMD64_NUM_GREGS
1797 struct amd64_frame_cache
1802 CORE_ADDR sp_offset;
1805 /* Saved registers. */
1806 CORE_ADDR saved_regs[AMD64_NUM_SAVED_REGS];
1810 /* Do we have a frame? */
1814 /* Initialize a frame cache. */
1817 amd64_init_frame_cache (struct amd64_frame_cache *cache)
1824 cache->sp_offset = -8;
1827 /* Saved registers. We initialize these to -1 since zero is a valid
1828 offset (that's where %rbp is supposed to be stored).
1829 The values start out as being offsets, and are later converted to
1830 addresses (at which point -1 is interpreted as an address, still meaning
1832 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
1833 cache->saved_regs[i] = -1;
1834 cache->saved_sp = 0;
1835 cache->saved_sp_reg = -1;
1837 /* Frameless until proven otherwise. */
1838 cache->frameless_p = 1;
1841 /* Allocate and initialize a frame cache. */
1843 static struct amd64_frame_cache *
1844 amd64_alloc_frame_cache (void)
1846 struct amd64_frame_cache *cache;
1848 cache = FRAME_OBSTACK_ZALLOC (struct amd64_frame_cache);
1849 amd64_init_frame_cache (cache);
1853 /* GCC 4.4 and later, can put code in the prologue to realign the
1854 stack pointer. Check whether PC points to such code, and update
1855 CACHE accordingly. Return the first instruction after the code
1856 sequence or CURRENT_PC, whichever is smaller. If we don't
1857 recognize the code, return PC. */
1860 amd64_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1861 struct amd64_frame_cache *cache)
1863 /* There are 2 code sequences to re-align stack before the frame
1866 1. Use a caller-saved saved register:
1872 2. Use a callee-saved saved register:
1879 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
1881 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
1882 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
1887 int offset, offset_and;
1889 if (target_read_code (pc, buf, sizeof buf))
1892 /* Check caller-saved saved register. The first instruction has
1893 to be "leaq 8(%rsp), %reg". */
1894 if ((buf[0] & 0xfb) == 0x48
1899 /* MOD must be binary 10 and R/M must be binary 100. */
1900 if ((buf[2] & 0xc7) != 0x44)
1903 /* REG has register number. */
1904 reg = (buf[2] >> 3) & 7;
1906 /* Check the REX.R bit. */
1914 /* Check callee-saved saved register. The first instruction
1915 has to be "pushq %reg". */
1917 if ((buf[0] & 0xf8) == 0x50)
1919 else if ((buf[0] & 0xf6) == 0x40
1920 && (buf[1] & 0xf8) == 0x50)
1922 /* Check the REX.B bit. */
1923 if ((buf[0] & 1) != 0)
1932 reg += buf[offset] & 0x7;
1936 /* The next instruction has to be "leaq 16(%rsp), %reg". */
1937 if ((buf[offset] & 0xfb) != 0x48
1938 || buf[offset + 1] != 0x8d
1939 || buf[offset + 3] != 0x24
1940 || buf[offset + 4] != 0x10)
1943 /* MOD must be binary 10 and R/M must be binary 100. */
1944 if ((buf[offset + 2] & 0xc7) != 0x44)
1947 /* REG has register number. */
1948 r = (buf[offset + 2] >> 3) & 7;
1950 /* Check the REX.R bit. */
1951 if (buf[offset] == 0x4c)
1954 /* Registers in pushq and leaq have to be the same. */
1961 /* Rigister can't be %rsp nor %rbp. */
1962 if (reg == 4 || reg == 5)
1965 /* The next instruction has to be "andq $-XXX, %rsp". */
1966 if (buf[offset] != 0x48
1967 || buf[offset + 2] != 0xe4
1968 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
1971 offset_and = offset;
1972 offset += buf[offset + 1] == 0x81 ? 7 : 4;
1974 /* The next instruction has to be "pushq -8(%reg)". */
1976 if (buf[offset] == 0xff)
1978 else if ((buf[offset] & 0xf6) == 0x40
1979 && buf[offset + 1] == 0xff)
1981 /* Check the REX.B bit. */
1982 if ((buf[offset] & 0x1) != 0)
1989 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
1991 if (buf[offset + 1] != 0xf8
1992 || (buf[offset] & 0xf8) != 0x70)
1995 /* R/M has register. */
1996 r += buf[offset] & 7;
1998 /* Registers in leaq and pushq have to be the same. */
2002 if (current_pc > pc + offset_and)
2003 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
2005 return min (pc + offset + 2, current_pc);
2008 /* Similar to amd64_analyze_stack_align for x32. */
2011 amd64_x32_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
2012 struct amd64_frame_cache *cache)
2014 /* There are 2 code sequences to re-align stack before the frame
2017 1. Use a caller-saved saved register:
2025 [addr32] leal 8(%rsp), %reg
2027 [addr32] pushq -8(%reg)
2029 2. Use a callee-saved saved register:
2039 [addr32] leal 16(%rsp), %reg
2041 [addr32] pushq -8(%reg)
2043 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
2045 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
2046 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
2048 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
2050 0x83 0xe4 0xf0 andl $-16, %esp
2051 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
2056 int offset, offset_and;
2058 if (target_read_memory (pc, buf, sizeof buf))
2061 /* Skip optional addr32 prefix. */
2062 offset = buf[0] == 0x67 ? 1 : 0;
2064 /* Check caller-saved saved register. The first instruction has
2065 to be "leaq 8(%rsp), %reg" or "leal 8(%rsp), %reg". */
2066 if (((buf[offset] & 0xfb) == 0x48 || (buf[offset] & 0xfb) == 0x40)
2067 && buf[offset + 1] == 0x8d
2068 && buf[offset + 3] == 0x24
2069 && buf[offset + 4] == 0x8)
2071 /* MOD must be binary 10 and R/M must be binary 100. */
2072 if ((buf[offset + 2] & 0xc7) != 0x44)
2075 /* REG has register number. */
2076 reg = (buf[offset + 2] >> 3) & 7;
2078 /* Check the REX.R bit. */
2079 if ((buf[offset] & 0x4) != 0)
2086 /* Check callee-saved saved register. The first instruction
2087 has to be "pushq %reg". */
2089 if ((buf[offset] & 0xf6) == 0x40
2090 && (buf[offset + 1] & 0xf8) == 0x50)
2092 /* Check the REX.B bit. */
2093 if ((buf[offset] & 1) != 0)
2098 else if ((buf[offset] & 0xf8) != 0x50)
2102 reg += buf[offset] & 0x7;
2106 /* Skip optional addr32 prefix. */
2107 if (buf[offset] == 0x67)
2110 /* The next instruction has to be "leaq 16(%rsp), %reg" or
2111 "leal 16(%rsp), %reg". */
2112 if (((buf[offset] & 0xfb) != 0x48 && (buf[offset] & 0xfb) != 0x40)
2113 || buf[offset + 1] != 0x8d
2114 || buf[offset + 3] != 0x24
2115 || buf[offset + 4] != 0x10)
2118 /* MOD must be binary 10 and R/M must be binary 100. */
2119 if ((buf[offset + 2] & 0xc7) != 0x44)
2122 /* REG has register number. */
2123 r = (buf[offset + 2] >> 3) & 7;
2125 /* Check the REX.R bit. */
2126 if ((buf[offset] & 0x4) != 0)
2129 /* Registers in pushq and leaq have to be the same. */
2136 /* Rigister can't be %rsp nor %rbp. */
2137 if (reg == 4 || reg == 5)
2140 /* The next instruction may be "andq $-XXX, %rsp" or
2141 "andl $-XXX, %esp". */
2142 if (buf[offset] != 0x48)
2145 if (buf[offset + 2] != 0xe4
2146 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
2149 offset_and = offset;
2150 offset += buf[offset + 1] == 0x81 ? 7 : 4;
2152 /* Skip optional addr32 prefix. */
2153 if (buf[offset] == 0x67)
2156 /* The next instruction has to be "pushq -8(%reg)". */
2158 if (buf[offset] == 0xff)
2160 else if ((buf[offset] & 0xf6) == 0x40
2161 && buf[offset + 1] == 0xff)
2163 /* Check the REX.B bit. */
2164 if ((buf[offset] & 0x1) != 0)
2171 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
2173 if (buf[offset + 1] != 0xf8
2174 || (buf[offset] & 0xf8) != 0x70)
2177 /* R/M has register. */
2178 r += buf[offset] & 7;
2180 /* Registers in leaq and pushq have to be the same. */
2184 if (current_pc > pc + offset_and)
2185 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
2187 return min (pc + offset + 2, current_pc);
2190 /* Do a limited analysis of the prologue at PC and update CACHE
2191 accordingly. Bail out early if CURRENT_PC is reached. Return the
2192 address where the analysis stopped.
2194 We will handle only functions beginning with:
2197 movq %rsp, %rbp 0x48 0x89 0xe5 (or 0x48 0x8b 0xec)
2199 or (for the X32 ABI):
2202 movl %esp, %ebp 0x89 0xe5 (or 0x8b 0xec)
2204 Any function that doesn't start with one of these sequences will be
2205 assumed to have no prologue and thus no valid frame pointer in
2209 amd64_analyze_prologue (struct gdbarch *gdbarch,
2210 CORE_ADDR pc, CORE_ADDR current_pc,
2211 struct amd64_frame_cache *cache)
2213 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2214 /* There are two variations of movq %rsp, %rbp. */
2215 static const gdb_byte mov_rsp_rbp_1[3] = { 0x48, 0x89, 0xe5 };
2216 static const gdb_byte mov_rsp_rbp_2[3] = { 0x48, 0x8b, 0xec };
2217 /* Ditto for movl %esp, %ebp. */
2218 static const gdb_byte mov_esp_ebp_1[2] = { 0x89, 0xe5 };
2219 static const gdb_byte mov_esp_ebp_2[2] = { 0x8b, 0xec };
2224 if (current_pc <= pc)
2227 if (gdbarch_ptr_bit (gdbarch) == 32)
2228 pc = amd64_x32_analyze_stack_align (pc, current_pc, cache);
2230 pc = amd64_analyze_stack_align (pc, current_pc, cache);
2232 op = read_code_unsigned_integer (pc, 1, byte_order);
2234 if (op == 0x55) /* pushq %rbp */
2236 /* Take into account that we've executed the `pushq %rbp' that
2237 starts this instruction sequence. */
2238 cache->saved_regs[AMD64_RBP_REGNUM] = 0;
2239 cache->sp_offset += 8;
2241 /* If that's all, return now. */
2242 if (current_pc <= pc + 1)
2245 read_code (pc + 1, buf, 3);
2247 /* Check for `movq %rsp, %rbp'. */
2248 if (memcmp (buf, mov_rsp_rbp_1, 3) == 0
2249 || memcmp (buf, mov_rsp_rbp_2, 3) == 0)
2251 /* OK, we actually have a frame. */
2252 cache->frameless_p = 0;
2256 /* For X32, also check for `movq %esp, %ebp'. */
2257 if (gdbarch_ptr_bit (gdbarch) == 32)
2259 if (memcmp (buf, mov_esp_ebp_1, 2) == 0
2260 || memcmp (buf, mov_esp_ebp_2, 2) == 0)
2262 /* OK, we actually have a frame. */
2263 cache->frameless_p = 0;
2274 /* Work around false termination of prologue - GCC PR debug/48827.
2276 START_PC is the first instruction of a function, PC is its minimal already
2277 determined advanced address. Function returns PC if it has nothing to do.
2281 <-- here is 0 lines advance - the false prologue end marker.
2282 0f 29 85 70 ff ff ff movaps %xmm0,-0x90(%rbp)
2283 0f 29 4d 80 movaps %xmm1,-0x80(%rbp)
2284 0f 29 55 90 movaps %xmm2,-0x70(%rbp)
2285 0f 29 5d a0 movaps %xmm3,-0x60(%rbp)
2286 0f 29 65 b0 movaps %xmm4,-0x50(%rbp)
2287 0f 29 6d c0 movaps %xmm5,-0x40(%rbp)
2288 0f 29 75 d0 movaps %xmm6,-0x30(%rbp)
2289 0f 29 7d e0 movaps %xmm7,-0x20(%rbp)
2293 amd64_skip_xmm_prologue (CORE_ADDR pc, CORE_ADDR start_pc)
2295 struct symtab_and_line start_pc_sal, next_sal;
2296 gdb_byte buf[4 + 8 * 7];
2302 start_pc_sal = find_pc_sect_line (start_pc, NULL, 0);
2303 if (start_pc_sal.symtab == NULL
2304 || producer_is_gcc_ge_4 (start_pc_sal.symtab->producer) < 6
2305 || start_pc_sal.pc != start_pc || pc >= start_pc_sal.end)
2308 next_sal = find_pc_sect_line (start_pc_sal.end, NULL, 0);
2309 if (next_sal.line != start_pc_sal.line)
2312 /* START_PC can be from overlayed memory, ignored here. */
2313 if (target_read_code (next_sal.pc - 4, buf, sizeof (buf)) != 0)
2317 if (buf[0] != 0x84 || buf[1] != 0xc0)
2324 for (xmmreg = 0; xmmreg < 8; xmmreg++)
2326 /* 0x0f 0x29 0b??000101 movaps %xmmreg?,-0x??(%rbp) */
2327 if (buf[offset] != 0x0f || buf[offset + 1] != 0x29
2328 || (buf[offset + 2] & 0x3f) != (xmmreg << 3 | 0x5))
2332 if ((buf[offset + 2] & 0xc0) == 0x40)
2334 /* 8-bit displacement. */
2338 else if ((buf[offset + 2] & 0xc0) == 0x80)
2340 /* 32-bit displacement. */
2348 if (offset - 4 != buf[3])
2351 return next_sal.end;
2354 /* Return PC of first real instruction. */
2357 amd64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
2359 struct amd64_frame_cache cache;
2361 CORE_ADDR func_addr;
2363 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
2365 CORE_ADDR post_prologue_pc
2366 = skip_prologue_using_sal (gdbarch, func_addr);
2367 struct symtab *s = find_pc_symtab (func_addr);
2369 /* Clang always emits a line note before the prologue and another
2370 one after. We trust clang to emit usable line notes. */
2371 if (post_prologue_pc
2373 && s->producer != NULL
2374 && strncmp (s->producer, "clang ", sizeof ("clang ") - 1) == 0))
2375 return max (start_pc, post_prologue_pc);
2378 amd64_init_frame_cache (&cache);
2379 pc = amd64_analyze_prologue (gdbarch, start_pc, 0xffffffffffffffffLL,
2381 if (cache.frameless_p)
2384 return amd64_skip_xmm_prologue (pc, start_pc);
2388 /* Normal frames. */
2391 amd64_frame_cache_1 (struct frame_info *this_frame,
2392 struct amd64_frame_cache *cache)
2394 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2395 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2399 cache->pc = get_frame_func (this_frame);
2401 amd64_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2404 if (cache->frameless_p)
2406 /* We didn't find a valid frame. If we're at the start of a
2407 function, or somewhere half-way its prologue, the function's
2408 frame probably hasn't been fully setup yet. Try to
2409 reconstruct the base address for the stack frame by looking
2410 at the stack pointer. For truly "frameless" functions this
2413 if (cache->saved_sp_reg != -1)
2415 /* Stack pointer has been saved. */
2416 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2417 cache->saved_sp = extract_unsigned_integer (buf, 8, byte_order);
2419 /* We're halfway aligning the stack. */
2420 cache->base = ((cache->saved_sp - 8) & 0xfffffffffffffff0LL) - 8;
2421 cache->saved_regs[AMD64_RIP_REGNUM] = cache->saved_sp - 8;
2423 /* This will be added back below. */
2424 cache->saved_regs[AMD64_RIP_REGNUM] -= cache->base;
2428 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2429 cache->base = extract_unsigned_integer (buf, 8, byte_order)
2435 get_frame_register (this_frame, AMD64_RBP_REGNUM, buf);
2436 cache->base = extract_unsigned_integer (buf, 8, byte_order);
2439 /* Now that we have the base address for the stack frame we can
2440 calculate the value of %rsp in the calling frame. */
2441 cache->saved_sp = cache->base + 16;
2443 /* For normal frames, %rip is stored at 8(%rbp). If we don't have a
2444 frame we find it at the same offset from the reconstructed base
2445 address. If we're halfway aligning the stack, %rip is handled
2446 differently (see above). */
2447 if (!cache->frameless_p || cache->saved_sp_reg == -1)
2448 cache->saved_regs[AMD64_RIP_REGNUM] = 8;
2450 /* Adjust all the saved registers such that they contain addresses
2451 instead of offsets. */
2452 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
2453 if (cache->saved_regs[i] != -1)
2454 cache->saved_regs[i] += cache->base;
2459 static struct amd64_frame_cache *
2460 amd64_frame_cache (struct frame_info *this_frame, void **this_cache)
2462 volatile struct gdb_exception ex;
2463 struct amd64_frame_cache *cache;
2468 cache = amd64_alloc_frame_cache ();
2469 *this_cache = cache;
2471 TRY_CATCH (ex, RETURN_MASK_ERROR)
2473 amd64_frame_cache_1 (this_frame, cache);
2475 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2476 throw_exception (ex);
2481 static enum unwind_stop_reason
2482 amd64_frame_unwind_stop_reason (struct frame_info *this_frame,
2485 struct amd64_frame_cache *cache =
2486 amd64_frame_cache (this_frame, this_cache);
2489 return UNWIND_UNAVAILABLE;
2491 /* This marks the outermost frame. */
2492 if (cache->base == 0)
2493 return UNWIND_OUTERMOST;
2495 return UNWIND_NO_REASON;
2499 amd64_frame_this_id (struct frame_info *this_frame, void **this_cache,
2500 struct frame_id *this_id)
2502 struct amd64_frame_cache *cache =
2503 amd64_frame_cache (this_frame, this_cache);
2506 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2507 else if (cache->base == 0)
2509 /* This marks the outermost frame. */
2513 (*this_id) = frame_id_build (cache->base + 16, cache->pc);
2516 static struct value *
2517 amd64_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2520 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2521 struct amd64_frame_cache *cache =
2522 amd64_frame_cache (this_frame, this_cache);
2524 gdb_assert (regnum >= 0);
2526 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
2527 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
2529 if (regnum < AMD64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2530 return frame_unwind_got_memory (this_frame, regnum,
2531 cache->saved_regs[regnum]);
2533 return frame_unwind_got_register (this_frame, regnum, regnum);
2536 static const struct frame_unwind amd64_frame_unwind =
2539 amd64_frame_unwind_stop_reason,
2540 amd64_frame_this_id,
2541 amd64_frame_prev_register,
2543 default_frame_sniffer
2546 /* Generate a bytecode expression to get the value of the saved PC. */
2549 amd64_gen_return_address (struct gdbarch *gdbarch,
2550 struct agent_expr *ax, struct axs_value *value,
2553 /* The following sequence assumes the traditional use of the base
2555 ax_reg (ax, AMD64_RBP_REGNUM);
2557 ax_simple (ax, aop_add);
2558 value->type = register_type (gdbarch, AMD64_RIP_REGNUM);
2559 value->kind = axs_lvalue_memory;
2563 /* Signal trampolines. */
2565 /* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and
2566 64-bit variants. This would require using identical frame caches
2567 on both platforms. */
2569 static struct amd64_frame_cache *
2570 amd64_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2572 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2573 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2574 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2575 volatile struct gdb_exception ex;
2576 struct amd64_frame_cache *cache;
2584 cache = amd64_alloc_frame_cache ();
2586 TRY_CATCH (ex, RETURN_MASK_ERROR)
2588 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2589 cache->base = extract_unsigned_integer (buf, 8, byte_order) - 8;
2591 addr = tdep->sigcontext_addr (this_frame);
2592 gdb_assert (tdep->sc_reg_offset);
2593 gdb_assert (tdep->sc_num_regs <= AMD64_NUM_SAVED_REGS);
2594 for (i = 0; i < tdep->sc_num_regs; i++)
2595 if (tdep->sc_reg_offset[i] != -1)
2596 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2600 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2601 throw_exception (ex);
2603 *this_cache = cache;
2607 static enum unwind_stop_reason
2608 amd64_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2611 struct amd64_frame_cache *cache =
2612 amd64_sigtramp_frame_cache (this_frame, this_cache);
2615 return UNWIND_UNAVAILABLE;
2617 return UNWIND_NO_REASON;
2621 amd64_sigtramp_frame_this_id (struct frame_info *this_frame,
2622 void **this_cache, struct frame_id *this_id)
2624 struct amd64_frame_cache *cache =
2625 amd64_sigtramp_frame_cache (this_frame, this_cache);
2628 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2629 else if (cache->base == 0)
2631 /* This marks the outermost frame. */
2635 (*this_id) = frame_id_build (cache->base + 16, get_frame_pc (this_frame));
2638 static struct value *
2639 amd64_sigtramp_frame_prev_register (struct frame_info *this_frame,
2640 void **this_cache, int regnum)
2642 /* Make sure we've initialized the cache. */
2643 amd64_sigtramp_frame_cache (this_frame, this_cache);
2645 return amd64_frame_prev_register (this_frame, this_cache, regnum);
2649 amd64_sigtramp_frame_sniffer (const struct frame_unwind *self,
2650 struct frame_info *this_frame,
2653 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2655 /* We shouldn't even bother if we don't have a sigcontext_addr
2657 if (tdep->sigcontext_addr == NULL)
2660 if (tdep->sigtramp_p != NULL)
2662 if (tdep->sigtramp_p (this_frame))
2666 if (tdep->sigtramp_start != 0)
2668 CORE_ADDR pc = get_frame_pc (this_frame);
2670 gdb_assert (tdep->sigtramp_end != 0);
2671 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2678 static const struct frame_unwind amd64_sigtramp_frame_unwind =
2681 amd64_sigtramp_frame_unwind_stop_reason,
2682 amd64_sigtramp_frame_this_id,
2683 amd64_sigtramp_frame_prev_register,
2685 amd64_sigtramp_frame_sniffer
2690 amd64_frame_base_address (struct frame_info *this_frame, void **this_cache)
2692 struct amd64_frame_cache *cache =
2693 amd64_frame_cache (this_frame, this_cache);
2698 static const struct frame_base amd64_frame_base =
2700 &amd64_frame_unwind,
2701 amd64_frame_base_address,
2702 amd64_frame_base_address,
2703 amd64_frame_base_address
2706 /* Normal frames, but in a function epilogue. */
2708 /* The epilogue is defined here as the 'ret' instruction, which will
2709 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2710 the function's stack frame. */
2713 amd64_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2716 struct symtab *symtab;
2718 symtab = find_pc_symtab (pc);
2719 if (symtab && symtab->epilogue_unwind_valid)
2722 if (target_read_memory (pc, &insn, 1))
2723 return 0; /* Can't read memory at pc. */
2725 if (insn != 0xc3) /* 'ret' instruction. */
2732 amd64_epilogue_frame_sniffer (const struct frame_unwind *self,
2733 struct frame_info *this_frame,
2734 void **this_prologue_cache)
2736 if (frame_relative_level (this_frame) == 0)
2737 return amd64_in_function_epilogue_p (get_frame_arch (this_frame),
2738 get_frame_pc (this_frame));
2743 static struct amd64_frame_cache *
2744 amd64_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2746 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2747 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2748 volatile struct gdb_exception ex;
2749 struct amd64_frame_cache *cache;
2755 cache = amd64_alloc_frame_cache ();
2756 *this_cache = cache;
2758 TRY_CATCH (ex, RETURN_MASK_ERROR)
2760 /* Cache base will be %esp plus cache->sp_offset (-8). */
2761 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2762 cache->base = extract_unsigned_integer (buf, 8,
2763 byte_order) + cache->sp_offset;
2765 /* Cache pc will be the frame func. */
2766 cache->pc = get_frame_pc (this_frame);
2768 /* The saved %esp will be at cache->base plus 16. */
2769 cache->saved_sp = cache->base + 16;
2771 /* The saved %eip will be at cache->base plus 8. */
2772 cache->saved_regs[AMD64_RIP_REGNUM] = cache->base + 8;
2776 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2777 throw_exception (ex);
2782 static enum unwind_stop_reason
2783 amd64_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2786 struct amd64_frame_cache *cache
2787 = amd64_epilogue_frame_cache (this_frame, this_cache);
2790 return UNWIND_UNAVAILABLE;
2792 return UNWIND_NO_REASON;
2796 amd64_epilogue_frame_this_id (struct frame_info *this_frame,
2798 struct frame_id *this_id)
2800 struct amd64_frame_cache *cache = amd64_epilogue_frame_cache (this_frame,
2804 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2806 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2809 static const struct frame_unwind amd64_epilogue_frame_unwind =
2812 amd64_epilogue_frame_unwind_stop_reason,
2813 amd64_epilogue_frame_this_id,
2814 amd64_frame_prev_register,
2816 amd64_epilogue_frame_sniffer
2819 static struct frame_id
2820 amd64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2824 fp = get_frame_register_unsigned (this_frame, AMD64_RBP_REGNUM);
2826 return frame_id_build (fp + 16, get_frame_pc (this_frame));
2829 /* 16 byte align the SP per frame requirements. */
2832 amd64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2834 return sp & -(CORE_ADDR)16;
2838 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
2839 in the floating-point register set REGSET to register cache
2840 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
2843 amd64_supply_fpregset (const struct regset *regset, struct regcache *regcache,
2844 int regnum, const void *fpregs, size_t len)
2846 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2847 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2849 gdb_assert (len == tdep->sizeof_fpregset);
2850 amd64_supply_fxsave (regcache, regnum, fpregs);
2853 /* Collect register REGNUM from the register cache REGCACHE and store
2854 it in the buffer specified by FPREGS and LEN as described by the
2855 floating-point register set REGSET. If REGNUM is -1, do this for
2856 all registers in REGSET. */
2859 amd64_collect_fpregset (const struct regset *regset,
2860 const struct regcache *regcache,
2861 int regnum, void *fpregs, size_t len)
2863 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2864 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2866 gdb_assert (len == tdep->sizeof_fpregset);
2867 amd64_collect_fxsave (regcache, regnum, fpregs);
2870 /* Similar to amd64_supply_fpregset, but use XSAVE extended state. */
2873 amd64_supply_xstateregset (const struct regset *regset,
2874 struct regcache *regcache, int regnum,
2875 const void *xstateregs, size_t len)
2877 amd64_supply_xsave (regcache, regnum, xstateregs);
2880 /* Similar to amd64_collect_fpregset, but use XSAVE extended state. */
2883 amd64_collect_xstateregset (const struct regset *regset,
2884 const struct regcache *regcache,
2885 int regnum, void *xstateregs, size_t len)
2887 amd64_collect_xsave (regcache, regnum, xstateregs, 1);
2890 static const struct regset amd64_fpregset =
2892 NULL, amd64_supply_fpregset, amd64_collect_fpregset
2895 static const struct regset amd64_xstateregset =
2897 NULL, amd64_supply_xstateregset, amd64_collect_xstateregset
2900 /* Return the appropriate register set for the core section identified
2901 by SECT_NAME and SECT_SIZE. */
2903 static const struct regset *
2904 amd64_regset_from_core_section (struct gdbarch *gdbarch,
2905 const char *sect_name, size_t sect_size)
2907 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2909 if (strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
2910 return &amd64_fpregset;
2912 if (strcmp (sect_name, ".reg-xstate") == 0)
2913 return &amd64_xstateregset;
2915 return i386_regset_from_core_section (gdbarch, sect_name, sect_size);
2919 /* Figure out where the longjmp will land. Slurp the jmp_buf out of
2920 %rdi. We expect its value to be a pointer to the jmp_buf structure
2921 from which we extract the address that we will land at. This
2922 address is copied into PC. This routine returns non-zero on
2926 amd64_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2930 struct gdbarch *gdbarch = get_frame_arch (frame);
2931 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2932 int len = TYPE_LENGTH (builtin_type (gdbarch)->builtin_func_ptr);
2934 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2935 longjmp will land. */
2936 if (jb_pc_offset == -1)
2939 get_frame_register (frame, AMD64_RDI_REGNUM, buf);
2940 jb_addr= extract_typed_address
2941 (buf, builtin_type (gdbarch)->builtin_data_ptr);
2942 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
2945 *pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
2950 static const int amd64_record_regmap[] =
2952 AMD64_RAX_REGNUM, AMD64_RCX_REGNUM, AMD64_RDX_REGNUM, AMD64_RBX_REGNUM,
2953 AMD64_RSP_REGNUM, AMD64_RBP_REGNUM, AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
2954 AMD64_R8_REGNUM, AMD64_R9_REGNUM, AMD64_R10_REGNUM, AMD64_R11_REGNUM,
2955 AMD64_R12_REGNUM, AMD64_R13_REGNUM, AMD64_R14_REGNUM, AMD64_R15_REGNUM,
2956 AMD64_RIP_REGNUM, AMD64_EFLAGS_REGNUM, AMD64_CS_REGNUM, AMD64_SS_REGNUM,
2957 AMD64_DS_REGNUM, AMD64_ES_REGNUM, AMD64_FS_REGNUM, AMD64_GS_REGNUM
2961 amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2963 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2964 const struct target_desc *tdesc = info.target_desc;
2965 static const char *const stap_integer_prefixes[] = { "$", NULL };
2966 static const char *const stap_register_prefixes[] = { "%", NULL };
2967 static const char *const stap_register_indirection_prefixes[] = { "(",
2969 static const char *const stap_register_indirection_suffixes[] = { ")",
2972 /* AMD64 generally uses `fxsave' instead of `fsave' for saving its
2973 floating-point registers. */
2974 tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE;
2976 if (! tdesc_has_registers (tdesc))
2977 tdesc = tdesc_amd64;
2978 tdep->tdesc = tdesc;
2980 tdep->num_core_regs = AMD64_NUM_GREGS + I387_NUM_REGS;
2981 tdep->register_names = amd64_register_names;
2983 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512") != NULL)
2985 tdep->zmmh_register_names = amd64_zmmh_names;
2986 tdep->k_register_names = amd64_k_names;
2987 tdep->xmm_avx512_register_names = amd64_xmm_avx512_names;
2988 tdep->ymm16h_register_names = amd64_ymmh_avx512_names;
2990 tdep->num_zmm_regs = 32;
2991 tdep->num_xmm_avx512_regs = 16;
2992 tdep->num_ymm_avx512_regs = 16;
2994 tdep->zmm0h_regnum = AMD64_ZMM0H_REGNUM;
2995 tdep->k0_regnum = AMD64_K0_REGNUM;
2996 tdep->xmm16_regnum = AMD64_XMM16_REGNUM;
2997 tdep->ymm16h_regnum = AMD64_YMM16H_REGNUM;
3000 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx") != NULL)
3002 tdep->ymmh_register_names = amd64_ymmh_names;
3003 tdep->num_ymm_regs = 16;
3004 tdep->ymm0h_regnum = AMD64_YMM0H_REGNUM;
3007 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL)
3009 tdep->mpx_register_names = amd64_mpx_names;
3010 tdep->bndcfgu_regnum = AMD64_BNDCFGU_REGNUM;
3011 tdep->bnd0r_regnum = AMD64_BND0R_REGNUM;
3014 tdep->num_byte_regs = 20;
3015 tdep->num_word_regs = 16;
3016 tdep->num_dword_regs = 16;
3017 /* Avoid wiring in the MMX registers for now. */
3018 tdep->num_mmx_regs = 0;
3020 set_gdbarch_pseudo_register_read_value (gdbarch,
3021 amd64_pseudo_register_read_value);
3022 set_gdbarch_pseudo_register_write (gdbarch,
3023 amd64_pseudo_register_write);
3025 set_tdesc_pseudo_register_name (gdbarch, amd64_pseudo_register_name);
3027 /* AMD64 has an FPU and 16 SSE registers. */
3028 tdep->st0_regnum = AMD64_ST0_REGNUM;
3029 tdep->num_xmm_regs = 16;
3031 /* This is what all the fuss is about. */
3032 set_gdbarch_long_bit (gdbarch, 64);
3033 set_gdbarch_long_long_bit (gdbarch, 64);
3034 set_gdbarch_ptr_bit (gdbarch, 64);
3036 /* In contrast to the i386, on AMD64 a `long double' actually takes
3037 up 128 bits, even though it's still based on the i387 extended
3038 floating-point format which has only 80 significant bits. */
3039 set_gdbarch_long_double_bit (gdbarch, 128);
3041 set_gdbarch_num_regs (gdbarch, AMD64_NUM_REGS);
3043 /* Register numbers of various important registers. */
3044 set_gdbarch_sp_regnum (gdbarch, AMD64_RSP_REGNUM); /* %rsp */
3045 set_gdbarch_pc_regnum (gdbarch, AMD64_RIP_REGNUM); /* %rip */
3046 set_gdbarch_ps_regnum (gdbarch, AMD64_EFLAGS_REGNUM); /* %eflags */
3047 set_gdbarch_fp0_regnum (gdbarch, AMD64_ST0_REGNUM); /* %st(0) */
3049 /* The "default" register numbering scheme for AMD64 is referred to
3050 as the "DWARF Register Number Mapping" in the System V psABI.
3051 The preferred debugging format for all known AMD64 targets is
3052 actually DWARF2, and GCC doesn't seem to support DWARF (that is
3053 DWARF-1), but we provide the same mapping just in case. This
3054 mapping is also used for stabs, which GCC does support. */
3055 set_gdbarch_stab_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
3056 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
3058 /* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to
3059 be in use on any of the supported AMD64 targets. */
3061 /* Call dummy code. */
3062 set_gdbarch_push_dummy_call (gdbarch, amd64_push_dummy_call);
3063 set_gdbarch_frame_align (gdbarch, amd64_frame_align);
3064 set_gdbarch_frame_red_zone_size (gdbarch, 128);
3066 set_gdbarch_convert_register_p (gdbarch, i387_convert_register_p);
3067 set_gdbarch_register_to_value (gdbarch, i387_register_to_value);
3068 set_gdbarch_value_to_register (gdbarch, i387_value_to_register);
3070 set_gdbarch_return_value (gdbarch, amd64_return_value);
3072 set_gdbarch_skip_prologue (gdbarch, amd64_skip_prologue);
3074 tdep->record_regmap = amd64_record_regmap;
3076 set_gdbarch_dummy_id (gdbarch, amd64_dummy_id);
3078 /* Hook the function epilogue frame unwinder. This unwinder is
3079 appended to the list first, so that it supercedes the other
3080 unwinders in function epilogues. */
3081 frame_unwind_prepend_unwinder (gdbarch, &amd64_epilogue_frame_unwind);
3083 /* Hook the prologue-based frame unwinders. */
3084 frame_unwind_append_unwinder (gdbarch, &amd64_sigtramp_frame_unwind);
3085 frame_unwind_append_unwinder (gdbarch, &amd64_frame_unwind);
3086 frame_base_set_default (gdbarch, &amd64_frame_base);
3088 /* If we have a register mapping, enable the generic core file support. */
3089 if (tdep->gregset_reg_offset)
3090 set_gdbarch_regset_from_core_section (gdbarch,
3091 amd64_regset_from_core_section);
3093 set_gdbarch_get_longjmp_target (gdbarch, amd64_get_longjmp_target);
3095 set_gdbarch_relocate_instruction (gdbarch, amd64_relocate_instruction);
3097 set_gdbarch_gen_return_address (gdbarch, amd64_gen_return_address);
3099 /* SystemTap variables and functions. */
3100 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
3101 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
3102 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
3103 stap_register_indirection_prefixes);
3104 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
3105 stap_register_indirection_suffixes);
3106 set_gdbarch_stap_is_single_operand (gdbarch,
3107 i386_stap_is_single_operand);
3108 set_gdbarch_stap_parse_special_token (gdbarch,
3109 i386_stap_parse_special_token);
3110 set_gdbarch_insn_is_call (gdbarch, amd64_insn_is_call);
3111 set_gdbarch_insn_is_ret (gdbarch, amd64_insn_is_ret);
3112 set_gdbarch_insn_is_jump (gdbarch, amd64_insn_is_jump);
3116 static struct type *
3117 amd64_x32_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3119 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3121 switch (regnum - tdep->eax_regnum)
3123 case AMD64_RBP_REGNUM: /* %ebp */
3124 case AMD64_RSP_REGNUM: /* %esp */
3125 return builtin_type (gdbarch)->builtin_data_ptr;
3126 case AMD64_RIP_REGNUM: /* %eip */
3127 return builtin_type (gdbarch)->builtin_func_ptr;
3130 return i386_pseudo_register_type (gdbarch, regnum);
3134 amd64_x32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3136 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3137 const struct target_desc *tdesc = info.target_desc;
3139 amd64_init_abi (info, gdbarch);
3141 if (! tdesc_has_registers (tdesc))
3143 tdep->tdesc = tdesc;
3145 tdep->num_dword_regs = 17;
3146 set_tdesc_pseudo_register_type (gdbarch, amd64_x32_pseudo_register_type);
3148 set_gdbarch_long_bit (gdbarch, 32);
3149 set_gdbarch_ptr_bit (gdbarch, 32);
3152 /* Provide a prototype to silence -Wmissing-prototypes. */
3153 void _initialize_amd64_tdep (void);
3156 _initialize_amd64_tdep (void)
3158 initialize_tdesc_amd64 ();
3159 initialize_tdesc_amd64_avx ();
3160 initialize_tdesc_amd64_mpx ();
3161 initialize_tdesc_amd64_avx512 ();
3163 initialize_tdesc_x32 ();
3164 initialize_tdesc_x32_avx ();
3165 initialize_tdesc_x32_avx512 ();
3169 /* The 64-bit FXSAVE format differs from the 32-bit format in the
3170 sense that the instruction pointer and data pointer are simply
3171 64-bit offsets into the code segment and the data segment instead
3172 of a selector offset pair. The functions below store the upper 32
3173 bits of these pointers (instead of just the 16-bits of the segment
3176 /* Fill register REGNUM in REGCACHE with the appropriate
3177 floating-point or SSE register value from *FXSAVE. If REGNUM is
3178 -1, do this for all registers. This function masks off any of the
3179 reserved bits in *FXSAVE. */
3182 amd64_supply_fxsave (struct regcache *regcache, int regnum,
3185 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3186 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3188 i387_supply_fxsave (regcache, regnum, fxsave);
3191 && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3193 const gdb_byte *regs = fxsave;
3195 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3196 regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
3197 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3198 regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
3202 /* Similar to amd64_supply_fxsave, but use XSAVE extended state. */
3205 amd64_supply_xsave (struct regcache *regcache, int regnum,
3208 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3209 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3211 i387_supply_xsave (regcache, regnum, xsave);
3214 && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3216 const gdb_byte *regs = xsave;
3218 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3219 regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep),
3221 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3222 regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep),
3227 /* Fill register REGNUM (if it is a floating-point or SSE register) in
3228 *FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for
3229 all registers. This function doesn't touch any of the reserved
3233 amd64_collect_fxsave (const struct regcache *regcache, int regnum,
3236 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3237 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3238 gdb_byte *regs = fxsave;
3240 i387_collect_fxsave (regcache, regnum, fxsave);
3242 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3244 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3245 regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
3246 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3247 regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
3251 /* Similar to amd64_collect_fxsave, but use XSAVE extended state. */
3254 amd64_collect_xsave (const struct regcache *regcache, int regnum,
3255 void *xsave, int gcore)
3257 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3258 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3259 gdb_byte *regs = xsave;
3261 i387_collect_xsave (regcache, regnum, xsave, gcore);
3263 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3265 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3266 regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep),
3268 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3269 regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep),